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Abstract

Agri-environment schemes (AES) commonly represent the largest financial
investment in biodiversity conservation at a national or international level, but
evidence for AES intervention effectiveness remains equivocal. Here, we develop a
novel and general method for assessing the impact of conservation interventions
using Weather Surveillance Radar (WSR) to produce spatially explicit time series of
aerial insect abundance over 1,597 km? of agricultural land in England from 2015-
2022. Using this dataset, we evaluated the landscape-scale causal effect of AES
across 15 natural experiments involving paired AES and control sites. We find no
natural experiment which indicates a positive causal effect of AES on aerial insect
abundance at levels of expenditure ranging from £34 km to £5,122 km2. When
considering all 1597 km? of agricultural land covered by the radars, we also find a
weak but significant negative correlation between AES and aerial insect abundance,
with stronger, positive relationships between aerial insect numbers and the
percentage cover of woodland and semi-natural grassland. Our results provide the
most robust evaluation of the benefits of AES and indicate that AES are not working
to conserve aerial insects, assuming that WSR accurately captures the landscape-
scale abundance of insects from 500-700 m above sea-level. We demonstrate the
utility of landscape-scale conservation impact assessment using WSR-measured
insect abundance, a technique which may be broadly applicable to problems in

insect conservation science.
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1. Introduction

England is often said to be among the most nature-depleted countries in the world
(Mordue et al., 2023). The Biodiversity Intactness Index (one of many measures of
this type) ranks the United Kingdom bottom among the G7 and in the 10% most
degraded countries internationally (Phillips et al., 2021). Insects dominate terrestrial
biodiversity in term of species richness, abundance and biomass (Wagner, 2020).
Observed population declines across taxa (Wagner, 2020) are a major cause for
concern due to insects’ diverse roles in pollination, nutrient cycling, herbivory and
predation (Wilson, 1987). Many species of insect, especially smaller species of
Diptera and Coleoptera as well as aphids, parasitoid wasps, ballooning spiders and
migratory species of dragonfly, butterfly and moth make use of the convective
boundary layer (CBL), at 150-1200 m above ground level, for dispersal (Chapman et
al. 2004; Bell et al. 2013). Comprising a major section of the terrestrial insect fauna,
these species can now be monitored near-continually over large areas using weather

surveillance radar (Mungee et al. 2025).

Globally, agricultural expansion is among the most significant drivers of insect
declines (Milici¢ et al., 2021; Dicks et al., 2021). England is unusual internationally in
that the vast majority of the country was cleared to make way for agriculture more
than 2000 years ago - a process so complete that even the general characteristics of
its natural vegetation remain debated by ecological historians (c.f. ‘semi-open wood
pasture’, Vera, 2000; ‘wildwood’, Rackham, 2000). Nearly 70% of the country’s land
area is used for agriculture (Marston et al., 2024). As such, the fate of biodiversity in
England is tightly linked with that of farming. Major early changes include the British
Agricultural Revolution beginning in the 16th century, associated with the enclosure
of the commons, increased use of natural fertilisers, new systems of field rotation
and selective breeding of animals (Overton, 1996). Despite these developments, the
general picture of the English landscape before 1945 is one of continuity. As
ecological historian Oliver Rackham (2000) writes: “much of England in 1945 would
have been instantly recognisable by Sir Thomas More, and some areas would have
been recognised by the Emperor Claudius”; he notes that “almost every” hedge,
wood, heath and fen present on ordinance survey maps of 1870 is visible on aerial

photographs of 1940, except for relatively minor losses to urban expansion.
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This continuity was broken in the second half of the 20th century. The post-war
‘green revolution’ intensification of agriculture had a dramatic effect on the landscape
and on biodiversity. Unimproved grassland, once a feature of the English countryside
supporting a high diversity of plants and insects, declined by 98% between 1930 and
1984 (Fuller, 1987) and roughly 50% of all hedgerows were destroyed in the 20th
century (Barr and Parr, 1994). Intensification was driven in part by incentives and
subsidies of various kinds, most significantly the 1947 Agriculture Act and the
Common Agricultural Policy of the European Union after accession in 1973
(Robinson and Sutherland, 2002). Recognising rapid losses to intensification, efforts
towards species conservation also began during the post-war period. England
developed a complex system of designations including National Parks, Areas of
Outstanding Natural Beauty (AONB), Environmentally Sensitive Areas (ESA),
National Nature Reserves (NNR), Local Nature Reserves (LNRs) and Site of Special
Scientific Interest (SSSI), among others (Winter, 2013). Other sites are managed by
NGOs such as the Wildlife Trusts, the Royal Society for the Protection of Birds or by

private individuals.

However, outside of such protected areas, the primary mechanism by which the
state seeks to conserve nature in England is through farm subsidies encouraging
nature-friendly farming practices. Since accession to the European Union in 1973,
this has occurred through Agri-Environment Schemes (AES). Preceded by some
smaller scale-schemes such as Broads Grazing Marsh Conservation Scheme (1985)
and Environmentally Sensitive Areas (1987), AES implementation began in earnest
in through the Common Agricultural Policy (CAP) in 1991. In this new type of farm
subsidy, a portion of funds would be allocated through schemes incentivising the
reintroduction or protection of traditional features such as low input grassland and
hedgerows. The first major AES in England, the Countryside Stewardship Scheme
(CS 1991), allocated a small tranche of the CAP budget to delivering conservation
on farmland. In 2005, Countryside Stewardship was replaced by Environmental
Stewardship (ES), which was itself replaced in 2016 by a new scheme, also called
Countryside Stewardship (CS 2016).

Post-Brexit, Environmental Land Management (ELMs) were introduced, comprising
three schemes, including a third iteration of the Countryside Stewardship Scheme
(CS 2024), the Sustainable Farming Incentive (SFI) and Landscape Recovery (LR).
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The main changes to AES over the last 30 years have been to offer a wider variety
of available interventions (‘options’) and to allocate larger portion of the total subsidy
to environmental objectives. This process continued following Brexit, when, leaving
the CAP, the UK government indicated that farm subsidies will transition away from
‘Pillar I’ payments (made on the basis of land area owned) entirely, moving towards
delivering subsidies through AES only, a change billed as “public money for public
goods”. Figure 1 provides an overview of these changes to conservation and farming
policy in the United Kingdom (see Simoncini et al., 2019, for a review of changes the
CAP).

Acoaesion to Europsan
Community & CAP
Countryside $tewardship
G5 1531}
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1347 1 [C52015)
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Figure 1. Timeline of major changes to British farming and conservation policy.
The 1947 Agriculture Act, coupled with scientific developments in farming issued a
significant intensification of British farming. In the following decades, the vast
majority of pasture was improved with fertiliser, reducing plant diversity. Hedges
were also removed and pesticide use increased. In 1973 the UK joined the
Common Agricultural Policy (CAP) of the European Community (later European
Union). The protectionism of the CAP along with the 1980s commodity boom
caused major overproduction of food, producing the famous ‘butter mountains’ of
the 1980s, symbolising post-war intensification. AES policy began in 1991 through
the CAP in response to perceived biodiversity losses resulting from intensification.
The UK left the CAP with Brexit, marking a shift in UK policy towards more
extensive use of AES as a farm subsidy mechanism. In 2024, the ‘pillar I’ basic
payment scheme was removed entirely. Now, all subsidies will be delivered
through AES, compared to around 25% of the total subsidy in the European Union.
Author’s own work.

A maijor public good these schemes are hoped to deliver is insect conservation.
Evidence that they do so effectively is mixed. Studies seeking to assess the efficacy



12

of AES conserving insects typically do so at the scale of individual schemes or farms
(Staley et al., 2021). Particularly for Lepidoptera and Hymenoptera, there is a large
body of evidence indicating that AES are generally efficacious at fine scales and
tend to increase insect abundance and/or richness, when compared to sites or farms
where schemes are not present (Dicks et al., 2014; Kleijn et al., 2018; Bladon et al.,
2023). However, despite 30 years of targeted AES, farmland insect species such as
butterflies have failed to substantially recover since the beginning of standardised
monitoring in 1976 (Fox et al., 2021; Fox et al., 2023), suggesting that the

demonstrated local enhancement provided by AES fails to translate nationally.
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Figure 2. Simulated scale-dependent honeypot effect. The upper (A, B) black-
outlined grid represents a landscape comprised of a grid of plots. Red squares
represent observable insect foraging activity. A conservation intervention is
undertaken in the central plot (A, outlined in blue), causing spatial redistribution of
foraging activity (B). The total number of foraging individuals is unchanged when we
measure across the whole grid (C). When observations are made at fine scales in
the central plot where the intervention was undertaken only (D, E), this leads to a
large positive effect estimate (F) while the effect size across all plots is 0 (C).
Authors’ own work.
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This apparent disparity between fine (field) and coarse (national) scale effects has
led to increased interest in monitoring the effect of AES at intermediate (landscape)
scales, variously defined (e.g. Wood et al., 2015; Staley et al., 2016; Kleijn et al.,
2018; Staley et al., 2021; Staley et al., 2022). Kleijn et al. (2018) and Staley et al.
(2021) highlight the difficulties with measuring landscape scale insect abundance
and separating localized population redistribution from landscape level population
change. Typically, surveys of mobile insect taxa seek to infer the effect of AES on
insect populations by recording foraging individuals (Kleijn et al., 2018). As mobile
taxa (especially pollinators) tend to distribute their foraging activity in response to
resource availability, it is challenging to determine if interventions which provide
enhanced resources increase the total population size or merely concentrate the
existing population spatially around the resource (Kleijn et al., 2018; Staley et al.,
2021). Analogously, the presence of a trap or lure may increase the number of
individuals one observes at fine scales, but it would be spurious to conclude such an
attractant caused an increase in the total size of the population measured. This
‘honeypot effect’ (Staley et al., 2021) describes the tendency of fine scale surveys of
foraging activity to conflate spatial redistribution with effects at the population level
(Figure 2). The honeypot effect is an example of a scale-dependent measurement
effect. As described by Levin (1992), the scale at which measurements are made
conditions which ecological mechanisms are observable; here, a coarse-scale
mechanism is of interest (population enhancement) but measurements are made at
fine scales (point counts of insects) introducing a “perceptual bias” (Levin, 1992)
whereby the finer scale honeypot effect confounds the identification of coarser scale
effects of interest (see Discussion). This scale problem is illustrated graphically in

Figure 2.

If AES are to contribute to the recovery of insects nationally and/or enhance the
delivery of ecosystem services such as pollination, it is desirable that landscapes
with a high level of AES investment act as a population source - providing additional
habitat from which insects can reproduce and disperse into the wider landscape.
Previous studies (Gabriel et al., 2010; Kleijn et al., 2018; Staley et al., 2021)
extrapolate point measurements to estimate landscape scale abundance in various
ways. Here, we take a complimentary approach, using Weather Surveillance Radar

(WSR) to directly measure landscape-scale insect abundance.
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WSRs are designed to monitor meteorological phenomena. However, the capacity of
radar to detect non-target biological scatterers has been known since the advent of
radar in the 20th century; many types of radar system can relay ecologically relevant
information, including specially designed ecological radars. A major emerging source
of ecological data is dual-polarisation WSR. Many countries have networks of these
radars where they are used to measure weather patterns and generate forecasts,
covering much larger areas than dedicated ecological radars. Newer dual-
polarisation WSRs are capable of simultaneously transmitting and receiving
orthogonal beams of vertically and horizontally polarized radiation. The data
products derived from dual-polarization WSR returns are capable of characterising
the size, shape and potentially species of aerial bioscatterers (Stepanian et al.,
2016), and as such much more ecologically relevant information can be extracted
(Matthews et al. 2025).

Recent work (Mungee et al., 2025) has developed and tested the application of dual-
polarisation WSR to monitor UK aerial insect abundance at regional and national
scales. These methods involve first dividing radar data into Columnar Vertical
Profiles (CVPs; cylinders of air space with a diameter of 5 km) arranged in a grid
pattern around each radar, facilitating ecological analysis of a radar data over a fixed
area. Then, a filtering procedure is used to select scatters identifiable as insects and
estimate total insect abundance. Here, we apply these methods to assess the
landscape-scale impact of AES intervention over farmland in England using a
before-after-control-treatment (BACI) framework coupled with matching. For each
CVP we quantify AES expenditure using two measures: measure A (including all
biodiversity-related options) and measure B (including only insect-related options).
We develop a procedure to match AES treated CVPs with substantial increases in
AES expenditure to control CVPs with no change in AES expenditure, based on both
landcover similarity and pre-treatment insect abundance trend. This two-stage
matching means that one can credibly make the key BACI ‘parallel trends’
assumption, that the insect abundance trend ‘would have been’ parallel in the post-
treatment period had the treatment not occurred (i.e. the control unit serves as a
credible counterfactual case). We identify a series of natural experiments using this
procedure. Separately, we also examine the association between two measures of

AES expenditure (measure A, including all biodiversity-related options and measure
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B, including only insect-related options) and aerial insect abundance using a series
of Generalised Linear Mixed Models. Our results provide the first direct assessment
of the landscape-scale impact of AES and provide a template for future impact
assessment studies applying WSR. We discuss the policy implications of our
findings with reference to the structure of agricultural subsidies in the United
Kingdom. We provide detailed instructions on WSR data processing and impact
assessment, adapting methods from atmospheric science and econometrics

respectively.

2. Methods

Full details are provided in Supplementary Information. In overview, our procedure is
comprised of the following steps: (i) extract biological data from UK weather
surveillance radar archives, (ii) process those data into CVPs; (iii) estimate insect
abundance within each CVP; (iv) quantify the biodiversity-related and insect-related
AES spend in each CVP to identify potential treatment and control CVPs, (v) match
control to treated CVPs based on similarity in terms of landcover and pre-treatment
insect abundance trends, (vi) conduct before-after-control-impact analyses to identify
the effect of AES intervention for each pair and (vii) separately produce generalised
linear mixed models describing the correlation between landcover and insect
abundance. We summarise some methodological steps for clarity in the main text,
but further technical details on data processing, sensitivity analyses, generalised
additive models, quantifying AES spend and BACI design choices are provided in

the Supplementary Information.

All code and data required to produce analyses and figures are available via

Figshare (https://doi.org/10.6084/m9.figshare.30489188.v1).

2.1 Data processing

The UK Met Office operates a network of nine C-Band (wavelength ca. 5.3 cm),
dual-polarization monostatic radars in England, providing complete meteorological
airspace coverage over the country. Due to the low reflectivity of insects relative to

some meteorological phenomena, insects can usually only be detected up to a range
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of 30 km from each radar. This gives approximately 16% airspace coverage for

England (Figure 3).

Raw polarimetric data are freely available via the Centre for Environmental Data
Analysis archive (https://archive.ceda.ac.uk/). Following a procedure developed in
Lukach et al. (2024) and Murphy et al. (2020), raw polarimetric radar data were
processed into 12 x 12 grids of CVPs surrounding each radar (Figure 3; Figure 4).
Each CVP is a cylinder with a diameter of 5 km separated into 200 m height bands
(Figure 5 illustrates a single CVP height band). The process of generated CVPs is
detailed in S| section 7.1.1. Below ca. 500 m above sea level (variable between
radars), data coverage is limited as the radar beam can often intersect with ground-
level clutter such as trees, hills and buildings. Mungee et al. (2025) find that aerial
insect abundance is increasingly decoupled with ground-level processes at higher
elevations. To maximise the amount of clutter-free data available while minimising
height band elevation, we analyse a 500 m — 700 m height band only. We focus on a
window of generally observed high insect activity in England, between 15th April to
30th October across years 2014 to 2022 (Figure 6.)


https://archive.ceda.ac.uk/
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Figure 3. Positions of included CVPs. CVPs over 75% agricultural cover are shown
in green, CVPs without 76% agricultural cover are shown in orange. CVPs for which
no data was available at the 500-700 m height band due to obstruction or ground
clutter are shown in grey. Authors’ own work.
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Figure 4. Landcover for CVPs surrounding the Chenies radar (A) and insect related
Agri-Environment scheme spend by CVP at the Chenies Radar (B). Semi-natural

corresponds to all non-woodland, non-urban and non-farmland cover. Authors’ own
work.

1900 m

Figure 5. Diagram illustrating the spatial dimensions of a single CVP, Chenies 40.
The 500-700 m height band is indicated in red. A corresponding landcover map is
shown beneath. Drawn to scale. Authors’ own work.
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Figure 6. Intra-annual variation in maximum differential reflectivity (ZDR) across
CVPs at the Chenies radar. ZDR characterises the ratio of height to width of objects
in the radar beam and is routinely used to separate more spherical meteorological
objects (rain drops) from more irreqular biological objects (birds, bats, insects). Intra-
annual variation in ZDR aligns with generally observed variation in insect abundance
in the United Kingdom. We selected the period between the dotted lines for further
analysis. Smoothed trend lines were produced using Generalised Additive Models
(see Supplementary Information for details).Partial effect indicates the estimated
contribution of a single smooth term, in this case month by year. Authors’ own work.

Following Mungee et al. (2025), we then filter radar returns within each CVP to
include only signals attributable to aerial insects, producing a measure of the total
back-scattering area of arthropods (cm?) in each CVP (see Supplementary
Information). The process of estimating insect abundance is detailed in Sl section
7.1.2. We separate measurements between those covering nocturnal (1900 to 2300
UTC) and diurnal (0800 to 1400 UTC) diel periods, selecting the highest insect
reflectivity value for each period for further analysis. Selecting the highest value
within nocturnal from diurnal windows separated by buffer period in helps to prevent
any double-counting between nocturnal and diurnal measures. We convert this
maximum insect-reflectivity figure to a measure of insect abundance by dividing the

area by the estimated Radar Cross Section (o) of a single insect, defined here as
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4.52 x 104 cm? (see Mungee et al., 2025 and Supplementary Information). The result
is a dataset providing one diurnal and one nocturnal estimate of maximum insect
abundance each day for each CVP. In spatial resolution each measurement has a

diameter of 5km and covers airspace between 500m and 700m above ground level.

2.2 Analysis

We calculate two measures of AES spend in the Countryside Stewardship and
Environmental Stewardship Schemes in England: (A) including all biodiversity
conservation related options and (B) including only options for which published
evidence or expert opinion suggests are beneficial to butterflies or other pollinating
invertebrates, as reviewed by Staley et al. (2021). Included options are detailed in

Supplementary Tables 1 and 2.

We analyse the relationship between AES spend (measures A, B) and insect
abundance in a Generalized Linear Mixed Model (GLMM) framework using R
package gimmTMB (Brooks et al., 2017; McGillycuddy et al., 2025).As our insect
abundance metric was derived from total reflectivity (rather than counts per se) we
model log-transformed insect abundance using a Gaussian distribution rather than
the Poisson or negative binomial models typically used to model counts in ecology.
As high AES intervention tends to occur within CVPs covering agricultural land, we
account for potential covariance between agricultural landcover and AES
intervention by including only CVPs dominated by agricultural land-use. We sought
to identify agricultural CVPs for analysis, striking a balance between selecting CVPs
which are dominated by agriculture and including as many CVPs in analyses as
possible. We identified 96 CVPs with over 75% combined coverage of ‘arable and
horticultural’ and ‘improved grassland’ landcover (Figure 3; Figure 4) using the 2022
CEH land cover map (LCM; Marston et al., 2024). Implementing such a cutoff
introduced artificial collinearity between landcover variables, hampering model
interpretability. As such, after initial model fitting, we exclude farmland coverage
covariates from subsequent models to resolve this multicollinearity issue. We
conduct sensitivity analysis using different cutoff levels, finding that the relationships
between variables other than AES spend were similar across cutoff levels
(Supplementary Information section 7.3)
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In total, we fit three GLMMs. Model one, used to describe the interannual trend in

insect abundance, includes random effects for CVP and month of the year and an
interaction term between time of day (factor: nocturnal or diurnal) and Year (factor:
2014-2022).

Eqg. 1

log(1 + Abundance;jy, )
= By + By Time_of_day;xm + B Year; + B3 (Time_of_day; y,, X Year;)

+ beypi + DMonthk T €ijkm

We then fit two additional models to describe the relationship between annual AES
spend and insect abundance. Model two includes (1) a random effect for CVP to
account for repeated measures; (2) crossed random effects for month and year to
account for temporal trends; (3) landcover covariates: woodland (combined
coniferous and broadleaf woodland cover), seminatural grassland (including acid,
neutral, calcareous and heather grassland cover), and built-up cover (including
urban and suburban landcover); (4) a time of day (factor: nocturnal or diurnal)
variable; and (5) the total annual expenditure in AES measure A, including all
biodiversity-related options. Model three was fit with identical covariates to model

two but substitutes AES measure B for AES measure A.
Eq. 2

log(l + Abundanceijkm)
= Bo + B1 AES;jkm + B, Time_of_day;jxm + B3 Woodland, jxp,

+ B4 Built_up_gardens; i, + Bs Seminatural; i, + beyp, + bYearj + DMonthy,
+ €ijkm

Equation 2 corresponds to model 2 including measure A AES and model 3 including
measure B AES. Diagnostics for each model were checked throughout the modelling
process using R package DHARMa (Hartig, 2024) and for multicollinearity using
VIFs implemented in R package performance (Ludecke et al., 2021). All VIF values
were between 1.00 and 1.03. Models 2 and 3 describe the correlative association
between AES spend and insect abundance but fall short of identifying any putative
causal relationship due to factors which drive both AES intervention and insect
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abundance. For example, agricultural intensity is likely to causally affect both insect
abundance and the degree of AES intervention. In highly productive systems the
opportunity cost incurred by undertaking AES interventions (especially those which
reduce the area of land under cultivation) is likely to be higher, and therefore AES
intervention is disincentivised in high intensity systems with respect to lower intensity
systems (e.g. organic farming is associated with less agriculturally favoured areas;

Gabiriel., et al. 2009). Such confounding obscures the true effect of AES intervention.

To isolate the causal effect of insect-related AES on aerial insect abundance we
identify a series of pseudo-experiments which we analyse in a Before-After Control-
Impact (BACI) framework. BACI facilitates identification of the causal effect of AES
intervention by eliminating time-invariant confounding (e.g. agricultural intensity) and
time-varying confounding occurring simultaneously in the treated and control units
(e.g. weather- or climate-driven interannual variability). This means that all fixed
confounding, such as landcover and site history, which affects the absolute level of
insect abundance in the CVP is removed. It does so by using the change in insect
abundance between the before and after period in the control CVP as the
‘counterfactual case’ — what ‘would have happened’ in the treated CVP, had the
intervention not occurred. The critical assumption in BACI analyses is that of ‘parallel
trends’ (Supplementary Information). The parallel trends assumption (PTA) states
that the treatment unit would have followed the same trend as the treatment unit had
the intervention not occurred (i.e. if plotted, their trajectories would have been
parallel). If we cannot credibly make the PTA, the difference between the outcome at
the control and treatment unit may be caused by both the diverging trend and the
(potentially) the treatment, such that the causal effect cannot be identified. We can
increase our confidence that the PTA holds by ensuring that the treatment and
control units are (1) nearby, such that they are subjected to similar time-varying
confounding like weather; (2) similar to one another in terms of landcover, meaning
that they might be expected to respond similarly to treatment and non-measured
time-varying confounding, such as how favourable a particular year is for insects; (3)
following parallel trends in the pre-treatment period that might be expected to
continue into the post-treatment period if the intervention does not occur or has no
effect. BACI design choices and theoretical justification for matching is discussed

more fully in Supplementary Information section 7.4.
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We develop a two-stage matching process to identify pairs of treatment and control
CVPs which are nearby to one another, similar in terms of land-cover and show
parallel trends in the pre-treatment period in order to meet the PTA credibly. Firstly,
for each potential treatment CVP (receiving some non-zero level of AES
intervention), we identify a pool of candidate control CVPs based on landcover
similarity. To be included in the pool, candidate control CVPs needed to be located
within the scanning space of the same radar and match (within 15%) landcover of
the treated CVP, in terms of: (1) agricultural landcover (LCM classes ‘arable and
horticultural’ and ‘improved grassland’), (2) combined urban and suburban cover, (3)
combined broadleaf and coniferous woodland cover and (4) semi-natural grassland
cover (including neutral, calcareous, acid and heather grassland). Landcover for
each CVP was extracted from the CEH landcover map (Marston et al., 2024). A
cutoff of 15% was selected to select CVPs which are broadly similar in landcover
configuration. However, since BACI analysis controls for all pre-treatment differences
between CVPs which affect the absolute level of insect abundance, it was not critical
that CVPs match exactly in terms of landcover (see Supplementary Information
section 7.4.3). For each candidate treatment-control pair, we then calculate a trend
similarity score which describes how closely aligned the insect abundance trend is
between the treatment and control units (see Supplementary Information). For each
treated CVP, we select the control CVP with the lowest similarity score for further

analysis.

For each candidate pair produced by matching on landcover and pre-treatment
trend, we then model insect abundance using a series of dynamic BACI models
(similar conceptually, but distinct to those presented in Wauchope et al., 2021).
These models are similar to traditional BACI models but also including terms for
Time and Time Since Treatment, which allows one to estimate the divergence
between treatment and control in each year of data separately (Supplementary
Figures A1-9 and B1-9). This model specification is well suited to conservation
impact assessment we are able to detect lagged treatment effects and assess the
PTA based on results corresponding to the pre-treatment period. We calculate
robust (Eicker—Huber—White) standard errors using R packages Imtest (Zeileis and
Hothorn, 2002) and sandwich (Zeileis, 2004; Zeileis et al., 2020). We include

candidate BACI pairs which are not significantly different from one another in any
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pre-treatment year (Time Since Treatment variable) as an additional test to ensure
trends to not diverge in the pre-treatment period. For comparisons which meet these
criteria, our final effect size estimate is calculated using a traditional BACI model,
interacting dummy variables describing the treatment period (before or after
treatment) and intervention (treatment or control). To account for recent work in
econometrics examining the pitfalls of dynamic BACI analyses with staggered
treatment intervention, we present each BACI comparison separately as an
assessment of a particular level of AES intervention (Supplementary Information

section 7.5).

3. Results

Table 1. Number of included insect abundance estimates for each included radar in England.

Radar Years covered # Estimates BACI site pairs
Thurnham 2017-2022 6429 1

Chenies 2014-2022 5589 12

Dean Hill 2017-2022 1371 0

High Moorsley 2017-2022 1221 1

Ingham 2018-2022 887 0
Cobbacombe Cross 2018-2022 447 0

Predannack 2014-2022 322 1
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Figure 7. GLMM results indicating the associative relationship between WSR-
measured aerial insect abundance and landcover variables. A total of 96 agricultural
CVPs are analysed. AES measure A, including all biodiversity related AES options
and AES measure B, including only insect-related AES options were both
significantly negatively related to insect abundance. However, in both cases the slope
coefficient was extremely small (A, B)l. Semi-natural (F) and woodland landcover (D)
was significantly positively related to insect abundance, while built-up cover was
unrelated to insect abundance (E). Insect abundance across agricultural CVPs varied
through the period covered, not displaying a clear trend (C).Authors’ own work.

We evaluate the correlative relationship between AES spend and insect abundance
across 96 agricultural CVPs (Table 1), covering a total of 1884.96 km? over

1.63 x 10* scans. We record a total of 5.25 x 102 aerial insects. Daily CVP
estimates of insect abundance varied between 1.88 x 10° and 8.42 x 10'°. Diurnal
insect counts were 20.53% greater than nocturnal insect counts (f =-0.22; p <
0.001). Two radars, Clee Hill and Hameldon Hill had insufficient coverage at 500m

and were not included in the analysis.

Annual AES expenditure varied between £ 0 and £ 1.28 x 10° for AES measure A
and between £ 0 and £ 1.13 x 10° for AES measure B. In Generalised Linear Mixed
Models, AES measure A, including all biodiversity related AES options, was
significantly negatively associated with insect abundance (B =-2.71 x 1076, SE = -
9.80 x 1077, p = 0.0057). AES measure B, including only insect-related AES options,
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was also significantly negatively associated with insect abundance (B = -2.94 x 107°,
SE =1.08 x 107 p = 0.0066). The effect size in both cases was very small: for
measure A this corresponds to 2.67% fewer insects per £10,000 of AES expenditure.
For measure B, this corresponds to ca. 2.89% fewer insects per £10,000 of AES

expenditure.

Insect abundance was significantly positively related to both woodland cover (8 =
11.709, SE = 5.494, p = 0.033) and semi-natural grassland cover ( = 49.347, SE =
19.276, p = 0.010). Built up cover was unrelated to insect abundance ( = -4.076, SE
= 5.382, p = 0.449). Full results are given in Figure 7 and Table 2.

Table 2 Generalised Linear Mixed Model results showing the associative effect of
agri-environment intervention (measures A and B) and landcover for agricultural
CVPs (over 75% combined arable and improved grassland landcover

Model Term Estimate Standard Error Statistic P value
Model A Intercept 16.824 0.641 26.243 <0.001
Model A Annual Spend (A) -2.71 x 10 9.80 x 107 -2.763 0.006
Model A Nocturnal -0.229 0.0338 -6.784 <0.001
Model A Woodland Cover 11.709 5.493 2131 0.033
Model A Built-up Cover -4.076 5.382 -0.757 0.449
Model A Semi-natural Cover 49.347 19.276 2.560 0.010
Model B Annual Spend (B) -2.94 x 106 1.08 x 10¢ -2.716 0.007

3.1 Causal effect

We identified a total of 18 candidate pairs with either AES measure meeting all
matching criteria. Three pairs selected by the matching procedure were removed,
two contained visually diverging trends in the pre-treatment period and one pair was
removed due to model failure, leaving 15 pairs. No comparison showed a significant
positive effect of agri-environment intervention on insect abundance (Figure 8) for
either measure A (including all biodiversity related options) or measure B (including
only insect-related AES options). One comparison, pair 42, indicated a significant
negative effect of AES intervention. No excluded pair showed a significant multi-year
effect of AES intervention. There was a large degree of overlap between the groups
of BACI comparisons between the two measures; CVPs with expenditure in measure
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B also tended to have expenditure in measure A (all measure B options are included

in measure A).

Figures showing dynamic BACI model results (including individual effect estimates
for each year of data) are presented in Supplementary Information Figures A1-15
and B1-15. Dynamic BACI model results for a single pair are presented in Figure 9.

Results for the three excluded models are included in Supplementary Information

Figures C1-3.
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Figure 8. Forest plot showing the BACI effect size for each pair identified and selected by
the matching procedure. No comparison pair showed a significant effect in response to
AES intervention. This was consistent across all levels of AES intervention tested for both
measures A and B. Error bars indicate standard errors. Authors’ own work.
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Figure 9. Plots showing results for pair 11, one of 15 included BACI pairs, showing
the trend in AES spend (A), the trend in insect abundance in each CVP (B) and the
dynamic BACI model results showing time-since treatment (C). All other BACI
pairs are included in Supplementary Figures A1-15 and B1-15. Error bars indicate
standard errors. Authors’ own work.

4. Discussion

Conservation of farmland insect species is a primary objective of Agri-Environment
Schemes across the Global North, such as the Common Agricultural Policy of the
European Union. In England, many options contained within these schemes are
specifically targeted at conserving once-common insect species, especially
butterflies and other pollinators, but also other groups. To judge these schemes
effective, it is necessary to demonstrate that AES intervention enhances insect
abundance beyond the ‘option’ scale - not simply within or immediately surrounding
the plot where intervention has been undertaken. We apply a novel approach to
impact assessment using BACI| methods borrowed from the difference in difference
(DiD) literature in econometrics. These approaches are design based: by using
within estimation, one can isolate the causal effect of AES intervention, removing
confounding from comparing sites which are not alike in fixed observable
characteristics, such as landcover and landscape history (see Supplementary
Information sections 7.4 and 7.5). Using these methods, we find that insect-related
AES intervention in England had no causal effect on landscape-scale aerial insect
abundance measured by weather surveillance radar. We also find no evidence for a
positive relationship between aerial insect abundance and insect-related or

biodiversity-related AES spend across agricultural CVPs. We find a negative
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relationship between AES spend and insect abundance, albeit with an extremely
shallow slope and arguably of negligible practical significance. These findings were
consistent between AES aimed at biodiversity generally (measure A) and insects

specifically (measure B) and between diurnal and nocturnal diel periods.

Previous work generally reports positive associations between AES and insect
abundance at fine spatial scales, especially when measurements are made within
intervention (at fine scales), such as areas within patches of sown flowers (Dicks et
al., 2014; Kleijn et al., 2018; Bladon et al., 2023). However, on-the-ground studies
that have assessed the effect of landscape scale AES uptake (variously defined) are
more equivocal than those that survey ‘within’ interventions such as sown flower
mixtures. Staley et al., (2022) sampled across a range of sites in England
representing two sets of contrasts in AES uptake. Sites were classified as high,
medium or low local (1x1km) AES uptake, and also as high, medium or low in terms
of landscape (3x3km) AES uptake, producing nine separate contrasts. Across
groups, their results are mixed. They find a positive correlation between the
abundance of (1) butterflies and (2) moths and AES uptake at the landscape
(83x3km) scale. They find no such correlation for other groups tested, including bees
and hoverflies. Using a measure of bumblebee reproduction, consistent with many
previous studies, Carvell et al. (2015) find that within 1ha or 0.25ha areas of sown
flower mixture, bumblebee reproduction was increased in comparison to areas
where flowers were not sown. However, they find that this effect does not translate to
the landscape scale: reproduction was not significantly higher at transects outside
the sown area (within 1Tkm) when compared to areas surrounding control sites,
where flowers were not sown. They do, however, observe a significant increase in
reproduction when comparing the landscape scale effects of 1ha to 0.25ha flower
patches (but not when compared to zero intervention). For bees, the best evidence
that insect-directed AES can enhance insect population size comes from the
application of molecular techniques. Contrary to Staley et al., (2022), Wood et al.
(2015) effectively demonstrate that higher level stewardship options directed at
pollinators increased bumblebee colony numbers in Hampshire and Sussex.

Importantly, we measure species not typically collected in AES surveys, which
predominantly study butterflies, bees, and hoverflies. The aerial insect fauna is less

well understood than the terrestrial insect fauna, however, small species of
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Hemiptera (aphids, psyllids); various Diptera; Hymenoptera of Ichneumonoidea and
Chalcidoidea; and Coleoptera families Nitulidae and Staphylinidae have been
recorded at WSR-detectable heights (Chapman et al., 2004). We demonstrate that
the abundance of aerial insect communities, comprised of groups such as these, are

not affected by AES intervention.

However, our analyses are subject to a number of caveats due to the nature of WSR
data. Because insects travelling in the convective boundary layer will be affected by
the wind, our insect abundance estimates are likely to be affected by spillover
between CVPs. Two aspects of our methodology help to ameliorate this issue.
Firstly, we take the maximum insect-attributable reflectance value for each diel
period within each CVP. We expect the effect of spillover to be less pronounced on
the maximum value than on a diel mean value because it seems likely that spillover
has a relatively constant influence on insect abundance (dependent on wind),
working to make the mean values of adjacent CVPs more similar to one another.
This means that while taking the maximal value may help to isolate local processes,
we cannot discount the impact of spillover between high and low AES intervention
areas. Secondly, our CVPs are large, with a diameter of 5 km. Since spillover should
affect areas close to the perimeter of CVPs most dramatically, and the ratio of
surface area to volume decreases with size, we expect that the effect of spillover will
contribute a smaller proportion of insects to the overall estimate when the spatial
resolution is coarse. Another caveat to consider contamination from birds. While
methods are well developed to isolate meteorological from biological scatterers,
methods are less well developed for resolving taxonomic groupings within the
biological community. Our method to isolate birds from insects relies on ZDR
thresholding (Supplementary Information) which is likely to include contamination
from birds, especially less oblate species. Ongoing work seeks to improve
techniques to isolate birds from insects in weather surveillance radar data (discussed
below; Matthews et al. 2025). Another caveat is the concentration of natural
experiments around the Chenies radar, which includes a large majority of the
included BACI analyses. While this may undermine the generality of our findings,
land surrounding the Chenies radar is among the most variable areas of the county,
including parts of the Greater London area, green belt and the New Forest. Our

results also cover a substantially larger area than all previous AES studies, even with
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the relatively small number of natural experiments included. Additionally, our
Generalised Additive Models, covering all CVPs across all dual-polarisation radars in
England, find no positive effect of AES intervention. Finally, while aerial insects
comprise a major section of the terrestrial insect fauna (Chapman et al. 2004; Bell et
al., 2013) AES target species, such as honeybees and bumblebees, appear unlikely
to travel in the convective boundary layer. We are therefore unable to directly assess
the impact of AES for these species using WSR. On the other hand, if low-flying and
aerial species are expected to respond in a similar fashion to conservation
interventions like AES, WSR-measured insect abundance may be used as an

indicator for the effect of conservation interventions on insects more generally.

41 Policy implications

Agri-environment schemes now account for 50% of the total UK government
expenditure (£876 million) on biodiversity conservation (Defra, 2024). Our results
indicate such interventions have failed to increase or slow the decline of aerial
insects in England. The failure of AES to conserve insect at national scales is also
borne out by the continued decline of farmland insect species, such as butterflies
(Fox et al., 2023), despite large public expenditure on their conservation through
AES. These schemes have objectives beyond conservation. AES also aim to
subsidise food production and conserve of non-biodiversity traditional landscape
features, such as drystone walls and archaeological sites. Success in these

objectives should be evaluated on their own merit.

A major deficiency of AES policy as related to biodiversity conservation is a lack of
spatial planning (Banerjee et al. 2021). While there are some differences in available
options and payment levels in Countryside Stewardship and Environmental
Stewardship schemes for farms above the moorland line and for those in Severely
Disadvantaged Areas, Entry-Level Stewardship in both schemes does not involve
spatial planning of any type. This includes a large maijority of agreements undertaken
in both schemes (a smaller tranche of budget in these schemes is allocated to
Higher Level Stewardship which involves closer collaboration and outcome
assessment from Natural England.) In practice the existing incentive structure for
Entry Level Stewardship means that conservation action is incentivised where the

opportunity cost (profit forgone from crops or livestock) is lowest (Banerjee et al.
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2021). One would therefore expect participants to undertake conservation activities
in the most marginal areas of their individual holding, which may or may not adjoin
existing habitat areas or AES interventions of other landholders. Reserve design
principles based on island biogeography theory (Diamond, 1975) suggest large,
circular, contiguous reserves (or areas of other conservation intervention) are more
effective than those which are small and isolated. It therefore seems likely that an
alternative AES strategy incorporating these principles could gain more for an
equivalent amount of investment. For example, woodland creation options could be

prioritized in areas of farmland adjacent to existing woodland.

Further objections to AES come from the ‘land sparing versus sharing’ literature (e.g.
Collas et al. 2023). In this perspective, conservation interventions are conceptualised
as either ‘sharing’ land between food production and conservation objectives

(e.g. ‘wildlife-friendly’ farming, organic farming, AES), or ‘sparing’ interventions,
where intensive food production enables agriculture and conservation to be
separated. The central argument of land sparing relates to yield (Phalan et al. 2016).
It is argued that land sharing interventions, such as AES, typically reduce yield and
therefore require larger areas of land to maintain food production. On the other hand,
it is argued that high yield intensive farmland requires less land space for the same
level of production, potentially freeing up land for natural habitat (Phalan et al. 2016).
As some species are specialists of agricultural land, one must weigh up the costs
and benefits expected for the agricultural ‘winners’ (those species for which
population sizes equal or larger when agriculture is present) against the ‘losers’
(species for which population sizes are equal or larger when agriculture is not
present; Hulme et al., 2013). Typically, a modelling approach is used to estimate the
magnitude of expected population change for each species in various scenarios
using population-yield curves. A cost-benefit calculation can then be conducted
accounting for the number of species that stand to benefit from the hypothetical
sparing scenario. Most studies of this type find that more species stand to benefit

from land sparing than sharing (e.g. Hulme et al., 2013; Williams et al., 2017).

The strongest case for land sparing can be made in areas of the globe where natural
areas are substantially more diverse than agricultural ones, yield gaps are large and
agriculture is actively expanding, for example at the expense of tropical and

subtropical forest (e.g. Hulme et al., 2013; Williams et al., 2017). Here, a clear policy
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prescription is to designate natural areas while encouraging intensification which can
maintain food production while reducing agricultural expansion (Phalan et al., 2016).
The situation in the UK (and some of Europe) is different in that these areas have
been extensively managed for agriculture for thousands of years (Rackham, 2000)
and a large proportion of species under conservation concern are dependent on
extensive agricultural management (Feniuk et al., 2019). For Poland, Feniuk et al.
(2019) suggest a ‘three-compartment’ strategy to conserve farmland-dependent
species comprising intensive farmland, spared natural areas but also areas of very
low-yielding high nature value farmland. This three-compartment strategy has also

been positively evaluated for British bird species (Finch et al., 2019).

How farm subsidies fit in with land-sparing conservation strategies is an open
question in need of further research. A subsidy-based three compartment policy may
involve removing AES and returning to CAP pillar-1-type or market-based subsidy
structures incentivising intensification in high-yielding areas or farm types (for
instance intensive production of cereals in fertile arable areas like East Anglia) while
farmers in less productive areas could be paid to spare land or conduct high-nature
value farming. Land sparing or high-nature value farming could for instance be
delivered in the manner of Higher-Level Stewardship or Landscape Recovery
schemes through which larger scale agricultural conservation arrangements are
currently made through AES. A proposal of this type has been evaluated as more
cost effective than AES policy (Collas et al. 2023). However, farm subsidies are not
the only mechanism through which the state can seek to manage land for
conservation. The Nature Conservancy, a forerunner of Natural England (NE), was
invested with powers to acquire and hold land in 1949, leading to the establishment
of the country’s national nature reserves through Compulsory Purchase Orders
(CPOs; Sheail 1996). Since that time, NE has become a non-departmental public
body (‘quango’) under Defra; while the body retains the ability to acquire land for
conservation through CPOs, this power is rarely used (Shrubsole, 2020). Similar
bodies have been used to great effect elsewhere. For example, in New Zealand, the
Department of Conservation owns and manages ca. 30% of the country for
conservation (Towns et al., 2019) and in the US, national parks are federally owned.
Whether such a strategy is cost-effective in England will naturally depend on the

value of the land considered for CPO. For example, the state can accomplish the
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temporary creation of a hectare (100m by 100m, over 25 years) of species-rich
grassland through the 2024 ELMs AES for a total of £16,150, whereas the typical
value of a hectare of agricultural land in (comparatively marginal) areas such as the
North East and Tees Valley, as of 2019 was £16,000 (Defra, 2019). In less marginal
areas, land values are higher, up to £26,000 per hectare (Defra, 2019). This
comparison illustrates how AES can be conceptualised as ‘renting’ conservation
outcomes from landowners; in the long-term, especially in marginal areas, public

ownership of land may be a more cost-effective solution.

4.2 Weather Surveillance Radar as a conservation impact assessment tool:

the importance of scale

WSR insect monitoring increasingly recognised as a technique capable of
addressing the existing gaps in existing insect monitoring techniques (Bauer et al.
2024). Here, we demonstrate a novel approach by which WSR can be used to
evaluate conservation interventions. Examples of conservation interventions in the
UK potentially amenable to assessment using WSR include rewilding, streetlighting
reductions, afforestation, extreme weather events and agricultural changes such as
organic management, winter wheat, and pesticide bans, among others.WSR is
unique among insect survey techniques as measurements are made at extremely
coarse spatial scales and resolutions. In a classic article, Levin (1992) alerted
ecologists to problems of scale arising the fact that measurements are typically
made at scales that are smaller than the scales at which ecological mechanisms
operate. Consideration of scale is crucial in conservation biology as different
ecological mechanisms operate at different observational scales (Levin, 1992; Estes
et al., 2018) and the method by which data is collected imposes a ‘perceptual bias, a

filter through which the system is viewed’ (Levin, 1992).

We can contrast the scale of WSR and traditional insect surveys using several useful
scale measures reviewed by Estes et al. (2018): spatial resolution, spatial extent,

temporal resolution and temporal duration:

1. The spatial resolution of a measurement describes the area covered by a
single spatial replicate (Estes et al., 2018). In typical surveys, insects are

collected by point or transect counts (e.g. Pollard walks used in the UK
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Butterfly Monitoring Scheme) or by using various kinds of traps and lures (e.g.
light traps, malaise traps, pan traps, suction traps). The spatial resolution of
these measurements is fine as samples cover a relatively small area. For
example, data collected through the UK Butterfly Monitoring Scheme (Pollard
and Yates, 1993) has a 2-dimensional resolution equal to a 5 m strip covering
the length of the transect (e.g. 0.005 km?for a 1 km transect). For point
measurements, such as those made using light traps in the Rothamsted
Insect Survey (RIS), the resolution of a measurement varies between species
as moth species appear to differ in their attraction to light based on mobility
(O’Connell-Booth et al., 2024). However, a recapture experiment suggests the
range of a moth trap is around 10 - 27 m based on taxonomic family (Merckx
and Slade, 2014). An attraction range of 27 m corresponds to a resolution of
0.00229 km?. Here, WSR-measured insect abundance is measured at a
spatial resolution of 19.63 km? (each CVP was produced with a diameter of 5

km), 8500 times larger than the single light trap.

. Spatial extent is a measure of the total area encompassed by all spatial
replicates (Estes et al., 2018). Around 112 light traps make up the RIS
network, meaning the spatial extent of the survey is 0.256 km?, whereas 15
met office radars cover the United Kingdom, equating to ca. 42400 km? in

extent.

. Temporal resolution also differs between traditional and WSR surveys. RIS
light traps are typically emptied nightly, giving a temporal resolution of 24 hr.
Here, we analyse a maximum of two measurements per day, one each
representing daily and nightly maximum reflectivity. However, the maximum
temporal resolution of WSR is potentially much finer, as these radars produce
scans roughly every 5 minutes. Combining spatial and temporal resolution
gives a third measure, scope, encompassing the total number of discrete
measurements that make up a survey. One year of WSR data has a potential
maximum scope of ca. 2.27 x 108 whereas the RIS light trap network has a

scope of ca. 40,880.
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4. The temporal duration of the RIS is 1964 to the present, whereas WSR insect
data is available from the onset of dual-polarisation weather radar. In the

United Kingdom this is around 10 years, varying between radar stations

5. To the measures provided by Estes et al. (2018) we can add fifth measure,
taxonomic resolution, describing the precision of species identification.
Traditional surveys have a fine taxonomic resolution, typically identifying to
species, whereas WSR currently has a coarse taxonomic resolution, capable
of distinguishing only insect from non-insect, although ongoing work seeks to
improve this (Matthews et al., 2025). We are not aware of an agreed metric
for taxonomic resolution; however potentially useful measure could describe
the number of taxonomic groupings an identification method can resolve. For
example, 1 divided by the total number of distinguishable taxonomic
groupings in Operational Taxonomic Units (OTUs) is a metric that measures
the resolving power of an identification technique. This metric is preferable to
total number of species identifiable in that it scales with the information
extracted by the measure rather than the total number of species in the
system and generalises higher and lower-level taxonomic identification
capacity. Here, the taxonomic resolution of WSR by this metric is 0.5 as two
groupings can be produced: insect and non-insect. Using this metric,

traditional surveys making use of a proscribed list of species from which

1

surveyors can select from have a taxonomic resolution of ———as
length of species list+1

individuals can be classified as any species appearing on the list or

alternatively as none of the species on the list.

Overall, WSR has coarse spatial resolution, large spatial extent, fine temporal
resolution, short temporal duration and coarse taxonomic resolution in comparison to
traditional entomological surveys. For Levin (1992) there is no single correct scale at
which to view a system as different mechanisms are observable at different scales.
However, it is logical to match the scale of the measurement technique to the scale
of the phenomenon of interest (Levin, 1992). This is well illustrated using a
significant space-time diagram produced by Steele (1978), which shows how
particular sampling techniques are suited to investigating variability in particular

phenomena. For example, the coarse-scale fish-stock survey is suited to
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investigating variability in fish stocks, which occurs at coarse scales, but less well
suited to evaluating changes in phytoplankton populations, which occurs at finer

scales than fish stock surveys are capable of detecting.

Here, the coarse spatial resolution of WSR data is not well suited to assessing fine-
scale phenomena such as insect flower visitation. On the other hand, WSR’s fine
temporal resolution means it can be used to examine both multi-year trends and sub-
daily variation in insect abundance (Mungee et al., 2025). Its large spatial extent also
makes it well suited to assessing national insect abundance trends (Mungee et al., In
2025). For example, if survey data from the RIS light trap network (Macgregor et al.,
2019) is used to infer national trends in insect abundance for the UK, which has an
area of ca. 244,376 km? , the survey’s extent is spatially extrapolated by a factor of
ca. 9.54 x 105 whereas 1848 CVPs fall over land in the UK, meaning that the
extrapolation factor is much lower, at ca. 6.68. On the other hand, the long temporal
duration of the RIS reduces the influence of weather-related interannual variation in
insect abundance, meaning these data are well suited to assessing species trends

(Macgregor et al., 2019).

The coarse spatial resolution of WSR-CVP measurements (circles of diameter 5km)
is well suited to assessing the impact of large-scale conservation interventions, such
as AES. The ‘honeypot effect’ (described above) is an example of this type of scale
mismatch problem in terrestrial ecology. On-the-ground surveys of insects, such as
FIT counts and Pollard walks are well suited to capturing fine-scale processes such
as foraging activity and individual movement as these survey methods produce data
at fine resolution. However, when seeking to investigate a coarser (larger) scale
process, like a change in the total size of an insect population, fine scale processes
such as individual movement are effectively measurement noise. The surveyor may
seek to reduce the influence of this very fine scale noise on survey result by, for
instance, summing species counts along the length of a transect. This is effectively
coarsening the resolution of the sample. As we coarsen the resolution of the sample
fine scale mechanisms (individual actions of insects) become less and less influential
in determining the final figure; the signal to noise ratio increases. The honeypot
effect describes the tendency of fine-scale surveys to conflate fine-scale movement
of individuals with a change in the population size, a coarser scale process. One way

to address this effect is to coarsen the resolution of the effect size estimate, for
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example by sampling both inside and outside of the intervention of interest (in the
manner illustrated in Figure 2 panels A, B and C), potentially requiring a large survey
effort. Alternatively, freely available coarse-scale measures of insect abundance

collected with WSR can be used.

Overall, weather surveillance radar alters the ‘vision’ of the observer, which can now
comprise three spatial dimensions plus time, collecting information on insect
dynamics at scales not possible using traditional methods. This technique is well
suited to assessing coarse scale ecological processes. As many conservation
interventions seek to enhance insect abundance at the ‘landscape’ scale, WSR is
well placed to become a central tool for conservation impact assessment in coming

years.

4.3 Future research

To enhance WSR as a conservation impact assessment tool, future work could seek
to develop methods to improve taxonomic resolution, capable of distinguishing insect
species or morphotypes from one another. Matthews et al. (2025) identifies two
approaches to increasing the taxonomic resolution of dual-polarisation WSR: top-
down, data driven approaches, and bottom-up, simulation-based approaches. Top-
down approaches are those which seek to reconcile a priori understanding of aerial
biodiversity with patterns observable directly from WSR data, usually through the use
of a statistical or machine learning algorithm. Whilst top-down approaches represent
our current best attempt to partition WSR data into finer taxonomic groupings, they
are fundamentally limited by a lack of ground-truth data labelled at finer taxonomic
resolution. For example, Lukach et al. (2022) uses an unsupervised spectral
clustering algorithm to identify four clusters attributable to distinct biological
morphotypes, but the biological interpretation of these clusters is limited.
Alternatively, a bottom-up approach involves using simulation to reconstruct the
scattering properties of various species one may observe using WSR. For example,
Mirkovic et al. (2016) use the simulation software WIPL-D to estimate the 3D radar
scattering properties of bats and bat aggregations. Matthews et al. (2025) proposes
the creation of a library of such simulated animal scattering properties, analogous to

the traditional ID-guide, potentially facilitating finer scale taxonomic resolution in
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WSR studies. Work in this area is ongoing but in future may facilitate the

identification of particular species of volant animal from WSR data.

From a causal inference perspective, another potential future direction for research
is development of spatial matching algorithms to select CVP locations. Many
methods are available for statistical matching (Ho et al., 2007), primarily developed
and used in the fields of econometrics, epidemiology and political science, although
they are potentially broadly applicable to problems in conservation science. Among
the available methods, including exact, propensity score, nearest-neighbour,
cardinality and optimal matching, it is unclear what the benefits and drawbacks are to
each in an ecological setting. Here, we use methods developed by Lukach et al.
(2024) to generate CVPs in a 60 x 60 km grid surrounding each radar location. This
is a convenient way to obtain coverage of a fixed spatial area surrounding a radar.
We then seek to match CVPs from the grid to one another using both landcover and
pre-treatment insect abundance trend. A potential improvement to this approach
would be to generate “pre-matched” CVPs - for example, one could identify a
location for a treatment CVP surrounding a conservation intervention, then seek to
identify where to spatially arrange a set of control CVPs to minimise difference
between treatment and potential control CVP in confounders of interest, irrespective
of any existing grid. For example, one could create CVPs which cover relatively
homogeneous areas of land. This approach would minimise confounding from small
areas of other land uses unavoidably included when CVPs are arranged in a grid

pattern.

5. Conclusions

We demonstrate a novel approach to assessing the impact of large-scale
conservation interventions on insects using weather surveillance radar. The
technique allows the landscape-scale impact of conservation interventions on insects
to be measured directly for the first time. Using this approach, we find that Agri-
Environment Schemes in England had no impact on aerial insect abundance at
coarse (ca. 20 km?) spatial scales measured by WSR across intervention levels from
£664 to £100,540 per annum for all biodiversity-related options (measure A) and
between £579 and £88,003 including only insect-related options (measure B). We
find no evidence for a positive relationship between AES and insect abundance,
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GLMMs indicated a weak but statistically significant negative relationship. Our
results are subject to a number of caveats, discussed above, including spillover from
adjacent CVPs and potential contamination from birds. The matched-BACI
assessment approach described here is broadly applicable to a variety of coarse-
scale insect conservation intervention such as rewilding, streetlight reductions and

changes to agricultural practice.

Agri-environment subsidies are the primary mechanism by which the UK government
seeks to deliver insect conservation. In 2023, AES replaced CAP-style basic
payments entirely. Over 50% of the total budget allocated to conservation is spent
through these schemes (Defra, 2024), yet we detect no benefits for aerial insects at
landscape scale. Alternative strategies, such as ‘three compartment’ land sparing
(Feniuk et al., 2019) and the state acquiring land through CPO should be seriously

considered.
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7. Supplementary Information

7.1 Data processing

7.1.1 Columnar Vertical Profiles

Vertical-looking radars have long been used for the study of insects (Chapman et al.
2002). VLRs produce a thin vertical beam (10-100 m in diameter; see Figure 1. in
Chapman et al. 2002) which can be used to extract information describing the
abundance and diversity of entomofauna passing above a site (e.g. Wotton et al.
2019). These radars are typically operated at a fixed position, naturally providing a
description of a fixed area above a particular site at which the radar is operated. In
contrast, WSRs cover a much larger area but collect data in plan position indicator
(PPI1) mode, rotating 360° in azimuth and transmitting pulses in a narrow beam. Over
a ca. 5-minute scanning cycle, several rotational scans are produced with the beam
oriented at different elevation angles (Lukach et al., 2024). One major limitation of
PPIl-mode data for ecological application is that it does not provide a clear picture of
radar returns with height above a ‘site’ of interest (Murphy et al., 2020). Columnar
Vertical Profile (CVP) methodology provides a solution to this issue. CVPs,
developed by Murphy et al. (2020), provide a 3-D ‘columnar chunk’ of the
atmosphere, facilitating analysis of polarimetric radar variables within a fixed area. In

brief, to produce a CVP, returns are azimuthally averaged over the user-defined CVP
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area for each elevation scan, then, every azimuthally averaged point within the CVP
range is projected onto a height axis above the point (See Figure 1 in Lukach et al.,
2024). Following a procedure developed by Mungee et al. (2025), raw dual
polarisation radar data were processed into 12 x 12 grids of CVPs divided into 200 m
vertical height bands. For each of the nine dual-polarisation weather surveillance
radars in England, we produced a grid of 144 discrete columns, each divided into a
set of 200 m height bands. Here, we analyse a single height band at 500 — 700 m
above sea-level. This height band was selected to minimise the influence of ground
clutter (trees, hills, buildings) which intersect with the radar beam, while also
minimising the distance of the height band to the ground. Previous work (Mungee et
al. in press) has shown radar-measured insect abundance at this elevation is
coupled to landcover and correlated with ground-level measures of insect

abundance from light and suction traps.

7.1.2 Calculating Insect Abundance

We use methods developed by Mungee et al. (2025) to estimate insect abundance
through time in each CVP. First, meteorological signals are removed using a
depolarization ratio (DR) filtering method developed by Kilambi et al. (2018). DR
(crudely, a measure giving an indication of scatterer shape irregularity) is calculated
from two polarimetric variables: differential reflectivity (ZDR; the log of the ratio of
horizontal to vertical power of returns) and co-polar correlation coefficient phv (a
measure of sample uniformity, how much the scattering properties of the sample
vary between radar pulses). This process identifies meteorological signals where the
signal is from relatively spherical scatterers (ZDR close to zero) and does not vary
strongly from pulse to pulse. Intuitively, rain is comprised of relatively spherical
droplets which are similar to one another. As insects and birds tend to be
substantially more oblate, irregular and variable in shape than hydrometers, DR
filtering provides a method to remove radar volumes comprised of more uniform
distributions of relatively spherical scatterers. Following Kilambi et al. (2018), a
minimum DR threshold of -12dB is applied here. Next, a second filtering step
removes meteorological signals with higher DR (as caused by hail, graupel and very
heavy rain) by specifying a reflectivity threshold of 45 dBZ (Kilambi et al., 2018). The
body plan of arthropods are typically more elongated than that of birds, meaning

insects typically produce higher ZDR values (e.g. see Stepanian et al., 2016, using
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S-band radar). Following Mungee et al. (2025), we therefore separate birds from
insects using a ZDR threshold of 3dB to exclude birds while retaining as many
arthropod signals as possible. This threshold inevitably excludes some insects — for
example, those tilted up or downwards such that they project more in the vertical
direction will have low ZDR. However, insect metrics produced using this threshold
have been shown to be coupled to landcover and correlated with ground-level insect

abundance (Mungee et al., 2025)

We sought to restrict our analysis to a period of high insect activity in England. In
England, on-the ground observed insect activity generally peaks during summer (e.g.
for moths between July and August; see Figure 1. in O’Connell-Booth and Kunin,
2024). We note that maximum ZDR displays seasonal variation characteristic of
biological activity (Figure. 6), albeit with a wider (several month) peak than is
observed for individual insect groups, such as moths. We take seasonal ZDR to
function as a crude proxy for insect activity in unfiltered radar data. In our focal
region above England, we expect insects to be the most frequent cause of high ZDR
as results from S-band radars show that insects generally take substantially higher
ZDR values than birds or meteorological phenomena (see Figure 9 in Stepanian et
al., 2016; Table A4 in Gauthreaux et al., 2020; note that there may be some
differences in absolute ZDR values between S- and C-band radars). The maximum
value of ZDR can therefore work as a crude proxy for the presence of this high-ZDR
mode issued by the presence of aerial insects. The match between observed
variation in insect abundance in England and variation in maximum ZDR provides an

indication that this approximation functions as expected.

Using this ZDR variation (Figure 6.) we identified a window of high insect activity
between 15th April to 30th October and restrict our analyses to this period. We also
restrict our analysis to two scans per 24-hour period: one diurnal scan, taken
between 8:00 and 14:00, and one nocturnal scan, taken between 19:00 and 23:00

corresponding to diel peaks in activity for diurnal and nocturnal insects respectively.

After these filtering steps, we then calculate an estimate of insect abundance for
each CVP in the 500 — 700 m height band based on the return with maximum
reflectivity in each of the nocturnal and diurnal windows. We first converted radar
reflectivity factor (Z) to the more biologically meaningful radar reflectivity (n) using
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the equation: n (dB) = Z (dBZ) + B, where 3 equals to 26.58 for UKMO C-Band
radars (Equation 19 in Chilson et al., 2012; Mungee et al. 2025) and converted this
value to linear units (cm?/km?3). We multiplied radar reflectivity by the total CVP
height band volume, yielding the total back-scattering area of arthropods (cm?) within
this volume. To estimate abundance from backscatter area, we divide by the
estimated Radar Cross Section (o) of a single insect, defined here as 4.52 x 10* cm?

(see Mungee et al. 2025).

7.2 Generalised Additive Models

We also produce a GAM model describing seasonal and interannual variation in
maximum ZDR. These models were used to generate Figure 6 and select the
seasonal window for analysis described above. We extract the maximum daily ZDR
value per day in each CVP across the available data. To analyse within-year
seasonal variation in maximum ZDR (Fig. 6) at the Chenies radar, we interact month
number with year, and include a random effect for CVP ID. This model describes
seasonal variation within Chenies radar CVPs separately for each year from 2014-
2022 (Eq.3). To describe interannual variation in maximum ZDR, we produce a time
variable describing the number of months since January 2014. Using a factor ‘by’
smooth with 100 knots, we interact CVP ID with month number to describe
interannual variation within each CVP separately. This corresponds to Model | in
Pedersen et al. (2019), with separate smooths with shared ‘wiggliness’ for each
CVP.

Eq.3
ZDR; = By + fyear,(Month;) + byp, + ¢;

7.3 GLMM sensitivity analysis

We produce descriptive statistics and analyse the associative relationship between
AES spend (measures A, B) and insect abundance using a Generalised Linear
Mixed Modelling framework. To control collinearity between agricultural landcover
(combined cover of improved grassland and arable and horticultural cover; Marston
et al. 2024) and AES intervention, we include only agricultural CVPs in these models

— those with over 75% agricultural cover.
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To determine sensitivity of these models to the specific percentage threshold cutoff
for inclusion, we conduct a sensitivity analysis. We produce models including all
CVPs (no agricultural cutoff) and including all CVPs with over 50% agricultural
landcover. In the model including all CVPs, AES measure A intervention was
significantly negatively associated with insect abundance. We detect multicollinearity
in these models, AES expenditure was correlated to agricultural cover. This is to be
expected as AES can be placed only on agricultural land. While this model cannot
distinguish between AES intervention and agricultural landcover due to
multicollinearity, we expect a portion of this negative association is attributable to a
negative association between farmland and insect abundance. In this model
woodland cover and semi-natural cover was significantly positively related to insect
abundance and built-up cover was unrelated to insect abundance (Sl Figure 1). In
the model including only CVPs with over 50% agricultural cover (S| Figure 2) positive
associations between insect abundance and semi-natural landcover and between
insect abundance and woodland cover remained, but the significant negative
relationship between AES measure A and insect abundance did not. In the 75%
cutoff model included in the main paper, significant positive relationships between
semi-natural cover and insect abundance and between woodland cover and insect
abundance remained. Multicollinearity between AES intervention and farmland cover
was removed. However, in this model farmland showed multicollinearity with other
landcover variables. We therefore removed the farmland cover variable from the
model. In this final model including the 75% agricultural cutoff, removing the
farmland cover variable introduced a very small significant negative relationship
between AES intervention and insect abundance. The beta coefficient for the AES
variables was extremely small (B > -0.00001) compared to other landcover variables
(semi-natural cover: 8 = 49.34; woodland cover: 3 = 11.71). Overall, sensitivity
analyses indicate that relationships between insect abundance and semi-natural
cover and woodland cover present in unfiltered models were consistent throughout
models, but the large negative relationship between AES and insect abundance
emerged as an artefact of multicollinearity between agricultural cover and AES
intervention; the relationship between insect abundance and AES was non-
significant using a 50% agricultural cutoff and significant but very small using a 75%

cutoff. We therefore proceed with the 75% cutoff model.
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sensitivity analysis: all CVPs, multicolinearity not controlled
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7.4 Impact assessment

7.4.1 Quantification of AES spend

We calculate the annual spend on biodiversity-related revenue AES between 2014
and 2022 using the Environmental Stewardship (2005) and Countryside Stewardship
(2016) agreement area datasets available through the Natural England geodata

portal service.

We calculate two measures of AES spend: (A) including all biodiversity conservation
related options and (B) including only options for which published evidence or expert
opinion suggests are beneficial to butterflies or other pollinating invertebrates. AES
measure A was calculated by including all revenue options, aside from those aimed
at (1) educational activities, such as school visits; (2) access enhancement, such as
through the construction of gates or styles; (3) maintenance or weatherproofing of

farm buildings and (4) maintenance or protection of archaeological sites, historical
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features, stone walls and engineered water bodies. AES measure B uses a more
stringent set of criteria, including only biodiversity-related options demonstrated by
published evidence or expert opinion to benefit either butterflies or pollinating
invertebrates, as reviewed and scored by Staley et al. (2021). We place options into
the broader groupings provided by Staley et al. (2021) based on option name and
description provided by DEFRA. All options not falling into scored categories were
also removed, which includes all options excluded by measure A. Supplementary
Table 1 lists Countryside Stewardship options included in each measure.
Supplementary Table 2 lists Environmental Stewardship options included in each
measure. We calculate the annual expenditure on revenue options by each measure
per CVP by month using the payment rates contained in the 4" edition
Environmental Stewardship Entry Level and Higher-Level Stewardship handbooks

and in the Countryside Stewardship 15t January 2016 handbook.

Of the selected options, 97.71% CS records and 97.32% of ES records contained
necessary information for inclusion, including near-exact (“parcel-level”) spatial
location and information on the size or quantity of the option. Additionally, the
percentage cover of 21 CEH landcover classes were extracted from the UK CEH
Land Cover Map 2023 (Marston, 2022).

7.4.2 Before-After Control-Impact and Difference in Differences

To isolate the causal effect of insect-related AES on aerial insect abundance we
identify a series of pseudo-experiments which we analyse in a Before-After Control-
Impact (BACI) framework. Difference in Differences (DiD), widely used in
econometrics and other fields of observational science, is equivalent to the
“standard” BACI in the simplest “two treatment, two time-period” case. Many
extensions to DiD (and therefore BACI) are available, designed accommodate more
complex pseudo-experimental designs. As these designs are formally identical in the
simplest case, we refer to these DiD methods as extensions as species of the BACI
approach here (for further discussion of econometric methods in conservation
science, see Supplementary Information to Wauchope et al. 2021; Larsen et al.
2019).

BACI methods rely on constructing a valid counterfactual case: ‘what would have

happened in treated units had the treatment not occurred’. The degree to which a



54

particular control unit serves as an effective counterfactual case depends on the
confidence with which the evolution of the post-treatment outcome at the control unit
can serve as a representation of the expected evolution of the outcome variable at
the treatment site had the intervention not occurred (the parallel trends assumption).
A key test of this assumption is that the outcome variable in the treatment and
control sites follow ‘parallel trends’ or ‘common shocks’ during the pre-treatment

period.

7.4.3 Matching

Given a pool of 291 CVPs, we sought develop an analysis pipeline to select a subset
of optimally matched contrasts for analysis. We trialed several approaches, including
matching on pre-treatment landcover covariates using R package Matchlt (Ho et al
2007), constructing local groups of CVPs using spatial K-means clustering and a
series of approaches to matching based on pre-treatment trend, assessing each
approach by the degree to which the resulting matched pairs were (1) similar in
terms of landcover, (2) near one another and (3) displayed parallel trends in the pre-

treatment period.

The most performant approach involved two stages of matching. First, potential
treatment and control CVPs were matched based on landcover using a form of
caliper matching. For each treatment CVP, we identify a subset of potential control
CVPs belonging to the same radar which match the treatment CVP in terms of
landcover. Each control CVP needed to match (within 15%) landcover of the treated
CVP, in terms of the following class groups: (1) agricultural landcover (LCM classes
‘arable and horticultural’ and ‘improved grassland’), (2) combined urban and
suburban cover, (3) combined broadleaf and coniferous woodland cover and (4)
semi-natural grassland cover (including neutral, calcareous, acid and heather
grassland.) Additionally, we require that potential matches belong to the same radar
to eliminate radar-specific confounding and effectively restrict the maximum distance
between CVP pairs to c.60km. We also require that pairs share at least three years

of pre-treatment data to facilitate evaluation of the ‘parallel trends’ assumption.

Within this subset of potential control CVPs identified by landcover matching, we
develop a method to identify pairs which satisfy the parallel trends assumption. For

each CVP, we normalised insect abundance by the mean insect abundance in the
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first year of available data for that CVP, thus generating an index of insect
abundance suitable for inter-CVP comparison. This produced a measure of the year-

to-year trend in abundance within the CVP.

Abundance;;

(1) Abundance Index;; = Mean(Abundance;,)
i1

Where Abundanceijjis the mean abundance in CVP i at year j. We then quantified a
similarity score (calculated in the same manner as Euclidean distance) between

treatment and potential control units using the formula

n
(2) Similarity score = \/Z 1(1ndexj treated — INdex; coneror)?
]=

For each treated CVP, we then calculated the similarity score in the pre-treatment
period for each candidate control CVP. For each treated CVP we select the control
unit with the smallest similarity score in pre-treatment indexed insect abundance as a

potential counterfactual case.

Theoretical justification for matching methods

In econometrics, matching based on pre-treatment time-invariant covariates
(hereafter: covariate matching) is a common practice. This may be counterintuitive:
as a form of within-estimation (Larsen et al. 2019), BACI methods are designed to
eliminate time-invariant confounding, allowing comparison between groups which are
not alike. However, much theoretical and empirical work in the DiD literature advises
practitioners to adhere to the ‘pre-treatment criterion’ and generally account for as
many informative observed time-invariant covariates as possible through matching
(Ham and Miratrix, 2024; Zubizarreta et al. 2014; Shpitser et al, 2012; Ding and
Miratrix, 2015). This work suggests that where a field of potential controls is
available, it is preferable to select control units which are as similar as possible to
treated units (save for the treatment) in order to credibly meet the parallel trends

assumption (PTA) in the post-treatment period (Ham and Miratrix, 2024).

In contrast to covariate matching, matching based on the response variable in the
pre-treatment period (outcome matching) is not always preferable and may at times
inflate bias. Ham and Miratrix (2024 ) analyse a set of trade-offs involved with
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outcome matching. Firstly, outcome matching may inflate bias by artificially
increasing the similarity between pre-treatment trends in treated and control units,
tending to select controls whose trajectory does not match that of the general
population. It is easy to understand that in cases where a treated unit displays an
‘unusual’ trend, with exceptionally high or low values with respect to the general
population (perhaps owing to measurement error), bias can be generated by a
regression to the mean effect if these outcomes are used for matching. Ham and
Miratrix (2024) argue matching based on pre-treatment outcomes is beneficial if (1)
outcomes provide a reliable indication of unobserved confounders and (2) if this

signal is stable between the pre- and post- intervention periods.

Which unobserved confounders may we wish to control for by pre-treatment
outcome matching in an ecological context? Unlike many outcomes studies in
econometrics (such as house prices or employment), insect population trends
proceed in regular cycles (Figure 6). These cycles are driven by seasonal variations
in insect abundance interacting with mechanisms including density-dependence,
predator-prey dynamics, as well as weather and climatic conditions in current and
previous years. These mechanisms interact with anthropogenic factors (such as
insect decline drivers and conservation interventions) to generate the characteristic
highly variable cycles (which is also observed in seasonal variation in ZDR, Figure
6).

These mechanisms mean that (separate from any intervention) some years are more
‘favourable’ to insects than others, characterised by high or low relative abundance.
We note that inter-year relative favourability varies between CVPs, such that a ‘poor’
year in any particular CVP may not be relatively poor in other CVPs belonging to the
same radar. In sum, we wish to select matched pairs of CVPs for which relatively
poor and relatively abundant years coincide. Additionally, we want to avoid matching
a CVP in which insects are on a particular multi-year trend (for example, locally

declining) to a CVP where a different trend is present.

Does the similarity score between pre-treatment outcomes stably measure the co-
incidence of interannual variation in insect abundance and effectively match trend? A
simple test of the stability of the measure could be conducted by testing the
correlation between pre- and post- treatment similarity score between CVPs. For
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each candidate treatment and control comparison, we divide yearly mean insect
abundance into two periods of equal length (period 1, standing in for pre-treatment
outcomes, and period 2, standing in for post-treatment outcomes.) We calculate the
similarity score between period one outcomes in the candidate control and treatment
CVPs and the similarity score between period two outcomes in the treatment and
control CVPs. If pre-treatment outcomes stably measure coincidence of interannual
variation, period 1 similarity score should be highly correlated with period 2 similarity
score. We compute this using Pearson correlation and fit a linear model to the log
transformed data. Similarity score one was highly correlated with similarity score two
(r=0.725, p < 0.0001), indicating that pre-treatment outcomes are a stable measure.
This trend stability measure indicates that matching on pre-treatment trend is

justified in this case.

18 20 22 24
| |
L

16
|

p-value = 2.2e-16

Log period 2 similarity score

12

12 14 16 18 20 22 24
Log period 1 similarity score

SI Figure 3. Correlation between pre- and post- treatment similarity score between

candidate pairs of CVPs. Authors’ own work.
7.4.5 Estimating dynamic treatment effects

For each pair produced by the above matching procedure, we additionally test the
PTA using a linear two-way fixed effects model (TWFE; Goin & Riddell, 2023; also

termed ‘within estimator’ or ‘least squares dummy variable model’, Larsen et al.
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2019). There has been much recent discussion around the pitfalls of TWFE with
staggered treatment rollout (Callaway and Sant’/Anna, 2021; Goodman-Bacon, 2021;
Sun and Abraham, 2021) but note that TWFE models remain unbiased when there is
no staggered treatment rollout, as in the single pair comparisons used here (see
Simulation 2 in Baker et al. 2022; Ruttenauer and Aksoy, 2024).

Wauchope et al. (2021) highlight that standard BACI designs (which compare the
average pre- and post-treatment values only) can often benefit from inclusion of
dynamic treatment effects which can capture trend change by estimating immediate
and lagged treatment effects separately. This can be implemented using interaction
terms in the standard ordinary least squares BACI model (see Wauchope et al. 202,
Box. 1). Alternatively, one can use the TWFE specification, as below. The two
specifications are equivalent when the design includes two time-series only (Goin &
Riddell, 2023; Larsen et al. 2019). For each potential control-treatment pair, we

specified the model:
) Yk =ao + Z a; - I[CVP;] + Z B; - 1|Year;] +Z Yk - I[Years to Treatment | + €;;
i j k

where Y is the outcome indexed insect abundance. The model includes fixed effects
for CVP (ai) and Year (£j) (Goin & Riddell, 2023). Dynamic effects of intervention
are captured on coefficients on Years to Treatment parameter (yk), which encodes
the number of years before or after the first year of intervention (t=1), for which all
never treated control time periods are coded as 0. We exclude all CVP pairs where
the treatment and control outcomes are significantly different for any pre-treatment
year, thus selecting only comparisons for which parallel trends hold. Preliminary
models indicated heteroskedasticity between CVPs and between treatment and
control groupings. Heteroskedasticity does not produce biased OLS estimates but
does cause biases in standard errors (Hanck et al. 2018); as such we calculate
robust standard errors (Eicker—Huber—White standard errors) using R packages
Imtest (Zeileis and Hothorn, 2002) and sandwich (Zeileis, 2004, Zeileis, et al., 2020).
The dynamic BACI models are presented in Sl figures A1-15 and B1-15. We exclude
three pairs from the final analysis. Two of these pairs included visually diverging
trends after matching. A model failure occurred in the third pair. The three excluded

pairs are included in Sl figures C1-3
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To produce the final effect size estimates we then calculate the overall average
effect of the intervention for each comparison using standard BACI models including
interaction terms for treatment (treated, control) and time (before, after) to produce a
single effect size estimate for each comparison. These figures are included in the

main text results and in Figure 8.

7.5 Individual BACI comparison

7.5.1 Measure A

S! Figure A. Dynamic BACI model results for each comparison included for AES
measure A. From left to right, plots show (1) AES spend per year in the CVP; (2) the
normalized trend in insect abundance in the control and treated CVP and (3)
dynamic BACI model results. Time to treatment shows years relative to the first
increase in AES spend (Time to treatment = 1). Red lines correspond to the treated
CVP, and blue lines correspond to the control CVP in each plot
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S! Figure A3. Pair 7, including Chenies 40 (treatment) and Chenies 39

(control).
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SI Figure A4. Pair 8, including Chenies 41 (treatment) and Chenies 75 (control).
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SI Figure A5. Pair 11, including Chenies 53 (treatment) and Chenies 43 (control).
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SI Figure A6. Pair 13, including Chenies 63 (treatment) and Chenies 75 (control).
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SI Figure A7. Pair 14, including Chenies 64 (treatment) and Chenies 43 (control).
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-2 1.00 0.55 1.90 0.0640
-1 0.76 0.91 0.83 0.4100
0 1.80 3.30 0.53 0.6000
1 0.72 2.10 0.34 0.7400
2 1.80 0.58 3.20 0.0015 *
3 0.90 0.54 1.70 0.0930
4 0.50 0.89 0.56 0.5800
5 1.50 0.62 2.50 0.0130 *

SI Figure A8. Pair 22, including Chenies 81 (treatment) and Chenies 30 (control).
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-4 -0.0380 0.31 -0.12 0.9000
-3 0.2300 0.28 0.82 0.4200
-2 0.0700 0.26 0.27 0.7900
-1 0.0970 0.26 0.37 0.7100
0 -0.1600 0.27 -0.58 0.5600
1 -0.0083 0.28 -0.03 0.9800
2 -0.1700 0.26 -0.63 0.5300
3 -0.7800 0.72 -1.10 0.2800

SI Figure A9. Pair 27, including Chenies 88 (treatment) and Chenies 43 (control).
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-1 0.0095 0.45 0.021 0.9800
0 -0.0940 0.46 -0.200  0.8400
1 0.0220 0.47 0.047  0.9600
2 0.3100 0.51 0.610  0.5400
3 -0.6800 0.81 -0.850  0.4000

SI Figure A10. Pair 32, including Chenies 94 (treatment) and Chenies 43 (control).
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-5 0.150 0.67 0.22 0.8200
4 0.099 0.99 0.10 0.9200
3 0.410 0.69 0.60 0.5500

-2 0.490 0.70 0.70 0.4800
-1 0.690 0.79 0.88 0.3800
0 6.300 5.40 1.20 0.2400
1 5.400 3.80 1.40 0.1600
2 1.400 1.30 1.10 0.2500

SI Figure A11. Pair 41, including Chenies 105 (treatment) and Chenies 39 (control).
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SI Figure A12. Pair 42, including Chenies 107 (treatment) and Chenies 59 (control).
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SI Figure A13. Pair 95, including High Moorsley 57 (treatment) and High Moorsley 69

(control).
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-1 -0.32 0.56 -0.56 0.5800
0 -1.10 0.66 -1.70 0.0820
1 -0.59 0.56 -1.10 0.2900

SI Figure A14. Pair 124, including Predannack 105 (treatment) and Predannack 68

(control).
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0 -0.05 0.37 -0.14 0.8900

1 -0.44 0.73 -0.60 0.5500
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SI Figure A15. Pair 145, including Thurnham 68 (treatment) and Thurnham 87

(control).

7.5.2 Measure B

Dynamic BACI model results for each comparison included for AES measure B.

From left to right, plots show (1) AES spend per year in the CVP; (2) the second plot
shows the normalized trend in insect abundance in the control and treated CVP and
(3) dynamic BACI model results. Red lines correspond to the treated CVP and blue

lines correspond to the control CVP in each plot
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-3 -1.10 0.93 -1.20 0.2300
-2 -1.10 0.97 -1.20 0.2400
-1 -0.68 1.00 -0.68 0.5000
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2 -0.65 0.93 -0.70 0.4800
3 -4.20 2.70 -1.60 0.1100
4 -1.90 1.20 -1.60 0.1000

SI Figure B1. Pair 4, including Chenies 29 (treatment) and Chenies 32 (control).
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1 -0.370 0.69 -0.54 0.5800
2 -0.340 0.72 -0.48 0.6300
3 -0.085 0.69 -0.12 0.9000

SI Figure B2. Pair 5, including Chenies 31 (treatment) and Chenies 42 (control).
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3 -0.72 0.20 -3.60 0.0003 *
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S! Figure B3. Pair 7, including Chenies 40 (treatment) and Chenies 39 (control).
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SI Figure B4. Pair 8, including Chenies 41 (treatment) and Chenies 75 (control).
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S! Figure B5. Pair 11, including Chenies 53 (treatment) and Chenies 43 (control).
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2 0.20 0.41 0.480  0.6300
3 0.40 0.48 0.840  0.4000
4 -0.12 0.41 -0.300  0.7700
5 0.40 0.64 0.630 0.5300

SI Figure B6. Pair 13, including Chenies 63 (treatment) and Chenies 75 (control).
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SI Figure B7. Pair 14, including Chenies 64 (treatment) and Chenies 43 (control).
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3 0.90 0.54 1.70 0.0930
4 0.50 0.89 0.56 0.5800
5 1.50 0.62 2.50 0.0130

SI Figure B8. Pair 22, including Chenies 81 (treatment) and Chenies 30 (control).

a !
3 15000 8 5.01 !
5 £ - 0.51
a 2 251 !
@ 10000 1 2 i 0.0
< o 0.0 g
< .
@ 5000 £ ! £ -05;
2 T 5 i i
g x & ! -1.01
& 0+ :
0 @ D A -1.51
N N N g gl
> PR P PP

Years to Treatment

Years to Treatment estimate std.error statistic p.value

-4 -0.0380 0.31 -0.12 0.9000
-3 0.2300 0.28 0.82 0.4200
-2 0.0700 0.26 0.27 0.7900
-1 0.0970 0.26 0.37 0.7100
0 -0.1600 0.27 -0.58 0.5600
1 -0.0083 0.28 -0.03 0.9800
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SI Figure B9. Pair 27, including Chenies 88 (treatment) and Chenies 43 (control).
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-2 0.2800 0.46 0.600  0.5500
-1 0.0095 0.45 0.021 0.9800
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1 0.0220 0.47 0.047  0.9600
2 0.3100 0.51 0.610  0.5400
3 -0.6800 0.81 -0.850  0.4000

SI Figure B10. Pair 32, including Chenies 94 (treatment) and Chenies 43 (control).
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-2 0.490 0.70 0.70 0.4800
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0 6.300 5.40 1.20 0.2400
1 5.400 3.80 1.40 0.1600
2 1.400 1.30 1.10 0.2500
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SI Figure B11. Pair 41, including Chenies 105 (treatment) and Chenies 39 (control).

Relative abundance
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1 0.94 2.0 0.47 0.6400
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SI Figure B12. Pair 42, including Chenies 107 (treatment) and Chenies 59 (control).
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SI Figure B13. Pair 95, including High Moorsley 57 (treatment) and High Moorsley 69

(control).
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-1 -0.32 0.56 -0.56 0.5800
0 -1.10 0.66 -1.70 0.0820
1 -0.59 0.56 -1.10 0.2900

S! Figure B14. Pair 124, including Predannack 105 (treatment) and Predannack 068

(control).
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-2 -0.15 0.35 -0.44 0.6600
1 -2.50 1.50 -1.70 0.0860
0 -0.05 0.37 -0.14 0.8800
1 -0.44 0.73 -0.60 0.5500

S! Figure B15. Pair 145, including Thurnham 068 (treatment) and Thurnham 087

(control).

7.5.3 Excluded matches

We exclude the following comparisons based on visual inspection of trend. For these
2 and 30 (C1 and C2), the trends markedly diverge. For pair 31 (C3), there was error
in estimation leading caused by extremely high variance in 1 year of data, leading to

BACI model failure.
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0.6800
0.1600
0.3000
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SI Figure C1 Pair 2, including Chenies 18 (treatment) and Chenies 19 (control).

Reasoning for exclusion: the control unit shows a relatively static trend compared to

the highly variable trend in the control unit.
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S| Figure C2 Pair 30, including Chenies 92 (treatment) and Chenies 39 (control).
Reasoning for exclusion: the treated unit shows a clear declining insect abundance

trend, while the control unit is relatively more static and variable.
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Years to Treatment

Years to Treatment estimate std.error statistic p.value

-7 -23 21 -1.10 0.2800
-6 -23 21 -1.10 0.2700
-5 -23 21 -1.10 0.2800
-3 -21 21 -0.99 0.3200
-2 -20 21 -0.96 0.3300
-1 -22 21 -1.00 0.3100
0 -27 22 -1.20 0.2100
1 -21 21 -0.97 0.3300

Sl Figure C2 Pair 31, including Chenies 59 (treatment) and Chenies 39 (control).
Reasoning for exclusion: Estimation error in calculation of heteroskedasticity-robust
standard errors, likely due to highly uneven variance between years; 2017 in the

treated CVP had a much larger error than other included years (ca. -200 — 200).
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7.6 AES option tables

SI Table 1. Countryside Stewardship option codes and descriptions, detailing which

options are excluded from AES measure A and AES measure B.

Option Option description Measur | Measur | Staley et al. (2021)
Code eA eB category
exclude | exclude

SW4 12-24m watercourse buffer strip on cultivated land FALSE | FALSE | Grass buffer strips or
margins

SWi1 4-6m buffer strip on cultivated land FALSE | FALSE | Grass buffer strips or
margins

SW2 4-6m buffer strip on intensive grassland FALSE | FALSE | Grass buffer strips or
margins

RP18 Above ground tanks FALSE | TRUE None

AC1 Access Capital ltems TRUE TRUE None

APO Additional Parcel Option FALSE | TRUE None

SP10 Administration of group managed agreements TRUE TRUE None

supplement
FG7 Anti-predator combination fencing for vulnerable FALSE | TRUE None
ground-nesting birds.

FG8 Anti-predator temporary electric fencing FALSE | TRUE None

SW7 Arable reversion to grassland with low fertiliser inputs | FALSE | FALSE | Arable reversion

AQ1 Automatic slurry scraper FALSE | TRUE None

AB16 Autumn Sown BumbleBird Mix FALSE | FALSE | Pollinator flower and
nectar sources
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FG14 Badger Gates FALSE | TRUE None
AB2 Basic Overwinter stubble FALSE | FALSE | Winter stubble including
following sileage or fodder
crops
AB3 Beetle banks FALSE | TRUE Beetle bank, invertebrate
and bird nesting sites
RP26 Biofilters FALSE | TRUE None
WN1 Blocking Grips or Drainage Channels FALSE | TRUE None
SP3 Bracken control supplement FALSE | TRUE None
AB13 Brassica fodder crop FALSE | TRUE Winter bird food sources
WN9 Brick, Stone or Concrete Sluice FALSE | TRUE None
WT1 Buffering in field ponds and ditches in improved FALSE | FALSE | Grass buffer strips or
grassland margins
WT2 Buffering in-field ponds and ditches on arable land FALSE | FALSE | Grass buffer strips or
margins
FY2 Capital investments to improve access infrastructure FALSE | TRUE None
to woodlands.
FY2A Capital investments to improve access infrastructure FALSE | TRUE None
to woodlands.
LV1 Cattle Grid TRUE TRUE None
SP6 Cattle grazing supplement TRUE TRUE None
RP12 Check dams and woody debris dams FALSE | TRUE None
SB4 Chemical Bracken Control FALSE | TRUE None
CT6 Coastal vegetation management supplement FALSE | TRUE None
RP15 Concrete yard renewal FALSE | TRUE None
RP8 Constructed wetlands for the treatment of pollution FALSE | TRUE None
WN10 Construction of water penning structures FALSE | FALSE | Wet grassland
SP4 Control of invasive plant species supplement FALSE | TRUE None
TE10 Coppicing Bank-side Trees FALSE | TRUE None
AC2 Countryside Educational Visits Accreditation Scheme | TRUE TRUE None
(CEVAS)
CT2 Creation of coastal sand dunes and vegetated shingle | FALSE | FALSE | Sand dune management
on arable land improved grassland
TE13 Creation of dead wood habitat on trees FALSE | FALSE | Woodland management
and creation
WT9 Creation of fen FALSE | FALSE | Fen management
GS14 Creation of grassland for target features FALSE | FALSE | Grassland management
LH3 Creation of heathland from arable or improved FALSE | FALSE | Lowland heathland
grassland management
CT5 Creation of inter-tidal and saline habitat by non- FALSE | TRUE None
intervention
CT7 Creation of inter-tidal and saline habitat on intensive FALSE | TRUE None
grassland
WT7 Creation of reedbed FALSE | FALSE | Wet grassland
WN2 Creation of scrapes and gutters FALSE | TRUE None
GS8 Creation of species-rich grassland FALSE | FALSE | Species rich grassland
creation
WwD8 Creation of successional areas and scrub FALSE | FALSE | Scrub management
BE5 Creation of traditional orchards FALSE | TRUE None
WD12 Creation of upland wood pasture FALSE | FALSE | Woodland management
and creation
GS11 Creation of wet grassland for breeding waders FALSE | FALSE | Wet grassland
GS12 Creation of wet grassland for wintering waders and FALSE | FALSE | Wet grassland
wildfowl
WD6 Creation of wood pasture FALSE | FALSE | Woodland management

and creation
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RP5 Cross drains/unit FALSE | TRUE None
AB11 Cultivated areas for arable plants FALSE | FALSE | Uncropped cultivated
margins/plots
WS1 Deer Control and Management FALSE | TRUE None
FG16 Deer Pedestrain Gate FALSE | TRUE None
FG17 Deer Vehicle Gate FALSE | TRUE None
FG11 Deer exclosure plot/unit FALSE | TRUE None
FY1 Deer high seat / unit FALSE | TRUE None
SP1 Difficult sites supplement FALSE | TRUE None
WN4 Ditch, Dyke and Rhine Creation FALSE | TRUE Ditch management
WN3 Ditch, Dyke and Rhine Restoration FALSE | TRUE Ditch management
BN4 Earth Bank Restoration FALSE | TRUE None
BN3 Earth bank creation FALSE | TRUE None
RP9 Earth banks and soil bunds/unit FALSE | TRUE None
ED1 Educational Access TRUE TRUE None
WS4 Enable permissive access (by foot) across the whole TRUE TRUE None
woodland
UP1 Enclosed rough grazing FALSE | TRUE None
SW5 Enhanced management of maize crops FALSE | TRUE Undersown spring cereal
AB6 Enhanced overwinter stubble FALSE | FALSE | Winter bird food sources
RP31 Equipment to disrupt tramlines in arable areas FALSE | TRUE None
PA2 Feasibility Study TRUE TRUE None
FG1 Fencing FALSE | TRUE None
FG5 Fencing supplement - difficult sites FALSE | TRUE None
RP19 First-flush rainwater diverters/downpipe filters FALSE | TRUE None
RP30 Floating covers for slurry stores and lagoons FALSE | TRUE None
SW15 Flood mitigation on arable reversion to grassland FALSE | FALSE | Arable reversion
SW16 Flood mitigation on permanent grassland FALSE | TRUE None
AB8 Flower rich margins and plots FALSE | FALSE | Flower rich margins and
RP2 Gateway relocation FALSE | TRUE ﬁllg:wse
LV3 Hard bases for livestock drinkers TRUE TRUE None
LVv4 Hard bases for livestock feeders TRUE TRUE None
AB14 Harvested low input cereal FALSE | TRUE Low input cereals
GS15 Haymaking supplement FALSE | FALSE | Grassland management
BN6 Hedgerow Coppicing FALSE | FALSE | Hedgerow management
BN7 Hedgerow Gapping FALSE | FALSE | Hedgerow management
BN8 Hedgerow Supplement - Casting Up FALSE | FALSE | Hedgerow management
BN10 Hedgerow Supplement - Top Binding and Staking FALSE | FALSE | Hedgerow management
BN9 Hedgerow Supplement - substantial Pre-Work FALSE | FALSE | Hedgerow management
BN5 Hedgerow laying FALSE | FALSE | Hedgerow management
HE1 Historic and archaeological feature protection. TRUE TRUE None
TE14 Identification of orchard fruit tree varieties FALSE | TRUE None
PA1 Implementation Plan/Unit TRUE TRUE None
SW3 In-field grass strips FALSE | FALSE | Grass buffer strips or
margins
RP23 Installation of livestock drinking troughs (in draining FALSE | TRUE None
pens for freshly dipped sheep)
RP6 Installation of piped culverts and ditches FALSE | TRUE Ditch management
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SP7 Introduction of cattle grazing on the Scilly Isles FALSE | FALSE | Grassland management
FG6 Invisible fencing system FALSE | TRUE None
RP33 Large Leaky Woody Dam FALSE | TRUE None
WB3 Large Wildlife Box FALSE | TRUE Beetle bank, invertebrate
and bird nesting sites
GS4 Legume and herb-rich swards FALSE | FALSE | Flower rich margins and
plots
GS17 Lenient Grazing Supplement FALSE | FALSE | Grassland management
RP24 Lined biobed plus pesticide loading and washdown FALSE | TRUE None
area
RP25 Lined biobed with existing washdown area FALSE | TRUE None
RP4 Livestock and machinery hardcore tracks TRUE TRUE None
WD9 Livestock exclusion supplement - scrub and FALSE | FALSE | Grassland management
successional areas
LVv2 Livestock handling facilities TRUE TRUE None
Lv7 Livestock troughs FALSE | TRUE None
AQ2 Low ammonia emission flooring for livestock buildings | FALSE | TRUE None
HS1 Maintenance of Weatherproof Traditional Farm TRUE TRUE None
Buildings
HS8 Maintenance of Weatherproof Traditional Farm TRUE TRUE None
Buildings in Remote Areas
HS6 Maintenance of designed/engineered water-bodies TRUE TRUE None
FM2 Maijor preparatory work for Priority Habitats (creation FALSE | FALSE | Threatened and priority
and restoration) and Priority Species species and habitats
SW12 Making space for water FALSE | FALSE | Wet grassland
UP3 Management of Moorland FALSE | FALSE | Moor and heath
management
CT3 Management of coastal saltmarsh FALSE | TRUE None
CT1 Management of coastal sand dunes and vegetated FALSE | FALSE | Sand dune management
shingle
WT3 Management of ditches of high environmental value FALSE | TRUE Ditch management
WT8 Management of fen FALSE | FALSE | Fen management
FM1 Management of geodiversity features FALSE | TRUE None
GS13 Management of grassland for target features FALSE | FALSE | Grassland management
BE3 Management of hedgerows FALSE | FALSE | Hedgerow management
HS5 Management of historic and archaeological features TRUE TRUE None
on grassland
HS7 Management of historic water meadows through TRUE FALSE | Wet grassland
traditional irrigation
SW8 Management of intensive grassland adjacent to a FALSE | TRUE Grassland erosion
watercourse management
LH1 Management of lowland heathland FALSE | FALSE | Lowland heathland
management
WT10 Management of lowland raised bog FALSE | FALSE | Lowland raised bog
UP4 Management of moorland vegetation supplement FALSE | FALSE | Moor and heath
management
WT4 Management of ponds of High Wildlife value (100 sq FALSE | TRUE None
m or less)
WT5S Management of ponds of High Wildlife value (more FALSE | TRUE None
than 100 sqg m)
WT6 Management of reedbed FALSE | FALSE | Wet grassland
UP2 Management of rough grazing for birds FALSE | FALSE | Wet grassland
GS6 Management of species-rich grassland FALSE | FALSE | Species rich grassland
creation
WD7 Management of successional areas and scrub FALSE | FALSE | Scrub management
BE4 Management of traditional orchards FALSE | TRUE None
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WD10 Management of upland wood pasture and parkland FALSE | TRUE Upland grassland and
moorland management
GS9 Management of wet grassland for breeding waders FALSE | FALSE | Wet grassland
GS10 Management of wet grassland for wintering waders FALSE | FALSE | Wet grassland
and wildfowl
wD4 Management of wood pasture and parkland FALSE | FALSE | Woodland management
and creation
SB5 Mechanical bracken control FALSE | TRUE None
WB2 Medium Wildlife Box FALSE | TRUE Beetle bank, invertebrate
and bird nesting sites
UP5 Moorland re-wetting supplement FALSE | FALSE | Moor and heath
management
OP4 Multi species ley FALSE | FALSE | Flower rich margins and
plots
SP8 Native breeds at risk supplement FALSE | FALSE | Rare breeds grazing
AB1 Nectar Flower Mix FALSE | FALSE | Pollinator flower and
nectar sources
AB5 Nesting Plots for Lapwing FALSE | TRUE Beetle bank, invertebrate
and bird nesting sites
SW14 Nil fertiliser supplement FALSE | FALSE | Low input grassland
OR4 Organic Conversion - Horticulture FALSE | FALSE | Organic management
OR5 Organic Conversion - Top Fruit FALSE | FALSE | Organic management
OT6 Organic Land Management - Enclosed Rough FALSE | FALSE | Organic management
Grazing
OoT4 Organic Land Management - Horticulture FALSE | FALSE | Organic management
OoT5 Organic Land Management - Top Fruit FALSE | FALSE | Organic management
OT3 Organic Land Management - rotational land FALSE | FALSE | Organic management
oT2 Organic Land Management - unimproved permanent FALSE | FALSE | Organic management
grassland
OR1 Organic conversion - improved permanent grassland FALSE | FALSE | Organic management
OR3 Organic conversion - rotational land FALSE | FALSE | Organic management
OR2 Organic conversion - unimproved permanent FALSE | FALSE | Organic management
grassland
OT1 Organic land management - improved permanent FALSE | FALSE | Organic management
grassland
OP1 Overwintered stubble FALSE | TRUE Winter bird food sources
TE9 Parkland Tree Guard - welded steel FALSE | TRUE None
LV5 Pasture pumps and associated pipework/unit FALSE | TRUE Grassland erosion
management
FG3 Permanent electric fencing FALSE | TRUE None
GS2 Permanent grassland with very low inputs (outside FALSE | FALSE | Low input grassland
SDAs)
GS5 Permanent grassland with very low inputs in SDA FALSE | FALSE | Low input grassland
LV8 Pipework for livestock troughs FALSE | TRUE Grassland erosion
management
TE3 Planting Fruit Trees FALSE | TRUE None
TEA Planting Standard Hedgerow Tree FALSE | FALSE | Hedgerow management
TE2 Planting Standard Parkland Tree FALSE | TRUE None
BN11 Planting new hedges FALSE | FALSE | Hedgerow management
WNG6A Pond Management - creation - (areas more than 100 | FALSE | TRUE None
sq m)
WN5A Pond Management - creation (first 100 sq m) FALSE | TRUE None
WNG6B Pond Management - restoration - (areas more than FALSE | TRUE None
100 sgm)
WN5B Pond Management - restoration - first 100 sq m FALSE | TRUE None
BE1 Protection of in-field trees on arable land FALSE | TRUE None
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BE2 Protection of in-field trees on intensive grassland FALSE | TRUE None
FG4 Rabbit fencing supplement FALSE | TRUE None
RP16 Rainwater goods FALSE | TRUE None
SP2 Raised water level supplement FALSE | TRUE None
SW18 Raised water levels on grassland on peat soils FALSE | FALSE | Wet grassland
LV6 Ram pumps and pipework/unit FALSE | TRUE Grassland erosion
management
HS3 Reduced depth, non-inversion cultivation on historic TRUE TRUE None
and archaeological features
RP20 Relocation of sheep dips and pens FALSE | TRUE None
RP21 Relocation of sheep pens only FALSE | TRUE None
HE3 Removal of eyesore TRUE TRUE None
LH2 Restoration of forestry and woodland to lowland FALSE | FALSE | Woodland management
heathland and creation
WN7 Restoration of large water bodies FALSE | TRUE None
WD11 Restoration of upland wood pasture and parkland FALSE | FALSE | Upland management
WD5 Restoration of wood pasture and parkland FALSE | FALSE | Woodland management
and creation
GS7 Restoration towards species-rich grassland FALSE | FALSE | Species rich grassland
management
WS2 Restore and maintain plantations on ancient FALSE | FALSE | Woodland management
woodlands sites and creation
HS9 Restricted depth crop establishment to protect TRUE TRUE None
archaeology under and arable rotation
RP1 Resurfacing of gateways TRUE TRUE None
SB6A Rhododendron control FALSE | TRUE None
SB6B Rhododendron control FALSE | TRUE None
SB6C Rhododendron control FALSE | TRUE None
SW11 Riparian management strip FALSE | FALSE | Grass buffer strips or
margins
RP28 Roofing (sprayer washdown area, manure storage FALSE | TRUE None
area, ...)
GS16 Rush infestation control supplement FALSE | TRUE None
GS3 Ryegrass seed-set as winter food for birds FALSE | TRUE Winter bird food sources
SB1A Scrub Control and Felling Diseased Trees FALSE | TRUE Scrub management
SB1B Scrub Control and Felling Diseased Trees FALSE | TRUE Scrub management
SB1C Scrub Control and Felling Diseased Trees FALSE | TRUE Scrub management
SB1D Scrub Control and Felling Diseased Trees FALSE | TRUE Scrub management
SB1E Scrub Control and Felling Diseased Trees FALSE | TRUE Scrub management
SB1F Scrub Control and Felling Diseased Trees FALSE | TRUE Scrub management
SB2 Scrub control - difficult sites FALSE | TRUE Scrub management
HS4 Scrub control on historic and archaeological features TRUE TRUE Scrub management
SW10 Seasonal livestock removal on intensive grassland FALSE | FALSE | Grassland management
SW9 Seasonal livestock removal on intensive grassland FALSE | FALSE | Grassland management
RP7 Sediment ponds and traps/sq m FALSE | TRUE None
RP29 Self supporting covers for slurry stores/sq m FALSE | TRUE None
RP22 Sheep dip drainage aprons and sumps FALSE | TRUE None
FG2 Sheep netting FALSE | TRUE None
SP5 Shepherding supplement TRUE TRUE None
RP10 Silt filtration dams or seepage barriers FALSE | TRUE None
AB4 Skylark Plots FALSE | TRUE Beetle bank, invertebrate

and bird nesting sites
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RP32 Small Leaky Woody Dam FALSE | TRUE None

WBA1 Small Wildlife Box FALSE | TRUE Beetle bank, invertebrate
and bird nesting sites

RP27 Sprayer or applicator load and washdown area/sq m FALSE | TRUE None

FY3 Squirrel Traps and Maintenance FALSE | TRUE None

WS3 Squirrel control and management FALSE | TRUE None

FG13 Stone Gate Post FALSE | TRUE None

BN13 Stone Wall - Top Wiring TRUE TRUE None

BN12 Stone Wall Restoration TRUE TRUE None

BN2 Stone faced bank restoration FALSE | TRUE None

BN14 Stone wall supplement - Stone from quarry TRUE TRUE None

BN15 Stone wall supplement - difficult sites TRUE TRUE None

BN1 Stone-faced bank repair FALSE | TRUE None

RP17 Storage tanks underground FALSE | TRUE None

TE12 Stump Grinding FALSE | TRUE None

BE7 Supplement for restorative pruning of fruit trees FALSE | TRUE None

OP3 Supplementary feeding for farmland birds FALSE | TRUE Winter bird food sources

AB12 Supplementary winter feeding for farmland birds FALSE | TRUE Winter bird food sources

RP11 Swales FALSE | TRUE None

GS1 Take field corners and small areas out of FALSE | TRUE Field corners

management
HS2 Take historic and archaeological features currently on | TRUE TRUE None
cultivated land out of cultivation.

FG10 Temporary deer fencing / m FALSE | TRUE None

SP9 Threatened species supplement FALSE | FALSE | Threatened and priority
species and habitats

WN8 Timber sluice/unit FALSE | TRUE None

TES8 Tree Guard (wood post and wire) FALSE | TRUE None

TE7 Tree guard (Wood post and rail) FALSE | TRUE None

TE6 Tree guard (tube and mesh) FALSE | TRUE None

BC4 Tree guard (wood post and wire) FALSE | TRUE None

SB3 Tree removal FALSE | TRUE None

TE11A Tree surgery FALSE | TRUE None

TE11B Tree surgery FALSE | TRUE None

AB15 Two year sown legume fallow FALSE | FALSE | Fallow plots for ground-
nesting birds

OP5 Undersown cereal FALSE | TRUE Undersown spring cereal

AB10 Unharvested cereal headland FALSE | TRUE Conservation headlands

UP6 Upland livestock exclusion supplement FALSE | TRUE Upland grassland and
moorland management

SW13 Very low nitrogen inputs to groundwaters FALSE | FALSE | Low input grassland

BE6 Veteran Tree Surgery FALSE | TRUE None

FG15 Water Gates FALSE | TRUE None

RP3 Watercourse crossing/unit FALSE | TRUE None

WT11 Wetland cutting supplement FALSE | FALSE | Wet grassland

WT12 Wetland grazing supplement FALSE | FALSE | Wet grassland

AB7 Wholecrop cereals FALSE | TRUE None

OP2 Wild bird seed mixture FALSE | FALSE | Flower rich margins and

AB9 Winter bird food FALSE | TRUE \F;\llci)rt:er bird food sources
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SW6 Winter cover crops FALSE | TRUE None
FG12 Wooden Field Gate FALSE | TRUE None
FG9 Woodland Fencing - Deer FALSE | TRUE None
PA3 Woodland Management plan/per ha TRUE FALSE | Woodland management
and creation
TE4A Woodland Tree Planting - Biodiversity FALSE | FALSE | Woodland management
and creation
TE4D Woodland Tree Planting - Hedges and clumps FALSE | FALSE | Woodland management
and creation
TE4B Woodland Tree Planting - Improving water quality or FALSE | FALSE | Woodland management
reducing flood risk and creation
TE4C Woodland Tree Planting - Restock after a tree health FALSE | FALSE | Woodland management
issue and creation
TE5 Woodland Tree Planting - Treeshelter Supplement FALSE | FALSE | Woodland management
and creation
WD1 Woodland creation - maintenance payments FALSE | FALSE | Woodland management
and creation
WD3 Woodland edges on arable land FALSE | FALSE | Woodland management
and creation
wD2 Woodland improvement FALSE | FALSE | Woodland management
and creation
RP13 Yard - underground drainage pipework FALSE | TRUE None
RP14 Yard inspection pit FALSE | TRUE None

SI Table 2 Environmental Stewardship option codes and descriptions, detailing
which options excluded from AES Measure A and Measure B.

Option title Option code Measure A | Measure | Staley et al. (2021)
exclude B category
exclude
12 m buffer strips for watercourses on HJ9 FALSE FALSE Grass buffer strips or
cultivated land margins
12m buffer strips for watercourses on cultivated | EJ9 FALSE FALSE Grass buffer strips or
land margins
12m buffer strips for watercourses on cultivated | OJ9 FALSE FALSE Grass buffer strips or
land margins
2 m buffer strips on cultivated land HE1 FALSE FALSE Grass buffer strips or
margins
2 m buffer strips on intensive grassland HE4 FALSE FALSE Grass buffer strips or
margins
2m buffer strip on organic grassland OE4 FALSE FALSE Grass buffer strips or
margins
2m buffer strips on cultivated land EE1 FALSE FALSE Grass buffer strips or
margins
2m buffer strips on intensive grassland EE4 FALSE FALSE Grass buffer strips or
margins
2m buffer strips on rotational land OE1 FALSE FALSE Grass buffer strips or
margins
4 m buffer strips on cultivated land HE2 FALSE FALSE Grass buffer strips or
margins
4 m buffer strips on intensive grassland HE5 FALSE FALSE Grass buffer strips or
margins
4 m buffer strips on organic grassland OHE5 FALSE FALSE Grass buffer strips or
margins
4m buffer strip on organic grassland OE5 FALSE FALSE Grass buffer strips or
margins
4m buffer strips on cultivated land EE2 FALSE FALSE Grass buffer strips or
margins
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4m buffer strips on intensive grassland EES FALSE FALSE Grass buffer strips or
margins

4m buffer strips on rotational land OE2 FALSE FALSE Grass buffer strips or
margins

6 m buffer strips on cultivated land HE3 FALSE FALSE Grass buffer strips or
margins

6 m buffer strips on intensive grassland HE6 FALSE FALSE Grass buffer strips or
margins

6 m buffer strips on organic grassland OHE®6 FALSE FALSE Grass buffer strips or
margins

6 m buffer strips on rotational land OHE3 FALSE FALSE Grass buffer strips or
margins

6m buffer strip on organic grassland OE6 FALSE FALSE Grass buffer strips or
margins

6m buffer strip on organic grassland next to a OE10 FALSE FALSE Grass buffer strips or

watercourse margins

6m buffer strips on cultivated land EE3 FALSE FALSE Grass buffer strips or
margins

6m buffer strips on cultivated land next to a EE9 FALSE FALSE Grass buffer strips or

watercourse margins

6m buffer strips on intensive grassland EE6 FALSE FALSE Grass buffer strips or
margins

6m buffer strips on intensive grassland nexttoa | EE10 FALSE FALSE Grass buffer strips or

watercourse margins

6m buffer strips on rotational land OE3 FALSE FALSE Grass buffer strips or
margins

6m buffer strips on rotational land next to a OE9 FALSE FALSE Grass buffer strips or

watercourse margins

ASD to Jan 2010 Nectar flower mixture in HG3 FALSE FALSE Flower rich margins

grassland areas and plots

ASD to Jan 2010 Wild bird seed mixture HG2NR FALSE FALSE Flower rich margins
and plots

ASD to Jan 2010 Wild bird seed mixture HG2 FALSE FALSE Flower rich margins
and plots

ASD to Jan 2010 Wild bird seed mixture in EG2 FALSE FALSE Flower rich margins

grassland areas and plots

ASD to Nov 2010 Access for people with HN5 TRUE TRUE None

reduced mobility

ASD to Nov 2010 Linear and open access base | HN1 TRUE TRUE None

payment

ASD to Nov 2010 Permissive bridleway / cycle HN4 TRUE TRUE None

path access

ASD to Nov 2010 Permissive footpath access HN3 TRUE TRUE None

ASD to Nov 2010 Permissive open access HN2 TRUE TRUE None

ASD to Nov 2010 Upgrading access - people HN7 TRUE TRUE None

with reduced mobility

ASD to Nov 2010 Upgrading access for HN6 TRUE TRUE None

cyclists/horses

Ancient trees in arable fields HC5 FALSE TRUE None

Ancient trees in intensively-managed grass HC6 FALSE TRUE None

fields

Arable reversion by natural regeneration HD7 FALSE FALSE Arable reversion

Beetle banks HF7 FALSE TRUE Beetle bank,
invertebrate and bird
nesting sites

Beetle banks EF7 FALSE TRUE Beetle bank,
invertebrate and bird
nesting sites

Beetle banks OF7 FALSE TRUE Beetle bank,
invertebrate and bird
nesting sites

Beetle banks OHF7 FALSE TRUE Beetle bank,

invertebrate and bird
nesting sites
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Bracken control supplement HR5 FALSE TRUE None

Brassica fodder crops followed by over- HG5 FALSE TRUE Winter stubble

wintered stubbles including following
sileage or fodder
crops

Buffering in-field ponds in arable land EES8 FALSE FALSE Grass buffer strips or
margins

Buffering in-field ponds in arable land HES8 FALSE FALSE Wet grassland

Buffering in-field ponds in arable land HES8 FALSE FALSE Grass buffer strips or
margins

Buffering in-field ponds in improved grassland EE7 FALSE FALSE Grass buffer strips or
margins

Buffering in-field ponds in improved permanent | HE7 FALSE FALSE Grass buffer strips or

grassland margins

Buffering in-field ponds in rotational land OES8 FALSE FALSE Grass buffer strips or
margins

Cattle grazing on upland grassland and uUL18 FALSE FALSE Upland management

moorland

Cattle grazing on upland grassland and UHL18 FALSE FALSE Upland management

moorland

Cattle grazing on upland grassland and UoOL18 FALSE FALSE Upland management

moorland

Cereal headlands for birds HFONR FALSE FALSE Conservation
headlands

Cereal headlands for birds EF9 FALSE FALSE Conservation
headlands

Cereals for whole crop silage followed by over- | EG4 FALSE TRUE Winter stubble

wintered stubbles including following
sileage or fodder
crops

Cereals for whole crop silage followed by over- | OG4 FALSE TRUE Winter stubble

wintered stubbles including following
sileage or fodder
crops

Cereals for whole-crop silage followed by HG4 FALSE TRUE Winter stubble

overwintered stubble including following
sileage or fodder
crops

Cereals for whole-crop silage followed by OHG4 FALSE TRUE Winter stubble

overwintered stubble including following
sileage or fodder
crops

Combined hedge and ditch management EB8 FALSE TRUE Hedge and ditch

(incorporating EB1) management

Combined hedge and ditch management EB9 FALSE TRUE Hedge and ditch

(incorporating EB2) management

Combined hedge and ditch management EB10 FALSE TRUE Hedge and ditch

(incorporating EB3) management

Combined hedge and ditch management OB8 FALSE TRUE Hedge and ditch

(incorporating OB1) management

Combined hedge and ditch management OB9 FALSE TRUE Hedge and ditch

(incorporating OB2) management

Combined hedge and ditch management OB10 FALSE TRUE Hedge and ditch

(incorporating OB3) management

Commons and shared grazing ux1 TRUE TRUE None

Creation of fen HQ8 FALSE FALSE Fen management

Creation of grassland for target features HK17 FALSE FALSE Grassland
management

Creation of inter-tidal and saline habitat by non- | HP9 FALSE TRUE None

intervention

Creation of inter-tidal and saline habitat on HP7 FALSE TRUE None

arable land

Creation of inter-tidal and saline habitat on HP8 FALSE TRUE None

grassland
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Creation of lowland heathland from arable or HO4 FALSE FALSE Lowland heathland

improved grassland management

Creation of lowland heathland on worked HO5 FALSE FALSE Lowland heathland

mineral sites management

Creation of reedbeds HQ5 FALSE FALSE Wet grassland

Creation of species-rich, semi-natural grassland | HK8 FALSE FALSE Species rich
grassland
management

Creation of successional areas and scrub HC17 FALSE FALSE Scrub management

Creation of traditional orchards HC21 FALSE TRUE None

Creation of upland heathland HL11 FALSE FALSE Upland management

Creation of vegetated shingle and sand dune HP4 FALSE FALSE Sand dune

on grassland management

Creation of wet grassland for breeding waders HK13 FALSE FALSE Wet grassland

Creation of wet grassland for wintering waders HK14 FALSE FALSE Wet grassland

and wildfowl

Creation of wood pasture HC14 FALSE FALSE Woodland
management and
creation

Creation of woodland in the SDA HC9 FALSE FALSE Woodland
management and
creation

Creation of woodland outside of the SDA & ML | HC10 FALSE FALSE Woodland
management and
creation

Crop establishment by direct drilling (non- HD6 FALSE TRUE None

rotational)

Crop protection management plan (pre-RDPE) EM4 FALSE TRUE None

Cultivated fallow plots or margins for arable HF20NR FALSE FALSE Threatened and

plants priority species and
habitats

Cultivated fallow plots or margins for arable HF20 FALSE FALSE Threatened and

plants priority species and
habitats

Ditch management EB6 FALSE TRUE Ditch management

Ditch management OB6 FALSE TRUE Ditch management

Earth bank management (both sides) on/above | UB12 FALSE TRUE None

the moorland line

Earth bank management (on both sides) EB12 FALSE TRUE None

Earth bank management (on both sides) OB12 FALSE TRUE None

Earth bank management (on one side) EB13 FALSE TRUE None

Earth bank management (on one side) OB13 FALSE TRUE None

Earth bank management (one side) on/above UB13 FALSE TRUE None

the moorland line

Earth bank restoration UB16 FALSE TRUE None

Educational access - base payment HN8 TRUE TRUE None

Educational access - base payment HN8CW TRUE TRUE None

Educational access - payment per visit HN9 TRUE TRUE None

Educational access - payment per visit HNI9CW TRUE TRUE None

Enclosed rough grazing HL5 FALSE FALSE Grassland
management

Enclosed rough grazing OHL5 FALSE FALSE Grassland
management

Enclosed rough grazing: SDA land & ML ELS FALSE FALSE Grassland

parcels under 15ha management

Enclosed rough grazing:SDA land & ML parcels | OL5 FALSE FALSE Grassland

under 15ha(organic) management

Enhanced management of maize crops to EJ10 FALSE TRUE Undersown spring

reduce erosion and run-off

cereal
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Enhanced strips for target species on intensive | HE11 FALSE FALSE Grass buffer strips or

grassland margins

Enhanced wild bird seed mix plots HF12NR FALSE FALSE Flower rich margins
and plots

Enhanced wild bird seed mix plots HF12 FALSE FALSE Flower rich margins
and plots

Establishment of hedgerow trees by tagging EC23 FALSE FALSE Hedgerow
management

Extended overwintered stubbles EF22 FALSE TRUE Winter bird food
sources

FEP Payment to Party FEP TRUE TRUE None

Farm Environment Record (FER) EA1 TRUE TRUE None

Farm Environment Record (FER) OA1 TRUE TRUE None

Field corner management EF1 FALSE TRUE Field corners

Field corner management OF1 FALSE TRUE Field corners

Field corner management: SDA land ELA1 FALSE TRUE Field corners

Floristically enhanced grass margin HE10 FALSE FALSE Flower rich margins
and plots

Fodder crop management to retain or re-create | HGENR FALSE TRUE None

an arable mosaic

Fodder crop management to retain or re-create | HG6 FALSE TRUE None

an arable mosaic

Grassland and arable uXx2 FALSE FALSE Upland management

Grassland and arable UoXx2 FALSE FALSE Upland management

Grazing supplement for cattle HR1 FALSE TRUE None

Grazing supplement for native breeds at risk HR2 FALSE FALSE Rare breeds grazing

Half ditch management EB7 FALSE TRUE Ditch management

Half ditch management OB7 FALSE TRUE Ditch management

Haymaking UL20 FALSE FALSE Low input grassland

Haymaking UHL20 FALSE FALSE Low input grassland

Haymaking uoL20 FALSE FALSE Low input grassland

Haymaking uoL20 FALSE FALSE Low input grassland

Haymaking UOHL20 FALSE FALSE Low input grassland

Hedgerow management for landscape (on both | EB1 FALSE FALSE Hedgerow

sides of a hedge) management

Hedgerow management for landscape (on both | OB1 FALSE FALSE Hedgerow

sides of a hedge) management

Hedgerow management for landscape (on one EB2 FALSE FALSE Hedgerow

side of a hedge) management

Hedgerow management for landscape (on one OB2 FALSE FALSE Hedgerow

side of a hedge) management

Hedgerow management for landscape and EB3 FALSE FALSE Hedgerow

wildlife management

Hedgerow management for landscape and OB3 FALSE FALSE Hedgerow

wildlife management

Hedgerow restoration UB14 FALSE FALSE Hedgerow
management

Hedgerow restoration EB14 FALSE FALSE Hedgerow
management

Hedgerow restoration uoOB14 FALSE FALSE Hedgerow
management

Hedgerow restoration OB14 FALSE FALSE Hedgerow
management

Hedgerow tree buffer strips on cultivated land EC24 FALSE FALSE Hedgerow
management

Hedgerow tree buffer strips on cultivated land HC24 FALSE FALSE Hedgerow

management
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Hedgerow tree buffer strips on grassland EC25 FALSE FALSE Hedgerow
management

Hedgerow tree buffer strips on grassland HC25 FALSE FALSE Hedgerow
management

Hedgerow tree buffer strips on organic 0C25 FALSE FALSE Hedgerow

grassland management

Hedgerow tree buffer strips on rotational land 0C24 FALSE FALSE Hedgerow
management

Improved land conversion payment ILC FALSE FALSE Grassland
management

In-bye pasture & meadows with very low inputs: | EL3 FALSE FALSE Low input grassland

SDA land

In-bye pasture & meadows with very low inputs: | OL3 FALSE FALSE Low input grassland

SDA land(organic)

In-field grass areas EJ5 FALSE TRUE Grassland erosion
management

In-field grass areas to prevent erosion and run- | OHJ5 FALSE TRUE Grassland erosion

off management

In-field grass areas to prevent erosion or run-off | HJ5 FALSE TRUE Grassland erosion
management

In-field grass areas to prevent erosion or run-off | OJ5 FALSE TRUE Grassland erosion
management

Inundation grassland supplement HQ13 FALSE FALSE Wet grassland

Landscape management HIOS1 FALSE TRUE None

Legume- and herb-rich swards HK21 FALSE FALSE Flower rich margins
and plots

Legume- and herb-rich swards EK21 FALSE FALSE Flower rich margins
and plots

Legume- and herb-rich swards OK21 FALSE FALSE Flower rich margins
and plots

Legume- and herb-rich swards OHK21 FALSE FALSE Flower rich margins
and plots

Low depth, non-inversion cultivation on HD3 TRUE TRUE None

archaeological features

Low depth, non-inversion cultivation on ED3 TRUE TRUE None

archaeological features

Low depth, non-inversion cultivation on OD3 TRUE TRUE None

archaeological features

Low depth, non-inversion cultivation on OHD3 TRUE TRUE None

archaeological features

Low input spring cereal to retain or re-create an | HG7NR FALSE TRUE Low input cereals

arable mosaic

Low input spring cereal to retain or re-create an | HG7 FALSE TRUE Low input cereals

arable mosaic

Maintaining high water levels to protect HD8 TRUE TRUE None

archaeology

Maintaining visibility of archaeological features uUbD13 TRUE TRUE None

on moorland

Maintaining visibility of archaeological features UHD13 TRUE TRUE None

on moorland

Maintaining visibility of archaeological features uoD13 TRUE TRUE None

on moorland

Maintenance of coastal saltmarsh HP5 FALSE TRUE None

Maintenance of designed/engineered water HD9 TRUE TRUE None

bodies

Maintenance of fen HQ6 FALSE FALSE Fen management

Maintenance of grassland for target features HK15 FALSE FALSE Grassland
management

Maintenance of hedges of very high HB12 FALSE FALSE Hedgerow

environmental value (1 side) management

Maintenance of hedges of very high HB11 FALSE FALSE Hedgerow

environmental value (2 sides) management

Maintenance of high value traditional orchards HC18 FALSE TRUE None
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Maintenance of lowland heathland HO1 FALSE FALSE Lowland heathland
management

Maintenance of lowland raised bog HQ9 FALSE FALSE Lowland raised bog

Maintenance of moorland HL9 FALSE FALSE Moor and heath
management

Maintenance of ponds of high wildlife value < HQ1 FALSE FALSE Wet grassland

100 sgm

Maintenance of ponds of high wildlife value > HQ2 FALSE FALSE Wet grassland

100sgm

Maintenance of reedbeds HQ3 FALSE FALSE Wet grassland

Maintenance of remote weatherproof traditional | UD12 TRUE TRUE None

farm buildings

Maintenance of remote weatherproof traditional | UHD12 TRUE TRUE None

farm buildings

Maintenance of rough grazing for birds HL7 FALSE FALSE Grassland
management

Maintenance of sand dunes HP1 FALSE FALSE Sand dune
management

Maintenance of species-rich, semi-natural HK6 FALSE FALSE Grassland

grassland management

Maintenance of successional areas and scrub HC15 FALSE FALSE Scrub management

Maintenance of traditional farm buildings ED1 TRUE TRUE None

Maintenance of traditional farm buildings OD1 TRUE TRUE None

Maintenance of traditional orchards in HC19 FALSE TRUE None

production

Maintenance of traditional water meadows HD10 FALSE FALSE Wet grassland

Maintenance of watercourse fencing HJ11 FALSE TRUE None

Maintenance of watercourse fencing EJ11 FALSE TRUE None

Maintenance of watercourse fencing EJ11 FALSE TRUE None

Maintenance of watercourse fencing OJ11 FALSE TRUE None

Maintenance of weatherproof traditional farm HD1 TRUE TRUE None

buildings

Maintenance of weatherproof traditional farm OHD1 TRUE TRUE None

buildings

Maintenance of wet grassland for breeding HK9 FALSE FALSE Wet grassland

waders

Maintenance of wet grassland for wintering HK10 FALSE FALSE Wet grassland

waders and wildfowl

Maintenance of wood pasture and parkland HC12 FALSE FALSE Woodland
management and
creation

Maintenance of woodland HC7 FALSE FALSE Woodland
management and
creation

Maintenance of woodland fences EC3 FALSE FALSE Woodland
management and
creation

Maintenance of woodland fences 0OC3 FALSE FALSE Woodland
management and
creation

Manage rush pastures: SDA land & ML parcels | EL4 FALSE FALSE Wet grassland

under 15ha management /
Species rich
grassland

Manage rush pastures: SDA land & ML parcels | OL4 FALSE FALSE Wet grassland

under 15ha(organic) management /
Species rich
grassland

Manage rush pastures: outside SDA & ML EK4 FALSE FALSE Wet grassland

management /




95

Species rich
grassland

Manage rush pastures: outside SDA & OK4 FALSE FALSE Wet grassland

ML (organic) management /
Species rich
grassland

Management of archaeological features on HD5 TRUE TRUE None

grassland

Management of archaeological features on ED5 TRUE TRUE None

grassland

Management of archaeological features on OHD5 TRUE TRUE None

grassland

Management of archaeological features on OD5 TRUE TRUE None

grassland

Management of ditches of very high HB14 FALSE TRUE Ditch management

environmental value

Management of enclosed rough grazing for uL22 FALSE TRUE None

birds

Management of enclosed rough grazing for uoL22 FALSE TRUE None

birds

Management of field corners HF1 FALSE TRUE Field corners

Management of field corners OHF1 FALSE TRUE Field corners

Management of heather, gorse and grass HL12 FALSE FALSE Grassland
management

Management of maize crops to reduce soil EJ2 FALSE TRUE Undersown spring

erosion cereal

Management of rare arable bulb/flora HIOS2 FALSE FALSE Threatened and
priority species and
habitats

Management of rush pastures HK4 FALSE FALSE Wet grassland

Management of rush pastures OHK4 FALSE FALSE Wet grassland

Management of rush pastures in SDAs HL4 FALSE FALSE Wet grassland

Management of scrub on archaeological HD4 TRUE TRUE None

features

Management of scrub on archaeological ED4 TRUE TRUE None

features

Management of scrub on archaeological OD4 FALSE TRUE None

features

Management of scrub on archaeological OHD4 FALSE TRUE None

features

Management of upland grassland for birds uL23 FALSE FALSE Grassland
management

Management of upland grassland for birds UHL23 FALSE FALSE Grassland
management

Management of upland grassland for birds uoL23 FALSE FALSE Grassland
management

Management of wood edges 0oC4 FALSE FALSE Grassland
management

Management of woodland edges EC4 FALSE FALSE Woodland
management and
creation

Management of woodland edges HC4 FALSE FALSE Woodland
management and
creation

Management of woodland edges OHC4 FALSE FALSE Woodland
management and
creation

Manure management plan (pre-RDPE) EM3 FALSE TRUE None

Mixed stocking HK5 FALSE FALSE Grassland
management

Mixed stocking EKS TRUE FALSE Grassland

management
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Mixed stocking OK5 FALSE FALSE Grassland
management

Mixed stocking OHK5 FALSE FALSE Grassland
management

Moorland UXx3 FALSE FALSE Moor and heath
management

Moorland UOX3 FALSE FALSE Moor and heath
management

Moorland and rough grazing: ML land only EL6 FALSE FALSE Moor and heath
management

Moorland re-wetting supplement HL13 FALSE FALSE Wet grassland

Nectar Flower mixture EF4ANR FALSE FALSE Pollinator flower and
nectar sources

Nectar Flower mixture OF4NR FALSE FALSE Pollinator flower and
nectar sources

Nectar Flower mixture EF4 FALSE FALSE Pollinator flower and
nectar sources

Nectar Flower mixture OF4 FALSE FALSE Pollinator flower and
nectar sources

Nectar flower mixture HF4NR FALSE FALSE Pollinator flower and
nectar sources

Nectar flower mixture OHF4NR FALSE FALSE Pollinator flower and
nectar sources

Nectar flower mixture HF4 FALSE FALSE Pollinator flower and
nectar sources

Nectar flower mixture OHF4 FALSE FALSE Pollinator flower and
nectar sources

Nil fertiliser supplement HJ8 FALSE TRUE (Supplement to)
Grassland erosion
management

No cutting strip within meadows uL21 FALSE FALSE Flower rich margins
and plots

No cutting strip within meadows UHL21 FALSE FALSE Flower rich margins
and plots

No cutting strip within meadows uoL21 FALSE FALSE Flower rich margins
and plots

No supplementary feeding on moorland uL17 FALSE FALSE Moor and heath
management

No supplementary feeding on moorland UHL17 FALSE FALSE Moor and heath
management

Non payment option - permanent grassland for | A13 FALSE FALSE Grassland

Article 13 management

Non-Organic threshold payment option OPTELSTHR FALSE TRUE None

Non-displayable Organic threshold options OPTOELSTHR | FALSE FALSE Organic management

Organic Management Oou1 FALSE FALSE Organic management

Over-wintered stubbles EF6 FALSE TRUE Winter bird food
sources

Over-wintered stubbles OF6 FALSE TRUE Winter bird food
sources

Overwintered stubble HF6 FALSE TRUE Winter bird food
sources

Overwintered stubble OHF6 FALSE TRUE Winter bird food
sources

Permanent grassland with low inputs HK2 FALSE FALSE Low input grassland

Permanent grassland with low inputs OHK2 FALSE FALSE Low input grassland

Permanent grassland with low inputs in SDAs HL2 FALSE FALSE Low input grassland

Permanent grassland with low inputs: outside EK2 FALSE FALSE Low input grassland

SDA & ML

Permanent grassland with low inputs: outside OK2 FALSE FALSE Low input grassland

SDA & ML(organic)

Permanent grassland with very low inputs HK3 FALSE FALSE Low input grassland

Permanent grassland with very low inputs OHK3 FALSE FALSE Low input grassland
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Permanent grassland with very low inputs in HL3 FALSE FALSE Low input grassland

SDAs

Permanent grassland with very low inputs in OHL3 FALSE FALSE Low input grassland

SDAs

Permanent grassland with very low inputs: EKS3 FALSE FALSE Low input grassland

outside SDA & ML

Permanent grassland with very low OK3 FALSE FALSE Low input grassland

inputs:outside SDA&ML (organic)

Permanent in-bye grassland with low inputs: EL2 FALSE FALSE Low input grassland

SDA land

Permanent in-bye grassland with low inputs: OoL2 FALSE FALSE Low input grassland

SDA land(organic)

Post and wire fencing along watercourses uJ3 FALSE TRUE None

Preventing erosion or run-off from intensively HJ6 FALSE TRUE Grassland erosion

managed grassland management

Protection of in field trees - grassland 0C2 FALSE TRUE None

Protection of in field trees - rotational land OC1 FALSE TRUE None

Protection of in-field trees (arable) EC1 FALSE TRUE None

Protection of in-field trees (grassland) EC2 FALSE TRUE None

Protection of in-field trees on arable land HC1 FALSE TRUE None

Protection of in-field trees on grassland HC2 FALSE TRUE None

Raised water levels supplement HK19 FALSE FALSE Wet grassland

Reduced herbicide cereal crop preceding over- | EF15 FALSE TRUE Winter bird food

wintered stubble sources

Reduced herbicide cereal crops followed by HF15 FALSE TRUE Winter bird food

overwintered stubble sources

Reintroduction of conservation grazing other HIOS4 FALSE FALSE Grassland

than St Mary's management

Reintroduction of conservation grazing to St HIOS3 FALSE FALSE Grassland

Mary's management

Restoration of coastal saltmarsh HP6 FALSE TRUE None

Restoration of fen HQ7 FALSE FALSE Fen management

Restoration of forestry areas to lowland HO3 FALSE FALSE Woodland

heathland management and
creation

Restoration of grassland for target features HK16 FALSE FALSE Grassland
management

Restoration of lowland heath HO2 FALSE FALSE Lowland heathland
management

Restoration of lowland raised bog HQ10 FALSE FALSE Lowland raised bog

Restoration of moorland HL10 FALSE FALSE Moor and heath
management

Restoration of reedbeds HQ4 FALSE FALSE Wet grassland

Restoration of rough grazing for birds HL8 FALSE TRUE None

Restoration of sand dune systems HP2 FALSE FALSE Sand dune
management

Restoration of species-rich, semi-natural HK7 FALSE FALSE Species rich

grassland grassland
management

Restoration of successional areas and scrub HC16 FALSE FALSE Scrub management

Restoration of traditional orchards HC20 FALSE TRUE None

Restoration of wet grassland for breeding HK11 FALSE FALSE Wet grassland

waders.

Restoration of wet grassland for wintering HK12 FALSE FALSE Wet grassland

waders and wildfowl

Restoration of wood pasture and parkland HC13 FALSE FALSE Woodland

management and
creation
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Restoration of woodland HC8 FALSE FALSE Woodland
management and
creation

Reversion to low input grassland to prevent HJ4 FALSE TRUE Grassland erosion

erosion/run-off management

Reversion to unfertilised grassland to prevent HJ3 FALSE FALSE Low input grassland

erosion/run-off

Ryegrass seed-set as winter/spring food for HK20 FALSE TRUE Winter bird food

birds sources

Saltmarsh livestock exclusion supplement HP11 FALSE TRUE None

Seasonal livestock exclusion supplement HL15 FALSE FALSE Grassland
management

Seasonal livestock removal from intensively HJ7 FALSE FALSE Grassland

managed grassland management

Sheep fencing around small woodlands ucs FALSE FALSE Woodland
management and
creation

Sheep fencing around small woodlands uoC5 FALSE FALSE Woodland
management and
creation

Shepherding supplement HL16 TRUE FALSE None

Skylark plots EF8 FALSE TRUE Beetle bank,
invertebrate and bird
nesting sites

Skylark plots HF8 FALSE TRUE Beetle bank,
invertebrate and bird
nesting sites

Soil management plan (pre-RDPE) EM1 FALSE TRUE None

Stone faced Hedge bank management on both | OB4 FALSE TRUE None

sides

Stone faced Hedge bank management on one OB5 FALSE TRUE None

side

Stone faced hedge bank management on both EB4 FALSE TRUE None

sides

Stone faced hedge bank management on one EB5 FALSE TRUE None

side

Stone wall protection and maintenance EB11 TRUE TRUE None

Stone wall protection and maintenance uB11 TRUE TRUE None

on/above the moorland line

Stone wall protection and maintenance UOB11 TRUE TRUE None

on/above the moorland line

Stone wall restoration uB17 TRUE TRUE None

Stone wall restoration uoB17 TRUE TRUE None

Stone-faced hedgebank management (both UB4 FALSE TRUE None

sides) on/above ML

Stone-faced hedgebank management (both uOB4 FALSE TRUE None

sides) on/above ML

Stone-faced hedgebank management (one UB5 FALSE TRUE None

side) on/above ML

Stone-faced hedgebank restoration UB15 FALSE TRUE None

Stonewall protection and maintenance oB11 TRUE TRUE None

Supplement for control of invasive plant species | HR4 FALSE TRUE None

Supplement for difficult sites HR7 FALSE TRUE None

Supplement for extensive grazing on saltmarsh | HP10 FALSE FALSE Wet grassland
management

Supplement for group applications HR8 TRUE TRUE None

Supplement for group applications HR8WF FALSE TRUE None

Supplement for haymaking HK18 FALSE FALSE Low input grassland

Supplement for small fields HR6 FALSE TRUE None
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Supplement to add wildflowers to buffer strips EE12 FALSE FALSE Pollinator flower and

and field corners nectar sources

Supplement to add wildflowers to buffer strips HE12 FALSE FALSE Pollinator flower and

and field corners nectar sources

Supplement to add wildflowers to buffer strips OHE12 FALSE FALSE Pollinator flower and

and field corners nectar sources

Supplementary feeding in winter for farmland HF24 FALSE TRUE Winter bird food

birds sources

Supplementary feeding in winter for farmland EF23 FALSE TRUE Winter bird food

birds sources

Supplementary feeding in winter for farmland OF23 FALSE TRUE Winter bird food

birds sources

Take archaeological features out of cultivation HD2 TRUE TRUE None

Take archaeological features out of cultivation ED2 TRUE TRUE None

Take archaeological features out of cultivation OoD2 FALSE TRUE None

Take archaeological features out of cultivation OHD2 TRUE TRUE None

(Org)

Take field corners out of management HK1 FALSE TRUE Field corners

Take field corners out of management OHK1 FALSE TRUE Field corners

Take field corners out of management in SDAs | HL1 FALSE TRUE Field corners

Take field corners out of management: outside EK1 FALSE TRUE Field corners

SDA & ML

Take field corners out of management: outside | OK1 FALSE TRUE Field corners

SDA & ML(organic)

Top fruit orchards conversion payment TFC FALSE TRUE None

Uncropped cultivated areas for ground-nesting HF13NR FALSE FALSE Fallow plots for

birds - arable ground-nesting birds

Uncropped cultivated areas for ground-nesting HF13 FALSE FALSE Fallow plots for

birds - arable ground-nesting birds

Uncropped cultivated areas for ground-nesting EF13 FALSE FALSE Fallow plots for

birds - arable ground-nesting birds

Uncropped cultivated areas for ground-nesting OF13 FALSE FALSE Fallow plots for

birds - rotational ground-nesting birds

Uncropped, cultivated areas for ground-nesting | OHF13 FALSE FALSE Fallow plots for

birds ground-nesting birds

Uncropped, cultivated margins for rare plants HF11 FALSE FALSE Threatened and
priority species and
habitats

Uncropped, cultivated margins for rare plants OHF11 FALSE FALSE Threatened and
priority species and
habitats

Uncropped, cultivated margins for rare plants EF11 FALSE FALSE Threatened and

on arable land priority species and
habitats

Under sown spring cereals EG1 FALSE TRUE Undersown spring
cereal

Under sown spring cereals 0OG1 FALSE TRUE Undersown spring
cereal

Undersown spring cereals HG1 FALSE TRUE Undersown spring
cereal

Undersown spring cereals OHGH1 FALSE TRUE Undersown spring
cereal

Unenclosed moorland rough grazing HL6 FALSE TRUE Undersown spring
cereal

Unharvested cereal headlands for birds and HF10NR FALSE TRUE Winter bird food

rare arable plants sources

Unharvested cereal headlands for birds and HF10 FALSE TRUE Winter bird food

rare arable plants sources

Unharvested cereal headlands for birds and EF10 FALSE TRUE Winter bird food

rare arable plants sources

Unharvested, fertiliser-free conservation HF14NR FALSE FALSE Conservation

headland headlands
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Unharvested, fertiliser-free conservation HF14 FALSE FALSE Conservation

headland headlands

Wetland cutting supplement HQ11 FALSE FALSE Wet grassland

Wetland grazing supplement HQ12 FALSE FALSE Wet grassland

Wild bird seed mixture HF2NR FALSE FALSE Flower rich margins
and plots

Wild bird seed mixture EF2NR FALSE FALSE Flower rich margins
and plots

Wild bird seed mixture OF2NR FALSE FALSE Flower rich margins
and plots

Wild bird seed mixture EF2 FALSE FALSE Flower rich margins
and plots

Wild bird seed mixture HF2 FALSE FALSE Flower rich margins
and plots

Wild bird seed mixture OF2 FALSE FALSE Flower rich margins
and plots

Wild bird seed mixture OHF2 FALSE FALSE Flower rich margins
and plots

Winter cover crops EJ13 FALSE TRUE None

Winter cover crops HJ13 FALSE TRUE None

Winter cover crops 0OJ13 FALSE TRUE None

Winter livestock removal next to streams, rivers | UJ12 FALSE TRUE None

and lakes

Winter livestock removal next to streams, rivers | UHJ12 FALSE TRUE None

and lakes

Woodland livestock exclusion uc22 FALSE FALSE Woodland
management and
creation

Woodland livestock exclusion UHC22 FALSE FALSE Woodland
management and
creation

Woodland livestock exclusion supplement HC11 FALSE FALSE Woodland

management and
creation




