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Abstract

In this thesis, we demonstrate the intimate connection between the model-theoretic
notion of distality and concepts from combinatorics: developments in distality
both lead to and come from those in combinatorics.

Chapter 3 demonstrates the from direction. We prove that expansions of
Presburger arithmetic by a predicate R C N are distal when R satisfies certain
arithmetic combinatorial properties. We do so by constructing distal decompos-
itions (or strong honest definitions), a form of cell decomposition with desirable
combinatorial properties.

Chapter 4 demonstrates the to direction. We prove that relations definable
in a distal structure have better bounds for the Zarankiewicz problem, a clas-
sical problem in extremal combinatorics. In fact, we prove that these bounds
are enjoyed by any relation satisfying an improved version of Szemerédi regular-
ity lemma, a classical theorem in extremal combinatorics. Thus, motivated by
distality, we discover an interaction between two areas of extremal combinatorics.

Chapter 5 demonstrates both the to and the from directions. We show that
the developments of higher-arity distality and higher-arity (hypergraph) regular-
ity lemmas inform one another. The centrepiece of the chapter is a homogeneous
hypergraph regularity lemma that we derive for structures satisfying higher-arity
distality. In the quest for this, we develop strong honest definitions for higher-
arity distality, whose efficacy is supported by the regularity lemma.
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Chapter 1

Introduction

In this chapter, we give an overview of the themes and main results of this thesis,

as well as directions for future research.

This thesis explores the interplay between distality and combinatorics. Rather
than just connecting these two words with the conjunction and to title the thesis,
we thought that the prepositions to and from better conveyed our thesis (that
is, our argument): that the symbiosis between distality and combinatorics is a
mutualistic one. While the combinatorial applicability of distality (the to direc-
tion) is gaining increasing traction, the utility of combinatorial considerations for
research in distality (the from direction) is, in our opinion, undervalued, and we

hope to contribute to the development of both directions with this thesis.

Let us zoom out momentarily. Applying model-theoretic results to other fields
of mathematics is, of course, not a new idea. Model theory (in the mainstream)
is the study of first-order logical structures, and many objects of interest in other
fields of mathematics are definable in first-order logical structures in a natural
language. A great triumph of model theory is that logical properties of first-order
structures are often intimately connected with properties of interest in other fields
of mathematics. Notable examples include the logical property of o-minimality,
which is widely considered a front-runner in Grothendieck’s quest for a tame
topology, and that of stability, which generalises coset-likeness in group theory

and continuity in functional analysis.
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These logical properties are known to model theorists as dividing lines, as they
divide the ‘universe’ of first-order structures into those that have the property
(or often its negation) — and are therefore tame — and those that do not have
the property — and are therefore wild. Distality is one such dividing line (or,
as some might argue, a special case of the dividing line NIP), with which we
shall get very comfortable over the next few chapters. We shall see that distal
structures have very good combinatorial properties, so much so that the authors
of [9] postulate that ‘distal structures provide the most general natural setting
for investigating questions in “generalised incidence combinatorics”’.

This thesis strengthens the connection between distality and combinatorics,
while also exploring dividing lines adjacent to distality and their interactions with

combinatorics.

1.1 Main achievements

We now summarise the main achievements of this thesis.

In Chapter 3, Distality from Combinatorics, we recover distality from
combinatorial data. A common theme in model-theoretic research is to take a
tame structure M, a predicate R C M, and study whether the structure (M, R)
is also tame. We apply this theme to the structure M = (Z, <,+), Presburger
arithmetic. The structure (Z, <, +) is known to be distal, and we seek predicates

R C Z such that (Z, <,+, R) is still distal. We prove the following,.

Theorem A (Theorem 3.4.8). Let R C N be congruence-periodic and sparse.
Then (Z,<,4+, R) is distal.

Examples of such R C N include {d" : n € N} for any d € Ns, the set of
Fibonacci numbers, and {n! : n € N}. The definitions of congruence-periodic and
sparse, for which we refer the reader to Chapter 3, are arithmetic combinatorial
in nature. In particular, although the original formulation of sparsity is more

agreeable to a logician, in Theorem 3.2.19 we prove that sparsity is equivalent to
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regularity (where previously only one implication was known), a notion defined

in terms of recurrence relations.

We prove Theorem A by constructing strong honest definitions or distal de-
compositions. Distal decompositions are cell decompositions with desirable com-
binatorial properties, and a structure is distal if and only if every formula ¢(z;y)
has a distal decomposition. Proofs of distality by constructing distal decomposi-
tions are rare due to their technical nature, but are combinatorially superior: by
analysing the distal decompositions constructed, one can obtain combinatorial

information about definable sets in the structure.

In Chapter 4, Distality to Combinatorics, we recover combinatorial
interactions from a distality assumption. The chapter has two combinatorial
protagonists, the first of which is the (k-graph) Zarankiewicz problem, a classical
problem in extremal graph theory which asks for the maximum number of edges
a k-partite k-graph can have if it is K, __,-free, that is, it omits the complete
hypergraph K, _,. The best known upper bound (the Zarankiewicz bound) in
general, proved in [17], is O, (n*~Y/"™") where n is the size of each vertex class. It
is proved in [52] that when the hypergraph is defined by a semialgebraic relation
E(xy,...,xy), the Zarankiewicz bound can be improved to Oy g(F3(n1,...,n4)),
where ny,...,n;, are the sizes of the vertex classes, d = (|z1], ..., |zx|), and the
function Fg is defined in Definition 4.4.2. This is asymptotically smaller than

the previous bound.

Generalising from semialgebraic relations to those definable in a distal struc-
ture, it is proved in [9] that when k = 2 and the graph relation E(x1,x5) is defin-
able in a distal structure, the Zarankiewicz bound can be similarly improved.
Our goal was to extend this to & > 3 — to show that k-partite k-graphs defin-
able in a distal structure have similarly improved Zarankiewicz bounds — but
we found something better. Here, we encounter our second combinatorial prot-
agonist: the (k-graph) Szemerédi regularity lemma, a classical result in extremal
graph theory that allows every k-graph to be partitioned into a bounded number

of uniform pieces. It is known that k-graphs definable in a distal structure satisfy
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an improved version of this theorem called the distal reqularity lemma, in which
the sizes of the partitions are polynomial in the reciprocal of the error, and the
uniform pieces are homogeneous (see Definition 4.2.3). Collecting the degrees of
the polynomials into a strong distal reqularity tuple ¢, we state the main result
of Chapter 4. We refer the reader to Definitions 4.2.3 and 4.4.2 for the relevant

definitions.

Theorem B (Theorem 4.4.5). Let E(z1,...,xx) be a relation on a set M, with
strong distal regularity tuple ¢ = (cq, ..., cx) € R’;l and coefficient X. For all finite
P, C M% with n; := |Bi|, if E(Py, ..., Py) is K, _4-free, then for all ¢ > 0,

’E(Pb ,Pk)’ <<'u,,E,)\,5 Fg(nl, ,nk)

The slogan for Theorem B is that k-graphs satisfying the distal regularity
lemma have better Zarankiewicz bounds. That is, motivated by distality consid-
erations, we find an interaction between our two combinatorial protagonists.

Given a relation/hypergraph F that satisfies the distal regularity lemma, The-
orem B provides a recipe for computing explicit (that is, numerical) Zarankiewicz
bounds for F, namely, by computing strong distal regularity tuples for £. This
is not the only means to compute explicit Zarankiewicz bounds. Indeed, to con-
clude Chapter 4, we use a different approach to compute such bounds for certain
3-graphs definable in an o-minimal structure, and we state an abridged version
of this result below. (Note that o-minimal structures are distal, so such graphs

satisfy the distal regularity lemma).

Theorem C (Theorem 4.6.2, abridged). Let M be an o-minimal L-structure
expanding an ordered field. Let ¢(xy1, 9, x3;y) € L with |x1| = |zo| = 23] = 2.
For allb € MY and finite P; C M® with |Py| = |P2| = | P3| =: n, if o(Py, Ps, P3;b)

18 Ky uu-free, then

|¢(Py, Pa, Ps; )| <40 n**.

This extends the special case where M is the real ordered field, where a bound

of Oy (n**) is known [52, Theorem 1.6].
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In the eponymous Chapter 5, Distality to and from Combinatorics,
we develop the theories of higher-arity distality and hypergraph regularity by
using each to inform the other. We mentioned above that k-graphs definable
in a distal structure satisfy a homogeneous version of the k-graph Szemerédi
regularity lemma. Combinatorial intuition tells us that the most general context
in which k-graphs satisfy such a homogeneous regularity lemma should not be
distality, which can be seen as a binary notion, but rather a k-ary generalisation
such as the notion of (strong) k-distality in the literature.

We prove that this is indeed the case, by developing the theory of k-strong
honest definitions for a formula ¢(x1, ..., zx;y). Recall that a theory is distal if
and only if every formula ¢(z;y) has a strong honest definition. The appropri-
ate generalisation of strong honest definitions to higher arity is not clear from
the literature. Motivated by our quest for homogeneous regularity lemmas, we

crystallise the definition of k-strong honest definitions and prove the following.

Theorem D (Theorem 5.4.12). Let T' be an NIP L-theory and let k € N*. Then
T is strongly k-distal if and only if every ¢(z1, ..., v, y) € L has a k-strong honest
definition.

The main result of Chapter 5, in abridged form, is the following hypergraph

regularity lemma. For the full statement, we refer the reader to Theorem 5.5.9.

Theorem E (Theorem 5.1.8). Let k > 2. Let M be an NIP L-structure,
and let ¢(xq,...,xp_1;25) € L(M) have a (k — 1)-strong honest definition, with
|z1| = -+ = |xx| =: d. Then, for all § > 0, there is a natural number
K < poly,(6~") and a formula 0(x1, ..., x4_1, 2) € L such that the following holds.

Let V. C M? be M-definable, and let ju(xy) be a global measure, generically
stable over M. Then there is a partition VF=' = V; U --- U Vi, where each

Vi =0(x1,...,x5_1,¢) for some ¢ € M?, inducing the partition
Q= {{v = (v1, ..y 0) €EVF vy €V, foralli € [k:]} D1y Jk € [K]}

Of Vk’ such that ZQEQ not ¢-homogeneous M(k) (Q) < 5M(V)k
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1.2 Directions for future research

We now discuss some open problems that build on and extend the work of this
thesis. Some of these are essentially converses to the main results discussed above
where, having found a connection from distality o combinatorics, say, we now
seek the corresponding connection to distality from combinatorics.

In Theorem A, we prove that (Z,<,+, R) is distal when R C N satisfies
certain arithmetic combinatorial properties. It is natural to seek a converse: to
recover combinatorial properties of R C N from the distality of (Z,<,+, R).

More generally, we pose the following problem.

Problem A (Problem 3.1.3). Characterise the class of predicates R C N such
that (Z,<,+, R) is distal.

It is our hope that this might provide an answer to the question, posed in [57,
Question 11.16], of whether a non-distal NIP expansion of (N, <) exists.

In Theorem B, we derive improved Zarankiewicz bounds for relations sat-
isfying the distal regularity lemma. There are numerous ways to extend and
strengthen this result. One natural goal is to make the bounds in this theorem

explicit, which is tantamount to the following problem.

Problem B (Problem 4.1.3). Compute (strong) distal regularity tuples for re-
lations satisfying the distal regularity lemma, such as those definable in a distal

structure.

Theorem B acts as an advert for model theory to the combinatorial world
since, motivated by distality, we found a variant of the Szemerédi regularity
lemma that gives rise to improved Zarankiewicz bounds. We therefore pose the
following problem, in hope and expectation that model-theoretic considerations

will continue to contribute to a solution.

Problem C (Problem 4.1.4). Which other variants of the Szemerédi regularity

lemma give rise to improved Zarankiewicz bounds?
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In Theorem C, we derive explicit Zarankiewicz bounds for certain 3-graphs
definable in an o-minimal structure. Our result is restricted to 3-graphs because
our proof makes use of machinery that currently only exists in the binary setting
(namely, a cutting lemma). Thus, we pose the following problem, not only for its
own sake, but also because finding a solution would likely require the development

of higher-arity versions of such machinery.

Problem D (Problem 4.6.7). Fiz an o-minimal expansion M of an ordered field.
Find explicit Zarankiewicz bounds for relations ¢(x1,...,xx;y) definable in M,

where k > 2.

We now turn to questions concerning (strong) k-distality. Theorems D and
E, and much of Chapter 5, require a global NIP assumption. Since there are
(strongly) k-distal structures that are not NIP, we pose the following problem in

hopes of strengthening our results.

Problem E (Problems 5.4.15, 5.5.10). Can the NIP assumption be removed from
Theorems D and E (and other results in Chapter 5)?

The precise relationship between k-distality and strong k-distality is not
known. Unsurprisingly, the latter implies the former, but the converse is open.
Much of Chapter 5, especially Theorem D, applies to strongly k-distal structures.
We wonder if they also apply to k-distal structures.

Problem F (Problem 5.4.16). Can the assumption of strong k-distality be re-
placed by k-distality in Theorem D? If not, do k-distal theories admit a (neces-

sarily weaker) version of k-strong honest definitions?

The applicability of Theorem E is currently limited by the fact that, for
k > 2, there are very few examples of NIP strongly k-distal structures that are
not strongly (k — 1)-distal. In fact, there are none in the literature for k£ > 3,
and in all known examples of NIP strongly 2-distal structures that are not distal,
there are no non-degenerate ternary relations to which we can apply Theorem E.

This represents a big gap in the literature which we hope to fill.
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Problem G (Problems 5.3.11, 5.3.12). Find interesting exzamples of NIP strongly

k-distal structures.

Much of Chapters 4 and 5 concern regularity lemmas that hold in NIP strongly
k-distal structures (or simply distal structures when k& = 1), which are results
in the direction from distality to combinatorics. The converse is very interesting
indeed. One weakness of distality (and its higher-arity counterparts), when com-
pared to NIP and stability, is that there is no fruitful local definition of distality,
that is, a notion of a distal formula. One main achievement of this thesis is
that we have developed the theory of NIP strongly k-distal regularity lemmas,
which can be turned into a local definition: we can investigate the properties of
a formula that satisfies the NIP strongly k-distal regularity lemma.

In particular, we can ask how much k-distality can be recovered from such a

formula. For instance, we pose the following problem.

Problem H (Problem 5.5.14). Let ¢(xy,...,xx) be a relation on a set M that
satisfies the NIP strongly k-distal reqularity lemma. Must (M, $) admit an ez-
pansion that is NIP strongly k-distal? What if we assume (M, ¢) is NIP?

Note that, by Theorem 4.5.1, the answer to the first part of the question is
negative when k& = 1 and (M, ¢) is not assumed to be NIP, but we are not aware
of the answer in other cases.

Instead of recovering the full strength of NIP strong k-distality from the regu-
larity lemma, we can also ask which properties of NIP strongly k-distal structures
are already implied by the satisfaction of the regularity lemma. This is the spirit
of Theorem B, where we show that satisfying the distal regularity lemma is suf-

ficient for improved Zarankiewicz bounds. We seek similar results.

Problem I (Problem 5.5.15). Let ¢(xo, ..., xx) be a relation on a set M that sat-

isfies the NIP strongly k-distal reqularity lemma. Investigate the (combinatorial)

properties of ¢.

Much of the analysis of Chapter 5 depends on the k-strong honest definitions

that we develop for formulas ¢(z1, ...,z y). In particular, recall Theorem D,
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where we show that an NIP theory is strongly k-distal if and only if every formula
o(x1, ..., x;y) has a k-strong honest definition. For reasons to be explained in
Sections 5.6 and 5.7, one of which will be alluded to below, we believe it is more
natural to define (dual) k-strong honest definitions for formulas ¢(z; vy, ..., yk)
instead. Unfortunately, we are unable to prove an analogue of Theorem D for

dual k-strong honest definitions; we state this as a conjecture.

Problem J (Conjecture 5.6.2). Decide the following conjecture.
Let T be an NIP L-theory and let k € N*. If T is strongly k-distal, then every

&(x;y1, - yk) € L has a dual k-strong honest definition.

Note that Proposition 5.6.5 establishes a partial converse to this conjecture,
where we slightly strengthen the notion of dual k-strong honest definitions.

One comparative strength of dual k-strong honest definitions is that they give
rise to a form of cell decompositions with good geometric properties, analogous to
distal cell decompositions. Unfortunately, as Problem J is undecided, we do not

know if these cell decompositions always exist in NIP strongly k-distal theories.

Problem K (Problem 5.7.5). Find an analogue of distal cell decompositions for
(NIP) strongly k-distal theories.






Chapter 2

Preliminaries

In this chapter, we lay out some conventions used throughout the thesis and

review some key definitions and results from the literature.

This thesis is divided into five chapters (numbered 1, 2, 3, 4, 5). Each chapter
is divided into sections (numbered 1.1, say), and some sections are divided into

subsections (numbered 1.1.1, say).

2.1 Notation and basic definitions

In this thesis, all logical structures are first-order.

Unless otherwise stated, arguments in a formula are tuples of variables. If M
is a structure and z is a tuple of variables, then we write M* := M.

Let M be an L-structure and ¢(zq, ..., x;) be an L-formula. For A; C M
write ¢(Aq, ..., Ag) for the set {(aq, ...,ax) € Ay x---x A : M | ¢(aq,...,ax)}, and
for by € M+ write ¢(A1, ..., Ax_1, b) for the set {(a1,...,a5_1) € Ay X+ X Ap_1 :
M E ¢(a, ..., ap—1,bg)}.

We sometimes partition the variables in a formula using a semicolon rather

than a comma to indicate contextual distinction between the variables.

We often conflate a formula with the set it defines.

11



12 CHAPTER 2. PRELIMINARIES
2.1.1 Saturation

Given a cardinal k, a structure M is k-saturated if, for all A C M with |A| < &,
every type over A is satisfiable in M. We will often work in a sufficiently saturated
structure M: this is a structure that is k-saturated for some & sufficiently large

for our purposes. In this case, a subset A C M is small if |A| < k.

2.1.2 Indexing

For k € N*, [k] :={1, ..., k}.

Let ¢ = (c1, ..., c,) be a k-tuple. For I C [k] enumerated in increasing order
by i1, ..., 41, let ¢; denote the I-tuple (¢;,, ..., ¢;,). For i € [k], ey 1= cpp g3y

Let X be aset, and let k € N. Write () :== {A C X : |[A| = k}.

If y is an n-tuple with entries in a set Y (that is, y € Y"), we sometimes

simply write y € Y, but X C Y always means X C Y.

2.1.3 Covers and partitions

Given a set X, a collection (X7,..., X)) of subsets of X is said to cover X if
X =X,U---UX;. If additionally, X1, ..., X} are pairwise disjoint, we say that
they partition X; we will often write this partition as X = X; LU --- U X;. A
partition X7 L --- LU X of a finite set X is said to be an equipartition if, for
all 4,5 € [k], || Xi] —|X;]] < 1. A cover X = X;U---U Xy refines a cover
X =Y U---UYif for all i € [k], there is j € [I] such that X; C Y.

2.1.4 Asymptotics

Let D, E be sets and f(z,v),g(z,y) : DX E — Rso. Write f(z,y) = O.(9(z,v)),
flz,y) <, g(z,y), or g(x,y) >, f(x,y) if there is C = C(x) : D — Ry¢ such
that f(z,y) < Cg(x,y) for all z € D and y € E.

Let h(y) : E — Rsg. Write f(z,y) < poly,(h(y)) if there is C' = C(z) :
D — R such that f(z,y) < Ch(y)® forallz € D and y € E.
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Suppose D = (0,r) for some r € RT U {oo}. Write f(x,y) = 0,-0(g(x,y)) if
there is C' = C(z) : D — Rs¢ such that lim, ,o C(z) = 0 and f(z,y) < Cyg(x,y)
forallz € D and y € E.

2.2 VC(C-dimension

Throughout this section, fix a set system (X, S), that is, X isaset and S C P(X).
For A C X, write SNA :={SNA:S € S}, and say that S shatters A if
SNA="P(A).

Definition 2.2.1. The shatter function of S is the function ns : N — N such
that ms(n) = max{|SNA|: A C X, |A| =n}.

For all n € N, mg(n) < 2", with equality if and only if there is A C X of size
n such that S shatters A.

Definition 2.2.2. The VC-dimension of S is
VC(S) := max{|A| : A C X, S shatters A} = max{n € N: 7g(n) =2"}

if this maximum exists, and oo otherwise.

The following theorem, often known as the Sauer—Shelah Lemma, presents a

striking dichotomy. A proof can be found in [12].

Theorem 2.2.3. If VC(S) < d, then ms(n) < Z?:o (). In particular, either

ws(n) = 2™ for all n € N, or ws is bounded by a polynomial, that is, there is

d € N such that ms(n) = O(n?) for all n € N.

Theorem 2.2.3 says that VC(S) = oo if and only if mg(n) = 2" for all n € N,
and VC(S) < o if and only if 7s is bounded by a polynomial.
The dual of (X,S) is the set system (S, S*), where

S ={{SeS:xe8}:xe X}
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Define the dual shatter function of S to be 75 := s+, and the VC-codimension
or dual VC-dimension of S to be VC*(S) := VC(S*).
Let us give an alternative, equivalent account of these dual notions. Given a

subset S C X, write S1:= S and S?:= X \ S.

Definition 2.2.4. Let () # Sy C S. Given € € {0,1}% (that is, ¢ is a function
So — {0,1}), let A, = ﬂSeso SeS) If A, # 0, say that A, is a Boolean atom of
Sp. Write BA(Sy) for the set of Boolean atoms of S.

It is clear that BA(Sy) is a cover of X. Given distinct €, € {0,1}%0, we have
that A. N AL = (). Thus, BA(Sy) is a partition of X, and

IBA(So)| = [{e € {01} : A. # 0},

Lemma 2.2.5. For alln € N, 7§(n) = max{|BA(Sy)| : So C S, |So| = n}.

Proof. For finite Sy C S and € € {0, 1}%,

A#ADeTreX N 15 eSS () =1} S NS,
SeSy

Thus, for finite Sp C S, there is a bijection between BA(Sy) and $* N Sp. O

Definition 2.2.6. Say that the set systems (X,S) and (Y, 7)) are isomorphic,
written (X,S) = (Y, 7T) or S = T, if there is a bijection f : X — Y such that
T={{f(x):xe€S}:5€S}

It is clear that isomorphic set systems have the same (dual) shatter function
and thus (dual) VC-dimension.

Consider the double dual (S§*, 8*) of the set system (X,S). The map X —
S*x— {S € S:x € S} would be an isomorphism of set systems if it were a
bijection. However, it fails to be a bijection when there are distinct x,2’ € X

such that for all S € S, x € S if and only if 2’ € S.
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Definition 2.2.7. Define an equivalence relation ~ on X by declaring x ~ 2’ if|
forall S € S, x € §'if and only if 2’ € S. Define the skeleton of (X,S) to be the
set system (X/ ~,8/ ~), where §/ ~ :={{[z] : z € S} : S € S}.

Now indeed we have (X/ ~,§/ ~) = (§*,8*), witnessed by the bijection
X/ ~— 8 [z]—{SeS:xeS}

_ _ * % R
Lemma 2.2.8. We have s = m5/ = Mg and mg = TG/ = Mgen-

Proof. Since §/ ~ = §**, it suffices to prove that ms = 7s/ and 75 = T/
The latter holds since S* = (§/ ~)*, witnessed by the bijection § — &/ ~,
S — {[z] : ® € S}. For the former, observe that for all finite A C X, we have

SN A| =|SN A for any set Ay C A of representatives for A/ ~. O
The following result is folklore.
Proposition 2.2.9. If VC(S) < k, then VC*(S) < 2K+,

Proof. Suppose VC*(S) > 21 Then, there is a subset of S of size 28*1 say
{Sr : I C [k+1]}, shattered by S*. Thus, there are distinct z1, ..., xx41 € X such
that, forall I C [k+1]andi € [k+1], S; e {Se€ S :x; € S}ifand onlyifi € I,
that is, z; € Sy if and only if i € I. Thus, {xy, ..., 251} is shattered by S, and
so VC(S) > k+ 1. O

Corollary 2.2.10. VC(S) < oo if and only if VC*(S) < oo.
Proof. Combine Proposition 2.2.9 and Lemma 2.2.8. m

We finish this section by showing that taking the restriction of a set system

does not increase the VC-(co)dimension.

Lemma 2.2.11. Let Y C X and consider the set system (Y,SNY). We have
that VC(SNY) < VC(S) and VC* (S NY) < VC*(S).

Proof. If A CY is shattered by SNY, then A is shattered by §. Thus, we have
VC(SNY) < VC(S).
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For the dual, suppose S, ..., S, € S are such that {S;NY,...,S, NY} is a set
of size n that is shattered by (SNY)*. That is, there is (y; € Y : I C [n]) such
that, for all i € [n], yr € S; if and only if ¢ € I. Then {5, ..., 5,} is a set of size
n that is shattered by S. Thus, we have VC*(SNY) < VC*(S). O

2.3 NIP

Throughout this section, fix a complete L-theory T', a sufficiently saturated model
M T, and ¢(z;y) € L.

Definition 2.3.1. The shatter function m, (respectively dual shatter function
w5, VC-dimension VC(¢), dual VC-dimension, and VC-codimension VC*(¢)) of ¢
(with respect to T') is defined to be that of the set system (M?, {¢(z;b) : b € MY})
for any M = T.

It is straightforward to check that, since T' is complete, the definition above
is truly independent of M = T.

The dual of the set system (M® {¢(z;b) : b € MY}) is isomorphic to the
skeleton of the set system (MY, {¢(a;y) : a € M*}). Thus, writing ¢*(y; ) =
¢(z;y), we have 7} = my- and VC*(¢) = VC(¢*) by Lemma 2.2.8. As in the
previous section, we can give an alternative account of the dual shatter function

and dual VC-dimension using Boolean atoms. Write ¢! := ¢ and ¢° := —¢.

Definition 2.3.2. Let a € M*, and let B C MY be small. The ¢-type of a over
Bis
tpy(a/B) = {¢°(x:0) : b € B,= € {0,1}, = ¢*(a: D)},

and we let Sy(B) := {tpy(a/B) : a € M”} be the set of ¢-types over B.

The set S4(B) is the collection of those sets {¢°®)(z;b) : b € B}, where ¢ :
B — {0, 1}, that are consistent (equivalently, by compactness, finitely satisfiable
in any model containing B). If B is finite, then Sy(B) = {tp,(a/B) : a € M"}
for any M |= T such that B C MY.
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Ibl

d(x; b3)

d(x; bs)

Figure 2.1: The ¢-types over B

It is often helpful to conflate a ¢-type over B, say {¢°®)(z;b) : b € B}, with
the set of its realisations, that is, (), ¢ (2;b). This way, a ¢-type over B is
precisely a Boolean atom of {¢(z;b) : b € B}. By Lemma 2.2.5, for all n € N,

m5(n) = max{|Sy(B)| : B C M, |B| = n} = max{|S4(B)|: B C M",|B| =n}

for any M |= T. Furthermore, S,(B) forms a partition of M* and if B is finite,
then Sy(B) forms a partition of M* for any M = T such that B C MY.

Fixing M = T and B = {by,by,b3,0,} C MY, Figure 2.1 illustrates Sy(B)
as a partition of M*. The sets {¢(z;b) : b € B} form a Venn diagram in the
universe M®, whose non-empty regions are precisely the ¢-types over B, forming
the partition S,(B) of M*. Taking the shaded ¢-type p as an example, for any
a € p, we have that p = tp,(a/B) is the ¢-type of a over B, and every a’ € p has
the same ¢-type over B: for all b € B, = ¢(a;b) if and only if = ¢(a’;b).

Definition 2.3.3. Say that ¢ has the independence property (IP) if VC(¢) = oo,

and not the independence property (NIP) otherwise.

In an egregious abuse of grammar consistent (equivalently, satisfiable) with
the literature, we say that ¢ is, rather than has, IP or NIP. By Corollary 2.2.10
and Theorem 2.2.3, the conditions that ¢ is NIP, ¢* is NIP, 7y is bounded by a
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polynomial, and 77 is bounded by a polynomial are all equivalent.

Definition 2.3.4. Say that T is NIP if every ¢ (z;y) € L is NIP, in which case
also say that every model of T is NIP.

2.4 Types

We follow the treatment in [18]. Throughout this section, fix a complete L-theory
T and a sufficiently saturated model Ml = T'. If B C M and a, a’ are tuples from
M of the same length, write a =p o’ to mean tp(a/B) = tp(a’/B). For a type
q € S(B) and By C B, write ¢|By := ¢ N L(By).

Henceforth in this section, all parameter sets are small.

Definition 2.4.1. Let B C M. A type p(x) € S(M) is invariant over B or
B-invariant if, for all ¢(z;y) € L and d,d € M with d =5 d', ¢(z;d) € p if and
only if ¢(z;d’) € p.

Definition 2.4.2. Let p(z),q(y) € S(M) with p invariant over B. Define the
product (p ® q)(z,y) € SM) as follows. For ¢(z,y) € L(B') with B C B,
o(z,y) € p® q if and only if ¢(z,d) € p for some/all d € M such that d |= q|B’.

The following fact is straightforward to prove, and can be found as Facts 2.19

and 2.20 of [18].
Fact 2.4.3. Let p(x),q(y),r(z) € S(M) with p,q invariant over B.
(i) The ® operation is associative: (pRq) dr=pR (¢ 7).
(i1) The type p ® q is invariant over B.
In light of (i), we make the following definition.

Definition 2.4.4. Let p(z) € S(M) be invariant over B. For n € N, we
define p™(z1,...,2,) = p(z1) ® --- ® p(x,) € S(M). Define p) (21, 75,...) 1=

Un€N+ p(n) (1’1, ceny xn)

We define a few properties of types.
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Definition 2.4.5. Let p(z) € S(M) and B C M.

(i) Say that p is finitely satisfiable over B if, for all ¢(z) € p, there is b € B
such that = ¢(b).

(ii) Say that p is definable over B if, for all ¢(z;y) € L, there is ¥(y) € L(B)
such that for all d € M, ¢(z;d) € p if and only if = ¢(d).

(iii) Say that p is generically stable over B if it is finitely satisfiable and definable

over B.

The following fact is straightforward to prove, and can be found as Examples

2.16 and 2.17 of [18].

Fact 2.4.6. Let p(x) € S(M) be finitely satisfiable or definable over B. Then p

is invariant over B.
We give some examples of generically stable types.

Example 2.4.7 (Realised types). Let B C M and a € B. It is straightforward

to see that tp(a/M) is generically stable over B.
The following two examples are taken from [18, Example 2.31].

Example 2.4.8. Let T = Th(Q, Ry, Ry, ...), where Q = R, (z,y) if and only if
r <y < z+n. Let p(x) be the unique global type extending { =R, (z, a), "R, (a,x) :

a € M,n € N}. Then p(z) is generically stable over a small model.

Example 2.4.9. Let T be the theory of the two-sorted structure (V, R), where
R is a real closed field equipped with the ordered field structure, V' is an infinite-
dimensional R-vector space equipped with the group structure, and there is a
binary function symbol R x V' — V for scalar multiplication. Let p(z) be the
unique global type in the sort V' extending

{x ¢ W : W is an M-definable proper vector subspace}.

Then p(zx) is generically stable over a small model.
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2.5 Indiscernible sequences

We follow the treatment in [18]. Throughout this section, fix a complete L-theory
T and M |= T sufficiently saturated. In this section, all parameter sets are small.

Henceforth, when a sequence (I, <) is defined, it is implicit that the entries
of I are tuples from M, all of the same length, and (I, <) is a linear order. If

S C M is such that a € S for all a € I, we say that I is in S.

Definition 2.5.1. Let (/, <) be a sequence and B C M. Say that [ is indis-

cernible over B or B-indiscernible if, for all n € N and a7 < --- < a, and
a) < ---<al,inl, wehave aj---a, =p a}---a,. When B = (), say that I is
indiscernible.

Definition 2.5.2. Let (I, <) be a sequence and B C M. The Ehrenfeucht-
Mostowski type (EM-type) of I over B, denoted tp™ (I/B), is

{6(x1,...,2,) € L(B) : M = ¢(ay, ...,a,) forall a; < -+ < a, in I}.

If (I, <) is indiscernible over B, then for alln € N, {¢(x1, ..., z,) € tp™(I/B)}

is a complete type over B.

Definition 2.5.3. Let p(z) € S(M) be invariant over B, and let (I,<) be a
sequence with |a| = |z| for all a € I. Say that I is a Morley sequence of p over

B if tpP™M(1/B) = p)| B, in which case we write I = p“)|B.

Note that such a sequence is necessarily indiscernible over B. Indeed, for all

ne€N*tanda, <---<a,in I, tp(ay,...,a,/B) = p™|B.

2.6 Keisler measures (NIP)

We follow the treatment in [18]. Throughout this section, fix a complete L-theory
T and a sufficiently saturated model M |= T'; we assume that 7' is NIP.

For B C M and z a tuple of variables, write £,(B) be the Boolean algebra of
B-definable subsets of M*. We will often represent an element of £,(B) by an
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L(B)-formula defining it.

Definition 2.6.1. Let x be a tuple of variables and B C M. A function pu(zx) :
L.(B) — [0,1] is a (Keisler) measure over B if it is a finitely additive probability

measure, that is:

(i) For all ¢(z) € Lo(B), p(=¢(z)) = 1 — p(e(x));
(iii) For all disjoint ¢q(z), ..., ¢p(x) € L(B), u <\/f:1 qﬁz(x)) = Zle w(pi(z)).
If B =M, say that p is a global (Keisler) measure.

Remark 2.6.2. In measure-theoretic literature, probability measures are often
assumed to be o-additive (that is, countably additive) functions on c-algebras.
Following Keisler’s original paper [31] on Keisler measures and subsequent model-
theoretic literature, we use the term probability measure to mean a (finitely ad-
ditive) function on a Boolean algebra which respects Boolean operations in the

sense of Definition 2.6.1.

Keisler measures are generalisations of types. Indeed, every p(z) € S,(B)
induces a measure over B that sends ¢(z) to 1 if ¢ € p and 0 otherwise.

The following fact says that every Keisler measure over B extends uniquely
to a regular Borel probability measure i on S, (B), that is, a o-additive regular

probability measure on the set of Borel subsets of S,(B). By regular, we mean

that if X C S,(B) is Borel, then
inf{a(U) : U 2O X is open} = sup{fu(F) : F* C X is closed}.
Recall that S,(B) has a basis of clopen sets given by {[¢(z)] : ¢(x) € L(B)},

where [¢(x)] = {p € S.(B) : ¢ € p}.

Fact 2.6.3. Let u(x) be a Keisler measure over B. Then there is a unique
regular Borel probability measure i on S,(B) such that fi([¢(z)]) = w(o(x)) for
all p(z) € L(B).
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Proof. See [18, Section 7.1]. More details can be found in the online version [19,

Section 7.1] of this source. O

Thus, abusing notation, by a Keisler measure p(x) over B we will often mean
the unique associated regular Borel measure on S, (B).
The definitions introduced for types in the previous section can be extended

to Keisler measures. Henceforth in this section, all parameter sets are small.
Definition 2.6.4. Let u(x) be a global measure, and let B C M.

(i) Say that p is invariant over B or B-invariant if, for all ¢(z;y) € L and
d,d" € M such that d =g d', p(é(z;d)) = p(o(z; d')).

(i) Say that u is finitely satisfiable over B if, for all ¢(x) € L(M) such that
p(p(z)) > 0, there is b € B such that = ¢(b).

(iii) Say that p is definable over B if p is B-invariant and, for all ¢(z;y) € L

and r € [0, 1], the set

{q € Sy(B) : u(¢(z;d)) < r for all/some d € M such that d = ¢}

is an open subset of S,(B).

(iv) Say that p is generically stable over B if it is finitely satisfiable and definable

over B.

The following fact is straightforward to prove, and can be found in Section

7.4 of [18].

Fact 2.6.5. Let p(z) be a global measure, and let B C M. If u is finitely satis-

fiable over B, then u is B-invariant.
We record the following ‘closure property’ of generically stable measures.

Proposition 2.6.6. Let u(x) be a global measure, generically stable over B C M.
Let p/(x,y) be the global measure defined by p'(¢(x,y)) = u(p(x,b)) for some
fized b € B. Then ' is generically stable over B.
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This is a straightforward consequence of the following lemma.

Lemma 2.6.7. In items (i) and (iii) of Definition 2.6.4, the clause ‘¢(x) € L’
can be replaced by ‘¢(x) € L(B)".

Proof. For item (i), this is obvious. For item (iii), suppose p is definable over B,
and let ¢(z;y) € L(B) and r € [0,1]. Thus, there is ¢(z;y,2) € L and b € B
such that ¢(z;y) = ¥(x;y,b). We wish to show that the set W, given by

{q € Sy(B) : u((x;d,b)) < r for all/some d € M such that d = ¢},

is an open subset of S, (B).

Since p is definable over B, the set X, given by
{p € Sy.(B) : u((z;d,e)) < r for all/some (d,e) € M such that (d,e) = p},
is an open subset of S,.(B), and thus so is the set X N [z = b], which equals
{p € Sy(B)N[z =b] : p(y(z;d, b)) < r for all/some d € M such that (d,b) = p}.

Thus, we have X N[z = b] = |J,;[0i(y, )] for some formulas 0;(y, 2) € L(B). It
is straightforward to check that W = (J,,[0i(y, )], and so W is an open subset
of Sy(B). O

We now define products of measures.

Definition 2.6.8. Let u(x), A(y) be global measures, with p invariant over some
M = T. The product (n ® N)(x,y) is the global measure such that, for all
¢(z,y;0) € L(M),

(o Nt = [ fdily,

Sy (N)
where N is any small model containing M U {b} and f : S,(N) — [0,1] sends
4 € 5,(N) to u(6(x, d;B)) for any d = q.

For this to be well-defined, it must be independent of the choice of N, and
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the function f must be measurable. Proofs of these facts (which rely on the fact
that 7" is NIP) can be found in Section 7.4 of [18].
The following fact is taken from Section 7.4 of [18].

Fact 2.6.9. (i) The product operation is associative.

(i1) If p(z) and X(y) are global measures, generically stable over a small model

M, then (u® N)(x,y) is generically stable over M.

In light of (i), given a global measure u(z) and k € N*, we define the global
measure p®) (zy, ..., x2p) = p(r) @ - @ p(wy).

Although Definition 2.6.4 makes sense in an arbitrary theory, in NIP theories,
generically stable measures p admit an extremely useful alternative formulation,
via an ‘e-net theorem’. Roughly speaking, this says that for every definable family
A, the p-measure of every A € A can be uniformly approximated by sampling
the membership relation x € A.

To state this formally, we first fix the following notation.
Definition 2.6.10. Let k € N and A C M*. For n € N* and ay, ..., a,, € M*, let

_ #{ie[n]:aieA}‘

Av({ay,...;an}; A) == Av(ay,...,an; A) :
Theorem 2.6.11. (T is NIP.) Let M = T. The following are equivalent for a
global measure p(x).

(i) The measure p is generically stable over M.

(11) Let ¢(x;y) € L and € € (0,1]. Then there are ay, ...,a, € M* such that, for
all b€ M,

|Av(ay, ..., an; @23 b)) — p((a;b))| < e.
(11i) The statement (ii) with M replaced by M.

Moreover, in (it) and (iii), we may assume n = Oycg)(e~%log(2e™)); in partic-

ular, n can be chosen independently of p and M.
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Proof. See [18, Theorem 7.29]. The ‘moreover’ statement is a combination of [18,

Lemma 7.24] and Lemma 2.2.3. O

We use this theorem to show that an ultraproduct of generically stable meas-

ures is generically stable (in the NIP theory 7).

Definition 2.6.12. Let (r; : i € I) be a sequence of constants in [0, 1], and let
U be an ultrafilter on I. The wultralimit limy, r; is the unique r € [0, 1] such that,

foralle >0,{iel:|r,—r|<c}el.

Definition 2.6.13. Let (M; : ¢ € I) be a sequence of sufficiently saturated L-
structures, and for ¢ € I let p;(z) be a global measure (over M;). Let U be an
ultrafilter on I, and let M := [],, M. The uiltraproduct (I],, p:)(x) of (p; : i € I)
is the following global measure (over M). Let ¢(x;b) € L(M), and let (b; : i € I)
be a representative for b. Declare ([ [,, pi)(¢(; b)) 1= limy p; (o (a; b;)).

Proposition 2.6.14. (T is NIP.) Let (M; : i € I) be a sequence of models of
T, and for i € I let p;(z) be a global measure generically stable over M;. Let U

be an ultrafilter on I. Then the ultraproduct measure p := [[,, p; is generically

stable over M :=[[,, M;.

Proof. We follow [50, Corollary 1.3]. Let ¢(z;y) € L and € € (0,1], and let n € N
be given by Theorem 2.6.11. For all i € I, there are ai, ..., a’ € M; such that, for
all b; € M;,

Av(at,...a’; d(z; b)) — wi(d(z; b)) < /2.
For k € [n], let a, == (a%, :i € I) € M. Fix b€ M, and let (b; : i € I) be a
representative for b. Then {i € I : |u;(¢(z;6;)) — p(o(z;d))| < €/2} € U, and so

{i el: ‘Av(ail, e als d(w; b)) — u(gb(x;b))‘ < 5} eu.

By Lo$’s Theorem, |Av(a1, ey s @(230)) — p(p(z5 b))‘ < € as required. ]

We give three examples of generically stable Keisler measures, taken from [18,

Example 7.32].
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Example 2.6.15 (Average types). Let M = T. Let (p,(z) : n € N) be a
sequence of global types, generically stable over some A C M, and let (¢, : n € N)
be a sequence of constants in [0, 1] such that ) ¢, = 1. Let pu(z) be the measure
> Py over M, that is, p(¢(z)) = >, cn - 1(¢ € p,). Then p is generically
stable over A — see [18, Example 7.32].

Example 2.6.16 (Counting measures). Let ay,...,a, € M*. The (normalised)
finite counting measure supported on {ay, ..., a,} is the global measure p(z) such

that u(A) = 14{i € [n] : a; € A} for each definable A C M*. This measure is

generically stable over {ay, ..., a,}. Indeed, for i € [n] let p; := tp(a;/M), which

is generically stable over {a;}. Then =%, +p;, and so p is generically stable

i€[n]
over {ay, ..., a,} by the previous example.

We now define pseudofinite counting measures as ultraproducts of finite count-
ing measures. Suppose M = [[,, M};, where (M : ¢ € I) is a sequence of models
of T and U is an ultrafilter on I. For i € I, let u;(x) be a finite counting measure

with support in M. Say that the ultraproduct [],, p; is a pseudofinite counting
measure. By Proposition 2.6.14, since T" is NIP, [[,, p; is generically stable.

Example 2.6.17 (Average measures). Let M | T, and let I = (q;

i € [0,1]) be an indiscernible sequence in M®. The average measure u(x) of
I is such that, for all ¢(z) € LM), u(¢) = A({i € [0,1] : M |= ¢(a;)}), where A
is the Lebesgue measure on R. Then p is well-defined and generically stable over

M — see [18, Example 7.32].

2.7 Distality

Part of this section, especially the content on strong honest definitions, is presen-
ted (with minor differences) in our paper [54].

Throughout this section, fix a complete L-theory T and a sufficiently saturated
model M = T'. In this section, all parameter sets are small. It is time to introduce

the main character of this thesis.
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Definition 2.7.1. Say that T (and any M |=T') is distal if the following holds.
Let Iy, Iy, I5 be (dense) infinite sequences without endpoints, whose elements
are n-tuples. Let ag,a; € M" be such that Iy +ag+ I; + I and Iy + 11 + a1 + 5

are indiscernible. Then Iy + ag + I; + a1 + I5 is indiscernible.

Note that, by compactness, the inclusion or exclusion of ‘dense’ in the state-

ment above does not change the definition of distality.

Example 2.7.2. Examples of distal theories/structures include the theory DLO
of densely linearly ordered (without endpoints) structures, o-minimal structures,
and Presburger arithmetic (Z, <,4+). Recall that a linearly ordered structure
(M, <,...) is o-minimal if every M-definable subset of M is a finite union of

points and intervals.

Many equivalent definitions of distality are now known, but Definition 2.7.1
was the original formulation by Simon in [17], except that there it is also assumed
that 7" is NIP. It turns out that this assumption is superfluous: distality (ac-
cording to Definition 2.7.1) implies NIP. It is unclear whether this is well-known
within the model-theoretic community. In the literature, alternative formulations
of distality are often favoured over Definition 2.7.1; some of these formulations
obviously imply NIP, and some were shown to be equivalent to Definition 2.7.1
under the assumption of NIP. The first proof in the literature (of which we are
aware) of the fact that distality implies NIP appears in [55, Corollary 6.8], where
it is credited to Chernikov.

We now state two alternative formulations of distality that are often favoured
over Definition 2.7.1. The following formulation is introduced by Simon in [17,
Lemma 2.7], where the equivalence with Definition 2.7.1 is also established (under
the assumption of NIP, which can be removed as argued above). Simon calls this
the external characterisation of distality, and we shall call Definition 2.7.1 the

internal characterisation of distality.

Theorem 2.7.3. The theory T is distal if and only if the following holds.



28 CHAPTER 2. PRELIMINARIES

Let Iy, I be (dense) infinite sequences without endpoints, whose elements are
n-tuples. Let a € M™ and B C M. If Iy + a + I is indiscernible and Iy + I is
B-indiscernible, then Iy + a + I is B-indiscernible.

To state the next formulation of distality, we make the following definition.

Definition 2.7.4. Let ¢(z;y) € L. A formula ¢(z;2) € L is a strong honest
definition for ¢ if the following holds.

Let B C M =T with |B| > 2, and let a € M*. Let (M',B’) %= (M, B) be
|M|*-saturated.  Then there is ¢ € (B’)* such that a« = 9¥(z;¢) and
P(;¢) - tpg(a/BY).

The final clause will often be written as a |= ¥(z;¢c) = tpy(a/BY). This
definition admits a finitary formulation that is often more useful (and agreeable

to non-model theorists).
Lemma 2.7.5. Let ¢(z;y) € L. For(x;z) € L, the following are equivalent:
(i) The formula 1 is a strong honest definition for ¢;

(11) Let BC M =T with 2 < |B| < 0o, and let a € M?®. Then there is c € B*
such that a = ¢(z;c) - tpy(a/BY).

Proof. That (i) implies (ii) is immediate. For the converse, given a, B, B" as in

the statement of (i), observe that

a0 v (v0i2) = (0l o o)) sbe B}

is finitely satisfiable in B, so is satisfiable in B’ by compactness and saturation.

]

Remark 2.7.6. In light of (ii) in Lemma 2.7.5, the tuple z can be taken to be
copies of y, say, z = (y1,...,yx) where |y;| = -+ = |yx| = |y|. Then, (ii) can be
restated equivalently as follows.

Let M =T, B C MY with 2 < |B| < oo, and let a € M*. Then there is
¢ € B* such that a |= ¢(x;¢) F tpy(a/B).
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The following theorem, our third characterisation of distality, is due to Chernikov

and Simon [10, Theorem 21].

Theorem 2.7.7. The theory T is distal if and only if every formula ¢(z;y) € L

has a strong honest definition.

This characterisation of distality forms the basis of much of the work in this
thesis. As we shall see, it is very well suited to combinatorial applications. Per-
haps the first sign of combinatorial promise is that strong honest definitions give
rise to a desirable form of cell decomposition. The following definition is taken

from [9]. For a set X, let Pg,(X) denote the set of finite subsets of X.

Definition 2.7.8. Fix ¢(x;y) € L and M = T. An abstract (cell) decomposition
for ¢ is a function F : Pg,(MY) — P(P(M?)) such that, for all finite B C MY,
F(B) is a cover of M? which refines the partition of M? given by the set Sy(B)
of ¢-types over B.

Say that such F is a distal (cell) decomposition for ¢ if there is a formula
(591, .., yr) such that, for all finite B C MY with |B| > 2 and F € F(B),
there are by, ...,b; € B such that F' = ¢(x;by,...,b). In this case, say that F is
defined by 1.

Let ¢(x;y) € L and M = T, and suppose ¥(z; 41, ..., yx) is a strong honest
definition for ¢ (see Remark 2.7.6). Then ¢ has a distal decomposition defined
by ¥. Indeed, given B C MY with |B| > 2, by Lemma 2.7.5, we may set F(B)
to be a subset of {¢)(x;c) : ¢ € B¥} that forms a cover of M* refining S,(B).

Figure 2.2 illustrates this decomposition. Here, B = {by, b, b3, bs}, and the
regions of the Venn diagram form the partition S;(B) of M?®. The distal decom-
position defined by 1 refines S, (B): every ¢-type over B, such as the grey shaded
region, can be written as a union of cells of the form i (x; b, ...,b}) for b} € B.

The key here is that 1 works for any finite B C MY with |B| > 2. A ¢-type
over B can always be defined by a relation of the form A, p ¢*®) (x; b) for some
e : B — {0,1}, but this relation has |B|-many parameters. In contrast, the

relation ¢ has a fixed number k of parameters.
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Mx

¢ (x; b2)
o(x;b1) P(a; b, ..., b))

¢(37; b3)

(x; by, ..., b))

¢(; )

Figure 2.2: Part of the distal decomposition for ¢

Let us address the awkward condition that |B| > 2 in Definition 2.7.4 and
the subsequent exposition. In short, we require |B| > 2 so that we may apply
standard coding tricks. As an important example, when constructing a strong
honest definition for ¢(x;y), it is often convenient to partition M* into finitely

many pieces and use a different formula for each piece.

Proposition 2.7.9. Fiz ¢(z;y) € L and M = T. Then ¢ has a strong honest
definition if and only if for some n € N there are formulas (V;(x;y1, ..., yx) : 1 €
[n]) such that for all a € M* and B C MY with 2 < |B| < oo, there is ¢ € B*
and i € [n] such that a |= ¥;(w;c) - tpy(a/B).

Proof. The forward direction is immediate. Let (¢;(z;y1, ..., yx) : ¢ € [n]) witness

the antecedent of the backward direction. Let

n

O(Z5Yity ooy Yik, Ui, U 2 1 E [0]) 1= \/ (uZ = v; Ai(x; Y51, ,yzk)) ,
i=1
where u;, v; are tuples of variables of length |y|. We claim that this is a strong
honest definition for ¢. Fix a € M* and B C MY with 2 < |B| < oco. There is
¢ € B¥ and j € [n] such that a |= ¢;(2;¢) F tpy(a/B). Pick uy, vy, ..., un, v, € B
such that w; = v; if and only if ¢ = j; this is possible since |B| > 2. Then
a = 0(x;c,u;,v; 10 € [n]) since a = ¥;(x;¢), and 0(x; ¢, u;, v; i € [n]) F Yi(x;c)
since u; # v; for all 7 # j. But now v;(z;c) - tpy(a/B). O
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Call such (¢; i € [n]) a system of strong honest definitions for ¢.
We turn our attention to closure properties for the existence of strong honest

definitions. The following lemma is straightforward to prove.

Lemma 2.7.10. Let ¢1(z;y), p2(x;y) € L respectively have strong honest defin-

itions ¢1($, Y1, -y yk)7 ¢2(33, Y1, -y yl)

(i) The formula —¢1(x;y) has strong honest definition ¥y (x;yy, ..., Yx)-

(i) The formula ¢1 N ¢o(x;y) has strong honest definition

UV1(Z3 Y15 oo Ur) A 2T Yho1s oo, Ybt) -

The following fact is [3, Proposition 1.9].

Fact 2.7.11. The theory T is distal if and only if every formula ¢(x;y) € L with

|z| =1 has a strong honest definition.

Corollary 2.7.12. Suppose T has quantifier elimination. Then T is distal if and

only if every atomic ¢(z;y) € L with |x| =1 has a strong honest definition.
To state the next closure property, we make the following definition.

Definition 2.7.13. Let ¢(x;y) be an L-formula with m := |z| and n := |y|. Say

that an L-formula 6(u;v) is a descendant of ¢ if

H(U;’U) = ¢(f1(u>7 e fm(u);gl(v)v -"7gn(v))

for some L-definable functions fi, ..., f,,, of arity |u| and gy, ..., g, of arity |v].
Note that the descendant relation is reflexive and transitive.

Lemma 2.7.14. Fiz an L-structure M with at least two O-definable elements. If

an L-formula ¢(z;y) has a strong honest definition, so does any descendant of ¢.

Proof. Let o, € M be distinct (-definable elements. Let ¢(x;y) be an L-

formula with m := |z| and n := |y|, and suppose it has a strong honest definition
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Yz yM, . y®). Let 0(u;v) = o(fi(u), ..., frn(u); g1(v), ..., gu(v)) be a descend-
ant of ¢, for some L-definable functions fi, ..., f,, and g1, ..., gn.

For I,J C [k] disjoint, let (ry(u;v® @i € [k]\ (I UJ)) be the formula
DOfr()s ooy frn(u)s B, o b B RY), where B s it i € 1, Bif i €
and g;(v') otherwise. We claim that {(; : I,.J C [k] disjoint} is a system of
strong honest definitions for 6.

Indeed, let @ € M* and B C M with 2 < |B| < co. Let B := {(g1(v), ..., gu(v)) :
v € B}, and let B:= BU{(a,...,),(B,...,)} € M™. Since 1 is a strong honest
definition for ¢ and 2 < |B| < oo, there is ¢ = (¢, ...,¢®) € B* such that

(fi(a), ..., fm(a)) = ¢(z;c) and
Y(a;c) b tpy(fi(a), ..., fu(a)/B) 2 tpy(fi(a), .., fu(a)/B).

Let [ :={i€[k]:c” = (a,..,a)}and J := {i € [k] : ¢ = (B, ..., 8)}. Then,
there is a tuple (w® : i € [k] \ (I U J)) from B such that

Y(fr(u), .oy frn(u);c) = Cu(u;w(i) cie[k]\ (Tul)),

whence a |= Cry(u;w® i € [k]\ (1 UJ)) F tpy(a/B). O

Remark 2.7.15. In the proof above, if the function v — (g1 (v), ..., gn(v)) were

injective, then the formula ¢(u;v® : 4 € [k]) given by

7vb(fl(u% () fm(u)> gl(v(l))’ () gn(v(l))a "'7gl(v(k)>’ [ gn(v(k)))

would have sufficed as a strong honest definition for 6.

Example 2.7.16. As an example of strong honest definitions, we prove that
Presburger arithmetic is distal by constructing a system of strong honest defini-
tions for every relevant formula.

It is well known (see, for example, [13]) that Presburger arithmetic admits
quantifier elimination in the language Lprs = (<,+,—,0,1,(- =n 0)men+),

where - =,, 0 is a unary relation symbol interpreted as divisibility by m. We
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write x =, y to mean x — y =,, 0.

By Corollary 2.7.12, it suffices to construct a strong honest definition for every
atomic Lpes-formula ¢(z;y) with |z| = 1. These have the form f(z,y) = 0,
flz,y) <0, or f(x,y) =, 0, where f is a Z-affine function (that is, a Z-linear
combination of its arguments plus an integer constant). We can ignore formulas of
the form f(z,y) =0, since f(x,y) =0« f(x,y) < 1A —f(z,y) < 1. By Lemma
2.7.14, it suffices to construct strong honest definitions for ¢(z;y) := =z < y and
Um(2y) =2 =p Y.

The formula ¢(z;y) admits a system of strong honest definitions given by
{r <y,x=y,y <z,y <z <y}, where || = |y|; in what follows, we will
understand —oco < z < ytomean r < yand y < z < +oo tomean y < z. Indeed,
let @ € Z and B C Z with 2 < |B| < oo. Enumerate B as {b,...,b,}, where
by < -+ < by. Ifthereis 1 <14 < nsuch that a = b;, then a = 2 = b; - tpy(a/B).
Otherwise, there is 0 < ¢ < n such that b; < a < b1 (where by := —oo0 and
bny1 = +00), whence a = b; < x < b1 - tpy(a/B).

The formula v,,(x;y) admits a system of strong honest definitions given by
{z =,1:0<i<m}. Indeed, let B C Z with 2 < |B| < co. Given a € Z, there

is 0 <4 < m such that a =, i, whence a = x =, i - tp,, (a/Z).






Chapter 3

Distality from Combinatorics:

Expansions of Presburger

Arithmetic

In this chapter, we recover distality from combinatorial data. Specifically, we
prove that the structure (Z, <, 4+, R) is distal for all congruence-periodic sparse
predicates R C N, by constructing a strong honest definition for every formula
¢(z;y) with || = 1, providing a rare example of concrete distal decompositions.

This chapter is presented (with minor differences) in our paper [51]. We
thank Pantelis Eleftheriou for providing numerous helpful suggestions on the
content and structure of this paper, as well as Pablo Andujar Guerrero and Aris
Papadopoulos for fruitful discussions on distality. We would also like to thank
the referee for our paper for their helpful comments and corrections. Soli Deo

gloria.

3.1 Introduction

One of the most important threads of model-theoretic research is identifying
and studying dividing lines in the universe of structures: properties P such that

structures with P are ‘tame’ and ‘well-behaved’ in some sense.

35
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Two dividing lines that have attracted much interest, not just in model theory
but also in fields such as combinatorics and machine learning, are stability and
NIP. Distality was introduced by Simon to characterise NIP structures that are
‘purely unstable’. Indeed, stability and distality can be viewed as two opposite
ends of the NIP spectrum: no infinite structure satisfies both simultaneously.
However, a stable structure can admit a distal expansion, and this is (a special
case of) the subject of curiosity among many model theorists, phrased in [3] as

the following problem.
Problem 3.1.1. Which NIP structures admit distal expansions?

The reason (or one such reason) this is a question of interest is precisely the
fact that distal structures have nice structural properties. As noted in Section
2.7, a structure M is distal if and only if every formula ¢(x;y) in its theory
has a strong honest definition (or a distal cell decomposition). Informally, this
means that given a finite set B C MY, there is a decomposition of M*, uniformly
definable from B, into finitely many cells, such that the truth value of ¢(z;b) is
constant on each cell for all b € B.

Cell decompositions in general have proved useful for deriving various results,
particularly of a combinatorial nature, and distal decompositions are no excep-
tion. Many results that hold in the real field, where we have semialgebraic cell
decomposition, that were found to generalise to o-minimal structures, where we
have o-minimal cell decomposition, turn out to also generalise to distal structures,
where we have distal decomposition (recall that o-minimal structures are distal;
in fact, o-minimal cell decomposition is a special case of distal decomposition).
A notable example concerns the ‘strong Erdés—Hajnal property’. It was shown
in [1] that every definable relation over the real field has the strong Erdés—Hajnal
property. This was later generalised in [5] to every definable, topologically closed
relation in any o-minimal expansion of a real-closed field. Finally, it was shown
in [11] that a structure is distal if and only if every relation in its theory satisfies
the definable strong Erdés—Hajnal property.

Such results support the view that distality is an excellent context for cer-
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tain flavours of combinatorics. Indeed, recall the postulate in [9] that ‘distal
structures provide the most general natural setting for investigating questions in
“[generalised] incidence combinatorics”’.

The main result of this chapter thus fits nicely into the context described

above.

Main Theorem (Theorem 3.4.8). Let R C N be a congruence-periodic sparse

predicate. Then the structure (Z,<,+, R) is distal.

Note that, by [15, Corollary 2.20], such structures (Z, <,+, R) have dp-rank
> w, so our main theorem completely classifies these structures on the model-
theoretic map of the universe.

Here, congruence-periodic means that, for all m € NT, the increasing sequence
by which R is enumerated is eventually periodic modulo m. Sparsity will be
defined in Definition 3.2.2, but for now we content ourselves by noting that sparse
predicates include such examples as d" := {d" : n € N} for any d € Ns,, the set
of Fibonacci numbers, and {n! : n € N}.

We now give an overview of how this result extends and builds on results in the
extant literature. In [31], Lambotte and Point prove that (Z, +, <, R) is NIP for
all congruence-periodic sparse predicates R C N, so our result is a strengthening
of theirs. They also define the notion of a reqular predicate, show that regular
predicates are sparse, allowing them to apply their result to congruence-periodic
regular predicates. It turns out that the converse holds: sparse predicates are
regular, which we prove in Theorem 3.2.19 as a result of independent interest,
providing an equivalent, more intuitive definition of sparsity.

In the same paper, they also prove that (Z,+, R) is superstable for all reg-
ular predicates R C N. So, if additionally R is congruence-periodic, then our
result shows that (Z, +, R) admits a distal expansion, namely, (Z, +, <, R). This
provides a large class of examples of stable structures with distal expansions,
which should provide intuition towards an answer to Problem 3.1.1. We note that
examples of NIP structures without distal expansions are far scarcer, and so far

the only known method of proving that a structure does not have a distal expan-
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sion is to exhibit a formula without the strong Erdés—Hajnal property (see [11]).
It is our hope that our more direct proof of distality may provide new methods
and insights to that end.

To our knowledge, no examples of R C N are known such that (Z, <, +, R) is
NIP but not distal. As discussed above, distality is a desirable strengthening of
NIP, so it would be pleasant if NIP sufficed for distality for such structures. We

therefore pose the following problem.
Problem 3.1.2. Is there R C N such that (Z,<,+, R) is NIP but not distal?

In fact, even the existence of a non-distal NIP expansion of (N, <) appears
to be unknown — see [57, Question 11.16]. More broadly, we would like to

understand the following problem.

Problem 3.1.3. Characterise the class of predicates R C N such that (Z, <,+, R)

1s distal.

A natural first step to understanding this problem is to investigate the fol-

lowing problem.

Problem 3.1.4. Let R C N be sparse but not necessarily congruence-periodic.

Must the structure (Z,<,+, R) be distal?

Congruence-periodicity is used in an essential way in our proof, so we expect
that a substantial change in approach would be required to provide a positive
answer to this question. Note that there are sparse predicates which are not
congruence-periodic — see Corollary 3.2.20.

We had previously wondered whether every non-distal structure of the form
(Z,<,+, R) interprets arithmetic, but R = 2 U 3" serves as a counterexample!.
Indeed, the resulting structure does not interpret arithmetic [13] and is IP (hence
non-distal). A proof of the latter is given in [27] (where, in fact, 2-IP is claimed),
but in personal communication with the authors an error was found; they have

nonetheless supplied an alternative argument that the structure is (1-)IP.

"'We thank Gabriel Conant for bringing this to our attention.
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Our original motivation for proving the main theorem was to answer a ques-
tion of Michael Benedikt (personal communication), who asked whether the struc-
ture (Z, <,+,2") was distal. His motivation was to know whether the structure
has so-called Restricted Quantifier Collapse (RQC), a property satisfied by all
distal structures [8]. In personal communication, he informed us that he is also
interested in obtaining better VC bounds for formulas in this structure (coau-
thoring [7] to that end), and that a constructive proof of distality could help in

this endeavour. Our proof is nothing but constructive.

3.1.1 Strategy of our proof and structure of the chapter

The proof of our main theorem, Theorem 3.4.8, comprises most of the chapter.
In Section 3.2, we define and motivate the terminology used in our main theorem,
and state and prove basic facts about sparse predicates that are either useful for
our proof or of independent interest. Our proof begins in earnest in Section 3.3.

Let us describe the strategy of the proof. Perhaps its most noteworthy feature,
and what distinguishes it from most other proofs of distality, is that we prove
that the structure is distal by giving explicit strong honest definitions (hence,
distal decompositions) for ‘representative’ formulas of the theory. Most proofs
of distality in the literature go via the definitions of distality using indiscern-
ible sequences (given in Definition 2.7.1 and Theorem 2.7.3), which offers no
information on the structure or complexity (such as ‘distal density’) of the distal
decomposition, which is itself a subject of interest, such as in [2]. As phrased
in [3], ‘occasionally [the characterisation of distality via strong honest definitions]
is more useful since it ultimately gives more information about definable sets, and
obtaining bounds on the complexity of strong honest definitions is important for
combinatorial applications’.

The first stage of the proof is thus to characterise ‘representative’ formulas
of the theory, which is the goal of Section 3.3. The main result in that section
is Theorem 3.3.6, where we show that to prove the distality of our structure, it

suffices to construct strong honest definitions for suitable so-called (F,,) formulas
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(where n € NT), to be defined in Definition 3.3.5. We prove this by first showing
that every formula ¢(x;y) with |z| = 1 is (essentially) equivalent to a Boolean
combination of so-called (F,) formulas (Proposition 3.3.7), and then showing
that every (FE,) formula is (essentially) equivalent to a Boolean combination of
suitable (F,,) formulas and (FE,_;) formulas (Corollary 3.3.11). By induction
on n € NT, this gives an explicit recipe for writing every formula ¢(x;y) with
|z| = 1 as (essentially) a Boolean combination of suitable (F,,) formulas. This is

summarised precisely at the end of Section 3.3.

Constructing strong honest definitions for (F,,) formulas is the goal of Section
3.4 of the chapter. The broad strategy is to induct on n € N*. Theorem 3.4.3,
which produces new strong honest definitions from existing ones, is a stronger
version of the base case n = 1 (Corollary 3.4.4), and is also a key ingredient in
the inductive step (Theorem 3.4.6). Morally, the base case is n = 0 (see Corollary
3.4.4), where the formula is a formula of Presburger arithmetic, hence admitting
a strong honest definition since Presburger arithmetic is distal; Corollary 3.4.4
bootstraps this strong honest definition to construct ones for (F7) formulas using
Theorem 3.4.3. Thus, the proof strategy can be described as ‘generating strong
honest definitions in (Z, <,+, R) from ones in the distal structure (Z, <,+)’,

which may prove a useful viewpoint for similar applications in the future.

We thus give a recipe to construct explicit strong honest definitions, and thus
distal decompositions, for all formulas ¢(z;y) with |x| = 1. However, we make
no comment on the structure of these distal decompositions, as the complexity
of our construction renders such analysis a separate project. In particular, we
make no claim on the ‘optimality’ of our decomposition, to which little credence
is lent by the length of our construction anyway. The objective of this chapter
is to provide a rare example of concrete distal decompositions, which the reader

may analyse for aspects of distal decompositions in which they are interested.
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3.2 Sparsity

This section defines and discusses the notion of sparsity of a predicate.

Sparse predicates were introduced by Semenov in [141]. For an infinite predic-
ate R C N enumerated by the increasing sequence (r, : n € N), let 0 : R — R
denote the successor function, that is, o(r,) = r,4; for all n € N. By an op-
erator on R we mean a function R — Z of the form a,o" + - -- + ago®, where

A, ..., a0 € Z and o is the identity function. For operators A and B, write

(

A=p B if Az= Bz for all z € R,

yA>r B if Az > Bz for cofinitely many z € R,

A <z B if Az < Bz for cofinitely many z € R.
\

1

The subscript R is dropped where obvious from context. We also use =" to

denote the predecessor function, where we define o~!(min R) := min R.

Example 3.2.1. Consider the predicate d" := {d" : n € N} for some fixed
d € N>y, and let A be an operator on dV, say of the form a,0™ + - - - +ag0® where
Ay ...y ag € Z. Then, for all z € d¥ we have Az = (a,d" + --- + agd®)z, so the

action of A on d" is multiplication by the constant a,d™ + - - - + ayd’.

Definition 3.2.2 [11, §3]. Say that an infinite predicate R C N is sparse if every

operator A on R satisfies the following:
(Sl) A =g 0, A >R 0, or A <gr 0;
(S2) If A >g 0, then there exists A € N such that Ac®z > z for all z € R,

Example 3.2.3. Consider again the predicate d" = {d" : n € N} for some fixed
d € N>,. By Example 3.2.1, every operator A on d" acts as multiplication by
a constant Ay € Z. Thus, (S1) is clearly satisfied. Furthermore, A > 0 if and
only if A4 > 0, in which case Aoz = A\adz > z for all 2 € d", so (S2) is also

satisfied and d" is sparse.
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Other examples of sparse predicates, given by Semenov in [11, §3], include
the set of Fibonacci numbers, {n!: n € N}, and {[e"]| : n € N}.

On the other hand, for all f € Nz], the predicate f(N) = {f(n) : n € N} is
not sparse. Indeed, let f € N[z|; assume without loss of generality that deg f > 1.
Let A be the operator o' — 0%, so A >x 0 since f is strictly increasing. There
is g € N[z] with degg < deg f such that Af(n) = f(n+ 1) — f(n) = g(n) for
all n € N. Hence, for all A € N, Ao f(n) = Af(n+ A) = g(n+ A) < f(n) for

sufficiently large n € N.

Remark 3.2.4. It may be tempting to conjecture from these examples and non-
examples that R = (r,, : n € N) C N is sparse if and only if r,,,1/r,, — 0 for some
0 € R.1U{oo}. This is sadly false; in fact, the class of sparse predicates is not very
rigid at all. As an example, fixing d € Ns,, recall that d¥ = {d" : n € N} is sparse.
However, T := {d"+1 : n € N} is not sparse, even though (d"*'+1)/(d"+1) — d.
Indeed, the operator A given by —o! + do? is the constant function with image
{d—1},s0 A >7 0, but for all A € N, Ac®z < z for cofinitely many z € T..
Thus, the condition 7,41 /r, — 6 > 1 emphatically fails to be sufficient for
the sparsity of R. However, it transpires to be necessary, and more can be said

— see Subsection 3.2.3.

3.2.1 Basic properties

In this subsection, we state and prove some basic results about sparse predicates.
For the rest of this subsection, fix a sparse predicate R C N.

For A = (A4, ..., A,) an n-tuple of operators and z = (21, ..., z,) € R™, we will
write A - z for the dot product of A and z: that is, A -z = Ayz1 + -+ A,z,.
Among others, our main goal in this subsection is to show that if A is an n-tuple
of non-zero operators, then z — A - z defines an injective function on a natural

subset of R" (Lemma 3.2.9).

Lemma 3.2.5 [11, Lemma 2|. Let A, B be operators with A #r 0. Then, for
A € N sufficiently large, |Ac®z| > Bz for all z € R.
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Definition 3.2.6. Let R C R. For n, A € N, write
~Z ={(21,...,2n) € R":z; > 0%z forall1 <i< n},

where z,,1 := min R.

Lemma 3.2.7. Let n € N, A be an n-tuple of operators such that A; #gr 0,
and € > 0. Then, for all A € N sufficiently large and z € R}, we have

(1 =e)|Arz] <[A-z[ < (1 +¢)[A1z],

and A - z has the same sign as Aiz.

Proof. By Lemma 3.2.5, there is A € N such that for all 2y, ..., 2, € R,
‘(A27 2 An) ' (227 23] Zn)‘ < ‘A222| +e +|An2n| < 0AZ2 +o 4+ UAZm

whence for all A € N and z € R}, |[(A2,.... 4,) - (22, ..., 20)| < no™ 24 (zy).
Thus, by Lemma 3.2.5, for all A € N sufficiently large and z € R}, we have
|(A2, oy Ap) - (29, ,zn)| < elAyz|. O

Lemma 3.2.8. Let A be an operator. If A >g 0 (respectively, A <gr 0) then
there is v € Q1 such that Aoz > rAz (respectively, Aoz < rAz) for cofinitely
many z € R. In particular, the function R — Z,z +— Az is eventually strictly

increasing (respectively, decreasing).

Proof. We first prove the lemma assuming A >r 0. By Lemma 3.2.5, there is
A € N such that Ac®z > 2A4z for all z € R. Fix r € Q- such that 7® < 2; write
r = p/q for p,q € NT. Let B be the operator defined by Bz = qAcz — pAz. If
B <p 0then Aoz < rAz for cofinitely many z € R, whence Ac”z < r®Az < 2Az
for cofinitely many z € R, a contradiction. By (S1), we must thus have that
B >g 0, whence Aoz > rAz for cofinitely many z € R.

If A <g0, apply the lemma to —A >y 0. O
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Here and henceforth, given an n-tuple v = (v4,...,v,) and 1 < i < n, we let

vs; denote (Vit1, ..., V), Vs; denote (v, ..., 1), and so on.

Lemma 3.2.9. Let n € N, A be an n-tuple of operators, and A € N be suffi-
ciently large.
Let z,w € R} be such that i := min{e € [n] : z. # we, Ae # 0} is well-defined,
and suppose z; > w;. Then A-z>A-w if A; >0, and A-z< A-w if A; <O.
In particular, if A is a tuple of non-zero operators, then z — A -z defines an

injective function on RX.

Proof. We first prove the lemma assuming A; > 0. By Lemma 3.2.8, there is r €
Q- such that A;ox > rA;x for sufficiently large x € R, say for z > o (min R),
taking A € N to be sufficiently large. Let k& € N be such that » > 1+ 1/k. By
Lemma 3.2.7, taking A € N to be sufficiently large, we have

1 1 1 1
A2 > (1 4k') Az > (1 4k) (1 + k) Aw; (1 + 2]{:) A w;

> AZi T W4,

where the second inequality follows from the fact that A,cx > rA;x for all

r > o®(min R) and w; > o®(min R) since w € R%. But now

A-z=A 2t Asi i =AW+ Asi - 25 > Ay we + Ay - w0y,

= A w.

If A; <0, apply the lemma to —A. m

Remark 3.2.10. In this chapter, we frequently consider tuples z € R for some
sufficiently large A € N rather than z € R™. The reason for this is that, as shown
in the preceding lemmas, R is much better-behaved than R". We illustrate this
by considering Lemma 3.2.9 for the sparse predicate R = 2",

As shown in Example 3.2.1, in this context an operator is multiplication by a
constant, so let us consider the 3-tuple of operators A = (1,2, 4), where 4 denotes

multiplication by 4, and so on. By Lemma 3.2.9, if A € N is sufficiently large, then
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the function z — A - z is injective on (2V)%. In other words, if = 21 + 225 + 423
for some z € (2V)%, then we can read off 21, 25, and 23 uniquely from x. The

following example illustrates the necessity of A being sufficiently large:
96 = 1(32) + 2(16) + 4(8) = 1(64) + 2(8) + 4(4).

Meanwhile, the sufficiency of A being sufficiently large (A > 2) is clear from the

uniqueness of binary expansions, and this is a special case of Lemma 3.2.9.

3.2.2 The Px(; A, R) and Qa(-; A, R) functions

In this subsection, we introduce two functions that are crucial for the rest of the
chapter. Throughout this subsection, fix a sparse predicate R C N, enumerated

by the increasing sequence (r, : n € N).

Definition 3.2.11. Let d € N*, and let R C R be definable in (Z, <, +, R).
Write R C¢ R if there is N C N such that R := {rnya 1 t € N}.

This definition is motivated by the following lemma. For m,d € N*, say that
R is eventually periodic mod m with minimum period d if there is N € NT such
that (r, mod m :n > N) is periodic with period d, and for all ' < dand N € N,
there is n > N such that r,, #,, r,+q¢ (recall the notation that x =, y <z =y

mod m). Such R is not definable in (Z, <,+) in general.

Lemma 3.2.12. Let m,d € N, and suppose R is eventually periodic mod m
with minimum period d. Then, for all N € N, the set R := {rysas :t €N} CR
is definable in (Z,<,+, R), and thus R C? R.

Proof. Up to excluding finitely many elements from R (which does not affect the
definability of R), we may assume that (r, : n > N) is periodic mod m with
minimum period d. Then, for z € R,

d—1

zeé(@zzm{/\/\apzzmapmv.
p=0
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The relation z =, y is definable in (Z,<,+), and so R is definable in
(Z,<,+,R). O

Definition 3.2.13. Let n € N*, A be an n-tuple of non-zero operators, and
A € N be sufficiently large such that the function z — A - z is injective on R}.
For S C R}, write A-S:={A-z:z€ S}. For 0 # S C R} such that A - S is
bounded below, let

mAinS := the unique z € S such that A -z =minA - S.
Similarly, for () # S C R such that A - S is bounded above, let
Hl[ilXS := the unique z € S such that A -z = maxA - S.

Definition 3.2.14. Let d,n € N*, R C? R, A be an n-tuple of non-zero operat-
ors, and A € dN be sufficiently large such that the function z — A - z is injective

on RX. For z € Z, let

(
. maxa{z € Rk : A-z <z} ifz>infA- R},
Pa(z; A, R) == coe A
mina X otherwise,
;
5 mina{z € Rk : A-z >z} ifz <supA-RY,
QA(.I;A,R) = ~
maxa R} otherwise.
\

For 1 < i < n, write Pi(z; A, R) for Pa(z; A, R); and write Q'\(z; A, R) for

Qa(z; A, R)l The parameter R is dropped where obvious from context.

Remark 3.2.15. (i) In other words, if z > inf A - RZ, then Pa(z; A, R) is
the element 2z € RZ maximising A - z subject to A - z < x. Similarly, if
z < sup A - R%, then Qa(z; A, R) is the element z € R, minimising A - z

subject to A -z > x.

(i) If < inf A - R, then A; >p 0 (as otherwise inf A - R, = —oc0). In
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this case, by Lemma 3.2.9, Pa(x; A, 1:2) = ming RZ is the lexicographically

minimal element of fiz, namely,
(c"2(min R) : 0 < i < n).

Similarly, if x > sup A - J;’Z, then A; <z 0 and

Qa(z; A R) = max R = (6™ 2minR) : 0 <i < n).

Example 3.2.16. As in Remark 3.2.10, consider the example R = 2" and A =
(1,2,4). Let A = 2; it is easy to verify that z — A - z is injective on R3. The

first four elements of A - R3 are

1(16) 4 2(4) + 4(1) = 28, 1(32) + 2(4) + 4(1) = 44,

1(32) + 2(8) + 4(1) = 52, 1(32) + 2(8) + 4(2) = 56.

Since 44 < 47 < 52, we have P(47; A, R) = (32,4,1) and Q2(47; A, R) =
(32,8,1). Moreover, for all x < 28 = inf A - RS, we have P(z; A, R) = (16,4, 1).
The following lemma establishes some basic properties of Pa(+; A, R) and

Qa(;A,R). The proofs are rather straightforward but we include them to

provide more intuition on these functions.

Lemma 3.2.17. Let R C% R for some d € N*. Let n € N, A be an n-tuple of

non-zero operators, and A € dN be sufficiently large. Then the following hold.

(i) For all x € Z, + > A - Pa(z; A, R) if and only if x > inf A - R}, and
<A -Qa(z; A R) if and only if z < sup A - RY.

(ii) For all x € Z, Q\(z; A, R) = 6°*PL(z; A, R) for some e € {—1,0,1}.

Proof. We first prove (i). If z < inf A - R, then we have 2 < A - Pa(z; A)
since Pa(z;A) € R. If z > inf A - R%, then we have > A - Pa(z; A) since
Pa(z;A) € {z € R} : A -z < x}. The statement for Qa(-; A) can be proven

similarly.
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We now prove (ii). If z < inf A - R%, then
Qa(z;A) = mAin{z CRY:A 2>} = mgn]%z = Pa(z; A).

Similarly, if z > sup A - R}, then Qa(z;A) = Pa(z;A), so consider the case
where inf A - R} < = < sup A - R%. Then by definition and part (i) we have
that A - Pa(z;A) < © < A - Qa(z;A), and there is no z € R such that
A Pr(z;A) < A-z<A-Qa(x;A). By Lemma 3.2.9, we are done. ]

3.2.3 Sparsity as regularity

We conclude this section by proving that the notion of a sparse predicate coincides
with that of a regular predicate, defined by Lambotte and Point in [31] and

recalled below.

Definition 3.2.18 [31]. Let R C N be enumerated by the increasing sequence
(rn, : n € N). Say that R is regular if r,41/r, — 6 € Ry U {oo} and, if 6 is
algebraic over Q with minimal polynomial f(z), then the operator f(o) =g 0,

that is, if f(x) = Zf:o a;z" then for all n € N we have

k

E ;T4 = 0.

i=0
Call 8 the limit ratio of R.

Lambotte and Point prove that regular predicates are sparse 31, Lemma 2.26].

It turns out that these notions coincide.
Theorem 3.2.19. Let R C N. Then R is sparse if and only if R is reqular.

Proof. 1t suffices to prove the forward direction. Let R be a sparse predicate,
enumerated by the increasing sequence (1, : n € N). If r,, 1 /7, does not converge
or diverge, then liminf, o 741/7, # limsup,,_, . Tni1/7n, and so there is some
p € Q- such that {n € N : r,\1/r, > p} and {n € N : r,y/r, < p} are

both infinite. But now, writing p = a/b for a,b € NT, the operator A given by
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2z +— boz — az satisfies that Az > 0 for infinitely many z € R and Az < 0 for
infinitely many z € R, a contradiction to (S1).

Thus, 7,41/rn — 0 for some 6 € Ry U {co}. By Lemma 3.2.8 applied to
the identity operator, there is ¢ € Q- such that r,1/r, > ¢ for all sufficiently
large n, so # # 1. Suppose 6 is algebraic over Q with minimum polynomial
f(z) = Z?:o a;x'. Towards a contradiction, suppose f(o) #r 0. Let g := f if
flo) >r 0, and g :== —f if f(0) <gr 0. Then, g(¢) > 0, so by (S2), there is
A € N such that g(o)r,.a > 7, for all n € N. But

k k
g(o)rn, Tyti ;
Tn — ¢ ( Tn ) ¢

=0
d 64
and r,a /1, — 02, s0

g(o-)rn+A _ g(o-)'rnJrA T'n4+A N 0’

Tn Tn+A Tn

contradicting the fact that g(o)r, a > r, for all n € N. O

We find that the notion of regularity gives better intuition for what a sparse

(equivalently, regular) predicate looks like. In particular, we have the following.

Corollary 3.2.20. Let § € Ry U {oo} be such that 0 is not algebraic over Q.
Then there is a sparse (equivalently, reqular) predicate R C N with limit ratio 0

that is not congruence-periodic.

Proof. For all functions € : N — {0, 1}, the predicate R. C N enumerated by
([0™] + e(n) : n € N) is sparse with limit ratio ¢, where for § = oo we define
0™ := nl. Tt is straightforward to observe that there is € : N — {0, 1} such that

R. is not eventually periodic mod 2. O

3.3 Reduction to representative formulas

The goal of this section is to find formulas for which constructing strong hon-

est definitions is sufficient for the distality of the structure; this is achieved in
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Theorem 3.3.6.

We begin by establishing a ‘normal form’ for formulas in (Z, <, +, R), where
R C N is sparse and congruence-periodic. (Recall that R is congruence-periodic
if, for all m € N*, R is eventually periodic mod m.) The following fact is due to

Semenov.

Fact 3.3.1 [14, Theorem 3|. Let R C N be sparse. Modulo (Z,<,+, R), every

formula ¢(x) with |x| =1 is equivalent to a disjunction of formulas of the form

k I
Jdze R" /\ fi(z) > A9 . 2 A /\ Gp(T) =m, BY . 2 A9(2) |,
j=1 p=1
where m, € Nt fi(x),g,(x) are Z-affine functions, AD B qre n-tuples of

operators, and (2) is a formula in (R, <,0, (- =m €)cment)-

We will show that this normal form can be simplified if R C N is also

congruence-periodic.

Theorem 3.3.2. Let R C N be sparse and congruence-periodic. Then, modulo
(Z,<,+,R), every formula ¢(x) with |x| = 1 is equivalent to a disjunction of

formulas of the form
k l
e R | N\ fil@) > AV 2 A N\ gyl@) =, BT -2 |
Jj=1 p=1

where m, € N, fi(z), g,(z) are Z-affine functions, and AV B®) gre n-tuples

of operators.

The key to our proof is the following lemma, which states that if R C N is
congruence-periodic, then the structure (R, <,0, (- = ¢)emen+) has quantifier

elimination after expanding by a constant for min R.

Lemma 3.3.3. Let R C N be congruence-periodic. Then the theory T :=
Th(R, <,0,(- =m €)emen+,T0) has quantifier elimination, where ro is a constant

interpreted as min R.
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Proof. Fix ¢(x,y), a conjunction of atomic and negated atomic formulas involving
x, where x is a singleton variable. It suffices to prove the following. Let Ry, Ry =
T have common substructure B, and let b be a tuple from B of length |g| such
that Ry = 3z ¢(x,b). Then, Ry = 3o ¢(x,b).

Atomic and negated atomic formulas involving x have one of the following

forms, for i,7 e N, 0 € {=,#,<,<,>, >}, and ¢, m € N*:
(i) o'z O ¢’z, which is equivalent to T or L;

(ii) o'y O o9z, where y is a variable or r, which is equivalent to o*"*y O o7tk

for all £ € N;
(iii) o'z =, ¢
(iv) o'x %, ¢, which is equivalent to \/,", ., o'z =, b.

By the Chinese Remainder Theorem, we may assume that all congruences in
é(x,y) have the same modulus. Moreover, observe that o'y = o’z is equivalent
to oy < o9l < 0™ 2y and o'y # o’z is equivalent to o'y < o’z V ol < oly.
Thus, we may assume that ¢(x,y) = é(z, (Yi0, ¥i1)o<i<i) is of the form

kl

!

k P
/\yw <o'x <yii N\ /\ olx =, cj,
i=0 j=0

where k. k.1 € N and m, ¢y, ...,ciy € NT. We may assume k = k': if k < &/, then

k' —k

Yio < oFx < y; 1 is equivalent to o ~Fy; 5 < ¥z < ak"_k’yi,l, and if k' < k, then

¢ is equivalent to

k

1
\/ /\yi,o<0k$<y¢,1/\/\ajx =, ¢

1<cpryqse-mer<m \i=0 7=0

Let Ry, Ry |= T have common substructure B, and let b be a tuple from B
of length || such that R, = 3z ¢(x,b). We wish to show that R, = 3z é(z,b).
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Since B is linearly ordered, without loss of generality, ¢(z,b) is equivalent to

k
by < o¥x < by A /\ij = Cj.
=0
For i € {1,2} and n € N, let 7% := (0"ro). Let N € N be such that
(rl : n > N) is periodic mod m, with minimum period d. Then the fact that

Ry = 3z ¢(x,b) is witnessed by some
re{rl:0<n<N+dU{o"h:1<n<d}.

Indeed, for all z € Ry, if & > r} then thereis 1 < n < dsuch that o7z =, o}y,
for all 0 < j < k. Thus, if {rl : 0 < n < N +d} does not contain a witness, then
by > ri. But now {¢"b; : 1 < n < d} contains a witness, since for all x € Ry, if
x > by then there is 1 < n < d such that o/z =,, 070"b; for all 0 < j < k.

Thus, we have that Ry = 3z ¢(z,b), witnessed by some
r€{rl:0<n<N+dU{o"h:1<n<d}. O

We now prove Theorem 3.3.2.

Proof. Combine Fact 3.3.1 and Lemma 3.3.3. We show that if ¢/(z) is a formula
in (R, <,0,(- =pn ¢)ement), then ¢ is equivalent in (Z, <, +, R) to \/; A\, 0;; for
some ¢;; each of the form C' > A-zor C =,, B-z, where C' € Z, A, B are n-tuples
of operators, and m € NT. (Note that elements of Z are Z-affine functions.) By
Lemma 3.3.3, it suffices to assume that )(z) is atomic or negated atomic.

By a similar analysis to that in the proof of Lemma 3.3.3, ¢ is equivalent in
(Z,<,+, R) to a conjunction or disjunction of formulas, each taking one of the

following forms, where i, j € N, p,q € [n], and ¢,m € N*:
(i) o'z, < 07z, which is equivalent to 0 > (¢*, —07) - (2,, z,);
(ii) +o'rg > 0z,

(iii) ¢ =, 072,
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Since 07z, = (0, ...,0,07,0,...,0) - z, and so on, all the formulas above are in the

required form. n

For the rest of the chapter, fix a congruence-periodic sparse predic-

ate R C N.

Our goal is to write the formulas in Theorem 3.3.2 as Boolean combinations
of formulas for which we can construct strong honest definitions; this is achieved
in Theorem 3.3.6.

Let £ := (<, +) and L := (<, +, R).

Definition 3.3.4. Let ¢(z;y) be an L-formula with |z| = 1. Say that ¢(x;y) is
a basic formula if it is a Boolean combination of formulas not involving x and

descendants of £%-formulas.

Note that basic formulas have strong honest definitions by Example 2.7.16,
Lemma 2.7.14, and the fact that formulas not involving x have T as a strong
honest definition.

For n € Nt and 1 < i < n, let F* be the “i*" standard n-tuple of operators’

(where n is assumed to be obvious from context): for 1 < j < n,

the identity function if j =1,

0 if £

F, =

We now fix notation for some formulas of particularly desirable forms.

Definition 3.3.5. Let d,n € N*, R C% R, and ¢(z;...) be an L-formula with
lz| = 1.

Let y be a tuple of variables. Say that ¢ = ¢(x;y) is of the form (E,; R), or
just (E,), if

k
$(z;y) =3z € By |\ fi(z,y) > AV - 2,

j=1
where f1(z,9), ..., fu(z,y) are Z-affine functions, and AW ..., A® are n-tuples of

operators.
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Let A € dN, y;,ys be singleton variables, and A, B be n-tuples of operators.
Say that ¢ = ¢(x;y1,ys) is of the form (F,; A,B, R, A), or just (F),), if A is

a tuple of non-zero operators and
&5y, y2) = tx —yo < B Pa(z —y1; A, R),

where t € {0,1} with ¢t = 1 unless B = F’ for some 1 <i < n.

Let u,v be n-tuples of variables, and let T;(u,v) be the formula saying that
Uy, V1, ..oy Un, Uy € R. Say that ¢ = ¢(x; 41, yo, u, v) is of the form (G,; A, B, R, A),
or just (G,,), if either

o(x;y1, y2, u,v) = Th(u,v)A\Iz € R% (yﬁ-A-z <z < y2+B-z/\/\ u; < z; < vi),
i=1
or ¢ is obtained from the formula above by deleting some of the w; (equivalently,

setting u; = —oo) and/or deleting some of the v; (equivalently, setting v; = +00).

It will be convenient to extend the definition of (E,) formulas to n = 0; that

is, ¢(x;y) with || = 1 is of the form (Ey) if

where fi(x,y), ..., fe(z,y) are Z-affine functions. Such formulas are basic.

Our goal is to prove the following theorem.

Theorem 3.3.6. The following criterion is sufficient for the distality of the struc-
ture (Z,<,+, R).

Letd,n € Nt, R C* R, A be an n-tuple of non-zero operators, and B be an n-
tuple of operators. Then, for all sufficiently large A € dN, every (F,; A, B, R, A)

formula has a strong honest definition.

We prove this in three steps. We first show that every L-formula ¢(z;y) with
|z| = 1 is equivalent to a Boolean combination of basic formulas and descendants

of (E,) formulas (Proposition 3.3.7). We then show that every (E,) formula is
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equivalent to a Boolean combination of basic formulas and descendants of (E,,_)
or (G,) formulas (Proposition 3.3.8). Finally, we show that every (G,) formula
is equivalent to a Boolean combination of basic formulas, (£,_;) formulas, and

descendants of (F},) formulas (Proposition 3.3.10).

Our first checkpoint is the following proposition.

Proposition 3.3.7. Modulo (Z,<,+, R), every formula ¢(z;y) with |x| = 1 is
equivalent to a Boolean combination of basic formulas and descendants of (E,)

formulas.

Proof. By Theorem 3.3.2, every partitioned L-formula ¢(z;y) with |z| = 1 is

equivalent to a disjunction of formulas of the form

k l
dz e R" /\ filz,y) > AD .z A /\ 9p(2,Y) =, B® . .|,

Jj=1 p=1

where m, € N*, f;(x,y),g,(z,y) are Z-affine functions, and AV B® are n-
tuples of operators. By the Chinese Remainder Theorem, it suffices to assume
that there is m € Nt such that m =m, for all 1 <p </.

It suffices to show that every such formula is equivalent to a Boolean combin-
ation of basic formulas and descendants of (E) formulas for some s € N. We do
so by induction on n € N. When n = 0, the formula is a basic formula. Now let

n > 1, and let

k !
¢(x,y) =3z € R" /\ fi(z,y) > AD . o A /\ 9p(2,Y) =m B® .|,

j=1 p=1

where m € N, f;(x,v), g,(z,y) are Z-affine functions, and AY) B® are n-tuples
of operators.

Let (7, : n € N) be an increasing enumeration of R. Since R is congruence-
periodic, there are d, N € N such that (r, : n > N) is periodic mod m with

minimum period d. Observe that ¢(z;y) is equivalent to ¢o(x;y) V ¢1(x;y),
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where ¢g(x;y) is the formula

n N-—1 k l

\/ \/ JdzeR"|zi=ra A /\fj(:z:,y) > AW 2 A /\gp(x,y) =, B? .~

i=1 a=0 i=1 p=1
and ¢1(x;y) is the formula

k !
Jze R" /\zi ZTN/\/\fj<x7y) > AW .2 A /\gp(x,y) =, B® ..

i=1 j=1 p=1

Consider ¢g(x;y). Replacing z; with r, in the (i,a)™ disjunct, ¢o(x;y) is

equivalent to a disjunction of formulas of the form

k l
B B A\ few) > A0 A A gy (rn) =, B |
j=1

p=1

where f(z,y), g,(7,y) are Z-affine functions and A'U) B'® are (n — 1)-tuples of
operators. By the induction hypothesis, such formulas are equivalent to a Boolean

combination of basic formulas and descendants of (Es) formulas for some s € N.

Consider ¢ (x;y). Let R := {ryyq :t € N}. By Lemma 3.2.12, R C% R. For

.....

(»)

777777
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But now, for all 0 < hq, ..., h, < d,

k
Jz e R" /\ filx,y) > AW . (0" 2z, ..., 0" 2,)

j=1
n—1 k

< \/ e e R” /\ Zr(i) 2 Zr(it1) N /\ fi(z,y) > AW - (oMzy, . oM 2,)
TE€Sym(n) i=1 j=1

k
& \/ dz e Rg /\ filx,y) > AV (ahlzfl(l), ...,Jh"zfl(n)),
T€Sym(n) j=1
where Sym(n) is the set of bijections from [n] to [n], so ¢1(x;y) is equivalent to

a Boolean combination of basic formulas and (E,; R) formulas. O

Our next checkpoint is the following proposition.

Proposition 3.3.8. Let d,n € N*, R C? R, and ¢(x;y) be an (E,; R) formula.
Then there is a finite collection Gy of pairs (A, B), where A, B are n-tuples of
operators, satisfying the following.

For all A € dN sufficiently large, ¢ is equivalent to a Boolean combination
of basic formulas and descendants of (E,_1; R) or (Gn; A, B, R, A) formulas for
(A,B) € Gy.

Towards this checkpoint, we prove the following technical lemma.

Lemma 3.3.9. Let d,n € NT, R C* R, AM ...  A® pe n-tuples of operators,
and A € dN be sufficiently large. Then there are 1 < iy,...,i, < n, an LO-
formula 6, and L-definable functions fi,..., fr, U1, ...y Uy, V1, ..., vn Such that each
u; (respectively, v;) either takes values in R or is the constant (—oo)-valued (re-
spectively, (4+00)-valued) function, satisfying that for all y € Z* and 2 € RZ,
/\f:1 y; > AY) . 2 if and only if

0(y) A (/k\lyg > A ., /\S:\r/lzis = fs(y)) \% (/n\uz'(y) <z < w(y))

=1
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Proof. Let Hy:={j € [k] : AZ(-j) =x 0 for all 7 € [n]}, and for i € [n], let

Hf :={je[k]: AZ(-j) >r O,A(ej) =r 0 for all e < i},

H ={jelk]: AY <z 0,AY =5 0 for all e < i},

and write H; := H; U H;". Then Hy, (H;", H; :i € [n]) is a partition of [k].

Let i € [n]. For all j € H;t, define the function f; : Z — R by

) max{w € R:3z € RY(AY -z <y Az =w)} if well-defined,
i\Y) =

min R otherwise.

By Lemma 3.2.9, for all j € H;, y € Z* and z € R}, if zi < fi(y,) then

)

y; > AY .z and if z > fi(y;) then y; < AY) . 2 thus,
yp > AV -z e (y; > AY 2 Az = fi(y) Va <o fi(y).
Similarly, for all j € H, , defining the function f; : Z — R by
£i(y) = minfw € R:3: € RAAD -2 < y Az —w)),
we have that, for all y € Z*¥ and 2 € R”A,
yi > AV 2 e (g > AT 2 Az = fily) Va2 0l fi(y).

For all i € [n], define u;(y) := sup{o?f;(y) : 7 € H; } and v;(y) := inf{c~f;(y) :
j € H}. Now, if y; > AY .z for all j € [k] \ Hp, then either z; = £;(y;) for
some i € [n] and j € H;, or u;(y) < z; < wv(y) for all i € [n]. Conversely, if
ui(y) < 2 < vi(y) for all i € [n], then y; > AY . 2 for all j € [k] \ Hy. Thus, for
all y € Z" and 2 € RX, \*_,y; > AU - 2 if and only if

A v >0A <</\yj > AV n\[\/ Ziij(yj)) V/\Ui(y) < z SU@'(?J))

jEHo i=1j€eH;
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as required. O

Proof of Proposition 3.3.8. Let

k
¢(r;y) =3Iz € RY /\ fi(z,y) > AV . 2,
j=1
where |z| =1, fi(x,y), ..., fr(x,y) are Z-affine functions, and AW AR are n-
tuples of operators. We claim that G, := {(AY, —AU) : 1 < j 1 < k} witnesses
the proposition.

For all A € dN, ¢(z;y) is equivalent to the disjunction of

k
On(wry) =3z € RA N filz,y) > AD -

J=1

and

n A-—1 k
\/ \/ Jz € ég <zl- = 0% A\ /\ filz;y) > AU . z>7

i=1 a=0 j=1
where z,,; := min R. Replacing z; with 0®z;,; in the (¢, o)™ disjunct, it is clear

that each disjunct is equivalent to

k
Jw e Ry /\ fi(z,y) > BY .,
j=1
for some (n — 1)-tuples B, ... B®) of operators, which is an (E,_y; R) formula.
Consider ¢y (z;y). By multiplying both sides of the inequalities in ¢/s (x;y),
we may assume without loss of generality that there are some K € NT and

0 <p<q<ksuch that, for 1 <j <k,

(

K ity <p,
the coefficient of z in f; = { —K if p < j <gq,
0 if g < 7.

\

For 1 < j <k, let g;(y) := f;(0,y). Then /\f:1 fi(z,y) > AV . 2 is (equivalent
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to)

p

/\ 2z < Kz A /\ Kz < gj(y) — “Z A /\ 9y
Jj=1 Jj=p+1 J=q+1

If 0 = p = ¢, then ¢/, (z;y) is a basic formula. If 0 = p < g, then for all A € dN,
@'\ (x;y) is equivalent to

k
Kz <sup{ inf_ (gi(y) — AV .2):z€ By, N\ aly) > A" -2},

p+1<j<q .
J=q+1

which is a basic formula. The case where 0 < p = ¢ is similar, so let us assume

0 <p<gq. Now /\1;:1 —gi(y) + AY) . 2 < Kz is equivalent to

P
\/(—gj(y)+ AV Z<K~M/\ —g;(y) + AV ZZ—gi(y)JrA(’”z),

j=1

Z#J
and /\?;Z)H Kz < gi(y) — AU) . 2 is equivalent to
q .
V (Kw<ga(y 2 A /\ 9i(y égi(y)—A“)-z).
Jj=p+1 _§+1
i#j

Thus, for all A € dN, ¢/ (z;y) is equivalent to

q
\/ EIzER"( g;(y) + AV z<K:c<gl(y)—A(l)~z/\hjl(y,z)>,
I=p+1

v,

where h;i(y, z) is

NN g —aly) > (A —AY) .2 A /\ gi(y

i=p+1 i=q+1
1#£l
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Apply Lemma 3.3.9 to each hj(y, z), assuming A € dN is sufficiently large.
Forall 1 < j < p <1 < g, there are 1 < i, ..., il(J p < n, an L%-formula

0, and L-definable functions f1 - fT(Jl U1 e ul! Ull,...,vff such that each

u!' (respectively v!') either takes values in R or is the constant (—oc)-valued
(respectively, (+00)-valued) function, satisfying that for all y € Z* and z € R},

hj(y, z) if and only if
7(5:0)

o) A { (a2 4\ 2 = ) v (/\uﬂ )< a<l)

s=1

Then, ¢/\(z;y) is equivalent to the disjunction of

.\/ \/ \/ <9ﬂ(y) N3z e Ji’g( —gi(y) +AY 2 < Kz < gi(y) — AY - 2
Ml 2) A 2 = £40) ).

which is equivalent to a Boolean combination of basic formulas and descendants

of (E,_1; R) formulas (since zg = fi'(y) in the (4,1, s)™ disjunct), and

which is equivalent to a Boolean combination of basic formulas and descendants

of (Gy; A, B, R, A) formulas for (A,B) € Gs. O
Our final checkpoint is the following proposition.

Proposition 3.3.10. Let n € NT and A, B be n-tuples of operators. Then
there is a finite collection Fa g of tuples (I, J), where I is an n-tuple of non-zero
operators and J is an n-tuple of operators, satisfying the following.

Let R C% R for some d € N*. If A € dN is sufficiently large, then every

(Gn; A, B, R, A) formula is equivalent to a Boolean combination of basic formu-
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las, (En_1;R) formulas, and descendants of (F,;I, J,R,A) formulas for
(I, J) c fA,B-

Before proving this, we record a corollary.

Corollary 3.3.11. Let d,n € N*, R C¢ R, and o(z;y) be an (En,}?) formula.
Then there is a finite collection Fy of tuples (I,J), where I is an n-tuple of
non-zero operators and J is an n-tuple of operators, satisfying the following.

If A € dN is sufficiently large, then ¢(x;y) is equivalent to a Boolean combin-
ation of basic formulas and descendants of (En_1; R) formulas or (Fy; I, J, R, A)
formulas for (I, J) € Fy.

Proof. For G, from Proposition 3.3.8, let Fy := U(A,B)e% Fap for Fap from
Proposition 3.3.10. O

Towards proving Proposition 3.3.10, we prove the following lemma.

Lemma 3.3.12. Let d,n € N*, R C* R, A, B be n-tuples of operators, and
A € dN be sufficiently large. Then for all x,y1,y2 € Z, u; € RU {—oc}, and
v; € RU {+0o0}, if

HzeRZ(y1+A-z<x<yg+B-z/\/\uiSziéw), (1)

=1

then either vy = +oo A (A1 =r 0 <gr B1 V A1 <r 0 =g By) or there is a witness

z € I:ZZ satisfying one of the following:
(i) 2 = 0Pz for some 1 <i < n, where z,,; := min R;
(11) z; € {u;,v;} for some 1 <i < n;
(i1i) A;, B; #r 0 for alll <i <n, and z = Px(x—y1; A) or z = PA(yo—x; —B).

This lemma has a rather intuitive interpretation: if (1) holds then, barring
some edge cases, z can be chosen to satisfy (iii), that is, to maximise y; + A - z
subject to y; + A - z < x — namely, z = Pa(x — y1; A) — or minimise y, + B - z

subject to * < Yo + B - 2 — namely, z = Pa(yo — z; —B).
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Proof of Lemma 3.3.12. Suppose vy # +ooV =(A; =0 < By VA < 0= By).
We first show that if A; = 0 or B; = 0 for some 1 < i < n, then there is a witness
2 € RR satisfying (i) or (ii).

Suppose A; = 0 for some 1 < ¢ < n; fix the minimal such 7. Suppose there is

no witness to (1) satisfying (i) or (ii). Pick a witness z € R that minimises

min{z;_1,v;}/z if B; >0

zi/ max{z;11,u;} if B; <0

where zy := +00 and 2,41 := min R. Let w be the n-tuple obtained from z by
replacing z; with 0%z if B; > 0 and with 0~%; if B; < 0. Since z does not satisfy
(i) or (ii), we have that w € R and u; < w; < v;. But Bz < B-w by Lemma
329, soy+A - w=y1+A - 2<z<y+B-2 <y, +B-w, whence w is a
witness to (1), contradicting our choice of z.

The case where B; = 0 for some 1 < i < n is similar, so henceforth suppose
A;, B; # 0 for all 1 < ¢ < n, and suppose there is no witness to (1) satisfying
(1), (ii), or (iii). By Lemma 3.2.9, we may assume that the function z — A -z
is injective on R’. Now any witness z € R% to (1) satisfies A - z < = — g, and
so A-z < A-Px(xr—1y1;A), and the inequality is strict since z does not satisfy
(iif). Fix a witness z € R} to (1) that maximises A - z.

Let w be the n-tuple obtained from z by replacing z, with %z, if A,, > 0 and
with 6792, if A, < 0. Since z does not satisfy (i) or (ii), we have that w € R}
and u, < w, < v,. By Lemma 3.2.9, there is no r € RZ such that A - r lies
strictly between A -z and A - w. Recalling that A - 2 < A - Pa(z — y1; A), this
shows that A -w < A - Pa(z —y1; A).

By a similar argument, B - w > B - Pa(ys — x; —B). Thus,
n+A w<y1+A-Pr(z—y;A)<x<ys+B-Pa(yo—2;—-B) <ys + B-w,

so w is a witness to (1). By Lemma 3.2.9, A -z < A - w, contradicting our choice

of z. O
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Proof of Proposition 3.3.10. Let
‘FA,B = {(Aa B)7 <_B7 _A)} U {(A7 Fz)a (_Ba FZ) 01 < i < n}

if A,B are tuples of non-zero operators, and let Fap := () otherwise (recall
that F' was defined as the i standard tuple of operators). We claim that this

witnesses the proposition.

Let R C? R for some d € N*, and let A € dN be sufficiently large as in
Lemma 3.3.12. Let ¢(x;y,u,v) be a (Gn; A, B, R, A) formula, say

d(x;y,u,v) = Ti(u,v) NIz € RZ(yH—A-z <rzr< yg—l—B-z/\/\ui <z < vi),
i=1
where some of the w; (respectively, v;) may be —oo (respectively, +00). Write

T'(u,v) for Tx(u,v).

If v; = +00 and A} =g 0 <g By, then ¢(x;y,u,v) is equivalent to
C(z;y,u,v) :==T(u,v) NIz € RZ(yl +A-z< x/\/\ui <z < v,-).
i=1

Indeed, clearly ¢ implies ¢, and if z € RZ witnesses ¢, then for all/some suffi-

ciently large a € R, we have w := (a,zs1) € RZ and
y1+A-w:y1+A-z<:)3<y2+B-w/\/n\uiSziSwi<vi.
i=1
But ( is equivalent to
T(u,v)/\x>y1+inf{A-z:z€E’Z,/n\ui <z §vz},
i=1

which is a basic formula. Thus, if v; = 400 and A; =g 0 <r Bj, then ¢
is equivalent to a basic formula. A similar situation arises if v; = 400 and

Ay <r 0 =g By, so henceforth suppose neither case holds. Let ¢(x;y,u,v,2) be
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the formula

y1+A~z<x<y2+B~z/\/\ui§zi§vi.
i=1

For 1 <i<n, let
o (s y,u,v) i= T(u,v) A3z € RY (zi = 021 AN Oz, u, 0, z)) ,

Bi(z;y, u,v) =T (u,v) A3z € RE (Zl =u; A (w5 y,u,v, z)) ,

Yiz;y, u,v) = T(u,v) A3z € RY, (zl- = v A o(x;y,u,v, z)) ,

where z,,1 := min R. Furthermore, if A and B are tuples of non-zero operators

then let

0(z;y,u,v) :==T(u,v) Nz —y; >inf A - RZ

/\x<y2—|—B-PA(x—y1;A)/\/\uiSPi(x—yl;A)gvi,

i=1

f(l', Yy, u, U) = T(ua U) A Y — T > Hlf(—B : RZ)

ANx > yl—i-A-PA(yg—x;—B)/\/\ui < Pi(yo — 2;—B) < v;.
i=1

By Lemma 3.3.12 (and Lemma 3.2.17), ¢(x;y, u,v) is equivalent to

OVvEV VL (VB Vy) if A,B are tuples of non-zero operators,

Vi (i V Bi V) otherwise.

Observe that 6 is a Boolean combinations of basic formulas and descendants

of (F,;1,J, R, A) formulas for (I,J) € Fa g, since, for all 1 < i < n,
u; < Ph(z—y1;A) < v <> u;—1 < F-Pa(z—y; A)A—(v; < F'-Pa(z—y1; A)).

But this is also true for &, since, for example, x > y; + A - Pa(y2 — z;—B)
is a descendant of —x > —yy + A - Pa(—y; + z; —B), which is equivalent to
T —1Ys < —A - Pa(x —y;; —B).
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For all 1 <i <mn, o, f;, and ; are equivalent to the conjunction of T'(u,v),
which is a basic formula, and an (E,_;, R) formula, by substituting z; with
02241, u;, Or v; as appropriate.

Thus, ¢ is equivalent to a Boolean combination of basic formulas, (E,_;; R)

formulas, and descendants of (F,;I,J, R, A) formulas for (I,J) € FanB. O
We are now ready to prove Theorem 3.3.6.

Proof of Theorem 3.3.6. Assume the criterion holds. By Proposition 3.3.7, it
suffices to prove that every (F,) formula has a strong honest definition. We do
so by induction on n € N. An (Ej) formula is a basic formula, so suppose n > 1.

Let ¢ be an (E,; R) formula, where R C% R for some d € N*. Let F, be
as in Corollary 3.3.11. Then, for all A € dN sufficiently large, ¢ is equival-
ent to a Boolean combination of basic formulas and descendants of (E,_1; R) or
(F;1,J, R, A) formulas for (I,J) € F4;. By the induction hypothesis, every
(E,_1; R) formula has a strong honest definition. Since F, is finite, by the
criterion, for all A € dN sufficiently large, every (F,;1,J R, A) formula for

(I,J) € F, has a strong honest definition. Thus, ¢ is a Boolean combination

of formulas with strong honest definitions. O]

The rest of the chapter is thus devoted to establishing the sufficiency criterion
in Theorem 3.3.6, by constructing strong honest definitions for (F,; A, B, R, A)
formulas with A sufficiently large. Note that this then gives a strong honest
definition for every L-formula ¢(x;y) with |z| = 1, since we have exhibited a
way to write every such formula as a Boolean combination of basic formulas
and descendants of (F,; A, B, R, A) formulas with A sufficiently large. Indeed,
by Proposition 3.3.7, every L-formula ¢(x;y) with || = 1 is equivalent to a
Boolean combination of basic formulas and descendants of (E,) formulas. Ex-
ample 2.7.16 gives strong honest definitions for basic formulas, and the proof of
Corollary 3.3.11 describes an algorithm for writing every (E,; R) formula as a

Boolean combination of descendants of (E,_1; R) formulas and descendants of

(F,; A, B, R, A) formulas with A sufficiently large.
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3.4 Main construction

Recall that R C N is our fixed congruence-periodic sparse predicate. In this
section, we show that every (F,;A,B,R,A) formula with A sufficiently large
has a strong honest definition.

The broad strategy is to induct on n. Theorem 3.4.3 can be seen as a stronger
version of the n = 1 case, and Theorem 3.4.6 handles the inductive step.

The following lemma transpires to be surprisingly useful.

Lemma 3.4.1. Letd,n € N*, R C¢ R, and A be an n-tuple of non-zero operators
with Ay >g 0 (respectively, A1 <g 0). Then there is A € N such that the following
holds.

Let A € dN be sufficiently large, and let s,t,x € Z be such that s <t < x
(respectively, s > t > x). Then there is 0 < a < A such that P\(x — s; A) =
o®PX(z —t; A) or PA(x — s; A) = 0“PA(t — s; A).

Let us give an intuitive interpretation of this lemma. Assuming A; > 0 for
the purpose of this discussion, the lemma simply says that if s < t < x, then

r — s is ‘close’ (with respect to the function PX(+; A)) to either x — ¢ or t — s.

Proof of Lemma 3.4.1. By Lemma 3.2.5, we can fix A € N such that |A;0%7| >
|8A 09| for all r € R. Let A € dN be sufficiently large, and let s,t,7 € Z be
such that s <t <z if Ay >g0and s >t >z if Ay <z 0. Let w:= Pa(x —t; A)
and z := Pa(t — s; A).

First suppose A; > 0. Then
t—5s<A-Qa(t—sA)<24,QK(t —s;A) < 2A,0%%,

where the first and last inequalities are by Lemma 3.2.17 and the second inequal-

ity is by Lemma 3.2.7. Similarly, z —t < 24,0%0,;. But now

1
r—s=(r—1t)+(t—s) <dAomax{z,w} < éAlaA max{zy, w },
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so, by Lemma 3.2.7, © < s + A - u for all u € R} with u; > o® max{z,w}.
Thus, Pi(x — s;A) < odmax{z;,w;}. But & >t > s, 80 A Pa(x — s5;A) >
max{A -z, A - w}, and thus P\ (z — s; A) > max{z;,w; } by Lemma 3.2.9.

Now suppose A; <g 0. Then t — s > Ayz; and x —t > A;w; by Lemma
3.2.17, whence

1
r—s=(zx—1t)+ (t—s) > 2A; max{z, w1} > ZlAlaA max{zy, w },

so, by Lemma 3.2.7, z > s+ A -u for all/some u € R} with u; = o® max{z,w; }.
Thus, PA(z — s5;A) < o*max{z,w}. But # <t < s,s0 A-Pa(z —s;A) <

min{A - 2, A - w}, and thus PA(z — s; A) > max{z;,w;} by Lemma 3.2.9. O

Lemma 3.4.2. Let d,n € Nt, R C?* R, A be an n-tuple of non-zero operators,
and A € dN be sufficiently large. Then the formula ¢(x;y) = PA(x—y1; A) = s
has a strong honest definition, given by the conjunction of strong honest defini-
tions for the basic formulas ¢1(x;y) and ¢o(x;y) defined as follows. The formula
o1 s given by

m—ylSmin{A-z:zGRZ,zlzadN} if Ay >r 0,

x—y1>min{A-z:z€Z~%Z,21:N} if Ay <g 0,
where N == ¢"®(min R), and the formula ¢o(x;7) is given by
min{A-z:2€ R,z =} <z—y <min{A z:z€ R, z = o},

where e :=1if Ay >gr 0 and € := —1 if A; <g 0.

Proof. Observe that

o(x1y) ¢ (yo = N Ad1(2;9)) V (12 € RAy2 > N A dala;y)).

Now apply Lemma 2.7.10. O

In the following theorem, we construct strong honest definitions for a class
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of formulas that includes all (Fi; A, B, R, A) formulas with A sufficiently large
(this inclusion is spelt out in Corollary 3.4.4). We use the notation I U J C [k]
to mean that I, J C [k] are disjoint.

Theorem 3.4.3. Let 0(x;y) be a formula with |x| = 1, and suppose the formulas
O(x;y) and 0'(z;w,y) = 0(x — w;y) both have strong honest definitions, where
lw| = 1. Let v(z;yM, ...,y") be a strong honest definition for 6.

Let d,n € N*, R CY R, A be an n-tuple of non-zero operators, and let A € N
be as in Lemma 5.4.1. Let A € dN be sufficiently large, t € Z, and f be an
L-definable function of arity 1. Then the formula

¢(a;w,y) =0 (tw — f(PA(zr — w; A));y)
has a system of strong honest definitions
{Crogotyini * Ia U Jy C k] for all0 < a < A, K CH{0,...,A}},

where Crygo--1yJ Kk (T;...) i given by the conjunction of the following:

(i) A strong honest definition (y(z;...) for the basic formula ¢1(x;w,y) =

r < w;

(1t) A strong honest definition Co(x;...) for the formula ¢o(z;w,y) =
O(tx — f(o™(min R));y), which exists since the formula is a descendant

of ;

(iii) For each 0 < a < A, a strong honest definition (§(x;...) for the formula
o5 (z;w,y,w' y) == 0 (tx; f(e“PA(w' — w; A)),y), which exists since the

formula is a descendant of 0';

(iv) For each 0 < a < A, a strong honest definition ({(x;...) for the formula
&% (v;w,y,w',y) == Pi(z — w; A) = o°PL(w' — w; A), which exists by
Lemma 3.4.2 (and Lemma 2.7.14);
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(v) For each 0 < a < A, the formula
¢ (ryw,y W i€ K\ (1aUJ,)) == y(tr— f(0® P (z—w; A)); 3V, ..., g™),
where, for 1 <1<k,

0,...,0) ifie€l,,

(1,..,1) ifi€e J,,

y® otherwise;
\
(vi) The formula

/\ Px(z —wa; A) = Pa(z —w'; A) = 0“Py(x — w!; A).

aeK

Let us first describe the idea of the proof, assuming A; >z 0 for the pur-
pose of this discussion. We wish to replace PA(z — w;A) in ¢(z;w,y) with a
more tractable expression; we can do so by Lemma 3.4.1, which gives us A € N
satisfying the following.

Let 29 € Z and S C Z'*WW with 2 < |S| < co. Here and henceforth, when
it is written that (b,a) € S, it is understood that |b|] = 1 and |a| = |y|. Let
w:=max({b: (b,a) € S,z9 > b} U{ming qesb}). Forall (b,a) € S, if b > u then
PA(zg — b; A) = 0" (min R), and if b < u then either

(i) PA(zo—b;A) = 0*PA(z9 — u; A) for some 0 < a < A; or
(ii) PA(wg—b;A) = 0*PA(u—b;A) for some 0 < a < A.

In each of these cases, replacing PA(xy — b; A) with the respective expression

gives a formula for which we have strong honest definitions.

Proof of Theorem 3./.3. By Lemma 3.2.7, we may assume A € dN is sufficiently
large that min A - RZ >0if A > 0 and max A - RZ <0if Ay < 0.



3.4. MAIN CONSTRUCTION 71

Fix 7p € Z and S C Z'YW with 2 < |S] < oo. Write m(S) = {b :
Jda (b,a) € S} and mo(S) := {a : 3b (b,a) € S}. Fix (by,ap) € S such that

) minm (S) if A; >z 0,
0:

maxm(S) if A} <gO0.

Define
max({b S 7T1(S) 1 Xg > b} U {bo}) if A1 >R 0,

mln({b € 7T1(S) g < b} U {bo}) if A1 <g 0.
For i € {1,2}, let ¢; € S be such that 7o = ((z;¢:) F tpy,(zo/S). For
i € {3,4} and 0 < a < A, let ¢ € (5%)<% be such that zy = (*(z;¢f) and
¢ cf) = tqug (xO/SQ)-

Let T := m(S) U{(0,...,0),(1,...., 1)} CZY. Then |T| > 2, so for 0 < a <A,

there is e® € T* such that
b — F(o® PA(xo — u; A)) = 1(a: ¢%) F tp(tzo — F(0* P — u A))/T).
There are disjoint I, J, C [k] and ¢* € m5(S)<* such that
Y(tw — f(0*Palz —us A))se”) = (7, (250, ¢%),

whence z¢ = (7 (z;u,c%).

For 0 < a <A, let Sy :={bem(S): PA(zo— b;A) = 0°PA(z0 —w; A)} C
Z, and if Sy # 0, let 1) := min S, and r(® := max S,.

Then we have that

2 4 A A
w0 b= N\ Gloie) AN N Clase) n N\ G, (o, e)
i=1 i=3 a=0 a=0
A
A /\ Pl(z =1 A) = PA(z — ', A) = 0“P)(z — u; A),
a=0

Sa#0
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and we claim that this formula, which is an instance of (j,j,..1,s,x for K :=
{0 <a<A:S, #0}, entails tpy(zo/S).

Indeed, suppose z; € Z satisfies this formula, and let (¥, a") € S. We wish to
show that ¢(zo; b, a) if and only if ¢(x1;b,a’). Since xo, 21 = (1(2;¢1), we have
that for ¢ € {0, 1},

max({b € m(S) 1 x; > b} U{bo}) if Ay >0,

u =

min({b € m (S) 1 x; <byU{by}) if A <rO.

Suppose b’ > u and A; >g 0. Then, for i € {0,1}, we have z; — b < 0 <
min A - R and so P}(z; — V'; A) = ¢™*(min R) by Remark 3.2.15. Thus, for
i € {0,1}, we have ¢(z;;V,ad") < ¢o(x;; 0, a’). But now, since xg, 1 = ((x;ca),
we have ¢9(xo;b',a") < ¢o(x1;b,a’), whence ¢(zo; b, a’) < ¢o(xq; 0, d’).

The case where V' < u and A; <p 0 is similar, so henceforth suppose either

(' <wand Ay >g 0) or (' > wu and A; <r0). By Lemma 3.4.1, we have either
(i) That PA(xo —V;A) = 0“PA(xg — u; A) for some 0 < a < A; or
(ii) That PA(zg—V;A) = 0*Pi(u—1b; A) for some 0 < o < A.

If 0 < o < A is such that Pi(xg — 0'; A) = 0*PA(u — V'; A), then since
ro, 71 | (¢ (x;¢}), we have PA(xg — V; A) = PA(xy — U5 A) = 0®Pi(u —V; A).
Thus, for i € {0, 1}, we have

Szt d') & 0 (to; — f(0*Pa(u—V;A));d)

and so

P(zi; b, d') < 0 (tay; f(o“Palu—V;A)),d).

But now, since zg, z1 = (§(z;c5), we have
0’ (tzo; f(0*PA(u—V;A)),d) < ¢ (twy; f(c*Pa(u—b;A)),d),

whence ¢(zo; V', ad') <& ¢(x1;b,a’).
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Suppose instead that we have PA(xg — V;A) = 0®PA(xy — u; A) for some

0<a<A,andso @ <¥ <@, But now
zo, 71 = Pi(z — 119 A) = Pi(z — r'Y; A) = 0°PL(z — u; A),

so by Lemma 3.2.9 we must have xg, 21 = PA(x—V'; A) = 0P (x—u; A). Thus,
for i € {0, 1},

P(zi; b, d") 0 (to; — f(o“Pr(z; — u; A));d) .
But now, since zo, z1 = (¢ ; (z;u,c¢*), we have
zo, 71 = y(tr — f(0" Pa(r — u; A))se?)
and so
0 (tzo — f(0“Pa(mo — u; A));d') < 0 (tzg — f(0“Pa(z1 — u; A));d')
whence ¢(xo; b, a") < ¢(x1;b,a’), which finishes the proof. O

Corollary 3.4.4. Let R C? R for some d € Nt. Lett € Z, A be a tuple of non-
zero operators, f be an L-definable function of arity 1, and 0 € {<,>}. Let A €
dN be sufficiently large. Then the formula ¢(x;y) ==tz —yo O f(PA(x — y1; A))
has a strong honest definition. In particular, given operators A, B with A #g 0,
every (F1; A, B, A, R) formula with A € dN sufficiently large has a strong honest
definition.

Proof. This follows directly from Theorem 3.4.3 since, for 6(z;ys) := x O o,
$(a3y) =0 (tr — f(Pa(r — yi; A))iye)

and the formulas 0(x;ys) and 0'(z;w,ys) = O(x — w;y,) have strong honest

definitions by Example 2.7.16. O]
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Having shown that every suitable (F}) formula has a strong honest defini-
tion, we proceed to show this for (F,,) formulas by induction on n € N*. The
following lemma is crucial for the inductive step. Recall that, given an n-tuple

v=(v1,...,vp), we let v~y denote (va, ..., V).

Lemma 3.4.5. Let d,n € Nt withn > 2, R C* R, A be an n-tuple of non-zero

operators, and A € dN be sufficiently large. Let a € Z be such that
a>infA-RiANa<max{A-z:z€R% z = Pi(a;A)}.

Then P (a — A1 PA(a; A); Asy) = PX'(a; A).

Proof. Let u = Pa(a;A). Then
A -usi+ A1 Py(a;A) = A - Pa(a; A) < a,
and so As; - us; < a— Ay PA(a; A). Thus, to show that
us1 = Pa (CL - A1Pi<a; A); A>1) ;
it suffices to show that there is no w € R% ! such that
Aol us) < Aoy w < a— A Px(a; A).
Towards a contradiction, suppose such a w € ]%Z’l existed, so
A u<A-(Pr(a;A),w) < a.

By definition of u = Pa(a; A), we must have that (PA(a; A),w) ¢ R, and so

w; > 0~2PL(a; A). Recalling the relevant notation from Definition 3.2.13, let

V= mﬁx{z € R} - 21 = PA(a; A)},
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so by assumption, we have
A u<A (Pya;A),w)<a<A- v

But now, since u; = v; = PA(a; A), we have Ao -usy < Asp-w < Aoy vsq, SO

by Lemma 3.2.9,
wy < max{uy, vo} < o~ max{uy, v} = 0 2 Pi(a; A),

which is a contradiction. O

The following theorem describes how a strong honest definition for a (F,)

formula can be obtained from one for a (F,,_;) formula.

Theorem 3.4.6. Let d,n € Nt withn > 2, R C* R, A be an n-tuple of non-
zero operators, and B be an n-tuple of operators. Lett € {0,1} with t = 1 unless
B = F' for some 1 <i <mn. Suppose that, for all A € dN sufficiently large, the

formula

O(x;y1,y2) :=tx —ys < Bsy - Pa(z — y1; Asq, R)

has a strong honest definition. Then, for all A € dN sufficiently large, the formula
G591, 4p) =tz — Yo < B- Pa(x —y1; A, R)

has a strong honest definition, given by a conjunction of copies of strong honest

definitions for

/

¢0 ZfB: F17
¢17¢27¢37¢4a¢57 (¢ga¢? AN S « S A) ZfB 7é F17A1 #R Bla and t = L

¢1, G2, 03, Pa, O3 otherwise,
\
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Ty Y1, Y2) = tr — yo < PA(z — y1; A),
Ty, Yy2) (=inf A - RA<x Y1,

Y2 —yp < B-(c™ 2 (minR) : 0 < i < n),

&
—~ —~ —~ —~ —~
8
<
’:‘

Ya) =
Y1, Yo) = y1 >max{A-z:2z € RA,zl Pi(a: —y1; A)},
) =

T3y, Y2) i=tx —ys < B- max{z € RA z = Pi(x —y1; A)},

PA(r —y1; A) > 0% Palyi —y2; Bi — A1) if Bi — Ay > 0
G5(T5 91, Y2) =
PA(z —y1; A) < U_APA(yl -y Bi —Ay) if By — A1 <gr 0,
O (251, y2) 1= PA(x — y1; A) = 0 Palyy — y2; By — A1),
¢7 (2391, Y2) == tx — Y2 — Bio® Pa(y1 — y2; B1 — A1)
< Boy - Pa(w —y1 — A1o®Pa(y1 — y2; B1 — A1) Asa),

ds(x;y1,y2) == 0(x — Alpi(x — Y1 A) Y1, y2)-

From this we immediately obtain the sufficiency criterion in Theorem 3.3.6

as a corollary.

Corollary 3.4.7. Let d,n € N*, R C% R, A be an n-tuple of non-zero operators,
and B be an n-tuple of operators. Then, for all sufficiently large A € dN, every
(Fn; A, B, R, A) formula has a strong honest definition.

Proof. Induct on n € Nt with Corollary 3.4.4 as the base case n = 1 and

Theorem 3.4.6 as the inductive step. O

Before proving Theorem 3.4.6, let us first justify that the formulas ¢y, ..., ¢g
indeed have strong honest definitions, assuming that A € dN is sufficiently large.
The formulas ¢y, @3, ¢4, and ¢5 have strong honest definitions by Corol-
lary 3.4.4 and Lemma 2.7.14, applied with A € dN sufficiently large. As an
example, to show that ¢3 has a strong honest definition (assuming A € dN is
sufficiently large), one applies Corollary 3.4.4 with ¢t = 1, 0 as >, and f mapping

u— max{A -z:z€ R%,z =u} if u € R and u +— 0 otherwise.
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The formulas ¢, and ¢y are basic formulas, so have strong honest definitions.

For —A < o < A, the formula ¢g has a strong honest definition by Lemmas
3.4.2 and 2.7.14, since it is a descendant of the formula PX(z — y1; A) = ys.

For —A < o < A, the formula ¢¢ has a strong honest definition by Lemma
2.7.14, since it is a descendant of the formula 6(z;y;,y2), which is assumed to
have a strong honest definition.

Finally, consider the formula ¢g. It is a descendant of the formula

P (z;w,y1,y2) = 0(x — A1 PA(x — w; A);y1, yo),

so by Lemma 2.7.14 it suffices to show that ¢§ has a strong honest definition.

Now the formula
' (x;w,y1,92) == 0(x — w; y1,y2) = O(x;w + Y1, tw + ya)

is a descendant of #, which is assumed to have a strong honest definition, and
hence so does ¢ by Lemma 2.7.14. Thus, the formula ¢ has a strong honest
definition by Theorem 3.4.3, applied with ¢ = 1 and f mapping v — Aju if
u € R and u — 0 otherwise.

Thus, Theorem 3.4.6 is well-formulated; let us prove it.

Proof of Theorem 3.4.6. Let A € dN be sufficiently large such that the function
z — A - z is injective on RZ, 0(x;y1,y2) has a strong honest definition, and all
the strong honest definitions exist that are claimed to exist in the statement of

the theorem. We will show that ¢(x;y1,y2) is a Boolean combination of copies of

/

bo if B=F!,
¢17¢27¢37¢4)¢57 (¢gv¢? : _A S (07 S A) lf B 7£ F17A1 %R Bl) and t = 17

\ O1, P2, 03, Pa, O3 otherwise,

which suffices by Lemma 2.7.10.
If B = F! then ¢(z;y) ¢ ¢o(z;y), so henceforth suppose B # F'. We will
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show that
¢H(ﬁ¢1/\¢2)\/(¢1/\¢3/\¢4)\/(¢1/\_‘¢3/\¢)~ (2)

If =¢1(z;y) holds then z — y; < inf A - RZ, so by Remark 3.2.15 we have
o(z;y) <> ¢2(x;y). Henceforth condition on ¢;(z;y), whence by Lemma 3.2.17,

A -Pax—yA) <z —1. (3)
If ¢3(x;y) holds, then Pa(z — y1; A) = maxa{z € R} : 21 = P\(x — y1; A)}

and so ¢(z;y) <> ¢4(x;y). Thus, (2) is shown. It suffices now to condition on

¢1 N\ ¢z and show that ¢ is equivalent to a Boolean combination of copies of

05, (05,909 : —A <a < A) if A #p By and t =1,

0g otherwise.

Henceforth condition on ¢4 (x;y) A =¢3(x;y). Note then that, assuming A €

dN is sufficiently large, Lemma 3.4.5 implies
PRMa —yi; A) = Pa (v =y — AtPa(z —yis A); Asy) (4)
We now split into two cases: A; #r By At =1, and (A4 =g Bi At = 1)V

(B=F'At=0).

Case 1: Ay #g By At =1. We will show that

A
¢ o5V \/ (8 A0,
A

a=—

LetezzlifBl—Al >RO, ande::—lifBl—Al <g 0.
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Firstly, suppose ¢, (z;y) holds, where

Pi(I—yl,A) <O'_APA(y1—y2;B1—A1) lfBl—Al >R 0,
o1 (z;y) =
Pi([L‘—yﬁA)>O'APA(y1—y2;Bl—A1) lfBl—Al <R 0.

In particular, inf(B; — Al)RIA < y1 — 12 by Remark 3.2.15, whence, for A € dN
sufficiently large,

y1 —y2 > (By — A1)Pa(yr — y2; By — A;) by Lemma 3.2.17

> (Bi — A1)o"2 Pa(z — y1; A) by ¢1(z;y)
> 2°(By — A))Px(x —y1; A) by Lemma 3.2.5
>(B—A):Pa(x—y;; A) by Lemma 3.2.7.

Recalling from (3) that z —y; > A - Pa(z — y1; A), we have that
T—yp=2—y1+y1—y2 > B Palz—yi; A),

and so ¢(z;y) <> L.

Next, suppose ¢5(z;y) holds. In particular, sup(B; — Al)RlA >y — Yo by
Remark 3.2.15, whence, for A € dN sufficiently large,

Y1 — Y2 < (B1 — A1)Qa(yr — y2; B1 — A1) by Lemma 3.2.17
< (B — Al)aEdPA(yl —yo; By — Ay) by Lemma 3.2.17

< (B1 = Ao Py (z — yi; A) by ¢5(z;y).
Using —¢3(x;y), for A € dN sufficiently large, we have

r—y; <max{A-z:z€ Rz,zl = Pi(:p—yl;A)} < (A4 +0_LA/2J)Pi($—y1;A)
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by Lemma 3.2.5. Thus, for A € dN sufficiently large,

T—=Y=T—Y1+Y — Y2
< (A1 + U_LA/QJ)Pi(x —y; A)+ (B — Al)aa(d_A)Pi(:v —y; A)
< (By — o B2OPLl(z — y1; A) by Lemma 3.2.5

< B:Pa(z —y1; A) by Lemma 3.2.5,

and so ¢(z;y) <> T.
Finally, suppose neither ¢ (x;y) nor ¢5(x;y) holds. Then there is —A < a <
A such that ¢¢(x;y) holds. Conditioning on such ¢§(z;y), we have

o(x;y)
S x—yy— BIPA(x —y1;A) < Boy - PXM(z — yis A)

& x—1yy — BPA(x —y1;A) < Bsy - Pa (x —y — A PA(x — y1; A); A>1)
by (4). But this is equivalent to ¢$(z;y), since ¢¢(z;y) holds. Thus,
A
ot o5V \ (05 A e5).
a=—A

Case 2: (A =g BiAt=1)or (B=F"At=0). We will show that ¢ < ¢s.
Recall that we have assumed B # F': in particular, B; =g tA;. We have

¢(7;y)
& te — BiPA(x —y1;A) —yp < Boy - PRz — y1; A)

<t — BiPy(x —y1;A) —ys <Boy - Pa (z —y1 — AiPA(z — y1;A); Asy)

by (4). But this is equivalent to ¢g(z;y): since By = tA;, we have that
tr — ByPx(x —y1; A) = t(x — A PA(z — y1; A)). O
Theorem 3.4.8. The structure (Z,<,+, R) is distal.

Proof. Combine Theorem 3.3.6 and Corollary 3.4.7. O



Chapter 4

Distality to Combinatorics:
Regularity Lemma and

Zarankiewicz Bounds

In this chapter, we recover combinatorial interactions from a distality assump-
tion. Specifically, we establish a connection between regularity lemmas and Za-
rankiewicz bounds that is satisfied by relations definable in a distal structure
(and others). Since Ké6vari, Sés, and Turdn proved upper bounds for the Za-
rankiewicz problem in 1954, much work has been undertaken to improve these
bounds, and some have done so by restricting to particular classes of graphs.
In 2017, Fox, Pach, Sheffer, Suk, and Zahl proved better bounds for semialgeb-
raic binary relations, and this work was extended by Do in the following year
to arbitrary semialgebraic relations. In this chapter, we show that Zarankiewicz
bounds in the shape of Do’s are enjoyed by all relations satisfying the distal reg-
ularity lemma, an improved version of the Szemerédi regularity lemma satisfied

by relations definable in distal structures.

With the exception of Section 4.6, this chapter is presented (with minor dif-
ferences) in our preprint [53]. We thank Pantelis Eleftheriou for his consistent

guidance and mentorship, and for suggesting this problem to us. Soli Deo gloria.

81
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4.1 Introduction

A classical problem in graph theory is the Zarankiewicz problem, which asks for
the maximum number of edges a bipartite graph with n vertices in each class
can have if it omits K, ,, the complete bipartite graph with u vertices in each
class. In 1954, Kévéri, S6s, and Turdn [32] gave an upper bound of O, (n?~/%).
Remarkably, this remains the tightest known upper bound, although sharpness
has only been proven for u € {2,3}. In 2017, Fox, Pach, Sheffer, Suk, and

Zahl [19] observed that this bound can be improved if the graph is semialgebraic.

Theorem 4.1.1 (Fox—Pach—Sheffer-Suk—Zahl [19, Theorem 1.1}). Let E(x,y) be
a semialgebraic relation on R with description complezity at mostt. Let dy := ||
and dy = ly|. Then, for all finite P C R* and @ C RY with m := |P| and
n:=|Q|, if E(P,Q) is K,-free, then for all ¢ > 0 we have

2 2 .
ms3n3 +m-+n if dp = dy = 2,
|E(P’ Q)| <<U7d17d2:t15 do(dy—1) Te dq(do—1) )
m dde—1 T dide-1 L+ otherwise.

The graph theorist naturally asks if these results can be generalised to k-
partite k-uniform hypergraphs (henceforth, a k-graph is a k-uniform hypergraph).

Erdés led the way in 1964 [17], generalising the result of Ké&véri et al: a K, ,-free

k-partite k-graph with n vertices in each class has O, (n*~" “k_l) edges. In 2018,
Do [14] generalised Theorem 4.1.1, improving Erdés’ bounds for semialgebraic

k-partite k-graphs.

Theorem 4.1.2 (Do [, Theorem 1.7]). Let E(xy,...,x) be a semialgebraic
relation on R with description complexity at most t. Let d; :== |z;|. Then, for all

finite P; C R* with n; := |Py|, if E(Py,..., Py) is K. .-free, then for all e > 0

,,,,,

we have

‘E(Pla 7Pk’)‘ <<u,cz,t,s Fdé(nlv "'7nk)>

where d = (dy, ..., dy,).
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The function F will be defined in Definition 4.4.2, but for now we merely

note that, when d; =---=dy =:dand ny =--- =n, = n,

F5(ny,...,np) <y N R

In this chapter, we prove an analogue of Theorem 4.1.2 for a much larger class
of relations, namely, relations satisfying the distal reqularity lemma. That is, they
satisfy an improved version of the Szemerédi regularity lemma, in which the sizes
of the partitions are polynomial in the reciprocal of the error, and the good cells
are not just regular but homogeneous (that is, a clique or an anti-clique); see
Definition 4.2.3. Collecting the degrees of the polynomials into a strong distal

reqularity tuple ¢, we state our main theorem.

Main Theorem (Theorem 4.4.5). Let E(z1,...,xx) be a relation on a set M,
with strong distal reqularity tuple ¢ = (cq, ..., cx) € Rgl and coefficient \. For all
finite P, C M™ with n; := |P,|, if E(Py, ..., Py) is Ky, u-free, then for all e >0,

|E(P1, ceey Pk)| <<u,6,>\,5 Fg(nl, ,nk)

Here, the function F7 is precisely the function F; appearing in Theorem 4.1.2,
but with ¢ in place of d (as a tuple of dummy variables). The definition of the
coefficient is unimportant for this discussion, so we refer the reader to Definition
4.2.3 for it.

The distal regularity lemma is so named because it is satisfied by all relations
definable in distal structures. Thus, our main theorem joins a parade of combin-
atorial properties that have been shown to hold in distal structures in the last
decade. It supports the postulate by Chernikov, Galvin, and Starchenko in [9]
that ‘distal structures provide the most general natural setting for investigating
questions in “generalised incidence combinatorics”’, where they proved an ana-
logue of Theorem 4.1.1 for binary relations definable in a distal structure. It also

motivates the following problem.
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Problem 4.1.3. Compute (strong) distal reqularity tuples for relations satisfying

the distal reqularity lemma, such as those definable in a distal structure.

It is worth pointing out that our main theorem applies to all relations satisfy-
ing the distal regularity lemma, which form a strictly larger class of relations than
those definable in a distal structure — see Theorem 4.5.1. However, this does not
constitute a refutation of the postulate by Chernikov, Galvin, and Starchenko,
as distal structures are still the most general structures in the literature in which
all definable relations satisfy the distal regularity lemma.

This chapter presents regularity lemmas as a means of obtaining Zarankiewicz
bounds, an approach also adopted in [29]. Improvements on the Szemerédi regu-
larity lemma have been made in various contexts, such as for stable graphs [37]
and for graphs with bounded VC-dimension [21]. Following our main theorem,

it is natural to pose the following problem.

Problem 4.1.4. Which other variants of the Szemerédi reqularity lemma give

rise to improved Zarankiewicz bounds?

4.1.1 The semialgebraic case

Recently, Tidor and Yu [52] proved that if E(xy, ..., xx) is a semialgebraic relation
on R, then (|x1], ..., |xg|) is a distal regularity tuple for E, so (|x1|+1, ..., |z +1)
is a strong distal regularity tuple for £, where the corresponding coefficient is a
function of the description complexity of E. We refer the reader to Definition
4.2.3 for a precise definition of (strong) distal regularity tuples, but here we
emphasise that the word ‘strong’ refers to requiring equipartitions in the distal
regularity lemma.

Thus, if the assumption in our main theorem can be weakened so that ¢ is
only required to be a distal regularity tuple (that is, the corresponding partitions
need not be equipartitions), their result can be combined with ours to recover
Theorems 4.1.1 and 4.1.2. In Section 4.3, we show that this assumption can

indeed be so weakened when FE is a binary relation, thus recovering Theorem
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4.1.1. We would like to do likewise for an arbitrary relation, and so we pose the

following problem.

Problem 4.1.5. For an arbitrary relation E(x1,...,xy), can the assumption in
our main theorem be weakened so that ¢ is only required to be a distal regqularity

tuple?

Another way to recover Theorem 4.1.2 would be to resolve the following prob-

lem positively.

Problem 4.1.6. For a semialgebraic relation E(xq,...,xx) on R, is (|z1], ..., |zk|)

a strong distal reqularity tuple for E?

We note however that, in [52], Tidor and Yu also proved infinitesimally im-
proved versions of Theorems 4.1.1 and 4.1.2 — removing the ¢ from the bounds

— which our present methods are not able to achieve.

4.1.2 Structure of the chapter

In Section 4.2, we introduce the notion of (strong) distal regularity tuples and
prove some of their basic properties. In Section 4.3, we prove a stronger version
of the main theorem in the case where the relation is binary, and in Section 4.4,
we prove the theorem in full. Finally, in Section 4.5, we discuss the context to

which the theorem can be applied.

4.1.3 Notation and basic definitions

In this chapter, we often consider relations as set-theoretic objects rather than
definable sets in some structure. We lay out some notation and definitions below,
some of which are borrowed from first-order logic.

If 21, ..., 7k, y are variables, write y = y(x1, ..., %) to mean that y is a function

of x1, ..., xp.
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Relations

Let M be a set and & € NT. For tuples of variables xzy,...,xx, a relation
E(zy,...,x;) on M is a subset of M1l x ... x MI#! or equivalently, a k-partite
k-graph on vertex sets M=l . Ml We will often drop the absolute value
signs and write M®' for M1l and so on.

For a; € M*, E(ay,...,a;) is defined to mean (ay,...,ax) € E(xy,...,z)). For
P, C M* and b; € M™,

E(Pl, 7Pk:) = {(al, ...,ak) € P1 X X Pk . E((Il, ...,ak)},

E(bl,Pg, ,Pk) = {(CLQ, ...,ak) - P2 X oo X Pk : E(bl,ag, ...,ak)},

and we similarly define E(Pi, ..., P,_1,b;, Piy1, ..., P;) for all ¢ € [k]. Say that
Py X -+ X Py is E-homogeneous if E(Py,...,P,) = Py X -+ x Py or (.

Holder’s inequality

Holder’s inequality is the following classical theorem.

Theorem 4.1.7. Let ay,...,a5,b1,....,b,,p,q € Rsq be such that p+q =1. Then

p q
n n n
E Ppa E E
i=1 =1 =1

4.2 (Strong) distal regularity tuples

We begin by defining the notion of regularity for a bipartite graph.

Definition 4.2.1. Let M be a set, and let E(x,y) be a relation on M. For finite
A C M?* and B C MY, write

_ |E(A, B)|
d(A, B) = SATE

Let P C M* and @ C MY be finite. For § > 0, say that the bipartite graph
E(P,Q) is §-regular if, for all A C P and B C @ with |A| > §|P| and |B| > §|@Q)],
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In 1978, Szemerédi proved the following celebrated regularity lemma.

Theorem 4.2.2 (Szemerédi, 1978 [51]). Let M be a set, and let E(x,y) be a
relation on M. For all 6 > 0, there is K € N such that the following holds.

Let P C M® and @ C MY be finite. Then there are (equi)partitions P =
AjU---UAg and Q = By U---U Bg, and an index set ¥ C [K]? of ‘bad cells’,
such that

(a) ‘Meagre bad cells’: 37 »ex [Ai X Bj| < 6|P x Q|; and
(b) ‘0-reqular good cells’: for all (i,7) € [K|*\ X, E(A;, B;) is d-regular.

Szemerédi’s proof shows that K can be bounded above by an exponential
tower with height a polynomial in 1/0. Hopes of improving this enormous bound
in general were quashed in 1997 when Gowers [23] constructed graphs necessit-
ating K of this size.

However, various results have arisen since then that establish better bounds
for K in certain contexts, along with additional improvements on the regularity
partition. Notably, in 2016, Fox, Pach, and Suk [20] showed that when FE is
semialgebraic, not only is K upper bounded by a polynomial in 1/4, but also item
(b) in Theorem 4.2.2 can be replaced by the condition that for all (i, ) € [K]*\X,
A; x B; is E-homogeneous, a very strong form of regularity. In 2018, Chernikov
and Starchenko [ 1] weakened the semialgebraicity assumption and showed that
this holds if F is definable in a distal structure, leading to the nomenclature distal
reqularity lemma.

The results of Fox-Pach—Suk and Chernikov-Starchenko hold for relations of
arbitrary arity (that is, for hypergraphs as well as graphs). We will state this
result formally in an a priori roundabout way, by putting the spotlight on the
degree of the polynomial in 1/6 that upper bounds K — this will be important

later on.
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Definition 4.2.3. Let M be a set, and let E(xy, ..., zx) be a relation on M. Let
1y .oey € Rsg, and write ¢ 1= (¢, ..., ).

Say that ¢ is a distal regularity tuple (respectively, strong distal regularity
tuple) for E if there is a coefficient A > 1 satisfying the following: for all 6 > 0
and finite sets P, C M7® with n; = |P;|, there are partitions (respectively,
equipartitions) P, = A{ U --- U A} and an index set ¥ C [Kj] X -+ x [K}]
of ‘bad cells’ such that

(a) ‘Meagre bad cellss 37 - o [A] X - x AR | < A0y -+ my;

(b) ‘Homogeneous good cells: for all (ji,...,5x) € [Ki] x -+ x [Kg] \ X,

A} x - x A% is E-homogeneous; and
(c) ‘Polynomially (in 6~1) many cells’ For all i € [k], K; < \d¢.

Say that E satisfies the distal regularity lemma if there is a distal regularity
tuple for F.

Remark 4.2.4. For the reader that is familiar with hypergraph regularity, alarm
bells may be ringing. This notion of hypergraph regularity appears to merely be
a stronger version of what is known as weak hypergraph reqularity, which has
been rendered mostly obsolete due to its combinatorial limitations. We will
explain this in much more detail in Chapter 5, but briefly, the weak hypergraph
regularity lemma says that a hypergraph P, x --- x P, can be decomposed into
a bounded number of boxes A} x --- x A% 'most of which are d-regular (for the
obvious generalisation of J-regularity to hypergraphs). Combinatorialists have
observed that, in general, d-regular boxes are not uniform enough on which to do
combinatorics, and a strong hypergraph reqularity result was eventually developed
where hypergraphs are decomposed into ‘simplicial complexes’ rather than boxes
(and the notion of uniformity is more refined than J-regularity).

Nonetheless, although distal regularity is a version of weak hypergraph regu-
larity, the good cells are not just d-regular but homogeneous. Homogeneity is the

strongest possible form of uniformity, and so the combinatorial limitations that
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plague the weak regularity lemma do not apply to the distal regularity lemma at
all. In fact, distal regularity can be seen as a stronger version of strong hyper-

graph regularity — see Chapter 5.

It is immediate that strong distal regularity tuples are distal regularity tuples

(with the same coefficient), and the following lemma establishes a converse.

Lemma 4.2.5. Let M be a set, and let E(xy,...,xx) be a relation on M. Let
C1y ey Cp € Rsg. Writing ¢ := (cq, ..., ¢k), suppose € is a distal regularity tuple for
E with coefficient \. Then (c1 +1,...,cp+1) is a strong distal reqularity tuple for
E with coefficient (k + 2)\.

Proof. Suppose ¢ is a distal regularity tuple for E with coefficient A. Let
§ € (0,A7Y) and let P, C M@ be finite with n; := |P|. Fix partitions
P, = Al U--- U Ay and an index set of ‘bad cells’ ¥ C [K;] x -+ x [K}] as
in the definition of ¢ as a distal regularity tuple for E.

For each i € [k], define an equipartition P, = B} U --- U B} as follows. Let
N; = [%5‘”“7@] For each j € [K;], partition A; into a maximal number of
parts of size N; and a part Sj- of size less than N;. This gives a new partition
P=SiU-US, UTiU---U Tfi{é where, for all j € [Kj], |T},| = N; and there
is a unique j € [K;] such that T}, € A%. Observe that K} < n,;/N; < 20~ (et D),

By moving elements of T¢, ..., TIZ'(Z{ to S, ..., S}(i as much as necessary, we obtain
an equipartition P, = S} U--- U S, UTiU--- L T}'q where [Si| < N; — 1 for all
j € [Ki] and, for all j/ € [K]], there is a unique j € [K;] such that T/ C A
Rename Sj, ..., S§ as Bj, ..., Bj and T}, ...,T}g as By ,..., B;,. Observe that
Li=FK;+ K/ < (A+2)5~@F and Y0 [Bi| < Ki(N; — 1) < Aon,.

For all (ji,...,7k) € ([L1] \ [K1]) X -+ X ([Lg] \ [Kk]), there is a unique tuple

(11, ...y 1) € [K4q] X + -+ x [Kj] such that B}l X - X Bfk C Al XX AF - write

(1"

(11, .y i) = 7(J1, -, ). Now set
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where Ag i= {(j1, . ji) € (L] \ [K1]) % -+ x ([Le] \ [K]) : 7(j1, o i) € S}
We claim that the partitions P, = Bj LI --- U B} , together with the index set A
of bad cells, witness that (¢; + 1, ...,cx + 1) is a strong distal regularity tuple for
E with coefficient (k + 2)\.

We already have that, for all i € [k], L; < (A + 2)6~ @+ < (k 4+ 2)Ag— (et
For all (i, gs) € [Ea] -+ x (L \ A © (L] \[l) x -+~ x (124 \ [Kil), we
have 7(j1, ..., jx) & 3; that is, Bj, x --- x BJ is contained in an E-homogeneous

cell, so is itself F-homogeneous. Therefore, it remains to show that

S Bl x oo x BE| < (k+2)A0ng -y

- 1 k 1 k
Firstly, L, joeno B X - X Bj, C Uy inen Ay X - X Ajy, so the set

..... 11

Z |B;1><---><B]kk|

(J15edk) EA
k K;
= e Y B+ Y |BL x - x BE|
i=1 Jj=1 (J15--5JK)EAO
k
S Z LA (7 | 7 nk(/\5nz) + /\5721 N
i=1
= (k+1)Aény - - - ng. [

Thus, a relation E satisfies the distal regularity lemma if and only if there is
a strong distal regularity tuple for E.
The results of Fox—Pach-Suk and Chernikov—Starchenko can now be stated

as follows. We use R to denote the structure of the real ordered field.

Theorem 4.2.6 (Chernikov—Starchenko, 2018 [I1]; M = R: Fox—Pach-Suk,
2016 [20]). Let ¢(z1,...,xx;y) be a relation definable in o distal structure M.
Then there are ¢ € Rgo and X\ > 1 such that, for all b € MY, the relation
E(xq,...,x) := ¢(x1, ..., x5, b) on M has distal reqularity tuple ¢ with coefficient
A
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By Lemma 4.2.5, ‘distal reqularity tuple’ can be replaced with ‘strong distal

reqularity tuple’ in the statement above.

We will now forget about the context of M = R or M as a distal structure,
and derive Zarankiewicz bounds for all relations with a (strong) distal regularity
tuple, that is, all relations that satisfy the distal regularity lemma.

We finish this section by proving a preliminary Zarankiewicz bound for a

relation E(xq,...,x;) with a distal regularity tuple, morally inducting on k.

Lemma 4.2.7. Let E(x,...,xx) be a relation on a set M with distal reqularity
tuple ¢ = (c1,...,cx) € R’;l and coefficient X. Suppose that, for all i € [k],
F; : N*=1 & R is a function satisfying the following.

Let uw € NT, and let ay,...,a, € M® be distinct. For all j € [k]\ {i}, let
P; C M% with n; := |P;|. If the (k—1)-graph (,_; E(P1, ..., Pi_1, ae, Piya, .., Pr)

is Ky, u-free, then its size is Oy(F;(ny, ..., Mi_1, Mit1, ooy ) )

-----

(i) Let v > 0, and suppose that for all finite P, C M%* with n; = |B;|, if

E(Py, ..., P) is K, . y-free, then

B(Pyy o P)| uwern 1 i+ 1y Fi (s, ).

Then the statement above holds with ~ replaced by m

(ii) For all i € [k], let P, € M® be finite with n; == |F;|. If E(Py, ..., P) is

K, .-free, then for all i € [k] and e > 0,

.....

1

-+
’E(Pl, ceey Pk)| <<u,ci,)\,s ny-- -nkni < : -+ nz-Fi(nl, ey -1, M1, ,nk)

_ 1

Proof. (i) Let § =ny """~ With this value of §, partition P, = Aj - U A

for each i € [k] as in the definition of ¢ as a distal regularity tuple for F, with
% C [Ki]x- - -x[Kj] the index set of bad cells. Let T':= U, i yex Af %+ < AF
Without loss of generality, let 0 < L < Kj be such that, for all 1 < j < K,
|A}| > u if and only if j > L.
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Let j > L. Then [A}| > u, so let ay,...,a, € A} be distinct. Then

E(A}, Py, .., P)\T C A} x (| Eac, Py, ... Py).

e=1

.....

free, and so by assumption
|E(Ajl, PQ, ceey Pk) \ T’ <y ‘A}lFl(TLQ, 7?’Lk)
Let H; := Ule Ajl-, so |Hy| < Lu < Kju < Ad~“wu. By assumption,

|E(Hy, Py, ..., Py)| Kuern (A u) " Tng - ng + ny Fy(ng, ..., )

<<u,)\ 5_61(1_7)712 N + anl(ng, ceey nk)
Thus,

|E(Py, ..., P)|

Ky
S |T|+|E<H17P2v"'7pk)|+ Z |E(AJI,P2,,P;€)\T|

j=L+1

Ky
<<U701,>\ 5n1 e N + 5761(177)712 e Npe + anl(nQ, ,nk) + Z |A;\F1(n2, ,nk)
j=L+1

11
1+c1(1—7)
<2n; TN Vngecong 4+ 2n1Fi(ng, . ng).

(ii) By symmetry, we may assume that i = 1. Let f : [0, ﬂ — [Clil, i] be

given by v m The statement in (i) holds for v = 0, so it suffices to

show that f"(0) — é as n — oo. Note that for all v € |0, i] we have v < f(v),

since (c;y — 1)(y — 1) > 0, which rearranges to y(1 + ¢;(1 — 7)) < 1. Thus,

1

(f™(0)), is an increasing sequence in | L] and so it converges to some limit

417 ¢
L €[5, =] But then L = m, which rearranges to (c;L —1)(L —1) =0,
and soL:é since ¢; > 1. O

Remark 4.2.8. In Lemma 4.2.7, when k = 2, F; can be chosen to be the constant
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1-valued function. Indeed, if a 1-graph is K,-free, then its size is at most u—1 =
Ou(1).

Remark 4.2.9. After the preparation of our preprint [53] on which this chapter
is based, we were made aware of a Turdn-type argument in [52, Corollary 5.1]
which allows one to remove the € from the bound in Lemma 4.2.7(ii) as long
as ¢; > 1. Even so, bootstrapping this infinitesimally improved bound via our
methods does not allow us to remove the € in our main theorem (Theorem 4.4.5)
or its binary counterpart (Theorem 4.3.1), so we retain the statement and proof

of Lemma 4.2.7 as written to provide a different perspective and proof method.

4.3 Binary relations

We will first consider binary relations, for two reasons. Firstly, for binary re-
lations, our main theorem holds under a weaker assumption — namely, ¢ is
only required to be a distal regularity tuple, not a strong distal regularity tuple.
Secondly, the exposition is much cleaner for binary relations, and so will hopefully

illuminate the proof strategy for arbitrary relations.

Theorem 4.3.1. Let E(x,y) be a relation on a set M, with distal reqularity tuple
¢ = (c1,¢2) € R, and coefficient X. Then, for all finite P € M* and Q € MY
with m := |P| and n :=|Q)|, if E(P,Q) is K,-free, then for all ¢ > 0 we have

colca=1) | 01(02*1)+5

|E(P,Q)| Kugre m ezt nael " 4m+4n,

ca—1 c1—1 . A+9H-1 _
ST oo 10 be limgs_,q ( =

where, if c; = ¢y = 1, we define 110)2—1

1
5-
Proof. We will show that, for all ¢ > 0, there are constants o = a(u, ¢, A, €) and
B = B(u,c, A €) such that, for all finite P C M* and Q C MY with m := |P| and

n = |Q|, if E(P,Q) is K, -free, then

ca(e1—1) c1(ca—1)

|E(P,Q)| < am @21 "p et 4 B(m 4 n). (1)

The dependency between constants will be as follows:
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(i) 0 is sufficiently small in terms of ¢, A, and ¢;
(ii) myg is sufficiently large in terms of u, ¢, A, ¢, and §;

(iii) p is sufficiently large in terms of my, u, ¢, A, and ¢;

(iv) « is sufficiently large in terms of my, (5, u, ¢, A, and 0.

By Lemma 4.2.7(ii) and Remark 4.2.8, |E(P, Q)| <uzexe m' & + m and
|E(P,Q)| <uene mn' e+ n, where v € (0, 3) is chosen such that

1 _ 1 max CQ(Cl — ]_)7 01(62 — 1) S .
1—v cico—1 " cieo—1

—1 —1 ..
Note then in particular that 2=l ¢ — L c@-l) < ca-l) | o 5nd gimilarly
ciece—1 1—v 1—v ciea—1 ciea—1 )
=1 1 _ 1 ci(ca=1) _ ci(ca—1)
cico—11—v = 1—v ciea—1 S cico—1 te

1—v
If m < ne and § is sufficiently large in terms of u, ¢, A, and &, then

‘E(P, Q)’ < fn since }E(P, Q)‘ Luihe mn' -+ n. Therefore, for the rest of

the proof we assume that n < ml%, which implies

c1—1  ci(ea—1) cale1—1) c1(cg—1) ca(e1—1) c1(cg—1)
n = necica—1n crea—1 < m cic2—1 + c1eo—1 < m cic2—1 + cieo—1 +€ (2)

Similarly, for the rest of the proof we assume that m < nl%, which implies

cg—1 ca(e1—1) c1(ep—1) ca(e1—1) ca(e1—1) c1(eg—1)
m = mye2c1—1qn, cae1—1 < n c2c1—1 t+e m c2c1—1 S m, cic2—1 +€n cieg—1 +8 (3)

Let @ = a(u, ¢\ e) and § = S(u,¢, A, ) be sufficiently large, to be chosen
later. We show by induction on m + n that (1) holds.

Let mg = mo(u,¢,\ e,0) to be chosen later. If m +n < mg, then (1)
holds by choosing values for o and g that are sufficiently large in terms of my.
Thus, henceforth assume that m + n > mg, and suppose that (1) holds when
|P|+ Q] < m-+n. If m < myg, then |E(P, Q)| < mgn < fn assuming [ > my, S0
henceforth suppose m > my.

For ¢ := §(¢, \,e) < 1 to be chosen later, partition P = A; U --- U Ak, and

@ = By U--- U By, as in the definition of ¢ as a distal regularity tuple, with
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Y C [K,] x [Ks] the index set of bad cells. By refining the partition and replacing
A with A + 2 if necessary, we can assume that |A;| < 6“m for all i € [K;].

For i € [K], let 3; :={j € [Ky] : (i,7) € ¥}. Without loss of generality, let
0 < L < L' <K be such that:

(i) For all i € [K;],|A;| > w if and only if i > L; and
(if) For all i € [Kq]\ [L], Y ;e | Bj| < 0'°n if and only if i > L.

Partition P into H; := UZ.L:1 A, Hy = UZ.L:/LJrl A;, and Hz := UfilL,H A;. We will
bound |E(P, Q)| by bounding | E(H:,Q)|, |E(Hz, Q)|, and |E(Hs, Q)]
Consider F(H,Q). Note that |H;| < Lu < Kju < A~“u. Choosing

mgo > A0~ lu, we have m > mg > A0~“u >|Hy|. By the induction hypothesis,

ca(e1—1) c1(ca—1)

’E(Hl, Q)‘ < a(>\5_clu) crea=T o ere=1 1° + B(Aé‘clu + ’fl)

o c2(c1—1) c 61(02—1)+E

< Zm cieg—1 n cic2—1 _|_ /B(m _|_ n)

for myq sufficiently large in terms of u, ¢, A, £, and 9, such that

clal) o ca(c1—1)

me T > 4N ) e T T

Consider E(H,, Q). By definition, UiL:/L—H Ujes, Ai X Bj € Ui jyex Ai X B
The set on the right has size at most Addmn, and for all L +1 < i < L’ we have
> ies,|Bj| > 0'°n. Thus,

v Aomn
Hy|=| | 4l < = \o°m.

ol—en
i=L+1

In particular, assuming ¢ is sufficiently small in terms of A and e, we have

|Hy| < m, so by the induction hypothesis,

ca(c1—1) c1(ea—1)

|E(H,, Q)] < a(A6*m) a2 Fnaiee=t ¥ 4 B(A6°m + )

o  c2(c1—1) c1(ep—1)
< Zm cieg—1 +€n cieg—1 +e + /B(m + n)
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for o sufficiently small in terms of A and e.

Next, consider F(Hs, Q). We will bound its size by partitioning it into two:

E(Hs, Q) = U U e@AuB)|ul U U EA.B)

i=L'+1 jE[Kz]\Z i=L"+1 j€X%;

Fix L’ +1 S 1 S Kl- FOI‘j < [Kg] \ EZ’, E(A“BJ) = Al X B] or @ Since
|Ail > uwand E(A;, Q) is Kyu-free, we have |E(A;, U cix,ns, Bi)| < (u— 1[4

Hence,
Z Z E(A;, B;)| < (u—1)m.
i=L'+1 jE[K2)\ s
Now, >y, |B;| < 6'n by definition. Recall also that [4;] < 6*m. In

particular, |A;| < m, so by the induction hypothesis,

ElA, B
JEX;

1) 1(co

c1 f(c T te/sl—e ”7_1 +e c1 1—¢
< a(0%m) crez=T (5T n) e + B(6m+0""n)

c1(ea—1) co(cq—1) cq(cg—1)
— a581+5( cjco—1 +1— E)m cleo—1 + creg—1 +e +B(5clm—|—51_6n)

o ca(e1—1) c1(cg—1)
< —0%m eree—1 + cpes T T€ + ﬂ(m + n)

for ¢ sufficiently small in terms of ¢ and . Thus,

K
co(eq—1) c1(ea—1)
> D IE(ALB)| < Mzt m e o wa T A8 B (m )
i=L"+1j€%;

o C2<61*1>_~_6 c1(cp—1)

< moanTT T maT T L A6 B(m + )

for « sufficiently large in terms of .
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Putting all this together,

|E(P, Q)|

=|E(H\, Q)| +|E(Hs, Q)| + Z > BB+ Y > |E(ALB)

i=L'+1 jE[K)\ s i=L'+1 j€3;
3o c2la— 1)+ cq(cg— 1)+8 e
_Zm erez 1 ez~ " 4 (28 4+ NS +u—1)(m+n)

ca(e1—1) c1(ep—1)
S am cieg—1 +En cieo—1 +e

Y

where the last inequality was obtained from (2) and (3), choosing « to be suffi-
ciently large in terms of 3, u, ¢, A, and 6. Thus, (1) holds as claimed. H

Remark 4.3.2. It is straightforward to observe that the bound in Theorem 4.3.1

ca(e1—1) c1(e2—1)
can be infinitesimally improved to, say, m 2=t ""n 2=l + m + n. Indeed, if

m < n¥r then |E(P, Q)| <uzxn by Lemma 4.2.7. Assuming therefore, without
loss of generality, that n < m?¢, by Theorem 4.3.1,

ca(c1— 1)+ c1(ca—1)

’E(P, Q)’ <<u,67)\’5 cieg—1 n crea—1 m201€ +m+ n,

ca(c1— 1)+ c1(ca—1)

and so |E(P, Q)| Kuere m a2 1 " Tp et +m 4 n.

4.4 The general case

We now proceed with the proof of the main theorem for an arbitrary relation.

Lemma 4.4.1. Let E(xy,...,x)) be a relation on a set M, with strong distal
reqularity tuple ¢ = (c1,...,cx) and coefficient X\. For all u € NT and distinct

A1y ey Gy € M™ ) the relation

has strong distal reqularity tuple (cq, ..., cx) with coefficient u.

Proof. Let ay,...,a, € M** be distinct, and let P := {aq,...,a,}. For 2 <i <k,
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let P, C M* be finite with n; := | P

Let 6 € (0,u™'). With this value of §, obtain equipartitions P, = A% L --- U
AZK as in the definition of ¢ as a strong distal regularity tuple for E, and let
¥ C [K,] x -+ x [Kj] be the index set of bad cells. Since u < 67!, we can assume
without loss of generality that the partition of P; is a partition into singletons,
and A} = {a;} for all j € [u].

Henceforth, a tuple (ja, ..., j) is understood to be taken from [Kj] X - - - X [K}].
Let

Y= {<]27ajk) : EI]I € [u] (]ha]k) S 2}

We claim that the equipartitions P; = A} Ll --- U A} (for 2 < i < k) and the
index set Y of bad cells are such that

(1) Y iaesy [AZ X o x AR | <uddng - my;

.....

(ii) For all (g, ..., jx) € X', A2, x --- x A¥ is R-homogeneous;
(i) K; < A% forall 2 < <k.

To see that (i) holds, observe that

AL xx AR < YT AL e x A | < Adung -
(J2y--dk) €X (J15-0K)EX
To see that (ii) holds, let (ja,...,jx) & X' and (by,...,bx) € A3 x --- x A¥ .
Then

u u

R(by, ... by) & N\ E(ae,by, ... by) & [\ E(ALAS, . AV ) = AL AZ x - x Ab

727 Ik’
e=1 e=1

where the last equivalence follows from the fact that, for all e € [u], Al = {a.}
and (e, ja, ..., jx) € B. Thus, A2 x --- x A¥ is R-homogeneous.

Finally, (iii) holds by the choice of our original partition. Thus, (co, ..., c) is
a strong distal regularity tuple for R(zy, ..., ;) with coefficient uA. O

The following functions appeared in [14].
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Definition 4.4.2. For ¢ = (cy,...,¢x) € RE, let E; : R, — R be the function
sending 7 = (nq, ..., ny) € RE( to Ex(n) := 1, n%( , where

1
c;i—1

k .

7i(€) =1-

Note that, when £ = 1, E; is the constant 1-valued function. For ¢ € R, if
k > 2 then let Ff : RE) — R be the function sending 7 = (ny, ...,n) € R, to

LR SREHIN ) () (R0 911 (1
IC[k],|I|>2 iel il j=1 i#j
and if £ = 1 then let F£ : R5y — R be the constant 1-valued function. (Recall

that the notation of ¢;, n; was defined in Subsection 2.1.2.)

As written, the exponents in E;(n) are not well-defined when ¢; = 1 for some

J € [k]. In this case, we circumvent this problem by declaring, for all i € [k],

1
P I(c; =1
7%(€) :=1 — lim ol =1- (e = 1)

ey, A el g =11

Henceforth, all issues that arise when ¢; = 1 for some j € [k] can and will be
resolved by taking limits like so.
Note that, when k = 2,

1 1

1— Fo i — Cl_: +e 1771+ 62_: —+e
Fg(m’n):m cg—1Te-T pn caa-1Te-T L m+n
co—1

=m 7C1C271

+€ 1—-a=t

cipeco—1 +e

+m+n

caler =) . calea=l) o
=m cieg—1 n cic2— 1 + m _|_ n7

so FZ(m,n) is the bound appearing in Theorem 4.3.1.

Remark 4.4.3. It is straightforward to observe that, when k& > 2,

kFZ(n Hn +an Cps (Nti).
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The following lemma says that (in most cases) the dominant term in F:(n) is
E¢(n) Hf:l n;.

Lemma 4.4.4. Let k > 2, ¢ = (c1,...,cx) € R’gl, e>0, and n = (ny,...,ng) €
REy. Suppose that, for alli € [k], ny - cngny VT > e, (Rgi).

Then F£(1) <ae Bo(n) [Ty 05, and so niFE, (M) <ae Eo(0) 11, 0 for all
i € [k] by Remark 4.4.5.

Proof. Our proof mimics, in part, the proof of [11, Lemma 2.10]. To show that
F:(n) <z- Ee(n) Hle ng, it suffices to show that, for all () # I C [k],

Ey(n) o0 B, (ny) [ [ nd (4)
il
We prove this by downward induction on |I| € [k] via the following claim.
Claim 4.4.4.1. Let J C [k] with |J| > 2. Let j € J, and write I := J\ {j}. For
alle >0, if n]'_l/c'j+6 [Lic;ni > njEe (Rr) then Ez,(ny) > nj=" Eg, (Rr).
Proof of Claim. Let € > 0, and suppose n tetE [L,c;ni > njEz (7). Then

J

_1
c;—1
|J‘*2+Zlel 01_1 cs
| | ni 1 > n']

icl

_ J|—1+ L
The " exponent on the left equals <=1 L ( T es o

¢ =1 \ [J|=2+3 ¢ Tl—l

— 1), and so

1
1 1 —— 1 . cj—1 e
I\ VI=24Zier =1 WI-14%es g1 S
| | n; >n;
- J
i€l

for v := o/(e;=1)

= Ui, o5 € [0,1]. Rearranging, we have

Be,(Ry) > n} ™" Exy () 2 nl*Ee, (). :

We now prove (4) by downward induction on || € [k]. Since k is finite, we

may update the implied constant in each step of the induction. When |I| = k,
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we have I = [k] so (4) holds trivially. Now suppose |I| < k, so we may fix j & I;
write J := I U{j}. Since |I| > 1, we have |J| > 2. By the induction hypothesis,
Ee(n) >¢c Eey(fg) [Tigyni

By assumption, nq - - n;.mj_l/CjJrE > iy, (iz) = E¢ (nr) [1;gp i, which re-

arranges to n; THegte [Ticsni > njEs (nr), and hence Eg,(n;) > n; °Eg (ng) by

Claim 4.4.4.1. Thus, as required, we have

Eé('ﬁ) >>575 EEJ (’f_),J) H ni_e Z EEI (ﬁ]) H nll—s' D
ig¢J il

We are ready to prove our main result.

Theorem 4.4.5. Let E(xy,...,xx) be a relation on a set M, with strong distal
reqularity tuple ¢ = (cq,...,cx) € R’gl and coefficient A\. For all finite P; C M™
with n; == |By|, if E(Py, ..., Py) is K, u-free, then for all e > 0,

|E(Py, ..., Pp)| <ugpe Fi(na,...,ng).

Proof. We will do a double induction: first on k£, and then on nq+- - -+ng. When
k = 1 this is trivial. Let £ > 2, and suppose for all [ < k that the statement
holds. Writing ~; := ~;(¢) for j € [k], there is some j € [k] such that v; < 1, so,
permuting x1, ..., ) if necessary, we may assume that v; < 1. Let ¢ > 0. We will
show that there are o = a(u, ¢, A\, ¢) and 5 = f(u, ¢, A, €) such that, for all finite
P, C M* with n; := |P|, writing i := (ny,...,ng), if B(Py,..., Py) is K, ,-free,

.....

then
\E(Py, ..., PY)| < aEx( Hn +5an 5 (i), (5)

By Remark 4.4.3, the right hand side is at most kmax(«, 5)F:(n), so this is

C

sufficient. The dependency between constants will be as follows:
(i) 7 is sufficiently large in terms of ¢ and «;
(ii) 0 is sufficiently small in terms of ¢, A, and ¢;

(iii) my is sufficiently large in terms of u, ¢, A, €, and J;
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(iv) B is sufficiently large in terms of mg, u, ¢, A, and ¢;
(v) « is sufficiently large in terms of my, 3, ¢, A, J, and 7.

Suppose there is i € [k] such that ny - --ngn; /" < ni e, (Rzi). Then, by

Lemma 4.2.7(ii), Lemma 4.4.1, and the induction hypothesis, if 5 is sufficiently

large in terms of u, ¢, A, and ¢, then

1

o € e (= e (=
|E(Py, . Pr)| < g (m enn, +”¢Fa¢i<”¢z‘)) < P, (Mss)-

Therefore, henceforth we suppose ny - - - ngn; /%™ > ni e, (i) for all i € [k],

whence by Lemma 4.4.4 there is 7 = 7(¢, €) such that, for all i € [k],

k
niFg, () < 7E(n) [ s (6)
i=1
Let @ = a(u, ¢\ e) and 8 = S(u,¢, A, €) be sufficiently large, to be chosen
later. We will show by induction on n; + - - - + ny that (5) holds.
Let mg € N such that mg > A0~ (u + 1) for all i € [k]. If i € [k] is such that

n; < my, then for all i # j € [k],
|E(Py, ..., Py)| < mony - -ngn;t < By - -ngng b < B Fe, (nsj),

assuming 5 > mg. Thus, (5) holds when n; + - - -+ ny < kmy, and we henceforth
suppose n; > mg for all i € [k].

For § = 4d(¢N\e) < i to be chosen later, obtain equipartitions
Py = AjU--- U A% asin the definition of ¢ as a strong distal regularity tuple,
with 3 C [Kj] X -+ x [K}] the index set of bad cells. By refining the partitions
and replacing A with 2\ if necessary, we may assume that 1 < ]A;| < §%n; for all
i € [k] and j € [K;].

Henceforth, a tuple (j;, ..., jx) is understood to be taken from [K;] X - - - X [K}].
Let Iy i= 30, e [B(A}, o A ) and I o= 30 o o |E(A, ..., AF)|, so
that |[E(Py, ..., Py)| = I + I». We bound I; and I>.
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First, consider Iy. For j; € [Ki], let ¥, := {(ja2, .., J) : (1, .-, k) € 2}, s0
we have [} = Zjl T P, |E(A], ,Afk)|

Fix j; € [Ki]. We have that |A} | > n1/K1—1 > mg/(A0~)—1 > u, so we can
fix distinct ay, ..., ay € Aj,. For (jo, ..., jx) & 5y, (A}, ..., AF ) = A} x - x A
or (), and thus

U B(AL,...4%) C AL x () E(ac, Po, .., Pr).
(G20 551 e—1
Now Ni_, E(ac, Ps, ..., P;) is the induced (k — 1)-subgraph on P, x - - - x Py of the
relation R(za, ..., 2%) = Ao E(e, 22, ..., x%) on M. By Lemma 4.4.1, (co, ..., ¢x)
is a strong distal regularity tuple for R with coefficient uA. By the induction
hypothesis,

u

() Elac, Py, .., Pr)

e=1

<<u,6,/\,5 FEZI (T_L?ﬂ)

Choosing 3 sufficiently large in terms of u, ¢, A, and €, we can assume that

the implied constant is at most . Then

I < Z@|A |FE,, () < BraFE, ().

Jji=1
Next, consider 5. For each (ja, ..., j), let By, ;. = U 1<ii<kx,  Aj, so we
(J25e:0k)EX 4y
ha:Ve IZ Z(]Z ..... ]k) ZZ’(B]2 7777 jk’A‘?Q’ ...,A‘];‘:k) .

|- Observe that

.....

K,
> i —Z|A 125, < 0%y Y [S5,] < 69na] |

(J25---:3k) Jj1=1 j1=1
and
1 k
5] < Z(ﬁ ...... EE|A' s X AT < AOnq - -y, AOny -+ - ny,
- i 1 .. k| — k n;, k 1 <,
NG, ... )ex |Aj1 XKoo X Ajk Hi:l 2[& HZ‘:1 ﬁ&lni

_ 2k/\k+161—(61+~~-+ck)7
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SO D (o) Sivenis < ok \k+1g1=(c2t+ek)p, - By the induction hypothesis,

L= ‘E(ijjk,Ai,...,Afk)

(j27"'7jk)
k
Sa Z ACTN n27"'v50knk)3§2,...,jkH(Csci”i)a
(325++5k) i=2
k
Y w0
(72, ,jk) i=1
k
S 1 I D D!
=2 (J2,--:Jk)

Recall that v, < 1; without loss of generality assume that ¢ < 1—~,. By Holder’s

inequality,
Y1te
+e k—1c—(cot-+ 1—rq —
PR N DTS B U R
(j27"'7jk) (]277.716)
< (2k:)\k+161—(02+~--+ck)n1)71+a()\k—15—(cz+-~+ck))1—71—5
k \ 2k 1 +e—(cateber)  vi+e
< 2k \Zkgmte (e2 Ck)nll )
Therefore,
k k
H(éCini)%Jrs Z S}1+€j < 2k)\2k671+572f22 ci(1—y;—¢) Hn;yﬂrs.
250k —
=2 (J25---:Jk) i=1

Since 71 = S2F L ¢;(1 — 7;), the exponent of § evaluates to (1 + ¢y + - -- 4 c)e,

and so

H 501 %.5_5 Z 871—&-5% < ok \2k s(1+cat-Fer)e o ( )an < %E(n) H’I”LZE,

(G25--3k) i=1 i=1

for ¢ sufficiently small in terms of ¢, A, and . Thus,

Oé k—1 (e24+++c
I, 5 Hn + BT ’“ an o (Mgi).
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Putting all this together,

’E(Pb)Pk)’ = [1 _'_[2

k k
Yr (7 e k1 s (catrter) .
< SEm [[nf + 80+ N0 NS L, ()

i=1 i=1
k
< (5 + B Nt o) ) ) T o by (6
i=1
k
< aFs(n) H ns,
i=1
for « sufficiently large in terms of 3, ¢, A, 9, and 7. n

Remark 4.4.6. Similarly to Remark 4.3.2, it is not hard to see that Theorem
4.4.5 remains true if we remove all but one of the occurrences of € in each sum-

mand of FZ(n), but we will not demonstrate this in detail. Do makes a similar

remark [141, Remark 1.9(ii)].

4.5 Context for distal regularity lemma

By Theorem 4.2.6, relations definable in a distal structure satisfy the distal reg-
ularity lemma. We had previously wondered if the converse holds: are distal
structures the only source of relations satisfying the distal regularity lemma?
That is, if ¢(z1,...,xx) is a relation on a set M satisfying the distal regularity
lemma, must the structure (M, ¢) admit a distal expansion? The answer is no:
we are grateful to Martin Bays for suggesting the following counterexample to us

in personal communication.

Theorem 4.5.1. Let K be a finitely generated extension of F,, such as K =
F,(t), and let ¢(x,y;m,c) = (y = mx + ¢) be the point-line incidence relation.
Then ¢ satisfies the distal reqularity lemma as a relation on K, but the structure

(K, ¢) does not admit a distal expansion.

Proof. We first argue that ¢ satisfies the distal regularity lemma as a relation on

K. By [0, Lemma 4.1], K admits a valuation v with finite residue field, so we
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may view K as a structure K over the language {+, x, <} of valued fields, where
x <y:=v(r) <ov(y)in K. Let £* be an algebraically closed valued field such
that K C K*; it is folklore that K* is NIP.

By [0, Theorem 5.6], as a relation on K, ¢ has a strong honest defini-
tion ¥(x,y;my,cq, ..., my, ¢x) definable in K£*, in the following sense: for all fi-
nite B C K? with |B| > 2 and a € K?, there are by,...,b, € B such that
K* & ¥(a;by,....b;) and, for all € (K*)?, if K* & (a;by,...,b;) then
K* = ¢(a;V) < o(a’;V) for all ¥ € B. The proof of [9, Lemma 3.6] now
gives a ‘cutting lemma’ for ¢ as follows. For all finite B C K? with |B| > 2 and
§ € (0,1), there is a cover F C {t((K*)% by, ...,bx) : b; € B} of (K*)?, such that
| F| < poly,,,(07") and for all F € F,

4{be B: F Co((K")%b) or F C~((K*)%6)} > (1 - 6)[B].

Let P,Q C K? be finite with |Q] > 2 and § € (0,1); we give appropriate par-
titions of P and () to show that ¢ satisfies the distal regularity lemma. Applying
the cutting lemma above with B = @), we obtain a cover F C {1((K*)%; by, ..., by,) :
bi € Q} of (K*)%. For all F € F and o € {0,1}, let D% :== {d € (K*)*: F C
¢?((K*)%;d)}. Let G be the set of Boolean atoms of {D% : F € F,o € {0,1}},
Fl), and so
G| < polyyu-(071). Let Fy be any partition of (K*)? refining F such that

so G is a partition of (K*)?. Since K* is NIP, |G| < polyg , x«(

|Fol < |F| < polyy,(671). The reader is invited to check that the partitions
FoN P and GNQ are such that Y |F x G| < §|P||Q], where the sum ranges over
all (F,G) € (FoN P) x (GNQ) such that F' x G is not ¢-homogeneous.

It remains to argue that (K, ¢) does not admit a distal expansion. Let
K = (K,+, x) be the field structure on K. Now K 2 Fglg since every sub-
extension of a finitely generated field extension is finitely generated (see, for
example, [28, Theorem 24.9]), so K is not NIP by [30, Corollary 4.5]. Thus, there
is a formula ¢ in K that is not NIP. Now, the field operations + and x are defin-
able in (K, ¢): indeed, 0 and 1 are (-definable in (K, ¢), and for all p,q,r € K,
p+q=1r< ¢(pr;l,q) and p x ¢ =r < ¢(p,7;4,0). Thus, 1 is definable in
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(K, ¢) and all of its expansions. We conclude that every expansion of (K, ¢) is
not NIP and hence not distal. O]

In the previous example, the nonexistence of a distal expansion for (K, ¢) was

due to the fact that (K, ¢) was not NIP. We ask if this is the only obstruction.

Problem 4.5.2. Let ¢(xy,...,zx) be a relation on a set M satisfying the distal
regularity lemma, such that (M, ¢) is NIP. Must (M, ¢) admit a distal expansion?

To our knowledge, the following problem is still open.

Problem 4.5.3. Let M be a structure in which every relation satisfies the distal

reqularity lemma. Must M be distal (or admit a distal expansion)?

4.6 Explicit bounds for some o-minimal 3-graphs

To compute explicit Zarankiewicz bounds from our main theorem, one needs to
compute (strong) distal regularity tuples. In this section, we compute explicit
Zarankiewicz bounds in a different way, for a special class of graphs satisfying
the distal regularity lemma: certain 3-graphs definable in o-minimal structures.

Throughout this section, fix a language L. We have the following fact about

certain 2-graphs definable in o-minimal structures.

Fact 4.6.1 [9, Theorem 5.14]. Let M be an o-minimal L-structure expanding an
ordered field. Let ¢(x1,x9;y) € L with |x1| = |xo| = 2. For allb € MY and finite
P, C M® with n; := |By|, if ¢(Py, Py;b) is K, ,-free, then

|o(Pr, Paosb)| < <n1n2>§ + Ny + ng;

in particular, if ny = ny =: n, then |¢p(Pr, Pa; b)| gy ns.

We prove a corresponding statement for 3-graphs.

Theorem 4.6.2. Let M be an o-minimal L-structure expanding an ordered field.

Let ¢(x1, 29, x3;y) € L with |x1| = |zo| = |x3| = 2. For all b € MY and finite
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P, C M* with n; :== |By|, if ¢(Py, Py, Ps;b) is K, .-free, then

|p(Pr, Py, P3;0)| g0 Z ni'na’ni®,
(’YL’Y??'YS)EF

fort = {(% 5 13 -4 DG B DG B DELD03D.GLY).

(%7 %7 1)’ (07 17 1)7 (17 07 1), (1, 1, O)}, m particula/]ﬁ’ anl =MNg =MN3 =N, then
|6(P1, Py, Ps; b)| <0 0™

By the improvement of Tidor—Yu [52] on Theorem 4.1.2 (see the end of Sub-
section 4.1.1), if M is the real ordered field, and hence ¢ is semialgebraic, then
the bound in Theorem 4.6.2 can be improved to Oy, (n**). It is natural to ask

if these bounds can be reconciled.
Problem 4.6.3. Can the bound in Theorem 4.6.2 be improved to Oy, (n**)?
Towards proving Theorem 4.6.2, we need the following facts.

Fact 4.6.4 [9, Theorems 3.2, 4.1]. Let M be an o-minimal L-structure expanding
an ordered field. Let ¢(x;y) be a formula with |x| = 2. Then mj(n) = O(n?), and
there is a formula ¥ (x; z) such that for all finite Q C MY and r > 1, there is a

cover C of M?® of size Oy(r?), such that every C' € C is an instance of 1 with

#{q € Q: p(M?;q) crosses C} < @

r

This is known as a ‘cutting lemma’. Here, a set X crosses a set C'if CNX # ()

and C Z X.

Fact 4.6.5 [19, Observation 2.6]. Let M be any L-structure. Let ¢(x;y) € L
with wi(t) < ct? for all t € N. For all u € N, there is ¢ = ¢(c,d,u) € N such
that the following holds.

Let P C M*,Q C MY with m := |P|,n :=|Q| > u. Let F be the set system
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{6(P;q) : ¢ € Q} on P. Then there are distinct py,...,p, € P such that
#{F € F: F crosses {p1,...,pu}} < dm”in.

We prove a weaker bound which we shall bootstrap to prove Theorem 4.6.2.

Lemma 4.6.6. Let M be an o-minimal L-structure expanding an ordered field.
Let ¢(x1, 29, x3;y) € L with |x1] = |xa] = |x3| = 2. For all b € MY and finite
P, C M% with n; :=|PB;|, if ¢(Py, Py, Ps;b) is K, .-free, then,

1
(1) |o(Pr, P, Ps;b)| K0 ninang + nl(ngng)g + ning + ning.

(ii) |p(Pr, Po, P3;b)| g0 n1<n2n3>% + nz(n?ﬂh)% + n3(n1n2)% + ning + ngnz +

nsny.

Proof. Note that (i) implies (ii). Indeed, (i) implies, by symmetry, that

W

1
|¢<P1, PQ, P3; b>| <<q$,u n22 n3ny + ng(n3n1) 3 + Nons + namny,

N

1
|o(Pr, Pa, P3;b)| < nining + ns(ning)3 + ngng + ngno.

Since 1, (nong)? is the multiplicative average of né nsny and né ning, (ii) follows.

It remains to prove (i). We follow the proof strategy of [19, Theorem 2.1]
and [14, Proposition 4.1]. Write ¢'(z1; 29, x3) := ¢(x1, 22, x3;b). By Fact 4.6.1,
up to increasing the bound by O¢7u(n1(n2n3)% + ning + nyng), we may assume
that ¢'(p; P, P5) contains K, , for all p € P,. Now, up to increasing the
bound by a factor of u, we may assume that for all distinct p,p" € P;, we have
&' (p; Py, Ps) # ¢'(p'; P, P3). (Indeed, since ¢'(Py; Py, P3) is K, ., .-free, there can-
not be distinct po, ...,pu—1 € P such that ¢'(po; P2, P3) = ¢'(pi; P, P3) for all
i€u—1].)

Claim 4.6.6.1. For all P C P, with m := |P'| > u, there is a € P’ such that
\qb’(a; PQ, P3)‘ <<¢>,u m_%nQng + (ngng)% + no + ng3.

Proof of Claim. Let P' C Py withm := |P'| > u. By Fact 4.6.4, 7%,(n) = Og(n?).
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Thus, by Fact 4.6.5, there are distinct aq, ..., a, € P’ such that

1
#{(p2,p3) € Pa X P3: ¢'(P1;pa,p3) crosses {ay, ..., au}}| Kpu m 2ngng.

For all (pg, p3) € ¢'(ay; P, Ps), ¢'(P1; pa, ps3) either crosses or contains {ay, ..., a, }.
Applying Fact 4.6.1 to the formula /\Z.G[u] &' (a;; o, x3), since ¢'(Py, Py, P3) is

Ky u-free,

#{(p2,p3) € Po X P3: ¢ (P1;p2,p3) 2 {a1, .y au}} Kpu (712713)% + ng + ng.

Thus, |¢/(ay; P2, Ps)| g m™2nams + (nanz)s + ng + ns. B

Iterate Claim 4.6.6.1, beginning with P’ = P; and removing a € P’ until
|P'| < u. This gives

ni

|¢/(P1, PQ, P3)| <<¢7u (U — 1)n2n3 + Z(m_%ngng + (nzng)% + o + 713)

m=u

1
Ky Ningnz + nl((ngng)% + ny + n3). O

Before proving Theorem 4.6.2, let us discuss our proof strategy, which builds
on the one for [0, Fact 5.14]. The slogan is that we shall apply the cutting lemma,
Fact 4.6.4, twice. Let ¢'(x1; %2, x3) := ¢(x1, %2, x3;0). To bound |¢'(Py; P, Ps)|,
we find some definable P’ C P, for which |¢/(P’; Py, Ps)| is small. We bound
6/(P's Py, Py)| by splitting it into |¢/(P'; E(Py, Py))| and |6/(P' ~E(P, Py))],
where E(xo,3) is the formula saying that ¢'(M®;x9, x3) crosses P’. Fact 4.6.1
gives a bound for |¢/(P; —FE (P, P3))|. The cutting lemma gives a bound for
|E(Py, Ps)|, which we bootstrap to bound |¢/(P’; E(Ps, P3))|. We do so by find-
ing a definable partition D of P, and a set Wy C Pj for each D € D, such
that E(P, P3) € Upep D X Wp and for all D € D, ‘most’ p; € Wp are such
that E(M®2,ps) crosses D. By another application of the cutting lemma, we
can insist that |IWp| is small for all D € D, and so bound |¢'(P'; E(P, P3))| <

>_pep [¢'(P'; D, Wp)|.
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Proof of Theorem /.6.2. Write ¢'(x1, xa, x3) := ¢(x1, T2, x3;b). By Lemma 4.6.6,

2
3

|0 (Pr, P2, P3)| < nl(ngng)% + ng(ngnl)% + ng(ning)® + ning + nang + nzng.
Therefore, if ny < (ngn;},)i then

2 2
‘¢/(P1, PQ, Pg)’ <<<z5,u ng(n3n1)§ + ng(n1n2)§ + NNy + Naong + nsny, (7)

and we are done. Suppose instead that n; > (ngng)i, SO

By Fact 4.6.4, there is a formula ¢ (x;; ), chosen only in terms of ¢, and a cover

C of M**, such that every C' € C is an instance of ¢ with

Nan
[{(p2,p3) € Po x P3: ¢'(M";ps,p3) crosses C'}| < 27" 3>

and |C| < ar? for some a = a(¢)) = a(¢). Then, there is C' € C such that

1
IC NP > ny(or?)™ = a ' (ngng )=,

1
Let P’ € C N P, be such that |P'] = [a ™ n (nyn3)=|. Assuming without

loss of generality that ninyns is sufficiently large, we have |P’| > w.

Let 6(z2, x3;y, 2) be the formula ‘¢(M?**, x5, x3;y) crosses (M ; z)’, that is,

31, ) (w(ld; z) Np(ah; 2) A (2, 20, T35 y) A —d(2], Ta, 35 y)) .

Let E(x2,x3) be the formula ‘¢/(M®'; z9, x3) crosses C’, which is an instance of

f, and note that

|E(Py, Py)| < 22
T

By Fact 4.6.4, there is a cover D of M*? with |D| = Oy 4(r*) = Oy(r?), such that
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for all D € D, we have
{ps € Py : E(M® p3) crosses D| < s
r
We wish to bound

¢/ (P'; Po, P3)| = |¢'(P'; E(Py, P3))| + |¢/(P'; Py x P3\ E(Py, P3))]. (8)

We bound the two summands separately, beginning with the latter. Since

|P’| > u, we can fix distinct aq, ..., a, € P’. Observe that
¢ (P's Py x Ps\ E(Py, P3)) C P’ x{q€ P, x Py:¢/(M™;q) 2 {ar,...,au}}.
By a similar argument to that used to prove Claim 4.6.6.1, we have
{a € Pyx Pyx ¢/ (M*5) 2 {an, o, a}}] Ko (nams)® +ny + s,
and so
[¢/(P's P x Py \ B(Py, Py))| Ko [P ((mama)¥ +matmg) . (9)

We proceed to bound |¢/'(P'; E(Py, Ps))|. Let D be any partition of P, refining
the cover D such that |D| < |D| = Oy(r?). For D € D, let

UD = {p3€P3:E(D7p3) :D}a

Vp == {ps € P3: E(M™, p3) crosses D}.
For all D € D, there is D’ € D such that D C D', whence

Vbl < [ps € Py : E(M™,ps) crosses D'| < %7

and 50 Y e |D % Vp| < nang/r. Moreover, |Jpep D X Up C E(P,, Ps), so by
the disjointness of D we have ZDef |D x Up| < ngng/r. Writing Wp := UpUVp
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for D € D, we have
Z |D x Wp| < 2ngng/r.

DeD

113

Now observe that E(P,, P3) € Upep D x Wp. Indeed, given (pa,ps) €
E(Py, Ps), there is D € D such that p, € D, and either E(D,ps) = D or

E(M?™ p3) crosses D, whence p3 € Up U Vp = Wp.

Let Dy :={D € D: |D| < ny/r3} and Dy := D \ D;. Now

|6/ (P E(Py, P3))| < > &/ (P'; D, Wp)| + Y ¢/ (P'; D, Wp)|.

DeD, DeD;

We bound the two summands separately. Firstly, we have

S IS(PD W) < 3 18P D, Byl =|¢/(Pi | D, By)|.

DeD, DeD,

By Lemma 4.6.6 and the fact that ||JDy| < (ny/r7/3)[D| <4 na/rs,

> |¢'(P'; D, Wp)|
DeD;y
2 2

73 r9

T3

3 “ “
Nong \ 4 nond  mnin n Nom
<y IP’I( 213) +HIPs | 22+ 22 |+ P (—f+n3>+ ==
T3

r3

By another application of Lemma 4.6.6,

Z |¢'(P'; D, Wp)| Lgu It + Io + I + I,

D Efg

(10)

(11)
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where

Li=|P| > |Dx Wplf,

Deﬁz
I == |P'|5 Y (IDI[Wpls + |DJ5 [Wp)),
DEﬁQ
Iy == |P'| Y (ID] + [Wp)),
DeDy
L= |DxWpl.
DEfg

We bound the summands separately. Firstly,

nong

I <) D xWp| <

DeD

” .

To bound I, we apply Holder’s inequality to obtain

3
1

L<|PI| > IDxWp|| D) <4 |P| (ni*m) ()

D 652

o
sl

e
Il

Tiom
2

ri

We now bound I, and I5. First observe that, since |D| > no/r3 for all D € D,

we have

S (Wl < (ng/rg>_1 S° 1D|[Wh| < rins,

DeDy DeD,
Thus,
Ig < |Pl| (n2 —|—7’§n3) y
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and by Holder’s inequality,

wiN
ol

L<|PE| Y |Dx Wy

Z Dl| + Z Wl
DeDy

W=

DEDs DeD;

5

1 1
< \P/\g <n2n3> (ng’ +r3n§)
r
2 2
_ |Pl‘§ nQT;B + US> ;n'?;
r3 79
Therefore,
> (P D, W)
D€52
(nons) 1 ngni  nin nan
4 2
< ]P’\( 22 +n2+rsn3)+]P’\3 28y 28 s
r4 r3 r9 r
Combining with (10) and (11), we have
|/ (P’ E(Py, Ps))|
(nons)1 s S nan
4 2
<o |P'| (% +ny —i—'r3n3> +|Ps | 22+ 2 2=,
T4 T3 T9 T3

Combining with (8) and (9), we have
|6'(P"; Py, P3)]

4 2 2
Lo | P ( Y nytring + (n2n3)3> +IP) | 2 22 273

ri r3

2 T
ro r3
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Thus, there is p € P’ such that

¢ (p; Pa, Ps)|
(nons) 1 nani  nin nan
Cpu P oy + i + (ngna) ¥ 4 [P [ TS 4 T T
ri r3 rd r3|P|

16 4 21 13 24 47 3 46 71

2
<Ly Ny (n2n3)50 +ng +nPny, Pn + (ngnz)s +ny "nnl® +ny 2”n2 nie

4
+ny (ngng)g.
Remove p from P; and iterate this process until at most (ngng)% elements remain

in P;. Combining with (7), we have

W(Pl; P, Ps)\
22 41 i 21 2 ()2 24 47
<Lpu N (ngng)so + ning + niPny *ni® + ni(nang)s + n"nni’
22 46 71
+nPnrnl® + (n1n2n3)3 + ng(n3n1)§ + ng(n1n2)§ + ngng + n3ny

as required. O

Fix an o-minimal expansion M of an ordered field. It is natural to generalise

the context of Theorem 4.6.2 and pose the following problem.

Problem 4.6.7. Find explicit Zarankiewicz bounds for relations ¢(xq, ..., Tg;y)

definable in M, where k > 2.

Let us first address the case k < 3 (and |z;| are arbitrary). Let ¢ : N*T — NT
be such that ¢(n) = n if n < 2 and t(n) =2n —2if n > 3. For all € > 0, let
d. : Nt — R* be such that d.(n) =nif n <2 and d.(n) =n+e¢if n > 3.

By [1, Theorem 6.1], [9, Theorems 4.1, 5.7], and [2, Theorem 1.1], we have
the following.

e In Fact 4.6.1, if we remove the condition that |z1| = |z3| = 2, the statement

holds with the bound replaced by Oy, - (nl(id;l? n;g%i) +ni + n2> , where
d. := d.(|zs|) and ¢ := t(|x1|). (This handles the case k = 2.)
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e In Fact 4.6.4, if we remove the condition that || = 2, the statement holds

with O(n?) replaced by O (n?(#D) and O, (r?) replaced by O, (rt{eD).

Thus, the proof of Theorem 4.6.2 can be replicated to produce a Zarankiewicz
bound for ¢(xy, z9, x3;y), for arbitrary |z;|.

What if £ > 47 Suppose we wanted to replicate the proof of Theorem 4.6.2
to produce a Zarankiewicz bound for ¢(z1,...,x4;y). Let us suppress the para-
meter variable y. The proof strategy of Theorem 4.6.2, where we obtained a Za-
rankiewicz bound for the ternary formula ¢(xy, x5, x3), was to apply Fact 4.6.4, a
cutting lemma for binary formulas, along with Fact 4.6.1, a Zarankiewicz bound
for binary formulas. One would hope that a Zarankiewicz bound for 4-ary for-
mulas can be obtained by applying a cutting lemma for ternary formulas along
with Theorem 4.6.2, a Zarankiewicz bound for ternary formulas.

The reader that wishes to pursue this approach needs to clear two obstacles.
Firstly, a cutting lemma for ternary formulas does not exist in the literature,
and it is not clear what the statement should be. Secondly, the exponents in the
bound in Theorem 4.6.2 are terribly asymmetric. Even if a ternary cutting lemma
were to emerge, it would be sensible to seek a more symmetric and manageable

bound before bootstrapping it to prove a bound for 4-ary formulas.






Chapter 5

Distality to and from
Combinatorics: Climbing the

Arity Ladder

In this chapter, we develop the theories of higher-arity distality and hypergraph
regularity by using each to inform the other. Specifically, we develop k-strong
honest definitions for NIP strongly k-distal structures, giving rise to a regularity

lemma for hypergraphs definable in such structures.

e Distality to combinatorics. This expands our understanding of (model-
theoretic) contexts for efficient regularity lemmas. In the current literature,
distal structures are the most general structures in which definable hyper-
graphs admit homogeneous regularity lemmas, and we extend this to NIP

strongly k-distal structures.

e Distality from combinatorics. Although there is work in the literature on
higher-arity generalisations of strong honest definitions, it was unclear what
the precise formulation should be. We develop such a formulation, whose

efficacy is supported by our regularity lemma.

We thank Artem Chernikov, Aris Papadopoulos, and Francis Westhead for

fruitful conversations on k-distality at the University of Maryland, with special

119



120 CHAPTER 5. DISTALITY TO AND FROM COMBINATORICS

thanks to Artem for his invitation. We also thank Julia Wolf for her patient
explanations of hypergraph regularity and Pantelis Eleftheriou for his support
and mentorship. We are grateful to Aris and Pantelis for their permission to

include our generalisation of their argument for Theorem 5.7.4. Soli Deo gloria.

5.1 Introduction

In Chapter 4, we introduced (hyper)graph regularity lemmas. We saw Sze-
merédi’s regularity lemma, which says that every graph can be decomposed into
a bounded number of boxes, most of which are quasirandom. We restate this

here for not necessarily bipartite graphs.

Theorem 5.1.1 (Szemerédi, 1978 [51]). For all § > 0, there is K € N such that
the following holds.
Let G = (V, E) be a finite graph. Then there is a partition V =V, U---U Vg
such that
>, Vixy<ave

(Vi,Vj) not 6-regular
We emphasise the fact that V2 is partitioned into bozes V; x V;, most of which
are quasirandom (J-regular).
Generalising Szemerédi’s regularity lemma to k-uniform hypergraphs is a sur-

prisingly complicated task. Partitioning V* into boxes V;, x --- x V; , with the

iR
obvious k-uniform generalisation of §-regularity, does produce a regularity lemma
(work of Chung [12]), but it is limited in applicability; this notion of regularity
is often referred to as weak hypergraph reqularity. The quest for strong hyper-
graph regularity — finding the correct shape (not a box) of the partition pieces
and the correct associated notion of quasirandomness — was highly non-trivial.
Flagship achievements to that end include work of Gowers [25] and Nagle, Rodl,
Schacht, and Skokan [38,39], but there are many other significant contributions,
for an account of which we refer the reader to [37]. In this chapter, we follow

Gowers’ work; we describe it here briefly, with more exposition to follow in the

next section.
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A partition of V* into boxes V;, x --- x V;, is induced by a partition of the
vertex set V =V U---UVg. It turns out that, for strong hypergraph regularity,

k=1 and use these

we should partition not only the vertex set V but also V2, ...,V
partitions to build our partition of V*; we will say, for each [ € [k — 1], that
the partition of V' is level | of the partition of V*. Specialising to & = 3 as an
example, if we have partitions P; of V and P, of V2, then V3 is partitioned into

the pieces
{(v1,v9,v3) € V? 1 v; € P for all i € [3] and (v;,v;) € Py for all 1 <i < j < 3},

where P, € P for all i € [3] and P; € P, for all 1 < i < j < 3. For reasons
that will be explained in the next section, these pieces can be thought of as 2-
dimensional simplicial complezes, and for general k we will refer to the partition
pieces as (k — 1)-dimensional simplicial complezes.

We have already seen a hypergraph regularity lemma in Chapter 4. Indeed,
we saw that hypergraphs definable in distal structures satisfy the distal reqularity
lemma, in which the notion of quasirandomness is strongest possible: homogen-

eity. We restate this here for not necessarily partite hypergraphs.

Theorem 5.1.2 (Chernikov—Starchenko, 2018 [11]). Let T' be a distal L-theory,

M ET, and let ¢(xq,...,xx) € L(M) with |x1| = -+ = || =: d. Then, for each

0 > 0, there is a natural number K < polyqb(é*l) such that the following holds.
Let V. C M? be finite. Then there is a partition V = Vi U--- U Vi such that

Z Vi, x - x Vi | < S|V

(Viy »e-sViy ) not ¢-homogeneous

In fact, Chernikov—Starchenko [11] prove more than this. As a basis of com-

parison for later on, we state their result in more generality and strength.

Theorem 5.1.3 (Chernikov—Starchenko, 2018 [11]). Let T' be a distal L-theory,
MM E T with M sufficiently saturated, and let ¢(xq,...,xx) € L(M) with

|z1| = -+ = |zg| = d. Then, for each § > 0, there is a natural number
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K < pol%(é—l) and a formula 0(xq, z) € L such that the following holds.
Let V. C M? be M-definable, and let u(xy) be a global measure, generically
stable over M. Then there is a partition V- = ViU- - .UV, where each V; = 0(x1, ¢)

for some c € M?*, such that

> P (Vi X x Vi) < (V)™

(Viy 5+ Viy, ) mot ¢-homogeneous

Given what we just said about how a partition into boxes yields a weak
rather than a strong hypergraph regularity lemma, the reader under the (correct)
impression that distal regularity is a very strong form of hypergraph regularity
is entitled to be confused by the distal regularity lemma, where the partition
pieces are, in fact, boxes. The issue is that, in the weak hypergraph regularity
lemma, when we decompose a general k-uniform hypergraph into boxes, we can
only ask for most of these boxes to be d-regular, which is too weak a notion
of quasirandomness for combinatorial arguments such as counting arguments to
work (see the next section for more details). However, in the distal regularity
lemma, the k-uniform hypergraph can be decomposed into boxes, most of which
are homogeneous, which is certainly a strong enough notion of quasirandomness.

Nonetheless, it is not helpful to think of distal regularity as a strong version
of weak regularity, since the combinatorial arguments that do not work with
weak regularity work (very well) with distal regularity. Rather, one should think
of distal regularity as a strong version of strong regularity, where the (k — 1)-
dimensional simplicial complexes take on the special form of boxes. Note that
boxes are indeed simplicial complexes. Returning to the example of k£ = 3 above,
if level 2 of the partition is trivial (that is, the partition Py of V? is the trivial

partition), then each simplicial complex is a box: it has the form
{(Ul,Ug,Ug) GVSZUi EPZ' foralli e [3]}:P1 XPQ XP3

for some P; € P;. For general k > 3, a partition into simplicial complexes is a

partition into boxes in the special case that levels 2, ...,k — 1 are trivial (that is,
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the partitions of V2, ..., V¥~1 are trivial).

In summary, for a k-uniform hypergraph (V, E') satisfying the distal regularity
lemma, V* can be partitioned into a bounded number of boxes — a special case
of (k—1)-dimensional simplical complexes — most of which are F-homogeneous.

It is now natural to pose the following problem.

Problem 5.1.4. For which k-uniform hypergraphs (V, E) can V* be partitioned
into a bounded number of (k — 1)-dimensional simplical complexes, most of which

are E-homogeneous?

We call such a partition a homogeneous regularity partition, and a regularity
lemma giving such a partition a homogeneous reqularity lemma.

When k£ = 2, that is, in the case of graphs, distal structures are the most
general known model-theoretic context for graphs with such a partition, since a
1-dimensional simplicial complex is just a box. Distality, when characterised by
strong honest definitions, can be seen as a binary notion. It thus makes sense
to find answers to Problem 5.1.4 for k > 3 using a (k — 1)-ary generalisation of
distality.

These were introduced by Walker [55], who introduced two notions of k-
ary distality for each k¥ € NT. Recall from Section 2.7 that distality has an
internal and an external characterisation which are equivalent (Theorem 2.7.3).
Walker generalised the internal characterisation to k-distality and the external
characterisation to strong k-distality, such that 1-distality, strong 1-distality, and
distality are equivalent, and (strong) k-distality implies (strong) (k+ 1)-distality.
As the name suggests, strong k-distality implies k-distality. There is no literature
on the converse — in particular, Walker [55] could not decide it.

The distal regularity lemma, Theorem 5.1.3, was proved using strong honest
definitions. Recall that an L-theory is (1-)distal if and only if every formula
é(z;y) € L has a strong honest definition ¢ (z;2) € L: for all B C M = T with
2 <|B| < oo and a € M, there is ¢ € B such that for all b € B,

a EY(z;e) - o(x;b) <> ¢(asb).
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Here, we have continued the abuse of notation that if y is an n-tuple with entries
in a set Y (that is, y € Y"), we sometimes simply write y € Y, but X C Y
always means X C Y%

In order to find a homogeneous regularity lemma for (strongly) k-distal the-
ories, we define k-strong honest definitions for formulas ¢(z1, ..., zx; y), such that
an NIP theory is strongly k-distal if and only if such k-strong honest definitions
exist. This is done in Definition 5.4.9, of which we give a preview now. Recall
that, for a tuple v = (vy, ..., v) and ¢ € [K], vy = (v1, ..., Viz1, Vig1, ..., V). Given
d(x1, ..y 3 y) € L with x := (21, ...,x1), a k-strong honest definition for ¢ is a
(k4 1)-tuple of L-formulas (¢;(z4;, v, ) 2@ € [k])” (Yrt1(2, 2541)) such that the
following holds.

There is N € N such that, for all B C M = T with 2 < |B| < oo and
a = (a,...,a;) € M, there are cgj),...,c,(ﬁl € B for j € [N] such that for all
b € B, there is j € [N] such that

k
a b= du(, o) A\ i@, b, 7)) 6(x;b) 5 d(asb),
i=1

The following is Theorem 5.4.12.

Theorem 5.1.5. Let T be NIP. Then T is strongly k-distal if and only if every

d(x1, ..., 23 y) € L has a k-strong honest definition.

The reader may be concerned that the formulas ¢, ..., in a k-strong hon-
est definition for ¢(z1, ..., zx; y) involve the y-variable as well as the z-variables.
Crucially, however, each of 1, ..., involves exactly k — 1 of the z-variables
(and y). The intuition is that, for b € M, in order to understand how zi, ...,z
interact with b (with respect to ¢), it is enough to understand how any k — 1
of the z;’s interacts with b (with respect to 11, ..., ¥y) and how z1, ..., z; interact
(with respect to 1r11). In other words, the interaction of the k& + 1 variables
x1, ..., Tk, y is locally controlled by the interactions of k of those variables.

Observe the resemblance this bears with our discourse on partitions into sim-

plicial complexes. A regularity lemma for a (k + 1)-uniform hypergraph (V| E)
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(V, E) gives a partition V**! into k-dimensional simplicial complexes that is in-
duced by partitions of V!, ..., V*. In other words, the behaviour of £ C V**! is
locally controlled by the partitions of V!, ..., V¥,

We now come to the main result of the chapter. The reader can find it in
full generality and strength as Theorem 5.5.9, but here we first state an abridged

form that fits more directly with the narrative so far. This is a restriction of

Corollary 5.5.12.

Theorem 5.1.6. Let k > 2. Let M be an L-structure that is NIP, and let
o(x1, .oy xp_1;x,) € L(M) have a (k — 1)-strong honest definition, with
|z1| = -+ = |zg| =: d. Then, for all 6 > 0, there is a natural number K <
poly(b(é*l) such that the following holds.

For all finite V. C M9, there is a partition VF1 =V, U--- U Vg inducing the

partition Q of V¥ given by
{{v = (1, ., 00) € VErwy €V, foralli € [k']} Ly i € [K]} :

such that ZQEQ not ¢-homogeneous |Q| S 5|V|k

In particular, the partition pieces of V* are simplicial complexes, induced by

the (k — 1) level, that is, the partition of V*~1,

Remark 5.1.7. We previously mentioned that a partition of V* into (k — 1)-
dimensional simplicial complexes is induced by partitions of V!, ..., V¥~1. The-
orem 5.1.6 did not explicitly involve partitions of V1, ..., V*~2. However, this is
not an interesting observation, since any partition of V!, ..., V¥=2 can be absorbed
into the partition of V*~1. We illustrate this using the example before Theorem
5.1.2, where k = 3. There, the partitions P; of V and P, of V2 induced a parti-
tion, say Q, of V3. However, we can ‘absorb’ P; into P, by forming the following

partition of V2

{{(vi,12) € V?: 01 € P1,v3 € Py, (01,03) € Pro} : Py, Py € Py, Piy € Po} .
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This induces a partition of V? as in Theorem 5.1.6, which is precisely Q.

This absorption technique does not work for the general hypergraph regularity
lemma, since the definition of quasirandomness is relative to the separate levels
(see [21]). However, for homogeneous regularity lemmas, a simplicial complex @
is defined to be ¢-homogeneous if ¢(Q)) = @ or ); there is no reference to the
levels used to define ), so we may as well apply the absorption technique and

only partition V* 1.

We now state the main result in more generality and strength. This is a

restriction of Corollary 5.5.11.

Theorem 5.1.8. Let k > 2. Let M be an L-structure that is NIP, and let
O(1, oy xp—1;2) € L(M) have a (k — 1)-strong honest definition, with |z,| =
-+ = |agx| =1 d. Then, for all 6 > 0, there is a natural number K < poly,(6~")
and a formula 0(xq,...,xx_1,2) € L such that the following holds.

Let V. C M? be M-definable, and let pu(xy) be a global measure, generically
stable over M. Then there is a partition V™' = Vi U --- U Vi, where each

Vi="0(x1,...,x5_1,¢) for some ¢ € M?, inducing the partition
Q= {{v = (v1,..,0%) EVF vy €V, foralli € [k}} S 1y e Jr € [K]}

Of Vk7 such that ZQGQ not ¢-homogeneous u(k) (Q) < 5M(V)k

There is yet another statement that is stronger and more general, for which

we refer the reader to Theorem 5.5.9.

5.1.1 Structure of the chapter

Since this chapter is on hypergraph regularity lemmas and higher-arity distality,
it is right that we begin with expositions of the two subjects; these respectively
constitute Sections 5.2 and 5.3. In Section 5.4, we define k-strong honest defini-
tions, and show that an NIP theory is strongly k-distal if and only if every formula

¢(x1, ..., Tx; y) has a k-strong honest definition. In Section 5.5, we state and prove
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our regularity lemma for formulas ¢(x1, ..., zx; y) with a k-strong honest definition

in an NIP theory.

In Section 5.6, we remark on the ‘dual’ setup where we define k-strong honest
definitions for formulas ¢(x; y1, ..., yx) instead of ¢(z1, ..., zx; y). In particular, al-
though we believe this approach to have good motivation (which we describe), we
are unable to prove that dual k-strong honest definitions exist in an NIP strongly
k-distal theory; we state this as a conjecture and prove a partial converse. In
Section 5.7, we highlight the geometric prowess of dual k-strong honest defini-
tions by describing the analogue of distal cell decompositions that they induce,
and use this to show that certain pairs (M, P) where M is o-minimal and P C M

do not have dual k-strong honest definitions.

5.1.2 Basic notation

We lay out some basic notation used in the rest of this chapter.

Let k,1 € NT. A k-uniform hypergraph, or a k-graph, is a pair H = (V, E)
where V' is the set of vertices and E C (Z) is the set of hyperedges, that is, K
consists of subsets of V' of size k. We sometimes consider hyperedges as tuples
rather than sets. If the hyperedge relation E is not specified, we sometimes

denote it by H.

A k-graph H = (V| E) is l-partite if there is a partition V; U --- LUV, of
V' such that, for all e € E and ¢ € [l], [eN V;] < 1; in this case, we write
H=MWU---uV,FE), and if k = [, we write H = E(V},...,V}) and view it as
a subset of V] x -+ x V. We sometimes define a k-partite k-graph E(V4, ..., Vj)
where V1, ...,V are not necessarily disjoint; in that case, the vertex sets are taken

to be disjoint copies of Vi, ..., V.

For ¢, € R and § > 0, write g &5 7 to mean |qg — 7| < d.
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5.2 Hypergraph regularity

This section is an exposition of hypergraph regularity lemmas. Motivated by
applications, we will see why one possible generalisation of Szemerédi’s regularity
lemma is not very fruitful, and go on to describe a better generalisation, in
preparation for our main result (Theorem 5.5.9). In this section, all (hyper)graphs
are finite.

In Chapter 4, we defined what it means for a bipartite graph to be regular, and
stated Szemerédi’s regularity lemma for bipartite graphs. We now reformulate
everything in terms of graphs, as is standard in combinatorial literature (although

the formulations are equivalent — see Remark 5.2.3).

Definition 5.2.1. Let E(V;,V3) be a bipartite graph. For W C V; x V5, the
relative density of E(Vy,Va) in W is

|E(Vi, V2) N W]
W]

dw (V1, V2) =

The density of E(Vy, V) is d(Vi, Va) := dyy v, (V1, Va).
For 6 > 0, say that E(Vi,Vs) (or (Vi,Vs)) is d-regular if, for all A; C V; with
|Ail > 0IVi[, dayxa, (Vi, Va) =5 d(V1, Va).

This is a notion of quasirandomness: it E(Vi,Vs) is -regular, then it ‘looks
like a random graph’ since it has roughly the same density everywhere.

Szemerédi’s regularity lemma for graphs reads as follows.

Theorem 5.2.2 (Szemerédi, 1978 [51]). For all § > 0, there is K € N such that
the following holds.
Let G = (V, E) be a graph. Then there is an equipartition V=V, U--- U Vg
such that
> Vi x Vi < 8|VI7.

E(V;,V;) not §-regular

Remark 5.2.3. It is easy to deduce the bipartite Szemerédi’s regularity lemma,

as stated in Theorem 4.2.2; from the version in Theorem 5.2.2. Conversely, given
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a graph G = (V, E), form an auxiliary bipartite graph with vertex set V U V|
where z ~ y if and only if (x,y) € E. Applying Theorem 4.2.2 to the auxiliary
graph gives Theorem 5.2.2 for G.

A notable application of Szemerédi’s regularity lemmas is (graph) removal
lemmoas, of which the following triangle removal lemma is an important example.
The triangle is the complete graph on 3 vertices, and a graph is triangle-free if

it has no triangles.

Theorem 5.2.4 (Ruzsa—Szemerédi, 1978 [11]). For all ¢ > 0, there is a > 0
such that the following holds. If G is a graph on n vertices with fewer than an®

triangles, then it can be made triangle-free by removing at most cn? edges.

In order to deduce this from Szemerédi’s regularity lemma, one needs the
following triangle counting lemma. Roughly speaking, it says that if your graph
is d-regular then it contains approximately (in terms of §) the correct number of
triangles, namely, the number of triangles your graph would contain if it were
truly random; this is to be expected for a good notion of quasirandomness. We

will use the little-o notation as defined in Subsection 2.1.4.

Proposition 5.2.5. Let G be a 3-partite graph on vertex sets Vi, Vy, Vi with
n; = |Vi|, p := dV1,Va), q == d(Va,V3), and r := d(V3,V1). For 6 > 0, if
E(Vi,Vs), E(V5,V3), E(V3, V1) are all 6-reqular, then the number of triangles in

G differs from pgrninans by os—o(ninans).
Proof. The proof is standard and left as an exercise. O]

How do we generalise the above to hypergraphs? Perhaps the most obvious

approach is to make the following definition.

Definition 5.2.6. Let E(V4, ..., Vi) be a k-partite k-graph. Let W C Vi x---x V.
The relative density of E(Vy,..., Vi) in W is

\E(Vi, ..., Vi) N W]
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The density of E(Vi, ..., Vi) is d(Vi, ..., Vi) '= dyy s, (VA ooy Vie).
For § > 0, say that E(Vy,..., Vi) (or (V4,...,Vk)) is d-regular if, for all A; CV;
with |Az| > (5|V;’, dA1><---><Ak<‘/1> ,Vk) s d(‘/h ,Vk)

With this definition, there is indeed a version of Szemerédi’s regularity lemma

for hypergraphs.

Theorem 5.2.7 (Chung, 1991 [12]). For all k € NT and § > 0, there is K € N
such that the following holds.

Let H = (V,E) be a k-uniform hypergraph. Then there is an equipartition
V=Viu---UVk such that

Z Vi, x - x Vi, | < S|V~

Vi) not §-regular

We would likewise want a k-uniform hypergraph version of the triangle re-
moval lemma. The natural generalisation of the triangle is the k-simplex: the
complete k-uniform hypergraph on k+ 1 vertices, and indeed we have the follow-
ing k-simplex removal lemma, achieved independently by Gowers [25] and Nagle,

Rédl, Schacht, and Skokan [38—10].

Theorem 5.2.8. For all ¢ > 0, there is a > 0 such that the following holds. If G
is a k-uniform hypergraph on n vertices with fewer than an**' k-simplices, then

it can be made k-simplex-free by removing at most cn® hyperedges.

Unfortunately, this cannot be deduced from Theorem 5.2.7, because there
is no k-simplex counting lemma for d-regular hypergraphs. In other words, 9-
regularity is not strong enough for counting k-simplices when k£ > 3. We illustrate
this for k£ = 3, where we refer to the 3-simplex as the tetrahedron.

The following example is taken (with minor tweaks) from [33] but is considered

combinatorial folklore. First, a definition.

Definition 5.2.9. Let G = (V, E) be a graph. Write A(G) for the set of triangles
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in G, that is,

A(G) = {{01702,1}3} € (Z) D (vi,v;) € Eforall 1 <i<j< 3} .

Note that A(G) is a 3-uniform hypergraph on V.

Example 5.2.10 (é-regularity insufficient for counting tetrahedra). Let Vi, V5,
V3, V4 be sets of size n. Let H; be the random 4-partite 3-uniform hypergraph
on V; U --- UV, where hyperedges occur with probability 1/8. Let G5 be the
random 4-partite graph on Vi U--- UV}, where edges occur with probability 1/2,
and let Hy = A(Gs), a 4-partite 3-uniform hypergraph on V; U --- U Vy. Then,
with high probability, for all 6 > 0, every triple of vertex sets in both H; and
H, is é-regular with density ~5 1/8. However, H; (which is ‘truly random’) is
expected to contain (1/8*)n? tetrahedra, while H, is expected to contain (1/2%)n*

tetrahedra.

In fact, not only is d-regularity insufficient to guarantee roughly the correct
number of tetrahedra, it is insufficient to guarantee the existence of tetrahedra at
all. The example we use to illustrate this is again taken from [33], who attribute

originality to [13]. First, a definition.

Definition 5.2.11. An [-partite tournament is a directed [-partite graph with ex-
actly one (directed) edge between any two vertices from distinct vertex sets. Say
that vertices x,y, z span a cyclically oriented triangle if either (z,v), (v, 2), (2, z)

are all edges or (z,2), (2,v), (v, z) are all edges.

Example 5.2.12 (J-regularity is insufficient for existence of tetrahedra). Let
Vi, Va, V3, V4 be sets of size n. Let G be the random 4-partite tournament on
Vil --- UV, where, for z,y vertices from distinct vertex sets, (z,y) is an edge
(as opposed to (y, z)) with probability 1/2. Let H be the associated 4-partite 3-
uniform (undirected) hypergraph on Vi U- - -1V}, such that (x,y, z) is a hyperedge
in H if and only if x,y, z span a cyclically oriented triangle in G. Then, with
high probability, for all § > 0, every triple of vertex sets in H is d-regular with
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density ~s 1/4. However, H contains no tetrahedra: it is impossible to have four

vertices in G, any three of which span a cyclically oriented triangle!

All of this is to say that d-regularity is not a good notion of quasirandomness
for k-uniform hypergraphs when k > 3. What, then, is the correct notion? The
answer to this question is surprisingly complicated, and a complete exposition is
outside the scope of this thesis. We give an abridged account and refer the reader
to [24] for the full answer.

As alluded to in the introduction, the problem is not so much that we need
a better notion of quasirandomness per se, but that our partition pieces have
the wrong shape. We have been considering what it means for a hypergraph
H = (V,E) to be quasirandom inside a box V; x -+ x Vi, where V; C V| but it

is time to move beyond boxes.

Definition 5.2.13. A k-dimensional simplicial complez is a set X of sets of size

at most k + 1, such that if B € ¥ and A C B then A € X..

We focus again on the case k = 3. Let G = (V3 U Vo U V3, E) be a 3-partite
graph. Then, A(G)UEU(V;UV2UV3)U{D} is a 2-dimensional simplicial complex,
which we will just denote by A(G). It turns out that we should define what it
means for a 3-uniform hypergraph to be quasirandom inside such a simplicial
complex A(G), instead of a box, with G itself being quasirandom.

Of course, we need to settle what it means for GG to be quasirandom and H
to be quasirandom inside A(G). The former is straightforward: §-regularity is a
good notion of quasirandomness for graphs, so it is the one we use. The latter is
far more complicated, and we refer the reader to [24] for the definition. For now,
we will simply say (without definition) that H is n-quasirandom inside A(G),

where 1 > 0 is a parameter.

Remark 5.2.14. The reader is urged not to worry about the definition of 7-
quasirandom, but rather to focus on the big picture that we are defining the
quasirandomness of H relative to a simplicial complex ¥ = A(G). The remainder

of this section is comprehensible with this definition as a black box, and in the
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contexts we will consider in later sections, H will be homogeneous inside I,
that is, HN'Y = X or (), and homogeneity is a (very strong) special case of

n-quasirandomness.

Definition 5.2.15. Let H = (V| E) be a 3-uniform hypergraph, and let G be a
3-partite graph on vertex sets Vi, Vo, V3 C V. For §,n7 > 0, say that (G, H) (or
(A(G), H)) is (6,n)-quasirandom it G(V;,V;) is é-regular for all 1 < i < j < 3
and H is n-quasirandom inside A(G).

For 1 < ¢ < j < 3, write d;; := d(V;,V;) for the density of G(V;,V}).
Say that (G, H) (or (A(G), H)) is n-quasirandom if it is (6, n)-quasirandom for
§ = (279 (dyody3da3)3?) 1.

2740 (d19d13d53)%?)*6 is not important

The exact form of the expression § = (
for this exposition; it suffices to keep in mind that ¢ is small in terms of 7, d;2,
di3, and da3.

This works out to be the correct notion of quasirandomness for a 3-uniform
hypergraph: there is an associated regularity lemma and tetrahedron counting
lemma, the combination of which gives a tetrahedron removal lemma (Theorem
5.2.8 for k = 3). We first expound the regularity lemma.

Given a 3-uniform hypergraphs H = (V, E), we wish to partition V3 into
simplicial complexes A(G) such that (G, H) is n-quasirandom with few excep-
tions. To do so, we partition the vertex set V, say V =V U --- U Vg, and we
also partition V? into bipartite graphs, say V2 = G; U --- U Gy. Our simplicial

complexes are then given by

Q = {A(Gy(Vi, Vi) U Go(Vi, Vi) U G, (V}, Vi) < 4, s k € [K],p, g, € [L]}.

Note that every (z,y,2) € V3 belongs to exactly one simplicial complex, so
Q is a partition of V3. Indeed, given (x,vy, z) € V3, there are unique 4, j, k € [K]
such that x € V;, y € Vj, and z € Vj, and then unique p,q,r € [L] such that
(z,y) € Gp, (x,2) € Gy, and (y, z) € G,. We now state the regularity lemma.
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Theorem 5.2.16. For all 6,n > 0 there are K, L € N such that the following
holds.

Let H = (V, E) be a 3-uniform hypergraph. Then there is a partition of V
into sets Vi, ..., Vi and a partition of V2 into bipartite graphs G4, ..., G1, inducing

the partition
Q= {A(G(Vi, Vi) U Go(Vi, Vi) U G (V}, Vi) 24, 5, k € (K], p, g, € [L]}

of V3, such that 3 5o, Q| < 5|V|3.

Q,H) not n-quasirandom

Proof. See [24, Theorem 8.10]. O

We now seek a counting lemma for n-quasirandom pairs (G, H). We wish to
count the number of tetrahedra (say) of H contained in A(G), so we may as well
assume that H C A(G). Let H be a 4-partite 3-uniform hypergraph on vertex
sets Vi,...,Vy, and let G be a 4-partite graph on vertex sets Vi, ..., V, such that
H C A(G). If G is truly random and H sits truly randomly inside A(G), how
many tetrahedra do we expect H to contain? For 1 <14 < j < 4, write d;; for the
density of G(V;,V;). For 1 <i < j <k <4, write Gy, :== G(V; UV; UV}), and
write d;j, for the relative density of H(V;,V;, Vi) in A(Gyji). Let v; € V; for all
i € [4]. Then (vy, ...,v4) forms a tetrahedron if and only if (v;,v;,v) € H for all
1 <i<j<k<4. Ifeach edge of G(V;, V;) occurs randomly with probability d;;,
and each hyperedge of H(V;,V;, Vi) € A(Gjji) occurs randomly with probability
dijk, then the probability that (vy,...,v4) forms a tetrahedron in H is

H P((vi,v;) € G) H P((vi, v, %) € H | (vi,v5,v) € A(G))

1<i<j<4 1<i<j<k<4

1<i<j<d4  1<i<j<k<4
Thus, the expected number of tetrahedra is H1§i<j§4 d;j H1§i<j<k§4 dijk H1§i§4 |Vi|.
The counting lemma says that, if (G(V; U V; U V), H) is n-quasirandom for all
1 <i < j <k <4, then the number of tetrahedra in H is approximately (in

terms of 1) this number.
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Theorem 5.2.17. Let Vi, ..., Vy be sets with n; :== |V;|. Let G be a 4-partite graph
on vertex sets Vi,...,Vy with d;; = d(V;,V;) for all 1 < i < j < 4. Letn > 0,
and let H C A(G) be a j-partite 3-uniform hypergraph on vertex sets Vi, ..., Vy.
Forl1 <i<j<k<d4,let Gy = GV, UV, UVy), and suppose (Giji, H) is
n-quasirandom and H(V;,V;, Vi) has relative density d;ji, in A(Gyj). Then the
number of tetrahedra in H differs from [[ <, ;<4 dij [ 1<icjcpes dige [Ticicami by

at most 0,7_>0(H1§i<j§4 d;j H1§i§4 n;).

Proof. See [21, Theorem 6.8]. O

The previous two theorems can be combined to give the tetrahedron removal
lemma (Theorem 5.2.8 for k = 3).

The main takeaway from this exposition is that, in a regularity lemma for
3-uniform hypergraphs H = (V, E), V? should be partitioned into 2-dimensional
simplicial complexes A(G). For k-uniform hypergraphs H = (V, E), V* should
be partitioned into (k£ — 1)-dimensional simplicial complexes. That is, there are

partitions P; of V? for i € [k — 1], and each partition piece of V* has the form
{v="(v1,...,08) €VF:v; € Pyforall ) #J C [K]},

where vy := (v; : j € J) and P; € Py for all § # J C [k].

5.3 Higher-arity distality

In this section, we state the definitions of k-distality and strong k-distality from
[55], and give some basic properties and examples. Throughout this section, fix
a complete L-theory T, and let M |= T be sufficiently saturated.

Let us recall the internal and external characterisations of distality. As stated

in Theorem 2.7.3, these are equivalent.

Definition 5.3.1 (Internal characterisation of distality). Say that 7' (and any
M |=T) is distal if the following holds.
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Let Iy, I1, I5 be (dense) infinite sequences without endpoints, whose elements
are n-tuples. Let ag,a; € M"™ such that Iy 4+ ag+ I1 + 1> and I+ I1 + a1 + I, are
indiscernible. Then Iy + ag + I; + a1 + I5 is indiscernible.

Definition 5.3.2 (External characterisation of distality). Say that 7' (and any
M = T) is distal if the following holds.

Let Iy, I; be (dense) infinite sequences without endpoints, whose elements are
n-tuples. Let a € M"™ and B C M such that Iy+a+ I; is indiscernible and I+ I;
is B-indiscernible. Then Iy + a + I; is B-indiscernible.

Walker [55] generalised these two definitions as follows.

Definition 5.3.3. Let £ € N*. Say that T (and any M = T) is k-distal if the
following holds.
Let I, ..., Ix41 be (dense) infinite sequences without endpoints, whose ele-

ments are n-tuples. Let ag, ..., ap € M" such that, for all 0 < 57 <k,

Io—i-ao—l—---+Ij_1+aj_1+lj+]j+1+aj+1+---+]k+ak+]k+1

is indiscernible. Then Iy + ag + - - - + I + ap + I;11 is indiscernible.

Definition 5.3.4. Let k € N*. Say that T' (and any M | T) is strongly k-distal
if the following holds.

Let Iy, I; be (dense) infinite sequences without endpoints, whose elements
are n-tuples. Let a € M" and By, ..., B, € M such that Iy + I; is By --- By-
indiscernible and Iy +a+ Iy is By - - - B;_1Bj+1 - - - By-indiscernible for all j € [£].

Then Iy + a + I, is B - - - By-indiscernible.

Here, By --- By := By U---U By, and so on. Note that both k-distality and
strong k-distality say that the interaction of k£ 4 1 objects can be controlled by
the interactions of k-sized subsets of those objects. Indeed, k-distality says that
if any k of ag, ..., a; can be inserted to make an indiscernible sequence, then all

k + 1 of them can be, and strong k-distality says that if Iy 4+ I; is indiscernible
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with respect to any k of a, By, ..., B, then it is indiscernible with respect to all
k 4+ 1 of them.

It is straightforward to see that (strong) k-distality implies (strong) (k + 1)-
distality. Furthermore, as expected, strong k-distality implies k-distality.

Proposition 5.3.5. Let k € N*. If T is strongly k-distal, then it is k-distal.

Proof. Let Iy, ..., I and ayg, ...,a; be as in the hypothesis of Definition 5.3.3.
For j € [k], let B; := I;_ja;—y. Then Ij + ay + Iy is By --- Bj_1Bji1 - - By-
indiscernible for all j € [k], and I + Iy is By -- - By-indiscernible. By strong
k-distality, I + ap + Ixyq1 is Bj--- Bp-indiscernible, that is, Iyag--- I jax_1-
indiscernible. But now, since Iy + ag + - -+ + I_1 + ap_1 + I is indiscernible, we

have Iy +ag + - - - + Iy + ap + I;11 is indiscernible as required. O

Say that a (k4 1)-ary relation ¢(yi, ..., yr+1) is degenerate if it is equivalent in
T to a Boolean combination of k-ary relations ¥ (y1, ..., Yi—1, Yit1, ---, Yk+1). The

following proposition provides a trivial source of (strongly) k-distal theories.

Proposition 5.3.6. Let k € N*. If every (k4 1)-ary relation is degenerate, then
T is (strongly) k-distal.

Proof. Let Iy, I; and a, By, ..., By, be as in the hypothesis of Definition 5.3.4. Let
b; € B; for i € [k], and let ¢(x,y1,...,yx) € L. Fixing any o’ € Iy, we show that
o(a, by, ..., by) is equivalent to ¢(a’, by, ..., bg).

Since ¢ is degenerate, it is equivalent in 7" to a Boolean combination of some
Y (x, Y1, ooy Yi)s oo, V(T Y1, oo, Yi ), Where each 1), either has no z-dependence or
no y;-dependence for some i € [k]. Write 7(¢1, ..., ;) for this Boolean combin-
ation. Then ¢(a, b, ...,bx) is equivalent to 7(11(a, by, ..., bg), ..., ¥ (a, by, ..., bg)),
which is in turn equivalent to 7(¢1(a’, by, ..., bg), ..., i (a’, by, ..., b)) by indiscern-
ibility. But this is equivalent to ¢(a’, by, ..., bx) as required. O]

Say that a (strongly) k-distal theory is trivially (strongly) k-distal if every

(k+ 1)-ary relation is degenerate, and non-trivially (strongly) k-distal otherwise.
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We give some examples, due to Walker [55], of where structures sit in the
(strongly) k-distal hierarchy. For k € NT, say that a theory is strictly (strongly)
(k 4 1)-distal if it is (strongly) (k + 1)-distal but not (strongly) k-distal.

Example 5.3.7. Let £ > 2, and let RGy be the {E}-theory of the random
k-uniform hypergraph. That is, (V, E) = RGy if and only if it is an infinite k-
uniform hypergraph such that, if A, B C ( k‘jl) are finite and disjoint, then there is
v € V such that E(ay, ...,a,_1,v) for all {ay,...,ar_1} € A and =E(by, ..., bx_1,v)
for all {by,...,bp_1} € B. Then RGy is strictly (strongly) k-distal.

There are k-partite and ordered k-partite versions of RGy, both of which are
strictly (strongly) k-distal — see [55].

Let RG,, be the { Ey, Ej, ... }-theory such that (V| Ey, Es, ...) = RG,, if and only
if, for all £ > 2, (V| E}) is an infinite k-uniform hypergraph, and if A,, B, C (‘T/)
are finite and disjoint for all » € [k — 1], then there is v € V such that for all
r € lk—1], E,yi(aq,...,a.,v) for all {ay,...,a,} € A, and =E, (b1, ..., b,,v) for
all {b1,...,b,} € B,. Then, for all k € N* | RG,, is not (strongly) k-distal.

The previous examples were IP. Let us give some NIP examples (still due to

Walker [55]).

Example 5.3.8. Fix ¢t € N* U {oco}. Let T be the { R}-theory asserting that R
is an equivalence relation with infinitely many equivalence classes, each of size t.
Then T is stable and strictly (strongly) 2-distal.

Let T* be the {R, <}-theory asserting, in addition to the above, that < is a
linear order without endpoints such that each equivalence class is dense in the

domain. Then 7™ is NIP, unstable, and strictly (strongly) 2-distal.

Example 5.3.9. For all &k € N*, the theory ACF (respectively, ACVF) of al-
gebraically closed fields (respectively, valued fields) is not (strongly) k-distal.

Specifying the characteristic does not change this fact.

In each of the examples above that are strictly (strongly) k-distal for some

k > 2, they are trivially so: every (k+1)-ary relation is degenerate. The following
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construction by Goode [22, §2] is known to be 2-distal, and we show that it is

non-trivially 2-distal.

Example 5.3.10. Let M = (A;, Ao, f : A1 x Ay — As) be a two-sorted structure
in which A, A, are infinite sets and f describes a free action of A; on A,, that
is, the induced action on As of the free group F(A;) generated by A; is free.
By [22, §2], M is stable and ‘trivial for freedom’. By [55, Theorem 8.16], a stable
structure is trivial for freedom if and only if it is 2-distal, so M is (strictly) 2-
distal. It is not known which & € N7 (if it exists) is such that M is strictly
strongly k-distal.

We claim that the ternary relation f(z,y) = z is not degenerate, and so
M is non-trivially 2-distal. To see this, first observe that every binary relation
involving one variable from each sort is equivalent to either T or L. Indeed, since
F(A;) acts freely on As, the orbits of this action are isomorphic copies of F'(A;).
Hence, given u,u’ € Ay and v,v" € A,, it is easy to construct an automorphism
of M sending (u,v) to (v/,v'), and so tp(u,v/0) = tp(u/, v’ /).

Thus, if the ternary relation f(x,y) = z were degenerate, it would be equival-
ent to a formula ¢(y, z), which is clearly absurd. We conclude that f(z,y) = z

is not degenerate, and hence M is non-trivially 2-distal.

Apart from similar examples given in [22, §2], we are not aware of other

non-trivially (strongly) k-distal structures for k£ > 2.

Problem 5.3.11. Let k > 2. Find examples of non-trivially (strongly) k-distal

theories.
We are also interested in the following problem, posed in [55, Question 5.2].

Problem 5.3.12. Let k > 3. Is there an NIP theory that is strictly (strongly)
k-distal?

We remark that Example 5.3.10 may provide an example of an NIP structure

that is strictly strongly k-distal for some k& > 3.
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We finish this section by describing the relationship between the (strongly)
k-distal hierarchy and the NIP, hierarchy. The following definition is due to
Shelah in [16, Definition 2.4] and [15, Section 5(H)].

Definition 5.3.13. Let ¢(x; 41, ..., yx) € L. Say that ¢ is IPy if, for all n € N,
there are By C MY, ..., B, C MY of size n such that ¢* shatters By x --- x By,
that is, for all S C By X - -+ X By, there is a € M* such that ¢(a; By x---x By) = S.
Say that ¢ is NIPj if it is not IPy.

Say that T is NIPy if every formula ¢(x;y1, ..., yx) € L is NIPy.

The following theorem is [55, Proposition 6.7], attributed to Chernikov.

Theorem 5.3.14. Let k € N*. If T is k-distal, then T is NIP;.

5.4 Higher-arity strong honest definitions

In this section, we derive k-strong honest definitions for (k+1)-ary formulas. Not
only is it a key tool for the proof of our main result — a regularity lemma for
NIP strongly k-distal structures — it is also a result of independent interest. Just
as strong honest definitions have proved crucial in the development of distality,
it is our hope that k-strong honest definitions will take on the same role in the
development of k-distality.

Throughout this section, fix a complete L-theory 7', and let Ml = T be suf-
ficiently saturated. We reiterate our abuse of notation that if y is an n-tuple
with entries in a set Y (that is, y € Y™), we sometimes simply write y € Y, but
X CY always means X C Y'!.

Recall the definition of strong honest definitions for a binary formula.

Definition 5.4.1. Let ¢(z;y) € L. A formula ¢(x;z) € L is a strong honest
definition for ¢ if the following holds.

Let BC M | T with 2 < |B| < oo, and let a € M. Then there is ¢ € B
such that, for all b € B,

a = Y(z;e) F o(x;b) <> ¢(asb).
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Recall also that 7' is distal if and only if every formula ¢(x;y) € L has a

strong honest definition. In fact, we have the following.
Theorem 5.4.2. The following are equivalent.

(i) The theory T is distal.

(i1) Every formula ¢(x;y) € L has a strong honest definition.

(iii) Let ¢(x;y) € L, B C M = T with |B| > 2, and a € M. There is
Y(x;2) € L such that, for all finite B C B, there is ¢ € B such that, for all
be B,
a = (5 c) F o(x;0) < ¢(a;b).

Proof. That (i) is equivalent to (ii) is, modulo a compactness argument, [10,
Theorem 21]. The proof can be used almost verbatim to show that (i) is equivalent

to (ii). 0

Statement (iii) gives a ‘non-uniform’ strong honest definition: one that de-
pends not only on the formula ¢(z;y) but also on the parameters a and B.

We wish to define k-strong honest definitions for (k + 1)-ary formulas, where
k € N, and use them to characterise k-distality. Walker proves the following
result that makes a significant step towards this goal. Recall that, for a tuple

a=(ay,..,a;) and ¢ € [k], az == (a1, ..., Gi—1, Qit1, ..., Qg)-
Theorem 5.4.3 [0, Theorem 9.18]. Let k € Nt. The following are equivalent.
(i) The theory T is strongly k-distal.

(i1) Let ¢(x;y) € L with x = (xq,...,xx), B C M | T with |B] > 2, and
a = (ay,..,ar) € M. Then there is ¥(x;z) € L such that, for all finite
B C B, there is ¢ € B such that, for allb € B,

a b= {wz o)} U tplas/B) b 6(2:6) © 6(a;b). (1)
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When k£ = 1, (1) simplifies to
a = ¥(x;e) b o(x;0) <> d(a;b);

that is, ¢ is precisely a ‘non-uniform’ strong honest definition for (¢,a, B), as
in statement (iii) of Theorem 5.4.2. It may therefore be tempting to define, for
arbitrary k, ¢ to be a ‘non-uniform’ k-strong honest definition for (¢, a, B).

This turns out to be unfruitful. A k-strong honest definition for ¢ should work
to refine ¢-types, but in (1), this is achieved not by v alone but by {i(z;¢c)} U
Ule tp(ax;/B). Now, we would like our k-strong honest definition to be a formula
rather than a type. By compactness, we know that {¢(z;c)} U Ule tp(ax;/B)
can be replaced by a finite subset in (1). That is, for all finite B, there are
Yi(xs;¢;) € tp(ay;/B) such that (1) can be replaced by

k
a = Y(z;e) A /\ Vi(z2i5¢) F @(x;b) <+ P(a;b).

It appears as if we have our ‘non-uniform’ k-strong honest definition ¥ A
/\f:1 1;, but the reader must not forget that the choice of the 1; here depends on
B C B. To remove this dependence, we need to do some work. Our first goal is

the following theorem.
Theorem 5.4.4. Let k € N*. The following are equivalent.
(i) The theory T is strongly k-distal.
(ii) Let ¢p(xq,...,xp;y) € L, B C M =T with |B| > 2, and a = (ay,...,ax) €
M. Write x = (21,...,x1). Then there are V(x4 y,2;) € L for i € [k,

Vps1(T;21401) € L, and N € N, such that for all finite B C B, there are
cgj), ...,cl(ﬁl € B for j € [N], such that for all b € B, there is j € [N] with

k
a |= (el A N\ i@ b, o) - d(a3b) < plasb).
=1

(i1i) Let ¢(x1,...,x1;y) € L, BC M =T with |B| > 2, and a = (ay, ...,a;) € M.
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Write © = (x1,...,x). Let (M',B') = (M, B) be |M|*-saturated. Then
there are V;(x4,y,2;) € L for i € [k], Ypp1(z;2601) € L, N € N, and

M ...,cgl € B’ for j € [N], such that for all b € B, there is j € [N] with

k
a | Yz, cf)) A\ Cilwsi b, ) = g(a:b) < ¢asb).
=1

Note that, in (ii) and (iii) of Theorem 5.4.4, (11, ...,1,11) acts as a ‘non-
uniform’ k-strong honest definition for (¢, a, B); recall that ‘non-uniformity’ refers
to its dependence on a and B. After proving Theorem 5.4.4, we will bootstrap it
to generate ‘uniform’ k-strong honest definitions for ¢ — ones that depend only
on ¢ and not a or B — under an extra NIP assumption. These will be defined

precisely in Definition 5.4.9.

Remark 5.4.5. In (ii) and (iii) of Theorem 5.4.4, the awkward parameter N € N
arises from a coding process, when we construct y,...,¢ each as a code for
multiple formulas. We are not able to obtain a statement without such N. We
will comment on this further after defining ‘uniform’ k-strong honest definitions

(which will also make reference to such N) in Definition 5.4.9.

Towards proving Theorem 5.4.4, we appeal to the following result of Walker.
For a type ¢ € S(A) and Ay C A, write q|Ag := ¢ N L(Ap).

Lemma 5.4.6 [50, Lemma 9.12]. Suppose T is strongly k-distal. Let BC M =T
with |B| > 2, and let a = (aq,...,a) € M. Let p :=tp(a/M), and for all i € [k],
let ps; = tp(ag/M). Let (M',B') = (M, B) be |M|"-saturated. Then, for all
qg € S(M) finitely satisfiable over B,

k
plB' Uz @ q)|B'+ (p@ q)|B'.
i=1
We require the following lemmas about finitely satisfiable types. For a tuple
of variables y and B C B’ C M, where B is small but B’ is not necessarily small,

write Si*(B', B) := {p(y) € Sy(B') : p is finitely satisfiable over B}.
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Lemma 5.4.7. Let y be a tuple of variables. Let p(y) be a partial type that is
finitely satisfiable over a small set B C M. Then p extends to a (complete) global
type that is finitely satisfiable over B. Thus, if B C B’ for some not necessarily
small set B' C M, then

SP(B'sB) = {q|B': q € SP(M, B)}.

Proof. We follow the argument in [18, Section 2.2]. Since p is finitely satisfiable
over B, we can extend the set {¢(B) : ¢(y) € p} to an ultrafilter U« on BY. Then p
extends to the global type {¢(y) € L(M) : ¢(B) € U}, which is finitely satisfiable
over B. O

Lemma 5.4.8. Let x,y be tuples of variables. Let a € M* and B C B’ C M,

where B is small but B is not necessarily small. Let p(x) = tp(a/M). Then
(1) If ¢ € Sy(M) is B-invariant, then p® q=q®p ={é(x,y) : ¢(a,y) € ¢}.
(it) The set S¥ (B';B) :={(p® q)|B : q € SI*(M; B)} is closed in Sy, (B’).

Proof. (i) It suffices to show that p ® ¢ = {¢(x,y) : ¢(a,y) € ¢}. Let ¢(z,y) €
L(C), where {a} U B C C, and let b |= ¢|C. Then

o(x,y) €p®q & ¢(x,0) € pe M ¢(a,b) & d(a,y) € q.

(il) Without loss of generality, suppose B # (. It suffices to show that for
r € Syy(B'), r € SF, (B’ B) if and only if whenever ¢(z,y) € L(B') is such that
{é(a,y)} is not finitely satisfiable over B, then —¢(x,y) € r.

Suppose r € Si° (B'; B), so we have that r = (p®q)|B’ for some ¢ € S (M; B).
If ¢(z,y) € L(B’') is such that ¢(z,y) € r, then ¢(a,y) € ¢ and so {p(a,y)} is
finitely satisfiable over B. Conversely, suppose whenever ¢(z,y) € L(B’) is such
that {¢(a,y)} is not finitely satisfiable over B, then —¢(x,y) € r. Then r(a,y)
is finitely satisfiable over B, so extends to some ¢ € S;S(M; B) by Lemma 5.4.7.
But then r = (p ® ¢)|B’: these are complete types such that if ¢(z,y) € r, then

é(a,y) € r(a,y) C ¢, and so ¢(z,y) € pR q. O



5.4. HIGHER-ARITY STRONG HONEST DEFINITIONS 145

We are now ready to prove Theorem 5.4.4.

Proof of Theorem 5./.4. Firstly, we argue that (i) implies (iii). Suppose T is
strongly k-distal. Let ¢(z1,...,2xy) € L, B C M = T with |B] > 2, and
a = (ay,...,ar) € M. Write z := (x1,...,x1). Let (M',B") %= (M, B) be |M|*-
saturated. Let p := tp(a/M), and for all i € [k], let p; := tp(ax;/M).

Let ¢ € S,(M) be finitely satisfiable over B. By Lemma 5.4.6, there is ¢, €

{0,1} such that
k

rf:=p|B"U U(P;éz’ ® q)|B' - ¢%(z;y).

i=1
By compactness, there are ¢} ,(z,c,,) € p|B" and ¢ (x4, y,¢]) € (pxi ® q)| B’
for i € [k] such that
k

Pl = ¢Z+1(x7 CZH) N /\ Vi (0,y, ¢]) = 7 (73 y).

=1

Now, {[1] : ¢ € SF(M; B)} is an open cover for S& (B'; B). By Lemma 5.4.8,
Sk, (B'; B) is a closed, hence compact, subset of S, ,(B’), so the open cover above

has a finite subcover {[¢] : ¢ € Q}.

For all b € B, we have tp(b/M) € S;*(M; B), so there is ¢(b) € @ such that
Y1 € p @ tp(b/M) = tp(a, b/M), whence

k
b b b b
a = i@ ) A N\ (b, ) b 670 (23);

=1

in particular, = ¢f«® (a;b), and so

k
@ b= v ) A P\ 1 s b ) o) (i),
i=1

For all i € [k + 1], we can code (¢f : ¢ € Q) into a single formula as follows: for
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all b € B,
k
af= \/ (@DZH(%CZH) ANujyy = UIZ+1) A /\ \/ (wg(w7éivb> i) Auj = Uf)
q€Q i=1q€Q

= ¢(z;0) <> ¢(a;b),

for any u{,...,uf_ ,,v{,...,vl, € B' such that for all i € [k + 1], u] = v} if and
only if ¢ = ¢(b); such w9, v? exist since |B| > 2. Therefore, (iii) holds.

Next, we argue that (iii) implies (ii). Our argument expands that in [10,
Corollary 9]. Suppose (iii) holds. Let ¢(z1,...,2x;y) € L, B C M = T with
|B| > 2, and a € M. Let (M', B’) = (M, B) be any |M|"-saturated elementary
extension, and let vy, ..., Y41 and N be given by (iii). Then, for all finite B C B,
(M', B") satisfies the first-order formula saying that there are cgj ), ey cg]rl e B
for j € [N] satisfying the conclusion of (ii). Since (M’ ,B’) = (M,B) is an
elementary extension, (M, B) satisfies the same formula with B’ replaced by B
throughout, so (ii) holds.

Finally, we argue that (ii) implies (i). By Theorem 5.4.3, it suffices to show
that (ii) implies statement (ii) of Theorem 5.4.3. Let ¢(z1,...,2x;y) € L, B C
M = T with |B| > 2, and a = (ay,...,ar) € M. Let ¥y1(x; zp11) and N be
given by (ii), and let ¢ (z; 21, ..., 2™ := \/;V:1 Ypy1(x; 29). Then, for all finite
B C B, there are ¢¥) € B for j € [N] such that, for all b € B,

k

a = {W(z;cV, "YU tp(ag/B) b ¢(a;b) <> ¢a; b)

i=1

as required. O

Our next goal is to bootstrap Theorem 5.4.4 to generate ‘uniform’ k-strong

honest definitions. It is now clear what these should look like.

Definition 5.4.9. Let ¢(x1, ..., 2x;y) € L; write x := (xq,...,zx). Let N € N. A
(k + 1)-tuple of L-formulas (v;(z4i,y, 2) : ¢ € [k])” (Yr+1(z, 2k11)) is a k-strong
honest definition for ¢ of degree N if the following holds.
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Let BC M =T with 2 < |B| < oo and a = (ay, ...,ax) € M. Then there are

D ...¢l), € Bfor j € [N] such that for all b € B, there is j € [N] with

i

k
a = (@, cf]) A N\ iz, b)) F o(a;b) < ¢lasb).
i=1

Remark 5.4.10. By compactness, (V;(z.i,y,2i) @ € [k])” (Yrs1(x, 2k41)) 1s a
k-strong honest definition for ¢ of degree N if and only if the following holds.

Let BC M =T with |B| > 2 and a € M. Let (M',B’) = (M, B) be |M|*-
saturated. Then there are cgj), o c,(jll € B’ for j € [N] such that for all b € B,
there is j € [N] with

k
a = (. el)) A N\ i@ b)) - 6(z:b) < plasb).
=1

Note that a 1-strong honest definition of degree 1 is a strong honest definition,
and if ¢(x, ) is a 1-strong honest definition of degree N > 1, then /\;\7:l P(z, 2;)
is a (1-)strong honest definition (of degree 1). Hence, when defining strong honest
definitions, we did not need to make reference to degrees. Sadly, when k£ > 2, this
trick does not work for k-strong honest definitions, and we do not know whether

the reference to degrees can be eliminated.

Problem 5.4.11. If ¢(x1,...,xx;y) € L has a k-strong honest definition, does it

have a k-strong honest definition of degree 17

As we shall see, the reference to degrees does not seem to affect the efficacy
of k-strong honest definitions, it merely makes the proofs more awkward.

The main result of this section is as follows.
Theorem 5.4.12. Let T be NIP and let k € NT. The following are equivalent.

(i) The theory T is strongly k-distal.

(ii) Every ¢(xq,...,xx;y) € L has a k-strong honest definition.

Our proof bootstraps the ‘non-uniform’ Theorem 5.4.4, following the strategy

in [10, Theorem 21]. The ingredient that necessitates NIP is the following fact.
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Fact 5.4.13 [36, Theorem 4; (p,q)-theorem]. For all p > q € NT, there is
K = K(p,q) € NT such that the following holds.

Let F C P(X) be a finite family with VC*(F) < q, and suppose F has the
(p, q)-property: if Fo C F has size p, then there is a q-element subset of Fy with
non-empty intersection. Then there is Y C X of size at most K(p,q) such that
FNY #0 forall F € F.

That K only depends on p and ¢ in Fact 5.4.13 is not stated explicitly in [306,
Theorem 4]; see [10, Remark 7] for an argument to this end.

We prove a simple compactness lemma.

Lemma 5.4.14. Let T be strongly k-distal and ¢(xq,...,xx;y) € L. Write
x = (21,...,2x). For all (k+ 1)-tuples of L-formulas V = (¢;(x4,y,2) : 1 €
[E]) ™ (Yr1(x, 2k41)) and N € N, fir my ny € N. Then there are Ny,...,Ng € N
and U™ := (wl(h) (s, v, zi(h)) s [k})“(w,gfl (z, z,g’fl)) for h € [H| such that the
following holds.

Let B C M = T with |B| > 2, and let a € M. Then there is h € [H]
such that, for all B C B of size at most My N, , there are cgj), -~-7CI(£1 € B for
j € [Ny] such that for all b € B, there is j € [Ny with

k
a = (2, cf) ) A N\ (20,0, ¢9) F o(230) > ¢(asb).

i=1

Proof. Let P be a new unary predicate. Let 7" be the theory in the language
L' := LU{P, a} saying that if (M, B,a) = T', then M = T, |B| > 2, and for
every (k + 1)-tuple of L-formulas ¥ = (¢;(x4,y, 2) : 1 € [k])” (Ygs1(x, 2p+1))
and N € N, there is B C B of size at most my, N, for which there are no
cgj), ...,c,ijll € B for j € [N] such that for all b € B, there is j € [N] with

k
a = (@ ) A N\ i@, b)) Fo(aib) < ¢lasb).
=1

By Theorem 5.4.4, T is inconsistent. O

We now prove Theorem 5.4.12.
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Proof of Theorem 5.4.12. That (ii) implies (i) follows immediately from Theorem
5.4.4, so we prove that (i) implies (ii).

Suppose T is strongly k-distal. Let ¢(z1,...,xx;y) € L, z = (a1, ..., 71),
and d := |y|. For each (k + 1)-tuple of L-formulas ¥ = (i(xz,y,2) : i €
[K])™ (Ypy1 (7, 251)) and N € N, let Oy n (2, ..., 2" 2, ) be the following for-

mula, where for all j € [N] we have z) = (29)7 . z,(izl)
N k

\/ ¢k+1 €T Zk+1 /\ /\'QDZ Ttis Y, % z( ))

j=1 =1

k
AV | @, 200 A N\ iy 20) | = () & o) | |
=1

let myny = d-VC*(fyny) € N. By standard coding tricks, we may apply
Lemma 5.4.14 under the assumption that H = 1. (Otherwise, the following
proof produces ( Y‘ e ¢k+1)he[H} such that, for all @ and B, there is h € [H]
such that ( . @DkH) works; we then code, for each i € [k + 1], the formulas
(wi(h) the [H]) into a single formula ; such that, for all a and B, (¢1, ..., ¥x41)
works.)
Applying Lemma 5.4.14 with H = 1, we obtain ¥() := (ngl)(x#,y, zl.(l)) :
€ [k])ﬁ(w,(;zl(x z,(glﬁl)) — from which we shall henceforth drop the superscripts
—and Ny =t N € N. Let e := |z| + -+ + |zk41|]. Let B C M = T with
2 <|B| < 00, and let a € M®. For b € BY, 0y y(BY;a,b) is the set

(W, ..., ™M) e BN
a = ¢k+1($701(£1) A /\1/)@(.%‘751',17, clw) F o(x;b) <> ¢(a;b) for some j € [N]
i=1

Observe that the family F := {0y y(B*";a,b) : b € BY} C P(B") has the
(my, n/d, my y/d)-property, that is, any subset of F of size my n/d has non-
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empty intersection. Indeed, given by, ...,bp, /0 € BY, there is B C B of size at
most my, y such that by, ..., by, /e € BY, and our choice of ¥ (given by Lemma
5.4.14) is precisely such that there is (c¢(V, ..., ™) € ﬂie[mq,,N/d} Oy n(BY;a,b;).

By Lemma 2.2.11, VC*(F) < VC*(8y n) = myn/d. By the (p,q)-theorem
(Fact 5.4.13), there is Y C BN of size at most K = K(mg y/d,my y/d) € N,
such that £ NY # @ for all F € F. That is, there are ¢V, ..., ¢("N) ¢ B¢ such
that for all b € BY, there is j € [K N] with

k
a b= G (@, L) A N\ i@, b, i) E @a;b) < d(asb),
=1

Since the above holds for all B C M |= T with 2 < |B] < oo and a € M,
we conclude that (1, ...,k y1) is a k-strong honest definition for ¢ of degree

KN. O

We have shown that, under a global NIP assumption, the existence of k-
strong honest definitions characterises strong k-distality. Since there are strongly

k-distal theories that are not NIP, it is natural to pose the following problem.
Problem 5.4.15. Can the NIP assumption be removed from Theorem 5.4.127

Since (strongly) k-distal theories are NIP; (Theorem 5.3.14), one may hope
that all uses of NIP can be replaced with uses of NIP,. However, this requires
an NIPj version of the (p, g)-theorem, which is yet to be developed. Even the
statement of such a theorem is not obvious.

Since it is open whether k-distality is equivalent to strong k-distality, we pose

the following problem.

Problem 5.4.16. Can the assumption of strong k-distality be replaced by k-
distality in Theorem 5.4.12% If not, do k-distal theories admit a (necessarily

weaker) version of k-strong honest definitions?

The regularity lemma we shall derive in the next section is for all hypergraphs

defined by a formula ¢(z1, ..., zx; y) with a k-strong honest definition in an NIP
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theory. In particular, we do not require the full strength of strong k-distality,
since we only require the formula in question to have a k-strong honest definition,

rather than all formulas.

5.5 Regularity lemma

We finally come to our piéce de résistance, a regularity lemma for formulas

(1, ..., T; Tpy1) With a k-strong honest definition in an NIP theory.

Remark 5.5.1. We had previously indexed the variables in ¢ as xy,..., 2, vy,
which emphasises the different roles of the x- and y-variables in the k-strong
honest definition. In this section, our main result is a regularity lemma for the
(k + 1)-uniform hypergraph ¢(xy, ..., 251 1), where, a priori, none of the variables
x1,...,Tky1 are special. Thus, it is sensible to index the variables as xq, ..., Tx11
(note, however, that xp,; still plays a special role in the proof). This has the
added bonus of cleaner presentation. In particular, writing = := (z1, ..., Zg41), &

k-strong honest definition for ¢ has the form (¢;(z;, ;) =i € [k + 1]).

5.5.1 Main proof

Throughout this subsection, we fix the following.

e An NIP L-theory T and models M, M = T with M sufficiently saturated.
o A formula ¢(z1, ..., x5 k1) € L; write x 1= (21, ..., Tpa1).

e A k-strong honest definition (v;(z.,2;) : @ € [k + 1]) for ¢ of degree N.
Our goal is the following theorem.

Theorem 5.5.2. (T' is NIP.) For all § € (0,1], there are 0;(v4;,2;) € L for
holds.

Let p(x2141) and v(xgy1) be Keisler measures, with v(zy11) generically stable
over M, and let w(zx) = v(Tpy1) ® p(@sps1). Then there are partitions P; of
M*#i fori € [k + 1], each of size at most K, such that:
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(i) For alli € [k+ 1] and P; € P;, there is ¢; € M* such that P; = 0;(x4, ¢;);

(1)) Y w(PL A -+ A Pry1) < 9, where the sum ranges over all (Py, ..., Py11) €
P1 X -+ X Priq such that Py \ --- N\ Pyyq 1S not ¢-homogeneous.

In (ii), the notation of Py A--- A Pyy1 can be understood by conflating P; with
the formula that defines it, given by (i). That is,

Pl/\-u/\PkH:{xeM:x#EPiforallie[k+1]}.

Our proof strategy follows that of [11, Theorem 5.8|, but it is more efficient

— we will discuss this after the proof.

Definition 5.5.3. Let B C M not necessarily be small. A B-definable cell is a set
v € M¥ of the form vy (221, c1) A+ - - Api1 (Tpht1, Cht1), Where ¢ := (cq, ..., cpq1) €
B; write . for this set. Write Gg for the set of all B-definable cells.

For a,c®,...,c™ € M, let F, ) .~ be the set

{beM:a = (vrr41,0) € v b P(@sp41;b) <> ¢(a;b) for some j € [N]}.

A tuple T' = (Y,), ..., Yoy ) € GY of B-definable cells is B-complete if there is
with respect to a. For ' = (Y,a), ..., Y.» ) € G5, we write v € I to mean v = 7.

for some j € [N].

Remark 5.5.4. Since (¢;(z4;,2;) 1 i € [k + 1]) is a k-strong honest definition
for ¢ of degree N, for all @ € M and B C M with 2 < |B| < oo, there are

W, ..., € B such that (7,a), ..., 7.m)) € G§ is B-complete with respect to a.
We prove the following ‘cutting lemma’.

Proposition 5.5.5. For all r > 1, there is a finite set B C M with 2 < |B| =
Ogp1,.otsr,N (12108 2r) such that the following holds.

Let v(xx41) be a Keisler measure, generically stable over M. For a € M and
VN e B, if (Y, Yuw) € GN is B-complete with respect to a, then
v(F, ()

a,c\t),.., c
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Proof. Let d := |xg11|. Applying Proposition 2.6.11 to the definable family F :=
such that, for all F € F, [v(F) — Av(S; F)| < L.

Choose B C M such that B contains all of singletons appearing in .S and
2 <|B| <d|S|+2. If (7.1), -, Yev)) € G5 is B-complete with respect to a, then
S C BYC F, . ., that is, Av(S; F, .0)__m) =1, and so v(F, )
1-1. O

Definition 5.5.6. Let Z C M®, a € M*##+1 and b € M+, Write Z|, := {V/ €
M#+1 : (a,b') € Z} and Z|, := {d’ € M*#++1 : (a/,b) € Z}.

We are now ready to prove Theorem 5.5.2.

Proof of Theorem 5.5.2. Apply Proposition 5.5.5 with r = % > 1 to obtain

have |Gp| < |B|! for | := |z1| + -+ + |2rs1]-

For v € Gp, let D, = {b € M™+ : 7|, C ¢(x2k11;b) or v[p € ~d(xrk41;0)}.
Let G .=V g, v A D,. We claim that w(G) > 1 — 4. It suffices to show that,
for all a € M"#++1, v (Gl,) > 1—4.

Fix a € M®#*+1. By Remark 5.5.4, there is ' = (7.1, ..., Yu) € G5 which
is B-complete with respect to a. It suffices to show that (\/ cpv A D,)la 2

F, .o o) > 1 =4 by our choice of B C M from Proposition

a

77777 o(N), as V(Faﬁ(l)

-----

o). Then, there is v € I" such that

.....

a = (Tr41,0) € v @(T2111;0) < d(a;b).

In particular, (a,b) € 7, so it suffices to show that b € D,. For all a’ € v/,

(Zl ): ('I;ék+17 b) € - ¢(x¢k+1a b) A ¢(a7 b)7

and so = ¢(a’;b) <> ¢(a;b). Thus, v|, C ¢7(24k41;b) for the unique o € {0,1}
satisfying = ¢7(a;b), and so b € D, as required. We have shown that w(G) >
1—24.
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For v € Gp and o € {0,1}, let D := {b € M™+1 : ], C ¢7(2x44150)}, s0
that D, = DI U D). Let the partition P; of M*#! be the set of Boolean atoms
of {1(zx1,¢1) : cr € BYU{D] : v € Gp,0 € {0,1}}, where D7 is identified
with the definable set {(za, ..., ¥xy1) : 241 € DI}, For i € [k + 1]\ {1}, let the
partition P; of M*#i be the set of Boolean atoms of {;(x;,¢;) : ¢; € B}. Since
|G| < |B| and M is NIP, for all i € [k + 1] we have that

----------

It is clear that there are L-formulas 60;(z4;, z;) for i € [k + 1], which are
functions of ¢, 1, ...,¥r41, N, and 6, such that (i) holds. To see that (ii) holds,
recall that w(G) > 1—4d where G =V 5, YA Dy = V. g, Voeroy v A D5 For
all v € Gp and o € {0,1}, v A D7 is ¢-homogeneous (indeed, v A DI C ¢7(x)),
and by the definition of Boolean atoms, v A D7 is a union of sets of the form
Py A+ A\ Pyyq where P; € P;. Therefore, the union of all ¢-homogeneous sets
of the form P; A --- A Py contains (G, and has w-measure at least 1 — §. This

shows that (ii) holds. O

As mentioned before, our proof strategy follows that of [I 1, Theorem 5.8].
There, they also prove a cutting lemma, which they use to prove that the hy-
pergraph satisfies the definable ‘strong Erdds—Hajnal property’ [11, Proposition
4.4], before bootstrapping it into a regularity lemma.

Let us state an abridged form of [11, Proposition 4.4].

Proposition 5.5.7. Let x(x1, ..., xx11) be a relation definable in a distal structure
M, and suppose |xi| = -+ = |zp41|. For all a € (0,1], there are ¢ > 0 and
0i(x;,z;) € L for i € [k + 1] such that the following holds.

Let v(zy41) be a Keisler measure, generically stable over M. If v* () > a,
then there are cy, ..., cpr1 € M such that /\z’e[k+1] 0;(x;,¢;) is contained in x and

k+1)

has -measure at least €.

In our proof, we observe that such an intermediate step is not necessary: once

we have a cutting lemma, we can directly define the appropriate partitions to give
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us the desired regularity lemma. Note that an analogue of the definable strong
Erdés—Hajnal property for our relation ¢ can then easily be deduced from our

regularity lemma.

Corollary 5.5.8. (T' is NIP, ¢ as before.) Suppose |x1| = -+ = |xpq1|. For
all « € (0,1], there are ¢ > 0 and 0;(v4;,2;) € L for i € [k + 1] such that the
following holds.

Let v(xp41) be a Keisler measure, generically stable over M. If V51 (¢) > a,
then there are cq, ..., co1 € M such that /\ie[k+1] 0i(x;, ;) is contained in ¢ and

has v* Y _measure at least .

Proof. Applying Theorem 5.5.2 with § = a//2, we have that
Zu<k+1)(P1 AN APep1) >a—60=a/2,

where the sum ranges over all (P, ..., Pyy1) € P X -+« X Pyyq such that Py A--- A

-----

these tuples (Py, ..., Pyyq) is such that v (P A - A Pyyy) > o/ (K1Y, O

5.5.2 Main result

Throughout this subsection, we fix an NIP L-theory 7" and models M, M | T
with M sufficiently saturated.

We can make Theorem 5.5.2 uniform, in the sense that if ¢(z1,...,z541) =
¢ (x1, ..., xp41, €) for some e € M, then 6; and K can be chosen independently of
e. The following theorem is the most general formulation of our regularity lemma

in this chapter.

Theorem 5.5.9. (T is NIP.) Let ¢/ (1, ..., xy; (Tgs1,u)) € L have k-strong honest
definition (Y1, ..., Y1) of degree N. For all 6 € (0,1], there are 0;(x 4, z;,u) € L
for i € [k + 1], where 041 has no u-dependence, and a natural number K <

Let (b(IlJ '”7xk+1) = ¢/(x17 ooy Ly (xk-i-lae)) fOT some e € M. Let I[’L(x7£k+1)

and v(zy1) be Keisler measures, with v(xyy1) generically stable over M, and let
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w(x) == v(Trs1) @ p(x2k41). Then there are partitions P; of M*# fori € [k+1],

each of size at most K, such that:
(i) Foralli € [k+1] and P; € P;, there is ¢; € M* such that P, = 6;(x;, ¢, e);

(1) Y w(Py A -+ A Pgyp) < 0, where the sum ranges over all (Py, ..., Pyy1) €

P1 X -+ X Pryy such that Py A\ --- N\ P11 not ¢-homogeneous.

Proof. Apply Theorem 5.5.2 to ¢ with the Keisler measures p(zz;+1) and
V' (Tge1,u), where V' (x(zri1,u)) = v(x(2py1,€)) for all x(zry1,u) € L(M). By
Proposition 2.6.6, v/ is generically stable over M. O]

We would like to remove the NIP assumption from our main theorem.
Problem 5.5.10. Must Theorem 5.5.9 hold if T is not necessarily NIP?
We record the special case of Theorem 5.5.9 where |z1| = -+ = |41

Corollary 5.5.11. (T is NIP.) Let ¢'(xy,...,xx; (Xgs1,u)) € L have k-strong
honest definition (1, ..., k1) of degree N, and suppose |x1| = -+ = |zp1| =: d.
For all § € (0,1], there is O(xy,...,xx,z,u) € L and a natural number K <

Let ¢(1,...,x511) 1= ¢ (21, ..., T1; (Tpy1,€)) for some e € M. Let V. .C M
be M-definable, and let v(xy1) be a global measure, generically stable over M.

Then there is a partition P of V¥ of size at most K such that:
(i) For all P € P, there is c € M? such that P = 0(xy, ..., x,c,e) N VF;

(i) STvEE(PL A - A Poy) < Su(V)RL where the sum ranges over all

(Pp,y ..., Priq) € PFL such that Py A - -+ A\ Py is not ¢g-homogeneous.

Proof. Without loss of generality, suppose v(V) > 0. Apply Theorem 5.5.9
with v|y(xpy1) and p(xq, ..., 2x) = vl|y(21) ® -+ @ v|y(x), where v|y is the
relativisation of v to V, given by v|y(Z) := v(V N Z)/v(V) for all definable Z.
It is easy to see that v|y is generically stable over M, and hence so is p by Fact
2.6.9. (Note that the formulas 6y, ..., 041 given by Theorem 5.5.9 can easily be

coded into one formula 6.) O
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Since finite counting measures are generically stable (Example 2.6.16), we
have the following statement for finite hypergraphs. We formulate this in a

manner more consistent with our earlier combinatorial discourse.

Corollary 5.5.12. (T is NIP.) Let ¢'(xy,...,xp; (Tpy1,u)) € L have k-strong
honest definition (1, ..., Ykr1) of degree N, and suppose |z1| = -+ = |xgp1| =: d.

For all 6 € (0,1], there is O(xy,...,xx, 2,u) € L and a natural number K <

-----

Let (1, ..., Tpy1) = @' (21, ..., Tp; (Tpy1,€)) for some e € M. Let V C M? be

finite. Then there is a partition P of V¥ of size at most K such that:

(i) For all P € P, there is c € M* such that P = 0(x1, ..., xx, c,e) N VF;

(ii) The induced partition Q of V**1, given by
{{w = (wy, ..., wiy1) € VT wy; € Py for alli € [k + 1}} : Py, ..., Py € 73} ,
is such that ZQGQ not ¢-homogeneous ‘Q’ < 6’V’k+l'

5.5.3 Future work: recovering k-distality

By Theorem 5.4.12, the regularity lemma Corollary 5.5.12 applies to all relations
definable in an NIP strongly k-distal structure. As in Section 4.5, we can ask if
every relation ¢ on a set M satisfying this regularity lemma (without the definable

data) is such that (M, ¢) admits an expansion that is NIP strongly k-distal.

Definition 5.5.13. Let ¢(xq,...,511) be a relation on a set M. Say that ¢
satisfies the NIP strongly k-distal reqularity lemma if the following holds.

For all § € (0,1], there is a natural number K < poly,(0~") such that for all
finite V' C MY, there is a partition P of V* of size at most K inducing a partition
Q of V¥*1 given by

{{w = (W1, ooy Wyr1) € VP i wy € P for all i € [k + 1]} t Py, ..., P € 73} ,

such that ZQGQ not ¢-homogeneous |Q| < 5|‘/|]€+1
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Problem 5.5.14. Let ¢(xy,...,x511) be a relation on a set M that satisfies the
NIP strongly k-distal reqularity lemma. Must (M, ®) admit an expansion that is
NIP strongly k-distal? What if we assume that (M, ¢) is NIP?

Note that, by Theorem 4.5.1, when k£ = 1 and (M, ¢) is not assumed to be
NIP, the answer to the first part of the question is negative.

In Chapter 4, we showed that a formula that satisfies the distal regular-
ity lemma already enjoys a particular property of (formulas definable in) distal
structures, namely, improved Zarankiewicz bounds. We can ask if a similar phe-

nomenon occurs with the NIP k-distal regularity lemma.

Problem 5.5.15. Let ¢(xy,...,x511) be a relation on a set M that satisfies the

NIP strongly k-distal reqularity lemma. Investigate the (combinatorial) properties
of .

5.6 Dual setup

Throughout this section, fix a complete L-theory T', and let M |= T be sufficiently
saturated.

So far, we have worked with k-strong honest definitions for formulas
¢(x1, ..., rr;y). We had previously attempted to define ‘dual’ k-strong honest
definitions for formulas ¢(z;y1, ..., yx), to better align with the intuition of NIP
that we have a k-dimensional box of parameters (as inputs for the k& parameter
variables y1, ..., yx). We will also see in Section 5.7 that this dual setup has bet-
ter geometric properties. However, we are not able to prove that dual k-strong
honest definitions exist in an NIP strongly k-distal theory. In this section, we in-
troduce dual k-strong honest definitions, state their existence in an NIP strongly

k-distal theory as a conjecture, and prove a partial converse.

Definition 5.6.1. Let ¢(z;y1, ..., yx) € L; write y := (y1,...,yx). Let N € N. A
k-tuple of L-formulas (¢;(x, vz, 2;) : @ € [k]) is a dual k-strong honest definition
for ¢ of degree N if the following holds.
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Let B C M with 2 < |B| < 00, and let a € M. Then there are W ..M eB
such that for all b = (by,...,b;) € B, there is j € [N] with

k
a = N\ Vil b, ) - o(z1b) < plasb).
=1

Conjecture 5.6.2. [fT is NIP and strongly k-distal, then every ¢(z;yy, ..., yx) €
L has a dual k-strong honest definition.

We can prove a partial converse. To do so, we need to slightly strengthen our
notion of dual k-strong honest definitions for a formula ¢(x;yi, ..., yx), to allow
Y1, ---, Yr to range over possibly distinct sets By, ..., By. To state this strengthened

notion, we fix some notation.

Definition 5.6.3. For sets By, ..., By and dy, ..., dj, € N, write Qq, 4, (B4, ..., Bg)
for the set

(1) ¢ € U B; foriek—1], ¢ € U B;
Jelk\ {7} J€[k]

When we write ¢ € Qg, _a, (B, ..., B), it is understood that ¢ = (¢, ..., ¢x) where

.....

|c;| = d;. The parameters dj, ..., dy are omitted where understood from context.

Definition 5.6.4. Let ¢(z;y1, ..., yx) € L; write y := (y1,...,yx). Let N € N. A
k-tuple of L-formulas (v;(z, y4i, 2;) : © € [k]) is a dual k-stronger honest definition
for ¢ of degree N if the following holds.

Let By,...,Br, € M with 2 < |B;| < oo, and let a € M. Then there

are ¢ ... M) ¢ Qr,oze (Bi, ooy Bi) such that for all b; € B;, writing b :=

-----

(b1, ..., by), there is j € [N] such that

k
a k= N\ Ci(@ b c) F o(a;0) < ¢lasb).
=1

If one can prove that dual k-strong honest definitions exist in an NIP strongly

k-distal theory, we expect the proof to be adaptable without much difficulty to



160 CHAPTER 5. DISTALITY TO AND FROM COMBINATORICS

prove the existence of dual k-stronger honest definitions. That is, we expect
Conjecture 5.6.2 to have the same resolution if dual k-strong honest definitions
are replaced by dual k-stronger honest definitions. Regardless, with this stronger

notion in place, we are ready to prove a partial converse to Conjecture 5.6.2.

Proposition 5.6.5. If every ¢(x;y1,...,yx) € L has a dual k-stronger honest
definition, then T s strongly k-distal.

I

Proof. If (I,<) is a sequence and ay, ..., Gy, by,...,b, € I, write (ai, ..., ap)

(by,...,bm) if, for all ¢,5 € [m], a; < a; if and only if b; < b;. Suppose (I, <

~—

12

has entries in M" for some n € N. If (I, <) is B-indiscernible and (ay, ..., a,)
(b1, ..., b)), then tp(ay, ..., am/B) = tp(by, ..., b/ B).

Let Iy, I; be dense infinite sequences without endpoints, whose entries lie in
M". Let a € M" and By, ..., By, € M, such that Ip+a+1yis By -+ Bj_1Bj -+ - By-
indiscernible for all ;7 € [k] and Iy + I is Bj--- Bg-indiscernible.  Let
O(Y1y ey Yks Ty ey Tom) € L, by € By, do < -++ < d,, € Iy (that is, (dy, ..., d) is a
subsequence of Iy), and d,, 11 < -+ < day, € Iy, such that = ¢(by, ..., by, do, ..., doy,).
We show that

): ¢(b17 "‘7bk7d07 "'7dm—17a7dm+17 "')d2m)7

which would prove that Iy+a+1; is By - - - Bg-indiscernible. Write y := (y1, ..., Y)
and b := (by, ..., bg).

Let E be the set of singletons appearing in Iy, and for i € [k] \ {1}, let
B; be the union of E with the set of singletons appearing in b;. By assump-
tion, ¢(y1; Y2, .-y Yk, (To, .., Tam)) has a dual k-stronger honest definition, treating
(xg, ..., Tam) as one tuple of variables, and we apply this fact to the parameter
sets B, ..., By, E and the tuple b; € M. We obtain ;(y, o, ..., Tom, 2) € L for
i€ [k]\ {1}, ¥(y,2) € L, and N € N, such that for all finite Jy C Iy, there are

e, .., e™) € I such that, for all ey < --- < eg,, € Jo, there is j € [N] such that

k
b w(ylab;élae(j)) A /\wi(y175¢1,¢,€07 e e2m7e(j))
=2

- ¢<y1a b#la €o, "'7€2m) <~ gb(blab#l)e(h cey 62771)7
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and so

k
bi = ¥(y1, b, e(j)) A /\ Vi(y1, bz, €0, -y €2m, €(j)) = @Y1, b1, €0, -5 €2m)
i=2

since = ¢(by, ..., by, €, ..., €2) by by - - - bp-indiscernibility of Iy + 1.

Choosing Jy to be sufficiently large, we may choose ey, ..., €2, to be distinct
from e, ..., eN). By by - - - bg-indiscernibility of Iy+a+I;, for some/all d € Iy+1;

such that (eq, ..., eam, e9) = (do, ..., d_1, @, dyps1, ..., dom, d), we have that

k
w<yla b;élv d) A /\ d}i(yla b;él,ia d07 ceey dm—la a, dm—i—la ceey d2m7 d)

=2

+ ¢(y1,b;ﬁ1,d0, ...,dm,l,a,dmﬂ, ~--7d2m>-

But now [y + Iy is b; - - - by-indiscernible and Iy 4 a + I; is by;-indiscernible for all

i € [k], so

k
b1 ): w(yl, b;,gl, d) A /\ wi<y17 b;él,iy do, ceey dmfl, a, dm+1, ceey d2m7 d),

=2

and we conclude that = ¢(by, ..., b, do, ..., dp—1, A, i1, ..., dom). ]

Remark 5.6.6. Observe that the previous proof goes through under the weaker
assumption that ‘non-uniform’ dual k-stronger honest definitions exist: that is,
for all ¢, By, ..., Bg, and a, there is (11, ..., ¢y) satisfying the conclusion of Defin-
ition 5.6.4.

Why are we concerning ourselves with the dual setup? Other than the intu-
ition of NIP, discussed at the start of this section, dual k-strong honest defini-
tions also give rise to a useful form of cell decompositions with desirable geometric

properties, which is the subject of the next section.
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5.7 Higher-arity distal cell decompositions

In this section, we describe the analogue of distal cell decompositions that arises
from dual k-strong honest definitions. Throughout this section, fix a complete
L-theory T, and let Ml = T be sufficiently saturated.

Let M E T. Recall from Definition 2.7.8 that a strong honest definition
Y (z;2) € L for a binary formula ¢(x;y) € L induces a distal (cell) decomposition
for ¢. That is, for all finite B C M of size at least 2, there is a cover F(B) of
M?*, such that for all F' € F(B),

(i) There is ¢ € B such that F' = v(z;c¢); and
(ii) For all b € B, we have either F' C ¢(x;b) or F' C =¢(x;b).

Note that, in Definition 2.7.8, we have B C MY rather than B C M, but these
formulations are essentially equivalent.

Suppose now the formula ¢(x;yi,...,yx) € L has a dual k-strong honest
definition (¢;(x, vy, 2) + © € [k]) of degree N. Then, for all By,...,By C M
with 2 < |B;| < oo, there is a cover F(Bj,..., By) of M* such that for all
F € F(By, ..., By), writing b € B to mean b = (b, ..., b) for some b; € B;,

(i) There are ¢V, ..., c™N) ¢ Uiepy Bi such that

F= N\ N il bsine?™)

beB i€(k]
for some j(b) € [IV]; and
(ii) For all b € B, we have either F' C ¢(x;b) or F C —¢(x;b).

Note that (i) implies that there are ¢, ..., ™) € Uicpy Bi such that

F = /\ /\ /\ @ZJZ‘(JZ,bl,...,bi_l,bi+17...,bk,CEj))

1€[K] (b1,--,0i—1,bi41,-508) TET (b1,0-,bi—1,bi41,--,b8)
beeBe

for some J(by,...,0;_1,bi41,...,bx) C [N].
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What have we achieved? Suppose |Bi| = -+ = |Bg| =: n. Then the set
Se(B1 X -+ X By) of ¢-types over By x - -+ x By forms a partition of M*, where
each piece has the form A, . ¢(x;b)® for some g, € {0,1}. In particular, each
piece is the intersection of n* definable sets, defined using up to n* parameters.
The cover F (B, ..., Bg) of M* refines S, (B X - - X By), and each piece of the cover
is the intersection of O(n*~!) definable sets, defined using O(n*~!') parameters.

This drop in ‘dimension’ provides a way to show the non-existence of a dual k-
strong honest definition: if the set of ¢-types over By X- - - X By, is a ‘k-dimensional’
object which cannot be described with O(n*~!) parameters, then a dual k-strong
honest definition cannot exist.

We give an example of such an argument.

Definition 5.7.1. Fix an L-structure M. For A C M, the L-definable closure
of A, written dclz(A), is

{f(a1,...,a,) s a; € A, f is a function that is £-definable without parameters}.

Given A, B C M, say that A is dclz-independent over B if for all a € A,
a ¢ dclg((A\ {a}) U B). Omit £ throughout when it is obvious from context.

Henceforth in this section, let M be an o-minimal expansion of an ordered
abelian group in the language Lo, let L = Ly U {P} where P is a new unary
predicate, and let T be the L-theory of (M, P), where one of the following holds:

(i) (M, P)is a dense pair, that is, P(M) is a proper elementary Lo-substructure
of M that is dense in M;

(ii)) M = (R,<,+,x) and P(M) is a dense subgroup of (R*, x) such that
P(M)=—P(M) and P(M)NRT has the Mann property: for all ay, ..., a, €
Q*, there are finitely many tuples (py,...,p,) € (P(M) N R¥)" such that
apr+ -+ app, = 1land Y, a;p; # 0 for all ) # I C [n];

(iii) P(M) is dense in M and dcly,-independent.
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In [26], Hieronymi and Nell prove that 7" is not distal and give references for
the fact that T" is NIP. Their proof uses the external characterisation of distality
given in Theorem 2.7.3. In an unpublished note, Pantelis Eleftheriou and Aris
Papadopoulos prove the same fact by showing the non-existence of strong honest
definitions for the formula ¢(z;y) = x € y + P. Here, we generalise their
argument to show the non-existence of k-strong honest definitions for the formula
Oy, yk) =T €Y1 + -+ + yr + P. We are grateful for their permission to
include our generalisation of their argument.

Henceforth in this section, unless otherwise specified, definability is with para-

meters and in the language L. We use P and P(M) interchangeably.

Definition 5.7.2. Let X C M™ be definable. Say that X is large if there is
m € NT and a definable function f : M™" — M such that f(X™) contains an
open interval in M. Say that X is small if it is not large.

Let Z C M™ be definable. Say that X is small in Z it X N Z is small, and
co-small in Z it Z \ X is small.

Fact 5.7.3. The following hold for the structure (M, P).

(F1) The set P is small.
(F2) A finite union of small sets is small.

(F3) Let X C M be A-definable, where A C M. Then there are A-definable
elements a; < --- < a,, i M such that, writing ag := —00 and G,y =
+00, for all i € [m + 1] we have that X is either small or co-small in
la;_1,a;]. In particular, if X is large, then it is co-small in one of these

intervals.

(F4) An A-definable set X C M™ is small if and only if there is an Lo(A)-
definable function f: M™ — M™ such that X C f(P™).

Proof. For statement (F1), see [16, Section 2| for references. Statements (F2),
(F3), and (F4) respectively follow from Corollary 3.15, Lemma 3.3, and Lemma
3.11 of [10]. O



5.7. HIGHER-ARITY DISTAL CELL DECOMPOSITIONS 165

Theorem 5.7.4. Let k € N*. The formula ¢(x;y1, ..., yx) == € 1+ +yp+ P

does not have a dual k-strong honest definition.

Proof. Write y := (y1, ..., yx). Suppose for a contradiction that (;(z, yz, 2i) 1 1 €
[k]) is a dual k-strong honest definition for ¢ of degree N. Let n > max{kN|z]| :
i € [k]} be a natural number. By (F1) and compactness, we can find B C M
consisting of kn elements dcly-independent over P, and we let B = By L--- 1 By
be any equipartition of B, so |B;| = n for all i € [k]. By the discussion above,
there are F!, ..., F™ C M such that:

o M = Ure[m] Fr.

e For all 7 € [m)], there are ¢, ..., c™) € Ui Bi such that F" = (N, £

where
ro._ (9)
E = ﬂ ﬂ 77Z}i(x7b17"')bi—labi—‘rla"')bk?Ci )
(01,05 —1,b541,0+,0k) GET(b1,--,bi—1,bi41,--,01)
eeBe

for some J(by,...,b;_1,bi41,...,bx) C [N].

e For all b; € B; and r € [m], we have either F" C (by +--- + by + P) or
FrC M\ (by+---+b+ P).

Now consider the set:

MA@+ 4+ P) | = () (M\ (b +--+be + P)).

b;eB; b;eB;

There are 71, ...,7¢ € [m] such that

UFi= (Y M\ b+ +b+ P)).

JEt bi€B;
This is a finite intersection of co-small sets, which is large by (F2). Again by (F2),
one of the sets F"i =: F is large. For i € [k], let F; := F,’, so that F = Micpw £
and hence each F; is large. For each i € [k], there is B; C B; with |B;| < N|z,
such that F; is (B; U Uizjeqr) Bj)-definable.
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Since Fi, ..., Fy are large with large intersection, by (F3), there are intervals
Li,...0, with I := I n--- N1, # 0 such that for all i € [k], F; is co-small
in [; and I; is (B; U Uizje) Bj)-definable. By (F4), for all i € [k], there is a
(B; U Uizjer Bj)-definable function f; : M' — M such that I; \ f;(P%) C F,.
Since F' =

1€[k]

N H(PYCSFC () (M (b + -+ b+ P)).
i€k b,€B;

Let b; € B; for all i € [k]. Then, I\ U, fi(P%) C I\ (by+ -+ by + P),
and thus I N (by + -+ + b + P) C U,y fi(P"). Since P is dense in M, we
have that I N (by + -+ + by + P) # (. Hence, there is some p € P such that
b+ A by +p € Uieyy Fi(PY).

Since this holds for all b; € B;, by the pigeonhole principle we can fix ¢ € [k]
such that

#{(by,....b) € By X+ X By, : by +---+b+p € f;(P") for some p € P} > n"/k.

Observe that the projection of this set onto B; has size at least n/k. Thus, as f;

is (B; U Uizjep Bj)-definable,

#b€B;:hedd | PUBU ] B | p =n/k
i#j €[]
Since n/k > N|z)| > |B;|, this contradicts the fact that B; is dcl-independent
over PUlJ O

i#£j€[k j‘

The proof of Theorem 5.7.4 demonstrates the geometric efficacy of our dual k-
strong honest definitions: it was able to capture the fact that x € y1+---+yp + P
is a ‘k-dimensional’ object which cannot be described by a ‘(k — 1)-dimensional’
decomposition of M.

Since we have not been able to show that dual k-strong honest definitions

always exist in an NIP strongly k-distal theory, our proof does not show that
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T is not strongly k-distal. Of course, we know that k-strong honest definitions
always exist in an NIP strongly k-distal theory, so one may attempt to adapt the
proof above to show that, say, the formula z; 4+ --- 4+ x, € y + P does not have
a k-strong honest definition. However, it is unclear to us how k-strong honest
definitions can be used to generate a similar form of cell decompositions that
capture the geometric intuition described above. For now, NIP strongly k-distal
structures do not have such cell decompositions to call their own, and the quest

for these continues.

Problem 5.7.5. Find an analogue of distal cell decompositions for (NIP) strongly
k-distal theories.
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