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Abstract

Glioblastoma is a highly aggressive brain tumour with a poor prognosis and inevitable recurrence
following standard treatment. Understanding the molecular basis of treatment resistance and
tumour progression is critical to improving therapeutic outcomes. This PhD thesis aimed to explore
the genetic and epigenetic evolution of GBM through three phases: optimisation of sequencing
pipelines, identification of altered biological pathways under therapeutic pressure, and DNA

methylation profiling of recurrent disease.

In the first phase, whole-exome and whole-genome sequencing pipelines were optimised for use with
challenging clinical material, including FFPE-derived samples. Custom adjustments, including the
correction of overlapping read pairs and mitigation of FFPE artefacts, significantly improved variant

calling accuracy and tumour mutational burden estimation.

The second phase focused on uncovering treatment-associated pathway alterations using paired
primary and recurrent GBM samples from 2 cohorts. By tracking changes in variant allele frequency
pre- and post-treatment, | identified variants either selected for or against by therapy. Pathway
analysis using PathScore revealed several significant biological pathways under selection pressure,
notably involving the ERBB signalling family. Disruption of ERBB4 signalling was associated with
treatment sensitivity, suggesting that its inhibition may enhance therapeutic efficacy in a subset of

patients.

The final phase applied genome-wide DNA methylation profiling using Illumina Infinium arrays.
Although recurrence-associated changes were subtle at the cohort level, stratification by JARID2-
related transcriptional response revealed subtype-specific epigenetic dynamics. A quadrant-based
analysis highlighted greater methylation shifts in Down responders, potentially reflecting adaptive

responses to treatment.

Altogether, this work provides insight into GBM evolution under therapy, demonstrating how both
genetic and epigenetic shifts contribute to recurrence. The identification of ERBB4 signalling as
potentially associated with treatment sensitivity highlights a candidate pathway that warrants further
functional validation. Future work, including targeted experimental studies of ERBB4 function,
alongside single-cell and spatial profiling, may reveal actionable therapeutic insights and refine

strategies to overcome treatment resistance.
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CHAPTER 1

1.1 Glioblastoma

1.1.1 Overview

Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumour in adults,
accounting for the majority of glioma-related deaths and a significant portion of all primary brain
tumours (Ramirez et al., 2013, Perry and Wesseling, 2016). It is classified by the World Health
Organisation (WHO) as a grade IV astrocytoma, which reflects its high level of malignancy,
characterised by rapid growth, necrosis, and microvascular proliferation (Philips et al., 2018, Hanif
et al., 2017). GBM belongs to the family of diffuse gliomas, which infiltrate surrounding brain tissue,
making them particularly difficult to remove surgically (Perry and Wesseling, 2016, Ostrom et al.,

2014).

Although GBM is relatively rare compared to other cancers, it has one of the worst prognoses. It is
the most common primary malignant brain tumour in adults, accounting for approximately 45% of
all primary malignant brain and central nervous system (CNS) tumours. The age-adjusted incidence
rate is about 3 per 100,000 population per year, and the incidence increases markedly with age from
around 1 per 100,000 in individuals under 40 years to over 10-15 per 100,000 in those above 75
years (Philips et al., 2018, Tamimi AF, 2017, Brodbelt et al., 2015, Ostrom et al., 2019). Males are
affected more frequently than females. GBM is most often diagnosed in older adults, with a median
age at diagnosis of around 64-65 years as shown in Figure 1-1 (Wen et al., 2021, Grochans et al.,

2022).

The clinical presentation varies but often includes headaches, seizures, cognitive decline, or focal
neurological symptoms (Wen et al., 2020, Chang et al., 2005). Diagnosis typically involves imaging,
especially contrast-enhanced MRI, followed by histopathological and molecular analysis of a biopsy
or resected tissue (Gilard et al., 2021). Even with aggressive treatment—usually combining surgical
resection, radiotherapy, and chemotherapy—median overall survival is just 12 to 15 months, with a

five-year survival rate under 7% (Philips et al., 2018, Tamimi AF, 2017).
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Figure 1-1: Age-adjusted and age-specific incidence rates for glioblastoma

*Adopted from (Tamimi AF, 2017), published under the Creative Commons Attribution 4.0
International (CC BY 4.0). https://creativecommons.org/licenses/by-nc/4.0/.

1.1.2 Types of GBM

GBMs can be divided into two main categories: primary GBMs, which arise de novo without any
evidence of a precursor lesion, and secondary GBMs, which progress from lower-grade astrocytomas
(grade Il or IIl) (Alireza Mansouri, 2017, Ohgaki and Kleihues, 2013). Primary GBMs account for the
majority of cases (~90%) and tend to occur in older adults (mean age ~62), whereas secondary GBMs
are more often found in younger individuals (mean age ~45) (Alireza Mansouri, 2017, Ohgaki and

Kleihues, 2013).

Although they appear histologically similar, the two types differ at the molecular level. Primary GBMs
are usually IDH-wildtype and frequently show amplification of EGFR, MDM2, loss of heterozygosity
on chromosome 10q, and loss of function mutations in PTEN (Ohgaki and Kleihues, 2007, Crespo et
al., 2015). Secondary GBMs are typically IDH-mutant and are associated with mutations
in TP53 and RB, as well as LOH on chromosomes 17p and 19q (Ohgaki and Kleihues, 2007, Crespo et
al., 2015).

This molecular distinction has become central to the classification system introduced by the WHO,

which now emphasises IDH mutation status over clinical history (Dymova et al., 2021, Hanif et al.,
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2017). According to this framework, only IDH-wildtype astrocytomas with grade IV features are now

labelled as GBM.

Despite increasing knowledge about the molecular subtypes of GBM, treatment remains largely
uniform across patients. All patients, regardless of subtype, are offered the standard of care: surgical
resection followed by radiotherapy and temozolomide chemotherapy (Wen et al., 2020, Dymova et
al., 2021). One molecular marker that does inform therapy is methylation of the O-6-methylguanine-
DNA methyltransferase (MGMT) promoter. When methylated, the promoter
silences MGMT expression, reducing tumour cells’ ability to repair the DNA damage caused by

temozolomide, thereby improving treatment response (Hegi et al., 2005).

1.1.3 Recurrence

Recurrence is a near-universal feature of GBM and remains one of the most difficult challenges in its
treatment. Even with maximal standard therapy, tumours typically recur within 69 months (Stupp
et al., 2005). In approximately 80% of patients, recurrence occurs close to the original resection site,
suggesting that residual infiltrative cells are responsible (Birzu et al., 2020). Recurrent GBMs are
often more aggressive, more treatment-resistant, and harder to manage. Less than half of patients
are eligible for repeat surgery, and the survival benefit is modest—typically extending life by just 5
to 11 months (Ringel et al., 2016, Barbagallo et al., 2008, Suchorska et al., 2016, Woodroffe et al.,
2020).

Over time, GBMs undergo significant molecular evolution. They become more genetically diverse
and often acquire new mutations between diagnosis and recurrence. Multiple studies have shown
that different regions of the same tumour can harbour distinct mutations and expression patterns,
a concept known as intratumoural heterogeneity (ITH) (Sottoriva et al., 2013). This heterogeneity

makes GBMs highly adaptable and contributes to therapy resistance.

Recent advances such as single-cell RNA sequencing have revealed that GBM cells exist in multiple
transcriptional states and are capable of transitioning between them in response to treatment or
environmental stress (Neftel et al., 2019). These findings provide insight into why GBM recurs and

why existing treatments fail to provide long-term disease control.

Treatment options for recurrent GBM remain limited. While re-operation or re-irradiation may be

considered in selected cases, these are not viable for all patients. Other therapies, such as
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bevacizumab or lomustine, offer only modest benefit, and clinical trial enrolment is often the most
realistic option (Wen et al., 2020, Gilbert, 2011). Unlike TMZ, which primarily methylates DNA,
lomustine is a nitrosourea that also works as an alkylating agent, but its mechanism of action is
distinct as it forms DNA interstrand cross-links, which are particularly difficult for tumour cells to
repair (Weller and Le Rhun, 2020). In contrast, bevacizumab is a monoclonal antibody that targets
vascular endothelial growth factor (VEGF), a key signalling protein in the formation of new blood
vessels (angiogenesis). By inhibiting VEGF, bevacizumab effectively starves the tumour of its blood

supply, thereby slowing its growth rather than directly causing cell death (Garcia et al., 2020).

Given the inevitability of recurrence and the lack of curative treatments, understanding how GBM
evolves—and how heterogeneity shapes this evolution—is critical. This thesis focuses specifically on
IDH-wildtype GBM and investigates the molecular and epigenetic changes that occur between
primary and recurrent disease, with the aim of contributing to a better understanding of treatment

resistance and tumour progression.

1.2 Treatment of Glioblastoma

1.2.1 Standard Therapy

The current standard of care for glioblastoma was established nearly two decades ago and remains
largely unchanged since the introduction of the Stupp protocol in 2005 (Stupp et al., 2005, Wang et
al., 2021). This approach combines maximal safe surgical resection, followed by radiotherapy and
concomitant temozolomide (TMZ) chemotherapy, with additional adjuvant TMZ cycles (Wang et al.,

2021).

Surgical resection is typically performed within two weeks of diagnosis and aims to remove as much
of the tumour as possible without causing neurological damage (Muller et al., 2021). Techniques
such as awake craniotomy and fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) are
often employed to enhance tumour visibility and maximise resection margins (Zhang et al., 2020,
Hadjipanayis and Stummer, 2019). Despite these efforts, infiltrative tumour cells inevitably remain

in the brain tissue surrounding the resection cavity (Berens and Giese, 1999).

Following surgery, patients receive radiotherapy in daily fractions, delivered over a period of six
weeks. Concurrently, TMZ is administered daily during the radiotherapy period (Wang et al., 2021).
After a four-week break, patients begin adjuvant TMZ treatment (Stupp et al., 2005, Bjorland et al.,
2021).
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TMZ is an oral alkylating agent that readily crosses the blood-brain barrier due to its small, lipophilic
structure (Arora and Somasundaram, 2019). At physiological pH, TMZ rapidly degrades into the
active metabolite MTIC (5-(3-methyltriazen-1-yl)-imidazole-4-carboxamide), which then produces a
methyl-diazonium ion. This highly reactive species methylates DNA at several sites, including N7 and
06 of guanine, and N3 of adenine (Arora and Somasundaram, 2019, Strobel et al., 2019). Among
these, methylation at the 06 position of guanine (06-MeG) is the most cytotoxic, as it results in
replication errors and eventually triggers apoptosis through persistent mismatch repair cycles

(Nagasaka et al., 2008, Thomas et al., 2017) Figure 1-2.

Despite its effectiveness in some patients, TMZ has limitations. Its short half-life (~1.9 hours) (Baker
et al., 1999) and reliance on tumour sensitivity mean that not all patients benefit equally. The most
consistent predictor of TMZ responsiveness is the methylation status of the MGMT promoter. When
methylated, MGMT expression is suppressed, allowing O6-MeG lesions to persist and exert cytotoxic
effects. Conversely, unmethylated MGMT allows the tumour to repair TMZ-induced damage, making

the drug less effective (Sciuscio et al., 2011, Kitange et al., 2009).

Nonetheless, all patients are offered TMZ regardless of MGMT status, as responses are still
occasionally seen in patients with unmethylated promoters (Weller et al., 2010). This may be due to
variation in test sensitivity or tumour heterogeneity, which complicates accurate MGMT status

determination (Choi et al., 2021).
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Figure 1-2: Temozolomide mechanism of action and resistance pathways in glioblastoma treatment.

TMZ is the standard chemotherapeutic agent used to treat glioblastoma. It induces DNA damage by
adding a methyl group to the 06 position of guanine. In tumours with a methylated MGMT promoter,
expression of the MGMT repair enzyme is reduced, allowing these methyl lesions to persist. During DNA
replication, this leads to mismatches (G:C to A:T), which are detected by the mismatch repair (MMR)
system. In MMR-proficient tumours, repeated attempts to correct the damage cause DNA double-strand
breaks, leading to cell death and radiological condition known as pseudoprogression. However, MMR-
deficient tumours tolerate these mismatches, enabling survival and promoting temozolomide-induced
hypermutation. Tumours with an unmethylated MGMT promoter express active MGMT, which reverses
the DNA methylation and confers resistance to TMZ.

*Adopted from (Gaillard, 2024)

1.2.2 Other Therapeutics

Despite numerous attempts to introduce new therapies for GBM, no alternative has demonstrated
a clear clinical benefitin large-scale trials. Dozens of targeted agents, immunotherapies, and
experimental drugs have progressed through early-phase clinical trials only to fail in phase lll
(Mandel et al., 2018). This lack of progress has been attributed to factors including poor translation

from preclinical models, inter-patient variability, and the underlying heterogeneity of GBM (Bagley

et al,, 2022).
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Some chemotherapeutic agents, such as etoposide and procarbazine, are still occasionally used in
the recurrent setting, but there is no strong evidence that they improve survival outcomes in GBM
(Wen et al.,, 2020). While both are chemotherapies, they have distinct mechanisms of action.
Etoposide is a topoisomerase Il inhibitor. It interferes with this enzyme, which is critical for DNA
replication and repair, leading to DNA strand breaks and ultimately programmed cell death
(Montecucco et al., 2015, Sevim et al.,, 2011). Procarbazine, in contrast, is a prodrug that is
metabolised into an active alkylating agent. This agent primarily methylates DNA, similar to
temozolomide, and also inhibits DNA, RNA, and protein synthesis, contributing to its cytotoxic effects

(Kaina, 2023).

Similarly, targeted approaches such as Epidermal Growth Factor Receptor (EGFR) inhibitors, CAR-T
cells, and vaccines targeting EGFRvIII (EGFR variant lll, an isoform of EGFR with an in-frame deletion
of exons 2-7) have shown initial promise, but ultimately failed due to mechanisms of adaptive
resistance (O'Rourke et al.,, 2017, Nathanson et al.,, 2014). In many of these cases, tumours
responded by eliminating or downregulating the targeted proteins, escaping the intended

therapeutic effect (Brastianos et al., 2017).

1.2.3 Resistance

Resistance to standard treatment is one of the defining features of glioblastoma and the primary
reason for its poor long-term prognosis. Although temozolomide increases survival by an average of
2-3 months, the majority of patients eventually relapse, and the disease becomes progressively

harder to treat (Berens and Giese, 1999, Bjorland et al., 2021).

Mechanisms of resistance are multifactorial. At the molecular level, DNA repair pathways such
as MGMT, mismatch repair (MMR), and base excision repair (BER) play important roles in
diminishing TMZ efficacy (Lee, 2016). MGMT is the most prominent factor, but other contributors
include epigenetic regulation, histone modifications, and miRNA-mediated silencing (Oldrini et al.,

2020, Uno et al., 2011).

Interestingly, recent studies using matched primary and recurrent tumour samples have shown
that genetic resistance mechanisms are relatively rare in GBM. Instead, many researchers now
believe that transcriptional plasticity and cell state changes are the primary drivers of therapy

resistance (Barthel et al., 2019, Neftel et al., 2019). Single-cell and lineage tracing studies have shown
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that GBM cells can switch into slow-cycling, drug-tolerant states, often involving chromatin

remodelling and developmental reprogramming (Eyler et al., 2020, Banelli et al., 2015).
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Figure 1-3: Models of cancer treatment resistance

Upon exposure to therapy, most cancer cells are eliminated, but a small subset can survive and
eventually drive tumour relapse through distinct mechanisms.

(A) In the first scenario, treatment-resistant clones already exist before therapy begins. These genetically
distinct subpopulations are not affected by the drug and expand over time, leading to recurrence.

(B) In the second scenario, no resistant mutations are initially present. However, a small number of drug-
tolerant cells persist through a reversible, non-genetic state.

(C) These surviving cells can later acquire resistance through genetic mutations or non-genetic
adaptations, enabling tumour regrowth.

*Adopted from (De Conti et al., 2021), published under the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).

In these cases, resistance arises not from a single mutation but from adaptive survival strategies,
allowing a small subpopulation of tumour cells to persist during treatment and later repopulate the
tumour. This transition appears to be reversible in some settings, while in others, persistent

epigenetic changes lead to stable, fully resistant clones (Rabe et al., 2020).

Given this complexity, resistance in GBM is not well explained by simple mutational profiles. Instead,

it's likely to involve a combination of mild genetic selection and strong transcriptional adaptation,
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particularly in response to standard therapy. This highlights the need to study paired samples across

disease progression, which is one of the major motivations for the work presented in this thesis.

1.3 Intratumoural Heterogeneity in Glioblastoma

Glioblastoma (GBM) is not a uniform entity. One of the major reasons it remains so difficult to treat
lies in its remarkable intratumour heterogeneity (ITH) — the coexistence of genetically and
phenotypically distinct cell populations within a single tumour (Eder and Kalman, 2014, Dymova et
al., 2021). This diversity allows some subpopulations of tumour cells to evade treatment, survive,

and ultimately drive recurrence, often in a more resistant and aggressive form.

ITH in GBM is observed at multiple levels. It includes differences in morphology (such as small vs.
large anaplastic cells), molecular profiles (gene expression and mutations), and cellular identity (e.g.
tumour cells, vascular cells, and immune cells, Figure 1-4) (Becker et al., 2021). These differences
often result in distinct subclones within a tumour, each with its own set of genomic and
transcriptomic alterations. Importantly, these subclones are not always evenly distributed; cells
located in one region of the tumour can differ significantly from those in another, leading to sampling

bias and challenges in accurately profiling the tumour as a whole (Eder and Kalman, 2014).

ITH is further complicated by the dynamic nature of tumour progression. Even if a particular clone is
targeted by therapy, others may survive and expand. This clonal replacement is a key driver
of treatment resistance and recurrence (Bergmann et al., 2020, Friedmann-Morvinski, 2014).
Understanding how this heterogeneity emerges and evolves is essential to developing more

effective, long-lasting treatment strategies.

Chapter 1 9



Invasion Border Tumor Core
r 1
Collective Invasion

NEU-like

NPC-like

OPC—like
[ > = o8 .’ -
praer b —_ . PC-like
o = T GPC-li

> MES-like )
AC-llke
_ Cilia-like
Hypoxia

* NEU-like » Neuronal-like
* NPC-like » Neural Progenitor Cell-like

Porteascular ~ 4.
'"“‘
\

e O * OPC-like » Oligodendrocyte Progenitor Cell-like
y 4 ‘% e e @ * GPC-like » Glial Progenitor Cell-like

- ‘ +  MES-like > Mesenchymal-like

Portvnculle £ cen  Tumor Anociated  Myeloud derived o ot . .
Meserchymal ced Macophages  Seepreor ceds * AC-like 2 Astrocyte-like

- - X @ + Cilia-like > Ciliated-cell-like
* Hypoxia @ Hypoxia-associated state

Figure 1-4: Heterogeneity in glioblastoma tumours.

Panel A: ITH IN GBM TUMOURS. This diagram provides a schematic overview of the complex spatiotemporal
intratumoural heterogeneity of GBM. The main body of the figure highlights key histological and dynamic
characteristics. Pathological hallmarks include areas of pseudopalisading necrosis, characterised by a garland-
like arrangement of tumour cells at the edge of necrotic regions. The tumour microenvironment (TME) also
features vascular abnormalities, such as endothelial hyperplasia and microvascular proliferation. Cellular
diversity is further shown by the presence of large, pleomorphic glioma cells. The diagram illustrates how this
heterogeneity extends to tumour cell movement, with different migratory patterns including collective invasion,
single-cell invasion, and perivascular invasion at the tumour-brain interface. The bottom panel emphasises the
striking cellular heterogeneity of the TME, which is comprised of both malignant and non-malignant cells. This
diverse cellular ecosystem includes normal brain residents (e.g., astrocytes, microglia), endothelial cells from
the vasculature, and infiltrating immune cells, with a prominent presence of tumour-associated macrophages
(TAMs). This multifaceted composition at the histological, cellular, and dynamic levels is central to understanding
GBM's complexity.

*Adopted from (Comba et al, 2021) under the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

Panel B: Heterogeneity amongst GBM cancer cells. This diagram presents a model of GBM cellular states,
providing insight into the organisation and dynamics of intratumour heterogeneity within the malignant cell
population. The model was constructed using single-nucleus RNA sequencing (snRNA-seq) to identify "high-
frequency hybrid states," which are thought to represent cancer cells in transition between different identities.
Each vertex (circle) in the diagram represents a distinct cellular state, and the connections between them
represent these frequent hybrid states. This arrangement reveals a hierarchy of heterogeneity, where
progenitor-like states (e.g., GPC-like) are located in the centre. This central position suggests they have the
potential to differentiate into multiple specialised states (e.g., NEU-like, AC-like, MES-like) which are positioned
at the edges of the model. This model provides a "multilayered transcriptional architecture of GBM"

*Adopted from (Nomura et al., 2025) under the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1.3.1 Tumour Evolution and Models of Heterogeneity

Several models have been proposed to explain how ITH arises in GBM. The clonal evolution
model suggests that normal cells acquire successive mutations over time, giving rise to increasingly
aggressive subclones that adapt to environmental pressures like hypoxia, immune surveillance, and
therapy (Noch et al., 2018). Selective pressures allow fitter clones to dominate while others die off,
but many genetically distinct subclones can still coexist in the tumour at any one time (Dymova et

al., 2021).

An alternative theory is the cancer stem cell (CSC) model, where a smaller subset of stem-like tumour
cells drives tumour growth and gives rise to a hierarchy of cell types through asymmetric division
(Minata et al., 2019). These CSCs can both self-renew and differentiate, contributing to both inter-
and intra-tumoural diversity. While the CSC model explains phenotypic variation and plasticity, it
does not fully account for the complex clonal architectures observed in GBM, particularly those

emerging after treatment.

In practice, evidence suggests that both models may coexist in GBM, with clonal evolution explaining
the accumulation of mutations and CSCs contributing to functional heterogeneity and adaptability

(Ramén y Cajal et al., 2020).

1.3.2 Genomic Alterations Contributing to ITH

At the genetic level, several types of alterations underlie the subclonal architecture in GBM.
Somatic Mutations (SNVs, Indels):

Point mutations and small insertions/deletions (indels) accumulate as tumours evolve. Commonly
mutated genes in GBM include TP53, PTEN, NF1, EGFR, and TERT promoter regions (Gan et al., 2013,
Olympios et al., 2021). Many of these mutations arise early and are clonal, but additional mutations
occur subclonally over time, leading to spatially distinct profiles. Whole-genome sequencing from
primary and recurrent GBM samples has shown that most point mutations are retained over time,

but a subset of subclonal variants can emerge or disappear between timepoints (Korber et al., 2019).

Structural Variants and Copy Number Alterations:
Large-scale chromosomal alterations also play a major role in ITH. These include chromosome 7 gain
and/or chromosome 10 loss, found in almost all IDH-wildtype GBMs, and focal amplifications of

oncogenes like EGFR and PDGFRA (Wemmert et al., 2005, Louis et al., 2021, Korber et al., 2019). In
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some cases, chromothripsis—a catastrophic chromosomal shattering and rearrangement event—
can drive complex genomic rearrangements that produce sudden bursts of heterogeneity (Korber et

al., 2019).

A significant structural feature contributing to GBM heterogeneity is the presence
of extrachromosomal DNA (ecDNA). These circular DNA elements often carry amplified oncogenes
such as EGFR and allow for highly variable copy number and uneven segregation during cell division,

which fuels rapid subclonal diversification (Nathanson et al., 2014).

Epigenetic Alterations:

In addition to genetic mutations, epigenetic changes like DNA methylation contribute to ITH.
Aberrant methylation patterns, such as promoter hypermethylation of MGMT, can influence
response to treatment and may vary across tumour regions (Rippaus et al., 2019). More broadly,
epigenetic alterations impact gene expression and chromatin state and may drive tumour cell
identity and state transitions even in the absence of genetic changes. Importantly, studies have
shown that epigenetic profiles (including methylation and histone modifications) are also

heterogeneous across different tumour regions and persist through recurrence (Spitzer et al., 2025).

1.3.3 Evidence from Matched and Single-Cell Studies

Several recent studies have used multi-region sampling and single-cell approaches to map ITH in
GBM more precisely. For example, Korber et al. (2019) performed whole-genome sequencing on
matched primary and recurrent tumours and found that in most cases, no single subclone was
selected through treatment — instead, clonal architecture was largely retained (Figure 1-5),

suggesting that no strong genetic bottleneck occurs during recurrence (Korber et al., 2019).
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Figure 1-5: Clonal evolution and subclonal persistence in GBM.

This schematic illustrates the progression of glioblastoma from tumour initiation to recurrence. Individual
subclones are represented by varying shades of yellow to red, originating from a most recent common ancestor
(MRCA). Early driver events, such as chromosome 7 gain and loss of 9p or 10q, initiate tumour growth, followed
by clonal selection events (e.g., TERT promoter mutations) and subclonal diversification. Profiling matched
primary (P) and recurrent (R) tumours reveals that many subclones persist through therapy, supporting a model
of minimal clonal selection during recurrence and limited treatment-induced bottlenecks.

*Adopted from (Korber et al., 2019) with permission from Elsevier (License number: 6074780895426).

A more recent study by (Spitzer et al., 2025) used single-cell longitudinal analysis to trace clonal
trajectories in IDH-wildtype GBM (Figure 1-6). Although they found no universal genetic drivers of
recurrence, they observed that certain low-frequency deletions and small alterations were
associated with specific transcriptional programs related to treatment response. This indicates

that even subtle genetic changes can shape cellular behaviour in a heterogeneous context.
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Figure 1-6: Single-cell longitudinal analysis reveals diverse transcriptional trajectories in glioblastoma following
treatment.

This figure summarises key findings from (Spitzer et al., 2025), who profiled matched primary and recurrent IDH-
wildtype glioblastoma samples using single-nucleus RNA sequencing (snRNA-seq) as part of the GBM CARE
consortium. By quantifying changes in malignant and nonmalignant cell fractions and transcriptional states, they
identified three major patterns in post-treatment tumour evolution:

(1) A consistent reduction in the malignant cell fraction at recurrence, accompanied by increased glial and neuronal
(glio-neural) components within the tumour microenvironment.

(2) Highly variable, patient-specific shifts in malignant cell states, without a universally conserved recurrence
trajectory.

(3) More predictable trajectories in subsets of patients, including a reduction in mesenchymal-like (MES-like) states
in MGMT-methylated tumours and an increase in hypoxia-associated states in tumours with elevated small deletion
burden following treatment.

Malignant states shown include neural progenitor cell-like (NPC), oligodendrocyte progenitor cell-like (OPC), MES-
like (MES), hypoxia-associated (Hyp), and astrocyte-like (AC) populations.

*Adopted from (Spitzer et al., 2025), published under the Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Other studies, including initiatives from the Pancancer Analysis of Whole Genomes (PCAWG) and
TRAcking Cancer Evolution through therapy (TRACERx), have also shown that high ITH correlates
with poor prognosis across many cancers. In GBM, however, the situation is more nuanced — genetic
ITH is often preserved across recurrence, and resistance appears to be driven more by transcriptional

plasticity than by clonal selection (Barthel et al., 2019, Wang et al., 2016b).

Previous studies have revealed that GBM recurrence often lacks a clear genetic bottleneck,
with clonal architecture largely preserved over time. However, subtle genetic alterations,
particularly in non-coding regions or subclonal populations, may still influence tumour
evolution and therapy response. At the same time, transcriptional reprogramming and

epigenetic adaptation appear to play a significant role in recurrence.

In this thesis, | examine paired primary and recurrent GBM samples using both whole
genome/exome sequencing (WGS/WES) and DNA methylation arrays. This dual approach
allows me to capture both clonal and subclonal genetic changes (e.g., SNVs, indels, CNVs)
and epigenetic alterations (e.g. promoter methylation, pathway-level changes). By
integrating these layers of information, the work aims to clarify how tumours evolve across

treatment and identify converging biological programs that contribute to recurrence.

1.4 Tumour Cell Plasticity

While intratumour heterogeneity (ITH) describes the coexistence of distinct cell populations within
a tumour, plasticity refers to the ability of individual tumour cells to transition between different
phenotypic states. In glioblastoma (GBM), this plasticity adds a further layer of complexity, allowing
cells to adapt dynamically in response to environmental cues, including therapy. This capacity
for transcriptional reprogramming, even in the absence of new genetic mutations, has emerged as a

key mechanism underlying tumour progression and treatment resistance.

The distinction between heterogeneity and plasticity is crucial. ITH can arise through either clonal
evolution or the coexistence of functionally distinct cell states, but plasticity allows these states
to interconvert, enabling tumour cells to evade selective pressures such as hypoxia, immune
surveillance, or chemotherapy (Neftel et al., 2019). In other words, while ITH explains a snapshot of

the tumour, plasticity helps explain how it changes.
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1.4.1 Evidence of Plasticity in GBM

Compelling evidence for plasticity in GBM comes from single-cell transcriptomic studies. A landmark
study by Neftel et al. (2019) used single-cell RNA sequencing of IDH-wildtype GBMs and identified
four main transcriptional states: neural progenitor-like (NPC-like), oligodendrocyte progenitor-like
(OPC-like), astrocyte-like (AC-like), and mesenchymal-like (MES-like). Cells within a single tumour
could occupy any of these states, and transition between them, suggesting dynamic plasticity rather

than fixed subclonal identity (Neftel et al., 2019).

Importantly, these cellular states correlate with tumour subtypes: for example, AC-like cells are
enriched in classical GBMs, while MES-like cells dominate mesenchymal subtypes (Neftel et al.,
2019). Yet, individual cells can shift between states depending on microenvironmental signals, such
as hypoxia or inflammation. Lineage tracing experiments confirmed that each state has tumour-
initiating capacity, and when isolated and transplanted, can regenerate the full spectrum of cellular

diversity, reinforcing the concept of reversible plasticity (Neftel et al., 2019).

1.4.2 Adaptive Resistance and Therapy Response

Plasticity has been increasingly implicated in adaptive resistance to therapy. While many cancers
show selection for resistant genetic subclones, recent work in GBM suggests that resistance often
occurs without major changes in the mutational landscape (Korber et al., 2019, Barthel et al., 2019).

Instead, tumour cells adapt by shifting into slow-cycling, drug-tolerant cell states.

In one study, slow-cycling persistent cells emerged after treatment with PDGFR inhibitors and
exhibited a reversible transition into resistant states dependent on Notch signalling and chromatin
remodelling (Eyler et al., 2020). Similar observations were made in GBM cells exposed to
temozolomide (TMZ), where drug-tolerant cells showed widespread epigenetic reprogramming and

eventually acquired stable resistance (Banelli et al., 2015, Rabe et al., 2020).

The study by (Spitzer et al., 2025) provided further support for this model. Using longitudinal single-
cell transcriptomics in matched primary and recurrent GBMs, they found that although most genetic
alterations remained stable, transcriptional state changes were extensive, with cells reprogramming

toward mesenchymal or inflammatory phenotypesin response to treatment. These shifts were
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associated with subtle deletions but were largely non-clonal, underscoring the importance of non-

genetic adaptation in recurrence (Spitzer et al., 2025).

1.4.3 Clinical Implications

The ability of GBM cells to transition between functional states presents a major challenge for
therapy. Unlike fixed subclonal mutations, plasticity cannot be targeted genetically, making it
difficult to eliminate tumour cells based on a single vulnerability. It also contributes to temporal
heterogeneity, where the tumour’s molecular profile changes over time, limiting the effectiveness

of therapies designed for the primary tumour (Wang et al., 2017, Singh et al., 2021).

Additionally, plasticity may explain why even patients with favourable biomarkers (e.g., MGMT
promoter methylation) can eventually relapse. As treatment progresses, tumour cells may switch
into resistant states or re-activate repair mechanisms through epigenetic pathways, bypassing the

initial therapeutic advantage (Rippaus et al., 2019).

The ability of GBM cells to reversibly transition between transcriptional states, even in the absence
of new mutations, has major implications for treatment resistance. However, the extent to which
such transitions are driven by genetic alterations, transcriptional reprogramming, or a combination

of both remains unclear.

This thesis takes a multi-faceted approach to characterise tumour adaptation following treatment
by analysing both methylation and sequencing data from matched primary and recurrent GBM
samples. | conduct independent analyses of both data types: methylation profiles are examined
within stratified responder subtypes to identify epigenetic changes potentially associated with
recurrence, while WGS and WES data are used to track changes in variant prevalence and infer clonal
dynamics. By examining both the genetic and epigenetic layers of tumour evolution separately, this
work provides a more comprehensive view of tumour adaptation than either method could offer

alone.

1.5 Technical Approaches to Studying Tumour Heterogeneity and Evolution

Understanding the biological complexity of glioblastoma (GBM) — from intratumoural heterogeneity
to treatment-induced plasticity — has been made possible through advances in high-throughput

molecular technologies. These approaches have provided unprecedented resolution into the
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genomic, transcriptomic, and epigenetic architecture of tumours. In this section, | briefly outline the
key methodologies used in the field, focusing on the types of data they generate and how they
contribute to studying tumour evolution. This technical overview is not GBM-specific but helps

contextualise the analytical strategies used in this thesis and in the broader literature.

1.5.1 Bulk Genomic and Transcriptomic Profiling

DNA sequencing technologies, particularly whole-exome sequencing (WES) and whole-genome
sequencing (WGS), have been foundational in mapping somatic mutations, copy number alterations,
and structural variants across cancer genomes. These platforms are typically applied to bulk tumour
samples and have enabled the identification of recurrently altered genes in GBM such

as TP53, PTEN, EGFR, and TERT promoter mutations (Korber et al., 2019, Barthel et al., 2019).

RNA sequencing (RNA-seq) has similarly transformed how transcriptional programs are studied in
cancer. In GBM, RNA-seq data was instrumental in defining the proneural, classical, and
mesenchymal subtypes identified by The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas
Research, 2008). More recently, paired RNA-seq of primary and recurrent samples has revealed
evidence of dynamic transcriptional reprogramming following treatment, even in the absence of

clear genetic bottlenecks (Rippaus et al., 2019).

However, bulk approaches offer only a population-level average, potentially obscuring rare
subclones or cell states present within the tumour. This limitation has led to increased use of more

granular methods in recent years.

1.5.2 Bulk Epigenomic Technologies

Changes in DNA methylation represent a stable and functionally important layer of regulation,
particularly relevant in GBM where promoter methylation of genes such as MGMT is predictive of
treatment response (Rivera et al., 2010). Epigenomic profiling is typically performed using lllumina
DNA methylation arrays, such as the 450K or EPIC platforms. These arrays quantify methylation at
hundreds of thousands of CpG sites and are cost-effective and scalable, making them suitable for

studies involving large patient cohorts or matched longitudinal samples.

Methylation arrays have also been used for tumour classification. The Heidelberg classifier, for

instance, stratifies central nervous system tumours into biologically relevant subtypes based solely
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on their methylation profiles — underscoring the potential of DNA methylation as both a diagnostic

and analytical tool (Capper et al., 2018).

In this thesis, methylation arrays are used not only for classification but as a readout of epigenetic
evolution between primary and recurrent GBMs, complementing genomic analysis by capturing non-

mutational mechanisms of resistance and progression.

1.5.3 Single-Cell Technologies

More recently, single-cell RNA sequencing (scRNA-seq) has enabled the dissection of transcriptional
heterogeneity at cellular resolution. In GBM, this approach revealed that individual tumour cells
occupy a spectrum of distinct transcriptional states (e.g., NPC-like, OPC-like, AC-like, MES-like), and
that these states are plastic, capable of interconversion under environmental stress or treatment

(Neftel et al., 2019).

The study by (Spitzer et al., 2025) expanded on this by tracking single-cell trajectories across
timepoints in matched GBM samples. While few new genetic drivers of recurrence were found,
extensive shifts in transcriptional states were observed, highlighting the importance of plasticity in

treatment response.

Despite their power, single-cell technologies remain costly, noisy, and technically demanding. As
such, they are not yet widely adopted in large-scale clinical studies and were not used in this project.
However, their findings help frame the interpretation of bulk methylation changes and support the

view that transcriptional reprogramming may occur even without detectable genetic selection.

1.5.4 Computational Tools and Analytical Strategies

The complexity of analysing both genomic (WGS/WES) and epigenomic (DNA methylation
array) data requires the use of specialised tools tailored to each data type. For variant calling from
DNA sequencing, tools such as Mutect2 (Benjamin et al., 2019), and somatic copy number aberration
callers were used to identify somatic mutations, copy number alterations across matched tumour
samples. For methylation analysis, R packages like minfi (Aryee et al., 2014) and RnBeads (Muller et

al., 2019) were employed to assess site-specific and regional methylation changes.

Many of these tools support paired-sample analyses, which made them suitable for comparing
primary and recurrent tumour samples in this project. Throughout the thesis, tools were selected or

adapted to enable:
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e Detection of clonal and subclonal mutations over time using WES and WGS data
e Differential methylation analysis between primary and recurrent tumours, at both single

CpG and regional levels

Optimisation of workflows was applied where necessary to better align with the study’s design and

biological questions.

1.6 Hypothesis

Recurrence in IDH-wildtype glioblastoma (GBM) occurs despite intensive treatment and is thought
to arise through a combination of genetic selection and epigenetic reprogramming. Traditional
approaches have focused on identifying individual driver mutations enriched at recurrence;
however, this has yielded limited clinical insight due to the extreme heterogeneity and often subtle

clonal dynamics of GBM.
This thesis hypothesises that:

A pathway-level approach, integrating genetic and epigenetic changes in paired primary and
recurrent GBM samples, can reveal convergent biological programs that contribute to treatment
resistance. Rather than focusing solely on recurrent single-gene alterations, this study investigates
whether groups of variants and methylation changes acting within the same pathway exhibit

coordinated patterns of selection, expansion, or suppression through therapy.

By analysing both somatic variants (from WGS/WES) and DNA methylation (from array data) in a
longitudinal framework, the thesis aims to uncover pathway-level mechanisms underpinning
resistance and to evaluate whether distinct patient subtypes exhibit different modes of tumour

evolution and adaptation.

1.7 Aims and Objectives

The aims and objectives of this thesis are structured across three main chapters, each addressing a

specific level of tumour biology and method development.

Chapter 2 — Development and optimisation of somatic variant calling pipelines for WGS and WES

data
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Aim:
To establish a robust, reproducible pipeline for calling high-confidence somatic variants from WGS

and WES of paired GBM samples.

Objectives:

e Develop and standardise pipelines using benchmarked tools in the Glioma Genomics group,
incorporating the best-practice filtering strategies.

e Optimise the pipeline to reduce false positives through post-mapping and post-calling
refinement.

e Assess pipeline performance and variant quality using both internal QC metrics and visual
inspection.

e Apply the workflow to paired primary and recurrent GBM samples to generate a validated

mutation call set for downstream analyses.

Chapter 3 — Analysis of subclonal architecture and selection through therapy using variant allele

frequency (VAF)

Aim:
To explore clonal dynamics in paired GBM samples using VAF-based metrics and identify variants

under selective pressure during recurrence.

Objectives:

e Classify variants into clonal or subclonal categories based on VAF thresholds.

e Focus on shared variants across primary and recurrent pairs to track changes in subclonal
prevalence.

e Use increases in VAF as a proxy for clonal expansion (resistance) and decreases in VAF
for clonal depletion (sensitisation).

e Highlight pathways that are recurrently altered in expanding versus contracting subclones.

Chapter 4 — DNA methylation analysis of paired GBM samples stratified by transcriptional

responder subtype
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Aim:
To investigate epigenetic changes associated with GBM recurrence and determine whether distinct

responder subtypes (Up and Down responders) exhibit different methylation dynamics.

Objectives:

e Process DNA methylation data using array-based platforms (450K/EPIC) and develop a
custom analysis pipeline (e.g., minfi, RnBeads).

e Identify differentially methylated positions (DMPs) and regions (DMRs) between primary and
recurrent samples within each transcriptionally stratified responder subtype group.

e Perform functional enrichment analysis to interpret the biological significance of subtype-

specific epigenetic alterations.
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CHAPTER 2

2.1 INTRODUCTION

2.1.1 DNA Sequencing Techniques

As GBM is a genetically complicated cancer, due to both inter- and intra- heterogeneity, it isimportant
to understand the genetic changes that cause tumour growth, spread and resistance to treatment in
order to improve testing results and patient health (Barthel et al., 2019, Korber et al., 2019, Brennan
etal., 2013). Advances in next-generation sequencing (NGS) technologies have significantly enhanced
our capacity to investigate these genomic alterations. WGS and WES are two of the most popular
NGS methods. Each has its own advantages and disadvantages when it comes to finding somatic
changes. To select the suitable technology, one should carefully think about the outcomes of each

method to achieve the maximum benefit of it.

WGS captures the whole genome, which includes both coding (exonic) and non-coding regions.
Because of that, WGS can detect many types of genetic changes, including single nucleotide variants,
structural differences, copy number changes, and rare mutations. For complicated cancers like GBM,
where mutations happen in many genomic areas, WGS is very helpful because it can find changes in
regulatory elements like enhancers and promoters, as well as intergenic regions. Covering the non-
coding regions helps us to identify broader genomic changes that drive GBM. Also, WGS is an ideal
method to find large-scale genomic rearrangements and translocations, which are often very

important for the growth and spread of the tumour.

Despite its extensive scope, WGS has some limitations. Because of its high cost and the amount of
data it produces, high-performance processing power is needed to analyse it. WGS may become less
commonly used as a result, especially in clinical settings. Furthermore, a sizable amount of WGS data
originates from non-coding areas, many of which have ambiguous functional responsibilities.
Prioritising and interpreting mutations becomes difficult, particularly when separating significant
changes from noise. WGS generally reduced coverage is another disadvantage that may make it more
difficult to find low-frequency somatic mutations. Formalin-fixed paraffin-embedded (FFPE) materials
make this issue worse since DNA fragmentation and degradation further lower sequencing depth and

introduce artefacts.

Unlike WGS, WES only looks at coding areas, which comprise 1% to 2% of the genome but are

responsible for 85% of all currently known mutations linked to disease (Teer and Mullikin, 2010). WES
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offers a more cost-effective method of finding mutations that are more likely to have functional
effects on proteins by focusing on these areas. WES enables researchers to find protein-coding
mutations that may be responsible for tumour growth and progression in cancer research,
particularly GBM investigations. WES produces less data than WGS, which streamlines downstream
analysis and facilitates interpretation of results. Because of its effectiveness, WES is especially helpful

for clinical and translational studies that seek to find mutations that can be put into practice.

However, WES does have some problems. It can't find changes in non-coding regions, like promoters,
because it only looks at coding regions. These areas may still be important in GBM biology though,
like identifying TERTp mutations, which are associated with GBM progression and prognosis.
Additionally, WES is not as good as WGS at finding structural changes at the chromosomal level. Also,
when DNA quality is low in samples like FFPE-derived tissues, uneven coverage and biases caused by

DNA fragmentation can make variant identification less accurate.

Both WGS and WES are crucial approaches, and each has unique advantages that could complement
the other when both technologies utilised (Rotunno et al., 2020). While WES offers a targeted
approach that focuses on protein-coding genes, WGS provides a complete picture of the genome,
including non-coding regions and notable structural variations. To improve the breadth and precision
of mutation identification in GBM samples, | used WGS and WES in this chapter. | aimed to get precise
characterisation of somatic mutations in GBM by applying both approaches and implementing
measures to mitigate their limitations. This dual methodology enabled me to overcome the intrinsic
difficulties of studying extremely heterogeneous tumours such as GBM, yielding a more profound

comprehension of its molecular landscape.

2.1.2 DNA Quality and Challenges with FFPE Samples

FFPE samples are extensively utilised in clinical and research environments because they effectively
maintain tissue for prolonged durations. Nonetheless, the formalin fixation method presents
numerous obstacles that hinder molecular analysis of FFPE samples, particularly in next-generation
sequencing (NGS) investigations. Formaldehyde cross-links DNA to proteins, maintaining tissue
architecture while compromising DNA integrity. This cross-linking inhibits effective DNA denaturation
during sequencing, leading to shorter sequencing reads and diminishing the efficiency of subsequent
processing workflows. Moreover, DNA in FFPE samples is frequently fragmented, an issue that
exacerbates with extended storage in older specimens (Robbe et al., 2018, Einaga et al., 2017, Sah et
al., 2013, Steiert et al., 2023). This fragmentation reduces overall read length and coverage quality,

complicating the acquisition of the depth necessary for precise variant detection.
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Environmental variables, such as suboptimal storage temperatures or elevated humidity, accelerate
DNA degradation over time. Oxidative damage and enzymatic degradation additionally facilitate the
generation of short, fragmented DNA molecules (Costello et al., 2013). These degraded fragments
produce sequencing data of inferior quality, hindering alignment and variant detection operations.
In WGS and WES, adequate read depth is essential for identifying low-frequency somatic mutations;
nevertheless, the difficulties associated with FFPE-derived DNA might considerably compromise the
reliability of the results. In cancer genomics, the accurate identification of somatic mutations

necessitates addressing these challenges to yield significant results.

A common issue in FFPE samples is the elevated occurrence of cytosine-to-thymine (C>T)
substitutions. The artefacts result from cytosine deamination, a chemical reaction that is expedited
during formalin fixation, particularly at methylated cytosine sites. This alteration transforms cytosine
into uracil, which is interpreted as thymine during sequencing, resulting in C>T transition inaccuracies
(Kim et al., 2017). Such artefacts are particularly common in older FFPE samples or those preserved
under suboptimal circumstances. The elevated frequency of these changes complicates the
differentiation between genuine somatic mutations and sequencing artefacts. This poses significant
challenges when evaluating aggressive malignancies such as glioblastoma, where precise

identification of mutations is crucial for comprehending the tumour's genetic landscape.

Optimised bioinformatic procedures are necessary to address these problems (Steiert et al., 2023).
Common approaches include applying filters to mitigate artefacts resulting from C>T substitutions.
These filters relied on a variety of measures, including variable allele frequency (VAF) and strand bias
assessments. Implementing these corrective procedures can enhance the precision of somatic
variant calls, reducing the likelihood of sequencing artefacts. In addition to bioinformatic solutions,
practical laboratory strategies such as using kits designed for FFPE-derived DNA can also be employed

to improve the overall quality of the data.

In summary, FFPE processing substantially affects DNA quality by causing fragmentation, degradation,
and the introduction of C>T mutations. These issues require meticulous consideration during both
the experimental and analytical phases of NGS processes. The optimised pipeline reduced the
influence of FFPE-induced artefacts on somatic mutation detection in GBM samples by employing

rigorous quality control measures and customised bioinformatics approaches.
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2.1.3 Double Counting of Variants in Overlapping Paired Reads

Although paired-end sequencing improves coverage and accuracy by sequencing DNA fragments
from both ends, it may result in regions where forward and reverse reads overlap. These overlaps
could result in "double counting" of variants, which would inflate their frequency if they were not
properly treated (Pope et al., 2014). In cancer research, where accurate VAF measurements are

essential for comprehending tumour growth, this problem is very important.

This issue is made worse in FFPE samples due to the shorter DNA fragments resulting from
fragmentation, which raise the possibility of overlaps. Analysis of clonal and subclonal mutations,
which are essential for assessing the progression of tumours in GBM, can be distorted by inflated
VAFs, which can be deceptive for low-frequency variants.

Bioinformatic solutions can be used at various points in the analysis pipeline to resolve overlapping
paired-end reads: pre-alignment corrections at the FASTQ level and post-alighment corrections at the

BAM level. Every approach has unique advantages and disadvantages.

2.1.3.1 Correction at the FASTQ Level

FASTQ-level corrections address overlapping reads before alignment by merging overlapping paired-
end reads into a consensus sequence. This approach eliminates the risk of double-counting
mutations by ensuring each variant is counted only once per fragment. This method has many

advantages:

e Merging overlapping reads prevents inflation of VAFs, ensuring reliable mutation
frequency calculations.
e Consolidating overlapping regions into a single sequence simplifies downstream variant

calling and data analysis.

However, it has a few limitations such as:

e  Merging paired reads decreases the total read count, which can affect depth-sensitive
analyses like copy number alteration (CNA) calling.
e Reduced depth may obscure subtle copy number changes and hinder detection of

structural variations such as translocations and insertions.

BBMerge (Bushnell et al., 2017), a commonly used FASTQ-level tool, merges overlapping paired reads

into a consensus sequence before alignment. While it effectively resolves overlaps, its impact on read
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depth makes it unsuitable for depth-sensitive analyses, such as somatic copy number and structural

variant detection.

2.1.3.2 Correction at the BAM Level

BAM-level corrections handle overlapping reads after alignment by modifying the aligned data
without merging paired-end reads. This approach removes overlapping bases through hard or soft
clipping, preventing double-counting of mutations while preserving read depth and the paired-end

structure, ensuring accurate downstream analyses. This approach provides significant benefits:

e BAM-level clipping maintains read depth, rendering it suitable for depth-sensitive analysis
like somatic copy number change (sCNA) detection.

e The paired-end read configuration is maintained, which is essential for detecting
structural variants and other analyses dependent on read pairs.

e This method eliminates overlapping bases, hence preventing inflating in overlapping

regions and providing precise variant allele frequency (VAF) estimates.

BAM-level processing tools, like fgbio-ClipBam, identify overlapping regions in paired reads and clip
the overlapped bases. In this chapter | used fgbio ClipBam to repair overlapping paired-end reads
from FFPE-derived GBM samples. This approach was selected due to its preservation of read depth,
which is essential for copy number analysis and the detection of somatic mutations. As the
sequencing coverage was maintained by masking overlapping areas rather than merging reads,
accurate variant allele frequency estimates and detection of copy number changes are likely

achievable.

Addressing double-counting artefacts via BAM-level clipping is a common approach to ensure
accurate downstream analyses, including variant detection, and pathway analysis. This method
improves the resolution of clonal versus subclonal mutations in GBM, providing significant insights
into the tumour’s mutational landscape and evolutionary dynamics. Such strategies provide a reliable
framework for detecting somatic mutations in fragmented DNA, thereby advancing our

understanding of GBM biology and progression.

2.1.4 Overview of Analytical Tools Available

To conduct a comprehensive and accurate analysis of both whole genome and whole exome
sequencing data in glioblastoma samples, a carefully curated set of bioinformatic tools is required at

each stage of the analysis pipeline. These tools are selected to address specific challenges associated
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with NGS data, particularly in the context of somatic variant detection, data quality assessment, and
copy number alteration analysis. Typically, the analytical process involves multiple steps, starting
from raw sequencing data and progressing through quality control, alignment, variant and CNA
calling, and downstream interpretation. A variety of tools are available for each of these steps, and
their selection often depends on the characteristics of the data and the goals of the analysis. Some
tools, including those used in this study, have been benchmarked in a published study by our group,
which demonstrated superior sensitivity and specificity using in silico data for validation (Tanner et
al., 2021). This section provides an overview of commonly used tools and their role in the analysis

workflow.

FASTQC: Sequencing data is obtained in binary base call format (BCL), which is not a suitable
input format to use in downstream applications. However, the raw data will be converted to
FASTQ format to be used for downstream processing. FastQC (Andrews, 2010) is the most
widely used tool to assess the quality of the fastg sequencing files. It is a critical step to check
the validity of the raw sequencing data before proceeding to further analysis, such as variant
calling. A wide range of quality metrics that FastQC can generate for individual fastq files
includes per base sequence quality, GC content, sequence length distribution, sequence
duplication proportions and adapter contaminations. These quality checks help remove low-
base quality reads, trim the adapter remaining in the 5’ or 3’ ends of reads, and give an insight

into the diversity of the data.

Cutadapt: The presence of over-represented sequences indicated by FastQC means there
could be sequencing adapters or primers in the data. This problem happens when the read
becomes longer than the DNA fragment (insert) that is sequenced. As these sequences are
artificial, they must be removed before using the data for further analysis. Amongst many tools
used to trim these unwanted sequences is Cutadapt (Martin, 2011). It is fast, efficient and
works with paired-end data. It also allows the user to drop reads that become low quality after

trimming, making the data more reliable for sequence alignment.

BWA (Burrows-Wheeler Aligner): BWA (Li and Durbin, 2009) is the most widely used software
for mapping the sequencing reads generated by lllumina against the human genome. It is fast
and efficient, with a high mapping percentage and less alignment error rate. Briefly, BWA works
on finding the maximal exact matches of alignment seeds and adapts the affine gap of the
Smith-Waterman algorithm when extending the seeds. Users can specify a threshold for

mapping quality to increase the accuracy of variant calling. BWA generates SAM files which
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can be converted into BAM format as the latter is smaller in size and more reliable for

downstream analysis.

Picard tools: Picard tools are a set of tools developed to process SAM, BAM and VCF files
(https://broadinstitute.github.io/picard/). One of the commonly used tools is MarkDuplicates.
In NGS, read depth may contain duplicated reads meaning that a variant might be supported
by an artefact read. To ensure that alignment files do not contain duplicated reads, files must
be processed before variant calling to eliminate any source of false positive variants. These
duplicates can arise from library preparation or during cluster formation. At the end of tagging
the duplicates process, MarkDuplicates software generates a metrics file to show the duplicate

rate of the data.

ClipBam: ClipBam is a tool that eliminates overlap between the paired-end reads
(http://fulcrumgenomics.github.io/fgbio/tools/latest/ClipBam.html). It works by clipping the
sequencing reads from the same template. Clipping occurs at any end of read 1 and read 2
only if they are forward and reverse (FR) read pairs, with nearly half of overlapped bases being
hard clipped as demonstrated in Figure 2-1. This is a crucial step for downstream processes,
specifically variant calling, to avoid double-count evidence from the same fragment when both
reads cover the variant locus in the same template. Hard clipping is the default setting;
however, users can choose the soft-clipping parameter instead. Users must sort the BAM file

by query name instead of coordinates before running the software to ensure correct clipping.
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Figure 2-1: Clipping overlapping reads.

This illustration demonstrates how short DNA fragments can cause overlapping of paired-end reads, leading to
overcounting of variants before overlap correction. The red lines represent two DNA fragments carrying the
same SNV, one short and one long. In the before correction panel, the short fragment produces one paired-reads
whose overlapping regions cause double counting (totalling two variant supporting reads), in addition to one
variant supporting read from the non-overlapping reads of the long fragment. In the after correction panel,
clipping removes the overlapping bases toward the 3’ ends of short reads, reducing the overcounted two variant
supporting reads back to the true one, while the non-overlapping reads remain unchanged. Dotted lines indicate

the clipped bases.

Mutect2: Mutect? is a somatic variant caller developed at the Broad Institute (Benjamin et al.,
2019). It uses Bayesian classification to identify somatic alterations. Mutect2 doesn’t process
reads with low mapping quality reducing the chance of calling artefacts. It starts by defining
regions of the genome called active regions, which have evidence of variation. The active
regions will then comprise all the possible haplotypes in the data. Mutect2 then performs
haplotype local realignment against the reference haplotype using Smith-Watermann
algorithm to identify candidate variant sites. Using pair hidden Markov model, each read will
then undergo pairwise alignment to compute the likelihood of alleles for every possible variant
site. The likelihood of each genotype is calculated by using the likelihood of alleles calculated

earlier by applying the Bayes rule.

FACETS: FACETS (Fraction and Allele-Specific Copy Number Estimates from Tumour
Sequencing) infers allele-specific copy numbers, tumour purity, and ploidy from tumour-

normal sequencing data (Shen and Seshan, 2016). It normalizes read depth, segments the
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genome based on log-ratio signals, and uses allelic imbalance at heterozygous SNVs to
distinguish clonal and subclonal alterations. This provides accurate copy number profiles and

insights into tumour clonal architecture.

VEP (Variant Effect Predictor): VEP is a variant annotation tool developed at Ensembl (McLaren
et al.,, 2016). It integrates multiple databases and allows using different plugins for other
databases to predict the consequences of variants on the protein function. It annotates the
variants using a set of sequence ontology consequence terms according to the variant's
location, exonic, intronic or splice site. Variants are ranked based on the impact from high to
low classifying nonsense or frameshift variants as highly impactful. By default, VEP uses SIFT
and PolyPhen databases to predict the functional impact of missense variants on protein. SIFT
reports variants with either deleterious or tolerated, while PolyPhen predicts variants to be
either probably damaging, possibly damaging, benign or unknown. VEP also enables filtering

variants based on pathogenicity predictions using the filter_vep plugin.

GISTIC: GISTIC is software utilised to identify gains and losses across the genome using somatic
copy number aberrations data (Mermel et al., 2011). It analyses the segmentation data to
identify genes targeted by these gains and losses. GISTIC uses a scoring scheme for each
aberration, assigning the score based on the occurrences of the aberration across the samples
and its amplitude. It considers the false discovery rate and calculates a g-value for every
aberrant region. After analysis, GISTIC creates two plots, one for the amplified regions and one
for the deleted regions. Each plot contains peaks which represents the altered locus and the
regions within the boundaries of the peak are likely to have the candidate genes. GISTIC
requires a file that contains the segmented data for all of the sample in order to generate the
plots. Using the CNA calling data, the two prerequisite files were generated for primary and

recurrent tumour profiles to identify the genetic changes through treatment.

Bam-readcount: Bam-readcount generates high-resolution depth information around specific
genomic loci, providing detailed counts of reads supporting each variant (Khanna et al., 2022).
This enables accurate variant allele frequency (VAF) estimation, making it particularly valuable
for filtering out FFPE-induced artifacts and distinguishing true somatic mutations from

sequencing noise.

Nextflow: Nextflow is one of the scientific workflow tools that have scalability and

reproducibility (Di Tommaso et al., 2017). It is an example of a domain-specific language (DSL)
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that simplifies the construction and integration of computational pipelines for genomic data
analysis. It uses channels for input and output data and processes that can be written in many
languages such as Python, Perl, Bash, etc. Nextflow enables the parallelisation of jobs and can

be used in high-performance computing clusters or cloud systems.

Each of these tools contributed to a robust and accurate analysis pipeline, addressing the unique
challenges presented by FFPE-derived DNA, overlapping read pairs, and somatic mutation detection
in glioblastoma samples. Together, these tools enabled the comprehensive and reliable identification
of somatic mutations, structural variations, and copy number alterations that form the basis of this

study’s insights into the genomic landscape of GBM.

2.2 METHODS

2.2.1 Workflow Automation for WGS and WES Analysis with Nextflow

To handle the high-throughput requirements of WGS and WES data processing efficiently, | developed
a Nextflow pipeline to automate and streamline each step of the workflow on the high-performance
computing (HPC) service, ARC3 and ARC4. Leveraging the HPC resources enabled efficient job
submission across multiple samples, and Nextflow allowed me to design a modular and automated
pipeline that covered essential tools for my sequencing data, including FASTQC, Cutadapt, BWA,
BEDTools, Picard, GATK tools, Mutect2, VEP, Facets, and fgbio ClipBam.

Using Nextflow's built-in functionality for job scheduling, | was able to automate submission across
the HPC's job queue, maximizing computational resources by parallelizing tasks such as quality
control, alignment, and variant calling. Each tool was integrated into distinct Nextflow processes,
which allowed for efficient execution while maintaining clear dependencies between steps. This
setup not only reduced hands-on time but also minimized errors and variability between runs by
enforcing a standardized process across all samples. Furthermore, Nextflow’s robust error-handling
features simplified troubleshooting, making it easier to monitor job statuses and rerun failed steps
without restarting the entire pipeline, enhancing the pipeline's reproducibility and reliability. The
Nextflow scripts developed for this pipeline are stored in a GitHub repository associated with this

chapter for reference (https://github.com/umymal/thesis_appendix/tree/main/chapter2).

2.2.2 Quality control and mapping of sequencing data

To ensure quality control for the WGS data, , which were generated using the lllumina platform with

150 bp paired-end reads at the MD Anderson Cancer Center (USA), | began by running FastQC on
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each raw FASTQ file to assess the overall sequence quality, checking for common issues such as
adapter content, GC content, and sequence duplication levels. Once the initial quality of the data was
confirmed, | used Cutadapt with the following parameters: -m 20 --overlap 1 -q 20. These settings
allowed for the removal of adapter sequences, ensuring that any reads shorter than 20 base pairs
were discarded, requiring at least a one-base overlap for adapter trimming, and applying a minimum
quality score of 20 across bases. Following adapter trimming, | used BWA to map the cleaned FASTQ
files to the reference genome (GRCh38), aligning each read accurately to maximize downstream
variant calling reliability. | then used Picard to mark duplicate reads, helping reduce potential biases

in variant calling by identifying and flagging PCR and optical duplicates.

For the whole exome sequencing (WES) data, the samples were initially provided in BAM format
aligned to an older version of the human genome (GRCh37). To reprocess these data in alighment
with the WGS workflow, | first converted each BAM file back to FASTQ format using bedtools
bamtofastq. Once in FASTQ format, | re-mapped the reads to the GRCh38 reference genome using
BWA. After realignment, | applied the same processing pipeline as for the WGS data, using Picard to
mark duplicates and GATK BQSR for recalibration, ensuring consistency across both WES and WGS

datasets in preparation for downstream analyses.

2.2.3 Post alignment processing and optimisation

To prevent double-counting of variants in overlapping paired-end reads, | used fgbio ClipBam to clip
overlapping regions in both WGS and WES BAM files. ClipBam processes BAM files alongside a
reference genome, as required by this tool, and provides two clipping options: soft or hard. | selected
hard clipping, which removes overlapping sequences from each read, reducing the risk of false-
positive variant calls by counting each fragment only once. This method also reduces file size, easing
storage demands on the HPC system. After clipping, | examined the resulting BAM files to confirm
accurate clipping at high-depth positions, enhancing variant-calling precision. Subsequently, |
performed GATK Base Quality Score Recalibration (BQSR) to correct for systematic sequencing errors
based on known variant sites, further improving data quality for both WGS and WES data prior to

variant calling.

To assess the impact of clipping on variant-supporting reads, | used bam-readcount, which provides
detailed metrics on sequencing data at specified nucleotide positions, such as counts of observed
bases, mapping and base quality summaries, and read position details. Running bam-readcount on

both unclipped and clipped WGS and WES BAM files enabled me to compare variant-supporting read
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counts pre- and post-clipping. This approach helped me confirm the effectiveness of clipping,

especially in reducing overestimation of variant allele frequencies at overlapping regions.

2.2.4 \Variant Calling and Filtering

2.2.4.1 Whole exome data

Since no normal samples were available for the exome datasets, | generated synthetic normal files.
Given that the exome sequencing was performed using Agilent’s WES kit, | used the Agilent exome
enrichment BED file for consistency. This BED file was originally on genome build 37, so | converted
it to genome build 38 using UCSC liftOver tool. | then used bcftools to generate synthetic normal
exome files from whole genome data masking the off-target regions using the liftover bed file defined

by Agilent.

After preprocessing, | used Mutect2 in GATK (version 4.2.0.0) for variant calling in multisample mode,
analysing primary and recurrent samples alongside the synthetic normal files to capture somatic
mutations specific to each tumour sample. Mutect2 generated an initial set of putative variants,
which | refined with FilterMutectCalls to remove low-confidence variants based on GATK’s somatic
variant filtering thresholds. Additionally, to address potential orientation bias from sequencing
artifacts, | applied LearnReadOrientationModel and included this model in FilterMutectCalls to
remove false positives caused by read orientation artifacts. This comprehensive filtering process

ensured a high confidence set of somatic variant calls across primary and recurrent samples.

2.2.4.2 Whole genome data

Due to computational constraints such as limited running time with a maximum of 48 hours per job
on the ARC3 and ARC4 HPC systems, and mutect2 limitations such as unavailability of multithreading,
| performed variant calling on a per-chromosome basis for the WGS data. For large chromosomes, |
split the genome into regions with size ranges between 25-50 megabases to ensure jobs finished
within 48 hours. Using Mutect2 in multisample mode, | applied the same protocol as for exome data,
processing primary and recurrent tumour samples with their matched normal samples, but on a
chromosome level. To further reduce false positives, | included a blacklist interval for Mutect2 to be
excluded from mutation calling. The ENCODE blacklist file (Amemiya et al., 2019) contains the
coordinates of many problematic genomic regions such as the low mappability islands, centromeric
repeats, telomeric repeats and satellite repeats. Using this strategy, | aimed to speed up the process

and avoid artefacts possibly being called from these regions. After filtering with FilterMutectCalls and
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incorporating LearnReadOrientationModel to address orientation bias artifacts, | combined the
results from each chromosome into a comprehensive, high-confidence variant dataset for the whole

genome.

2.2.5 Functional Annotation of Variants with VEP

| used the Variant Effect Predictor (VEP) tool with the human genome reference GRCh38 and VEP
release 104, which includes all necessary reference files for variant annotation. | ran VEP on a filtered
VCF file of my variants in a Linux environment. To ensure reproducibility, | specified the --cache and -
-offline options, enabling VEP to access locally cached annotation data. | also included additional flags
to enrich the output: --symbol for gene symbols, --canonical for canonical transcripts, --hgvs for

standardized HGVS nomenclature, and --sift and --PolyPhen to predict protein impact.

VEP categorizes variants by impact level, including high, moderate, low, and modifier, providing a
functional classification for prioritizing variants. High-impact variants are typically those with
potentially severe consequences on gene function, such as stop-gain or frameshift mutations, which
can result in truncated or nonfunctional proteins. Moderate-impact variants, like missense
mutations, may alter protein function but with less certainty. Low-impact variants, such as
synonymous mutations, generally have minimal effect on function, while modifier variants typically
reside in non-coding regions. After running VEP, | examined the output VCF, which included new
columns detailing each annotation field and impact classification. This comprehensive annotation file

enabled a structured analysis of variant effects and prioritization for further study.

Following initial annotation with VEP, | applied a custom Python script to further classify variants as
unique to the primary tumour, unique to the recurrent tumour, or common to both. This additional
step enabled the distinction between mutations present at diagnosis and those that emerged or
persisted upon recurrence, offering insights into tumour evolution and highlighting mutations that

may contribute to tumour progression or serve as markers of recurrence and therapeutic resistance.

2.2.6 Somatic Copy Number Aberrations calling

In this chapter, | identified somatic copy number alterations (CNA) from whole genome sequencing
(WGS) data using the FACETS tool, facilitated by the cnv_facets wrapper developed by Dario Beraldi
(https://github.com/dariober/cnv_facets). FACETS is optimized for robust CNA calling, with
cnv_facets providing an efficient pipeline for handling and parameter optimization. | began with --

nbhd-snp auto to automatically determine neighbourhood SNP. The key parameter for segmentation
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is cval (critical value), which controls the sensitivity of the segmentation algorithm; a lower cval yields
finer, more sensitive segmentation, while a higher cval results in coarser segmentation. Following the
authors' recommendation for a two-pass approach, | initially used cval values of 25 (for high
sensitivity, fine segmentation) and 400 (for low sensitivity, coarse segmentation), with the high-cval
run used to establish tumour purity and baseline Log R ratio.

However, these initial values resulted in over-segmentation. Following the authors' guidance to
adjust cval based on dataset-specific factors like data quality and sequencing method, | systematically
tested higher cval values: first 50 and 500, and later 100 and 1000. This approach enabled control
over segmentation precision, reducing over-segmentation and improving the reliability of the CNA
calls. By refining cval values in this manner, a well-balanced CNA profile was achieved, with

segmentation sensitivity and continuity adapted to the unique characteristics of the data.

Since FACETS requires comparing tumour samples to matched normal samples, | processed the data
by running each primary tumour sample against its matched normal sample and each recurrent

tumour sample against the same normal.

2.2.7 Analysis of Somatic Copy Number Alterations Using GISTIC

After running cnv_facets, | obtained VCF files for each sample containing somatic CNA information.
These VCF files included fields such as chromosome, position, structural variant type (e.g.,
duplication or deletion), and copy number data. These fields differ slightly from conventional copy
number call formats. For GISTIC analysis, FACETS authors recommend mapping specific fields from
the VCF file to match GISTIC’s input requirements. Specifically, | used the CHROM field for
"Chromosome," POS for "Starting Position," and parsed the INFO field to extract END for "Ending
Position," NUM_MARK for "Number of Markers in Segment," and CNLR.MEDIAN for "Seg.CN. i.e.
Segment Copy Number" | then reformatted these extracted fields into a segmentation file, as
required by GISTIC, with columns for Sample ID, Chromosome, Start Position, End Position, Number

of Markers, and Segment Copy Number in log2 ratio.

| ran GISTIC using the default parameters, which are optimized for identifying recurrent, significant
copy number alterations across primary and recurrent GBM cohorts. This approach allowed me to
identify regions with recurrent CNAs and to highlight key genomic areas involved in tumorigenesis

across the cohort.
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2.2.8 Data visualisation

Some of the figures in this chapter were generated using a tool named Maftools (Mayakonda et al.,
2018), designed to facilitate the visualization and analysis of mutation data. | used Maftools
extensively to represent and interpret variant data derived from whole exome sequencing (WES) and

to incorporate copy number variation (CNV) data from whole genome sequencing (WGS) analyses.

Starting with the variant data, | converted my VEP-annotated VCFs to the MAF format using
vcf2maf.pl, a tool developed by the Genome Data Science group at Memorial Sloan Kettering Cancer
Center. While vcf2maf requires VEP and its annotation cache files to function, it is not included in the
standard VEP Conda package. However, as a standalone Perl script, it can be easily obtained from the
group’s GitHub repository and used alongside VEP for VCF to MAF conversion. Once converted, |
loaded the MAF files into R, creating MAF objects that allowed for efficient data handling and analysis

in Maftools.

After creating the MAF objects, | applied several Maftools visualization functions to analyse these
data, starting with plotTiTv to examine mutation patterns in terms of transitions and transversions,
and plotVaf to explore the variant allele frequency distributions. These visualizations helped me

understand the clonality and prevalence of mutations across the cohort.

Using tcgaCompare, | compared the tumour mutation burden (TMB) of Stead’s cohort to the TMB
observed in the TCGA cohort, providing a broader overview of how similar Stead’s cohort to other
cancers in TCGA beside GBM. Finally, | used oncoplot function to generate an oncoplot to highlight
the key alterations and patterns across patients. This approach provided a detailed, comparative view

of the genetic landscape in my study cohort.

Other figures for alignment optimization and distribution of variants and single base substitutions
were generated using python custom scripts and can be accessed on this GitHub link for this chapter

(https://github.com/umymal/thesis_appendix/tree/main/chapter2).

2.3 RESULTS

2.3.1 Cohort description

The cohort consists of 34 patients with IDH wild-type GBM, analysed using WGS and WES of
longitudinal samples. Each patient had a sample from the primary tumour site collected during initial

surgical resection, followed by a sample from a local recurrence after the tumour recurred. Two
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patients were excluded from the analysis: one lacked a recurrent sample, and another did not have

a primary tumour sample, leaving 32 patients with paired primary-recurrent samples for analysis.

The primary samples represent untreated tumours, while the recurrent samples were collected after

standard treatment.

Of the 32 patients included, 26 received the standard GBM therapy, which involves surgical resection

followed by radiotherapy (RT) and temozolomide (TMZ) (Stupp et al., 2005, Johnson and O'Neill,

2012, Riganti et al., 2014, Huang and Zhou, 2020). Seven patients received only RT after surgery, and

one patient underwent treatment with radioactive iodine (RAI) following tumour removal. For 12

patients, immunohistochemistry (IHC) was performed to confirm IDH wild-type status, while no IHC

records were available for the remaining patients. Figure 2-1 provides a summary of the cohort

characteristics.

Table 2-1: Discovery cohort data

Patient ID | Originating centre | Days between primary and recurrent surgery | Age at diagi Gender | Vitalstatus | Days to death (from primary surgery) | RT after primary [ Chemo after primary

Al A 585 31 F DECEASED 1795 Y T™Z

A2 A 825 44 F DECEASED 1473 Y PCV

B1 B 276 60 F DECEASED 351 Y N

B2 B 338 41 M DECEASED 440 Y T™Z

B3 B 295 45 M DECEASED 376 Y PCV

B4 B 49 53 M DECEASED 250 Y N

B5 B 721 58 M DECEASED 1106 Y T™Z

B6 B 677 58 F DECEASED 1069 Y TMZ &PCV

B7 B 246 66 M DECEASED 424 Y T™Z

B8 B 870 42 F DECEASED 1150 Y T™Z

B9 B 49 40 M UNKNOWN UNKNOWN Y T™Z

B10 B 519 67 M DECEASED 872 Y T™Z

B11 B 178 68 M DECEASED 269 Y PCV

B12 B 476 47 M DECEASED 570 Y T™Z

B13 B 424 45 F DECEASED 551 Y T™Z

B14 B 657 33 M ALIVE N/A Y T™Z

B15 B 293 68 M ALIVE N/A Y T™Z

B16 B 294 55 M ALIVE N/A Y T™Z

B17 B 369 53 F ALIVE N/A Y T™Z

C1 C 652 36 F DECEASED 1296 Y ™Z

Cc2 C 1341 63 F DECEASED 1464 Y TMZ & CCNU
C3 C 1265 49 M ALIVE N/A Y T™MZ

C4 C 695 53 M DECEASED 973 Y T™Z

C5 C N/A 35 M DECEASED N/A Y T™MZ

Cé C 799 60 F DECEASED 1260 Y T™Z

C7 C 523 55 M DECEASED 721 Y T™Z

C8 C 438 60 F DECEASED 818 Y TMZ & CCNU
C9 C 315 35 M DECEASED N/A Y N
C10 C 438 29 M DECEASED 796 Y N
C11 C 2141 26 M DECEASED 3511 N Radioactive iodine
D1 D 730 56 F UNKNOWN UNKNOWN Y TMZ & Carmustine
D2 D 365 61 M UNKNOWN UNKNOWN Y TMZ & Carmustine
D3 D 1095 41 F UNKNOWN UNKNOWN Y T™Z

D4 D 730 55 M UNKNOWN UNKNOWN Y T™Z

2.3.2 Assembling a robust and scalable bioinformatics pipeline (workflow)

Next-generation sequencing (NGS) data are massive and require multiple intensive computational

steps to achieve reliable results from a high-quality analysis. One can manage to analyse a few
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datasets using the local computational resource, but this is not the typical situation. The dataset I'm
using in this study comprises 126 x 150bp paired-end genome fastq sequencing files and 79 BAM files
generated from exome data for the same cohort. The genome files were primary-recurrent pairs with
matched normal blood samples whereas exome files were primary-recurrent pairs without matched
normals (Table 2-1). These files include samples collected from patients who underwent multiple
recurrent surgeries, as well as re-sequenced samples or samples obtained from different regions of
the same tumour. This requires processing the datasets robustly and efficiently to produce accurate
results. The tumour samples were from FFPE tissues and the matched normal samples were from
blood. Therefore, | opted to use a tool that helped automate executing the required analytical tasks:
Nextflow. Nextflow (Di Tommaso et al., 2017) is an example of a domain-specific language (DSL), and
it is specialised in the biological field, mainly the genomic data analysis domain. It facilitates the
writing of bioinformatics pipelines and allows the integration of multiple programs. Among the
advantages that it provides, is its compatibility with the high-performance computing service
available for researchers at the University of Leeds. | successfully developed a pipeline starting from
Fastgc and ending with annotating the VCF files. Figure 2-2 shows the software employed in the

pipeline.

Picard tools
ClipBam.

BWA-MEM

* Fasta files * Reads alignment * Marking * Somatic SNVs & « Functional
assessment to GRCh38 (hg38) Duplicates INDELS calling annotations
¢ Adapter and ¢ Clipping * Filtering variants e version 104

quality trimming overlapping reads

=
@®

w
©

7\

* Somatic Copy « |dentifying genes
Number Calling affected by CNAs
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Figure 2-2: Bioinformatics workflow for WGS and WES analysis implemented in Nextflow.

A summary of the multiple processes with the associated tools applied to the raw data to call somatic SNVs and CNAs.

Chapter 2 44



2.3.3 Data quality

2.3.3.1 Pre-alignment processing

Before mapping the reads to the reference genome, | followed the best practice of data
preprocessing to ensure that the genome and exome datasets were free of bad-quality reads and
sequencing adapters. The FastQC indicated that all files had a high base quality; however, adapter
contamination was evident. As those adapters are artificial and not part of the genomic DNA, | had
to remove them to minimise the sources of possible wrong base calls. Having known that the libraries
were prepared using an Agilent kit, | initially used Agilent universal adapter sequences with the
adapter removal tool, Cutadapt (Martin, 2011); however, rerunning FastQC indicated that the
adapters have not been removed and suggested that lllumina universal adapter sequences had been
used, which is similar to some adapters used in some Agilent library preparation kits . | trimmed these
off with Cutadapt, along with bases with a call quality lower than a Phred score of 20 towards the

end of the reads.

2.3.3.2 Post-alignment processing

The overall quality of the data was high, as indicated in the FastQC report of the fastq files. Removing
the adapters, the overrepresented sequences and reads with quality scores below 20 resulted in
higher quality data. However, sequence length distribution was affected due to the applied trimming
parameters. The average read length after processing the genome fastq files with Cutadapt is 132 bp
per fastq file. In addition, an average of 44% of GC content was reported per raw data file. The
mapping rate of the data using BWA was also high. An average of 99% of reads were mapped to the
genome. Of the mapped reads, an average of 97% were proper pairs. Finally, the average rate of
duplicated sequences was 12%. On the other hand, exome data had a mapping rate of 99%, 51% GC
content, 37% duplication. The GC content in the WES data was higher than in the WGS data due to
the design of capture probes, which target exonic regions that are typically GC-rich. Also, the
duplication rate was higher in the WES data because the capture probes often target short
sequences. This results in the enrichment of similar DNA fragments, leading to higher duplication

rates.

2.3.4 Diagnostic Checks for Accurate Variant Identification

Before | started the analysis of the WGS data, | searched the literature and found a study that was

done on GBM by Korber et al., where they utilised primary and recurrent tumour samples, similar to
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my analysis, and used it to for benchmarking (Korber et al., 2019). The whole genome samples were
sequenced as paired end with an average depth of coverage 25x for the blood samples and 20x for
the tumour samples. Initial variant calling results revealed that a median of 183,187 SNVs and INDELs
were found in the set of primary tumours, and a median of 155,264 SNVs and INDELs were found in
the recurrent tumours. These findings are far higher than what was reported by other GBM studies
that utilised WGS data. Korber et al., 2019, have reported a median of 12,800 somatic variants per
sample with read depth of 149x for tumour samples and 78x for matched blood samples. Another
study by (Barthel et al., 2019) reported an average of 4,224 somatic variants per sample with >100x
depth of coverage. To investigate the higher number of variants, | combined all samples and classified
the variants into four categories: shared primary, shared recurrent, unique primary and unique
recurrent. | then made diagnostic plots to check the distributions of variants using variant allele
frequency (VAF), variant allele depth, and total depth (Figure 2-3). The hypothesis behind the four
classifications is that shared primary and shared recurrent variants are likely true variants. This would
help me to assign a cut-off to identify the artefacts, which are expected to share features such as low

depth, few variants supporting reads and low VAF, and confidently eliminate them.
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Figure 2-3: Diagnostic plots to investigate calling high number of variants in the original and clipped reads.

A: Distribution of total depth.
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B: Distribution of variant allelic depth.

C: Distribution of variant allele frequency.

As a further diagnostic step, | examined the distribution of total and variant allelic depths, where a
spiked pattern was observed: even read depth values occurred more frequently than odd read depth
values (Figure 2-3A). This suggested that there could be double counting of evidence, possibly
resulting from short DNA fragments where paired reads sequenced the variant in both forward and
reverse directions. To investigate this possibility, I used fgbio-ClipBam
(http://fulcrumgenomics.github.io/fgbio/tools/latest/ClipBam.html). ClipBam clips paired reads
from the ends of read 1 and read 2. At the stage of having mapped reads ready for mutation calling,
ClipBam was a reliable option because it can be applied directly to aligned read files, meaning that |
wouldn’t need to repeat the raw reads mapping process.

In addition, | compared the numbers of mutations for each substitution type in the WGS data, as FFPE
samples are known to have a high proportion of C>T substitutions that are mostly false positives
(Williams et al., 1999, Quach et al., 2004). C>T variants were predominant, with a higher proportion
than other substitutions, followed by T>C variants (Figure 2-4), suggesting that many of the called

variants are likely FFPE artefacts.

Mutation Types - WGS cohort
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Figure 2-4:Proportions of single base substitution (SBS).
A diagnostic plot to show the prevalence of each mutation type. C>T known to be an FFPE artefact is

the predominant substitution in the WGS cohort.

To see if clipping the overlapping reads improves the data and reduces the artefacts, | randomly
tested a sample from the exome data as it is smaller than the genome, does not require high
hardware specifications like the whole genome and is easy to optimise. | applied ClipBam on the

exome bam file, and re-ran Mutect2 to call the somatic variants. | then compared the results before
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and after using ClipBam. This showed that Mutect2 double counts the variants in the overlapped
reads (Figure 2-5). Pearson correlation scores were significantly high between variant supporting
reads before and after clipping the overlapped reads further confirming that variant supporting reads

were overestimated because of double counting the evidence.
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Figure 2-5: Total depth of variants in the pre and post clipping the overlapping reads.
Variants of the clipped exome sample were extracted and checked for coverage in the original bam

using Bam-readcount (Khanna et al., 2022).

2.3.5 Clipping the overlapped reads

After confirming the double counting of evidence, | applied ClipBam to both WGS and WES cohorts.
This step was performed after identifying the duplicate reads to maximise the accuracy of post-
alignment processing. The initial bam files contained soft-clipped bases as a result of the alignment
process. Soft clipping is a way to handle mismatches or low-quality bases without discarding the
entire read. Nonetheless, ClipBam provides metrics afterwards to show how much of the data were

clipped. This allowed me to compare the metrics before and after applying ClipBam on both WGS
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and WES data. For the WGS data, the median percentage of bases clipped during alignment was 1.7%

and the median percentage of clipped bases due to overlapping was 45%, whereas the WES data had

20% of bases clipped during alignment and 35% due to overlapping reads. Clipping the overlapping

reads then allowed me to call variants from 53.3% of the bases for the WGS and 45% of the WES

data. The extensive clipping was acceptable given that the median insert length was 126 bp using the

150 bp paired-end sequencing method. Figure 2-6 shows the percentage of usable and clipped bases

for each cohort.
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Figure 2-6: Investigation the overlapping reads per sample.

A: The distribution of the insert length of short reads.
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B: The proportions of usable bases and clipped bases before and after clipping the overlapped reads in whole genome cohort. Each patient
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due to overlapping, and the dark colours are for bases clipped during mapping to find best alignment.

C: Same as B but for the whole exome cohort. Exome data didn’t include matched normal samples.
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2.3.6 Whole Exome Cohort

After converting the BAM files to the raw read format and re-aligning them, the exome data had an
average read depth of 99x for the tumour samples. Mutect2 detected a median of 6,509 somatic
variants in the primary tumours and a median of 6,075 somatic variants per sample in the recurrent

tumours.

2.3.6.1 Common mutated genes in GBM

To further ensure comparability of our data with that found in other large cohort studies, | inspected
the most commonly mutated genes. GBMs are characterized by genetic alterations commonly in
EGFR, PTEN, TP53 and RB1 genes (Korber et al., 2019, Brennan et al., 2013). The Stead cohort shows
comparable findings with these studies. In comparison with a study done by Brennan et al., 2014,
EGFR was mutated in 26% of their cohort while the Stead cohort had 30% of mutated EGFR cases.
PTEN mutations were also found at a similar frequency, at 28% in both cohorts. TP53 was mutated in
39% of Stead cohort, while Brennan et al’s had 26%. Finally, RB1 was mutated in 19% of the Stead
cohort whereas Brennan et al’s reported 8% of the cases with RB1 mutations. In addition to the
common genes, | observed high mutation rates in other top 20 genes. However, these genes are
among the longest in the human genome, making them more prone to accumulating mutations due

to their size.

The exome data analysis revealed that TTN was the most frequently mutated gene in the Stead
cohort. This finding aligns with previous studies, such as the work by (Oh et al., 2020), which reported
that TTN had the highest mutational load in GBM samples (Figure 2-7A). MUC16 was also among the
top 20 most frequently mutated genes, with variants identified in 25% of cases. This result is
supported by a preprint study by (Ferrer, 2022), which highlighted MUC16 as a recurrently mutated
gene in GBM. Of the four common GBM mutated genes (Figure 2-8B), EGFR had variants with VAF
less than 10% suggesting a presence of subclonal mutations while the VAF of PTEN, TP53 and RB1
variants ranged from ~20% to approximately 70% suggesting that these alterations are likely clonal

and occurred earlier during tumour development.
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Figure 2-7: Mutational landscape and variant allele frequency (VAF) distribution in the WES cohort.

(A) Oncoplot showing the top 20 most frequently mutated genes across the cohort. Each column
represents a tumour sample, and each row corresponds to a gene. Mutation types are colour-coded as
indicated in the legend. The bar plot on the top indicates the total number of mutations per sample,
while the bar plot on the right shows the mutation frequency (number of samples with at least one

mutation) for each gene across the cohort. The stacked bar plot below depicts the proportion of single

base substitution classes within each sample.

(B) Distribution of variant allele frequencies for mutations in the same top 20 genes. Each box plot

represents the range of VAFs per gene across all samples, illustrating clonal versus subclonal patterns

(higher vs. lower VAFs).
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2.3.6.2 Tumour mutational burden

Tumour mutational burden (TMB) is another metric | used to compare my exome results to other
studies. | compared the TMB of the Stead cohort (64 samples) with the Cancer Genome Atlas (TCGA),
which has 398 samples, mostly from primary tumours (Figure 2-8A). The exome data shows a slightly
higher median TMB rate than the TCGA, with 4.5 and 5.2 mutations per MB respectively, when
considering only deleterious mutations. The primary tumours had three hypermutator samples
where TMB exceeded 10 mutations/MB, while the recurrent tumours had 5 hypermutated samples
asindicated in Figure 2-8 A and B. Kim et al., 2015 had similar results to ours and TMB ranges between
4-5.5 mutations/Mb. Furthermore, 134 IDHwt GBM samples analysed in the study of (Barthel et al.,
2019) showed less TMB rate of 2.85 mutations/Mb.
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Figure 2-8: TMB rate across different cancers in TCGA database, and the Stead cohort.

A: TMB rates for primary and recurrent samples combined against TCGA datasets. Number of samples is indicated on the
right Y axis.

B: TMB rates for primary samples only against TCGA datasets.

C: TMB rates for recurrent samples only against TCGA datasets.

2.3.7 Whole Genome Cohort

After applying ClipBam, | repeated the mutation calling by mutect2. The number of primary tumour
variants reduced from a median of 183,187 variants per sample in the pre-clipped data to a median
of 117,810 in the clipped data, while recurrent variants reduced from 155,264 to 89,257 variants per
sample. The read depth remained the same even after clipping the overlapped reads with 25x for the
normal samples and 20x for the tumour samples. Although clipping the overlapping mapped reads
has successfully reduced the number of variants by 35-40%, the genome profiles still have 5-10 times

the number of somatic variants reported by (Barthel et al., 2019, Korber et al., 2019) making the WGS
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data not suitable for variant calling. The lower read depth, and the nature of DNA samples being from
FFPE tissue, played roles in detecting higher rate of false positives. Also, it is not applicable to apply
a hard filter for “limit of detection” in samples with low coverage and heterogenous tumours such as
GBM (Steiert et al., 2023). It was therefore decided that WGS data will be used only to call somatic

copy number aberrations (sCNA).

Korberetal., 2019 Stead WGS cohort - original Stead WGS cohort - clipped bam
A s bl | R
10° 600000 4 . ) c . ,
600000
Q ] rd 4] d
E 3 400000 3 -
3 E £ 400000 4
- g i g .« .
2 200000 1 «% o 2 200000 1 o’
g & . o,,"g‘. oo & . .""' e ®
10° " e, <o
Ry o
01~ 04
10¢ 10° 0 200000 400000  600DOOO 0 200000 400000 600000
. Primary tumours Primary tumours
Primary sample
D E F
10° 1 ¢ .
K2 e .‘ .. s .&. * .
2 10° - . 2 £10° ;' 4 o3 2 ) ®
% = '§ b ] v T 4. 'g :o: E. A
w . + o? !v ™ ; 10¢ 0 +
2 10*1 é ] .i E ¢ b 3 “ é” (¥ >
s < @ - N 3 ¢ v .
4 104 .
® 107 1 . & 1 . . 10° :* .
. .
Primary + Primary Recurrence shared primary recurrent shared primary recurrent
recurrence only only
C 100 |l| D
® |
§ il J
+
o 90
>
-
: ‘
-0
P
0
D Recurrence only =3 Recurrence only =3 Recurrence only
O Primary only E=m Primary only == Primary only
B Primary + recurrence

3 Primary + recurrence

Figure 2-9: Variant metrics before and after clipping the overlapped reads.

A-C: Number of somatic SNVs and indels called in primary and recurrent tumours (red lines, median)

D-F: Numbers of shared and private SNVs and indels to each tumour (red lines, median)

G-l: Proportion of mutations per patient relative to D, E and F.

**Plots A, D and G are published in (Korber et al., 2019)
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2.3.7.1 Regulatory region mutations

The Telomerase Reverse Transcriptase (TERT) promoter is commonly mutated in GBM patients. This
promotor region was not included in the hybrid capture probes used in generating the Stead cohort
WES data. Therefore, exomes lack information on TERTp mutation status. As an alternative, | used
the genome data to check the fraction of samples that were mutated. Of 32 patients, 21 carried one
of the common mutations in the TERT promoter region. After receiving the therapy, 19 patients
retained the mutation in their recurrent tumours. C228T was predominantly mutated in 70% of the
patients, while C250T was found in 20%. These mutations are commonly referred to using the
nomenclature C228T and C250T, which correspond to C>T transitions located 124 bp and 146 bp
upstream of the TERT transcription start site. The remaining 10% of the patients had no mutation in
either sample. Similar results were reported by (Lombardi et al.,, 2021), showing that the TERT

promoter region was mutated in approximately 70% of the recurrent GBM.

2.3.7.2 Chromosomal aberration findings

Calling copy number aberrations requires a well optimised pipeline, especially in the presence of
short reads produced from FFPE samples. Using Facets SCNA caller, | went through multiple attempts
at optimisation until | found the suitable set of parameters, such as the low and high critical values
that yielded the best segmentation. These critical values set the statistical thresholds for merging
adjacent segments. The quality of the segmentation determines whether further refinement is
needed, as over-segmentation can introduce noise and lead to inaccurate profiles, while under-
segmentation may miss important changes. Since there are no universal or standardised parameters
for copy number calling, the process can vary depending on the tool used, the nature of the
sequencing data, and even lab-specific protocols. In this context, parameter refinement was
particularly important because BAM files were processed to clip overlapping bases in paired-end
reads. Better segmentation was achieved progressively, as shown when comparing Figure 2-10A
through 2-10C. The final parameters reduced noise and over-segmentation, producing more reliable
copy number calls. This was crucial for downstream analyses such as estimating the cancer cell
fraction (CCF), subclonal deconvolution, and pathway analysis (Tanner et al., 2021). Figure 2-10
illustrates the optimisation stages using different critical values tested to achieve the optimal

segmentation for the Stead cohort.
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Figure 2-10: Optimising stages of copy number calling using FACETS.

A: Joint segmentation using the default critical values for preprocessing and final segmentation.

B: Joint segmentation using adjusted critical values to reduce the over segmentation.

C: Joint segmentation using critical values that were applied the WGS dataset.

Tumour purity and ploidy were inferred by FACETS, which jointly models log2 copy-number ratios and
allelic imbalance (B-allele frequencies) from matched tumour—-normal sequencing data. FACETS
iteratively searches for the purity—ploidy combination that best fits the observed data, yielding an
optimal estimate of the fraction of tumour DNA (purity) and the average DNA copy number per cell

(ploidy).

The segmentation data was then further analysed using GISTIC to identify copy number changes
across the cohort. The analysis conducted by GISTIC revealed significant losses and gains in profiles
of both primary and recurrent tumours, including chr 7 gain, chr 9 loss and chr 10 loss (Figure 2-
11A,C). This finding is comparable with the results reported by (Korber et al., 2019). Among the genes
that were amplified in the chromosome 7 gain event is EGFR. This gene was mutated in 84% of the
primary tumours and 59% of the recurrent tumours. Chromosome 10, which includes PTEN, had
partial deletions of more than 80% of the primary tumours and 70% of the recurrences. Additionally,

chromosome 9p acquired deletions in more than 50% of both primary and recurrent tumours. These
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findings are also aligned with results reported previously (Brennan et al., 2013) where they analysed

copy number profiles from 543 GBM samples, including amplifications in EGFR and PDGFRA, and

deletions in PTEN, CDKN2A and RB1 (Figure 2-11B). Finally, GISTIC revealed gains and losses in the

recurrent tumours that were not initially detected in the primary tumours (Figure 2-11C); novel

partial deletions were found in 10g and 13q arms and novel partial amplifications in 3q and 17q arms.
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Figure 2-11: Somatic CNAs in Glioblastoma identified by GISTIC.

100

Genome-wide copy number alterations were identified using the GISTIC 2.0 algorithm, which detects regions of recurrent
amplification (red peaks) and deletion (blue peaks) across the cohort. The x-axis represents the statistical confidence of each

alteration, expressed as the false discovery rate (g-value). The vertical green line marks the significance threshold, with peaks
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extending beyond this line indicating significantly recurrent events after multiple-testing correction. The height of each peak (G-score)
reflects the combined amplitude and frequency of the aberration across the samples.

A: Primary tumours from the Stead cohort

B: TCGA primary glioblastoma dataset adapted from (Brennan et al., 2013) for comparison.

C: Recurrent tumours from the Stead cohort.
The recurrently altered genes highlighted in the TCGA reference plot (panel B) were also detected in the Stead cohort (panels A and

C), demonstrating concordant amplification and deletion patterns across datasets.

2.4 DISCUSSION

Optimizing the whole-exome sequencing (WES) and whole-genome sequencing (WGS) analysis
pipeline was necessary to address several technical issues to generate reliable results for
downstream analyses. At first, the variant calling showed a very high number of somatic variants in
both datasets. FFPE-induced alterations such an overabundance of C>T changes attributed to this
extremely high number of variants. Overlapping paired-end readings that resulted in double counting
of the evidence affected the VAF estimates. | implemented two processes in the pipeline: first, |
applied the LearnReadOrientationModel function in Mutect2 to reduce the excess C>T counts.
Second, | used ClipBam to clip the overlapping paired-end reads. After these two steps, | achieved a
substantial improvement, with variant counts in WES data aligning closely with other GBM studies,

indicating that the refined pipeline effectively minimised false positives while retaining true variants.

The WES data analysis confirmed that the optimised pipeline can produce reliable results. The variant
counts were consistent with published studies, and | successfully detected mutations in key GBM
genes, including EGFR, PTEN, TP53, and RB1. The estimates of the TMB are in line with other GBM
cohorts, such as the TCGA. An efficient pipeline is particularly important for accurately computing
TMB to avoid overestimations or underestimations. Results around the threshold of 10 mutations
per megabase are prone to overestimation or underestimation of the number of true, problematic
variants in the sample as FFPE-induced mutations could have skewed the results. After the pipeline
adjustments, the hypermutated samples identified in my cohort were validated as true cases, not

artifacts, which further proved the robustness of the pipeline.

The enhancements to the WGS data pipeline substantially decreased the variant counts, resulting in
a reduction of 35-40% compared to before to the changes. Nonetheless, this still produced a greater
number of variations than reported in other studies. The probable cause for this is our use of FFPE
materials, which present significant challenges, coupled with a low sequencing depth of 20x for the
tumour samples. The aforementioned factors rendered the WGS data inappropriate for identifying

somatic SNVs. Conversely, it was appropriate for identifying copy number abnormalities. By executing
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the optimised workflow | designed for the WGS data, | successfully identified prevalent CNAs linked

to GBM, including gains on chromosome 7 and losses on chromosomes 10 and 9.

A significant enhancement | implemented was resolving the issue of overlapping paired-end reads, a
prevalent contributor to the inflation of variation allelic ratios. | utilised ClipBam to mask the
overlapping regions to prevent the variant caller from counting paired reads supporting variants
twice. | conducted diagnostic assessments utilising VAF, read depth, and the count of supporting
reads, and | verified that this modification significantly reduced the artefacts | had been observing.
This was essential for VAF estimates, which are vital for monitoring variant prevalence over time in

longitudinal datasets.

2.5 Future Directions

Despite resolving the identified issues, there is still opportunity for future improvements and
optimizations. Higher depth sequencing would help in lowering the occurrence of low coverage
artifacts in whole genome data. The troublesome overlaps will also be significantly reduced by using
a read-length generation kits that is 75 bp paired-end, especially for FFPE-derived samples where
shortinsert sizes are yielded by induced DNA fragmentation. Nearly 40% of the data had to be clipped
because of overlaps when using 150 bp paired-end reads, as was the case with WGS and WES in this
cohort. This decreased the amount of coverage that could be used. Some of these problems will be
minimised with improved library preparation kits and large DNA input. These changes may result in

increased sequencing depth and improved genome coverage.

Developing a panel of normals (PON) from non-malignant brain tissues is an additional step that
might enhance the outcomes of subsequent research. The likelihood of false positives can be
decreased by using a PON to assist filtering out recurrent technical artifacts unique to brain tissue
sequencing. For instance, comparing tumour samples to a PON made from non-malignant brain
tissue could help manage FFPE artifacts or sequencing-specific errors. A more precise baseline for
determining true somatic variations would result from this. The pipeline may become more robust
and dependable for research on brain cancer if this phase is added.

In the future, workflows for other data sources, including RNA sequencing (RNA-seq) or methylation
analysis, could be developed utilizing the modular pipeline design methodology, like Nextflow. Even
though this pipeline is designed for DNA sequencing data, the same automation, scalability, and
adaptability may be used to create customized pipelines for analysing epigenetic alterations such as

Bisulfite sequencing (BS-seq) or gene expression such as RNA-seq data.
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2.6 Conclusion

This chapter concludes by showing how crucial thorough pipeline refining is to obtain accurate
variant and copy number calling from next-generation sequencing data. By effectively addressing the
main issues of overlapping reads, FFPE artefacts, and low sequencing depth, the approaches used
here laid the groundwork for reliable downstream studies. The optimizations carried out guarantee
that the data produced are of excellent quality and appropriate for further investigations, including

the investigation of pathways and the long-term monitoring of genetic alterations.

| am confident that the optimised pipeline produced reliable results that can be built upon in the next
chapter, which focuses on pathway analysis after resolving these issues. Critical investigations into
treatment-driven tumour progression and clonal dynamics in GBM will be supported by accurate
copy number aberration (CNA) profiles and variable allele frequency (VAF) estimates. Other studies
using cancer sequencing data, especially those that depend on FFPE samples or low-coverage WGS
datasets, will benefit significantly from the experience of this optimization approach. A fundamental
step in producing accurate, repeatable, and therapeutically beneficial genetic data is optimizing the
WGS and WES pipelines, which supports the larger objectives of advancing precision oncology and

cancer research.
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CHAPTER 3

3.1 INTRODUCTION

3.1.1 Overview

This chapter will focus on identifying biological mechanisms associated with treatment resistance in
glioblastoma (GBM). In the previous chapter, | optimised my pipeline to call true somatic variants and
accurately annotate their variant allele frequencies (VAFs) and coverage as further investigation will
heavily rely on these two factors. The resulting mutation data, derived from whole exome
sequencing, is comparable to what was reported in other GBM studies, instilling the confidence to
proceed to apply different analytical approaches to gain further insights into the cellular processes

involved in GBM that may influence resistance to therapy.

In this chapter, | analyse mutational data from two independent GBM cohorts. The first is the
Discovery cohort; this includes all IDH wild-type (IDHwt) GBM cases that were collected and
processed by Stead’s group. For the second cohort, herein referred to as the Validation cohort, | was
given access to data from the Glioma Longitudinal AnalySiS (GLASS) consortium as our group
contributed GBM data to the consortium to allow high throughput analysis (Consortium, 2018). The
Validation cohort mutation data is also from primary and recurrent tumours however | only had
access to the variant call files, not the raw sequencing data, so not only is this an independent cohort,
but it was processed using an independent analysis pipeline. My approach was to analyse the cohorts
separately and look for findings that were shared under the rationale that such validated results are
more likely to inform on the biology that underlies the progression of tumours through therapy, than

result from cohort-specific artefacts.

3.1.2 GLASS data

The discovery cohort is thoroughly explained in Chapter 2 (section 2.3.1), hence herein | will explain
the Validation cohort data. GLASS stands out as a collective effort that brings together crucial
information from across the globe on all glioma subtypes. This initiative has gathered detailed genetic
data from a large number of adults who've battled this disease, focusing on profiling of longitudinal
paired samples to understand tumour progression. Within this collection is genetic data for a group
of 94 patients diagnosed with IDHwWt GBM who have undergone the usual treatment route, a
combination of the drug temozolomide and radiotherapy. By looking at their cases, | can learn a lot

about how the common treatment affects this aggressive tumour.

Chapter 3 62



The GLASS repository doesn't provide the raw data from genome or exome sequencing. Instead, it
provides high quality mutation calls which were called by Mutect2 (Benjamin et al., 2019). Eleven
centres contributed 188 samples to the repository as indicated in the table 1. The exome data from
the GLASS (validation cohort) and the discovery cohort were similarly processed by using Mutect2 in
multi-sample mode to jointly call somatic point mutations including single nucleotide variants (SNVs)
and short insertions and deletions (InDels). This is extremely useful for expanding my functional
enrichment analysis as it makes the analysis more valuable by acquiring external data from patients
who have been treated similarly allowing me to confidently study the effects of treatment on
progression of response and highlight potential pathways that could be interesting for developing
some targeted GBM therapies.

Table 3-1: Data sources for the validation cohort

Centre code Centre Name No. of patients
GLSS-19 Case Western 9
GLSS-AT Medical University of Vienna — CeMM 7
GLSS-CU Columbia University (USA) 16
GLSS-DF Dana Farber Cancer Institute 3
GLSS-HF Henry Ford Hospital 18
GLSS-LU University of Leeds (UK) 8
GLSS-MD MD Anderson Cancer Center 3
GLSS-MG Massachusetts General Hospital 9
GLSS-SF UC San Francisco 2
GLSS-SM Samsung Medical Center 18
GLSS-14 Emory University 1

3.1.3 Variant distributions and treatment resistance

Using longitudinal i.e. primary and matched recurrent GBM tumours from the same patient is
necessary to uncover how the molecular features of each tumour change over time. Genetic changes
occur during the development of the tumour, and mutations keep accumulating as the tumour
evolves. The expansion or eradication of subclones, containing specific mutations, under the
selective pressure of treatment may imply that those mutations confer an advantage or disadvantage

to the tumour cells, respectively (Figure 3-1).
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Figure 3-1: Changes in mutation prevalence between primary and recurrent GBM.

A: GBM cells in the primary tumour carry distinct mutations, represented by coloured symbols within each cell. The plot
shows the cellular fraction on the x-axis (i.e., the percentage of tumour cells carrying each mutation) and the number of
mutations in each group on the y-axis.

B: Same as A but it displays recurrent tumour.

C: This panel shows mutation frequency in the primary tumour (x-axis) compared to the recurrent tumour (y-axis). It allows
identification of clonal mutations (high frequency in both tumours) versus subclonal mutations that were either lost or

expanded between tumour stages.

In this chapter, | aim to investigate the change in mutational prevalence between primary and
recurrent GBM, with a particular emphasis on distinguishing unique and common variants across
tumour types. These variants may serve as crucial catalysts for tumorigenesis and therapeutic failure,
and comprehending their functional enrichment may elucidate candidate mechanisms of treatment
resistance, which could aid in developing novel therapeutic interventions and improve patient
outcomes. Through genetic profiling of longitudinal pairs, variants can be categorized into three
groups: primary-specific, recurrent-specific, and shared variants, with each group having a different

potential biological interpretation.

3.1.4 Primary-specific

Variants unique to the primary tumour may arise from two biological scenarios. Firstly, the primary
tumour sample may have included subclones that were wholly removed via surgery and thus were
not present in the cells that gave rise to the recurrent tumour. Secondly, these variants could have
been in cell subpopulation(s) that were lost during tumour evolution post-surgery, either by genetic
drift or negative selection, particularly if they conferred treatment sensitivity to the tumour cells.

It is also important to consider tumour purity, as diagnostic biopsies often contain variable
proportions of non-neoplastic cells. Variants detected at low allele frequencies or confined to poorly

represented tumour regions may therefore appear unique to the primary sample simply due to
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admixture with normal tissue or differences in sampling region. Additionally, non-biological factors
could contribute to the identification of these unique variants. Sampling bias, where not all tumour
heterogeneity is captured in the biopsy, may result in variants appearing unique to the diagnostic
sample. Furthermore, technical artifacts, such as sequencing errors or DNA changes induced by
formalin fixation of samples (Wong et al., 2014), can also lead to the identification of mutations that

seem specific to the primary sample but may not reflect true biological differences.

3.1.5 Recurrence specific

Recurrent tumour-specific variants, which were not identified or were present at very low Variant
Allele Frequencies (VAF; i.e., below the detection limit of standard variant calling) in the primary
tumour, highlight the intricate dynamics of cancer evolution and the limitations of sampling and
detection techniques. These variants might have existed in the primary tumour within a minor
subclone, undetected due to their low abundance. Such subclonal populations, harbouring unique
genetic alterations, might not have been effectively targeted or removed by initial treatments or
surgery. Consequently, these subclones can persist, evolve, and eventually dominate in the recurrent
tumour, especially under selective pressures such as therapy and the body's immune response.
Furthermore, the initial sampling of the primary tumour might not have captured these specific

subclonal populations, leading to an underrepresentation of their genetic diversity.
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3.1.6 Shared variants

The presence of shared variants among primary and recurrent tumours may indicate the existence of
clonal driver mutations, which may have happened early to facilitate the development and progression
of this disease, and so are present in all tumour cells. The presence of shared variants shows that the
recurrent tumours arise from the continued evolution of unresected cells from the primary tumour
rather than from the emergence of a new tumour via de novo mechanisms. This subgroup of variants
is of particular interest as it allows the inspection of subclonal dynamics, i.e., looking for non-clonal
variants that define subclones and then seeing whether those subclones expanded or reduced over

time.

Overall, the distribution of common and unique variants across primary and recurrent glioblastoma
tumours can shed light on the processes underlying tumour growth and therapeutic response.
Focusing on each classification of variants may reveal further insights. Shared variants, for instance, as
well as those unique to either the primary or recurrent tumour, can be further studied by using Cancer
Cell Fraction (CCF). CCF analysis enables the estimation of the proportion of tumour cells carrying a
given mutation, thereby distinguishing between clonal and subclonal events. For shared variants, CCF
helps confirm their clonal nature and persistence across time, whereas for unique variants, it can
indicate the emergence or loss of subclones during tumour evolution. (Tanner et al., 2021), conducted
a comprehensive assessment of subclonal deconvolution pipelines in cancer genomics using
sophisticated tumour genome simulation tools. They created various datasets with different mutation
rates, tumour complexities, and purities, and called variants at various depths. Their findings
emphasize that higher sequencing depths, such as 250x, are more effective for accurately estimating

CCF, especially for detecting rare mutations present in a small fraction of cancer cells.

However, in scenarios where high-depth sequencing is not feasible, the computation of CCF from
sequencing data becomes challenging. Under these circumstances, a more simplistic proxy is the use
of VAF, which can still provide approximate insights into subclonal composition and relative mutation

abundance.

3.1.7 Variant Allele Frequency (VAF)

VAF measures the proportion of sequencing reads that support a particular variant within a tumour
sample and is widely utilized in genomic studies such as whole-genome sequencing (WGS), whole-
exome sequencing (WES), and targeted panels to estimate the frequency of somatic mutations in

cancer genomes. In glioblastoma (GBM) and other cancers, VAF serves as a useful metric for assessing
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clonal composition and tumour heterogeneity and may provide insights into therapeutic responses
or disease progression (Nadeu et al., 2016). Under ideal conditions, VAF can act as a proxy for Cancer
Cell Fraction (CCF), assuming that each cancer cell harbours one mutant allele and one wild-type
allele. This assumption creates a direct relationship between the frequency of the mutant allele in

the DNA sample (VAF) and the fraction of cancer cells carrying that mutation (CCF).

However, the use of VAF as a proxy for CCF can be problematic due to the complexity introduced by
copy number variations (CNVs). CNVs result in multiple copies of genes or genomic regions within
cancer cells, disrupting the straightforward correlation between VAF and CCF. For instance, CNVs can
cause an overestimation or underestimation of CCF if VAF is used without appropriate adjustments
(Figure 3-2). In cases where a gene is amplified, the VAF might appear higher, not because more cells
carry the mutation, but because there are more copies of the gene in each cell. Conversely, deletions
could lead to a reduction in VAF, underestimating the true CCF. These discrepancies highlight that
while VAF can provide a rough estimate of CCF, it must be interpreted with caution, particularly in

the presence of CNVs that can complicate the relationship.

Moreover, GBM tumours are highly heterogeneous, consisting of multiple subclones with distinct
genetic profiles, and this heterogeneity, combined with CNVs, complicates the use of VAF as a proxy
for CCF. Accurate estimation of CCF from VAF requires careful handling of CNAs, which can
significantly distort VAF measurements. While some methods adjust for CNAs directly, others rely on
prior correction or the masking of variants in regions with variable CNAs. Masking can be a safer
approach, especially when dealing with low-coverage data, as it helps to minimize the impact of CNAs
on CCF estimates. However, this strategy is not without its disadvantages; it can inadvertently exclude
important mutations in regions know to be amplified or deleted in chromosome 7,9 and 10 which
are common in GBM (Miura et al., 2018). Despite these challenges, masking remains a practical

option when direct CNA adjustments are not feasible.
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Figure 3-2: Demonstration of CCF estimation.
This diagram shows how VAF and CCF calculated. VAF is the fraction of variant supporting reads, whereas CCF accounts for

ploidy, purity.

3.1.8 Using VAF to Investigate Clonal Evolution

In this chapter, | explore the subclassification of shared variants using VAF into four distinct
groups, based on how the VAF of each mutation changes from primary to recurrence. | aim to
investigate the characteristics of each group, starting with the first group which consists of
mutations with low VAF in both tumours. This group contains mostly passenger mutations,
which are characterised by having a low allele frequency. Passenger variants usually arise
randomly during DNA replication and don’t confer a selective advantage to the tumour cells.
However, not all low allele frequency variants are necessarily passengers, some variants could
be biased due to sequencing techniques, or they have not yet reached clonal dominance.
However, using longitudinal samples suggests that this group of variants is likely to be

passengers rather than drivers (Consortium, 2020, Aaltonen et al., 2020).

The second subgroup of shared variants are those with high allele frequency in primary tumours
but low allele frequency in recurrent tumours. A decrease in VAF from primary to recurrent
tumours could imply that treatment played a role and the tumour partially responded (Shomali
and Gotlib, 2018). In GBM, understanding this dynamic is crucial for exploring potential
treatment strategies. Specifically, a reduction in VAF may indicate a subset of tumour cells that
were susceptible to the treatment, thereby offering a window into the tumour’s heterogeneity

and the effectiveness of the therapy employed.
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The third group of shared variants is represented by the mutations that had an increase in VAF
through treatment. The increase in VAF indicates that these variants, possibly subclonal in the
primary tumour, gained a selective advantage, leading to clonal expansion and potentially
contributing to treatment resistance. The presence of these variants in GBM is indicative of
Minimal Residual Disease (MRD), a condition characterized by residual cancer cells that survive
standard therapy and remain in the brain. These cells, often undetectable by radiological
examinations, contribute to the shared genetic variants observed in recurrent GBM tumours
(Qazietal., 2022).) This phenomenon is a well-established fact in GBM pathology, reflecting the

challenges in completely eradicating tumour cells with current treatment modalities.

The last group of shared variants represents mutations with high allelic fractions in both primary
and recurrent tumours. The uniformly high allelic fractions of these mutations suggest their
clonal nature, indicating that they were present early in the tumour’s development and persist
through to recurrence. This uniformity implies that these clonal mutations confer a survival and
proliferative advantage to the tumour cells, playing a pivotal role in both the maintenance and

recurrence of GBM (Korber et al., 2019).

Once classified into the different groups, it is possible to inspect the genes impacted by the
different subsets of variants, to see whether any biological processes are implicated with
regards the different interpretations for each grouping. One way to do this is by looking at

functional enrichment analysis.

3.1.9 Functional enrichment

Functional enrichment analysis is a method used in the computational biology field to determine
which biological functions, such as cellular processes, molecular functions, or biological pathways,
are significantly associated with a gene list. These genes typically come from experimental data like
genomic or expression datasets. One can provide a list of genes identified through proteomic
analysis, which can reveal changes in protein expression; genes affected by epigenetic modifications
from methylation studies, which can influence gene functions; and genes that are differentially
expressed as determined by RNAseq, ranked according to a defined threshold. Alternatively, as |
aimed to do here, the gene lists can be constructed from those that harbour significant variants.
Over-representation analysis (ORA) describes a statistical method that determines whether a
predefined set of biological functions or pathways is significantly overrepresented (or

underrepresented) in a set of genes of interest. There are many tools that can be employed for
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understanding the function of genes and gene sets. Functional enrichment analysis is increasingly
being used to study cancer progression and recurrence and one of its applications widely used is

Gene Ontology (GO)(Ashburner et al., 2000, Gene Ontology et al., 2023). GO categorizes genes into:

1- Biological Processes: This category encompasses terms describing molecular events within
cells or organisms, such as cell division or signal transduction.

2- Cellular Components: Terms here describe the parts of a cell where gene products are
located, such as the nucleus or cell membrane.

3- Molecular Functions: This involves terms describing the activities of gene products, like

binding to other molecules or transporting them.

In ORA, the significance of gene set enrichment is determined using statistical test called
hypergeometric testing. The hypergeometric test shows whether the overlap between the set of
genes of interest and the set of genes with a particular function is greater than what would be
expected randomly, indicating a potential functional significance. The hypergeometric test is

formulated as follows:

x-1

E : (D) (i
PXz2x)=1-PX<x—-1)=1- %

, ()

=0

Here, N is the total number of background genes, n is the number of genes in the list of interest, M
is the number of genes in a specific gene set, and x is the number of genes in the intersection of the
list and the gene set. This equation calculates the probability that at least

x genes from the gene set are found in the gene list, contrasting with a random distribution. This test
is pivotal in determining the statistical significance of the observed enrichment, providing a

guantitative measure for the association between gene sets and biological functions.

However, functional enrichment primarily focuses on whether there are enough genes from the same
gene set in the gene list (Fig 3-3A-B). This approach might overlook scenarios where a specific
pathway or gene set is consistently affected across multiple patients (Fig 3-3C). In other words, the
importance lies not only in the presence of multiple genes but also in their recurrence across different
patients. This aspect requires careful inspection, highlighting the need for more comprehensive
pathway analysis tools. These tools can delve deeper into understanding the commonalities and

variations in gene expression or alterations across different patient samples
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Figure 3-3: The difference between common approaches of pathway enrichment analysis and our novel approach.

A: This approach identifies significantly mutated genes. i.e. The same gene mutated in multiple patients.

B: This approach identifies significantly mutated pathways. It requires a significant number of pathway members to be
mutated.

C: This novel approach identifies significantly mutated pathways based on their prevalence even in a subset number of

patients.

3.1.10 Comparative pathways analysis of primary and recurrent GBM tumours

Previous studies have indicated that the GBM genetic profile maintains its heterogeneity during
therapy (Korber et al.,, 2019, Barthel et al., 2019). Despite this, it is possible to identify driver
pathways that may be exclusive to a small fraction of patients and can provide insight into the
processes responsible for therapy resistance. This information can be used to develop drugs that can
either slow or stop the tumour recurrence progression. In addition, identifying variants that
disappear from primary to recurrent cells can provide information on the cellular processes that are
involved in sensitising the cancer cells.

One aspect of understanding the cause of therapeutic resistance is to identify driver variants.
However, these variants may present with allelic fractions similar to that of neutral passengers that
have no significant effect on tumour progression (Consortium, 2020). Distinguishing driver from
passenger variants is challenging and is a crucial aspect of cancer bioinformatics (Bailey et al., 2018).
There are various methods for identifying driver genes, including looking for frequently mutated
genes, identifying variants that cluster in specific regions of a gene sequence or protein structure,
predicting the functional consequence of variants, and comparing the numbers of deleterious and
benign variants within them. Pan-cancer studies have collectively used the aforementioned methods
to identify driver genes across cancers. Combining these consensus methods has revealed nearly 600

driver genes across cancers, varying depending on the cancer type (Martinez-Jimenez et al., 2020).

The variant assessment strategies mentioned above focus on identifying driver genes at an individual

level, which is not always possible, especially in smaller groups. Examining the frequency of variants
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across multiple related genes in a specific pathway addresses this limitation. This approach increases
statistical power and provides additional insights into the cellular mechanisms that are affected as a
consequence of the variants. My aim is to apply this approach to two distinct cohorts, in order to
identify variants that could potentially drive therapy resistance or sensitivity in glioblastoma (GBM).
The objective is to utilize the VAF to differentiate between clonal and subclonal variants, particularly
in those shared between primary and recurrent tumours. This is especially crucial as prior studies
have demonstrated that there is a paucity of specific genetic alterations shared across multiple
patients that re-emerge after treatment (Barthel et al., 2019, Korber et al., 2019, Wang et al., 2016b).
This does not preclude there being pathways that are repeatedly mutated to confer treatment

resistance though (Figure 3-3).

3.1.11 PathScore

In this chapter, | employ PathScore, a pathway analysis tool designed to compute pathway
enrichment scores by considering the mutational load per patient, transcript length, and gene-
specific background mutation rates (Gaffney and Townsend, 2016). PathScore calculates the actual
and effective sizes of pathways in a given database using patient-gene pairs as input. The actual
pathway size is based on the total number of DNA bases present in all genes of the pathway, while
the effective pathway size incorporates gene-specific background mutation rates, gene transcript
lengths, and per-patient mutation rates to estimate the maximum likelihood of the pathway size.
PathScore also generates a P-value through a likelihood ratio test to assess the significance of the
difference between the actual and effective pathway sizes, enabling direct comparisons of identical

pathways across different inputs and illustrating the impact of alterations on pathways.

The selection of PathScore for this study is based on prior work by our research group, which
compared various pathway analysis tools, including network analysis methods and de novo
approaches. Network analysis methods, which utilize protein-protein interaction data and mutual
exclusivity to identify driver subnetworks, are limited by their reliance on predefined network
information that may not fully represent the altered physiology of tumour cells. De novo methods,
which identify driver processes through patterns of altered genes without predefined pathways, offer
greater flexibility but can suffer from reduced specificity, particularly when working with smaller
subsets of altered genes, as in our study. This evaluation highlighted PathScore's distinct advantages,
particularly its individualized approach that accounts for patient-specific mutation rates, gene

lengths, and background mutation rates, making it well-suited to the specific needs of this analysis.
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PathScore’s per-patient evaluation allows for a more detailed analysis that is particularly effective for
identifying pathways associated with therapy resistance or sensitivity in GBM. This individualized
approach is crucial given the variability in mutational burden across patients and the need to
distinguish between pathways implicated in therapy response versus those generally altered in GBM.
Furthermore, PathScore enables direct comparisons of identical pathways across different subsets of
altered genes, enhancing the ability to identify specific pathways relevant to therapy-induced
changes. Overall, PathScore was chosen due to its robust handling of individualized data and its
capacity for pathway comparisons across distinct patient subsets. These features align with the
study's aim to elucidate cellular processes driving GBM progression through therapy, continuing and

building upon the foundational work conducted within our research group.
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3.2 METHODS

3.2.1 Data processing

In this chapter, | employed a comparative analysis approach to investigate treatment resistance and
tumour recurrence, using data from two cohorts to allow cross validation of the findings. The
discovery cohort represents the variants called from the exome data processed in chapter one as
detailed in section 2.2. The validation cohort represents the variants retrieved from GLASS database.
Variants of the discovery cohort were available in VCF file format while variants of the validation
cohort were combined in one large, tabulated file. | used custom python scripts to process both
cohorts’ data, mainly the validation cohort where | filtered the data to include only the IDH-wt
samples that were collected from patients that followed the standard multimodal therapy of GBM. |

then converted samples into pairs to annotate shared variants between each pair of samples.

3.2.2 Variant classification

After processing the data and identifying shared variants between primary and recurrent tumours,
my hypothesis was that these variants play a crucial role in tumour behaviour post-treatment. |
classified these shared variants into four groups based on changes in their prevalence during
treatment. This classification was essential in understanding the dynamics of these variants under
therapeutic pressure. To achieve this classification, | first calculated the mean VAF for both primary
and recurrent variants with a custom python script
(https://github.com/umymal/thesis_appendix/tree/main/chapter3) to establish a robust
classification threshold. This step was essential in differentiating the variants according to their
prevalence dynamics. The first group is for susceptible variants which had a VAF that is higher than
the threshold of primary samples and below the threshold of recurrent samples. | then identified the
second group, expanded variants, by looking at those that exceeded the VAF threshold of recurrent
cohort and remained below the threshold of the primary samples. The third and fourth groups are
those variants that exceeded the VAF threshold of both cohorts and the variants with VAF below the

threshold of both cohorts.

3.2.3 Filtering variants

| began by investigating the raw variant data, where all mutation calls, without any filtering, were
included to allow a comprehensive examination of the variants and to detect any fundamental

patterns or groupings that could guide more detailed analyses. Following this, | investigated the data
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after refining mutation calls through specific filtering criteria to understand the specific

characteristics and implications of these variants in greater detail.

For the discovery cohort, | annotated variants using the Variant Effect Predictor (VEP) with the
primary objective of filtering out variants with neutral effects on protein functions, i.e. variants likely
to be benign or without significant functional consequences. VEP was used to rank variant impacts
on proteins according to Gene Ontology (GO) terms, categorizing them as HIGH, MODERATE, LOW,
or MODIFIER. To identify potentially deleterious variants that might be missed by VEP's ranking, |
performed additional annotation on LOW impact variants using SIFT and PolyPhen-2. MODIFIER

variants, typically non-coding and potentially introducing noise, were excluded from the analysis.

In the validation cohort, variants were annotated with Funcotator which has different annotation
terms from VEP. This was because the GLASS consortium data were provided already annotated using
Funcotator, and re-annotation from raw sequencing files was not feasible. To maintain consistency
across the study, | applied the same Sequence Ontology (SO) terms used by VEP to re-classify variants
in the validation cohort. This methodological consistency was critical for ensuring reliable
comparative analysis between the cohorts. Finally, | filtered the variants following the same method
of filtering applied to the discovery cohort. The SO terms used by VEP and the equivalent annotations

by Funcotator are summarized in Table 3-2.

Table 3-2 VEP and Funcotator annotations

SO TERM VEP Funcotator IMPACT (VEP)
splice_acceptor_variant | Splice acceptor variant | Splice_Site HIGH
splice_donor_variant Splice donor variant Splice_Site HIGH
stop_gained Stop gained Nonsense HIGH
frameshift_variant Frameshift variant Frame_Shift_Del, Frame_Shift_Ins HIGH
stop_lost Stop lost Nonstop HIGH
start_lost Start lost Multiple Annotations HIGH
inframe_insertion Inframe insertion In_Frame_Ins MODERATE
inframe_deletion Inframe deletion In_Frame_Del MODERATE
missense_variant Missense variant Missense MODERATE
synonymous_variant Synonymous variant Silent LOW
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3.2.4 Gene lists construction and functional enrichment analysis

In my study, | conducted an enrichment analysis to explore significant biological terms associated
with lists of genes. In preparing these gene lists for the enrichment analysis, | focused on including
genes that harboured deleterious variants as described in section 3.3.

The primary objective of my pathway analysis approach was to pinpoint genes that play a key role in
either resistance or response to treatment. To achieve this, | constructed gene lists based on two
distinct groups of variants. The first group consisted of variants that showed an increase in frequency
from primary to recurrent stages of cancer. The second group comprised variants that exhibited a
decrease in allele frequency from primary to recurrent stages. The gene lists were then analysed

using two different enrichment analysis tools, WebGestalt and PathScore.

3.2.5 GO enrichment analysis by WebGestalt:

For GO enrichment analysis, | created two gene lists for the two groups of interest and submitted
them to WebGestalt (Liao et al., 2019). WebGestalt accepts gene lists with HGNC Symbol, and the
analysis was performed using the reference genome GRCh38 and a background gene set of all
protein-coding genes in the reference genome. Adjusted P-values were employed to identify
pathways that were significantly enriched, considering a threshold below 0.05 as statistically
significant. The results were visualized using bubble charts, created by a custom R script to identify
the most significantly enriched biological processes

(https://github.com/umymal/thesis_appendix/tree/main/chapter3).

3.2.6 Pathway enrichment analysis by PathScore:

PathScore requires genes to have three annotations which are HGNC Symbol, Entrez ID, and patient
ID, because it performs patient-specific pathway impact analysis. Unlike conventional enrichment
tools such as WebGestalt (Liao et al., 2019), which operate on non-redundant gene lists, PathScore
relies on variant-level data. This distinction is fundamental to its algorithm, which treats each
mutation as an independent sampling event from the genome to estimate the probability that a
pathway is affected in a particular patient. By modeling mutations rather than genes, PathScore
accounts for the frequency, distribution, and background mutation rate (BMR) of variants, scaled by
gene length. In other words, multiple variants occurring within the same gene or across different
genes in the same pathway contribute cumulatively to the likelihood that the pathway is aberrated.
Aggregating data to the gene level would obscure this information, as distinct mutations within one

gene would be collapsed into a single observation, underestimating the mutation burden and
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pathway impact. Therefore, the input file retains redundant gene entries, with each variant
annotated by HGNC symbol, Entrez ID, and patient ID to maintain variant-specific resolution.
PathScore was run using the Gene length & BMR-scaled algorithm with default background mutation
rates. The enrichment score reflects the effect size of the aberrated pathway, and statistical

significance was assessed using the Benjamini—-Hochberg adjusted p-value.

3.2.7 Analysis of variants in diverse copy number regions

To assess the impact of Copy Number Alterations (CNAs) on pathway analysis, variants were
categorized according to their location within regions of neutral copy number (CN), high CN, low CN,
or stable abnormal CN in primary and recurrent tumours. In this approach, only variants within CN-
neutral or CN-stable regions were retained, while those in highly variable CN regions were excluded
to minimize the confounding influence of copy number—driven signal distortion. This filtering was
particularly important given the absence of Cancer Cell Fraction (CCF) estimates, as CN variability can
inflate variant allele frequencies (VAFs) in amplified regions or mask true allelic losses in deleted
regions. Restricting the analysis to CN-stable regions therefore ensured that pathway enrichment
more accurately reflected the burden of genuine point mutations rather than CN-related artefacts.
For the discovery cohort (processing was detailed in Chapter 2.2), all VCF files were converted into
BED files for analysis using BEDtools v2.30.0 (Quinlan and Hall, 2010) and annotated with CN status.
Using BEDtools, | then identified the overlapped and unique regions in both samples and extracted
the regions with stable CN status using a python script to perform pathway analysis. Conversely,
samples in the validation cohort were processed using several CN callers, including TITAN, Sequenza,
PyClone, and GATK. Copy number results were concatenated for the whole datasets resulting in
multiple result files from each caller. | evaluated the annotations produced by each caller and decided
to use the results called by TITAN as it has more annotations than the other callers. These additional
annotations provided useful information not available from tools like Sequenza, PyClone, and GATK,
which helped in filtering and processing the data more effectively using BEDtools. | then split the
results by patient to create individual sample results and run BEDtools on each pair of samples
following the same method applied to the discovery cohort. | wrote a python script to process the
validation cohort and create BED files. BEDtools commands for processing both cohorts can be found

in (https://github.com/umymal/thesis_appendix/tree/main/chapter3).

3.2.8 Comparative analysis of primary versus recurrent profiles using GISTIC

The aim of this analysis was to track the evolution of copy number (CN) alterations from primary to

recurrent tumours. The GISTIC tool was employed for this analysis due to its ability to identify regions
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of the genome that are significantly altered in cancer. To assess the CN change between the pair of
samples | utilised primary CN profiles as the baseline. This step is crucial for understanding the initial
genomic state before any treatment or progression. First, | identified all regions exhibiting stable or
neutral CN in both primary and recurrent tumours and | excluded them. This filtration was essential
to focus solely on regions showing significant alterations, thus enhancing the specificity of our
analysis. Second, | used BEDtools to identify the overlapping regions and calculated the logarithmic
ratio of CN in recurrent tumours to CN in primary tumours using a python script . This step quantified
the degree of CN alteration, offering a clear comparison between the two profiles. | then prepared
the segmentation files which included the loci coordinates and the derived log ratios. These files are
critical for GISTIC analysis as they represent the segmented CN data in a format that the tool can
process. Finally, my method led to subsetting the genomes leaving out some regions without
information. However, GISTIC requires that all chromosome segments should have coverage across
all samples. To overcome this issue, | added CN neutral regions to each file to account for any missing
regions to ensure that the GISTIC analysis was not biased by missing data. | prepared the required
files for GISTIC using a python script and the segmentation files were assessed by IGV before and

after adding CN neutral regions (https://github.com/umymal/thesis_appendix/tree/main/chapter3)
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3.3 RESULTS

3.3.1 Data processing

3.3.1.1 Datasets

In this chapter, | performed analysis on two independent cohorts. The first is labelled as the discovery
cohort in this chapter; the cohort of samples processed locally, and which contains the variants that
were called from the whole exome data that passed the stringent filtering criteria as thoroughly
discussed in chapter 2.

The second cohort, labelled as the validation cohort, consists of processed variant calls from exome
data, provided by GLASS. This collection includes data from 392 patients, along with their clinical
information. The samples are grouped into different tiers, such as the silver, gold, and platinum sets,
based on data curation criteria, including whether they pass QC thresholds for DNA integrity and the
availability of comprehensive molecular data like RNA expression or methylation profiles. The gold
set of the GLASS dataset was produced from high-quality sequencing data for both primary and
recurrent tumours. However, raw sequencing reads are not available for this set; instead, mutation
call sets, identified using the Mutect2 tool, are provided.

Both the discovery and validation cohorts were processed using a similar approach. This was achieved
by employing Mutect2 in a multi-sample mode, enabling the effective identification of somatic point
mutations. The similarities in processing and findings between the two cohorts facilitated a robust

comparative analysis, essential for drawing reliable conclusions in this chapter.

3.3.1.2 Comparative Analysis of Datasets

After conducting a thorough quality control process, | examined the distribution of somatic variants
across tumour stages in both cohorts to assess dataset comparability (Fig. 3-4). Panels A—H illustrate
per-patient variant counts and proportions before and after filtering for deleterious variants. The
median total variant counts were 365 and 400 for the discovery and validation cohorts, respectively.
After filtering for deleterious variants, these numbers reduced to 84 and 105.

To check for differences in variant composition among tumour categories (primary-specific,
recurrent-specific, and shared) within and between cohorts, | applied a one-way ANOVA followed by
Tukey’s multiple-comparison test. The results are summarised in figure 3-41-). The analysis confirmed
that the discovery and validation cohorts show no significant difference in overall variant distribution,
validating their comparability, while in both cohorts the shared-variant group constitutes the largest

and statistically most enriched category (p < 0.01 across most comparisons).
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Figure 3-4: Distribution and classification of variants across cohorts and tumour stages.

Panels A-D show data before applying filtration criteria; panels E-H illustrate data after filtering benign variants.

A-B: Per-sample counts of SNVs + INDELs (logio scale) in the discovery (n = 32) and validation (n = 94) cohorts. Bars are
partitioned into variants private to the primary tumour, private to the recurrent tumour, or shared between both tumours.
The red dashed line marks the cohort median.

C-D: Relative proportions of variant types in each patient for the discovery (C) and validation (D) cohorts.

E-F: Total counts of deleterious SNVs and INDELs per patient (after filtration) in the discovery (E) and validation (F) cohorts.
G-H: Relative proportions of variant types per patient in each cohort after filtration.

I-): Results of one-way ANOVA comparing variant categories within each cohort before (I) and after (J) filtering, followed by

Tukey post-hoc pairwise tests. Brackets and p-values indicate statistically significant pairwise differences. The shared-variant

category is significantly higher than either primary- or recurrent-specific variants in both cohorts

3.3.1.3 Variant classification

As my investigation aimed to unravel the genetic underpinnings responsible for treatment resistance
and tumour recurrence. | initiated this by analysing shared variants between primary and recurrent
tumours in both discovery and validation cohorts. This analysis revealed that a significant proportion
of the variants shared between primary and recurrent tumours were also shared across both the
validation and discovery cohorts (Figure 3-4J), thereby directing our focus towards these shared

variants for further insights into tumour recurrence post-treatment.
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The shared variants were categorized into four groups based on their prevalence changes during
treatment: susceptible variants (decreasing in frequency), expanded variants (indicative of potential
clonal expansion), and stable variants further divided into high allele frequency (likely clonal) and low

allele frequency groups.

Initial analysis of VAF was conducted to classify these variants. In the unfiltered data, the mean VAF
of primary variants was 0.10 (SD = 0.14) in the discovery cohort and 0.20 (SD = 0.19) in the validation
cohort. The mean VAF of unfiltered recurrent variants was 0.12 (SD = 0.15) in the discovery cohort

and 0.19 (SD = 0.15) in the validation cohort as indicated in Figure 3-5A-B.

After filtering out non-deleterious variants, we observed a consistency in the mean VAF of the
discovery cohort (0.10, SD = 0.15 for primary variants; 0.12, SD = 0.16 for recurrent variants).
However, there was a notable reduction in the mean VAF of primary variants in the validation cohort
(0.07, SD = 0.13), while the mean VAF of recurrent variants remained relatively unchanged (0.20, SD
=0.16) as shown in Figure 3-5C-D.

Despite these changes in mean VAF, especially in the validation cohort, the proportions of each
variant group remained broadly similar before and after filtering. Specifically, variants decreasing in
frequency accounted for 11%-12% in the discovery cohort and 13% in the validation cohort, both
before and after filtering. Variants indicative of clonal expansion represented 16%-15% in the
discovery cohort and 10%-13% in the validation cohort, before and after filtering, respectively.
Variants with high allele frequency comprised 13%-14% in the discovery cohort and 25%-31% in the
validation cohort. Finally, variants with low VAF represented 59% in the discovery cohort and 53%-

44% in the validation cohort, both before and after filtering.

The overall proportions of variant groups post-filtering support the robustness of the classification
strategy. While a reduction in the mean VAF of primary variants was observed in the validation
cohort, the general distribution of variant groups remained relatively stable, with the exception of
high VAF variants, which showed a more pronounced increase. Nonetheless, this level of consistency
observed both before and after filtering non-deleterious variants reinforces the rationale for
retaining only deleterious variants for downstream pathway analysis, helping to reduce background

noise introduced by less functionally relevant mutations.
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Figure 3-5: Variant classification using allele frequency.

A-B: scatter plots of shared variant VAFs in the discovery (A) and validation (B) cohorts. Variants are categorized into four
groups based on their Variant Allele Frequencies (VAFs), relative to the mean VAF of primary and recurrent tumour variants.
1) Bottom left quadrant shows variants with VAF below the mean, 2) bottom right quadrant shows variants with VAF
decreased from primary to recurrent tumour, 3) top left contains variants with VAF increased from primary to recurrent
tumours, and 4) top right quadrant contains variants with VAF remained high through treatment.

C-D: Quadrant plots of discovery (C) and validation (D) cohorts, showing only the deleterious variant VAFs which are selected

for the downstream analysis.

3.3.2 Gene Ontology (GO) enrichment analysis

In this section, | aimed to uncover the biological consequences of variant selection during therapeutic
treatments by performing an in-depth Gene Ontology (GO) enrichment analysis. From the four
identified groups, | selected two unique gene sets: the first comprised of variants likely to be selected
for during therapy, which might suggest potential resistance mechanisms, and the second consisted
of variants likely to be selected against, indicating possible susceptibilities or potential therapeutic
responses. These two groups had variable VAF values indicating response or resistance. Therefore, it
was hypothesised that analysis of these two groups would provide biologically meaningful outputs

from the pathway analysis. The two dismissed groups represent variants with stable VAF that when
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analysing variants with low VAF it is likely to include false positive or artefactual variants. For each
gene set, | assessed the enrichment of GO terms across three fundamental categories: Biological
Process, Cellular Component, and Molecular Function. The discovery dataset served as the
foundation for pinpointing significant GO terms, which | then sought to corroborate using the
validation dataset to confirm the consistency of the observed patterns. This methodical approach
provided a comprehensive view of the selective pressures therapy may impose on the genome,
offering insightful revelations into the gene processes in response to treatment. The comparative
analysis revealed multiple enriched pathways, which | ranked based on the enrichment score and
then selected the top ten pathways for further analysis and generated bubble charts to show the GO

enrichment analysis results.

| focused on the terms which are shared, for each subgroup of expanded or reduced VAF variants,

across the validation and discovery cohort and expand upon these results below.

3.3.2.1 Clonally expanded variants

3.3.2.1.1 Biological processes

In the discovery cohort (Figure 3-6A), the most significantly enriched pathways were related to the
sinoatrial (SA) node cell function, with “SA node cell action potential” and “SA node cell to atrial
cardiac muscle cell signalling” both showing an enrichment score of 11.5 (FDR=0.0054). Similarly,
pathways involving communication between SA node cells and atrial cardiac muscle cells were
highlighted “SA node cell to atrial cardiac muscle cell communication” with an enrichment score of
10. The importance of synaptic functions was also suggested by the enrichment in “regulation of
synaptic vesicle clustering” (score=9) and “synaptic vesicle clustering” (score=7). Pathways associated
with cardiac structure and function, such as “coronary vasculature morphogenesis” (score=6.5) and
“cardiac muscle cell action potential involved in contraction” (score=4.5), were also notably enriched.
While these pathways are annotated with cardiac or neuronal terminology, they likely reflect broader
ion channel and membrane potential regulation processes that may be active in glial tumour cells,

rather than representing true action potential generation.

The validation cohort presented a somewhat broader range of biological processes, though still with
relevance to cardiac function. The "cellular response to heparin” and "membrane depolarization
during SA node cell action potential" both showed an enrichment score of 6.9, aligning with the
cardiac conduction system relevance seen in the discovery cohort. Interestingly, the "membrane

depolarization during AV node cell action potential" was also highlighted with the same enrichment
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value, suggesting a consistency in the relevance of cardiac action potential pathways across both
cohorts. Developmental processes were also evident, including "cell migration involved in kidney
development" and "trigeminal nerve morphogenesis," each with an enrichment score of 6.9, which
may indicate a broader scope of the validation cohort's biological processes being examined.
Neurological development and response were further exemplified by pathways like "positive
regulation of axon extension involved in axon guidance" (score=6) and "cellular response to

histamine" (score=5.4).

A key overlap between both cohorts is the enrichment of SA and AV node-related pathways, which
play a crucial role in cardiac conduction. The SA node initiates the heart's electrical activity, sending
signals to the atrial muscle cells for coordinated contraction, which involves membrane
depolarization during the SA node cell action potential. The AV node then delays the signal, allowing
the atria to contract before the ventricles, ensuring proper heart rhythm (Jalife, 1984, Lakatta et al.,
2010, MacDonald et al., 2020). The presence of common SA and AV terms in both cohorts suggests
that these processes may not be exclusive to the heart. It is possible that they play similar electrical

signalling roles in brain functions, and when altered, may contribute to GBM progression.

3.3.2.1.2 Cellular components

In the discovery cohort (Figure 3-6A), the most enriched cellular component was the "laminin
complex" (enrichment score=9.6), suggesting its prominent role in the cellular architecture under
investigation. This was followed closely by components associated with platelet function, namely the
"platelet dense tubular network" and its membrane (enrichment scores 9.4 and 8.6, respectively).
The axonal structure was also significantly represented with "axonemal dynein complex" and
"axoneme part" showing high enrichment scores (8.6 and 6.3, respectively). Looking closely at these
two pathways, a significant overlap of six genes were identified suggesting a functional relationship
(Figure 3-6C). The “myosin filament” and “muscle myosin complex” were highlighted as well
(enrichment scores 5.8 and 5.7, respectively). While these components are typically associated with
muscle function, their enrichment here likely reflects an overlap of actin- and myosin-related genes
involved in cytoskeletal organisation and motility in GBM. The heatmap (Figure 3-6C) showed that
myosin filament and muscle myosin complex pathways share four genes (MYH13, MYH6, MYH7,
MYOM1), implying functional or structural relationships. The heatmap also showed that laminin
complex and extracellular matrix component have overlapping genes in the discovery cohort, despite
extracellular matrix component pathway not being identified in the validation cohort. This may link
with the actin/myosin enrichment as these components are involved in cell movement and

migration.
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The validation cohort showed a shift towards extracellular matrix components, with “fibrillar collagen
trimer” and “banded collagen fibril” both presenting the highest enrichment score of 8.2 (Figure 3-
6B). This finding indicates a strong correlation with structural proteins involved in extracellular matrix
organization. Eight genes were overlapping between the fibrillar collagen trimer, banded collagen
fibril and complex of collagen trimers indicating similar functions by these pathways (Figure 3-6D).
Cellular complexes related to muscle function, such as the "junctional membrane complex" and
"junctional sarcoplasmic reticulum membrane" (enrichment scores 8.0 and 7.5), were also enriched
in the validation cohort. Interestingly, the "laminin complex" was again observed but with a lower
enrichment score (7.0) than in the discovery cohort and this suggests a potential conservation of its

role.

Comparing both cohorts, the discovery cohort showed a particular emphasis on cellular components
related to the axonal structure and platelet function, whereas the validation cohort highlighted the
extracellular matrix, particularly collagen-related structures, and muscle-associated complexes. The
"laminin complex" was the only cellular component to be significantly enriched in both, although
with varying degrees of enrichment, which highlights its likely key role in the relevant cellular
processes. Laminins constitute a group of glycoproteins essential for the foundational framework of
basement membranes present in nearly all animal tissues. Composed of a, B, and y chain subunits,
each laminin forms a heterotrimer (Colognato and Yurchenco, 2000). These are secreted and become
part of the extracellular matrices associated with cells. Serving multiple functions, laminins are
involved in processes such as development, differentiation, and the movement of cells, owing to their
ability to interact with a variety of cell surface proteins. In the context of gliomas, laminins are
predominantly found in the microenvironment, particularly around the basal lamina of blood vessels

and are notably present at the edge between the brain and tumour (Marino et al., 2023).

The distinction between the cohorts can be attributed to differential expression or involvement of
these cellular components in GBM, or possibly due to the inherent biological variability between the
discovery and validation populations. The validation cohort's significant emphasis on the
extracellular matrix, especially collagen structures which are closely related to laminins in function,

could suggest a pathophysiological process that involves tissue remodelling or fibrosis.
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3.3.2.1.3 Molecular function

In the enrichment analysis of molecular functions, we observed significant functional categories in
both discovery and validation cohorts. The discovery cohort displayed a notable enrichment for
activities related to microtubule motor function and dynein binding (figure 3-6A). Specifically, 'ATP-
dependent microtubule motor activity, minus-end-directed' showed the highest enrichment score
(9.76) and was represented by multiple genes of DNAH family. In close relation, functions associated
with 'dynein light chain binding' and 'dynein intermediate chain binding' were also significantly
enriched, suggesting a concerted involvement of these molecular activities in the biological processes

identified in the discovery cohort.

In contrast, the validation cohort showed a distinct set of molecular functions (figure 7B) with the
highest enrichment observed in 'voltage-gated calcium channel activity involved in cardiac muscle
cell action potential' (enrichment score=9.3). Additionally, 'glutamate-gated calcium ion channel
activity' and 'NMDA glutamate receptor activity' were among the top enriched functions,

emphasizing the importance of calcium ion dynamics in the validation cohort's biological context.

While there was some overlap in molecular functions such as 'ATP-dependent microtubule motor
activity, minus-end-directed' between the two cohorts, the discovery cohort was characterized by a
more diverse group of dynein-related activities, whereas the validation cohort was more focused on

calcium ion channel activities and related functions.

Furthermore, both cohorts shared a general theme in the importance of ion channel activities, but
with different specificities. The discovery cohort included 'transmembrane-ephrin receptor activity'
and 'intracellular calcium activated chloride channel activity', while the validation cohort emphasized

the 'glutamate-gated calcium ion channel activity' and 'NMDA glutamate receptor activity'.

It is also noteworthy that the validation cohort highlighted 'extracellular matrix structural constituent
conferring tensile strength' with the highest number of associated genes (20), including multiple
collagen genes, indicating a significant role of structural extracellular matrix components in GBM

progression.
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Figure 3-6: Functional enrichment analysis.

Combined Bubble plots illustrating the results of Gene Ontology (GO) function enrichment analysis. The three main
categories of GO terms are represented: Biological processes (BP); Cellular components (CC); Molecular function (MF). The
purple boxes show common biological processes, the green boxes show the common cellular component pathways and the
red boxes shows common molecular function pathways between the cohorts. The y-axis shows pathway terms, while the
x-axis denotes degree of enrichment. The size of the bubble determined by the number of genes associated with the term
whereas the colour of the bubbles indicates the significance (adj p values). Top 10 altered pathways are visualized only for:
A: Expanded group of variants in the discovery cohort.

B: Expanded group of variants in the validation cohort.

C-D: Heatmap to show the relationship and the overlapping genes between the pathways of cellular component in the

discovery (C) and the validation (D) cohorts.
E-F: Heatmap to show the relationship and the overlapping genes between the pathways of molecular function in the

discovery (E) and the validation (F) cohorts.

3.3.2.2 Declining Variants

3.3.2.2.1 Biological processes

The analysis of the discovery cohort revealed several pathways significantly enriched in genes related
to the regulation of neuronal structure and development (Figure 3-7A). The most prominent

biological process identified was the "regulation of extent of cell growth," with an enrichment score
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of 4.4. Similarly, the "positive regulation of cell morphogenesis involved in differentiation" and
"regulation of axonogenesis" pathways, both integral to neuronal differentiation and axonal growth,
displayed enrichment scores of 3.8 and 3.6, respectively. Notably, BDNF was a recurrent gene in both

biological GO terms.

Processes associated with cell morphogenesis were repeatedly observed with high enrichment
scores, indicating a concerted influence on cellular shape changes during differentiation, especially
in the context of neuron development. "Axon development" was another significantly enriched
process. Interestingly, cell morphogenesis and related processes such as "cell morphogenesis
involved in neuron differentiation" were the most represented, implicating these biological processes

as potential targets of selective pressure during therapy in the discovery cohort.

In contrast, the validation cohort presented a distinct set of biological processes, mostly related to
cardiac function and calcium signalling (Figure 3-7B). The most significant pathway was "regulation
of cardiac conduction," with an enrichment score of 4.5. Calcium-related pathways, such as "calcium
ion transmembrane import into cytosol" and "calcium ion transport into cytosol," were also enriched,
underscoring the essential role of calcium in signalling pathways. Moreover, pathways associated
with "extracellular matrix organization" and "extracellular structure organization" had significant
enrichment, suggesting that extracellular components play a crucial role in the cellular response to

therapeutic pressure in the validation cohort.

Comparing the biological processes between the discovery and validation cohorts revealed distinct
patterns of enriched pathways. The discovery cohort showed significant enrichment in pathways
involved in neuronal development and morphogenesis, whereas the validation cohort pathways
were predominantly related to calcium handling. This divergence may reflect the different selective
pressures or cellular contexts between the two cohorts. The presence of genes such as BDNF in the
discovery cohort and ANK2 in the validation cohort highlights potential key players in the response

to therapy within different biological processes.

3.3.2.2.2 Cellular components

Investigations into the discovery cohort revealed significant enrichment in various cellular
components (Figure 3-7A). The mRNA cap binding complex exhibited the highest level of enrichment
(13.67-fold). Another cellular feature, the "cell cortex region", showed a 7.40-fold enrichment. The

“midbody” cellular component term showed 3.46-fold enrichment.
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Additional cellular components such as the “cation channel complex, nuclear speck, and the cell
cortex” were also significantly enriched, with scores 3.2, 3.0, 3.0, respectively. Membrane-associated
structures like the "basolateral plasma membrane" and various transporter complexes showed

enrichment values ranging from 2.85 to 3.02.

The validation cohort corroborated some of the discovery findings and also provided distinct insights
(Figure 3-7B). Remarkably, the phosphatidylinositol 3-kinase complex, class I, presented a substantial
20.90-fold enrichment, comprising PIK3CA, PIK3R1, and PIK3R6 genes. Collagen-associated
structures such as the "fibrillar collagen trimer" and the "banded collagen fibril" both revealed an
identical enrichment of 12.67-fold. Components of the sarcoplasmic reticulum membrane and
collagen complexes demonstrated significant presence, with enrichment values of 11.61 and 11.00,
respectively. Noteworthy was the voltage-gated sodium channel complex showing a 9.95-fold

enrichment. The “extracellular matrix component” displayed a 7.82-fold enrichment.

3.3.2.2.3 Molecular function

The discovery cohort analysis uncovered a significant enrichment in molecular functions associated
with various binding activities and ion transport (Figure 3-7A). Notably, "RNA 7-methylguanosine cap
binding" showed the highest fold enrichment at 22.45. The "structural molecule activity conferring
elasticity", presented a significant 15.15-fold enrichment, suggesting an important role in cellular
structural integrity. The “RNA cap binding” activity was also notably enriched (11.22-fold), again
implicating the mRNA processing machinery. lon channel and transporter activities, including
chloride, sodium, and various voltage-gated channels, displayed fold enrichments ranging from 3.08
to 4.08. These findings suggest an intricate network of ion homeostasis and signalling within the
discovery cohort. Furthermore, "gated channel activity" was enriched 2.94, indicating a
comprehensive role of these channels in cellular functions. The "Carbohydrate binding" activity was

also observed to be enriched with a fold change of 2.87.

In the validation cohort (Figure 3-7B), "glutamate-gated calcium ion channel activity" was
prominently enriched (16.50-fold), indicating a crucial role in neurotransmission. The "Structural
molecules conferring elasticity" showed a 13.75-fold enrichment, highlighting its importance in

cellular and extracellular structural stability.
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Furthermore, the validation cohort confirmed significant enrichments in molecular functions related
to sensory perception, with "melanocortin receptor activity" (13.75-fold) and "opioid receptor
activity" (12.22-fold) being prominent. This suggests a potential role for these receptors in cellular
signalling pathways related to these functions. Transporter activities for "aromatic amino acids
transmembrane" and the "NMDA glutamate receptor activity" were also significantly enriched,
pointing to essential functions in nutrient uptake and synaptic plasticity, respectively. Notably, the
"extracellular matrix structural constituent conferring tensile strength" showed an 8.18-fold
enrichment, involving a range of collagen genes, critical for maintaining the extracellular matrix's

integrity.

The GO analysis of variants that became resistant to treatment across primary to recurrent tumours
in the discovery and validation cohorts has provided insightful findings, particularly in identifying
enriched biological processes, cellular components, and molecular functions specific to each cohort.
For instance, the discovery cohort highlighted the significance of pathways related to cardiac and
neuronal functions, such as SA node cell action potential and synaptic functions, which are crucial in
understanding the cellular mechanisms underlying treatment resistance whereas the group of
variants likely responded to treatment showed the regulation of cell growth and axonogenesis as a

significant mechanism, with notable genes like BDNF recurrently implicated in these pathways.

However, while the GO analysis was informative, it had certain limitations. The inherent specificity
and redundancy of GO terms can sometimes obscure broader biological insights, as many genes are
categorized under multiple, overlapping terms. This can dilute the impact of distinct biological
processes and complicate the extraction of clear, actionable insights. Moreover, GO analysis tends to
focus on individual genes and their associated functions without providing a comprehensive view of

how these functions interact within larger biological networks.

Given these limitations, we decided to move on to pathway analysis. Pathway analysis offers a more

holistic view of cellular responses, allowing us to see how groups of genes interact within wider

biological pathways and how these interactions change in response to treatment.
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Figure 3-7: Functional enrichment analysis.

Combined Bubble plots illustrating the results of Gene Ontology (GO) function enrichment analysis. The three main
categories of GO terms are represented: Biological processes (BP); Cellular components (CC); Molecular function (MF).
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Green and Red boxes show common pathways between the cohorts. The y-axis shows pathway terms, while the x-axis
denotes degree of enrichment. The size of the bubble determined by the number of genes associated with the term
whereas the colour of the bubbles indicates the significance (adj p values). Top 10 altered pathways are visualized only for:
A: Sensitive group of variants in the discovery cohort.
B: Sensitive group of variants in the validation cohort.
Combined Bubble plots illustrating the results of Gene Ontology (GO) function enrichment analysis. The three main
categories of GO terms are represented: Biological processes (BP); Cellular components (CC); Molecular function (MF).
Green and Red boxes show common pathways between the cohorts. The y-axis shows pathway terms, while the x-axis
denotes degree of enrichment. The size of the bubble determined by the number of genes associated with the term
whereas the colour of the bubbles indicates the significance (adj p values). Top 10 altered pathways are visualized only for:
A: Sensitive group of variants in the discovery cohort.
B: Sensitive group of variants in the validation cohort.
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3.3.3 Pathway enrichment analysis using PathScore

To determine which pathways may be involved in treatment resistance and vulnerability, | used
PathScore (Gaffney and Townsend, 2016), a pathway-level analysis tool that integrates gene-level
variant data. After submitting the gene lists (list of all variants) to the PathScore server, variants were

processed and labelled as follows:

e Loaded: Variants used in the analysis, after filtering. These correspond to variants with valid
hugo-entrez pairs for genes that are present in MSigDB.

e Unused: Variants with valid hugo-entrez pairs, but the corresponding genes are not
present in MSigDB.

e Rejected: Variants with invalid hugo-entrez pairs.

PathScore utilized the variants labelled as 'Loaded' in Table 3-3 for pathway analysis. As the analysis
progressed, the number of patients initially enrolled was adjusted based on the status of their
variants. This led to reduction, or exclusion, of patients from each group indicating that some carried
mutations in genes not present in MSigDB. Hence, the number of patients changes from one group

to another, caused by their removal from the study.

Table 3-3: Summary of variants accepted for pathway analysis

Number
Loaded | Unused | Rejected
Variant grouping Cohort of
variants | variants | variants
patients
Discovery 32 4761 5070 199
Low VAF in primary and recurrent
Validation 92 1410 1367 0
Discovery 24 207 199 1
Declining VAF from primary to recurrent
Validation 75 435 381 0
Discovery 17 248 266 10
Increasing VAF from primary to recurrent
Validation 64 402 389 0
Discovery 31 265 208 4
High VAF in primary and recurrent
Validation 87 1022 901 1

3.3.3.1 Clonally expanded variants

To identify disrupted pathways resulting from these variants, | ran PathScore using the common
variants between primary and recurrent tumours that followed a clonal expansion pattern. | applied
this analysis separately to my two cohorts, the discovery and validation datasets, treating them as

independent sources to increase confidence in the results. After submitting gene lists from each
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cohort to PathScore, | analysed the results separately and then compared them. Only the overlapping
results, which demonstrated a high degree of concordance between the two cohorts, were
considered for further analysis. This methodological approach was employed to mitigate potential
sources of bias and enhance the robustness of the analysis outcomes. Initially, gene lists of expanded
variants group in the discovery cohort did not show any significant pathways while the expanded
group of variants in the validation cohort showed eight significant pathways. | then expanded the
analysis by comparing the clonal group of variants. Because there is no universally accepted cutoff
for distinguishing clonal from subclonal mutations, | defined a practical threshold based on the mean
variant allele frequency (VAF). Variants with a VAF equal to or greater than the mean VAF of all
variants within each tumour were considered clonal, representing the clonally dominant population.
Using this classification, | identified 129 significantly altered pathways in the discovery cohort and
193 significantly altered pathways in the validation cohort. The discovery cohort is smaller than the
validation cohort, and with PathScore removing many variants that are not present in the MSigDB,
these factors contributed to the lack of significant pathways in the clonal group of expanded variants
in the discovery cohort. Additionally, a biological explanation may also underlie this observation: if
resistance pathways were already clonal in the discovery cohort, they would not be able to expand
further. Therefore, | combined all cohorts to increase the likelihood of identifying significant
pathways in the clonal expanded variants group, and seven common pathways were found across
the clonal group of variants in the discovery cohort, as well as the expanded and clonal groups of
variants in the validation cohort (Figure 3-8A-C). | validated these seven pathways across both
cohorts, using them as representatives for the expanded variants in the discovery cohort (Figure 3-
8).

From my analysis, | then focused on seven common pathways shared by the two distinct cohorts,

summarised in table 3-3.
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Figure 3-8: PathScore results for expanded variants.

A: Intersection between expanded and clonal variants of discovery cohort.

B: Intersection between expanded and clonal variants of validation cohort.

C: The common pathways across all group of variants.

D-E: Volcano plots of discovery (D) and validation (E) cohorts, indicating the altered pathways affected by variants
that increased in prevalence through treatment or variants of unchanged variant allele frequency. The Effect Size
(X-axis) is the PathScore metric that quantifies the magnitude of the pathway alteration (enrichment). It is calculated
as the ratio of the estimated effective pathway size to the actual pathway size. The estimated effective pathway size
is the maximum likelihood estimate derived from the observed gene harbouring VAF-increasing variants. This ratio
measures the relative degree of overburden of the pathway, and is used to rank pathways by the strength of the
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observed effect. The —logP-value (Y-axis) represents the statistical significance of the disparity between the actual
and effective pathway sizes, calculated using the likelihood ratio test. Pathways that are considered significantly
enriched are highlighted in blue based on a threshold of an adjusted P-value (FDR<0.05).

F: Matrix plot of patient-gene pairs for the common 7 pathways. Each column is a patient, and each row is a gene.
Only patients that have the pathway altered are plotted.

This section systematically delineates the involvement of seven crucial signalling pathways
(table 3-4), as evidenced in both the discovery and validation cohorts, thereby deepening our
understanding of the molecular mechanisms underlying glioblastoma multiforme (GBM) and

suggesting potential therapeutic targets.

Table 3-4: Common pathways between expanded variants of discovery and validation cohorts

% affected % affected
PATHWAY NAME No. of genes discovery validation
patients patients

KEGG_MELANOMA 12/71 51.6 20.3
KEGG_PROSTATE_CANCER 12/89 48.4 20.3
KEGG_P53_SIGNALING_PATHWAY 7/68 35.5 15.6
KEGG_GLIOMA 10/65 48.4 17.2
REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING 9/42 32.3 14.1
BIOCARTA_CTCF_PATHWAY 6/23 45.2 9.4
BIOCARTA_TEL_PATHWAY 6/18 35.5 10.9

The exploration of the KEGG Melanoma pathway, which primarily focuses on BRAF mutations that
enhance the MAPK/ERK signalling pathways, highlights the broader roles these pathways play across
cancers, including GBM. Although BRAF mutations are rare in GBM (McNulty et al., 2021, Munjapara
et al., 2022), our analysis identified variants in 12 other genes within the 71-gene KEGG Melanoma
pathway, present in 51.6% of the discovery cohort and 20.3% of the validation cohort (table 3-4 and
fig. 9F). Targeting specific mutations such as BRAF V600E is challenging in GBM due to its low
prevalence, limiting the applicability of mutation-specific therapies. Therefore, therapeutic strategies
aimed at modulating pathway activity as a whole, rather than focusing on individual mutations, may

be more effective (Kaley et al., 2018).

Similarly, the KEGG Prostate Cancer pathway elucidates the importance of androgen receptor
signalling and cell cycle control mechanisms that are pivotal for the progression of prostate cancer
and potentially relevant for GBM (Zalcman et al., 2018). In my analysis, | identified variants in 12 out

of 89 genes within this pathway, with 48.4% of patients in the discovery cohort and 20.3% in the
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validation cohort carrying variants in these genes. While these genes are not exclusive to prostate
cancer and are involved in multiple biological processes, their presence in GBM suggests that some
pathway components may be shared across tumour types. This observation may help inform future

therapeutic exploration, particularly in targeting cell cycle and signalling pathways.

The direct relevance of the KEGG Glioma pathway to GBM cannot be overstated, as it encapsulates
the genetic alterations typical of gliomas such as mutations in TP53, EGFR, and PTEN (Barthel et al.,
2019). The variants were identified in 10 out of 65 genes within this pathway, found in nearly half of
patients in the discovery cohort and 17.2% of patients in the validation cohort. While these genes
are well-established in glioma biology, the observed differences in frequency between cohorts may
reflect underlying biological variation or technical factors such as sample size and filtering thresholds.
Nevertheless, the presence of variants in canonical glioma genes supports the biological relevance

of this pathway and its potential contribution to treatment response.

Turning to the KEGG P53 Signalling pathway, which is instrumental in regulating cell cycle, DNA repair,
and apoptosis, the analysis revealed that 7 out of 68 genes harboured variants, influencing 35.5% of
the discovery cohort and 15.6% of the validation cohort. The ubiquitous nature of p53 mutations
across various cancers offers a compelling case for exploring therapeutic strategies aimed at restoring

p53 function, which could also be applicable to GBM (Zhang et al., 2018).

The BIOCARTA _CTCF_PATHWAY, which focuses on the CCCTC-binding factor (CTCF), a pivotal
transcriptional regulator involved in chromatin organization, revealed variants in 6 out of 23 genes
(Sese et al., 2021). These variants impacted 45.2% of the discovery cohort and 9.4% of the validation
cohort, highlighting the pathway’s potential role in the transcriptional dysregulation observed in

GBM (Liu et al., 2023).

The BIOCARTA_TEL PATHWAY, dealing with telomere maintenance, critical for cellular longevity and
immortality in cancer cells, showed changes affecting 35.5% and 10.9% of the discovery and
validation cohorts, respectively. This pathway's alteration underpins the fundamental role of
telomere dynamics in cancer progression and provides a basis for exploring telomerase as a

therapeutic target in GBM (Langford et al., 1995, Lotsch et al., 2013, Diplas et al., 2018).

Finally, the analysis identified the Reactome ‘PI3K events in ErbB2 signalling’ pathway will be

discussed in detail in the ErbB signalling pathway section later in this chapter.
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The disparities in variant frequencies observed between the discovery and validation cohorts
necessitate careful consideration of cohort bias and the inherent heterogeneity of GBM. Such factors
are critical in interpreting the genetic data and ensuring the robustness of conclusions drawn from
this study. Consequently, this analysis not only enhances our comprehension of the complex genetic
architecture of GBM but also aligns with broader efforts to develop targeted therapeutic strategies

based on the unique genetic profiles observed in these patients.

In summary, the pathway analysis highlights critical biological mechanisms and potential therapeutic
targets within GBM. Addressing the variations observed between cohorts requires careful cohort
selection and characterization, particularly given GBM's heterogeneity and complexity. This
understanding is crucial for developing more effective therapies tailored to the genomic landscape

of GBM.

3.3.3.2 Declining variants

The analysis of the declining group of variants identified 7 significant pathways in the discovery
cohort and 220 significant pathways in the validation cohort (Figure 3-9). | then took the overlapping
pathways to cross validate between the two cohorts. The pathways examined, number of genes

affected, and the percentage of patients affected in both cohorts are summarized in Table 3-5.

Table 3-5: Common pathways between declining variants of discovery and validation cohorts

% %
PATHWAY NAME No. of genes affected affected
discovery | validation
patients patients
BIOCARTA_CBL_PATHWAY 4/13 12.5 13.3
BIOCARTA_EGFR_SMRTE_PATHWAY 2/11 12.5 8
PID_ARF6_PATHWAY 5/35 20.8 9.3
PID_PTP1B_PATHWAY 8/52 20.8 14.7
REACTOME_SIGNALING_BY_ERBB4 8/87 20.8 21.3
REACTOME_GAB1_SIGNALSOME 4/36 16.7 20
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Figure 3-9: PathScore results for declined variants.
A: Overlapping pathways of declined variants between discovery and validation cohorts.
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B-C: Volcano plots of discovery (B) and validation (C) cohorts, showing pathways impacted by variants that
decreased in variant allele frequency through treatment. The Effect Size (X-axis) is the PathScore metric that
quantifies the magnitude of the pathway alteration (enrichment). It is calculated as the ratio of the estimated
effective pathway size to the actual pathway size. The estimated effective pathway size is the maximum likelihood
estimate derived from the observed gene harbouring VAF-declining variants. This ratio measures the relative degree
of overburden of the pathway, and is used to rank pathways by the strength of the observed effect. The —logP-value
(Y-axis) represents the statistical significance of the disparity between the actual and effective pathway sizes,
calculated using the likelihood ratio test. Pathways that are considered significantly enriched are highlighted in red
based on a threshold of an adjusted P-value (FDR<0.05).

D: Matrix plot of patient-gene pairs for the common 6 pathways. Each column is a patient, and each row is a gene.

Only patients have the pathway altered are plotted. Red boxes are pathway genes that are mutated in one patient

at least, where blue boxes indicate co-occurrence.

The comparative pathway analysis between the discovery and validation cohorts revealed several
pathways with significant alterations, suggesting their potential roles in sensitizing glioblastoma cells
to therapy. Below, | expand upon these findings to explore if and how these pathways could enhance
the cancer cells' susceptibility to treatment, and whether targeting these pathways could be

disadvantageous for the tumour when exposed to therapy.

The CBL (Casitas B-lineage Lymphoma) pathway involves CBL proteins which are a family of E3
ubiquitin ligases that regulate receptor tyrosine kinase (RTK) signalling through ubiquitination and
degradation (Jing et al., 2016). Variations observed in this pathway (12.5% in discovery and 13.3% in
validation) suggest its role in modulating growth factor signalling, which is crucial for tumour survival
and proliferation. In the literature, it has been established that disruption of CBL function can lead to
impaired degradation of RTKs, resulting in altered signalling dynamics that could make tumour cells
more vulnerable to therapy. This aligns with our findings, indicating that disrupted
BIOCARTA_CBL_PATHWAY enhances therapeutic sensitivity by reducing oncogenic signalling and

increasing tumour cell sensitivity to treatments.

Alterations in the EGFR_SMRTE (Silencing Mediator for Retinoid and Thyroid hormone Receptors)
pathway (12.5% in discovery and 8% in validation) highlight its significance in glioblastoma. EGFR is
often overexpressed or mutated in glioblastoma, leading to enhanced cell proliferation and survival.
Targeting this pathway with EGFR inhibitors TKIs or monoclonal antibodies could disrupt these
processes (Darré et al., 2024). Previous studies suggest that combining EGFR inhibitors with other
treatments can improve efficacy and overcome resistance mechanisms (Chong and Janne, 2013). Our
findings support this, as the altered EGFR_SMRTE pathway may represent a vulnerability that can be

therapeutically exploited.
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The PTP1B (Protein Tyrosine Phosphatase 1B) pathway, with a higher perturbation rate in discovery
(20.8%) compared to validation (14.7%), involves Protein Tyrosine Phosphatase 1B, which negatively
regulates insulin and leptin signalling. Literature suggests that inhibiting PTP1B can reduce tumour
growth and improve sensitivity to chemotherapy, highlighting its potential as a therapeutic target
(Bartolome et al., 2020). Our data align with these reports, indicating that targeting the disrupted
PID_PTP1B_PATHWAY could enhance glioblastoma cell susceptibility to treatment and reduce

therapeutic resistance.

The ARF6 (ADP-Ribosylation Factor 6) pathway is involved in actin cytoskeleton remodelling and
membrane trafficking. Alterations observed (20.8% in discovery vs. 9.3% in validation) indicate its
role in cancer cell invasion and metastasis. Studies have shown that inhibiting ARF6 can reduce these
processes, potentially decreasing the invasive capacity of glioblastoma cells and making them more
susceptible to conventional therapies (Yamauchi et al., 2017, Miao et al., 2012). This is consistent
with our findings, suggesting that disruption of the ARF6 pathway can enhance the effectiveness of

cancer treatments.

The GAB1 (GRB2-Associated-Binding Protein 1) signalsome pathway, with higher alterations in
validation (20%) compared to discovery (16.7%), plays a role in signal transduction downstream of
RTKs. Gab1 acts as a docking platform for various signalling molecules, mediating pathways that
promote cell survival and proliferation. Disruption of Gab1 signalling could impair these survival
pathways, sensitizing glioblastoma cells to apoptosis and enhancing the efficacy of treatments. This
aligns with our observations, suggesting that targeting the disrupted GAB1 signalsome pathway could

make tumour cells more susceptible to therapy.

Finally, the ErbB4 signalling pathway showed consistent alterations (20.8% in discovery and 21.3% in
validation), suggesting its pivotal role in glioblastoma. ErbB4 will be further discussed in the next

section that explain in detail the ErbB signalling pathway.

In conclusion, analysis of somatic mutations in primary and recurrent tumours highlights key
biochemical pathways associated with declining variants, suggesting potential vulnerabilities that
could be exploited therapeutically. Pathways such as CBL, EGFR, PTP1B, ARF6, and GAB1 were
commonly altered in variants that decreased in frequency following treatment, indicating a possible
role in sensitizing glioblastoma cells to therapy. These shared insights support the development of

pathway-targeted strategies aimed at enhancing treatment response, rather than overcoming
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resistance alone. Continued research and clinical validation are essential to translate these findings

into effective therapies that improve outcomes for glioblastoma patients.

3.3.3.3 ErbB Signalling Pathways

The pathway analysis revealed two disrupted pathways associated with ERBB signalling. The
REACTOME_PI3K_EVENTS IN_ERBB2_SIGNALING pathway was favoured by cancer cells during
therapy, contributing to the development of resistance while REACTOME_SIGNALING_BY ERBB4
pathway was found to be favoured by the treatment, sensitizing cancer cells when exposed to

therapy.

ErbB signalling is a critical pathway in the regulation of cellular processes, including proliferation,
differentiation, migration, and survival. The ErbB family of receptor tyrosine kinases (RTKs) comprises
four members: EGFR (ErbB1), ErbB2 (HER2/neu), ErbB3, and ErbB4. These receptors are activated by
ligand binding, leading to receptor dimerization and autophosphorylation. This,in turn,
triggers downstream signalling cascades like the PI3K/AKT and RAS/RAF/MEK/ERK pathways.
Dysregulation of ErbB signalling is implicated in various cancers, making it a focal point for targeted
cancer therapies(Hynes and Lane, 2005). GBM IDH wild-type (IDHwt) frequently exhibits EGFR
amplification or mutation, leading to aberrant activation of ErbB signalling pathways, which drive

tumour growth and survival (Brennan et al., 2013, Mellinghoff et al., 2005).

ErbB2, particularly, is known for its role in various cancers, including glioblastoma. It lacks a direct
ligand and instead is activated through heterodimerization with other ErbB family members.
Overexpression or amplification of ErbB2 is associated with aggressive tumour behaviour and poor
prognosis. Consequently, targeting ErbB2 with monoclonal antibodies (e.g., trastuzumab) or small

molecule inhibitors has become a cornerstone in treating ErbB2-positive cancers (Moasser, 2007).

ErbB4, a less studied but emerging player in cancer biology, including GBM, presents a fascinating
complexity. It can undergo proteolytic cleavage, releasing an intracellular domain that can translocate
to the nucleus and influence gene expression. The role of ErbB4 in cancer can vary significantly
depending on tumour type, with both tumour-promoting and tumour-suppressing functions
reported (Lucas et al., 2022). In GBM, ErbB4 expression has been correlated with more differentiated
tumour phenotypes and better prognosis, suggesting a potential tumour-suppressive role (Donoghue

et al.,, 2018).
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The REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING pathway was disrupted in 32% of the
discovery cohort and 14% of the validation cohort. The PI3K/AKT pathway, often activated by ERBB2
(HER2) signalling, is a well-known mediator of cell growth and survival. Aberrant activation of this
pathway can confer resistance to therapies by promoting survival signals that counteract the effects

of treatment (Rascio et al., 2021).

In the REACTOME_PI3K_EVENTS IN_ERBB2_SIGNALING pathway, | focused on deleterious mutations
to explore their potential functional impact within critical regions of the genes, which provided
insights into their role in tumour progression. By examining these mutations, | identified whether
they clustered in key functional domains that could affect gene activity and contribute to treatment
resistance. For a detailed view of where these mutations occurred within the gene structures, refer
to Figure 3-10, which maps each variant to its corresponding position along the genes. Mutations in
EGFR were primarily observed in the furin-like domain such as the A289V variant, and the kinase
tyrosine domain, potentially altering receptor activation and signal transduction (Miyashita et al.,
2020). For PTEN, mutations were spread across the gene and mainly in the PTEN_C2 domain. Other
genes involved in this pathway had one variant per gene such as NRG1 which had a splice site
mutation. The PIK3CA pathway showed a single mutation identified as a start loss variant, while
PIK3R1 had a mutation in the SH2 domain.

One limitation of this approach is that variant effect prediction tools such as SIFT, and PolyPhen-2
tend to prioritise loss-of-function mutations, and may underestimate the impact of gain-of-function
missense mutations particularly relevant for oncogenes like PIK3CA, and mTOR, where activating
mutations are known to drive cancer. As a result, some potentially important variants may have been
missed by the filtering strategy. Nevertheless, the domain-specific variation patterns observed in the

retained variants suggest distinct mechanisms of disruption that may still have therapeutic relevance.
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Figure 3-10: Variants associated with REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING.

This lollipop plot, generated by MutationMapper (https://www.cbioportal.org/mutation_mapper), visualizes the
somatic variants found in the protein structure.

X-axis: Represents the amino acid length of the protein. Coloured Blocks: Denote known functional protein domains.
Lollipops: Represent specific amino acid substitution variants:

e The height of the lollipop stem indicates the frequency (number of samples/patients) in which
that specific mutation was observed.
e Only the most recurrent or significant hotspot mutations are explicitly labelled with their protein
change, unlabelled lollipops represent less frequent variants.
Lollipop Color: Black for Truncating, Green for Missense, Purple for Structural Variant / Fusion (SV/Fusion), Brown

for In-frame Deletion/Insertion and Gold for Splice Site Mutation.

Additionally, the REACTOME_SIGNALING_BY_ERBB4 pathway was disrupted in 21% of the patients
across both the discovery and validation cohorts. ERBB4, along with its ligands and downstream
signalling molecules, can activate pathways such as PI3K/AKT and MAPK, which are crucial for cell
survival and proliferation. However, when ERBB4 signalling is altered, it may enhance the efficacy of

certain therapies by increasing cellular susceptibility to treatment-induced apoptosis.

In this pathway, mutations in EGFR were found not only in the furin-like and kinase tyrosine domains
but also in the receptor-ligand domain, suggesting broader impacts on receptor function. For PTEN,
the PTEN_C2 domain was notably free from variants, indicating a more localized impact on its lipid-
binding role. NRG1 mutations were located in the EGF domain, hinting at different effects on
signalling mechanisms. Regarding PIK3CA, mutations were detected in the PI3K_p85B, PI3K_C2, and
PI3Ka domains, indicating broader impacts on the PI3K/AKT pathway. Given that PI3K proteins
function primarily as kinases, these mutations may also influence their phosphorylation activity,
potentially leading to dysregulated downstream signaling (Roger Belizaire, 2021). PIK3R1 mutations
were found in the PI3K_P85_iSH2 domain, potentially affecting PI3K interactions. The variant-gene

maps to protein domains are illustrated in Figure 3-11.
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Figure 3-11: Variants associated with REACTOME_SIGNALING_BY_ERBB4

This lollipop plot, generated by MutationMapper (https://www.cbioportal.org/mutation_mapper), visualizes the somatic
variants found in the protein structure.

X-axis: Represents the amino acid length of the protein. Coloured Blocks: Denote known functional protein domains.
Lollipops: Represent specific amino acid substitution variants:

e The height of the lollipop stem indicates the frequency (number of samples/patients) in which that specific
mutation was observed.

e Only the most recurrent or significant hotspot mutations are explicitly labelled with their protein change,
unlabelled lollipops represent less frequent variants.
Lollipop Color: Black for Truncating, Green for Missense, Purple for Structural Variant / Fusion (SV/Fusion), Brown for In-

frame Deletion/Insertion and Gold for Splice Site Mutation.

These findings suggest that while some ERBB pathway disruptions may enhance treatment sensitivity,
others contribute to treatment resistance, highlighting the dual role of ERBB signalling in cancer
therapy outcomes. Furthermore, the findings highlight the importance of pathway-specific genetic
alterations in predicting and optimising cancer treatment responses. The variability in mutational
landscapes across patients further underscores the need for personalized therapeutic strategies,
rather than uniform treatment approaches, to ensure patients receive the most effective

interventions for their individual GBM profiles.

3.3.4 Copy Number Results

3.3.4.1 Pathways corrected for copy number

In this chapter, | highlight the advantages of Cancer Cell Fraction (CCF) over Variant Allele Frequency
(VAF) in defining the clonal architecture of tumours. CCF estimates the proportion of cancer cells
harbouring specific genetic alterations, offering a clearer view of tumour heterogeneity than VAF,
which is confounded by factors like copy number variations and tumour purity. VAF's limitation is
particularly evident in regions with variable copy numbers, where it fails to accurately reflect clonal
status. In regions of copy number stability, VAF and CCF are more closely aligned, making VAF a more
reliable proxy for clonal fraction. However, in regions with copy number gains or losses, VAF can

misrepresent the proportion of cancer cells with the variant.

Given the requirement for high-depth sequencing data (around 200X coverage) to reliably estimate
CCF (Tanner et al., 2021), our dataset's lower coverage necessitated alternative approaches. |
compared copy number profiles of primary and recurrent tumours, using primary samples as a
baseline to track changes post-treatment. Traditional copy number callers were unsuitable due to

requiring normal samples for this kind of assessment, so copy number data were converted into BED
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files to assess changes at specific loci, allowing for a detailed analysis of copy number alterations and

the filtering of variants in regions with variable copy numbers.

After filtering out variants from regions with variable CNAs in the selected-for group of variants, the
reanalysis of significant  pathways revealed that all pathways, except the
REACTOME_PI3K_EVENTS IN_ERBB2_SIGNALING pathway, were detected in both cohorts. This
pathway was absent in the discovery cohort but present in the validation cohort. The discrepancy
arises from the pathscore's dependence on patient numbers for pathway significance; removing
variants from regions with variable CNAs effectively reduces the cohort size, as shown in table 3-6

where the CNA P>R column illustrates the status of copy number of each variant.

Applying the same protocol to the group of genes selected-against variants, it was found that the
same pathways were deemed significant in the validation cohort, whereas the discovery cohort
showed no significant pathways. This disparity is again likely due to the smaller size of the discovery
cohort, which diminishes its statistical power to detect significant pathways. However,
REACTOME_SIGNALING_BY_ERBB4 pathway persisted in the validation cohort, demonstrating that

its significance is not solely linked to regions affected by CNAs as indicated in table 3-7.

The exclusion of variants in regions with variable CNAs was intended to refine the analysis, as VAF
alone does not account for the complexities introduced by CNAs. This filtering improved pathway
analysis by focusing on regions with stable copy numbers, where VAF more accurately reflects the
mutation's clonal fraction. While variable CNAs can obscure certain pathways, both ERBB signalling
pathways remained significant in the validation cohort, demonstrating robustness to the filtering
process. This indicates that the presence of ERBB signalling is not merely an artifact of VAF
misinterpretation due to CNAs, but rather reflects genuine biological relevance. Therefore, the
analysis confirms that both ERBB signalling pathways are not redundant and remain pathways of

interest, even after accounting for copy number variability.

Overall, these findings demonstrate that the identified pathways remain robust and significant after
accounting for copy number changes, highlighting the importance of adequate sample sizes in
genomic studies to capture critical biological insights. Refining pathway analysis to consider copy
number stability provides a more accurate framework for understanding tumour genetics and

potential therapeutic targets.
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Table 3-6: REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING

P>R
chr4 75681166 | 0.121>0.463 2>2 MISSENSE BTC R62W
chr7 55154129 0.923>0.88 | 87>86 MISSENSE EGFR A289V
chr7 55154129 | 0.209>0.196 2>2 MISSENSE EGFR A289V
chr7 55249000 0.0004094> 132>3 MISSENSE EGFR M766l
0.294
chr7 55242461 0.0005139> 2>2 MISSENSE EGFR 17447
0.345
chr12 56487184 | 0.024>0.211 2>2 NONSENSE ERBB3 R444*
chr16 2257260 0.183>0.355 2>2 MISSENSE MLST8 E163K
chr8 32595826 | 0.129>0.181 2>2 SPLICE_SITE NRG1 X34 _splice
chr3 179198826 | 0.444>0.444 2>2 start_lost PIK3CA M1?
chr5 68293310 | 0.196>0.334 6>5 MISSENSE PIK3R1 G376R
chr10 87864492 0.282>0.77 1>2 MISSENSE PTEN 18S
chr10 87952260 | 0.424>0.889 2>2 SPLICE_SITE PTEN X212_splice
chr10 87933147 0.497 >0.25 0>1 NONSENSE PTEN R130*
chr10 87933063 0.52>0.753 2>2 | FRAME_SHIFT | PTEN K102Nfs*11
chr10 87961056 | 0.609 >0.486 2>2 NONSENSE PTEN K322*
chr10 87961042 | 0.432>0.467 1>2 | FRAME_SHIFT | PTEN T319*
chr10 89711929 | 0.174>0.305 2>2 | FRAME_SHIFT | PTEN K183Tfs*5
chr10 89720676 | 0.061>0.349 2>2 MISSENSE PTEN N276S
chr10 89711875 | 0.075>0.303 2>2 SPLICE_SITE PTEN G165R
0.002543 >
chr16 2111923 0.29 2>2 MISSENSE TSC2 V391M
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Table 3-7: REACTOME_SIGNALING_BY_ERBB4

P>R
0.229 >
chr7 148786549 0 5>4 SPLICE_SITE CuUL1 X433_splice
117
0.341 >
chr7 148485733 4>3 MISSENSE CuUL1 K522Q
0.078
0.633 >
chr7 55143387 50>5 MISSENSE EGFR R108K
0.063
0.834 >
chr7 55143387 2>2 MISSENSE EGFR R108K
0.003232
0.236 >
chr7 55154055 2>2 FRAME_SHIFT EGFR P266Hfs*14
0.032
0.85>
chr7 55210077 49 > 64 MISSENSE EGFR G63R
0.0003778
0.9>
chr7 55269049 2>2 SPLICE_SITE EGFR
0.002786
0.218 >
chr7 55249010 0.179 3>2 IN_FRAME_INS EGFR N771_H773dup
0.292 >
chr7 55266500 4>3 MISSENSE EGFR E931G
0.124
0.948 >
chr7 55223567 2>2 MISSENSE EGFR G312W
0.0004922
0.323 >
chr2 211750675 0.03 2>2 MISSENSE ERBB4 R196C
0.358 >
chr8 31498153 2>2 MISSENSE NRG1 R218H
0.029
0.344 >
chr3 179199102 2>2 MISSENSE PIK3CA RO3W
0.052
0.594 >
chr3 178917478 0.18 2>2 SPLICE_SITE PIK3CA G118D
0.219>
chr3 178936091 2>2 MISSENSE PIK3CA E545K
0.109
0.247 >
chr3 178928081 0.151 2>2 MISSENSE PIK3CA E453D
0.222 >
chr3 178928086 0.12 2>2 IN_FRAME_DEL | PIK3CA | L455_G460delinsF
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0.328 >
chrb 67590984 0.156 2>2 FRAME_SHIFT | PIK3R1 H526QfsTer6
0.389 >
chrb 67589609 2>2 IN_FRAME_DEL | PIK3R1 K459del
0.044
0.268 >
chrb 67589585 0.152 2>2 IN_FRAME_DEL | PIK3R1 E451_Y452del
.15
0.268 >
chr10 87933223 2>2 MISSENSE PTEN Y155S
0.031
0.26 >
chr10 89653851 2>2 MISSENSE PTEN 150T
0.197
0.74 >
chr10 89692904 2>2 NONSENSE PTEN R130*
0.146
0.412 >
chr10 89692818 2>2 MISSENSE PTEN M01T
0.125
0.471 >
chr10 89711899 2>2 MISSENSE PTEN R173C
0.124
0.233 >
chr10 89693009 2>2 SPLICE_SITE PTEN
0.192
0.413 >
chr2 39281963 0.147 1>3 MISSENSE SOS1 V171A

3.3.4.2 Copy Number Changes from Primary to Recurrent

To identify the copy number changes through treatment, | used the primary tumour profiles as
baseline and looked at the recurrent tumour profiles. The strategy was to track copy number changes
at the subclonal level by identifying regions that were selected for or selected against during therapy.
For the discovery cohort, | identified significant deletions at loci 7p11.2 and 15g11.2 (Figure 3-12A)
however no amplifications were identified which could be attributed to the small sample size of the
discovery cohort. In comparison with the validation cohort, the same deletion loci were also
identified (Figure 3-12B). Investigating the genes involved in these loci, the EGFR on 7p11.2 was
deleted in both cohorts whereas 15q11.2 had deletions of OR4M2. Looking at the validation cohort
as it is larger than the discovery cohort, more significant regions have been detected. Interestingly,

same regions that were deleted were also amplified (Figure 3-12B), however, those regions were

Chapter 3 114




distinct and not shared by same patients. OR4M2, and EGFR are among the genes that were amplified

or deleted in the validation cohort.

EGFR is commonly amplified in glioblastoma (GBM), with deletions and amplifications observed
across multiple patients, which aligns with studies associating this phenomenon with
extrachromosomal DNA (ecDNA/eccDNA). Extrachromosomal DNA refers to circular DNA fragments
that exist independently of the main chromosomal DNA within cells. ECDNA are large molecules,
spanning millions of base pairs, and frequently contain entire or partial oncogenes, regulatory
elements, and other sequences critical for cell proliferation and survival. In cancers like GBM, ecDNA
carrying amplified EGFR and other oncogenes contribute to tumour heterogeneity, driving rapid
progression and resistance to standard therapies (Liao et al., 2020, Noer et al., 2022, Yang et al., 2023,
Zhao et al., 2022, Verhaak et al., 2019).

EGFR amplification occurs in about 50% of glioblastomas (Lassman et al., 2019), typically within small
circular ecDNA fragments. A frequent mutation associated with this amplification is EGFRvIII, which
involves an in-frame deletion of exons 2-7 and is found in approximately 50% of EGFR-amplified GBM
patients (Lassman et al., 2019, French et al., 2019, Gan et al., 2013, Hoogstrate et al., 2022). EGFRvIII
is a variant of EGFR that remains constitutively active at low levels without the need for ligand
binding, likely due to the partial deletion of the extracellular ligand-binding domain. This mutation
arises from a genomic deletion rather than alternative or aberrant splicing. EGFRvIIl is generally
considered a subclonal event, arising after chromosome 7 and EGFR amplifications (French et al.,
2019). Although subclonal, EGFRVIII significantly impacts tumour biology by further enhancing

genetic variability and complicating targeted therapeutic approaches.

OR4M?2 is part of the olfactory receptor proteins, which are members of the G-protein-coupled
receptors (Malnic et al., 2004). G-protein-coupled receptors (GPCRs) are a large family of proteins
that detect molecules outside the cell and activate internal signal transduction pathways and cellular
responses (Rosenbaum et al., 2009). Although GPCRs have been studied as therapeutic targets for
GBM (Stephan et al., 2021, Byrne et al., 2021), there is currently no study specifically associating

olfactory receptors with GBM.

Other amplified or deleted loci in the validation cohort are indicated in Figure 3-12B, with the genes
involved in these variable copy number regions listed in Table 3-8. Notably, most of these regions are
associated with single genes, suggesting that patients could potentially be stratified by their copy
number profiles. However, applying various clustering methods to explore this possibility did not

yield significant results (Figure 3-13). The absence of distinct patient clusters demonstrates that the
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copy number changes at these loci are highly heterogeneous and not shared across the cohort. This
suggests that the alterations represent individualized, subclonal events likely driven by selective
pressure during therapeutic intervention rather than common drivers suitable for patient
stratification. It is possible that these genes have also been affected by ecDNA amplifications or

deletions, which could contribute to the observed variability.

Table 3-8: The loci with the associated genes and fraction of impacted patients

Locus Gene - Amp Gene - Del Amp % Det%

(n=94) | (n=94)
1p36.13 CROCC FAM131C 21 19
1g21.1 SEC22B, NOTCH2NL NOTCH2NL 26 31
1g21.3 FLG, multiple genes FLG 19 27
1g44 OR2T3 OR2T127 21 22
3029 MUC20 MUC20 27 23
6p22.1 HLA-A HLA-A 26 31
6p21.33 HLA genes HLA genes 21 26
6p21.32 HLA genes HLA genes 22 29
7p11.2 EGFR EGFR 17 37
9p21.3 multiple genes multiple genes 12 17
14911.2 OR4K1 OR4N2, OR4M1 21 32
15q11.2 OR4M2 OR4M2, multiple genes 27 24
16q12.2 CES1 CES1 22 29
16922.1 PDPR PDPR 19 21
19p13.3 PLIN4 PLIN4 18 22
19p12 ZNF676 ZNF676 28 24
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Figure 3-12: Copy number plots of discovery cohort (A) and validation cohort (B).
Blue peaks indicate the deletions, and the red peaks indicate the amplifications. The green line represents the
significance threshold, the G score represents the aberration (amplitude X frequency) and g-value represents the
false discovery rate. The red boxes are loci shared between the cohorts and the green boxes are the significant

amplified and deleted loci in the validation cohort.
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Figure 3-13: Heatmap of Copy Number Profiles Across the Validation Cohort Following Clustering Analysis.

This heatmap visualizes the somatic copy number alteration (SCNA) data for genomic loci with variable copy
number across the patients (columns) in the validation cohort. The values are expressed as the Log 2 (Ratio) of
the tumour copy number relative to the normal reference. Hierarchical clustering was applied to both rows and
columns to identify common copy number profiles for patient stratification.

Rows: Genomic loci showing variable copy number regions.

Columns: Individual patient/sample in the validation cohort.

Colour Scale: The colour indicates the magnitude and direction of the copy number change. Blue for deletion
and red for amplification
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3.4 DISCUSSION

3.4.1 Variants Conferring Treatment Resistance

Investigating the genes involved in GBM progression by identifying mutations that are likely selected
for during treatment, | have identified several key biological processes, cellular components, and
molecular functions that are enriched in both our discovery and validation cohorts, suggesting a

possible mechanistic foundation in GBM.

The gene set enrichment analysis of variants expanding from primary to recurrent tumours in both
discovery and validation cohorts reveals enrichment in GO biological processes related to sinoatrial
(SA) and atrioventricular (AV) node functions. The discovery cohort includes terms like "SA node cell
action potential" "SA node cell to atrial cardiac muscle cell signalling" and "SA node cell to atrial
cardiac muscle cell communication". In the validation cohort, we observed enrichment in processes

such as "membrane depolarization during SA node cell action potential" "membrane depolarization
during AV node cell action potential" and "AV node cell action potential". These terms suggest a
potential role for rhythmic and coordinated signalling in the cells that harboured the expanded
variants. Interestingly, these enriched processes in our cohorts reflect a phenomenon observed in a
study by (Hausmann et al., 2023), who found that a subpopulation of glioblastoma cells exhibits
periodic calcium (Ca?*) activity, acting as network hubs within the tumour. This rhythmic activity was
crucial for generating intercellular Ca?* waves that activate key pathways like MAPK and NF-kB,
driving tumour growth. This aligns with our findings of enrichment in SA and AV node-related
processes, suggesting that rhythmic signalling mechanisms may be a shared feature between cardiac

pace-making and glioblastoma progression. Targeting these pacemaker-like mechanisms, particularly

in glioblastoma, could potentially disrupt the tumour’s progression and offer a potential therapy.

Extending beyond the rhythmic signalling observed in these biological processes, the findings also
point to the involvement of specific cellular components, such as the laminin complex, which may
further elucidate the tumour’s invasive characteristics. The persistence of certain cellular
components, such as laminin complexes, has emerged as a significant factor in both discovery and
validation cohorts of glioblastoma patients. This finding aligns with the known involvement of
laminins in the glioma microenvironment and suggests a specific role in glioblastoma
pathophysiology. Laminins, due to their integral role in cell adhesion, migration, and differentiation,
may influence tumour progression and the invasive behaviour of glioblastoma cells. Notably, laminin
has also been shown to support the growth of glioblastoma stem-like cells (Lathia et al., 2012), and

contributes to GBM cell migration and invasion (Kawataki et al., 2007), further underscoring its
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multifaceted role in disease progression. Variants of genes involved in this pathway have expanded
through therapy, implying that these genes may confer treatment resistance. In a study by (Tanner
etal., 2024), RNA sequencing data from IDHwt GBM longitudinal tumours was analysed, and patients
were stratified based on changes in gene expression into two types: Up-responders and Down-
responders. The Up-responders were characterized by a proneural signature, while the Down-
responders were associated with mesenchymal transitions. The study found that in the Up-responder
subtype, oligodendrocyte progenitor cell-like (OPC) cancer cells increased from primary to recurrent
stages. Preclinical models included cell lines grown in laminin-treated environments that mimic the
extracellular matrix (ECM) of tissues. The development and function of oligodendrocytes are
regulated by various molecules, including laminin, a major component of the ECM. Consistent with
this finding, laminin complexes were found to be enriched in genes that expanded through
treatment, suggesting that cells harbouring these genes might belong to the proneural signature and

Up-responder subtype.

In addition to the structural implications of laminin complexes within the tumour microenvironment,
the findings also highlight the significance of molecular functions, such as ATP-dependent
microtubule motor activities, in contributing to therapy resistance.

ATP-dependent microtubule motor activity, minus-end-directed, is a molecular function associated
with motor proteins that move along microtubules in a direction towards the minus end, using energy
derived from ATP hydrolysis (Ambrose et al., 2005, Ali and Yang, 2020). The minus-end-directed
movement typically involves dynein motor proteins, which play critical roles in various cellular
processes including intracellular transport, positioning of organelles, and mitotic spindle assembly
during cell division (Wadsworth and Lee, 2013). By analysing the molecular function GO terms, |
found that this pathway was present in both the discovery and validation cohorts. Moreover, this
term was found among the group of variants that expanded from primary to recurrent tumours,
further implying a role in resistance mechanisms. A study by (Wang et al., 2016a) identified the DHC2
gene, also known as DYNC2H1, as being associated with resistance to temozolomide (TMZ), and this
gene was mutated in the validation cohort. Other dynein family genes linked with this molecular
function term were also mutated and shared between the cohorts, suggesting they may contribute
to TMZ resistance. Interestingly, germline mutations in DYNC2H1 are known to cause Jeune
syndrome, a ciliopathy characterised by defects in primary cilia—cellular structures that act as key
signalling hubs (Higgins et al., 2019). In the context of GBM, such mutations may disrupt primary cilia
formation or function, potentially impairing cell-environment signalling. Additionally, cells lacking
primary cilia tend to arrest in GO phase of the cell cycle, which may allow them to evade treatment,

as many therapies, including TMZ, target actively dividing cells. This suggests that mutations in
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DYNC2H1 may contribute to therapy resistance not only through direct mechanisms, but also by

altering cell cycle dynamics and signalling sensitivity.

Simultaneously, the significant disruptions observed in the androgen receptor signalling genes within
the KEGG Prostate Cancer pathway suggest that anti-androgen therapies, effective in prostate cancer,
could be adapted for GBM treatment. By targeting similar oncogenic mechanisms in GBM, hormone
therapy strategies might provide a novel therapeutic avenue, further expanding the arsenal against
GBM. Combining these approaches could offer a multifaceted strategy that capitalizes on the
mechanistic similarities between these diverse cancers, opening up new possibilities for tailored and
effective GBM therapies.

Mutations in the KEGG P53 Signalling pathway often result in the loss of tumour suppressor functions,
enabling GBM cells to evade apoptosis, a common mechanism of action for many anticancer drugs.
Similarly, the aberrations in the PI3K/Akt pathway, as seen in the Reactome PI3K events in ERBB2
signalling, can lead to unchecked cellular proliferation and survival, providing a biological basis for

resistance to therapies that target these growth signalling pathways.

The alterations observed in the BIOCARTA_TEL PATHWAY are particularly noteworthy. The
maintenance and elongation of telomeres in cancer cells, typically via the activation of telomerase,
allow these cells to replicate indefinitely, thus contributing to their immortal phenotype. Targeting
telomerase has been proposed as a therapeutic strategy, yet resistance often develops through
alternative lengthening of telomeres (ALT) mechanisms, showcasing the adaptive nature of GBM.

The variants identified in the BIOCARTA_CTCF_PATHWAY suggest a role in genomic instability, which
is a hallmark of cancer that contributes to both the heterogeneity of tumour cells and their ability to
resist multiple drug mechanisms. Thus, the disruption of CTCF-dependent chromatin remodelling,
and gene expression regulation could provide a fertile ground for the emergence of drug-resistant

cancer cell variants.

These observations show the complexity of treating GBM and highlight the necessity for a targeted
approach that considers the genetic makeup of individual tumours. Developing therapies that can
effectively target these altered pathways may provide a means to circumvent or overcome the

resistance mechanisms, offering hope for improved treatment outcomes in GBM patients.

The analysis | conducted in this study highlights the robustness of the significant pathways detected,
even after careful adjustments for copy number variations. My method involved revisiting gene lists

and excluding variants located in regions with variable copy numbers, ensuring that the subsequent
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pathway analysis accurately reflected true genetic signals. This rigorous reanalysis confirmed the
presence of critical pathways across both cohorts, demonstrating their intrinsic biological significance
in the disease process. The consistent identification of significant pathways in the larger
validation cohort confirms that these pathways are fundamental to the underlying biology
of the disease, independent of genomic alterations like copy number changes. This discovery
is crucial for reinforcing the validity of the pathways involved in the pathogenesis and
progression of the disease, indicating that these pathways are not merely incidental but

likely central to the disease mechanisms.

3.4.2 Variants Conferring Treatment Sensitivity

The combined analysis of enriched Gene Ontology (GO) terms and altered pathways in treatment-
responsive glioblastoma patients revealed a multifaceted picture of biological processes and

molecular functions associated with treatment susceptibility.

GO enrichment analysis of the discovery cohort displayed enrichment in neuronal development
pathways, suggesting therapies might target cells reliant on these processes for survival. The
recurrent presence of the BDNF gene in key pathways further supports this notion, as BDNF is known

to play a crucial role in neuroplasticity and survival (Taylor et al., 2023).

In contrast, the validation cohort highlighted enrichment in pathways related to cardiac function and
calcium signalling. This could point to shared pathways between cardiac function and GBM
progression. The enrichment of "regulation of cardiac conduction" strengthens the cardiotoxicity
hypothesis, potentially explaining some of the side effects observed during chemoradiotherapy
(Griffin et al., 2020, Pei et al., 2020). Alternatively, the shared enrichment of calcium signalling
pathways suggests potential links between cardiac health and GBM development or progression,

warranting further investigation.

The analysis of cellular components also yielded intriguing insights. Mutations in the discovery
cohort impacted mRNA cap binding complex and other membrane-associated structures, suggesting
the importance of mRNA processing and ion channel function under therapeutic pressure. These
findings align with the established role of mMRNA processing in cellular stress responses (Dutertre et
al.,, 2014). The validation cohort further strengthens this concept with the enrichment of the

phosphatidylinositol 3-kinase complex and the voltage-gated sodium channel complex, both crucial
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for signal transduction and ion homeostasis (Tsai et al., 2020). These observations suggest that

therapies might exploit vulnerabilities in cellular signalling and ion regulation to eliminate GBM cells.

The analysis of molecular functions provided further clues about the impact of therapy. In the
discovery cohort, enrichment for "RNA 7-methylguanosine cap binding" and "structural molecule
activity conferring elasticity" suggests that the stability of RNA and cellular structure might be
particularly vulnerable to therapeutic stresses. This aligns with the notion that therapies can disrupt
cellular processes essential for GBM cell survival. The validation cohort, with its enrichment in
"glutamate-gated calcium ion channel activity" and "structural molecules conferring elasticity,"
underscores the importance of neurotransmission and structural stability in the context of
therapeutic response (Pei et al., 2020). Interestingly, the enrichment of "melanocortin receptor
activity" and "opioid receptor activity" suggests a potential role for sensory signalling pathways in

treatment effectiveness, warranting further exploration (Pasqualetti et al., 2018, Zhou et al., 2013).

Expanding the investigation by conducting pathway analysis led to identifying promising targets
potentially contributing to therapeutic effectiveness. One prominent pathway exhibiting disruption
was the CBL pathway. CBL proteins act as cellular janitors, regulating growth factor signalling by
tagging receptor tyrosine kinases (RTKs) for degradation (Liyasova et al., 2015). Variations observed
in this pathway suggest compromised CBL function, likely leading to aberrantly high and persistent
growth factor signalling. This disruption weakens oncogenic signals and makes GBM cells more
susceptible to treatment, aligning with previous reports demonstrating the efficacy of disrupting CBL

pathway dysfunction in cancer (Roger Belizaire, 2021).

Similarly, alterations in the EGFR_SMRTE pathway reinforce the rationale for targeting EGFR, a protein
that is frequently mutated or overexpressed in glioblastoma (Brennan et al., 2013). SMRTE, a variant
of the SMRT corepressor with an extended N-terminal sequence that shares similarities with N-CoR,
appears to play a role in regulating EGFR signalling (Mottis et al., 2013). Disruptions within the
EGFR_SMRTe pathway could therefore be beneficial, as they potentially make glioblastoma cells

more responsive to EGFR-targeted therapies (Xu et al., 2017).

The PTP1B pathway, a negative regulator of insulin and leptin signalling, emerged as another
promising target. PTP1B functions as a molecular brake on cell growth by removing phosphate groups
from proteins involved in insulin and leptin signalling pathways (Liu et al., 2022). Abnormally high
PTP1B activity, potentially reflected by the pathway disruptions observed in our study, can lead to

constantly active signalling through these pathways, promoting uncontrolled growth and survival of
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cancer cells (Cheng and Guo, 2019). Inhibiting PTP1B may offer several potential therapeutic benefits:
reduced cancer cell growth by blocking insulin and leptin signalling, enhanced treatment sensitivity
by disrupting survival signals, and potentially overcoming chemotherapeutic resistance mechanisms

linked to PTP1B activity.

The ARF6 pathway, involved in actin cytoskeleton remodelling, also displayed consistent alterations.
The actin cytoskeleton provides structure and allows cells to move. ARF6, a small GTPase protein,
acts as a molecular switch that orchestrates actin polymerization and organization by recruiting and
activating various proteins (Sun et al., 2023). The observed pathway disruptions suggest potential
ARF6 dysregulation in glioblastoma. Disruption of ARF6 signalling could hinder the formation of actin
protrusions necessary for cell movement and invasion, thereby reducing the ability of glioblastoma
cells to migrate and spread to other parts of the brain, a hallmark of glioblastoma aggressiveness (Li
et al., 2009). Our data aligns with the notion that targeting the ARF6 pathway might be beneficial by
hindering the invasive potential of glioblastoma cells, potentially improving treatment efficacy, and
reducing the risk of metastasis. Further research is needed to elucidate the specific mechanisms of

ARF6 dysregulation in glioblastoma and develop therapeutic strategies to target this pathway.

Finally, consistent alterations were observed in the GAB1 signalsome pathway. GABI, a scaffolding
protein, acts as a signalling hub, forming a complex with various proteins to transduce signals
involved in cell growth, survival, proliferation, and migration (Mattoon et al., 2004). In glioblastoma,
GAB1 may contribute to tumorigenesis by promoting these processes (Singh et al., 2017). Disruption
of the GAB1 signalsome pathway, as suggested by the findings, could impair these pro-survival
signalling pathways, sensitizing glioblastoma cells to apoptosis and enhancing the efficacy of

treatments.

In conclusion, this study has identified several promising pathways whose disruption is associated
with enhanced therapeutic sensitivity in glioblastoma. These findings provide a valuable foundation
for further investigation into targeted therapies that capitalize on these vulnerabilities. By targeting

these pathways, we may improve treatment outcomes for glioblastoma patients.

3.4.3 ERBB Signalling Pathways

In the investigation of the ERBB signaling pathways, distinct variants in EGFR, PTEN, and PIK3CA
exhibit a nuanced interplay that influences cellular behavior and treatment responses in cancer.

EGFR mutations in different domains affect its interaction with ERBB family members; for instance,
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mutations in the Recept L domain and Pkinase_Tyr domain in the ERBB4 and ERBB2 pathways,
respectively, modulate the receptor's dimerization and signalling efficacy. Altered EGFR-ERBB
dimerization can either impair or enhance downstream signalling, depending on the nature of the
mutations, potentially influencing the cellular response to therapies targeting these receptors

(Andersson et al., 2010, Donoghue et al., 2018, Lucas et al., 2022).

PTEN variants, particularly in the PTEN_C2 domain in the ERBB2 pathway, disrupt its critical lipid
phosphatase activity and membrane localization. By dephosphorylating PIP3, PTEN directly opposes
the PI3K-induced signalling, thus regulating cell survival and proliferation. When PTEN function is
compromised due to loss of function mutations, this leads to unregulated PI3K/AKT signalling, which
enhances cell survival and resistance to apoptosis, presenting major challenges in cancer treatment,
especially in tumours with hyperactive ERBB2 signalling (Matsuoka and Ueda, 2018, Yehia et al.,
2019, Jang et al., 2021).

PIK3CA mutations introduce significant complexities into the cellular signalling dynamics within the
ERBB signalling pathways. In the ERBB2 pathway, a start loss variant in PIK3CA suggests a potential
reduction in the functional activity of the PI3K catalytic subunit p110a, which might nominally
decrease PI3K/AKT pathway activity. However, the impact of PIK3CA mutations is markedly different
in the ERBB4 pathway. Here, mutations in the PI3K_p85B, PI3K_C2, and PI3Ka domains likely impair
the regulatory and catalytic functions of PI3K. This impairment weakens the PI3K/AKT signalling,
reducing cell growth and survival capabilities.

As a result, cells harbouring these mutations may exhibit diminished proliferative potential or enter
a quiescent (GO) state, making them less responsive to therapies that target actively dividing cells.
Alternatively, some cells may become more susceptible to treatment-induced apoptosis due to
reduced survival signalling, indicating that PIK3CA mutations could contribute to therapy response

through multiple, context-dependent mechanisms (Okkenhaug et al., 2016, Liu et al., 2018).

Understanding these complex interactions is crucial for developing targeted therapies. By delineating
how specific domain mutations in EGFR, PTEN, and PIK3CA influence ERBB signalling, researchers can
better predict treatment outcomes and refine therapeutic approaches to exploit vulnerabilities in
cancer signalling networks. This approach emphasizes the need for a personalized medicine strategy,
tailoring treatments based on detailed genetic and molecular profiles to optimize efficacy and

overcome resistance in cancer therapies.
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CHAPTER 4

4.1 INTRODUCTION

4.1.1 Epigenetics in GBM

While much of the research in GBM has traditionally focused on identifying mutations in specific genes, it has
become increasingly clear that epigenetic changes also play a significant role in tumour behaviour
(Maleszewska and Kaminska, 2013, Wu et al., 2021, Tanner et al., 2024, Amirmahani et al., 2025, Meleiro and
Henrique, 2025). Epigenetics refers to modifications in gene activity that do not involve changes to the actual
DNA sequence but can still influence how genes are expressed. These changes are especially relevant in
cancer biology, where they can cooperate with genetic mutations to promote tumour initiation, progression,
and treatment resistance.

The word "epigenetics" was first introduced by the biologist Conrad Waddington in the early 1940s
(Waddington, 2012). Initially, the term was used in the context of development to describe how different cell
types arise from the same genetic code based on gene regulation. Over the years, the term has evolved and
now refers to heritable changes in gene expression that occur without any alteration to the DNA sequence
itself (Bird, 2007). These changes are mediated by chemical modifications to DNA or to the histone proteins
that surround it. These modifications include DNA methylation, histone acetylation or methylation, and
regulatory effects by non-coding RNAs.

In GBM, several studies have shown that epigenetic alterations, such as DNA methylation, are involved in
silencing tumour suppressor genes, influencing how cells respond to treatments like radiotherapy and
chemotherapy (Hegi et al., 2005, Esteller, 2008). These epigenetic mechanisms do not act in isolation but
interact with the genetic background of the tumour, creating a complex network of regulation that ultimately

determines tumour phenotype.

4.1.2 DNA methylation in GBM

Among the various forms of epigenetic regulation, DNA methylation is one of the most widely studied and
best understood. It involves the chemical addition of a methyl group (-CH3) to the fifth carbon of the cytosine
ring in DNA, forming 5-methylcytosine (5mC) (Wilson et al., 2007). This reaction is catalysed by enzymes
known as DNA methyltransferases (DNMTs), primarily DNMT1, DNMT3A, and DNMT3B (Robert et al., 2003).
In mammals, DNA methylation primarily occurs at CpG dinucleotides, which are regions where a cytosine
nucleotide is followed by a guanine nucleotide. These CpG sites are not uniformly distributed throughout the
genome. Instead, they tend to cluster in regions known as CpG islands, which are typically located in the
promoter regions of genes. In normal cells, CpG islands at the promoters of housekeeping or essential genes

are typically unmethylated, allowing these genes to remain active. When these CpG islands become
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methylated, especially in promoter regions, it often results in the transcriptional silencing of the associated
gene (Robert et al., 2003).

Once established, DNA methylation marks can be reliably maintained during cell division by DNMT1, which
copies the methylation pattern onto the new DNA strand (Robert et al., 2003). This renders DNA methylation
a semi-stable and heritable form of gene regulation. However, methylation can also be removed through
passive dilution over successive cell divisions or by active demethylation mechanisms involving enzymes such
as TET (Ten-Eleven Translocation) proteins.

In GBM and other cancers, certain regions undergo abnormal methylation (hypermethylation), particularly
in the promoters of tumour suppressor genes, resulting in their silencing (Etcheverry et al.,, 2010).
Simultaneously, other regions, such as large repetitive sequences and intergenic areas, may become
hypomethylated, potentially leading to genomic instability or the activation of usually silent regions. This
combined pattern of hyper- and hypomethylation is typical of many cancers, including GBM (Mulholland et
al., 2012, Etcheverry et al., 2010).

4.1.3 Types of methylation

DNA methylation occurs in specific regions of the genome, each playing a unique role in gene regulation and

cellular function.

4.1.3.1 CpG Islands and Related Regions

CpG islands are short stretches of DNA rich in CpG sites, often located at gene promoters. In normal cells,
these regions are usually unmethylated, allowing gene expression. Aberrant methylation of CpG islands,
especially in promoters, can silence important genes, including tumour suppressors (Jones and Baylin, 2002).
Surrounding these islands are CpG shores, shelves, and open sea regions, where methylation changes can

also impact gene regulation in ways that may not be immediately obvious (Irizarry et al., 2009).

4.1.3.2 Promoter Methylation and Gene Silencing

Methylation at promoter regions typically represses gene expression by preventing transcription initiation.
This is a common regulatory mechanism in development but can also contribute to disease (Bird, 2002). In
glioblastoma, for example, methylation of specific promoters can influence treatment response (Hegi et al.,

2005).
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4.1.3.3 Gene Body Methylation

Methylation within the gene body is often linked to active transcription. It may help regulate splicing or
prevent unwanted transcription starts. The impact varies depending on the precise location and gene context

(Jones, 2012).

4.1.3.4 Enhancer Methylation and Gene Regulation

Enhancers regulate gene expression from a distance. Their activity is often controlled by methylation:
unmethylated enhancers are active, while methylated ones are usually repressed. In cancer, changes in
enhancer methylation may alter the expression of critical genes and affect tumour progression or therapy

response (Bell et al., 2016, Alajem et al., 2021).

4.1.4 MGMT promoter methylation and clinical relevance

One of the most clinically important applications of DNA methylation analysis in GBM is the evaluation of the
MGMT gene (O6-methylguanine-DNA methyltransferase). MGMT encodes a DNA repair enzyme that
removes alkyl groups from the O6 position of guanine, a common site of damage caused by alkylating
chemotherapy agents such as temozolomide (TMZ), which is part of standard-of-care for treating GBM (Stupp
et al., 2005).

The significance of MGMT in glioblastoma lies in the fact that when the MGMT promoter is methylated,
transcription of the gene is suppressed. As a result, the tumour has a reduced ability to repair DNA damage
caused by chemotherapy, making it more sensitive to treatment. Conversely, in tumours where the MGMT
promoter is unmethylated, the gene is active, and the tumour may be more resistant to alkylating drugs (Lee,
2016).

Clinically, MGMT promoter methylation status has become an important predictive and prognostic biomarker.
It is routinely assessed to help determine whether a patient is likely to benefit from temozolomide therapy.
Several large-scale studies and clinical trials have demonstrated that GBM patients with methylated MGMT
promoters tend to have longer progression-free and overall survival following treatment with TMZ compared
to those with unmethylated promoters (Dunn et al., 2009).

The method used to assess MGMT methylation status can differ, but most clinical laboratories employ either
methylation-specific PCR or pyrosequencing. More recently, array-based techniques and methylation
classifiers, such as MGMT-STP27, have been utilised in research environments to offer a more reliable and
standardised readout (van den Bent et al., 2013, Bady et al.,, 2016). In this study, MGMT promoter
methylation was examined alongside global methylation patterns to understand its behaviour over time in

paired primary and recurrent GBM samples.
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4.1.5 Differential Methylation Analysis of Longitudinal GBM Samples

Differential methylation analysis involves comparing DNA methylation patterns between different biological
states, such as primary versus recurrent tumours. This approach is crucial for identifying specific epigenetic
alterations that contribute to disease pathogenesis, predict outcomes, or serve as potential therapeutic

targets.

Recent work from our group has significantly advanced the understanding of glioblastoma (GBM) recurrence
following standard treatment. Specifically, Tanner et al. (2024) identified two distinct patient-specific
transcriptional responses in isocitrate dehydrogenase wild-type (IDHwt) GBM, categorising patients into 'Up’
and 'Down' responder subtypes. The 'Up' and 'Down' nomenclature is derived directly from the opposing
transcriptional reprogramming trajectories of a core set of genes, specifically the 'Leading Edge' (LE) genes

(LE50 and LE70), in response to standard GBM treatment (Tanner et al., 2024).

- Up Responders: Exhibit upregulation of the LE gene set (e.g., genes involved in mesenchymal

transition and inflammation) in the recurrent tumour compared to the primary tumour.

- Down Responders: Exhibit downregulation of the LE gene set in the recurrent tumour

compared to the primary tumour.

This seminal work revealed that these responder classifications are intrinsic to cancer cells, suggesting
different adaptive resistance mechanisms. While their study highlighted the potential role of Polycomb-based
chromatin remodelling in driving these transcriptional shifts, it could not definitely rule out that that global

differential DNA methylation might contribute to these particular transcriptional changes.

The primary goal of this study was to investigate whether specific differential DNA methylation patterns
correlate with the 'Up'/'Down' transcriptional classification, thereby testing the central hypothesis that
epigenetic alterations accompany these distinct resistance trajectories. While Tanner et al. (2024) strongly
suggested a role for Polycomb-based chromatin changes, this current work directly investigates the extent to
which DNA methylation correlates with and potentially contributes to the observed 'Up' and 'Down'
transcriptional reprogramming. The following analysis specifically targets methylation changes in genomic
regions functionally linked to the LE gene set and other differentially regulated pathways identified in those

subtypes.

While differential methylation analysis has been a common approach in numerous cancer studies, including
those on GBM, longitudinal investigations have frequently reported a remarkable stability in overall GBM
methylation profiles over time (Malta et al., 2024). This consistent observation suggests that broad, genome-

wide methylation changes may not be the primary dynamic drivers of certain tumour responses or

Chapter 4 135



therapeutic resistance mechanisms. Recognising this, my approach deviated from a broad differential analysis
to instead investigate specific, functional epigenetic landscapes linked to defined transcriptional behaviours,

offering a distinct perspective on methylation's role.

Building upon my group’s critical findings, specifically, the finding that IDHwt GBM recurrence involves two
distinct, patient-intrinsic transcriptional trajectories (‘'Up' and 'Down' subtypes), which are associated with
differences in Polycomb Repressive Complex (PRC) member expression (Tanner et al., 2024). This chapter
explains a novel analysis that | performed to comprehensively characterise the accompanying alterations in
DNA methylation patterns within 'Up' and 'Down' responder subtypes. By using established patient groups, |
investigated the role of DNA methylation in GBM recurrence and treatment resistance. The goal was to
identify unique epigenetic patterns associated with each patient's response trajectory, thereby revealing how
DNA methylation contributes to or reflects the distinct biological processes in these patient subtypes. This
investigation was conducted with the understanding that DNA methylation may not be the sole driver of

transcriptional reprogramming.

4.1.6 Methylation Profiling Techniques

Several experimental methods are available to measure DNA methylation across the genome. These
techniques vary in terms of resolution, coverage, cost, and computational complexity (Bock, 2012). The most

commonly used approaches can be grouped into sequencing-based and array-based technologies.

4.1.6.1 Reduced Representation Bisulfite Sequencing (RRBS)

RRBS is a targeted bisulfite sequencing method developed to focus on CpG-rich regions of the genome,
particularly CpG islands and promoters (Meissner et al., 2005). It begins with the digestion of genomic DNA
using a restriction enzyme like Mspl, which cuts at CCGG sites. The resulting fragments are size-selected
(typically 40-220 bp), then treated with bisulfite to convert unmethylated cytosines to uracil, leaving
methylated cytosines unchanged. Finally, the fragments are sequenced (Meissner et al., 2005).

One of the key advantages of RRBS is its high resolution at CpG sites and relatively low cost compared to
whole-genome bisulfite sequencing. It is especially useful for identifying differentially methylated promoters
and CpG islands. However, because RRBS only captures about 5-10% of the genome, it may miss important
regulatory elements in enhancer or intergenic regions. This trade-off makes RRBS an efficient choice for

focused studies, but less suitable for mapping the full methylome (Bock, 2012).
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4.1.6.2 Whole Genome Bisulfite Sequencing (WGBS)

WGBS is the gold standard for methylation analysis, providing base-pair resolution across nearly all CpG sites
in the genome (Lister et al., 2009, Sakthikumar et al., 2020). The method involves random fragmentation of
genomic DNA, addition of sequencing adapters, bisulfite conversion, and high-throughput sequencing.

WGBS can detect both CpG and non-CpG methylation, offering the most comprehensive view of the
methylome. It is particularly useful in developmental studies, stem cell research, and cancer epigenomics
where non-CpG methylation plays a role. The major limitations are its high cost, large data volumes, and the
need for advanced bioinformatics pipelines to process and interpret the data. In GBM research, WGBS has
been used to identify novel methylation patterns and regulatory elements that are missed by targeted or

array-based methods (Hovestadt et al., 2014).

4.1.6.3 Illumina Methylation Arrays

The Infinium BeadChip array platform developed by Illlumina has been an essential tool for analysing DNA
methylation across the genome. Although the original BeadChip arrays were primarily designed for
genotyping, the technology was adapted to target specific CpG sites and measure DNA methylation using
bisulfite-treated DNA (Bibikova et al., 2011). These methylation arrays provided a practical and scalable
alternative to earlier methods, such as genome-wide bisulfite sequencing or tiling microarrays, which were
more costly and less accessible (Bibikova et al., 2011).

The first widely adopted methylation array in this family was the HumanMethylation27 BeadChip (27K),
introduced in 2008. This array targeted 27,578 CpG sites, mostly within promoter regions of over 14,000
human genes (Bibikova et al., 2011). One of its main advantages was the small amount of input DNA needed
— about 1 pg — which enabled researchers to analyse samples even when only limited material was
available, such as formalin-fixed tissues. The array could process 12 samples simultaneously, making it
suitable for high-throughput studies with relatively low technical complexity (Bibikova et al., 2011).

The 27K array depends on Infinium chemistry, which starts with bisulfite conversion of DNA. This process
converts unmethylated cytosines into uracils, while methylated cytosines stay the (Bibikova et al., 2011).
After bisulfite treatment, the DNA is amplified, fragmented, and hybridised to allele-specific probes attached
to microscopic beads. These probes are meant to detect either methylated or unmethylated sequences at
each CpG site.

In the 27K platform, two types of beads are used per CpG locus: one for the methylated version of the site
and another for the unmethylated version. After probe hybridisation, a single-base extension reaction is
performed using fluorescently labelled dideoxynucleotides (ddNTPs), often tagged with Biotin or DNP. The
choice of nucleotide incorporated depends on the base immediately upstream of the cytosine of interest.
Importantly, both methylated and unmethylated probes can utilise the same dye channel, and signal
intensity is measured during array scanning using fluorescence detection. (Barrera and Peinado, 2012)The

methylation level at each site is expressed as a B-value, ranging from 0 (completely unmethylated) to 1
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(completely methylated), based on the ratio of the methylated signal to the total signal intensity at that
probe (Barrera and Peinado, 2012).

Although the 27K array was a significant advance in simplifying genome-wide methylation studies, its
coverage was relatively limited, mainly concentrating on promoter-associated CpGs. To improve this,
lumina launched the HumanMethylation450K (450K) array in 2011. This newer platform examined over
450,000 CpG sites, covering 99% of RefSeq genes and including a substantial representation of CpG islands,
shores, shelves, gene bodies, and regulatory regions, such as miRNA promoters (Morris and Beck, 2015). It
signified a shift from solely promoter-focused studies to more comprehensive methylome profiling.

The 450K array combines both Infinium | and Infinium Il probe types. Infinium | probes use two separate
beads (one for methylated and one for unmethylated) and work with both red and green channels.
Conversely, Infinium Il probes employ a single bead and one base extension site for both methylation states,
allowing for a more compact probe design and greater density on the array. About 30% of the probes on the
450K platform are Infinium |, while the rest are Infinium Il (Morris and Beck, 2015). However, the design
differences between these probe types create a type I/type Il bias, which can affect downstream analysis. To
address this, normalisation methods such as Beta Mixture Quantile (BMIQ) normalisation have been
developed to correct for technical differences between probe types (Teschendorff et al., 2013). Figure 4-1
shows how both probe types detect methylation based on bisulfite conversion and labelled nucleotide
incorporation.

While the 450K array significantly increased coverage, especially over gene bodies and CpG shores, it lacked
sufficient probes for distal regulatory elements like enhancers and DNase | hypersensitive sites. This gap
prompted the development of the next-generation platform — the MethylationEPIC v1.0 (850K) BeadChip,
launched in 2015. The EPICv1 array extended total CpG coverage to more than 850,000 sites, with a strong
focus on non-promoter regulatory elements. It includes probes covering >90% of the original 450K sites and
adds substantial content from enhancer regions identified in large epigenomic projects such as ENCODE,
FANTOMS, and BLUEPRINT.

The EPICv1l array was developed in response to user feedback requesting improved representation of
enhancers and other distal elements that play a role in transcriptional regulation and cancer epigenetics. A
more recent development in this series is the Infinium MethylationEPIC v2.0 BeadChip (EPICv2), which
further enhances genomic coverage. This updated platform includes over 935,000 CpG sites, offering
expanded probe content with improved targeting of distal regulatory elements, especially in non-coding
regions and immune-related genes. Importantly, EPICv2 retains compatibility with most sites present in the
original EPICv1 array, enabling direct comparisons across datasets generated with the two versions (Zhuang
et al., 2025).

Although this newer platform offers extended insight into the methylome, it has not yet been widely adopted
in large-scale studies due to its recent release. All Infinium arrays include a range of control probes embedded

within the platform. These controls monitor bisulfite conversion efficiency, staining and hybridisation
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performance, extension success, and background signal levels. Some controls are sample-specific, while
others are independent of sample DNA and ensure overall platform reliability.

The preparation and analysis workflow for all Infinium methylation arrays typically takes several days to one
week (Bibikova et al., 2011). Due to their accessibility, cost-effectiveness, and compatibility with standard
bioinformatics pipelines, these arrays remain one of the most widely used technologies for epigenome-wide
association studies, including cancer profiling, developmental biology, and clinical biomarker research.

In this chapter, all methylation data analysed were obtained using either the 450K or EPIC arrays, depending
on the cohort. These platforms offered the resolution, coverage, and sample scalability required to perform
differential methylation analysis on longitudinal glioblastoma samples. The raw data generated by these

arrays are stored in IDAT files, which serve as the entry point for downstream processing and analysis (Smith

et al., 2013).
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Figure 4-1: lllustration of Infinium methylation assay probe designs.

(A) The Infinium | design uses two separate bead types per CpG site: one to detect the methylated state (C) and one for the

unmethylated state (T). Both probes incorporate the same fluorescently labelled nucleotide, depending on the base just upstream of

the target site, and are read in the same colour channel.
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(B) The Infinium Il design uses a single bead for each CpG locus. Methylation is detected by single-base extension: an "A" is added
when the site is unmethylated (original C converted to T), and a "G" is added when it is methylated (C remains). Each state is
distinguished by a different fluorescent dye.

*adapted with permission from (Bibikova et al., 2011).

4.1.7 Analytical Tools and Pipelines

The raw output from Illlumina methylation arrays comes in the form of IDAT files, which contain fluorescence
intensity measurements for each probe on the array. Each sample is associated with two IDAT files — one for
the red channel and one for the green channel — capturing the signal intensities of methylated and
unmethylated probes. In addition to raw intensity values, these files store data on control probes, background
levels, array barcodes, and scanning parameters.

Working directly with IDAT files offers the advantage of full control over preprocessing steps, including
background correction, normalisation, and filtering. These files are widely supported by open-source tools
developed in R, which allow researchers to customise workflows based on study design, array platform, and
sample quality. This chapter draws on several such tools to process and analyse the 450K and EPIC array data
from GBM samples.

Several R packages exist for handling lllumina methylation array data. These tools vary in their level of
automation, customizability, and scope. The following tools were the primary tools utilised for the differential
methylation analysis. They were selected based on their flexibility, compatibility with raw IDAT files, and

suitability for large-scale or longitudinal designs, such as the one employed in this chapter.

4.1.7.1 RnBeads

RnBeads is a widely used and freely available R-based package designed for the comprehensive analysis of
genome-wide DNA methylation data (Muller et al., 2019). It provides robust support for lllumina’s 450K and
EPIC BeadChip arrays and has also been extended to handle data from sequencing-based platforms such as
RRBS and WGBS. As a pipeline-driven tool, RnBeads enables users to perform all essential steps of
methylation data processing within a single framework, making it particularly useful for large-scale studies or
projects requiring reproducibility.

One of the core strengths of RnBeads lies in its integrated architecture. It bundles key components of a
standard analysis pipeline — including quality control, probe filtering, normalisation, exploratory analysis,
and differential methylation testing — into a single function (rnb.run.analysis), which can be easily
customised depending on the dataset and research objectives. This modularity allows users to tailor the
workflow to their specific needs, whether analysing paired tumour samples or comparing distinct biological
groups.

The package includes a variety of normalisation methods, each suited to particular array designs or
experimental conditions. Among these are BMIQ (Beta Mixture Quantile normalisation) (Teschendorff et al.,
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2013), SWAN (Subset-quantile Within Array Normalisation) (Maksimovic et al., 2012), watermelon’s dasen
method (Pidsley et al., 2013), and noob (normal-exponential out-of-band), which is implemented via the
methylumi package (Sean Davis, 2025). These methods are essential for correcting systematic technical
variation, such as probe type bias, and ensuring accurate downstream comparisons.

In this study, RnBeads was applied to the discovery cohort, where raw IDAT files were available for paired
primary and recurrent GBM samples. The platform’s ability to incorporate metadata, stratify samples by
experimental conditions, and annotate results by genomic regions (e.g., promoters, gene bodies, enhancers)
made it particularly suitable for identifying biologically meaningful methylation changes in longitudinal

tumour progression.

4.1.7.2 Minfi

The minfi package is a widely used R/Bioconductor tool designed for analysing lllumina Infinium DNA
methylation arrays, including the 450K and EPIC (850K) platforms (Aryee et al., 2014). It offers a flexible and
modular framework that enables researchers to perform detailed preprocessing, quality control,
normalisation, and differential methylation analysis, supporting both standard and customised workflows.
Minfi starts by importing raw intensity data from IDAT files using functions that read the methylated and
unmethylated signal intensities for each probe across samples. The data is stored in structured objects such
as RGChannelSet, which can then be further processed into MethylSet or RatioSet objects, enabling
downstream analyses.

In this chapter, minfi was utilised to process and analyse methylation data from the validation cohort. Its
flexible architecture allowed for customised preprocessing and normalisation steps, ensuring compatibility
with the discovery cohort processed using RnBeads. The integration of quality control measures and
differential methylation analysis tools within minfi facilitated a robust and reproducible analysis pipeline.
The package provides various preprocessing and normalisation methods and includes detailed quality control
tools to evaluate data integrity. Unlike RnBeads, which offers an integrated, automated pipeline with built-
in reporting, minfi allows more detailed control over each analysis step, making it particularly useful when

workflows need to be manually customised or adjusted.
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4.2 METHODS

In this section, | describe two complementary approaches | used to perform differential methylation analysis
on DNA methylation array data. Both methods were implemented in R but followed different pipelines for
quality control, normalisation, annotation, and statistical testing. The nature of the available data from the
discovery and validation cohorts influenced the decision to use two methods. The discovery cohort included
raw IDAT files, which enabled the use of the RnBeads package—an end-to-end pipeline that integrates
preprocessing, quality control, and region-level differential methylation analysis. In contrast, the validation
cohort consisted of pre-processed beta value matrices, which are incompatible with RnBeads. Therefore, |
used a second approach based on the minfi and limma packages, which allowed greater flexibility in working
with pre-normalised data and performing customised statistical modelling. Applying both methods not only
accommodated the structure of the available data but also provided complementary analytical perspectives

and an opportunity to cross-validate findings across cohorts.

4.2.1 Analysis Using RnBeads

For the first approach, | used the RnBeads package, which provides a comprehensive and automated pipeline
for the analysis of DNA methylation array data. This method includes integrated steps for quality control,
normalization, annotation, and differential methylation analysis, all with detailed reports and visualizations.
| chose this approach as a complementary strategy to validate and expand upon the results generated using
minfi and limma.

| began by preparing a sample annotation file in CSV format, which included sample identifiers, file paths
(when applicable), array platform information, and metadata such as patient ID and sample status (e.g.,
primary or recurrent tumor). | then ran the analysis using the rnb.run.analysis() function, specifying my
project directory, sample annotation, and chosen analysis options.

For quality control and filtering, | used the rnb.run.qc() function with several important parameters enabled:

- filtering.greedycut = TRUE was set to iteratively remove probes with the highest proportion
of unreliable measurements, based on detection p-values. This approach helps clean the data
by excluding probes that fail quality thresholds in multiple samples, ensuring that the
remaining data points are consistently reliable.

- filtering.sex.chromosomes.removal = TRUE was used to eliminate probes located on the X
and Y chromosomes. This step helps avoid sex-related methylation variability, especially in
mixed-sex cohorts, and is particularly important when sex is not a primary variable of
interest.

- filtering.cross.reactive = TRUE excluded probes known to bind to multiple genomic locations

due to sequence homology, which can introduce misleading methylation signals. Removing
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these cross-reactive probes improves specificity and reduces the risk of artifacts in
downstream analysis.

- filtering.snp = "3" was chosen to remove probes that contain single nucleotide
polymorphisms (SNPs) either at the targeted CpG site or at the single-base extension site.
SNPs at these positions can affect hybridization efficiency or interfere with probe design,
potentially leading to spurious methylation calls. Using level "3" applies the strictest filtering

criteria based on known dbSNP annotations.

Together, these filters were applied to ensure that only high-confidence methylation measurements were
included in downstream analysis, thereby increasing the robustness and biological reliability of the results.
Normalization was performed using the BMIQ method by setting normalization.method = "bmiq", which
adjusts for probe-type bias between Infinium type | and type Il probes. This step is essential for achieving
comparability across probe types and preventing artificial technical differences from influencing the analysis.
Although the original 450K and EPIC1 arrays were designed for the hgl9 genome build, | conducted the
analysis using hg38, as RnBeads provides updated annotation packages for these older arrays mapped to the
newer genome version. This allowed me to take advantage of improved genomic coordinates and region
definitions.

For differential methylation analysis, | used the rnb.run.differential() function and selected the paired analysis
mode, since my comparison involved matched samples—specifically, primary versus recurrent tumours from
the same patients. This paired design increased the statistical power by accounting for inter-patient
variability.

The RnBeads pipeline generated comprehensive HTML reports that included summaries of the filtering and
normalisation steps, interactive plots (e.g., PCA, clustering, and methylation profiles), and tables of
differentially methylated positions (DMPs) and regions (DMRs). These results allowed me to examine not only
individual CpG sites but also broader patterns across genomic features, including promoters, gene bodies,
CpG islands, and other regulatory elements. In addition to the default region types provided by RnBeads, |
also incorporated an in-house curated list of enhancers, which | added as a custom region set to assess
methylation changes in biologically relevant regulatory domains.

This automated workflow provided a robust complementary analysis to the more hands-on minfi/limma
pipeline, contributing to a more comprehensive understanding of methylation differences between primary

and recurrent tumours.

4.2.2 Analysis Using minfi and limma

As a second approach of the analysis, | used the R packages minfi (version 1.54.1) and limma (version 3.63.0)

to process and analyse DNA methylation data obtained from Illumina 450K and EPIC arrays. This analysis was
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conducted on the discovery dataset, aiming to identify differentially methylated probes (DMPs) between
sample groups and to understand how these changes were distributed across various genomic regions and
features.

| began by importing the raw IDAT files using the read.metharray.exp() function from the minfi package. This
produced an RGChannelSet object, which stores the raw methylated and unmethylated signal intensities from
the array. | then performed initial quality control using the qcReport() function to check for low-quality
samples or technical issues. In addition, | examined density plots and conducted principal component analysis
(PCA) to visually inspect for outliers and batch effects that could influence the results.

Across all datasets, | applied consistent filtering steps to remove problematic probes. These included probes
located on the X and Y chromosomes, those containing known single nucleotide polymorphisms (SNPs) at the
CpG or extension sites, and probes known to cross-react with multiple genomic locations. | also filtered out
probes with poor detection p-values (>0.01), as these may reflect background noise. These steps helped
ensure that only reliable and biologically meaningful probes were retained.

To measure DNA methylation levels, | extracted beta values using the getBeta() function. Beta values range
between 0 and 1, representing the proportion of methylation at each CpG site. While they are easy to
interpret biologically, they are not ideal for statistical modeling due to their unequal variability across the
range. Therefore, for differential methylation analysis, | converted the beta values into M-values, which are
calculated as the log2 ratio of methylated to unmethylated intensities. M-values offer better statistical
properties and are more suitable for linear modeling.

Illumina arrays contain two types of probes (type | and type Il), which have different signal distributions. To
correct for this design bias, | applied BMIQ (Beta Mixture Quantile) normalization using the wateRmelon
package (version, ref). BMIQ adjusts type Il probe values to match the distribution of type | probes, improving
the overall comparability of methylation values.

The discovery dataset included samples from both 450K and EPIC arrays. The 450K and EPIC1 arrays were
aligned to the hgl19 reference genome, while EPIC2 arrays used hg38. | accounted for these differences in
genome build throughout the analysis to ensure consistent probe annotation.

To add biological context, | used annotation resources from the RnBeads framework, which provide mappings
of CpG probes to genomic features such as promoters, genes, CpG islands, and tiling regions. These
annotations were later used to explore the distribution of significant DMPs across different genomic regions.
Differential methylation analysis was performed using the limma package. | created a design matrix to
describe the comparison groups (e.g. primary vs recurrent) and fitted a linear model using ImFit(), followed
by empirical Bayes moderation with eBayes(). Probes with an FDR-adjusted p-value below 0.05 were
considered significant. In some cases, | applied an additional threshold based on delta-beta to highlight CpGs
with both statistical and biological significance. Results were visualised with volcano plots and explored

further by feature type enrichment.

Chapter 4 144



For the validation cohort, | used publicly available data from the GLASS consortium. Raw IDAT files were not
available for this dataset, but preprocessed beta values were provided (processed with preprocessNoob from
minfi). | filtered this cohort to retain only IDH-wildtype (IDHwt) cases to match the discovery dataset. | also
applied the same filtering and BMIQ normalization steps used in the discovery cohort to maintain consistency.

These samples came from 450K and EPIC1 arrays and were aligned to the hg19 genome build.

4.2.3 Trends in Up and Down Responder Subtypes

To identify genomic regions with altered DNA methylation during glioblastoma recurrence, | calculated the
ratio of average methylation levels in recurrent tumours relative to matched primary tumours. This was done
for multiple region types, including gene bodies, promoters, CpG islands, enhancers, and tiling regions. For
each region, | calculated two separate methylation ratios:

REC2PRIM_UP = (mean methylation in Up responder recurrent tumours + 0.01) / (mean methylation in Up
responder primary tumours + 0.01)

REC2PRIM_DOWN = (mean methylation in Down responder recurrent tumours + 0.01) / (mean methylation
in Down responder primary tumours + 0.01)

These values were derived independently from two differential methylation comparisons representing
distinct patient response groups (referred to as "Up" and "Down" responders). The small constant (0.01) was
added to each value to avoid division by zero and to stabilise the ratio when methylation levels were very

low.

| then merged the data using a common region identifier and constructed two-dimensional scatter plots
where REC2PRIM_DOWN values were plotted on the x-axis and REC2PRIM_UP values on the y-axis. Each point
in the scatter plot represents a genomic feature, and its position reflects the relative change in methylation
between recurrent and primary tumours in both comparison groups. To further investigate the functional
implications of these methylation changes, genes previously identified as JARID2 binding site genes
(JBSgenes), including those classified as LE50 or LE70 from our group's published work, were specifically
highlighted on these two-dimensional scatter plots to examine their distribution within the quadrant analysis.
The specific highlighting of JARID2 Binding Site genes (JBSgenes) and Leading Edge (LE50/LE70) genes is driven
by the critical findings of Tanner et al. (2024), which established a plausible link between these genes,
transcriptional reprogramming. The 'Leading Edge' (LE) refers to the subset of genes within a gene set that
contributes most to the enrichment score in a Gene Set Enrichment Analysis (GSEA), indicating their
consistent and significant alteration; LE50 genes are those found in the leading edge in at least 50% of
patients, while LE70 genes are found in at least 70% of patients.

To identify outlier regions, | calculated the mean and standard deviation (SD) of methylation ratios across all
features. | defined a 99% confidence interval using the formula £2.576 x SD, and used these thresholds to

delineate the following categories:
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- Top_Right: high methylation ratios in both Up and Down groups
- Top_Left: high in Up, low in Down

- Bottom_Right: low in Up, high in Down

- Bottom_Left: low in both groups

- Right_Extreme and Left_Extreme: extreme values in Down only
- Top_Extreme and Bottom_Extreme: extreme values in Up only

- Within_CI99: values within 99% ClI for both axes

These categories allowed me to classify genomic regions based on how consistently and strongly their
methylation changed across patient subtypes. | extracted the gene IDs, coordinates, and annotations for gene
body and promoter features that fell outside the 99% Cl, creating region-specific gene lists. These gene lists
were subsequently submitted to clusterProfiler (version 4.14.3) to perform Gene Ontology (GO) enrichment
analysis using the Over-Representation Analysis (ORA) method, examining Biological Process (BP), Cellular
Component (CC), and Molecular Function (MF) terms. | applied the following parameters (Gene = entrez_ids,
OrgDb = org.Hs.eg.db, keyType = "ENTREZID", ont = ont, pAdjustMethod = "BH", pvalueCutoff = 0.05,
gvalueCutoff = 0.2). The results for each gene list were then grouped by GO category (BP, CC, and MF) to

generate multi-faceted bubble charts for visualization of the enriched terms.

The scripts used for analyses in this chapter is available at:

(https://github.com/umymal/thesis_appendix/tree/main/chapter4).
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4.3 RESULTS

4.3.1 Cohort description

This chapter presents an analysis of methylation profiles across two cohorts: a discovery cohort and a
validation cohort. Both cohorts comprise longitudinal glioblastoma (GBM) samples profiled using Illumina
methylation arrays, which utilise either the 450K or EPIC platforms. For each patient, samples from the
primary tumour and a corresponding local recurrence were included when available.

Tables 4-1 and -4-2 detail the samples groupings. The discovery cohort consists of 56 samples, representing
27 matched primary—recurrent pairs. These include 24 samples processed on the 450K array (12 pairs), 20
samples on the EPIC1 array (10 pairs), and 12 samples on the EPIC2 array (5 pairs). The validation cohort
includes 114 samples from 57 matched primary—-recurrent pairs, of which 34 samples (17 pairs) were profiled
using the 450K array and 80 samples (40 pairs) using the EPIC1 array.

In a subset of samples, stratification based on responder subtype was performed, dividing patients into UP
and DOWN responders. This classification was only possible for a proportion of the dataset, as the
classification relies on matched RNAseq data which was not available for all samples. Within the discovery
cohort, stratified samples included 8 samples UP and 8 samples DOWN responders on the 450K array (4 pairs
each), 4 samples UP and 2 samples DOWN responders on EPIC1 (2 and 1 pair, respectively), and 4 samples
UP and 6 samples DOWN responders on EPIC2 (2 and 3 pairs, respectively). In the validation cohort, stratified
samples consisted of 2 samples UP responders (1 pair) from the 450K array, and 16 samples UP and 4 samples
DOWN responders from the EPIC1 platform (8 and 2 pairs, respectively). No DOWN responders were
identified on the 450K validation set.

Table 4-1: The discovery cohort — sample breakdown

No. No.
Array upP DOWN Unstratified
Patients Samples
12 24 450K 4 pairs 4 pairs 4 pairs
Discovery 10 20 EPICv1 2 pairs 1 pairs 7 pairs
5 12 EPICv2 2 pairs 3 pairs 0 pairs
Total 27 56 - 8 pairs 8 pairs 11 pairs

Table 4-2: The validation cohort — sample breakdown

No. No.
Array upP DOWN Unstratified
Patients Samples
17 34 450K 1 pair 0 pairs 17 pairs
Validation
40 80 EPICv1 8 pairs 2 pairs 29 pairs
Total 57 114 - 9 pairs 2 pairs 46 pairs
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This collection of longitudinally sampled GBM tumours forms the basis for two analyses presented in this
chapter. First, differential methylation analysis (from primary to matched recurrence) was performed across
the full cohort, including all patients regardless of responder subtype annotation. Second, cohorts were
stratified and analysed separately for UP and DOWN responders. This stratified analysis allowed for the
exploration of epigenetic differences associated with each subtype, specifically, and their potential role in

tumour progression.

4.3.2 Quality Contol (QC)

For the discovery cohort, raw methylation data were available in the form of IDAT files and were processed
using the minfi R package with the preprocessNoob function. This method applies background correction and
dye-bias adjustment using a normal-exponential convolution model. In parallel, the same samples were also
analysed using the QC functions built into the RnBeads package.

For the validation cohort, only pre-processed beta values were available, having already been normalised
using the minfi pipeline with preprocessNoob (Consortium, 2018). As the raw IDAT files were not accessible,
these samples were not processed through RnBeads.

In all workflows, background correction was applied, and standard quality control steps were implemented
to exclude unreliable probes. This included the removal of probes with poor detection p-values, probes
overlapping known single nucleotide polymorphisms (SNPs), and those reported to be cross-reactive. For the
RnBeads pipeline, default parameters were used. These included the exclusion of probes on sex
chromosomes to avoid potential confounding due to gender-specific methylation patterns, and the activation
of “greedycut” filtering, which removes probes failing QC in any sample across the dataset. SNP filtering was
applied to ensure exclusion of probes with SNPs at or near the target CpG site.

Two recurrent samples in the EPIC2 set, which were extra replicates, did not pass QC and were excluded from
downstream analysis.

The number of probes retained after QC varied depending on the array platform and preprocessing approach,
highlighting inherent differences between minfi and RnBeads. This resulted in a final dataset comprising 54
samples for the discovery cohort and 114 samples for the validation cohort, which were subsequently used

for downstream methylation analysis (Tables 4-3 and 4-4).

Table 4-3: Number of samples in the discovery cohort after QC

Patient Samples Array upP DOWN Unstratified
12 24 450K 4 pairs 4 pairs 4 pairs
Discovery 10 20 EPICv1 2 pairs 1 pairs 7 pairs
5 10 EPICv2 2 pairs 3 pairs 0 pairs
Total 27 54 - 8 pairs 8 pairs 11 pairs
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Table 4-4: Number of samples in the validation cohort after QC

Patient Samples Array upP DOWN Unstratified
17 34 450K 1 pair 0 pairs 17 pairs
Validation
40 80 EPICv1 8 pairs 2 pairs 29 pairs
Total 57 114 - 9 pairs 2 pairs 46 pairs
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4.3.3 MGMT methylation

To evaluate MGMT promoter methylation dynamics during glioblastoma progression, | used the MGMT-
STP27 classifier. This tool infers methylation status from Illumina array data by combining the signals from
two CpG probes (cg12434587 and cg12981137) located in the MGMT promoter. Methylation at these sites
is strongly linked to the transcriptional silencing of MGMT, which predicts increased sensitivity to alkylating
agents such as temozolomide. The classifier provides a continuous score that is divided into a binary status
Methylated (M) or Unmethylated (U) using a validated cutoff. Unlike the Cancer Cell Fraction (CCF) estimates
described in the previous chapters, which quantify the proportion of tumour cells carrying a given genetic
alteration, the MGMT-STP27 score reflects the average methylation level across all cells in the sample.
Therefore, it does not represent clonal fractions but rather the bulk methylation state of the MGMT promoter
region.

In the discovery cohort (n = 27), most patients retained the same MGMT methylation status between primary
and recurrent tumours. Specifically, 24 out of 27 patients (88.9%) showed no change: 10 remained
methylated (M>M) and 14 remained unmethylated (U>U). Three patients (11.1%) exhibited a change in
MGMT status at recurrence—two gained methylation (U>M) and one lost methylation (M>U).

To investigate whether response subtype might be linked to MGMT methylation changes, | divided the cohort
into UP (n = 8) and DOWN (n = 8) responders based on longitudinal tumour progression data. Among UP
responders, 7 out of 8 exhibited stable MGMT status (3 M>M, 4 U>U), while one switched from U>M.
Similarly, among DOWN responders, 7 out of 8 were also stable (3 M>M, 4 U>U), with one switching from
M>U. A chi-square test showed no significant association between response subtype and MGMT switching
(p =0.5724).

Although MGMT methylation is a well-established prognostic marker, my focus here was not on survival
prediction but on examining how MGMT status may evolve in relation to treatment response subtype.

In the larger validation cohort (n = 57), MGMT methylation changes between primary and recurrent tumours
were observed in eight patients (14%). Of these, five patients lost methylation (M>U), while three gained
methylation (U>M). The remaining 49 patients (86%) maintained a stable status across all time points.
When stratified by response subtype, nine patients were UP responders and two were DOWN responders.
Among the UP group, eight showed stable MGMT status (2 M>M, 6 U>U), while one patient switched from
M>U. Both DOWN responders maintained a stable, unmethylated status (U > U). Again, no statistically
significant association was found between response subtype and MGMT switching (p = 0.6323).

These results suggest that while MGMT methylation changes can occur during disease progression, they do
not appear to be associated with responder subtype (when known). Nevertheless, the presence of switching
events—particularly the more frequent M>U loss—may reflect underlying tumour evolution or treatment-

induced selective pressure. Prior studies (Choi et al., 2021, Brandes et al., 2017, Birzu et al., 2020) have
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reported MGMT switching in approximately 22% of cases, a rate similar to our findings in the validation cohort

and twice that of the discovery cohort.

4.3.4 Differential methylation analysis

In this part of the analysis, | explored DNA methylation changes between primary and recurrent glioblastoma
(GBM) tumours using longitudinal samples from matched patients. GBM is a highly heterogeneous and
aggressive brain tumour, and while its genetic drivers have been extensively studied, the role of epigenetic
changes—particularly DNA methylation—in tumour recurrence remains less well understood. To address this,
| conducted differential methylation analysis to determine whether there are consistent changes in the

methylation landscape during tumour progression.

4.3.4.1 Identification of Differentially Methylated Probes (DMPs)

As a first step, | focused on identifying differentially methylated positions (DMPs) using the limma package.
This was done independently for the discovery cohort and the validation cohort, as they were processed
differently and derived from different array platforms. The analysis compared methylation levels between
matched primary and recurrent tumour samples.

In the discovery cohort, no significant DMPs were identified (adjusted p-value < 0.05), whereas the validation
cohort yielded 2,332 significant DMPs under the same threshold. These significant sites were then grouped
according to functional genomic regions to assess where changes were most concentrated, such as
promoters, gene bodies, and enhancer regions (Figure 4-2). This regional annotation provided preliminary
insight into which genomic region might be more susceptible to epigenetic alterations during the recurrence

of GBM.
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Figure 4-2: Volcano plots showing log-fold changes in DNA methylation between recurrent and primary GBM samples
across different genomic regions.

Each panel corresponds to a specific genomic annotation. The x-axis represents the LogFC in average methylation
between recurrent and primary tumours, with positive values indicating hypermethylation in recurrence and
negative values indicating hypomethylation. The y-axis shows the -log:o of the false discovery rate (FDR),
reflecting statistical significance. The dashed horizontal line marks the FDR threshold for significance. Points
above this line are coloured by the direction of change: red for significantly increased methylation over time, blue
for significantly reduced methylation over time, and grey for non-significant changes in methylation from primary
to recurrence.

A- Discovery Cohort

B- Validation Cohort

4.3.4.2 Region-Level Analysis and DMR Calling

Following the identification of DMPs, | utilised two region-based packages, DMRcate and Bumphunter, to
identify differentially methylated regions (DMRs). These tools aggregate neighbouring probes to detect
coordinated changes in broader genomic regions, which is often more biologically meaningful than isolated
single-site changes.

However, despite the presence of significant DMPs in the validation cohort, no significant DMRs were
detected by either method in either cohort. This apparent discrepancy suggests that while individual CpG
sites may undergo minor methylation shifts, these changes do not cluster tightly enough within functional
elements to meet the statistical criteria for DMRs. Another possibility is that inter-patient variability, small
effect sizes, or limited sample numbers reduced the statistical power to detect regional methylation changes

with confidence.

4.3.4.3 Biological Stratification by Responder Subtype

To refine the analysis further and test whether epigenetic changes might be more prominent in specific
biological subgroups, | repeated the full DMP and DMR analysis using responder subtype-based stratification.
Patients were divided into UP and DOWN responders based on the changes in expression of genes that have
a JARID2 binding site in their promoter between primary and recurrent tumours.

| performed the analysis this time by separating the samples into UP and DOWN responders. Our group
(Tanner et al., 2024) has proposed that JARID2 plays a role in promoting GBM recurrence after treatment by
enabling transcriptional reprogramming in surviving tumour cells, thereby helping to restore the phenotypic
heterogeneity required for tumour regrowth. This reprogramming mechanism may represent a therapeutic
vulnerability in GBM, and as such, exploring its epigenetic underpinnings through methylation profiling is of
particular interest. The goal of this stratified analysis was therefore to determine whether DNA methylation
changes between primary and recurrent tumours might be driving the differential changes we see in gene
expression, from primary to recurrence, across the response subgroups, potentially shedding light on the

epigenetic basis of this proposed reprogramming mechanism.
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The same R packages, limma, DMRcate, and Bumphunter, were used for the stratified groups. As with the

unstratified patients, the analysis revealed no significant DMPs from primary to recurrence in either the UP

or DOWN responder subtypes (Figure 4-3).
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Figure 4-3: Volcano plots showing log-fold changes in DNA methylation between recurrent and primary GBM samples,
stratified by response group and cohort.

Each panel corresponds to a specific genomic annotation. The x-axis represents the LogFC in average methylation between
recurrent and primary tumours, with positive values indicating hypermethylation in recurrence and negative values indicating
hypomethylation. The y-axis displays the —logyo of the false discovery rate (FDR), representing statistical significance. The dashed
horizontal line marks the FDR threshold used to identify significant DMPs. Points above the threshold are coloured by the

direction of change: red indicates significantly hypermethylated regions in recurrence, blue indicates significantly
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- Panels A and B represent UP responders, with A corresponding to the discovery cohort and B to the validation

cohort.

-  Panels C and D represent DOWN responders, with C corresponding to the discovery cohort and D to the validation

cohort.

4.3.4.4 Re-analysis Using RnBeads

Given that the earlier approach relied on using separate tools for different parts of the analysis, and that raw
IDAT files were not available for the validation cohort, | then repeated the analysis using RnBeads on the

discovery cohort only. RnBeads provides an end-to-end pipeline for preprocessing, normalisation, annotation,

and differential analysis, and helps ensure consistency across analytical stages.

The RnBeads workflow was applied separately for each platform (450K, EPIC1, and EPIC2) within the discovery
cohort. Again, no significant DMRs were detected between primary and recurrent samples (Figures 4-4,4-5,4-

6). This confirmed that the earlier results were not due to inconsistencies between packages or preprocessing

steps.
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Figure 4-4: Scatter plots showing unstratified primary vs recurrent
methylation across different arrays and region types.

Each point represents a genomic region, with average beta value in
primary tumours (x-axis) and recurrent tumours (y-axis). Arrays
(450K, EPICv1, EPICv2) are arranged in rows, and region types (e.g.,
promoters, gene bodies, tiling, CpG islands) in columns. A diagonal
trend is included in each plot, and the Pearson correlation
coefficient (p) quantifies the linear association. Point colour reflects
local density, with warmer tones indicating higher regional
concentration. Statistically significant differentially methylated

regions (DMRs) are highlighted in red.
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Figure 4-5: Scatter plots comparing methylation profiles in UP
responders across arrays and region types.

Each point represents a genomic region’s average beta value in
primary (x-axis) and recurrent (y-axis) GBM samples. Rows
correspond to arrays (450K, EPICv1, EPICv2), and columns to region
types. Diagonal trends and Pearson correlation coefficients (p) are
shown in each panel. Point colour reflects density, and significant

DMRs are marked in red.
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Figure 4-6: Scatter plots comparing methylation in DOWN responders across arrays and region types.

Each point represents the average methylation of a genomic region in primary (x-axis) and recurrent (y-axis) tumours. Arrays (450K
and EPICv2) are shown in rows; region types are in columns. Diagonal trends and Pearson correlation coefficients (p) are displayed.
Colour intensity reflects point density. Note: EPICv1l was excluded due to insufficient sample size, which prevented RnBeads from

completing the analysis. Red points indicate significant DMRs.
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4.3.4.5 Combined Platform Analysis

To address the possibility that the lack of significant findings was due to underpowered subgroup sizes, | next
combined the datasets from all platforms to maximise sample size. Given that each methylation array
platform (450K, EPIC1, and EPIC2) contains a different number and distribution of probes, | limited the
analysis to probes that were common across all three platforms (n = 347430 probes) to ensure comparability.
The combined dataset was analysed again using RnBeads. Although no DMRs reached statistical significance,
some trends were observed in enhancer and promoter regions, particularly within the stratified responder
subgroups. In some loci, consistent directional shifts in methylation were observed across multiple samples,
particularly in DOWN responders, which may hint at underlying biological changes that are subtle and cohort-
specific. However, these did not meet formal criteria for statistical significance, likely due to sample size and

heterogeneity.

4.3.4.6 Exploratory Stratification and Visual Divergence in Methylation Changes

Although no statistically significant differentially methylated regions (DMRs) were identified across the
combined dataset, the visual outputs from RnBeads suggested potential biological variation worth further
investigation. Specifically, | examined the correlation plots that RnBeads generates to compare primary and
recurrent tumour methylation profiles within each patient.

In the analysis of the entire cohort, which included all 27 matched pairs regardless of subtype, the plots
consistently showed narrow, concentrated regression bands across all major genomic annotation types e.g.,
promoters, gene bodies, CpG islands, enhancers, and tiling windows (Figure 4-4). This indicated a high degree
of similarity between primary and recurrent methylation profiles across patients, consistent with the lack of
statistically significant DMRs.

However, when the same plots were examined within biologically stratified subgroups—UP and DOWN
responders—the pattern changed (Figures 4-5 and 4-6). In both UP and DOWN groups (each with n=8 pairs),
the regression bands appeared visibly broader and more diffuse, suggesting increased variability between
primary and recurrent profiles (Figure 4-7). While the changes were not statistically significant, the wider
distribution of data points implied potentially greater divergence in methylation patterns following

recurrence, depending on the response subtype.
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Figure 4-7: Scatter plots based on combined arrays, stratified by
responder subtype and region type.

Data from 450K, EPICv1, and EPICv2 arrays were merged. Rows
indicate stratification (unstratified, UP, DOWN), and columns
represent genomic region types. Each point shows a region’s mean
beta value in primary (x-axis) vs recurrent (y-axis) samples.
Diagonal trends and Pearson correlation coefficients (p) are
included. Point density is colour-mapped, and red indicates
significant DMRs.
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This observation draws a hypothesis that the increased spread could either reflect biological differences
emerging after stratification or could simply be an artefact caused by smaller sample sizes. To investigate this
further, | created a mixed group composed of four randomly selected UP and four randomly selected DOWN
pairs, matched in size (n = 8) to the individual stratified subgroups. This group was used to test whether the
broadened spread was purely due to fewer samples.

After re-running the RnBeads analysis on the mixed cohort (4 UP + 4 DOWN pairs), the resulting correlation
plots showed narrower regression bands overall, and the methylation profiles between primary and recurrent
samples appeared more tightly correlated than in the fully stratified DOWN group (Figure 4-8). In some
regions, particularly promoters and enhancers, the MIXED group plots more closely resembled those seen in
the UP responder group, where primary—recurrent correlation remained relatively high. This suggests that
the broader variation seen in the stratified groups—especially in DOWN responders—is unlikely to be solely
due to reduced sample size and instead may reflect biologically distinct patterns of epigenetic change related
to patient subtype. The resemblance between MIXED and UP further supports the idea that UP responders

may retain more stable methylation profiles, while DOWN responders show greater divergence at recurrence.
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Figure 4-8: Scatter plots assessing methylation divergence across
UP, DOWN, and mixed responders.

Rows display different responder groups; columns represent region
types. Each point reflects a genomic region’s average methylation
in primary (x-axis) and recurrent (y-axis) samples. A diagonal trend
is shown in each panel, with Pearson correlation coefficient (p)
indicating the degree of methylation conservation. Point colour
encodes local density. Statistically significant DMRs are highlighted

in red.
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4.3.4.7 Quadrant Analysis of Directional Methylation Shifts

| wished to explore whether the UP and DOWN responder subtypes exhibited directionally opposing DNA
methylation changes during glioblastoma recurrence, which could indicate that differential methylation
contributes to the differential transcriptional reprogramming. To this end, | conducted a quadrant-based
comparison, plotting the longitudinal changes in average methylation levels across annotated genomic
regions in Up versus Down responders. The regions in questions were promoters, CpG islands, gene bodies,
GBM-specific enhancers, and tiling windows. For each region, | calculated a recurrence/primary methylation
ratio per region separately for each subtype. These ratios were plotted on a two-dimensional scatter plot,
with DOWN responders on the x-axis and UP responders on the y-axis. This design allowed me to distinguish
concordant changes (top right — longitudinal increases in methylation for both responders - and bottom left
- longitudinal decreases in both- quadrants) and discordant changes (top left and bottom right, where
methylation increased in one subgroup over time but ecreased in the other). Although global changes were
modest and not statistically significant overall, | observed that several features fell into the discordant
guadrants, suggesting that UP and DOWN responders may undergo some opposing epigenetic shifts during
recurrence. Given the hypothesis that responder subtypes follow distinct epigenetic trajectories, this was
worth further investigation to see if opposing changes in methylation are contributing to transcriptional
reprogramming mechanisms.

Among the five region types analysed, | now focused downstream interpretation on promoters and gene
bodies (Figure 4-9), as these provide the most direct insight into potential transcriptional regulation and have
the most comprehensive biological annotation. To further assess the biological significance of observed
methylation shifts, | annotated the plots with LE50 and LE70 gene sets, which represent genes found in the
leading edge of treatment-driven dysregulated gene signatures in at least 50% and 70% of patients,
respectively. These gene sets are, thus, those most consistently and significantly changed in expression from
glioblastoma primary to recurrence. However, in my analysis, both LE50 and LE70 genes clustered primarily
within the 99% confidence interval (CI99%) around zero, indicating that their methylation changes were
modest and not strongly subtype-specific. This suggests that although these genes are transcriptionally
relevant in recurrence, they may not be regulated by differential methylation in a divergent manner across

subtypes.
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Figure 4-9: Quadrant scatter plots of DNA methylation ratios across genomic regions in UP and DOWN responders.

Scatter plots display the recurrence-to-primary methylation ratios for matched glioblastoma samples, stratified
by UP and DOWN responder subtypes, across five genomic annotation categories: promoters, gene bodies, CpG
islands, enhancers, and tiling regions. Each point represents a single annotated region, with the x-axis indicating
the methylation ratio in DOWN responders and the y-axis in UP responders. Methylation ratios were calculated
using the formula:

mean methylation in recurrence / mean methylation in primary.
Solid red lines represent the mean methylation ratio for each group and define the central point of the plot.

Dashed red lines indicate the boundaries of the 99% confidence interval (CI99%) along both axes. The central
box defined by the dashed lines represents regions where methylation changes fall within expected variation
for both subtypes. Regions located outside the CI99% on either or both axes were considered to exhibit
significant directional methylation changes and were classified into quadrant-based gene sets for downstream
analysis.

Coloured points indicate annotated genes:

- All genes (blue).

- LE50 genes (red): genes found in the leading edge of GSEA-enriched gene sets in 250% of patients.
- LE70 genes (yellow): genes found in 270% of patients' leading edges.

- JBSgenes (brown): genes identified as JARID2 binding site targets.

These gene sets were overlaid only on promoter and gene body plots, as only these regions included gene name annotations.
CpG islands, enhancers, and tiling regions did not have gene identifiers and were therefore not annotated with LE50, LE70, or

JBSgenes.

Nonetheless, to investigate further, | grouped all data points into eight categories based on their deviation
from the 99% confidence interval around zero i.e. no change in methylation over time: Figure 4-10. | then

conducted Gene Ontology (GO) enrichment analysis using the Over-Representation Analysis (ORA) method
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via clusterProfiler. Of the eight categories, only Gene Set 6 (Right_Extreme: increased methylation over time
in Down responders only) (Figures 4-11A-B) and Gene Set 4 (Bottom_Extreme: decreased methylation over
time in Up responders only) produced biologically meaningful enrichment results (Figures 4-11C). The

number of genes per quadrant submitted to the clusterProfiler tool is summarised in Table 4-5.

Table 4-5: Gene lists extracted from promoters and gene bodies

Quadrant Promoter Gene body
Bottom_Left 4 18
Top_Left 6 18
Top_Right 45 50
Bottom_Right 34 47
Left Extreme: 13 42
Right_Extreme 445 273
Top_Extreme 489 499
Bottom_Extreme 209 232
|2 | | 8|
Top_Left RS Top_Right Geneset1 | Geneset7
e z % s
- T A S K O S A - | T | —
s Left_Extreme | Right_Extreme s cl |
2 . 7 —Geneset2— . Geneset6
e | 99% e 99% |
5 N | il |
- : :
Bottom_Left u:' Bottom_Right Gene set 3 Gene set 5
EE | & |
L@ : <-T

DOWN Responder DOWN Responder

Figure 4-10: Schematic Overview of Quadrant-Based Classification and Gene Set Assignment for Subtype-Specific Methylation
Shifts.

Schematic illustration of quadrant-based classification and gene set assignment in recurrence-to-primary methylation analysis. This
schematic depicts how genomic regions were categorised based on their recurrence-to-primary methylation ratio in DOWN

responders (x-axis) and UP responders (y-axis).

Left panel: Conceptual layout showing eight quadrant zones surrounding the central 99% confidence interval (CI99%), shaded in grey.
Solid red lines represent the mean recurrence-to-primary ratio for each axis, and dashed red lines indicate the CI99% boundaries.
Each quadrant reflects a specific directional methylation change:

- Top_Left: increased methylation in UP responders and decreased in DOWN responders.
- Top_Right: increased methylation in both UP and DOWN responders.
- Bottom_Right: decreased methylation in UP responders and increased in DOWN responders.
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- Bottom_Left: decreased methylation in both subtypes.

- Left_Extreme: decreased methylation in DOWN responders only.

- Right_Extreme: increased methylation in DOWN responders only.
- Top_Extreme: increased methylation in UP responders only.

- Bottom_Extreme: decreased methylation in UP responders only.

Right panel: Mapping of the eight gene sets (Gene sets 1-8) to their corresponding quadrants. Gene sets were defined as regions
falling outside the CI99% in at least one direction:

- Gene sets 1, 3, 5, and 7 (corner quadrants) represent features with concordant (3 and 7) or opposing (1 and 5)
methylation changes in both subtypes.
- Gene sets 2, 4, 6, and 8 (horizontal/vertical extremes) represent features with directional changes in only one responder
group.
The central CI99% region contains genes with no significant change in either group, and was excluded from GO analysis.

4.3.4.7.1 Elevated Methylation in Down Responders (Right_Extreme - Gene Set 6)

This category consisted of genomic features that showed increased methylation specifically in Down
responders at recurrence. | interpreted this as an indication of potential transcriptional repression occurring
selectively in this subgroup.

GO enrichment analysis revealed significant enrichment in biological processes related to development and
differentiation. For gene body-associated regions, | identified enrichment in terms such as “pattern
specification process” and “connective tissue development”, while promoter-associated regions were
enriched for “mesenchyme development” (Figure 11A-B). These findings implicate genes involved in spatial
and lineage-specific cell fate decisions during recurrence in Down responders.

Importantly, while promoter methylation is generally associated with gene silencing, gene body methylation
is more commonly linked to active transcription. Therefore, the increased gene body methylation observed
in recurrence may reflect the upregulation or maintenance of expression of genes related to differentiation
and mesenchymal development. This interpretation is consistent with the notion that Down responders
acquire a more mesenchymal-like phenotype over time (Tanner et al., 2024).

Rather than suppressing differentiation, the methylation changes may facilitate the activation of
mesenchymal lineage pathways, supporting cellular plasticity and recurrence. This is in line with broader
literature suggesting that epigenetic mechanisms, including gene body methylation, can be involved in
sustaining transcription of lineage-defining genes, potentially helping tumour cells maintain a stem-like,

therapy-resistant state within a mesenchymal trajectory.

4.3.4.7.2 Reduced Methylation in Up Responders (Bottom_Extreme - Gene Set 4)

This category incorporates genomic regions that exhibited a decrease in methylation in Up responders only,
suggesting that these genes might be transcriptionally activated during recurrence in this subgroup.

In this gene set, only gene body-associated regions produced significant enrichment results; no promoter-
derived features yielded any enriched GO terms. The gene body list showed strong enrichment in immune-
related pathways, particularly the “defense response to virus” (Figure 4-11C). This term encompasses a range
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of innate and adaptive immune mechanisms activated in response to viral infection and aimed at limiting viral
replication and spread.

Based on this enrichment, it suggests that immune-related genes become epigenetically activated in Up
responders during recurrence, potentially contributing to an immunologically primed tumour
microenvironment.

This observation may have therapeutic relevance. The apparent activation of antiviral response genes
suggests that Up responders could be more responsive to immunotherapies, possibly due to enhanced

immune activity or surveillance.
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Figure 4-11: Functional Enrichment of Genes with Directional Methylation Changes in UP and DOWN Responders.

Dot plots show significantly enriched Gene Ontology (GO) terms identified using Over-Representation Analysis (ORA) performed via
clusterProfiler on differentially methylated regions extracted from quadrant-based gene sets. Terms are shown for Biological Process
(BP), Cellular Component (CC), and Molecular Function (MF) when exists.
- A: GO enrichment results for gene body—associated regions showing increased methylation in DOWN responders only
(Right_Extreme, Gene Set 6 — Genes).
- B: GO enrichment results for promoter-associated regions in the gene promoters set (Right_Extreme, Gene Set 6 — Promoters).
- C: GO enrichment for gene body—associated regions showing decreased methylation in UP responders only (Bottom_Extreme,
Gene Set 4 — Genes).
In all panels, the x-axis represents the GeneRatio, defined as the number of input genes mapped to each term divided by the total
number of genes in the set. Dot size reflects the number of genes contributing to each term (Gene Count), while colour indicates the

adjusted p-value (FDR < 0.05), with blue shades representing stronger statistical significance.

4.3.4.7.3 The Remaining Quadrants

Gene Set 7 (Top_Right) included relatively few features that showed increased methylation in both Up and
Down responders. Although this gene set produced statistically significant GO terms, the small number of
genes involved limited the interpretive value of the findings. Nonetheless, the enrichment for processes
related to nucleosome organisation suggests that shared chromatin remodelling mechanisms may be active
during recurrence in both subtypes.

Gene Sets 1, 2, 5, 7, and 8 also showed statistically significant enrichment results; however, the small gene
counts in each case limited the biological insights that could be reliably drawn. Therefore, although these
gene sets were technically significant, | opted not to discuss them in detail. | have included the relevant plots
in the appendix.

In contrast, Gene Set 3 (Bottom_ Left), which comprises features with decreased methylation in both up- and
down-regulated responders, did not produce any significant GO terms from either gene body or promoter

regions.

Across the entire analysis, | found that gene body-associated DMRs were the most consistent contributors to
biologically meaningful enrichment results. Both Gene Set 6 (Right Extreme) and Gene Set 4
(Bottom_Extreme) yielded significant GO terms from gene body-derived lists, while only Gene Set 6 showed
additional enrichment from promoter-associated DMRs.

This pattern suggests that gene body methylation changes may play a particularly important role in
transcriptional regulation during glioblastoma recurrence, contributing to processes such as cell
differentiation suppression (in Down responders) and immune activation (in Up responders). Although
promoter methylation is classically associated with gene regulation, the findings highlight that intragenic
methylation, especially when analysed in the context of tumour subtypes, may also serve as a critical

regulatory mechanism influencing tumour evolution.
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4.4 DISCUSSION

4.4.1 Assessment of MGMT Methylation

This study examined the methylation status of the MGMT promoter in paired glioblastoma samples at both
primary and recurrent stages, using the MGMT-STP27 classifier. This classifier integrates signal from two
promoter CpG sites to estimate methylation status and is widely used in clinical practice to predict response
to alkylating therapy.

In the discovery cohort (n = 27), MGMT methylation status was largely stable between the two timepoints.
Specifically, 24 out of 27 patients (89%) retained the same status, while three patients (11%) exhibited
changes—two gained methylation (U->M) and one lost it (M=>U). In the validation cohort (n = 57), a similar
pattern was observed: 49 patients (86%) showed no change, while 8 patients (14%) experienced switching,
with five losing methylation (M—=>U) and three gaining it (U=>M). These results are consistent with prior
studies indicating that MGMT methylation is generally stable over the disease course but can change in a
subset of patients.

Such switching, although relatively uncommon, is clinically relevant. Previous studies, such as PMID:
33632732, reported MGMT methylation status changes in about 22% of glioblastoma cases, particularly after
temozolomide treatment. The slightly lower rate observed in our validation cohort (14%) may still reflect
treatment-related clonal selection or tumour evolution. Notably, most of the observed changes in our cohorts
involved loss of methylation at recurrence, a pattern that may be associated with acquired resistance
mechanisms.

While MGMT methylation is a well-established prognostic and predictive biomarker, our analysis also
explored whether changes in MGMT status were associated with tumour progression behaviour—specifically,
stratified by responder subtypes (UP and DOWN). Across both cohorts, MGMT status switching occurred at
similarly low frequencies in both groups, and chi-square testing revealed no significant differences in
switching rates between UP and DOWN responders. This suggests that MGMT switching is not uniquely
enriched in either progression subtype and may instead reflect broader tumour-intrinsic or treatment-related
factors.

In summary, our study supports the view that MGMT methylation is a largely stable biomarker in
glioblastoma, with clear prognostic relevance at the primary stage. However, methylation changes do occur
in a minority of patients and may impact clinical decision-making at recurrence, particularly when considering

second-line therapies.

4.4.2 DMRs analysis

In this chapter, | examined DNA methylation differences between primary and recurrent glioblastoma (GBM)

tumours using matched longitudinal samples from both discovery and validation cohorts. Various methods
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were employed to evaluate methylation variations, including probe-level (DMP) analysis with the limma
package, and region-level (DMR) analysis using DMRcate, Bumphunter, and the integrated RnBeads pipeline.
Although several significantly differentially methylated positions (DMPs) were identified, especially within
promoter and enhancer regions, no statistically significant differentially methylated regions (DMRs) were
found at any stage of the analysis — whether unstratified, stratified by responder subtype, or across
platform-integrated data. This underscores an important point: while individual CpG sites may show slight
shifts, these changes do not appear to cluster strongly enough to meet regional significance thresholds,
indicating that epigenetic alterations during GBM recurrence are either subtle, dispersed, or vary between
patients.

To better understand whether patient subtypes might reveal underlying epigenetic differences, the analysis
was repeated using a biologically informed stratification based on treatment driven changes in expression of
a subset of genes (shown to have a JARID2 bindig site in their promoter), dividing patients into UP and DOWN
responders. This stratification did not lead to the identification of statistically significant DMRs; however,
visual inspection of RnBeads-generated correlation plots indicated broader variation between primary and
recurrent samples in both UP and DOWN responder groups, compared to the full unstratified cohort. These
broader regression bands were most notable in enhancer and promoter regions, suggesting potentially
increased divergence in methylation profiles following tumour recurrence within these subgroups. This
observation raised the possibility that the JARID2 subtypes may follow distinct epigenetic trajectories, even
if these changes fall below the threshold of statistical detection in this sample size.

To understand whether the increased variation observed in stratified groups was due to biological effects or
simply a smaller sample size, a controlled “MIXED” cohort of 4 UP and 4 DOWN responder pairs was created.
Rerunning the RnBeads analysis on this cohort yielded narrower, more compact regression bands, resembling
those in the full, unstratified cohort. Interestingly, in some regions—particularly promoters and enhancers—
the MIXED group resembled the UP-responder group more closely, which generally showed stronger
primary—recurrent correlation than the DOWN group. This suggests that the wider spread observed in the
DOWN responder group is unlikely to be a sample size artefact and may instead reflect true biological
divergence associated with treatment response patterns.

To explore this further, a quadrant analysis was performed to compare the directional change in methylation
between UP and DOWN responders. While no regions showed significant differences, several genomic
features displayed opposite trends between the two subtypes, with a number falling into discordant
quadrants. This supports the hypothesis that UP and DOWN responders may undergo distinct and possibly
opposing methylation changes during recurrence, adding nuance to the idea that epigenetic reprogramming
in GBM may be context-dependent and subtype-specific.

These findings align with prior literature suggesting that while genetic and transcriptomic changes are
frequently observed in recurrent GBM, DNA methylation profiles are generally more stable. However, this

study suggests that stratifying patients based on biological characteristics, such as responder subtype, may

Chapter 4 182



reveal otherwise hidden epigenetic variations. The subtlety of the changes observed here, combined with
the consistent presence of DMPs and diverging correlation trends, suggests that epigenetic evolution in GBM
may occur on a smaller or more heterogeneous scale than previously appreciated.

A significant limitation of this study is the small sample size, especially within stratified groups, which reduces
the statistical power to detect small or region-specific changes. Additionally, using different array platforms
introduced variability in probe coverage, requiring analysis to be limited to common probes, which may
potentially exclude biologically informative sites. The dependence on array-based bulk tissue methylation
also restricts resolution, potentially masking methylation changes in subclonal populations or tumour
microenvironments.

Future studies could address these limitations by employing higher-resolution methods such as whole-
genome bisulfite sequencing (WGBS) or single-cell methylation profiling. Additionally, the development of a
methylation-based classifier for JARID2-bound gene activity could enhance stratification in cohorts lacking
transcriptomic data, thereby allowing for a broader application of this approach. Finally, integrating
methylation data with other molecular layers, such as gene expression, chromatin accessibility, or mutational
burden, may provide a more comprehensive view of tumour evolution and clarify the role of epigenetics in

recurrence and therapy resistance in GBM.

4.4.3 Quadrant Analysis of Directional Methylation Shifts

In this chapter, | investigated DNA methylation changes between matched primary and recurrent GBM
tumours by comparing recurrence/primary methylation ratios across two clinical response subgroups: Up and
Down responders. By classifying genes into eight quadrant-based categories based on methylation changes
in each group, | identified two categories—Gene Set 6 (Right_Extreme) and Gene Set 4 (Bottom_Extreme)—
that yielded biologically meaningful GO enrichment results. Gene Set 6 included features with increased
methylation specifically in Down responders, while Gene Set 4 contained features with decreased
methylation exclusively in Up responders. These patterns suggest distinct regulatory trajectories during GBM

recurrence.

In Down responders, | observed enrichment for developmental processes such as pattern specification,
connective tissue development, and mesenchyme development, derived from both gene body and promoter
DMRs. Given that gene body methylation is generally associated with active transcription, these findings
suggest that genes involved in differentiation and tissue organisation may be epigenetically upregulated
during recurrence. | interpret this as an adaptive mechanism supporting the acquisition or maintenance of a
mesenchymal stem-like phenotype. Rather than silencing differentiation pathways, the observed methylation

changes may help sustain expression of lineage-specific programs while preventing full differentiation. This
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would preserve tumour plasticity, a hallmark of treatment-resistant and recurrent glioblastoma, by
maintaining cells in a dynamic, partially differentiated state that can adapt to therapy-induced stress.

In contrast, Up responders showed reduced methylation over time in the gene body regions of immune-
related genes, especially those involved in the defence response to viruses. This demethylation might
facilitate the transcriptional repression of immune programmes during recurrence. It suggests that these
changes reflect an epigenetic shift towards immune readiness or reactivation in this subgroup. Importantly,
promoter regions did not display notable enrichment for these genes, emphasising the importance of gene
body methylation in this context. The activation of antiviral pathways could serve as a mechanism for
enhanced immune surveillance, suggesting a potential increased susceptibility to immune-based therapies
in the UP-responder subgroup.

The fact that most LE50 and LE70 genes fall within the 99% Cl suggests that, although these genes are
consistently transcriptionally altered across patients, they are unlikely to be regulated by subtype-specific
DNA methylation changes. This aligns with findings from our group’s recent work (Tanner et al., 2024), which
showed that transcriptional reprogramming during glioblastoma recurrence is not primarily driven by DNA
methylation but is instead linked to dynamic changes in histone modifications. However, my analysis
introduces a new dimension by demonstrating that DNA methylation may still have a regulatory role,
especially when examined in a subtype-specific context. While Tanner’s study focused on broad recurrence-
associated changes, my quadrant-based approach highlights how divergent methylation patterns between
Up and Down responders may contribute to their distinct biological phenotypes. These findings suggest that
histone modifications are not the only epigenetic mechanism involved and that DNA methylation, although
more subtle, may also influence transcriptional landscapes in a subgroup-specific manner.

These findings are consistent with prior studies highlighting transcriptional and epigenetic plasticity in GBM,
particularly during recurrence. Work by (Neftel et al., 2019) has demonstrated that GBM cells dynamically
transition between distinct cell states—including mesenchymal and progenitor-like identities in response to
treatment. My observations in Down responders align with this model, suggesting that repression of
differentiation programs may be an epigenetic mechanism enabling state switching. The immune activation
observed in Up responders also fits with emerging evidence that, while GBM is typically considered an
“immune cold” tumour, certain subtypes or recurrent cases may exhibit epigenetically mediated immune
competence. The recent review by (Lin et al., 2024) supports this view, describing how DNA methylation,
histone modification, and non-coding RNA regulation influence immune activation and T cell infiltration in
GBM. Their discussion of epigenetic silencing and reactivation mechanisms, including interferon pathway

genes and immune checkpoints, parallels the trends observed in the UP-responder subtype.

The implications of these findings are twofold. First, they suggest that subtype-specific epigenetic changes
may underlie differential clinical responses and should be considered in therapeutic stratification. For Down

responders, the silencing of differentiation programs may render them vulnerable to epigenetic therapies
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aimed at reversing stemness or restoring cell identity, such as inhibitors of PRC2 or histone deacetylases. For
Up responders, the apparent activation of immune pathways may support the use of immunotherapy,
especially in recurrence, when epigenetic reactivation may enhance immune engagement. Second, these
findings provide a rationale for integrating epigenomic profiling into GBM monitoring and treatment design,

as changes in methylation may precede or reflect critical biological transitions during disease progression.

Nonetheless, several limitations should be acknowledged. The quadrant-based classification yielded small
gene lists in most categories, limiting the statistical power of enrichment analysis outside Gene Sets 6 and 4.
Moreover, although promoter methylation is classically linked to gene silencing, the functional consequences
of gene body methylation are more complex and remain context-dependent. Without transcriptomic
validation, it is challenging to infer whether hypomethylation directly corresponds to gene upregulation.
Additionally, this analysis was based on bulk tumour methylation data, which cannot resolve cell-type-specific
contributions. It remains possible that some observed methylation changes reflect alterations in the tumour
microenvironment rather than tumour-intrinsic changes. Finally, while GO analysis provides functional clues,
it does not establish causality; further mechanistic studies are needed to confirm the regulatory roles of these
epigenetic changes.

In summary, my analysis reveals that GBM recurrence is accompanied by divergent epigenetic remodelling
programs in different subgroups. In Down responders, recurrence is characterised by increased methylation
and repression of developmental genes, supporting a shift toward a stem-like mesenchymal state. In contrast,
Up responders exhibit decreased methylation in immune-related gene bodies, indicating immune activation.
These findings highlight the importance of integrating epigenetic data with clinical and molecular
stratification to enhance understanding of recurrence biology and identify new opportunities for personalised

therapy in glioblastoma

Chapter 4 185



4.5 APPENDIX
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CHAPTER 5 — DISCUSSION

Glioblastoma (GBM) stands as an exceptionally aggressive and challenging malignancy, primarily due
to its difficult brain location for biopsy sampling and its rapid recurrence despite current therapies.
This necessitates a profound understanding of its molecular drivers and evolutionary dynamics.
While the field rapidly leveraged cutting-edge technologies from bulk genomic and transcriptomic
studies to single-cell and spatial omics to try and unearth the pathobiology underlying gliomagenesis,
comprehensive longitudinal analyses of matched primary and recurrent tumours remain scarce,
despite potentially yielding the best chance to decipher mechanisms behind GBM's treatment
resistance and short patient survival. My PhD research aimed to bridge this gap by developing robust
bioinformatic pipelines and applying them to longitudinal GBM cohorts, thereby illuminating critical
molecular alterations, identifying treatment-driven evolutionary paths, and proposing therapeutic

and diagnostic strategies.

A fundamental challenge in molecular oncology, particularly with clinically derived FFPE samples, is
ensuring sequencing data fidelity. Recognising that high-quality biological insights stem from high-
quality data, a core component of my thesis involved meticulously optimising whole-exome (WES)
and whole-genome sequencing (WGS) analysis pipelines. Initially, technical artefacts like FFPE-
induced C>T transitions and errors from overlapping paired-end reads inflated variant calls and
compromised variant allele frequency (VAF) estimates crucial for clonal tracking. My work
successfully addressed these issues by utilising ClipBam to correct for overlapping reads and other
methods, which significantly improved data reliability. This brought WES variant counts in line with
established GBM cohorts like TCGA, enabling accurate tumour mutational burden (TMB) estimation
and robust identification of key GBM mutations (e.g., EGFR, PTEN, TP53, RB1). While WGS data
remained more challenging due to FFPE constraints and lower depth, it proved invaluable for reliable
copy number aberration (CNA) detection, identifying characteristic GBM gains on chromosome 7 and
losses on chromosomes 10 and 9. This optimised pipeline, a significant success of my work, laid the
essential groundwork for confident downstream analyses, especially for resolving clonal dynamics
and tracking genetic alterations over time. To further elevate data quality, future efforts should focus
on higher sequencing depths for WGS and adopting shorter paired-end read lengths (e.g., 75 bp) to
minimise problematic overlaps inherent to fragmented FFPE DNA. Establishing a panel of normals
(PON) from non-malignant brain tissue would also significantly reduce false positives. Moreover, the
modular design of the pipeline, adaptable to platforms like Nextflow, can serve as a blueprint for

developing robust workflows for other omics data, such as RNA sequencing and methylation analysis.
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With this validated pipeline established, my research shifted to deciphering the molecular dynamics
of GBM progression, identifying both drivers of treatment resistance and vulnerabilities associated
with therapeutic sensitivity by analysing longitudinal changes in variant profiles. A central and
specific discovery of this work was the identification of ERBB signalling pathways as a critical axis
undergoing differential selection pressure in GBM evolution. My focused investigation revealed that
while ERBB2 was selected for during tumour progression, ERBB4 was selected against. This
differential selection, involving specific variants in EGFR, PTEN, and PIK3CA, intricately modulates
ERBB receptor dimerisation, downstream signalling, and cellular fate. Notably, even in the absence
of precise cancer cell fraction (CCF) estimates and after carefully excluding variants located in copy
number variable regions, the differential selection within the ERBB signalling pathway remained a
statistically significant and robust finding. This highlights its intrinsic biological importance and
identifies it as a prime candidate for future targeted therapeutic and mechanistic studies. The
profound finding of differential selection within the ERBB signalling pathway warrants experimental
validation in laboratory settings (e.g., in vitro and in vivo models) to confirm the functional impact of
these selection pressures and specific variants. Beyond ERBB, a key future goal is to enhance pathway
analysis specificity. Although we used public gene sets in this thesis, our planned effort to perform
gene set enrichment analysis with custom, GBM-specific gene sets developed by our
GliomaGenomics group via PathScore was unfortunately halted. This remains an important
recommendation for future work, pending feedback from the PathScore developer on enabling GBM-

specific gene sets.

Furthermore, investigating the role of extrachromosomal DNA (ecDNA) is vital to understanding its
contribution to rapid tumour evolution and the emergence of drug resistance. A deeper
understanding of ecDNA's mechanisms could pave the way for novel therapeutic strategies
specifically targeting these unstable genetic elements, thereby overcoming a major hurdle in cancer

treatment.

My thesis also ventured into the epigenetic landscape of GBM, specifically examining the methylation
status of the MGMT promoter in paired primary and recurrent glioblastoma samples. While MGMT
methylation is a well-established prognostic and predictive biomarker, my assessment, using the
MGMT-STP27 classifier, primarily served to compare findings to existing literature and investigate its
association with treatment-driven tumour progression behaviours. My analysis revealed that MGMT
methylation status was largely stable between primary and recurrent tumours across both discovery
and validation cohorts (approximately 86-89% consistent). However, a small but clinically relevant

subset of patients exhibited methylation switching, predominantly a loss of methylation at
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recurrence, implying an acquired resistance mechanism. Crucially, my work specifically checked the
association between MGMT status changes and the "Up-responder" or "Down-responder" subtypes.
Interestingly, these changes occurred at similarly low frequencies in both groups, and chi-square
testing revealed no significant differences in switching rates between them, suggesting that MGMT
changes are not uniquely enriched in either subtype but rather reflect broader tumour-intrinsic or

treatment-related factors.

A considerable challenge in this chapter was the overall small number of samples, especially when
trying to do more detailed analyses, such as identifying reliable differentially methylated regions
(DMRs) at the probe or regional level. This issue became even more noticeable when | divided the
samples into "Up-responder" and "Down-responder"” groups, as it further reduced the number of
cases in each subgroup. This limitation affected the confidence and power of the results beyond the
MGMT analysis. While this is a well-known problem in GBM research, it is difficult to overcome due
to limitations in what tissue can be collected and preserved during surgery. Clinical tissue banks are

extremely valuable, but diagnostic priorities and variability in sample quality constrain them.

To make the most of available samples and improve statistical power, one practical direction is to
develop a methylation-based stratification method. The current classification method of the Up and
Down-responder subtypes used in this thesis is derived from RNA-seq data. However, not all archival
or FFPE-derived samples have matched RNA-seq available. Creating a methylation-based classifier
would allow researchers to assign subtype labels to samples that cannot be classified through
transcriptomics, enabling the inclusion of larger methylation cohorts in downstream analyses. This
approach would also help harmonise datasets from different sources and increase the power to

detect robust epigenetic signatures linked to treatment response.

In addition, moving beyond promoter regions and investigating enhancer methylation and
transcription factor motif enrichment will be key to uncovering new regulatory mechanisms involved
in tumour progression and resistance. These enhancer-based changes are increasingly recognised as
important in GBM biology, and focusing on them could reveal patterns not captured through

conventional promoter analysis.

Another important direction is the use of experimental model systems designed to reflect the
molecular features seen in patient tumours. The findings in this thesis, such as the selective pressure
on ERBB genes and the behaviour of MGMT methylation, offer a strong foundation for guiding model

development. Once validated, these models would allow researchers to study treatment resistance
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and progression in a controlled environment, as well as explore how different molecular profiles
affect response to therapy. Importantly, they also provide the opportunity to perform multi-omics
analyses — combining genome, methylome, and transcriptome data from the same sample.
Although integrating these layers is technically challenging, the tools are improving, and this kind of

analysis holds great promise for refining patient stratification and identifying therapeutic targets.

Ultimately, my PhD research has provided a comprehensive look into the molecular intricacies of
glioblastoma, from fundamental data quality challenges to complex pathway dynamics and
epigenetic shifts. By developing robust analytical tools and applying them to precious longitudinal
GBM samples, | have identified genetic and epigenetic alterations that may influence therapeutic
response. The findings not only clarify mechanisms of resistance and sensitivity but also propose
biological targets and strategies for patient stratification. The journey ahead in GBM research
requires a concerted, multi-faceted approach. Building on the foundation laid by my thesis, future
efforts should prioritise integrating multi-modal omics data with functional validation, leveraging
cutting-edge single-cell and spatial technologies to dissect tumour heterogeneity, and expanding
longitudinal cohort studies to capture the full spectrum of tumour evolution. Moreover, the
application of Al and machine learning will be instrumental in synthesising these vast datasets for
predictive modelling and biomarker discovery. Ultimately, by continually pushing the boundaries of
genomic and epigenomic analysis, coupled with rigorous experimental validation, we, researchers,
can pave the way for a new era of precision oncology for glioblastoma patients, offering more

effective, tailored treatments and improved survival outcomes.

Chapter 5 202



