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Abstract 

Glioblastoma is a highly aggressive brain tumour with a poor prognosis and inevitable recurrence 

following standard treatment. Understanding the molecular basis of treatment resistance and 

tumour progression is cri=cal to improving therapeu=c outcomes. This PhD thesis aimed to explore 

the gene=c and epigene=c evolu=on of GBM through three phases: op=misa=on of sequencing 

pipelines, iden=fica=on of altered biological pathways under therapeu=c pressure, and DNA 

methyla=on profiling of recurrent disease. 

In the first phase, whole-exome and whole-genome sequencing pipelines were op=mised for use with 

challenging clinical material, including FFPE-derived samples. Custom adjustments, including the 

correc=on of overlapping read pairs and mi=ga=on of FFPE artefacts, significantly improved variant 

calling accuracy and tumour muta=onal burden es=ma=on. 

The second phase focused on uncovering treatment-associated pathway altera=ons using paired 

primary and recurrent GBM samples from 2 cohorts. By tracking changes in variant allele frequency 

pre- and post-treatment, I iden=fied variants either selected for or against by therapy. Pathway 

analysis using PathScore revealed several significant biological pathways under selec=on pressure, 

notably involving the ERBB signalling family. Disrup=on of ERBB4 signalling was associated with 

treatment sensi=vity, sugges=ng that its inhibi=on may enhance therapeu=c efficacy in a subset of 

pa=ents. 

The final phase applied genome-wide DNA methyla=on profiling using Illumina Infinium arrays. 

Although recurrence-associated changes were subtle at the cohort level, stra=fica=on by JARID2-

related transcrip=onal response revealed subtype-specific epigene=c dynamics. A quadrant-based 

analysis highlighted greater methyla=on shiPs in Down responders, poten=ally reflec=ng adap=ve 

responses to treatment. 

Altogether, this work provides insight into GBM evolu=on under therapy, demonstra=ng how both 

gene=c and epigene=c shiPs contribute to recurrence. The iden=fica=on of ERBB4 signalling as 

poten=ally associated with treatment sensi=vity highlights a candidate pathway that warrants further 

func=onal valida=on. Future work, including targeted experimental studies of ERBB4 func=on, 

alongside single-cell and spa=al profiling, may reveal ac=onable therapeu=c insights and refine 

strategies to overcome treatment resistance. 
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CHAPTER 1 

1.1 Glioblastoma 

1.1.1 Overview 

Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumour in adults, 

accounting for the majority of glioma-related deaths and a significant portion of all primary brain 

tumours (Ramirez et al., 2013, Perry and Wesseling, 2016). It is classified by the World Health 

Organisation (WHO) as a grade IV astrocytoma, which reflects its high level of malignancy, 

characterised by rapid growth, necrosis, and microvascular proliferation (Philips et al., 2018, Hanif 

et al., 2017). GBM belongs to the family of diffuse gliomas, which infiltrate surrounding brain tissue, 

making them particularly difficult to remove surgically (Perry and Wesseling, 2016, Ostrom et al., 

2014). 

Although GBM is relatively rare compared to other cancers, it has one of the worst prognoses. It is 

the most common primary malignant brain tumour in adults, accounting for approximately 45% of 

all primary malignant brain and central nervous system (CNS) tumours. The age-adjusted incidence 

rate is about 3 per 100,000 population per year, and the incidence increases markedly with age from 

around 1 per 100,000 in individuals under 40 years to over 10–15 per 100,000 in those above 75 

years (Philips et al., 2018, Tamimi AF, 2017, Brodbelt et al., 2015, Ostrom et al., 2019). Males are 

affected more frequently than females. GBM is most often diagnosed in older adults, with a median 

age at diagnosis of around 64–65 years as shown in Figure 1-1 (Wen et al., 2021, Grochans et al., 

2022).  

The clinical presentation varies but often includes headaches, seizures, cognitive decline, or focal 

neurological symptoms (Wen et al., 2020, Chang et al., 2005). Diagnosis typically involves imaging, 

especially contrast-enhanced MRI, followed by histopathological and molecular analysis of a biopsy 

or resected tissue (Gilard et al., 2021). Even with aggressive treatment—usually combining surgical 

resection, radiotherapy, and chemotherapy—median overall survival is just 12 to 15 months, with a 

five-year survival rate under 7% (Philips et al., 2018, Tamimi AF, 2017). 
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Figure 1-1: Age-adjusted and age-specific incidence rates for glioblastoma 

*Adopted from (Tamimi AF, 2017), published under the Crea>ve Commons A@ribu>on 4.0 

Interna>onal (CC BY 4.0). h@ps://crea>vecommons.org/licenses/by-nc/4.0/. 

 

 

1.1.2 Types of GBM 

GBMs can be divided into two main categories: primary GBMs, which arise de novo without any 

evidence of a precursor lesion, and secondary GBMs, which progress from lower-grade astrocytomas 

(grade II or III) (Alireza Mansouri, 2017, Ohgaki and Kleihues, 2013). Primary GBMs account for the 

majority of cases (~90%) and tend to occur in older adults (mean age ~62), whereas secondary GBMs 

are more often found in younger individuals (mean age ~45) (Alireza Mansouri, 2017, Ohgaki and 

Kleihues, 2013). 

Although they appear histologically similar, the two types differ at the molecular level. Primary GBMs 

are usually IDH-wildtype and frequently show amplification of EGFR, MDM2, loss of heterozygosity 

on chromosome 10q, and loss of function mutations in PTEN (Ohgaki and Kleihues, 2007, Crespo et 

al., 2015). Secondary GBMs are typically IDH-mutant and are associated with mutations 

in TP53 and RB, as well as LOH on chromosomes 17p and 19q (Ohgaki and Kleihues, 2007, Crespo et 

al., 2015). 

This molecular distinction has become central to the classification system introduced by the WHO, 

which now emphasises IDH mutation status over clinical history (Dymova et al., 2021, Hanif et al., 

https://creativecommons.org/licenses/by-nc/4.0/
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2017). According to this framework, only IDH-wildtype astrocytomas with grade IV features are now 

labelled as GBM. 

Despite increasing knowledge about the molecular subtypes of GBM, treatment remains largely 

uniform across patients. All patients, regardless of subtype, are offered the standard of care: surgical 

resection followed by radiotherapy and temozolomide chemotherapy (Wen et al., 2020, Dymova et 

al., 2021). One molecular marker that does inform therapy is methylation of the O-6-methylguanine-

DNA methyltransferase (MGMT) promoter. When methylated, the promoter 

silences MGMT expression, reducing tumour cells’ ability to repair the DNA damage caused by 

temozolomide, thereby improving treatment response (Hegi et al., 2005). 

 

1.1.3 Recurrence 

Recurrence is a near-universal feature of GBM and remains one of the most difficult challenges in its 

treatment. Even with maximal standard therapy, tumours typically recur within 6–9 months (Stupp 

et al., 2005). In approximately 80% of patients, recurrence occurs close to the original resection site, 

suggesting that residual infiltrative cells are responsible (Birzu et al., 2020). Recurrent GBMs are 

often more aggressive, more treatment-resistant, and harder to manage. Less than half of patients 

are eligible for repeat surgery, and the survival benefit is modest—typically extending life by just 5 

to 11 months (Ringel et al., 2016, Barbagallo et al., 2008, Suchorska et al., 2016, Woodroffe et al., 

2020). 

Over time, GBMs undergo significant molecular evolution. They become more genetically diverse 

and often acquire new mutations between diagnosis and recurrence. Multiple studies have shown 

that different regions of the same tumour can harbour distinct mutations and expression patterns, 

a concept known as intratumoural heterogeneity (ITH) (Sottoriva et al., 2013). This heterogeneity 

makes GBMs highly adaptable and contributes to therapy resistance. 

Recent advances such as single-cell RNA sequencing have revealed that GBM cells exist in multiple 

transcriptional states and are capable of transitioning between them in response to treatment or 

environmental stress (Neftel et al., 2019). These findings provide insight into why GBM recurs and 

why existing treatments fail to provide long-term disease control. 

Treatment options for recurrent GBM remain limited. While re-operation or re-irradiation may be 

considered in selected cases, these are not viable for all patients. Other therapies, such as 
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bevacizumab or lomustine, offer only modest benefit, and clinical trial enrolment is often the most 

realistic option (Wen et al., 2020, Gilbert, 2011). Unlike TMZ, which primarily methylates DNA, 

lomustine is a nitrosourea that also works as an alkylating agent, but its mechanism of action is 

distinct as it forms DNA interstrand cross-links, which are particularly difficult for tumour cells to 

repair (Weller and Le Rhun, 2020). In contrast, bevacizumab is a monoclonal antibody that targets 

vascular endothelial growth factor (VEGF), a key signalling protein in the formation of new blood 

vessels (angiogenesis). By inhibiting VEGF, bevacizumab effectively starves the tumour of its blood 

supply, thereby slowing its growth rather than directly causing cell death (Garcia et al., 2020). 

Given the inevitability of recurrence and the lack of curative treatments, understanding how GBM 

evolves—and how heterogeneity shapes this evolution—is critical. This thesis focuses specifically on 

IDH-wildtype GBM and investigates the molecular and epigenetic changes that occur between 

primary and recurrent disease, with the aim of contributing to a better understanding of treatment 

resistance and tumour progression. 

 

1.2 Treatment of Glioblastoma 

1.2.1 Standard Therapy 

The current standard of care for glioblastoma was established nearly two decades ago and remains 

largely unchanged since the introduction of the Stupp protocol in 2005 (Stupp et al., 2005, Wang et 

al., 2021). This approach combines maximal safe surgical resection, followed by radiotherapy and 

concomitant temozolomide (TMZ) chemotherapy, with additional adjuvant TMZ cycles (Wang et al., 

2021). 

Surgical resection is typically performed within two weeks of diagnosis and aims to remove as much 

of the tumour as possible without causing neurological damage (Muller et al., 2021). Techniques 

such as awake craniotomy and fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) are 

often employed to enhance tumour visibility and maximise resection margins (Zhang et al., 2020, 

Hadjipanayis and Stummer, 2019). Despite these efforts, infiltrative tumour cells inevitably remain 

in the brain tissue surrounding the resection cavity (Berens and Giese, 1999). 

Following surgery, patients receive radiotherapy in daily fractions, delivered over a period of six 

weeks. Concurrently, TMZ is administered daily during the radiotherapy period (Wang et al., 2021). 

After a four-week break, patients begin adjuvant TMZ treatment (Stupp et al., 2005, Bjorland et al., 

2021). 
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TMZ is an oral alkylating agent that readily crosses the blood-brain barrier due to its small, lipophilic 

structure (Arora and Somasundaram, 2019). At physiological pH, TMZ rapidly degrades into the 

active metabolite MTIC (5-(3-methyltriazen-1-yl)-imidazole-4-carboxamide), which then produces a 

methyl-diazonium ion. This highly reactive species methylates DNA at several sites, including N7 and 

O6 of guanine, and N3 of adenine (Arora and Somasundaram, 2019, Strobel et al., 2019). Among 

these, methylation at the O6 position of guanine (O6-MeG) is the most cytotoxic, as it results in 

replication errors and eventually triggers apoptosis through persistent mismatch repair cycles 

(Nagasaka et al., 2008, Thomas et al., 2017) Figure 1-2. 

Despite its effectiveness in some patients, TMZ has limitations. Its short half-life (~1.9 hours) (Baker 

et al., 1999) and reliance on tumour sensitivity mean that not all patients benefit equally. The most 

consistent predictor of TMZ responsiveness is the methylation status of the MGMT promoter. When 

methylated, MGMT expression is suppressed, allowing O6-MeG lesions to persist and exert cytotoxic 

effects. Conversely, unmethylated MGMT allows the tumour to repair TMZ-induced damage, making 

the drug less effective (Sciuscio et al., 2011, Kitange et al., 2009). 

Nonetheless, all patients are offered TMZ regardless of MGMT status, as responses are still 

occasionally seen in patients with unmethylated promoters (Weller et al., 2010). This may be due to 

variation in test sensitivity or tumour heterogeneity, which complicates accurate MGMT status 

determination (Choi et al., 2021). 
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Figure 1-2: Temozolomide mechanism of ac>on and resistance pathways in glioblastoma treatment. 

TMZ is the standard chemotherapeu>c agent used to treat glioblastoma. It induces DNA damage by 

adding a methyl group to the O6 posi>on of guanine. In tumours with a methylated MGMT promoter, 

expression of the MGMT repair enzyme is reduced, allowing these methyl lesions to persist. During DNA 

replica>on, this leads to mismatches (G:C to A:T), which are detected by the mismatch repair (MMR) 

system. In MMR-proficient tumours, repeated a@empts to correct the damage cause DNA double-strand 

breaks, leading to cell death and radiological condi>on known as pseudoprogression. However, MMR-

deficient tumours tolerate these mismatches, enabling survival and promo>ng temozolomide-induced 

hypermuta>on. Tumours with an unmethylated MGMT promoter express ac>ve MGMT, which reverses 

the DNA methyla>on and confers resistance to TMZ. 

*Adopted from (Gaillard, 2024) 

 

 

1.2.2 Other Therapeu>cs 

Despite numerous attempts to introduce new therapies for GBM, no alternative has demonstrated 

a clear clinical benefit in large-scale trials. Dozens of targeted agents, immunotherapies, and 

experimental drugs have progressed through early-phase clinical trials only to fail in phase III 

(Mandel et al., 2018). This lack of progress has been attributed to factors including poor translation 

from preclinical models, inter-patient variability, and the underlying heterogeneity of GBM (Bagley 

et al., 2022). 
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Some chemotherapeutic agents, such as etoposide and procarbazine, are still occasionally used in 

the recurrent setting, but there is no strong evidence that they improve survival outcomes in GBM 

(Wen et al., 2020). While both are chemotherapies, they have distinct mechanisms of action. 

Etoposide is a topoisomerase II inhibitor. It interferes with this enzyme, which is critical for DNA 

replication and repair, leading to DNA strand breaks and ultimately programmed cell death 

(Montecucco et al., 2015, Sevim et al., 2011). Procarbazine, in contrast, is a prodrug that is 

metabolised into an active alkylating agent. This agent primarily methylates DNA, similar to 

temozolomide, and also inhibits DNA, RNA, and protein synthesis, contributing to its cytotoxic effects 

(Kaina, 2023). 

Similarly, targeted approaches such as Epidermal Growth Factor Receptor (EGFR) inhibitors, CAR-T 

cells, and vaccines targeting EGFRvIII (EGFR variant III, an isoform of EGFR with an in-frame deletion 

of exons 2-7) have shown initial promise, but ultimately failed due to mechanisms of adaptive 

resistance (O'Rourke et al., 2017, Nathanson et al., 2014). In many of these cases, tumours 

responded by eliminating or downregulating the targeted proteins, escaping the intended 

therapeutic effect (Brastianos et al., 2017). 

 

1.2.3 Resistance 

Resistance to standard treatment is one of the defining features of glioblastoma and the primary 

reason for its poor long-term prognosis. Although temozolomide increases survival by an average of 

2–3 months, the majority of patients eventually relapse, and the disease becomes progressively 

harder to treat (Berens and Giese, 1999, Bjorland et al., 2021). 

Mechanisms of resistance are multifactorial. At the molecular level, DNA repair pathways such 

as MGMT, mismatch repair (MMR), and base excision repair (BER) play important roles in 

diminishing TMZ efficacy (Lee, 2016). MGMT is the most prominent factor, but other contributors 

include epigenetic regulation, histone modifications, and miRNA-mediated silencing (Oldrini et al., 

2020, Uno et al., 2011). 

Interestingly, recent studies using matched primary and recurrent tumour samples have shown 

that genetic resistance mechanisms are relatively rare in GBM. Instead, many researchers now 

believe that transcriptional plasticity and cell state changes are the primary drivers of therapy 

resistance (Barthel et al., 2019, Neftel et al., 2019). Single-cell and lineage tracing studies have shown 
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that GBM cells can switch into slow-cycling, drug-tolerant states, often involving chromatin 

remodelling and developmental reprogramming (Eyler et al., 2020, Banelli et al., 2015). 

 

Figure 1-3: Models of cancer treatment resistance 

Upon exposure to therapy, most cancer cells are eliminated, but a small subset can survive and 

eventually drive tumour relapse through dis>nct mechanisms. 

(A) In the first scenario, treatment-resistant clones already exist before therapy begins. These gene>cally 

dis>nct subpopula>ons are not affected by the drug and expand over >me, leading to recurrence. 

(B) In the second scenario, no resistant muta>ons are ini>ally present. However, a small number of drug-

tolerant cells persist through a reversible, non-gene>c state. 

(C) These surviving cells can later acquire resistance through gene>c muta>ons or non-gene>c 

adapta>ons, enabling tumour regrowth. 

*Adopted from (De Con> et al., 2021), published under the Crea>ve Commons A@ribu>on (CC BY) license 

(h@p://crea>vecommons.org/licenses/by/4.0/). 

 

In these cases, resistance arises not from a single mutation but from adaptive survival strategies, 

allowing a small subpopulation of tumour cells to persist during treatment and later repopulate the 

tumour. This transition appears to be reversible in some settings, while in others, persistent 

epigenetic changes lead to stable, fully resistant clones (Rabe et al., 2020). 

Given this complexity, resistance in GBM is not well explained by simple mutational profiles. Instead, 

it's likely to involve a combination of mild genetic selection and strong transcriptional adaptation, 
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particularly in response to standard therapy. This highlights the need to study paired samples across 

disease progression, which is one of the major motivations for the work presented in this thesis. 

1.3 Intratumoural Heterogeneity in Glioblastoma 

Glioblastoma (GBM) is not a uniform entity. One of the major reasons it remains so difficult to treat 

lies in its remarkable intratumour heterogeneity (ITH) — the coexistence of genetically and 

phenotypically distinct cell populations within a single tumour (Eder and Kalman, 2014, Dymova et 

al., 2021). This diversity allows some subpopulations of tumour cells to evade treatment, survive, 

and ultimately drive recurrence, often in a more resistant and aggressive form. 

ITH in GBM is observed at multiple levels. It includes differences in morphology (such as small vs. 

large anaplastic cells), molecular profiles (gene expression and mutations), and cellular identity (e.g. 

tumour cells, vascular cells, and immune cells, Figure 1-4) (Becker et al., 2021). These differences 

often result in distinct subclones within a tumour, each with its own set of genomic and 

transcriptomic alterations. Importantly, these subclones are not always evenly distributed; cells 

located in one region of the tumour can differ significantly from those in another, leading to sampling 

bias and challenges in accurately profiling the tumour as a whole (Eder and Kalman, 2014). 

ITH is further complicated by the dynamic nature of tumour progression. Even if a particular clone is 

targeted by therapy, others may survive and expand. This clonal replacement is a key driver 

of treatment resistance and recurrence (Bergmann et al., 2020, Friedmann-Morvinski, 2014). 

Understanding how this heterogeneity emerges and evolves is essential to developing more 

effective, long-lasting treatment strategies. 
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Figure 1-4: Heterogeneity in glioblastoma tumours. 

Panel A: ITH IN GBM TUMOURS. This diagram provides a schema>c overview of the complex spa>otemporal 
intratumoural heterogeneity of GBM. The main body of the figure highlights key histological and dynamic 
characteris>cs. Pathological hallmarks include areas of pseudopalisading necrosis, characterised by a garland-
like arrangement of tumour cells at the edge of necro>c regions. The tumour microenvironment (TME) also 
features vascular abnormali>es, such as endothelial hyperplasia and microvascular prolifera>on. Cellular 
diversity is further shown by the presence of large, pleomorphic glioma cells. The diagram illustrates how this 
heterogeneity extends to tumour cell movement, with different migratory pa@erns including collec>ve invasion, 
single-cell invasion, and perivascular invasion at the tumour-brain interface. The bo@om panel emphasises the 
striking cellular heterogeneity of the TME, which is comprised of both malignant and non-malignant cells. This 
diverse cellular ecosystem includes normal brain residents (e.g., astrocytes, microglia), endothelial cells from 
the vasculature, and infiltra>ng immune cells, with a prominent presence of tumour-associated macrophages 
(TAMs). This mul>faceted composi>on at the histological, cellular, and dynamic levels is central to understanding 
GBM's complexity. 
*Adopted from (Comba et al., 2021) under the Crea>ve Commons A@ribu>on (CC BY) license 

(h@p://crea>vecommons.org/licenses/by/4.0/). 

 

Panel B: Heterogeneity amongst GBM cancer cells. This diagram presents a model of GBM cellular states, 
providing insight into the organisa>on and dynamics of intratumour heterogeneity within the malignant cell 
popula>on. The model was constructed using single-nucleus RNA sequencing (snRNA-seq) to iden>fy "high-
frequency hybrid states," which are thought to represent cancer cells in transi>on between different iden>>es. 
Each vertex (circle) in the diagram represents a dis>nct cellular state, and the connec>ons between them 
represent these frequent hybrid states. This arrangement reveals a hierarchy of heterogeneity, where 
progenitor-like states (e.g., GPC-like) are located in the centre. This central posi>on suggests they have the 
poten>al to differen>ate into mul>ple specialised states (e.g., NEU-like, AC-like, MES-like) which are posi>oned 
at the edges of the model. This model provides a "mul>layered transcrip>onal architecture of GBM" 
*Adopted from (Nomura et al., 2025) under the Crea>ve Commons A@ribu>on-NonCommercial-NoDeriva>ves 
4.0 Interna>onal License (h@p://crea>vecommons.org/licenses/by-nc-nd/4.0/). 

 

http://creativecommons.org/licenses/by/4.0/
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1.3.1 Tumour Evolu>on and Models of Heterogeneity 

Several models have been proposed to explain how ITH arises in GBM. The clonal evolution 

model suggests that normal cells acquire successive mutations over time, giving rise to increasingly 

aggressive subclones that adapt to environmental pressures like hypoxia, immune surveillance, and 

therapy (Noch et al., 2018). Selective pressures allow fitter clones to dominate while others die off, 

but many genetically distinct subclones can still coexist in the tumour at any one time (Dymova et 

al., 2021). 

An alternative theory is the cancer stem cell (CSC) model, where a smaller subset of stem-like tumour 

cells drives tumour growth and gives rise to a hierarchy of cell types through asymmetric division 

(Minata et al., 2019). These CSCs can both self-renew and differentiate, contributing to both inter- 

and intra-tumoural diversity. While the CSC model explains phenotypic variation and plasticity, it 

does not fully account for the complex clonal architectures observed in GBM, particularly those 

emerging after treatment. 

In practice, evidence suggests that both models may coexist in GBM, with clonal evolution explaining 

the accumulation of mutations and CSCs contributing to functional heterogeneity and adaptability 

(Ramón y Cajal et al., 2020). 

 

1.3.2 Genomic Altera>ons Contribu>ng to ITH 

At the genetic level, several types of alterations underlie the subclonal architecture in GBM. 

Somatic Mutations (SNVs, Indels): 

Point mutations and small insertions/deletions (indels) accumulate as tumours evolve. Commonly 

mutated genes in GBM include TP53, PTEN, NF1, EGFR, and TERT promoter regions (Gan et al., 2013, 

Olympios et al., 2021). Many of these mutations arise early and are clonal, but additional mutations 

occur subclonally over time, leading to spatially distinct profiles. Whole-genome sequencing from 

primary and recurrent GBM samples has shown that most point mutations are retained over time, 

but a subset of subclonal variants can emerge or disappear between timepoints (Korber et al., 2019). 

Structural Variants and Copy Number Alterations: 

Large-scale chromosomal alterations also play a major role in ITH. These include chromosome 7 gain 

and/or chromosome 10 loss, found in almost all IDH-wildtype GBMs, and focal amplifications of 

oncogenes like EGFR and PDGFRA (Wemmert et al., 2005, Louis et al., 2021, Korber et al., 2019). In 
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some cases, chromothripsis—a catastrophic chromosomal shattering and rearrangement event—

can drive complex genomic rearrangements that produce sudden bursts of heterogeneity (Korber et 

al., 2019). 

A significant structural feature contributing to GBM heterogeneity is the presence 

of extrachromosomal DNA (ecDNA). These circular DNA elements often carry amplified oncogenes 

such as EGFR and allow for highly variable copy number and uneven segregation during cell division, 

which fuels rapid subclonal diversification (Nathanson et al., 2014). 

Epigenetic Alterations: 

In addition to genetic mutations, epigenetic changes like DNA methylation contribute to ITH. 

Aberrant methylation patterns, such as promoter hypermethylation of MGMT, can influence 

response to treatment and may vary across tumour regions (Rippaus et al., 2019). More broadly, 

epigenetic alterations impact gene expression and chromatin state and may drive tumour cell 

identity and state transitions even in the absence of genetic changes. Importantly, studies have 

shown that epigenetic profiles (including methylation and histone modifications) are also 

heterogeneous across different tumour regions and persist through recurrence (Spitzer et al., 2025). 

 

1.3.3 Evidence from Matched and Single-Cell Studies 

Several recent studies have used multi-region sampling and single-cell approaches to map ITH in 

GBM more precisely. For example, Korber et al. (2019) performed whole-genome sequencing on 

matched primary and recurrent tumours and found that in most cases, no single subclone was 

selected through treatment — instead, clonal architecture was largely retained (Figure 1-5), 

suggesting that no strong genetic bottleneck occurs during recurrence (Korber et al., 2019). 
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Figure 1-5: Clonal evolu>on and subclonal persistence in GBM. 

This schema>c illustrates the progression of glioblastoma from tumour ini>a>on to recurrence. Individual 

subclones are represented by varying shades of yellow to red, origina>ng from a most recent common ancestor 

(MRCA). Early driver events, such as chromosome 7 gain and loss of 9p or 10q, ini>ate tumour growth, followed 

by clonal selec>on events (e.g., TERT promoter muta>ons) and subclonal diversifica>on. Profiling matched 

primary (P) and recurrent (R) tumours reveals that many subclones persist through therapy, suppor>ng a model 

of minimal clonal selec>on during recurrence and limited treatment-induced bo@lenecks. 

*Adopted from (Korber et al., 2019) with permission from Elsevier (License number: 6074780895426). 

A more recent study by (Spitzer et al., 2025) used single-cell longitudinal analysis to trace clonal 

trajectories in IDH-wildtype GBM (Figure 1-6). Although they found no universal genetic drivers of 

recurrence, they observed that certain low-frequency deletions and small alterations were 

associated with specific transcriptional programs related to treatment response. This indicates 

that even subtle genetic changes can shape cellular behaviour in a heterogeneous context. 
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Figure 1-6: Single-cell longitudinal analysis reveals diverse transcrip>onal trajectories in glioblastoma following 

treatment. 

This figure summarises key findings from (Spitzer et al., 2025), who profiled matched primary and recurrent IDH-

wildtype glioblastoma samples using single-nucleus RNA sequencing (snRNA-seq) as part of the GBM CARE 

consor>um. By quan>fying changes in malignant and nonmalignant cell frac>ons and transcrip>onal states, they 

iden>fied three major pa@erns in post-treatment tumour evolu>on: 

(1) A consistent reduc>on in the malignant cell frac>on at recurrence, accompanied by increased glial and neuronal 

(glio-neural) components within the tumour microenvironment. 

(2) Highly variable, pa>ent-specific shihs in malignant cell states, without a universally conserved recurrence 

trajectory. 

(3) More predictable trajectories in subsets of pa>ents, including a reduc>on in mesenchymal-like (MES-like) states 

in MGMT-methylated tumours and an increase in hypoxia-associated states in tumours with elevated small dele>on 

burden following treatment. 

Malignant states shown include neural progenitor cell-like (NPC), oligodendrocyte progenitor cell-like (OPC), MES-

like (MES), hypoxia-associated (Hyp), and astrocyte-like (AC) popula>ons. 

*Adopted from (Spitzer et al., 2025), published under the Crea>ve Commons A@ribu>on-NonCommercial-

NoDeriva>ves 4.0 Interna>onal License (h@p://crea>vecommons.org/licenses/by-nc-nd/4.0/). 
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Other studies, including initiatives from the Pancancer Analysis of Whole Genomes (PCAWG) and 

TRAcking Cancer Evolution through therapy (TRACERx), have also shown that high ITH correlates 

with poor prognosis across many cancers. In GBM, however, the situation is more nuanced — genetic 

ITH is often preserved across recurrence, and resistance appears to be driven more by transcriptional 

plasticity than by clonal selection (Barthel et al., 2019, Wang et al., 2016b). 

Previous studies have revealed that GBM recurrence often lacks a clear genetic bottleneck, 

with clonal architecture largely preserved over time. However, subtle genetic alterations,  

particularly in non-coding regions or subclonal populations, may still influence tumour 

evolution and therapy response. At the same time, transcriptional reprogramming and 

epigenetic adaptation appear to play a significant role in recurrence. 

In this thesis, I examine paired primary and recurrent GBM samples using both whole 

genome/exome sequencing (WGS/WES) and DNA methylation arrays. This dual approach 

allows me to capture both clonal and subclonal genetic changes (e.g., SNVs, indels, CNVs) 

and epigenetic alterations (e.g. promoter methylation, pathway-level changes). By 

integrating these layers of information, the work aims to clarify how tumours evolve across 

treatment and identify converging biological programs that contribute to recurrence. 

 

1.4 Tumour Cell Plas)city 

While intratumour heterogeneity (ITH) describes the coexistence of distinct cell populations within 

a tumour, plasticity refers to the ability of individual tumour cells to transition between different 

phenotypic states. In glioblastoma (GBM), this plasticity adds a further layer of complexity, allowing 

cells to adapt dynamically in response to environmental cues, including therapy. This capacity 

for transcriptional reprogramming, even in the absence of new genetic mutations, has emerged as a 

key mechanism underlying tumour progression and treatment resistance. 

The distinction between heterogeneity and plasticity is crucial. ITH can arise through either clonal 

evolution or the coexistence of functionally distinct cell states, but plasticity allows these states 

to interconvert, enabling tumour cells to evade selective pressures such as hypoxia, immune 

surveillance, or chemotherapy (Neftel et al., 2019). In other words, while ITH explains a snapshot of 

the tumour, plasticity helps explain how it changes. 
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1.4.1 Evidence of Plas>city in GBM 

Compelling evidence for plasticity in GBM comes from single-cell transcriptomic studies. A landmark 

study by Neftel et al. (2019) used single-cell RNA sequencing of IDH-wildtype GBMs and identified 

four main transcriptional states: neural progenitor-like (NPC-like), oligodendrocyte progenitor-like 

(OPC-like), astrocyte-like (AC-like), and mesenchymal-like (MES-like). Cells within a single tumour 

could occupy any of these states, and transition between them, suggesting dynamic plasticity rather 

than fixed subclonal identity (Neftel et al., 2019). 

Importantly, these cellular states correlate with tumour subtypes: for example, AC-like cells are 

enriched in classical GBMs, while MES-like cells dominate mesenchymal subtypes (Neftel et al., 

2019). Yet, individual cells can shift between states depending on microenvironmental signals, such 

as hypoxia or inflammation. Lineage tracing experiments confirmed that each state has tumour-

initiating capacity, and when isolated and transplanted, can regenerate the full spectrum of cellular 

diversity, reinforcing the concept of reversible plasticity (Neftel et al., 2019). 

 

1.4.2 Adap>ve Resistance and Therapy Response 

Plasticity has been increasingly implicated in adaptive resistance to therapy. While many cancers 

show selection for resistant genetic subclones, recent work in GBM suggests that resistance often 

occurs without major changes in the mutational landscape (Korber et al., 2019, Barthel et al., 2019). 

Instead, tumour cells adapt by shifting into slow-cycling, drug-tolerant cell states. 

In one study, slow-cycling persistent cells emerged after treatment with PDGFR inhibitors and 

exhibited a reversible transition into resistant states dependent on Notch signalling and chromatin 

remodelling (Eyler et al., 2020). Similar observations were made in GBM cells exposed to 

temozolomide (TMZ), where drug-tolerant cells showed widespread epigenetic reprogramming and 

eventually acquired stable resistance (Banelli et al., 2015, Rabe et al., 2020). 

The study by (Spitzer et al., 2025) provided further support for this model. Using longitudinal single-

cell transcriptomics in matched primary and recurrent GBMs, they found that although most genetic 

alterations remained stable, transcriptional state changes were extensive, with cells reprogramming 

toward mesenchymal or inflammatory phenotypes in response to treatment. These shifts were 
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associated with subtle deletions but were largely non-clonal, underscoring the importance of non-

genetic adaptation in recurrence (Spitzer et al., 2025). 

 

1.4.3 Clinical Implica>ons 

The ability of GBM cells to transition between functional states presents a major challenge for 

therapy. Unlike fixed subclonal mutations, plasticity cannot be targeted genetically, making it 

difficult to eliminate tumour cells based on a single vulnerability. It also contributes to temporal 

heterogeneity, where the tumour’s molecular profile changes over time, limiting the effectiveness 

of therapies designed for the primary tumour (Wang et al., 2017, Singh et al., 2021). 

Additionally, plasticity may explain why even patients with favourable biomarkers (e.g., MGMT 

promoter methylation) can eventually relapse. As treatment progresses, tumour cells may switch 

into resistant states or re-activate repair mechanisms through epigenetic pathways, bypassing the 

initial therapeutic advantage (Rippaus et al., 2019). 

The ability of GBM cells to reversibly transition between transcriptional states, even in the absence 

of new mutations, has major implications for treatment resistance. However, the extent to which 

such transitions are driven by genetic alterations, transcriptional reprogramming, or a combination 

of both remains unclear. 

This thesis takes a multi-faceted approach to characterise tumour adaptation following treatment 

by analysing both methylation and sequencing data from matched primary and recurrent GBM 

samples. I conduct independent analyses of both data types: methylation profiles are examined 

within stratified responder subtypes to identify epigenetic changes potentially associated with 

recurrence, while WGS and WES data are used to track changes in variant prevalence and infer clonal 

dynamics. By examining both the genetic and epigenetic layers of tumour evolution separately, this 

work provides a more comprehensive view of tumour adaptation than either method could offer 

alone. 

1.5 Technical Approaches to Studying Tumour Heterogeneity and Evolu)on 

Understanding the biological complexity of glioblastoma (GBM) — from intratumoural heterogeneity 

to treatment-induced plasticity — has been made possible through advances in high-throughput 

molecular technologies. These approaches have provided unprecedented resolution into the 
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genomic, transcriptomic, and epigenetic architecture of tumours. In this section, I briefly outline the 

key methodologies used in the field, focusing on the types of data they generate and how they 

contribute to studying tumour evolution. This technical overview is not GBM-specific but helps 

contextualise the analytical strategies used in this thesis and in the broader literature. 

 

1.5.1 Bulk Genomic and Transcriptomic Profiling 

DNA sequencing technologies, particularly whole-exome sequencing (WES) and whole-genome 

sequencing (WGS), have been foundational in mapping somatic mutations, copy number alterations, 

and structural variants across cancer genomes. These platforms are typically applied to bulk tumour 

samples and have enabled the identification of recurrently altered genes in GBM such 

as TP53, PTEN, EGFR, and TERT promoter mutations (Korber et al., 2019, Barthel et al., 2019). 

RNA sequencing (RNA-seq) has similarly transformed how transcriptional programs are studied in 

cancer. In GBM, RNA-seq data was instrumental in defining the proneural, classical, and 

mesenchymal subtypes identified by The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas 

Research, 2008). More recently, paired RNA-seq of primary and recurrent samples has revealed 

evidence of dynamic transcriptional reprogramming following treatment, even in the absence of 

clear genetic bottlenecks (Rippaus et al., 2019). 

However, bulk approaches offer only a population-level average, potentially obscuring rare 

subclones or cell states present within the tumour. This limitation has led to increased use of more 

granular methods in recent years. 

1.5.2 Bulk Epigenomic Technologies 

Changes in DNA methylation represent a stable and functionally important layer of regulation, 

particularly relevant in GBM where promoter methylation of genes such as MGMT is predictive of 

treatment response (Rivera et al., 2010). Epigenomic profiling is typically performed using Illumina 

DNA methylation arrays, such as the 450K or EPIC platforms. These arrays quantify methylation at 

hundreds of thousands of CpG sites and are cost-effective and scalable, making them suitable for 

studies involving large patient cohorts or matched longitudinal samples. 

Methylation arrays have also been used for tumour classification. The Heidelberg classifier, for 

instance, stratifies central nervous system tumours into biologically relevant subtypes based solely 
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on their methylation profiles — underscoring the potential of DNA methylation as both a diagnostic 

and analytical tool (Capper et al., 2018). 

In this thesis, methylation arrays are used not only for classification but as a readout of epigenetic 

evolution between primary and recurrent GBMs, complementing genomic analysis by capturing non-

mutational mechanisms of resistance and progression. 

1.5.3 Single-Cell Technologies 

More recently, single-cell RNA sequencing (scRNA-seq) has enabled the dissection of transcriptional 

heterogeneity at cellular resolution. In GBM, this approach revealed that individual tumour cells 

occupy a spectrum of distinct transcriptional states (e.g., NPC-like, OPC-like, AC-like, MES-like), and 

that these states are plastic, capable of interconversion under environmental stress or treatment 

(Neftel et al., 2019). 

The study by (Spitzer et al., 2025) expanded on this by tracking single-cell trajectories across 

timepoints in matched GBM samples. While few new genetic drivers of recurrence were found, 

extensive shifts in transcriptional states were observed, highlighting the importance of plasticity in 

treatment response. 

Despite their power, single-cell technologies remain costly, noisy, and technically demanding. As 

such, they are not yet widely adopted in large-scale clinical studies and were not used in this project. 

However, their findings help frame the interpretation of bulk methylation changes and support the 

view that transcriptional reprogramming may occur even without detectable genetic selection. 

1.5.4 Computa>onal Tools and Analy>cal Strategies 

The complexity of analysing both genomic (WGS/WES) and epigenomic (DNA methylation 

array) data requires the use of specialised tools tailored to each data type. For variant calling from 

DNA sequencing, tools such as Mutect2 (Benjamin et al., 2019), and somatic copy number aberration 

callers were used to identify somatic mutations, copy number alterations across matched tumour 

samples. For methylation analysis, R packages like minfi (Aryee et al., 2014) and RnBeads (Muller et 

al., 2019) were employed to assess site-specific and regional methylation changes. 

Many of these tools support paired-sample analyses, which made them suitable for comparing 

primary and recurrent tumour samples in this project. Throughout the thesis, tools were selected or 

adapted to enable: 
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• Detection of clonal and subclonal mutations over time using WES and WGS data 

• Differential methylation analysis between primary and recurrent tumours, at both single 

CpG and regional levels 

Optimisation of workflows was applied where necessary to better align with the study’s design and 

biological questions. 

1.6 Hypothesis 

Recurrence in IDH-wildtype glioblastoma (GBM) occurs despite intensive treatment and is thought 

to arise through a combination of genetic selection and epigenetic reprogramming. Traditional 

approaches have focused on identifying individual driver mutations enriched at recurrence; 

however, this has yielded limited clinical insight due to the extreme heterogeneity and often subtle 

clonal dynamics of GBM. 

This thesis hypothesises that: 

A pathway-level approach, integrating genetic and epigenetic changes in paired primary and 

recurrent GBM samples, can reveal convergent biological programs that contribute to treatment 

resistance. Rather than focusing solely on recurrent single-gene alterations, this study investigates 

whether groups of variants and methylation changes acting within the same pathway exhibit 

coordinated patterns of selection, expansion, or suppression through therapy. 

By analysing both somatic variants (from WGS/WES) and DNA methylation (from array data) in a 

longitudinal framework, the thesis aims to uncover pathway-level mechanisms underpinning 

resistance and to evaluate whether distinct patient subtypes exhibit different modes of tumour 

evolution and adaptation. 

 

1.7 Aims and Objec)ves 

The aims and objectives of this thesis are structured across three main chapters, each addressing a 

specific level of tumour biology and method development. 

Chapter 2 – Development and optimisation of somatic variant calling pipelines for WGS and WES 

data 
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Aim: 

To establish a robust, reproducible pipeline for calling high-confidence somatic variants from WGS 

and WES of paired GBM samples. 

Objectives: 

• Develop and standardise pipelines using benchmarked tools in the Glioma Genomics group, 

incorporating the best-practice filtering strategies. 

• Optimise the pipeline to reduce false positives through post-mapping and post-calling 

refinement. 

• Assess pipeline performance and variant quality using both internal QC metrics and visual 

inspection. 

• Apply the workflow to paired primary and recurrent GBM samples to generate a validated 

mutation call set for downstream analyses. 

 

Chapter 3 – Analysis of subclonal architecture and selection through therapy using variant allele 

frequency (VAF) 

Aim: 

To explore clonal dynamics in paired GBM samples using VAF-based metrics and identify variants 

under selective pressure during recurrence. 

Objectives: 

• Classify variants into clonal or subclonal categories based on VAF thresholds. 

• Focus on shared variants across primary and recurrent pairs to track changes in subclonal 

prevalence. 

• Use increases in VAF as a proxy for clonal expansion (resistance) and decreases in VAF 

for clonal depletion (sensitisation). 

• Highlight pathways that are recurrently altered in expanding versus contracting subclones. 

 

Chapter 4 – DNA methylation analysis of paired GBM samples stratified by transcriptional 

responder subtype 
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Aim: 

To investigate epigenetic changes associated with GBM recurrence and determine whether distinct 

responder subtypes (Up and Down responders) exhibit different methylation dynamics. 

Objectives: 

• Process DNA methylation data using array-based platforms (450K/EPIC) and develop a 

custom analysis pipeline (e.g., minfi, RnBeads). 

• Identify differentially methylated positions (DMPs) and regions (DMRs) between primary and 

recurrent samples within each transcriptionally stratified responder subtype group. 

• Perform functional enrichment analysis to interpret the biological significance of subtype-

specific epigenetic alterations. 
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CHAPTER 2 

2.1 INTRODUCTION 

2.1.1 DNA Sequencing Techniques 

As GBM is a gene=cally complicated cancer, due to both inter- and intra- heterogeneity, it is important 

to understand the gene=c changes that cause tumour growth, spread and resistance to treatment in 

order to improve tes=ng results and pa=ent health (Barthel et al., 2019, Korber et al., 2019, Brennan 

et al., 2013). Advances in next-genera=on sequencing (NGS) technologies have significantly enhanced 

our capacity to inves=gate these genomic altera=ons. WGS and WES are two of the most popular 

NGS methods. Each has its own advantages and disadvantages when it comes to finding soma=c 

changes. To select the suitable technology, one should carefully think about the outcomes of each 

method to achieve the maximum benefit of it. 

 

WGS captures the whole genome, which includes both coding (exonic) and non-coding regions. 

Because of that, WGS can detect many types of gene=c changes, including single nucleo=de variants, 

structural differences, copy number changes, and rare muta=ons. For complicated cancers like GBM, 

where muta=ons happen in many genomic areas, WGS is very helpful because it can find changes in 

regulatory elements like enhancers and promoters, as well as intergenic regions. Covering the non-

coding regions helps us to iden=fy broader genomic changes that drive GBM. Also, WGS is an ideal 

method to find large-scale genomic rearrangements and transloca=ons, which are oPen very 

important for the growth and spread of the tumour. 

 

Despite its extensive scope, WGS has some limita=ons. Because of its high cost and the amount of 

data it produces, high-performance processing power is needed to analyse it. WGS may become less 

commonly used as a result, especially in clinical sevngs. Furthermore, a sizable amount of WGS data 

originates from non-coding areas, many of which have ambiguous func=onal responsibili=es. 

Priori=sing and interpre=ng muta=ons becomes difficult, par=cularly when separa=ng significant 

changes from noise. WGS generally reduced coverage is another disadvantage that may make it more 

difficult to find low-frequency soma=c muta=ons. Formalin-fixed paraffin-embedded (FFPE) materials 

make this issue worse since DNA fragmenta=on and degrada=on further lower sequencing depth and 

introduce artefacts. 

 

Unlike WGS, WES only looks at coding areas, which comprise 1% to 2% of the genome but are 

responsible for 85% of all currently known muta=ons linked to disease (Teer and Mullikin, 2010). WES 
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offers a more cost-effec=ve method of finding muta=ons that are more likely to have func=onal 

effects on proteins by focusing on these areas. WES enables researchers to find protein-coding 

muta=ons that may be responsible for tumour growth and progression in cancer research, 

par=cularly GBM inves=ga=ons. WES produces less data than WGS, which streamlines downstream 

analysis and facilitates interpreta=on of results. Because of its effec=veness, WES is especially helpful 

for clinical and transla=onal studies that seek to find muta=ons that can be put into prac=ce. 

 

However, WES does have some problems. It can't find changes in non-coding regions, like promoters, 

because it only looks at coding regions. These areas may s=ll be important in GBM biology though, 

like iden=fying TERTp muta=ons, which are associated with GBM progression and prognosis. 

Addi=onally, WES is not as good as WGS at finding structural changes at the chromosomal level. Also, 

when DNA quality is low in samples like FFPE-derived =ssues, uneven coverage and biases caused by 

DNA fragmenta=on can make variant iden=fica=on less accurate. 

 

Both WGS and WES are crucial approaches, and each has unique advantages that could complement 

the other when both technologies u=lised (Rotunno et al., 2020). While WES offers a targeted 

approach that focuses on protein-coding genes, WGS provides a complete picture of the genome, 

including non-coding regions and notable structural varia=ons. To improve the breadth and precision 

of muta=on iden=fica=on in GBM samples, I used WGS and WES in this chapter. I aimed to get precise 

characterisa=on of soma=c muta=ons in GBM by applying both approaches and implemen=ng 

measures to mi=gate their limita=ons. This dual methodology enabled me to overcome the intrinsic 

difficul=es of studying extremely heterogeneous tumours such as GBM, yielding a more profound 

comprehension of its molecular landscape. 

 

2.1.2 DNA Quality and Challenges with FFPE Samples 

FFPE samples are extensively u=lised in clinical and research environments because they effec=vely 

maintain =ssue for prolonged dura=ons. Nonetheless, the formalin fixa=on method presents 

numerous obstacles that hinder molecular analysis of FFPE samples, par=cularly in next-genera=on 

sequencing (NGS) inves=ga=ons. Formaldehyde cross-links DNA to proteins, maintaining =ssue 

architecture while compromising DNA integrity. This cross-linking inhibits effec=ve DNA denatura=on 

during sequencing, leading to shorter sequencing reads and diminishing the efficiency of subsequent 

processing workflows. Moreover, DNA in FFPE samples is frequently fragmented, an issue that 

exacerbates with extended storage in older specimens (Robbe et al., 2018, Einaga et al., 2017, Sah et 

al., 2013, Steiert et al., 2023).  This fragmenta=on reduces overall read length and coverage quality, 

complica=ng the acquisi=on of the depth necessary for precise variant detec=on. 
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Environmental variables, such as subop=mal storage temperatures or elevated humidity, accelerate 

DNA degrada=on over =me. Oxida=ve damage and enzyma=c degrada=on addi=onally facilitate the 

genera=on of short, fragmented DNA molecules (Costello et al., 2013). These degraded fragments 

produce sequencing data of inferior quality, hindering alignment and variant detec=on opera=ons. 

In WGS and WES, adequate read depth is essen=al for iden=fying low-frequency soma=c muta=ons; 

nevertheless, the difficul=es associated with FFPE-derived DNA might considerably compromise the 

reliability of the results. In cancer genomics, the accurate iden=fica=on of soma=c muta=ons 

necessitates addressing these challenges to yield significant results. 

 

A common issue in FFPE samples is the elevated occurrence of cytosine-to-thymine (C>T) 

subs=tu=ons. The artefacts result from cytosine deamina=on, a chemical reac=on that is expedited 

during formalin fixa=on, par=cularly at methylated cytosine sites. This altera=on transforms cytosine 

into uracil, which is interpreted as thymine during sequencing, resul=ng in C>T transi=on inaccuracies 

(Kim et al., 2017). Such artefacts are par=cularly common in older FFPE samples or those preserved 

under subop=mal circumstances. The elevated frequency of these changes complicates the 

differen=a=on between genuine soma=c muta=ons and sequencing artefacts. This poses significant 

challenges when evalua=ng aggressive malignancies such as glioblastoma, where precise 

iden=fica=on of muta=ons is crucial for comprehending the tumour's gene=c landscape. 

 

Op=mised bioinforma=c procedures are necessary to address these problems (Steiert et al., 2023). 

Common approaches include applying filters to mi=gate artefacts resul=ng from C>T subs=tu=ons. 

These filters relied on a variety of measures, including variable allele frequency (VAF) and strand bias 

assessments. Implemen=ng these correc=ve procedures can enhance the precision of soma=c 

variant calls, reducing the likelihood of sequencing artefacts. In addi=on to bioinforma=c solu=ons, 

prac=cal laboratory strategies such as using kits designed for FFPE-derived DNA can also be employed 

to improve the overall quality of the data. 

 

In summary, FFPE processing substan=ally affects DNA quality by causing fragmenta=on, degrada=on, 

and the introduc=on of C>T muta=ons. These issues require me=culous considera=on during both 

the experimental and analy=cal phases of NGS processes. The op=mised pipeline reduced the 

influence of FFPE-induced artefacts on soma=c muta=on detec=on in GBM samples by employing 

rigorous quality control measures and customised bioinforma=cs approaches. 
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2.1.3 Double Coun>ng of Variants in Overlapping Paired Reads 

Although paired-end sequencing improves coverage and accuracy by sequencing DNA fragments 

from both ends, it may result in regions where forward and reverse reads overlap. These overlaps 

could result in "double coun=ng" of variants, which would inflate their frequency if they were not 

properly treated (Pope et al., 2014). In cancer research, where accurate VAF measurements are 

essen=al for comprehending tumour growth, this problem is very important. 

 

This issue is made worse in FFPE samples due to the shorter DNA fragments resul=ng from 

fragmenta=on, which raise the possibility of overlaps. Analysis of clonal and subclonal muta=ons, 

which are essen=al for assessing the progression of tumours in GBM, can be distorted by inflated 

VAFs, which can be decep=ve for low-frequency variants. 

Bioinforma=c solu=ons can be used at various points in the analysis pipeline to resolve overlapping 

paired-end reads: pre-alignment correc=ons at the FASTQ level and post-alignment correc=ons at the 

BAM level. Every approach has unique advantages and disadvantages. 

 

2.1.3.1 Correc>on at the FASTQ Level 

FASTQ-level correc=ons address overlapping reads before alignment by merging overlapping paired-

end reads into a consensus sequence. This approach eliminates the risk of double-coun=ng 

muta=ons by ensuring each variant is counted only once per fragment. This method has many 

advantages: 

• Merging overlapping reads prevents infla=on of VAFs, ensuring reliable muta=on 

frequency calcula=ons. 

• Consolida=ng overlapping regions into a single sequence simplifies downstream variant 

calling and data analysis. 

However, it has a few limita=ons such as: 

• Merging paired reads decreases the total read count, which can affect depth-sensi=ve 

analyses like copy number altera=on (CNA) calling. 

• Reduced depth may obscure subtle copy number changes and hinder detec=on of 

structural varia=ons such as transloca=ons and inser=ons. 

BBMerge (Bushnell et al., 2017), a commonly used FASTQ-level tool, merges overlapping paired reads 

into a consensus sequence before alignment. While it effec=vely resolves overlaps, its impact on read 
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depth makes it unsuitable for depth-sensi=ve analyses, such as soma=c copy number and structural 

variant detec=on. 

2.1.3.2 Correc>on at the BAM Level 

BAM-level correc=ons handle overlapping reads aPer alignment by modifying the aligned data 

without merging paired-end reads. This approach removes overlapping bases through hard or soP 

clipping, preven=ng double-coun=ng of muta=ons while preserving read depth and the paired-end 

structure, ensuring accurate downstream analyses. This approach provides significant benefits: 

• BAM-level clipping maintains read depth, rendering it suitable for depth-sensi=ve analysis 

like soma=c copy number change (sCNA) detec=on. 

• The paired-end read configura=on is maintained, which is essen=al for detec=ng 

structural variants and other analyses dependent on read pairs. 

• This method eliminates overlapping bases, hence preven=ng infla=ng in overlapping 

regions and providing precise variant allele frequency (VAF) es=mates. 

BAM-level processing tools, like fgbio-ClipBam, iden=fy overlapping regions in paired reads and clip 

the overlapped bases. In this chapter I used fgbio ClipBam to repair overlapping paired-end reads 

from FFPE-derived GBM samples. This approach was selected due to its preserva=on of read depth, 

which is essen=al for copy number analysis and the detec=on of soma=c muta=ons. As the 

sequencing coverage was maintained by masking overlapping areas rather than merging reads, 

accurate variant allele frequency es=mates and detec=on of copy number changes are likely 

achievable.  

 

Addressing double-coun=ng artefacts via BAM-level clipping is a common  approach to ensure 

accurate downstream analyses, including variant detec=on, and pathway analysis. This method 

improves the resolu=on of clonal versus subclonal muta=ons in GBM, providing significant insights 

into the tumour’s muta=onal landscape and evolu=onary dynamics. Such strategies provide a reliable 

framework for detec=ng soma=c muta=ons in fragmented DNA, thereby advancing our 

understanding of GBM biology and progression. 

 

2.1.4 Overview of Analy>cal Tools Available 

To conduct a comprehensive and accurate analysis of both whole genome and whole exome 

sequencing data in glioblastoma samples, a carefully curated set of bioinforma=c tools is required at 

each stage of the analysis pipeline. These tools are selected to address specific challenges associated 
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with NGS data, par=cularly in the context of soma=c variant detec=on, data quality assessment, and 

copy number altera=on analysis. Typically, the analy=cal process involves mul=ple steps, star=ng 

from raw sequencing data and progressing through quality control, alignment, variant and CNA 

calling, and downstream interpreta=on. A variety of tools are available for each of these steps, and 

their selec=on oPen depends on the characteris=cs of the data and the goals of the analysis. Some 

tools, including those used in this study, have been benchmarked in a published study by our group, 

which demonstrated superior sensi=vity and specificity using in silico data for valida=on (Tanner et 

al., 2021). This sec=on provides an overview of commonly used tools and their role in the analysis 

workflow. 

 

FASTQC: Sequencing data is obtained in binary base call format (BCL), which is not a suitable 

input format to use in downstream applica=ons. However, the raw data will be converted to 

FASTQ format to be used for downstream processing. FastQC (Andrews, 2010) is the most 

widely used tool to assess the quality of the fastq sequencing files. It is a cri=cal step to check 

the validity of the raw sequencing data before proceeding to further analysis, such as variant 

calling. A wide range of quality metrics that FastQC can generate for individual fastq files 

includes per base sequence quality, GC content, sequence length distribu=on, sequence 

duplica=on propor=ons and adapter contamina=ons. These quality checks help remove low-

base quality reads, trim the adapter remaining in the 5’ or 3’ ends of reads, and give an insight 

into the diversity of the data. 

 

Cutadapt: The presence of over-represented sequences indicated by FastQC means there 

could be sequencing adapters or primers in the data. This problem happens when the read 

becomes longer than the DNA fragment (insert) that is sequenced. As these sequences are 

ar=ficial, they must be removed before using the data for further analysis. Amongst many tools 

used to trim these unwanted sequences is Cutadapt (Mar=n, 2011). It is fast, efficient and 

works with paired-end data. It also allows the user to drop reads that become low quality aPer 

trimming, making the data more reliable for sequence alignment. 

 

BWA (Burrows-Wheeler Aligner): BWA (Li and Durbin, 2009) is the most widely used soPware 

for mapping the sequencing reads generated by Illumina against the human genome. It is fast 

and efficient, with a high mapping percentage and less alignment error rate. Briefly, BWA works 

on finding the maximal exact matches of alignment seeds and adapts the affine gap of the 

Smith-Waterman algorithm when extending the seeds. Users can specify a threshold for 

mapping quality to increase the accuracy of variant calling. BWA generates SAM files which 
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can be converted into BAM format as the la4er is smaller in size and more reliable for 

downstream analysis. 

 

Picard tools: Picard tools are a set of tools developed to process SAM, BAM and VCF files 

(h4ps://broadins=tute.github.io/picard/). One of the commonly used tools is MarkDuplicates. 

In NGS, read depth may contain duplicated reads meaning that a variant might be supported 

by an artefact read. To ensure that alignment files do not contain duplicated reads, files must 

be processed before variant calling to eliminate any source of false posi=ve variants. These 

duplicates can arise from library prepara=on or during cluster forma=on. At the end of tagging 

the duplicates process, MarkDuplicates soPware generates a metrics file to show the duplicate 

rate of the data. 

 

ClipBam: ClipBam is a tool that eliminates overlap between the paired-end reads 

(h4p://fulcrumgenomics.github.io/fgbio/tools/latest/ClipBam.html). It works by clipping the 

sequencing reads from the same template. Clipping occurs at any end of read 1 and read 2 

only if they are forward and reverse (FR) read pairs, with nearly half of overlapped bases being 

hard clipped as demonstrated in Figure 2-1. This is a crucial step for downstream processes, 

specifically variant calling, to avoid double-count evidence from the same fragment when both 

reads cover the variant locus in the same template. Hard clipping is the default sevng; 

however, users can choose the soP-clipping parameter instead. Users must sort the BAM file 

by query name instead of coordinates before running the soPware to ensure correct clipping. 
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Figure 2-1: Clipping overlapping reads. 
This illustra>on demonstrates how short DNA fragments can cause overlapping of paired-end reads, leading to 

overcoun>ng of variants before overlap correc>on. The red lines represent two DNA fragments carrying the 

same SNV, one short and one long. In the before correc>on panel, the short fragment produces one paired-reads 

whose overlapping regions cause double coun>ng (totalling two variant suppor>ng reads), in addi>on to one 

variant suppor>ng read from the non-overlapping reads of the long fragment. In the aher correc>on panel, 

clipping removes the overlapping bases toward the 3ʹ ends of short reads, reducing the overcounted two variant 

suppor>ng reads back to the true one, while the non-overlapping reads remain unchanged. Do@ed lines indicate 

the clipped bases. 

 

 

Mutect2: Mutect2 is a soma=c variant caller developed at the Broad Ins=tute (Benjamin et al., 

2019). It uses Bayesian classifica=on to iden=fy soma=c altera=ons. Mutect2 doesn’t process 

reads with low mapping quality reducing the chance of calling artefacts. It starts by defining 

regions of the genome called ac=ve regions, which have evidence of varia=on. The ac=ve 

regions will then comprise all the possible haplotypes in the data. Mutect2 then performs 

haplotype local realignment against the reference haplotype using Smith-Watermann 

algorithm to iden=fy candidate variant sites. Using pair hidden Markov model, each read will 

then undergo pairwise alignment to compute the likelihood of alleles for every possible variant 

site. The likelihood of each genotype is calculated by using the likelihood of alleles calculated 

earlier by applying the Bayes rule. 

 

 

FACETS: FACETS (Frac=on and Allele-Specific Copy Number Es=mates from Tumour 

Sequencing) infers allele-specific copy numbers, tumour purity, and ploidy from tumour-

normal sequencing data (Shen and Seshan, 2016). It normalizes read depth, segments the 
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genome based on log-ra=o signals, and uses allelic imbalance at heterozygous SNVs to 

dis=nguish clonal and subclonal altera=ons. This provides accurate copy number profiles and 

insights into tumour clonal architecture. 

 

VEP (Variant Effect Predictor): VEP is a variant annota=on tool developed at Ensembl (McLaren 

et al., 2016). It integrates mul=ple databases and allows using different plugins for other 

databases to predict the consequences of variants on the protein func=on. It annotates the 

variants using a set of sequence ontology consequence terms according to the variant's 

loca=on, exonic, intronic or splice site. Variants are ranked based on the impact from high to 

low classifying nonsense or frameshiP variants as highly impacOul. By default, VEP uses SIFT 

and PolyPhen databases to predict the func=onal impact of missense variants on protein. SIFT 

reports variants with either deleterious or tolerated, while PolyPhen predicts variants to be 

either probably damaging, possibly damaging, benign or unknown. VEP also enables filtering 

variants based on pathogenicity predic=ons using the filter_vep plugin. 

 

GISTIC: GISTIC is soPware u=lised to iden=fy gains and losses across the genome using soma=c 

copy number aberra=ons data (Mermel et al., 2011). It analyses the segmenta=on data to 

iden=fy genes targeted by these gains and losses. GISTIC uses a scoring scheme for each 

aberra=on, assigning the score based on the occurrences of the aberra=on across the samples 

and its amplitude. It considers the false discovery rate and calculates a q-value for every 

aberrant region. APer analysis, GISTIC creates two plots, one for the amplified regions and one 

for the deleted regions. Each plot contains peaks which represents the altered locus and the 

regions within the boundaries of the peak are likely to have the candidate genes. GISTIC 

requires a file that contains the segmented data for all of the sample in order to generate the 

plots. Using the CNA calling data, the two prerequisite files were generated for primary and 

recurrent tumour profiles to iden=fy the gene=c changes through treatment. 

 

Bam-readcount: Bam-readcount generates high-resolu=on depth informa=on around specific 

genomic loci, providing detailed counts of reads suppor=ng each variant (Khanna et al., 2022). 

This enables accurate variant allele frequency (VAF) es=ma=on, making it par=cularly valuable 

for filtering out FFPE-induced ar=facts and dis=nguishing true soma=c muta=ons from 

sequencing noise. 

 

Nex^low: NexOlow is one of the scien=fic workflow tools that have scalability and 

reproducibility (Di Tommaso et al., 2017). It is an example of a domain-specific language (DSL) 
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that simplifies the construc=on and integra=on of computa=onal pipelines for genomic data 

analysis. It uses channels for input and output data and processes that can be wri4en in many 

languages such as Python, Perl, Bash, etc. NexOlow enables the parallelisa=on of jobs and can 

be used in high-performance compu=ng clusters or cloud systems. 

 

Each of these tools contributed to a robust and accurate analysis pipeline, addressing the unique 

challenges presented by FFPE-derived DNA, overlapping read pairs, and soma=c muta=on detec=on 

in glioblastoma samples. Together, these tools enabled the comprehensive and reliable iden=fica=on 

of soma=c muta=ons, structural varia=ons, and copy number altera=ons that form the basis of this 

study’s insights into the genomic landscape of GBM. 

 

2.2 METHODS 

2.2.1 Workflow Automa>on for WGS and WES Analysis with Nex^low 

To handle the high-throughput requirements of WGS and WES data processing efficiently, I developed 

a NexOlow pipeline to automate and streamline each step of the workflow on the high-performance 

compu=ng (HPC) service, ARC3 and ARC4. Leveraging the HPC resources enabled efficient job 

submission across mul=ple samples, and NexOlow allowed me to design a modular and automated 

pipeline that covered essen=al tools for my sequencing data, including FASTQC, Cutadapt, BWA, 

BEDTools, Picard, GATK tools, Mutect2, VEP, Facets, and fgbio ClipBam. 

 

Using NexOlow's built-in func=onality for job scheduling, I was able to automate submission across 

the HPC's job queue, maximizing computa=onal resources by parallelizing tasks such as quality 

control, alignment, and variant calling. Each tool was integrated into dis=nct NexOlow processes, 

which allowed for efficient execu=on while maintaining clear dependencies between steps. This 

setup not only reduced hands-on =me but also minimized errors and variability between runs by 

enforcing a standardized process across all samples. Furthermore, NexOlow’s robust error-handling 

features simplified troubleshoo=ng, making it easier to monitor job statuses and rerun failed steps 

without restar=ng the en=re pipeline, enhancing the pipeline's reproducibility and reliability. The 

NexOlow scripts developed for this pipeline are stored in a GitHub repository associated with this 

chapter for reference (h4ps://github.com/umyma1/thesis_appendix/tree/main/chapter2). 

 

2.2.2 Quality control and mapping of sequencing data 

To ensure quality control for the WGS data, , which were generated using the Illumina plaOorm with 

150 bp paired-end reads at the MD Anderson Cancer Center (USA), I began by running FastQC on 
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each raw FASTQ file to assess the overall sequence quality, checking for common issues such as 

adapter content, GC content, and sequence duplica=on levels. Once the ini=al quality of the data was 

confirmed, I used Cutadapt with the following parameters: -m 20 --overlap 1 -q 20. These sevngs 

allowed for the removal of adapter sequences, ensuring that any reads shorter than 20 base pairs 

were discarded, requiring at least a one-base overlap for adapter trimming, and applying a minimum 

quality score of 20 across bases. Following adapter trimming, I used BWA to map the cleaned FASTQ 

files to the reference genome (GRCh38), aligning each read accurately to maximize downstream 

variant calling reliability. I then used Picard to mark duplicate reads, helping reduce poten=al biases 

in variant calling by iden=fying and flagging PCR and op=cal duplicates.  

 

For the whole exome sequencing (WES) data, the samples were ini=ally provided in BAM format 

aligned to an older version of the human genome (GRCh37). To reprocess these data in alignment 

with the WGS workflow, I first converted each BAM file back to FASTQ format using bedtools 

bamtofastq. Once in FASTQ format, I re-mapped the reads to the GRCh38 reference genome using 

BWA. APer realignment, I applied the same processing pipeline as for the WGS data, using Picard to 

mark duplicates and GATK BQSR for recalibra=on, ensuring consistency across both WES and WGS 

datasets in prepara=on for downstream analyses. 

 

2.2.3 Post alignment processing and op>misa>on 

To prevent double-coun=ng of variants in overlapping paired-end reads, I used fgbio ClipBam to clip 

overlapping regions in both WGS and WES BAM files. ClipBam processes BAM files alongside a 

reference genome, as required by this tool, and provides two clipping op=ons: soP or hard. I selected 

hard clipping, which removes overlapping sequences from each read, reducing the risk of false-

posi=ve variant calls by coun=ng each fragment only once. This method also reduces file size, easing 

storage demands on the HPC system. APer clipping, I examined the resul=ng BAM files to confirm 

accurate clipping at high-depth posi=ons, enhancing variant-calling precision. Subsequently, I 

performed GATK Base Quality Score Recalibra=on (BQSR) to correct for systema=c sequencing errors 

based on known variant sites, further improving data quality for both WGS and WES data prior to 

variant calling. 

 

To assess the impact of clipping on variant-suppor=ng reads, I used bam-readcount, which provides 

detailed metrics on sequencing data at specified nucleo=de posi=ons, such as counts of observed 

bases, mapping and base quality summaries, and read posi=on details. Running bam-readcount on 

both unclipped and clipped WGS and WES BAM files enabled me to compare variant-suppor=ng read 
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counts pre- and post-clipping. This approach helped me confirm the effec=veness of clipping, 

especially in reducing overes=ma=on of variant allele frequencies at overlapping regions. 

 

2.2.4 Variant Calling and Filtering 

2.2.4.1 Whole exome data 

Since no normal samples were available for the exome datasets, I generated synthe=c normal files. 

Given that the exome sequencing was performed using Agilent’s WES kit, I used the Agilent exome 

enrichment BED file for consistency. This BED file was originally on genome build 37, so I converted 

it to genome build 38 using UCSC liPOver tool. I then used bcPools to generate synthe=c normal 

exome files from whole genome data masking the off-target regions using the liPover bed file defined 

by Agilent. 

 

APer preprocessing, I used Mutect2 in GATK (version 4.2.0.0) for variant calling in mul=sample mode, 

analysing primary and recurrent samples alongside the synthe=c normal files to capture soma=c 

muta=ons specific to each tumour sample. Mutect2 generated an ini=al set of puta=ve variants, 

which I refined with FilterMutectCalls to remove low-confidence variants based on GATK’s soma=c 

variant filtering thresholds. Addi=onally, to address poten=al orienta=on bias from sequencing 

ar=facts, I applied LearnReadOrienta=onModel and included this model in FilterMutectCalls to 

remove false posi=ves caused by read orienta=on ar=facts. This comprehensive filtering process 

ensured a high confidence set of soma=c variant calls across primary and recurrent samples. 

 

2.2.4.2 Whole genome data 

Due to computa=onal constraints such as limited running =me with a maximum of 48 hours per job 

on the ARC3 and ARC4 HPC systems, and mutect2 limita=ons such as unavailability of mul=threading, 

I performed variant calling on a per-chromosome basis for the WGS data. For large chromosomes, I 

split the genome into regions with size ranges between 25-50 megabases to ensure jobs finished 

within 48 hours. Using Mutect2 in mul=sample mode, I applied the same protocol as for exome data, 

processing primary and recurrent tumour samples with their matched normal samples, but on a 

chromosome level. To further reduce false posi=ves, I included a blacklist interval for Mutect2 to be 

excluded from muta=on calling. The ENCODE blacklist file (Amemiya et al., 2019) contains the 

coordinates of many problema=c genomic regions such as the low mappability islands, centromeric 

repeats, telomeric repeats and satellite repeats. Using this strategy, I aimed to speed up the process 

and avoid artefacts possibly being called from these regions. APer filtering with FilterMutectCalls and 
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incorpora=ng LearnReadOrienta=onModel to address orienta=on bias ar=facts, I combined the 

results from each chromosome into a comprehensive, high-confidence variant dataset for the whole 

genome. 

 

2.2.5 Func>onal Annota>on of Variants with VEP 

I used the Variant Effect Predictor (VEP) tool with the human genome reference GRCh38 and VEP 

release 104, which includes all necessary reference files for variant annota=on. I ran VEP on a filtered 

VCF file of my variants in a Linux environment. To ensure reproducibility, I specified the --cache and -

-offline op=ons, enabling VEP to access locally cached annota=on data. I also included addi=onal flags 

to enrich the output: --symbol for gene symbols, --canonical for canonical transcripts, --hgvs for 

standardized HGVS nomenclature, and --siP and --PolyPhen to predict protein impact. 

 

VEP categorizes variants by impact level, including high, moderate, low, and modifier, providing a 

func=onal classifica=on for priori=zing variants. High-impact variants are typically those with 

poten=ally severe consequences on gene func=on, such as stop-gain or frameshiP muta=ons, which 

can result in truncated or nonfunc=onal proteins. Moderate-impact variants, like missense 

muta=ons, may alter protein func=on but with less certainty. Low-impact variants, such as 

synonymous muta=ons, generally have minimal effect on func=on, while modifier variants typically 

reside in non-coding regions. APer running VEP, I examined the output VCF, which included new 

columns detailing each annota=on field and impact classifica=on. This comprehensive annota=on file 

enabled a structured analysis of variant effects and priori=za=on for further study. 

 

Following ini=al annota=on with VEP, I applied a custom Python script to further classify variants as 

unique to the primary tumour, unique to the recurrent tumour, or common to both. This addi=onal 

step enabled the dis=nc=on between muta=ons present at diagnosis and those that emerged or 

persisted upon recurrence, offering insights into tumour evolu=on and highligh=ng muta=ons that 

may contribute to tumour progression or serve as markers of recurrence and therapeu=c resistance. 

 

2.2.6 Soma>c Copy Number Aberra>ons calling 

In this chapter, I iden=fied soma=c copy number altera=ons (CNA) from whole genome sequencing 

(WGS) data using the FACETS tool, facilitated by the cnv_facets wrapper developed by Dario Beraldi 

(h4ps://github.com/dariober/cnv_facets). FACETS is op=mized for robust CNA calling, with 

cnv_facets providing an efficient pipeline for handling and parameter op=miza=on. I began with --

nbhd-snp auto to automa=cally determine neighbourhood SNP. The key parameter for segmenta=on 
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is cval (cri=cal value), which controls the sensi=vity of the segmenta=on algorithm; a lower cval yields 

finer, more sensi=ve segmenta=on, while a higher cval results in coarser segmenta=on. Following the 

authors' recommenda=on for a two-pass approach, I ini=ally used cval values of 25 (for high 

sensi=vity, fine segmenta=on) and 400 (for low sensi=vity, coarse segmenta=on), with the high-cval 

run used to establish tumour purity and baseline Log R ra=o. 

However, these ini=al values resulted in over-segmenta=on. Following the authors' guidance to 

adjust cval based on dataset-specific factors like data quality and sequencing method, I systema=cally 

tested higher cval values: first 50 and 500, and later 100 and 1000. This approach enabled control 

over segmenta=on precision, reducing over-segmenta=on and improving the reliability of the CNA 

calls. By refining cval values in this manner, a well-balanced CNA profile was achieved, with 

segmenta=on sensi=vity and con=nuity adapted to the unique characteris=cs of the data. 

 

Since FACETS requires comparing tumour samples to matched normal samples, I processed the data 

by running each primary tumour sample against its matched normal sample and each recurrent 

tumour sample against the same normal. 

 

2.2.7 Analysis of Soma>c Copy Number Altera>ons Using GISTIC 

APer running cnv_facets, I obtained VCF files for each sample containing soma=c CNA informa=on. 

These VCF files included fields such as chromosome, posi=on, structural variant type (e.g., 

duplica=on or dele=on), and copy number data. These fields differ slightly from conven=onal copy 

number call formats. For GISTIC analysis, FACETS authors recommend mapping specific fields from 

the VCF file to match GISTIC’s input requirements. Specifically, I used the CHROM field for 

"Chromosome," POS for "Star=ng Posi=on," and parsed the INFO field to extract END for "Ending 

Posi=on," NUM_MARK for "Number of Markers in Segment," and CNLR.MEDIAN for "Seg.CN. i.e. 

Segment Copy Number" I then reforma4ed these extracted fields into a segmenta=on file, as 

required by GISTIC, with columns for Sample ID, Chromosome, Start Posi=on, End Posi=on, Number 

of Markers, and Segment Copy Number in log2 ra=o. 

 

I ran GISTIC using the default parameters, which are op=mized for iden=fying recurrent, significant 

copy number altera=ons across primary and recurrent GBM cohorts. This approach allowed me to 

iden=fy regions with recurrent CNAs and to highlight key genomic areas involved in tumorigenesis 

across the cohort. 
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2.2.8 Data visualisa>on 

Some of the figures in this chapter were generated using a tool named MaPools (Mayakonda et al., 

2018), designed to facilitate the visualiza=on and analysis of muta=on data. I used MaPools 

extensively to represent and interpret variant data derived from whole exome sequencing (WES) and 

to incorporate copy number varia=on (CNV) data from whole genome sequencing (WGS) analyses. 

 

Star=ng with the variant data, I converted my VEP-annotated VCFs to the MAF format using 

vcf2maf.pl, a tool developed by the Genome Data Science group at Memorial Sloan Ke4ering Cancer 

Center. While vcf2maf requires VEP and its annota=on cache files to func=on, it is not included in the 

standard VEP Conda package. However, as a standalone Perl script, it can be easily obtained from the 

group’s GitHub repository and used alongside VEP for VCF to MAF conversion. Once converted, I 

loaded the MAF files into R, crea=ng MAF objects that allowed for efficient data handling and analysis 

in MaPools. 

 

APer crea=ng the MAF objects, I applied several MaPools visualiza=on func=ons to analyse these 

data, star=ng with plotTiTv to examine muta=on pa4erns in terms of transi=ons and transversions, 

and plotVaf to explore the variant allele frequency distribu=ons. These visualiza=ons helped me 

understand the clonality and prevalence of muta=ons across the cohort. 

 

Using tcgaCompare, I compared the tumour muta=on burden (TMB) of Stead’s cohort to the TMB 

observed in the TCGA cohort, providing a broader overview of how similar Stead’s cohort to other 

cancers in TCGA beside GBM. Finally, I used oncoplot func=on to generate an oncoplot to highlight 

the key altera=ons and pa4erns across pa=ents. This approach provided a detailed, compara=ve view 

of the gene=c landscape in my study cohort. 

 

Other figures for alignment op=miza=on and distribu=on of variants and single base subs=tu=ons 

were generated using python custom scripts and can be accessed on this GitHub link for this chapter 

(h4ps://github.com/umyma1/thesis_appendix/tree/main/chapter2). 

 

2.3 RESULTS 

2.3.1 Cohort descrip>on 

The cohort consists of 34 pa=ents with IDH wild-type GBM, analysed using WGS and WES of 

longitudinal samples. Each pa=ent had a sample from the primary tumour site collected during ini=al 

surgical resec=on, followed by a sample from a local recurrence aPer the tumour recurred. Two 
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pa=ents were excluded from the analysis: one lacked a recurrent sample, and another did not have 

a primary tumour sample, leaving 32 pa=ents with paired primary-recurrent samples for analysis. 

The primary samples represent untreated tumours, while the recurrent samples were collected aPer 

standard treatment. 

 

Of the 32 pa=ents included, 26 received the standard GBM therapy, which involves surgical resec=on 

followed by radiotherapy (RT) and temozolomide (TMZ) (Stupp et al., 2005, Johnson and O'Neill, 

2012, Rigan= et al., 2014, Huang and Zhou, 2020). Seven pa=ents received only RT aPer surgery, and 

one pa=ent underwent treatment with radioac=ve iodine (RAI) following tumour removal. For 12 

pa=ents, immunohistochemistry (IHC) was performed to confirm IDH wild-type status, while no IHC 

records were available for the remaining pa=ents. Figure 2-1 provides a summary of the cohort 

characteris=cs. 

 

 

2.3.2 Assembling a robust and scalable bioinforma>cs pipeline (workflow) 

Next-genera=on sequencing (NGS) data are massive and require mul=ple intensive computa=onal 

steps to achieve reliable results from a high-quality analysis. One can manage to analyse a few 

Patient ID Originating centre Days between primary and recurrent surgery Age at diagnosis Gender Vital status Days to death (from primary surgery) RT after primary Chemo after primary
A1 A 585 31 F DECEASED 1795 Y TMZ
A2 A 825 44 F DECEASED 1473 Y PCV
B1 B 276 60 F DECEASED 351 Y N
B2 B 338 41 M DECEASED 440 Y TMZ
B3 B 295 45 M DECEASED 376 Y PCV
B4 B 49 53 M DECEASED 250 Y N
B5 B 721 58 M DECEASED 1106 Y TMZ
B6 B 677 58 F DECEASED 1069 Y TMZ & PCV
B7 B 246 66 M DECEASED 424 Y TMZ
B8 B 870 42 F DECEASED 1150 Y TMZ
B9 B 49 40 M UNKNOWN UNKNOWN Y TMZ

B10 B 519 67 M DECEASED 872 Y TMZ
B11 B 178 68 M DECEASED 269 Y PCV
B12 B 476 47 M DECEASED 570 Y TMZ
B13 B 424 45 F DECEASED 551 Y TMZ
B14 B 657 33 M ALIVE N/A Y TMZ
B15 B 293 68 M ALIVE N/A Y TMZ
B16 B 294 55 M ALIVE N/A Y TMZ
B17 B 369 53 F ALIVE N/A Y TMZ
C1 C 652 36 F DECEASED 1296 Y TMZ
C2 C 1341 63 F DECEASED 1464 Y TMZ & CCNU
C3 C 1265 49 M ALIVE N/A Y TMZ
C4 C 695 53 M DECEASED 973 Y TMZ
C5 C N/A 35 M DECEASED N/A Y TMZ
C6 C 799 60 F DECEASED 1260 Y TMZ
C7 C 523 55 M DECEASED 721 Y TMZ
C8 C 438 60 F DECEASED 818 Y TMZ & CCNU
C9 C 315 35 M DECEASED N/A Y N

C10 C 438 29 M DECEASED 796 Y N
C11 C 2141 26 M DECEASED 3511 N Radioactive iodine
D1 D 730 56 F UNKNOWN UNKNOWN Y TMZ & Carmustine
D2 D 365 61 M UNKNOWN UNKNOWN Y TMZ & Carmustine
D3 D 1095 41 F UNKNOWN UNKNOWN Y TMZ
D4 D 730 55 M UNKNOWN UNKNOWN Y TMZ

Table 2-1: Discovery cohort data 
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datasets using the local computa=onal resource, but this is not the typical situa=on. The dataset I’m 

using in this study comprises 126 x 150bp paired-end genome fastq sequencing files and 79 BAM files 

generated from exome data for the same cohort. The genome files were primary-recurrent pairs with 

matched normal blood samples whereas exome files were primary-recurrent pairs without matched 

normals (Table 2-1). These files include samples collected from pa=ents who underwent mul=ple 

recurrent surgeries, as well as re-sequenced samples or samples obtained from different regions of 

the same tumour. This requires processing the datasets robustly and efficiently to produce accurate 

results. The tumour samples were from FFPE =ssues and the matched normal samples were from 

blood. Therefore, I opted to use a tool that helped automate execu=ng the required analy=cal tasks: 

NexOlow. NexOlow (Di Tommaso et al., 2017) is an example of a domain-specific language (DSL), and 

it is specialised in the biological field, mainly the genomic data analysis domain. It facilitates the 

wri=ng of bioinforma=cs pipelines and allows the integra=on of mul=ple programs. Among the 

advantages that it provides, is its compa=bility with the high-performance compu=ng service 

available for researchers at the University of Leeds. I successfully developed a pipeline star=ng from 

Fastqc and ending with annota=ng the VCF files. Figure 2-2 shows the soPware employed in the 

pipeline. 

 

 
Figure 2-2: Bioinforma>cs workflow for WGS and WES analysis implemented in NexSlow. 

A summary of the mul>ple processes with the associated tools applied to the raw data to call soma>c SNVs and CNAs. 
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2.3.3 Data quality 

2.3.3.1 Pre-alignment processing 

Before mapping the reads to the reference genome, I followed the best prac=ce of data 

preprocessing to ensure that the genome and exome datasets were free of bad-quality reads and 

sequencing adapters. The FastQC indicated that all files had a high base quality; however, adapter 

contamina=on was evident. As those adapters are ar=ficial and not part of the genomic DNA, I had 

to remove them to minimise the sources of possible wrong base calls. Having known that the libraries 

were prepared using an Agilent kit, I ini=ally used Agilent universal adapter sequences with the 

adapter removal tool, Cutadapt (Mar=n, 2011); however, rerunning FastQC indicated that the 

adapters have not been removed and suggested that Illumina universal adapter sequences had been 

used, which is similar to some adapters used in some Agilent library prepara=on kits . I trimmed these 

off with Cutadapt, along with bases with a call quality lower than a Phred score of 20 towards the 

end of the reads. 

 

2.3.3.2 Post-alignment processing 

The overall quality of the data was high, as indicated in the FastQC report of the fastq files. Removing 

the adapters, the overrepresented sequences and reads with quality scores below 20 resulted in 

higher quality data. However, sequence length distribu=on was affected due to the applied trimming 

parameters. The average read length aPer processing the genome fastq files with Cutadapt is 132 bp 

per fastq file. In addi=on, an average of 44% of GC content was reported per raw data file. The 

mapping rate of the data using BWA was also high. An average of 99% of reads were mapped to the 

genome. Of the mapped reads, an average of 97% were proper pairs. Finally, the average rate of 

duplicated sequences was 12%. On the other hand, exome data had a mapping rate of 99%, 51% GC 

content, 37% duplica=on. The GC content in the WES data was higher than in the WGS data due to 

the design of capture probes, which target exonic regions that are typically GC-rich. Also, the 

duplica=on rate was higher in the WES data because the capture probes oPen target short 

sequences. This results in the enrichment of similar DNA fragments, leading to higher duplica=on 

rates. 

 

2.3.4 Diagnos>c Checks for Accurate Variant Iden>fica>on 

Before I started the analysis of the WGS data, I searched the literature and found a study that was 

done on GBM by Korber et al., where they u=lised primary and recurrent tumour samples, similar to 
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my analysis, and used it to for benchmarking (Korber et al., 2019). The whole genome samples were 

sequenced as paired end with an average depth of coverage 25x for the blood samples and 20x for 

the tumour samples. Ini=al variant calling results revealed that a median of 183,187 SNVs and INDELs 

were found in the set of primary tumours, and a median of 155,264 SNVs and INDELs were found in 

the recurrent tumours. These findings are far higher than what was reported by other GBM studies 

that u=lised WGS data. Korber et al., 2019, have reported a median of 12,800 soma=c variants per 

sample with read depth of 149x for tumour samples and 78x for matched blood samples. Another 

study by (Barthel et al., 2019) reported an average of 4,224 soma=c variants per sample with >100x 

depth of coverage. To inves=gate the higher number of variants, I combined all samples and classified 

the variants into four categories: shared primary, shared recurrent, unique primary and unique 

recurrent. I then made diagnos=c plots to check the distribu=ons of variants using variant allele 

frequency (VAF), variant allele depth, and total depth (Figure 2-3). The hypothesis behind the four 

classifica=ons is that shared primary and shared recurrent variants are likely true variants. This would 

help me to assign a cut-off to iden=fy the artefacts, which are expected to share features such as low 

depth, few variants suppor=ng reads and low VAF, and confidently eliminate them.  

 

 
Figure 2-3: Diagnos>c plots to inves>gate calling high number of variants in the original and clipped reads. 

A: Distribu>on of total depth. 
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B: Distribu>on of variant allelic depth. 

C: Distribu>on of variant allele frequency.  

 

As a further diagnos=c step, I examined the distribu=on of total and variant allelic depths, where a 

spiked pa4ern was observed: even read depth values occurred more frequently than odd read depth 

values (Figure 2-3A). This suggested that there could be double coun=ng of evidence, possibly 

resul=ng from short DNA fragments where paired reads sequenced the variant in both forward and 

reverse direc=ons. To inves=gate this possibility, I used fgbio-ClipBam 

(h4p://fulcrumgenomics.github.io/fgbio/tools/latest/ClipBam.html). ClipBam clips paired reads 

from the ends of read 1 and read 2. At the stage of having mapped reads ready for muta=on calling, 

ClipBam was a reliable op=on because it can be applied directly to aligned read files, meaning that I 

wouldn’t need to repeat the raw reads mapping process. 

In addi=on, I compared the numbers of muta=ons for each subs=tu=on type in the WGS data, as FFPE 

samples are known to have a high propor=on of C>T subs=tu=ons that are mostly false posi=ves 

(Williams et al., 1999, Quach et al., 2004). C>T variants were predominant, with a higher propor=on 

than other subs=tu=ons, followed by T>C variants (Figure 2-4), sugges=ng that many of the called 

variants are likely FFPE artefacts.  

 

 
Figure 2-4:Propor>ons of single base subs>tu>on (SBS). 

A diagnos>c plot to show the prevalence of each muta>on type. C>T known to be an FFPE artefact is 

the predominant subs>tu>on in the WGS cohort. 

 

 

To see if clipping the overlapping reads improves the data and reduces the artefacts, I randomly 

tested a sample from the exome data as it is smaller than the genome, does not require high 

hardware specifica=ons like the whole genome and is easy to op=mise. I applied ClipBam on the 

exome bam file, and re-ran Mutect2 to call the soma=c variants. I then compared the results before 
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and aPer using ClipBam. This showed that Mutect2 double counts the variants in the overlapped 

reads (Figure 2-5). Pearson correla=on scores were significantly high between variant suppor=ng 

reads before and aPer clipping the overlapped reads further confirming that variant suppor=ng reads 

were overes=mated because of double coun=ng the evidence.     

 

 

 
Figure 2-5: Total depth of variants in the pre and post clipping the overlapping reads. 

Variants of the clipped exome sample were extracted and checked for coverage in the original bam 

using Bam-readcount (Khanna et al., 2022). 

 

2.3.5 Clipping the overlapped reads 

APer confirming the double coun=ng of evidence, I applied ClipBam to both WGS and WES cohorts. 

This step was performed aPer iden=fying the duplicate reads to maximise the accuracy of post-

alignment processing. The ini=al bam files contained soP-clipped bases as a result of the alignment 

process. SoP clipping is a way to handle mismatches or low-quality bases without discarding the 

en=re read. Nonetheless, ClipBam provides metrics aPerwards to show how much of the data were 

clipped. This allowed me to compare the metrics before and aPer applying ClipBam on both WGS 
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and WES data. For the WGS data, the median percentage of bases clipped during alignment was 1.7% 

and the median percentage of clipped bases due to overlapping was 45%, whereas the WES data had 

20% of bases clipped during alignment and 35% due to overlapping reads. Clipping the overlapping 

reads then allowed me to call variants from 53.3% of the bases for the WGS and 45% of the WES 

data. The extensive clipping was acceptable given that the median insert length was 126 bp using the 

150 bp paired-end sequencing method. Figure 2-6 shows the percentage of usable and clipped bases 

for each cohort. 

 

 

 
Figure 2-6: Inves>ga>on the overlapping reads per sample. 

A: The distribu>on of the insert length of short reads. 

B: The propor>ons of usable bases and clipped bases before and aher clipping the overlapped reads in whole genome cohort. Each pa>ent  

has a pair of primary-recurrent samples matched with a normal sample. Light colours for usable reads, medium colours for bases clipped  

due to overlapping, and the dark colours are for bases clipped during mapping to find best alignment. 

C: Same as B but for the whole exome cohort. Exome data didn’t include matched normal samples. 
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2.3.6 Whole Exome Cohort 

APer conver=ng the BAM files to the raw read format and re-aligning them, the exome data had an 

average read depth of 99x for the tumour samples. Mutect2 detected a median of 6,509 soma=c 

variants in the primary tumours and a median of 6,075 soma=c variants per sample in the recurrent 

tumours.  

 

2.3.6.1 Common mutated genes in GBM 

To further ensure comparability of our data with that found in other large cohort studies, I inspected 

the most commonly mutated genes. GBMs are characterized by gene=c altera=ons commonly in 

EGFR, PTEN, TP53 and RB1 genes (Korber et al., 2019, Brennan et al., 2013). The Stead cohort shows 

comparable findings with these studies. In comparison with a study done by Brennan et al., 2014, 

EGFR was mutated in 26% of their cohort while the Stead cohort had 30% of mutated EGFR cases. 

PTEN muta=ons were also found at a similar frequency, at 28% in both cohorts. TP53 was mutated in 

39% of Stead cohort, while Brennan et al’s had 26%. Finally, RB1 was mutated in 19% of the Stead 

cohort whereas Brennan et al’s reported 8% of the cases with RB1 muta=ons. In addi=on to the 

common genes, I observed high muta=on rates in other top 20 genes. However, these genes are 

among the longest in the human genome, making them more prone to accumula=ng muta=ons due 

to their size. 

 

The exome data analysis revealed that TTN was the most frequently mutated gene in the Stead 

cohort. This finding aligns with previous studies, such as the work by (Oh et al., 2020), which reported 

that TTN had the highest muta=onal load in GBM samples (Figure 2-7A). MUC16 was also among the 

top 20 most frequently mutated genes, with variants iden=fied in 25% of cases. This result is 

supported by a preprint study by (Ferrer, 2022), which highlighted MUC16 as a recurrently mutated 

gene in GBM. Of the four common GBM mutated genes (Figure 2-8B), EGFR had variants with VAF 

less than 10% sugges=ng a presence of subclonal muta=ons while the VAF of PTEN, TP53 and RB1 

variants ranged from ~20% to approximately 70% sugges=ng that these altera=ons are likely clonal 

and occurred earlier during tumour development. 
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A 

 
B 

 
Figure 2-7: Muta>onal landscape and variant allele frequency (VAF) distribu>on in the WES cohort. 

(A) Oncoplot showing the top 20 most frequently mutated genes across the cohort. Each column 

represents a tumour sample, and each row corresponds to a gene. Muta>on types are colour-coded as 

indicated in the legend. The bar plot on the top indicates the total number of muta>ons per sample, 

while the bar plot on the right shows the muta>on frequency (number of samples with at least one 

muta>on) for each gene across the cohort. The stacked bar plot below depicts the propor>on of single 

base subs>tu>on classes within each sample. 

(B) Distribu>on of variant allele frequencies for muta>ons in the same top 20 genes. Each box plot 

represents the range of VAFs per gene across all samples, illustra>ng clonal versus subclonal pa@erns 

(higher vs. lower VAFs). 
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2.3.6.2 Tumour muta>onal burden  

Tumour muta=onal burden (TMB) is another metric I used to compare my exome results to other 

studies. I compared the TMB of the Stead cohort (64 samples) with the Cancer Genome Atlas (TCGA), 

which has 398 samples, mostly from primary tumours (Figure 2-8A). The exome data shows a slightly 

higher median TMB rate than the TCGA, with 4.5 and 5.2 muta=ons per MB respec=vely, when 

considering only deleterious muta=ons. The primary tumours had three hypermutator samples 

where TMB exceeded 10 muta=ons/MB, while the recurrent tumours had 5 hypermutated samples 

as indicated in Figure 2-8 A and B. Kim et al., 2015 had similar results to ours and TMB ranges between 

4-5.5 muta=ons/Mb. Furthermore, 134 IDHwt GBM samples analysed in the study of (Barthel et al., 

2019) showed less TMB rate of 2.85 muta=ons/Mb. 

 

   
Figure 2-8:  TMB rate across different cancers in TCGA database, and the Stead cohort. 

A: TMB rates for primary and recurrent samples combined against TCGA datasets. Number of samples is indicated on the 

right Y axis. 

B: TMB rates for primary samples only against TCGA datasets. 

C: TMB rates for recurrent samples only against TCGA datasets. 

 

2.3.7 Whole Genome Cohort 

APer applying ClipBam, I repeated the muta=on calling by mutect2. The number of primary tumour 

variants reduced from a median of 183,187 variants per sample in the pre-clipped data to a median 

of 117,810 in the clipped data, while recurrent variants reduced from 155,264 to 89,257 variants per 

sample. The read depth remained the same even aPer clipping the overlapped reads with 25x for the 

normal samples and 20x for the tumour samples. Although clipping the overlapping mapped reads 

has successfully reduced the number of variants by 35-40%, the genome profiles s=ll have 5-10 =mes 

the number of soma=c variants reported by (Barthel et al., 2019, Korber et al., 2019) making the WGS 
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data not suitable for variant calling. The lower read depth, and the nature of DNA samples being from 

FFPE =ssue, played roles in detec=ng higher rate of false posi=ves. Also, it is not applicable to apply 

a hard filter for “limit of detec=on” in samples with low coverage and heterogenous tumours such as 

GBM (Steiert et al., 2023). It was therefore decided that WGS data will be used only to call soma=c 

copy number aberra=ons (sCNA). 

 

 
Figure 2-9: Variant metrics before and a`er clipping the overlapped reads. 

A-C: Number of soma>c SNVs and indels called in primary and recurrent tumours (red lines, median) 

D-F: Numbers of shared and private SNVs and indels to each tumour (red lines, median) 

G-I: Propor>on of muta>ons per pa>ent rela>ve to D, E and F. 

**Plots A, D and G are published in (Korber et al., 2019) 
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2.3.7.1 Regulatory region muta>ons 

The Telomerase Reverse Transcriptase (TERT) promoter is commonly mutated in GBM pa=ents. This 

promotor region was not included in the hybrid capture probes used in genera=ng the Stead cohort 

WES data. Therefore, exomes lack informa=on on TERTp muta=on status. As an alterna=ve, I used 

the genome data to check the frac=on of samples that were mutated.  Of 32 pa=ents, 21 carried one 

of the common muta=ons in the TERT promoter region. APer receiving the therapy, 19 pa=ents 

retained the muta=on in their recurrent tumours. C228T was predominantly mutated in 70% of the 

pa=ents, while C250T was found in 20%. These muta=ons are commonly referred to using the 

nomenclature C228T and C250T, which correspond to C>T transi=ons located 124 bp and 146 bp 

upstream of the TERT transcrip=on start site.  The remaining 10% of the pa=ents had no muta=on in 

either sample. Similar results were reported by (Lombardi et al., 2021), showing that the TERT 

promoter region was mutated in approximately 70% of the recurrent GBM. 

 

2.3.7.2 Chromosomal aberra>on findings 

Calling copy number aberra=ons requires a well op=mised pipeline, especially in the presence of 

short reads produced from FFPE samples. Using Facets SCNA caller, I went through mul=ple a4empts 

at op=misa=on un=l I found the suitable set of parameters, such as the low and high cri=cal values 

that yielded the best segmenta=on. These cri=cal values set the sta=s=cal thresholds for merging 

adjacent segments. The quality of the segmenta=on determines whether further refinement is 

needed, as over-segmenta=on can introduce noise and lead to inaccurate profiles, while under-

segmenta=on may miss important changes. Since there are no universal or standardised parameters 

for copy number calling, the process can vary depending on the tool used, the nature of the 

sequencing data, and even lab-specific protocols. In this context, parameter refinement was 

par=cularly important because BAM files were processed to clip overlapping bases in paired-end 

reads. Be4er segmenta=on was achieved progressively, as shown when comparing Figure 2-10A 

through 2-10C. The final parameters reduced noise and over-segmenta=on, producing more reliable 

copy number calls. This was crucial for downstream analyses such as es=ma=ng the cancer cell 

frac=on (CCF), subclonal deconvolu=on, and pathway analysis (Tanner et al., 2021). Figure 2-10 

illustrates the op=misa=on stages using different cri=cal values tested to achieve the op=mal 

segmenta=on for the Stead cohort. 
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Figure 2-10: Op>mising stages of copy number calling using FACETS. 

A: Joint segmenta>on using the default cri>cal values for preprocessing and final segmenta>on. 

B: Joint segmenta>on using adjusted cri>cal values to reduce the over segmenta>on. 

C: Joint segmenta>on using cri>cal values that were applied the WGS dataset. 

Tumour purity and ploidy were inferred by FACETS, which jointly models log2 copy-number ra>os and 

allelic imbalance (B-allele frequencies) from matched tumour–normal sequencing data. FACETS 

itera>vely searches for the purity–ploidy combina>on that best fits the observed data, yielding an 

op>mal es>mate of the frac>on of tumour DNA (purity) and the average DNA copy number per cell 

(ploidy). 

 

 

The segmenta=on data was then further analysed using GISTIC to iden=fy copy number changes 

across the cohort. The analysis conducted by GISTIC revealed significant losses and gains in profiles 

of both primary and recurrent tumours, including chr 7 gain, chr 9 loss and chr 10 loss (Figure 2-

11A,C). This finding is comparable with the results reported by (Korber et al., 2019). Among the genes 

that were amplified in the chromosome 7 gain event is EGFR. This gene was mutated in 84% of the 

primary tumours and 59% of the recurrent tumours. Chromosome 10, which includes PTEN, had 

par=al dele=ons of more than 80% of the primary tumours and 70% of the recurrences. Addi=onally, 

chromosome 9p acquired dele=ons in more than 50% of both primary and recurrent tumours. These 
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findings are also aligned with results reported previously (Brennan et al., 2013) where they analysed 

copy number profiles from 543 GBM samples, including amplifica=ons in EGFR and PDGFRA, and 

dele=ons in PTEN, CDKN2A and RB1 (Figure 2-11B).  Finally, GISTIC revealed gains and losses in the 

recurrent tumours that were not ini=ally detected in the primary tumours (Figure 2-11C); novel 

par=al dele=ons were found in 10q and 13q arms and novel par=al amplifica=ons in 3q and 17q arms. 

 
 

 

 

Figure 2-11: Soma>c CNAs in Glioblastoma iden>fied by GISTIC. 

Genome-wide copy number altera>ons were iden>fied using the GISTIC 2.0 algorithm, which detects regions of recurrent 

amplifica>on (red peaks) and dele>on (blue peaks) across the cohort. The x-axis represents the sta>s>cal confidence of each 

altera>on, expressed as the false discovery rate (q-value). The ver>cal green line marks the significance threshold, with peaks 
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extending beyond this line indica>ng significantly recurrent events aher mul>ple-tes>ng correc>on. The height of each peak (G-score) 

reflects the combined amplitude and frequency of the aberra>on across the samples. 

A: Primary tumours from the Stead cohort 

B: TCGA primary glioblastoma dataset adapted from (Brennan et al., 2013) for comparison. 

C: Recurrent tumours from the Stead cohort. 

The recurrently altered genes highlighted in the TCGA reference plot (panel B) were also detected in the Stead cohort (panels A and 

C), demonstra>ng concordant amplifica>on and dele>on pa@erns across datasets. 

 
 
2.4 DISCUSSION 

Op=mizing the whole-exome sequencing (WES) and whole-genome sequencing (WGS) analysis 

pipeline was necessary to address several technical issues to generate reliable results for 

downstream analyses. At first, the variant calling showed a very high number of soma=c variants in 

both datasets. FFPE-induced altera=ons such an overabundance of C>T changes a4ributed to this 

extremely high number of variants. Overlapping paired-end readings that resulted in double coun=ng 

of the evidence affected the VAF es=mates. I implemented two processes in the pipeline: first, I 

applied the LearnReadOrientaPonModel func=on in Mutect2 to reduce the excess C>T counts. 

Second, I used ClipBam to clip the overlapping paired-end reads. APer these two steps, I achieved a 

substan=al improvement, with variant counts in WES data aligning closely with other GBM studies, 

indica=ng that the refined pipeline effec=vely minimised false posi=ves while retaining true variants. 

 

The WES data analysis confirmed that the op=mised pipeline can produce reliable results. The variant 

counts were consistent with published studies, and I successfully detected muta=ons in key GBM 

genes, including EGFR, PTEN, TP53, and RB1. The es=mates of the TMB are in line with other GBM 

cohorts, such as the TCGA. An efficient pipeline is par=cularly important for accurately compu=ng 

TMB to avoid overes=ma=ons or underes=ma=ons. Results around the threshold of 10 muta=ons 

per megabase are prone to overes=ma=on or underes=ma=on of the number of true, problema=c 

variants in the sample as FFPE-induced muta=ons could have skewed the results. APer the pipeline 

adjustments, the hypermutated samples iden=fied in my cohort were validated as true cases, not 

ar=facts, which further proved the robustness of the pipeline. 

 

The enhancements to the WGS data pipeline substan=ally decreased the variant counts, resul=ng in 

a reduc=on of 35–40% compared to before to the changes. Nonetheless, this s=ll produced a greater 

number of varia=ons than reported in other studies. The probable cause for this is our use of FFPE 

materials, which present significant challenges, coupled with a low sequencing depth of 20x for the 

tumour samples. The aforemen=oned factors rendered the WGS data inappropriate for iden=fying 

soma=c SNVs. Conversely, it was appropriate for iden=fying copy number abnormali=es. By execu=ng 
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the op=mised workflow I designed for the WGS data, I successfully iden=fied prevalent CNAs linked 

to GBM, including gains on chromosome 7 and losses on chromosomes 10 and 9. 

 

A significant enhancement I implemented was resolving the issue of overlapping paired-end reads, a 

prevalent contributor to the infla=on of varia=on allelic ra=os. I u=lised ClipBam to mask the 

overlapping regions to prevent the variant caller from coun=ng paired reads suppor=ng variants 

twice. I conducted diagnos=c assessments u=lising VAF, read depth, and the count of suppor=ng 

reads, and I verified that this modifica=on significantly reduced the artefacts I had been observing. 

This was essen=al for VAF es=mates, which are vital for monitoring variant prevalence over =me in 

longitudinal datasets. 

 

2.5 Future Direc)ons 

Despite resolving the iden=fied issues, there is s=ll opportunity for future improvements and 

op=miza=ons. Higher depth sequencing would help in lowering the occurrence of low coverage 

ar=facts in whole genome data. The troublesome overlaps will also be significantly reduced by using 

a read-length genera=on kits that is 75 bp paired-end, especially for FFPE-derived samples where 

short insert sizes are yielded by induced DNA fragmenta=on. Nearly 40% of the data had to be clipped 

because of overlaps when using 150 bp paired-end reads, as was the case with WGS and WES in this 

cohort. This decreased the amount of coverage that could be used. Some of these problems will be 

minimised with improved library prepara=on kits and large DNA input. These changes may result in 

increased sequencing depth and improved genome coverage. 

 

Developing a panel of normals (PON) from non-malignant brain =ssues is an addi=onal step that 

might enhance the outcomes of subsequent research. The likelihood of false posi=ves can be 

decreased by using a PON to assist filtering out recurrent technical ar=facts unique to brain =ssue 

sequencing. For instance, comparing tumour samples to a PON made from non-malignant brain 

=ssue could help manage FFPE ar=facts or sequencing-specific errors. A more precise baseline for 

determining true soma=c varia=ons would result from this. The pipeline may become more robust 

and dependable for research on brain cancer if this phase is added. 

In the future, workflows for other data sources, including RNA sequencing (RNA-seq) or methyla=on 

analysis, could be developed u=lizing the modular pipeline design methodology, like NexOlow. Even 

though this pipeline is designed for DNA sequencing data, the same automa=on, scalability, and 

adaptability may be used to create customized pipelines for analysing epigene=c altera=ons such as 

Bisulfite sequencing (BS-seq) or gene expression such as RNA-seq data. 
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2.6 Conclusion 

This chapter concludes by showing how crucial thorough pipeline refining is to obtain accurate 

variant and copy number calling from next-genera=on sequencing data. By effec=vely addressing the 

main issues of overlapping reads, FFPE artefacts, and low sequencing depth, the approaches used 

here laid the groundwork for reliable downstream studies. The op=miza=ons carried out guarantee 

that the data produced are of excellent quality and appropriate for further inves=ga=ons, including 

the inves=ga=on of pathways and the long-term monitoring of gene=c altera=ons. 

 

I am confident that the op=mised pipeline produced reliable results that can be built upon in the next 

chapter, which focuses on pathway analysis aPer resolving these issues. Cri=cal inves=ga=ons into 

treatment-driven tumour progression and clonal dynamics in GBM will be supported by accurate 

copy number aberra=on (CNA) profiles and variable allele frequency (VAF) es=mates. Other studies 

using cancer sequencing data, especially those that depend on FFPE samples or low-coverage WGS 

datasets, will benefit significantly from the experience of this op=miza=on approach. A fundamental 

step in producing accurate, repeatable, and therapeu=cally beneficial gene=c data is op=mizing the 

WGS and WES pipelines, which supports the larger objec=ves of advancing precision oncology and 

cancer research. 
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CHAPTER 3 

3.1 INTRODUCTION 

3.1.1 Overview 

This chapter will focus on iden=fying biological mechanisms associated with treatment resistance in 

glioblastoma (GBM). In the previous chapter, I op=mised my pipeline to call true soma=c variants and 

accurately annotate their variant allele frequencies (VAFs) and coverage as further inves=ga=on will 

heavily rely on these two factors. The resul=ng muta=on data, derived from whole exome 

sequencing, is comparable to what was reported in other GBM studies, ins=lling the confidence to 

proceed to apply different analy=cal approaches to gain further insights into the cellular processes 

involved in GBM that may influence resistance to therapy. 

 

In this chapter, I analyse muta=onal data from two independent GBM cohorts. The first is the 

Discovery cohort; this includes all IDH wild-type (IDHwt) GBM cases that were collected and 

processed by Stead’s group. For the second cohort, herein referred to as the Valida=on cohort, I was 

given access to data from the Glioma Longitudinal AnalySiS (GLASS) consor=um as our group 

contributed GBM data to the consor=um to allow high throughput analysis (Consor=um, 2018). The 

Valida=on cohort muta=on data is also from primary and recurrent tumours however I only had 

access to the variant call files, not the raw sequencing data, so not only is this an independent cohort, 

but it was processed using an independent analysis pipeline. My approach was to analyse the cohorts 

separately and look for findings that were shared under the ra=onale that such validated results are 

more likely to inform on the biology that underlies the progression of tumours through therapy, than 

result from cohort-specific artefacts. 

 

3.1.2 GLASS data 

The discovery cohort is thoroughly explained in Chapter 2 (sec=on 2.3.1), hence herein I will explain 

the Valida=on cohort data. GLASS stands out as a collec=ve effort that brings together crucial 

informa=on from across the globe on all glioma subtypes. This ini=a=ve has gathered detailed gene=c 

data from a large number of adults who've ba4led this disease, focusing on profiling of longitudinal 

paired samples to understand tumour progression. Within this collec=on is gene=c data for a group 

of 94 pa=ents diagnosed with IDHwt GBM who have undergone the usual treatment route, a 

combina=on of the drug temozolomide and radiotherapy. By looking at their cases, I can learn a lot 

about how the common treatment affects this aggressive tumour. 
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The GLASS repository doesn't provide the raw data from genome or exome sequencing. Instead, it 

provides high quality muta=on calls which were called by Mutect2 (Benjamin et al., 2019). Eleven 

centres contributed 188 samples to the repository as indicated in the table 1. The exome data from 

the GLASS (valida=on cohort) and the discovery cohort were similarly processed by using Mutect2 in 

mul=-sample mode to jointly call soma=c point muta=ons including single nucleo=de variants (SNVs) 

and short inser=ons and dele=ons (InDels). This is extremely useful for expanding my func=onal 

enrichment analysis as it makes the analysis more valuable by acquiring external data from pa=ents 

who have been treated similarly allowing me to confidently study the effects of treatment on 

progression of response and highlight poten=al pathways that could be interes=ng for developing 

some targeted GBM therapies. 

Table 3-1: Data sources for the valida7on cohort 

Centre code Centre Name No. of pa;ents 

GLSS-19 Case Western 9 

GLSS-AT Medical University of Vienna – CeMM 7 

GLSS-CU Columbia University (USA) 16 

GLSS-DF Dana Farber Cancer Ins;tute 3 

GLSS-HF Henry Ford Hospital 18 

GLSS-LU University of Leeds (UK) 8 

GLSS-MD MD Anderson Cancer Center 3 

GLSS-MG MassachuseUs General Hospital 9 

GLSS-SF UC San Francisco 2 

GLSS-SM Samsung Medical Center 18 

GLSS-14 Emory University 1 

 

 

3.1.3 Variant distribu>ons and treatment resistance 

Using longitudinal i.e. primary and matched recurrent GBM tumours from the same pa=ent is 

necessary to uncover how the molecular features of each tumour change over =me. Gene=c changes 

occur during the development of the tumour, and muta=ons keep accumula=ng as the tumour 

evolves. The expansion or eradica=on of subclones, containing specific muta=ons, under the 

selec=ve pressure of treatment may imply that those muta=ons confer an advantage or disadvantage 

to the tumour cells, respec=vely (Figure 3-1). 
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Figure 3-1: Changes in mutation prevalence between primary and recurrent GBM. 

A: GBM cells in the primary tumour carry dis>nct muta>ons, represented by coloured symbols within each cell. The plot 

shows the cellular frac>on on the x-axis (i.e., the percentage of tumour cells carrying each muta>on) and the number of 

muta>ons in each group on the y-axis. 

B: Same as A but it displays recurrent tumour. 

C: This panel shows muta>on frequency in the primary tumour (x-axis) compared to the recurrent tumour (y-axis). It allows 

iden>fica>on of clonal muta>ons (high frequency in both tumours) versus subclonal muta>ons that were either lost or 

expanded between tumour stages. 

 

In this chapter, I aim to inves=gate the change in muta=onal prevalence between primary and 

recurrent GBM, with a par=cular emphasis on dis=nguishing unique and common variants across 

tumour types. These variants may serve as crucial catalysts for tumorigenesis and therapeu=c failure, 

and comprehending their func=onal enrichment may elucidate candidate mechanisms of treatment 

resistance, which could aid in developing novel therapeu=c interven=ons and improve pa=ent 

outcomes. Through gene=c profiling of longitudinal pairs, variants can be categorized into three 

groups: primary-specific, recurrent-specific, and shared variants, with each group having a different 

poten=al biological interpreta=on. 

 

3.1.4 Primary-specific 

Variants unique to the primary tumour may arise from two biological scenarios. Firstly, the primary 

tumour sample may have included subclones that were wholly removed via surgery and thus were 

not present in the cells that gave rise to the recurrent tumour. Secondly, these variants could have 

been in cell subpopula=on(s) that were lost during tumour evolu=on post-surgery, either by gene=c 

driP or nega=ve selec=on, par=cularly if they conferred treatment sensi=vity to the tumour cells. 

It is also important to consider tumour purity, as diagnos=c biopsies oPen contain variable 

propor=ons of non-neoplas=c cells. Variants detected at low allele frequencies or confined to poorly 

represented tumour regions may therefore appear unique to the primary sample simply due to 
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admixture with normal =ssue or differences in sampling region. Addi=onally, non-biological factors 

could contribute to the iden=fica=on of these unique variants. Sampling bias, where not all tumour 

heterogeneity is captured in the biopsy, may result in variants appearing unique to the diagnos=c 

sample. Furthermore, technical ar=facts, such as sequencing errors or DNA changes induced by 

formalin fixa=on of samples (Wong et al., 2014), can also lead to the iden=fica=on of muta=ons that 

seem specific to the primary sample but may not reflect true biological differences. 

 

3.1.5 Recurrence specific 

Recurrent tumour-specific variants, which were not iden=fied or were present at very low Variant 

Allele Frequencies (VAF; i.e., below the detec=on limit of standard variant calling) in the primary 

tumour, highlight the intricate dynamics of cancer evolu=on and the limita=ons of sampling and 

detec=on techniques. These variants might have existed in the primary tumour within a minor 

subclone, undetected due to their low abundance. Such subclonal popula=ons, harbouring unique 

gene=c altera=ons, might not have been effec=vely targeted or removed by ini=al treatments or 

surgery. Consequently, these subclones can persist, evolve, and eventually dominate in the recurrent 

tumour, especially under selec=ve pressures such as therapy and the body's immune response. 

Furthermore, the ini=al sampling of the primary tumour might not have captured these specific 

subclonal popula=ons, leading to an underrepresenta=on of their gene=c diversity. 
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3.1.6 Shared variants 

The presence of shared variants among primary and recurrent tumours may indicate the existence of 

clonal driver muta=ons, which may have happened early to facilitate the development and progression 

of this disease, and so are present in all tumour cells. The presence of shared variants shows that the 

recurrent tumours arise from the con=nued evolu=on of unresected cells from the primary tumour 

rather than from the emergence of a new tumour via de novo mechanisms. This subgroup of variants 

is of par=cular interest as it allows the inspec=on of subclonal dynamics, i.e., looking for non-clonal 

variants that define subclones and then seeing whether those subclones expanded or reduced over 

=me.  

Overall, the distribu=on of common and unique variants across primary and recurrent glioblastoma 

tumours can shed light on the processes underlying tumour growth and therapeu=c response. 

Focusing on each classifica=on of variants may reveal further insights. Shared variants, for instance, as 

well as those unique to either the primary or recurrent tumour, can be further studied by using Cancer 

Cell Frac=on (CCF). CCF analysis enables the es=ma=on of the propor=on of tumour cells carrying a 

given muta=on, thereby dis=nguishing between clonal and subclonal events. For shared variants, CCF 

helps confirm their clonal nature and persistence across =me, whereas for unique variants, it can 

indicate the emergence or loss of subclones during tumour evolu=on. (Tanner et al., 2021), conducted 

a comprehensive assessment of subclonal deconvolu=on pipelines in cancer genomics using 

sophis=cated tumour genome simula=on tools. They created various datasets with different muta=on 

rates, tumour complexi=es, and puri=es, and called variants at various depths. Their findings 

emphasize that higher sequencing depths, such as 250x, are more effec=ve for accurately es=ma=ng 

CCF, especially for detec=ng rare muta=ons present in a small frac=on of cancer cells. 

However, in scenarios where high-depth sequencing is not feasible, the computa=on of CCF from 

sequencing data becomes challenging. Under these circumstances, a more simplis=c proxy is the use 

of VAF, which can s=ll provide approximate insights into subclonal composi=on and rela=ve muta=on 

abundance. 

  

3.1.7 Variant Allele Frequency (VAF) 

VAF measures the propor=on of sequencing reads that support a par=cular variant within a tumour 

sample and is widely u=lized in genomic studies such as whole-genome sequencing (WGS), whole-

exome sequencing (WES), and targeted panels to es=mate the frequency of soma=c muta=ons in 

cancer genomes. In glioblastoma (GBM) and other cancers, VAF serves as a useful metric for assessing 
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clonal composi=on and tumour heterogeneity and may provide insights into therapeu=c responses 

or disease progression (Nadeu et al., 2016). Under ideal condi=ons, VAF can act as a proxy for Cancer 

Cell Frac=on (CCF), assuming that each cancer cell harbours one mutant allele and one wild-type 

allele. This assump=on creates a direct rela=onship between the frequency of the mutant allele in 

the DNA sample (VAF) and the frac=on of cancer cells carrying that muta=on (CCF). 

 

However, the use of VAF as a proxy for CCF can be problema=c due to the complexity introduced by 

copy number varia=ons (CNVs). CNVs result in mul=ple copies of genes or genomic regions within 

cancer cells, disrup=ng the straighOorward correla=on between VAF and CCF. For instance, CNVs can 

cause an overes=ma=on or underes=ma=on of CCF if VAF is used without appropriate adjustments 

(Figure 3-2). In cases where a gene is amplified, the VAF might appear higher, not because more cells 

carry the muta=on, but because there are more copies of the gene in each cell. Conversely, dele=ons 

could lead to a reduc=on in VAF, underes=ma=ng the true CCF. These discrepancies highlight that 

while VAF can provide a rough es=mate of CCF, it must be interpreted with cau=on, par=cularly in 

the presence of CNVs that can complicate the rela=onship. 

 

Moreover, GBM tumours are highly heterogeneous, consis=ng of mul=ple subclones with dis=nct 

gene=c profiles, and this heterogeneity, combined with CNVs, complicates the use of VAF as a proxy 

for CCF. Accurate es=ma=on of CCF from VAF requires careful handling of CNAs, which can 

significantly distort VAF measurements. While some methods adjust for CNAs directly, others rely on 

prior correc=on or the masking of variants in regions with variable CNAs. Masking can be a safer 

approach, especially when dealing with low-coverage data, as it helps to minimize the impact of CNAs 

on CCF es=mates. However, this strategy is not without its disadvantages; it can inadvertently exclude 

important muta=ons in regions know to be amplified or deleted in chromosome 7,9 and 10 which 

are common in GBM (Miura et al., 2018). Despite these challenges, masking remains a prac=cal 

op=on when direct CNA adjustments are not feasible. 
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Figure 3-2: Demonstra>on of CCF es>ma>on. 

This diagram shows how VAF and CCF calculated. VAF is the frac>on of variant suppor>ng reads, whereas CCF accounts for 

ploidy, purity. 

 

3.1.8 Using VAF to Inves>gate Clonal Evolu>on 

In this chapter, I explore the subclassification of shared variants using VAF into four distinct 

groups, based on how the VAF of each mutation changes from primary to recurrence. I aim to 

investigate the characteristics of each group, starting with the first group which consists of 

mutations with low VAF in both tumours. This group contains mostly passenger mutations, 

which are characterised by having a low allele frequency. Passenger variants usually arise 

randomly during DNA replication and don’t confer a selective advantage to the tumour cells. 

However, not all low allele frequency variants are necessarily passengers, some variants could 

be biased due to sequencing techniques, or they have not yet reached clonal dominance. 

However, using longitudinal samples suggests that this group of variants is likely to be 

passengers rather than drivers (Consortium, 2020, Aaltonen et al., 2020). 

 

The second subgroup of shared variants are those with high allele frequency in primary tumours 

but low allele frequency in recurrent tumours. A decrease in VAF from primary to recurrent 

tumours could imply that treatment played a role and the tumour partially responded (Shomali 

and Gotlib, 2018). In GBM, understanding this dynamic is crucial for exploring potential 

treatment strategies. Specifically, a reduction in VAF may indicate a subset of tumour cells that 

were susceptible to the treatment, thereby oRering a window into the tumour’s heterogeneity 

and the eRectiveness of the therapy employed. 
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The third group of shared variants is represented by the mutations that had an increase in VAF 

through treatment. The increase in VAF indicates that these variants, possibly subclonal in the 

primary tumour, gained a selective advantage, leading to clonal expansion and potentially 

contributing to treatment resistance. The presence of these variants in GBM is indicative of 

Minimal Residual Disease (MRD), a condition characterized by residual cancer cells that survive 

standard therapy and remain in the brain. These cells, often undetectable by radiological 

examinations, contribute to the shared genetic variants observed in recurrent GBM tumours 

(Qazi et al., 2022).) This phenomenon is a well-established fact in GBM pathology, reflecting the 

challenges in completely eradicating tumour cells with current treatment modalities. 

 

The last group of shared variants represents mutations with high allelic fractions in both primary 

and recurrent tumours. The uniformly high allelic fractions of these mutations suggest their 

clonal nature, indicating that they were present early in the tumour’s development and persist 

through to recurrence. This uniformity implies that these clonal mutations confer a survival and 

proliferative advantage to the tumour cells, playing a pivotal role in both the maintenance and 

recurrence of GBM (Korber et al., 2019). 

 

Once classified into the diRerent groups, it is possible to inspect the genes impacted by the 

diRerent subsets of variants, to see whether any biological processes are implicated with 

regards the diRerent interpretations for each grouping. One way to do this is by looking at 

functional enrichment analysis. 

 

3.1.9 Func>onal enrichment 

Func=onal enrichment analysis is a method used in the computa=onal biology field to determine 

which biological func=ons, such as cellular processes, molecular func=ons, or biological pathways, 

are significantly associated with a gene list. These genes typically come from experimental data like 

genomic or expression datasets. One can provide a list of genes iden=fied through proteomic 

analysis, which can reveal changes in protein expression; genes affected by epigene=c modifica=ons 

from methyla=on studies, which can influence gene func=ons; and genes that are differen=ally 

expressed as determined by RNAseq, ranked according to a defined threshold. Alterna=vely, as I 

aimed to do here, the gene lists can be constructed from those that harbour significant variants. 

Over-representa=on analysis (ORA) describes a sta=s=cal method that determines whether a 

predefined set of biological func=ons or pathways is significantly overrepresented (or 

underrepresented) in a set of genes of interest. There are many tools that can be employed for 
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understanding the func=on of genes and gene sets. Func=onal enrichment analysis is increasingly 

being used to study cancer progression and recurrence and one of its applica=ons widely used is 

Gene Ontology (GO)(Ashburner et al., 2000, Gene Ontology et al., 2023). GO categorizes genes into: 

 

1- Biological Processes: This category encompasses terms describing molecular events within 

cells or organisms, such as cell division or signal transduc=on. 

2- Cellular Components: Terms here describe the parts of a cell where gene products are 

located, such as the nucleus or cell membrane. 

3- Molecular Func=ons: This involves terms describing the ac=vi=es of gene products, like 

binding to other molecules or transpor=ng them. 

 

In ORA, the significance of gene set enrichment is determined using sta=s=cal test called 

hypergeometric tes=ng. The hypergeometric test shows whether the overlap between the set of 

genes of interest and the set of genes with a par=cular func=on is greater than what would be 

expected randomly, indica=ng a poten=al func=onal significance. The hypergeometric test is 

formulated as follows: 

𝑃	(𝑋 ≥ 𝑥) = 1 − 𝑃(𝑋 ≤ 𝑥 − 1) = 1 −,	
-!" .	-

#$!
%$" .

-#%.

&$'

"()

 

 

Here, N is the total number of background genes, 𝑛 is the number of genes in the list of interest, M 

is the number of genes in a specific gene set, and 𝑥 is the number of genes in the intersec=on of the 

list and the gene set. This equa=on calculates the probability that at least  

𝑥 genes from the gene set are found in the gene list, contras=ng with a random distribu=on. This test 

is pivotal in determining the sta=s=cal significance of the observed enrichment, providing a 

quan=ta=ve measure for the associa=on between gene sets and biological func=ons. 

 

However, func=onal enrichment primarily focuses on whether there are enough genes from the same 

gene set in the gene list (Fig 3-3A-B). This approach might overlook scenarios where a specific 

pathway or gene set is consistently affected across mul=ple pa=ents (Fig 3-3C). In other words, the 

importance lies not only in the presence of mul=ple genes but also in their recurrence across different 

pa=ents. This aspect requires careful inspec=on, highligh=ng the need for more comprehensive 

pathway analysis tools. These tools can delve deeper into understanding the commonali=es and 

varia=ons in gene expression or altera=ons across different pa=ent samples 
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Figure 3-3: The difference between common approaches of pathway enrichment analysis and our novel approach. 

A: This approach iden>fies significantly mutated genes. i.e. The same gene mutated in mul>ple pa>ents. 
B: This approach iden>fies significantly mutated pathways. It requires a significant number of pathway members to be 
mutated. 
C: This novel approach iden>fies significantly mutated pathways based on their prevalence even in a subset number of 

pa>ents. 
 

3.1.10 Compara>ve pathways analysis of primary and recurrent GBM tumours 

Previous studies have indicated that the GBM gene=c profile maintains its heterogeneity during 

therapy (Korber et al., 2019, Barthel et al., 2019). Despite this, it is possible to iden=fy driver 

pathways that may be exclusive to a small frac=on of pa=ents and can provide insight into the 

processes responsible for therapy resistance. This informa=on can be used to develop drugs that can 

either slow or stop the tumour recurrence progression. In addi=on, iden=fying variants that 

disappear from primary to recurrent cells can provide informa=on on the cellular processes that are 

involved in sensi=sing the cancer cells. 

One aspect of understanding the cause of therapeu=c resistance is to iden=fy driver variants. 

However, these variants may present with allelic frac=ons similar to that of neutral passengers that 

have no significant effect on tumour progression (Consor=um, 2020). Dis=nguishing driver from 

passenger variants is challenging and is a crucial aspect of cancer bioinforma=cs (Bailey et al., 2018). 

There are various methods for iden=fying driver genes, including looking for frequently mutated 

genes, iden=fying variants that cluster in specific regions of a gene sequence or protein structure, 

predic=ng the func=onal consequence of variants, and comparing the numbers of deleterious and 

benign variants within them. Pan-cancer studies have collec=vely used the aforemen=oned methods 

to iden=fy driver genes across cancers. Combining these consensus methods has revealed nearly 600 

driver genes across cancers, varying depending on the cancer type (Mar=nez-Jimenez et al., 2020). 

 

The variant assessment strategies men=oned above focus on iden=fying driver genes at an individual 

level, which is not always possible, especially in smaller groups. Examining the frequency of variants 
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across mul=ple related genes in a specific pathway addresses this limita=on. This approach increases 

sta=s=cal power and provides addi=onal insights into the cellular mechanisms that are affected as a 

consequence of the variants. My aim is to apply this approach to two dis=nct cohorts, in order to 

iden=fy variants that could poten=ally drive therapy resistance or sensi=vity in glioblastoma (GBM). 

The objec=ve is to u=lize the VAF to differen=ate between clonal and subclonal variants, par=cularly 

in those shared between primary and recurrent tumours. This is especially crucial as prior studies 

have demonstrated that there is a paucity of specific gene=c altera=ons shared across mul=ple 

pa=ents that re-emerge aPer treatment (Barthel et al., 2019, Korber et al., 2019, Wang et al., 2016b). 

This does not preclude there being pathways that are repeatedly mutated to confer treatment 

resistance though (Figure 3-3). 

 

3.1.11 PathScore 

In this chapter, I employ PathScore, a pathway analysis tool designed to compute pathway 

enrichment scores by considering the muta=onal load per pa=ent, transcript length, and gene-

specific background muta=on rates (Gaffney and Townsend, 2016). PathScore calculates the actual 

and effec=ve sizes of pathways in a given database using pa=ent-gene pairs as input. The actual 

pathway size is based on the total number of DNA bases present in all genes of the pathway, while 

the effec=ve pathway size incorporates gene-specific background muta=on rates, gene transcript 

lengths, and per-pa=ent muta=on rates to es=mate the maximum likelihood of the pathway size. 

PathScore also generates a P-value through a likelihood ra=o test to assess the significance of the 

difference between the actual and effec=ve pathway sizes, enabling direct comparisons of iden=cal 

pathways across different inputs and illustra=ng the impact of altera=ons on pathways. 

 

The selec=on of PathScore for this study is based on prior work by our research group, which 

compared various pathway analysis tools, including network analysis methods and de novo 

approaches. Network analysis methods, which u=lize protein-protein interac=on data and mutual 

exclusivity to iden=fy driver subnetworks, are limited by their reliance on predefined network 

informa=on that may not fully represent the altered physiology of tumour cells. De novo methods, 

which iden=fy driver processes through pa4erns of altered genes without predefined pathways, offer 

greater flexibility but can suffer from reduced specificity, par=cularly when working with smaller 

subsets of altered genes, as in our study. This evalua=on highlighted PathScore's dis=nct advantages, 

par=cularly its individualized approach that accounts for pa=ent-specific muta=on rates, gene 

lengths, and background muta=on rates, making it well-suited to the specific needs of this analysis. 
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PathScore’s per-pa=ent evalua=on allows for a more detailed analysis that is par=cularly effec=ve for 

iden=fying pathways associated with therapy resistance or sensi=vity in GBM. This individualized 

approach is crucial given the variability in muta=onal burden across pa=ents and the need to 

dis=nguish between pathways implicated in therapy response versus those generally altered in GBM. 

Furthermore, PathScore enables direct comparisons of iden=cal pathways across different subsets of 

altered genes, enhancing the ability to iden=fy specific pathways relevant to therapy-induced 

changes. Overall, PathScore was chosen due to its robust handling of individualized data and its 

capacity for pathway comparisons across dis=nct pa=ent subsets. These features align with the 

study's aim to elucidate cellular processes driving GBM progression through therapy, con=nuing and 

building upon the founda=onal work conducted within our research group. 
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3.2 METHODS 

3.2.1 Data processing 

In this chapter, I employed a compara=ve analysis approach to inves=gate treatment resistance and 

tumour recurrence, using data from two cohorts to allow cross valida=on of the findings. The 

discovery cohort represents the variants called from the exome data processed in chapter one as 

detailed in sec=on 2.2. The valida=on cohort represents the variants retrieved from GLASS database. 

Variants of the discovery cohort were available in VCF file format while variants of the valida=on 

cohort were combined in one large, tabulated file. I used custom python scripts to process both 

cohorts’ data, mainly the valida=on cohort where I filtered the data to include only the IDH-wt 

samples that were collected from pa=ents that followed the standard mul=modal therapy of GBM.  I 

then converted samples into pairs to annotate shared variants between each pair of samples. 

 

3.2.2 Variant classifica>on  

APer processing the data and iden=fying shared variants between primary and recurrent tumours, 

my hypothesis was that these variants play a crucial role in tumour behaviour post-treatment. I 

classified these shared variants into four groups based on changes in their prevalence during 

treatment. This classifica=on was essen=al in understanding the dynamics of these variants under 

therapeu=c pressure. To achieve this classifica=on, I first calculated the mean VAF for both primary 

and recurrent variants with a custom python script 

(h4ps://github.com/umyma1/thesis_appendix/tree/main/chapter3) to establish a robust 

classifica=on threshold. This step was essen=al in differen=a=ng the variants according to their 

prevalence dynamics. The first group is for suscep=ble variants which had a VAF that is higher than 

the threshold of primary samples and below the threshold of recurrent samples. I then iden=fied the 

second group, expanded variants, by looking at those that exceeded the VAF threshold of recurrent 

cohort and remained below the threshold of the primary samples. The third and fourth groups are 

those variants that exceeded the VAF threshold of both cohorts and the variants with VAF below the 

threshold of both cohorts. 

 

3.2.3 Filtering variants 

I began by inves=ga=ng the raw variant data, where all muta=on calls, without any filtering, were 

included to allow a comprehensive examina=on of the variants and to detect any fundamental 

pa4erns or groupings that could guide more detailed analyses. Following this, I inves=gated the data 
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aPer refining muta=on calls through specific filtering criteria to understand the specific 

characteris=cs and implica=ons of these variants in greater detail. 

 

For the discovery cohort, I annotated variants using the Variant Effect Predictor (VEP) with the 

primary objec=ve of filtering out variants with neutral effects on protein func=ons, i.e. variants likely 

to be benign or without significant func=onal consequences. VEP was used to rank variant impacts 

on proteins according to Gene Ontology (GO) terms, categorizing them as HIGH, MODERATE, LOW, 

or MODIFIER. To iden=fy poten=ally deleterious variants that might be missed by VEP's ranking, I 

performed addi=onal annota=on on LOW impact variants using SIFT and PolyPhen-2. MODIFIER 

variants, typically non-coding and poten=ally introducing noise, were excluded from the analysis. 

 

In the valida=on cohort, variants were annotated with Funcotator which has different annota=on 

terms from VEP. This was because the GLASS consor=um data were provided already annotated using 

Funcotator, and re-annota=on from raw sequencing files was not feasible. To maintain consistency 

across the study, I applied the same Sequence Ontology (SO) terms used by VEP to re-classify variants 

in the valida=on cohort. This methodological consistency was cri=cal for ensuring reliable 

compara=ve analysis between the cohorts. Finally, I filtered the variants following the same method 

of filtering applied to the discovery cohort. The SO terms used by VEP and the equivalent annota=ons 

by Funcotator are summarized in Table 3-2. 

 

Table 3-2 VEP and Funcotator annota7ons 

SO TERM VEP Funcotator IMPACT (VEP) 

splice_acceptor_variant Splice acceptor variant Splice_Site HIGH 

splice_donor_variant Splice donor variant Splice_Site HIGH 

stop_gained Stop gained Nonsense HIGH 

frameshift_variant Frameshift variant Frame_Shift_Del, Frame_Shift_Ins HIGH 

stop_lost Stop lost Nonstop HIGH 

start_lost Start lost Multiple Annotations HIGH 

inframe_insertion Inframe insertion In_Frame_Ins MODERATE 

inframe_deletion Inframe deletion In_Frame_Del MODERATE 

missense_variant Missense variant Missense MODERATE 

synonymous_variant Synonymous variant Silent LOW 
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3.2.4 Gene lists construc>on and func>onal enrichment analysis 

In my study, I conducted an enrichment analysis to explore significant biological terms associated 

with lists of genes. In preparing these gene lists for the enrichment analysis, I focused on including 

genes that harboured deleterious variants as described in sec=on 3.3.  

The primary objec=ve of my pathway analysis approach was to pinpoint genes that play a key role in 

either resistance or response to treatment. To achieve this, I constructed gene lists based on two 

dis=nct groups of variants. The first group consisted of variants that showed an increase in frequency 

from primary to recurrent stages of cancer. The second group comprised variants that exhibited a 

decrease in allele frequency from primary to recurrent stages. The gene lists were then analysed 

using two different enrichment analysis tools, WebGestalt and PathScore. 

 

3.2.5 GO enrichment analysis by WebGestalt: 

For GO enrichment analysis, I created two gene lists for the two groups of interest and submi4ed 

them to WebGestalt (Liao et al., 2019). WebGestalt accepts gene lists with HGNC Symbol, and the 

analysis was performed using the reference genome GRCh38 and a background gene set of all 

protein-coding genes in the reference genome. Adjusted P-values were employed to iden=fy 

pathways that were significantly enriched, considering a threshold below 0.05 as sta=s=cally 

significant. The results were visualized using bubble charts, created by a custom R script to iden=fy  

the most significantly enriched biological processes 

(h4ps://github.com/umyma1/thesis_appendix/tree/main/chapter3). 

 

3.2.6 Pathway enrichment analysis by PathScore: 

PathScore requires genes to have three annota=ons which are HGNC Symbol, Entrez ID, and pa=ent 

ID, because it performs pa=ent-specific pathway impact analysis. Unlike conven=onal enrichment 

tools such as WebGestalt (Liao et al., 2019), which operate on non-redundant gene lists, PathScore 

relies on variant-level data. This dis=nc=on is fundamental to its algorithm, which treats each 

muta=on as an independent sampling event from the genome to es=mate the probability that a 

pathway is affected in a par=cular pa=ent. By modeling muta=ons rather than genes, PathScore 

accounts for the frequency, distribu=on, and background muta=on rate (BMR) of variants, scaled by 

gene length. In other words, mul=ple variants occurring within the same gene or across different 

genes in the same pathway contribute cumula=vely to the likelihood that the pathway is aberrated. 

Aggrega=ng data to the gene level would obscure this informa=on, as dis=nct muta=ons within one 

gene would be collapsed into a single observa=on, underes=ma=ng the muta=on burden and 
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pathway impact. Therefore, the input file retains redundant gene entries, with each variant 

annotated by HGNC symbol, Entrez ID, and pa=ent ID to maintain variant-specific resolu=on. 

PathScore was run using the Gene length & BMR-scaled algorithm with default background muta=on 

rates. The enrichment score reflects the effect size of the aberrated pathway, and sta=s=cal 

significance was assessed using the Benjamini–Hochberg adjusted p-value. 

 

3.2.7 Analysis of variants in diverse copy number regions 

To assess the impact of Copy Number Altera=ons (CNAs) on pathway analysis, variants were 

categorized according to their loca=on within regions of neutral copy number (CN), high CN, low CN, 

or stable abnormal CN in primary and recurrent tumours. In this approach, only variants within CN-

neutral or CN-stable regions were retained, while those in highly variable CN regions were excluded 

to minimize the confounding influence of copy number–driven signal distor=on. This filtering was 

par=cularly important given the absence of Cancer Cell Frac=on (CCF) es=mates, as CN variability can 

inflate variant allele frequencies (VAFs) in amplified regions or mask true allelic losses in deleted 

regions. Restric=ng the analysis to CN-stable regions therefore ensured that pathway enrichment 

more accurately reflected the burden of genuine point muta=ons rather than CN-related artefacts. 

For the discovery cohort (processing was detailed in Chapter 2.2), all VCF files were converted into 

BED files for analysis using BEDtools v2.30.0 (Quinlan and Hall, 2010) and annotated with CN status. 

Using BEDtools, I then iden=fied the overlapped and unique regions in both samples and extracted 

the regions with stable CN status using a python script to perform pathway analysis. Conversely, 

samples in the valida=on cohort were processed using several CN callers, including TITAN, Sequenza, 

PyClone, and GATK. Copy number results were concatenated for the whole datasets resul=ng in 

mul=ple result files from each caller. I evaluated the annota=ons produced by each caller and decided 

to use the results called by TITAN as it has more annota=ons than the other callers. These addi=onal 

annota=ons provided useful informa=on not available from tools like Sequenza, PyClone, and GATK, 

which helped in filtering and processing the data more effec=vely using BEDtools. I then split the 

results by pa=ent to create individual sample results and run BEDtools on each pair of samples 

following the same method applied to the discovery cohort. I wrote a python script to process the 

valida=on cohort and create BED files. BEDtools commands for processing both cohorts can be found 

in (h4ps://github.com/umyma1/thesis_appendix/tree/main/chapter3). 

 

3.2.8 Compara>ve analysis of primary versus recurrent profiles using GISTIC 

The aim of this analysis was to track the evolu=on of copy number (CN) altera=ons from primary to 

recurrent tumours. The GISTIC tool was employed for this analysis due to its ability to iden=fy regions 
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of the genome that are significantly altered in cancer. To assess the CN change between the pair of 

samples I u=lised primary CN profiles as the baseline. This step is crucial for understanding the ini=al 

genomic state before any treatment or progression. First, I iden=fied all regions exhibi=ng stable or 

neutral CN in both primary and recurrent tumours and I excluded them. This filtra=on was essen=al 

to focus solely on regions showing significant altera=ons, thus enhancing the specificity of our 

analysis. Second, I used BEDtools to iden=fy the overlapping regions and calculated the logarithmic 

ra=o of CN in recurrent tumours to CN in primary tumours using a python script . This step quan=fied 

the degree of CN altera=on, offering a clear comparison between the two profiles. I then prepared 

the segmenta=on files which included the loci coordinates and the derived log ra=os. These files are 

cri=cal for GISTIC analysis as they represent the segmented CN data in a format that the tool can 

process. Finally, my method led to subsevng the genomes leaving out some regions without 

informa=on. However, GISTIC requires that all chromosome segments should have coverage across 

all samples. To overcome this issue, I added CN neutral regions to each file to account for any missing 

regions to ensure that the GISTIC analysis was not biased by missing data. I prepared the required 

files for GISTIC using a python script and the segmenta=on files were assessed by IGV before and 

aPer adding CN neutral regions (h4ps://github.com/umyma1/thesis_appendix/tree/main/chapter3) 
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3.3 RESULTS  

3.3.1 Data processing 

3.3.1.1 Datasets 

In this chapter, I performed analysis on two independent cohorts. The first is labelled as the discovery 

cohort in this chapter; the cohort of samples processed locally, and which contains the variants that 

were called from the whole exome data that passed the stringent filtering criteria as thoroughly 

discussed in chapter 2.  

The second cohort, labelled as the valida=on cohort, consists of processed variant calls from exome 

data, provided by GLASS. This collec=on includes data from 392 pa=ents, along with their clinical 

informa=on. The samples are grouped into different =ers, such as the silver, gold, and pla=num sets, 

based on data cura=on criteria, including whether they pass QC thresholds for DNA integrity and the 

availability of comprehensive molecular data like RNA expression or methyla=on profiles. The gold 

set of the GLASS dataset was produced from high-quality sequencing data for both primary and 

recurrent tumours. However, raw sequencing reads are not available for this set; instead, muta=on 

call sets, iden=fied using the Mutect2 tool, are provided. 

Both the discovery and valida=on cohorts were processed using a similar approach. This was achieved 

by employing Mutect2 in a mul=-sample mode, enabling the effec=ve iden=fica=on of soma=c point 

muta=ons. The similari=es in processing and findings between the two cohorts facilitated a robust 

compara=ve analysis, essen=al for drawing reliable conclusions in this chapter. 

 

3.3.1.2 Compara>ve Analysis of Datasets 

APer conduc=ng a thorough quality control process, I examined the distribu=on of soma=c variants 

across tumour stages in both cohorts to assess dataset comparability (Fig. 3-4). Panels A–H illustrate 

per-pa=ent variant counts and propor=ons before and aPer filtering for deleterious variants. The 

median total variant counts were 365 and 400 for the discovery and valida=on cohorts, respec=vely. 

APer filtering for deleterious variants, these numbers reduced to 84 and 105. 

To check for differences in variant composi=on among tumour categories (primary-specific, 

recurrent-specific, and shared) within and between cohorts, I applied a one-way ANOVA followed by 

Tukey’s mul=ple-comparison test. The results are summarised in figure 3-4I-J. The analysis confirmed 

that the discovery and valida=on cohorts show no significant difference in overall variant distribu=on, 

valida=ng their comparability, while in both cohorts the shared-variant group cons=tutes the largest 

and sta=s=cally most enriched category (p < 0.01 across most comparisons). 
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I) 

 
J) 

 

Figure 3-4: Distribu>on and classifica>on of variants across cohorts and tumour stages. 

Panels A-D show data before applying filtra>on criteria; panels E-H illustrate data aher filtering benign variants. 
A-B: Per-sample counts of SNVs + INDELs (log₁₀ scale) in the discovery (n = 32) and valida>on (n = 94) cohorts. Bars are 
par>>oned into variants private to the primary tumour, private to the recurrent tumour, or shared between both tumours. 
The red dashed line marks the cohort median. 
C-D: Rela>ve propor>ons of variant types in each pa>ent for the discovery (C) and valida>on (D) cohorts. 
E-F: Total counts of deleterious SNVs and INDELs per pa>ent (aher filtra>on) in the discovery (E) and valida>on (F) cohorts. 
G-H: Rela>ve propor>ons of variant types per pa>ent in each cohort aher filtra>on. 
I-J: Results of one-way ANOVA comparing variant categories within each cohort before (I) and aher (J) filtering, followed by 

Tukey post-hoc pairwise tests. Brackets and p-values indicate sta>s>cally significant pairwise differences. The shared-variant 

category is significantly higher than either primary- or recurrent-specific variants in both cohorts 
 

 

3.3.1.3 Variant classifica>on  

As my inves=ga=on aimed to unravel the gene=c underpinnings responsible for treatment resistance 

and tumour recurrence. I ini=ated this by analysing shared variants between primary and recurrent 

tumours in both discovery and valida=on cohorts. This analysis revealed that a significant propor=on 

of the variants shared between primary and recurrent tumours were also shared across both the 

valida=on and discovery cohorts (Figure 3-4J), thereby direc=ng our focus towards these shared 

variants for further insights into tumour recurrence post-treatment. 
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The shared variants were categorized into four groups based on their prevalence changes during 

treatment: suscep=ble variants (decreasing in frequency), expanded variants (indica=ve of poten=al 

clonal expansion), and stable variants further divided into high allele frequency (likely clonal) and low 

allele frequency groups. 

 

Ini=al analysis of VAF was conducted to classify these variants. In the unfiltered data, the mean VAF 

of primary variants was 0.10 (SD = 0.14) in the discovery cohort and 0.20 (SD = 0.19) in the valida=on 

cohort. The mean VAF of unfiltered recurrent variants was 0.12 (SD = 0.15) in the discovery cohort 

and 0.19 (SD = 0.15) in the valida=on cohort as indicated in Figure 3-5A-B. 

 

APer filtering out non-deleterious variants, we observed a consistency in the mean VAF of the 

discovery cohort (0.10, SD = 0.15 for primary variants; 0.12, SD = 0.16 for recurrent variants). 

However, there was a notable reduc=on in the mean VAF of primary variants in the valida=on cohort 

(0.07, SD = 0.13), while the mean VAF of recurrent variants remained rela=vely unchanged (0.20, SD 

= 0.16) as shown in Figure 3-5C-D. 

 

Despite these changes in mean VAF, especially in the valida=on cohort, the propor=ons of each 

variant group remained broadly similar before and aPer filtering. Specifically, variants decreasing in 

frequency accounted for 11%-12% in the discovery cohort and 13% in the valida=on cohort, both 

before and aPer filtering. Variants indica=ve of clonal expansion represented 16%-15% in the 

discovery cohort and 10%-13% in the valida=on cohort, before and aPer filtering, respec=vely. 

Variants with high allele frequency comprised 13%-14% in the discovery cohort and 25%-31% in the 

valida=on cohort. Finally, variants with low VAF represented 59% in the discovery cohort and 53%-

44% in the valida=on cohort, both before and aPer filtering.  

 

The overall propor=ons of variant groups post-filtering support the robustness of the classifica=on 

strategy.  While a reduc=on in the mean VAF of primary variants was observed in the valida=on 

cohort, the general distribu=on of variant groups remained rela=vely stable, with the excep=on of 

high VAF variants, which showed a more pronounced increase. Nonetheless, this level of consistency 

observed both before and aPer filtering non-deleterious variants reinforces the ra=onale for 

retaining only deleterious variants for downstream pathway analysis, helping to reduce background 

noise introduced by less func=onally relevant muta=ons.  
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Figure 3-5: Variant classifica>on using allele frequency. 

A-B: sca@er plots of shared variant VAFs in the discovery (A) and valida>on (B) cohorts. Variants are categorized into four 
groups based on their Variant Allele Frequencies (VAFs), rela>ve to the mean VAF of primary and recurrent tumour variants. 
1) Bo@om leh quadrant shows variants with VAF below the mean, 2) bo@om right quadrant shows variants with VAF 
decreased from primary to recurrent tumour, 3) top leh contains variants with VAF increased from primary to recurrent 
tumours, and 4) top right quadrant contains variants with VAF remained high through treatment. 
C-D: Quadrant plots of discovery (C) and valida>on (D) cohorts, showing only the deleterious variant VAFs which are selected 

for the downstream analysis. 
 

3.3.2 Gene Ontology (GO) enrichment analysis 

In this sec=on, I aimed to uncover the biological consequences of variant selec=on during therapeu=c 

treatments by performing an in-depth Gene Ontology (GO) enrichment analysis. From the four 

iden=fied groups, I selected two unique gene sets: the first comprised of variants likely to be selected 

for during therapy, which might suggest poten=al resistance mechanisms, and the second consisted 

of variants likely to be selected against, indica=ng possible suscep=bili=es or poten=al therapeu=c 

responses. These two groups had variable VAF values indica=ng response or resistance. Therefore, it 

was hypothesised that analysis of these two groups would provide biologically meaningful outputs 

from the pathway analysis. The two dismissed groups represent variants with stable VAF that when 



 

Chapter 3                                                                                                                                            84 

analysing variants with low VAF it is likely to include false posi=ve or artefactual variants.  For each 

gene set, I assessed the enrichment of GO terms across three fundamental categories: Biological 

Process, Cellular Component, and Molecular Func=on. The discovery dataset served as the 

founda=on for pinpoin=ng significant GO terms, which I then sought to corroborate using the 

valida=on dataset to confirm the consistency of the observed pa4erns. This methodical approach 

provided a comprehensive view of the selec=ve pressures therapy may impose on the genome, 

offering insighOul revela=ons into the gene processes in response to treatment. The compara=ve 

analysis revealed mul=ple enriched pathways, which I ranked based on the enrichment score and 

then selected the top ten pathways for further analysis and generated  bubble charts to show the GO 

enrichment analysis results. 

 

I focused on the terms which are shared, for each subgroup of expanded or reduced VAF variants, 

across the valida=on and discovery cohort and expand upon these results below. 

 

3.3.2.1 Clonally expanded variants  

3.3.2.1.1 Biological processes 

In the discovery cohort (Figure 3-6A), the most significantly enriched pathways were related to the 

sinoatrial (SA) node cell func=on, with “SA node cell ac=on poten=al” and “SA node cell to atrial 

cardiac muscle cell signalling” both showing an enrichment score of 11.5 (FDR=0.0054). Similarly, 

pathways involving communica=on between SA node cells and atrial cardiac muscle cells were 

highlighted “SA node cell to atrial cardiac muscle cell communica=on” with an enrichment score of 

10. The importance of synap=c func=ons was also suggested by the enrichment in “regula=on of 

synap=c vesicle clustering” (score=9) and “synap=c vesicle clustering” (score=7). Pathways associated 

with cardiac structure and func=on, such as “coronary vasculature morphogenesis” (score=6.5) and 

“cardiac muscle cell ac=on poten=al involved in contrac=on” (score=4.5), were also notably enriched. 

While these pathways are annotated with cardiac or neuronal terminology, they likely reflect broader 

ion channel and membrane poten=al regula=on processes that may be ac=ve in glial tumour cells, 

rather than represen=ng true ac=on poten=al genera=on. 

 

The valida=on cohort presented a somewhat broader range of biological processes, though s=ll with 

relevance to cardiac func=on. The "cellular response to heparin" and "membrane depolariza=on 

during SA node cell ac=on poten=al" both showed an enrichment score of 6.9, aligning with the 

cardiac conduc=on system relevance seen in the discovery cohort. Interes=ngly, the "membrane 

depolariza=on during AV node cell ac=on poten=al" was also highlighted with the same enrichment 
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value, sugges=ng a consistency in the relevance of cardiac ac=on poten=al pathways across both 

cohorts. Developmental processes were also evident, including "cell migra=on involved in kidney 

development" and "trigeminal nerve morphogenesis," each with an enrichment score of 6.9, which 

may indicate a broader scope of the valida=on cohort's biological processes being examined. 

Neurological development and response were further exemplified by pathways like "posi=ve 

regula=on of axon extension involved in axon guidance" (score=6) and "cellular response to 

histamine" (score=5.4). 

 

A key overlap between both cohorts is the enrichment of SA and AV node-related pathways, which 

play a crucial role in cardiac conduc=on. The SA node ini=ates the heart's electrical ac=vity, sending 

signals to the atrial muscle cells for coordinated contrac=on, which involves membrane 

depolariza=on during the SA node cell ac=on poten=al. The AV node then delays the signal, allowing 

the atria to contract before the ventricles, ensuring proper heart rhythm (Jalife, 1984, Laka4a et al., 

2010, MacDonald et al., 2020). The presence of common SA and AV terms in both cohorts suggests 

that these processes may not be exclusive to the heart. It is possible that they play similar electrical 

signalling roles in brain func=ons, and when altered, may contribute to GBM progression. 

 

3.3.2.1.2 Cellular components 

In the discovery cohort (Figure 3-6A), the most enriched cellular component was the "laminin 

complex" (enrichment score=9.6), sugges=ng its prominent role in the cellular architecture under 

inves=ga=on. This was followed closely by components associated with platelet func=on, namely the 

"platelet dense tubular network" and its membrane (enrichment scores 9.4 and 8.6, respec=vely). 

The axonal structure was also significantly represented with "axonemal dynein complex" and 

"axoneme part" showing high enrichment scores (8.6 and 6.3, respec=vely). Looking closely at these 

two pathways, a significant overlap of six genes were iden=fied sugges=ng a func=onal rela=onship 

(Figure 3-6C). The “myosin filament” and “muscle myosin complex” were highlighted as well 

(enrichment scores 5.8 and 5.7, respec=vely). While these components are typically associated with 

muscle func=on, their enrichment here likely reflects an overlap of ac=n- and myosin-related genes 

involved in cytoskeletal organisa=on and mo=lity in GBM. The heatmap (Figure 3-6C) showed that 

myosin filament and muscle myosin complex pathways share four genes (MYH13, MYH6, MYH7, 

MYOM1), implying func=onal or structural rela=onships. The heatmap also showed that laminin 

complex and extracellular matrix component have overlapping genes in the discovery cohort, despite 

extracellular matrix component pathway not being iden=fied in the valida=on cohort. This may link 

with the ac=n/myosin enrichment as these components are involved in cell movement and 

migra=on. 



 

Chapter 3                                                                                                                                            86 

 

The valida=on cohort showed a shiP towards extracellular matrix components, with “fibrillar collagen 

trimer” and “banded collagen fibril” both presen=ng the highest enrichment score of 8.2 (Figure 3-

6B). This finding indicates a strong correla=on with structural proteins involved in extracellular matrix 

organiza=on. Eight genes were overlapping between the fibrillar collagen trimer, banded collagen 

fibril and complex of collagen trimers indica=ng similar func=ons by these pathways (Figure 3-6D). 

Cellular complexes related to muscle func=on, such as the "junc=onal membrane complex" and 

"junc=onal sarcoplasmic re=culum membrane" (enrichment scores 8.0 and 7.5), were also enriched 

in the valida=on cohort. Interes=ngly, the "laminin complex" was again observed but with a lower 

enrichment score (7.0) than in the discovery cohort and this suggests a poten=al conserva=on of its 

role. 

 

Comparing both cohorts, the discovery cohort showed a par=cular emphasis on cellular components 

related to the axonal structure and platelet func=on, whereas the valida=on cohort highlighted the 

extracellular matrix, par=cularly collagen-related structures, and muscle-associated complexes. The 

"laminin complex" was the only cellular component to be significantly enriched in both, although 

with varying degrees of enrichment, which highlights its likely key role in the relevant cellular 

processes. Laminins cons=tute a group of glycoproteins essen=al for the founda=onal framework of 

basement membranes present in nearly all animal =ssues. Composed of α, β, and γ chain subunits, 

each laminin forms a heterotrimer (Colognato and Yurchenco, 2000). These are secreted and become 

part of the extracellular matrices associated with cells. Serving mul=ple func=ons, laminins are 

involved in processes such as development, differen=a=on, and the movement of cells, owing to their 

ability to interact with a variety of cell surface proteins. In the context of gliomas, laminins are 

predominantly found in the microenvironment, par=cularly around the basal lamina of blood vessels 

and are notably present at the edge between the brain and tumour (Marino et al., 2023). 

 

The dis=nc=on between the cohorts can be a4ributed to differen=al expression or involvement of 

these cellular components in GBM, or possibly due to the inherent biological variability between the 

discovery and valida=on popula=ons. The valida=on cohort's significant emphasis on the 

extracellular matrix, especially collagen structures which are closely related to laminins in func=on, 

could suggest a pathophysiological process that involves =ssue remodelling or fibrosis. 
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3.3.2.1.3 Molecular func>on 

In the enrichment analysis of molecular func=ons, we observed significant func=onal categories in 

both discovery and valida=on cohorts. The discovery cohort displayed a notable enrichment for 

ac=vi=es related to microtubule motor func=on and dynein binding (figure 3-6A). Specifically, 'ATP-

dependent microtubule motor ac=vity, minus-end-directed' showed the highest enrichment score 

(9.76) and was represented by mul=ple genes of DNAH family. In close rela=on, func=ons associated 

with 'dynein light chain binding' and 'dynein intermediate chain binding' were also significantly 

enriched, sugges=ng a concerted involvement of these molecular ac=vi=es in the biological processes 

iden=fied in the discovery cohort. 

 

In contrast, the valida=on cohort showed a dis=nct set of molecular func=ons (figure 7B) with the 

highest enrichment observed in 'voltage-gated calcium channel ac=vity involved in cardiac muscle 

cell ac=on poten=al' (enrichment score=9.3). Addi=onally, 'glutamate-gated calcium ion channel 

ac=vity' and 'NMDA glutamate receptor ac=vity' were among the top enriched func=ons, 

emphasizing the importance of calcium ion dynamics in the valida=on cohort's biological context. 

 

While there was some overlap in molecular func=ons such as 'ATP-dependent microtubule motor 

ac=vity, minus-end-directed' between the two cohorts, the discovery cohort was characterized by a 

more diverse group of dynein-related ac=vi=es, whereas the valida=on cohort was more focused on 

calcium ion channel ac=vi=es and related func=ons. 

 

Furthermore, both cohorts shared a general theme in the importance of ion channel ac=vi=es, but 

with different specifici=es. The discovery cohort included 'transmembrane-ephrin receptor ac=vity' 

and 'intracellular calcium ac=vated chloride channel ac=vity', while the valida=on cohort emphasized 

the 'glutamate-gated calcium ion channel ac=vity' and 'NMDA glutamate receptor ac=vity'. 

 

It is also noteworthy that the valida=on cohort highlighted 'extracellular matrix structural cons=tuent 

conferring tensile strength' with the highest number of associated genes (20), including mul=ple 

collagen genes, indica=ng a significant role of structural extracellular matrix components in GBM 

progression. 
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Figure 3-6: Func>onal enrichment analysis. 

Combined Bubble plots illustra>ng the results of Gene Ontology (GO) func>on enrichment analysis. The three main 
categories of GO terms are represented: Biological processes (BP); Cellular components (CC);  Molecular func>on (MF). The 
purple boxes show common biological processes, the green boxes show the common cellular component pathways and the 
red boxes shows common molecular func>on pathways between the cohorts. The y-axis shows pathway terms, while the 
x-axis denotes degree of enrichment. The size of the bubble determined by the number of genes associated with the term 
whereas the colour of the bubbles indicates the significance (adj p values). Top 10 altered pathways are visualized only for: 
A: Expanded group of variants in the discovery cohort. 
B: Expanded group of variants in the valida>on cohort. 
C-D: Heatmap to show the rela>onship and the overlapping genes between the pathways of cellular component in the 
discovery (C) and the valida>on (D) cohorts. 
E-F: Heatmap to show the rela>onship and the overlapping genes between the pathways of molecular func>on in the 
discovery (E) and the valida>on (F) cohorts. 

 

3.3.2.2 Declining Variants 

3.3.2.2.1 Biological processes 
 

The analysis of the discovery cohort revealed several pathways significantly enriched in genes related 

to the regula=on of neuronal structure and development (Figure 3-7A). The most prominent 

biological process iden=fied was the "regula=on of extent of cell growth," with an enrichment score 
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of 4.4. Similarly, the "posi=ve regula=on of cell morphogenesis involved in differen=a=on" and 

"regula=on of axonogenesis" pathways, both integral to neuronal differen=a=on and axonal growth, 

displayed enrichment scores of 3.8 and 3.6, respec=vely. Notably, BDNF was a recurrent gene in both 

biological GO terms. 

 

Processes associated with cell morphogenesis were repeatedly observed with high enrichment 

scores, indica=ng a concerted influence on cellular shape changes during differen=a=on, especially 

in the context of neuron development. "Axon development" was another significantly enriched 

process. Interes=ngly, cell morphogenesis and related processes such as "cell morphogenesis 

involved in neuron differen=a=on" were the most represented, implica=ng these biological processes 

as poten=al targets of selec=ve pressure during therapy in the discovery cohort. 

 

In contrast, the valida=on cohort presented a dis=nct set of biological processes, mostly related to 

cardiac func=on and calcium signalling (Figure 3-7B). The most significant pathway was "regula=on 

of cardiac conduc=on," with an enrichment score of 4.5. Calcium-related pathways, such as "calcium 

ion transmembrane import into cytosol" and "calcium ion transport into cytosol," were also enriched, 

underscoring the essen=al role of calcium in signalling pathways. Moreover, pathways associated 

with "extracellular matrix organiza=on" and "extracellular structure organiza=on" had significant 

enrichment, sugges=ng that extracellular components play a crucial role in the cellular response to 

therapeu=c pressure in the valida=on cohort. 

 

Comparing the biological processes between the discovery and valida=on cohorts revealed dis=nct 

pa4erns of enriched pathways. The discovery cohort showed significant enrichment in pathways 

involved in neuronal development and morphogenesis, whereas the valida=on cohort pathways 

were predominantly related to calcium handling. This divergence may reflect the different selec=ve 

pressures or cellular contexts between the two cohorts. The presence of genes such as BDNF in the 

discovery cohort and ANK2 in the valida=on cohort highlights poten=al key players in the response 

to therapy within different biological processes. 

 

3.3.2.2.2 Cellular components 
 

Inves=ga=ons into the discovery cohort revealed significant enrichment in various cellular 

components (Figure 3-7A). The mRNA cap binding complex exhibited the highest level of enrichment 

(13.67-fold). Another cellular feature, the "cell cortex region", showed a 7.40-fold enrichment.  The 

“midbody” cellular component term showed 3.46-fold enrichment. 
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Addi=onal cellular components such as the “ca=on channel complex, nuclear speck, and the cell 

cortex” were also significantly enriched, with scores 3.2, 3.0, 3.0, respec=vely. Membrane-associated 

structures like the "basolateral plasma membrane" and various transporter complexes showed 

enrichment values ranging from 2.85 to 3.02. 

 

The valida=on cohort corroborated some of the discovery findings and also provided dis=nct insights 

(Figure 3-7B). Remarkably, the phospha=dylinositol 3-kinase complex, class I, presented a substan=al 

20.90-fold enrichment, comprising PIK3CA, PIK3R1, and PIK3R6 genes. Collagen-associated 

structures such as the "fibrillar collagen trimer" and the "banded collagen fibril" both revealed an 

iden=cal enrichment of 12.67-fold. Components of the sarcoplasmic re=culum membrane and 

collagen complexes demonstrated significant presence, with enrichment values of 11.61 and 11.00, 

respec=vely. Noteworthy was the voltage-gated sodium channel complex showing a 9.95-fold 

enrichment. The “extracellular matrix component” displayed a 7.82-fold enrichment. 

 

3.3.2.2.3 Molecular func>on 
 

The discovery cohort analysis uncovered a significant enrichment in molecular func=ons associated 

with various binding ac=vi=es and ion transport (Figure 3-7A). Notably, "RNA 7-methylguanosine cap 

binding" showed the highest fold enrichment at 22.45. The "structural molecule ac=vity conferring 

elas=city", presented a significant 15.15-fold enrichment, sugges=ng an important role in cellular 

structural integrity. The “RNA cap binding” ac=vity was also notably enriched (11.22-fold), again 

implica=ng the mRNA processing machinery. Ion channel and transporter ac=vi=es, including 

chloride, sodium, and various voltage-gated channels, displayed fold enrichments ranging from 3.08 

to 4.08. These findings suggest an intricate network of ion homeostasis and signalling within the 

discovery cohort. Furthermore, "gated channel ac=vity" was enriched 2.94, indica=ng a 

comprehensive role of these channels in cellular func=ons. The "Carbohydrate binding" ac=vity was 

also observed to be enriched with a fold change of 2.87. 

 

In the valida=on cohort (Figure 3-7B), "glutamate-gated calcium ion channel ac=vity" was 

prominently enriched (16.50-fold), indica=ng a crucial role in neurotransmission. The "Structural 

molecules conferring elas=city" showed a 13.75-fold enrichment, highligh=ng its importance in 

cellular and extracellular structural stability. 
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Furthermore, the valida=on cohort confirmed significant enrichments in molecular func=ons related 

to sensory percep=on, with "melanocor=n receptor ac=vity" (13.75-fold) and "opioid receptor 

ac=vity" (12.22-fold) being prominent. This suggests a poten=al role for these receptors in cellular 

signalling pathways related to these func=ons. Transporter ac=vi=es for "aroma=c amino acids 

transmembrane" and the "NMDA glutamate receptor ac=vity" were also significantly enriched, 

poin=ng to essen=al func=ons in nutrient uptake and synap=c plas=city, respec=vely. Notably, the 

"extracellular matrix structural cons=tuent conferring tensile strength" showed an 8.18-fold 

enrichment, involving a range of collagen genes, cri=cal for maintaining the extracellular matrix's 

integrity. 

 

The GO analysis of variants that became resistant to treatment across primary to recurrent tumours 

in the discovery and valida=on cohorts has provided insighOul findings, par=cularly in iden=fying 

enriched biological processes, cellular components, and molecular func=ons specific to each cohort. 

For instance, the discovery cohort highlighted the significance of pathways related to cardiac and 

neuronal func=ons, such as SA node cell ac=on poten=al and synap=c func=ons, which are crucial in 

understanding the cellular mechanisms underlying treatment resistance whereas the group of 

variants likely responded to treatment showed the regula=on of cell growth and axonogenesis as a 

significant mechanism, with notable genes like BDNF recurrently implicated in these pathways. 

 

However, while the GO analysis was informa=ve, it had certain limita=ons. The inherent specificity 

and redundancy of GO terms can some=mes obscure broader biological insights, as many genes are 

categorized under mul=ple, overlapping terms. This can dilute the impact of dis=nct biological 

processes and complicate the extrac=on of clear, ac=onable insights. Moreover, GO analysis tends to 

focus on individual genes and their associated func=ons without providing a comprehensive view of 

how these func=ons interact within larger biological networks. 

 

Given these limita=ons, we decided to move on to pathway analysis. Pathway analysis offers a more 

holis=c view of cellular responses, allowing us to see how groups of genes interact within wider 

biological pathways and how these interac=ons change in response to treatment. 
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Figure 3-7: Func>onal enrichment analysis. 

Combined Bubble plots illustra>ng the results of Gene Ontology (GO) func>on enrichment analysis. The three main 
categories of GO terms are represented: Biological processes (BP); Cellular components (CC);  Molecular func>on (MF). 
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Green and Red boxes show common pathways between the cohorts. The y-axis shows pathway terms, while the x-axis 
denotes degree of enrichment. The size of the bubble determined by the number of genes associated with the term 
whereas the colour of the bubbles indicates the significance (adj p values). Top 10 altered pathways are visualized only for: 
A: Sensi>ve group of variants in the discovery cohort. 
B: Sensi>ve group of variants in the valida>on cohort. 
Combined Bubble plots illustra>ng the results of Gene Ontology (GO) func>on enrichment analysis. The three main 
categories of GO terms are represented: Biological processes (BP); Cellular components (CC);  Molecular func>on (MF). 
Green and Red boxes show common pathways between the cohorts. The y-axis shows pathway terms, while the x-axis 
denotes degree of enrichment. The size of the bubble determined by the number of genes associated with the term 
whereas the colour of the bubbles indicates the significance (adj p values). Top 10 altered pathways are visualized only for: 
A: Sensi>ve group of variants in the discovery cohort. 
B: Sensi>ve group of variants in the valida>on cohort. 
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3.3.3 Pathway enrichment analysis using PathScore 

To determine which pathways may be involved in treatment resistance and vulnerability, I used 

PathScore (Gaffney and Townsend, 2016), a pathway-level analysis tool that integrates gene-level 

variant data. APer submivng the gene lists (list of all variants) to the PathScore server, variants were 

processed and labelled as follows: 

 

• Loaded: Variants used in the analysis, aPer filtering. These correspond to variants with valid 
hugo-entrez pairs for genes that are present in MSigDB. 

• Unused:  Variants with valid hugo-entrez pairs, but the corresponding genes are not 
present in MSigDB. 

• Rejected: Variants with invalid hugo-entrez pairs. 
 

PathScore u=lized the variants labelled as 'Loaded' in Table 3-3 for pathway analysis. As the analysis 

progressed, the number of pa=ents ini=ally enrolled was adjusted based on the status of their 

variants. This led to reduc=on, or exclusion, of pa=ents from each group indica=ng that some carried 

muta=ons in genes not present in MSigDB. Hence, the number of pa=ents changes from one group 

to another, caused by their removal from the study.  

 

Table 3-3: Summary of variants accepted for pathway analysis 

Variant grouping Cohort 

Number 

of 

patients 

Loaded 

variants 

Unused 

variants 

Rejected 

variants 

Low VAF in primary and recurrent 
Discovery 32 4761 5070 199 

Validation 92 1410 1367 0 

Declining VAF from primary to recurrent 
Discovery 24 207 199 1 

Validation 75 435 381 0 

Increasing VAF from primary to recurrent 
Discovery 17 248 266 10 

Validation 64 402 389 0 

High VAF in primary and recurrent 
Discovery 31 265 208 4 

Validation 87 1022 901 1 

 

 

3.3.3.1 Clonally expanded variants 

To iden=fy disrupted pathways resul=ng from these variants, I ran PathScore using the common 

variants between primary and recurrent tumours that followed a clonal expansion pa4ern. I applied 

this analysis separately to my two cohorts, the discovery and valida=on datasets, trea=ng them as 

independent sources to increase confidence in the results. APer submivng gene lists from each 
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cohort to PathScore, I analysed the results separately and then compared them. Only the overlapping 

results, which demonstrated a high degree of concordance between the two cohorts, were 

considered for further analysis. This methodological approach was employed to mi=gate poten=al 

sources of bias and enhance the robustness of the analysis outcomes. Ini=ally, gene lists of expanded 

variants group in the discovery cohort did not show any significant pathways while the expanded 

group of variants in the valida=on cohort showed eight significant pathways. I then expanded the 

analysis by comparing the clonal group of variants. Because there is no universally accepted cutoff 

for dis=nguishing clonal from subclonal muta=ons, I defined a prac=cal threshold based on the mean 

variant allele frequency (VAF). Variants with a VAF equal to or greater than the mean VAF of all 

variants within each tumour were considered clonal, represen=ng the clonally dominant popula=on. 

Using this classifica=on, I iden=fied 129 significantly altered pathways in the discovery cohort and 

193 significantly altered pathways in the valida=on cohort. The discovery cohort is smaller than the 

valida=on cohort, and with PathScore removing many variants that are not present in the MSigDB, 

these factors contributed to the lack of significant pathways in the clonal group of expanded variants 

in the discovery cohort. Addi=onally, a biological explana=on may also underlie this observa=on: if 

resistance pathways were already clonal in the discovery cohort, they would not be able to expand 

further. Therefore, I combined all cohorts to increase the likelihood of iden=fying significant 

pathways in the clonal expanded variants group, and seven common pathways were found across 

the clonal group of variants in the discovery cohort, as well as the expanded and clonal groups of 

variants in the valida=on cohort (Figure 3-8A-C). I validated these seven pathways across both 

cohorts, using them as representa=ves for the expanded variants in the discovery cohort (Figure 3-

8).  

From my analysis, I then focused on seven common pathways shared by the two dis=nct cohorts, 

summarised in table 3-3.  
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Figure 3-8: PathScore results for expanded variants. 

A: Intersec>on between expanded and clonal variants of discovery cohort. 
B: Intersec>on between expanded and clonal variants of valida>on cohort. 
C: The common pathways across all group of variants. 
D-E: Volcano plots of discovery (D) and valida>on (E) cohorts, indica>ng the altered pathways affected by variants 
that increased in prevalence through treatment or variants of unchanged variant allele frequency. The Effect Size 
(X-axis) is the PathScore metric that quan>fies the magnitude of the pathway altera>on (enrichment). It is calculated 
as the ra>o of the es>mated effec>ve pathway size to the actual pathway size. The es>mated effec>ve pathway size 
is the maximum likelihood es>mate derived from the observed gene harbouring VAF-increasing variants. This ra>o 
measures the rela>ve degree of overburden of the pathway, and is used to rank pathways by the strength of the 
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observed effect. The −logP-value (Y-axis) represents the sta>s>cal significance of the disparity between the actual 
and effec>ve pathway sizes, calculated using the likelihood ra>o test. Pathways that are considered significantly 
enriched are highlighted in blue based on a threshold of an adjusted P-value (FDR≤0.05). 
F: Matrix plot of pa>ent-gene pairs for the common 7 pathways. Each column is a pa>ent, and each row is a gene. 
Only pa>ents that have the pathway altered are plo@ed. 

 

This section systematically delineates the involvement of seven crucial signalling pathways 

(table 3-4), as evidenced in both the discovery and validation cohorts, thereby deepening our 

understanding of the molecular mechanisms underlying glioblastoma multiforme (GBM) and 

suggesting potential therapeutic targets. 

 

Table 3-4: Common pathways between expanded variants of discovery and valida7on cohorts 

PATHWAY NAME No. of genes 

% a^ected 

discovery 

patients 

% a^ected 

validation 

patients 

KEGG_MELANOMA 12/71 51.6 20.3 

KEGG_PROSTATE_CANCER 12/89 48.4 20.3 

KEGG_P53_SIGNALING_PATHWAY 7/68 35.5 15.6 

KEGG_GLIOMA 10/65 48.4 17.2 

REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING 9/42 32.3 14.1 

BIOCARTA_CTCF_PATHWAY 6/23 45.2 9.4 

BIOCARTA_TEL_PATHWAY 6/18 35.5 10.9 

 

 

The explora=on of the KEGG Melanoma pathway, which primarily focuses on BRAF muta=ons that 

enhance the MAPK/ERK signalling pathways, highlights the broader roles these pathways play across 

cancers, including GBM. Although BRAF muta=ons are rare in GBM (McNulty et al., 2021, Munjapara 

et al., 2022), our analysis iden=fied variants in 12 other genes within the 71-gene KEGG Melanoma 

pathway, present in 51.6% of the discovery cohort and 20.3% of the valida=on cohort (table 3-4 and 

fig. 9F). Targe=ng specific muta=ons such as BRAF V600E is challenging in GBM due to its low 

prevalence, limi=ng the applicability of muta=on-specific therapies. Therefore, therapeu=c strategies 

aimed at modula=ng pathway ac=vity as a whole, rather than focusing on individual muta=ons, may 

be more effec=ve (Kaley et al., 2018). 

 

Similarly, the KEGG Prostate Cancer pathway elucidates the importance of androgen receptor 

signalling and cell cycle control mechanisms that are pivotal for the progression of prostate cancer 

and poten=ally relevant for GBM (Zalcman et al., 2018). In my analysis, I iden=fied variants in 12 out 

of 89 genes within this pathway, with 48.4% of pa=ents in the discovery cohort and 20.3% in the 
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valida=on cohort carrying variants in these genes. While these genes are not exclusive to prostate 

cancer and are involved in mul=ple biological processes, their presence in GBM suggests that some 

pathway components may be shared across tumour types. This observa=on may help inform future 

therapeu=c explora=on, par=cularly in targe=ng cell cycle and signalling pathways. 

 

The direct relevance of the KEGG Glioma pathway to GBM cannot be overstated, as it encapsulates 

the gene=c altera=ons typical of gliomas such as muta=ons in TP53, EGFR, and PTEN (Barthel et al., 

2019). The variants were iden=fied in 10 out of 65 genes within this pathway, found in nearly half of 

pa=ents in the discovery cohort and 17.2% of pa=ents in the valida=on cohort. While these genes 

are well-established in glioma biology, the observed differences in frequency between cohorts may 

reflect underlying biological varia=on or technical factors such as sample size and filtering thresholds. 

Nevertheless, the presence of variants in canonical glioma genes supports the biological relevance 

of this pathway and its poten=al contribu=on to treatment response. 

 

Turning to the KEGG P53 Signalling pathway, which is instrumental in regula=ng cell cycle, DNA repair, 

and apoptosis, the analysis revealed that 7 out of 68 genes harboured variants, influencing 35.5% of 

the discovery cohort and 15.6% of the valida=on cohort. The ubiquitous nature of p53 muta=ons 

across various cancers offers a compelling case for exploring therapeu=c strategies aimed at restoring 

p53 func=on, which could also be applicable to GBM (Zhang et al., 2018). 

 

The BIOCARTA_CTCF_PATHWAY, which focuses on the CCCTC-binding factor (CTCF), a pivotal 

transcrip=onal regulator involved in chroma=n organiza=on, revealed variants in 6 out of 23 genes 

(Sese et al., 2021). These variants impacted 45.2% of the discovery cohort and 9.4% of the valida=on 

cohort, highligh=ng the pathway’s poten=al role in the transcrip=onal dysregula=on observed in 

GBM (Liu et al., 2023).  

 

The BIOCARTA_TEL_PATHWAY, dealing with telomere maintenance, cri=cal for cellular longevity and 

immortality in cancer cells, showed changes affec=ng 35.5% and 10.9% of the discovery and 

valida=on cohorts, respec=vely. This pathway's altera=on underpins the fundamental role of 

telomere dynamics in cancer progression and provides a basis for exploring telomerase as a 

therapeu=c target in GBM (Langford et al., 1995, Lotsch et al., 2013, Diplas et al., 2018). 

 

Finally, the analysis iden=fied the Reactome ‘PI3K events in ErbB2 signalling’ pathway will be 

discussed in detail in the ErbB signalling pathway sec=on later in this chapter.  
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The dispari=es in variant frequencies observed between the discovery and valida=on cohorts 

necessitate careful considera=on of cohort bias and the inherent heterogeneity of GBM. Such factors 

are cri=cal in interpre=ng the gene=c data and ensuring the robustness of conclusions drawn from 

this study. Consequently, this analysis not only enhances our comprehension of the complex gene=c 

architecture of GBM but also aligns with broader efforts to develop targeted therapeu=c strategies 

based on the unique gene=c profiles observed in these pa=ents. 

 

In summary, the pathway analysis highlights cri=cal biological mechanisms and poten=al therapeu=c 

targets within GBM. Addressing the varia=ons observed between cohorts requires careful cohort 

selec=on and characteriza=on, par=cularly given GBM's heterogeneity and complexity. This 

understanding is crucial for developing more effec=ve therapies tailored to the genomic landscape 

of GBM. 

 

3.3.3.2 Declining variants  

The analysis of the declining group of variants iden=fied 7 significant pathways in the discovery 

cohort and 220 significant pathways in the valida=on cohort (Figure 3-9). I then took the overlapping 

pathways to cross validate between the two cohorts. The pathways examined, number of genes 

affected, and the percentage of pa=ents affected in both cohorts are summarized in Table 3-5. 

 

Table 3-5: Common pathways between declining variants of discovery and valida7on cohorts 

PATHWAY NAME No. of genes 

% 

a^ected 

discovery 

patients 

% 

a^ected 

validation 

patients 

BIOCARTA_CBL_PATHWAY 4/13 12.5 13.3 

BIOCARTA_EGFR_SMRTE_PATHWAY 2/11 12.5 8 

PID_ARF6_PATHWAY 5/35 20.8 9.3 

PID_PTP1B_PATHWAY 8/52 20.8 14.7 

REACTOME_SIGNALING_BY_ERBB4 8/87 20.8 21.3 

REACTOME_GAB1_SIGNALSOME 4/36 16.7 20 
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Figure 3-9: PathScore results for declined variants. 

A: Overlapping pathways of declined variants between discovery and valida>on cohorts. 
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B-C: Volcano plots of discovery (B) and valida>on (C) cohorts, showing pathways impacted by variants that 
decreased in variant allele frequency through treatment. The Effect Size (X-axis) is the PathScore metric that 
quan>fies the magnitude of the pathway altera>on (enrichment). It is calculated as the ra>o of the es>mated 
effec>ve pathway size to the actual pathway size. The es>mated effec>ve pathway size is the maximum likelihood 
es>mate derived from the observed gene harbouring VAF-declining variants. This ra>o measures the rela>ve degree 
of overburden of the pathway, and is used to rank pathways by the strength of the observed effect. The −logP-value 
(Y-axis) represents the sta>s>cal significance of the disparity between the actual and effec>ve pathway sizes, 
calculated using the likelihood ra>o test. Pathways that are considered significantly enriched are highlighted in red 
based on a threshold of an adjusted P-value (FDR≤0.05). 
D: Matrix plot of pa>ent-gene pairs for the common 6 pathways. Each column is a pa>ent, and each row is a gene. 

Only pa>ents have the pathway altered are plo@ed. Red boxes are pathway genes that are mutated in one pa>ent 

at least, where blue boxes indicate co-occurrence. 
 

 

The compara=ve pathway analysis between the discovery and valida=on cohorts revealed several 

pathways with significant altera=ons, sugges=ng their poten=al roles in sensi=zing glioblastoma cells 

to therapy. Below, I expand upon these findings to explore if and how these pathways could enhance 

the cancer cells' suscep=bility to treatment, and whether targe=ng these pathways could be 

disadvantageous for the tumour when exposed to therapy. 

 

The CBL (Casitas B-lineage Lymphoma) pathway involves CBL proteins which are a family of E3 

ubiqui=n ligases that regulate receptor tyrosine kinase (RTK) signalling through ubiqui=na=on and 

degrada=on (Jing et al., 2016). Varia=ons observed in this pathway (12.5% in discovery and 13.3% in 

valida=on) suggest its role in modula=ng growth factor signalling, which is crucial for tumour survival 

and prolifera=on. In the literature, it has been established that disrup=on of CBL func=on can lead to 

impaired degrada=on of RTKs, resul=ng in altered signalling dynamics that could make tumour cells 

more vulnerable to therapy. This aligns with our findings, indica=ng that disrupted 

BIOCARTA_CBL_PATHWAY enhances therapeu=c sensi=vity by reducing oncogenic signalling and 

increasing tumour cell sensi=vity to treatments. 

 

Altera=ons in the EGFR_SMRTE (Silencing Mediator for Re=noid and Thyroid hormone Receptors) 

pathway (12.5% in discovery and 8% in valida=on) highlight its significance in glioblastoma. EGFR is 

oPen overexpressed or mutated in glioblastoma, leading to enhanced cell prolifera=on and survival. 

Targe=ng this pathway with EGFR inhibitors TKIs or monoclonal an=bodies could disrupt these 

processes (Darré et al., 2024). Previous studies suggest that combining EGFR inhibitors with other 

treatments can improve efficacy and overcome resistance mechanisms (Chong and Janne, 2013). Our 

findings support this, as the altered EGFR_SMRTE pathway may represent a vulnerability that can be 

therapeu=cally exploited. 
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The PTP1B (Protein Tyrosine Phosphatase 1B) pathway, with a higher perturba=on rate in discovery 

(20.8%) compared to valida=on (14.7%), involves Protein Tyrosine Phosphatase 1B, which nega=vely 

regulates insulin and lep=n signalling. Literature suggests that inhibi=ng PTP1B can reduce tumour 

growth and improve sensi=vity to chemotherapy, highligh=ng its poten=al as a therapeu=c target 

(Bartolome et al., 2020). Our data align with these reports, indica=ng that targe=ng the disrupted 

PID_PTP1B_PATHWAY could enhance glioblastoma cell suscep=bility to treatment and reduce 

therapeu=c resistance. 

 

The ARF6 (ADP-Ribosyla=on Factor 6) pathway is involved in ac=n cytoskeleton remodelling and 

membrane trafficking. Altera=ons observed (20.8% in discovery vs. 9.3% in valida=on) indicate its 

role in cancer cell invasion and metastasis. Studies have shown that inhibi=ng ARF6 can reduce these 

processes, poten=ally decreasing the invasive capacity of glioblastoma cells and making them more 

suscep=ble to conven=onal therapies (Yamauchi et al., 2017, Miao et al., 2012). This is consistent 

with our findings, sugges=ng that disrup=on of the ARF6 pathway can enhance the effec=veness of 

cancer treatments. 

 

The GAB1 (GRB2-Associated-Binding Protein 1) signalsome pathway, with higher altera=ons in 

valida=on (20%) compared to discovery (16.7%), plays a role in signal transduc=on downstream of 

RTKs. Gab1 acts as a docking plaOorm for various signalling molecules, media=ng pathways that 

promote cell survival and prolifera=on. Disrup=on of Gab1 signalling could impair these survival 

pathways, sensi=zing glioblastoma cells to apoptosis and enhancing the efficacy of treatments. This 

aligns with our observa=ons, sugges=ng that targe=ng the disrupted GAB1 signalsome pathway could 

make tumour cells more suscep=ble to therapy. 

 

Finally, the ErbB4 signalling pathway showed consistent altera=ons (20.8% in discovery and 21.3% in 

valida=on), sugges=ng its pivotal role in glioblastoma. ErbB4 will be further discussed in the next 

sec=on that explain in detail the ErbB signalling pathway. 

 

In conclusion, analysis of soma=c muta=ons in primary and recurrent tumours highlights key 

biochemical pathways associated with declining variants, sugges=ng poten=al vulnerabili=es that 

could be exploited therapeu=cally.  Pathways such as CBL, EGFR, PTP1B, ARF6, and GAB1 were 

commonly altered in variants that decreased in frequency following treatment, indica=ng a possible 

role in sensi=zing glioblastoma cells to therapy. These shared insights support the development of 

pathway-targeted strategies aimed at enhancing treatment response, rather than overcoming 



 

Chapter 3                                                                                                                                            105 

resistance alone. Con=nued research and clinical valida=on are essen=al to translate these findings 

into effec=ve therapies that improve outcomes for glioblastoma pa=ents. 

 

3.3.3.3 ErbB Signalling Pathways 

The pathway analysis revealed two disrupted pathways associated with ERBB signalling. The 

REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING pathway was favoured by cancer cells during 

therapy, contribu=ng to the development of resistance while REACTOME_SIGNALING_BY_ERBB4 

pathway was found to be favoured by the treatment, sensi=zing cancer cells when exposed to 

therapy. 

 

ErbB signalling is a cri=cal pathway in the regula=on of cellular processes, including prolifera=on, 

differen=a=on, migra=on, and survival. The ErbB family of receptor tyrosine kinases (RTKs) comprises 

four members: EGFR (ErbB1), ErbB2 (HER2/neu), ErbB3, and ErbB4. These receptors are ac=vated by 

ligand binding, leading to receptor dimeriza=on and autophosphoryla=on. This, in turn, 

triggers downstream signalling cascades like the PI3K/AKT and RAS/RAF/MEK/ERK pathways. 

Dysregula=on of ErbB signalling is implicated in various cancers, making it a focal point for targeted 

cancer therapies(Hynes and Lane, 2005). GBM IDH wild-type (IDHwt) frequently exhibits EGFR 

amplifica=on or muta=on, leading to aberrant ac=va=on of ErbB signalling pathways, which drive 

tumour growth and survival (Brennan et al., 2013, Mellinghoff et al., 2005). 

 

ErbB2, par=cularly, is known for its role in various cancers, including glioblastoma. It lacks a direct 

ligand and instead is ac=vated through heterodimeriza=on with other ErbB family members. 

Overexpression or amplifica=on of ErbB2 is associated with aggressive tumour behaviour and poor 

prognosis. Consequently, targe=ng ErbB2 with monoclonal an=bodies (e.g., trastuzumab) or small 

molecule inhibitors has become a cornerstone in trea=ng ErbB2-posi=ve cancers (Moasser, 2007).  

 

ErbB4, a less studied but emerging player in cancer biology, including GBM, presents a fascina=ng 

complexity. It can undergo proteoly=c cleavage, releasing an intracellular domain that can translocate 

to the nucleus and influence gene expression. The role of ErbB4 in cancer can vary significantly 

depending on tumour type, with both tumour-promo=ng and tumour-suppressing func=ons 

reported (Lucas et al., 2022). In GBM, ErbB4 expression has been correlated with more differen=ated 

tumour phenotypes and be4er prognosis, sugges=ng a poten=al tumour-suppressive role (Donoghue 

et al., 2018). 
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The REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING pathway was disrupted in 32% of the 

discovery cohort and 14% of the valida=on cohort. The PI3K/AKT pathway, oPen ac=vated by ERBB2 

(HER2) signalling, is a well-known mediator of cell growth and survival. Aberrant ac=va=on of this 

pathway can confer resistance to therapies by promo=ng survival signals that counteract the effects 

of treatment (Rascio et al., 2021). 

 

In the REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING pathway, I focused on deleterious muta=ons 

to explore their poten=al func=onal impact within cri=cal regions of the genes, which provided 

insights into their role in tumour progression. By examining these muta=ons, I iden=fied whether 

they clustered in key func=onal domains that could affect gene ac=vity and contribute to treatment 

resistance. For a detailed view of where these muta=ons occurred within the gene structures, refer 

to Figure 3-10, which maps each variant to its corresponding posi=on along the genes. Muta=ons in 

EGFR were primarily observed in the furin-like domain such as the A289V variant, and the kinase 

tyrosine domain, poten=ally altering receptor ac=va=on and signal transduc=on (Miyashita et al., 

2020). For PTEN, muta=ons were spread across the gene and mainly in the PTEN_C2 domain. Other 

genes involved in this pathway had one variant per gene such as NRG1 which had a splice site 

muta=on. The PIK3CA pathway showed a single muta=on iden=fied as a start loss variant, while 

PIK3R1 had a muta=on in the SH2 domain.  

One limita=on of this approach is that variant effect predic=on tools such as SIFT, and PolyPhen-2 

tend to priori=se loss-of-func=on muta=ons, and may underes=mate the impact of gain-of-func=on 

missense muta=ons par=cularly relevant for oncogenes like PIK3CA, and mTOR, where ac=va=ng 

muta=ons are known to drive cancer. As a result, some poten=ally important variants may have been 

missed by the filtering strategy. Nevertheless, the domain-specific varia=on pa4erns observed in the 

retained variants suggest dis=nct mechanisms of disrup=on that may s=ll have therapeu=c relevance.  
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Figure 3-10: Variants associated with REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING. 

This lollipop plot, generated by Muta>onMapper (h@ps://www.cbioportal.org/muta>on_mapper), visualizes the 

soma>c variants found in the protein structure. 

X-axis: Represents the amino acid length of the protein. Coloured Blocks: Denote known func>onal protein domains. 

Lollipops: Represent specific amino acid subs>tu>on variants: 

• The height of the lollipop stem indicates the frequency (number of samples/patients) in which 
that specific mutation was observed. 

• Only the most recurrent or significant hotspot mutations are explicitly labelled with their protein 
change, unlabelled lollipops represent less frequent variants. 

Lollipop Color: Black for Trunca>ng, Green for Missense, Purple for Structural Variant / Fusion (SV/Fusion), Brown 

for In-frame Dele>on/Inser>on and Gold for Splice Site Muta>on. 

 

 

Addi=onally, the REACTOME_SIGNALING_BY_ERBB4 pathway was disrupted in 21% of the pa=ents 

across both the discovery and valida=on cohorts. ERBB4, along with its ligands and downstream 

signalling molecules, can ac=vate pathways such as PI3K/AKT and MAPK, which are crucial for cell 

survival and prolifera=on. However, when ERBB4 signalling is altered, it may enhance the efficacy of 

certain therapies by increasing cellular suscep=bility to treatment-induced apoptosis. 

 

In this pathway, muta=ons in EGFR were found not only in the furin-like and kinase tyrosine domains 

but also in the receptor-ligand domain, sugges=ng broader impacts on receptor func=on. For PTEN, 

the PTEN_C2 domain was notably free from variants, indica=ng a more localized impact on its lipid-

binding role. NRG1 muta=ons were located in the EGF domain, hin=ng at different effects on 

signalling mechanisms. Regarding PIK3CA, muta=ons were detected in the PI3K_p85B, PI3K_C2, and 

PI3Ka domains, indica=ng broader impacts on the PI3K/AKT pathway. Given that PI3K proteins 

func=on primarily as kinases, these muta=ons may also influence their phosphoryla=on ac=vity, 

poten=ally leading to dysregulated downstream signaling (Roger Belizaire, 2021). PIK3R1 muta=ons 

were found in the PI3K_P85_iSH2 domain, poten=ally affec=ng PI3K interac=ons. The variant-gene 

maps to protein domains are illustrated in Figure 3-11. 
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Figure 3-11: Variants associated with REACTOME_SIGNALING_BY_ERBB4 

This lollipop plot, generated by Muta>onMapper (h@ps://www.cbioportal.org/muta>on_mapper), visualizes the soma>c 

variants found in the protein structure. 

X-axis: Represents the amino acid length of the protein. Coloured Blocks: Denote known func>onal protein domains. 

Lollipops: Represent specific amino acid subs>tu>on variants: 

• The height of the lollipop stem indicates the frequency (number of samples/patients) in which that specific 
mutation was observed. 

• Only the most recurrent or significant hotspot mutations are explicitly labelled with their protein change, 
unlabelled lollipops represent less frequent variants. 

Lollipop Color: Black for Trunca>ng, Green for Missense, Purple for Structural Variant / Fusion (SV/Fusion), Brown for In-

frame Dele>on/Inser>on and Gold for Splice Site Muta>on. 

 

 

These findings suggest that while some ERBB pathway disrup=ons may enhance treatment sensi=vity, 

others contribute to treatment resistance, highligh=ng the dual role of ERBB signalling in cancer 

therapy outcomes. Furthermore, the findings highlight the importance of pathway-specific gene=c 

altera=ons in predic=ng and op=mising cancer treatment responses. The variability in muta=onal 

landscapes across pa=ents further underscores the need for personalized therapeu=c strategies, 

rather than uniform treatment approaches, to ensure pa=ents receive the most effec=ve 

interven=ons for their individual GBM profiles. 

 

3.3.4 Copy Number Results 

3.3.4.1 Pathways corrected for copy number 

In this chapter, I highlight the advantages of Cancer Cell Frac=on (CCF) over Variant Allele Frequency 

(VAF) in defining the clonal architecture of tumours. CCF es=mates the propor=on of cancer cells 

harbouring specific gene=c altera=ons, offering a clearer view of tumour heterogeneity than VAF, 

which is confounded by factors like copy number varia=ons and tumour purity. VAF's limita=on is 

par=cularly evident in regions with variable copy numbers, where it fails to accurately reflect clonal 

status. In regions of copy number stability, VAF and CCF are more closely aligned, making VAF a more 

reliable proxy for clonal frac=on. However, in regions with copy number gains or losses, VAF can 

misrepresent the propor=on of cancer cells with the variant. 

 

Given the requirement for high-depth sequencing data (around 200X coverage) to reliably es=mate 

CCF (Tanner et al., 2021), our dataset's lower coverage necessitated alterna=ve approaches. I 

compared copy number profiles of primary and recurrent tumours, using primary samples as a 

baseline to track changes post-treatment. Tradi=onal copy number callers were unsuitable due to 

requiring normal samples for this kind of assessment, so copy number data were converted into BED 
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files to assess changes at specific loci, allowing for a detailed analysis of copy number altera=ons and 

the filtering of variants in regions with variable copy numbers. 

 

APer filtering out variants from regions with variable CNAs in the selected-for group of variants, the 

reanalysis of significant pathways revealed that all pathways, except the 

REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING pathway, were detected in both cohorts. This 

pathway was absent in the discovery cohort but present in the valida=on cohort. The discrepancy 

arises from the pathscore's dependence on pa=ent numbers for pathway significance; removing 

variants from regions with variable CNAs effec=vely reduces the cohort size, as shown in table 3-6 

where the CNA P>R column illustrates the status of copy number of each variant. 

 

Applying the same protocol to the group of genes selected-against variants, it was found that the 

same pathways were deemed significant in the valida=on cohort, whereas the discovery cohort 

showed no significant pathways. This disparity is again likely due to the smaller size of the discovery 

cohort, which diminishes its sta=s=cal power to detect significant pathways. However, 

REACTOME_SIGNALING_BY_ERBB4 pathway persisted in the valida=on cohort, demonstra=ng that 

its significance is not solely linked to regions affected by CNAs as indicated in table 3-7.   

 

The exclusion of variants in regions with variable CNAs was intended to refine the analysis, as VAF 

alone does not account for the complexi=es introduced by CNAs. This filtering improved pathway 

analysis by focusing on regions with stable copy numbers, where VAF more accurately reflects the 

muta=on's clonal frac=on. While variable CNAs can obscure certain pathways, both ERBB signalling 

pathways remained significant in the valida=on cohort, demonstra=ng robustness to the filtering 

process. This indicates that the presence of ERBB signalling is not merely an ar=fact of VAF 

misinterpreta=on due to CNAs, but rather reflects genuine biological relevance. Therefore, the 

analysis confirms that both ERBB signalling pathways are not redundant and remain pathways of 

interest, even aPer accoun=ng for copy number variability. 

 

Overall, these findings demonstrate that the iden=fied pathways remain robust and significant aPer 

accoun=ng for copy number changes, highligh=ng the importance of adequate sample sizes in 

genomic studies to capture cri=cal biological insights. Refining pathway analysis to consider copy 

number stability provides a more accurate framework for understanding tumour gene=cs and 

poten=al therapeu=c targets. 
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Table 3-6: REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING 

Chr Position 
VAF CNA Variant 

e1ect 
Protein AA change 

 P>R  P>R 

chr4 75681166 0.121 > 0.463 2 > 2 MISSENSE BTC R62W 

chr7 55154129 0.923 > 0.88 87 > 86 MISSENSE EGFR A289V 

chr7 55154129 0.209 > 0.196 2 > 2 MISSENSE EGFR A289V 

chr7 55249000 
0.0004094 > 

0.294 
132 > 3 MISSENSE EGFR M766I 

chr7 55242461 
0.0005139 > 

0.345 
2 > 2 MISSENSE EGFR I744T 

chr12 56487184 0.024 > 0.211 2 > 2 NONSENSE ERBB3 R444* 

chr16 2257260 0.183 > 0.355 2 > 2 MISSENSE MLST8 E163K 

chr8 32595826 0.129 > 0.181 2 > 2 SPLICE_SITE NRG1 X34_splice 

chr3 179198826 0.444 > 0.444 2 > 2 start_lost PIK3CA M1? 

chr5 68293310 0.196 > 0.334 6 > 5 MISSENSE PIK3R1 G376R 

chr10 87864492 0.282 > 0.77 1 > 2 MISSENSE PTEN I8S 

chr10 87952260 0.424 > 0.889 2 > 2 SPLICE_SITE PTEN X212_splice 

chr10 87933147 0.497 > 0.25 0 > 1 NONSENSE PTEN R130* 

chr10 87933063 0.52 > 0.753 2 > 2 FRAME_SHIFT PTEN K102Nfs*11 

chr10 87961056 0.609 > 0.486 2 > 2 NONSENSE PTEN K322* 

chr10 87961042 0.432 > 0.467 1 > 2 FRAME_SHIFT PTEN T319* 

chr10 89711929 0.174 > 0.305 2 > 2 FRAME_SHIFT PTEN K183Tfs*5 

chr10 89720676 0.061 > 0.349 2 > 2 MISSENSE PTEN N276S 

chr10 89711875 0.075 > 0.303 2 > 2 SPLICE_SITE PTEN G165R 

chr16 2111923 
0.002543 > 

0.29 
2 > 2 MISSENSE TSC2 V391M 
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Table 3-7: REACTOME_SIGNALING_BY_ERBB4 

Chr Position 
VAF CNA 

Variant e1ect Protein AA change 
 P>R  P>R 

chr7 148786549 
0.229 > 

0.117 
5 > 4 SPLICE_SITE CUL1 X433_splice 

chr7 148485733 
0.341 > 

0.078 
4 > 3 MISSENSE CUL1 K522Q 

chr7 55143387 
0.633 > 

0.063 
50 > 5 MISSENSE EGFR R108K 

chr7 55143387 
0.834 > 

0.003232 
2 > 2 MISSENSE EGFR R108K 

chr7 55154055 
0.236 > 

0.032 
2 > 2 FRAME_SHIFT EGFR P266Hfs*14 

chr7 55210077 
0.85 > 

0.0003778 
49 > 64 MISSENSE EGFR G63R 

chr7 55269049 
0.9 > 

0.002786 
2 > 2 SPLICE_SITE EGFR  

chr7 55249010 
0.218 > 

0.179 
3 > 2 IN_FRAME_INS EGFR N771_H773dup 

chr7 55266500 
0.292 > 

0.124 
4 > 3 MISSENSE EGFR E931G 

chr7 55223567 
0.948 > 

0.0004922 
2 > 2 MISSENSE EGFR G312W 

chr2 211750675 
0.323 > 

0.03 
2 > 2 MISSENSE ERBB4 R196C 

chr8 31498153 
0.358 > 

0.029 
2 > 2 MISSENSE NRG1 R218H 

chr3 179199102 
0.344 > 

0.052 
2 > 2 MISSENSE PIK3CA R93W 

chr3 178917478 
0.594 > 

0.18 
2 > 2 SPLICE_SITE PIK3CA G118D 

chr3 178936091 
0.219 > 

0.109 
2 > 2 MISSENSE PIK3CA E545K 

chr3 178928081 
0.247 > 

0.151 
2 > 2 MISSENSE PIK3CA E453D 

chr3 178928086 
0.222 > 

0.12 
2 > 2 IN_FRAME_DEL PIK3CA L455_G460delinsF 
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chr5 67590984 
0.328 > 

0.156 
2 > 2 FRAME_SHIFT PIK3R1 H526QfsTer6 

chr5 67589609 
0.389 > 

0.044 
2 > 2 IN_FRAME_DEL PIK3R1 K459del 

chr5 67589585 
0.268 > 

0.152 
2 > 2 IN_FRAME_DEL PIK3R1 E451_Y452del 

chr10 87933223 
0.268 > 

0.031 
2 > 2 MISSENSE PTEN Y155S 

chr10 89653851 
0.26 > 

0.197 
2 > 2 MISSENSE PTEN I50T 

chr10 89692904 
0.74 > 

0.146 
2 > 2 NONSENSE PTEN R130* 

chr10 89692818 
0.412 > 

0.125 
2 > 2 MISSENSE PTEN I101T 

chr10 89711899 
0.471 > 

0.124 
2 > 2 MISSENSE PTEN R173C 

chr10 89693009 
0.233 > 

0.192 
2 > 2 SPLICE_SITE PTEN  

chr2 39281963 
0.413 > 

0.147 
1 > 3 MISSENSE SOS1 V171A 

 
 

 

 
3.3.4.2 Copy Number Changes from Primary to Recurrent 

 To iden=fy the copy number changes through treatment, I used the primary tumour profiles as 

baseline and looked at the recurrent tumour profiles. The strategy was to track copy number changes 

at the subclonal level by iden=fying regions that were selected for or selected against during therapy. 

For the discovery cohort, I iden=fied significant dele=ons at loci 7p11.2 and 15q11.2 (Figure 3-12A) 

however no amplifica=ons were iden=fied which could be a4ributed to the small sample size of the 

discovery cohort. In comparison with the valida=on cohort, the same dele=on loci were also 

iden=fied (Figure 3-12B). Inves=ga=ng the genes involved in these loci, the EGFR on 7p11.2 was 

deleted in both cohorts whereas 15q11.2 had dele=ons of OR4M2. Looking at the valida=on cohort 

as it is larger than the discovery cohort, more significant regions have been detected. Interes=ngly, 

same regions that were deleted were also amplified (Figure 3-12B), however, those regions were 
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dis=nct and not shared by same pa=ents. OR4M2, and EGFR are among the genes that were amplified 

or deleted in the valida=on cohort. 

 

EGFR is commonly amplified in glioblastoma (GBM), with dele=ons and amplifica=ons observed 

across mul=ple pa=ents, which aligns with studies associa=ng this phenomenon with 

extrachromosomal DNA (ecDNA/eccDNA). Extrachromosomal DNA refers to circular DNA fragments 

that exist independently of the main chromosomal DNA within cells. EcDNA are large molecules, 

spanning millions of base pairs, and frequently contain en=re or par=al oncogenes, regulatory 

elements, and other sequences cri=cal for cell prolifera=on and survival. In cancers like GBM, ecDNA 

carrying amplified EGFR and other oncogenes contribute to tumour heterogeneity, driving rapid 

progression and resistance to standard therapies (Liao et al., 2020, Noer et al., 2022, Yang et al., 2023, 

Zhao et al., 2022, Verhaak et al., 2019). 

EGFR amplifica=on occurs in about 50% of glioblastomas (Lassman et al., 2019), typically within small 

circular ecDNA fragments. A frequent muta=on associated with this amplifica=on is EGFRvIII, which 

involves an in-frame dele=on of exons 2-7 and is found in approximately 50% of EGFR-amplified GBM 

pa=ents (Lassman et al., 2019, French et al., 2019, Gan et al., 2013, Hoogstrate et al., 2022). EGFRvIII 

is a variant of EGFR that remains cons=tu=vely ac=ve at low levels without the need for ligand 

binding, likely due to the par=al dele=on of the extracellular ligand-binding domain. This muta=on 

arises from a genomic dele=on rather than alterna=ve or aberrant splicing. EGFRvIII is generally 

considered a subclonal event, arising aPer chromosome 7 and EGFR amplifica=ons (French et al., 

2019). Although subclonal, EGFRvIII significantly impacts tumour biology by further enhancing 

gene=c variability and complica=ng targeted therapeu=c approaches. 

 

OR4M2 is part of the olfactory receptor proteins, which are members of the G-protein-coupled 

receptors (Malnic et al., 2004). G-protein-coupled receptors (GPCRs) are a large family of proteins 

that detect molecules outside the cell and ac=vate internal signal transduc=on pathways and cellular 

responses (Rosenbaum et al., 2009). Although GPCRs have been studied as therapeu=c targets for 

GBM (Stephan et al., 2021, Byrne et al., 2021), there is currently no study specifically associa=ng 

olfactory receptors with GBM. 

 

Other amplified or deleted loci in the valida=on cohort are indicated in Figure 3-12B, with the genes 

involved in these variable copy number regions listed in Table 3-8. Notably, most of these regions are 

associated with single genes, sugges=ng that pa=ents could poten=ally be stra=fied by their copy 

number profiles. However, applying various clustering methods to explore this possibility did not 

yield significant results (Figure 3-13). The absence of dis=nct pa=ent clusters demonstrates that the 
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copy number changes at these loci are highly heterogeneous and not shared across the cohort. This 

suggests that the altera=ons represent individualized, subclonal events likely driven by selec=ve 

pressure during therapeu=c interven=on rather than common drivers suitable for pa=ent 

stra=fica=on. It is possible that these genes have also been affected by ecDNA amplifica=ons or 

dele=ons, which could contribute to the observed variability. 

 

       

 

Table 3-8: The loci with the associated genes and frac7on of impacted pa7ents 

Locus Gene - Amp Gene - Del 
Amp % 

(n =94) 

Del %          

(n =94) 

1p36.13  CROCC FAM131C 21 19 

1q21.1   SEC22B, NOTCH2NL NOTCH2NL 26 31 

1q21.3   FLG, multiple genes FLG 19 27 

1q44     OR2T3 OR2T27 21 22 

3q29     MUC20 MUC20 27 23 

6p22.1   HLA-A HLA-A 26 31 

6p21.33  HLA genes HLA genes 21 26 

6p21.32  HLA genes HLA genes 22 29 

7p11.2   EGFR EGFR 17 37 

9p21.3   multiple genes multiple genes 12 17 

14q11.2  OR4K1 OR4N2, OR4M1 21 32 

15q11.2  OR4M2 OR4M2, multiple genes 27 24 

16q12.2  CES1 CES1 22 29 

16q22.1  PDPR PDPR 19 21 

19p13.3  PLIN4 PLIN4 18 22 

19p12    ZNF676 ZNF676 28 24 
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Figure 3-12: Copy number plots of discovery cohort (A) and valida>on cohort (B). 

Blue peaks indicate the dele>ons, and the red peaks indicate the amplifica>ons. The green line represents the 

significance threshold, the G score represents the aberra>on (amplitude X frequency) and q-value represents the 

false discovery rate. The red boxes are loci shared between the cohorts and the green boxes are the significant 

amplified and deleted  loci in the valida>on cohort. 
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Figure 3-13: Heatmap of Copy Number Profiles Across the Valida>on Cohort Following Clustering Analysis. 
 
This heatmap visualizes the soma>c copy number altera>on (SCNA) data for genomic loci with variable copy 
number across the pa>ents (columns) in the valida>on cohort. The values are expressed as the Log 2 (Ra>o) of 
the tumour copy number rela>ve to the normal reference. Hierarchical clustering was applied to both rows and 
columns to iden>fy common copy number profiles for pa>ent stra>fica>on. 
Rows: Genomic loci showing variable copy number regions. 
Columns: Individual pa>ent/sample in the valida>on cohort. 
Colour Scale: The colour indicates the magnitude and direc>on of the copy number change. Blue for dele>on 
and red for amplifica>on 
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3.4 DISCUSSION  

3.4.1 Variants Conferring Treatment Resistance 

Inves=ga=ng the genes involved in GBM progression by iden=fying muta=ons that are likely selected 

for during treatment, I have iden=fied several key biological processes, cellular components, and 

molecular func=ons that are enriched in both our discovery and valida=on cohorts, sugges=ng a 

possible mechanis=c founda=on in GBM. 

 

The gene set enrichment analysis of variants expanding from primary to recurrent tumours in both 

discovery and valida=on cohorts reveals enrichment in GO biological processes related to sinoatrial 

(SA) and atrioventricular (AV) node func=ons. The discovery cohort includes terms like "SA node cell 

ac=on poten=al" "SA node cell to atrial cardiac muscle cell signalling" and "SA node cell to atrial 

cardiac muscle cell communica=on". In the valida=on cohort, we observed enrichment in processes 

such as "membrane depolariza=on during SA node cell ac=on poten=al" "membrane depolariza=on 

during AV node cell ac=on poten=al" and "AV node cell ac=on poten=al". These terms suggest a 

poten=al role for rhythmic and coordinated signalling in the cells that harboured the expanded 

variants. Interes=ngly, these enriched processes in our cohorts reflect a phenomenon observed in a 

study by (Hausmann et al., 2023), who found that a subpopula=on of glioblastoma cells exhibits 

periodic calcium (Ca²⁺) ac=vity, ac=ng as network hubs within the tumour. This rhythmic ac=vity was 

crucial for genera=ng intercellular Ca²⁺ waves that ac=vate key pathways like MAPK and NF-κB, 

driving tumour growth. This aligns with our findings of enrichment in SA and AV node-related 

processes, sugges=ng that rhythmic signalling mechanisms may be a shared feature between cardiac 

pace-making and glioblastoma progression. Targe=ng these pacemaker-like mechanisms, par=cularly 

in glioblastoma, could poten=ally disrupt the tumour’s progression and offer a poten=al therapy. 

 

Extending beyond the rhythmic signalling observed in these biological processes, the findings also 

point to the involvement of specific cellular components, such as the laminin complex, which may 

further elucidate the tumour’s invasive characteris=cs. The persistence of certain cellular 

components, such as laminin complexes, has emerged as a significant factor in both discovery and 

valida=on cohorts of glioblastoma pa=ents. This finding aligns with the known involvement of 

laminins in the glioma microenvironment and suggests a specific role in glioblastoma 

pathophysiology. Laminins, due to their integral role in cell adhesion, migra=on, and differen=a=on, 

may influence tumour progression and the invasive behaviour of glioblastoma cells. Notably, laminin 

has also been shown to support the growth of glioblastoma stem-like cells (Lathia et al., 2012), and 

contributes to GBM cell migra=on and invasion (Kawataki et al., 2007), further underscoring its 
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mul=faceted role in disease progression. Variants of genes involved in this pathway have expanded 

through therapy, implying that these genes may confer treatment resistance. In a study by (Tanner 

et al., 2024), RNA sequencing data from IDHwt GBM longitudinal tumours was analysed, and pa=ents 

were stra=fied based on changes in gene expression into two types: Up-responders and Down-

responders. The Up-responders were characterized by a proneural signature, while the Down-

responders were associated with mesenchymal transi=ons. The study found that in the Up-responder 

subtype, oligodendrocyte progenitor cell-like (OPC) cancer cells increased from primary to recurrent 

stages. Preclinical models included cell lines grown in laminin-treated environments that mimic the 

extracellular matrix (ECM) of =ssues. The development and func=on of oligodendrocytes are 

regulated by various molecules, including laminin, a major component of the ECM. Consistent with 

this finding, laminin complexes were found to be enriched in genes that expanded through 

treatment, sugges=ng that cells harbouring these genes might belong to the proneural signature and 

Up-responder subtype. 

 

In addi=on to the structural implica=ons of laminin complexes within the tumour microenvironment, 

the findings also highlight the significance of molecular func=ons, such as ATP-dependent 

microtubule motor ac=vi=es, in contribu=ng to therapy resistance. 

ATP-dependent microtubule motor ac=vity, minus-end-directed, is a molecular func=on associated 

with motor proteins that move along microtubules in a direc=on towards the minus end, using energy 

derived from ATP hydrolysis (Ambrose et al., 2005, Ali and Yang, 2020). The minus-end-directed 

movement typically involves dynein motor proteins, which play cri=cal roles in various cellular 

processes including intracellular transport, posi=oning of organelles, and mito=c spindle assembly 

during cell division (Wadsworth and Lee, 2013). By analysing the molecular func=on GO terms, I 

found that this pathway was present in both the discovery and valida=on cohorts. Moreover, this 

term was found among the group of variants that expanded from primary to recurrent tumours, 

further implying a role in resistance mechanisms. A study by (Wang et al., 2016a) iden=fied the DHC2 

gene, also known as DYNC2H1, as being associated with resistance to temozolomide (TMZ), and this 

gene was mutated in the valida=on cohort. Other dynein family genes linked with this molecular 

func=on term were also mutated and shared between the cohorts, sugges=ng they may contribute 

to TMZ resistance. Interes=ngly, germline muta=ons in DYNC2H1 are known to cause Jeune 

syndrome, a ciliopathy characterised by defects in primary cilia—cellular structures that act as key 

signalling hubs (Higgins et al., 2019). In the context of GBM, such muta=ons may disrupt primary cilia 

forma=on or func=on, poten=ally impairing cell-environment signalling. Addi=onally, cells lacking 

primary cilia tend to arrest in G0 phase of the cell cycle, which may allow them to evade treatment, 

as many therapies, including TMZ, target ac=vely dividing cells. This suggests that muta=ons in 
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DYNC2H1 may contribute to therapy resistance not only through direct mechanisms, but also by 

altering cell cycle dynamics and signalling sensi=vity. 

 

Simultaneously, the significant disrup=ons observed in the androgen receptor signalling genes within 

the KEGG Prostate Cancer pathway suggest that an=-androgen therapies, effec=ve in prostate cancer, 

could be adapted for GBM treatment. By targe=ng similar oncogenic mechanisms in GBM, hormone 

therapy strategies might provide a novel therapeu=c avenue, further expanding the arsenal against 

GBM. Combining these approaches could offer a mul=faceted strategy that capitalizes on the 

mechanis=c similari=es between these diverse cancers, opening up new possibili=es for tailored and 

effec=ve GBM therapies. 

Muta=ons in the KEGG P53 Signalling pathway oPen result in the loss of tumour suppressor func=ons, 

enabling GBM cells to evade apoptosis, a common mechanism of ac=on for many an=cancer drugs. 

Similarly, the aberra=ons in the PI3K/Akt pathway, as seen in the Reactome PI3K events in ERBB2 

signalling, can lead to unchecked cellular prolifera=on and survival, providing a biological basis for 

resistance to therapies that target these growth signalling pathways. 

 

The altera=ons observed in the BIOCARTA_TEL_PATHWAY are par=cularly noteworthy. The 

maintenance and elonga=on of telomeres in cancer cells, typically via the ac=va=on of telomerase, 

allow these cells to replicate indefinitely, thus contribu=ng to their immortal phenotype. Targe=ng 

telomerase has been proposed as a therapeu=c strategy, yet resistance oPen develops through 

alterna=ve lengthening of telomeres (ALT) mechanisms, showcasing the adap=ve nature of GBM. 

The variants iden=fied in the BIOCARTA_CTCF_PATHWAY suggest a role in genomic instability, which 

is a hallmark of cancer that contributes to both the heterogeneity of tumour cells and their ability to 

resist mul=ple drug mechanisms. Thus, the disrup=on of CTCF-dependent chroma=n remodelling, 

and gene expression regula=on could provide a fer=le ground for the emergence of drug-resistant 

cancer cell variants. 

 

These observa=ons show the complexity of trea=ng GBM and highlight the necessity for a targeted 

approach that considers the gene=c makeup of individual tumours. Developing therapies that can 

effec=vely target these altered pathways may provide a means to circumvent or overcome the 

resistance mechanisms, offering hope for improved treatment outcomes in GBM pa=ents. 

 

The analysis I conducted in this study highlights the robustness of the significant pathways detected, 

even aPer careful adjustments for copy number varia=ons. My method involved revisi=ng gene lists 

and excluding variants located in regions with variable copy numbers, ensuring that the subsequent 
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pathway analysis accurately reflected true gene=c signals. This rigorous reanalysis confirmed the 

presence of cri=cal pathways across both cohorts, demonstra=ng their intrinsic biological significance 

in the disease process. The consistent idenTficaTon of significant pathways in the larger 

validaTon cohort confirms that these pathways are fundamental to the underlying biology 

of the disease, independent of genomic alteraTons like copy number changes. This discovery 

is crucial for reinforcing the validity of the pathways involved in the pathogenesis and 

progression of the disease, indicaTng that these pathways are not merely incidental but 

likely central to the disease mechanisms. 

 

3.4.2 Variants Conferring Treatment Sensi>vity 

The combined analysis of enriched Gene Ontology (GO) terms and altered pathways in treatment-

responsive glioblastoma pa=ents revealed a mul=faceted picture of biological processes and 

molecular func=ons associated with treatment suscep=bility. 

 

GO enrichment analysis of the discovery cohort displayed enrichment in neuronal development 

pathways, sugges=ng therapies might target cells reliant on these processes for survival.  The 

recurrent presence of the BDNF gene in key pathways further supports this no=on, as BDNF is known 

to play a crucial role in neuroplas=city and survival (Taylor et al., 2023). 

 

In contrast, the valida=on cohort highlighted enrichment in pathways related to cardiac func=on and 

calcium signalling. This could point to shared pathways between cardiac func=on and GBM 

progression.  The enrichment of "regula=on of cardiac conduc=on" strengthens the cardiotoxicity 

hypothesis, poten=ally explaining some of the side effects observed during chemoradiotherapy 

(Griffin et al., 2020, Pei et al., 2020).  Alterna=vely, the shared enrichment of calcium signalling 

pathways suggests poten=al links between cardiac health and GBM development or progression, 

warran=ng further inves=ga=on. 

 

The analysis of cellular components also yielded intriguing insights.  Muta=ons in the discovery 

cohort impacted mRNA cap binding complex and other membrane-associated structures, sugges=ng 

the importance of mRNA processing and ion channel func=on under therapeu=c pressure.  These 

findings align with the established role of mRNA processing in cellular stress responses (Dutertre et 

al., 2014).  The valida=on cohort further strengthens this concept with the enrichment of the 

phospha=dylinositol 3-kinase complex and the voltage-gated sodium channel complex, both crucial 
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for signal transduc=on and ion homeostasis (Tsai et al., 2020).  These observa=ons suggest that 

therapies might exploit vulnerabili=es in cellular signalling and ion regula=on to eliminate GBM cells. 

 

The analysis of molecular func=ons provided further clues about the impact of therapy.  In the 

discovery cohort, enrichment for "RNA 7-methylguanosine cap binding" and "structural molecule 

ac=vity conferring elas=city" suggests that the stability of RNA and cellular structure might be 

par=cularly vulnerable to therapeu=c stresses.  This aligns with the no=on that therapies can disrupt 

cellular processes essen=al for GBM cell survival.  The valida=on cohort, with its enrichment in 

"glutamate-gated calcium ion channel ac=vity" and "structural molecules conferring elas=city," 

underscores the importance of neurotransmission and structural stability in the context of 

therapeu=c response (Pei et al., 2020).  Interes=ngly, the enrichment of "melanocor=n receptor 

ac=vity" and "opioid receptor ac=vity" suggests a poten=al role for sensory signalling pathways in 

treatment effec=veness, warran=ng further explora=on (Pasqualev et al., 2018, Zhou et al., 2013). 

 

Expanding the inves=ga=on by conduc=ng pathway analysis led to iden=fying promising targets 

poten=ally contribu=ng to therapeu=c effec=veness. One prominent pathway exhibi=ng disrup=on 

was the CBL pathway. CBL proteins act as cellular janitors, regula=ng growth factor signalling by 

tagging receptor tyrosine kinases (RTKs) for degrada=on (Liyasova et al., 2015). Varia=ons observed 

in this pathway suggest compromised CBL func=on, likely leading to aberrantly high and persistent 

growth factor signalling. This disrup=on weakens oncogenic signals and makes GBM cells more 

suscep=ble to treatment, aligning with previous reports demonstra=ng the efficacy of disrup=ng CBL 

pathway dysfunc=on in cancer (Roger Belizaire, 2021).  

 

Similarly, altera=ons in the EGFR_SMRTE pathway reinforce the ra=onale for targe=ng EGFR, a protein 

that is frequently mutated or overexpressed in glioblastoma (Brennan et al., 2013). SMRTE, a variant 

of the SMRT corepressor with an extended N-terminal sequence that shares similari=es with N-CoR, 

appears to play a role in regula=ng EGFR signalling (Movs et al., 2013). Disrup=ons within the 

EGFR_SMRTe pathway could therefore be beneficial, as they poten=ally make glioblastoma cells 

more responsive to EGFR-targeted therapies (Xu et al., 2017). 

 

The PTP1B pathway, a nega=ve regulator of insulin and lep=n signalling, emerged as another 

promising target. PTP1B func=ons as a molecular brake on cell growth by removing phosphate groups 

from proteins involved in insulin and lep=n signalling pathways (Liu et al., 2022). Abnormally high 

PTP1B ac=vity, poten=ally reflected by the pathway disrup=ons observed in our study, can lead to 

constantly ac=ve signalling through these pathways, promo=ng uncontrolled growth and survival of 
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cancer cells (Cheng and Guo, 2019). Inhibi=ng PTP1B may offer several poten=al therapeu=c benefits: 

reduced cancer cell growth by blocking insulin and lep=n signalling, enhanced treatment sensi=vity 

by disrup=ng survival signals, and poten=ally overcoming chemotherapeu=c resistance mechanisms 

linked to PTP1B ac=vity. 

 

The ARF6 pathway, involved in ac=n cytoskeleton remodelling, also displayed consistent altera=ons. 

The ac=n cytoskeleton provides structure and allows cells to move. ARF6, a small GTPase protein, 

acts as a molecular switch that orchestrates ac=n polymeriza=on and organiza=on by recrui=ng and 

ac=va=ng various proteins (Sun et al., 2023). The observed pathway disrup=ons suggest poten=al 

ARF6 dysregula=on in glioblastoma. Disrup=on of ARF6 signalling could hinder the forma=on of ac=n 

protrusions necessary for cell movement and invasion, thereby reducing the ability of glioblastoma 

cells to migrate and spread to other parts of the brain, a hallmark of glioblastoma aggressiveness (Li 

et al., 2009). Our data aligns with the no=on that targe=ng the ARF6 pathway might be beneficial by 

hindering the invasive poten=al of glioblastoma cells, poten=ally improving treatment efficacy, and 

reducing the risk of metastasis. Further research is needed to elucidate the specific mechanisms of 

ARF6 dysregula=on in glioblastoma and develop therapeu=c strategies to target this pathway. 

 

Finally, consistent altera=ons were observed in the GAB1 signalsome pathway. GAB1, a scaffolding 

protein, acts as a signalling hub, forming a complex with various proteins to transduce signals 

involved in cell growth, survival, prolifera=on, and migra=on (Ma4oon et al., 2004). In glioblastoma, 

GAB1 may contribute to tumorigenesis by promo=ng these processes (Singh et al., 2017). Disrup=on 

of the GAB1 signalsome pathway, as suggested by the findings, could impair these pro-survival 

signalling pathways, sensi=zing glioblastoma cells to apoptosis and enhancing the efficacy of 

treatments. 

 

In conclusion, this study has iden=fied several promising pathways whose disrup=on is associated 

with enhanced therapeu=c sensi=vity in glioblastoma. These findings provide a valuable founda=on 

for further inves=ga=on into targeted therapies that capitalize on these vulnerabili=es. By targe=ng 

these pathways, we may improve treatment outcomes for glioblastoma pa=ents. 

 

3.4.3 ERBB Signalling Pathways 

In the inves=ga=on of the ERBB signaling pathways, dis=nct variants in EGFR, PTEN, and PIK3CA 

exhibit a nuanced interplay that influences cellular behavior and treatment responses in cancer.  

EGFR muta=ons in different domains affect its interac=on with ERBB family members; for instance, 
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muta=ons in the Recept_L_domain and Pkinase_Tyr domain in the ERBB4 and ERBB2 pathways, 

respec=vely, modulate the receptor's dimeriza=on and signalling efficacy. Altered EGFR-ERBB 

dimeriza=on can either impair or enhance downstream signalling, depending on the nature of the 

muta=ons, poten=ally influencing the cellular response to therapies targe=ng these receptors 

(Andersson et al., 2010, Donoghue et al., 2018, Lucas et al., 2022). 

 

PTEN variants, par=cularly in the PTEN_C2 domain in the ERBB2 pathway, disrupt its cri=cal lipid 

phosphatase ac=vity and membrane localiza=on. By dephosphoryla=ng PIP3, PTEN directly opposes 

the PI3K-induced signalling, thus regula=ng cell survival and prolifera=on. When PTEN func=on is 

compromised due to loss of func=on muta=ons, this leads to unregulated PI3K/AKT signalling, which 

enhances cell survival and resistance to apoptosis, presen=ng major challenges in cancer treatment, 

especially in tumours with hyperac=ve ERBB2 signalling (Matsuoka and Ueda, 2018, Yehia et al., 

2019, Jang et al., 2021). 

 

PIK3CA muta=ons introduce significant complexi=es into the cellular signalling dynamics within the 

ERBB signalling pathways. In the ERBB2 pathway, a start loss variant in PIK3CA suggests a poten=al 

reduc=on in the func=onal ac=vity of the PI3K cataly=c subunit p110α, which might nominally 

decrease PI3K/AKT pathway ac=vity. However, the impact of PIK3CA muta=ons is markedly different 

in the ERBB4 pathway. Here, muta=ons in the PI3K_p85B, PI3K_C2, and PI3Ka domains likely impair 

the regulatory and cataly=c func=ons of PI3K. This impairment weakens the PI3K/AKT signalling, 

reducing cell growth and survival capabili=es.  

As a result, cells harbouring these muta=ons may exhibit diminished prolifera=ve poten=al or enter 

a quiescent (G0) state, making them less responsive to therapies that target ac=vely dividing cells. 

Alterna=vely, some cells may become more suscep=ble to treatment-induced apoptosis due to 

reduced survival signalling, indica=ng that PIK3CA muta=ons could contribute to therapy response 

through mul=ple, context-dependent mechanisms (Okkenhaug et al., 2016, Liu et al., 2018). 

 

Understanding these complex interac=ons is crucial for developing targeted therapies. By delinea=ng 

how specific domain muta=ons in EGFR, PTEN, and PIK3CA influence ERBB signalling, researchers can 

be4er predict treatment outcomes and refine therapeu=c approaches to exploit vulnerabili=es in 

cancer signalling networks. This approach emphasizes the need for a personalized medicine strategy, 

tailoring treatments based on detailed gene=c and molecular profiles to op=mize efficacy and 

overcome resistance in cancer therapies. 
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CHAPTER 4 

4.1 INTRODUCTION 

4.1.1 Epigene>cs in GBM 

While much of the research in GBM has tradi=onally focused on iden=fying muta=ons in specific genes, it has 

become increasingly clear that epigene=c changes also play a significant role in tumour behaviour 

(Maleszewska and Kaminska, 2013, Wu et al., 2021, Tanner et al., 2024, Amirmahani et al., 2025, Meleiro and 

Henrique, 2025). Epigene=cs refers to modifica=ons in gene ac=vity that do not involve changes to the actual 

DNA sequence but can s=ll influence how genes are expressed. These changes are especially relevant in 

cancer biology, where they can cooperate with gene=c muta=ons to promote tumour ini=a=on, progression, 

and treatment resistance. 

The word "epigene=cs" was first introduced by the biologist Conrad Waddington in the early 1940s 

(Waddington, 2012). Ini=ally, the term was used in the context of development to describe how different cell 

types arise from the same gene=c code based on gene regula=on. Over the years, the term has evolved and 

now refers to heritable changes in gene expression that occur without any altera=on to the DNA sequence 

itself (Bird, 2007). These changes are mediated by chemical modifica=ons to DNA or to the histone proteins 

that surround it. These modifica=ons include DNA methyla=on, histone acetyla=on or methyla=on, and 

regulatory effects by non-coding RNAs. 

In GBM, several studies have shown that epigene=c altera=ons, such as DNA methyla=on, are involved in 

silencing tumour suppressor genes, influencing how cells respond to treatments like radiotherapy and 

chemotherapy (Hegi et al., 2005, Esteller, 2008). These epigene=c mechanisms do not act in isola=on but 

interact with the gene=c background of the tumour, crea=ng a complex network of regula=on that ul=mately 

determines tumour phenotype. 

 

4.1.2 DNA methyla>on in GBM 

Among the various forms of epigene=c regula=on, DNA methyla=on is one of the most widely studied and 

best understood. It involves the chemical addi=on of a methyl group (-CH3) to the fiPh carbon of the cytosine 

ring in DNA, forming 5-methylcytosine (5mC) (Wilson et al., 2007). This reac=on is catalysed by enzymes 

known as DNA methyltransferases (DNMTs), primarily DNMT1, DNMT3A, and DNMT3B (Robert et al., 2003). 

In mammals, DNA methyla=on primarily occurs at CpG dinucleotides, which are regions where a cytosine 

nucleotide is followed by a guanine nucleo=de. These CpG sites are not uniformly distributed throughout the 

genome. Instead, they tend to cluster in regions known as CpG islands, which are typically located in the 

promoter regions of genes. In normal cells, CpG islands at the promoters of housekeeping or essen=al genes 

are typically unmethylated, allowing these genes to remain ac=ve. When these CpG islands become 
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methylated, especially in promoter regions, it oPen results in the transcrip=onal silencing of the associated 

gene (Robert et al., 2003). 

Once established, DNA methyla=on marks can be reliably maintained during cell division by DNMT1, which 

copies the methyla=on pa4ern onto the new DNA strand (Robert et al., 2003). This renders DNA methyla=on 

a semi-stable and heritable form of gene regula=on. However, methyla=on can also be removed through 

passive dilu=on over successive cell divisions or by ac=ve demethyla=on mechanisms involving enzymes such 

as TET (Ten-Eleven Transloca=on) proteins. 

In GBM and other cancers, certain regions undergo abnormal methylation (hypermethylation), particularly 

in the promoters of tumour suppressor genes, resulting in their silencing (Etcheverry et al., 2010). 

Simultaneously, other regions, such as large repetitive sequences and intergenic areas, may become 

hypomethylated, potentially leading to genomic instability or the activation of usually silent regions. This 

combined pattern of hyper- and hypomethylation is typical of many cancers, including GBM (Mulholland et 

al., 2012, Etcheverry et al., 2010). 

 

4.1.3 Types of methyla>on 

DNA methyla=on occurs in specific regions of the genome, each playing a unique role in gene regula=on and 

cellular func=on. 

 

4.1.3.1 CpG Islands and Related Regions 

CpG islands are short stretches of DNA rich in CpG sites, oPen located at gene promoters. In normal cells, 

these regions are usually unmethylated, allowing gene expression. Aberrant methyla=on of CpG islands, 

especially in promoters, can silence important genes, including tumour suppressors (Jones and Baylin, 2002). 

Surrounding these islands are CpG shores, shelves, and open sea regions, where methyla=on changes can 

also impact gene regula=on in ways that may not be immediately obvious (Irizarry et al., 2009). 

 

4.1.3.2 Promoter Methyla>on and Gene Silencing 

Methyla=on at promoter regions typically represses gene expression by preven=ng transcrip=on ini=a=on. 

This is a common regulatory mechanism in development but can also contribute to disease (Bird, 2002). In 

glioblastoma, for example, methyla=on of specific promoters can influence treatment response (Hegi et al., 

2005). 
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4.1.3.3 Gene Body Methyla>on 

Methyla=on within the gene body is oPen linked to ac=ve transcrip=on. It may help regulate splicing or 

prevent unwanted transcrip=on starts. The impact varies depending on the precise loca=on and gene context 

(Jones, 2012). 

 

4.1.3.4 Enhancer Methyla>on and Gene Regula>on 

Enhancers regulate gene expression from a distance. Their ac=vity is oPen controlled by methyla=on: 

unmethylated enhancers are ac=ve, while methylated ones are usually repressed. In cancer, changes in 

enhancer methyla=on may alter the expression of cri=cal genes and affect tumour progression or therapy 

response (Bell et al., 2016, Alajem et al., 2021). 

 

 

4.1.4 MGMT promoter methyla2on and clinical relevance 

One of the most clinically important applica=ons of DNA methyla=on analysis in GBM is the evalua=on of the 

MGMT gene (O6-methylguanine-DNA methyltransferase). MGMT encodes a DNA repair enzyme that 

removes alkyl groups from the O6 posi=on of guanine, a common site of damage caused by alkyla=ng 

chemotherapy agents such as temozolomide (TMZ), which is part of standard-of-care for trea=ng GBM (Stupp 

et al., 2005). 

The significance of MGMT in glioblastoma lies in the fact that when the MGMT promoter is methylated, 

transcrip=on of the gene is suppressed. As a result, the tumour has a reduced ability to repair DNA damage 

caused by chemotherapy, making it more sensi=ve to treatment. Conversely, in tumours where the MGMT 

promoter is unmethylated, the gene is ac=ve, and the tumour may be more resistant to alkyla=ng drugs (Lee, 

2016). 

Clinically, MGMT promoter methyla=on status has become an important predic=ve and prognos=c biomarker. 

It is rou=nely assessed to help determine whether a pa=ent is likely to benefit from temozolomide therapy. 

Several large-scale studies and clinical trials have demonstrated that GBM pa=ents with methylated MGMT 

promoters tend to have longer progression-free and overall survival following treatment with TMZ compared 

to those with unmethylated promoters (Dunn et al., 2009). 

The method used to assess MGMT methylation status can differ, but most clinical laboratories employ either 

methylation-specific PCR or pyrosequencing. More recently, array-based techniques and methylation 

classifiers, such as MGMT-STP27, have been utilised in research environments to offer a more reliable and 

standardised readout (van den Bent et al., 2013, Bady et al., 2016). In this study, MGMT promoter 

methylation was examined alongside global methylation patterns to understand its behaviour over time in 

paired primary and recurrent GBM samples. 
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4.1.5 Differen2al Methyla2on Analysis of Longitudinal GBM Samples 

Differen=al methyla=on analysis involves comparing DNA methyla=on pa4erns between different biological 

states, such as primary versus recurrent tumours. This approach is crucial for iden=fying specific epigene=c 

altera=ons that contribute to disease pathogenesis, predict outcomes, or serve as poten=al therapeu=c 

targets. 

Recent work from our group has significantly advanced the understanding of glioblastoma (GBM) recurrence 

following standard treatment. Specifically, Tanner et al. (2024) iden=fied two dis=nct pa=ent-specific 

transcrip=onal responses in isocitrate dehydrogenase wild-type (IDHwt) GBM, categorising pa=ents into 'Up' 

and 'Down' responder subtypes. The 'Up' and 'Down' nomenclature is derived directly from the opposing 

transcrip=onal reprogramming trajectories of a core set of genes, specifically the 'Leading Edge' (LE) genes 

(LE50 and LE70), in response to standard GBM treatment (Tanner et al., 2024). 

- Up Responders: Exhibit upregula=on of the LE gene set (e.g., genes involved in mesenchymal 

transi=on and inflamma=on) in the recurrent tumour compared to the primary tumour. 

- Down Responders: Exhibit downregula=on of the LE gene set in the recurrent tumour 

compared to the primary tumour. 

This seminal work revealed that these responder classifica=ons are intrinsic to cancer cells, sugges=ng 

different adap=ve resistance mechanisms. While their study highlighted the poten=al role of Polycomb-based 

chroma=n remodelling in driving these transcrip=onal shiPs, it could not definitely rule out that that global 

differen=al DNA methyla=on might contribute to these par=cular transcrip=onal changes. 

The primary goal of this study was to inves=gate whether specific differen=al DNA methyla=on pa4erns 

correlate with the 'Up'/'Down' transcrip=onal classifica=on, thereby tes=ng the central hypothesis that 

epigene=c altera=ons accompany these dis=nct resistance trajectories. While Tanner et al. (2024) strongly 

suggested a role for Polycomb-based chroma=n changes, this current work directly inves=gates the extent to 

which DNA methyla=on correlates with and poten=ally contributes to the observed 'Up' and 'Down' 

transcrip=onal reprogramming. The following analysis specifically targets methyla=on changes in genomic 

regions func=onally linked to the LE gene set and other differen=ally regulated pathways iden=fied in those 

subtypes. 

While differen=al methyla=on analysis has been a common approach in numerous cancer studies, including 

those on GBM, longitudinal inves=ga=ons have frequently reported a remarkable stability in overall GBM 

methyla=on profiles over =me (Malta et al., 2024). This consistent observa=on suggests that broad, genome-

wide methyla=on changes may not be the primary dynamic drivers of certain tumour responses or 
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therapeu=c resistance mechanisms. Recognising this, my approach deviated from a broad differen=al analysis 

to instead inves=gate specific, func=onal epigene=c landscapes linked to defined transcrip=onal behaviours, 

offering a dis=nct perspec=ve on methyla=on's role. 

Building upon my group’s cri=cal findings, specifically, the finding that IDHwt GBM recurrence involves two 

dis=nct, pa=ent-intrinsic transcrip=onal trajectories ('Up' and 'Down' subtypes), which are associated with 

differences in Polycomb Repressive Complex (PRC) member expression (Tanner et al., 2024). This chapter 

explains a novel analysis that I performed to comprehensively characterise the accompanying altera=ons in 

DNA methyla=on pa4erns within 'Up' and 'Down' responder subtypes. By using established pa=ent groups, I 

inves=gated the role of DNA methyla=on in GBM recurrence and treatment resistance. The goal was to 

iden=fy unique epigene=c pa4erns associated with each pa=ent's response trajectory, thereby revealing how 

DNA methyla=on contributes to or reflects the dis=nct biological processes in these pa=ent subtypes. This 

inves=ga=on was conducted with the understanding that DNA methyla=on may not be the sole driver of 

transcrip=onal reprogramming. 

 

4.1.6 Methyla2on Profiling Techniques 

Several experimental methods are available to measure DNA methyla=on across the genome. These 

techniques vary in terms of resolu=on, coverage, cost, and computa=onal complexity (Bock, 2012). The most 

commonly used approaches can be grouped into sequencing-based and array-based technologies. 

 

4.1.6.1 Reduced Representa>on Bisulfite Sequencing (RRBS) 

RRBS is a targeted bisulfite sequencing method developed to focus on CpG-rich regions of the genome, 

par=cularly CpG islands and promoters (Meissner et al., 2005). It begins with the diges=on of genomic DNA 

using a restric=on enzyme like MspI, which cuts at CCGG sites. The resul=ng fragments are size-selected 

(typically 40–220 bp), then treated with bisulfite to convert unmethylated cytosines to uracil, leaving 

methylated cytosines unchanged. Finally, the fragments are sequenced (Meissner et al., 2005). 

One of the key advantages of RRBS is its high resolu=on at CpG sites and rela=vely low cost compared to 

whole-genome bisulfite sequencing. It is especially useful for iden=fying differen=ally methylated promoters 

and CpG islands. However, because RRBS only captures about 5–10% of the genome, it may miss important 

regulatory elements in enhancer or intergenic regions. This trade-off makes RRBS an efficient choice for 

focused studies, but less suitable for mapping the full methylome (Bock, 2012). 
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4.1.6.2 Whole Genome Bisulfite Sequencing (WGBS) 

WGBS is the gold standard for methyla=on analysis, providing base-pair resolu=on across nearly all CpG sites 

in the genome (Lister et al., 2009, Sakthikumar et al., 2020). The method involves random fragmenta=on of 

genomic DNA, addi=on of sequencing adapters, bisulfite conversion, and high-throughput sequencing. 

WGBS can detect both CpG and non-CpG methyla=on, offering the most comprehensive view of the 

methylome. It is par=cularly useful in developmental studies, stem cell research, and cancer epigenomics 

where non-CpG methyla=on plays a role. The major limita=ons are its high cost, large data volumes, and the 

need for advanced bioinforma=cs pipelines to process and interpret the data. In GBM research, WGBS has 

been used to iden=fy novel methyla=on pa4erns and regulatory elements that are missed by targeted or 

array-based methods (Hovestadt et al., 2014). 

4.1.6.3 Illumina Methyla>on Arrays 

The Infinium BeadChip array platform developed by Illumina has been an essential tool for analysing DNA 

methylation across the genome. Although the original BeadChip arrays were primarily designed for 

genotyping, the technology was adapted to target specific CpG sites and measure DNA methylation using 

bisulfite-treated DNA (Bibikova et al., 2011). These methylation arrays provided a practical and scalable 

alternative to earlier methods, such as genome-wide bisulfite sequencing or tiling microarrays, which were 

more costly and less accessible (Bibikova et al., 2011). 

The first widely adopted methylation array in this family was the HumanMethylation27 BeadChip (27K), 

introduced in 2008. This array targeted 27,578 CpG sites, mostly within promoter regions of over 14,000 

human genes (Bibikova et al., 2011). One of its main advantages was the small amount of input DNA needed 

— about 1 µg — which enabled researchers to analyse samples even when only limited material was 

available, such as formalin-fixed tissues. The array could process 12 samples simultaneously, making it 

suitable for high-throughput studies with relatively low technical complexity (Bibikova et al., 2011). 

The 27K array depends on Infinium chemistry, which starts with bisulfite conversion of DNA. This process 

converts unmethylated cytosines into uracils, while methylated cytosines stay the (Bibikova et al., 2011). 

After bisulfite treatment, the DNA is amplified, fragmented, and hybridised to allele-specific probes attached 

to microscopic beads. These probes are meant to detect either methylated or unmethylated sequences at 

each CpG site. 

In the 27K platform, two types of beads are used per CpG locus: one for the methylated version of the site 

and another for the unmethylated version. After probe hybridisation, a single-base extension reaction is 

performed using fluorescently labelled dideoxynucleotides (ddNTPs), often tagged with Biotin or DNP. The 

choice of nucleotide incorporated depends on the base immediately upstream of the cytosine of interest. 

Importantly, both methylated and unmethylated probes can utilise the same dye channel, and signal 

intensity is measured during array scanning using fluorescence detection. (Barrera and Peinado, 2012)The 

methylation level at each site is expressed as a β-value, ranging from 0 (completely unmethylated) to 1 
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(completely methylated), based on the ratio of the methylated signal to the total signal intensity at that 

probe (Barrera and Peinado, 2012). 

Although the 27K array was a significant advance in simplifying genome-wide methylation studies, its 

coverage was relatively limited, mainly concentrating on promoter-associated CpGs. To improve this, 

Illumina launched the HumanMethylation450K (450K) array in 2011. This newer platform examined over 

450,000 CpG sites, covering 99% of RefSeq genes and including a substantial representation of CpG islands, 

shores, shelves, gene bodies, and regulatory regions, such as miRNA promoters (Morris and Beck, 2015). It 

signified a shift from solely promoter-focused studies to more comprehensive methylome profiling. 

The 450K array combines both Infinium I and Infinium II probe types. Infinium I probes use two separate 

beads (one for methylated and one for unmethylated) and work with both red and green channels. 

Conversely, Infinium II probes employ a single bead and one base extension site for both methylation states, 

allowing for a more compact probe design and greater density on the array. About 30% of the probes on the 

450K platform are Infinium I, while the rest are Infinium II (Morris and Beck, 2015). However, the design 

differences between these probe types create a type I/type II bias, which can affect downstream analysis. To 

address this, normalisation methods such as Beta Mixture Quantile (BMIQ) normalisation have been 

developed to correct for technical differences between probe types (Teschendorff et al., 2013). Figure 4-1  

shows how both probe types detect methylation based on bisulfite conversion and labelled nucleotide 

incorporation. 

While the 450K array significantly increased coverage, especially over gene bodies and CpG shores, it lacked 

sufficient probes for distal regulatory elements like enhancers and DNase I hypersensitive sites. This gap 

prompted the development of the next-generation platform — the MethylationEPIC v1.0 (850K) BeadChip, 

launched in 2015. The EPICv1 array extended total CpG coverage to more than 850,000 sites, with a strong 

focus on non-promoter regulatory elements. It includes probes covering >90% of the original 450K sites and 

adds substantial content from enhancer regions identified in large epigenomic projects such as ENCODE, 

FANTOM5, and BLUEPRINT. 

The EPICv1 array was developed in response to user feedback requesting improved representation of 

enhancers and other distal elements that play a role in transcriptional regulation and cancer epigenetics. A 

more recent development in this series is the Infinium MethylationEPIC v2.0 BeadChip (EPICv2), which 

further enhances genomic coverage. This updated platform includes over 935,000 CpG sites, offering 

expanded probe content with improved targeting of distal regulatory elements, especially in non-coding 

regions and immune-related genes. Importantly, EPICv2 retains compatibility with most sites present in the 

original EPICv1 array, enabling direct comparisons across datasets generated with the two versions (Zhuang 

et al., 2025). 

Although this newer platform offers extended insight into the methylome, it has not yet been widely adopted 

in large-scale studies due to its recent release. All Infinium arrays include a range of control probes embedded 

within the platform. These controls monitor bisulfite conversion efficiency, staining and hybridisation 
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performance, extension success, and background signal levels. Some controls are sample-specific, while 

others are independent of sample DNA and ensure overall platform reliability. 

The preparation and analysis workflow for all Infinium methylation arrays typically takes several days to one 

week (Bibikova et al., 2011). Due to their accessibility, cost-effectiveness, and compatibility with standard 

bioinformatics pipelines, these arrays remain one of the most widely used technologies for epigenome-wide 

association studies, including cancer profiling, developmental biology, and clinical biomarker research. 

In this chapter, all methylation data analysed were obtained using either the 450K or EPIC arrays, depending 

on the cohort. These platforms offered the resolution, coverage, and sample scalability required to perform 

differential methylation analysis on longitudinal glioblastoma samples. The raw data generated by these 

arrays are stored in IDAT files, which serve as the entry point for downstream processing and analysis (Smith 

et al., 2013). 

 

 

Figure 4-1: Illustra>on of Infinium methyla>on assay probe designs. 

(A) The Infinium I design uses two separate bead types per CpG site: one to detect the methylated state (C) and one for the 

unmethylated state (T). Both probes incorporate the same fluorescently labelled nucleo>de, depending on the base just upstream of 

the target site, and are read in the same colour channel. 
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(B) The Infinium II design uses a single bead for each CpG locus. Methyla>on is detected by single-base extension: an "A" is added 

when the site is unmethylated (original C converted to T), and a "G" is added when it is methylated (C remains). Each state is 

dis>nguished by a different fluorescent dye. 

*adapted with permission from (Bibikova et al., 2011). 

 

4.1.7 Analy>cal Tools and Pipelines 

The raw output from Illumina methyla=on arrays comes in the form of IDAT files, which contain fluorescence 

intensity measurements for each probe on the array. Each sample is associated with two IDAT files — one for 

the red channel and one for the green channel — capturing the signal intensi=es of methylated and 

unmethylated probes. In addi=on to raw intensity values, these files store data on control probes, background 

levels, array barcodes, and scanning parameters. 

Working directly with IDAT files offers the advantage of full control over preprocessing steps, including 

background correc=on, normalisa=on, and filtering. These files are widely supported by open-source tools 

developed in R, which allow researchers to customise workflows based on study design, array plaOorm, and 

sample quality. This chapter draws on several such tools to process and analyse the 450K and EPIC array data 

from GBM samples. 

Several R packages exist for handling Illumina methyla=on array data. These tools vary in their level of 

automa=on, customizability, and scope. The following tools were the primary tools u=lised for the differen=al 

methyla=on analysis. They were selected based on their flexibility, compa=bility with raw IDAT files, and 

suitability for large-scale or longitudinal designs, such as the one employed in this chapter. 

 

4.1.7.1 RnBeads 

RnBeads is a widely used and freely available R-based package designed for the comprehensive analysis of 

genome-wide DNA methyla=on data (Muller et al., 2019). It provides robust support for Illumina’s 450K and 

EPIC BeadChip arrays and has also been extended to handle data from sequencing-based plaOorms such as 

RRBS and WGBS. As a pipeline-driven tool, RnBeads enables users to perform all essen=al steps of 

methyla=on data processing within a single framework, making it par=cularly useful for large-scale studies or 

projects requiring reproducibility. 

One of the core strengths of RnBeads lies in its integrated architecture. It bundles key components of a 

standard analysis pipeline — including quality control, probe filtering, normalisa=on, exploratory analysis, 

and differen=al methyla=on tes=ng — into a single func=on (rnb.run.analysis), which can be easily 

customised depending on the dataset and research objec=ves. This modularity allows users to tailor the 

workflow to their specific needs, whether analysing paired tumour samples or comparing dis=nct biological 

groups. 

The package includes a variety of normalisa=on methods, each suited to par=cular array designs or 

experimental condi=ons. Among these are BMIQ (Beta Mixture Quan=le normalisa=on) (Teschendorff et al., 
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2013), SWAN (Subset-quan=le Within Array Normalisa=on) (Maksimovic et al., 2012), watermelon’s dasen 

method (Pidsley et al., 2013), and noob (normal-exponen=al out-of-band), which is implemented via the 

methylumi package (Sean Davis, 2025). These methods are essen=al for correc=ng systema=c technical 

varia=on, such as probe type bias, and ensuring accurate downstream comparisons. 

In this study, RnBeads was applied to the discovery cohort, where raw IDAT files were available for paired 

primary and recurrent GBM samples. The plaOorm’s ability to incorporate metadata, stra=fy samples by 

experimental condi=ons, and annotate results by genomic regions (e.g., promoters, gene bodies, enhancers) 

made it par=cularly suitable for iden=fying biologically meaningful methyla=on changes in longitudinal 

tumour progression. 

 

4.1.7.2 Minfi 

The minfi package is a widely used R/Bioconductor tool designed for analysing Illumina Infinium DNA 

methylation arrays, including the 450K and EPIC (850K) platforms (Aryee et al., 2014). It offers a flexible and 

modular framework that enables researchers to perform detailed preprocessing, quality control, 

normalisation, and differential methylation analysis, supporting both standard and customised workflows. 

Minfi starts by importing raw intensity data from IDAT files using functions that read the methylated and 

unmethylated signal intensities for each probe across samples. The data is stored in structured objects such 

as RGChannelSet, which can then be further processed into MethylSet or RatioSet objects, enabling 

downstream analyses. 

In this chapter, minfi was u=lised to process and analyse methyla=on data from the valida=on cohort. Its 

flexible architecture allowed for customised preprocessing and normalisa=on steps, ensuring compa=bility 

with the discovery cohort processed using RnBeads. The integra=on of quality control measures and 

differen=al methyla=on analysis tools within minfi facilitated a robust and reproducible analysis pipeline. 

The package provides various preprocessing and normalisation methods and includes detailed quality control 

tools to evaluate data integrity. Unlike RnBeads, which offers an integrated, automated pipeline with built-

in reporting, minfi allows more detailed control over each analysis step, making it particularly useful when 

workflows need to be manually customised or adjusted. 
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4.2 METHODS 

In this sec=on, I describe two complementary approaches I used to perform differen=al methyla=on analysis 

on DNA methyla=on array data. Both methods were implemented in R but followed different pipelines for 

quality control, normalisa=on, annota=on, and sta=s=cal tes=ng. The nature of the available data from the 

discovery and valida=on cohorts influenced the decision to use two methods. The discovery cohort included 

raw IDAT files, which enabled the use of the RnBeads package—an end-to-end pipeline that integrates 

preprocessing, quality control, and region-level differen=al methyla=on analysis. In contrast, the valida=on 

cohort consisted of pre-processed beta value matrices, which are incompa=ble with RnBeads. Therefore, I 

used a second approach based on the minfi and limma packages, which allowed greater flexibility in working 

with pre-normalised data and performing customised sta=s=cal modelling. Applying both methods not only 

accommodated the structure of the available data but also provided complementary analy=cal perspec=ves 

and an opportunity to cross-validate findings across cohorts. 

 

4.2.1 Analysis Using RnBeads 

For the first approach, I used the RnBeads package, which provides a comprehensive and automated pipeline 

for the analysis of DNA methyla=on array data. This method includes integrated steps for quality control, 

normaliza=on, annota=on, and differen=al methyla=on analysis, all with detailed reports and visualiza=ons. 

I chose this approach as a complementary strategy to validate and expand upon the results generated using 

minfi and limma. 

I began by preparing a sample annota=on file in CSV format, which included sample iden=fiers, file paths 

(when applicable), array plaOorm informa=on, and metadata such as pa=ent ID and sample status (e.g., 

primary or recurrent tumor). I then ran the analysis using the rnb.run.analysis() func=on, specifying my 

project directory, sample annota=on, and chosen analysis op=ons. 

For quality control and filtering, I used the rnb.run.qc() func=on with several important parameters enabled: 

- filtering.greedycut = TRUE was set to iteraTvely remove probes with the highest proporTon 

of unreliable measurements, based on detecTon p-values. This approach helps clean the data 

by excluding probes that fail quality thresholds in mulTple samples, ensuring that the 

remaining data points are consistently reliable. 

- filtering.sex.chromosomes.removal = TRUE was used to eliminate probes located on the X 

and Y chromosomes. This step helps avoid sex-related methylaTon variability, especially in 

mixed-sex cohorts, and is parTcularly important when sex is not a primary variable of 

interest. 

- filtering.cross.reacTve = TRUE excluded probes known to bind to mulTple genomic locaTons 

due to sequence homology, which can introduce misleading methylaTon signals. Removing 
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these cross-reacTve probes improves specificity and reduces the risk of arTfacts in 

downstream analysis. 

- filtering.snp = "3" was chosen to remove probes that contain single nucleoTde 

polymorphisms (SNPs) either at the targeted CpG site or at the single-base extension site. 

SNPs at these posiTons can affect hybridizaTon efficiency or interfere with probe design, 

potenTally leading to spurious methylaTon calls. Using level "3" applies the strictest filtering 

criteria based on known dbSNP annotaTons. 

Together, these filters were applied to ensure that only high-confidence methyla=on measurements were 

included in downstream analysis, thereby increasing the robustness and biological reliability of the results. 

Normaliza=on was performed using the BMIQ method by sevng normaliza=on.method = "bmiq", which 

adjusts for probe-type bias between Infinium type I and type II probes. This step is essen=al for achieving 

comparability across probe types and preven=ng ar=ficial technical differences from influencing the analysis. 

Although the original 450K and EPIC1 arrays were designed for the hg19 genome build, I conducted the 

analysis using hg38, as RnBeads provides updated annota=on packages for these older arrays mapped to the 

newer genome version. This allowed me to take advantage of improved genomic coordinates and region 

defini=ons. 

For differen=al methyla=on analysis, I used the rnb.run.differen=al() func=on and selected the paired analysis 

mode, since my comparison involved matched samples—specifically, primary versus recurrent tumours from 

the same pa=ents. This paired design increased the sta=s=cal power by accoun=ng for inter-pa=ent 

variability. 

The RnBeads pipeline generated comprehensive HTML reports that included summaries of the filtering and 

normalisa=on steps, interac=ve plots (e.g., PCA, clustering, and methyla=on profiles), and tables of 

differen=ally methylated posi=ons (DMPs) and regions (DMRs). These results allowed me to examine not only 

individual CpG sites but also broader pa4erns across genomic features, including promoters, gene bodies, 

CpG islands, and other regulatory elements. In addi=on to the default region types provided by RnBeads, I 

also incorporated an in-house curated list of enhancers, which I added as a custom region set to assess 

methyla=on changes in biologically relevant regulatory domains. 

This automated workflow provided a robust complementary analysis to the more hands-on minfi/limma 

pipeline, contribu=ng to a more comprehensive understanding of methyla=on differences between primary 

and recurrent tumours. 

 

4.2.2 Analysis Using minfi and limma 

As a second approach of the analysis, I used the R packages minfi (version 1.54.1) and limma (version 3.63.0) 

to process and analyse DNA methyla=on data obtained from Illumina 450K and EPIC arrays. This analysis was 



 

Chapter 4                                                                                                                                            144 

conducted on the discovery dataset, aiming to identify differentially methylated probes (DMPs) between 

sample groups and to understand how these changes were distributed across various genomic regions and 

features. 

I began by impor=ng the raw IDAT files using the read.metharray.exp() func=on from the minfi package. This 

produced an RGChannelSet object, which stores the raw methylated and unmethylated signal intensi=es from 

the array. I then performed ini=al quality control using the qcReport() func=on to check for low-quality 

samples or technical issues. In addi=on, I examined density plots and conducted principal component analysis 

(PCA) to visually inspect for outliers and batch effects that could influence the results. 

Across all datasets, I applied consistent filtering steps to remove problema=c probes. These included probes 

located on the X and Y chromosomes, those containing known single nucleo=de polymorphisms (SNPs) at the 

CpG or extension sites, and probes known to cross-react with mul=ple genomic loca=ons. I also filtered out 

probes with poor detec=on p-values (>0.01), as these may reflect background noise. These steps helped 

ensure that only reliable and biologically meaningful probes were retained. 

To measure DNA methyla=on levels, I extracted beta values using the getBeta() func=on. Beta values range 

between 0 and 1, represen=ng the propor=on of methyla=on at each CpG site. While they are easy to 

interpret biologically, they are not ideal for sta=s=cal modeling due to their unequal variability across the 

range. Therefore, for differen=al methyla=on analysis, I converted the beta values into M-values, which are 

calculated as the log2 ra=o of methylated to unmethylated intensi=es. M-values offer be4er sta=s=cal 

proper=es and are more suitable for linear modeling. 

Illumina arrays contain two types of probes (type I and type II), which have different signal distribu=ons. To 

correct for this design bias, I applied BMIQ (Beta MIxture Quan=le) normaliza=on using the wateRmelon 

package (version, ref). BMIQ adjusts type II probe values to match the distribu=on of type I probes, improving 

the overall comparability of methyla=on values. 

The discovery dataset included samples from both 450K and EPIC arrays. The 450K and EPIC1 arrays were 

aligned to the hg19 reference genome, while EPIC2 arrays used hg38. I accounted for these differences in 

genome build throughout the analysis to ensure consistent probe annota=on. 

To add biological context, I used annota=on resources from the RnBeads framework, which provide mappings 

of CpG probes to genomic features such as promoters, genes, CpG islands, and =ling regions. These 

annota=ons were later used to explore the distribu=on of significant DMPs across different genomic regions. 

Differen=al methyla=on analysis was performed using the limma package. I created a design matrix to 

describe the comparison groups (e.g. primary vs recurrent) and fi4ed a linear model using lmFit(), followed 

by empirical Bayes modera=on with eBayes(). Probes with an FDR-adjusted p-value below 0.05 were 

considered significant. In some cases, I applied an addi=onal threshold based on delta-beta to highlight CpGs 

with both sta=s=cal and biological significance. Results were visualised with volcano plots and explored 

further by feature type enrichment. 
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For the valida=on cohort, I used publicly available data from the GLASS consor=um. Raw IDAT files were not 

available for this dataset, but preprocessed beta values were provided (processed with preprocessNoob from 

minfi). I filtered this cohort to retain only IDH-wildtype (IDHwt) cases to match the discovery dataset. I also 

applied the same filtering and BMIQ normaliza=on steps used in the discovery cohort to maintain consistency. 

These samples came from 450K and EPIC1 arrays and were aligned to the hg19 genome build. 

 

4.2.3 Trends in Up and Down Responder Subtypes 

To iden=fy genomic regions with altered DNA methyla=on during glioblastoma recurrence, I calculated the 

ra=o of average methyla=on levels in recurrent tumours rela=ve to matched primary tumours. This was done 

for mul=ple region types, including gene bodies, promoters, CpG islands, enhancers, and =ling regions. For 

each region, I calculated two separate methyla=on ra=os: 

REC2PRIM_UP = (mean methyla=on in Up responder recurrent tumours + 0.01) / (mean methyla=on in Up 

responder primary tumours + 0.01) 

REC2PRIM_DOWN = (mean methyla=on in Down responder recurrent tumours + 0.01) / (mean methyla=on 

in Down responder primary tumours + 0.01) 

These values were derived independently from two differen=al methyla=on comparisons represen=ng 

dis=nct pa=ent response groups (referred to as "Up" and "Down" responders). The small constant (0.01) was 

added to each value to avoid division by zero and to stabilise the ra=o when methyla=on levels were very 

low. 

I then merged the data using a common region iden=fier and constructed two-dimensional sca4er plots 

where REC2PRIM_DOWN values were plo4ed on the x-axis and REC2PRIM_UP values on the y-axis. Each point 

in the sca4er plot represents a genomic feature, and its posi=on reflects the rela=ve change in methyla=on 

between recurrent and primary tumours in both comparison groups. To further inves=gate the func=onal 

implica=ons of these methyla=on changes, genes previously iden=fied as JARID2 binding site genes 

(JBSgenes), including those classified as LE50 or LE70 from our group's published work, were specifically 

highlighted on these two-dimensional sca4er plots to examine their distribu=on within the quadrant analysis. 

The specific highligh=ng of JARID2 Binding Site genes (JBSgenes) and Leading Edge (LE50/LE70) genes is driven 

by the cri=cal findings of Tanner et al. (2024), which established a plausible link between these genes, 

transcrip=onal reprogramming. The 'Leading Edge' (LE) refers to the subset of genes within a gene set that 

contributes most to the enrichment score in a Gene Set Enrichment Analysis (GSEA), indica=ng their 

consistent and significant altera=on; LE50 genes are those found in the leading edge in at least 50% of 

pa=ents, while LE70 genes are found in at least 70% of pa=ents. 

To iden=fy outlier regions, I calculated the mean and standard devia=on (SD) of methyla=on ra=os across all 

features. I defined a 99% confidence interval using the formula ±2.576 × SD, and used these thresholds to 

delineate the following categories: 
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- Top_Right: high methylaTon raTos in both Up and Down groups 

- Top_Leb: high in Up, low in Down 

- Bo'om_Right: low in Up, high in Down 

- Bo'om_Leb: low in both groups 

- Right_Extreme and Leb_Extreme: extreme values in Down only 

- Top_Extreme and Bo'om_Extreme: extreme values in Up only 

- Within_CI99: values within 99% CI for both axes 

These categories allowed me to classify genomic regions based on how consistently and strongly their 

methyla=on changed across pa=ent subtypes. I extracted the gene IDs, coordinates, and annota=ons for gene 

body and promoter features that fell outside the 99% CI, crea=ng region-specific gene lists. These gene lists 

were subsequently submi4ed to clusterProfiler (version 4.14.3) to perform Gene Ontology (GO) enrichment 

analysis using the Over-Representa=on Analysis (ORA) method, examining Biological Process (BP), Cellular 

Component (CC), and Molecular Func=on (MF) terms. I applied the following parameters (Gene = entrez_ids,  

OrgDb = org.Hs.eg.db, keyType = "ENTREZID", ont = ont, pAdjustMethod = "BH",  pvalueCutoff  = 0.05, 

qvalueCutoff  = 0.2). The results for each gene list were then grouped by GO category (BP, CC, and MF) to 

generate mul=-faceted bubble charts for visualiza=on of the enriched terms.  

The scripts used for analyses in this chapter is available at: 

(h4ps://github.com/umyma1/thesis_appendix/tree/main/chapter4). 

  



 

Chapter 4                                                                                                                                            147 

4.3 RESULTS 

4.3.1  Cohort descrip2on 

This chapter presents an analysis of methyla=on profiles across two cohorts: a discovery cohort and a 

valida=on cohort. Both cohorts comprise longitudinal glioblastoma (GBM) samples profiled using Illumina 

methyla=on arrays, which u=lise either the 450K or EPIC plaOorms. For each pa=ent, samples from the 

primary tumour and a corresponding local recurrence were included when available. 

Tables 4-1 and -4-2 detail the samples groupings. The discovery cohort consists of 56 samples, represen=ng 

27 matched primary–recurrent pairs. These include 24 samples processed on the 450K array (12 pairs), 20 

samples on the EPIC1 array (10 pairs), and 12 samples on the EPIC2 array (5 pairs). The valida=on cohort 

includes 114 samples from 57 matched primary–recurrent pairs, of which 34 samples (17 pairs) were profiled 

using the 450K array and 80 samples (40 pairs) using the EPIC1 array. 

In a subset of samples, stra=fica=on based on responder subtype was performed, dividing pa=ents into UP 

and DOWN responders. This classifica=on was only possible for a propor=on of the dataset, as the 

classifica=on relies on matched RNAseq data which was not available for all samples. Within the discovery 

cohort, stra=fied samples included 8 samples UP and 8 samples DOWN responders on the 450K array (4 pairs 

each), 4 samples UP and 2 samples DOWN responders on EPIC1 (2 and 1 pair, respec=vely), and 4 samples 

UP and 6 samples DOWN responders on EPIC2 (2 and 3 pairs, respec=vely). In the valida=on cohort, stra=fied 

samples consisted of 2 samples UP responders (1 pair) from the 450K array, and 16 samples UP and 4 samples 

DOWN responders from the EPIC1 plaOorm (8 and 2 pairs, respec=vely). No DOWN responders were 

iden=fied on the 450K valida=on set. 

Table 4-1: The discovery cohort – sample breakdown 

 No. 

Pa=ents 

No. 

Samples 
Array UP DOWN Unstra=fied 

Discovery 

12 24 450K 4 pairs 4 pairs 4 pairs 

10 20 EPICv1 2 pairs 1 pairs 7 pairs 

5 12 EPICv2 2 pairs 3 pairs 0 pairs 

Total 27 56 - 8 pairs 8 pairs 11 pairs 

 
Table 4-2: The valida7on cohort – sample breakdown 

 
No. 

Pa=ents 

No. 

Samples 
Array UP DOWN Unstra=fied 

Valida=on 
17 34 450K 1 pair 0 pairs 17 pairs 

40 80 EPICv1 8 pairs 2 pairs 29 pairs 

Total 57 114 - 9 pairs 2 pairs 46 pairs 
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This collec=on of longitudinally sampled GBM tumours forms the basis for two analyses presented in this 

chapter. First, differen=al methyla=on analysis (from primary to matched recurrence) was performed across 

the full cohort, including all pa=ents regardless of responder subtype annota=on. Second, cohorts were 

stra=fied and analysed separately for UP and DOWN responders. This stra=fied analysis allowed for the 

explora=on of epigene=c differences associated with each subtype, specifically, and their poten=al role in 

tumour progression. 

 

4.3.2 Quality Contol (QC) 

For the discovery cohort, raw methyla=on data were available in the form of IDAT files and were processed 

using the minfi R package with the preprocessNoob func=on. This method applies background correc=on and 

dye-bias adjustment using a normal-exponen=al convolu=on model. In parallel, the same samples were also 

analysed using the QC func=ons built into the RnBeads package. 

For the valida=on cohort, only pre-processed beta values were available, having already been normalised 

using the minfi pipeline with preprocessNoob (Consor=um, 2018). As the raw IDAT files were not accessible, 

these samples were not processed through RnBeads. 

In all workflows, background correc=on was applied, and standard quality control steps were implemented 

to exclude unreliable probes. This included the removal of probes with poor detec=on p-values, probes 

overlapping known single nucleo=de polymorphisms (SNPs), and those reported to be cross-reac=ve. For the 

RnBeads pipeline, default parameters were used. These included the exclusion of probes on sex 

chromosomes to avoid poten=al confounding due to gender-specific methyla=on pa4erns, and the ac=va=on 

of “greedycut” filtering, which removes probes failing QC in any sample across the dataset. SNP filtering was 

applied to ensure exclusion of probes with SNPs at or near the target CpG site. 

Two recurrent samples in the EPIC2 set, which were extra replicates, did not pass QC and were excluded from 

downstream analysis. 

The number of probes retained aPer QC varied depending on the array plaOorm and preprocessing approach, 

highligh=ng inherent differences between minfi and RnBeads. This resulted in a final dataset comprising 54 

samples for the discovery cohort and 114 samples for the valida=on cohort, which were subsequently used 

for downstream methyla=on analysis (Tables 4-3 and 4-4). 

 
Table 4-3: Number of samples in the discovery cohort aYer QC 

 Pa=ent Samples Array UP DOWN Unstra=fied 

Discovery 

12 24 450K 4 pairs 4 pairs 4 pairs 

10 20 EPICv1 2 pairs 1 pairs 7 pairs 

5 10 EPICv2 2 pairs 3 pairs 0 pairs 

Total 27 54 - 8 pairs 8 pairs 11 pairs 
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Table 4-4: Number of samples in the valida7on cohort aYer QC 

 Pa=ent Samples Array UP DOWN Unstra=fied 

Valida=on 
17 34 450K 1 pair 0 pairs 17 pairs 

40 80 EPICv1 8 pairs 2 pairs 29 pairs 

Total 57 114 - 9 pairs 2 pairs 46 pairs 
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4.3.3 MGMT methyla>on 

To evaluate MGMT promoter methylation dynamics during glioblastoma progression, I used the MGMT-

STP27 classifier. This tool infers methylation status from Illumina array data by combining the signals from 

two CpG probes (cg12434587 and cg12981137) located in the MGMT promoter. Methylation at these sites 

is strongly linked to the transcriptional silencing of MGMT, which predicts increased sensitivity to alkylating 

agents such as temozolomide. The classifier provides a continuous score that is divided into a binary status 

Methylated (M) or Unmethylated (U) using a validated cutoff. Unlike the Cancer Cell Fraction (CCF) estimates 

described in the previous chapters, which quantify the proportion of tumour cells carrying a given genetic 

alteration, the MGMT-STP27 score reflects the average methylation level across all cells in the sample. 

Therefore, it does not represent clonal fractions but rather the bulk methylation state of the MGMT promoter 

region. 

In the discovery cohort (n = 27), most pa=ents retained the same MGMT methyla=on status between primary 

and recurrent tumours. Specifically, 24 out of 27 pa=ents (88.9%) showed no change: 10 remained 

methylated (M>M) and 14 remained unmethylated (U>U). Three pa=ents (11.1%) exhibited a change in 

MGMT status at recurrence—two gained methyla=on (U>M) and one lost methyla=on (M>U).  

To investigate whether response subtype might be linked to MGMT methylation changes, I divided the cohort 

into UP (n = 8) and DOWN (n = 8) responders based on longitudinal tumour progression data. Among UP 

responders, 7 out of 8 exhibited stable MGMT status (3 M>M, 4 U>U), while one switched from U>M. 

Similarly, among DOWN responders, 7 out of 8 were also stable (3 M>M, 4 U>U), with one switching from 

M>U. A chi-square test showed no significant association between response subtype and MGMT switching 

(p = 0.5724). 

Although MGMT methyla=on is a well-established prognos=c marker, my focus here was not on survival 

predic=on but on examining how MGMT status may evolve in rela=on to treatment response subtype. 

In the larger valida=on cohort (n = 57), MGMT methyla=on changes between primary and recurrent tumours 

were observed in eight pa=ents (14%). Of these, five pa=ents lost methyla=on (M>U), while three gained 

methyla=on (U>M). The remaining 49 pa=ents (86%) maintained a stable status across all =me points. 

When stra=fied by response subtype, nine pa=ents were UP responders and two were DOWN responders. 

Among the UP group, eight showed stable MGMT status (2 M>M, 6 U>U), while one pa=ent switched from 

M>U. Both DOWN responders maintained a stable, unmethylated status (U > U). Again, no sta=s=cally 

significant associa=on was found between response subtype and MGMT switching (p = 0.6323). 

These results suggest that while MGMT methyla=on changes can occur during disease progression, they do 

not appear to be associated with responder subtype (when known). Nevertheless, the presence of switching 

events—par=cularly the more frequent M>U loss—may reflect underlying tumour evolu=on or treatment-

induced selec=ve pressure. Prior studies (Choi et al., 2021, Brandes et al., 2017, Birzu et al., 2020) have 
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reported MGMT switching in approximately 22% of cases, a rate similar to our findings in the valida=on cohort 

and twice that of the discovery cohort. 

 

4.3.4 Differen>al methyla>on analysis 

In this part of the analysis, I explored DNA methyla=on changes between primary and recurrent glioblastoma 

(GBM) tumours using longitudinal samples from matched pa=ents. GBM is a highly heterogeneous and 

aggressive brain tumour, and while its gene=c drivers have been extensively studied, the role of epigene=c 

changes—par=cularly DNA methyla=on—in tumour recurrence remains less well understood. To address this, 

I conducted differen=al methyla=on analysis to determine whether there are consistent changes in the 

methyla=on landscape during tumour progression. 

 

4.3.4.1 Iden>fica>on of Differen>ally Methylated Probes (DMPs) 

As a first step, I focused on iden=fying differen=ally methylated posi=ons (DMPs) using the limma package. 

This was done independently for the discovery cohort and the valida=on cohort, as they were processed 

differently and derived from different array plaOorms. The analysis compared methyla=on levels between 

matched primary and recurrent tumour samples. 

In the discovery cohort, no significant DMPs were iden=fied (adjusted p-value < 0.05), whereas the valida=on 

cohort yielded 2,332 significant DMPs under the same threshold. These significant sites were then grouped 

according to func=onal genomic regions to assess where changes were most concentrated, such as 

promoters, gene bodies, and enhancer regions (Figure 4-2). This regional annota=on provided preliminary 

insight into which genomic region might be more suscep=ble to epigene=c altera=ons during the recurrence 

of GBM. 
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Figure 4-2: Volcano plots showing log-fold changes in DNA methyla>on between recurrent and primary GBM samples 

across different genomic regions. 

Each panel corresponds to a specific genomic annota;on. The x-axis represents the LogFC in average methyla;on 
between recurrent and primary tumours, with posi;ve values indica;ng hypermethyla;on in recurrence and 
nega;ve values indica;ng hypomethyla;on. The y-axis shows the −log₁₀ of the false discovery rate (FDR), 
reflec;ng sta;s;cal significance. The dashed horizontal line marks the FDR threshold for significance. Points 
above this line are coloured by the direc;on of change: red for significantly increased methyla;on over ;me, blue 
for significantly reduced methyla;on over ;me, and grey for non-significant changes in methyla;on from primary 
to recurrence. 
A- Discovery Cohort 
B- Valida;on Cohort 

 

4.3.4.2 Region-Level Analysis and DMR Calling 

Following the iden=fica=on of DMPs, I u=lised two region-based packages, DMRcate and Bumphunter, to 

iden=fy differen=ally methylated regions (DMRs). These tools aggregate neighbouring probes to detect 

coordinated changes in broader genomic regions, which is oPen more biologically meaningful than isolated 

single-site changes. 

However, despite the presence of significant DMPs in the valida=on cohort, no significant DMRs were 

detected by either method in either cohort. This apparent discrepancy suggests that while individual CpG 

sites may undergo minor methyla=on shiPs, these changes do not cluster =ghtly enough within func=onal 

elements to meet the sta=s=cal criteria for DMRs. Another possibility is that inter-pa=ent variability, small 

effect sizes, or limited sample numbers reduced the sta=s=cal power to detect regional methyla=on changes 

with confidence. 

 

4.3.4.3 Biological Stra>fica>on by Responder Subtype 

To refine the analysis further and test whether epigene=c changes might be more prominent in specific 

biological subgroups, I repeated the full DMP and DMR analysis using responder subtype-based stra=fica=on. 

Pa=ents were divided into UP and DOWN responders based on the changes in expression of genes that have 

a JARID2 binding site in their promoter between primary and recurrent tumours. 

I performed the analysis this =me by separa=ng the samples into UP and DOWN responders. Our group 

(Tanner et al., 2024) has proposed that JARID2 plays a role in promo=ng GBM recurrence aPer treatment by 

enabling transcrip=onal reprogramming in surviving tumour cells, thereby helping to restore the phenotypic 

heterogeneity required for tumour regrowth. This reprogramming mechanism may represent a therapeu=c 

vulnerability in GBM, and as such, exploring its epigene=c underpinnings through methyla=on profiling is of 

par=cular interest. The goal of this stra=fied analysis was therefore to determine whether DNA methyla=on 

changes between primary and recurrent tumours might be driving the differen=al changes we see in gene 

expression, from primary to recurrence, across the response subgroups, poten=ally shedding light on the 

epigene=c basis of this proposed reprogramming mechanism. 
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The same R packages, limma, DMRcate, and Bumphunter, were used for the stra=fied groups. As with the 

unstra=fied pa=ents, the analysis revealed no significant DMPs from primary to recurrence in either the UP 

or DOWN responder subtypes (Figure 4-3). 

 
A 
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Figure 4-3: Volcano plots showing log-fold changes in DNA methyla>on between recurrent and primary GBM samples, 
stra>fied by response group and cohort. 

Each panel corresponds to a specific genomic annota>on. The x-axis represents the LogFC in average methyla>on between 

recurrent and primary tumours, with posi>ve values indica>ng hypermethyla>on in recurrence and nega>ve values indica>ng 

hypomethyla>on. The y-axis displays the −log₁₀ of the false discovery rate (FDR), represen>ng sta>s>cal significance. The dashed 

horizontal line marks the FDR threshold used to iden>fy significant DMPs. Points above the threshold are coloured by the 

direc>on of change: red indicates significantly hypermethylated regions in recurrence, blue indicates significantly 

hypomethylated regions and grey indicates non-significant changes. 

- Panels A and B represent UP responders, with A corresponding to the discovery cohort and B to the validation 
cohort. 

- Panels C and D represent DOWN responders, with C corresponding to the discovery cohort and D to the validation 
cohort. 

 

 

4.3.4.4 Re-analysis Using RnBeads  

Given that the earlier approach relied on using separate tools for different parts of the analysis, and that raw 

IDAT files were not available for the valida=on cohort, I then repeated the analysis using RnBeads on the 

discovery cohort only. RnBeads provides an end-to-end pipeline for preprocessing, normalisa=on, annota=on, 

and differen=al analysis, and helps ensure consistency across analy=cal stages. 

The RnBeads workflow was applied separately for each plaOorm (450K, EPIC1, and EPIC2) within the discovery 

cohort. Again, no significant DMRs were detected between primary and recurrent samples (Figures 4-4,4-5,4-

6). This confirmed that the earlier results were not due to inconsistencies between packages or preprocessing 

steps. 
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Figure 4-4: Scaher plots showing unstra>fied primary vs recurrent 

methyla>on across different arrays and region types. 

Each point represents a genomic region, with average beta value in 

primary tumours (x-axis) and recurrent tumours (y-axis). Arrays 

(450K, EPICv1, EPICv2) are arranged in rows, and region types (e.g., 

promoters, gene bodies, >ling, CpG islands) in columns. A diagonal 

trend is included in each plot, and the Pearson correla>on 

coefficient (ρ) quan>fies the linear associa>on. Point colour reflects 

local density, with warmer tones indica>ng higher regional 

concentra>on. Sta>s>cally significant differen>ally methylated 

regions (DMRs) are highlighted in red. 
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Figure 4-5: Scaher plots comparing methyla>on profiles in UP 

responders across arrays and region types. 

Each point represents a genomic region’s average beta value in 

primary (x-axis) and recurrent (y-axis) GBM samples. Rows 

correspond to arrays (450K, EPICv1, EPICv2), and columns to region 

types. Diagonal trends and Pearson correla>on coefficients (ρ) are 

shown in each panel. Point colour reflects density, and significant 

DMRs are marked in red. 
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Figure 4-6: Scaher plots comparing methyla>on in DOWN responders across arrays and region types. 

Each point represents the average methyla>on of a genomic region in primary (x-axis) and recurrent (y-axis) tumours. Arrays (450K 

and EPICv2) are shown in rows; region types are in columns. Diagonal trends and Pearson correla>on coefficients (ρ) are displayed. 

Colour intensity reflects point density. Note: EPICv1 was excluded due to insufficient sample size, which prevented RnBeads from 

comple>ng the analysis. Red points indicate significant DMRs. 
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4.3.4.5 Combined Pla^orm Analysis 

To address the possibility that the lack of significant findings was due to underpowered subgroup sizes, I next 

combined the datasets from all plaOorms to maximise sample size. Given that each methyla=on array 

plaOorm (450K, EPIC1, and EPIC2) contains a different number and distribu=on of probes, I limited the 

analysis to probes that were common across all three plaOorms (n = 347430 probes) to ensure comparability. 

The combined dataset was analysed again using RnBeads. Although no DMRs reached sta=s=cal significance, 

some trends were observed in enhancer and promoter regions, par=cularly within the stra=fied responder 

subgroups. In some loci, consistent direc=onal shiPs in methyla=on were observed across mul=ple samples, 

par=cularly in DOWN responders, which may hint at underlying biological changes that are subtle and cohort-

specific. However, these did not meet formal criteria for sta=s=cal significance, likely due to sample size and 

heterogeneity. 

 

4.3.4.6 Exploratory Stra>fica>on and Visual Divergence in Methyla>on Changes 

Although no sta=s=cally significant differen=ally methylated regions (DMRs) were iden=fied across the 

combined dataset, the visual outputs from RnBeads suggested poten=al biological varia=on worth further 

inves=ga=on. Specifically, I examined the correla=on plots that RnBeads generates to compare primary and 

recurrent tumour methyla=on profiles within each pa=ent. 

In the analysis of the en=re cohort, which included all 27 matched pairs regardless of subtype, the plots 

consistently showed narrow, concentrated regression bands across all major genomic annota=on types e.g., 

promoters, gene bodies, CpG islands, enhancers, and =ling windows (Figure 4-4). This indicated a high degree 

of similarity between primary and recurrent methyla=on profiles across pa=ents, consistent with the lack of 

sta=s=cally significant DMRs. 

However, when the same plots were examined within biologically stra=fied subgroups—UP and DOWN 

responders—the pa4ern changed (Figures 4-5 and 4-6). In both UP and DOWN groups (each with n=8 pairs), 

the regression bands appeared visibly broader and more diffuse, sugges=ng increased variability between 

primary and recurrent profiles (Figure 4-7). While the changes were not sta=s=cally significant, the wider 

distribu=on of data points implied poten=ally greater divergence in methyla=on pa4erns following 

recurrence, depending on the response subtype. 
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Figure 4-7: Scaher plots based on combined arrays, stra>fied by 

responder subtype and region type. 

Data from 450K, EPICv1, and EPICv2 arrays were merged. Rows 

indicate stra>fica>on (unstra>fied, UP, DOWN), and columns 

represent genomic region types. Each point shows a region’s mean 

beta value in primary (x-axis) vs recurrent (y-axis) samples. 

Diagonal trends and Pearson correla>on coefficients (ρ) are 

included. Point density is colour-mapped, and red indicates 

significant DMRs. 
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This observa=on draws a hypothesis that the increased spread could either reflect biological differences 

emerging aPer stra=fica=on or could simply be an artefact caused by smaller sample sizes. To inves=gate this 

further, I created a mixed group composed of four randomly selected UP and four randomly selected DOWN 

pairs, matched in size (n = 8) to the individual stra=fied subgroups. This group was used to test whether the 

broadened spread was purely due to fewer samples. 

APer re-running the RnBeads analysis on the mixed cohort (4 UP + 4 DOWN pairs), the resul=ng correla=on 

plots showed narrower regression bands overall, and the methyla=on profiles between primary and recurrent 

samples appeared more =ghtly correlated than in the fully stra=fied DOWN group (Figure 4-8). In some 

regions, par=cularly promoters and enhancers, the MIXED group plots more closely resembled those seen in 

the UP responder group, where primary–recurrent correla=on remained rela=vely high. This suggests that 

the broader varia=on seen in the stra=fied groups—especially in DOWN responders—is unlikely to be solely 

due to reduced sample size and instead may reflect biologically dis=nct pa4erns of epigene=c change related 

to pa=ent subtype. The resemblance between MIXED and UP further supports the idea that UP responders 

may retain more stable methyla=on profiles, while DOWN responders show greater divergence at recurrence. 
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Figure 4-8: Scaher plots assessing methyla>on divergence across 

UP, DOWN, and mixed responders. 

Rows display different responder groups; columns represent region 

types. Each point reflects a genomic region’s average methyla>on 

in primary (x-axis) and recurrent (y-axis) samples. A diagonal trend 

is shown in each panel, with Pearson correla>on coefficient (ρ) 

indica>ng the degree of methyla>on conserva>on. Point colour 

encodes local density. Sta>s>cally significant DMRs are highlighted 

in red. 
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4.3.4.7 Quadrant Analysis of Direc>onal Methyla>on Shifs 

I wished to explore whether the UP and DOWN responder subtypes exhibited direc=onally opposing DNA 

methyla=on changes during glioblastoma recurrence, which could indicate that differen=al methyla=on 

contributes to the differen=al transcrip=onal reprogramming. To this end, I conducted a quadrant-based 

comparison, plovng the longitudinal changes in average methyla=on levels across annotated genomic 

regions in Up versus Down responders. The regions in ques=ons were promoters, CpG islands, gene bodies, 

GBM-specific enhancers, and =ling windows. For each region, I calculated a recurrence/primary methyla=on 

ra=o per region separately for each subtype. These ra=os were plo4ed on a two-dimensional sca4er plot, 

with DOWN responders on the x-axis and UP responders on the y-axis. This design allowed me to dis=nguish 

concordant changes (top right – longitudinal increases in methyla=on for both responders -  and bo4om leP 

- longitudinal decreases in both- quadrants) and discordant changes (top leP and bo4om right, where 

methyla=on increased in one subgroup over =me but ecreased in the other). Although global changes were 

modest and not sta=s=cally significant overall, I observed that several features fell into the discordant 

quadrants, sugges=ng that UP and DOWN responders may undergo some opposing epigene=c shiPs during 

recurrence. Given the hypothesis that responder subtypes follow dis=nct epigene=c trajectories, this was 

worth further inves=ga=on to see if opposing changes in methyla=on are contribu=ng to transcrip=onal 

reprogramming mechanisms. 

Among the five region types analysed, I now focused downstream interpreta=on on promoters and gene 

bodies (Figure 4-9), as these provide the most direct insight into poten=al transcrip=onal regula=on and have 

the most comprehensive biological annota=on. To further assess the biological significance of observed 

methyla=on shiPs, I annotated the plots with LE50 and LE70 gene sets, which represent genes found in the 

leading edge of treatment-driven dysregulated gene signatures in at least 50% and 70% of pa=ents, 

respec=vely. These gene sets are, thus, those most consistently and significantly changed in expression from 

glioblastoma primary to recurrence. However, in my analysis, both LE50 and LE70 genes clustered primarily 

within the 99% confidence interval (CI99%) around zero, indica=ng that their methyla=on changes were 

modest and not strongly subtype-specific. This suggests that although these genes are transcrip=onally 

relevant in recurrence, they may not be regulated by differen=al methyla=on in a divergent manner across 

subtypes. 
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Figure 4-9: Quadrant scaher plots of DNA methyla>on ra>os across genomic regions in UP and DOWN responders. 

Sca@er plots display the recurrence-to-primary methyla>on ra>os for matched glioblastoma samples, stra>fied 

by UP and DOWN responder subtypes, across five genomic annota>on categories: promoters, gene bodies, CpG 

islands, enhancers, and >ling regions. Each point represents a single annotated region, with the x-axis indica>ng 

the methyla>on ra>o in DOWN responders and the y-axis in UP responders. Methyla>on ra>os were calculated 

using the formula: 

                                   mean methyla>on in recurrence / mean methyla>on in primary. 
Solid red lines represent the mean methyla>on ra>o for each group and define the central point of the plot. 

Dashed red lines indicate the boundaries of the 99% confidence interval (CI99%) along both axes. The central 

box defined by the dashed lines represents regions where methyla>on changes fall within expected varia>on 

for both subtypes. Regions located outside the CI99% on either or both axes were considered to exhibit 

significant direc>onal methyla>on changes and were classified into quadrant-based gene sets for downstream 

analysis. 

Coloured points indicate annotated genes: 

- All genes (blue). 
- LE50 genes (red): genes found in the leading edge of GSEA-enriched gene sets in ≥50% of pa>ents. 
- LE70 genes (yellow): genes found in ≥70% of pa>ents' leading edges. 
- JBSgenes (brown): genes iden>fied as JARID2 binding site targets. 

These gene sets were overlaid only on promoter and gene body plots, as only these regions included gene name annota>ons. 

CpG islands, enhancers, and >ling regions did not have gene iden>fiers and were therefore not annotated with LE50, LE70, or 

JBSgenes. 

 

 

Nonetheless, to inves=gate further, I grouped all data points into eight categories based on their devia=on 

from the 99% confidence interval around zero i.e. no change in methyla=on over =me: Figure 4-10. I then 

conducted Gene Ontology (GO) enrichment analysis using the Over-Representa=on Analysis (ORA) method 
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via clusterProfiler. Of the eight categories, only Gene Set 6 (Right_Extreme: increased methyla=on over =me 

in Down responders only) (Figures 4-11A-B) and Gene Set 4 (Bo4om_Extreme: decreased methyla=on over 

=me in Up responders only) produced biologically meaningful enrichment results (Figures 4-11C). The 

number of genes per quadrant submi4ed to the clusterProfiler tool is summarised in Table 4-5. 

 

   

Table 4-5: Gene lists extracted from promoters and gene bodies 

Quadrant Promoter Gene body 
Bo4om_LeP 4 18 
Top_LeP 6 18 
Top_Right 45 50 
Bo4om_Right 34 47 
LeP_Extreme: 13 42 
Right_Extreme 445 273 
Top_Extreme 489 499 
Bo4om_Extreme 209 232 

 

 

 

 
Figure 4-10: Schema>c Overview of Quadrant-Based Classifica>on and Gene Set Assignment for Subtype-Specific Methyla>on 

Shi`s. 

Schema>c illustra>on of quadrant-based classifica>on and gene set assignment in recurrence-to-primary methyla>on analysis. This 

schema>c depicts how genomic regions were categorised based on their recurrence-to-primary methyla>on ra>o in DOWN 

responders (x-axis) and UP responders (y-axis). 

 

LeT panel: Conceptual layout showing eight quadrant zones surrounding the central 99% confidence interval (CI99%), shaded in grey. 

Solid red lines represent the mean recurrence-to-primary ra>o for each axis, and dashed red lines indicate the CI99% boundaries. 

Each quadrant reflects a specific direc>onal methyla>on change: 

- Top_Leh: increased methyla>on in UP responders and decreased in DOWN responders. 
- Top_Right: increased methyla>on in both UP and DOWN responders. 
- Bo@om_Right: decreased methyla>on in UP responders and increased in DOWN responders. 
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- Bo@om_Leh: decreased methyla>on in both subtypes. 
- Leh_Extreme: decreased methyla>on in DOWN responders only. 
- Right_Extreme: increased methyla>on in DOWN responders only. 
- Top_Extreme: increased methyla>on in UP responders only. 
- Bo@om_Extreme: decreased methyla>on in UP responders only. 

 

Right panel: Mapping of the eight gene sets (Gene sets 1–8) to their corresponding quadrants. Gene sets were defined as regions 

falling outside the CI99% in at least one direc>on: 

- Gene sets 1, 3, 5, and 7 (corner quadrants) represent features with concordant (3 and 7) or opposing (1 and 5) 
methyla>on changes in both subtypes. 

- Gene sets 2, 4, 6, and 8 (horizontal/ver>cal extremes) represent features with direc>onal changes in only one responder 
group. 

The central CI99% region contains genes with no significant change in either group, and was excluded from GO analysis. 

 

 

4.3.4.7.1 Elevated Methyla>on in Down Responders (Right_Extreme - Gene Set 6) 

This category consisted of genomic features that showed increased methyla=on specifically in Down 

responders at recurrence. I interpreted this as an indica=on of poten=al transcrip=onal repression occurring 

selec=vely in this subgroup. 

GO enrichment analysis revealed significant enrichment in biological processes related to development and 

differen=a=on. For gene body-associated regions, I iden=fied enrichment in terms such as “pa4ern 

specifica=on process” and “connec=ve =ssue development”, while promoter-associated regions were 

enriched for “mesenchyme development” (Figure 11A–B). These findings implicate genes involved in spa=al 

and lineage-specific cell fate decisions during recurrence in Down responders. 

Importantly, while promoter methyla=on is generally associated with gene silencing, gene body methyla=on 

is more commonly linked to ac=ve transcrip=on. Therefore, the increased gene body methyla=on observed 

in recurrence may reflect the upregula=on or maintenance of expression of genes related to differen=a=on 

and mesenchymal development. This interpreta=on is consistent with the no=on that Down responders 

acquire a more mesenchymal-like phenotype over =me (Tanner et al., 2024).  

Rather than suppressing differen=a=on, the methyla=on changes may facilitate the ac=va=on of 

mesenchymal lineage pathways, suppor=ng cellular plas=city and recurrence. This is in line with broader 

literature sugges=ng that epigene=c mechanisms, including gene body methyla=on, can be involved in 

sustaining transcrip=on of lineage-defining genes, poten=ally helping tumour cells maintain a stem-like, 

therapy-resistant state within a mesenchymal trajectory. 

 

4.3.4.7.2 Reduced Methyla>on in Up Responders (Bohom_Extreme - Gene Set 4) 

This category incorporates genomic regions that exhibited a decrease in methyla=on in Up responders only, 

sugges=ng that these genes might be transcrip=onally ac=vated during recurrence in this subgroup. 

In this gene set, only gene body-associated regions produced significant enrichment results; no promoter-

derived features yielded any enriched GO terms. The gene body list showed strong enrichment in immune-

related pathways, par=cularly the “defense response to virus” (Figure 4-11C). This term encompasses a range 
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of innate and adap=ve immune mechanisms ac=vated in response to viral infec=on and aimed at limi=ng viral 

replica=on and spread. 

Based on this enrichment, it suggests that immune-related genes become epigene=cally ac=vated in Up 

responders during recurrence, poten=ally contribu=ng to an immunologically primed tumour 

microenvironment. 

This observa=on may have therapeu=c relevance. The apparent ac=va=on of an=viral response genes 

suggests that Up responders could be more responsive to immunotherapies, possibly due to enhanced 

immune ac=vity or surveillance. 
 

 
A 
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Figure 4-11: Func>onal Enrichment of Genes with Direc>onal Methyla>on Changes in UP and DOWN Responders. 

Dot plots show significantly enriched Gene Ontology (GO) terms iden>fied using Over-Representa>on Analysis (ORA) performed via 

clusterProfiler on differen>ally methylated regions extracted from quadrant-based gene sets. Terms are shown for Biological Process 

(BP), Cellular Component (CC), and Molecular Func>on (MF) when exists. 

- A: GO enrichment results for gene body–associated regions showing increased methyla>on in DOWN responders only 

(Right_Extreme, Gene Set 6 – Genes). 

- B: GO enrichment results for promoter-associated regions in the gene promoters set (Right_Extreme, Gene Set 6 – Promoters). 

- C: GO enrichment for gene body–associated regions showing decreased methyla>on in UP responders only (Bo@om_Extreme, 

Gene Set 4 – Genes). 

In all panels, the x-axis represents the GeneRa>o, defined as the number of input genes mapped to each term divided by the total 

number of genes in the set. Dot size reflects the number of genes contribu>ng to each term (Gene Count), while colour indicates the 

adjusted p-value (FDR < 0.05), with blue shades represen>ng stronger sta>s>cal significance. 

 

 

4.3.4.7.3 The Remaining Quadrants 

Gene Set 7 (Top_Right) included relatively few features that showed increased methylation in both Up and 

Down responders. Although this gene set produced statistically significant GO terms, the small number of 

genes involved limited the interpretive value of the findings. Nonetheless, the enrichment for processes 

related to nucleosome organisation suggests that shared chromatin remodelling mechanisms may be active 

during recurrence in both subtypes. 

Gene Sets 1, 2, 5, 7, and 8 also showed statistically significant enrichment results; however, the small gene 

counts in each case limited the biological insights that could be reliably drawn. Therefore, although these 

gene sets were technically significant, I opted not to discuss them in detail. I have included the relevant plots 

in the appendix. 

In contrast, Gene Set 3 (Bo4om_LeP), which comprises features with decreased methyla=on in both up- and 

down-regulated responders, did not produce any significant GO terms from either gene body or promoter 

regions. 

 

Across the en=re analysis, I found that gene body-associated DMRs were the most consistent contributors to 

biologically meaningful enrichment results. Both Gene Set 6 (Right_Extreme) and Gene Set 4 

(Bo4om_Extreme) yielded significant GO terms from gene body-derived lists, while only Gene Set 6 showed 

addi=onal enrichment from promoter-associated DMRs. 

This pa4ern suggests that gene body methyla=on changes may play a par=cularly important role in 

transcrip=onal regula=on during glioblastoma recurrence, contribu=ng to processes such as cell 

differen=a=on suppression (in Down responders) and immune ac=va=on (in Up responders). Although 

promoter methyla=on is classically associated with gene regula=on, the findings highlight that intragenic 

methyla=on, especially when analysed in the context of tumour subtypes, may also serve as a cri=cal 

regulatory mechanism influencing tumour evolu=on. 
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4.4 DISCUSSION 

4.4.1 Assessment of MGMT Methyla>on  

This study examined the methyla=on status of the MGMT promoter in paired glioblastoma samples at both 

primary and recurrent stages, using the MGMT-STP27 classifier. This classifier integrates signal from two 

promoter CpG sites to es=mate methyla=on status and is widely used in clinical prac=ce to predict response 

to alkyla=ng therapy. 

In the discovery cohort (n = 27), MGMT methyla=on status was largely stable between the two =mepoints. 

Specifically, 24 out of 27 pa=ents (89%) retained the same status, while three pa=ents (11%) exhibited 

changes—two gained methyla=on (U→M) and one lost it (M→U). In the valida=on cohort (n = 57), a similar 

pa4ern was observed: 49 pa=ents (86%) showed no change, while 8 pa=ents (14%) experienced switching, 

with five losing methyla=on (M→U) and three gaining it (U→M). These results are consistent with prior 

studies indica=ng that MGMT methyla=on is generally stable over the disease course but can change in a 

subset of pa=ents. 

Such switching, although rela=vely uncommon, is clinically relevant. Previous studies, such as PMID: 

33632732, reported MGMT methyla=on status changes in about 22% of glioblastoma cases, par=cularly aPer 

temozolomide treatment. The slightly lower rate observed in our valida=on cohort (14%) may s=ll reflect 

treatment-related clonal selec=on or tumour evolu=on. Notably, most of the observed changes in our cohorts 

involved loss of methyla=on at recurrence, a pa4ern that may be associated with acquired resistance 

mechanisms. 

While MGMT methyla=on is a well-established prognos=c and predic=ve biomarker, our analysis also 

explored whether changes in MGMT status were associated with tumour progression behaviour—specifically, 

stra=fied by responder subtypes (UP and DOWN). Across both cohorts, MGMT status switching occurred at 

similarly low frequencies in both groups, and chi-square tes=ng revealed no significant differences in 

switching rates between UP and DOWN responders. This suggests that MGMT switching is not uniquely 

enriched in either progression subtype and may instead reflect broader tumour-intrinsic or treatment-related 

factors. 

In summary, our study supports the view that MGMT methyla=on is a largely stable biomarker in 

glioblastoma, with clear prognos=c relevance at the primary stage. However, methyla=on changes do occur 

in a minority of pa=ents and may impact clinical decision-making at recurrence, par=cularly when considering 

second-line therapies. 

 

4.4.2 DMRs analysis 

In this chapter, I examined DNA methylation differences between primary and recurrent glioblastoma (GBM) 

tumours using matched longitudinal samples from both discovery and validation cohorts. Various methods 
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were employed to evaluate methylation variations, including probe-level (DMP) analysis with the limma 

package, and region-level (DMR) analysis using DMRcate, Bumphunter, and the integrated RnBeads pipeline. 

Although several significantly differentially methylated positions (DMPs) were identified, especially within 

promoter and enhancer regions, no statistically significant differentially methylated regions (DMRs) were 

found at any stage of the analysis — whether unstratified, stratified by responder subtype, or across 

platform-integrated data. This underscores an important point: while individual CpG sites may show slight 

shifts, these changes do not appear to cluster strongly enough to meet regional significance thresholds, 

indicating that epigenetic alterations during GBM recurrence are either subtle, dispersed, or vary between 

patients. 

To be4er understand whether pa=ent subtypes might reveal underlying epigene=c differences, the analysis 

was repeated using a biologically informed stra=fica=on based on treatment driven changes in expression of 

a subset of genes (shown to have a JARID2 bindig site in their promoter), dividing pa=ents into UP and DOWN 

responders. This stra=fica=on did not lead to the iden=fica=on of sta=s=cally significant DMRs; however, 

visual inspec=on of RnBeads-generated correla=on plots indicated broader varia=on between primary and 

recurrent samples in both UP and DOWN responder groups, compared to the full unstra=fied cohort. These 

broader regression bands were most notable in enhancer and promoter regions, sugges=ng poten=ally 

increased divergence in methyla=on profiles following tumour recurrence within these subgroups. This 

observa=on raised the possibility that the JARID2 subtypes may follow dis=nct epigene=c trajectories, even 

if these changes fall below the threshold of sta=s=cal detec=on in this sample size. 

To understand whether the increased varia=on observed in stra=fied groups was due to biological effects or 

simply a smaller sample size, a controlled “MIXED” cohort of 4 UP and 4 DOWN responder pairs was created. 

Rerunning the RnBeads analysis on this cohort yielded narrower, more compact regression bands, resembling 

those in the full, unstra=fied cohort. Interes=ngly, in some regions—par=cularly promoters and enhancers—

the MIXED group resembled the UP-responder group more closely, which generally showed stronger 

primary–recurrent correla=on than the DOWN group. This suggests that the wider spread observed in the 

DOWN responder group is unlikely to be a sample size artefact and may instead reflect true biological 

divergence associated with treatment response pa4erns. 

To explore this further, a quadrant analysis was performed to compare the direc=onal change in methyla=on 

between UP and DOWN responders. While no regions showed significant differences, several genomic 

features displayed opposite trends between the two subtypes, with a number falling into discordant 

quadrants. This supports the hypothesis that UP and DOWN responders may undergo dis=nct and possibly 

opposing methyla=on changes during recurrence, adding nuance to the idea that epigene=c reprogramming 

in GBM may be context-dependent and subtype-specific. 

These findings align with prior literature sugges=ng that while gene=c and transcriptomic changes are 

frequently observed in recurrent GBM, DNA methyla=on profiles are generally more stable. However, this 

study suggests that stratifying patients based on biological characteristics, such as responder subtype, may 
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reveal otherwise hidden epigenetic variations. The subtlety of the changes observed here, combined with 

the consistent presence of DMPs and diverging correla=on trends, suggests that epigene=c evolu=on in GBM 

may occur on a smaller or more heterogeneous scale than previously appreciated. 

A significant limitation of this study is the small sample size, especially within stratified groups, which reduces 

the statistical power to detect small or region-specific changes. Additionally, using different array platforms 

introduced variability in probe coverage, requiring analysis to be limited to common probes, which may 

potentially exclude biologically informative sites. The dependence on array-based bulk tissue methylation 

also restricts resolution, potentially masking methylation changes in subclonal populations or tumour 

microenvironments. 

Future studies could address these limita=ons by employing higher-resolu=on methods such as whole-

genome bisulfite sequencing (WGBS) or single-cell methyla=on profiling. Addi=onally, the development of a 

methyla=on-based classifier for JARID2-bound gene ac=vity could enhance stra=fica=on in cohorts lacking 

transcriptomic data, thereby allowing for a broader applica=on of this approach. Finally, integra=ng 

methyla=on data with other molecular layers, such as gene expression, chroma=n accessibility, or muta=onal 

burden, may provide a more comprehensive view of tumour evolu=on and clarify the role of epigene=cs in 

recurrence and therapy resistance in GBM. 

 

4.4.3 Quadrant Analysis of Direc>onal Methyla>on Shifs 

In this chapter, I inves=gated DNA methyla=on changes between matched primary and recurrent GBM 

tumours by comparing recurrence/primary methyla=on ra=os across two clinical response subgroups: Up and 

Down responders. By classifying genes into eight quadrant-based categories based on methyla=on changes 

in each group, I iden=fied two categories—Gene Set 6 (Right_Extreme) and Gene Set 4 (Bo4om_Extreme)—

that yielded biologically meaningful GO enrichment results. Gene Set 6 included features with increased 

methyla=on specifically in Down responders, while Gene Set 4 contained features with decreased 

methyla=on exclusively in Up responders. These pa4erns suggest dis=nct regulatory trajectories during GBM 

recurrence. 

 

In Down responders, I observed enrichment for developmental processes such as pa4ern specifica=on, 

connec=ve =ssue development, and mesenchyme development, derived from both gene body and promoter 

DMRs. Given that gene body methyla=on is generally associated with ac=ve transcrip=on, these findings 

suggest that genes involved in differen=a=on and =ssue organisa=on may be epigene=cally upregulated 

during recurrence. I interpret this as an adap=ve mechanism suppor=ng the acquisi=on or maintenance of a 

mesenchymal stem-like phenotype. Rather than silencing differen=a=on pathways, the observed methyla=on 

changes may help sustain expression of lineage-specific programs while preven=ng full differen=a=on. This 
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would preserve tumour plas=city, a hallmark of treatment-resistant and recurrent glioblastoma, by 

maintaining cells in a dynamic, par=ally differen=ated state that can adapt to therapy-induced stress. 

In contrast, Up responders showed reduced methylation over time in the gene body regions of immune-

related genes, especially those involved in the defence response to viruses. This demethylation might 

facilitate the transcriptional repression of immune programmes during recurrence. It suggests that these 

changes reflect an epigenetic shift towards immune readiness or reactivation in this subgroup. Importantly, 

promoter regions did not display notable enrichment for these genes, emphasising the importance of gene 

body methylation in this context. The activation of antiviral pathways could serve as a mechanism for 

enhanced immune surveillance, suggesting a potential increased susceptibility to immune-based therapies 

in the UP-responder subgroup. 

The fact that most LE50 and LE70 genes fall within the 99% CI suggests that, although these genes are 

consistently transcriptionally altered across patients, they are unlikely to be regulated by subtype-specific 

DNA methylation changes. This aligns with findings from our group’s recent work (Tanner et al., 2024), which 

showed that transcriptional reprogramming during glioblastoma recurrence is not primarily driven by DNA 

methylation but is instead linked to dynamic changes in histone modifications. However, my analysis 

introduces a new dimension by demonstrating that DNA methylation may still have a regulatory role, 

especially when examined in a subtype-specific context. While Tanner’s study focused on broad recurrence-

associated changes, my quadrant-based approach highlights how divergent methylation patterns between 

Up and Down responders may contribute to their distinct biological phenotypes. These findings suggest that 

histone modifications are not the only epigenetic mechanism involved and that DNA methylation, although 

more subtle, may also influence transcriptional landscapes in a subgroup-specific manner. 

These findings are consistent with prior studies highligh=ng transcrip=onal and epigene=c plas=city in GBM, 

par=cularly during recurrence. Work by (NePel et al., 2019) has demonstrated that GBM cells dynamically 

transi=on between dis=nct cell states—including mesenchymal and progenitor-like iden==es in response to 

treatment. My observa=ons in Down responders align with this model, sugges=ng that repression of 

differen=a=on programs may be an epigene=c mechanism enabling state switching. The immune ac=va=on 

observed in Up responders also fits with emerging evidence that, while GBM is typically considered an 

“immune cold” tumour, certain subtypes or recurrent cases may exhibit epigene=cally mediated immune 

competence. The recent review by (Lin et al., 2024) supports this view, describing how DNA methyla=on, 

histone modifica=on, and non-coding RNA regula=on influence immune ac=va=on and T cell infiltra=on in 

GBM. Their discussion of epigene=c silencing and reac=va=on mechanisms, including interferon pathway 

genes and immune checkpoints, parallels the trends observed in the UP-responder subtype. 

 

The implica=ons of these findings are twofold. First, they suggest that subtype-specific epigene=c changes 

may underlie differen=al clinical responses and should be considered in therapeu=c stra=fica=on. For Down 

responders, the silencing of differen=a=on programs may render them vulnerable to epigene=c therapies 
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aimed at reversing stemness or restoring cell iden=ty, such as inhibitors of PRC2 or histone deacetylases. For 

Up responders, the apparent ac=va=on of immune pathways may support the use of immunotherapy, 

especially in recurrence, when epigene=c reac=va=on may enhance immune engagement. Second, these 

findings provide a ra=onale for integra=ng epigenomic profiling into GBM monitoring and treatment design, 

as changes in methyla=on may precede or reflect cri=cal biological transi=ons during disease progression. 

 

Nonetheless, several limita=ons should be acknowledged. The quadrant-based classifica=on yielded small 

gene lists in most categories, limi=ng the sta=s=cal power of enrichment analysis outside Gene Sets 6 and 4. 

Moreover, although promoter methyla=on is classically linked to gene silencing, the func=onal consequences 

of gene body methyla=on are more complex and remain context-dependent. Without transcriptomic 

valida=on, it is challenging to infer whether hypomethyla=on directly corresponds to gene upregula=on. 

Addi=onally, this analysis was based on bulk tumour methyla=on data, which cannot resolve cell-type-specific 

contribu=ons. It remains possible that some observed methyla=on changes reflect altera=ons in the tumour 

microenvironment rather than tumour-intrinsic changes. Finally, while GO analysis provides func=onal clues, 

it does not establish causality; further mechanis=c studies are needed to confirm the regulatory roles of these 

epigene=c changes. 

In summary, my analysis reveals that GBM recurrence is accompanied by divergent epigene=c remodelling 

programs in different subgroups. In Down responders, recurrence is characterised by increased methyla=on 

and repression of developmental genes, suppor=ng a shiP toward a stem-like mesenchymal state. In contrast, 

Up responders exhibit decreased methyla=on in immune-related gene bodies, indica=ng immune ac=va=on. 

These findings highlight the importance of integra=ng epigene=c data with clinical and molecular 

stra=fica=on to enhance understanding of recurrence biology and iden=fy new opportuni=es for personalised 

therapy in glioblastoma  
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4.5 APPENDIX 

   

Top_LeP: increasing methyla=on in up responder and decreasing in down responder 

Top_Right: increasing methyla=on in both up and down responder 

Right_Extreme: increasing methyla=on in up responder only 

LeP_Extreme: decreasing methyla=on in down responder only 

Bo4om_Extreme: decreased methyla=on in UP responders only. 

Bo4om_Right: increasing methyla=on in down responder and decreasing in up responder 
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CHAPTER 5 – DISCUSSION 

Glioblastoma (GBM) stands as an excep=onally aggressive and challenging malignancy, primarily due 

to its difficult brain loca=on for biopsy sampling and its rapid recurrence despite current therapies. 

This necessitates a profound understanding of its molecular drivers and evolu=onary dynamics. 

While the field rapidly leveraged cuvng-edge technologies from bulk genomic and transcriptomic 

studies to single-cell and spa=al omics to try and unearth the pathobiology underlying gliomagenesis, 

comprehensive longitudinal analyses of matched primary and recurrent tumours remain scarce, 

despite poten=ally yielding the best chance to decipher mechanisms behind GBM's treatment 

resistance and short pa=ent survival. My PhD research aimed to bridge this gap by developing robust 

bioinforma=c pipelines and applying them to longitudinal GBM cohorts, thereby illumina=ng cri=cal 

molecular altera=ons, iden=fying treatment-driven evolu=onary paths, and proposing therapeu=c 

and diagnos=c strategies. 

 

A fundamental challenge in molecular oncology, par=cularly with clinically derived FFPE samples, is 

ensuring sequencing data fidelity. Recognising that high-quality biological insights stem from high-

quality data, a core component of my thesis involved me=culously op=mising whole-exome (WES) 

and whole-genome sequencing (WGS) analysis pipelines. Ini=ally, technical artefacts like FFPE-

induced C>T transi=ons and errors from overlapping paired-end reads inflated variant calls and 

compromised variant allele frequency (VAF) es=mates crucial for clonal tracking. My work 

successfully addressed these issues by u=lising ClipBam to correct for overlapping reads and other 

methods, which significantly improved data reliability. This brought WES variant counts in line with 

established GBM cohorts like TCGA, enabling accurate tumour muta=onal burden (TMB) es=ma=on 

and robust iden=fica=on of key GBM muta=ons (e.g., EGFR, PTEN, TP53, RB1). While WGS data 

remained more challenging due to FFPE constraints and lower depth, it proved invaluable for reliable 

copy number aberra=on (CNA) detec=on, iden=fying characteris=c GBM gains on chromosome 7 and 

losses on chromosomes 10 and 9. This op=mised pipeline, a significant success of my work, laid the 

essen=al groundwork for confident downstream analyses, especially for resolving clonal dynamics 

and tracking gene=c altera=ons over =me. To further elevate data quality, future efforts should focus 

on higher sequencing depths for WGS and adop=ng shorter paired-end read lengths (e.g., 75 bp) to 

minimise problema=c overlaps inherent to fragmented FFPE DNA. Establishing a panel of normals 

(PON) from non-malignant brain =ssue would also significantly reduce false posi=ves. Moreover, the 

modular design of the pipeline, adaptable to plaOorms like NexOlow, can serve as a blueprint for 

developing robust workflows for other omics data, such as RNA sequencing and methyla=on analysis. 
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With this validated pipeline established, my research shiPed to deciphering the molecular dynamics 

of GBM progression, iden=fying both drivers of treatment resistance and vulnerabili=es associated 

with therapeu=c sensi=vity by analysing longitudinal changes in variant profiles. A central and 

specific discovery of this work was the iden=fica=on of ERBB signalling pathways as a cri=cal axis 

undergoing differen=al selec=on pressure in GBM evolu=on. My focused inves=ga=on revealed that 

while ERBB2 was selected for during tumour progression, ERBB4 was selected against. This 

differen=al selec=on, involving specific variants in EGFR, PTEN, and PIK3CA, intricately modulates 

ERBB receptor dimerisa=on, downstream signalling, and cellular fate. Notably, even in the absence 

of precise cancer cell frac=on (CCF) es=mates and aPer carefully excluding variants located in copy 

number variable regions, the differen=al selec=on within the ERBB signalling pathway remained a 

sta=s=cally significant and robust finding. This highlights its intrinsic biological importance and 

iden=fies it as a prime candidate for future targeted therapeu=c and mechanis=c studies. The 

profound finding of differen=al selec=on within the ERBB signalling pathway warrants experimental 

valida=on in laboratory sevngs (e.g., in vitro and in vivo models) to confirm the func=onal impact of 

these selec=on pressures and specific variants. Beyond ERBB, a key future goal is to enhance pathway 

analysis specificity. Although we used public gene sets in this thesis, our planned effort to perform 

gene set enrichment analysis with custom, GBM-specific gene sets developed by our 

GliomaGenomics group via PathScore was unfortunately halted. This remains an important 

recommenda=on for future work, pending feedback from the PathScore developer on enabling GBM-

specific gene sets. 

 

Furthermore, inves=ga=ng the role of extrachromosomal DNA (ecDNA) is vital to understanding its 

contribu=on to rapid tumour evolu=on and the emergence of drug resistance. A deeper 

understanding of ecDNA's mechanisms could pave the way for novel therapeu=c strategies 

specifically targe=ng these unstable gene=c elements, thereby overcoming a major hurdle in cancer 

treatment. 

 

My thesis also ventured into the epigene=c landscape of GBM, specifically examining the methyla=on 

status of the MGMT promoter in paired primary and recurrent glioblastoma samples. While MGMT 

methyla=on is a well-established prognos=c and predic=ve biomarker, my assessment, using the 

MGMT-STP27 classifier, primarily served to compare findings to exis=ng literature and inves=gate its 

associa=on with treatment-driven tumour progression behaviours. My analysis revealed that MGMT 

methyla=on status was largely stable between primary and recurrent tumours across both discovery 

and valida=on cohorts (approximately 86-89% consistent). However, a small but clinically relevant 

subset of pa=ents exhibited methyla=on switching, predominantly a loss of methyla=on at 
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recurrence, implying an acquired resistance mechanism. Crucially, my work specifically checked the 

associa=on between MGMT status changes and the "Up-responder" or "Down-responder" subtypes. 

Interes=ngly, these changes occurred at similarly low frequencies in both groups, and chi-square 

tes=ng revealed no significant differences in switching rates between them, sugges=ng that MGMT 

changes are not uniquely enriched in either subtype but rather reflect broader tumour-intrinsic or 

treatment-related factors.  

 

A considerable challenge in this chapter was the overall small number of samples, especially when 

trying to do more detailed analyses, such as iden=fying reliable differen=ally methylated regions 

(DMRs) at the probe or regional level. This issue became even more no=ceable when I divided the 

samples into "Up-responder" and "Down-responder" groups, as it further reduced the number of 

cases in each subgroup. This limita=on affected the confidence and power of the results beyond the 

MGMT analysis. While this is a well-known problem in GBM research, it is difficult to overcome due 

to limita=ons in what =ssue can be collected and preserved during surgery. Clinical =ssue banks are 

extremely valuable, but diagnos=c priori=es and variability in sample quality constrain them. 

 

To make the most of available samples and improve sta=s=cal power, one prac=cal direc=on is to 

develop a methyla=on-based stra=fica=on method. The current classifica=on method of the Up and 

Down-responder subtypes used in this thesis is derived from RNA-seq data. However, not all archival 

or FFPE-derived samples have matched RNA-seq available. Crea=ng a methyla=on-based classifier 

would allow researchers to assign subtype labels to samples that cannot be classified through 

transcriptomics, enabling the inclusion of larger methyla=on cohorts in downstream analyses. This 

approach would also help harmonise datasets from different sources and increase the power to 

detect robust epigene=c signatures linked to treatment response. 

 

In addi=on, moving beyond promoter regions and inves=ga=ng enhancer methyla=on and 

transcrip=on factor mo=f enrichment will be key to uncovering new regulatory mechanisms involved 

in tumour progression and resistance. These enhancer-based changes are increasingly recognised as 

important in GBM biology, and focusing on them could reveal pa4erns not captured through 

conven=onal promoter analysis. 

 

Another important direc=on is the use of experimental model systems designed to reflect the 

molecular features seen in pa=ent tumours. The findings in this thesis, such as the selec=ve pressure 

on ERBB genes and the behaviour of MGMT methyla=on, offer a strong founda=on for guiding model 

development. Once validated, these models would allow researchers to study treatment resistance 



 

Chapter 5                                                                                                                                           202 

and progression in a controlled environment, as well as explore how different molecular profiles 

affect response to therapy. Importantly, they also provide the opportunity to perform mul=-omics 

analyses — combining genome, methylome, and transcriptome data from the same sample. 

Although integra=ng these layers is technically challenging, the tools are improving, and this kind of 

analysis holds great promise for refining pa=ent stra=fica=on and iden=fying therapeu=c targets. 

 

Ul=mately, my PhD research has provided a comprehensive look into the molecular intricacies of 

glioblastoma, from fundamental data quality challenges to complex pathway dynamics and 

epigene=c shiPs. By developing robust analy=cal tools and applying them to precious longitudinal 

GBM samples, I have iden=fied gene=c and epigene=c altera=ons that may influence therapeu=c 

response. The findings not only clarify mechanisms of resistance and sensi=vity but also propose 

biological targets and strategies for pa=ent stra=fica=on. The journey ahead in GBM research 

requires a concerted, mul=-faceted approach. Building on the founda=on laid by my thesis, future 

efforts should priori=se integra=ng mul=-modal omics data with func=onal valida=on, leveraging 

cuvng-edge single-cell and spa=al technologies to dissect tumour heterogeneity, and expanding 

longitudinal cohort studies to capture the full spectrum of tumour evolu=on. Moreover, the 

applica=on of AI and machine learning will be instrumental in synthesising these vast datasets for 

predic=ve modelling and biomarker discovery. Ul=mately, by con=nually pushing the boundaries of 

genomic and epigenomic analysis, coupled with rigorous experimental valida=on, we, researchers, 

can pave the way for a new era of precision oncology for glioblastoma pa=ents, offering more 

effec=ve, tailored treatments and improved survival outcomes. 

 


