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Abstract

In this thesis, we demonstrate the intimate connection between the model-theoretic

notion of distality and concepts from combinatorics : developments in distality

both lead to and come from those in combinatorics.

Chapter 3 demonstrates the from direction. We prove that expansions of

Presburger arithmetic by a predicate R ⊆ N are distal when R satisfies certain

arithmetic combinatorial properties. We do so by constructing distal decompos-

itions (or strong honest definitions), a form of cell decomposition with desirable

combinatorial properties.

Chapter 4 demonstrates the to direction. We prove that relations definable

in a distal structure have better bounds for the Zarankiewicz problem, a clas-

sical problem in extremal combinatorics. In fact, we prove that these bounds

are enjoyed by any relation satisfying an improved version of Szemerédi regular-

ity lemma, a classical theorem in extremal combinatorics. Thus, motivated by

distality, we discover an interaction between two areas of extremal combinatorics.

Chapter 5 demonstrates both the to and the from directions. We show that

the developments of higher-arity distality and higher-arity (hypergraph) regular-

ity lemmas inform one another. The centrepiece of the chapter is a homogeneous

hypergraph regularity lemma that we derive for structures satisfying higher-arity

distality. In the quest for this, we develop strong honest definitions for higher-

arity distality, whose efficacy is supported by the regularity lemma.
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Chapter 1

Introduction

In this chapter, we give an overview of the themes and main results of this thesis,

as well as directions for future research.

This thesis explores the interplay between distality and combinatorics. Rather

than just connecting these two words with the conjunction and to title the thesis,

we thought that the prepositions to and from better conveyed our thesis (that

is, our argument): that the symbiosis between distality and combinatorics is a

mutualistic one. While the combinatorial applicability of distality (the to direc-

tion) is gaining increasing traction, the utility of combinatorial considerations for

research in distality (the from direction) is, in our opinion, undervalued, and we

hope to contribute to the development of both directions with this thesis.

Let us zoom out momentarily. Applying model-theoretic results to other fields

of mathematics is, of course, not a new idea. Model theory (in the mainstream)

is the study of first-order logical structures, and many objects of interest in other

fields of mathematics are definable in first-order logical structures in a natural

language. A great triumph of model theory is that logical properties of first-order

structures are often intimately connected with properties of interest in other fields

of mathematics. Notable examples include the logical property of o-minimality,

which is widely considered a front-runner in Grothendieck’s quest for a tame

topology, and that of stability, which generalises coset-likeness in group theory

and continuity in functional analysis.
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2 CHAPTER 1. INTRODUCTION

These logical properties are known to model theorists as dividing lines, as they

divide the ‘universe’ of first-order structures into those that have the property

(or often its negation) — and are therefore tame — and those that do not have

the property — and are therefore wild. Distality is one such dividing line (or,

as some might argue, a special case of the dividing line NIP), with which we

shall get very comfortable over the next few chapters. We shall see that distal

structures have very good combinatorial properties, so much so that the authors

of [9] postulate that ‘distal structures provide the most general natural setting

for investigating questions in “generalised incidence combinatorics”’.

This thesis strengthens the connection between distality and combinatorics,

while also exploring dividing lines adjacent to distality and their interactions with

combinatorics.

1.1 Main achievements

We now summarise the main achievements of this thesis.

In Chapter 3, Distality from Combinatorics, we recover distality from

combinatorial data. A common theme in model-theoretic research is to take a

tame structure M , a predicate R ⊆M , and study whether the structure (M,R)

is also tame. We apply this theme to the structure M = (Z, <,+), Presburger

arithmetic. The structure (Z, <,+) is known to be distal, and we seek predicates

R ⊆ Z such that (Z, <,+, R) is still distal. We prove the following.

Theorem A (Theorem 3.4.8). Let R ⊆ N be congruence-periodic and sparse.

Then (Z, <,+, R) is distal.

Examples of such R ⊆ N include {dn : n ∈ N} for any d ∈ N≥2, the set of

Fibonacci numbers, and {n! : n ∈ N}. The definitions of congruence-periodic and

sparse, for which we refer the reader to Chapter 3, are arithmetic combinatorial

in nature. In particular, although the original formulation of sparsity is more

agreeable to a logician, in Theorem 3.2.19 we prove that sparsity is equivalent to
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regularity (where previously only one implication was known), a notion defined

in terms of recurrence relations.

We prove Theorem A by constructing strong honest definitions or distal de-

compositions. Distal decompositions are cell decompositions with desirable com-

binatorial properties, and a structure is distal if and only if every formula ϕ(x; y)

has a distal decomposition. Proofs of distality by constructing distal decomposi-

tions are rare due to their technical nature, but are combinatorially superior: by

analysing the distal decompositions constructed, one can obtain combinatorial

information about definable sets in the structure.

In Chapter 4, Distality to Combinatorics, we recover combinatorial

interactions from a distality assumption. The chapter has two combinatorial

protagonists, the first of which is the (k-graph) Zarankiewicz problem, a classical

problem in extremal graph theory which asks for the maximum number of edges

a k-partite k-graph can have if it is Ku,...,u-free, that is, it omits the complete

hypergraph Ku,...,u. The best known upper bound (the Zarankiewicz bound) in

general, proved in [17], is Ou(n
k−1/uk−1

), where n is the size of each vertex class. It

is proved in [52] that when the hypergraph is defined by a semialgebraic relation

E(x1, ..., xk), the Zarankiewicz bound can be improved to Ou,E(F 0
d̄
(n1, ..., nk)),

where n1, ..., nk are the sizes of the vertex classes, d̄ = (|x1|, ..., |xk|), and the

function F 0
d̄

is defined in Definition 4.4.2. This is asymptotically smaller than

the previous bound.

Generalising from semialgebraic relations to those definable in a distal struc-

ture, it is proved in [9] that when k = 2 and the graph relation E(x1, x2) is defin-

able in a distal structure, the Zarankiewicz bound can be similarly improved.

Our goal was to extend this to k ≥ 3 — to show that k-partite k-graphs defin-

able in a distal structure have similarly improved Zarankiewicz bounds — but

we found something better. Here, we encounter our second combinatorial prot-

agonist: the (k-graph) Szemerédi regularity lemma, a classical result in extremal

graph theory that allows every k-graph to be partitioned into a bounded number

of uniform pieces. It is known that k-graphs definable in a distal structure satisfy
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an improved version of this theorem called the distal regularity lemma, in which

the sizes of the partitions are polynomial in the reciprocal of the error, and the

uniform pieces are homogeneous (see Definition 4.2.3). Collecting the degrees of

the polynomials into a strong distal regularity tuple c̄, we state the main result

of Chapter 4. We refer the reader to Definitions 4.2.3 and 4.4.2 for the relevant

definitions.

Theorem B (Theorem 4.4.5). Let E(x1, ..., xk) be a relation on a set M , with

strong distal regularity tuple c̄ = (c1, ..., ck) ∈ Rk
≥1 and coefficient λ. For all finite

Pi ⊆Mxi with ni := |Pi|, if E(P1, ..., Pk) is Ku,...,u-free, then for all ε > 0,

|E(P1, ..., Pk)| ≪u,c̄,λ,ε F
ε
c̄ (n1, ..., nk).

The slogan for Theorem B is that k-graphs satisfying the distal regularity

lemma have better Zarankiewicz bounds. That is, motivated by distality consid-

erations, we find an interaction between our two combinatorial protagonists.

Given a relation/hypergraph E that satisfies the distal regularity lemma, The-

orem B provides a recipe for computing explicit (that is, numerical) Zarankiewicz

bounds for E, namely, by computing strong distal regularity tuples for E. This

is not the only means to compute explicit Zarankiewicz bounds. Indeed, to con-

clude Chapter 4, we use a different approach to compute such bounds for certain

3-graphs definable in an o-minimal structure, and we state an abridged version

of this result below. (Note that o-minimal structures are distal, so such graphs

satisfy the distal regularity lemma).

Theorem C (Theorem 4.6.2, abridged). Let M be an o-minimal L-structure

expanding an ordered field. Let ϕ(x1, x2, x3; y) ∈ L with |x1| = |x2| = |x3| = 2.

For all b ∈My and finite Pi ⊆Mxi with |P1| = |P2| = |P3| =: n, if ϕ(P1, P2, P3; b)

is Ku,u,u-free, then

|ϕ(P1, P2, P3; b)| ≪ϕ,u n
2.44.

This extends the special case where M is the real ordered field, where a bound

of Oϕ,u(n
2.4) is known [52, Theorem 1.6].
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In the eponymous Chapter 5, Distality to and from Combinatorics,

we develop the theories of higher-arity distality and hypergraph regularity by

using each to inform the other. We mentioned above that k-graphs definable

in a distal structure satisfy a homogeneous version of the k-graph Szemerédi

regularity lemma. Combinatorial intuition tells us that the most general context

in which k-graphs satisfy such a homogeneous regularity lemma should not be

distality, which can be seen as a binary notion, but rather a k-ary generalisation

such as the notion of (strong) k-distality in the literature.

We prove that this is indeed the case, by developing the theory of k-strong

honest definitions for a formula ϕ(x1, ..., xk; y). Recall that a theory is distal if

and only if every formula ϕ(x; y) has a strong honest definition. The appropri-

ate generalisation of strong honest definitions to higher arity is not clear from

the literature. Motivated by our quest for homogeneous regularity lemmas, we

crystallise the definition of k-strong honest definitions and prove the following.

Theorem D (Theorem 5.4.12). Let T be an NIP L-theory and let k ∈ N+. Then

T is strongly k-distal if and only if every ϕ(x1, ..., xk; y) ∈ L has a k-strong honest

definition.

The main result of Chapter 5, in abridged form, is the following hypergraph

regularity lemma. For the full statement, we refer the reader to Theorem 5.5.9.

Theorem E (Theorem 5.1.8). Let k ≥ 2. Let M be an NIP L-structure,

and let ϕ(x1, ..., xk−1;xk) ∈ L(M) have a (k − 1)-strong honest definition, with

|x1| = · · · = |xk| =: d. Then, for all δ > 0, there is a natural number

K ≤ polyϕ(δ−1) and a formula θ(x1, ..., xk−1, z) ∈ L such that the following holds.

Let V ⊆ Md be M-definable, and let µ(x1) be a global measure, generically

stable over M . Then there is a partition V k−1 = V1 ⊔ · · · ⊔ VK, where each

Vi = θ(x1, ..., xk−1, c) for some c ∈M z, inducing the partition

Q :=

{{
v = (v1, ..., vk) ∈ V k : v̸=i ∈ Vji for all i ∈ [k]

}
: j1, ..., jk ∈ [K]

}

of V k, such that
∑

Q∈Q not ϕ-homogeneous µ
(k)(Q) ≤ δµ(V )k.
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1.2 Directions for future research

We now discuss some open problems that build on and extend the work of this

thesis. Some of these are essentially converses to the main results discussed above

where, having found a connection from distality to combinatorics, say, we now

seek the corresponding connection to distality from combinatorics.

In Theorem A, we prove that (Z, <,+, R) is distal when R ⊆ N satisfies

certain arithmetic combinatorial properties. It is natural to seek a converse: to

recover combinatorial properties of R ⊆ N from the distality of (Z, <,+, R).

More generally, we pose the following problem.

Problem A (Problem 3.1.3). Characterise the class of predicates R ⊆ N such

that (Z, <,+, R) is distal.

It is our hope that this might provide an answer to the question, posed in [57,

Question 11.16], of whether a non-distal NIP expansion of (N, <) exists.

In Theorem B, we derive improved Zarankiewicz bounds for relations sat-

isfying the distal regularity lemma. There are numerous ways to extend and

strengthen this result. One natural goal is to make the bounds in this theorem

explicit, which is tantamount to the following problem.

Problem B (Problem 4.1.3). Compute (strong) distal regularity tuples for re-

lations satisfying the distal regularity lemma, such as those definable in a distal

structure.

Theorem B acts as an advert for model theory to the combinatorial world

since, motivated by distality, we found a variant of the Szemerédi regularity

lemma that gives rise to improved Zarankiewicz bounds. We therefore pose the

following problem, in hope and expectation that model-theoretic considerations

will continue to contribute to a solution.

Problem C (Problem 4.1.4). Which other variants of the Szemerédi regularity

lemma give rise to improved Zarankiewicz bounds?
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In Theorem C, we derive explicit Zarankiewicz bounds for certain 3-graphs

definable in an o-minimal structure. Our result is restricted to 3-graphs because

our proof makes use of machinery that currently only exists in the binary setting

(namely, a cutting lemma). Thus, we pose the following problem, not only for its

own sake, but also because finding a solution would likely require the development

of higher-arity versions of such machinery.

Problem D (Problem 4.6.7). Fix an o-minimal expansion M of an ordered field.

Find explicit Zarankiewicz bounds for relations ϕ(x1, ..., xk; y) definable in M ,

where k ≥ 2.

We now turn to questions concerning (strong) k-distality. Theorems D and

E, and much of Chapter 5, require a global NIP assumption. Since there are

(strongly) k-distal structures that are not NIP, we pose the following problem in

hopes of strengthening our results.

Problem E (Problems 5.4.15, 5.5.10). Can the NIP assumption be removed from

Theorems D and E (and other results in Chapter 5)?

The precise relationship between k-distality and strong k-distality is not

known. Unsurprisingly, the latter implies the former, but the converse is open.

Much of Chapter 5, especially Theorem D, applies to strongly k-distal structures.

We wonder if they also apply to k-distal structures.

Problem F (Problem 5.4.16). Can the assumption of strong k-distality be re-

placed by k-distality in Theorem D? If not, do k-distal theories admit a (neces-

sarily weaker) version of k-strong honest definitions?

The applicability of Theorem E is currently limited by the fact that, for

k ≥ 2, there are very few examples of NIP strongly k-distal structures that are

not strongly (k − 1)-distal. In fact, there are none in the literature for k ≥ 3,

and in all known examples of NIP strongly 2-distal structures that are not distal,

there are no non-degenerate ternary relations to which we can apply Theorem E.

This represents a big gap in the literature which we hope to fill.
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Problem G (Problems 5.3.11, 5.3.12). Find interesting examples of NIP strongly

k-distal structures.

Much of Chapters 4 and 5 concern regularity lemmas that hold in NIP strongly

k-distal structures (or simply distal structures when k = 1), which are results

in the direction from distality to combinatorics. The converse is very interesting

indeed. One weakness of distality (and its higher-arity counterparts), when com-

pared to NIP and stability, is that there is no fruitful local definition of distality,

that is, a notion of a distal formula. One main achievement of this thesis is

that we have developed the theory of NIP strongly k-distal regularity lemmas,

which can be turned into a local definition: we can investigate the properties of

a formula that satisfies the NIP strongly k-distal regularity lemma.

In particular, we can ask how much k-distality can be recovered from such a

formula. For instance, we pose the following problem.

Problem H (Problem 5.5.14). Let ϕ(x0, ..., xk) be a relation on a set M that

satisfies the NIP strongly k-distal regularity lemma. Must (M,ϕ) admit an ex-

pansion that is NIP strongly k-distal? What if we assume (M,ϕ) is NIP?

Note that, by Theorem 4.5.1, the answer to the first part of the question is

negative when k = 1 and (M,ϕ) is not assumed to be NIP, but we are not aware

of the answer in other cases.

Instead of recovering the full strength of NIP strong k-distality from the regu-

larity lemma, we can also ask which properties of NIP strongly k-distal structures

are already implied by the satisfaction of the regularity lemma. This is the spirit

of Theorem B, where we show that satisfying the distal regularity lemma is suf-

ficient for improved Zarankiewicz bounds. We seek similar results.

Problem I (Problem 5.5.15). Let ϕ(x0, ..., xk) be a relation on a set M that sat-

isfies the NIP strongly k-distal regularity lemma. Investigate the (combinatorial)

properties of ϕ.

Much of the analysis of Chapter 5 depends on the k-strong honest definitions

that we develop for formulas ϕ(x1, ..., xk; y). In particular, recall Theorem D,
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where we show that an NIP theory is strongly k-distal if and only if every formula

ϕ(x1, ..., xk; y) has a k-strong honest definition. For reasons to be explained in

Sections 5.6 and 5.7, one of which will be alluded to below, we believe it is more

natural to define (dual) k-strong honest definitions for formulas ϕ(x; y1, ..., yk)

instead. Unfortunately, we are unable to prove an analogue of Theorem D for

dual k-strong honest definitions; we state this as a conjecture.

Problem J (Conjecture 5.6.2). Decide the following conjecture.

Let T be an NIP L-theory and let k ∈ N+. If T is strongly k-distal, then every

ϕ(x; y1, ..., yk) ∈ L has a dual k-strong honest definition.

Note that Proposition 5.6.5 establishes a partial converse to this conjecture,

where we slightly strengthen the notion of dual k-strong honest definitions.

One comparative strength of dual k-strong honest definitions is that they give

rise to a form of cell decompositions with good geometric properties, analogous to

distal cell decompositions. Unfortunately, as Problem J is undecided, we do not

know if these cell decompositions always exist in NIP strongly k-distal theories.

Problem K (Problem 5.7.5). Find an analogue of distal cell decompositions for

(NIP) strongly k-distal theories.





Chapter 2

Preliminaries

In this chapter, we lay out some conventions used throughout the thesis and

review some key definitions and results from the literature.

This thesis is divided into five chapters (numbered 1, 2, 3, 4, 5). Each chapter

is divided into sections (numbered 1.1, say), and some sections are divided into

subsections (numbered 1.1.1, say).

2.1 Notation and basic definitions

In this thesis, all logical structures are first-order.

Unless otherwise stated, arguments in a formula are tuples of variables. If M

is a structure and x is a tuple of variables, then we write Mx := M |x|.

Let M be an L-structure and ϕ(x1, ..., xk) be an L-formula. For Ai ⊆ Mxi ,

write ϕ(A1, ..., Ak) for the set {(a1, ..., ak) ∈ A1×· · ·×Ak : M |= ϕ(a1, ..., ak)}, and

for bk ∈Mxk , write ϕ(A1, ..., Ak−1, bk) for the set {(a1, ..., ak−1) ∈ A1×· · ·×Ak−1 :

M |= ϕ(a1, ..., ak−1, bk)}.

We sometimes partition the variables in a formula using a semicolon rather

than a comma to indicate contextual distinction between the variables.

We often conflate a formula with the set it defines.

11
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2.1.1 Saturation

Given a cardinal κ, a structure M is κ-saturated if, for all A ⊆M with |A| < κ,

every type over A is satisfiable in M . We will often work in a sufficiently saturated

structure M: this is a structure that is κ-saturated for some κ sufficiently large

for our purposes. In this case, a subset A ⊆ M is small if |A| < κ.

2.1.2 Indexing

For k ∈ N+, [k] := {1, ..., k}.

Let c = (c1, ..., ck) be a k-tuple. For I ⊆ [k] enumerated in increasing order

by i1, ..., il, let cI denote the l-tuple (ci1 , ..., cil). For i ∈ [k], c ̸=i := c[k]\{i}.

Let X be a set, and let k ∈ N. Write
(
X
k

)
:= {A ⊆ X : |A| = k}.

If y is an n-tuple with entries in a set Y (that is, y ∈ Y n), we sometimes

simply write y ∈ Y , but X ⊆ Y always means X ⊆ Y 1.

2.1.3 Covers and partitions

Given a set X, a collection (X1, ..., Xk) of subsets of X is said to cover X if

X = X1 ∪ · · · ∪Xk. If, additionally, X1, ..., Xk are pairwise disjoint, we say that

they partition X; we will often write this partition as X = X1 ⊔ · · · ⊔ Xk. A

partition X1 ⊔ · · · ⊔ Xk of a finite set X is said to be an equipartition if, for

all i, j ∈ [k], ||Xi| − |Xj|| ≤ 1. A cover X = X1 ∪ · · · ∪ Xk refines a cover

X = Y1 ∪ · · · ∪ Yl if, for all i ∈ [k], there is j ∈ [l] such that Xi ⊆ Yj.

2.1.4 Asymptotics

Let D,E be sets and f(x, y), g(x, y) : D×E → R≥0. Write f(x, y) = Ox(g(x, y)),

f(x, y) ≪x g(x, y), or g(x, y) ≫x f(x, y) if there is C = C(x) : D → R≥0 such

that f(x, y) ≤ Cg(x, y) for all x ∈ D and y ∈ E.

Let h(y) : E → R≥0. Write f(x, y) ≤ polyx(h(y)) if there is C = C(x) :

D → R≥0 such that f(x, y) ≤ Ch(y)C for all x ∈ D and y ∈ E.
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Suppose D = (0, r) for some r ∈ R+ ∪ {∞}. Write f(x, y) = ox→0(g(x, y)) if

there is C = C(x) : D → R≥0 such that limx→0C(x) = 0 and f(x, y) ≤ Cg(x, y)

for all x ∈ D and y ∈ E.

2.2 VC-dimension

Throughout this section, fix a set system (X,S), that is, X is a set and S ⊆ P(X).

For A ⊆ X, write S ∩ A := {S ∩ A : S ∈ S}, and say that S shatters A if

S ∩ A = P(A).

Definition 2.2.1. The shatter function of S is the function πS : N → N such

that πS(n) = max{|S ∩ A| : A ⊆ X, |A| = n}.

For all n ∈ N, πS(n) ≤ 2n, with equality if and only if there is A ⊆ X of size

n such that S shatters A.

Definition 2.2.2. The VC-dimension of S is

VC(S) := max{|A| : A ⊆ X,S shatters A} = max{n ∈ N : πS(n) = 2n}

if this maximum exists, and ∞ otherwise.

The following theorem, often known as the Sauer–Shelah Lemma, presents a

striking dichotomy. A proof can be found in [42].

Theorem 2.2.3. If VC(S) ≤ d, then πS(n) ≤
∑d

i=0

(
n
i

)
. In particular, either

πS(n) = 2n for all n ∈ N, or πS is bounded by a polynomial, that is, there is

d ∈ N such that πS(n) = O(nd) for all n ∈ N.

Theorem 2.2.3 says that VC(S) = ∞ if and only if πS(n) = 2n for all n ∈ N,

and VC(S) <∞ if and only if πS is bounded by a polynomial.

The dual of (X,S) is the set system (S,S∗), where

S∗ := {{S ∈ S : x ∈ S} : x ∈ X}.



14 CHAPTER 2. PRELIMINARIES

Define the dual shatter function of S to be π∗
S := πS∗ , and the VC-codimension

or dual VC-dimension of S to be VC∗(S) := VC(S∗).

Let us give an alternative, equivalent account of these dual notions. Given a

subset S ⊆ X, write S1 := S and S0 := X \ S.

Definition 2.2.4. Let ∅ ̸= S0 ⊆ S. Given ε ∈ {0, 1}S0 (that is, ε is a function

S0 → {0, 1}), let Aε :=
⋂
S∈S0

Sε(S). If Aε ̸= ∅, say that Aε is a Boolean atom of

S0. Write BA(S0) for the set of Boolean atoms of S0.

It is clear that BA(S0) is a cover of X. Given distinct ε, ε′ ∈ {0, 1}S0 , we have

that Aε ∩ A′
ε = ∅. Thus, BA(S0) is a partition of X, and

|BA(S0)| = |{ε ∈ {0, 1}S0 : Aε ̸= ∅}|.

Lemma 2.2.5. For all n ∈ N, π∗
S(n) = max{|BA(S0)| : S0 ⊆ S, |S0| = n}.

Proof. For finite S0 ⊆ S and ε ∈ {0, 1}S0 ,

Aε ̸= ∅ ⇔ ∃x ∈ X
∧
S∈S0

x ∈ Sε(S) ⇔ {S ∈ S0 : ε(S) = 1} ∈ S∗ ∩ S0.

Thus, for finite S0 ⊆ S, there is a bijection between BA(S0) and S∗ ∩ S0.

Definition 2.2.6. Say that the set systems (X,S) and (Y, T ) are isomorphic,

written (X,S) ∼= (Y, T ) or S ∼= T , if there is a bijection f : X → Y such that

T = {{f(x) : x ∈ S} : S ∈ S}.

It is clear that isomorphic set systems have the same (dual) shatter function

and thus (dual) VC-dimension.

Consider the double dual (S∗,S∗∗) of the set system (X,S). The map X →

S∗, x 7→ {S ∈ S : x ∈ S} would be an isomorphism of set systems if it were a

bijection. However, it fails to be a bijection when there are distinct x, x′ ∈ X

such that for all S ∈ S, x ∈ S if and only if x′ ∈ S.
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Definition 2.2.7. Define an equivalence relation ∼ on X by declaring x ∼ x′ if,

for all S ∈ S, x ∈ S if and only if x′ ∈ S. Define the skeleton of (X,S) to be the

set system (X/ ∼,S/ ∼), where S/ ∼ := {{[x] : x ∈ S} : S ∈ S}.

Now indeed we have (X/ ∼,S/ ∼) ∼= (S∗,S∗∗), witnessed by the bijection

X/ ∼ → S∗, [x] 7→ {S ∈ S : x ∈ S}.

Lemma 2.2.8. We have πS = πS/∼ = πS∗∗ and π∗
S = π∗

S/∼ = π∗
S∗∗.

Proof. Since S/ ∼ ∼= S∗∗, it suffices to prove that πS = πS/∼ and π∗
S = π∗

S/∼.

The latter holds since S∗ ∼= (S/ ∼)∗, witnessed by the bijection S → S/ ∼,

S 7→ {[x] : x ∈ S}. For the former, observe that for all finite A ⊆ X, we have

|S ∩ A| = |S ∩ A0| for any set A0 ⊆ A of representatives for A/ ∼.

The following result is folklore.

Proposition 2.2.9. If VC(S) ≤ k, then VC∗(S) < 2k+1.

Proof. Suppose VC∗(S) ≥ 2k+1. Then, there is a subset of S of size 2k+1, say

{SI : I ⊆ [k+ 1]}, shattered by S∗. Thus, there are distinct x1, ..., xk+1 ∈ X such

that, for all I ⊆ [k+ 1] and i ∈ [k+ 1], SI ∈ {S ∈ S : xi ∈ S} if and only if i ∈ I,

that is, xi ∈ SI if and only if i ∈ I. Thus, {x1, ..., xk+1} is shattered by S, and

so VC(S) ≥ k + 1.

Corollary 2.2.10. VC(S) <∞ if and only if VC∗(S) <∞.

Proof. Combine Proposition 2.2.9 and Lemma 2.2.8.

We finish this section by showing that taking the restriction of a set system

does not increase the VC-(co)dimension.

Lemma 2.2.11. Let Y ⊆ X and consider the set system (Y,S ∩ Y ). We have

that VC(S ∩ Y ) ≤ VC(S) and VC∗(S ∩ Y ) ≤ VC∗(S).

Proof. If A ⊆ Y is shattered by S ∩ Y , then A is shattered by S. Thus, we have

VC(S ∩ Y ) ≤ VC(S).
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For the dual, suppose S1, ..., Sn ∈ S are such that {S1 ∩ Y, ..., Sn ∩ Y } is a set

of size n that is shattered by (S ∩ Y )∗. That is, there is (yI ∈ Y : I ⊆ [n]) such

that, for all i ∈ [n], yI ∈ Si if and only if i ∈ I. Then {S1, ..., Sn} is a set of size

n that is shattered by S. Thus, we have VC∗(S ∩ Y ) ≤ VC∗(S).

2.3 NIP

Throughout this section, fix a complete L-theory T , a sufficiently saturated model

M |= T , and ϕ(x; y) ∈ L.

Definition 2.3.1. The shatter function πϕ (respectively dual shatter function

π∗
ϕ, VC-dimension VC(ϕ), dual VC-dimension, and VC-codimension VC∗(ϕ)) of ϕ

(with respect to T ) is defined to be that of the set system (Mx, {ϕ(x; b) : b ∈My})

for any M |= T .

It is straightforward to check that, since T is complete, the definition above

is truly independent of M |= T .

The dual of the set system (Mx, {ϕ(x; b) : b ∈ My}) is isomorphic to the

skeleton of the set system (My, {ϕ(a; y) : a ∈ Mx}). Thus, writing ϕ∗(y;x) :=

ϕ(x; y), we have π∗
ϕ = πϕ∗ and VC∗(ϕ) = VC(ϕ∗) by Lemma 2.2.8. As in the

previous section, we can give an alternative account of the dual shatter function

and dual VC-dimension using Boolean atoms. Write ϕ1 := ϕ and ϕ0 := ¬ϕ.

Definition 2.3.2. Let a ∈ Mx, and let B ⊆ My be small. The ϕ-type of a over

B is

tpϕ(a/B) := {ϕε(x; b) : b ∈ B, ε ∈ {0, 1}, |= ϕε(a; b)},

and we let Sϕ(B) := {tpϕ(a/B) : a ∈ Mx} be the set of ϕ-types over B.

The set Sϕ(B) is the collection of those sets {ϕε(b)(x; b) : b ∈ B}, where ε :

B → {0, 1}, that are consistent (equivalently, by compactness, finitely satisfiable

in any model containing B). If B is finite, then Sϕ(B) = {tpϕ(a/B) : a ∈ Mx}

for any M |= T such that B ⊆My.
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ϕ(x; b1)
ϕ(x; b2)

ϕ(x; b3)

ϕ(x; b4)

•
a p

Mx

Figure 2.1: The ϕ-types over B

It is often helpful to conflate a ϕ-type over B, say {ϕε(b)(x; b) : b ∈ B}, with

the set of its realisations, that is,
⋂
b∈B ϕ

ε(b)(x; b). This way, a ϕ-type over B is

precisely a Boolean atom of {ϕ(x; b) : b ∈ B}. By Lemma 2.2.5, for all n ∈ N,

π∗
ϕ(n) = max{|Sϕ(B)| : B ⊆ My, |B| = n} = max{|Sϕ(B)| : B ⊆My, |B| = n}

for any M |= T . Furthermore, Sϕ(B) forms a partition of Mx and if B is finite,

then Sϕ(B) forms a partition of Mx for any M |= T such that B ⊆My.

Fixing M |= T and B = {b1, b2, b3, b4} ⊆ My, Figure 2.1 illustrates Sϕ(B)

as a partition of Mx. The sets {ϕ(x; b) : b ∈ B} form a Venn diagram in the

universe Mx, whose non-empty regions are precisely the ϕ-types over B, forming

the partition Sϕ(B) of Mx. Taking the shaded ϕ-type p as an example, for any

a ∈ p, we have that p = tpϕ(a/B) is the ϕ-type of a over B, and every a′ ∈ p has

the same ϕ-type over B: for all b ∈ B, |= ϕ(a; b) if and only if |= ϕ(a′; b).

Definition 2.3.3. Say that ϕ has the independence property (IP) if VC(ϕ) = ∞,

and not the independence property (NIP) otherwise.

In an egregious abuse of grammar consistent (equivalently, satisfiable) with

the literature, we say that ϕ is, rather than has, IP or NIP. By Corollary 2.2.10

and Theorem 2.2.3, the conditions that ϕ is NIP, ϕ∗ is NIP, πϕ is bounded by a
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polynomial, and π∗
ϕ is bounded by a polynomial are all equivalent.

Definition 2.3.4. Say that T is NIP if every ψ(x; y) ∈ L is NIP, in which case

also say that every model of T is NIP.

2.4 Types

We follow the treatment in [48]. Throughout this section, fix a complete L-theory

T and a sufficiently saturated model M |= T . If B ⊆ M and a, a′ are tuples from

M of the same length, write a ≡B a′ to mean tp(a/B) = tp(a′/B). For a type

q ∈ S(B) and B0 ⊆ B, write q|B0 := q ∩ L(B0).

Henceforth in this section, all parameter sets are small.

Definition 2.4.1. Let B ⊆ M. A type p(x) ∈ S(M) is invariant over B or

B-invariant if, for all ϕ(x; y) ∈ L and d, d′ ∈ M with d ≡B d
′, ϕ(x; d) ∈ p if and

only if ϕ(x; d′) ∈ p.

Definition 2.4.2. Let p(x), q(y) ∈ S(M) with p invariant over B. Define the

product (p ⊗ q)(x, y) ∈ S(M) as follows. For ϕ(x, y) ∈ L(B′) with B ⊆ B′,

ϕ(x, y) ∈ p⊗ q if and only if ϕ(x, d) ∈ p for some/all d ∈ M such that d |= q|B′.

The following fact is straightforward to prove, and can be found as Facts 2.19

and 2.20 of [48].

Fact 2.4.3. Let p(x), q(y), r(z) ∈ S(M) with p, q invariant over B.

(i) The ⊗ operation is associative: (p⊗ q) ⊗ r = p⊗ (q ⊗ r).

(ii) The type p⊗ q is invariant over B.

In light of (i), we make the following definition.

Definition 2.4.4. Let p(x) ∈ S(M) be invariant over B. For n ∈ N, we

define p(n)(x1, ..., xn) := p(x1) ⊗ · · · ⊗ p(xn) ∈ S(M). Define p(ω)(x1, x2, ...) :=⋃
n∈N+ p(n)(x1, ..., xn).

We define a few properties of types.
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Definition 2.4.5. Let p(x) ∈ S(M) and B ⊆ M.

(i) Say that p is finitely satisfiable over B if, for all ϕ(x) ∈ p, there is b ∈ B

such that |= ϕ(b).

(ii) Say that p is definable over B if, for all ϕ(x; y) ∈ L, there is ψ(y) ∈ L(B)

such that for all d ∈ M, ϕ(x; d) ∈ p if and only if |= ψ(d).

(iii) Say that p is generically stable over B if it is finitely satisfiable and definable

over B.

The following fact is straightforward to prove, and can be found as Examples

2.16 and 2.17 of [48].

Fact 2.4.6. Let p(x) ∈ S(M) be finitely satisfiable or definable over B. Then p

is invariant over B.

We give some examples of generically stable types.

Example 2.4.7 (Realised types). Let B ⊆ M and a ∈ B. It is straightforward

to see that tp(a/M) is generically stable over B.

The following two examples are taken from [48, Example 2.31].

Example 2.4.8. Let T = Th(Q, R0, R1, ...), where Q |= Rn(x, y) if and only if

x < y < x+n. Let p(x) be the unique global type extending {¬Rn(x, a),¬Rn(a, x) :

a ∈ M, n ∈ N}. Then p(x) is generically stable over a small model.

Example 2.4.9. Let T be the theory of the two-sorted structure (V,R), where

R is a real closed field equipped with the ordered field structure, V is an infinite-

dimensional R-vector space equipped with the group structure, and there is a

binary function symbol R × V → V for scalar multiplication. Let p(x) be the

unique global type in the sort V extending

{x ̸∈ W : W is an M-definable proper vector subspace}.

Then p(x) is generically stable over a small model.



20 CHAPTER 2. PRELIMINARIES

2.5 Indiscernible sequences

We follow the treatment in [48]. Throughout this section, fix a complete L-theory

T and M |= T sufficiently saturated. In this section, all parameter sets are small.

Henceforth, when a sequence (I,<) is defined, it is implicit that the entries

of I are tuples from M, all of the same length, and (I,<) is a linear order. If

S ⊆ M is such that a ∈ S for all a ∈ I, we say that I is in S.

Definition 2.5.1. Let (I,<) be a sequence and B ⊆ M. Say that I is indis-

cernible over B or B-indiscernible if, for all n ∈ N and a1 < · · · < an and

a′1 < · · · < a′n in I, we have a1 · · · an ≡B a′1 · · · a′n. When B = ∅, say that I is

indiscernible.

Definition 2.5.2. Let (I,<) be a sequence and B ⊆ M. The Ehrenfeucht–

Mostowski type (EM-type) of I over B, denoted tpEM(I/B), is

{ϕ(x1, ..., xn) ∈ L(B) : M |= ϕ(a1, ..., an) for all a1 < · · · < an in I}.

If (I,<) is indiscernible overB, then for all n ∈ N, {ϕ(x1, ..., xn) ∈ tpEM(I/B)}

is a complete type over B.

Definition 2.5.3. Let p(x) ∈ S(M) be invariant over B, and let (I,<) be a

sequence with |a| = |x| for all a ∈ I. Say that I is a Morley sequence of p over

B if tpEM(I/B) = p(ω)|B, in which case we write I |= p(ω)|B.

Note that such a sequence is necessarily indiscernible over B. Indeed, for all

n ∈ N+ and a1 < · · · < an in I, tp(a1, ..., an/B) = p(n)|B.

2.6 Keisler measures (NIP)

We follow the treatment in [48]. Throughout this section, fix a complete L-theory

T and a sufficiently saturated model M |= T ; we assume that T is NIP.

For B ⊆ M and x a tuple of variables, write Lx(B) be the Boolean algebra of

B-definable subsets of Mx. We will often represent an element of Lx(B) by an
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L(B)-formula defining it.

Definition 2.6.1. Let x be a tuple of variables and B ⊆ M. A function µ(x) :

Lx(B) → [0, 1] is a (Keisler) measure over B if it is a finitely additive probability

measure, that is:

(i) µ(x = x) = 1;

(ii) For all ϕ(x) ∈ Lx(B), µ(¬ϕ(x)) = 1 − µ(ϕ(x));

(iii) For all disjoint ϕ1(x), ..., ϕk(x) ∈ Lx(B), µ
(∨k

i=1 ϕi(x)
)

=
∑k

i=1 µ(ϕi(x)).

If B = M, say that µ is a global (Keisler) measure.

Remark 2.6.2. In measure-theoretic literature, probability measures are often

assumed to be σ-additive (that is, countably additive) functions on σ-algebras.

Following Keisler’s original paper [31] on Keisler measures and subsequent model-

theoretic literature, we use the term probability measure to mean a (finitely ad-

ditive) function on a Boolean algebra which respects Boolean operations in the

sense of Definition 2.6.1.

Keisler measures are generalisations of types. Indeed, every p(x) ∈ Sx(B)

induces a measure over B that sends ϕ(x) to 1 if ϕ ∈ p and 0 otherwise.

The following fact says that every Keisler measure over B extends uniquely

to a regular Borel probability measure µ̃ on Sx(B), that is, a σ-additive regular

probability measure on the set of Borel subsets of Sx(B). By regular, we mean

that if X ⊆ Sx(B) is Borel, then

inf{µ̃(U) : U ⊇ X is open} = sup{µ̃(F ) : F ⊆ X is closed}.

Recall that Sx(B) has a basis of clopen sets given by {[ϕ(x)] : ϕ(x) ∈ L(B)},

where [ϕ(x)] = {p ∈ Sx(B) : ϕ ∈ p}.

Fact 2.6.3. Let µ(x) be a Keisler measure over B. Then there is a unique

regular Borel probability measure µ̃ on Sx(B) such that µ̃([ϕ(x)]) = µ(ϕ(x)) for

all ϕ(x) ∈ L(B).
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Proof. See [48, Section 7.1]. More details can be found in the online version [49,

Section 7.1] of this source.

Thus, abusing notation, by a Keisler measure µ(x) over B we will often mean

the unique associated regular Borel measure on Sx(B).

The definitions introduced for types in the previous section can be extended

to Keisler measures. Henceforth in this section, all parameter sets are small.

Definition 2.6.4. Let µ(x) be a global measure, and let B ⊆ M.

(i) Say that µ is invariant over B or B-invariant if, for all ϕ(x; y) ∈ L and

d, d′ ∈ M such that d ≡B d
′, µ(ϕ(x; d)) = µ(ϕ(x; d′)).

(ii) Say that µ is finitely satisfiable over B if, for all ϕ(x) ∈ L(M) such that

µ(ϕ(x)) > 0, there is b ∈ B such that |= ϕ(b).

(iii) Say that µ is definable over B if µ is B-invariant and, for all ϕ(x; y) ∈ L

and r ∈ [0, 1], the set

{q ∈ Sy(B) : µ(ϕ(x; d)) < r for all/some d ∈ M such that d |= q}

is an open subset of Sy(B).

(iv) Say that µ is generically stable over B if it is finitely satisfiable and definable

over B.

The following fact is straightforward to prove, and can be found in Section

7.4 of [48].

Fact 2.6.5. Let µ(x) be a global measure, and let B ⊆ M. If µ is finitely satis-

fiable over B, then µ is B-invariant.

We record the following ‘closure property’ of generically stable measures.

Proposition 2.6.6. Let µ(x) be a global measure, generically stable over B ⊆ M.

Let µ′(x, y) be the global measure defined by µ′(ϕ(x, y)) := µ(ϕ(x, b)) for some

fixed b ∈ B. Then µ′ is generically stable over B.
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This is a straightforward consequence of the following lemma.

Lemma 2.6.7. In items (i) and (iii) of Definition 2.6.4, the clause ‘ϕ(x) ∈ L’

can be replaced by ‘ϕ(x) ∈ L(B)’.

Proof. For item (i), this is obvious. For item (iii), suppose µ is definable over B,

and let ϕ(x; y) ∈ L(B) and r ∈ [0, 1]. Thus, there is ψ(x; y, z) ∈ L and b ∈ B

such that ϕ(x; y) = ψ(x; y, b). We wish to show that the set W , given by

{q ∈ Sy(B) : µ(ψ(x; d, b)) < r for all/some d ∈ M such that d |= q},

is an open subset of Sy(B).

Since µ is definable over B, the set X, given by

{p ∈ Syz(B) : µ(ψ(x; d, e)) < r for all/some (d, e) ∈ M such that (d, e) |= p},

is an open subset of Syz(B), and thus so is the set X ∩ [z = b], which equals

{p ∈ Syz(B)∩[z = b] : µ(ψ(x; d, b)) < r for all/some d ∈ M such that (d, b) |= p}.

Thus, we have X ∩ [z = b] =
⋃
i∈I [θi(y, z)] for some formulas θi(y, z) ∈ L(B). It

is straightforward to check that W =
⋃
i∈I [θi(y, b)], and so W is an open subset

of Sy(B).

We now define products of measures.

Definition 2.6.8. Let µ(x), λ(y) be global measures, with µ invariant over some

M |= T . The product (µ ⊗ λ)(x, y) is the global measure such that, for all

ϕ(x, y; b) ∈ L(M),

(µ⊗ λ)(ϕ(x, y; b)) =

∫
Sy(N)

f dλ|N ,

where N is any small model containing M ∪ {b} and f : Sy(N) → [0, 1] sends

q ∈ Sy(N) to µ(ϕ(x, d; b)) for any d |= q.

For this to be well-defined, it must be independent of the choice of N , and
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the function f must be measurable. Proofs of these facts (which rely on the fact

that T is NIP) can be found in Section 7.4 of [48].

The following fact is taken from Section 7.4 of [48].

Fact 2.6.9. (i) The product operation is associative.

(ii) If µ(x) and λ(y) are global measures, generically stable over a small model

M , then (µ⊗ λ)(x, y) is generically stable over M .

In light of (i), given a global measure µ(x) and k ∈ N+, we define the global

measure µ(k)(x1, ..., xk) := µ(x1) ⊗ · · · ⊗ µ(xk).

Although Definition 2.6.4 makes sense in an arbitrary theory, in NIP theories,

generically stable measures µ admit an extremely useful alternative formulation,

via an ‘ε-net theorem’. Roughly speaking, this says that for every definable family

A, the µ-measure of every A ∈ A can be uniformly approximated by sampling

the membership relation x ∈ A.

To state this formally, we first fix the following notation.

Definition 2.6.10. Let k ∈ N and A ⊆ Mk. For n ∈ N+ and a1, ..., an ∈ Mk, let

Av({a1, ..., an};A) := Av(a1, ..., an;A) :=
#{i ∈ [n] : ai ∈ A}

n
.

Theorem 2.6.11. (T is NIP.) Let M |= T . The following are equivalent for a

global measure µ(x).

(i) The measure µ is generically stable over M .

(ii) Let ϕ(x; y) ∈ L and ε ∈ (0, 1]. Then there are a1, ..., an ∈Mx such that, for

all b ∈ M, ∣∣Av(a1, ..., an;ϕ(x; b)) − µ(ϕ(x; b))
∣∣ < ε.

(iii) The statement (ii) with M replaced by M .

Moreover, in (ii) and (iii), we may assume n = OVC(ϕ)(ε
−2 log(2ε−1)); in partic-

ular, n can be chosen independently of µ and M .



2.6. KEISLER MEASURES (NIP) 25

Proof. See [48, Theorem 7.29]. The ‘moreover’ statement is a combination of [48,

Lemma 7.24] and Lemma 2.2.3.

We use this theorem to show that an ultraproduct of generically stable meas-

ures is generically stable (in the NIP theory T ).

Definition 2.6.12. Let (ri : i ∈ I) be a sequence of constants in [0, 1], and let

U be an ultrafilter on I. The ultralimit limU ri is the unique r ∈ [0, 1] such that,

for all ε > 0, {i ∈ I : |ri − r| < ε} ∈ U .

Definition 2.6.13. Let (Mi : i ∈ I) be a sequence of sufficiently saturated L-

structures, and for i ∈ I let µi(x) be a global measure (over Mi). Let U be an

ultrafilter on I, and let M :=
∏

U Mi. The ultraproduct (
∏

U µi)(x) of (µi : i ∈ I)

is the following global measure (over M). Let ϕ(x; b) ∈ L(M), and let (bi : i ∈ I)

be a representative for b. Declare (
∏

U µi)(ϕ(x; b)) := limU µi(ϕ(x; bi)).

Proposition 2.6.14. (T is NIP.) Let (Mi : i ∈ I) be a sequence of models of

T , and for i ∈ I let µi(x) be a global measure generically stable over Mi. Let U

be an ultrafilter on I. Then the ultraproduct measure µ :=
∏

U µi is generically

stable over M :=
∏

U Mi.

Proof. We follow [50, Corollary 1.3]. Let ϕ(x; y) ∈ L and ε ∈ (0, 1], and let n ∈ N

be given by Theorem 2.6.11. For all i ∈ I, there are ai1, ..., a
i
n ∈Mi such that, for

all bi ∈Mi, ∣∣∣Av(ai1, ..., a
i
n;ϕ(x; bi)) − µi(ϕ(x; bi))

∣∣∣ < ε/2.

For k ∈ [n], let ak := (aik : i ∈ I) ∈ M . Fix b ∈ M , and let (bi : i ∈ I) be a

representative for b. Then {i ∈ I : |µi(ϕ(x; bi)) − µ(ϕ(x; b))| < ε/2} ∈ U , and so

{
i ∈ I :

∣∣∣Av(ai1, ..., a
i
n;ϕ(x; bi)) − µ(ϕ(x; b))

∣∣∣ < ε

}
∈ U .

By  Loś’s Theorem,
∣∣Av(a1, ..., an;ϕ(x; b)) − µ(ϕ(x; b))

∣∣ < ε as required.

We give three examples of generically stable Keisler measures, taken from [48,

Example 7.32].
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Example 2.6.15 (Average types). Let M |= T . Let (pn(x) : n ∈ N) be a

sequence of global types, generically stable over some A ⊆ M, and let (cn : n ∈ N)

be a sequence of constants in [0, 1] such that
∑

n cn = 1. Let µ(x) be the measure∑
n cnpn over M , that is, µ(ϕ(x)) =

∑
n cn · 1(ϕ ∈ pn). Then µ is generically

stable over A — see [48, Example 7.32].

Example 2.6.16 (Counting measures). Let a1, ..., an ∈ Mx. The (normalised)

finite counting measure supported on {a1, ..., an} is the global measure µ(x) such

that µ(A) = 1
n
#{i ∈ [n] : ai ∈ A} for each definable A ⊆ Mx. This measure is

generically stable over {a1, ..., an}. Indeed, for i ∈ [n] let pi := tp(ai/M), which

is generically stable over {ai}. Then µ =
∑

i∈[n]
1
n
pi, and so µ is generically stable

over {a1, ..., an} by the previous example.

We now define pseudofinite counting measures as ultraproducts of finite count-

ing measures. Suppose M =
∏

U Mi, where (Mi : i ∈ I) is a sequence of models

of T and U is an ultrafilter on I. For i ∈ I, let µi(x) be a finite counting measure

with support in Mi. Say that the ultraproduct
∏

U µi is a pseudofinite counting

measure. By Proposition 2.6.14, since T is NIP,
∏

U µi is generically stable.

Example 2.6.17 (Average measures). Let M |= T , and let I = (ai :

i ∈ [0, 1]) be an indiscernible sequence in Mx. The average measure µ(x) of

I is such that, for all ϕ(x) ∈ L(M), µ(ϕ) = λ({i ∈ [0, 1] : M |= ϕ(ai)}), where λ

is the Lebesgue measure on R. Then µ is well-defined and generically stable over

M — see [48, Example 7.32].

2.7 Distality

Part of this section, especially the content on strong honest definitions, is presen-

ted (with minor differences) in our paper [54].

Throughout this section, fix a complete L-theory T and a sufficiently saturated

model M |= T . In this section, all parameter sets are small. It is time to introduce

the main character of this thesis.
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Definition 2.7.1. Say that T (and any M |= T ) is distal if the following holds.

Let I0, I1, I2 be (dense) infinite sequences without endpoints, whose elements

are n-tuples. Let a0, a1 ∈ Mn be such that I0 + a0 + I1 + I2 and I0 + I1 + a1 + I2

are indiscernible. Then I0 + a0 + I1 + a1 + I2 is indiscernible.

Note that, by compactness, the inclusion or exclusion of ‘dense’ in the state-

ment above does not change the definition of distality.

Example 2.7.2. Examples of distal theories/structures include the theory DLO

of densely linearly ordered (without endpoints) structures, o-minimal structures,

and Presburger arithmetic (Z, <,+). Recall that a linearly ordered structure

(M,<, ...) is o-minimal if every M -definable subset of M is a finite union of

points and intervals.

Many equivalent definitions of distality are now known, but Definition 2.7.1

was the original formulation by Simon in [47], except that there it is also assumed

that T is NIP. It turns out that this assumption is superfluous: distality (ac-

cording to Definition 2.7.1) implies NIP. It is unclear whether this is well-known

within the model-theoretic community. In the literature, alternative formulations

of distality are often favoured over Definition 2.7.1; some of these formulations

obviously imply NIP, and some were shown to be equivalent to Definition 2.7.1

under the assumption of NIP. The first proof in the literature (of which we are

aware) of the fact that distality implies NIP appears in [55, Corollary 6.8], where

it is credited to Chernikov.

We now state two alternative formulations of distality that are often favoured

over Definition 2.7.1. The following formulation is introduced by Simon in [47,

Lemma 2.7], where the equivalence with Definition 2.7.1 is also established (under

the assumption of NIP, which can be removed as argued above). Simon calls this

the external characterisation of distality, and we shall call Definition 2.7.1 the

internal characterisation of distality.

Theorem 2.7.3. The theory T is distal if and only if the following holds.
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Let I0, I1 be (dense) infinite sequences without endpoints, whose elements are

n-tuples. Let a ∈ Mn and B ⊆ M. If I0 + a + I1 is indiscernible and I0 + I1 is

B-indiscernible, then I0 + a+ I1 is B-indiscernible.

To state the next formulation of distality, we make the following definition.

Definition 2.7.4. Let ϕ(x; y) ∈ L. A formula ψ(x; z) ∈ L is a strong honest

definition for ϕ if the following holds.

Let B ⊆ M |= T with |B| ≥ 2, and let a ∈ Mx. Let (M ′, B′) ≽ (M,B) be

|M |+-saturated. Then there is c ∈ (B′)z such that a |= ψ(x; c) and

ψ(x; c) ⊢ tpϕ(a/By).

The final clause will often be written as a |= ψ(x; c) ⊢ tpϕ(a/By). This

definition admits a finitary formulation that is often more useful (and agreeable

to non-model theorists).

Lemma 2.7.5. Let ϕ(x; y) ∈ L. For ψ(x; z) ∈ L, the following are equivalent:

(i) The formula ψ is a strong honest definition for ϕ;

(ii) Let B ⊆ M |= T with 2 ≤ |B| < ∞, and let a ∈ Mx. Then there is c ∈ Bz

such that a |= ψ(x; c) ⊢ tpϕ(a/By).

Proof. That (i) implies (ii) is immediate. For the converse, given a,B,B′ as in

the statement of (i), observe that

{ψ(a; z)} ∪
{
∀x
(
ψ(x; z) →

(
ϕ(x; b) ↔ ϕ(a; b)

))
: b ∈ By

}

is finitely satisfiable in B, so is satisfiable in B′ by compactness and saturation.

Remark 2.7.6. In light of (ii) in Lemma 2.7.5, the tuple z can be taken to be

copies of y, say, z = (y1, ..., yk) where |y1| = · · · = |yk| = |y|. Then, (ii) can be

restated equivalently as follows.

Let M |= T , B ⊆ My with 2 ≤ |B| < ∞, and let a ∈ Mx. Then there is

c ∈ Bk such that a |= ψ(x; c) ⊢ tpϕ(a/B).
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The following theorem, our third characterisation of distality, is due to Chernikov

and Simon [10, Theorem 21].

Theorem 2.7.7. The theory T is distal if and only if every formula ϕ(x; y) ∈ L

has a strong honest definition.

This characterisation of distality forms the basis of much of the work in this

thesis. As we shall see, it is very well suited to combinatorial applications. Per-

haps the first sign of combinatorial promise is that strong honest definitions give

rise to a desirable form of cell decomposition. The following definition is taken

from [9]. For a set X, let Pfin(X) denote the set of finite subsets of X.

Definition 2.7.8. Fix ϕ(x; y) ∈ L and M |= T . An abstract (cell) decomposition

for ϕ is a function F : Pfin(My) → P(P(Mx)) such that, for all finite B ⊆ My,

F(B) is a cover of Mx which refines the partition of Mx given by the set Sϕ(B)

of ϕ-types over B.

Say that such F is a distal (cell) decomposition for ϕ if there is a formula

ψ(x; y1, ..., yk) such that, for all finite B ⊆ My with |B| ≥ 2 and F ∈ F(B),

there are b1, ..., bk ∈ B such that F = ψ(x; b1, ..., bk). In this case, say that F is

defined by ψ.

Let ϕ(x; y) ∈ L and M |= T , and suppose ψ(x; y1, ..., yk) is a strong honest

definition for ϕ (see Remark 2.7.6). Then ϕ has a distal decomposition defined

by ψ. Indeed, given B ⊆ My with |B| ≥ 2, by Lemma 2.7.5, we may set F(B)

to be a subset of {ψ(x; c) : c ∈ Bk} that forms a cover of Mx refining Sϕ(B).

Figure 2.2 illustrates this decomposition. Here, B = {b1, b2, b3, b4}, and the

regions of the Venn diagram form the partition Sϕ(B) of Mx. The distal decom-

position defined by ψ refines Sϕ(B): every ϕ-type over B, such as the grey shaded

region, can be written as a union of cells of the form ψ(x; b′1, ..., b
′
k) for b′i ∈ B.

The key here is that ψ works for any finite B ⊆ My with |B| ≥ 2. A ϕ-type

over B can always be defined by a relation of the form
∧
b∈B ϕ

ε(b)(x; b) for some

ε : B → {0, 1}, but this relation has |B|-many parameters. In contrast, the

relation ψ has a fixed number k of parameters.
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ϕ(x; b1)
ϕ(x; b2)

ϕ(x; b3)

ϕ(x; b4)

Mx

ψ(x; b′′1, ..., b
′′
k)

ψ(x; b′1, ..., b
′
k)

Figure 2.2: Part of the distal decomposition for ϕ

Let us address the awkward condition that |B| ≥ 2 in Definition 2.7.4 and

the subsequent exposition. In short, we require |B| ≥ 2 so that we may apply

standard coding tricks. As an important example, when constructing a strong

honest definition for ϕ(x; y), it is often convenient to partition Mx into finitely

many pieces and use a different formula for each piece.

Proposition 2.7.9. Fix ϕ(x; y) ∈ L and M |= T . Then ϕ has a strong honest

definition if and only if for some n ∈ N there are formulas (ψi(x; y1, ..., yk) : i ∈

[n]) such that for all a ∈ Mx and B ⊆ My with 2 ≤ |B| < ∞, there is c ∈ Bk

and i ∈ [n] such that a |= ψi(x; c) ⊢ tpϕ(a/B).

Proof. The forward direction is immediate. Let (ψi(x; y1, ..., yk) : i ∈ [n]) witness

the antecedent of the backward direction. Let

θ(x; yi,1, ..., yi,k, ui, vi : i ∈ [n]) :=
n∨
i=1

(
ui = vi ∧ ψi(x; yi,1, ..., yi,k)

)
,

where ui, vi are tuples of variables of length |y|. We claim that this is a strong

honest definition for ϕ. Fix a ∈ Mx and B ⊆ My with 2 ≤ |B| < ∞. There is

c ∈ Bk and j ∈ [n] such that a |= ψj(x; c) ⊢ tpϕ(a/B). Pick u1, v1, ..., un, vn ∈ B

such that ui = vi if and only if i = j; this is possible since |B| ≥ 2. Then

a |= θ(x; c, ui, vi : i ∈ [n]) since a |= ψj(x; c), and θ(x; c, ui, vi : i ∈ [n]) ⊢ ψj(x; c)

since ui ̸= vi for all i ̸= j. But now ψj(x; c) ⊢ tpϕ(a/B).



2.7. DISTALITY 31

Call such (ψi : i ∈ [n]) a system of strong honest definitions for ϕ.

We turn our attention to closure properties for the existence of strong honest

definitions. The following lemma is straightforward to prove.

Lemma 2.7.10. Let ϕ1(x; y), ϕ2(x; y) ∈ L respectively have strong honest defin-

itions ψ1(x; y1, ..., yk), ψ2(x; y1, ..., yl).

(i) The formula ¬ϕ1(x; y) has strong honest definition ψ1(x; y1, ..., yk).

(ii) The formula ϕ1 ∧ ϕ2(x; y) has strong honest definition

ψ1(x; y1, ..., yk) ∧ ψ2(x; yk+1, ..., yk+l).

The following fact is [3, Proposition 1.9].

Fact 2.7.11. The theory T is distal if and only if every formula ϕ(x; y) ∈ L with

|x| = 1 has a strong honest definition.

Corollary 2.7.12. Suppose T has quantifier elimination. Then T is distal if and

only if every atomic ϕ(x; y) ∈ L with |x| = 1 has a strong honest definition.

To state the next closure property, we make the following definition.

Definition 2.7.13. Let ϕ(x; y) be an L-formula with m := |x| and n := |y|. Say

that an L-formula θ(u; v) is a descendant of ϕ if

θ(u; v) = ϕ(f1(u), ..., fm(u); g1(v), ..., gn(v))

for some L-definable functions f1, ..., fm of arity |u| and g1, ..., gn of arity |v|.

Note that the descendant relation is reflexive and transitive.

Lemma 2.7.14. Fix an L-structure M with at least two ∅-definable elements. If

an L-formula ϕ(x; y) has a strong honest definition, so does any descendant of ϕ.

Proof. Let α, β ∈ M be distinct ∅-definable elements. Let ϕ(x; y) be an L-

formula with m := |x| and n := |y|, and suppose it has a strong honest definition
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ψ(x; y(1), ..., y(k)). Let θ(u; v) = ϕ(f1(u), ..., fm(u); g1(v), ..., gn(v)) be a descend-

ant of ϕ, for some L-definable functions f1, ..., fm and g1, ..., gn.

For I, J ⊆ [k] disjoint, let ζIJ(u; v(i) : i ∈ [k] \ (I ∪ J)) be the formula

ψ(f1(u), ..., fm(u);h
(1)
1 , ..., h

(1)
n , ..., h

(k)
1 , ..., h

(k)
n ), where h

(i)
j is α if i ∈ I, β if i ∈ J ,

and gj(v
(i)) otherwise. We claim that {ζIJ : I, J ⊆ [k] disjoint} is a system of

strong honest definitions for θ.

Indeed, let a ∈Mu andB ⊆M v with 2 ≤ |B| <∞. Let B̄ := {(g1(v), ..., gn(v)) :

v ∈ B}, and let B̂ := B̄∪{(α, ..., α), (β, ..., β)} ⊆Mn. Since ψ is a strong honest

definition for ϕ and 2 ≤ |B̂| < ∞, there is c = (c(1), ..., c(k)) ∈ B̂k such that

(f1(a), ..., fm(a)) |= ψ(x; c) and

ψ(x; c) ⊢ tpϕ(f1(a), ..., fm(a)/B̂) ⊇ tpϕ(f1(a), ..., fm(a)/B̄).

Let I := {i ∈ [k] : c(i) = (α, ..., α)} and J := {i ∈ [k] : c(i) = (β, ..., β)}. Then,

there is a tuple (w(i) : i ∈ [k] \ (I ∪ J)) from B such that

ψ(f1(u), ..., fm(u); c) = ζIJ(u;w(i) : i ∈ [k] \ (I ∪ J)),

whence a |= ζIJ(u;w(i) : i ∈ [k] \ (I ∪ J)) ⊢ tpθ(a/B).

Remark 2.7.15. In the proof above, if the function v 7→ (g1(v), ..., gn(v)) were

injective, then the formula ζ(u; v(i) : i ∈ [k]) given by

ψ(f1(u), ..., fm(u); g1(v
(1)), ..., gn(v(1)), ..., g1(v

(k)), ..., gn(v(k)))

would have sufficed as a strong honest definition for θ.

Example 2.7.16. As an example of strong honest definitions, we prove that

Presburger arithmetic is distal by constructing a system of strong honest defini-

tions for every relevant formula.

It is well known (see, for example, [13]) that Presburger arithmetic admits

quantifier elimination in the language LPres := (<,+,−, 0, 1, (· ≡m 0)m∈N+),

where · ≡m 0 is a unary relation symbol interpreted as divisibility by m. We
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write x ≡m y to mean x− y ≡m 0.

By Corollary 2.7.12, it suffices to construct a strong honest definition for every

atomic LPres-formula ϕ(x; y) with |x| = 1. These have the form f(x, y) = 0,

f(x, y) < 0, or f(x, y) ≡m 0, where f is a Z-affine function (that is, a Z-linear

combination of its arguments plus an integer constant). We can ignore formulas of

the form f(x, y) = 0, since f(x, y) = 0 ↔ f(x, y) < 1∧−f(x, y) < 1. By Lemma

2.7.14, it suffices to construct strong honest definitions for ϕ(x; y) := x < y and

ψm(x; y) := x ≡m y.

The formula ϕ(x; y) admits a system of strong honest definitions given by

{x < y, x = y, y < x, y < x < y′}, where |y′| = |y|; in what follows, we will

understand −∞ < x < y to mean x < y and y < x < +∞ to mean y < x. Indeed,

let a ∈ Z and B ⊆ Z with 2 ≤ |B| < ∞. Enumerate B as {b1, ..., bn}, where

b1 < · · · < bn. If there is 1 ≤ i ≤ n such that a = bi, then a |= x = bi ⊢ tpϕ(a/B).

Otherwise, there is 0 ≤ i ≤ n such that bi < a < bi+1 (where b0 := −∞ and

bn+1 := +∞), whence a |= bi < x < bi+1 ⊢ tpϕ(a/B).

The formula ψm(x; y) admits a system of strong honest definitions given by

{x ≡m i : 0 ≤ i < m}. Indeed, let B ⊆ Z with 2 ≤ |B| <∞. Given a ∈ Z, there

is 0 ≤ i < m such that a ≡m i, whence a |= x ≡m i ⊢ tpψm
(a/Z).





Chapter 3

Distality from Combinatorics:

Expansions of Presburger

Arithmetic

In this chapter, we recover distality from combinatorial data. Specifically, we

prove that the structure (Z, <,+, R) is distal for all congruence-periodic sparse

predicates R ⊆ N, by constructing a strong honest definition for every formula

ϕ(x; y) with |x| = 1, providing a rare example of concrete distal decompositions.

This chapter is presented (with minor differences) in our paper [54]. We

thank Pantelis Eleftheriou for providing numerous helpful suggestions on the

content and structure of this paper, as well as Pablo Andújar Guerrero and Aris

Papadopoulos for fruitful discussions on distality. We would also like to thank

the referee for our paper for their helpful comments and corrections. Soli Deo

gloria.

3.1 Introduction

One of the most important threads of model-theoretic research is identifying

and studying dividing lines in the universe of structures: properties P such that

structures with P are ‘tame’ and ‘well-behaved’ in some sense.

35
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Two dividing lines that have attracted much interest, not just in model theory

but also in fields such as combinatorics and machine learning, are stability and

NIP. Distality was introduced by Simon to characterise NIP structures that are

‘purely unstable’. Indeed, stability and distality can be viewed as two opposite

ends of the NIP spectrum: no infinite structure satisfies both simultaneously.

However, a stable structure can admit a distal expansion, and this is (a special

case of) the subject of curiosity among many model theorists, phrased in [3] as

the following problem.

Problem 3.1.1. Which NIP structures admit distal expansions?

The reason (or one such reason) this is a question of interest is precisely the

fact that distal structures have nice structural properties. As noted in Section

2.7, a structure M is distal if and only if every formula ϕ(x; y) in its theory

has a strong honest definition (or a distal cell decomposition). Informally, this

means that given a finite set B ⊆My, there is a decomposition of Mx, uniformly

definable from B, into finitely many cells, such that the truth value of ϕ(x; b) is

constant on each cell for all b ∈ B.

Cell decompositions in general have proved useful for deriving various results,

particularly of a combinatorial nature, and distal decompositions are no excep-

tion. Many results that hold in the real field, where we have semialgebraic cell

decomposition, that were found to generalise to o-minimal structures, where we

have o-minimal cell decomposition, turn out to also generalise to distal structures,

where we have distal decomposition (recall that o-minimal structures are distal;

in fact, o-minimal cell decomposition is a special case of distal decomposition).

A notable example concerns the ‘strong Erdős–Hajnal property’. It was shown

in [1] that every definable relation over the real field has the strong Erdős–Hajnal

property. This was later generalised in [5] to every definable, topologically closed

relation in any o-minimal expansion of a real-closed field. Finally, it was shown

in [11] that a structure is distal if and only if every relation in its theory satisfies

the definable strong Erdős–Hajnal property.

Such results support the view that distality is an excellent context for cer-
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tain flavours of combinatorics. Indeed, recall the postulate in [9] that ‘distal

structures provide the most general natural setting for investigating questions in

“[generalised] incidence combinatorics”’.

The main result of this chapter thus fits nicely into the context described

above.

Main Theorem (Theorem 3.4.8). Let R ⊆ N be a congruence-periodic sparse

predicate. Then the structure (Z, <,+, R) is distal.

Note that, by [15, Corollary 2.20], such structures (Z, <,+, R) have dp-rank

≥ ω, so our main theorem completely classifies these structures on the model-

theoretic map of the universe.

Here, congruence-periodic means that, for all m ∈ N+, the increasing sequence

by which R is enumerated is eventually periodic modulo m. Sparsity will be

defined in Definition 3.2.2, but for now we content ourselves by noting that sparse

predicates include such examples as dN := {dn : n ∈ N} for any d ∈ N≥2, the set

of Fibonacci numbers, and {n! : n ∈ N}.

We now give an overview of how this result extends and builds on results in the

extant literature. In [34], Lambotte and Point prove that (Z,+, <,R) is NIP for

all congruence-periodic sparse predicates R ⊆ N, so our result is a strengthening

of theirs. They also define the notion of a regular predicate, show that regular

predicates are sparse, allowing them to apply their result to congruence-periodic

regular predicates. It turns out that the converse holds: sparse predicates are

regular, which we prove in Theorem 3.2.19 as a result of independent interest,

providing an equivalent, more intuitive definition of sparsity.

In the same paper, they also prove that (Z,+, R) is superstable for all reg-

ular predicates R ⊆ N. So, if additionally R is congruence-periodic, then our

result shows that (Z,+, R) admits a distal expansion, namely, (Z,+, <,R). This

provides a large class of examples of stable structures with distal expansions,

which should provide intuition towards an answer to Problem 3.1.1. We note that

examples of NIP structures without distal expansions are far scarcer, and so far

the only known method of proving that a structure does not have a distal expan-
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sion is to exhibit a formula without the strong Erdős–Hajnal property (see [11]).

It is our hope that our more direct proof of distality may provide new methods

and insights to that end.

To our knowledge, no examples of R ⊆ N are known such that (Z, <,+, R) is

NIP but not distal. As discussed above, distality is a desirable strengthening of

NIP, so it would be pleasant if NIP sufficed for distality for such structures. We

therefore pose the following problem.

Problem 3.1.2. Is there R ⊆ N such that (Z, <,+, R) is NIP but not distal?

In fact, even the existence of a non-distal NIP expansion of (N, <) appears

to be unknown — see [57, Question 11.16]. More broadly, we would like to

understand the following problem.

Problem 3.1.3. Characterise the class of predicates R ⊆ N such that (Z, <,+, R)

is distal.

A natural first step to understanding this problem is to investigate the fol-

lowing problem.

Problem 3.1.4. Let R ⊆ N be sparse but not necessarily congruence-periodic.

Must the structure (Z, <,+, R) be distal?

Congruence-periodicity is used in an essential way in our proof, so we expect

that a substantial change in approach would be required to provide a positive

answer to this question. Note that there are sparse predicates which are not

congruence-periodic — see Corollary 3.2.20.

We had previously wondered whether every non-distal structure of the form

(Z, <,+, R) interprets arithmetic, but R = 2N ∪ 3N serves as a counterexample1.

Indeed, the resulting structure does not interpret arithmetic [43] and is IP (hence

non-distal). A proof of the latter is given in [27] (where, in fact, 2-IP is claimed),

but in personal communication with the authors an error was found; they have

nonetheless supplied an alternative argument that the structure is (1-)IP.

1We thank Gabriel Conant for bringing this to our attention.
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Our original motivation for proving the main theorem was to answer a ques-

tion of Michael Benedikt (personal communication), who asked whether the struc-

ture (Z, <,+, 2N) was distal. His motivation was to know whether the structure

has so-called Restricted Quantifier Collapse (RQC), a property satisfied by all

distal structures [8]. In personal communication, he informed us that he is also

interested in obtaining better VC bounds for formulas in this structure (coau-

thoring [7] to that end), and that a constructive proof of distality could help in

this endeavour. Our proof is nothing but constructive.

3.1.1 Strategy of our proof and structure of the chapter

The proof of our main theorem, Theorem 3.4.8, comprises most of the chapter.

In Section 3.2, we define and motivate the terminology used in our main theorem,

and state and prove basic facts about sparse predicates that are either useful for

our proof or of independent interest. Our proof begins in earnest in Section 3.3.

Let us describe the strategy of the proof. Perhaps its most noteworthy feature,

and what distinguishes it from most other proofs of distality, is that we prove

that the structure is distal by giving explicit strong honest definitions (hence,

distal decompositions) for ‘representative’ formulas of the theory. Most proofs

of distality in the literature go via the definitions of distality using indiscern-

ible sequences (given in Definition 2.7.1 and Theorem 2.7.3), which offers no

information on the structure or complexity (such as ‘distal density’) of the distal

decomposition, which is itself a subject of interest, such as in [2]. As phrased

in [3], ‘occasionally [the characterisation of distality via strong honest definitions]

is more useful since it ultimately gives more information about definable sets, and

obtaining bounds on the complexity of strong honest definitions is important for

combinatorial applications’.

The first stage of the proof is thus to characterise ‘representative’ formulas

of the theory, which is the goal of Section 3.3. The main result in that section

is Theorem 3.3.6, where we show that to prove the distality of our structure, it

suffices to construct strong honest definitions for suitable so-called (Fn) formulas
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(where n ∈ N+), to be defined in Definition 3.3.5. We prove this by first showing

that every formula ϕ(x; y) with |x| = 1 is (essentially) equivalent to a Boolean

combination of so-called (En) formulas (Proposition 3.3.7), and then showing

that every (En) formula is (essentially) equivalent to a Boolean combination of

suitable (Fn) formulas and (En−1) formulas (Corollary 3.3.11). By induction

on n ∈ N+, this gives an explicit recipe for writing every formula ϕ(x; y) with

|x| = 1 as (essentially) a Boolean combination of suitable (Fn) formulas. This is

summarised precisely at the end of Section 3.3.

Constructing strong honest definitions for (Fn) formulas is the goal of Section

3.4 of the chapter. The broad strategy is to induct on n ∈ N+. Theorem 3.4.3,

which produces new strong honest definitions from existing ones, is a stronger

version of the base case n = 1 (Corollary 3.4.4), and is also a key ingredient in

the inductive step (Theorem 3.4.6). Morally, the base case is n = 0 (see Corollary

3.4.4), where the formula is a formula of Presburger arithmetic, hence admitting

a strong honest definition since Presburger arithmetic is distal; Corollary 3.4.4

bootstraps this strong honest definition to construct ones for (F1) formulas using

Theorem 3.4.3. Thus, the proof strategy can be described as ‘generating strong

honest definitions in (Z, <,+, R) from ones in the distal structure (Z, <,+)’,

which may prove a useful viewpoint for similar applications in the future.

We thus give a recipe to construct explicit strong honest definitions, and thus

distal decompositions, for all formulas ϕ(x; y) with |x| = 1. However, we make

no comment on the structure of these distal decompositions, as the complexity

of our construction renders such analysis a separate project. In particular, we

make no claim on the ‘optimality’ of our decomposition, to which little credence

is lent by the length of our construction anyway. The objective of this chapter

is to provide a rare example of concrete distal decompositions, which the reader

may analyse for aspects of distal decompositions in which they are interested.
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3.2 Sparsity

This section defines and discusses the notion of sparsity of a predicate.

Sparse predicates were introduced by Semenov in [44]. For an infinite predic-

ate R ⊆ N enumerated by the increasing sequence (rn : n ∈ N), let σ : R → R

denote the successor function, that is, σ(rn) = rn+1 for all n ∈ N. By an op-

erator on R we mean a function R → Z of the form anσ
n + · · · + a0σ

0, where

an, ..., a0 ∈ Z and σ0 is the identity function. For operators A and B, write
A =R B if Az = Bz for all z ∈ R,

A >R B if Az > Bz for cofinitely many z ∈ R,

A <R B if Az < Bz for cofinitely many z ∈ R.

The subscript R is dropped where obvious from context. We also use σ−1 to

denote the predecessor function, where we define σ−1(minR) := minR.

Example 3.2.1. Consider the predicate dN := {dn : n ∈ N} for some fixed

d ∈ N≥2, and let A be an operator on dN, say of the form anσ
n+ · · ·+a0σ

0 where

an, ..., a0 ∈ Z. Then, for all z ∈ dN we have Az = (and
n + · · · + a0d

0)z, so the

action of A on dN is multiplication by the constant and
n + · · · + a0d

0.

Definition 3.2.2 [44, §3]. Say that an infinite predicate R ⊆ N is sparse if every

operator A on R satisfies the following:

(S1) A =R 0, A >R 0, or A <R 0;

(S2) If A >R 0, then there exists ∆ ∈ N such that Aσ∆z > z for all z ∈ R.

Example 3.2.3. Consider again the predicate dN = {dn : n ∈ N} for some fixed

d ∈ N≥2. By Example 3.2.1, every operator A on dN acts as multiplication by

a constant λA ∈ Z. Thus, (S1) is clearly satisfied. Furthermore, A >R 0 if and

only if λA > 0, in which case Aσz = λAdz > z for all z ∈ dN, so (S2) is also

satisfied and dN is sparse.
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Other examples of sparse predicates, given by Semenov in [44, §3], include

the set of Fibonacci numbers, {n! : n ∈ N}, and {⌊en⌋ : n ∈ N}.

On the other hand, for all f ∈ N[x], the predicate f(N) = {f(n) : n ∈ N} is

not sparse. Indeed, let f ∈ N[x]; assume without loss of generality that deg f ≥ 1.

Let A be the operator σ1 − σ0, so A >R 0 since f is strictly increasing. There

is g ∈ N[x] with deg g < deg f such that Af(n) = f(n + 1) − f(n) = g(n) for

all n ∈ N. Hence, for all ∆ ∈ N, Aσ∆f(n) = Af(n + ∆) = g(n + ∆) < f(n) for

sufficiently large n ∈ N.

Remark 3.2.4. It may be tempting to conjecture from these examples and non-

examples that R = (rn : n ∈ N) ⊆ N is sparse if and only if rn+1/rn → θ for some

θ ∈ R>1∪{∞}. This is sadly false; in fact, the class of sparse predicates is not very

rigid at all. As an example, fixing d ∈ N≥2, recall that dN = {dn : n ∈ N} is sparse.

However, T := {dn+1 : n ∈ N} is not sparse, even though (dn+1+1)/(dn+1) → d.

Indeed, the operator A given by −σ1 + dσ0 is the constant function with image

{d− 1}, so A >T 0, but for all ∆ ∈ N, Aσ∆z < z for cofinitely many z ∈ T .

Thus, the condition rn+1/rn → θ > 1 emphatically fails to be sufficient for

the sparsity of R. However, it transpires to be necessary, and more can be said

— see Subsection 3.2.3.

3.2.1 Basic properties

In this subsection, we state and prove some basic results about sparse predicates.

For the rest of this subsection, fix a sparse predicate R ⊆ N.

For A = (A1, ..., An) an n-tuple of operators and z = (z1, ..., zn) ∈ Rn, we will

write A · z for the dot product of A and z: that is, A · z = A1z1 + · · · + Anzn.

Among others, our main goal in this subsection is to show that if A is an n-tuple

of non-zero operators, then z 7→ A · z defines an injective function on a natural

subset of Rn (Lemma 3.2.9).

Lemma 3.2.5 [44, Lemma 2]. Let A,B be operators with A ̸=R 0. Then, for

∆ ∈ N sufficiently large, |Aσ∆z| > Bz for all z ∈ R.
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Definition 3.2.6. Let R̃ ⊆ R. For n,∆ ∈ N, write

R̃n
∆ := {(z1, ..., zn) ∈ R̃n : zi ≥ σ∆zi+1 for all 1 ≤ i ≤ n},

where zn+1 := min R̃.

Lemma 3.2.7. Let n ∈ N+, A be an n-tuple of operators such that A1 ̸=R 0,

and ε > 0. Then, for all ∆ ∈ N sufficiently large and z ∈ Rn
∆, we have

(1 − ε)|A1z1| < |A · z| < (1 + ε)|A1z1| ,

and A · z has the same sign as A1z1.

Proof. By Lemma 3.2.5, there is Λ ∈ N such that for all z2, ..., zn ∈ R,

∣∣(A2, ..., An) · (z2, ..., zn)
∣∣ ≤|A2z2| + · · · +|Anzn| < σΛz2 + · · · + σΛzn,

whence for all ∆ ∈ N and z ∈ Rn
∆,
∣∣(A2, ..., An) · (z2, ..., zn)

∣∣ < nσ−∆+Λ(z1).

Thus, by Lemma 3.2.5, for all ∆ ∈ N sufficiently large and z ∈ Rn
∆, we have∣∣(A2, ..., An) · (z2, ..., zn)

∣∣ < ε|A1z1|.

Lemma 3.2.8. Let A be an operator. If A >R 0 (respectively, A <R 0) then

there is r ∈ Q>1 such that Aσz > rAz (respectively, Aσz < rAz) for cofinitely

many z ∈ R. In particular, the function R → Z, z 7→ Az is eventually strictly

increasing (respectively, decreasing).

Proof. We first prove the lemma assuming A >R 0. By Lemma 3.2.5, there is

∆ ∈ N such that Aσ∆z > 2Az for all z ∈ R. Fix r ∈ Q>1 such that r∆ < 2; write

r = p/q for p, q ∈ N+. Let B be the operator defined by Bz = qAσz − pAz. If

B ≤R 0 then Aσz ≤ rAz for cofinitely many z ∈ R, whence Aσ∆z ≤ r∆Az < 2Az

for cofinitely many z ∈ R, a contradiction. By (S1), we must thus have that

B >R 0, whence Aσz > rAz for cofinitely many z ∈ R.

If A <R 0, apply the lemma to −A >R 0.
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Here and henceforth, given an n-tuple ν = (ν1, ..., νn) and 1 ≤ i ≤ n, we let

ν>i denote (νi+1, ..., νn), ν≥i denote (νi, ..., νn), and so on.

Lemma 3.2.9. Let n ∈ N+, A be an n-tuple of operators, and ∆ ∈ N be suffi-

ciently large.

Let z, w ∈ Rn
∆ be such that i := min{e ∈ [n] : ze ̸= we, Ae ̸= 0} is well-defined,

and suppose zi > wi. Then A · z > A · w if Ai > 0, and A · z < A · w if Ai < 0.

In particular, if A is a tuple of non-zero operators, then z 7→ A · z defines an

injective function on Rn
∆.

Proof. We first prove the lemma assuming Ai > 0. By Lemma 3.2.8, there is r ∈

Q>1 such that Aiσx > rAix for sufficiently large x ∈ R, say for x ≥ σ∆(minR),

taking ∆ ∈ N to be sufficiently large. Let k ∈ N+ be such that r > 1 + 1/k. By

Lemma 3.2.7, taking ∆ ∈ N to be sufficiently large, we have

A≥i · z≥i >
(

1 − 1

4k

)
Aizi >

(
1 − 1

4k

)(
1 +

1

k

)
Aiwi ≥

(
1 +

1

2k

)
Aiwi

> A≥i · w≥i,

where the second inequality follows from the fact that Aiσx > rAix for all

x ≥ σ∆(minR) and wi ≥ σ∆(minR) since w ∈ Rn
∆. But now

A · z = A<i · z<i + A≥i · z≥i = A<i · w<i + A≥i · z≥i > A<i · w<i + A≥i · w≥i

= A · w.

If Ai < 0, apply the lemma to −A.

Remark 3.2.10. In this chapter, we frequently consider tuples z ∈ Rn
∆ for some

sufficiently large ∆ ∈ N rather than z ∈ Rn. The reason for this is that, as shown

in the preceding lemmas, Rn
∆ is much better-behaved than Rn. We illustrate this

by considering Lemma 3.2.9 for the sparse predicate R = 2N.

As shown in Example 3.2.1, in this context an operator is multiplication by a

constant, so let us consider the 3-tuple of operators A = (1, 2, 4), where 4 denotes

multiplication by 4, and so on. By Lemma 3.2.9, if ∆ ∈ N is sufficiently large, then
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the function z 7→ A · z is injective on (2N)3∆. In other words, if x = z1 + 2z2 + 4z3

for some z ∈ (2N)3∆, then we can read off z1, z2, and z3 uniquely from x. The

following example illustrates the necessity of ∆ being sufficiently large:

96 = 1(32) + 2(16) + 4(8) = 1(64) + 2(8) + 4(4).

Meanwhile, the sufficiency of ∆ being sufficiently large (∆ ≥ 2) is clear from the

uniqueness of binary expansions, and this is a special case of Lemma 3.2.9.

3.2.2 The P∆(·;A, R̃) and Q∆(·;A, R̃) functions

In this subsection, we introduce two functions that are crucial for the rest of the

chapter. Throughout this subsection, fix a sparse predicate R ⊆ N, enumerated

by the increasing sequence (rn : n ∈ N).

Definition 3.2.11. Let d ∈ N+, and let R̃ ⊆ R be definable in (Z, <,+, R).

Write R̃ ⊆d R if there is N ⊆ N such that R̃ := {rN+dt : t ∈ N}.

This definition is motivated by the following lemma. For m, d ∈ N+, say that

R is eventually periodic mod m with minimum period d if there is N ∈ N+ such

that (rn mod m : n ≥ N) is periodic with period d, and for all d′ < d and N ∈ N,

there is n ≥ N such that rn ̸≡m rn+d′ (recall the notation that x ≡m y :⇔ x ≡ y

mod m). Such R is not definable in (Z, <,+) in general.

Lemma 3.2.12. Let m, d ∈ N+, and suppose R is eventually periodic mod m

with minimum period d. Then, for all N ∈ N, the set R̃ := {rN+dt : t ∈ N} ⊆ R

is definable in (Z, <,+, R), and thus R̃ ⊆d R.

Proof. Up to excluding finitely many elements from R̃ (which does not affect the

definability of R̃), we may assume that (rn : n ≥ N) is periodic mod m with

minimum period d. Then, for z ∈ R,

z ∈ R̃ ⇔ z ≥ rN ∧
d−1∧
p=0

σpz ≡m σprN .
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The relation x ≡m y is definable in (Z, <,+), and so R̃ is definable in

(Z, <,+, R).

Definition 3.2.13. Let n ∈ N+, A be an n-tuple of non-zero operators, and

∆ ∈ N be sufficiently large such that the function z 7→ A · z is injective on Rn
∆.

For S ⊆ Rn
∆, write A · S := {A · z : z ∈ S}. For ∅ ≠ S ⊆ Rn

∆ such that A · S is

bounded below, let

min
A

S := the unique z ∈ S such that A · z = minA · S.

Similarly, for ∅ ≠ S ⊆ Rn
∆ such that A · S is bounded above, let

max
A

S := the unique z ∈ S such that A · z = maxA · S.

Definition 3.2.14. Let d, n ∈ N+, R̃ ⊆d R, A be an n-tuple of non-zero operat-

ors, and ∆ ∈ dN be sufficiently large such that the function z 7→ A · z is injective

on Rn
∆. For x ∈ Z, let

P∆(x;A, R̃) :=


maxA{z ∈ R̃n

∆ : A · z < x} if x > inf A · R̃n
∆,

minA R̃
n
∆ otherwise,

Q∆(x;A, R̃) :=


minA{z ∈ R̃n

∆ : A · z ≥ x} if x ≤ supA · R̃n
∆,

maxA R̃
n
∆ otherwise.

For 1 ≤ i ≤ n, write P i
∆(x;A, R̃) for P∆(x;A, R̃)i and write Qi

∆(x;A, R̃) for

Q∆(x;A, R̃)i. The parameter R̃ is dropped where obvious from context.

Remark 3.2.15. (i) In other words, if x > inf A · R̃n
∆, then P∆(x;A, R̃) is

the element z ∈ R̃n
∆ maximising A · z subject to A · z < x. Similarly, if

x ≤ supA · R̃n
∆, then Q∆(x;A, R̃) is the element z ∈ R̃n

∆ minimising A · z

subject to A · z ≥ x.

(ii) If x ≤ inf A · R̃n
∆, then A1 >R 0 (as otherwise inf A · R̃n

∆ = −∞). In
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this case, by Lemma 3.2.9, P∆(x;A, R̃) = minA R̃
n
∆ is the lexicographically

minimal element of R̃n
∆, namely,

(σ(n−i)∆(min R̃) : 0 ≤ i < n).

Similarly, if x > supA · R̃n
∆, then A1 <R 0 and

Q∆(x;A, R̃) = max
A

R̃n
∆ = (σ(n−i)∆(min R̃) : 0 ≤ i < n).

Example 3.2.16. As in Remark 3.2.10, consider the example R = 2N and A =

(1, 2, 4). Let ∆ = 2; it is easy to verify that z 7→ A · z is injective on R3
2. The

first four elements of A ·R3
2 are

1(16) + 2(4) + 4(1) = 28, 1(32) + 2(4) + 4(1) = 44,

1(32) + 2(8) + 4(1) = 52, 1(32) + 2(8) + 4(2) = 56.

Since 44 < 47 ≤ 52, we have P2(47;A, R) = (32, 4, 1) and Q2(47;A, R) =

(32, 8, 1). Moreover, for all x ≤ 28 = inf A ·R3
2, we have P2(x;A, R) = (16, 4, 1).

The following lemma establishes some basic properties of P∆(·;A, R̃) and

Q∆(·;A, R̃). The proofs are rather straightforward but we include them to

provide more intuition on these functions.

Lemma 3.2.17. Let R̃ ⊆d R for some d ∈ N+. Let n ∈ N+, A be an n-tuple of

non-zero operators, and ∆ ∈ dN be sufficiently large. Then the following hold.

(i) For all x ∈ Z, x > A · P∆(x;A, R̃) if and only if x > inf A · R̃n
∆, and

x ≤ A ·Q∆(x;A, R̃) if and only if x ≤ supA · R̃n
∆.

(ii) For all x ∈ Z, Q1
∆(x;A, R̃) = σεdP 1

∆(x;A, R̃) for some ε ∈ {−1, 0, 1}.

Proof. We first prove (i). If x ≤ inf A · R̃n
∆, then we have x ≤ A · P∆(x;A)

since P∆(x;A) ∈ R̃n
∆. If x > inf A · R̃n

∆, then we have x > A · P∆(x;A) since

P∆(x;A) ∈ {z ∈ R̃n
∆ : A · z < x}. The statement for Q∆(·;A) can be proven

similarly.
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We now prove (ii). If x ≤ inf A · R̃n
∆, then

Q∆(x;A) = min
A

{z ∈ R̃n
∆ : A · z ≥ x} = min

A
R̃n

∆ = P∆(x;A).

Similarly, if x > supA · R̃n
∆, then Q∆(x;A) = P∆(x;A), so consider the case

where inf A · R̃n
∆ < x ≤ supA · R̃n

∆. Then by definition and part (i) we have

that A · P∆(x;A) < x ≤ A · Q∆(x;A), and there is no z ∈ R̃n
∆ such that

A · P∆(x;A) < A · z < A ·Q∆(x;A). By Lemma 3.2.9, we are done.

3.2.3 Sparsity as regularity

We conclude this section by proving that the notion of a sparse predicate coincides

with that of a regular predicate, defined by Lambotte and Point in [34] and

recalled below.

Definition 3.2.18 [34]. Let R ⊆ N be enumerated by the increasing sequence

(rn : n ∈ N). Say that R is regular if rn+1/rn → θ ∈ R>1 ∪ {∞} and, if θ is

algebraic over Q with minimal polynomial f(x), then the operator f(σ) =R 0,

that is, if f(x) =
∑k

i=0 aix
i then for all n ∈ N we have

k∑
i=0

airn+i = 0.

Call θ the limit ratio of R.

Lambotte and Point prove that regular predicates are sparse [34, Lemma 2.26].

It turns out that these notions coincide.

Theorem 3.2.19. Let R ⊆ N. Then R is sparse if and only if R is regular.

Proof. It suffices to prove the forward direction. Let R be a sparse predicate,

enumerated by the increasing sequence (rn : n ∈ N). If rn+1/rn does not converge

or diverge, then lim infn→∞ rn+1/rn ̸= lim supn→∞ rn+1/rn, and so there is some

p ∈ Q>1 such that {n ∈ N : rn+1/rn > p} and {n ∈ N : rn+1/rn < p} are

both infinite. But now, writing p = a/b for a, b ∈ N+, the operator A given by
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z 7→ bσz − az satisfies that Az > 0 for infinitely many z ∈ R and Az < 0 for

infinitely many z ∈ R, a contradiction to (S1).

Thus, rn+1/rn → θ for some θ ∈ R≥1 ∪ {∞}. By Lemma 3.2.8 applied to

the identity operator, there is q ∈ Q>1 such that rn+1/rn > q for all sufficiently

large n, so θ ̸= 1. Suppose θ is algebraic over Q with minimum polynomial

f(x) =
∑k

i=0 aix
i. Towards a contradiction, suppose f(σ) ̸=R 0. Let g := f if

f(σ) >R 0, and g := −f if f(σ) <R 0. Then, g(σ) >R 0, so by (S2), there is

∆ ∈ N such that g(σ)rn+∆ > rn for all n ∈ N. But

g(σ)rn
rn

= ±
k∑
i=0

ai

(
rn+i
rn

)
→ ±

k∑
i=0

aiθ
i = 0,

and rn+∆/rn → θ∆, so

g(σ)rn+∆

rn
=
g(σ)rn+∆

rn+∆

rn+∆

rn
→ 0,

contradicting the fact that g(σ)rn+∆ > rn for all n ∈ N.

We find that the notion of regularity gives better intuition for what a sparse

(equivalently, regular) predicate looks like. In particular, we have the following.

Corollary 3.2.20. Let θ ∈ R>1 ∪ {∞} be such that θ is not algebraic over Q.

Then there is a sparse (equivalently, regular) predicate R ⊆ N with limit ratio θ

that is not congruence-periodic.

Proof. For all functions ε : N → {0, 1}, the predicate Rε ⊆ N enumerated by

(⌊θn⌋ + ε(n) : n ∈ N) is sparse with limit ratio θ, where for θ = ∞ we define

θn := n!. It is straightforward to observe that there is ε : N → {0, 1} such that

Rε is not eventually periodic mod 2.

3.3 Reduction to representative formulas

The goal of this section is to find formulas for which constructing strong hon-

est definitions is sufficient for the distality of the structure; this is achieved in



50 CHAPTER 3. DISTALITY FROM COMBINATORICS

Theorem 3.3.6.

We begin by establishing a ‘normal form’ for formulas in (Z, <,+, R), where

R ⊆ N is sparse and congruence-periodic. (Recall that R is congruence-periodic

if, for all m ∈ N+, R is eventually periodic mod m.) The following fact is due to

Semenov.

Fact 3.3.1 [44, Theorem 3]. Let R ⊆ N be sparse. Modulo (Z, <,+, R), every

formula ϕ(x) with |x| = 1 is equivalent to a disjunction of formulas of the form

∃z ∈ Rn

 k∧
j=1

fj(x) > A(j) · z ∧
l∧

p=1

gp(x) ≡mp B
(p) · z ∧ ψ(z)

 ,

where mp ∈ N+, fj(x), gp(x) are Z-affine functions, A(j),B(p) are n-tuples of

operators, and ψ(z) is a formula in (R,<, σ, (· ≡m c)c,m∈N+).

We will show that this normal form can be simplified if R ⊆ N is also

congruence-periodic.

Theorem 3.3.2. Let R ⊆ N be sparse and congruence-periodic. Then, modulo

(Z, <,+, R), every formula ϕ(x) with |x| = 1 is equivalent to a disjunction of

formulas of the form

∃z ∈ Rn

 k∧
j=1

fj(x) > A(j) · z ∧
l∧

p=1

gp(x) ≡mp B
(p) · z

 ,

where mp ∈ N+, fj(x), gp(x) are Z-affine functions, and A(j),B(p) are n-tuples

of operators.

The key to our proof is the following lemma, which states that if R ⊆ N is

congruence-periodic, then the structure (R,<, σ, (· ≡m c)c,m∈N+) has quantifier

elimination after expanding by a constant for minR.

Lemma 3.3.3. Let R ⊆ N be congruence-periodic. Then the theory T :=

Th(R,<, σ, (· ≡m c)c,m∈N+ , r0) has quantifier elimination, where r0 is a constant

interpreted as minR.
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Proof. Fix ϕ(x, ȳ), a conjunction of atomic and negated atomic formulas involving

x, where x is a singleton variable. It suffices to prove the following. Let R1, R2 |=

T have common substructure B, and let b̄ be a tuple from B of length |ȳ| such

that R1 |= ∃x ϕ(x, b̄). Then, R2 |= ∃x ϕ(x, b̄).

Atomic and negated atomic formulas involving x have one of the following

forms, for i, j ∈ N, □ ∈ {=, ̸=, <,≤, >,≥}, and c,m ∈ N+:

(i) σix □ σjx, which is equivalent to ⊤ or ⊥;

(ii) σiy □ σjx, where y is a variable or r0, which is equivalent to σi+ky □ σj+kx

for all k ∈ N;

(iii) σix ≡m c;

(iv) σix ̸≡m c, which is equivalent to
∨m
b=1,b ̸=c σ

ix ≡m b.

By the Chinese Remainder Theorem, we may assume that all congruences in

ϕ(x, ȳ) have the same modulus. Moreover, observe that σiy = σjx is equivalent

to σiy < σj+1x < σi+2y and σiy ̸= σjx is equivalent to σiy < σjx ∨ σjx < σiy.

Thus, we may assume that ϕ(x, ȳ) = ϕ(x, (yi,0, yi,1)0≤i≤l) is of the form

l∧
i=0

yi,0 < σkx < yi,1 ∧
k′∧
j=0

σjx ≡m cj,

where k, k′, l ∈ N and m, c0, ..., ck′ ∈ N+. We may assume k = k′: if k < k′, then

yi,0 < σkx < yi,1 is equivalent to σk
′−kyi,0 < σk

′
x < σk

′−kyi,1, and if k′ < k, then

ϕ is equivalent to

∨
1≤ck′+1,...,ck≤m

 l∧
i=0

yi,0 < σkx < yi,1 ∧
k∧
j=0

σjx ≡m cj

 .

Let R1, R2 |= T have common substructure B, and let b̄ be a tuple from B

of length |ȳ| such that R1 |= ∃x ϕ(x, b̄). We wish to show that R2 |= ∃x ϕ(x, b̄).
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Since B is linearly ordered, without loss of generality, ϕ(x, b̄) is equivalent to

b1 < σkx < b2 ∧
k∧
j=0

σjx ≡m cj.

For i ∈ {1, 2} and n ∈ N, let rin := (σnr0)
Ri . Let N ∈ N be such that

(r1n : n ≥ N) is periodic mod m, with minimum period d. Then the fact that

R1 |= ∃x ϕ(x, b̄) is witnessed by some

x ∈ {r1n : 0 ≤ n ≤ N + d} ∪ {σnb1 : 1 ≤ n ≤ d}.

Indeed, for all x ∈ R1, if x > r1N then there is 1 ≤ n ≤ d such that σjx ≡m σjr1N+n

for all 0 ≤ j ≤ k. Thus, if {r1n : 0 ≤ n ≤ N + d} does not contain a witness, then

b1 ≥ r1N . But now {σnb1 : 1 ≤ n ≤ d} contains a witness, since for all x ∈ R1, if

x > b1 then there is 1 ≤ n ≤ d such that σjx ≡m σjσnb1 for all 0 ≤ j ≤ k.

Thus, we have that R2 |= ∃x ϕ(x, b̄), witnessed by some

x ∈ {r2n : 0 ≤ n ≤ N + d} ∪ {σnb1 : 1 ≤ n ≤ d}.

We now prove Theorem 3.3.2.

Proof. Combine Fact 3.3.1 and Lemma 3.3.3. We show that if ψ(z) is a formula

in (R,<, σ, (· ≡m c)c,m∈N+), then ψ is equivalent in (Z, <,+, R) to
∨
i

∧
j θij for

some θij each of the form C > A·z or C ≡m B·z, where C ∈ Z, A,B are n-tuples

of operators, and m ∈ N+. (Note that elements of Z are Z-affine functions.) By

Lemma 3.3.3, it suffices to assume that ψ(z) is atomic or negated atomic.

By a similar analysis to that in the proof of Lemma 3.3.3, ψ is equivalent in

(Z, <,+, R) to a conjunction or disjunction of formulas, each taking one of the

following forms, where i, j ∈ N, p, q ∈ [n], and c,m ∈ N+:

(i) σizp < σjzq, which is equivalent to 0 > (σi,−σj) · (zp, zq);

(ii) ±σir0 > ±σjzq;

(iii) c ≡m σjzq.
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Since σjzq = (0, ..., 0, σj, 0, ..., 0) · z, and so on, all the formulas above are in the

required form.

For the rest of the chapter, fix a congruence-periodic sparse predic-

ate R ⊆ N.

Our goal is to write the formulas in Theorem 3.3.2 as Boolean combinations

of formulas for which we can construct strong honest definitions; this is achieved

in Theorem 3.3.6.

Let L0 := (<,+) and L := (<,+, R).

Definition 3.3.4. Let ϕ(x; y) be an L-formula with |x| = 1. Say that ϕ(x; y) is

a basic formula if it is a Boolean combination of formulas not involving x and

descendants of L0-formulas.

Note that basic formulas have strong honest definitions by Example 2.7.16,

Lemma 2.7.14, and the fact that formulas not involving x have ⊤ as a strong

honest definition.

For n ∈ N+ and 1 ≤ i ≤ n, let Fi be the ‘ith standard n-tuple of operators’

(where n is assumed to be obvious from context): for 1 ≤ j ≤ n,

Fi
j =


the identity function if j = i,

0 if j ̸= i.

We now fix notation for some formulas of particularly desirable forms.

Definition 3.3.5. Let d, n ∈ N+, R̃ ⊆d R, and ϕ(x; ...) be an L-formula with

|x| = 1.

Let y be a tuple of variables. Say that ϕ = ϕ(x; y) is of the form (En; R̃), or

just (En), if

ϕ(x; y) = ∃z ∈ R̃n
0

k∧
j=1

fj(x, y) > A(j) · z,

where f1(x, y), ..., fk(x, y) are Z-affine functions, and A(1), ...,A(k) are n-tuples of

operators.
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Let ∆ ∈ dN, y1, y2 be singleton variables, and A,B be n-tuples of operators.

Say that ϕ = ϕ(x; y1, y2) is of the form (Fn;A,B, R̃,∆), or just (Fn), if A is

a tuple of non-zero operators and

ϕ(x; y1, y2) = tx− y2 < B · P∆(x− y1;A, R̃),

where t ∈ {0, 1} with t = 1 unless B = Fi for some 1 ≤ i ≤ n.

Let u, v be n-tuples of variables, and let TR̃(u, v) be the formula saying that

u1, v1, ..., un, vn ∈ R̃. Say that ϕ = ϕ(x; y1, y2, u, v) is of the form (Gn;A,B, R̃,∆),

or just (Gn), if either

ϕ(x; y1, y2, u, v) = TR̃(u, v)∧∃z ∈ R̃n
∆

(
y1+A·z < x < y2+B·z∧

n∧
i=1

ui ≤ zi ≤ vi

)
,

or ϕ is obtained from the formula above by deleting some of the ui (equivalently,

setting ui = −∞) and/or deleting some of the vi (equivalently, setting vi = +∞).

It will be convenient to extend the definition of (En) formulas to n = 0; that

is, ϕ(x; y) with |x| = 1 is of the form (E0) if

ϕ(x; y) =
k∧
j=1

fj(x, y) > 0,

where f1(x, y), ..., fk(x, y) are Z-affine functions. Such formulas are basic.

Our goal is to prove the following theorem.

Theorem 3.3.6. The following criterion is sufficient for the distality of the struc-

ture (Z, <,+, R).

Let d, n ∈ N+, R̃ ⊆d R, A be an n-tuple of non-zero operators, and B be an n-

tuple of operators. Then, for all sufficiently large ∆ ∈ dN, every (Fn;A,B, R̃,∆)

formula has a strong honest definition.

We prove this in three steps. We first show that every L-formula ϕ(x; y) with

|x| = 1 is equivalent to a Boolean combination of basic formulas and descendants

of (En) formulas (Proposition 3.3.7). We then show that every (En) formula is
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equivalent to a Boolean combination of basic formulas and descendants of (En−1)

or (Gn) formulas (Proposition 3.3.8). Finally, we show that every (Gn) formula

is equivalent to a Boolean combination of basic formulas, (En−1) formulas, and

descendants of (Fn) formulas (Proposition 3.3.10).

Our first checkpoint is the following proposition.

Proposition 3.3.7. Modulo (Z, <,+, R), every formula ϕ(x; y) with |x| = 1 is

equivalent to a Boolean combination of basic formulas and descendants of (En)

formulas.

Proof. By Theorem 3.3.2, every partitioned L-formula ϕ(x; y) with |x| = 1 is

equivalent to a disjunction of formulas of the form

∃z ∈ Rn

 k∧
j=1

fj(x, y) > A(j) · z ∧
l∧

p=1

gp(x, y) ≡mp B
(p) · z

 ,

where mp ∈ N+, fj(x, y), gp(x, y) are Z-affine functions, and A(j),B(p) are n-

tuples of operators. By the Chinese Remainder Theorem, it suffices to assume

that there is m ∈ N+ such that m = mp for all 1 ≤ p ≤ l.

It suffices to show that every such formula is equivalent to a Boolean combin-

ation of basic formulas and descendants of (Es) formulas for some s ∈ N. We do

so by induction on n ∈ N. When n = 0, the formula is a basic formula. Now let

n ≥ 1, and let

ϕ(x, y) := ∃z ∈ Rn

 k∧
j=1

fj(x, y) > A(j) · z ∧
l∧

p=1

gp(x, y) ≡m B(p) · z

 ,

where m ∈ N+, fj(x, y), gp(x, y) are Z-affine functions, and A(j),B(p) are n-tuples

of operators.

Let (rn : n ∈ N) be an increasing enumeration of R. Since R is congruence-

periodic, there are d,N ∈ N such that (rn : n ≥ N) is periodic mod m with

minimum period d. Observe that ϕ(x; y) is equivalent to ϕ0(x; y) ∨ ϕ1(x; y),
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where ϕ0(x; y) is the formula

n∨
i=1

N−1∨
α=0

∃z ∈ Rn

zi = rα ∧
k∧
j=1

fj(x, y) > A(j) · z ∧
l∧

p=1

gp(x, y) ≡m B(p) · z


and ϕ1(x; y) is the formula

∃z ∈ Rn

 n∧
i=1

zi ≥ rN ∧
k∧
j=1

fj(x, y) > A(j) · z ∧
l∧

p=1

gp(x, y) ≡m B(p) · z

 .

Consider ϕ0(x; y). Replacing zi with rα in the (i, α)th disjunct, ϕ0(x; y) is

equivalent to a disjunction of formulas of the form

∃w ∈ Rn−1

 k∧
j=1

f ′
j(x, y) > A′(j) · w ∧

l∧
p=1

g′p(x, y) ≡m B′(p) · w

 ,

where f ′
j(x, y), g′p(x, y) are Z-affine functions and A′(j),B′(p) are (n− 1)-tuples of

operators. By the induction hypothesis, such formulas are equivalent to a Boolean

combination of basic formulas and descendants of (Es) formulas for some s ∈ N.

Consider ϕ1(x; y). Let R̃ := {rN+dt : t ∈ N}. By Lemma 3.2.12, R̃ ⊆d R. For

1 ≤ p ≤ l and 0 ≤ h1, ..., hn < d, let 0 ≤ b
(p)
h1,...,hn

< m be such that

B(p) · (rN+h1 , ..., rN+hn) ≡m b
(p)
h1,...,hn

.

Now ϕ1(x; y) is equivalent to the disjunction over 0 ≤ h1, ..., hn < d of

l∧
p=1

gp(x, y) ≡m b
(p)
h1,...,hn

∧ ∃z ∈ R̃n

k∧
j=1

fj(x, y) > A(j) · (σh1z1, ..., σ
hnzn).
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But now, for all 0 ≤ h1, ..., hn < d,

∃z ∈ R̃n

k∧
j=1

fj(x, y) > A(j) · (σh1z1, ..., σ
hnzn)

⇔
∨

τ∈Sym(n)

∃z ∈ R̃n

n−1∧
i=1

zτ(i) ≥ zτ(i+1) ∧
k∧
j=1

fj(x, y) > A(j) · (σh1z1, ..., σ
hnzn)


⇔

∨
τ∈Sym(n)

∃z ∈ R̃n
0

k∧
j=1

fj(x, y) > A(j) · (σh1zτ−1(1), ..., σ
hnzτ−1(n)),

where Sym(n) is the set of bijections from [n] to [n], so ϕ1(x; y) is equivalent to

a Boolean combination of basic formulas and (En; R̃) formulas.

Our next checkpoint is the following proposition.

Proposition 3.3.8. Let d, n ∈ N+, R̃ ⊆d R, and ϕ(x; y) be an (En; R̃) formula.

Then there is a finite collection Gϕ of pairs (A,B), where A,B are n-tuples of

operators, satisfying the following.

For all ∆ ∈ dN sufficiently large, ϕ is equivalent to a Boolean combination

of basic formulas and descendants of (En−1; R̃) or (Gn;A,B, R̃,∆) formulas for

(A,B) ∈ Gϕ.

Towards this checkpoint, we prove the following technical lemma.

Lemma 3.3.9. Let d, n ∈ N+, R̃ ⊆d R, A(1), ...,A(k) be n-tuples of operators,

and ∆ ∈ dN be sufficiently large. Then there are 1 ≤ i1, ..., ir ≤ n, an L0-

formula θ, and L-definable functions f1, ..., fr, u1, ..., un, v1, ..., vn such that each

ui (respectively, vi) either takes values in R̃ or is the constant (−∞)-valued (re-

spectively, (+∞)-valued) function, satisfying that for all y ∈ Zk and z ∈ R̃n
∆,∧k

j=1 yj > A(j) · z if and only if

θ(y) ∧

( k∧
j=1

yj > A(j) · z ∧
r∨
s=1

zis = fs(y)

)
∨
( n∧
i=1

ui(y) ≤ zi ≤ vi(y)

) .
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Proof. Let H0 := {j ∈ [k] : A
(j)
i =R 0 for all i ∈ [n]}, and for i ∈ [n], let

H+
i := {j ∈ [k] : A

(j)
i >R 0, A(j)

e =R 0 for all e < i},

H−
i := {j ∈ [k] : A

(j)
i <R 0, A(j)

e =R 0 for all e < i},

and write Hi := H−
i ∪H+

i . Then H0, (H
+
i , H

−
i : i ∈ [n]) is a partition of [k].

Let i ∈ [n]. For all j ∈ H+
i , define the function fj : Z → R̃ by

fj(y) :=


max{w ∈ R̃ : ∃z ∈ R̃n

∆(A(j) · z < y ∧ zi = w)} if well-defined,

min R̃ otherwise.

By Lemma 3.2.9, for all j ∈ H+
i , y ∈ Zk, and z ∈ R̃n

∆, if zi < fj(yj) then

yj > A(j) · z, and if zi > fj(yj) then yj < A(j) · z; thus,

yj > A(j) · z ⇔ (yj > A(j) · z ∧ zi = fj(yj)) ∨ zi ≤ σ−dfj(yj).

Similarly, for all j ∈ H−
i , defining the function fj : Z → R̃ by

fj(y) := min{w ∈ R̃ : ∃z ∈ R̃n
∆(A(j) · z < y ∧ zi = w)},

we have that, for all y ∈ Zk and z ∈ R̃n
∆,

yj > A(j) · z ⇔ (yj > A(j) · z ∧ zi = fj(yj)) ∨ zi ≥ σdfj(yj).

For all i ∈ [n], define ui(y) := sup{σdfj(y) : j ∈ H−
i } and vi(y) := inf{σ−dfj(y) :

j ∈ H+
i }. Now, if yj > A(j) · z for all j ∈ [k] \ H0, then either zi = fj(yj) for

some i ∈ [n] and j ∈ Hi, or ui(y) ≤ zi ≤ vi(y) for all i ∈ [n]. Conversely, if

ui(y) ≤ zi ≤ vi(y) for all i ∈ [n], then yj > A(j) · z for all j ∈ [k] \H0. Thus, for

all y ∈ Zk and z ∈ R̃n
∆,
∧k
j=1 yj > A(j) · z if and only if

∧
j∈H0

yj > 0 ∧

(( k∧
j=1

yj > A(j) · z ∧
n∨
i=1

∨
j∈Hi

zi = fj(yj)

)
∨

n∧
i=1

ui(y) ≤ zi ≤ vi(y)

)
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as required.

Proof of Proposition 3.3.8. Let

ϕ(x; y) = ∃z ∈ R̃n
0

k∧
j=1

fj(x, y) > A(j) · z,

where |x| = 1, f1(x, y), ..., fk(x, y) are Z-affine functions, and A(1), ...,A(k) are n-

tuples of operators. We claim that Gϕ := {(A(j),−A(l)) : 1 ≤ j, l ≤ k} witnesses

the proposition.

For all ∆ ∈ dN, ϕ(x; y) is equivalent to the disjunction of

ϕ′
∆(x; y) := ∃z ∈ R̃n

∆

k∧
j=1

fj(x, y) > A(j) · z

and
n∨
i=1

∆−1∨
α=0

∃z ∈ R̃n
0

(
zi = σαzi+1 ∧

k∧
j=1

fj(x; y) > A(j) · z
)
,

where zn+1 := min R̃. Replacing zi with σαzi+1 in the (i, α)th disjunct, it is clear

that each disjunct is equivalent to

∃w ∈ R̃n−1
0

k∧
j=1

fj(x, y) > B(j) · w,

for some (n− 1)-tuples B(1), ...,B(k) of operators, which is an (En−1; R̃) formula.

Consider ϕ′
∆(x; y). By multiplying both sides of the inequalities in ϕ′

∆(x; y),

we may assume without loss of generality that there are some K ∈ N+ and

0 ≤ p ≤ q ≤ k such that, for 1 ≤ j ≤ k,

the coefficient of x in fj =


K if j ≤ p,

−K if p < j ≤ q,

0 if q < j.

For 1 ≤ j ≤ k, let gj(y) := fj(0, y). Then
∧k
j=1 fj(x, y) > A(j) · z is (equivalent
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to)

p∧
j=1

−gj(y) + A(j) · z < Kx ∧
q∧

j=p+1

Kx < gj(y) −A(j) · z ∧
k∧

j=q+1

gj(y) > A(j) · z.

If 0 = p = q, then ϕ′
∆(x; y) is a basic formula. If 0 = p < q, then for all ∆ ∈ dN,

ϕ′
∆(x; y) is equivalent to

Kx < sup

 inf
p+1≤j≤q

(gj(y) −A(j) · z) : z ∈ R̃n
∆,

k∧
j=q+1

gi(y) > A(i) · z

 ,

which is a basic formula. The case where 0 < p = q is similar, so let us assume

0 < p < q. Now
∧p
j=1 −gj(y) + A(j) · z < Kx is equivalent to

p∨
j=1

(
− gj(y) + A(j) · z < Kx ∧

p∧
i=1
i ̸=j

−gj(y) + A(j) · z ≥ −gi(y) + A(i) · z
)
,

and
∧q
j=p+1Kx < gj(y) −A(j) · z is equivalent to

q∨
j=p+1

(
Kx < gj(y) −A(j) · z ∧

q∧
i=p+1
i ̸=j

gj(y) −A(j) · z ≤ gi(y) −A(i) · z
)
.

Thus, for all ∆ ∈ dN, ϕ′
∆(x; y) is equivalent to

p∨
j=1

q∨
l=p+1

∃z ∈ R̃n
∆

(
− gj(y) + A(j) · z < Kx < gl(y) −A(l) · z ∧ hjl(y, z)

)
,

where hjl(y, z) is

p∧
i=1
i ̸=j

gi(y) − gj(y) ≥ (A(i) −A(j)) · z

∧
q∧

i=p+1
i ̸=l

gi(y) − gl(y) ≥ (A(i) −A(l)) · z ∧
k∧

i=q+1

gi(y) > A(i) · z.
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Apply Lemma 3.3.9 to each hjl(y, z), assuming ∆ ∈ dN is sufficiently large.

For all 1 ≤ j ≤ p < l ≤ q, there are 1 ≤ ijl1 , ..., i
jl
r(j,l) ≤ n, an L0-formula

θjl, and L-definable functions f jl1 , ..., f
jl
r(j,l), u

jl
1 , ..., u

jl
n , v

jl
1 , ..., v

jl
n such that each

ujli (respectively vjli ) either takes values in R̃ or is the constant (−∞)-valued

(respectively, (+∞)-valued) function, satisfying that for all y ∈ Zk and z ∈ R̃n
∆,

hjl(y, z) if and only if

θjl(y) ∧

(hjl(y, z) ∧
r(j,l)∨
s=1

zijls = f jls (y)

)
∨
( n∧
i=1

ujli (y) ≤ zi ≤ vjli (y)

) .

Then, ϕ′
∆(x; y) is equivalent to the disjunction of

p∨
j=1

q∨
l=p+1

r(j,l)∨
s=1

(
θjl(y) ∧ ∃z ∈ R̃n

∆

(
− gj(y) + A(j) · z < Kx < gl(y) −A(l) · z

∧ hjl(y, z) ∧ zijls = f jls (y)
))

,

which is equivalent to a Boolean combination of basic formulas and descendants

of (En−1; R̃) formulas (since zijls = f jls (y) in the (j, l, s)th disjunct), and

p∨
j=1

q∨
l=p+1

(
θjl(y) ∧ ∃z ∈ R̃n

∆

(
− gj(y) + A(j) · z < Kx < gl(y) −A(l) · z

∧
n∧
i=1

ujli (y) ≤ zi ≤ vjli (y)

))
,

which is equivalent to a Boolean combination of basic formulas and descendants

of (Gn;A,B, R̃,∆) formulas for (A,B) ∈ Gϕ.

Our final checkpoint is the following proposition.

Proposition 3.3.10. Let n ∈ N+ and A,B be n-tuples of operators. Then

there is a finite collection FA,B of tuples (I,J), where I is an n-tuple of non-zero

operators and J is an n-tuple of operators, satisfying the following.

Let R̃ ⊆d R for some d ∈ N+. If ∆ ∈ dN is sufficiently large, then every

(Gn;A,B, R̃,∆) formula is equivalent to a Boolean combination of basic formu-
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las, (En−1; R̃) formulas, and descendants of (Fn; I,J, R̃,∆) formulas for

(I,J) ∈ FA,B.

Before proving this, we record a corollary.

Corollary 3.3.11. Let d, n ∈ N+, R̃ ⊆d R, and ϕ(x; y) be an (En; R̃) formula.

Then there is a finite collection Fϕ of tuples (I,J), where I is an n-tuple of

non-zero operators and J is an n-tuple of operators, satisfying the following.

If ∆ ∈ dN is sufficiently large, then ϕ(x; y) is equivalent to a Boolean combin-

ation of basic formulas and descendants of (En−1; R̃) formulas or (Fn; I,J, R̃,∆)

formulas for (I,J) ∈ Fϕ.

Proof. For Gϕ from Proposition 3.3.8, let Fϕ :=
⋃

(A,B)∈Gϕ
FA,B for FA,B from

Proposition 3.3.10.

Towards proving Proposition 3.3.10, we prove the following lemma.

Lemma 3.3.12. Let d, n ∈ N+, R̃ ⊆d R, A,B be n-tuples of operators, and

∆ ∈ dN be sufficiently large. Then for all x, y1, y2 ∈ Z, ui ∈ R̃ ∪ {−∞}, and

vi ∈ R̃ ∪ {+∞}, if

∃z ∈ R̃n
∆

(
y1 + A · z < x < y2 + B · z ∧

n∧
i=1

ui ≤ zi ≤ vi

)
, (1)

then either v1 = +∞∧ (A1 =R 0 <R B1 ∨ A1 <R 0 =R B1) or there is a witness

z ∈ R̃n
∆ satisfying one of the following:

(i) zi = σ∆zi+1 for some 1 ≤ i ≤ n, where zn+1 := min R̃;

(ii) zi ∈ {ui, vi} for some 1 ≤ i ≤ n;

(iii) Ai, Bi ̸=R 0 for all 1 ≤ i ≤ n, and z = P∆(x−y1;A) or z = P∆(y2−x;−B).

This lemma has a rather intuitive interpretation: if (1) holds then, barring

some edge cases, z can be chosen to satisfy (iii), that is, to maximise y1 + A · z

subject to y1 + A · z < x — namely, z = P∆(x− y1;A) — or minimise y2 + B · z

subject to x < y2 + B · z — namely, z = P∆(y2 − x;−B).
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Proof of Lemma 3.3.12. Suppose v1 ̸= +∞ ∨ ¬(A1 = 0 < B1 ∨ A1 < 0 = B1).

We first show that if Ai = 0 or Bi = 0 for some 1 ≤ i ≤ n, then there is a witness

z ∈ R̃n
∆ satisfying (i) or (ii).

Suppose Ai = 0 for some 1 ≤ i ≤ n; fix the minimal such i. Suppose there is

no witness to (1) satisfying (i) or (ii). Pick a witness z ∈ R̃n
∆ that minimises

min{zi−1, vi}/zi if Bi > 0

zi/max{zi+1, ui} if Bi ≤ 0

,

where z0 := +∞ and zn+1 := min R̃. Let w be the n-tuple obtained from z by

replacing zi with σdzi if Bi > 0 and with σ−dzi if Bi ≤ 0. Since z does not satisfy

(i) or (ii), we have that w ∈ R̃n
∆ and ui ≤ wi ≤ vi. But B · z ≤ B · w by Lemma

3.2.9, so y1 + A · w = y1 + A · z < x < y2 + B · z ≤ y2 + B · w, whence w is a

witness to (1), contradicting our choice of z.

The case where Bi = 0 for some 1 ≤ i ≤ n is similar, so henceforth suppose

Ai, Bi ̸= 0 for all 1 ≤ i ≤ n, and suppose there is no witness to (1) satisfying

(i), (ii), or (iii). By Lemma 3.2.9, we may assume that the function z 7→ A · z

is injective on R̃n
∆. Now any witness z ∈ R̃n

∆ to (1) satisfies A · z < x − y1 and

so A · z ≤ A · P∆(x− y1;A), and the inequality is strict since z does not satisfy

(iii). Fix a witness z ∈ R̃n
∆ to (1) that maximises A · z.

Let w be the n-tuple obtained from z by replacing zn with σdzn if An > 0 and

with σ−dzn if An < 0. Since z does not satisfy (i) or (ii), we have that w ∈ R̃n
∆

and un ≤ wn ≤ vn. By Lemma 3.2.9, there is no r ∈ R̃n
∆ such that A · r lies

strictly between A · z and A · w. Recalling that A · z < A · P∆(x − y1;A), this

shows that A · w ≤ A · P∆(x− y1;A).

By a similar argument, B · w ≥ B · P∆(y2 − x;−B). Thus,

y1 + A ·w ≤ y1 + A · P∆(x− y1;A) < x < y2 + B · P∆(y2 − x;−B) ≤ y2 + B ·w,

so w is a witness to (1). By Lemma 3.2.9, A · z < A ·w, contradicting our choice

of z.
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Proof of Proposition 3.3.10. Let

FA,B := {(A,B), (−B,−A)} ∪ {(A,Fi), (−B,Fi) : 1 ≤ i ≤ n}

if A,B are tuples of non-zero operators, and let FA,B := ∅ otherwise (recall

that Fi was defined as the ith standard tuple of operators). We claim that this

witnesses the proposition.

Let R̃ ⊆d R for some d ∈ N+, and let ∆ ∈ dN be sufficiently large as in

Lemma 3.3.12. Let ϕ(x; y, u, v) be a (Gn;A,B, R̃,∆) formula, say

ϕ(x; y, u, v) = TR̃(u, v)∧∃z ∈ R̃n
∆

(
y1 +A · z < x < y2 +B · z ∧

n∧
i=1

ui ≤ zi ≤ vi

)
,

where some of the ui (respectively, vi) may be −∞ (respectively, +∞). Write

T (u, v) for TR̃(u, v).

If v1 = +∞ and A1 =R 0 <R B1, then ϕ(x; y, u, v) is equivalent to

ζ(x; y, u, v) := T (u, v) ∧ ∃z ∈ R̃n
∆

(
y1 + A · z < x ∧

n∧
i=1

ui ≤ zi ≤ vi

)
.

Indeed, clearly ϕ implies ζ, and if z ∈ R̃n
∆ witnesses ζ, then for all/some suffi-

ciently large a ∈ R̃, we have w := (a, z>1) ∈ R̃n
∆ and

y1 + A · w = y1 + A · z < x < y2 + B · w ∧
n∧
i=1

ui ≤ zi ≤ wi < vi.

But ζ is equivalent to

T (u, v) ∧ x > y1 + inf

{
A · z : z ∈ R̃n

∆,
n∧
i=1

ui ≤ zi ≤ vi

}
,

which is a basic formula. Thus, if v1 = +∞ and A1 =R 0 <R B1, then ϕ

is equivalent to a basic formula. A similar situation arises if v1 = +∞ and

A1 <R 0 =R B1, so henceforth suppose neither case holds. Let ϕ̄(x; y, u, v, z) be
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the formula

y1 + A · z < x < y2 + B · z ∧
n∧
i=1

ui ≤ zi ≤ vi.

For 1 ≤ i ≤ n, let

αi(x; y, u, v) := T (u, v) ∧ ∃z ∈ R̃n
∆

(
zi = σ∆zi+1 ∧ ϕ̄(x; y, u, v, z)

)
,

βi(x; y, u, v) := T (u, v) ∧ ∃z ∈ R̃n
∆

(
zi = ui ∧ ϕ̄(x; y, u, v, z)

)
,

γi(x; y, u, v) := T (u, v) ∧ ∃z ∈ R̃n
∆

(
zi = vi ∧ ϕ̄(x; y, u, v, z)

)
,

where zn+1 := min R̃. Furthermore, if A and B are tuples of non-zero operators

then let

θ(x; y, u, v) := T (u, v) ∧ x− y1 > inf A · R̃n
∆

∧ x < y2 + B · P∆(x− y1;A) ∧
n∧
i=1

ui ≤ P i
∆(x− y1;A) ≤ vi,

ξ(x; y, u, v) := T (u, v) ∧ y2 − x > inf(−B · R̃n
∆)

∧ x > y1 + A · P∆(y2 − x;−B) ∧
n∧
i=1

ui ≤ P i
∆(y2 − x;−B) ≤ vi.

By Lemma 3.3.12 (and Lemma 3.2.17), ϕ(x; y, u, v) is equivalent to
θ ∨ ξ ∨

∨n
i=1(αi ∨ βi ∨ γi) if A,B are tuples of non-zero operators,∨n

i=1(αi ∨ βi ∨ γi) otherwise.

Observe that θ is a Boolean combinations of basic formulas and descendants

of (Fn; I,J, R̃,∆) formulas for (I,J) ∈ FA,B, since, for all 1 ≤ i ≤ n,

ui ≤ P i
∆(x−y1;A) ≤ vi ↔ ui−1 < Fi ·P∆(x−y1;A)∧¬(vi < Fi ·P∆(x−y1;A)).

But this is also true for ξ, since, for example, x > y1 + A · P∆(y2 − x;−B)

is a descendant of −x > −y2 + A · P∆(−y1 + x;−B), which is equivalent to

x− y2 < −A · P∆(x− y1;−B).
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For all 1 ≤ i ≤ n, αi, βi, and γi are equivalent to the conjunction of T (u, v),

which is a basic formula, and an (En−1, R̃) formula, by substituting zi with

σ∆zi+1, ui, or vi as appropriate.

Thus, ϕ is equivalent to a Boolean combination of basic formulas, (En−1; R̃)

formulas, and descendants of (Fn; I,J, R̃,∆) formulas for (I,J) ∈ FA,B.

We are now ready to prove Theorem 3.3.6.

Proof of Theorem 3.3.6. Assume the criterion holds. By Proposition 3.3.7, it

suffices to prove that every (En) formula has a strong honest definition. We do

so by induction on n ∈ N. An (E0) formula is a basic formula, so suppose n ≥ 1.

Let ϕ be an (En; R̃) formula, where R̃ ⊆d R for some d ∈ N+. Let Fϕ be

as in Corollary 3.3.11. Then, for all ∆ ∈ dN sufficiently large, ϕ is equival-

ent to a Boolean combination of basic formulas and descendants of (En−1; R̃) or

(Fn; I,J, R̃,∆) formulas for (I,J) ∈ Fϕ. By the induction hypothesis, every

(En−1; R̃) formula has a strong honest definition. Since Fϕ is finite, by the

criterion, for all ∆ ∈ dN sufficiently large, every (Fn; I,J, R̃,∆) formula for

(I,J) ∈ Fϕ has a strong honest definition. Thus, ϕ is a Boolean combination

of formulas with strong honest definitions.

The rest of the chapter is thus devoted to establishing the sufficiency criterion

in Theorem 3.3.6, by constructing strong honest definitions for (Fn;A,B, R̃,∆)

formulas with ∆ sufficiently large. Note that this then gives a strong honest

definition for every L-formula ϕ(x; y) with |x| = 1, since we have exhibited a

way to write every such formula as a Boolean combination of basic formulas

and descendants of (Fn;A,B, R̃,∆) formulas with ∆ sufficiently large. Indeed,

by Proposition 3.3.7, every L-formula ϕ(x; y) with |x| = 1 is equivalent to a

Boolean combination of basic formulas and descendants of (En) formulas. Ex-

ample 2.7.16 gives strong honest definitions for basic formulas, and the proof of

Corollary 3.3.11 describes an algorithm for writing every (En; R̃) formula as a

Boolean combination of descendants of (En−1; R̃) formulas and descendants of

(Fn;A,B, R̃,∆) formulas with ∆ sufficiently large.
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3.4 Main construction

Recall that R ⊆ N is our fixed congruence-periodic sparse predicate. In this

section, we show that every (Fn;A,B, R̃,∆) formula with ∆ sufficiently large

has a strong honest definition.

The broad strategy is to induct on n. Theorem 3.4.3 can be seen as a stronger

version of the n = 1 case, and Theorem 3.4.6 handles the inductive step.

The following lemma transpires to be surprisingly useful.

Lemma 3.4.1. Let d, n ∈ N+, R̃ ⊆d R, and A be an n-tuple of non-zero operators

with A1 >R 0 (respectively, A1 <R 0). Then there is Λ ∈ N such that the following

holds.

Let ∆ ∈ dN be sufficiently large, and let s, t, x ∈ Z be such that s ≤ t ≤ x

(respectively, s ≥ t ≥ x). Then there is 0 ≤ α ≤ Λ such that P 1
∆(x − s;A) =

σαP 1
∆(x− t;A) or P 1

∆(x− s;A) = σαP 1
∆(t− s;A).

Let us give an intuitive interpretation of this lemma. Assuming A1 > 0 for

the purpose of this discussion, the lemma simply says that if s ≤ t ≤ x, then

x− s is ‘close’ (with respect to the function P 1
∆(·;A)) to either x− t or t− s.

Proof of Lemma 3.4.1. By Lemma 3.2.5, we can fix Λ ∈ N such that |A1σ
Λr| >

|8A1σ
dr| for all r ∈ R. Let ∆ ∈ dN be sufficiently large, and let s, t, x ∈ Z be

such that s ≤ t ≤ x if A1 >R 0 and s ≥ t ≥ x if A1 <R 0. Let w := P∆(x− t;A)

and z := P∆(t− s;A).

First suppose A1 >R 0. Then

t− s ≤ A ·Q∆(t− s;A) < 2A1Q
1
∆(t− s;A) ≤ 2A1σ

dz1,

where the first and last inequalities are by Lemma 3.2.17 and the second inequal-

ity is by Lemma 3.2.7. Similarly, x− t < 2A1σ
dw1. But now

x− s = (x− t) + (t− s) < 4A1σ
d max{z1, w1} <

1

2
A1σ

Λ max{z1, w1},
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so, by Lemma 3.2.7, x ≤ s + A · u for all u ∈ R̃n
∆ with u1 ≥ σΛ max{z1, w1}.

Thus, P 1
∆(x − s;A) < σΛ max{z1, w1}. But x ≥ t ≥ s, so A · P∆(x − s;A) ≥

max{A · z,A · w}, and thus P 1
∆(x− s;A) ≥ max{z1, w1} by Lemma 3.2.9.

Now suppose A1 <R 0. Then t − s > A1z1 and x − t > A1w1 by Lemma

3.2.17, whence

x− s = (x− t) + (t− s) > 2A1 max{z1, w1} >
1

4
A1σ

Λ max{z1, w1},

so, by Lemma 3.2.7, x > s+A ·u for all/some u ∈ R̃n
∆ with u1 = σΛ max{z1, w1}.

Thus, P 1
∆(x − s;A) ≤ σΛ max{z1, w1}. But x ≤ t ≤ s, so A · P∆(x − s;A) ≤

min{A · z,A · w}, and thus P 1
∆(x− s;A) ≥ max{z1, w1} by Lemma 3.2.9.

Lemma 3.4.2. Let d, n ∈ N+, R̃ ⊆d R, A be an n-tuple of non-zero operators,

and ∆ ∈ dN be sufficiently large. Then the formula ϕ(x; y) := P 1
∆(x−y1;A) = y2

has a strong honest definition, given by the conjunction of strong honest defini-

tions for the basic formulas ϕ1(x; y) and ϕ2(x; y) defined as follows. The formula

ϕ1 is given by
x− y1 ≤ min{A · z : z ∈ R̃n

∆, z1 = σdN} if A1 >R 0,

x− y1 > min{A · z : z ∈ R̃n
∆, z1 = N} if A1 <R 0,

where N := σn∆(min R̃), and the formula ϕ2(x; y) is given by

min{A · z : z ∈ R̃n
∆, z1 = y2} < x− y1 ≤ min{A · z : z ∈ R̃n

∆, z1 = σεdy2},

where ε := 1 if A1 >R 0 and ε := −1 if A1 <R 0.

Proof. Observe that

ϕ(x; y) ↔ (y2 = N ∧ ϕ1(x; y)) ∨ (y2 ∈ R̃ ∧ y2 > N ∧ ϕ2(x; y)).

Now apply Lemma 2.7.10.

In the following theorem, we construct strong honest definitions for a class
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of formulas that includes all (F1;A,B, R̃,∆) formulas with ∆ sufficiently large

(this inclusion is spelt out in Corollary 3.4.4). We use the notation I ⊔ J ⊆ [k]

to mean that I, J ⊆ [k] are disjoint.

Theorem 3.4.3. Let θ(x; y) be a formula with |x| = 1, and suppose the formulas

θ(x; y) and θ′(x;w, y) := θ(x − w; y) both have strong honest definitions, where

|w| = 1. Let γ(x; y(1), ..., y(k)) be a strong honest definition for θ.

Let d, n ∈ N+, R̃ ⊆d R, A be an n-tuple of non-zero operators, and let Λ ∈ N

be as in Lemma 3.4.1. Let ∆ ∈ dN be sufficiently large, t ∈ Z, and f be an

L-definable function of arity 1. Then the formula

ϕ(x;w, y) := θ
(
tx− f(P 1

∆(x− w;A)); y
)

has a system of strong honest definitions

{ζI0J0···IΛJΛK : Iα ⊔ Jα ⊆ [k] for all 0 ≤ α ≤ Λ, K ⊆ {0, ...,Λ}},

where ζI0J0···IΛJΛK(x; ...) is given by the conjunction of the following:

(i) A strong honest definition ζ1(x; ...) for the basic formula ϕ1(x;w, y) :=

x ≤ w;

(ii) A strong honest definition ζ2(x; ...) for the formula ϕ2(x;w, y) :=

θ(tx − f(σn∆(min R̃)); y), which exists since the formula is a descendant

of θ;

(iii) For each 0 ≤ α ≤ Λ, a strong honest definition ζα3 (x; ...) for the formula

ϕα3 (x;w, y, w′, y′) := θ′(tx; f(σαP 1
∆(w′ − w;A)), y), which exists since the

formula is a descendant of θ′;

(iv) For each 0 ≤ α ≤ Λ, a strong honest definition ζα4 (x; ...) for the formula

ϕα4 (x;w, y, w′, y′) := P 1
∆(x − w;A) = σαP 1

∆(w′ − w;A), which exists by

Lemma 3.4.2 (and Lemma 2.7.14);
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(v) For each 0 ≤ α ≤ Λ, the formula

ζαIαJα(x;w, y(i) : i ∈ [k]\(Iα∪Jα)) := γ(tx−f(σαP 1
∆(x−w;A)); ŷ(1), ..., ŷ(k)),

where, for 1 ≤ i ≤ k,

ŷ(i) :=


(0, ..., 0) if i ∈ Iα,

(1, ..., 1) if i ∈ Jα,

y(i) otherwise;

(vi) The formula

∧
α∈K

P 1
∆(x− wα;A) = P 1

∆(x− w′
α;A) = σαP 1

∆(x− w′′
α;A).

Let us first describe the idea of the proof, assuming A1 >R 0 for the pur-

pose of this discussion. We wish to replace P 1
∆(x − w;A) in ϕ(x;w, y) with a

more tractable expression; we can do so by Lemma 3.4.1, which gives us Λ ∈ N

satisfying the following.

Let x0 ∈ Z and S ⊆ Z1+|y| with 2 ≤ |S| < ∞. Here and henceforth, when

it is written that (b, a) ∈ S, it is understood that |b| = 1 and |a| = |y|. Let

u := max({b : (b, a) ∈ S, x0 > b}∪{min(b,a)∈S b}). For all (b, a) ∈ S, if b > u then

P 1
∆(x0 − b;A) = σn∆(min R̃), and if b ≤ u then either

(i) P 1
∆(x0 − b;A) = σαP 1

∆(x0 − u;A) for some 0 ≤ α ≤ Λ; or

(ii) P 1
∆(x0 − b;A) = σαP 1

∆(u− b;A) for some 0 ≤ α ≤ Λ.

In each of these cases, replacing P 1
∆(x0 − b;A) with the respective expression

gives a formula for which we have strong honest definitions.

Proof of Theorem 3.4.3. By Lemma 3.2.7, we may assume ∆ ∈ dN is sufficiently

large that minA · R̃n
∆ > 0 if A1 >R 0 and maxA · R̃n

∆ < 0 if A1 <R 0.
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Fix x0 ∈ Z and S ⊆ Z1+|y| with 2 ≤ |S| < ∞. Write π1(S) := {b :

∃a (b, a) ∈ S} and π2(S) := {a : ∃b (b, a) ∈ S}. Fix (b0, a0) ∈ S such that

b0 =


min π1(S) if A1 >R 0,

maxπ1(S) if A1 <R 0.

Define

u :=


max({b ∈ π1(S) : x0 > b} ∪ {b0}) if A1 >R 0,

min({b ∈ π1(S) : x0 ≤ b} ∪ {b0}) if A1 <R 0.

For i ∈ {1, 2}, let ci ∈ S<ω be such that x0 |= ζi(x; ci) ⊢ tpϕi(x0/S). For

i ∈ {3, 4} and 0 ≤ α ≤ Λ, let cαi ∈ (S2)<ω be such that x0 |= ζαi (x; cαi ) and

ζαi (x; cαi ) ⊢ tpϕαi (x0/S
2).

Let T := π2(S) ∪ {(0, ..., 0), (1, ..., 1)} ⊆ Zy. Then |T | ≥ 2, so for 0 ≤ α ≤ Λ,

there is eα ∈ T k such that

tx0 − f(σαP 1
∆(x0 − u;A)) |= γ(x; eα) ⊢ tpθ(tx0 − f(σαP 1

∆(x0 − u;A))/T ).

There are disjoint Iα, Jα ⊆ [k] and cα ∈ π2(S)<ω such that

γ(tx− f(σαP 1
∆(x− u;A)); eα) = ζαIαJα(x;u, cα),

whence x0 |= ζαIαJα(x;u, cα).

For 0 ≤ α ≤ Λ, let Sα :=
{
b ∈ π1(S) : P 1

∆(x0 − b;A) = σαP 1
∆(x0 − u;A)

}
⊆

Z, and if Sα ̸= ∅, let l(α) := minSα and r(α) := maxSα.

Then we have that

x0 |=
2∧
i=1

ζi(x; ci) ∧
4∧
i=3

Λ∧
α=0

ζαi (x; cαi ) ∧
Λ∧
α=0

ζαIαJα(x;u, cα)

∧
Λ∧
α=0
Sα ̸=∅

P 1
∆(x− l(α);A) = P 1

∆(x− r(α);A) = σαP 1
∆(x− u;A),
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and we claim that this formula, which is an instance of ζI0J0···IΛJΛK for K :=

{0 ≤ α ≤ Λ : Sα ̸= ∅}, entails tpϕ(x0/S).

Indeed, suppose x1 ∈ Z satisfies this formula, and let (b′, a′) ∈ S. We wish to

show that ϕ(x0; b
′, a′) if and only if ϕ(x1; b

′, a′). Since x0, x1 |= ζ1(x; c1), we have

that for i ∈ {0, 1},

u =


max({b ∈ π1(S) : xi > b} ∪ {b0}) if A1 >R 0,

min({b ∈ π1(S) : xi ≤ b} ∪ {b0}) if A1 <R 0.

Suppose b′ > u and A1 >R 0. Then, for i ∈ {0, 1}, we have xi − b′ ≤ 0 <

minA · R̃n
∆ and so P 1

∆(xi − b′;A) = σn∆(min R̃) by Remark 3.2.15. Thus, for

i ∈ {0, 1}, we have ϕ(xi; b
′, a′) ⇔ ϕ2(xi; b

′, a′). But now, since x0, x1 |= ζ2(x; c2),

we have ϕ2(x0; b
′, a′) ⇔ ϕ2(x1; b

′, a′), whence ϕ(x0; b
′, a′) ⇔ ϕ(x1; b

′, a′).

The case where b′ < u and A1 <R 0 is similar, so henceforth suppose either

(b′ ≤ u and A1 >R 0) or (b′ ≥ u and A1 <R 0). By Lemma 3.4.1, we have either

(i) That P 1
∆(x0 − b′;A) = σαP 1

∆(x0 − u;A) for some 0 ≤ α ≤ Λ; or

(ii) That P 1
∆(x0 − b′;A) = σαP 1

∆(u− b′;A) for some 0 ≤ α ≤ Λ.

If 0 ≤ α ≤ Λ is such that P 1
∆(x0 − b′;A) = σαP 1

∆(u − b′;A), then since

x0, x1 |= ζα4 (x; cα4 ), we have P 1
∆(x0 − b′;A) = P 1

∆(x1 − b′;A) = σαP 1
∆(u − b′;A).

Thus, for i ∈ {0, 1}, we have

ϕ(xi; b
′, a′) ⇔ θ

(
txi − f(σαP 1

∆(u− b′;A)); a′
)
,

and so

ϕ(xi; b
′, a′) ⇔ θ′

(
txi; f(σαP 1

∆(u− b′;A)), a′
)
.

But now, since x0, x1 |= ζα3 (x; cα3 ), we have

θ′
(
tx0; f(σαP 1

∆(u− b′;A)), a′
)
⇔ θ′

(
tx1; f(σαP 1

∆(u− b′;A)), a′
)
,

whence ϕ(x0; b
′, a′) ⇔ ϕ(x1; b

′, a′).
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Suppose instead that we have P 1
∆(x0 − b′;A) = σαP 1

∆(x0 − u;A) for some

0 ≤ α ≤ Λ, and so l(α) ≤ b′ ≤ r(α). But now

x0, x1 |= P 1
∆(x− l(α);A) = P 1

∆(x− r(α);A) = σαP 1
∆(x− u;A),

so by Lemma 3.2.9 we must have x0, x1 |= P 1
∆(x−b′;A) = σαP 1

∆(x−u;A). Thus,

for i ∈ {0, 1},

ϕ(xi; b
′, a′) ⇔ θ

(
txi − f(σαP 1

∆(xi − u;A)); a′
)
.

But now, since x0, x1 |= ζαIαJα(x;u, cα), we have

x0, x1 |= γ(tx− f(σαP 1
∆(x− u;A)); eα)

and so

θ
(
tx0 − f(σαP 1

∆(x0 − u;A)); a′
)
⇔ θ

(
tx1 − f(σαP 1

∆(x1 − u;A)); a′
)
,

whence ϕ(x0; b
′, a′) ⇔ ϕ(x1; b

′, a′), which finishes the proof.

Corollary 3.4.4. Let R̃ ⊆d R for some d ∈ N+. Let t ∈ Z, A be a tuple of non-

zero operators, f be an L-definable function of arity 1, and □ ∈ {<,>}. Let ∆ ∈

dN be sufficiently large. Then the formula ϕ(x; y) := tx− y2 □ f(P 1
∆(x− y1;A))

has a strong honest definition. In particular, given operators A,B with A ̸=R 0,

every (F1;A,B,∆, R̃) formula with ∆ ∈ dN sufficiently large has a strong honest

definition.

Proof. This follows directly from Theorem 3.4.3 since, for θ(x; y2) := x □ y2,

ϕ(x; y) = θ
(
tx− f(P 1

∆(x− y1;A)); y2
)
,

and the formulas θ(x; y2) and θ′(x;w, y2) := θ(x − w; y2) have strong honest

definitions by Example 2.7.16.
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Having shown that every suitable (F1) formula has a strong honest defini-

tion, we proceed to show this for (Fn) formulas by induction on n ∈ N+. The

following lemma is crucial for the inductive step. Recall that, given an n-tuple

ν = (ν1, ..., νn), we let ν>1 denote (ν2, ..., νn).

Lemma 3.4.5. Let d, n ∈ N+ with n ≥ 2, R̃ ⊆d R, A be an n-tuple of non-zero

operators, and ∆ ∈ dN be sufficiently large. Let a ∈ Z be such that

a > inf A · R̃n
∆ ∧ a ≤ max{A · z : z ∈ R̃n

∆, z1 = P 1
∆(a;A)}.

Then P∆

(
a− A1P

1
∆(a;A);A>1

)
= P>1

∆ (a;A).

Proof. Let u = P∆(a;A). Then

A>1 · u>1 + A1P
1
∆(a;A) = A · P∆(a;A) < a,

and so A>1 · u>1 < a− A1P
1
∆(a;A). Thus, to show that

u>1 = P∆

(
a− A1P

1
∆(a;A);A>1

)
,

it suffices to show that there is no w ∈ R̃n−1
∆ such that

A>1 · u>1 < A>1 · w < a− A1P
1
∆(a;A).

Towards a contradiction, suppose such a w ∈ R̃n−1
∆ existed, so

A · u < A · (P 1
∆(a;A), w) < a.

By definition of u = P∆(a;A), we must have that (P 1
∆(a;A), w) ̸∈ R̃n

∆, and so

w1 > σ−∆P 1
∆(a;A). Recalling the relevant notation from Definition 3.2.13, let

v := max
A

{z ∈ R̃n
∆ : z1 = P 1

∆(a;A)},
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so by assumption, we have

A · u < A · (P 1
∆(a;A), w) < a ≤ A · v.

But now, since u1 = v1 = P 1
∆(a;A), we have A>1 · u>1 < A>1 ·w < A>1 · v>1, so

by Lemma 3.2.9,

w1 ≤ max{u2, v2} ≤ σ−∆ max{u1, v1} = σ−∆P 1
∆(a;A),

which is a contradiction.

The following theorem describes how a strong honest definition for a (Fn)

formula can be obtained from one for a (Fn−1) formula.

Theorem 3.4.6. Let d, n ∈ N+ with n ≥ 2, R̃ ⊆d R, A be an n-tuple of non-

zero operators, and B be an n-tuple of operators. Let t ∈ {0, 1} with t = 1 unless

B = Fi for some 1 ≤ i ≤ n. Suppose that, for all ∆ ∈ dN sufficiently large, the

formula

θ(x; y1, y2) := tx− y2 < B>1 · P∆(x− y1;A>1, R̃)

has a strong honest definition. Then, for all ∆ ∈ dN sufficiently large, the formula

ϕ(x; y1, y2) := tx− y2 < B · P∆(x− y1;A, R̃)

has a strong honest definition, given by a conjunction of copies of strong honest

definitions for
ϕ0 if B = F1,

ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, (ϕ
α
6 , ϕ

α
7 : −∆ ≤ α ≤ ∆) if B ̸= F1, A1 ̸=R B1, and t = 1,

ϕ1, ϕ2, ϕ3, ϕ4, ϕ8 otherwise,
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where

ϕ0(x; y1, y2) := tx− y2 < P 1
∆(x− y1;A),

ϕ1(x; y1, y2) := inf A · R̃n
∆ < x− y1,

ϕ2(x; y1, y2) := tx− y2 < B · (σ(n−i)∆(min R̃) : 0 ≤ i < n),

ϕ3(x; y1, y2) := x− y1 > max{A · z : z ∈ R̃n
∆, z1 = P 1

∆(x− y1;A)},

ϕ4(x; y1, y2) := tx− y2 < B · max
A

{z ∈ R̃n
∆ : z1 = P 1

∆(x− y1;A)},

ϕ5(x; y1, y2) :=


P 1
∆(x− y1;A) > σ∆P∆(y1 − y2;B1 − A1) if B1 − A1 >R 0,

P 1
∆(x− y1;A) < σ−∆P∆(y1 − y2;B1 − A1) if B1 − A1 <R 0,

ϕα6 (x; y1, y2) := P 1
∆(x− y1;A) = σαP∆(y1 − y2;B1 − A1),

ϕα7 (x; y1, y2) := tx− y2 −B1σ
αP∆(y1 − y2;B1 − A1)

< B>1 · P∆(x− y1 − A1σ
αP∆(y1 − y2;B1 − A1);A>1),

ϕ8(x; y1, y2) := θ(x− A1P
1
∆(x− y1;A); y1, y2).

From this we immediately obtain the sufficiency criterion in Theorem 3.3.6

as a corollary.

Corollary 3.4.7. Let d, n ∈ N+, R̃ ⊆d R, A be an n-tuple of non-zero operators,

and B be an n-tuple of operators. Then, for all sufficiently large ∆ ∈ dN, every

(Fn;A,B, R̃,∆) formula has a strong honest definition.

Proof. Induct on n ∈ N+, with Corollary 3.4.4 as the base case n = 1 and

Theorem 3.4.6 as the inductive step.

Before proving Theorem 3.4.6, let us first justify that the formulas ϕ0, ..., ϕ8

indeed have strong honest definitions, assuming that ∆ ∈ dN is sufficiently large.

The formulas ϕ0, ϕ3, ϕ4, and ϕ5 have strong honest definitions by Corol-

lary 3.4.4 and Lemma 2.7.14, applied with ∆ ∈ dN sufficiently large. As an

example, to show that ϕ3 has a strong honest definition (assuming ∆ ∈ dN is

sufficiently large), one applies Corollary 3.4.4 with t = 1, □ as >, and f mapping

u 7→ max{A · z : z ∈ R̃n
∆, z1 = u} if u ∈ R and u 7→ 0 otherwise.
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The formulas ϕ1 and ϕ2 are basic formulas, so have strong honest definitions.

For −∆ ≤ α ≤ ∆, the formula ϕα6 has a strong honest definition by Lemmas

3.4.2 and 2.7.14, since it is a descendant of the formula P 1
∆(x− y1;A) = y2.

For −∆ ≤ α ≤ ∆, the formula ϕα7 has a strong honest definition by Lemma

2.7.14, since it is a descendant of the formula θ(x; y1, y2), which is assumed to

have a strong honest definition.

Finally, consider the formula ϕ8. It is a descendant of the formula

ϕ′
8(x;w, y1, y2) := θ(x− A1P

1
∆(x− w;A); y1, y2),

so by Lemma 2.7.14 it suffices to show that ϕ′
8 has a strong honest definition.

Now the formula

θ′(x;w, y1, y2) := θ(x− w; y1, y2) = θ(x;w + y1, tw + y2)

is a descendant of θ, which is assumed to have a strong honest definition, and

hence so does θ′ by Lemma 2.7.14. Thus, the formula ϕ′
8 has a strong honest

definition by Theorem 3.4.3, applied with t = 1 and f mapping u 7→ A1u if

u ∈ R and u 7→ 0 otherwise.

Thus, Theorem 3.4.6 is well-formulated; let us prove it.

Proof of Theorem 3.4.6. Let ∆ ∈ dN be sufficiently large such that the function

z 7→ A · z is injective on R̃n
∆, θ(x; y1, y2) has a strong honest definition, and all

the strong honest definitions exist that are claimed to exist in the statement of

the theorem. We will show that ϕ(x; y1, y2) is a Boolean combination of copies of
ϕ0 if B = F1,

ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, (ϕ
α
6 , ϕ

α
7 : −∆ ≤ α ≤ ∆) if B ̸= F1, A1 ̸=R B1, and t = 1,

ϕ1, ϕ2, ϕ3, ϕ4, ϕ8 otherwise,

which suffices by Lemma 2.7.10.

If B = F1 then ϕ(x; y) ↔ ϕ0(x; y), so henceforth suppose B ̸= F1. We will
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show that

ϕ↔ (¬ϕ1 ∧ ϕ2) ∨
(
ϕ1 ∧ ϕ3 ∧ ϕ4) ∨ (ϕ1 ∧ ¬ϕ3 ∧ ϕ

)
. (2)

If ¬ϕ1(x; y) holds then x − y1 ≤ inf A · R̃n
∆, so by Remark 3.2.15 we have

ϕ(x; y) ↔ ϕ2(x; y). Henceforth condition on ϕ1(x; y), whence by Lemma 3.2.17,

A · P∆(x− y1;A) < x− y1. (3)

If ϕ3(x; y) holds, then P∆(x − y1;A) = maxA{z ∈ R̃n
∆ : z1 = P 1

∆(x − y1;A)}

and so ϕ(x; y) ↔ ϕ4(x; y). Thus, (2) is shown. It suffices now to condition on

ϕ1 ∧ ¬ϕ3 and show that ϕ is equivalent to a Boolean combination of copies of
ϕ5, (ϕ

α
6 , ϕ

α
7 : −∆ ≤ α ≤ ∆) if A1 ̸=R B1 and t = 1,

ϕ8 otherwise.

Henceforth condition on ϕ1(x; y) ∧ ¬ϕ3(x; y). Note then that, assuming ∆ ∈

dN is sufficiently large, Lemma 3.4.5 implies

P>1
∆ (x− y1;A) = P∆

(
x− y1 − A1P

1
∆(x− y1;A);A>1

)
. (4)

We now split into two cases: A1 ̸=R B1 ∧ t = 1, and (A1 =R B1 ∧ t = 1) ∨

(B = Fi ∧ t = 0).

Case 1: A1 ̸=R B1 ∧ t = 1. We will show that

ϕ↔ ϕ5 ∨
∆∨

α=−∆

(ϕα6 ∧ ϕα7 ).

Let ε := 1 if B1 − A1 >R 0, and ε := −1 if B1 − A1 <R 0.
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Firstly, suppose ϕ⊥(x; y) holds, where

ϕ⊥(x; y) :=


P 1
∆(x− y1;A) < σ−∆P∆(y1 − y2;B1 − A1) if B1 − A1 >R 0,

P 1
∆(x− y1;A) > σ∆P∆(y1 − y2;B1 − A1) if B1 − A1 <R 0.

In particular, inf(B1 − A1)R̃
1
∆ < y1 − y2 by Remark 3.2.15, whence, for ∆ ∈ dN

sufficiently large,

y1 − y2 > (B1 − A1)P∆(y1 − y2;B1 − A1) by Lemma 3.2.17

> (B1 − A1)σ
ε∆P 1

∆(x− y1;A) by ϕ⊥(x; y)

> 2ε(B1 − A1)P
1
∆(x− y1;A) by Lemma 3.2.5

> (B−A) · P∆(x− y1;A) by Lemma 3.2.7.

Recalling from (3) that x− y1 > A · P∆(x− y1;A), we have that

x− y2 = x− y1 + y1 − y2 > B · P∆(x− y1;A),

and so ϕ(x; y) ↔ ⊥.

Next, suppose ϕ5(x; y) holds. In particular, sup(B1 − A1)R̃
1
∆ ≥ y1 − y2 by

Remark 3.2.15, whence, for ∆ ∈ dN sufficiently large,

y1 − y2 ≤ (B1 − A1)Q∆(y1 − y2;B1 − A1) by Lemma 3.2.17

≤ (B1 − A1)σ
εdP∆(y1 − y2;B1 − A1) by Lemma 3.2.17

< (B1 − A1)σ
ε(d−∆)P 1

∆(x− y1;A) by ϕ5(x; y).

Using ¬ϕ3(x; y), for ∆ ∈ dN sufficiently large, we have

x− y1 ≤ max{A · z : z ∈ R̃n
∆, z1 = P 1

∆(x− y1;A)} < (A1 +σ−⌊∆/2⌋)P 1
∆(x− y1;A)
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by Lemma 3.2.5. Thus, for ∆ ∈ dN sufficiently large,

x− y2 = x− y1 + y1 − y2

< (A1 + σ−⌊∆/2⌋)P 1
∆(x− y1;A) + (B1 − A1)σ

ε(d−∆)P 1
∆(x− y1;A)

< (B1 − σ−⌊∆/2⌋)P 1
∆(x− y1;A) by Lemma 3.2.5

< B · P∆(x− y1;A) by Lemma 3.2.5,

and so ϕ(x; y) ↔ ⊤.

Finally, suppose neither ϕ⊥(x; y) nor ϕ5(x; y) holds. Then there is −∆ ≤ α ≤

∆ such that ϕα6 (x; y) holds. Conditioning on such ϕα6 (x; y), we have

ϕ(x; y)

↔ x− y2 −B1P
1
∆(x− y1;A) < B>1 · P>1

∆ (x− y1;A)

↔ x− y2 −B1P
1
∆(x− y1;A) < B>1 · P∆

(
x− y1 − A1P

1
∆(x− y1;A);A>1

)
by (4). But this is equivalent to ϕα7 (x; y), since ϕα6 (x; y) holds. Thus,

ϕ↔ ϕ5 ∨
∆∨

α=−∆

(ϕα6 ∧ ϕα7 ).

Case 2: (A1 =R B1 ∧ t = 1) or (B = Fi ∧ t = 0). We will show that ϕ ↔ ϕ8.

Recall that we have assumed B ̸= F1; in particular, B1 =R tA1. We have

ϕ(x; y)

↔ tx−B1P
1
∆(x− y1;A) − y2 < B>1 · P>1

∆ (x− y1;A)

↔ tx−B1P
1
∆(x− y1;A) − y2 < B>1 · P∆

(
x− y1 − A1P

1
∆(x− y1;A);A>1

)
by (4). But this is equivalent to ϕ8(x; y): since B1 = tA1, we have that

tx−B1P
1
∆(x− y1;A) = t(x− A1P

1
∆(x− y1;A)).

Theorem 3.4.8. The structure (Z, <,+, R) is distal.

Proof. Combine Theorem 3.3.6 and Corollary 3.4.7.



Chapter 4

Distality to Combinatorics:

Regularity Lemma and

Zarankiewicz Bounds

In this chapter, we recover combinatorial interactions from a distality assump-

tion. Specifically, we establish a connection between regularity lemmas and Za-

rankiewicz bounds that is satisfied by relations definable in a distal structure

(and others). Since Kővári, Sós, and Turán proved upper bounds for the Za-

rankiewicz problem in 1954, much work has been undertaken to improve these

bounds, and some have done so by restricting to particular classes of graphs.

In 2017, Fox, Pach, Sheffer, Suk, and Zahl proved better bounds for semialgeb-

raic binary relations, and this work was extended by Do in the following year

to arbitrary semialgebraic relations. In this chapter, we show that Zarankiewicz

bounds in the shape of Do’s are enjoyed by all relations satisfying the distal reg-

ularity lemma, an improved version of the Szemerédi regularity lemma satisfied

by relations definable in distal structures.

With the exception of Section 4.6, this chapter is presented (with minor dif-

ferences) in our preprint [53]. We thank Pantelis Eleftheriou for his consistent

guidance and mentorship, and for suggesting this problem to us. Soli Deo gloria.
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4.1 Introduction

A classical problem in graph theory is the Zarankiewicz problem, which asks for

the maximum number of edges a bipartite graph with n vertices in each class

can have if it omits Ku,u, the complete bipartite graph with u vertices in each

class. In 1954, Kővári, Sós, and Turán [32] gave an upper bound of Ou(n
2−1/u).

Remarkably, this remains the tightest known upper bound, although sharpness

has only been proven for u ∈ {2, 3}. In 2017, Fox, Pach, Sheffer, Suk, and

Zahl [19] observed that this bound can be improved if the graph is semialgebraic.

Theorem 4.1.1 (Fox–Pach–Sheffer–Suk–Zahl [19, Theorem 1.1]). Let E(x, y) be

a semialgebraic relation on R with description complexity at most t. Let d1 := |x|

and d2 := |y|. Then, for all finite P ⊆ Rx and Q ⊆ Ry with m := |P | and

n := |Q|, if E(P,Q) is Ku,u-free, then for all ε > 0 we have

|E(P,Q)| ≪u,d1,d2,t,ε


m

2
3n

2
3 +m+ n if d1 = d2 = 2,

m
d2(d1−1)
d1d2−1

+ε
n

d1(d2−1)
d1d2−1 +m+ n otherwise.

The graph theorist naturally asks if these results can be generalised to k-

partite k-uniform hypergraphs (henceforth, a k-graph is a k-uniform hypergraph).

Erdős led the way in 1964 [17], generalising the result of Kővári et al: a Ku,...,u-free

k-partite k-graph with n vertices in each class has Ou(n
k−1/uk−1

) edges. In 2018,

Do [14] generalised Theorem 4.1.1, improving Erdős’ bounds for semialgebraic

k-partite k-graphs.

Theorem 4.1.2 (Do [14, Theorem 1.7]). Let E(x1, ..., xk) be a semialgebraic

relation on R with description complexity at most t. Let di := |xi|. Then, for all

finite Pi ⊆ Rxi with ni := |Pi|, if E(P1, ..., Pk) is Ku,...,u-free, then for all ε > 0

we have

|E(P1, ..., Pk)| ≪u,d̄,t,ε F
ε
d̄ (n1, ..., nk),

where d̄ := (d1, ..., dk).
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The function F ε
d̄

will be defined in Definition 4.4.2, but for now we merely

note that, when d1 = · · · = dk =: d and n1 = · · · = nk =: n,

F ε
d̄ (n1, ..., nk) ≪k n

k− k
(k−1)d+1

+kε.

In this chapter, we prove an analogue of Theorem 4.1.2 for a much larger class

of relations, namely, relations satisfying the distal regularity lemma. That is, they

satisfy an improved version of the Szemerédi regularity lemma, in which the sizes

of the partitions are polynomial in the reciprocal of the error, and the good cells

are not just regular but homogeneous (that is, a clique or an anti-clique); see

Definition 4.2.3. Collecting the degrees of the polynomials into a strong distal

regularity tuple c̄, we state our main theorem.

Main Theorem (Theorem 4.4.5). Let E(x1, ..., xk) be a relation on a set M ,

with strong distal regularity tuple c̄ = (c1, ..., ck) ∈ Rk
≥1 and coefficient λ. For all

finite Pi ⊆Mxi with ni := |Pi|, if E(P1, ..., Pk) is Ku,...,u-free, then for all ε > 0,

|E(P1, ..., Pk)| ≪u,c̄,λ,ε F
ε
c̄ (n1, ..., nk).

Here, the function F ε
c̄ is precisely the function F ε

d̄
appearing in Theorem 4.1.2,

but with c̄ in place of d̄ (as a tuple of dummy variables). The definition of the

coefficient is unimportant for this discussion, so we refer the reader to Definition

4.2.3 for it.

The distal regularity lemma is so named because it is satisfied by all relations

definable in distal structures. Thus, our main theorem joins a parade of combin-

atorial properties that have been shown to hold in distal structures in the last

decade. It supports the postulate by Chernikov, Galvin, and Starchenko in [9]

that ‘distal structures provide the most general natural setting for investigating

questions in “generalised incidence combinatorics”’, where they proved an ana-

logue of Theorem 4.1.1 for binary relations definable in a distal structure. It also

motivates the following problem.
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Problem 4.1.3. Compute (strong) distal regularity tuples for relations satisfying

the distal regularity lemma, such as those definable in a distal structure.

It is worth pointing out that our main theorem applies to all relations satisfy-

ing the distal regularity lemma, which form a strictly larger class of relations than

those definable in a distal structure — see Theorem 4.5.1. However, this does not

constitute a refutation of the postulate by Chernikov, Galvin, and Starchenko,

as distal structures are still the most general structures in the literature in which

all definable relations satisfy the distal regularity lemma.

This chapter presents regularity lemmas as a means of obtaining Zarankiewicz

bounds, an approach also adopted in [29]. Improvements on the Szemerédi regu-

larity lemma have been made in various contexts, such as for stable graphs [35]

and for graphs with bounded VC-dimension [21]. Following our main theorem,

it is natural to pose the following problem.

Problem 4.1.4. Which other variants of the Szemerédi regularity lemma give

rise to improved Zarankiewicz bounds?

4.1.1 The semialgebraic case

Recently, Tidor and Yu [52] proved that if E(x1, ..., xk) is a semialgebraic relation

on R, then (|x1|, ..., |xk|) is a distal regularity tuple for E, so (|x1|+1, ..., |xk|+1)

is a strong distal regularity tuple for E, where the corresponding coefficient is a

function of the description complexity of E. We refer the reader to Definition

4.2.3 for a precise definition of (strong) distal regularity tuples, but here we

emphasise that the word ‘strong’ refers to requiring equipartitions in the distal

regularity lemma.

Thus, if the assumption in our main theorem can be weakened so that c̄ is

only required to be a distal regularity tuple (that is, the corresponding partitions

need not be equipartitions), their result can be combined with ours to recover

Theorems 4.1.1 and 4.1.2. In Section 4.3, we show that this assumption can

indeed be so weakened when E is a binary relation, thus recovering Theorem
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4.1.1. We would like to do likewise for an arbitrary relation, and so we pose the

following problem.

Problem 4.1.5. For an arbitrary relation E(x1, ..., xk), can the assumption in

our main theorem be weakened so that c̄ is only required to be a distal regularity

tuple?

Another way to recover Theorem 4.1.2 would be to resolve the following prob-

lem positively.

Problem 4.1.6. For a semialgebraic relation E(x1, ..., xk) on R, is (|x1|, ..., |xk|)

a strong distal regularity tuple for E?

We note however that, in [52], Tidor and Yu also proved infinitesimally im-

proved versions of Theorems 4.1.1 and 4.1.2 — removing the ε from the bounds

— which our present methods are not able to achieve.

4.1.2 Structure of the chapter

In Section 4.2, we introduce the notion of (strong) distal regularity tuples and

prove some of their basic properties. In Section 4.3, we prove a stronger version

of the main theorem in the case where the relation is binary, and in Section 4.4,

we prove the theorem in full. Finally, in Section 4.5, we discuss the context to

which the theorem can be applied.

4.1.3 Notation and basic definitions

In this chapter, we often consider relations as set-theoretic objects rather than

definable sets in some structure. We lay out some notation and definitions below,

some of which are borrowed from first-order logic.

If x1, ..., xk, y are variables, write y = y(x1, ..., xk) to mean that y is a function

of x1, ..., xk.
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Relations

Let M be a set and k ∈ N+. For tuples of variables x1, ..., xk, a relation

E(x1, ..., xk) on M is a subset of M |x1| × · · · ×M |xk|, or equivalently, a k-partite

k-graph on vertex sets M |x1|, ...,M |xk|. We will often drop the absolute value

signs and write Mx1 for M |x1|, and so on.

For ai ∈ Mxi , E(a1, ..., ak) is defined to mean (a1, ..., ak) ∈ E(x1, ..., xk). For

Pi ⊆Mxi and bi ∈Mxi ,

E(P1, ..., Pk) := {(a1, ..., ak) ∈ P1 × · · · × Pk : E(a1, ..., ak)},

E(b1, P2, ..., Pk) := {(a2, ..., ak) ∈ P2 × · · · × Pk : E(b1, a2, ..., ak)},

and we similarly define E(P1, ..., Pi−1, bi, Pi+1, ..., Pk) for all i ∈ [k]. Say that

P1 × · · · × Pk is E-homogeneous if E(P1, ..., Pk) = P1 × · · · × Pk or ∅.

Hölder’s inequality

Hölder’s inequality is the following classical theorem.

Theorem 4.1.7. Let a1, ..., an, b1, ..., bn, p, q ∈ R≥0 be such that p+ q = 1. Then

n∑
i=1

api b
q
i ≤

 n∑
i=1

ai

p n∑
i=1

bi

q

.

4.2 (Strong) distal regularity tuples

We begin by defining the notion of regularity for a bipartite graph.

Definition 4.2.1. Let M be a set, and let E(x, y) be a relation on M . For finite

A ⊆Mx and B ⊆My, write

d(A,B) :=
|E(A,B)|
|A||B|

.

Let P ⊆ Mx and Q ⊆ My be finite. For δ > 0, say that the bipartite graph

E(P,Q) is δ-regular if, for all A ⊆ P and B ⊆ Q with |A| ≥ δ|P | and |B| ≥ δ|Q|,
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|d(A,B) − d(P,Q)| ≤ δ.

In 1978, Szemerédi proved the following celebrated regularity lemma.

Theorem 4.2.2 (Szemerédi, 1978 [51]). Let M be a set, and let E(x, y) be a

relation on M . For all δ > 0, there is K ∈ N such that the following holds.

Let P ⊆ Mx and Q ⊆ My be finite. Then there are (equi)partitions P =

A1 ⊔ · · · ⊔ AK and Q = B1 ⊔ · · · ⊔ BK, and an index set Σ ⊆ [K]2 of ‘bad cells’,

such that

(a) ‘Meagre bad cells’:
∑

(i,j)∈Σ |Ai ×Bj| ≤ δ|P ×Q|; and

(b) ‘δ-regular good cells’: for all (i, j) ∈ [K]2 \ Σ, E(Ai, Bj) is δ-regular.

Szemerédi’s proof shows that K can be bounded above by an exponential

tower with height a polynomial in 1/δ. Hopes of improving this enormous bound

in general were quashed in 1997 when Gowers [23] constructed graphs necessit-

ating K of this size.

However, various results have arisen since then that establish better bounds

for K in certain contexts, along with additional improvements on the regularity

partition. Notably, in 2016, Fox, Pach, and Suk [20] showed that when E is

semialgebraic, not only is K upper bounded by a polynomial in 1/δ, but also item

(b) in Theorem 4.2.2 can be replaced by the condition that for all (i, j) ∈ [K]2\Σ,

Ai ×Bj is E-homogeneous, a very strong form of regularity. In 2018, Chernikov

and Starchenko [11] weakened the semialgebraicity assumption and showed that

this holds if E is definable in a distal structure, leading to the nomenclature distal

regularity lemma.

The results of Fox–Pach–Suk and Chernikov–Starchenko hold for relations of

arbitrary arity (that is, for hypergraphs as well as graphs). We will state this

result formally in an a priori roundabout way, by putting the spotlight on the

degree of the polynomial in 1/δ that upper bounds K — this will be important

later on.
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Definition 4.2.3. Let M be a set, and let E(x1, ..., xk) be a relation on M . Let

c1, ..., ck ∈ R≥0, and write c̄ := (c1, ..., ck).

Say that c̄ is a distal regularity tuple (respectively, strong distal regularity

tuple) for E if there is a coefficient λ > 1 satisfying the following: for all δ > 0

and finite sets Pi ⊆ Mxi with ni := |Pi|, there are partitions (respectively,

equipartitions) Pi = Ai1 ⊔ · · · ⊔ AiKi
and an index set Σ ⊆ [K1] × · · · × [Kk]

of ‘bad cells’ such that

(a) ‘Meagre bad cells’:
∑

(j1,...,jk)∈Σ |A1
j1
× · · · × Akjk | ≤ λδn1 · · ·nk;

(b) ‘Homogeneous good cells’: for all (j1, ..., jk) ∈ [K1] × · · · × [Kk] \ Σ,

A1
j1
× · · · × Akjk is E-homogeneous; and

(c) ‘Polynomially (in δ−1) many cells’ For all i ∈ [k], Ki ≤ λδ−ci .

Say that E satisfies the distal regularity lemma if there is a distal regularity

tuple for E.

Remark 4.2.4. For the reader that is familiar with hypergraph regularity, alarm

bells may be ringing. This notion of hypergraph regularity appears to merely be

a stronger version of what is known as weak hypergraph regularity, which has

been rendered mostly obsolete due to its combinatorial limitations. We will

explain this in much more detail in Chapter 5, but briefly, the weak hypergraph

regularity lemma says that a hypergraph P1 × · · · × Pk can be decomposed into

a bounded number of boxes A1
j1
× · · · ×Akjk , most of which are δ-regular (for the

obvious generalisation of δ-regularity to hypergraphs). Combinatorialists have

observed that, in general, δ-regular boxes are not uniform enough on which to do

combinatorics, and a strong hypergraph regularity result was eventually developed

where hypergraphs are decomposed into ‘simplicial complexes’ rather than boxes

(and the notion of uniformity is more refined than δ-regularity).

Nonetheless, although distal regularity is a version of weak hypergraph regu-

larity, the good cells are not just δ-regular but homogeneous. Homogeneity is the

strongest possible form of uniformity, and so the combinatorial limitations that
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plague the weak regularity lemma do not apply to the distal regularity lemma at

all. In fact, distal regularity can be seen as a stronger version of strong hyper-

graph regularity — see Chapter 5.

It is immediate that strong distal regularity tuples are distal regularity tuples

(with the same coefficient), and the following lemma establishes a converse.

Lemma 4.2.5. Let M be a set, and let E(x1, ..., xk) be a relation on M . Let

c1, ..., ck ∈ R≥0. Writing c̄ := (c1, ..., ck), suppose c̄ is a distal regularity tuple for

E with coefficient λ. Then (c1 + 1, ..., ck + 1) is a strong distal regularity tuple for

E with coefficient (k + 2)λ.

Proof. Suppose c̄ is a distal regularity tuple for E with coefficient λ. Let

δ ∈ (0, λ−1) and let Pi ⊆ Mxi be finite with ni := |Pi|. Fix partitions

Pi = Ai1 ⊔ · · · ⊔ AiKi
and an index set of ‘bad cells’ Σ ⊆ [K1] × · · · × [Kk] as

in the definition of c̄ as a distal regularity tuple for E.

For each i ∈ [k], define an equipartition Pi = Bi
1 ⊔ · · · ⊔ Bi

Li
as follows. Let

Ni := ⌈1
2
δci+1ni⌉. For each j ∈ [Ki], partition Aij into a maximal number of

parts of size Ni and a part Sij of size less than Ni. This gives a new partition

Pi = Si1 ⊔ · · · ⊔ SiKi
⊔ T i1 ⊔ · · · ⊔ T iK′

i
where, for all j′ ∈ [K ′

i], |T ij′ | = Ni and there

is a unique j ∈ [Ki] such that T ij′ ⊆ Aij. Observe that K ′
i ≤ ni/Ni ≤ 2δ−(ci+1).

By moving elements of T i1, ..., T
i
K′

i
to Si1, ..., S

i
Ki

as much as necessary, we obtain

an equipartition Pi = S̄i1 ⊔ · · · ⊔ S̄iKi
⊔ T̄ i1 ⊔ · · · ⊔ T̄ iK′

i
where |S̄ij| ≤ Ni − 1 for all

j ∈ [Ki] and, for all j′ ∈ [K ′
i], there is a unique j ∈ [Ki] such that T̄ ij′ ⊆ Aij.

Rename S̄i1, ..., S̄
i
Ki

as Bi
1, ..., B

i
Ki

and T̄ i1, ..., T̄
i
K′

i
as Bi

Ki+1, ..., B
i
Li

. Observe that

Li = Ki +K ′
i ≤ (λ+ 2)δ−(ci+1), and

∑Ki

j=1 |Bi
j| ≤ Ki(Ni − 1) ≤ λδni.

For all (j1, ..., jk) ∈ ([L1] \ [K1]) × · · · × ([Lk] \ [Kk]), there is a unique tuple

(i1, ..., ik) ∈ [K1] × · · · × [Kk] such that B1
j1
× · · · × Bk

jk
⊆ A1

i1
× · · · × Akik ; write

(i1, ..., ik) = π(j1, ..., jk). Now set

Λ :=
k⋃
i=1

[L1] × · · · × [Li−1] × [Ki] × [Li+1] × · · · × [Lk] ∪ Λ0,
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where Λ0 := {(j1, ..., jk) ∈ ([L1] \ [K1]) × · · · × ([Lk] \ [Kk]) : π(j1, ..., jk) ∈ Σ}.

We claim that the partitions Pi = Bi
1 ⊔ · · · ⊔ Bi

Li
, together with the index set Λ

of bad cells, witness that (c1 + 1, ..., ck + 1) is a strong distal regularity tuple for

E with coefficient (k + 2)λ.

We already have that, for all i ∈ [k], Li ≤ (λ + 2)δ−(ci+1) ≤ (k + 2)λδ−(ci+1).

For all (j1, ..., jk) ∈ [L1] × · · · × [Lk] \ Λ ⊆ ([L1] \ [K1]) × · · · × ([Lk] \ [Kk]), we

have π(j1, ..., jk) ̸∈ Σ; that is, B1
j1
× · · · ×Bk

jk
is contained in an E-homogeneous

cell, so is itself E-homogeneous. Therefore, it remains to show that

∑
(j1,...,jk)∈Λ

|B1
j1
× · · · ×Bk

jk
| ≤ (k + 2)λδn1 · · ·nk.

Firstly,
⊔

(j1,...,jk)∈Λ0
B1
j1
× · · · × Bk

jk
⊆
⊔

(i1,...,ik)∈ΣA
1
i1
× · · · × Akik , so the set

on the left has size at most λδn1 · · ·nk. Now

∑
(j1,...,jk)∈Λ

|B1
j1
× · · · ×Bk

jk
|

=
k∑
i=1

n1 · · ·ni−1ni+1 · · ·nk
Ki∑
j=1

|Bi
j| +

∑
(j1,...,jk)∈Λ0

|B1
j1
× · · · ×Bk

jk
|

≤
k∑
i=1

n1 · · ·ni−1ni+1 · · ·nk(λδni) + λδn1 · · ·nk

= (k + 1)λδn1 · · ·nk.

Thus, a relation E satisfies the distal regularity lemma if and only if there is

a strong distal regularity tuple for E.

The results of Fox–Pach–Suk and Chernikov–Starchenko can now be stated

as follows. We use R to denote the structure of the real ordered field.

Theorem 4.2.6 (Chernikov–Starchenko, 2018 [11]; M = R: Fox–Pach–Suk,

2016 [20]). Let ϕ(x1, ..., xk; y) be a relation definable in a distal structure M .

Then there are c̄ ∈ Rk
≥0 and λ > 1 such that, for all b ∈ My, the relation

E(x1, ..., xk) := ϕ(x1, ..., xk; b) on M has distal regularity tuple c̄ with coefficient

λ.
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By Lemma 4.2.5, ‘distal regularity tuple’ can be replaced with ‘strong distal

regularity tuple’ in the statement above.

We will now forget about the context of M = R or M as a distal structure,

and derive Zarankiewicz bounds for all relations with a (strong) distal regularity

tuple, that is, all relations that satisfy the distal regularity lemma.

We finish this section by proving a preliminary Zarankiewicz bound for a

relation E(x1, ..., xk) with a distal regularity tuple, morally inducting on k.

Lemma 4.2.7. Let E(x1, ..., xk) be a relation on a set M with distal regularity

tuple c̄ = (c1, ..., ck) ∈ Rk
≥1 and coefficient λ. Suppose that, for all i ∈ [k],

Fi : Nk−1 → R is a function satisfying the following.

Let u ∈ N+, and let a1, ..., au ∈ Mxi be distinct. For all j ∈ [k] \ {i}, let

Pj ⊆Mxj with nj := |Pj|. If the (k−1)-graph
⋂u
e=1E(P1, ..., Pi−1, ae, Pi+1, ..., Pk)

is Ku,...,u-free, then its size is Ou(Fi(n1, ..., ni−1, ni+1, ..., nk)).

(i) Let γ ≥ 0, and suppose that for all finite Pi ⊆ Mxi with ni := |Pi|, if

E(P1, ..., Pk) is Ku,...,u-free, then

|E(P1, ..., Pk)| ≪u,c1,λ n
1−γ
1 n2 · · ·nk + n1F1(n2, ..., nk).

Then the statement above holds with γ replaced by 1
1+c1(1−γ) .

(ii) For all i ∈ [k], let Pi ⊆ Mxi be finite with ni := |Pi|. If E(P1, ..., Pk) is

Ku,...,u-free, then for all i ∈ [k] and ε > 0,

|E(P1, ..., Pk)| ≪u,ci,λ,ε n1 · · ·nkn
− 1

ci
+ε

i + niFi(n1, ..., ni−1, ni+1, ..., nk).

Proof. (i) Let δ = n
− 1

1+c1(1−γ)

1 . With this value of δ, partition Pi = Ai1 ⊔ · · · ⊔AiKi

for each i ∈ [k] as in the definition of c̄ as a distal regularity tuple for E, with

Σ ⊆ [K1]×· · ·×[Kk] the index set of bad cells. Let T :=
⋃

(j1,...,jk)∈ΣA
1
j1
×· · ·×Akjk .

Without loss of generality, let 0 ≤ L ≤ K1 be such that, for all 1 ≤ j ≤ K1,

|A1
j | ≥ u if and only if j > L.
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Let j > L. Then |A1
j | ≥ u, so let a1, ..., au ∈ A1

j be distinct. Then

E(A1
j , P2, ..., Pk) \ T ⊆ A1

j ×
u⋂
e=1

E(ae, P2, ..., Pk).

Since E(P1, ..., Pk) is Ku,...,u-free, the (k−1)-graph
⋂u
e=1E(ae, P2, ..., Pk) is Ku,...,u-

free, and so by assumption

|E(A1
j , P2, ..., Pk) \ T | ≪u |A1

j |F1(n2, ..., nk).

Let H1 :=
⋃L
j=1A

1
j , so |H1| ≤ Lu ≤ K1u ≤ λδ−c1u. By assumption,

|E(H1, P2, ..., Pk)| ≪u,c1,λ (λδ−c1u)1−γn2 · · ·nk + n1F1(n2, ..., nk)

≪u,λ δ
−c1(1−γ)n2 · · ·nk + n1F1(n2, ..., nk).

Thus,

|E(P1, ..., Pk)|

≤ |T | + |E(H1, P2, ..., Pk)| +

K1∑
j=L+1

|E(A1
j , P2, ..., Pk) \ T |

≪u,c1,λ δn1 · · ·nk + δ−c1(1−γ)n2 · · ·nk + n1F1(n2, ..., nk) +

K1∑
j=L+1

|A1
j |F1(n2, ..., nk)

≤ 2n
1− 1

1+c1(1−γ)

1 n2 · · ·nk + 2n1F1(n2, ..., nk).

(ii) By symmetry, we may assume that i = 1. Let f : [0, 1
c1

] → [ 1
c1+1

, 1
c1

] be

given by γ 7→ 1
1+c1(1−γ) . The statement in (i) holds for γ = 0, so it suffices to

show that fn(0) → 1
c1

as n→ ∞. Note that for all γ ∈ [0, 1
c1

] we have γ ≤ f(γ),

since (c1γ − 1)(γ − 1) ≥ 0, which rearranges to γ(1 + c1(1 − γ)) ≤ 1. Thus,

(fn(0))n is an increasing sequence in [ 1
c1+1

, 1
c1

], and so it converges to some limit

L ∈ [ 1
c1+1

, 1
c1

]. But then L = 1
1+c1(1−L) , which rearranges to (c1L− 1)(L− 1) = 0,

and so L = 1
c1

since c1 ≥ 1.

Remark 4.2.8. In Lemma 4.2.7, when k = 2, Fi can be chosen to be the constant
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1-valued function. Indeed, if a 1-graph is Ku-free, then its size is at most u−1 =

Ou(1).

Remark 4.2.9. After the preparation of our preprint [53] on which this chapter

is based, we were made aware of a Turán-type argument in [52, Corollary 5.1]

which allows one to remove the ε from the bound in Lemma 4.2.7(ii) as long

as ci > 1. Even so, bootstrapping this infinitesimally improved bound via our

methods does not allow us to remove the ε in our main theorem (Theorem 4.4.5)

or its binary counterpart (Theorem 4.3.1), so we retain the statement and proof

of Lemma 4.2.7 as written to provide a different perspective and proof method.

4.3 Binary relations

We will first consider binary relations, for two reasons. Firstly, for binary re-

lations, our main theorem holds under a weaker assumption — namely, c̄ is

only required to be a distal regularity tuple, not a strong distal regularity tuple.

Secondly, the exposition is much cleaner for binary relations, and so will hopefully

illuminate the proof strategy for arbitrary relations.

Theorem 4.3.1. Let E(x, y) be a relation on a set M , with distal regularity tuple

c̄ = (c1, c2) ∈ R2
≥1 and coefficient λ. Then, for all finite P ⊆ Mx and Q ⊆ My

with m := |P | and n := |Q|, if E(P,Q) is Ku,u-free, then for all ε > 0 we have

|E(P,Q)| ≪u,c̄,λ,ε m
c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+m+ n,

where, if c1 = c2 = 1, we define c2−1
c1c2−1

, c1−1
c1c2−1

to be limδ→0
(1+δ)−1
(1+δ)2−1

= 1
2
.

Proof. We will show that, for all ε > 0, there are constants α = α(u, c̄, λ, ε) and

β = β(u, c̄, λ, ε) such that, for all finite P ⊆Mx and Q ⊆My with m := |P | and

n := |Q|, if E(P,Q) is Ku,u-free, then

|E(P,Q)| ≤ αm
c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+ β(m+ n). (1)

The dependency between constants will be as follows:
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(i) δ is sufficiently small in terms of c̄, λ, and ε;

(ii) m0 is sufficiently large in terms of u, c̄, λ, ε, and δ;

(iii) β is sufficiently large in terms of m0, u, c̄, λ, and ε;

(iv) α is sufficiently large in terms of m0, β, u, c̄, λ, and δ.

By Lemma 4.2.7(ii) and Remark 4.2.8,
∣∣E(P,Q)

∣∣ ≪u,c̄,λ,ε m
1− 1−ν

c1 n + m and∣∣E(P,Q)
∣∣≪u,c̄,λ,ε mn

1− 1−ν
c2 + n, where ν ∈ (0, 1

2
) is chosen such that

(
1

1 − ν
− 1

)
max

(
c2(c1 − 1)

c1c2 − 1
,
c1(c2 − 1)

c1c2 − 1

)
≤ ε.

Note then in particular that c1−1
c1c2−1

c2
1−ν = 1

1−ν
c2(c1−1)
c1c2−1

≤ c2(c1−1)
c1c2−1

+ ε, and similarly

c2−1
c1c2−1

c1
1−ν = 1

1−ν
c1(c2−1)
c1c2−1

≤ c1(c2−1)
c1c2−1

+ ε.

If m ≤ n
1−ν
c2 and β is sufficiently large in terms of u, c̄, λ, and ε, then∣∣E(P,Q)

∣∣ ≤ βn since
∣∣E(P,Q)

∣∣ ≪u,c̄,λ,ε mn
1− 1−ν

c2 + n. Therefore, for the rest of

the proof we assume that n < m
c2

1−ν , which implies

n = n
c1−1

c1c2−1n
c1(c2−1)
c1c2−1 ≤ m

c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1 ≤ m

c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
. (2)

Similarly, for the rest of the proof we assume that m < n
c1

1−ν , which implies

m = m
c2−1

c2c1−1m
c2(c1−1)
c2c1−1 ≤ n

c1(c2−1)
c2c1−1

+ε
m

c2(c1−1)
c2c1−1 ≤ m

c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
. (3)

Let α = α(u, c̄, λ, ε) and β = β(u, c̄, λ, ε) be sufficiently large, to be chosen

later. We show by induction on m+ n that (1) holds.

Let m0 := m0(u, c̄, λ, ε, δ) to be chosen later. If m + n < m0, then (1)

holds by choosing values for α and β that are sufficiently large in terms of m0.

Thus, henceforth assume that m + n ≥ m0, and suppose that (1) holds when

|P |+ |Q| < m+n. If m < m0, then |E(P,Q)| < m0n ≤ βn assuming β ≥ m0, so

henceforth suppose m ≥ m0.

For δ := δ(c̄, λ, ε) < 1 to be chosen later, partition P = A1 ⊔ · · · ⊔ AK1 and

Q = B1 ⊔ · · · ⊔ BK2 as in the definition of c̄ as a distal regularity tuple, with
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Σ ⊆ [K1]× [K2] the index set of bad cells. By refining the partition and replacing

λ with λ+ 2 if necessary, we can assume that |Ai| ≤ δc1m for all i ∈ [K1].

For i ∈ [K1], let Σi := {j ∈ [K2] : (i, j) ∈ Σ}. Without loss of generality, let

0 ≤ L ≤ L′ ≤ K1 be such that:

(i) For all i ∈ [K1], |Ai| ≥ u if and only if i > L; and

(ii) For all i ∈ [K1] \ [L],
∑

j∈Σi

∣∣Bj

∣∣ ≤ δ1−εn if and only if i > L′.

Partition P into H1 :=
⋃L
i=1Ai, H2 :=

⋃L′

i=L+1Ai, and H3 :=
⋃K1

i=L′+1Ai. We will

bound |E(P,Q)| by bounding
∣∣E(H1, Q)

∣∣, ∣∣E(H2, Q)
∣∣, and

∣∣E(H3, Q)
∣∣.

Consider E(H1, Q). Note that |H1| ≤ Lu ≤ K1u ≤ λδ−c1u. Choosing

m0 > λδ−c1u, we have m ≥ m0 > λδ−c1u ≥|H1|. By the induction hypothesis,

∣∣E(H1, Q)
∣∣ ≤ α(λδ−c1u)

c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+ β(λδ−c1u+ n)

≤ α

4
m

c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+ β(m+ n)

for m0 sufficiently large in terms of u, c̄, λ, ε, and δ, such that

m
c2(c1−1)
c1c2−1

+ε

0 > 4(λδ−c1u)
c2(c1−1)
c1c2−1

+ε
.

Consider E(H2, Q). By definition,
⋃L′

i=L+1

⋃
j∈Σi

Ai × Bj ⊆
⋃

(i,j)∈ΣAi × Bj.

The set on the right has size at most λδmn, and for all L + 1 ≤ i ≤ L′ we have∑
j∈Σi

∣∣Bj

∣∣ > δ1−εn. Thus,

|H2| =

∣∣∣∣∣∣
L′⋃

i=L+1

Ai

∣∣∣∣∣∣ < λδmn

δ1−εn
= λδεm.

In particular, assuming δ is sufficiently small in terms of λ and ε, we have

|H2| < m, so by the induction hypothesis,

∣∣E(H2, Q)
∣∣ < α(λδεm)

c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+ β(λδεm+ n)

≤ α

4
m

c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+ β(m+ n)
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for δ sufficiently small in terms of λ and ε.

Next, consider E(H3, Q). We will bound its size by partitioning it into two:

E(H3, Q) =

 K1⋃
i=L′+1

⋃
j∈[K2]\Σi

E(Ai, Bj)

 ⊔

 K1⋃
i=L′+1

⋃
j∈Σi

E(Ai, Bj)

 .

Fix L′ + 1 ≤ i ≤ K1. For j ∈ [K2] \ Σi, E(Ai, Bj) = Ai × Bj or ∅. Since

|Ai| ≥ u and E(Ai, Q) is Ku,u-free, we have
∣∣∣E(Ai,

⋃
j∈[K2]\Σi

Bj)
∣∣∣ ≤ (u − 1)|Ai|.

Hence,
K1∑

i=L′+1

∑
j∈[K2]\Σi

∣∣E(Ai, Bj)
∣∣ ≤ (u− 1)m.

Now,
∑

j∈Σi

∣∣Bj

∣∣ ≤ δ1−εn by definition. Recall also that |Ai| ≤ δc1m. In

particular, |Ai| < m, so by the induction hypothesis,∣∣∣∣∣∣E
Ai, ⋃

j∈Σi

Bj

∣∣∣∣∣∣
≤ α(δc1m)

c2(c1−1)
c1c2−1

+ε
(δ1−εn)

c1(c2−1)
c1c2−1

+ε
+ β(δc1m+ δ1−εn)

= αδ
c1+ε(c1− c1(c2−1)

c1c2−1
+1−ε)

m
c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+ β(δc1m+ δ1−εn)

≤ α

5
δc1m

c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+ β(m+ n)

for δ sufficiently small in terms of c̄ and ε. Thus,

K1∑
i=L′+1

∑
j∈Σi

∣∣E(Ai, Bj)
∣∣ ≤ λδ−c1

α

5
δc1m

c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+ λδ−c1β(m+ n)

≤ α

4
m

c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+ λδ−c1β(m+ n)

for α sufficiently large in terms of λ.
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Putting all this together,

|E(P,Q)|

=
∣∣E(H1, Q)

∣∣+
∣∣E(H2, Q)

∣∣+

K1∑
i=L′+1

∑
j∈[K2]\Σi

∣∣E(Ai, Bj)
∣∣+

K1∑
i=L′+1

∑
j∈Σi

∣∣E(Ai, Bj)
∣∣

≤ 3α

4
m

c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+ (2β + λδ−c1β + u− 1)(m+ n)

≤ αm
c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
,

where the last inequality was obtained from (2) and (3), choosing α to be suffi-

ciently large in terms of β, u, c̄, λ, and δ. Thus, (1) holds as claimed.

Remark 4.3.2. It is straightforward to observe that the bound in Theorem 4.3.1

can be infinitesimally improved to, say, m
c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1 + m + n. Indeed, if

m ≤ n
1

2c1 then |E(P,Q)| ≪u,c̄,λ n by Lemma 4.2.7. Assuming therefore, without

loss of generality, that n < m2c1 , by Theorem 4.3.1,

|E(P,Q)| ≪u,c̄,λ,ε m
c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1 m2c1ε +m+ n,

and so |E(P,Q)| ≪u,c̄,λ,ε m
c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1 +m+ n.

4.4 The general case

We now proceed with the proof of the main theorem for an arbitrary relation.

Lemma 4.4.1. Let E(x1, ..., xk) be a relation on a set M , with strong distal

regularity tuple c̄ = (c1, ..., ck) and coefficient λ. For all u ∈ N+ and distinct

a1, ..., au ∈Mx1, the relation

R(x2, ..., xk) :=
u∧
e=1

E(ae, x2, ..., xk)

has strong distal regularity tuple (c2, ..., ck) with coefficient uλ.

Proof. Let a1, ..., au ∈ Mx1 be distinct, and let P1 := {a1, ..., au}. For 2 ≤ i ≤ k,
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let Pi ⊆Mxi be finite with ni := |Pi|.

Let δ ∈ (0, u−1). With this value of δ, obtain equipartitions Pi = Ai1 ⊔ · · · ⊔

AiKi
as in the definition of c̄ as a strong distal regularity tuple for E, and let

Σ ⊆ [K1]×· · ·× [Kk] be the index set of bad cells. Since u ≤ δ−c1 , we can assume

without loss of generality that the partition of P1 is a partition into singletons,

and A1
j = {aj} for all j ∈ [u].

Henceforth, a tuple (j2, ..., jk) is understood to be taken from [K2]×· · ·×[Kk].

Let

Σ′ := {(j2, ..., jk) : ∃j1 ∈ [u] (j1, ..., jk) ∈ Σ}.

We claim that the equipartitions Pi = Ai1 ⊔ · · · ⊔ AiKi
(for 2 ≤ i ≤ k) and the

index set Σ′ of bad cells are such that

(i)
∑

(j2,...,jk)∈Σ′ |A2
j2
× · · · × Akjk | ≤ uλδn2 · · ·nk;

(ii) For all (j2, ..., jk) ̸∈ Σ′, A2
j2
× · · · × Akjk is R-homogeneous;

(iii) Ki ≤ λδ−ci for all 2 ≤ i ≤ k.

To see that (i) holds, observe that

∑
(j2,...,jk)∈Σ′

|A2
j2
× · · · × Akjk | ≤

∑
(j1,...,jk)∈Σ

|A1
j1
× · · · × Akjk | ≤ λδun2 · · ·nk.

To see that (ii) holds, let (j2, ..., jk) ̸∈ Σ′ and (b2, ..., bk) ∈ A2
j2
× · · · × Akjk .

Then

R(b2, ..., bk) ⇔
u∧
e=1

E(ae, b2, ..., bk) ⇔
u∧
e=1

E(A1
e, A

2
j2
, ..., Akjk) = A1

e×A2
j2
×· · ·×Akjk ,

where the last equivalence follows from the fact that, for all e ∈ [u], A1
e = {ae}

and (e, j2, ..., jk) ̸∈ Σ. Thus, A2
j2
× · · · × Akjk is R-homogeneous.

Finally, (iii) holds by the choice of our original partition. Thus, (c2, ..., ck) is

a strong distal regularity tuple for R(x2, ..., xk) with coefficient uλ.

The following functions appeared in [14].
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Definition 4.4.2. For c̄ = (c1, ..., ck) ∈ Rk
≥1, let Ec̄ : Rk

≥0 → R be the function

sending n̄ = (n1, ..., nk) ∈ Rk
≥0 to Ec̄(n̄) :=

∏k
i=1 n

γi(c̄)
i , where

γi(c̄) := 1 −
1

ci−1

k − 1 +
∑k

j=1
1

cj−1

.

Note that, when k = 1, Ec̄ is the constant 1-valued function. For ε ∈ R>0, if

k ≥ 2 then let F ε
c̄ : Rk

≥0 → R be the function sending n̄ = (n1, ..., nk) ∈ Rk
≥0 to

F ε
c̄ (n̄) :=

∑
I⊆[k],|I|≥2

Ec̄I (n̄I)
∏
i∈I

nεi
∏
i ̸∈I

ni +
k∑
j=1

∏
i ̸=j

ni,

and if k = 1 then let F ε
c̄ : R≥0 → R be the constant 1-valued function. (Recall

that the notation of c̄I , n̄I was defined in Subsection 2.1.2.)

As written, the exponents in Ec̄(n̄) are not well-defined when cj = 1 for some

j ∈ [k]. In this case, we circumvent this problem by declaring, for all i ∈ [k],

γi(c̄) := 1 − lim
δ→0

1
ci+δ−1

k − 1 +
∑k

j=1
1

cj+δ−1

= 1 − 1(ci = 1)

|{j ∈ [k] : cj = 1}|
.

Henceforth, all issues that arise when cj = 1 for some j ∈ [k] can and will be

resolved by taking limits like so.

Note that, when k = 2,

F ε
c̄ (m,n) = m

1−
1

c1−1

1+ 1
c1−1+ 1

c2−1

+ε

n
1−

1
c2−1

1+ 1
c1−1+ 1

c2−1

+ε

+m+ n

= m
1− c2−1

c1c2−1
+ε
n
1− c1−1

c1c2−1
+ε

+m+ n

= m
c2(c1−1)
c1c2−1

+ε
n

c1(c2−1)
c1c2−1

+ε
+m+ n,

so F ε
c̄ (m,n) is the bound appearing in Theorem 4.3.1.

Remark 4.4.3. It is straightforward to observe that, when k ≥ 2,

kF ε
c̄ (n̄) ≥ Ec̄(n̄)

k∏
i=1

nεi +
k∑
i=1

niF
ε
c̄ ̸=i

(n̄ ̸=i).
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The following lemma says that (in most cases) the dominant term in F ε
c̄ (n̄) is

Ec̄(n̄)
∏k

i=1 n
ε
i .

Lemma 4.4.4. Let k ≥ 2, c̄ = (c1, ..., ck) ∈ Rk
≥1, ε > 0, and n̄ = (n1, ..., nk) ∈

Rk
≥0. Suppose that, for all i ∈ [k], n1 · · ·nkn−1/ci+ε

i ≥ niF
ε
c̄ ̸=i

(n̄ ̸=i).

Then F ε
c̄ (n̄) ≪c̄,ε Ec̄(n̄)

∏k
i=1 n

ε
i , and so niF

ε
c̄ ̸=i

(n̸̄=i) ≪c̄,ε Ec̄(n̄)
∏k

i=1 n
ε
i for all

i ∈ [k] by Remark 4.4.3.

Proof. Our proof mimics, in part, the proof of [14, Lemma 2.10]. To show that

F ε
c̄ (n̄) ≪c̄,ε Ec̄(n̄)

∏k
i=1 n

ε
i , it suffices to show that, for all ∅ ≠ I ⊆ [k],

Ec̄(n̄) ≫c̄,ε Ec̄I (n̄I)
∏
i ̸∈I

n1−ε
i . (4)

We prove this by downward induction on |I| ∈ [k] via the following claim.

Claim 4.4.4.1. Let J ⊆ [k] with |J | ≥ 2. Let j ∈ J , and write I := J \ {j}. For

all ε > 0, if n
−1/cj+ε
j

∏
i∈J ni ≥ njEc̄I (n̄I) then Ec̄J (n̄J) ≥ n1−ε

j Ec̄I (n̄I).

Proof of Claim. Let ε > 0, and suppose n
−1/cj+ε
j

∏
i∈J ni ≥ njEc̄I (n̄I). Then

∏
i∈I

n

1
ci−1

|J|−2+
∑

l∈I
1

cl−1

i ≥ n
1
cj

−ε
j .

The ith exponent on the left equals
cj−1

cj

1
ci−1

(
|J |−1+

∑
l∈J

1
cl−1

|J |−2+
∑

l∈I
1

cl−1

− 1

)
, and so

∏
i∈I

n

1
ci−1

(
1

|J|−2+
∑

l∈I
1

cl−1

− 1

|J|−1+
∑

l∈J
1

cl−1

)
i ≥ n

1
cj−1

|J|−1+
∑

l∈J
1

cl−1

−νε

j

for ν :=
cj/(cj−1)

|J |−1+
∑

l∈J
1

cl−1

∈ [0, 1]. Rearranging, we have

Ec̄J (n̄J) ≥ n1−νε
j Ec̄I (n̄I) ≥ n1−ε

j Ec̄I (n̄I). ⊣

We now prove (4) by downward induction on |I| ∈ [k]. Since k is finite, we

may update the implied constant in each step of the induction. When |I| = k,
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we have I = [k] so (4) holds trivially. Now suppose |I| < k, so we may fix j ̸∈ I;

write J := I ∪ {j}. Since |I| ≥ 1, we have |J | ≥ 2. By the induction hypothesis,

Ec̄(n̄) ≫c̄,ε Ec̄J (n̄J)
∏

i ̸∈J n
1−ε
i .

By assumption, n1 · · ·nkn
−1/cj+ε
j ≥ njF

ε
c̄ ̸=j

(n̄ ̸=j) ≥ Ec̄I (n̄I)
∏

i ̸∈I ni, which re-

arranges to n
−1/cj+ε
j

∏
i∈J ni ≥ njEc̄I (n̄I), and hence Ec̄J (n̄J) ≥ n1−ε

j Ec̄I (n̄I) by

Claim 4.4.4.1. Thus, as required, we have

Ec̄(n̄) ≫c̄,ε Ec̄J (n̄J)
∏
i ̸∈J

n1−ε
i ≥ Ec̄I (n̄I)

∏
i ̸∈I

n1−ε
i . □

We are ready to prove our main result.

Theorem 4.4.5. Let E(x1, ..., xk) be a relation on a set M , with strong distal

regularity tuple c̄ = (c1, ..., ck) ∈ Rk
≥1 and coefficient λ. For all finite Pi ⊆ Mxi

with ni := |Pi|, if E(P1, ..., Pk) is Ku,...,u-free, then for all ε > 0,

|E(P1, ..., Pk)| ≪u,c̄,λ,ε F
ε
c̄ (n1, ..., nk).

Proof. We will do a double induction: first on k, and then on n1+ · · ·+nk. When

k = 1 this is trivial. Let k ≥ 2, and suppose for all l < k that the statement

holds. Writing γj := γj(c̄) for j ∈ [k], there is some j ∈ [k] such that γj < 1, so,

permuting x1, ..., xk if necessary, we may assume that γ1 < 1. Let ε > 0. We will

show that there are α = α(u, c̄, λ, ε) and β = β(u, c̄, λ, ε) such that, for all finite

Pi ⊆ Mxi with ni := |Pi|, writing n̄ := (n1, ..., nk), if E(P1, ..., Pk) is Ku,...,u-free,

then

|E(P1, ..., Pk)| ≤ αEc̄(n̄)
k∏
i=1

nεi + β
k∑
i=1

niF
ε
c̸̄=i

(n̸̄=i). (5)

By Remark 4.4.3, the right hand side is at most kmax(α, β)F ε
c̄ (n̄), so this is

sufficient. The dependency between constants will be as follows:

(i) τ is sufficiently large in terms of c̄ and ε;

(ii) δ is sufficiently small in terms of c̄, λ, and ε;

(iii) m0 is sufficiently large in terms of u, c̄, λ, ε, and δ;



102 CHAPTER 4. DISTALITY TO COMBINATORICS

(iv) β is sufficiently large in terms of m0, u, c̄, λ, and ε;

(v) α is sufficiently large in terms of m0, β, c̄, λ, δ, and τ .

Suppose there is i ∈ [k] such that n1 · · ·nkn−1/ci+ε
i < niF

ε
c̄ ̸=i

(n̸̄=i). Then, by

Lemma 4.2.7(ii), Lemma 4.4.1, and the induction hypothesis, if β is sufficiently

large in terms of u, c̄, λ, and ε, then

|E(P1, ..., Pk)| ≤
β

2

(
n1 · · ·nkn

− 1
ci
+ε

i + niF
ε
c̄ ̸=i

(n̄ ̸=i)

)
< βniF

ε
c̸̄=i

(n̸̄=i).

Therefore, henceforth we suppose n1 · · ·nkn−1/ci+ε
i ≥ niF

ε
c̄ ̸=i

(n̄ ̸=i) for all i ∈ [k],

whence by Lemma 4.4.4 there is τ = τ(c̄, ε) such that, for all i ∈ [k],

niF
ε
c̸̄=i

(n̸̄=i) ≤ τEc̄(n̄)
k∏
i=1

nεi . (6)

Let α = α(u, c̄, λ, ε) and β = β(u, c̄, λ, ε) be sufficiently large, to be chosen

later. We will show by induction on n1 + · · · + nk that (5) holds.

Let m0 ∈ N such that m0 > λδ−ci(u+ 1) for all i ∈ [k]. If i ∈ [k] is such that

ni < m0, then for all i ̸= j ∈ [k],

|E(P1, ..., Pk)| < m0n1 · · ·nkn−1
i ≤ βn1 · · ·nkn−1

i ≤ βnjF
ε
c̄ ̸=j

(n ̸=j),

assuming β ≥ m0. Thus, (5) holds when n1 + · · ·+nk < km0, and we henceforth

suppose ni ≥ m0 for all i ∈ [k].

For δ = δ(c̄, λ, ε) < 1
4

to be chosen later, obtain equipartitions

Pi = Ai1 ⊔ · · · ⊔ AiKi
as in the definition of c̄ as a strong distal regularity tuple,

with Σ ⊆ [K1] × · · · × [Kk] the index set of bad cells. By refining the partitions

and replacing λ with 2λ if necessary, we may assume that 1 ≤ |Aij| ≤ δcini for all

i ∈ [k] and j ∈ [Ki].

Henceforth, a tuple (ji, ..., jk) is understood to be taken from [Ki]×· · ·× [Kk].

Let I1 :=
∑

(j1,...,jk) ̸∈Σ |E(A1
j1
, ..., Akjk)| and I2 :=

∑
(j1,...,jk)∈Σ |E(A1

j1
, ..., Akjk)|, so

that
∣∣E(P1, ..., Pk)

∣∣ = I1 + I2. We bound I1 and I2.
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First, consider I1. For j1 ∈ [K1], let Σj1 := {(j2, ..., jk) : (j1, ..., jk) ∈ Σ}, so

we have I1 =
∑K1

j1=1

∑
(j2,...,jk )̸∈Σj1

|E(A1
j1
, ..., Akjk)|.

Fix j1 ∈ [K1]. We have that |A1
j1
| ≥ n1/K1−1 ≥ m0/(λδ

−c1)−1 > u, so we can

fix distinct a1, ..., au ∈ A1
j1

. For (j2, ..., jk) ̸∈ Σj1 , E(A1
j1
, ..., Akjk) = A1

j1
×· · ·×Akjk

or ∅, and thus

⋃
(j2,...,jk )̸∈Σj1

E(A1
j1
, ..., Akjk) ⊆ A1

j1
×

u⋂
e=1

E(ae, P2, ..., Pk).

Now
⋂u
e=1E(ae, P2, ..., Pk) is the induced (k−1)-subgraph on P2×· · ·×Pk of the

relation R(x2, ..., xk) :=
∧u
e=1E(ae, x2, ..., xk) on M . By Lemma 4.4.1, (c2, ..., ck)

is a strong distal regularity tuple for R with coefficient uλ. By the induction

hypothesis, ∣∣∣∣∣
u⋂
e=1

E(ae, P2, ..., Pk)

∣∣∣∣∣≪u,c̄,λ,ε F
ε
c̄ ̸=1

(n̄ ̸=1).

Choosing β sufficiently large in terms of u, c̄, λ, and ε, we can assume that

the implied constant is at most β. Then

I1 ≤
K1∑
j1=1

β|A1
j1
|F ε
c̸̄=1

(n̄ ̸=1) ≤ βn1F
ε
c̄ ̸=1

(n̄ ̸=1).

Next, consider I2. For each (j2, ..., jk), let Bj2,...,jk :=
⋃

1≤j1≤K1

(j2,...,jk)∈Σj1

A1
j1

, so we

have I2 =
∑

(j2,...,jk)

∣∣∣E(Bj2,...,jk , A
2
j2
, ..., Akjk)

∣∣∣.
For each (j2, ..., jk), let sj2,...,jk := |Bj2,...,jk |. Observe that

∑
(j2,...,jk)

sj2,...,jk =

K1∑
j1=1

|A1
j1
||Σj1| ≤ δc1n1

K1∑
j1=1

|Σj1 | ≤ δc1n1|Σ|

and

|Σ| ≤
∑

(j1,...,jk)∈Σ |A1
j1
× · · · × Akjk |

min(j1,...,jk)∈Σ |A1
j1
× · · · × Akjk |

≤ λδn1 · · ·nk∏k
i=1

ni

2Ki

≤ λδn1 · · ·nk∏k
i=1

1
2λ
δcini

= 2kλk+1δ1−(c1+···+ck),
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so
∑

(j2,...,jk)
sj2,...,jk ≤ 2kλk+1δ1−(c2+···+ck)n1. By the induction hypothesis,

I2 =
∑

(j2,...,jk)

∣∣∣E(Bj2,...,jk , A
2
j2
, ..., Akjk)

∣∣∣
≤ α

∑
(j2,...,jk)

Ec̄(sj2,...,jk , δ
c2n2, ..., δ

cknk)s
ε
j2,...,jk

k∏
i=2

(δcini)
ε

+ β
∑

(j2,...,jk)

k∑
i=1

niF
ε
c̄ ̸=i

(n̄ ̸=i)

≤ α
k∏
i=2

(δcini)
γi+ε

∑
(j2,...,jk)

sγ1+εj2,...,jk
+ βλk−1δ−(c2+···+ck)

k∑
i=1

niF
ε
c̄ ̸=i

(n̄ ̸=i).

Recall that γ1 < 1; without loss of generality assume that ε < 1−γ1. By Hölder’s

inequality,

∑
(j2,...,jk)

sγ1+εj2,...,jk
≤

 ∑
(j2,...,jk)

sj2,...,jk

γ1+ε

(λk−1δ−(c2+···+ck))1−γ1−ε

≤ (2kλk+1δ1−(c2+···+ck)n1)
γ1+ε(λk−1δ−(c2+···+ck))1−γ1−ε

≤ 2kλ2kδγ1+ε−(c2+···+ck)nγ1+ε1 .

Therefore,

k∏
i=2

(δcini)
γi+ε

∑
(j2,...,jk)

sγ1+εj2,...,jk
≤ 2kλ2kδγ1+ε−

∑k
i=2 ci(1−γi−ε)

k∏
i=1

nγi+εi .

Since γ1 =
∑k

i=2 ci(1 − γi), the exponent of δ evaluates to (1 + c2 + · · · + ck)ε,

and so

k∏
i=2

(δcini)
γi+ε

∑
(j2,...,jk)

sγ1+εj2,...,jk
≤ 2kλ2kδ(1+c2+···+ck)εEc̄(n̄)

k∏
i=1

nεi ≤
1

2
Ec̄(n̄)

k∏
i=1

nεi ,

for δ sufficiently small in terms of c̄, λ, and ε. Thus,

I2 ≤
α

2
Ec̄(n̄)

k∏
i=1

nεi + βλk−1δ−(c2+···+ck)
k∑
i=1

niF
ε
c̸̄=i

(n̸̄=i).
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Putting all this together,

|E(P1, ..., Pk)| = I1 + I2

≤ α

2
Ec̄(n̄)

k∏
i=1

nεi + β(1 + λk−1δ−(c2+···+ck))
k∑
i=1

niF
ε
c̸̄=i

(n̸̄=i)

≤
(
α

2
+ kτβ(1 + λk−1δ−(c2+···+ck))

)
Ec̄(n̄)

k∏
i=1

nεi by (6)

≤ αEc̄(n̄)
k∏
i=1

nεi ,

for α sufficiently large in terms of β, c̄, λ, δ, and τ .

Remark 4.4.6. Similarly to Remark 4.3.2, it is not hard to see that Theorem

4.4.5 remains true if we remove all but one of the occurrences of ε in each sum-

mand of F ε
c̄ (n̄), but we will not demonstrate this in detail. Do makes a similar

remark [14, Remark 1.9(ii)].

4.5 Context for distal regularity lemma

By Theorem 4.2.6, relations definable in a distal structure satisfy the distal reg-

ularity lemma. We had previously wondered if the converse holds: are distal

structures the only source of relations satisfying the distal regularity lemma?

That is, if ϕ(x1, ..., xk) is a relation on a set M satisfying the distal regularity

lemma, must the structure (M,ϕ) admit a distal expansion? The answer is no:

we are grateful to Martin Bays for suggesting the following counterexample to us

in personal communication.

Theorem 4.5.1. Let K be a finitely generated extension of Fp, such as K =

Fp(t), and let ϕ(x, y;m, c) := (y = mx + c) be the point-line incidence relation.

Then ϕ satisfies the distal regularity lemma as a relation on K, but the structure

(K,ϕ) does not admit a distal expansion.

Proof. We first argue that ϕ satisfies the distal regularity lemma as a relation on

K. By [6, Lemma 4.1], K admits a valuation v with finite residue field, so we
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may view K as a structure K over the language {+,×,≤} of valued fields, where

x ≤ y :⇔ v(x) ≤ v(y) in K. Let K∗ be an algebraically closed valued field such

that K ⊆ K∗; it is folklore that K∗ is NIP.

By [6, Theorem 5.6], as a relation on K, ϕ has a strong honest defini-

tion ψ(x, y;m1, c1, ...,mk, ck) definable in K∗, in the following sense: for all fi-

nite B ⊆ K2 with |B| ≥ 2 and a ∈ K2, there are b1, ..., bk ∈ B such that

K∗ |= ψ(a; b1, ..., bk) and, for all a′ ∈ (K∗)2, if K∗ |= ψ(a′; b1, ..., bk) then

K∗ |= ϕ(a; b′) ↔ ϕ(a′; b′) for all b′ ∈ B. The proof of [9, Lemma 3.6] now

gives a ‘cutting lemma’ for ϕ as follows. For all finite B ⊆ K2 with |B| ≥ 2 and

δ ∈ (0, 1), there is a cover F ⊆ {ψ((K∗)2; b1, ..., bk) : bi ∈ B} of (K∗)2, such that

|F| ≤ polyϕ,ψ(δ−1) and for all F ∈ F ,

#{b ∈ B : F ⊆ ϕ((K∗)2; b) or F ⊆ ¬ϕ((K∗)2; b)} ≥ (1 − δ)|B|.

Let P,Q ⊆ K2 be finite with |Q| ≥ 2 and δ ∈ (0, 1); we give appropriate par-

titions of P and Q to show that ϕ satisfies the distal regularity lemma. Applying

the cutting lemma above with B = Q, we obtain a cover F ⊆ {ψ((K∗)2; b1, ..., bk) :

bi ∈ Q} of (K∗)2. For all F ∈ F and σ ∈ {0, 1}, let Dσ
F := {d ∈ (K∗)2 : F ⊆

ϕσ((K∗)2; d)}. Let G be the set of Boolean atoms of {Dσ
F : F ∈ F , σ ∈ {0, 1}},

so G is a partition of (K∗)2. Since K∗ is NIP, |G| ≤ polyϕ,ψ,K∗(|F|), and so

|G| ≤ polyϕ,ψ,K∗(δ−1). Let F0 be any partition of (K∗)2 refining F such that

|F0| ≤ |F| ≤ polyϕ,ψ(δ−1). The reader is invited to check that the partitions

F0∩P and G ∩Q are such that
∑

|F ×G| ≤ δ|P ||Q|, where the sum ranges over

all (F,G) ∈ (F0 ∩ P ) × (G ∩Q) such that F ×G is not ϕ-homogeneous.

It remains to argue that (K,ϕ) does not admit a distal expansion. Let

K = (K,+,×) be the field structure on K. Now K ̸⊇ Falg
p since every sub-

extension of a finitely generated field extension is finitely generated (see, for

example, [28, Theorem 24.9]), so K is not NIP by [30, Corollary 4.5]. Thus, there

is a formula ψ in K that is not NIP. Now, the field operations + and × are defin-

able in (K,ϕ): indeed, 0 and 1 are ∅-definable in (K,ϕ), and for all p, q, r ∈ K,

p + q = r ⇔ ϕ(p, r; 1, q) and p × q = r ⇔ ϕ(p, r; q, 0). Thus, ψ is definable in



4.6. EXPLICIT BOUNDS FOR SOME O-MINIMAL 3-GRAPHS 107

(K,ϕ) and all of its expansions. We conclude that every expansion of (K,ϕ) is

not NIP and hence not distal.

In the previous example, the nonexistence of a distal expansion for (K,ϕ) was

due to the fact that (K,ϕ) was not NIP. We ask if this is the only obstruction.

Problem 4.5.2. Let ϕ(x1, ..., xk) be a relation on a set M satisfying the distal

regularity lemma, such that (M,ϕ) is NIP. Must (M,ϕ) admit a distal expansion?

To our knowledge, the following problem is still open.

Problem 4.5.3. Let M be a structure in which every relation satisfies the distal

regularity lemma. Must M be distal (or admit a distal expansion)?

4.6 Explicit bounds for some o-minimal 3-graphs

To compute explicit Zarankiewicz bounds from our main theorem, one needs to

compute (strong) distal regularity tuples. In this section, we compute explicit

Zarankiewicz bounds in a different way, for a special class of graphs satisfying

the distal regularity lemma: certain 3-graphs definable in o-minimal structures.

Throughout this section, fix a language L. We have the following fact about

certain 2-graphs definable in o-minimal structures.

Fact 4.6.1 [9, Theorem 5.14]. Let M be an o-minimal L-structure expanding an

ordered field. Let ϕ(x1, x2; y) ∈ L with |x1| = |x2| = 2. For all b ∈My and finite

Pi ⊆Mxi with ni := |Pi|, if ϕ(P1, P2; b) is Ku,u-free, then

|ϕ(P1, P2; b)| ≪ϕ,u (n1n2)
2
3 + n1 + n2;

in particular, if n1 = n2 =: n, then |ϕ(P1, P2; b)| ≪ϕ,u n
4
3 .

We prove a corresponding statement for 3-graphs.

Theorem 4.6.2. Let M be an o-minimal L-structure expanding an ordered field.

Let ϕ(x1, x2, x3; y) ∈ L with |x1| = |x2| = |x3| = 2. For all b ∈ My and finite
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Pi ⊆Mxi with ni := |Pi|, if ϕ(P1, P2, P3; b) is Ku,u,u-free, then

|ϕ(P1, P2, P3; b)| ≪ϕ,u

∑
(γ1,γ2,γ3)∈Γ

nγ11 n
γ2
2 n

γ3
3 ,

for Γ := {(22
25
, 39
50
, 39
50

),(41
25
,− 4

25
, 21
25

),(62
75
, 24
25
, 47
75

),(22
25
, 46
75
, 71
75

),(4
5
, 4
5
, 4
5
),(1, 2

3
, 2
3
), (2

3
, 1, 2

3
),

(2
3
, 2
3
, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}; in particular, if n1 = n2 = n3 =: n, then

|ϕ(P1, P2, P3; b)| ≪ϕ,u n
2.44.

By the improvement of Tidor–Yu [52] on Theorem 4.1.2 (see the end of Sub-

section 4.1.1), if M is the real ordered field, and hence ϕ is semialgebraic, then

the bound in Theorem 4.6.2 can be improved to Oϕ,u(n
2.4). It is natural to ask

if these bounds can be reconciled.

Problem 4.6.3. Can the bound in Theorem 4.6.2 be improved to Oϕ,u(n
2.4)?

Towards proving Theorem 4.6.2, we need the following facts.

Fact 4.6.4 [9, Theorems 3.2, 4.1]. Let M be an o-minimal L-structure expanding

an ordered field. Let ϕ(x; y) be a formula with |x| = 2. Then π∗
ϕ(n) = O(n2), and

there is a formula ψ(x; z) such that for all finite Q ⊆ My and r ≥ 1, there is a

cover C of Mx of size Oψ(r2), such that every C ∈ C is an instance of ψ with

#{q ∈ Q : ϕ(Mx; q) crosses C} ≤ |Q|
r
.

This is known as a ‘cutting lemma’. Here, a set X crosses a set C if C∩X ̸= ∅

and C ̸⊆ X.

Fact 4.6.5 [19, Observation 2.6]. Let M be any L-structure. Let ϕ(x; y) ∈ L

with π∗
ϕ(t) ≤ ctd for all t ∈ N. For all u ∈ N, there is c′ = c′(c, d, u) ∈ N such

that the following holds.

Let P ⊆ Mx, Q ⊆ My with m := |P |, n := |Q| ≥ u. Let F be the set system
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{ϕ(P ; q) : q ∈ Q} on P . Then there are distinct p1, ..., pu ∈ P such that

#{F ∈ F : F crosses {p1, ..., pu}} ≤ c′m− 1
dn.

We prove a weaker bound which we shall bootstrap to prove Theorem 4.6.2.

Lemma 4.6.6. Let M be an o-minimal L-structure expanding an ordered field.

Let ϕ(x1, x2, x3; y) ∈ L with |x1| = |x2| = |x3| = 2. For all b ∈ My and finite

Pi ⊆Mxi with ni := |Pi|, if ϕ(P1, P2, P3; b) is Ku,u,u-free, then,

(i) |ϕ(P1, P2, P3; b)| ≪ϕ,u n
1
2
1 n2n3 + n1(n2n3)

2
3 + n1n2 + n1n3.

(ii) |ϕ(P1, P2, P3; b)| ≪ϕ,u n1(n2n3)
3
4 + n2(n3n1)

2
3 + n3(n1n2)

2
3 + n1n2 + n2n3 +

n3n1.

Proof. Note that (i) implies (ii). Indeed, (i) implies, by symmetry, that

|ϕ(P1, P2, P3; b)| ≪ϕ,u n
1
2
2 n3n1 + n2(n3n1)

2
3 + n2n3 + n2n1,

|ϕ(P1, P2, P3; b)| ≪ϕ,u n
1
2
3 n1n2 + n3(n1n2)

2
3 + n3n1 + n3n2.

Since n1(n2n3)
3
4 is the multiplicative average of n

1
2
2 n3n1 and n

1
2
3 n1n2, (ii) follows.

It remains to prove (i). We follow the proof strategy of [19, Theorem 2.1]

and [14, Proposition 4.1]. Write ϕ′(x1;x2, x3) := ϕ(x1, x2, x3; b). By Fact 4.6.1,

up to increasing the bound by Oϕ,u(n1(n2n3)
2
3 + n1n2 + n1n3), we may assume

that ϕ′(p;P2, P3) contains Ku,u for all p ∈ P1. Now, up to increasing the

bound by a factor of u, we may assume that for all distinct p, p′ ∈ P1, we have

ϕ′(p;P2, P3) ̸= ϕ′(p′;P2, P3). (Indeed, since ϕ′(P1;P2, P3) is Ku,u,u-free, there can-

not be distinct p0, ..., pu−1 ∈ P1 such that ϕ′(p0;P2, P3) = ϕ′(pi;P2, P3) for all

i ∈ [u− 1].)

Claim 4.6.6.1. For all P ′ ⊆ P1 with m := |P ′| ≥ u, there is a ∈ P ′ such that

|ϕ′(a;P2, P3)| ≪ϕ,u m
− 1

2n2n3 + (n2n3)
2
3 + n2 + n3.

Proof of Claim. Let P ′ ⊆ P1 with m := |P ′| ≥ u. By Fact 4.6.4, π∗
ϕ′(n) = Oϕ(n2).
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Thus, by Fact 4.6.5, there are distinct a1, ..., au ∈ P ′ such that

#{(p2, p3) ∈ P2 × P3 : ϕ′(P1; p2, p3) crosses {a1, ..., au}}| ≪ϕ,u m
− 1

2n2n3.

For all (p2, p3) ∈ ϕ′(a1;P2, P3), ϕ
′(P1; p2, p3) either crosses or contains {a1, ..., au}.

Applying Fact 4.6.1 to the formula
∧
i∈[u] ϕ

′(ai;x2, x3), since ϕ′(P1, P2, P3) is

Ku,u,u-free,

#{(p2, p3) ∈ P2 × P3 : ϕ′(P1; p2, p3) ⊇ {a1, ..., au}} ≪ϕ,u (n2n3)
2
3 + n2 + n3.

Thus, |ϕ′(a1;P2, P3)| ≪ϕ,u m
− 1

2n2n3 + (n2n3)
2
3 + n2 + n3. ⊣

Iterate Claim 4.6.6.1, beginning with P ′ = P1 and removing a ∈ P ′ until

|P ′| < u. This gives

|ϕ′(P1, P2, P3)| ≪ϕ,u (u− 1)n2n3 +

n1∑
m=u

(m− 1
2n2n3 + (n2n3)

2
3 + n2 + n3)

≪u n
1
2
1 n2n3 + n1((n2n3)

2
3 + n2 + n3). □

Before proving Theorem 4.6.2, let us discuss our proof strategy, which builds

on the one for [9, Fact 5.14]. The slogan is that we shall apply the cutting lemma,

Fact 4.6.4, twice. Let ϕ′(x1;x2, x3) := ϕ(x1, x2, x3; b). To bound |ϕ′(P1;P2, P3)|,

we find some definable P ′ ⊆ P1 for which |ϕ′(P ′;P2, P3)| is small. We bound

|ϕ′(P ′;P2, P3)| by splitting it into |ϕ′(P ′;E(P2, P3))| and |ϕ′(P ′;¬E(P2, P3))|,

where E(x2, x3) is the formula saying that ϕ′(Mx1 ;x2, x3) crosses P ′. Fact 4.6.1

gives a bound for |ϕ′(P ′;¬E(P2, P3))|. The cutting lemma gives a bound for

|E(P2, P3)|, which we bootstrap to bound |ϕ′(P ′;E(P2, P3))|. We do so by find-

ing a definable partition D of P2 and a set WD ⊆ P3 for each D ∈ D, such

that E(P2, P3) ⊆
⋃
D∈DD ×WD and for all D ∈ D, ‘most’ p3 ∈ WD are such

that E(Mx2 , p3) crosses D. By another application of the cutting lemma, we

can insist that |WD| is small for all D ∈ D, and so bound |ϕ′(P ′;E(P2, P3))| ≤∑
D∈D |ϕ′(P ′;D,WD)|.
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Proof of Theorem 4.6.2. Write ϕ′(x1, x2, x3) := ϕ(x1, x2, x3; b). By Lemma 4.6.6,

|ϕ′(P1, P2, P3)| ≪ϕ,u n1(n2n3)
3
4 + n2(n3n1)

2
3 + n3(n1n2)

2
3 + n1n2 + n2n3 + n3n1.

Therefore, if n1 ≤ (n2n3)
1
4 then

|ϕ′(P1, P2, P3)| ≪ϕ,u n2(n3n1)
2
3 + n3(n1n2)

2
3 + n1n2 + n2n3 + n3n1, (7)

and we are done. Suppose instead that n1 > (n2n3)
1
4 , so

r := n
12
25
1 (n2n3)

− 3
25 > 1.

By Fact 4.6.4, there is a formula ψ(x1; z), chosen only in terms of ϕ, and a cover

C of Mx1 , such that every C ∈ C is an instance of ψ with

|{(p2, p3) ∈ P2 × P3 : ϕ′(Mx1 ; p2, p3) crosses C}| ≤ n2n3

r
,

and |C| ≤ αr2 for some α = α(ψ) = α(ϕ). Then, there is C ∈ C such that

|C ∩ P1| ≥ n1(αr
2)−1 = α−1n

1
25
1 (n2n3)

6
25 .

Let P ′ ⊆ C ∩ P1 be such that |P ′| = ⌈α−1n
1
25
1 (n2n3)

6
25 ⌉. Assuming without

loss of generality that n1n2n3 is sufficiently large, we have |P ′| ≥ u.

Let θ(x2, x3; y, z) be the formula ‘ϕ(Mx1 , x2, x3; y) crosses ψ(Mx1 ; z)’, that is,

∃x1, x′1
(
ψ(x1; z) ∧ ψ(x′1; z) ∧ ϕ(x1, x2, x3; y) ∧ ¬ϕ(x′1, x2, x3; y)

)
.

Let E(x2, x3) be the formula ‘ϕ′(Mx1 ;x2, x3) crosses C’, which is an instance of

θ, and note that

|E(P2, P3)| ≤
n2n3

r
.

By Fact 4.6.4, there is a cover D of Mx2 with |D| = Oψ,ϕ(r2) = Oϕ(r2), such that
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for all D ∈ D, we have

|{p3 ∈ P3 : E(Mx2 , p3) crosses D| ≤ n3

r
.

We wish to bound

|ϕ′(P ′;P2, P3)| = |ϕ′(P ′;E(P2, P3))| + |ϕ′(P ′;P2 × P3 \ E(P2, P3))|. (8)

We bound the two summands separately, beginning with the latter. Since

|P ′| ≥ u, we can fix distinct a1, ..., au ∈ P ′. Observe that

ϕ′(P ′;P2 × P3 \ E(P2, P3)) ⊆ P ′ × {q ∈ P2 × P3 : ϕ′(Mx1 ; q) ⊇ {a1, ..., au}}.

By a similar argument to that used to prove Claim 4.6.6.1, we have

|{q ∈ P2 × P3 : ϕ′(Mx1 ; q) ⊇ {a1, ..., au}}| ≪ϕ,u (n2n3)
2
3 + n2 + n3,

and so

|ϕ′(P ′;P2 × P3 \ E(P2, P3))| ≪ϕ,u |P ′|
(

(n2n3)
2
3 + n2 + n3

)
. (9)

We proceed to bound |ϕ′(P ′;E(P2, P3))|. Let D be any partition of P2 refining

the cover D such that |D| ≤ |D| = Oϕ(r2). For D ∈ D, let

UD := {p3 ∈ P3 : E(D, p3) = D},

VD := {p3 ∈ P3 : E(Mx2 , p3) crosses D}.

For all D ∈ D, there is D′ ∈ D such that D ⊆ D′, whence

|VD| ≤ |p3 ∈ P3 : E(Mx2 , p3) crosses D′| ≤ n3

r
,

and so
∑

D∈D |D × VD| ≤ n2n3/r. Moreover,
⋃
D∈DD × UD ⊆ E(P2, P3), so by

the disjointness of D we have
∑

D∈D |D×UD| ≤ n2n3/r. Writing WD := UD∪VD
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for D ∈ D, we have ∑
D∈D

|D ×WD| ≤ 2n2n3/r.

Now observe that E(P2, P3) ⊆
⋃
D∈DD × WD. Indeed, given (p2, p3) ∈

E(P2, P3), there is D ∈ D such that p2 ∈ D, and either E(D, p3) = D or

E(Mx2 , p3) crosses D, whence p3 ∈ UD ∪ VD = WD.

Let D1 := {D ∈ D : |D| < n2/r
7
3} and D2 := D \ D1. Now

|ϕ′(P ′;E(P2, P3))| ≤
∑
D∈D1

|ϕ′(P ′;D,WD)| +
∑
D∈D2

|ϕ′(P ′;D,WD)|. (10)

We bound the two summands separately. Firstly, we have

∑
D∈D1

|ϕ′(P ′;D,WD)| ≤
∑
D∈D1

|ϕ′(P ′;D,P3)| =
∣∣∣ϕ′(P ′;

⋃
D1, P3)

∣∣∣ .
By Lemma 4.6.6 and the fact that |

⋃
D1| < (n2/r

7/3)|D| ≪ϕ n2/r
1
3 ,

∑
D∈D1

|ϕ′(P ′;D,WD)|

≪ϕ |P ′|
(
n2n3

r
1
3

) 3
4

+ |P ′|
2
3

n2n
2
3
3

r
1
3

+
n

2
3
2 n3

r
2
9

+ |P ′|
(
n2

r
1
3

+ n3

)
+
n2n3

r
1
3

. (11)

By another application of Lemma 4.6.6,

∑
D∈D2

|ϕ′(P ′;D,WD)| ≪ϕ,u I1 + I2 + I3 + I4,
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where

I1 := |P ′|
∑
D∈D2

|D ×WD|
3
4 ,

I2 := |P ′|
2
3

∑
D∈D2

(|D||WD|
2
3 + |D|

2
3 |WD|),

I3 := |P ′|
∑
D∈D2

(|D| + |WD|),

I4 :=
∑
D∈D2

|D ×WD|.

We bound the summands separately. Firstly,

I4 ≤
∑
D∈D

|D ×WD| ≪
n2n3

r
.

To bound I1, we apply Hölder’s inequality to obtain

I1 ≤ |P ′|

∑
D∈D2

|D ×WD|

 3
4

|D2|
1
4 ≪ϕ |P ′|

(
n2n3

r

) 3
4

(r2)
1
4 = |P ′|(n2n3)

3
4

r
1
4

.

We now bound I2 and I3. First observe that, since |D| ≥ n2/r
7
3 for all D ∈ D2,

we have ∑
D∈D2

|WD| ≤
(
n2/r

7
3

)−1 ∑
D∈D2

|D||WD| ≪ r
4
3n3.

Thus,

I3 ≪ |P ′|
(
n2 + r

4
3n3

)
,
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and by Hölder’s inequality,

I2 ≤ |P ′|
2
3

∑
D∈D2

|D ×WD|

 2
3


∑
D∈D2

|D|

 1
3

+

∑
D∈D2

|WD|

 1
3


≪ |P ′|

2
3

(
n2n3

r

) 2
3
(
n

1
3
2 + r

4
9n

1
3
3

)

= |P ′|
2
3

n2n
2
3
3

r
2
3

+
n

2
3
2 n3

r
2
9

 .

Therefore,

∑
D∈D2

|ϕ′(P ′;D,WD)|

≪ϕ,u |P ′|

(
(n2n3)

3
4

r
1
4

+ n2 + r
4
3n3

)
+ |P ′|

2
3

n2n
2
3
3

r
2
3

+
n

2
3
2 n3

r
2
9

+
n2n3

r
.

Combining with (10) and (11), we have

|ϕ′(P ′;E(P2, P3))|

≪ϕ,u |P ′|

(
(n2n3)

3
4

r
1
4

+ n2 + r
4
3n3

)
+ |P ′|

2
3

n2n
2
3
3

r
1
3

+
n

2
3
2 n3

r
2
9

+
n2n3

r
1
3

.

Combining with (8) and (9), we have

|ϕ′(P ′;P2, P3)|

≪ϕ,u |P ′|

(
(n2n3)

3
4

r
1
4

+ n2 + r
4
3n3 + (n2n3)

2
3

)
+ |P ′|

2
3

n2n
2
3
3

r
1
3

+
n

2
3
2 n3

r
2
9

+
n2n3

r
1
3

.
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Thus, there is p ∈ P ′ such that

|ϕ′(p;P2, P3)|

≪ϕ,u
(n2n3)

3
4

r
1
4

+ n2 + r
4
3n3 + (n2n3)

2
3 + |P ′|−

1
3

n2n
2
3
3

r
1
3

+
n

2
3
2 n3

r
2
9

+
n2n3

r
1
3 |P ′|

≪ϕ n
− 3

25
1 (n2n3)

39
50 + n2 + n

16
25
1 n

− 4
25

2 n
21
25
3 + (n2n3)

2
3 + n

− 13
75

1 n
24
25
2 n

47
75
3 + n

− 3
25

1 n
46
75
2 n

71
75
3

+ n
− 1

5
1 (n2n3)

4
5 .

Remove p from P1 and iterate this process until at most (n2n3)
1
4 elements remain

in P1. Combining with (7), we have

|ϕ′(P1;P2, P3)|

≪ϕ,u n
22
25
1 (n2n3)

39
50 + n1n2 + n

41
25
1 n

− 4
25

2 n
21
25
3 + n1(n2n3)

2
3 + n

62
75
1 n

24
25
2 n

47
75
3

+ n
22
25
1 n

46
75
2 n

71
75
3 + (n1n2n3)

4
5 + n2(n3n1)

2
3 + n3(n1n2)

2
3 + n2n3 + n3n1

as required.

Fix an o-minimal expansion M of an ordered field. It is natural to generalise

the context of Theorem 4.6.2 and pose the following problem.

Problem 4.6.7. Find explicit Zarankiewicz bounds for relations ϕ(x1, ..., xk; y)

definable in M , where k ≥ 2.

Let us first address the case k ≤ 3 (and |xi| are arbitrary). Let t : N+ → N+

be such that t(n) = n if n ≤ 2 and t(n) = 2n − 2 if n ≥ 3. For all ε > 0, let

dε : N+ → R+ be such that dε(n) = n if n ≤ 2 and dε(n) = n+ ε if n ≥ 3.

By [4, Theorem 6.1], [9, Theorems 4.1, 5.7], and [2, Theorem 1.1], we have

the following.

• In Fact 4.6.1, if we remove the condition that |x1| = |x2| = 2, the statement

holds with the bound replaced by Oϕ,u,ε

(
n

(t−1)dε
tdε−1

1 n
t(dε−1)
tdε−1

2 + n1 + n2

)
, where

dε := dε(|x2|) and t := t(|x1|). (This handles the case k = 2.)
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• In Fact 4.6.4, if we remove the condition that |x| = 2, the statement holds

with O(n2) replaced by Oε(n
dε(|x|)) and Oψ(r2) replaced by Oψ(rt(|x|)).

Thus, the proof of Theorem 4.6.2 can be replicated to produce a Zarankiewicz

bound for ϕ(x1, x2, x3; y), for arbitrary |xi|.

What if k ≥ 4? Suppose we wanted to replicate the proof of Theorem 4.6.2

to produce a Zarankiewicz bound for ϕ(x1, ..., x4; y). Let us suppress the para-

meter variable y. The proof strategy of Theorem 4.6.2, where we obtained a Za-

rankiewicz bound for the ternary formula ϕ(x1, x2, x3), was to apply Fact 4.6.4, a

cutting lemma for binary formulas, along with Fact 4.6.1, a Zarankiewicz bound

for binary formulas. One would hope that a Zarankiewicz bound for 4-ary for-

mulas can be obtained by applying a cutting lemma for ternary formulas along

with Theorem 4.6.2, a Zarankiewicz bound for ternary formulas.

The reader that wishes to pursue this approach needs to clear two obstacles.

Firstly, a cutting lemma for ternary formulas does not exist in the literature,

and it is not clear what the statement should be. Secondly, the exponents in the

bound in Theorem 4.6.2 are terribly asymmetric. Even if a ternary cutting lemma

were to emerge, it would be sensible to seek a more symmetric and manageable

bound before bootstrapping it to prove a bound for 4-ary formulas.





Chapter 5

Distality to and from

Combinatorics: Climbing the

Arity Ladder

In this chapter, we develop the theories of higher-arity distality and hypergraph

regularity by using each to inform the other. Specifically, we develop k-strong

honest definitions for NIP strongly k-distal structures, giving rise to a regularity

lemma for hypergraphs definable in such structures.

• Distality to combinatorics. This expands our understanding of (model-

theoretic) contexts for efficient regularity lemmas. In the current literature,

distal structures are the most general structures in which definable hyper-

graphs admit homogeneous regularity lemmas, and we extend this to NIP

strongly k-distal structures.

• Distality from combinatorics. Although there is work in the literature on

higher-arity generalisations of strong honest definitions, it was unclear what

the precise formulation should be. We develop such a formulation, whose

efficacy is supported by our regularity lemma.

We thank Artem Chernikov, Aris Papadopoulos, and Francis Westhead for

fruitful conversations on k-distality at the University of Maryland, with special

119
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thanks to Artem for his invitation. We also thank Julia Wolf for her patient

explanations of hypergraph regularity and Pantelis Eleftheriou for his support

and mentorship. We are grateful to Aris and Pantelis for their permission to

include our generalisation of their argument for Theorem 5.7.4. Soli Deo gloria.

5.1 Introduction

In Chapter 4, we introduced (hyper)graph regularity lemmas. We saw Sze-

merédi’s regularity lemma, which says that every graph can be decomposed into

a bounded number of boxes, most of which are quasirandom. We restate this

here for not necessarily bipartite graphs.

Theorem 5.1.1 (Szemerédi, 1978 [51]). For all δ > 0, there is K ∈ N such that

the following holds.

Let G = (V,E) be a finite graph. Then there is a partition V = V1 ⊔ · · · ⊔ VK
such that ∑

(Vi,Vj) not δ-regular

|Vi × Vj| ≤ δ|V |2.

We emphasise the fact that V 2 is partitioned into boxes Vi×Vj, most of which

are quasirandom (δ-regular).

Generalising Szemerédi’s regularity lemma to k-uniform hypergraphs is a sur-

prisingly complicated task. Partitioning V k into boxes Vi1 × · · · × Vik , with the

obvious k-uniform generalisation of δ-regularity, does produce a regularity lemma

(work of Chung [12]), but it is limited in applicability; this notion of regularity

is often referred to as weak hypergraph regularity. The quest for strong hyper-

graph regularity — finding the correct shape (not a box) of the partition pieces

and the correct associated notion of quasirandomness — was highly non-trivial.

Flagship achievements to that end include work of Gowers [25] and Nagle, Rödl,

Schacht, and Skokan [38,39], but there are many other significant contributions,

for an account of which we refer the reader to [37]. In this chapter, we follow

Gowers’ work; we describe it here briefly, with more exposition to follow in the

next section.
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A partition of V k into boxes Vi1 × · · · × Vik is induced by a partition of the

vertex set V = V1 ⊔ · · · ⊔ VK . It turns out that, for strong hypergraph regularity,

we should partition not only the vertex set V but also V 2, ..., V k−1, and use these

partitions to build our partition of V k; we will say, for each l ∈ [k − 1], that

the partition of V l is level l of the partition of V k. Specialising to k = 3 as an

example, if we have partitions P1 of V and P2 of V 2, then V 3 is partitioned into

the pieces

{(v1, v2, v3) ∈ V 3 : vi ∈ Pi for all i ∈ [3] and (vi, vj) ∈ Pij for all 1 ≤ i < j ≤ 3},

where Pi ∈ P1 for all i ∈ [3] and Pij ∈ P2 for all 1 ≤ i < j ≤ 3. For reasons

that will be explained in the next section, these pieces can be thought of as 2-

dimensional simplicial complexes, and for general k we will refer to the partition

pieces as (k − 1)-dimensional simplicial complexes.

We have already seen a hypergraph regularity lemma in Chapter 4. Indeed,

we saw that hypergraphs definable in distal structures satisfy the distal regularity

lemma, in which the notion of quasirandomness is strongest possible: homogen-

eity. We restate this here for not necessarily partite hypergraphs.

Theorem 5.1.2 (Chernikov–Starchenko, 2018 [11]). Let T be a distal L-theory,

M |= T , and let ϕ(x1, ..., xk) ∈ L(M) with |x1| = · · · = |xk| =: d. Then, for each

δ > 0, there is a natural number K ≤ polyϕ(δ−1) such that the following holds.

Let V ⊆Md be finite. Then there is a partition V = V1 ⊔ · · · ⊔ VK such that

∑
(Vi1 ,...,Vik ) not ϕ-homogeneous

|Vi1 × · · · × Vik | ≤ δ|V |k.

In fact, Chernikov–Starchenko [11] prove more than this. As a basis of com-

parison for later on, we state their result in more generality and strength.

Theorem 5.1.3 (Chernikov–Starchenko, 2018 [11]). Let T be a distal L-theory,

M,M |= T with M sufficiently saturated, and let ϕ(x1, ..., xk) ∈ L(M) with

|x1| = · · · = |xk| =: d. Then, for each δ > 0, there is a natural number
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K ≤ polyϕ(δ−1) and a formula θ(x1, z) ∈ L such that the following holds.

Let V ⊆ Md be M-definable, and let µ(x1) be a global measure, generically

stable overM . Then there is a partition V = V1⊔· · ·⊔VK, where each Vi = θ(x1, c)

for some c ∈M z, such that

∑
(Vi1 ,...,Vik ) not ϕ-homogeneous

µ(k)(Vi1 × · · · × Vik) ≤ δµ(V )k.

Given what we just said about how a partition into boxes yields a weak

rather than a strong hypergraph regularity lemma, the reader under the (correct)

impression that distal regularity is a very strong form of hypergraph regularity

is entitled to be confused by the distal regularity lemma, where the partition

pieces are, in fact, boxes. The issue is that, in the weak hypergraph regularity

lemma, when we decompose a general k-uniform hypergraph into boxes, we can

only ask for most of these boxes to be δ-regular, which is too weak a notion

of quasirandomness for combinatorial arguments such as counting arguments to

work (see the next section for more details). However, in the distal regularity

lemma, the k-uniform hypergraph can be decomposed into boxes, most of which

are homogeneous, which is certainly a strong enough notion of quasirandomness.

Nonetheless, it is not helpful to think of distal regularity as a strong version

of weak regularity, since the combinatorial arguments that do not work with

weak regularity work (very well) with distal regularity. Rather, one should think

of distal regularity as a strong version of strong regularity, where the (k − 1)-

dimensional simplicial complexes take on the special form of boxes. Note that

boxes are indeed simplicial complexes. Returning to the example of k = 3 above,

if level 2 of the partition is trivial (that is, the partition P2 of V 2 is the trivial

partition), then each simplicial complex is a box: it has the form

{(v1, v2, v3) ∈ V 3 : vi ∈ Pi for all i ∈ [3]} = P1 × P2 × P3

for some Pi ∈ P1. For general k ≥ 3, a partition into simplicial complexes is a

partition into boxes in the special case that levels 2, ..., k − 1 are trivial (that is,
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the partitions of V 2, ..., V k−1 are trivial).

In summary, for a k-uniform hypergraph (V,E) satisfying the distal regularity

lemma, V k can be partitioned into a bounded number of boxes — a special case

of (k−1)-dimensional simplical complexes — most of which are E-homogeneous.

It is now natural to pose the following problem.

Problem 5.1.4. For which k-uniform hypergraphs (V,E) can V k be partitioned

into a bounded number of (k−1)-dimensional simplical complexes, most of which

are E-homogeneous?

We call such a partition a homogeneous regularity partition, and a regularity

lemma giving such a partition a homogeneous regularity lemma.

When k = 2, that is, in the case of graphs, distal structures are the most

general known model-theoretic context for graphs with such a partition, since a

1-dimensional simplicial complex is just a box. Distality, when characterised by

strong honest definitions, can be seen as a binary notion. It thus makes sense

to find answers to Problem 5.1.4 for k ≥ 3 using a (k − 1)-ary generalisation of

distality.

These were introduced by Walker [55], who introduced two notions of k-

ary distality for each k ∈ N+. Recall from Section 2.7 that distality has an

internal and an external characterisation which are equivalent (Theorem 2.7.3).

Walker generalised the internal characterisation to k-distality and the external

characterisation to strong k-distality, such that 1-distality, strong 1-distality, and

distality are equivalent, and (strong) k-distality implies (strong) (k+1)-distality.

As the name suggests, strong k-distality implies k-distality. There is no literature

on the converse — in particular, Walker [55] could not decide it.

The distal regularity lemma, Theorem 5.1.3, was proved using strong honest

definitions. Recall that an L-theory is (1-)distal if and only if every formula

ϕ(x; y) ∈ L has a strong honest definition ψ(x; z) ∈ L: for all B ⊆ M |= T with

2 ≤ |B| <∞ and a ∈M , there is c ∈ B such that for all b ∈ B,

a |= ψ(x; c) ⊢ ϕ(x; b) ↔ ϕ(a; b).
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Here, we have continued the abuse of notation that if y is an n-tuple with entries

in a set Y (that is, y ∈ Y n), we sometimes simply write y ∈ Y , but X ⊆ Y

always means X ⊆ Y 1.

In order to find a homogeneous regularity lemma for (strongly) k-distal the-

ories, we define k-strong honest definitions for formulas ϕ(x1, ..., xk; y), such that

an NIP theory is strongly k-distal if and only if such k-strong honest definitions

exist. This is done in Definition 5.4.9, of which we give a preview now. Recall

that, for a tuple v = (v1, ..., vk) and i ∈ [k], v̸=i := (v1, ..., vi−1, vi+1, ..., vk). Given

ϕ(x1, ..., xk; y) ∈ L with x := (x1, ..., xk), a k-strong honest definition for ϕ is a

(k + 1)-tuple of L-formulas (ψi(x ̸=i, y, zi) : i ∈ [k])⌢(ψk+1(x, zk+1)) such that the

following holds.

There is N ∈ N such that, for all B ⊆ M |= T with 2 ≤ |B| < ∞ and

a = (a1, ..., ak) ∈ M , there are c
(j)
1 , ..., c

(j)
k+1 ∈ B for j ∈ [N ] such that for all

b ∈ B, there is j ∈ [N ] such that

a |= ψk+1(x, c
(j)
k+1) ∧

k∧
i=1

ψi(x ̸=i, b, c
(j)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b).

The following is Theorem 5.4.12.

Theorem 5.1.5. Let T be NIP. Then T is strongly k-distal if and only if every

ϕ(x1, ..., xk; y) ∈ L has a k-strong honest definition.

The reader may be concerned that the formulas ψ1, ..., ψk in a k-strong hon-

est definition for ϕ(x1, ..., xk; y) involve the y-variable as well as the x-variables.

Crucially, however, each of ψ1, ..., ψk involves exactly k − 1 of the x-variables

(and y). The intuition is that, for b ∈ M , in order to understand how x1, ..., xk

interact with b (with respect to ϕ), it is enough to understand how any k − 1

of the xi’s interacts with b (with respect to ψ1, ..., ψk) and how x1, ..., xk interact

(with respect to ψk+1). In other words, the interaction of the k + 1 variables

x1, ..., xk, y is locally controlled by the interactions of k of those variables.

Observe the resemblance this bears with our discourse on partitions into sim-

plicial complexes. A regularity lemma for a (k + 1)-uniform hypergraph (V,E)
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(V,E) gives a partition V k+1 into k-dimensional simplicial complexes that is in-

duced by partitions of V 1, ..., V k. In other words, the behaviour of E ⊆ V k+1 is

locally controlled by the partitions of V 1, ..., V k.

We now come to the main result of the chapter. The reader can find it in

full generality and strength as Theorem 5.5.9, but here we first state an abridged

form that fits more directly with the narrative so far. This is a restriction of

Corollary 5.5.12.

Theorem 5.1.6. Let k ≥ 2. Let M be an L-structure that is NIP, and let

ϕ(x1, ..., xk−1;xk) ∈ L(M) have a (k − 1)-strong honest definition, with

|x1| = · · · = |xk| =: d. Then, for all δ > 0, there is a natural number K ≤

polyϕ(δ−1) such that the following holds.

For all finite V ⊆Md, there is a partition V k−1 = V1 ⊔ · · · ⊔ VK inducing the

partition Q of V k given by

{{
v = (v1, ..., vk) ∈ V k : v̸=i ∈ Vji for all i ∈ [k]

}
: j1, ..., jk ∈ [K]

}
,

such that
∑

Q∈Q not ϕ-homogeneous |Q| ≤ δ|V |k.

In particular, the partition pieces of V k are simplicial complexes, induced by

the (k − 1)th level, that is, the partition of V k−1.

Remark 5.1.7. We previously mentioned that a partition of V k into (k − 1)-

dimensional simplicial complexes is induced by partitions of V 1, ..., V k−1. The-

orem 5.1.6 did not explicitly involve partitions of V 1, ..., V k−2. However, this is

not an interesting observation, since any partition of V 1, ..., V k−2 can be absorbed

into the partition of V k−1. We illustrate this using the example before Theorem

5.1.2, where k = 3. There, the partitions P1 of V and P2 of V 2 induced a parti-

tion, say Q, of V 3. However, we can ‘absorb’ P1 into P2 by forming the following

partition of V 2:

{
{(v1, v2) ∈ V 2 : v1 ∈ P1, v2 ∈ P2, (v1, v2) ∈ P12} : P1, P2 ∈ P1, P12 ∈ P2

}
.
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This induces a partition of V 3 as in Theorem 5.1.6, which is precisely Q.

This absorption technique does not work for the general hypergraph regularity

lemma, since the definition of quasirandomness is relative to the separate levels

(see [24]). However, for homogeneous regularity lemmas, a simplicial complex Q

is defined to be ϕ-homogeneous if ϕ(Q) = Q or ∅; there is no reference to the

levels used to define Q, so we may as well apply the absorption technique and

only partition V k−1.

We now state the main result in more generality and strength. This is a

restriction of Corollary 5.5.11.

Theorem 5.1.8. Let k ≥ 2. Let M be an L-structure that is NIP, and let

ϕ(x1, ..., xk−1;xk) ∈ L(M) have a (k − 1)-strong honest definition, with |x1| =

· · · = |xk| =: d. Then, for all δ > 0, there is a natural number K ≤ polyϕ(δ−1)

and a formula θ(x1, ..., xk−1, z) ∈ L such that the following holds.

Let V ⊆ Md be M-definable, and let µ(x1) be a global measure, generically

stable over M . Then there is a partition V k−1 = V1 ⊔ · · · ⊔ VK, where each

Vi = θ(x1, ..., xk−1, c) for some c ∈M z, inducing the partition

Q :=

{{
v = (v1, ..., vk) ∈ V k : v̸=i ∈ Vji for all i ∈ [k]

}
: j1, ..., jk ∈ [K]

}

of V k, such that
∑

Q∈Q not ϕ-homogeneous µ
(k)(Q) ≤ δµ(V )k.

There is yet another statement that is stronger and more general, for which

we refer the reader to Theorem 5.5.9.

5.1.1 Structure of the chapter

Since this chapter is on hypergraph regularity lemmas and higher-arity distality,

it is right that we begin with expositions of the two subjects; these respectively

constitute Sections 5.2 and 5.3. In Section 5.4, we define k-strong honest defini-

tions, and show that an NIP theory is strongly k-distal if and only if every formula

ϕ(x1, ..., xk; y) has a k-strong honest definition. In Section 5.5, we state and prove
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our regularity lemma for formulas ϕ(x1, ..., xk; y) with a k-strong honest definition

in an NIP theory.

In Section 5.6, we remark on the ‘dual’ setup where we define k-strong honest

definitions for formulas ϕ(x; y1, ..., yk) instead of ϕ(x1, ..., xk; y). In particular, al-

though we believe this approach to have good motivation (which we describe), we

are unable to prove that dual k-strong honest definitions exist in an NIP strongly

k-distal theory; we state this as a conjecture and prove a partial converse. In

Section 5.7, we highlight the geometric prowess of dual k-strong honest defini-

tions by describing the analogue of distal cell decompositions that they induce,

and use this to show that certain pairs (M,P ) where M is o-minimal and P ⊆M

do not have dual k-strong honest definitions.

5.1.2 Basic notation

We lay out some basic notation used in the rest of this chapter.

Let k, l ∈ N+. A k-uniform hypergraph, or a k-graph, is a pair H = (V,E)

where V is the set of vertices and E ⊆
(
V
k

)
is the set of hyperedges, that is, E

consists of subsets of V of size k. We sometimes consider hyperedges as tuples

rather than sets. If the hyperedge relation E is not specified, we sometimes

denote it by H.

A k-graph H = (V,E) is l-partite if there is a partition V1 ⊔ · · · ⊔ Vl of

V such that, for all e ∈ E and i ∈ [l], |e ∩ Vi| ≤ 1; in this case, we write

H = (V1 ⊔ · · · ⊔ Vl, E), and if k = l, we write H = E(V1, ..., Vk) and view it as

a subset of V1 × · · · × Vk. We sometimes define a k-partite k-graph E(V1, ..., Vk)

where V1, ..., Vk are not necessarily disjoint; in that case, the vertex sets are taken

to be disjoint copies of V1, ..., Vk.

For q, r ∈ R and δ ≥ 0, write q ≈δ r to mean |q − r| ≤ δ.
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5.2 Hypergraph regularity

This section is an exposition of hypergraph regularity lemmas. Motivated by

applications, we will see why one possible generalisation of Szemerédi’s regularity

lemma is not very fruitful, and go on to describe a better generalisation, in

preparation for our main result (Theorem 5.5.9). In this section, all (hyper)graphs

are finite.

In Chapter 4, we defined what it means for a bipartite graph to be regular, and

stated Szemerédi’s regularity lemma for bipartite graphs. We now reformulate

everything in terms of graphs, as is standard in combinatorial literature (although

the formulations are equivalent — see Remark 5.2.3).

Definition 5.2.1. Let E(V1, V2) be a bipartite graph. For W ⊆ V1 × V2, the

relative density of E(V1, V2) in W is

dW (V1, V2) :=
|E(V1, V2) ∩W |

|W |
.

The density of E(V1, V2) is d(V1, V2) := dV1×V2(V1, V2).

For δ > 0, say that E(V1, V2) (or (V1, V2)) is δ-regular if, for all Ai ⊆ Vi with

|Ai| ≥ δ|Vi|, dA1×A2(V1, V2) ≈δ d(V1, V2).

This is a notion of quasirandomness : if E(V1, V2) is δ-regular, then it ‘looks

like a random graph’ since it has roughly the same density everywhere.

Szemerédi’s regularity lemma for graphs reads as follows.

Theorem 5.2.2 (Szemerédi, 1978 [51]). For all δ > 0, there is K ∈ N such that

the following holds.

Let G = (V,E) be a graph. Then there is an equipartition V = V1 ⊔ · · · ⊔ VK
such that ∑

E(Vi,Vj) not δ-regular

|Vi × Vj| ≤ δ|V |2.

Remark 5.2.3. It is easy to deduce the bipartite Szemerédi’s regularity lemma,

as stated in Theorem 4.2.2, from the version in Theorem 5.2.2. Conversely, given
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a graph G = (V,E), form an auxiliary bipartite graph with vertex set V ⊔ V ,

where x ∼ y if and only if (x, y) ∈ E. Applying Theorem 4.2.2 to the auxiliary

graph gives Theorem 5.2.2 for G.

A notable application of Szemerédi’s regularity lemmas is (graph) removal

lemmas, of which the following triangle removal lemma is an important example.

The triangle is the complete graph on 3 vertices, and a graph is triangle-free if

it has no triangles.

Theorem 5.2.4 (Ruzsa–Szemerédi, 1978 [41]). For all c > 0, there is a > 0

such that the following holds. If G is a graph on n vertices with fewer than an3

triangles, then it can be made triangle-free by removing at most cn2 edges.

In order to deduce this from Szemerédi’s regularity lemma, one needs the

following triangle counting lemma. Roughly speaking, it says that if your graph

is δ-regular then it contains approximately (in terms of δ) the correct number of

triangles, namely, the number of triangles your graph would contain if it were

truly random; this is to be expected for a good notion of quasirandomness. We

will use the little-o notation as defined in Subsection 2.1.4.

Proposition 5.2.5. Let G be a 3-partite graph on vertex sets V1, V2, V3 with

ni := |Vi|, p := d(V1, V2), q := d(V2, V3), and r := d(V3, V1). For δ > 0, if

E(V1, V2), E(V2, V3), E(V3, V1) are all δ-regular, then the number of triangles in

G differs from pqrn1n2n3 by oδ→0(n1n2n3).

Proof. The proof is standard and left as an exercise.

How do we generalise the above to hypergraphs? Perhaps the most obvious

approach is to make the following definition.

Definition 5.2.6. Let E(V1, ..., Vk) be a k-partite k-graph. Let W ⊆ V1×· · ·×Vk.

The relative density of E(V1, ..., Vk) in W is

dW (V1, ..., Vk) :=
|E(V1, ..., Vk) ∩W |

|W |
.
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The density of E(V1, ..., Vk) is d(V1, ..., Vk) := dV1×···×Vk(V1, ..., Vk).

For δ > 0, say that E(V1, ..., Vk) (or (V1, ..., Vk)) is δ-regular if, for all Ai ⊆ Vi

with |Ai| ≥ δ|Vi|, dA1×···×Ak
(V1, ..., Vk) ≈δ d(V1, ..., Vk).

With this definition, there is indeed a version of Szemerédi’s regularity lemma

for hypergraphs.

Theorem 5.2.7 (Chung, 1991 [12]). For all k ∈ N+ and δ > 0, there is K ∈ N

such that the following holds.

Let H = (V,E) be a k-uniform hypergraph. Then there is an equipartition

V = V1 ⊔ · · · ⊔ VK such that

∑
E(Vi1 ,...,Vik ) not δ-regular

|Vi1 × · · · × Vik | ≤ δ|V |k.

We would likewise want a k-uniform hypergraph version of the triangle re-

moval lemma. The natural generalisation of the triangle is the k-simplex: the

complete k-uniform hypergraph on k+ 1 vertices, and indeed we have the follow-

ing k-simplex removal lemma, achieved independently by Gowers [25] and Nagle,

Rödl, Schacht, and Skokan [38–40].

Theorem 5.2.8. For all c > 0, there is a > 0 such that the following holds. If G

is a k-uniform hypergraph on n vertices with fewer than ank+1 k-simplices, then

it can be made k-simplex-free by removing at most cnk hyperedges.

Unfortunately, this cannot be deduced from Theorem 5.2.7, because there

is no k-simplex counting lemma for δ-regular hypergraphs. In other words, δ-

regularity is not strong enough for counting k-simplices when k ≥ 3. We illustrate

this for k = 3, where we refer to the 3-simplex as the tetrahedron.

The following example is taken (with minor tweaks) from [33] but is considered

combinatorial folklore. First, a definition.

Definition 5.2.9. Let G = (V,E) be a graph. Write ∆(G) for the set of triangles
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in G, that is,

∆(G) :=

{
{v1, v2, v3} ∈

(
V

3

)
: (vi, vj) ∈ E for all 1 ≤ i < j ≤ 3

}
.

Note that ∆(G) is a 3-uniform hypergraph on V .

Example 5.2.10 (δ-regularity insufficient for counting tetrahedra). Let V1, V2,

V3, V4 be sets of size n. Let H1 be the random 4-partite 3-uniform hypergraph

on V1 ⊔ · · · ⊔ V4, where hyperedges occur with probability 1/8. Let G2 be the

random 4-partite graph on V1 ⊔ · · · ⊔ V4, where edges occur with probability 1/2,

and let H2 = ∆(G2), a 4-partite 3-uniform hypergraph on V1 ⊔ · · · ⊔ V4. Then,

with high probability, for all δ > 0, every triple of vertex sets in both H1 and

H2 is δ-regular with density ≈δ 1/8. However, H1 (which is ‘truly random’) is

expected to contain (1/84)n4 tetrahedra, while H2 is expected to contain (1/26)n4

tetrahedra.

In fact, not only is δ-regularity insufficient to guarantee roughly the correct

number of tetrahedra, it is insufficient to guarantee the existence of tetrahedra at

all. The example we use to illustrate this is again taken from [33], who attribute

originality to [18]. First, a definition.

Definition 5.2.11. An l-partite tournament is a directed l-partite graph with ex-

actly one (directed) edge between any two vertices from distinct vertex sets. Say

that vertices x, y, z span a cyclically oriented triangle if either (x, y), (y, z), (z, x)

are all edges or (x, z), (z, y), (y, x) are all edges.

Example 5.2.12 (δ-regularity is insufficient for existence of tetrahedra). Let

V1, V2, V3, V4 be sets of size n. Let G be the random 4-partite tournament on

V1 ⊔ · · · ⊔ V4 where, for x, y vertices from distinct vertex sets, (x, y) is an edge

(as opposed to (y, x)) with probability 1/2. Let H be the associated 4-partite 3-

uniform (undirected) hypergraph on V1⊔· · ·⊔V4, such that (x, y, z) is a hyperedge

in H if and only if x, y, z span a cyclically oriented triangle in G. Then, with

high probability, for all δ > 0, every triple of vertex sets in H is δ-regular with
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density ≈δ 1/4. However, H contains no tetrahedra: it is impossible to have four

vertices in G, any three of which span a cyclically oriented triangle!

All of this is to say that δ-regularity is not a good notion of quasirandomness

for k-uniform hypergraphs when k ≥ 3. What, then, is the correct notion? The

answer to this question is surprisingly complicated, and a complete exposition is

outside the scope of this thesis. We give an abridged account and refer the reader

to [24] for the full answer.

As alluded to in the introduction, the problem is not so much that we need

a better notion of quasirandomness per se, but that our partition pieces have

the wrong shape. We have been considering what it means for a hypergraph

H = (V,E) to be quasirandom inside a box V1 × · · · × Vk, where Vi ⊆ V , but it

is time to move beyond boxes.

Definition 5.2.13. A k-dimensional simplicial complex is a set Σ of sets of size

at most k + 1, such that if B ∈ Σ and A ⊆ B then A ∈ Σ.

We focus again on the case k = 3. Let G = (V1 ⊔ V2 ⊔ V3, E) be a 3-partite

graph. Then, ∆(G)∪E∪(V1∪V2∪V3)∪{∅} is a 2-dimensional simplicial complex,

which we will just denote by ∆(G). It turns out that we should define what it

means for a 3-uniform hypergraph to be quasirandom inside such a simplicial

complex ∆(G), instead of a box, with G itself being quasirandom.

Of course, we need to settle what it means for G to be quasirandom and H

to be quasirandom inside ∆(G). The former is straightforward: δ-regularity is a

good notion of quasirandomness for graphs, so it is the one we use. The latter is

far more complicated, and we refer the reader to [24] for the definition. For now,

we will simply say (without definition) that H is η-quasirandom inside ∆(G),

where η > 0 is a parameter.

Remark 5.2.14. The reader is urged not to worry about the definition of η-

quasirandom, but rather to focus on the big picture that we are defining the

quasirandomness of H relative to a simplicial complex Σ = ∆(G). The remainder

of this section is comprehensible with this definition as a black box, and in the
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contexts we will consider in later sections, H will be homogeneous inside Σ,

that is, H ∩ Σ = Σ or ∅, and homogeneity is a (very strong) special case of

η-quasirandomness.

Definition 5.2.15. Let H = (V,E) be a 3-uniform hypergraph, and let G be a

3-partite graph on vertex sets V1, V2, V3 ⊆ V . For δ, η > 0, say that (G,H) (or

(∆(G), H)) is (δ, η)-quasirandom if G(Vi, Vj) is δ-regular for all 1 ≤ i < j ≤ 3

and H is η-quasirandom inside ∆(G).

For 1 ≤ i < j ≤ 3, write dij := d(Vi, Vj) for the density of G(Vi, Vj).

Say that (G,H) (or (∆(G), H)) is η-quasirandom if it is (δ, η)-quasirandom for

δ = (2−40η(d12d13d23)
32)16.

The exact form of the expression δ = (2−40η(d12d13d23)
32)16 is not important

for this exposition; it suffices to keep in mind that δ is small in terms of η, d12,

d13, and d23.

This works out to be the correct notion of quasirandomness for a 3-uniform

hypergraph: there is an associated regularity lemma and tetrahedron counting

lemma, the combination of which gives a tetrahedron removal lemma (Theorem

5.2.8 for k = 3). We first expound the regularity lemma.

Given a 3-uniform hypergraphs H = (V,E), we wish to partition V 3 into

simplicial complexes ∆(G) such that (G,H) is η-quasirandom with few excep-

tions. To do so, we partition the vertex set V , say V = V1 ⊔ · · · ⊔ VK , and we

also partition V 2 into bipartite graphs, say V 2 = G1 ⊔ · · · ⊔ GL. Our simplicial

complexes are then given by

Q := {∆(Gp(Vi, Vj) ∪Gq(Vi, Vk) ∪Gr(Vj, Vk)) : i, j, k ∈ [K], p, q, r ∈ [L]}.

Note that every (x, y, z) ∈ V 3 belongs to exactly one simplicial complex, so

Q is a partition of V 3. Indeed, given (x, y, z) ∈ V 3, there are unique i, j, k ∈ [K]

such that x ∈ Vi, y ∈ Vj, and z ∈ Vk, and then unique p, q, r ∈ [L] such that

(x, y) ∈ Gp, (x, z) ∈ Gq, and (y, z) ∈ Gr. We now state the regularity lemma.
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Theorem 5.2.16. For all δ, η > 0 there are K,L ∈ N such that the following

holds.

Let H = (V,E) be a 3-uniform hypergraph. Then there is a partition of V

into sets V1, ..., VK and a partition of V 2 into bipartite graphs G1, ..., GL inducing

the partition

Q := {∆(Gp(Vi, Vj) ∪Gq(Vi, Vk) ∪Gr(Vj, Vk)) : i, j, k ∈ [K], p, q, r ∈ [L]}

of V 3, such that
∑

Q∈Q:(Q,H) not η-quasirandom |Q| ≤ δ|V |3.

Proof. See [24, Theorem 8.10].

We now seek a counting lemma for η-quasirandom pairs (G,H). We wish to

count the number of tetrahedra (say) of H contained in ∆(G), so we may as well

assume that H ⊆ ∆(G). Let H be a 4-partite 3-uniform hypergraph on vertex

sets V1, ..., V4, and let G be a 4-partite graph on vertex sets V1, ..., V4 such that

H ⊆ ∆(G). If G is truly random and H sits truly randomly inside ∆(G), how

many tetrahedra do we expect H to contain? For 1 ≤ i < j ≤ 4, write dij for the

density of G(Vi, Vj). For 1 ≤ i < j < k ≤ 4, write Gijk := G(Vi ∪ Vj ∪ Vk), and

write dijk for the relative density of H(Vi, Vj, Vk) in ∆(Gijk). Let vi ∈ Vi for all

i ∈ [4]. Then (v1, ..., v4) forms a tetrahedron if and only if (vi, vj, vk) ∈ H for all

1 ≤ i < j < k ≤ 4. If each edge of G(Vi, Vj) occurs randomly with probability dij,

and each hyperedge of H(Vi, Vj, Vk) ⊆ ∆(Gijk) occurs randomly with probability

dijk, then the probability that (v1, ..., v4) forms a tetrahedron in H is

∏
1≤i<j≤4

P((vi, vj) ∈ G)
∏

1≤i<j<k≤4

P((vi, vj, vk) ∈ H | (vi, vj, vk) ∈ ∆(G))

=
∏

1≤i<j≤4

dij
∏

1≤i<j<k≤4

dijk.

Thus, the expected number of tetrahedra is
∏

1≤i<j≤4 dij
∏

1≤i<j<k≤4 dijk
∏

1≤i≤4 |Vi|.

The counting lemma says that, if (G(Vi ∪ Vj ∪ Vk), H) is η-quasirandom for all

1 ≤ i < j < k ≤ 4, then the number of tetrahedra in H is approximately (in

terms of η) this number.
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Theorem 5.2.17. Let V1, ..., V4 be sets with ni := |Vi|. Let G be a 4-partite graph

on vertex sets V1, ..., V4 with dij := d(Vi, Vj) for all 1 ≤ i < j ≤ 4. Let η > 0,

and let H ⊆ ∆(G) be a 4-partite 3-uniform hypergraph on vertex sets V1, ..., V4.

For 1 ≤ i < j < k ≤ 4, let Gijk := G(Vi ∪ Vj ∪ Vk), and suppose (Gijk, H) is

η-quasirandom and H(Vi, Vj, Vk) has relative density dijk in ∆(Gijk). Then the

number of tetrahedra in H differs from
∏

1≤i<j≤4 dij
∏

1≤i<j<k≤4 dijk
∏

1≤i≤4 ni by

at most oη→0(
∏

1≤i<j≤4 dij
∏

1≤i≤4 ni).

Proof. See [24, Theorem 6.8].

The previous two theorems can be combined to give the tetrahedron removal

lemma (Theorem 5.2.8 for k = 3).

The main takeaway from this exposition is that, in a regularity lemma for

3-uniform hypergraphs H = (V,E), V 3 should be partitioned into 2-dimensional

simplicial complexes ∆(G). For k-uniform hypergraphs H = (V,E), V k should

be partitioned into (k − 1)-dimensional simplicial complexes. That is, there are

partitions Pi of V i for i ∈ [k − 1], and each partition piece of V k has the form

{v = (v1, ..., vk) ∈ V k : vJ ∈ PJ for all ∅ ≠ J ⊊ [k]},

where vJ := (vj : j ∈ J) and PJ ∈ P|J | for all ∅ ≠ J ⊊ [k].

5.3 Higher-arity distality

In this section, we state the definitions of k-distality and strong k-distality from

[55], and give some basic properties and examples. Throughout this section, fix

a complete L-theory T , and let M |= T be sufficiently saturated.

Let us recall the internal and external characterisations of distality. As stated

in Theorem 2.7.3, these are equivalent.

Definition 5.3.1 (Internal characterisation of distality). Say that T (and any

M |= T ) is distal if the following holds.
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Let I0, I1, I2 be (dense) infinite sequences without endpoints, whose elements

are n-tuples. Let a0, a1 ∈ Mn such that I0 + a0 + I1 + I2 and I0 + I1 + a1 + I2 are

indiscernible. Then I0 + a0 + I1 + a1 + I2 is indiscernible.

Definition 5.3.2 (External characterisation of distality). Say that T (and any

M |= T ) is distal if the following holds.

Let I0, I1 be (dense) infinite sequences without endpoints, whose elements are

n-tuples. Let a ∈ Mn and B ⊆ M such that I0 +a+I1 is indiscernible and I0 +I1

is B-indiscernible. Then I0 + a+ I1 is B-indiscernible.

Walker [55] generalised these two definitions as follows.

Definition 5.3.3. Let k ∈ N+. Say that T (and any M |= T ) is k-distal if the

following holds.

Let I0, ..., Ik+1 be (dense) infinite sequences without endpoints, whose ele-

ments are n-tuples. Let a0, ..., ak ∈ Mn such that, for all 0 ≤ j ≤ k,

I0 + a0 + · · · + Ij−1 + aj−1 + Ij + Ij+1 + aj+1 + · · · + Ik + ak + Ik+1

is indiscernible. Then I0 + a0 + · · · + Ik + ak + Ik+1 is indiscernible.

Definition 5.3.4. Let k ∈ N+. Say that T (and any M |= T ) is strongly k-distal

if the following holds.

Let I0, I1 be (dense) infinite sequences without endpoints, whose elements

are n-tuples. Let a ∈ Mn and B1, ..., Bk ⊆ M such that I0 + I1 is B1 · · ·Bk-

indiscernible and I0 + a+ I1 is B1 · · ·Bj−1Bj+1 · · ·Bk-indiscernible for all j ∈ [k].

Then I0 + a+ I1 is B1 · · ·Bk-indiscernible.

Here, B1 · · ·Bk := B1 ∪ · · · ∪ Bk, and so on. Note that both k-distality and

strong k-distality say that the interaction of k + 1 objects can be controlled by

the interactions of k-sized subsets of those objects. Indeed, k-distality says that

if any k of a0, ..., ak can be inserted to make an indiscernible sequence, then all

k + 1 of them can be, and strong k-distality says that if I0 + I1 is indiscernible
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with respect to any k of a,B1, ..., Bk, then it is indiscernible with respect to all

k + 1 of them.

It is straightforward to see that (strong) k-distality implies (strong) (k + 1)-

distality. Furthermore, as expected, strong k-distality implies k-distality.

Proposition 5.3.5. Let k ∈ N+. If T is strongly k-distal, then it is k-distal.

Proof. Let I0, ..., Ik+1 and a0, ..., ak be as in the hypothesis of Definition 5.3.3.

For j ∈ [k], let Bj := Ij−1aj−1. Then Ik + ak + Ik+1 is B1 · · ·Bj−1Bj+1 · · ·Bk-

indiscernible for all j ∈ [k], and Ik + Ik+1 is B1 · · ·Bk-indiscernible. By strong

k-distality, Ik + ak + Ik+1 is B1 · · ·Bk-indiscernible, that is, I0a0 · · · Ik−1ak−1-

indiscernible. But now, since I0 + a0 + · · · + Ik−1 + ak−1 + Ik is indiscernible, we

have I0 + a0 + · · · + Ik + ak + Ik+1 is indiscernible as required.

Say that a (k+1)-ary relation ϕ(y1, ..., yk+1) is degenerate if it is equivalent in

T to a Boolean combination of k-ary relations ψ(y1, ..., yi−1, yi+1, ..., yk+1). The

following proposition provides a trivial source of (strongly) k-distal theories.

Proposition 5.3.6. Let k ∈ N+. If every (k+1)-ary relation is degenerate, then

T is (strongly) k-distal.

Proof. Let I0, I1 and a,B1, ..., Bk be as in the hypothesis of Definition 5.3.4. Let

bi ∈ Bi for i ∈ [k], and let ϕ(x, y1, ..., yk) ∈ L. Fixing any a′ ∈ I0, we show that

ϕ(a, b1, ..., bk) is equivalent to ϕ(a′, b1, ..., bk).

Since ϕ is degenerate, it is equivalent in T to a Boolean combination of some

ψ1(x, y1, ..., yk), ..., ψl(x, y1, ..., yk), where each ψj either has no x-dependence or

no yi-dependence for some i ∈ [k]. Write τ(ψ1, ..., ψl) for this Boolean combin-

ation. Then ϕ(a, b1, ..., bk) is equivalent to τ(ψ1(a, b1, ..., bk), ..., ψl(a, b1, ..., bk)),

which is in turn equivalent to τ(ψ1(a
′, b1, ..., bk), ..., ψl(a

′, b1, ..., bk)) by indiscern-

ibility. But this is equivalent to ϕ(a′, b1, ..., bk) as required.

Say that a (strongly) k-distal theory is trivially (strongly) k-distal if every

(k+ 1)-ary relation is degenerate, and non-trivially (strongly) k-distal otherwise.
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We give some examples, due to Walker [55], of where structures sit in the

(strongly) k-distal hierarchy. For k ∈ N+, say that a theory is strictly (strongly)

(k + 1)-distal if it is (strongly) (k + 1)-distal but not (strongly) k-distal.

Example 5.3.7. Let k ≥ 2, and let RGk be the {E}-theory of the random

k-uniform hypergraph. That is, (V,E) |= RGk if and only if it is an infinite k-

uniform hypergraph such that, if A,B ⊆
(
V
k−1

)
are finite and disjoint, then there is

v ∈ V such that E(a1, ..., ak−1, v) for all {a1, ..., ak−1} ∈ A and ¬E(b1, ..., bk−1, v)

for all {b1, ..., bk−1} ∈ B. Then RGk is strictly (strongly) k-distal.

There are k-partite and ordered k-partite versions of RGk, both of which are

strictly (strongly) k-distal — see [55].

Let RGω be the {E2, E3, ...}-theory such that (V,E2, E3, ...) |= RGω if and only

if, for all k ≥ 2, (V,Ek) is an infinite k-uniform hypergraph, and if Ar, Br ⊆
(
V
r

)
are finite and disjoint for all r ∈ [k − 1], then there is v ∈ V such that for all

r ∈ [k − 1], Er+1(a1, ..., ar, v) for all {a1, ..., ar} ∈ Ar and ¬Er+1(b1, ..., br, v) for

all {b1, ..., br} ∈ Br. Then, for all k ∈ N+, RGω is not (strongly) k-distal.

The previous examples were IP. Let us give some NIP examples (still due to

Walker [55]).

Example 5.3.8. Fix t ∈ N+ ∪ {∞}. Let T be the {R}-theory asserting that R

is an equivalence relation with infinitely many equivalence classes, each of size t.

Then T is stable and strictly (strongly) 2-distal.

Let T ∗ be the {R,<}-theory asserting, in addition to the above, that < is a

linear order without endpoints such that each equivalence class is dense in the

domain. Then T ∗ is NIP, unstable, and strictly (strongly) 2-distal.

Example 5.3.9. For all k ∈ N+, the theory ACF (respectively, ACVF) of al-

gebraically closed fields (respectively, valued fields) is not (strongly) k-distal.

Specifying the characteristic does not change this fact.

In each of the examples above that are strictly (strongly) k-distal for some

k ≥ 2, they are trivially so: every (k+1)-ary relation is degenerate. The following
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construction by Goode [22, §2] is known to be 2-distal, and we show that it is

non-trivially 2-distal.

Example 5.3.10. Let M = (A1, A2, f : A1×A2 → A2) be a two-sorted structure

in which A1, A2 are infinite sets and f describes a free action of A1 on A2, that

is, the induced action on A2 of the free group F (A1) generated by A1 is free.

By [22, §2], M is stable and ‘trivial for freedom’. By [55, Theorem 8.16], a stable

structure is trivial for freedom if and only if it is 2-distal, so M is (strictly) 2-

distal. It is not known which k ∈ N+ (if it exists) is such that M is strictly

strongly k-distal.

We claim that the ternary relation f(x, y) = z is not degenerate, and so

M is non-trivially 2-distal. To see this, first observe that every binary relation

involving one variable from each sort is equivalent to either ⊤ or ⊥. Indeed, since

F (A1) acts freely on A2, the orbits of this action are isomorphic copies of F (A1).

Hence, given u, u′ ∈ A1 and v, v′ ∈ A2, it is easy to construct an automorphism

of M sending (u, v) to (u′, v′), and so tp(u, v/∅) = tp(u′, v′/∅).

Thus, if the ternary relation f(x, y) = z were degenerate, it would be equival-

ent to a formula ϕ(y, z), which is clearly absurd. We conclude that f(x, y) = z

is not degenerate, and hence M is non-trivially 2-distal.

Apart from similar examples given in [22, §2], we are not aware of other

non-trivially (strongly) k-distal structures for k ≥ 2.

Problem 5.3.11. Let k ≥ 2. Find examples of non-trivially (strongly) k-distal

theories.

We are also interested in the following problem, posed in [55, Question 5.2].

Problem 5.3.12. Let k ≥ 3. Is there an NIP theory that is strictly (strongly)

k-distal?

We remark that Example 5.3.10 may provide an example of an NIP structure

that is strictly strongly k-distal for some k ≥ 3.
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We finish this section by describing the relationship between the (strongly)

k-distal hierarchy and the NIPk hierarchy. The following definition is due to

Shelah in [46, Definition 2.4] and [45, Section 5(H)].

Definition 5.3.13. Let ϕ(x; y1, ..., yk) ∈ L. Say that ϕ is IPk if, for all n ∈ N+,

there are B1 ⊆ My1 , ..., Bk ⊆ Myk of size n such that ϕ∗ shatters B1 × · · · ×Bk,

that is, for all S ⊆ B1×· · ·×Bk, there is a ∈ Mx such that ϕ(a;B1×· · ·×Bk) = S.

Say that ϕ is NIPk if it is not IPk.

Say that T is NIPk if every formula ϕ(x; y1, ..., yk) ∈ L is NIPk.

The following theorem is [55, Proposition 6.7], attributed to Chernikov.

Theorem 5.3.14. Let k ∈ N+. If T is k-distal, then T is NIPk.

5.4 Higher-arity strong honest definitions

In this section, we derive k-strong honest definitions for (k+1)-ary formulas. Not

only is it a key tool for the proof of our main result — a regularity lemma for

NIP strongly k-distal structures — it is also a result of independent interest. Just

as strong honest definitions have proved crucial in the development of distality,

it is our hope that k-strong honest definitions will take on the same role in the

development of k-distality.

Throughout this section, fix a complete L-theory T , and let M |= T be suf-

ficiently saturated. We reiterate our abuse of notation that if y is an n-tuple

with entries in a set Y (that is, y ∈ Y n), we sometimes simply write y ∈ Y , but

X ⊆ Y always means X ⊆ Y 1.

Recall the definition of strong honest definitions for a binary formula.

Definition 5.4.1. Let ϕ(x; y) ∈ L. A formula ψ(x; z) ∈ L is a strong honest

definition for ϕ if the following holds.

Let B ⊆ M |= T with 2 ≤ |B| < ∞, and let a ∈ M . Then there is c ∈ B

such that, for all b ∈ B,

a |= ψ(x; c) ⊢ ϕ(x; b) ↔ ϕ(a; b).
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Recall also that T is distal if and only if every formula ϕ(x; y) ∈ L has a

strong honest definition. In fact, we have the following.

Theorem 5.4.2. The following are equivalent.

(i) The theory T is distal.

(ii) Every formula ϕ(x; y) ∈ L has a strong honest definition.

(iii) Let ϕ(x; y) ∈ L, B ⊆ M |= T with |B| ≥ 2, and a ∈ M . There is

ψ(x; z) ∈ L such that, for all finite B̄ ⊆ B, there is c ∈ B such that, for all

b ∈ B̄,

a |= ψ(x; c) ⊢ ϕ(x; b) ↔ ϕ(a; b).

Proof. That (i) is equivalent to (ii) is, modulo a compactness argument, [10,

Theorem 21]. The proof can be used almost verbatim to show that (i) is equivalent

to (iii).

Statement (iii) gives a ‘non-uniform’ strong honest definition: one that de-

pends not only on the formula ϕ(x; y) but also on the parameters a and B.

We wish to define k-strong honest definitions for (k + 1)-ary formulas, where

k ∈ N+, and use them to characterise k-distality. Walker proves the following

result that makes a significant step towards this goal. Recall that, for a tuple

a = (a1, ..., ak) and i ∈ [k], a ̸=i := (a1, ..., ai−1, ai+1, ..., ak).

Theorem 5.4.3 [56, Theorem 9.18]. Let k ∈ N+. The following are equivalent.

(i) The theory T is strongly k-distal.

(ii) Let ϕ(x; y) ∈ L with x = (x1, ..., xk), B ⊆ M |= T with |B| ≥ 2, and

a = (a1, ..., ak) ∈ M . Then there is ψ(x; z) ∈ L such that, for all finite

B̄ ⊆ B, there is c ∈ B such that, for all b ∈ B̄,

a |= {ψ(x; c)} ∪
k⋃
i=1

tp(a ̸=i/B) ⊢ ϕ(x; b) ↔ ϕ(a; b). (1)
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When k = 1, (1) simplifies to

a |= ψ(x; c) ⊢ ϕ(x; b) ↔ ϕ(a; b);

that is, ψ is precisely a ‘non-uniform’ strong honest definition for (ϕ, a,B), as

in statement (iii) of Theorem 5.4.2. It may therefore be tempting to define, for

arbitrary k, ψ to be a ‘non-uniform’ k-strong honest definition for (ϕ, a,B).

This turns out to be unfruitful. A k-strong honest definition for ϕ should work

to refine ϕ-types, but in (1), this is achieved not by ψ alone but by {ψ(x; c)} ∪⋃k
i=1 tp(a ̸=i/B). Now, we would like our k-strong honest definition to be a formula

rather than a type. By compactness, we know that {ψ(x; c)} ∪
⋃k
i=1 tp(a ̸=i/B)

can be replaced by a finite subset in (1). That is, for all finite B̄, there are

ψi(x ̸=i; ci) ∈ tp(a ̸=i/B) such that (1) can be replaced by

a |= ψ(x; c) ∧
k∧
i=1

ψi(x ̸=i; ci) ⊢ ϕ(x; b) ↔ ϕ(a; b).

It appears as if we have our ‘non-uniform’ k-strong honest definition ψ ∧∧k
i=1 ψi, but the reader must not forget that the choice of the ψi here depends on

B̄ ⊆ B. To remove this dependence, we need to do some work. Our first goal is

the following theorem.

Theorem 5.4.4. Let k ∈ N+. The following are equivalent.

(i) The theory T is strongly k-distal.

(ii) Let ϕ(x1, ..., xk; y) ∈ L, B ⊆ M |= T with |B| ≥ 2, and a = (a1, ..., ak) ∈

M . Write x := (x1, ..., xk). Then there are ψi(x ̸=i, y, zi) ∈ L for i ∈ [k],

ψk+1(x; zk+1) ∈ L, and N ∈ N, such that for all finite B̄ ⊆ B, there are

c
(j)
1 , ..., c

(j)
k+1 ∈ B for j ∈ [N ], such that for all b ∈ B̄, there is j ∈ [N ] with

a |= ψk+1(x, c
(j)
k+1) ∧

k∧
i=1

ψi(x ̸=i, b, c
(j)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b).

(iii) Let ϕ(x1, ..., xk; y) ∈ L, B ⊆M |= T with |B| ≥ 2, and a = (a1, ..., ak) ∈M .
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Write x := (x1, ..., xk). Let (M ′, B′) ≽ (M,B) be |M |+-saturated. Then

there are ψi(x ̸=i, y, zi) ∈ L for i ∈ [k], ψk+1(x; zk+1) ∈ L, N ∈ N, and

c
(j)
1 , ..., c

(j)
k+1 ∈ B′ for j ∈ [N ], such that for all b ∈ B, there is j ∈ [N ] with

a |= ψk+1(x, c
(j)
k+1) ∧

k∧
i=1

ψi(x ̸=i, b, c
(j)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b).

Note that, in (ii) and (iii) of Theorem 5.4.4, (ψ1, ..., ψk+1) acts as a ‘non-

uniform’ k-strong honest definition for (ϕ, a,B); recall that ‘non-uniformity’ refers

to its dependence on a and B. After proving Theorem 5.4.4, we will bootstrap it

to generate ‘uniform’ k-strong honest definitions for ϕ — ones that depend only

on ϕ and not a or B — under an extra NIP assumption. These will be defined

precisely in Definition 5.4.9.

Remark 5.4.5. In (ii) and (iii) of Theorem 5.4.4, the awkward parameter N ∈ N

arises from a coding process, when we construct ψ1, ..., ψk each as a code for

multiple formulas. We are not able to obtain a statement without such N . We

will comment on this further after defining ‘uniform’ k-strong honest definitions

(which will also make reference to such N) in Definition 5.4.9.

Towards proving Theorem 5.4.4, we appeal to the following result of Walker.

For a type q ∈ S(A) and A0 ⊆ A, write q|A0 := q ∩ L(A0).

Lemma 5.4.6 [56, Lemma 9.12]. Suppose T is strongly k-distal. Let B ⊆M |= T

with |B| ≥ 2, and let a = (a1, ..., ak) ∈M . Let p := tp(a/M), and for all i ∈ [k],

let p ̸=i := tp(a ̸=i/M). Let (M ′, B′) ≽ (M,B) be |M |+-saturated. Then, for all

q ∈ S(M) finitely satisfiable over B,

p|B′ ∪
k⋃
i=1

(p ̸=i ⊗ q)|B′ ⊢ (p⊗ q)|B′.

We require the following lemmas about finitely satisfiable types. For a tuple

of variables y and B ⊆ B′ ⊆ M, where B is small but B′ is not necessarily small,

write Sfs
y (B′, B) := {p(y) ∈ Sy(B

′) : p is finitely satisfiable over B}.
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Lemma 5.4.7. Let y be a tuple of variables. Let p(y) be a partial type that is

finitely satisfiable over a small set B ⊆ M. Then p extends to a (complete) global

type that is finitely satisfiable over B. Thus, if B ⊆ B′ for some not necessarily

small set B′ ⊆ M, then

Sfs
y (B′;B) = {q|B′ : q ∈ Sfs

y (M, B)}.

Proof. We follow the argument in [48, Section 2.2]. Since p is finitely satisfiable

over B, we can extend the set {ϕ(B) : ϕ(y) ∈ p} to an ultrafilter U on By. Then p

extends to the global type {ϕ(y) ∈ L(M) : ϕ(B) ∈ U}, which is finitely satisfiable

over B.

Lemma 5.4.8. Let x, y be tuples of variables. Let a ∈ Mx and B ⊆ B′ ⊆ M,

where B is small but B′ is not necessarily small. Let p(x) = tp(a/M). Then

(i) If q ∈ Sy(M) is B-invariant, then p⊗ q = q ⊗ p = {ϕ(x, y) : ϕ(a, y) ∈ q}.

(ii) The set Sfs
a,y(B

′;B) := {(p⊗ q)|B′ : q ∈ Sfs
y (M;B)} is closed in Sx,y(B

′).

Proof. (i) It suffices to show that p ⊗ q = {ϕ(x, y) : ϕ(a, y) ∈ q}. Let ϕ(x, y) ∈

L(C), where {a} ∪B ⊆ C, and let b |= q|C. Then

ϕ(x, y) ∈ p⊗ q ⇔ ϕ(x, b) ∈ p⇔ M |= ϕ(a, b) ⇔ ϕ(a, y) ∈ q.

(ii) Without loss of generality, suppose B ̸= ∅. It suffices to show that for

r ∈ Sx,y(B
′), r ∈ Sfs

a,y(B
′;B) if and only if whenever ϕ(x, y) ∈ L(B′) is such that

{ϕ(a, y)} is not finitely satisfiable over B, then ¬ϕ(x, y) ∈ r.

Suppose r ∈ Sfs
a,y(B

′;B), so we have that r = (p⊗q)|B′ for some q ∈ Sfs
y (M;B).

If ϕ(x, y) ∈ L(B′) is such that ϕ(x, y) ∈ r, then ϕ(a, y) ∈ q and so {ϕ(a, y)} is

finitely satisfiable over B. Conversely, suppose whenever ϕ(x, y) ∈ L(B′) is such

that {ϕ(a, y)} is not finitely satisfiable over B, then ¬ϕ(x, y) ∈ r. Then r(a, y)

is finitely satisfiable over B, so extends to some q ∈ Sfs
y (M;B) by Lemma 5.4.7.

But then r = (p⊗ q)|B′: these are complete types such that if ϕ(x, y) ∈ r, then

ϕ(a, y) ∈ r(a, y) ⊆ q, and so ϕ(x, y) ∈ p⊗ q.
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We are now ready to prove Theorem 5.4.4.

Proof of Theorem 5.4.4. Firstly, we argue that (i) implies (iii). Suppose T is

strongly k-distal. Let ϕ(x1, ..., xk; y) ∈ L, B ⊆ M |= T with |B| ≥ 2, and

a = (a1, ..., ak) ∈ M . Write x := (x1, ..., xk). Let (M ′, B′) ≽ (M,B) be |M |+-

saturated. Let p := tp(a/M), and for all i ∈ [k], let p ̸=i := tp(a ̸=i/M).

Let q ∈ Sy(M) be finitely satisfiable over B. By Lemma 5.4.6, there is εq ∈

{0, 1} such that

rq := p|B′ ∪
k⋃
i=1

(p ̸=i ⊗ q)|B′ ⊢ ϕεq(x; y).

By compactness, there are ψqk+1(x, c
q
k+1) ∈ p|B′ and ψqi (x ̸=i, y, c

q
i ) ∈ (p ̸=i ⊗ q)|B′

for i ∈ [k] such that

ψq := ψqk+1(x, c
q
k+1) ∧

k∧
i=1

ψqi (x ̸=i, y, c
q
i ) ⊢ ϕεq(x; y).

Now, {[ψq] : q ∈ Sfs
y (M;B)} is an open cover for Sfs

a,y(B
′;B). By Lemma 5.4.8,

Sfs
a,y(B

′;B) is a closed, hence compact, subset of Sx,y(B
′), so the open cover above

has a finite subcover {[ψq] : q ∈ Q}.

For all b ∈ B, we have tp(b/M) ∈ Sfs
y (M;B), so there is q(b) ∈ Q such that

ψq(b) ∈ p⊗ tp(b/M) = tp(a, b/M), whence

a |= ψ
q(b)
k+1(x, c

q(b)
k+1) ∧

k∧
i=1

ψ
q(b)
i (x ̸=i, b, c

q(b)
i ) ⊢ ϕεq(b)(x; b);

in particular, |= ϕεq(b)(a; b), and so

a |= ψ
q(b)
k+1(x, c

q(b)
k+1) ∧

k∧
i=1

ψ
q(b)
i (x ̸=i, b, c

q(b)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b).

For all i ∈ [k + 1], we can code (ψqi : q ∈ Q) into a single formula as follows: for
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all b ∈ B,

a |=
∨
q∈Q

(
ψqk+1(x, c

q
k+1) ∧ u

q
k+1 = vqk+1

)
∧

k∧
i=1

∨
q∈Q

(
ψqi (x ̸=i, b, c

q
i ) ∧ u

q
i = vqi

)
⊢ ϕ(x; b) ↔ ϕ(a; b),

for any uq1, ..., u
q
k+1, v

q
1, ..., v

q
k+1 ∈ B′ such that for all i ∈ [k + 1], uqi = vqi if and

only if q = q(b); such uq, vq exist since |B| ≥ 2. Therefore, (iii) holds.

Next, we argue that (iii) implies (ii). Our argument expands that in [10,

Corollary 9]. Suppose (iii) holds. Let ϕ(x1, ..., xk; y) ∈ L, B ⊆ M |= T with

|B| ≥ 2, and a ∈ M . Let (M ′, B′) ≽ (M,B) be any |M |+-saturated elementary

extension, and let ψ1, ..., ψk+1 and N be given by (iii). Then, for all finite B̄ ⊆ B,

(M ′, B′) satisfies the first-order formula saying that there are c
(j)
1 , ..., c

(j)
k+1 ∈ B′

for j ∈ [N ] satisfying the conclusion of (ii). Since (M ′, B′) ≽ (M,B) is an

elementary extension, (M,B) satisfies the same formula with B′ replaced by B

throughout, so (ii) holds.

Finally, we argue that (ii) implies (i). By Theorem 5.4.3, it suffices to show

that (ii) implies statement (ii) of Theorem 5.4.3. Let ϕ(x1, ..., xk; y) ∈ L, B ⊆

M |= T with |B| ≥ 2, and a = (a1, ..., ak) ∈ M . Let ψk+1(x; zk+1) and N be

given by (ii), and let ψ(x; z(1), ..., z(N)) :=
∨N
j=1 ψk+1(x; z(j)). Then, for all finite

B̄ ⊆ B, there are c(j) ∈ B for j ∈ [N ] such that, for all b ∈ B̄,

a |= {ψ(x; c(1), ..., c(N))} ∪
k⋃
i=1

tp(a ̸=i/B) ⊢ ϕ(x; b) ↔ ϕ(a; b)

as required.

Our next goal is to bootstrap Theorem 5.4.4 to generate ‘uniform’ k-strong

honest definitions. It is now clear what these should look like.

Definition 5.4.9. Let ϕ(x1, ..., xk; y) ∈ L; write x := (x1, ..., xk). Let N ∈ N. A

(k + 1)-tuple of L-formulas (ψi(x ̸=i, y, zi) : i ∈ [k])⌢(ψk+1(x, zk+1)) is a k-strong

honest definition for ϕ of degree N if the following holds.
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Let B ⊆M |= T with 2 ≤ |B| <∞ and a = (a1, ..., ak) ∈M . Then there are

c
(j)
1 , ..., c

(j)
k+1 ∈ B for j ∈ [N ] such that for all b ∈ B, there is j ∈ [N ] with

a |= ψk+1(x, c
(j)
k+1) ∧

k∧
i=1

ψi(x ̸=i, b, c
(j)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b).

Remark 5.4.10. By compactness, (ψi(x ̸=i, y, zi) : i ∈ [k])⌢(ψk+1(x, zk+1)) is a

k-strong honest definition for ϕ of degree N if and only if the following holds.

Let B ⊆ M |= T with |B| ≥ 2 and a ∈ M . Let (M ′, B′) ≽ (M,B) be |M |+-

saturated. Then there are c
(j)
1 , ..., c

(j)
k+1 ∈ B′ for j ∈ [N ] such that for all b ∈ B,

there is j ∈ [N ] with

a |= ψk+1(x, c
(j)
k+1) ∧

k∧
i=1

ψi(x ̸=i, b, c
(j)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b).

Note that a 1-strong honest definition of degree 1 is a strong honest definition,

and if ψ(x, z) is a 1-strong honest definition of degree N > 1, then
∧N
j=1 ψ(x, zj)

is a (1-)strong honest definition (of degree 1). Hence, when defining strong honest

definitions, we did not need to make reference to degrees. Sadly, when k ≥ 2, this

trick does not work for k-strong honest definitions, and we do not know whether

the reference to degrees can be eliminated.

Problem 5.4.11. If ϕ(x1, ..., xk; y) ∈ L has a k-strong honest definition, does it

have a k-strong honest definition of degree 1?

As we shall see, the reference to degrees does not seem to affect the efficacy

of k-strong honest definitions, it merely makes the proofs more awkward.

The main result of this section is as follows.

Theorem 5.4.12. Let T be NIP and let k ∈ N+. The following are equivalent.

(i) The theory T is strongly k-distal.

(ii) Every ϕ(x1, ..., xk; y) ∈ L has a k-strong honest definition.

Our proof bootstraps the ‘non-uniform’ Theorem 5.4.4, following the strategy

in [10, Theorem 21]. The ingredient that necessitates NIP is the following fact.
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Fact 5.4.13 [36, Theorem 4; (p, q)-theorem]. For all p ≥ q ∈ N+, there is

K = K(p, q) ∈ N+ such that the following holds.

Let F ⊆ P(X) be a finite family with VC∗(F) ≤ q, and suppose F has the

(p, q)-property: if F0 ⊆ F has size p, then there is a q-element subset of F0 with

non-empty intersection. Then there is Y ⊆ X of size at most K(p, q) such that

F ∩ Y ̸= ∅ for all F ∈ F .

That K only depends on p and q in Fact 5.4.13 is not stated explicitly in [36,

Theorem 4]; see [10, Remark 7] for an argument to this end.

We prove a simple compactness lemma.

Lemma 5.4.14. Let T be strongly k-distal and ϕ(x1, ..., xk; y) ∈ L. Write

x := (x1, ..., xk). For all (k + 1)-tuples of L-formulas Ψ := (ψi(x ̸=i, y, zi) : i ∈

[k])⌢(ψk+1(x, zk+1)) and N ∈ N, fix mΨ,N ∈ N. Then there are N1, ..., NH ∈ N

and Ψ(h) := (ψ
(h)
i (x ̸=i, y, z

(h)
i ) : i ∈ [k])⌢(ψ

(h)
k+1(x, z

(h)
k+1)) for h ∈ [H] such that the

following holds.

Let B ⊆ M |= T with |B| ≥ 2, and let a ∈ M . Then there is h ∈ [H]

such that, for all B̄ ⊆ B of size at most mΨ(h),Nh
, there are c

(j)
1 , ..., c

(j)
k+1 ∈ B for

j ∈ [Nh] such that for all b ∈ B̄, there is j ∈ [Nh] with

a |= ψ
(h)
k+1(x, c

(j)
k+1) ∧

k∧
i=1

ψ
(h)
i (x ̸=i, b, c

(j)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b).

Proof. Let P be a new unary predicate. Let T ′ be the theory in the language

L′ := L ∪ {P, a} saying that if (M,B, a) |= T ′, then M |= T , |B| ≥ 2, and for

every (k + 1)-tuple of L-formulas Ψ := (ψi(x ̸=i, y, zi) : i ∈ [k])⌢(ψk+1(x, zk+1))

and N ∈ N, there is B̄ ⊆ B of size at most mΨ,N , for which there are no

c
(j)
1 , ..., c

(j)
k+1 ∈ B for j ∈ [N ] such that for all b ∈ B̄, there is j ∈ [N ] with

a |= ψk+1(x, c
(j)
k+1) ∧

k∧
i=1

ψi(x ̸=i, b, c
(j)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b).

By Theorem 5.4.4, T ′ is inconsistent.

We now prove Theorem 5.4.12.
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Proof of Theorem 5.4.12. That (ii) implies (i) follows immediately from Theorem

5.4.4, so we prove that (i) implies (ii).

Suppose T is strongly k-distal. Let ϕ(x1, ..., xk; y) ∈ L, x := (x1, ..., xk),

and d := |y|. For each (k + 1)-tuple of L-formulas Ψ := (ψi(x ̸=i, y, zi) : i ∈

[k])⌢(ψk+1(x, zk+1)) and N ∈ N, let θΨ,N(z(1), ..., z(N);x, y) be the following for-

mula, where for all j ∈ [N ] we have z(j) = (z
(j)
1 , ..., z

(j)
k+1):

N∨
j=1

ψk+1(x, z
(j)
k+1) ∧

k∧
i=1

ψi(x ̸=i, y, z
(j)
i )

∧ ∀x′


ψk+1(x

′, z
(j)
k+1) ∧

k∧
i=1

ψi(x
′
̸=i, y, z

(j)
i )

→ (ϕ(x′; y) ↔ ϕ(x; y))


 ;

let mΨ,N := d · VC∗(θΨ,N) ∈ N. By standard coding tricks, we may apply

Lemma 5.4.14 under the assumption that H = 1. (Otherwise, the following

proof produces (ψ
(h)
1 , ..., ψ

(h)
k+1)h∈[H] such that, for all a and B, there is h ∈ [H]

such that (ψ
(h)
1 , ..., ψ

(h)
k+1) works; we then code, for each i ∈ [k + 1], the formulas

(ψ
(h)
i : h ∈ [H]) into a single formula ψi such that, for all a and B, (ψ1, ..., ψk+1)

works.)

Applying Lemma 5.4.14 with H = 1, we obtain Ψ(1) := (ψ
(1)
i (x ̸=i, y, z

(1)
i ) :

i ∈ [k])⌢(ψ
(1)
k+1(x, z

(1)
k+1)) — from which we shall henceforth drop the superscripts

— and N1 =: N ∈ N. Let e := |z1| + · · · + |zk+1|. Let B ⊆ M |= T with

2 ≤ |B| <∞, and let a ∈Mx. For b ∈ By, θΨ,N(BeN ; a, b) is the set(c(1), ..., c(N)) ∈ BeN :

a |= ψk+1(x, c
(j)
k+1) ∧

k∧
i=1

ψi(x ̸=i, b, c
(j)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b) for some j ∈ [N ]

 .

Observe that the family F := {θΨ,N(BeN ; a, b) : b ∈ By} ⊆ P(BeN) has the

(mΨ,N/d,mΨ,N/d)-property, that is, any subset of F of size mΨ,N/d has non-
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empty intersection. Indeed, given b1, ..., bmΨ,N/d ∈ By, there is B̄ ⊆ B of size at

most mΨ,N such that b1, ..., bmΨ,N/d ∈ B̄y, and our choice of Ψ (given by Lemma

5.4.14) is precisely such that there is (c(1), ..., c(N)) ∈
⋂
i∈[mΨ,N/d]

θΨ,N(BeN ; a, bi).

By Lemma 2.2.11, VC∗(F) ≤ VC∗(θΨ,N) = mΨ,N/d. By the (p, q)-theorem

(Fact 5.4.13), there is Y ⊆ BeN of size at most K = K(mΨ,N/d,mΨ,N/d) ∈ N,

such that F ∩ Y ̸= ∅ for all F ∈ F . That is, there are c(1), ..., c(KN) ∈ Be such

that for all b ∈ By, there is j ∈ [KN ] with

a |= ψk+1(x, c
(j)
k+1) ∧

k∧
i=1

ψi(x ̸=i, b, c
(j)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b).

Since the above holds for all B ⊆ M |= T with 2 ≤ |B| < ∞ and a ∈ M ,

we conclude that (ψ1, ..., ψk+1) is a k-strong honest definition for ϕ of degree

KN .

We have shown that, under a global NIP assumption, the existence of k-

strong honest definitions characterises strong k-distality. Since there are strongly

k-distal theories that are not NIP, it is natural to pose the following problem.

Problem 5.4.15. Can the NIP assumption be removed from Theorem 5.4.12?

Since (strongly) k-distal theories are NIPk (Theorem 5.3.14), one may hope

that all uses of NIP can be replaced with uses of NIPk. However, this requires

an NIPk version of the (p, q)-theorem, which is yet to be developed. Even the

statement of such a theorem is not obvious.

Since it is open whether k-distality is equivalent to strong k-distality, we pose

the following problem.

Problem 5.4.16. Can the assumption of strong k-distality be replaced by k-

distality in Theorem 5.4.12? If not, do k-distal theories admit a (necessarily

weaker) version of k-strong honest definitions?

The regularity lemma we shall derive in the next section is for all hypergraphs

defined by a formula ϕ(x1, ..., xk; y) with a k-strong honest definition in an NIP
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theory. In particular, we do not require the full strength of strong k-distality,

since we only require the formula in question to have a k-strong honest definition,

rather than all formulas.

5.5 Regularity lemma

We finally come to our pièce de résistance, a regularity lemma for formulas

ϕ(x1, ..., xk;xk+1) with a k-strong honest definition in an NIP theory.

Remark 5.5.1. We had previously indexed the variables in ϕ as x1, ..., xk, y,

which emphasises the different roles of the x- and y-variables in the k-strong

honest definition. In this section, our main result is a regularity lemma for the

(k + 1)-uniform hypergraph ϕ(x1, ..., xk+1), where, a priori, none of the variables

x1, ..., xk+1 are special. Thus, it is sensible to index the variables as x1, ..., xk+1

(note, however, that xk+1 still plays a special role in the proof). This has the

added bonus of cleaner presentation. In particular, writing x := (x1, ..., xk+1), a

k-strong honest definition for ϕ has the form (ψi(x ̸=i, zi) : i ∈ [k + 1]).

5.5.1 Main proof

Throughout this subsection, we fix the following.

• An NIP L-theory T and models M,M |= T with M sufficiently saturated.

• A formula ϕ(x1, ..., xk;xk+1) ∈ L; write x := (x1, ..., xk+1).

• A k-strong honest definition (ψi(x ̸=i, zi) : i ∈ [k + 1]) for ϕ of degree N .

Our goal is the following theorem.

Theorem 5.5.2. (T is NIP.) For all δ ∈ (0, 1], there are θi(x ̸=i, zi) ∈ L for

i ∈ [k+1] and a natural number K ≤ polyϕ,ψ1,...,ψk+1,N
(δ−1) such that the following

holds.

Let µ(x ̸=k+1) and ν(xk+1) be Keisler measures, with ν(xk+1) generically stable

over M , and let ω(x) := ν(xk+1) ⊗ µ(x ̸=k+1). Then there are partitions Pi of

Mx ̸=i for i ∈ [k + 1], each of size at most K, such that:
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(i) For all i ∈ [k + 1] and Pi ∈ Pi, there is ci ∈M zi such that Pi = θi(x ̸=i, ci);

(ii)
∑
ω(P1 ∧ · · · ∧ Pk+1) ≤ δ, where the sum ranges over all (P1, ..., Pk+1) ∈

P1 × · · · × Pk+1 such that P1 ∧ · · · ∧ Pk+1 is not ϕ-homogeneous.

In (ii), the notation of P1∧· · ·∧Pk+1 can be understood by conflating Pi with

the formula that defines it, given by (i). That is,

P1 ∧ · · · ∧ Pk+1 = {x ∈ M : x ̸=i ∈ Pi for all i ∈ [k + 1]}.

Our proof strategy follows that of [11, Theorem 5.8], but it is more efficient

— we will discuss this after the proof.

Definition 5.5.3. Let B ⊆ M not necessarily be small. A B-definable cell is a set

γ ⊆ Mx of the form ψ1(x ̸=1, c1)∧· · ·∧ψk+1(x ̸=k+1, ck+1), where c := (c1, ..., ck+1) ∈

B; write γc for this set. Write GB for the set of all B-definable cells.

For a, c(1), ..., c(N) ∈ M, let Fa,c(1),...,c(N) be the set

{b ∈ M : a |= (x ̸=k+1, b) ∈ γc(j) ⊢ ϕ(x ̸=k+1; b) ↔ ϕ(a; b) for some j ∈ [N ]}.

A tuple Γ = (γc(1) , ..., γc(N)) ∈ GNB of B-definable cells is B-complete if there is

a ∈ M such that B|xk+1| ⊆ Fa,c(1),...,c(N) , in which case we say that Γ is B-complete

with respect to a. For Γ = (γc(1) , ..., γc(N)) ∈ GNB , we write γ ∈ Γ to mean γ = γc(j)

for some j ∈ [N ].

Remark 5.5.4. Since (ψi(x ̸=i, zi) : i ∈ [k + 1]) is a k-strong honest definition

for ϕ of degree N , for all a ∈ M and B ⊆ M with 2 ≤ |B| < ∞, there are

c(1), ..., c(N) ∈ B such that (γc(1) , ..., γc(N)) ∈ GNB is B-complete with respect to a.

We prove the following ‘cutting lemma’.

Proposition 5.5.5. For all r ≥ 1, there is a finite set B ⊆ M with 2 ≤ |B| =

Oϕ,ψ1,...,ψk+1,N(r2 log 2r) such that the following holds.

Let ν(xk+1) be a Keisler measure, generically stable over M . For a ∈ M and

c(1), ..., c(N) ∈ B, if (γc(1) , ..., γc(N)) ∈ GNB is B-complete with respect to a, then

ν(Fa,c(1),...,c(N)) ≥ 1 − 1
r
.
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Proof. Let d := |xk+1|. Applying Proposition 2.6.11 to the definable family F :=

{Fa,c(1),...,c(N) : a, c(1), ..., c(N) ∈ M}, there is S ⊆Md of sizeOϕ,ψ1,...,ψk+1,N(r2 log 2r),

such that, for all F ∈ F , |ν(F ) − Av(S;F )| ≤ 1
r
.

Choose B ⊆ M such that B contains all of singletons appearing in S and

2 ≤ |B| ≤ d|S|+ 2. If (γc(1) , ..., γc(N)) ∈ GNB is B-complete with respect to a, then

S ⊆ Bd ⊆ Fa,c(1),...,c(N) , that is, Av(S;Fa,c(1),...,c(N)) = 1, and so ν(Fa,c(1),...,c(N)) ≥

1 − 1
r
.

Definition 5.5.6. Let Z ⊆ Mx, a ∈ Mx ̸=k+1 , and b ∈ Mxk+1 . Write Z|a := {b′ ∈

Mxk+1 : (a, b′) ∈ Z} and Z|b := {a′ ∈ Mx ̸=k+1 : (a′, b) ∈ Z}.

We are now ready to prove Theorem 5.5.2.

Proof of Theorem 5.5.2. Apply Proposition 5.5.5 with r := 1
δ

≥ 1 to obtain

B ⊆ M with 2 ≤ |B| = Oϕ,ψ1,...,ψk+1,N(δ−2 log 2δ−1) = Oϕ,ψ1,...,ψk+1,N(δ−3). We

have |GB| ≤ |B|l for l := |z1| + · · · + |zk+1|.

For γ ∈ GB, let Dγ = {b ∈ Mxk+1 : γ|b ⊆ ϕ(x ̸=k+1; b) or γ|b ⊆ ¬ϕ(x ̸=k+1; b)}.

Let G :=
∨
γ∈GB

γ ∧ Dγ. We claim that ω(G) ≥ 1 − δ. It suffices to show that,

for all a ∈ Mx ̸=k+1 , ν
(
G|a
)
≥ 1 − δ.

Fix a ∈ Mx ̸=k+1 . By Remark 5.5.4, there is Γ = (γc(1) , ..., γc(N)) ∈ GNB which

is B-complete with respect to a. It suffices to show that (
∨
γ∈Γ γ ∧ Dγ)|a ⊇

Fa,c(1),...,c(N) , as ν(Fa,c(1),...,c(N)) ≥ 1 − δ by our choice of B ⊆M from Proposition

5.5.5. So, suppose b ∈ Fa,c(1),...,c(N) . Then, there is γ ∈ Γ such that

a |= (x ̸=k+1, b) ∈ γ ⊢ ϕ(x ̸=k+1; b) ↔ ϕ(a; b).

In particular, (a, b) ∈ γ, so it suffices to show that b ∈ Dγ. For all a′ ∈ γ|b,

a′ |= (x ̸=k+1, b) ∈ γ ⊢ ϕ(x ̸=k+1; b) ↔ ϕ(a; b),

and so |= ϕ(a′; b) ↔ ϕ(a; b). Thus, γ|b ⊆ ϕσ(x ̸=k+1; b) for the unique σ ∈ {0, 1}

satisfying |= ϕσ(a; b), and so b ∈ Dγ as required. We have shown that ω(G) ≥

1 − δ.
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For γ ∈ GB and σ ∈ {0, 1}, let Dσ
γ := {b ∈ Mxk+1 : γ|b ⊆ ϕσ(x ̸=k+1; b)}, so

that Dγ = D0
γ ⊔ D1

γ. Let the partition P1 of Mx ̸=1 be the set of Boolean atoms

of {ψ1(x ̸=1, c1) : c1 ∈ B} ∪ {Dσ
γ : γ ∈ GB, σ ∈ {0, 1}}, where Dσ

γ is identified

with the definable set {(x2, ..., xk+1) : xk+1 ∈ Dσ
γ}. For i ∈ [k + 1] \ {1}, let the

partition Pi of Mx ̸=i be the set of Boolean atoms of {ψi(x ̸=i, ci) : ci ∈ B}. Since

|GB| ≤ |B|l and M is NIP, for all i ∈ [k + 1] we have that

|Pi| ≤ polyϕ,ψ1,...,ψk+1,N
(|B|) ≤ polyϕ,ψ1,...,ψk+1,N

(δ−1).

It is clear that there are L-formulas θi(x ̸=i, zi) for i ∈ [k + 1], which are

functions of ϕ, ψ1, ..., ψk+1, N , and δ, such that (i) holds. To see that (ii) holds,

recall that ω(G) ≥ 1 − δ where G =
∨
γ∈GB

γ ∧Dγ =
∨
γ∈GB

∨
σ∈{0,1} γ ∧Dσ

γ . For

all γ ∈ GB and σ ∈ {0, 1}, γ ∧Dσ
γ is ϕ-homogeneous (indeed, γ ∧Dσ

γ ⊆ ϕσ(x)),

and by the definition of Boolean atoms, γ ∧ Dσ
γ is a union of sets of the form

P1 ∧ · · · ∧ Pk+1 where Pi ∈ Pi. Therefore, the union of all ϕ-homogeneous sets

of the form P1 ∧ · · · ∧ Pk+1 contains G, and has ω-measure at least 1 − δ. This

shows that (ii) holds.

As mentioned before, our proof strategy follows that of [11, Theorem 5.8].

There, they also prove a cutting lemma, which they use to prove that the hy-

pergraph satisfies the definable ‘strong Erdős–Hajnal property’ [11, Proposition

4.4], before bootstrapping it into a regularity lemma.

Let us state an abridged form of [11, Proposition 4.4].

Proposition 5.5.7. Let χ(x1, ..., xk+1) be a relation definable in a distal structure

M, and suppose |x1| = · · · = |xk+1|. For all α ∈ (0, 1], there are ε > 0 and

θi(xi, zi) ∈ L for i ∈ [k + 1] such that the following holds.

Let ν(xk+1) be a Keisler measure, generically stable over M. If ν(k+1)(χ) ≥ α,

then there are c1, ..., ck+1 ∈ M such that
∧
i∈[k+1] θi(xi, ci) is contained in χ and

has ν(k+1)-measure at least ε.

In our proof, we observe that such an intermediate step is not necessary: once

we have a cutting lemma, we can directly define the appropriate partitions to give
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us the desired regularity lemma. Note that an analogue of the definable strong

Erdős–Hajnal property for our relation ϕ can then easily be deduced from our

regularity lemma.

Corollary 5.5.8. (T is NIP, ϕ as before.) Suppose |x1| = · · · = |xk+1|. For

all α ∈ (0, 1], there are ε > 0 and θi(x ̸=i, zi) ∈ L for i ∈ [k + 1] such that the

following holds.

Let ν(xk+1) be a Keisler measure, generically stable over M . If ν(k+1)(ϕ) ≥ α,

then there are c1, ..., ck+1 ∈M such that
∧
i∈[k+1] θi(x ̸=i, ci) is contained in ϕ and

has ν(k+1)-measure at least ε.

Proof. Applying Theorem 5.5.2 with δ = α/2, we have that

∑
ν(k+1)(P1 ∧ · · · ∧ Pk+1) ≥ α− δ = α/2,

where the sum ranges over all (P1, ..., Pk+1) ∈ P1×· · ·×Pk+1 such that P1∧· · ·∧

Pk+1 ⊆ ϕ. Now |Pi| ≤ K ≤ polyϕ,ψ1,...,ψk+1,N
(δ−1) for all i ∈ [k + 1], so one of

these tuples (P1, ..., Pk+1) is such that ν(k+1)(P1 ∧ · · · ∧ Pk+1) ≥ α/(2Kk+1).

5.5.2 Main result

Throughout this subsection, we fix an NIP L-theory T and models M,M |= T

with M sufficiently saturated.

We can make Theorem 5.5.2 uniform, in the sense that if ϕ(x1, ..., xk+1) =

ϕ′(x1, ..., xk+1, e) for some e ∈M , then θi and K can be chosen independently of

e. The following theorem is the most general formulation of our regularity lemma

in this chapter.

Theorem 5.5.9. (T is NIP.) Let ϕ′(x1, ..., xk; (xk+1, u)) ∈ L have k-strong honest

definition (ψ1, ..., ψk+1) of degree N . For all δ ∈ (0, 1], there are θi(x ̸=i, zi, u) ∈ L

for i ∈ [k + 1], where θk+1 has no u-dependence, and a natural number K ≤

polyϕ′,ψ1,...,ψk+1,N
(δ−1), such that the following holds.

Let ϕ(x1, ..., xk+1) := ϕ′(x1, ..., xk; (xk+1, e)) for some e ∈ M . Let µ(x ̸=k+1)

and ν(xk+1) be Keisler measures, with ν(xk+1) generically stable over M , and let
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ω(x) := ν(xk+1)⊗µ(x ̸=k+1). Then there are partitions Pi of Mx ̸=i for i ∈ [k+ 1],

each of size at most K, such that:

(i) For all i ∈ [k+1] and Pi ∈ Pi, there is ci ∈M zi such that Pi = θi(x ̸=i, ci, e);

(ii)
∑
ω(P1 ∧ · · · ∧ Pk+1) ≤ δ, where the sum ranges over all (P1, ..., Pk+1) ∈

P1 × · · · × Pk+1 such that P1 ∧ · · · ∧ Pk+1 is not ϕ-homogeneous.

Proof. Apply Theorem 5.5.2 to ϕ′ with the Keisler measures µ(x ̸=k+1) and

ν ′(xk+1, u), where ν ′(χ(xk+1, u)) := ν(χ(xk+1, e)) for all χ(xk+1, u) ∈ L(M). By

Proposition 2.6.6, ν ′ is generically stable over M .

We would like to remove the NIP assumption from our main theorem.

Problem 5.5.10. Must Theorem 5.5.9 hold if T is not necessarily NIP?

We record the special case of Theorem 5.5.9 where |x1| = · · · = |xk+1|.

Corollary 5.5.11. (T is NIP.) Let ϕ′(x1, ..., xk; (xk+1, u)) ∈ L have k-strong

honest definition (ψ1, ..., ψk+1) of degree N , and suppose |x1| = · · · = |xk+1| =: d.

For all δ ∈ (0, 1], there is θ(x1, ..., xk, z, u) ∈ L and a natural number K ≤

polyϕ′,ψ1,...,ψk+1,N
(δ−1) such that the following holds.

Let ϕ(x1, ..., xk+1) := ϕ′(x1, ..., xk; (xk+1, e)) for some e ∈ M . Let V ⊆ Md

be M-definable, and let ν(xk+1) be a global measure, generically stable over M .

Then there is a partition P of V k of size at most K such that:

(i) For all P ∈ P, there is c ∈M z such that P = θ(x1, ..., xk, c, e) ∩ V k;

(ii)
∑
ν(k+1)(P1 ∧ · · · ∧ Pk+1) ≤ δν(V )k+1, where the sum ranges over all

(P1, ..., Pk+1) ∈ Pk+1 such that P1 ∧ · · · ∧ Pk+1 is not ϕ-homogeneous.

Proof. Without loss of generality, suppose ν(V ) > 0. Apply Theorem 5.5.9

with ν|V (xk+1) and µ(x1, ..., xk) := ν|V (x1) ⊗ · · · ⊗ ν|V (xk), where ν|V is the

relativisation of ν to V , given by ν|V (Z) := ν(V ∩ Z)/ν(V ) for all definable Z.

It is easy to see that ν|V is generically stable over M , and hence so is µ by Fact

2.6.9. (Note that the formulas θ1, ..., θk+1 given by Theorem 5.5.9 can easily be

coded into one formula θ.)
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Since finite counting measures are generically stable (Example 2.6.16), we

have the following statement for finite hypergraphs. We formulate this in a

manner more consistent with our earlier combinatorial discourse.

Corollary 5.5.12. (T is NIP.) Let ϕ′(x1, ..., xk; (xk+1, u)) ∈ L have k-strong

honest definition (ψ1, ..., ψk+1) of degree N , and suppose |x1| = · · · = |xk+1| =: d.

For all δ ∈ (0, 1], there is θ(x1, ..., xk, z, u) ∈ L and a natural number K ≤

polyϕ′,ψ1,...,ψk+1,N
(δ−1) such that the following holds.

Let ϕ(x1, ..., xk+1) := ϕ′(x1, ..., xk; (xk+1, e)) for some e ∈ M. Let V ⊆ Md be

finite. Then there is a partition P of V k of size at most K such that:

(i) For all P ∈ P, there is c ∈M z such that P = θ(x1, ..., xk, c, e) ∩ V k;

(ii) The induced partition Q of V k+1, given by

{{
w = (w1, ..., wk+1) ∈ V k+1 : w ̸=i ∈ Pi for all i ∈ [k + 1]

}
: P1, ..., Pk+1 ∈ P

}
,

is such that
∑

Q∈Q not ϕ-homogeneous |Q| ≤ δ|V |k+1.

5.5.3 Future work: recovering k-distality

By Theorem 5.4.12, the regularity lemma Corollary 5.5.12 applies to all relations

definable in an NIP strongly k-distal structure. As in Section 4.5, we can ask if

every relation ϕ on a set M satisfying this regularity lemma (without the definable

data) is such that (M,ϕ) admits an expansion that is NIP strongly k-distal.

Definition 5.5.13. Let ϕ(x1, ..., xk+1) be a relation on a set M . Say that ϕ

satisfies the NIP strongly k-distal regularity lemma if the following holds.

For all δ ∈ (0, 1], there is a natural number K ≤ polyϕ(δ−1) such that for all

finite V ⊆Md, there is a partition P of V k of size at most K inducing a partition

Q of V k+1, given by

{{
w = (w1, ..., wk+1) ∈ V k+1 : w ̸=i ∈ Pi for all i ∈ [k + 1]

}
: P1, ..., Pk+1 ∈ P

}
,

such that
∑

Q∈Q not ϕ-homogeneous |Q| ≤ δ|V |k+1.
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Problem 5.5.14. Let ϕ(x1, ..., xk+1) be a relation on a set M that satisfies the

NIP strongly k-distal regularity lemma. Must (M,ϕ) admit an expansion that is

NIP strongly k-distal? What if we assume that (M,ϕ) is NIP?

Note that, by Theorem 4.5.1, when k = 1 and (M,ϕ) is not assumed to be

NIP, the answer to the first part of the question is negative.

In Chapter 4, we showed that a formula that satisfies the distal regular-

ity lemma already enjoys a particular property of (formulas definable in) distal

structures, namely, improved Zarankiewicz bounds. We can ask if a similar phe-

nomenon occurs with the NIP k-distal regularity lemma.

Problem 5.5.15. Let ϕ(x1, ..., xk+1) be a relation on a set M that satisfies the

NIP strongly k-distal regularity lemma. Investigate the (combinatorial) properties

of ϕ.

5.6 Dual setup

Throughout this section, fix a complete L-theory T , and let M |= T be sufficiently

saturated.

So far, we have worked with k-strong honest definitions for formulas

ϕ(x1, ..., xk; y). We had previously attempted to define ‘dual’ k-strong honest

definitions for formulas ϕ(x; y1, ..., yk), to better align with the intuition of NIPk

that we have a k-dimensional box of parameters (as inputs for the k parameter

variables y1, ..., yk). We will also see in Section 5.7 that this dual setup has bet-

ter geometric properties. However, we are not able to prove that dual k-strong

honest definitions exist in an NIP strongly k-distal theory. In this section, we in-

troduce dual k-strong honest definitions, state their existence in an NIP strongly

k-distal theory as a conjecture, and prove a partial converse.

Definition 5.6.1. Let ϕ(x; y1, ..., yk) ∈ L; write y := (y1, ..., yk). Let N ∈ N. A

k-tuple of L-formulas (ψi(x, y̸=i, zi) : i ∈ [k]) is a dual k-strong honest definition

for ϕ of degree N if the following holds.
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Let B ⊆ M with 2 ≤ |B| <∞, and let a ∈ M. Then there are c(1), ..., c(N) ∈ B

such that for all b = (b1, ..., bk) ∈ B, there is j ∈ [N ] with

a |=
k∧
i=1

ψi(x, b̸=i, c
(j)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b).

Conjecture 5.6.2. If T is NIP and strongly k-distal, then every ϕ(x; y1, ..., yk) ∈

L has a dual k-strong honest definition.

We can prove a partial converse. To do so, we need to slightly strengthen our

notion of dual k-strong honest definitions for a formula ϕ(x; y1, ..., yk), to allow

y1, ..., yk to range over possibly distinct sets B1, ..., Bk. To state this strengthened

notion, we fix some notation.

Definition 5.6.3. For sets B1, ..., Bk and d1, ..., dk ∈ N, write Ωd1,...,dk(B1, ..., Bk)

for the set(c1, ..., ck) : ci ∈

 ⋃
j∈[k]\{i}

Bj

di

for i ∈ [k − 1], ck ∈

⋃
j∈[k]

Bj

dk
 .

When we write c ∈ Ωd1,...,dk(B1, ..., Bk), it is understood that c = (c1, ..., ck) where

|ci| = di. The parameters d1, ..., dk are omitted where understood from context.

Definition 5.6.4. Let ϕ(x; y1, ..., yk) ∈ L; write y := (y1, ..., yk). Let N ∈ N. A

k-tuple of L-formulas (ψi(x, y̸=i, zi) : i ∈ [k]) is a dual k-stronger honest definition

for ϕ of degree N if the following holds.

Let B1, ..., Bk ⊆ M with 2 ≤ |Bi| < ∞, and let a ∈ M. Then there

are c(1), ..., c(N) ∈ Ω|z1|,...,|zk|(B1, ..., Bk) such that for all bi ∈ Bi, writing b :=

(b1, ..., bk), there is j ∈ [N ] such that

a |=
k∧
i=1

ψi(x, b̸=i, c
(j)
i ) ⊢ ϕ(x; b) ↔ ϕ(a; b).

If one can prove that dual k-strong honest definitions exist in an NIP strongly

k-distal theory, we expect the proof to be adaptable without much difficulty to
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prove the existence of dual k-stronger honest definitions. That is, we expect

Conjecture 5.6.2 to have the same resolution if dual k-strong honest definitions

are replaced by dual k-stronger honest definitions. Regardless, with this stronger

notion in place, we are ready to prove a partial converse to Conjecture 5.6.2.

Proposition 5.6.5. If every ϕ(x; y1, ..., yk) ∈ L has a dual k-stronger honest

definition, then T is strongly k-distal.

Proof. If (I,<) is a sequence and a1, ..., am, b1, ..., bm ∈ I, write (a1, ..., am) ∼=

(b1, ..., bm) if, for all i, j ∈ [m], ai < aj if and only if bi < bj. Suppose (I,<)

has entries in Mn for some n ∈ N. If (I,<) is B-indiscernible and (a1, ..., am) ∼=

(b1, ..., bm), then tp(a1, ..., am/B) = tp(b1, ..., bm/B).

Let I0, I1 be dense infinite sequences without endpoints, whose entries lie in

Mn. Let a ∈ Mn andB1, ..., Bk ⊆ M, such that I0+a+I1 isB1 · · ·Bj−1Bj+1 · · ·Bk-

indiscernible for all j ∈ [k] and I0 + I1 is B1 · · ·Bk-indiscernible. Let

ϕ(y1, ..., yk, x0, ..., x2m) ∈ L, bi ∈ Bi, d0 < · · · < dm ∈ I0 (that is, (d0, ..., dm) is a

subsequence of I0), and dm+1 < · · · < d2m ∈ I1, such that |= ϕ(b1, ..., bk, d0, ..., d2m).

We show that

|= ϕ(b1, ..., bk, d0, ..., dm−1, a, dm+1, ..., d2m),

which would prove that I0+a+I1 is B1 · · ·Bk-indiscernible. Write y := (y1, ..., yk)

and b := (b1, ..., bk).

Let E be the set of singletons appearing in I0, and for i ∈ [k] \ {1}, let

Bi be the union of E with the set of singletons appearing in bi. By assump-

tion, ϕ(y1; y2, ..., yk, (x0, ..., x2m)) has a dual k-stronger honest definition, treating

(x0, ..., x2m) as one tuple of variables, and we apply this fact to the parameter

sets B2, ..., Bk, E and the tuple b1 ∈ M. We obtain ψi(y ̸=i, x0, ..., x2m, z) ∈ L for

i ∈ [k] \ {1}, ψ(y, z) ∈ L, and N ∈ N, such that for all finite J0 ⊆ I0, there are

e(1), ..., e(N) ∈ I0 such that, for all e0 < · · · < e2m ∈ J0, there is j ∈ [N ] such that

b1 |= ψ(y1, b̸=1, e
(j)) ∧

k∧
i=2

ψi(y1, b̸=1,i, e0, ..., e2m, e
(j))

⊢ ϕ(y1, b̸=1, e0, ..., e2m) ↔ ϕ(b1, b̸=1, e0, ..., e2m),
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and so

b1 |= ψ(y1, b̸=1, e
(j)) ∧

k∧
i=2

ψi(y1, b̸=1,i, e0, ..., e2m, e
(j)) ⊢ ϕ(y1, b̸=1, e0, ..., e2m)

since |= ϕ(b1, ..., bk, e0, ..., e2m) by b1 · · · bk-indiscernibility of I0 + I1.

Choosing J0 to be sufficiently large, we may choose e0, ..., e2m to be distinct

from e(1), ..., e(N). By b2 · · · bk-indiscernibility of I0+a+I1, for some/all d ∈ I0+I1

such that (e0, ..., e2m, e
(j)) ∼= (d0, ..., dm−1, a, dm+1, ..., d2m, d), we have that

ψ(y1, b̸=1, d) ∧
k∧
i=2

ψi(y1, b̸=1,i, d0, ..., dm−1, a, dm+1, ..., d2m, d)

⊢ ϕ(y1, b̸=1, d0, ..., dm−1, a, dm+1, ..., d2m).

But now I0 + I1 is b1 · · · bk-indiscernible and I0 + a+ I1 is b ̸=i-indiscernible for all

i ∈ [k], so

b1 |= ψ(y1, b̸=1, d) ∧
k∧
i=2

ψi(y1, b̸=1,i, d0, ..., dm−1, a, dm+1, ..., d2m, d),

and we conclude that |= ϕ(b1, ..., bk, d0, ..., dm−1, a, dm+1, ..., d2m).

Remark 5.6.6. Observe that the previous proof goes through under the weaker

assumption that ‘non-uniform’ dual k-stronger honest definitions exist: that is,

for all ϕ, B1, ..., Bk, and a, there is (ψ1, ..., ψk) satisfying the conclusion of Defin-

ition 5.6.4.

Why are we concerning ourselves with the dual setup? Other than the intu-

ition of NIPk discussed at the start of this section, dual k-strong honest defini-

tions also give rise to a useful form of cell decompositions with desirable geometric

properties, which is the subject of the next section.
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5.7 Higher-arity distal cell decompositions

In this section, we describe the analogue of distal cell decompositions that arises

from dual k-strong honest definitions. Throughout this section, fix a complete

L-theory T , and let M |= T be sufficiently saturated.

Let M |= T . Recall from Definition 2.7.8 that a strong honest definition

ψ(x; z) ∈ L for a binary formula ϕ(x; y) ∈ L induces a distal (cell) decomposition

for ϕ. That is, for all finite B ⊆ M of size at least 2, there is a cover F(B) of

Mx, such that for all F ∈ F(B),

(i) There is c ∈ B such that F = ψ(x; c); and

(ii) For all b ∈ B, we have either F ⊆ ϕ(x; b) or F ⊆ ¬ϕ(x; b).

Note that, in Definition 2.7.8, we have B ⊆ My rather than B ⊆ M , but these

formulations are essentially equivalent.

Suppose now the formula ϕ(x; y1, ..., yk) ∈ L has a dual k-strong honest

definition (ψi(x, y̸=i, zi) : i ∈ [k]) of degree N . Then, for all B1, ..., Bk ⊆ M

with 2 ≤ |Bi| < ∞, there is a cover F(B1, ..., Bk) of Mx, such that for all

F ∈ F(B1, ..., Bk), writing b ∈ B to mean b = (b1, ..., bk) for some bi ∈ Bi,

(i) There are c(1), ..., c(N) ∈
⋃
i∈[k]Bi such that

F =
∧
b∈B

∧
i∈[k]

ψi(x, b̸=i, c
(j(b))
i )

for some j(b) ∈ [N ]; and

(ii) For all b ∈ B, we have either F ⊆ ϕ(x; b) or F ⊆ ¬ϕ(x; b).

Note that (i) implies that there are c(1), ..., c(N) ∈
⋃
i∈[k]Bi such that

F =
∧
i∈[k]

∧
(b1,...,bi−1,bi+1,...,bk)

be∈Be

∧
j∈J(b1,...,bi−1,bi+1,...,bk)

ψi(x, b1, ..., bi−1, bi+1, ..., bk, c
(j)
i )

for some J(b1, ..., bi−1, bi+1, ..., bk) ⊆ [N ].
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What have we achieved? Suppose |B1| = · · · = |Bk| =: n. Then the set

Sϕ(B1 × · · · ×Bk) of ϕ-types over B1 × · · · ×Bk forms a partition of Mx, where

each piece has the form
∧
b∈B ϕ(x; b)εb for some εb ∈ {0, 1}. In particular, each

piece is the intersection of nk definable sets, defined using up to nk parameters.

The cover F(B1, ..., Bk) ofMx refines Sϕ(B1×· · ·×Bk), and each piece of the cover

is the intersection of O(nk−1) definable sets, defined using O(nk−1) parameters.

This drop in ‘dimension’ provides a way to show the non-existence of a dual k-

strong honest definition: if the set of ϕ-types over B1×· · ·×Bk is a ‘k-dimensional’

object which cannot be described with O(nk−1) parameters, then a dual k-strong

honest definition cannot exist.

We give an example of such an argument.

Definition 5.7.1. Fix an L-structure M. For A ⊆ M, the L-definable closure

of A, written dclL(A), is

{f(a1, ..., an) : ai ∈ A, f is a function that is L-definable without parameters}.

Given A,B ⊆ M, say that A is dclL-independent over B if for all a ∈ A,

a ̸∈ dclL((A \ {a}) ∪B). Omit L throughout when it is obvious from context.

Henceforth in this section, let M be an o-minimal expansion of an ordered

abelian group in the language L0, let L = L0 ∪ {P} where P is a new unary

predicate, and let T be the L-theory of (M,P ), where one of the following holds:

(i) (M,P ) is a dense pair, that is, P (M) is a proper elementary L0-substructure

of M that is dense in M ;

(ii) M = (R, <,+,×) and P (M) is a dense subgroup of (R×,×) such that

P (M) = −P (M) and P (M)∩R+ has the Mann property : for all a1, ..., an ∈

Q×, there are finitely many tuples (p1, ..., pn) ∈ (P (M) ∩ R+)n such that

a1p1 + · · · + anpn = 1 and
∑

i∈I aipi ̸= 0 for all ∅ ≠ I ⊆ [n];

(iii) P (M) is dense in M and dclL0-independent.
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In [26], Hieronymi and Nell prove that T is not distal and give references for

the fact that T is NIP. Their proof uses the external characterisation of distality

given in Theorem 2.7.3. In an unpublished note, Pantelis Eleftheriou and Aris

Papadopoulos prove the same fact by showing the non-existence of strong honest

definitions for the formula ϕ(x; y) := x ∈ y + P . Here, we generalise their

argument to show the non-existence of k-strong honest definitions for the formula

ϕ(x; y1, ..., yk) := x ∈ y1 + · · · + yk + P . We are grateful for their permission to

include our generalisation of their argument.

Henceforth in this section, unless otherwise specified, definability is with para-

meters and in the language L. We use P and P (M) interchangeably.

Definition 5.7.2. Let X ⊆ Mn be definable. Say that X is large if there is

m ∈ N+ and a definable function f : Mmn → M such that f(Xm) contains an

open interval in M . Say that X is small if it is not large.

Let Z ⊆ Mn be definable. Say that X is small in Z if X ∩ Z is small, and

co-small in Z if Z \X is small.

Fact 5.7.3. The following hold for the structure (M,P ).

(F1) The set P is small.

(F2) A finite union of small sets is small.

(F3) Let X ⊆ M be A-definable, where A ⊆ M . Then there are A-definable

elements a1 ≤ · · · ≤ am in M such that, writing a0 := −∞ and am+1 :=

+∞, for all i ∈ [m + 1] we have that X is either small or co-small in

[ai−1, ai]. In particular, if X is large, then it is co-small in one of these

intervals.

(F4) An A-definable set X ⊆ Mn is small if and only if there is an L0(A)-

definable function f : Mm →Mn such that X ⊆ f(Pm).

Proof. For statement (F1), see [16, Section 2] for references. Statements (F2),

(F3), and (F4) respectively follow from Corollary 3.15, Lemma 3.3, and Lemma

3.11 of [16].
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Theorem 5.7.4. Let k ∈ N+. The formula ϕ(x; y1, ..., yk) := x ∈ y1+· · ·+yk+P

does not have a dual k-strong honest definition.

Proof. Write y := (y1, ..., yk). Suppose for a contradiction that (ψi(x, y̸=i, zi) : i ∈

[k]) is a dual k-strong honest definition for ϕ of degree N . Let n > max{kN |zi| :

i ∈ [k]} be a natural number. By (F1) and compactness, we can find B ⊆ M

consisting of kn elements dclL-independent over P , and we let B = B1 ⊔ · · · ⊔Bk

be any equipartition of B, so |Bi| = n for all i ∈ [k]. By the discussion above,

there are F 1, ..., Fm ⊆M such that:

• M =
⋃
r∈[m] F

r.

• For all r ∈ [m], there are c(1), ..., c(N) ∈
⋃
i∈[k]Bi such that F r =

⋂
i∈[k] F

r
i ,

where

F r
i :=

⋂
(b1,...,bi−1,bi+1,...,bk)

be∈Be

⋂
j∈J(b1,...,bi−1,bi+1,...,bk)

ψi(x, b1, ..., bi−1, bi+1, ..., bk, c
(j)
i )

for some J(b1, ..., bi−1, bi+1, ..., bk) ⊆ [N ].

• For all bi ∈ Bi and r ∈ [m], we have either F r ⊆ (b1 + · · · + bk + P ) or

F r ⊆M \ (b1 + · · · + bk + P ).

Now consider the set:

M \

 ⋃
bi∈Bi

(b1 + · · · + bk + P )

 =
⋂
bi∈Bi

(M \ (b1 + · · · + bk + P )).

There are r1, ..., rt ∈ [m] such that

⋃
j∈[t]

F rj =
⋂
bi∈Bi

(M \ (b1 + · · · + bk + P )).

This is a finite intersection of co-small sets, which is large by (F2). Again by (F2),

one of the sets F rj =: F is large. For i ∈ [k], let Fi := F
rj
i , so that F =

⋂
i∈[k] Fi,

and hence each Fi is large. For each i ∈ [k], there is B̄i ⊆ Bi with |B̄i| ≤ N |zi|,

such that Fi is (B̄i ∪
⋃
i ̸=j∈[k]Bj)-definable.
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Since F1, ..., Fk are large with large intersection, by (F3), there are intervals

I1, ..., Ik with I := I1 ∩ · · · ∩ Ik ̸= ∅ such that for all i ∈ [k], Fi is co-small

in Ii and Ii is (B̄i ∪
⋃
i ̸=j∈[k]Bj)-definable. By (F4), for all i ∈ [k], there is a

(B̄i ∪
⋃
i ̸=j∈[k]Bj)-definable function fi : M li → M such that Ii \ fi(P li) ⊆ Fi.

Since F =
⋂
i∈[k] Fi,

I \
⋃
i∈[k]

fi(P
li) ⊆ F ⊆

⋂
bi∈Bi

(M \ (b1 + · · · + bk + P )).

Let bi ∈ Bi for all i ∈ [k]. Then, I \
⋃
i∈k fi(P

li) ⊆ I \ (b1 + · · · + bk + P ),

and thus I ∩ (b1 + · · · + bk + P ) ⊆
⋃
i∈k fi(P

li). Since P is dense in M , we

have that I ∩ (b1 + · · · + bk + P ) ̸= ∅. Hence, there is some p ∈ P such that

b1 + · · · + bk + p ∈
⋃
i∈[k] fi(P

li).

Since this holds for all bi ∈ Bi, by the pigeonhole principle we can fix i ∈ [k]

such that

#{(b1, ..., bk) ∈ B1×· · ·×Bk : b1 + · · ·+bk+p ∈ fi(P
li) for some p ∈ P} ≥ nk/k.

Observe that the projection of this set onto Bi has size at least n/k. Thus, as fi

is (B̄i ∪
⋃
i ̸=j∈[k]Bj)-definable,

#

bi ∈ Bi : bi ∈ dcl

P ∪ B̄i ∪
⋃

i ̸=j∈[k]

Bj

 ≥ n/k.

Since n/k > N |zi| ≥ |B̄i|, this contradicts the fact that Bi is dcl-independent

over P ∪
⋃
i ̸=j∈[k]Bj.

The proof of Theorem 5.7.4 demonstrates the geometric efficacy of our dual k-

strong honest definitions: it was able to capture the fact that x ∈ y1+ · · ·+yk+P

is a ‘k-dimensional’ object which cannot be described by a ‘(k − 1)-dimensional’

decomposition of M .

Since we have not been able to show that dual k-strong honest definitions

always exist in an NIP strongly k-distal theory, our proof does not show that
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T is not strongly k-distal. Of course, we know that k-strong honest definitions

always exist in an NIP strongly k-distal theory, so one may attempt to adapt the

proof above to show that, say, the formula x1 + · · · + xk ∈ y + P does not have

a k-strong honest definition. However, it is unclear to us how k-strong honest

definitions can be used to generate a similar form of cell decompositions that

capture the geometric intuition described above. For now, NIP strongly k-distal

structures do not have such cell decompositions to call their own, and the quest

for these continues.

Problem 5.7.5. Find an analogue of distal cell decompositions for (NIP) strongly

k-distal theories.
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