
Bio-inspired Reinforcement Learning:
Algorithm Development and its
Application to Visual Search

Zhile Yang

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

The University of Leeds

Faculty of Engineering & Physical Sciences

School of Computer Science

July 2025

Intellectual Property and Publication

Statements

I confirm that the work submitted is my own, except where work which has formed part of jointly

authored publications has been included. My contribution and the other authors to this work

has been explicitly indicated below. I confirm that appropriate credit has been given within the

thesis where reference has been made to the work of others.

In this work, chapters 2, 3, and 4 include work that has been published in a jointly-authored

publication. The details of the publication are as follows:

Z. Yang, S. Guo, Y. Fang, Z. Yu and J. K. Liu, "Spiking Variational Policy Gradient for Brain

Inspired Reinforcement Learning," in IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 47, no. 3, pp. 1975-1990, March 2025, doi: 10.1109/TPAMI.2024.3511936.

I completed the theoretical derivations, experiments, visualizations and analyses of the results,

and the text and the appendix.

Shangqi Guo, Ying Fang, Zhaofei Yu, and Jian K. Liu contributed to the formulation of the

ideas in the theoretical analysis and the design of the experiments. Shangqi Guo, Ying Fang

and, Jian K. Liu contributed to the drawing of the sketches of the network, that is, Figure 1

and 2 in the publication.

i

This copy has been supplied on the understanding that it is copyright material and that no

quotation from the thesis may be published without proper acknowledgement.

© 2025 The University of Leeds, Zhile Yang

Signed

ii

Acknowledgements

I would like to express my deepest gratitude to my supervisors, Drs. Jian Liu, Yongxing Wang,

David Head, and my other thesis group members, Drs. Yanlong Huang, He Wang, and Arash

Rabbani for their guidance and support. A special thought goes to Dr. Jian Liu. The countless

meetings and suggestions are indispensable for my academic development.

I would like to thank my collaborators on the SVPG project. Their ideas and contributions are

precious to the outcome of the project.

I would like to thank all my colleagues at the Neural Computation Laboratory. Their inspirations

and experiences helped me overcome challenges in research and life.

I would like to thank my family for their invaluable support. Despite the large physical distance,

their help is always available and is the one that helps me get through the hardest times.

This project made use of: ARC3 and Aire, part of the high performance computing facilities

at the University of Leeds; BlueBEAR and Baskerville, part of the high performance comput-

ing facilities at the University of Birmingham; and facilities of the N8 Centre of Excellence in

Computationally Intensive Research (N8 CIR) provided and funded by the N8 research partner-

ship and EPSRC (Grant No. EP/T022167/1). The Centre is co-ordinated by the Universities

of Durham, Manchester and York. Baskerville was funded by the EPSRC and UKRI through

the World Class Labs scheme (EP/T022221/1) and the Digital Research Infrastructure pro-

gramme (EP/W032244/1) and is operated by Advanced Research Computing at the University

of Birmingham.

iii

Abstract

The field of reinforcement learning has seen significant advances in recent years. However, there

are still many challenges, including adaptability to environmental changes, robustness to noise,

energy efficiency, safety, etc. A promising direction is to incorporate neuroscience findings to

explore the potential of replicating the strong cognitive abilities of humans and animals, which,

in return, can also contribute to our understanding of brain functions.

In this work, I propose a new model of spiking neural network and derive a reinforcement learning

algorithm for it. The algorithm is based on reward-modulated spike-timing-dependent plasticity,

thus having better biological plausibility. Experiments on standard reinforcement learning tasks

demonstrate its ability to solve challenging tasks and have better inherent robustness to a variety

of perturbations than standard methods.

My method is also applied to real-life visual search scanpath modeling tasks that are more

challenging. Additionally, I design a new map-based inverse reinforcement learning method that

can better extract motivations from scanpaths. Experiments show the effectiveness of the spiking

neural network in solving the scanpath modeling task. To obtain an in-depth understanding of

the cognitive mechanisms of visual search behaviors, I further apply the reinforcement learning

method to the analysis of scanpath properties of social and non-social behaviors of visual search.

The results offer new understandings of the patterns of eye movements.

Taken together, the results presented in this thesis provide novel insights into not only developing

new reinforcement learning algorithms but also understanding the behaviors and mechanisms of

our visual search function.

iv

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Brain-Inspired RL Methods . 2

1.1.2 Visual Search . 3

1.2 Motivations . 4

1.3 Objectives . 5

1.4 Contributions . 5

1.5 Structure of the Thesis . 6

2 Literature Review 8

2.1 Reinforcement Learning . 8

2.2 Brain-Inspired Reinforcement Learning . 10

2.2.1 Spiking Neural Networks . 11

2.2.2 Spiking Neural Networks for Reinforcement Learning 14

2.3 Visual Search . 17

2.3.1 Methods for Scanpath Prediction . 19

2.3.2 Evaluation of Scanpath Predictions . 26

2.3.3 Applications of Visual Search . 27

2.3.4 ASD Analysis by Eye Movements . 28

3 Spiking Variational Policy Gradient:

A Novel Brain-Inspired Reinforcement Learning Algorithm 31

3.1 Network Design . 32

3.2 Policy Inference . 34

v

CONTENTS CONTENTS

3.2.1 The Definition of Policy Function . 34

3.2.2 Validity of Policy Approximation . 35

3.2.3 Policy Mean-Field Inference . 35

3.2.4 Policy Inference with RWTA Network . 36

3.3 Policy Optimization . 37

3.3.1 Policy Optimization for REINFORCE . 37

3.3.2 Policy Optimization with R-STDP . 40

3.4 Algorithm . 41

3.5 Practical Considerations . 42

3.5.1 Rate-Based Approximation . 43

3.5.2 Extension to Other Base RL Algorithms 43

3.6 Chapter Summary . 45

4 Evaluation of SVPG on Benchmark RL Tasks 46

4.1 Tasks . 46

4.2 Methods for Comparison . 50

4.2.1 Method Selection . 50

4.2.2 Implementation Details . 51

4.3 Results . 55

4.3.1 Assumption Verification . 55

4.3.2 Task Performances . 57

4.3.3 Perturbation Tests . 62

4.3.4 Ablation Studies . 67

4.3.5 Network Visualizations . 69

4.4 Chapter Summary . 73

5 Reinforcement Learning for Visual Search Behaviors 74

5.1 Method Design . 75

5.1.1 Decoupled Reward Function . 75

5.1.2 Discounted Score . 77

5.1.3 Constraint on Value Range . 78

5.1.4 Implementation Details . 79

5.1.5 MME Algorithm . 84

vi

CONTENTS CONTENTS

5.2 Experiments on Visual Search . 85

5.2.1 Datasets and Measurements . 86

5.2.2 Methods for Comparison . 89

5.2.3 Benchmark . 91

5.2.4 Effect of Environmental Rewards . 94

5.2.5 Ablation Tests . 95

5.2.6 Performance of SVPG . 97

5.3 Experiments on Social and Non-social Visual Search 99

5.3.1 Target-Conditioned Spatial Attention . 99

5.3.2 Effects of Environment Variations . 102

5.3.3 Memory Load . 106

5.3.4 Temporal Attention . 110

5.4 Chapter Summary . 112

6 Conclusion and Discussion 114

6.1 Conclusion . 114

6.2 Limitations and Future Work . 116

References 119

A Ethics Review 136

vii

List of Figures

2.1 The illustration of the structure of a WTA circuit. 13

3.1 The illustration of the RWTA network structure. 33

4.1 Example original state observation in the DOOM task. 49

4.2 Example state observations in the AI2THOR task. 49

4.3 Example images in the ROBOTARM task. 50

4.4 Hyperparameter tuning on MNIST. 52

4.5 Hyperparameter tuning on GYMIP. 53

4.6 Hyperparameter tuning on DOOM. 54

4.7 Hyperparameter tuning on AI2THOR. 55

4.8 Hyperparameter tuning on ROBOTARM. 56

4.9 Distribution of SVPG convergence iteration lengths in the MNIST task. 57

4.10 Comparison of spike-based and rate-based SVPG implementations on MNIST. . . 57

4.11 Comparison of spike-based and rate-based SVPG implementations on GYMIP. . 58

4.12 Learning curves of different models in four tasks. 61

4.13 Example input images with Gaussian noises in the MNIST task. 63

4.14 Example input images with salt noises in the DOOM task. 63

4.15 Environmental variations in GYMIP testing. 63

4.16 Input noise tests in the five tasks. 64

4.17 Network parameter noise tests in the five tasks. 65

4.18 Environmental variations on GYMIP. 66

4.19 Effects of connection removal in the RWTA network in training on MNIST. . . . 67

4.20 Effects of connection removal in RWTA network on MNIST and GYMIP. 68

4.21 Visualization of spike trains in WTA circuits on MNIST. 69

viii

LIST OF FIGURES LIST OF FIGURES

4.22 Entropy values of WTA circuits on MNIST. 70

4.23 Visualization of network dynamics of SVPG on GYMIP. Before training. 71

4.24 Visualization of network dynamics of SVPG on GYMIP. After training. 72

4.25 Histograms of network weight values on MNIST. 73

5.1 Examples of pre-processed (a) search image and (b) target image. 81

5.2 Illustration of state observations along a scanpath. 81

5.3 Illustration of processed state vector for SVPG. 82

5.4 Histograms of scanpath lengths on the three datasets. 87

5.5 Network structure for attention analysis. 90

5.6 Hyperparameter tuning of MME on the ASD dataset. 91

5.7 Validation performances of different methods on all the datasets. 93

5.8 Effects of different reward settings on the point distance metric 94

5.9 Learning curves of different variations of MME. 96

5.10 Hyperparameter tuning of SVPG on COCO-Search18 dataset. 97

5.11 Learning curves of SVPG on COCO-Search18 dataset. 98

5.12 Reward map, human scanpath, and a sampled agent scanpath on COCO-Search18. 98

5.13 Examples of reward map on a search image under different target images. 100

5.14 Coverage values across types of subjects and target images. 101

5.15 Effect of environmental noise on performances. 103

5.16 Effect of revisitation penalty on performances. 105

5.17 Effect of threshold for saccade penalty on performances. 106

5.18 Learning curves with different sizes of the LSTM layer. 107

5.19 Performances with different sizes of the LSTM layer. 108

5.20 Comparison of performances on data from different types of subjects. 109

5.21 Comparison of performances on data collected with different types of target images.110

5.22 Visualizations of importance values for historical observations. 111

ix

List of Tables

4.1 Zero-Noise Testing Performances on the 5 Tasks. 58

4.2 Time Complexity on MNIST. 60

4.3 Space Complexity on MNIST. 60

5.1 Scanpath length statistics. 87

5.2 Standard deviations over subject groups and training repetitions. 109

5.3 Average importance value for the first observation in history. 112

x

Abbreviations

ANN artificial neural network

ANN2SNN ANN-to-SNN

ASD autism spectrum disorder

BP backpropagation

CNN convolutional neural network

DNN deep neural network

DQN deep Q-network

DRL deep reinforcement learning

GAIL generative adversarial imitation learning

GPU graphics processing unit

IBS ideal Bayesian searcher

IOR inhibition of return

IRL inverse reinforcement learning

LIF leaky integrate-and-fire

LTD long-term depression

LTP long-term potentiation

LSTM long short-term memory

MDP Markov decision process

xi

LIST OF TABLES LIST OF TABLES

MLP multi-layer perceptron

MME map-based maximum entropy

MSE mean squared error

PPO proximal policy optimization

RL reinforcement learning

RWTA recurrent winner-take-all

R-STDP reward-modulated spike-timing-dependent plasticity

SNN spiking neural network

SRM spike response model

STDP spike-timing-dependent plasticity

SVM support vector machine

SVPG spiking variational policy gradient

WTA winner-take-all

xii

Chapter 1

Introduction

1.1 Background

Reinforcement learning (RL), as a third type of machine learning after supervised learning and

unsupervised learning, models the interaction process of an artificial agent and its environment

[1]. This enables it to solve sequential control tasks. Rather than using pre-collected datasets,

RL collects data automatically in the interaction process, so it does not rely on an expert’s

understanding of the task or the design of datasets.

A core design of RL methods is the mapping from state observations to state values or a policy

distribution. In classic methods such as Q-learning [2], a look-up table is used to represent the

mapping. This type of representation has a memory cost that grows exponentially with the

dimension of the state space and action space. This hinders those methods from being applied

to tasks with high-dimensional state space or action space, including vision-based control tasks

and tasks with a continuous action space, which are prevalent in real-world control tasks. Deep

reinforcement learning (DRL) methods, originating from the deep Q-network [3], use a neural

network to present the mapping. With the optimization method which is based on backprop-

agation (BP), and the development in network structures such as convolutional layers [4], long

short-term memory (LSTM) [5], and Transformer [6], neural networks can approximate a wide

range of mappings from and to high-dimensional spaces. The potential ability in generalization

could also accelerate learning on similar inputs. These benefits enable RL to solve tasks with

high state and action dimensions, including video games [7, 8], robot control [9], chess [10], and

machine translation [11].

1

1.1. Background Chapter 1. Introduction

Despite the above successful applications, RL agents are still far from human intelligence. Most

RL applications are still limited to simulated [7, 8] or in-laboratory scenes [9, 12, 13] where

trial-and-error is acceptable. For out-of-laboratory applications, the tasks generally need to

be simplified through abstracted states or action representations [14, 15]. As mentioned in a

review [16], the low sample efficiency of training and poor adaptability of policies are two of the

core problems of RL. In addition, the high energy consumption of commonly used devices, e.g.,

graphics processing units (GPUs), is also a problem, especially for real-world applications with

limited energy supply [17].

For these problems, many existing studies revise RL algorithms from perspectives including

reward shaping [18], task abstraction [19], task augmentation [20–22], policy amendment [23,24],

and parallelization [25], etc. These studies generally use conventional neural networks, and the

improvements are achieved through amendments to policy structure, environment model, or

computing paradigms. Considering that current performances are still not ideal when compared

to humans, and that conventional neural networks are only a coarse approximation of the human

brain, it is promising to consider more inspiration from the brain in the design of RL methods.

Brain-inspired RL studies incorporate neuroscience findings into the designs of neural networks

to explore replicating the cognitive abilities of human brains. The neuron models, network

structures, and learning methods are designed to more precisely simulate human brains. On

one hand, it has been found that these networks can improve the transfer performance [26]

and energy efficiency [27] of the learning system. On the other hand, brain-inspired RL studies

also contribute to the analysis and understanding of brain mechanisms such as biological neuron

signals [28] and cognitive functions [29]. An important type of cognitive behavior is visual search,

which reflects the mechanism for visual attention of the brain [30]. In the below sub-sections,

the background of brain-inspired RL methods and the visual search modeling are introduced

respectively.

1.1.1 Brain-Inspired RL Methods

A mainstream of brain-inspired RL methods uses spiking neural networks (SNNs) to represent

functions of values or policies. SNNs differ from conventional artificial neural networks (ANNs)

primarily in their spiking neuron models, which model the activities as discrete spikes. Such neu-

2

Chapter 1. Introduction 1.1. Background

ron models better resemble brain neurons, but also make the gradients of the network parameters

unavailable. This necessitates special designs for training an SNN.

SNN RL methods can be categorized into three types: ANN-to-SNN (ANN2SNN) [31], sur-

rogate gradient function [32, 33], and reward-modulated spike-timing-dependent plasticity (R-

STDP) [34, 35]. The first two types require backpropagation of gradients during training and

are not considered biologically plausible [36–38], meaning that they are not considered to be

hypothetically realizable by biological brains. In contrast, R-STDP methods train with local

learning rules and thus are considered biologically plausible [38–40]. In addition, R-STDP is

also preferable for implementation by neuromorphic hardware [41].

Recent studies investigated different forms of R-STDP, considering types of neuronal interac-

tions, modulation strengths, and modulation timings [34], and have seen improvements in task

performance and energy efficiency [42–44]. However, most existing methods are constrained

to shallow networks with only one hidden layer, and the applications are limited to simple

tasks [39, 42, 45, 46]. A key issue is that the local learning rules in R-STDP may not correctly

represent the RL task target, i.e., there is a gap between them. A recent work [47] proposed a

solution for bridging the gap based on variational inference. Nevertheless, the method is still

only derived for a three-layer network and tested on simple tasks.

1.1.2 Visual Search

Visual search is a kind of cognitive behavior when humans search for a certain target given a

search image. Understanding the visual search behavior provides insights into brain mechanisms

and benefits applications to robot vision, autonomous driving, design of human-computer in-

terface, and mental healthcare [30, 48, 49]. The behavior is generally captured as sequences of

fixation coordinates with reference to the search image, also known as scanpaths. The depen-

dence on stimulus images and the randomness of scanpaths make them challenging to model.

One of the main topics in visual search is behavior prediction, where predictive models are built

to predict the human scanpaths given the same search and target image as humans.

Existing methods for scanpath prediction can be categorized according to their types of machine

learning, i.e., unsupervised [50, 51], supervised [49, 52], RL [53, 54], and inverse reinforcement

learning (IRL) [55–57]. Among them, IRL methods have an advantage in explicit extraction of

the motivation behind the behaviors. This can be achieved through learning a reward function

3

1.2. Motivations Chapter 1. Introduction

that drives the agent to behave similarly to humans. The reward function can serve as a more

integrated and less noisy representation of scanpaths for behavior analysis.

Nevertheless, there is a problem with existing IRL studies for scanpath modeling. The reward

functions learned by existing methods are dependent on the agent policy [55,57–60]. Therefore, a

static representation of the motivation with reference to the search images cannot be obtained.

This hinders the comparison of the impacts of different parts of the search image on human

visual search behavior, which is important to mechanism analysis.

Another issue with existing scanpath modeling studies is the biological plausibility of the mod-

els. A biological model better facilitates the analysis of how brains work to produce cognitive

behaviors. However, most existing methods use conventional ANNs for the prediction task.

Although a recent study adopted SNNs [61] to build brain-inspired models for this cognition

task, the model in this study is trained by backpropagation, which is not considered biologically

plausible.

1.2 Motivations

The motivation of this thesis is to deepen our understanding of the fundamental mechanisms

of the human brain by developing novel brain-inspired RL methods. In particular, it focuses

on visual search, which is a sequential and interactive cognitive process that reflects the brain’s

mechanism for visual attention. This can advance the construction of brain models, as well as

help detect cognition-related disorders such as autism spectrum disorder (ASD).

Biologically plausible computational methods, which respect biological constraints on neural

structure and learning, can establish a connection between neural architectures and behavioral

functions. Visual search, as a form of interactive cognitive behavior, can therefore be naturally

investigated using brain-inspired RL approaches.

However, developing biologically plausible RL methods that are capable of addressing complex

tasks, such as visual search, remains challenging. Meanwhile, existing visual search models

struggle to extract a static motivation representation that is suitable for mechanism analysis.

Therefore, to advance this area, we need a biologically plausible RL method that scales to com-

plex tasks like visual search, along with a technique that supports explicit motivation extraction.

4

Chapter 1. Introduction 1.3. Objectives

1.3 Objectives

To address the above research gaps, this thesis sets up the following objectives:

• Design a new biologically plausible RL method that improves the performance of existing

methods and solves challenging tasks such as video games. The performances are evaluated

on standard benchmark RL tasks. The indicator for solving tasks is to achieve comparable

scores to standard methods.

• Design a new visual search modeling method that supports extracting static motivation

representations. The model should achieve comparable performances in behavior predic-

tion to standard methods on standard visual search datasets.

• Evaluate the proposed methods and models on the different types of visual search tasks,

aiming to extract the underlying brain mechanisms in various behavioral patterns.

1.4 Contributions

To achieve the above objectives, I proposed recurrent winner-take-all (RWTA), a new network

structure for SNN. The network consists of recurrently-connected winner-take-all (WTA) circuits

[62,63]. Adopting the mean-field variational inference method, which has been demonstrated to

be effective in transforming global target into local learning rules [47, 64], I demonstrated that

the fixed point of the network is equivalent to an energy-based RL policy formulation, which

has a good capability in representing complex mappings. Based on this, I proposed a last-step

approximation to derive the R-STDP learning rules, named SVPG, that optimize the RWTA

network according to the RL policy gradient. SVPG was also extended to more popular RL

algorithms such as proximal policy gradient (PPO) [65].

I systematically evaluated SVPG over five typical RL tasks, including reward-based MNIST clas-

sification [66], Gym InvertedPendulum [67], ViZDoom HealthGathering [68], AI2THOR robot

navigation [69,70], and robot arm manipulation [71]. Among them, the ViZDoom task, as a 3D

first-person video game, is the most challenging as it involves image input and long decision se-

quences. The robot tasks use near photo-realistic scenes [69,71] and randomized starting/target

positions, which examine the method’s applicability to real-world tasks. Empirical results show

that SVPG can solve all five tasks and outperforms the compared R-STDP method. SVPG also

outperforms three representative methods, including ANN, ANN2SNN, and surrogate gradient-

5

1.5. Structure of the Thesis Chapter 1. Introduction

based backpropagation in terms of optimization speed. Furthermore, SVPG exhibits inherent

robustness to input noise [31], network parameter noise [72], and environmental variation [73].

For visual search, I proposed a map-based maximum entropy (MME) IRL method that decou-

ples the reward function into a static, policy-independent reward map and a set of stimulus-

independent environmental reward functions. MME can extract a reward map that can be

directly used as a motivation representation. Experiments on visual search datasets verify the

effectiveness of MME in replicating human scanpaths. SVPG was further applied to MME, and

experiments demonstrate its capability of solving the scanpath prediction task. In addition,

MME and two standard behavior cloning methods were applied to an ASD dataset [30] to inves-

tigate the behavior patterns of social and non-social stimuli. Previous results on dissimilarity

between social and non-social patterns were based on simple statistics [30]. My findings are

consistent with those results, while offering new understandings uniquely offered by my pro-

posed predictive models. My research introduces a new paradigm for the interpretation of visual

scanpaths through predictive modeling.

The main contributions of this thesis are summarized as follows.

• A new SNN structure is proposed and the corresponding R-STDP learning method is

derived. This new method improves the capability of R-STDP methods to solve challenging

RL tasks.

• A new IRL method is proposed that enables the extraction of a policy-invariant motivation

representation for visual search tasks.

• The proposed R-STDP method is applied to the IRL visual search task. For the first time,

a biologically plausible agent is built for predicting human visual search behavior. This

paves the way for visual search behavior understanding with biologically plausible systems.

• The proposed IRL method is applied to the analysis of behavior patterns of social and

non-social stimuli and provides new insights into potential mechanisms of brain disorders.

1.5 Structure of the Thesis

The remainder of this thesis is organized as follows.

6

Chapter 1. Introduction 1.5. Structure of the Thesis

Chapter 2 provides an overview of RL models. It reviews the mainstream standard approaches

for RL and brain-inspired approaches for RL methods, highlighting their relationship and con-

nections between different types of methods. It then describes the visual search behaviors task

and the relevant existing studies on using RL for understanding visual search behaviors.

Chapter 3 proposes SVPG, a new type of biologically plausible neural network model, and

its corresponding implementation of the RL method. It presents the theoretical derivation for

SVPG and discusses additional designs of the model for practical considerations in real tasks.

Chapter 4 presents the evaluation of SVPG on standard RL tasks and compares it to other

representative models. It presents the empirical verification of assumptions made in the theory

part, then shows the performance on different benchmark RL tasks as well as the results of the

perturbation tests, ablation tests, and visualizations.

Chapter 5 proposes MME, a new IRL method, to better understand the motivation behind visual

search, which can extract policy-independent reward maps. It presents results on applying the

MME with SVPG and other compared models to standard visual search datasets, and a more

in-depth analysis of social and non-social behaviors when ASD is presented in subjects. The

outcome of this chapter provides some new insights into understanding the underlying visual

search mechanisms of the human brain.

Chapter 6 concludes this thesis by summarizing its key contributions, examining its limitations,

and outlining promising directions for future research.

7

Chapter 2

Literature Review

This thesis develops a new brain-inspired SNN model and a new R-STDP learning method to

improve the task performance of R-STDP methods on RL tasks. The proposed R-STDP method

is applied to the modeling of visual search, a type of brain cognitive behavior, for potential in

building the relationship between brain structures and cognitive functions as well as disease

analysis such as ASD.

This chapter first provides an overview of RL methods, including mainstream standard ap-

proaches and brain-inspired ones. It then describes the visual search behavior modeling task

and the existing studies on using RL and IRL methods for behavior prediction and on disease

analysis. Along with the descriptions, preliminary formulations and notations are also intro-

duced.

This chapter includes work that has been published in a jointly-authored publication [74].

Shangqi Guo, Ying Fang, and Jian K. Liu contributed to the drawing of the sketch of the WTA

circuit, that is, Figure 1 in the publication, which corresponds to Figure 2.1 in this chapter.

2.1 Reinforcement Learning

RL models the interaction between an artificial agent and its environment. The interaction

process is commonly modeled by the Markov decision process (MDP). In this thesis, I adopt the

notations from [1] and use a tuple ⟨S,A, P,R, γ⟩ to denote the elements in an MDP, which are

respectively the state space, action space, state-transition function, reward function, and reward

discount factor.

8

Chapter 2. Literature Review 2.1. Reinforcement Learning

Considering that most real-world applications, e.g., robot control, autonomous vehicles, have a

finite length of the interaction process, in this thesis, I focus on RL formulation with an indefinite

time horizon, where the agent interacts with the environment in the form of episodes. In each

episode, there is a maximum number of time steps. At each time step t, the agent observes the

state st ∈ S, makes action at ∈ A according to its policy π : S ×A → [0, 1] and receives a scalar

reward rt. The environment transfers to a new state st+1 according to the transition function

P : S ×A×S → [0, 1]. The learning objective is to find a policy π that maximizes the expected

return:

J (π) = Eτ∼Pπ

[
T−1∑
t=0

γtrt

]
, (2.1)

where Pπ denotes the trajectory distribution over policy π, τ is the sampled trajectory

⟨s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT ⟩. Here T is the total length of the episode and could be

either a fixed number or a variable, depending on tasks.

Depending on the formulation of the policy function π, RL methods can be divided into value-

based and policy gradient methods. As an example of value-based methods, Q-learning [2]

learns a value function Q(s, a) and selects the action with the maximum value at each state

s. In contrast, policy gradient methods directly optimize a policy distribution. An advantage

of policy gradient is its flexibility in policy formulation, as it supports stochastic policies and

continuous action representations. REINFORCE [75] is a classic policy gradient method. In this

thesis, the derivation of the new R-STDP learning method is based on REINFORCE to utilize

this advantage.

A key design in RL is the representation of the policy mapping. Classic methods typically use

table [2] and linear regression [76, 77], which have a poor capability in representing complex

mappings, thus limiting their applications to tasks with high-dimensional state or action spaces.

In more recent studies, the introduction of deep neural networks (DNN) and backpropagation-

based optimizer [3] replaced the previous choices of function approximators. This type of RL

study is often referred to as DRL. The expressive power provided by DNN enables representing

complex mappings, thus scaling up RL to solve challenging tasks, including video games [7],

chess [10], and vision-based robot control [13]. Nevertheless, DNNs are not perfect. On one hand,

the adoption of DNNs brings problems. For example, the values estimated by a neural network

can be noisy and inaccurate, resulting in overestimation [78] and making training unstable [7].

An update to the network may not always improve the policy [79]. The replay buffer, often

9

2.2. Brain-Inspired Reinforcement Learning Chapter 2. Literature Review

used in DRL, may reduce the learning efficiency when set to an improper size [80]. The lack

of explainability of DNN hinders DRL from being applied to scenarios such as finance and

medicine, where the decisions need to be explained [81]. On the other hand, there are still many

scenarios where introducing DNN is not sufficient to solve the problem. The learning speed,

adaptability to similar tasks, reliability in a real-world environment, and energy efficiency are

far from human-level.

For these challenges, recent studies propose techniques from many different perspectives to

improve the performance of RL methods. For example, reward engineering tunes the formulation

of the reward function to improve sample efficiency [18, 19, 82]. Policy abstraction reduces the

state or action dimension to reduce the complexity of the RL task [7,83–85], to improve sample

efficiency [86], and to improve adaptability to task changes [12,87]. Task augmentation enlarges

the set of training environments to improve the adaptability of the policy [88, 89]. Distributed

calculation revises the computing paradigm of policy inference and optimization to improve

their speed [25, 90]. Many of these techniques require task-specific designs [18, 82, 88]. This

thesis proposes a new SNN for policy representation. It can be categorized as another type of

improvement that is made to the policy function approximators. This type of improvement does

not require task-specific knowledge, thus having better flexibility in applications.

2.2 Brain-Inspired Reinforcement Learning

Most of the DRL studies use conventional ANNs in the approximation of value or policy functions

[7–9, 25]. In contrast, it is well-known that humans can solve complex real-world tasks, learn

rapidly, and have good adaptability to new environments. Human brains also consume less

energy than commonly used computing devices [17]. Considering the large difference between

ANNs and human brains, it is possible that, through mimicking brains, some functions of humans

can be replicated in artificial agents.

There are various ways to take inspiration from the brain. From the perspective of state rep-

resentation, hyperdimensional computing has been used to encode the input observation into a

high-dimensional space in a way that mimics human brains [91]. From the perspective of func-

tional building blocks, compositional models with each component functioning like a specific

brain area (e.g., medial prefrontal cortex, orbitofrontal cortex) have been proposed [92,93]. This

thesis takes another perspective that considers neuron models that better resemble the behavior

10

Chapter 2. Literature Review 2.2. Brain-Inspired Reinforcement Learning

of biological neurons. This perspective is more fundamental and task-independent, thus being

more flexible for applications. A commonly used type of neuron model is spiking neurons, which

take timing into firing dynamics and communicate through spikes [94]. The resulting network

model is then referred to as SNN. This thesis focuses on SNN for RL. In the following sections,

I will first review general designs of an SNN and then review studies on SNN for RL.

Because the true mechanism of the brain is unknown, the brain-inspired designs are based on

existing neuroscience findings. An important feature of brain-inspired models is their biological

plausibility, which means the extent to which a model or learning method can be realized by

biological brains [95]. Following major studies, this thesis adopts spiking neurons [37, 63] and

local learning rules [96–98] as the criteria. Specifically, in this thesis,

• A network of neurons is referred to as biologically plausible if the neurons communicate

through discrete signals.

• A learning method is referred to as biologically plausible if the update to learnable param-

eters is based on local spike events instead of backpropagation of remote signals.

2.2.1 Spiking Neural Networks

SNN is a popular direction of brain-inspired models. Many researchers recognize SNN as the

next generation of neural networks [97,99,100]. The design of SNNs mainly consists of four parts:

spiking neuron models, information encoding, network topology, and learning methods [37].

Spiking neuron models. Early spiking neuron models, such as the Hodgkin-Huxley model

[101], come from measurements of biological neurons and involve complex computation. The

Izhikevich model [102] provides simplification while keeping most of the computational features

[103]. Nevertheless, more simplified models like leaky integrate-and-fire (LIF) and spike response

model (SRM) [104] neurons, although not as similar to biological neurons, are more commonly

used in recent studies [37,105,106]. SRM is a stochastic variant of the LIF model [45], and has

been widely used in RL studies [45, 105, 107, 108]. In this thesis, I also adopt SRM as the basis

unit for the proposed network.

In SRM, the states of neurons evolve at discrete spike time steps. At each spike time step l, each

neuron evolves its membrane potential u(l) and fires a spike at random according to its firing

probability ρ(l). All spikes are considered to be binary, i.e., 1 for firing and 0 for resting. The

11

2.2. Brain-Inspired Reinforcement Learning Chapter 2. Literature Review

firing probability ρ(l) depends exponentially on the membrane potential [105], as defined in the

following equation:

ρ(l) = exp{u(l)− I(l)}, (2.2)

where u(l) is the membrane potential and I(l) is an inhibitory term. In this thesis, it is designed

to be produced by a lateral inhibition neuron in a WTA circuit, as will be introduced later. The

membrane potential u(l) is determined by the spike train S from connected neurons [109]:

u(l) = b+
∑

j∈N(·)

wj

∫ ∞

0
κ(y)Sj(l − y)dy, (2.3)

where N(·) denotes the set of presynaptic neurons of the considered neuron, wj is the synapse

weight, κ is the excitatory postsynaptic potential, Sj is the spike train from neuron j, and b

is the intrinsic excitability of the neuron. For κ, I consider the rectangle function due to its

simplicity:

κ(l) = κ0[ε(l)− ε(l − τ1)], (2.4)

where κ0 is the overall amplitude, τ1 is a hyperparameter that determines the size of the time

window of spikes that take effect, and ε(l) is the step function. Future work may consider the

double exponential function, which is more common in the literature [110, 111]. The double

exponential function is given by:

κ(l) = κ0[exp(−l/τ2)− exp(−l/τ3)]ε(l), (2.5)

where τ2, and τ3 are hyperparameters.

Information encoding. This is the way the spike trains of neurons represent information.

Basic coding methods include temporal coding and rate coding [37]. Temporal coding keeps the

timing of spikes. An example is the time to first spike [37]. Rate coding uses the frequency of

spikes over a time period to represent information. This is more like traditional ANNs but may

not capture all the information in the spike trains because the timing of spikes is discarded [37].

Nevertheless, rate coding is widely used in SNN RL [112–114]. This thesis adopts the rate

coding method for information encoding. There are also other coding methods. For example,

population coding considers the firing activities of a group of neurons instead of a single one,

and has been shown to increase the representation capacity of a network [113]. Future work

12

Chapter 2. Literature Review 2.2. Brain-Inspired Reinforcement Learning

WTA circuit

lateral
inhibition

𝐼𝑖(𝑙)

Figure 2.1: The illustration of the structure of a WTA circuit. The neurons are shown in a
red box. Each neuron receives input spike trains (denoted as Sj) and changes its membrane
potential ui. The lateral inhibition neuron modulates the firing probability ρi. The output spike
train Si is sampled according to ρi.

may investigate the integration of different encoding methods with the network proposed in this

thesis.

Network topology. The topology of a neural network is crucial for the representation capac-

ity. Typical topologies of SNNs are consistent with traditional ANNs and include fully connected,

recurrent, and convolutional structures [115]. More sophisticated structures like residual con-

nections [116] and attention modules [117] have also attracted attention. Beyond these common

structures, some studies focus on liquid state machines [118] and WTA circuits [63, 105]. Pre-

vious studies have demonstrated the capability of WTA circuits in implementing the inference

of a hidden Markov model [62] and hierarchical Bayesian inference [63]. This thesis adopts the

WTA circuit as a building block of the proposed network to utilize its potential capability in

implementing policy inference.

The design of the WTA circuit in this thesis follows the idea from [63] and [47]. Figure 2.1

illustrates a WTA circuit of SRM neurons. There is a lateral inhibition neuron in the circuit

that produces the inhibitory term I(l) for the SRM neurons, as mentioned in Eq. (2.2). This

inhibitory term is assumed to make the firing probabilities within the WTA circuit sum up to

ρ̂, resulting in a low firing rate of the whole network and low energy consumption. When ρ̂ = 1,

this indicates that one and only one neuron in the WTA circuit fires at each time step.

Like traditional ANNs, the structure of an SNN can also evolve during training. Genetic algo-

rithms [119] and growing-pruning [120] have been studied to find better topologies in training.

Future work may investigate this direction to further improve the network structure.

13

2.2. Brain-Inspired Reinforcement Learning Chapter 2. Literature Review

2.2.2 Spiking Neural Networks for Reinforcement Learning

Most recent RL studies use a function approximator to represent a value function [7] or a policy

distribution [65, 121]. SNNs for RL are used to replace the conventional ANN as the function

approximator [31, 33, 114]. Conventional DRL methods use backpropagation of gradients to

optimize the network [7, 25, 122]. Due to the fact that the output of a spiking neuron is non-

differentiable, the backpropagation of gradient is infeasible, and special learning methods are

necessary to apply SNNs to RL tasks. The learning methods can be categorized into three types:

conversion, surrogate gradient, and R-STDP.

Conversion from ANN to SNN. ANN2SNN methods first train a traditional ANN and then

convert the parameters to the target SNN. A series of studies has investigated the conversion of

different building blocks of ANNs, including recurrent layers, softmax activation, max-pooling,

and batch-normalization, and has gained comparative performances to original ANNs [123–125].

ANN2SNN allows the implementation of well-performing ANNs with SNNs and neuromorphic

hardware to potentially improve energy efficiency. A drawback, however, is that the accuracy

could be worse after conversion. To alleviate this problem, a long simulation time could be

necessary, which results in high inference latency.

Surrogate gradient methods. Surrogate gradient methods use a differentiable function to

approximate the derivative of the activation function. This enables the transfer of the gradient

across the SNN and across spike time steps to update the parameters. Typical surrogate gradient

functions include the rectangular function, triangular function, exponential, and the derivative

of the sigmoid function [126, 127]. I refer readers to Figure 3 of [126] for an illustration of

the surrogate gradient functions. Li et al. [127] also propose a series of hyperbolic tangent

functions evolving the surrogate function during training. Note that the temporal dimension of

SNN can cause a computational burden in the backpropagation of the gradient through time,

especially when the simulation length is long. This is considered by the field of credit assignment,

and various methods like e-prop [32] and feedback alignment [128] have been proposed to help

alleviate the problem. An advantage of surrogate gradient methods over ANN2SNN methods

is that they do not suffer from the conversion accuracy problem, so the simulation time can

be reduced, leading to a shorter inference latency and higher energy efficiency. Nevertheless,

14

Chapter 2. Literature Review 2.2. Brain-Inspired Reinforcement Learning

both these types of methods rely on backpropagation of the gradient, which is not realizable by

biological brains.

R-STDP methods. R-STDP is a modulated variant of spike-timing dependent plasticity

(STDP), which is a framework that contains many of the learning rules identified by neuroscien-

tists [97]. STDP is a variant of Hebbian learning rules, which state that the connection between

two neurons is strengthened when the neurons fire in a causal manner [37]. STDP extends this

by taking the specific timings of the firing activities into consideration [129]. Depending on the

sign of the time interval between the postsynaptic and presynaptic spikes, the synaptic weight

is either potentiated or depressed. This kind of weight update only depends on local signals

and does not take into consideration a global target. R-STDP extends STDP by modulating

the update to synaptic weight with an external signal, which is the reward signal in RL. This is

supported by neuroscience findings about the relationship between dopamine, acetylcholine, and

synapse plasticity [130, 131], and has been used in various RL studies on biologically plausible

methods [45, 46, 107]. Because R-STDP method is local and does not require backpropagation,

it is often commented to be more biologically plausible than the other two types of methods.

Besides, R-STDP also does not require conversion from ANN, thus it does not suffer from the

inference latency problem.

To introduce the formulation of R-STDP, I use wij to denote the weight of the synapse between

presynaptic neuron i and postsynaptic neuron j. R-STDP takes the form of ∆wij = R(l) ·

STDP(l), where R(l) is the external reward signal and STDP(l) is a coefficient determined by

the STDP learning rule in the following form:

STDP(l) =Sj(l)

[
Wpre +

∫ ∞

0
A+W+(y)Si(l − y)dy

]
+ Si(l)

[
Wpost +

∫ ∞

0
A−W−(y)Sj(l − y)dy

]
,

(2.6)

where Wpre and Wpost are constants about the presynaptic and postsynaptic activity, A+ and

A− characterize the extent to which synaptic changes depend on the current synapse weights.

W+ and W− are respectively the time windows of the long-term potentiation (LTP) and the

long-term depression (LTD) processes, which satisfy
∫∞
0 W (l)dl = 1. The tuple ⟨Wpre, Wpost,

A+(wij), A−(wij)⟩ defines a specific STDP rule.

15

2.2. Brain-Inspired Reinforcement Learning Chapter 2. Literature Review

Starting from the original R-STDP [107], different variations of the modulation have been

proposed, including TD-STDP [45], feedback-modulated TD-STDP [46], R-max [34], and hy-

brid [35]. Based on such methods, tasks including 2D goal-reaching [45], CartPole [45–47],

LunarLander [46], and dynamic vision sensor-based lane keeping [39] have been solved. Never-

theless, these tasks are simpler than the ones that surrogate gradient-based and ANN2SNN-based

methods can solve, such as Atari games. One deficiency of these R-STDP methods is that the

neuron models and STDP rules are not adapted to RL algorithms and network structures. There

is a gap between the local learning rules of R-STDP and the global RL task target. In fact,

most listed studies use a shallow network structure with less than three layers [39, 45, 46]. This

deficiency in the capability of representing complex mappings hinders them from being applied

to more challenging RL tasks. Although there are methods such as BP-STDP [132] and using R-

STDP for initialization [133] that scale up R-STDP to more complex networks, their algorithms

introduce backpropagation operations and break biological plausibility. In contrast, variational

inference, as adopted in previous studies [47, 64], is more promising as it approximately builds

the relationship between a policy distribution and the SNN without using backpropagation.

This thesis also adopts this idea. The differences to existing studies are that: study [47] only

considers a simple structures only one hidden layer of WTA circuits, while this thesis consid-

ers a recurrent fully-connected structure of WTA circuits that is more general; the method in

study [64] is designed for supervised learning tasks and does not implement the optimization

with R-STDP, while this thesis focuses on RL tasks and R-STDP-based optimization.

The advantages of using SNNs in RL over conventional ANNs include energy efficiency, biological

plausibility, as well as robustness to perturbations. In Atari video games, conversion from ANN

to SNN brings better robustness to input occlusions [31]. A directly trained deep spiking Q-

network exhibits better robustness to white-box attacks than a vanilla deep Q-network (DQN)

[134]. For implementation with neuromorphic hardware, the noise in synaptic weights has been

studied, and a certain type of SNN converted from an ANN is shown to be more robust than

the original ANN in the MNIST classification task [72]. For energy consumption, an SNN-based

policy implemented with Intel Loihi was shown to consume 75 times less electricity in a robot

navigation task than a conventional ANN implemented on Jetson TX2 [112]. This thesis also

offers a test of robustness where perturbations including input noise, network weight noise, and

environmental variations are tested. Similar to existing studies, I also found that my SNN

can obtain robustness to these perturbations, which supports the current understanding of the

16

Chapter 2. Literature Review 2.3. Visual Search

advantages of SNNs. The test of energy consumption requires neuromorphic hardware and is a

promising direction of future work.

2.3 Visual Search

Visual search is the field that concerns the eye movements of humans when they are searching

for something. There are two main topics in this field. One topic concerns the recognition

and measurement of eye movements. This includes gaze tracking based on different types of

observations like face images [135], videos [136], and observations from specialized devices [137].

Such studies provide a basis for developing tools for collecting eye movement data in the real

world. Another main topic is the collection and analysis of the data. This typically involves

designing behavioral tasks for human participants, data gathering, and data analysis. The data

gathered are often called “scanpaths”, which are sequences of fixations during a search attempt.

Through analyzing the behavior patterns from scanpaths, such studies can offer insights about

certain diseases such as ASD [30] or even help with the diagnosis process [138]. The work

in this thesis belongs to the second topic. I use existing visual search datasets collected by

other studies and focus on analyzing the behavior patterns. Below, I will first provide a brief

introduction to datasets, types of analysis, and metrics, and then review existing methods for

scanpath modeling.

Visual search datasets. Visual search datasets are collected when human participants per-

form a certain task. Typical visual search tasks require participants to search for a target image

in a search image. Depending on the existence of the target image in the search image, the

tasks can be described as target-present, target-absent, or a mixture of the two. For the search

images, some studies use natural images [139,140] and some use synthesized images [30,50,141].

For the target images, the form of presentation can be a category name [140], an exact portion

from the search image [142], or a variable example image in the target category [50]. The pro-

cedure of data collection often varies. In [140], the participants are required to indicate whether

the target image exists in the search image. In [141], a two-alternative forced choice paradigm

is used. In [30], an extra step of clicking the target image with a mouse is included when the

participant reports the existence of the target. Different designs of the human task and the stim-

uli can affect the behavior of human participants. Following some recent studies [50, 55], this

17

2.3. Visual Search Chapter 2. Literature Review

thesis uses multiple datasets with different types of stimuli to more comprehensively evaluate

the performance of the methods compared.

The type of human task and stimuli not only has effects on human behavior patterns but also

determines the applicability of some predictive models. For example, fixation prediction methods

based on similarities between the target image and patches of the search image [50,51] may not

be suitable for target-absent tasks or tasks where targets are represented with abstract labels.

In general, a method designed for target-absent tasks can be easily adapted to target-present

tasks, but the inverse is difficult. This thesis considers task-present settings so that more existing

methods can be used for comparison.

I would like to note that although this work is concerned with visual search, the analysis of human

eye movements is not limited to this type of behavior. There are also studies on reading [143,144],

simulated driving [145, 146], etc. In addition, the process of gaining visual information is not

limited to eye movements, but also head movements [53, 147]. The methods proposed in this

work may also be helpful for other types of behavior.

Types of analysis. The visual search studies that analyze eye movement data can have various

objectives. Two of the mainstream objectives are to (1) extract behavior patterns of subjects,

and (2) build predictive models to replicate human behaviors.

Pattern extraction studies often use eye movement datasets collected from different types of

subjects or task settings. A basic and commonly used approach is based on statistics of the

movement data, such as the proportion of fixations in a certain area [148], fixation duration on

areas of interest [149], and behavioral performance [30]. These indicators have been used in in-

vestigations of general behavior patterns [148], attractive regions of stimuli [149], and differences

in social attention between people with and without ASD [30]. A more sophisticated method

summarizes multiple scanpaths into one path [150] and uses the similarities between paths to

detect autism. In [151], a support vector machine (SVM) is built to classify subjects with and

without ASD based on statistical features of fixations. Deep learning models have also been

investigated. In [152], an LSTM model is built to predict whether the scanpaths are obtained

from a target-present, target-absent, or free-viewing setting. In [138], a model based on pre-

trained saliency prediction is trained to predict whether a subject has ASD or not. A problem

with this type of analysis is that the mechanism for generating the visual search behavior is not

18

Chapter 2. Literature Review 2.3. Visual Search

extracted. Existing findings may suggest certain patterns of the behavior, but the reason why

the behavior is generated is unclear.

Studies on predictive models focus on understanding the mechanism that generates eye move-

ments. The main objective is to build a model that, given the same stimuli as human partic-

ipants, predicts eye movements similar to those of humans under certain criteria. Many early

works take the saliency map as the target [48]. Saliency maps merge all fixations into a map

and lose the sequential information. Recent works often aim to predict the scanpaths directly

so that the sequential information in eye movements is preserved [49, 50, 55]. A general scan-

path prediction model predicts a sequence of fixations given the same stimuli as humans. Some

studies additionally predict the termination of the sequence [49, 52, 59, 152, 153], and the dura-

tion of fixations [52, 154]. This thesis also builds scanpath prediction models. Considering that

some datasets do not offer duration information, I choose to neglect the prediction of durations.

In addition, to use scanpath similarity metrics that do not support scanpaths with different

lengths, I force the agent scanpath to have the same length as humans, which removes the need

for termination prediction. Future work may consider adding the termination and duration to

prediction targets. Below, I will present a detailed review of methods for scanpath prediction.

2.3.1 Methods for Scanpath Prediction

The methods for predicting scanpaths can be categorized into unsupervised learning, supervised

learning, RL and IRL. Different types of methods bring different mechanisms for replicating

human behavior. Note that some studies introduced below are beyond visual search and consider

scanpaths collected from other types of tasks, e.g., free-viewing. They are included because a

simple adaptation is possible to apply them to visual search. In the following, I will first

review unsupervised learning, supervised learning, and RL methods. I will then elaborate on

the formulation and methods of IRL.

Unsupervised learning methods

Unsupervised methods typically use heuristic rules to generate the scanpath. Examples of simple

rules include random uniform distribution and center bias, as mentioned in a benchmark [142].

In IVSN [50], a pre-trained model is adopted to extract features from the images, the features

are convolved to generate a saliency map, and a rule of inhibition of return (IOR) is applied

to the saliency map to generate the scanpath. EccNET [51] extends this method to have dy-

19

2.3. Visual Search Chapter 2. Literature Review

namic saliency maps at each fixation step. In these two methods, the saliency map is built on

similarities between patches of the search image and the target image. In [155], an image recon-

struction model is built, and the reconstruction error is used to build the saliency model. In ideal

Bayesian searcher (IBS) [156], a prior distribution and a visibility map are incorporated into the

search process. Correlation IBS and structural similarity IBS [157] extend it to natural images

by adopting pre-trained neural networks for the prior distribution and adding correlation or

structural similarity to the estimation of the posterior distribution. A further extension, nnIBS,

which changes the template similarity to be based on IVSN, is described in [142]. An advantage

of these unsupervised learning methods is the transparency of the mechanism for scanpath gen-

eration. A disadvantage is that the heuristic rules or pre-trained saliency and detection models

can have a limited range of applications.

Supervised learning methods

Supervised learning methods build models that learn from datasets, thus generally having a

better fitting performance. Since the stimuli are images and the scanpath involves sequential

prediction, a general model consists of convolutional neural networks (CNNs) for image process-

ing and LSTM layers to capture sequential information. Sun et al. [154] build a probabilistic

model based on CNN and LSTM to predict fixations. The log-likelihood of the ground truth

fixation is used to train the model, along with auxiliary tasks including IOR map prediction and

saliency map prediction. PathGAN [153] also adopts a CNN and some LSTM layers, but uses a

combination of mean squared error (MSE) loss and adversarial loss by a discriminator to train

the model. Beyond LSTM, in human attention Transformer [49], a Transformer-based encoder is

designed to maintain an explicit working memory that captures history information. The mem-

ory is then used in a Transformer decoder to predict pixel-level fixations in a step-wise manner.

There are also methods that do not rely on recurrent network components. In DeepGazeIII [158],

the recent history of fixations is represented by a stack of coordinates of recent fixations and is

treated as one source of input to the network. In Gazeformer [52], a Transformer is trained to

output all the fixation predictions in a scanpath at once. Another feature of Gazeformer is the

adoption of a language model to encode the semantic target description, which could help with

generalization.

20

Chapter 2. Literature Review 2.3. Visual Search

Reinforcement learning methods

A problem with the above-mentioned supervised learning methods is that the training objective

may not be properly designed. An MSE loss or log-likelihood target specified by a Gaussian

distribution means that fixations closer to each other are similar. This may not be suitable

because of the potential noise in human behavior and different semantic information at fixation

points. As will be introduced later in section 2.3.2, the similarity between a human scanpath and

an agent scanpath is often measured by ScanMatch and MultiMatch, which are not differentiable

and thus not directly applicable as the training objective for supervised learning. In contrast,

RL methods construct an environment where the agent explores different scanpaths. The agent’s

scanpaths are evaluated by the reward function. Since the reward function does not need to be

differentiable, RL methods support directly optimizing towards similarity measurements. As an

example, in [54], the reward function is defined to be a combination of ScanMatch scores. In

addition, since RL accumulates the reward in the learning objective, it builds the relationship

between fixations in a sequence. In [53], a hand-crafted single-step reward function is proposed to

measure the similarity of a single fixation, and a discounted sum of rewards is used as the training

objective. Another advantage of RL is its interactive nature, which allows direct simulation of

the human task. In [159], an RL agent is trained to perform saccades and to decide whether the

target exists in the search image, which is the same as humans. The reward signal is generated

to present the correctness of the judgment.

Inverse reinforcement learning methods

Despite the advantages of RL, a problem is that the motivation of the behavior cannot be ex-

plicitly extracted. A representation of motivation should be able to explain the agent’s behavior,

thus enabling comparison of the effects of different stimuli on human behavior. For this defi-

ciency, a recent trend of studies uses inverse reinforcement learning (IRL) to learn the motivation

representation and the behavior model simultaneously.

Formulation of general IRL. The formulation of IRL is similar to that of RL. An MDP

⟨S,A, P,R, γ⟩ is used to formulate the interaction between the agent and the environment.

Different from RL, the reward function R is not available and needs to be learned. In addition,

some demonstration trajectories from an expert are available as D = {ξ1, . . . , ξ|D|}, where |D| is

the number of trajectories, and ξ is a trajectory defined as (s0, a0, . . . , sT−1, aT−1, sT) which is

21

2.3. Visual Search Chapter 2. Literature Review

similar to the trajectory τ in RL, but removes the reward values at each time step. Note that

the trajectory length T is a variable. In the following text, I use ξa and ξh to respectively denote

trajectories by agent and human. Provided a reward function R, the score of a trajectory ξ,

either from the expert or sampled by the agent, is evaluated as

c (ξ) =
T−1∑
t=0

γtR(st, at). (2.7)

This is similar to the definition of return in Eq. (2.1). However, note that in many maximum

entropy IRL studies [58, 160, 161], an undiscounted form of return is used, i.e., the γ is set

to 1. This thesis also adopts the maximum entropy IRL method (as will be explained later).

Differently, it emphasizes the importance of using a discounted return in replicating human

behavior.

Formulation of IRL for visual search. In the visual search process, the stimulus is a search

image Isearch and the target is specified using a target image Itarget. The two images are pre-

processed to have consistent sizes across the whole dataset. The eye movements are represented

by a scanpath, i.e., a sequence of fixation points. Existing literature often sets the initial fixation

at the center of the search image [49]. Following this design, I also consider that the human

and the agent start from the center of the screen, which is not counted in the scanpath. The

fixation point at step t is represented by its pixel coordinates on the search image, denoted by

ft = (xt, yt). The duration of fixation is not considered in this study. The agent’s observation at

step t can be partial and history-dependent, and is determined by a certain observation function

ot = O(Isearch, Itarget, (f0, . . . , ft−1)). Here the observation function O(·) is often designed to

mimic human perceptions. An example is the belief map [55, 57] generated by pre-trained

models. In this thesis, a cropped part of the search image is used as the observation. This keeps

more information from the image and has a lower computational cost.

From the perspective of IRL, a scanpath is modeled as a trajectory. The initial state s0 is the

observation at the starting point o0. The action at is the fixation ft. The human scanpaths are

treated as expert demonstrations. Note that human scanpaths are conditioned on the search im-

age and the target image, so the dataset has an extended form: D = {(ξ1, Isearch,1, Itarget,1), . . . }.

The reward function is also conditioned on the images: R(s, a|Isearch, Itarget).

22

Chapter 2. Literature Review 2.3. Visual Search

In many RL and IRL studies [54, 55, 59, 60], the action space is formulated by discretizing the

space of the search image into a grid. This provides a smaller number of available actions.

I denote the size of the search image as sizesearch,x × sizesearch,y, and the size of the grid as

sizegrid,x × sizegrid,y. Then, the discretized representation fg
t = (xgt , y

g
t) of fixation point ft is

given by:

xgt = ⌊xtsizegrid,x/sizesearch,x⌋ , ygt = ⌊ytsizegrid,y/sizesearch,y⌋ . (2.8)

Here xgt ∈ {0, . . . , sizegrid,x − 1} and ygt ∈ {0, . . . , sizegrid,y − 1}. Inversely, given the discretized

action fg
t , a pixel-based representation can be approximately recovered, so that a scanpath from

the agent can be compared to that from the human. This is done by using the coordinates at

the center of the grids,

x̂t = (xgt + 0.5) sizesearch,x/sizegrid,x, ŷt = (ygt + 0.5) sizesearch,y/sizegrid,y. (2.9)

One of the main targets of scanpath modeling is to make the agent’s policy similar to human

behavior. Given a testing dataset Dtest and a similarity metric m : Ξ × Ξ → R, one way to

evaluate the similarity of agent’s policy π is to sample one scanpath ξa for each ξh ∈ Dtest:

(ξh, Isearch,h, Itarget,h)
π−→ ξa, and then calculate the similarity value as:

M =
1

|Dtest|
∑

(ξh,Isearch,Itarget)∈Dtest

m(ξa, ξh). (2.10)

This considers the agent policy to be deterministic. For stochastic policies, a fixed number of

agent scanpaths can be sampled to evaluate the expectation of the similarity value.

General IRL methods. Types of general IRL methods include maximum margin IRL [162],

maximum entropy IRL [160], Bayesian IRL [163], and adversarial IRL [164]. Maximum entropy

IRL is simple and allows imperfections in expert demonstrations, which suits the visual search

task because of the noise and inconsistencies in human fixations. My proposed method adopts

guided cost learning [161], one of its variants, and incorporates modifications.

In maximum entropy IRL, the demonstrations from the expert are assumed to be sampled from

a distribution, where the probability for each demonstration is proportional to the exponential

23

2.3. Visual Search Chapter 2. Literature Review

of their score, as formulated in Eq. (2.11) [160].

p(ξh) =
1

Z(ξ)
exp{c(ξh)}, (2.11)

where Z(ξ) =
∑

ξ∈Ξ exp{c(ξ)} is the partition function over all possible trajectories, denoted by

Ξ. This probabilistic model allows noise and imperfections in human scanpaths. The training

objective is to find a reward function R that maximizes the log-likelihood of observing the

expert demonstrations. When the reward function is represented as a function approximator

with parameters θr, the objective can be written as to maximize the following objective function:

L(θr) =
1

|D|
∑
ξh∈D

log[p(ξh|θr)]. (2.12)

In Eq. (2.11), the partition function Z can be difficult to compute when the state and action

space are large. Guided cost learning [161] provides a sample-based approach for calculating the

objective function. I useDa to denote a sampled set of agent trajectories, in which each trajectory

ξa is sampled with probability p(ξa). Note that this probability value p(ξa) is dependent on the

agent’s policy. Then, the log-likelihood of a specific expert demonstration ξh can be derived as

following:

log[p(ξh|θr)] =c(ξh)− log{Z(ξ)}

=c(ξh)− log

 1

|Da|
∑

ξa∈Da

[
exp(c(ξa))

p(ξa)

] .
(2.13)

In guided cost learning [161], the sample distribution p(ξa) is learned to maximize an entropy-

augmented objective, maxEp(ξa) [c(ξa)] + H [p(ξa)], where H [p(ξa)] is the differential entropy.

When learning the reward model, the samples are augmented with the demonstrations and

importance sampling is applied to all the trajectories. In this thesis, I show that some of the

designs, such as demonstration augmentation, are not necessary for the visual search task.

IRL methods for visual search. Perhaps the first IRL application to scanpath modeling is

reported in [55]. Generative adversarial imitation learning (GAIL) [164] is used in this study

to learn from scanpaths from the COCO-Search18 dataset. For the observation model, the

dynamic-contextual-belief is proposed to represent the state observation history in the search

process. The contextual belief is built upon a Panoptic-FPN, a segmentation model pre-trained

24

Chapter 2. Literature Review 2.3. Visual Search

on the COCO2017 dataset. This observation model removes detailed textures and keeps a

record of historical observations. A drawback is that the application is limited to searching

in images similar to the COCO2017 dataset. Similarly, Chakraborty et al. [60] use GAIL for a

webpage-based free-viewing task. A trained fixation density map is used to replace the dynamic-

contextual-belief as state representation. Chen et al. [56] improve the method in [55] by an

additional bias term in the reward function formulation and the employment of a Wasserstein

generative adversarial network while using the original state representation. A recent study [57]

focuses on the policy formulation and uses the option framework from the hierarchical RL to

capture subtask switching behaviors in visual search.

The adversarial component in GAIL can make it difficult to train. It has been reported that

GAIL is sensitive to its hyperparameters [165]. Some other visual search studies adopt IRL

methods other than GAIL. In an early work [58], the maximum entropy IRL method is used to

predict scanpaths collected from a classification task. A limitation is that the reward function

is parameterized as a linear model based on pre-extracted features, which may not scale well

to more complex scenes. Yang et al. [59] adopt the IQ-Learn algorithm [165], which learns a

Q-value function instead of the reward function. A pre-trained model is used to process the

state observation.

Despite the differences in policy formulation, base IRL method, and state representations, all

the IRL studies mentioned above adopt a reward function that depends on state-action pairs.

Specifically, the maximal entropy IRL study [58] explicitly learns a state-action-dependent re-

ward function; the IQ-Learn study [59] learns a Q-value function to recover the reward function;

the GAIL-based studies [55, 57, 60] train discriminators with state-action pairs, so even if the

reward function is recoverable in special cases, it still depends on actions. This reliance on

actions makes the reward predictions dynamic with respect to the search image and the target,

and thus may not correctly capture the static motivation conditioned on the images. In con-

trast, this thesis proposes a decoupled reward function formulation that allows learning a static

motivation representation. The learned representation is successfully applied to compare the

effects of different parts of the stimuli.

25

2.3. Visual Search Chapter 2. Literature Review

Brain-inspired models for scanpath modeling.

The aforementioned supervised learning, RL, and IRL studies all use conventional ANN to

predict human fixations. Despite the potential in helping understand brain mechanisms [29],

brain-inspired models have seldom been applied to visual search modeling. There is a study that

builds an attention prediction system where each component resembles the functions of a part

of the brain [159]. However, the components are implemented using conventional ANNs, which

do not resemble the biological neurons. As far as I know, a recent study [61] is the only one

that applies SNN to scanpath prediction. Nevertheless, their SNN is obtained using conversion

and surrogate gradient methods. In this thesis, my SNN is trained using R-STDP, thus being

more biologically plausible and having better potential in relating brain structures and functions.

This thesis provides the first application of an R-STDP-based SNN to visual search scanpath

modeling.

2.3.2 Evaluation of Scanpath Predictions

A commonly used type of criterion for evaluating a scanpath prediction is its similarity to human

scanpaths [51,54,55]. There are two challenges in measuring the similarity. One is the potential

difference in scanpath lengths, which prevents the application of fixation-by-fixation distances.

The other is the potentially redundant fixations. For example, consecutive fixations close to

each other may need to be clustered into one fixation.

A simple way for evaluating the similarity is to convert scanpaths to attention maps and measure

the difference between the two maps. Histogram intersection, correlation coefficient, information

gain, and normalized scanpath saliency are some of the popular metrics [52, 59, 142, 166]. The

problem is that the sequential information is discarded. Similarly, the Mannan linear distance

[167] mentioned in [168] finds nearest neighbors to calculate the distance, which also neglects

the order of fixations.

A basic method that preserves the sequential information is the Levenshtein distance [169].

The fixation space is discretized into grids, which are also known as areas of interest [168],

each assigned a different letter. This transforms the two scanpaths to be compared into two

strings, and then the minimum number of edits is calculated as the distance. ScanMatch [170]

extends this metric to take into consideration the duration of fixations and relationships between

areas, such as distance, color, and semantic pattern. Due to the lack of duration and semantic

26

Chapter 2. Literature Review 2.3. Visual Search

information, in this thesis, the Levenshtein similarity metric, instead of ScanMatch, is adopted

as one of the metrics.

A general shortcoming of using discretized areas is that the representations of fixations near

segmentations of areas could be far different from each other, while the fixations themselves are

actually similar. In contrast, MultiMatch [168] is a metric that operates in the original pixel space

of scanpaths. It considers scanpaths as sequences of two-dimensional vectors. A simplification

step and an alignment of the scanpaths are performed to remove noise and extract meaningful

fixations. MultiMatch reports five similarity values, respectively characterizing the average

differences in shape (i.e., saccade vector difference), length, direction (i.e., angular difference),

fixation position, and fixation duration. MultiMatch is also adopted in this thesis.

In target-present cases, the objective of finding the target introduces another type of metrics,

different from similarity, that measure the success rate or speed of locating the target. An

example is the area under curve where the curve is the estimated cumulative probability of

fixating at the target object, as adopted in [55]. Gupta et al. [51] use a similar metric that

counts the number of fixations in each scanpath to find the target image. Chen et al. [56] use

the scanpath ratio that is based on the Euclidean distance between fixations and the target

image. These metrics measure the performance of the agent in visual search. Since this thesis

mainly focuses on simulating human behavior, this type of metrics is not adopted.

2.3.3 Applications of Visual Search

Visual search has a wide range of applications, including robot vision, autonomous driving,

human-computer interface design, and mental healthcare [30, 48, 49]. In robot visual systems,

object searching is an important task [171]. Imitating the saccade behavior of humans can help

reproduce humans’ efficiency in fixation selection [57, 59]. In human-computer interface design,

visual search models can also reveal a person’s intentions, the anticipation of which is crucial for

human-computer interaction [49]. For mental healthcare, people with disorders and neurotypical

people exhibit different patterns in search behavior. Visual search provides an economic and

fast way for early diagnosis of disorders like ASD [150].

Through building visual search models, the attention of a person can be revealed, which is

relevant to many daily tasks beyond visual search. In autonomous driving, the attention models

of drivers can help develop assistance systems to improve driving safety [172]. In document

27

2.3. Visual Search Chapter 2. Literature Review

design, the attention reveals whether the intended information is efficiently conveyed to the

reader and helps improve the design [60].

This thesis applies visual search to the pattern analysis of ASD. A detailed review of ASD-

related analysis based on eye movements is below. The new IRL method proposed in this thesis

extracts static motivation representations for visual search, which is not constrained to mental

healthcare. Future work may explore its application to other fields such as driver assistance.

2.3.4 ASD Analysis by Eye Movements

Diagnosis of autism spectrum disorder (ASD) can be costly [173]. Detection of ASD using

more convenient observations is promising. A common understanding of ASD is atypical visual

attention, with a reduced saliency towards social stimuli [174]. Many studies have investigated

the eye movements of subjects with or without ASD to gain a better understanding of the

behavior patterns of ASD and, further, to detect ASD based on eye movements. Here I review

their representative examples, taking into consideration some studies where the human task is

beyond the task of visual search, e.g., free-viewing [174], video watching.

I categorize these studies into three types: statistics-based behavior analysis, subject classifica-

tion, and behavior prediction. Statistics-based studies examine pre-defined behavior patterns

under different experimental conditions. An early work [175] uses the “Bubbles” method to

compare the effects of different regions of stimuli on fixations in a face-viewing task. The com-

parison between an ASD group and the control group shows behavior patterns of people with

ASD including an increased tendency to saccade away from fixated eye regions. In [30], a visual

search dataset is collected from people with ASD, amygdala lesions, and healthy controls. The

search image is specially constructed with social and non-social items to facilitate comparison of

their contribution to eye movements. The statistics considered include simple ones like behav-

ioral performance and fixation duration on social/non-social items, and also more sophisticated

ones like percentage of social/non-social items visited before target detection, and the “target-

relevant effect”, which is defined as the difference between the percentage of target-congruent

and target-incongruent items visited. One of the main findings is that the ASD group shows less

target-relevant effects in early fixations in the scanpaths, indicating a slower orientation towards

target-relevant items than the control group.

28

Chapter 2. Literature Review 2.3. Visual Search

The subject classification studies mainly focus on distinguishing scanpaths from people with

ASD and controls. An early work [176], although not for ASD classification, designs a number

of features and trains an SVM to classify different groups of subjects. Similarly, Liu et al. [177]

design a clustering-based saliency representation to be used by an SVM in the classification of

people with ASD. Jiang and Zhao [173] also use SVM for subject classification, but the feature

representation is extracted by a neural network trained to predict the difference between fixation

maps. Eraslan et al. [150] use the scanpath trend to summarize the behaviors of each subject and

use a Levenshtein distance-based clustering to classify subjects. In [138], a deep neural network

model constructed with CNN and LSTM is built for ASD classification based on scanpath inputs.

Beyond classification, these studies also provide an understanding of differences between groups

of subjects, typically by altering the input features and looking at the classification performance.

In [176], different subsets of features are used to train SVMs to examine their contribution to

the classification. The most contributing features can be inferred to be affected by the disorders.

In [177], a subset of the features is shown to offer a reasonably good classification performance.

The corresponding image regions can thus be inferred to better reflect the differences in eye

movements. In [173], important features for the SVM model are visualized to show an increased

lower-level saliency and decreased social attention in the ASD group. In [138], it is discovered

that the model performs better when there is a person in the stimulus image and worse when

there is not or when the image shows a natural scene, which could indicate that the differences

between ASD and control are mainly reflected in the scanpaths on person-present images.

The above two types of studies are helpful to better understand the behavior patterns of people

with ASD and even to facilitate economic detection of ASD. However, there are limitations.

The statistics-based methods are limited to relatively simple variables designed by researchers.

More abstract properties of scanpaths, like the memory load, cannot be easily extracted and

compared. Additionally, the detailed textures of the image stimuli can contribute to different

eye movements but are often neglected (e.g., in [30], only the category of an item is kept). The

subject classification studies, on the other hand, are capable of extracting complex features from

the scanpaths. The shortcoming is that the classification target may not capture the mechanism

for the generation of scanpaths.

In contrast, predictive models aim to reconstruct human behaviors given the same stimuli.

A predictive model can help reveal how a specific group of subjects views the images, which

29

2.3. Visual Search Chapter 2. Literature Review

provides a mechanism for group-wise comparison. As commented in [178], building predictive

models can help with the diagnosis of ASD and also help design better content for people with

ASD to view more easily. In [174], an SVM is built to predict fixation maps by weighting a set of

pre-defined feature maps. Example results show that people with ASD exhibit lower object-level

weights and higher pixel-level weights. Recent studies use deep neural networks to make the

prediction. In [178], various networks, including SALICON which is based on VGG-16, are tried

to predict the saliency maps. The models are pre-trained on normal datasets and fine-tuned

on an ASD dataset. In [179], a CNN-based model is built for saliency prediction, with some of

the hyperparameters designed with consideration of an ASD dataset. As far as I know, existing

studies on predictive models for ASD-related analysis are concerned with saliency maps. So far,

there are no scanpath-level predictive models that can capture not only the spatial attention

but also the temporal decision policy of the subjects. This thesis is the first attempt to build a

scanpath-level predictive model for ASD-related analysis.

30

Chapter 3

Spiking Variational Policy Gradient:

A Novel Brain-Inspired Reinforcement

Learning Algorithm

Among the main types of brain-inspired RL methods, R-STDP methods have the advantage in

inference latency and biological plausibility, which facilitates analysis and understanding of brain

mechanisms. However, most of the existing R-STDP methods use a shallow network structure

with only one hidden layer [39,45–47]. This deficiency in the capability of representing complex

mappings hinders them from being applied to more challenging RL tasks. Extending R-STDP

methods to more complex networks necessitates bridging the gap between the local learning

rules and the RL task target. This chapter designs a new SNN structure and learning method to

better bridge the gap and achieve better task performance. Specifically, this chapter proposes a

recurrent and fully connected new network structure for SNN. Mean-field variational inference

is adopted and a last-step approximation is proposed to derive the R-STDP learning rule for

training the new network for policy gradient methods. This chapter first introduces the network

design, and then presents the theoretical derivation of the policy inference and optimization

methods.

This chapter includes work that has been published in a jointly-authored publication [74]. Among

the materials included in this chapter, the author of this thesis completed the theoretical deriva-

tions and text. Shangqi Guo, Ying Fang, Zhaofei Yu, and Jian K. Liu contributed to the

31

3.1. Network Design Chapter 3. Spiking Variational Policy Gradient

formulation of the ideas in the theoretical analysis. Shangqi Guo, Ying Fang, and Jian K. Liu

contributed to the drawing of the sketch of the network, that is, Figure 2 in the publication,

which corresponds to Figure 3.1 in this chapter.

3.1 Network Design

The network design involves the selection of the spiking neuron model, base component, and

network structure. As reviewed in Chapter 2, SRM is a widely used model in the literature and

is adopted in this thesis. As for the base component, previous studies have demonstrated the

capability of WTA circuits in implementing the inference of a hidden Markov model [62] and

hierarchical Bayesian inference [63], and policy distribution [47]. Therefore, I also adopt the

WTA circuit as the base component of the network.

Existing R-STDP studies mainly use layered networks with only one hidden layer [39, 45–47].

This limitation hinders the networks from representing more complex mappings and being used

to solve more challenging RL tasks. In this study, I design the network to be fully connected

and recurrent. The recurrent design, as will be shown later, facilitates inference of a policy

distribution. The full connection strengthens connections between neurons and enlarges the

capacity. In this thesis, my network design is named as recurrent winner-take-all (recurrent

WTA, RWTA) network.

The RWTA network is sketched in Figure 3.1. The RWTA network consists of some state

neurons, some hidden WTA circuits, and one action WTA circuit. The firing probabilities of each

state neuron encode one element of the state observation, while the firing states or probabilities

of the action neurons can be used to generate the action decision. Recall that in a WTA circuit,

only one neuron can fire at each spike time step. Here it is assumed that the number of actions

in the RL task is finite, so each action in the task can be assigned to an action neuron, and the

neuron that spikes is selected as the action decision. The adaptation to continuous action spaces

or tasks with an infinite number of actions is left for future work. The network is fully connected,

with all neurons from different circuits connected, but certain parts of the connections can be

removed to create different network structures. The connections are symmetric, meaning the

weight is shared by the two connected neurons. However, the connections that start from state

neurons are unidirectional since the state neurons are not to be optimized.

32

Chapter 3. Spiking Variational Policy Gradient 3.1. Network Design

Action

Selection

State Hidden circuits Action

Environment

Unidirectional FC

Bidirectional FC

WTA

Noisy MNIST Changing GYMIP Noisy Doom Game

Spike train

Figure 3.1: The illustration of the RWTA network structure. The RWTA network consists of
the state input, a set of hidden WTA circuits, and an action WTA circuit as output. The
environments (noisy MNIST, varied GYMIP, or noisy DOOM game) provide a reward r to
modulate the fully-connected (FC) weights between neurons.

The state neurons are denoted as si (i = 1, . . . , ds); the action neurons are ai (i = 1, . . . , da); the

j-th neuron in the i-th hidden circuit is hij (i = 1, . . . , nh, j = 1, . . . , dh). Here ds, dh, and da are

the sizes of the state observation and the WTA circuits, and nh is the number of hidden WTA

circuits. At each spike time step, each neuron has two properties: firing probability q ∈ [0, 1]

and binary firing status v ∈ {0, 1}. I use vectors to represent the values of groups of neurons,

use hi and h to denote the i-th hidden circuit and the entire set of hidden neurons, and use bold

symbols with no subscript to denote all the neurons. For example, qhi
:= [qhi1

, . . . , qhidh
]T, vh :=

[vT
h1
, . . . ,vT

hnh
]T, and q = [qTh , q

T
a , q

T
s]

T. The total number of neurons is N = nhdh + da + ds.

The learnable parameters in the network are denoted as W ∈ RN×N for the synapse weights

and b ∈ RN for the self-activation parameters; the columns and rows of W are arranged by

h, a, s and b is arranged according to h, a, s. Note that the state neurons have zero intrinsic

excitabilities, i.e., bs = 0. I use θ to refer to the parameters of the policy, i.e., θ = ⟨W , b⟩.

When applied to an RL task, the RWTA network is simulated for a fixed number Niter of spike

time steps (e.g., 100) for each RL time step t. Before the simulation for each RL step, the

state of the whole network is initialized by setting the firing probabilities of state neurons to

an encoding of the RL state and setting the other neurons according to a [0, 1] random uniform

33

3.2. Policy Inference Chapter 3. Spiking Variational Policy Gradient

distribution. After the simulation, the final firing state of the action WTA circuit corresponds

to the action decision. The RL reward rt can be used to update the network parameter.

As far as I know, the most similar structure in previous studies is the layered WTA network

proposed in [47], which considers one hidden layer of WTA circuits and the connections between

layers are recurrent. Compared to this structure, my design features extra connections between

types of neurons. Specifically, there are connections between hidden WTA circuits and between

state and action neurons. As will be shown later in section 4.3.4, these connections contribute

to the improvement in task performance.

3.2 Policy Inference

3.2.1 The Definition of Policy Function

I set the RL policy to be a probability distribution over the action space, which is assumed to

consist of a finite number of actions, and define it with an energy function E(v). The energy

function-based design of the policy function has been adopted by existing studies [47, 180].

Specifically,

π(va|s) =
∑
vh

p(va,vh|s), (3.1)

p(va,vh|s) :=
1

Z(s)
exp{E(v)}, (3.2)

E(v) := vTWv + bTv, (3.3)

where Z(s) =
∑

v′
h,v

′
a
exp{E(v′)} is the normalization. As shown in the above equations, the

policy distribution is calculated as the marginal distribution of va. Although the energy function

is linear, the normalization operation makes the energy-based policy function capable of repre-

senting complex distributions [180]. This formulation makes the policy function similar to the

SRM model, i.e., Eqs (2.2) and (2.3). More importantly, as will be shown later, this formulation

of policy is equivalent to the fixed point of the RWTA network.

The policy representation Eq. (3.1) is computable in principle. However, when the number of

hidden neurons is large, it can be intractable in practice. To address this problem, I adopt mean-

field inference to derive an approximation p̂(va,vh|s) of the probability function of action-hidden

states p(va,vh|s) (see section 3.2.3 below).

34

Chapter 3. Spiking Variational Policy Gradient 3.2. Policy Inference

3.2.2 Validity of Policy Approximation

The above approximation can induce a change to the expected return. Before diving into the

details of the approximation, I first analyze the relationship between the approximation and

the change. To do this, I equivalently transform the original objective J(π) into log J(π). I

use τ+ to denote the trajectories in which hidden states vh are incorporated with actions. I

use the subscript “est” to refer to the probabilities or distributions of trajectories under the

approximated policy function. Then, the following lower bound of the objective when the policy

approximation is applied can be obtained:

log J(π) = log

∑
τ+

pπ(τ+)
T−1∑
t=0

γtrt


≥ Eest

[
log

T−1∑
t=0

γtrt

]
−DKL [pest(τ+) ∥ pπ(τ+)] ,

(3.4)

where DKL is the Kullback-Leibler (KL) divergence. For deterministic environments, target

Eest[log
∑T−1

t=0 γ
trt] is equivalent to Eest[

∑T−1
t=0 γtrt], which is the original expected return. In

stochastic environments, the equivalence depends on the transition function P . When the equiv-

alence holds, the above Eq. (3.4) indicates that, by minimizing the KL divergence between the

approximated function p̂(va,vh|s) and the original function p(va,vh|s), the lower bound of the

original expected return can be maximized.

3.2.3 Policy Mean-Field Inference

I adopt variational inference, which has been used in existing studies [47, 64], to derive an

approximation of the policy function. I use a variational distribution p̂(va,vh|s) to approximate

p(va,vh|s), and assume that the firing states of all circuits are independent to each other. This

leads to a decomposition of p̂, i.e., p̂(va,vh|s) := p̂(va|s)p̂(vh1 |s) · · · p̂(vhnh
|s), where p̂(vh1 |s) :=

qTh1
vh1 , . . . , p̂(va|s) = qTa va.

By minimizing the KL divergence between p̂ and p, i.e., DKL(s)
·
= DKL[p̂(va,vh|s)∥p(va,vh|s)],

I get the following mean-field inference equation [181] for each hidden or action neuron i:

qi =
1

Z(qG(i))
exp

{
wT

row,iq +wT
col,iq + bi

}
, (3.5)

35

3.2. Policy Inference Chapter 3. Spiking Variational Policy Gradient

where i = 1, . . . , (nhdh + da), G(i) is the set of indices of the neurons in the same circuit as

neuron i, Z(qG(i)) =
∑

j∈G(i) exp{wT
row,jq+wT

col,jq+ bj}, and wrow,i and wcol,i are respectively

the i-th row and column of matrix W (in the shape of a column vector), which corresponds to

the synapses connected to neuron i. bi is the i-th element in vector b.

To get the policy distribution π(va|s), which is approximated by qa, I can solve Eq. (3.5) to

get q and then extract its elements corresponding to qa. Eq. (3.5) can be seen as an iteration

process by regarding the q on the right side as a constant vector. In practice, one numerical

method to get the solution q is to initialize q with random numbers and then repeat updating

it with Eq. (3.5) until numerical convergence. Although there is no theoretical guarantee of

convergence, I demonstrate in experiments that it converges in most cases (see section 4.3.1).

3.2.4 Policy Inference with RWTA Network

Now I show that the fixed point of the RWTA network equals the approximated policy inference

above. That is, the iterative method above for policy inference can be implemented with the

RWTA network.

I assume that the internal inhibitory neuron in the WTA circuits makes the overall firing rates

of the network (excluding the state neurons) a constant value ρ̂ ∈ (0, 1). With this assumption,

I let the firing probabilities encode ρi(l) = ρ̂qi. Then the policy inference function Eq. (3.5) is

transformed to

ρi = ρ̂ exp

wT
row,iq +wT

col,iq + bi − log
∑

j∈G(i)

exp{wT
row,jq +wT

col,jq + bj}

 . (3.6)

Then, consider the neuron model Eqs. (2.2)and (2.3) in the RWTA network, I assign wj with

the synaptic weights wij + wji, and design κ(y) such that
∫∞
0 κ(y)dy = 1/ρ̂. This transforms

the probability values q in Eq. (3.6) into membrane potential u(l), leading to the following

spike-based inference function

ρi(l) = ρ̂ exp

ui(l)− log
∑

j∈G(i)

exp(uj(l))

 ,

ui(l) =
∑

j∈N(i)

wij

∫ ∞

0
κ(y)Sij(l − y)dy + bi.

(3.7)

36

Chapter 3. Spiking Variational Policy Gradient 3.3. Policy Optimization

Eq. (3.7) shows the way the RWTA network iterates its membrane potentials and firing prob-

abilities. When a fixed point is reached, the firing probabilities give the solution to the policy

inference function Eq. (3.5). This shows that the RWTA network designed above can perform

the approximated policy inference. Note that it is biologically plausible as it conforms to the

definition of the SRM neuron model.

3.3 Policy Optimization

The policy optimization concerns the update of network parameters θ and relies on a base RL

algorithm. Here I select REINFORCE as the base algorithm, because it is the base of many

popular algorithms like A3C [25] and PPO [65], and it has a simple policy gradient formulation

that can simplify the derivation of the method. I derive the learning method and build its

relationship to the R-STDP framework. Then I extend the method to other base RL algorithms

like PPO.

3.3.1 Policy Optimization for REINFORCE

In REINFORCE, the policy gradient is calculated according to the following equation [1]:

∇θJ(πθ) = Eτ∼πθ

[
T−1∑
t=0

γtrt

T−1∑
k=0

∇θ log πθ(ak|sk)

]
, (3.8)

which contains ∇θ log πθ(ak|sk), differential of logarithm of the policy function. Based on the

policy approximation p̂(va,vh|s) in previous subsection, this differential stands for ∇θ log(qha).

According to the policy inference function Eq. (3.5), this differential can be calculated as shown

in the following theorem.

Theorem 3.1. (Precise optimization rule) The precise differential of qha to a certain synapse

weight wjk and the self-activation parameter bj is

∂qha
∂wjk

= M
(
U jk +Ukj

)
q +M(W +WT)

∂q

∂wjk
,

∂qha
∂bj

= Mb+M(W +WT)
∂q

∂bj
,

(3.9)

where M = diag(qha)[−Ghadiag(q)+Dsel], Gha is a logical matrix with shape (nhdh+ da)×N

where 1 elements indicate the two neurons (column index and row index) are in the same WTA

circuit, Dsel is a logical matrix that selects the first (nhdh + da) elements in a vector with length

37

3.3. Policy Optimization Chapter 3. Spiking Variational Policy Gradient

N , i.e., Dsel =

[
I(nhdh+da) O(nhdh+da)×ds

]
, and U jk is a logical matrix with shape N × N

where only the jk-th element is 1.

Proof. The mean-field policy inference function is

qi =
1

Z(qG(i))
exp{wT

row,iq +wT
col,iq + bi}, (3.10)

where Z(qG(i)) =
∑

j∈G(i) exp{wT
row,iq +wT

col,iq + bi}, i = 1, . . . , (nhdh + da), G(i) is the set of

indices of the neurons in the same circuit as neuron i, and wrow,i and wcol,i are respectively the

i-th row and column of matrix W (in the shape of a column vector), which corresponds to the

synapses connected to neuron i. bi is the i-th element in vector b.

For each wjk, There is

∂qi
∂wjk

=− Z−2(qG(i))
∂Z(qG(i))

∂wjk
exp

{
wT

row,iq +wT
col,iq + bi

}
+ Z−1(qG(i)) exp

{
wT

row,iq +wT
col,iq + bi

}
·

N∑
m=1

[
∂(wim + wmi)

∂wjk
qm + (wim + wmi)

∂qm
∂wjk

]

=− qiZ
−1(qG(i))

∂Z(qG(i))

∂wjk
+ qi

N∑
m=1

[
∂(wim + wmi)

∂wjk
qm + (wim + wmi)

∂qm
∂wjk

]
.

(3.11)

For the term ∂Z(qG(i))

∂wjk
, there is

∂Z(qG(i))

∂wjk
=

∂

∂wjk

 ∑
m∈G(i)

exp
{
wT

row,mq +wT
col,mq + bm

}
=

∑
m∈G(i)

{
exp

[
wT

row,mq +wT
col,mq + bm

]
·

N∑
n=1

[
∂(wmn + wnm)

∂wjk
qn + (wmn + wnm)

∂qn
∂wjk

]}
.

(3.12)

So there is

∂qi
∂wjk

=− qi
∑

m∈G(i)

{
qm

N∑
n=1

[
∂(wmn + wnm)

∂wjk
qn + (wmn + wnm)

∂qn
∂wjk

]}

+ qi

N∑
n=1

[
∂(win + wni)

∂wjk
qn + (win + wni)

∂qn
∂wjk

]
.

(3.13)

38

Chapter 3. Spiking Variational Policy Gradient 3.3. Policy Optimization

Similarly, for each bj , there is

∂qi
∂bj

= −qi
∑

m∈G(i)

{
qm

[
∂bm
∂bj

+
N∑

n=1

(wmn + wnm)
∂qn
∂bj

]}
+ qi

[
∂bi
∂bj

+
N∑

n=1

(win + wni)
∂qn
∂bj

]
.

(3.14)

By respectively arranging Eq. (3.13) and Eq. (3.14) for each qi into vectors, and combining the

terms into matrices, Eq. (3.9) can be obtained.

Theorem 3.1 reveals that the required differential can be obtained by solving the matrix equations

Eq. (3.9). However, this involves the calculation of the pseudo-inverse of M(W + WT), the

shape of which is (nhdh + da)×N . Therefore, the computational complexity is over O((nhdh +

da)
3), which can be intractable in practice when the number of hidden and action neurons is

large.

Therefore, I propose to obtain an approximated solution of Eq. (3.5). As will be shown later,

this approximation can still get satisfying results in the experiments. It can also be implemented

in the R-STDP framework, so it has the advantage of being biologically plausible. My idea for

the approximation is to regard the q on the right side of the policy inference function Eq. (3.5)

as a constant on the network parameters. By doing so, the differential only concerns the last

step in the inference process, where the status of each neuron is only affected by its neighboring

neurons. Thus, the differential on a certain connection or neuron only depends on information

from the connected neurons, which makes possible the link between the local rules and the global

objective. The result is presented in the following theorem.

Theorem 3.2. (Approximate optimization rule) The approximate differentials of firing rate

qi with respect to W and b are:

∂ log(qi)

∂W
=(U i:diag(q) + diag(q)U :i)− diag(q)(UG(i): +U :G(i))diag(q),

∂ log(qi)

∂b
=ui − diag(q)uG(i),

(3.15)

where i ∈ {1, . . . , (nhdh + da)}, U is a N ×N logical matrix and u is a length-N logical vector,

whose subscripts indicate the positions of elements with value 1. G(i) is the set of indices of

neurons in the same circuit as neuron i. Symbol “:” means the entire row/column.

39

3.3. Policy Optimization Chapter 3. Spiking Variational Policy Gradient

Proof. The condition is the same as that in the proof of Theorem 1. The approximate differen-

tiation of firing rate qi with respect to wjk and bj are:

∂ log(qi)

∂wjk
=

N∑
m=1

[
∂(wim + wmi)

∂wjk
qm

]

− 1

Z(qG(i))

∑
m∈G(i)

[
exp{wT

row,mq +wT
col,mq + bm} ·

N∑
n=1

∂(wmn + wnm)

∂wjk
qn

]

=

N∑
m=1

[
∂(wim + wmi)

∂wjk
qm

]
−

∑
m∈G(i)

[
qm ·

N∑
n=1

∂(wmn + wnm)

∂wjk
qn

]
,

(3.16)

∂ log(qi)

∂bj
=
∂bi
∂bj
− 1

Z(qG(i))
·

∑
m∈G(i)

[
∂bm
∂bj
· exp{wT

row,mq +wT
col,mq + bm}

]

=
∂bi
∂bj
−

∑
m∈G(i)

[
qm

∂bm
∂bj

]
.

(3.17)

Similar to the proof of Theorem 1, by respectively arranging Eq. (3.16) and Eq. (3.17) for

each qi into vectors, and combining the terms on the right side into matrices, Eq. (3.15) can be

obtained.

According to Theorem 3.2, at the last step of each simulation for a certain RL time step, given

the firing state v of the RWTA network, the corresponding REINFORCE policy gradient can

be obtained:

∇J(π) =
∑
t

γtrt

[
nh∑
i=1

vT
hi
∇(log qhi

) + vT
a∇(log qa)

]
, (3.18)

where ∇ log qhi
and ∇ log qa are respectively the vectors of ∇ log qhij

and ∇ log qai .

3.3.2 Policy Optimization with R-STDP

Now I show how this policy gradient can be implemented with R-STDP. Specifically, this means

to design a set of ⟨Wpre,Wpost, A+(wij), A−(wij)⟩ in the R-STDP framework. I make the fol-

lowing settings to the R-STDP for two arbitrarily connected neurons i and j.

⟨Wpre,Wpost, A+(wij), A−(wij)⟩ =
〈
vi, vj ,−

1

ρ̂
,−1

ρ̂

〉
, (3.19)

The expectation of the frequency of spikes in a spike train Si equals the firing probability ρi.

That is, E[Si(l)] = ρi and E[
∫∞
0 A+(wij)Si(l − y)dy] = A+(wij)ρi. Then, there is the following

40

Chapter 3. Spiking Variational Policy Gradient 3.4. Algorithm

transformed formulation of my R-STDP rule:

E[R(l)STDP(l)] = R′
[
ρj

(
vi −

ρi
ρ̂

)
+ ρi

(
vj −

ρj
ρ̂

)]
, (3.20)

where R′ is a signal about the environment reward for the considered simulation period. Note

that, for the self-excitation parameter b, it can be regarded as the weight of a connection from

an always-firing neuron and that the post-synaptic part of the STDP rule is omitted. The

corresponding learning rule is ∆bi = R′[vi − ρi/ρ̂].

Then, for the policy gradient Eq. (3.15, 3.18) that is derived from the global objective, they can

be reorganized according to the network parameters as follows:

∂J(π)

∂wij
=
∑
t

γtrt[qi(vj − qj) + qj(vi − qi)],

∂J(π)

∂bi
=
∑
t

γtrt(vi − qi).

(3.21)

As shown, the two equations, Eq. (3.20) and Eq. (3.21), are equivalent. By using Monte-Carlo

sampling methods, R′ can be made equal to
∑

t γ
trt. By scaling the optimization step size with

ρ̂, the difference in the overall firing rate ρ̂ can be removed. This means that the R-STDP rule

defined in Eq. (3.19) can represent the approximated policy gradient on the RWTA network.

3.4 Algorithm

So far, I derive a variational policy gradient method where inference and optimization are im-

plemented with the spiking RWTA network and an R-STDP rule. I name it spiking variational

policy gradient (SVPG). Note that this method is based on the REINFORCE algorithm. The

full process of SVPG is summarized in Algorithm 1.

In SVPG, the number of state neurons ds and the number of action neurons da depend on the

task setting. For example, in MNIST classification, the state observation is an image with a

size of 28 × 28, so ds is 784. The number of actions da is 10, corresponding to the number

of available classes. The discount factor γ determines the extent to which future rewards are

important, and is specified by the RL task. The hyperparameters of SVPG mainly include the

inference iteration number Niter, the learning rate η, and the network shape nh and dh. A

larger iteration number Niter means to simulate the SNN for more steps to obtain an RL action

41

3.5. Practical Considerations Chapter 3. Spiking Variational Policy Gradient

Algorithm 1 SVPG with REINFORCE
Parameter: Discount factor γ. Training episode number Nepi. Inference iteration number
Niter. Learning rate η. Network shape nh, dh, da, ds.
Output: RWTA Network parameter θ.
1: Initialize θ to zero.
2: for Episode = 1, . . . , Nepi do
3: Clear memory buffer D.
4: for Training step t = 1, . . . , T do
5: Observe and encode state st.
6: Randomly initialize qa and qh.
7: Iterate Eq.(3.7) for Niter spike time steps. {Inference}
8: Use va to generate at.
9: Perform at, observe reward rt and new state st+1.

10: Store ⟨st, at, rt, st+1, q,v⟩ into D.
11: end for
12: Get data from D.
13: Calculate gradient using Eq. (3.21). {Optimization}
14: Update θ ← θ + η∇θ .
15: end for

decision, which can stabilize the policy distribution, but also increase the computational cost.

A larger learning rate changes the learnable parameters with larger steps, which can increase

training speed but meanwhile make the training process unstable. The number of hidden WTA

circuits nh and the size of the hidden WTA circuits dh determine the capacity of the network.

In Algorithm 1, the RWTA network is first initialized with zero weights before training. Note

that this does not make the hidden and action neurons silent because the WTA circuits ensure

an overall firing probability of the neurons in a circuit. The algorithm runs in episodes. For

each episode, the memory buffer D collects the transition data at each step, which is used for

updating the RWTA network (step 13). For each step t, the RWTA network is simulated for

Niter steps to produce the action decision. Since the learning rule of SVPG requires the firing

state and firing probability of neurons, q and v need to be stored with the transition data in

the memory buffer D.

3.5 Practical Considerations

There may be two problems with SVPG in practical application. (1) The simulation of spike

trains in the RWTA network can be computationally expensive, particularly for general devices,

such as graphics processing unit (GPU). (2) SVPG is derived for the REINFORCE algorithm,

42

Chapter 3. Spiking Variational Policy Gradient 3.5. Practical Considerations

which is not efficient and is not popularly used in recent RL studies. Here I provide solutions

to these two potential problems.

3.5.1 Rate-Based Approximation

For the computational cost problem, I propose a rate-based approximation of SVPG. In the

approximation, the evolution of neurons’ firing probabilities is directly calculated by the policy

inference function Eq. (3.5), i.e., without the intermediate simulation of the spike trains. In

this way, the computational cost can be reduced. However, this approximation also removes

the random noise in firing probabilities caused by spike trains, which could be important to the

overall performance. For this deficiency, I add Gaussian noise (with standard deviation σ = 0.02)

to the firing probability values in each iteration of the firing probabilities. As will be shown later

(section 4.3.1), this rate-based approximation can significantly reduce the computational cost

while producing similar training and perturbation results to the original implementation.

3.5.2 Extension to Other Base RL Algorithms

The RL field has seen many advances in algorithms that bring improvements to training ef-

ficiency, scalability, etc. Extending SVPG to these RL algorithms can facilitate the test or

application to more challenging scenarios. Here I propose methods to achieve this extension. I

consider the PPO-clip algorithm [65], which has been widely used in RL studies and is generally

considered faster and better at solving complex tasks like DOOM than REINFORCE. I also

consider the extension to value-based RL algorithms, which are another major branch besides

policy gradient.

For value-based algorithms like DQN, the network is required to output a number of state-

action values [7]. The firing rates of the action neurons can be used to approximate their

firing probabilities qai , and then transformed to the state-action value with a mapping like

Qai = tan{qaiπ − π/2}. Suppose a loss function Loss(Qa,i) on the state-action value is defined

in the base RL algorithm, its differential can be decomposed into two parts according to the chain

rule ∂Loss(Qai)/∂θ =
∂ log(qai)

∂θ · ∂Loss(Qai)

∂ log(qai)
. The first part has been derived in Eq. (3.15), and the

second part can be calculated in practice using deep learning libraries such as PyTorch [182].

43

3.5. Practical Considerations Chapter 3. Spiking Variational Policy Gradient

Algorithm 2 SVPG for PPO-clip
Parameter: Discount factor γ. Training episode number Nepi. Inference iteration number
Niter. Learning rate η. PPO epoch number NPPO. Network shape nh, dh, da, ds.
Output: RWTA Network parameter θ.
1: Initialize θ to zero. Initialize the critic network.
2: for Episode = 1, . . . , Nepi do
3: Clear memory buffer D.
4: for Training step t = 1, . . . , T do
5: Observe and encode state st.
6: Randomly initialize qa and qh and normalize them at circuit-level.
7: Iterate Eq. (3.7) for Niter spike time steps. {Inference}
8: Use va to generate at. Perform at, observe reward rt and new state st+1.
9: Store ⟨st, at, rt, st+1, q,v⟩ into D.

10: end for
11: Get data from D. Backtrack reward R =

∑
t γ

trt.
12: Update critic network. Use the critic to generate an advantage value A.
13: Store checkpoint θold, vold .
14: for PPO epoch num = 1, . . . , NPPO do
15: Update θ using A, D, θold, vold and Eq. (3.21), Eq. (3.22). {Optimization}
16: end for
17: end for

For the PPO-clip algorithm, the learning target is [65]

J(πθ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] ,

rt(θ) =
πθ(at|st)
πθold(at|st)

,
(3.22)

where πθ is the current policy, πθold is an old policy with checkpoint parameter θold, and ϵ is

a hyperparameter. Similar to the value function representation, the differential of the policy

distribution can be transformed into the one I derived earlier: ∂qi
∂θ = ∂ log(qi)

∂θ · qi. Note that there

is a difference between conventional ANNs and the RWTA network when dealing with θold. The

differential for the RWTA network, i.e., Eq. (3.21) requires the firing states of the neurons,

which can be different in different simulations. Thus the checkpoint θold needs to include both

the network parameters and the firing states v. When updating the network with Eq. (3.21),

the v values are from the checkpoint, and the q values are from the current policy instantiation.

This extension reduces the biological plausibility of the SVPG method since it uses information

from a previous state of the network; however, this is inevitable for most base RL algorithms

that use the target network technique [7]. A sketch of the SVPG algorithm for PPO-clip is given

in Algorithm 2.

44

Chapter 3. Spiking Variational Policy Gradient 3.6. Chapter Summary

3.6 Chapter Summary

In this chapter, I designed the RWTA network and showed that its fixed point corresponds to an

approximated solution of the policy inference function for an energy-based policy formulation.

I derived SVPG, an approximated optimization rule for the REINFORCE base algorithm, and

showed its equivalence to the R-STDP framework. I further proposed extensions of SVPG to

other base RL algorithms, including the PPO algorithm.

45

Chapter 4

Evaluation of SVPG on Benchmark RL

Tasks

The previous chapter designs the RWTA network and SVPG, a new R-STDP learning method.

In this thesis, SVPG is applied to both standard RL tasks and also a visual search scanpath

modeling task. To distinguish between the two applications and to avoid excessive division of

sections, I present these two applications separately from the method development chapter.

In this chapter, SVPG is applied to different benchmark RL tasks and compared to representative

methods of other types. This chapter first introduces the task settings and alternative methods

for comparison. Next is the empirical verification of the assumptions made in section 3.2.3 and

3.5.1. It also presents the results of the perturbation tests, ablation tests, and visualizations.

The code for this part of the work is made publicly available at my code repository1.

This chapter includes work that has been published in a jointly-authored publication [74]. Among

the materials included in this chapter, the author of this thesis completed the text, experiments,

visualizations, and analyses of the results. Shangqi Guo, Ying Fang, Zhaofei Yu, and Jian K.

Liu contributed to the design of the experiments.

4.1 Tasks

I use five tasks in my experiments: reward-based MNIST classification [66], Gym Inverted-

Pendulum [67], ViZDoom HealthGathering [183], AI2THOR navigation [69,70], and robot-arm
1https://github.com/yzlc080733/SVPG2023

46

https://github.com/yzlc080733/SVPG2023

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.1. Tasks

reaching (built on PyRep [184] and CoppeliaSim [71]). In the following texts and figures, I use

MNIST, GYMIP, DOOM, AI2THOR, and ROBOTARM to refer to these tasks. Details of these

tasks are described below.

• MNIST. In MNIST, the objective is to select the correct label given the image input, which

are hand-written digits [66]. The state is a vector of length 784 reshaped from the image,

the action space corresponds to the 10 labels, and the reward is {−1,+1} corresponding

to wrong or correct predictions. Each episode contains only one time step. The agent’s

observation is randomly selected from the MNIST dataset. The original images have a

value range of {0, . . . , 255}, and are divided by 255 to be converted to the range of [0, 1].

The action space contains 10 actions, each corresponding to the 10 classes. The maximum

length of training is set to 20k steps, and each step samples a batch of 100 images.

• GYMIP. In GYMIP, the objective is to balance a pendulum for as long as possible [67].

The maximum episode length is set to 200, the state is a length-4 vector of physical

variables which are mapped to the range of [0, 1], the action space is {−3,−1.5, 0, 1.5, 3}

deciding the force applied to the cart, and the reward is always +1. The episodes end early

if the pendulum falls. Note that the original observation provided by the environment is

a 4-dimensional vector with no predefined ranges. To normalize the observations, I use a

random policy to sample from the environment and use the samples’ range to determine a

linear mapping to the range of [0, 1]. In the experiments, the sampled ranges are [−0.4, 0.4],

[−0.2, 0.2], [−1.7, 1.7], [−1.25, 1.25]. The maximum length of training is set to 2k episodes.

• DOOM. In DOOM, the objective is to navigate and pick up boxes to survive as long

as possible [183]. In each episode, the game lasts a maximum of 2100 screen frames. I

adopt the frame-skipping technique, i.e., repeat an action for a fixed number of frames. In

this thesis, I choose to repeat each action for 4 frames, resulting in a maximum number

of 525 time steps in each episode. The state is processed from the game screen, offering

first-person visual observation of the game environment. The original game screen has a

resolution of 320×240, which is transformed into grayscale, resized to 80×60, and reshaped

to a vector with length 4800 to serve as the state observation. The action space contains

5 actions corresponding to the keyboard actions in the game: “move forward”, “turn left”,

“turn right”, “turn left while moving forward”, and “turn right while moving forward”. The

rewards are determined by the player states, i.e., −50 when dead, +10 when picking up

47

4.1. Tasks Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

a health kit, and +1 otherwise. An example of the original state observation is shown in

Figure 4.1. The maximum length of training is set to 2k episodes for SVPG and BP, and

10k episodes for the method of backpropagation through time (BPTT), since it exhibits

slower learning (introduction to the methods for comparison is below).

• AI2THOR. In AI2THOR, the objective is to navigate to a television in a realistic

room. The agent needs to be within 1.5m distance from the television, and the televi-

sion needs to be in the agent’s view to mark a successful navigation. The room map is

FloorPlan_Train7_5 from the AI2THOR (specifically, RoboTHOR) platform [70]. The

starting points are randomly selected from 38 randomly generated points (30 for training,

8 for validation/testing). The maximum episode length is set to 200. The episode ends

early if the target object is found. The state observation is a view of the room from the

agent’s viewpoint and is an 80 × 60 RGB image. The parameters of the camera, e.g.,

angle of view, are the default ones provided by the AI2THOR platform. I convert the

observed image to grayscale and reshape it to a 4800-length vector. Figure 4.2 presents an

example of the original RGB image and the state observation after pre-processing. The

action space consists of 5 actions: forward, turn left, turn right, move left, and move

right. These actions are implemented by a list of operations provided by the AI2THOR

platform. For example, turning left is achieved by RotateLeft and MoveAhead; moving

left is achieved by RotateLeft, MoveAhead, and then RotateRight. The step sizes are

0.15m for movements and 90 degrees for rotations. The reward is defined to be: +50 for

target-reaching, -5 for failure in action (e.g., collision), +1 for target-approaching, and -1

for target-deviation. The maximum length of training is set to 8k episodes.

• ROBOTARM. In ROBOTARM, the objective is to move the gripper of a robot arm

to the cube on the table. The simulation environment is built upon the example Panda

arm control scene from PyRep [184]. I add a vision sensor and a cube, and configure the

initial pose of the robot arm. The scene is included in the code repository2. Each episode

contains a maximum of 60 steps. The episode ends early if the target is reached. The

state is a 64 × 64 RGB image obtained from a vision sensor attached at the end point

of the arm. For pre-processing, I first convert the image to grayscale, then clip the pixel

values to the range of [0.4, 0.9], and finally linearly map it to the range of [0, 1]. Figure

2https://github.com/yzlc080733/SVPG2023/tree/main/ROBOTARM/env_data

48

https://github.com/yzlc080733/SVPG2023/tree/main/ROBOTARM/env_data

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.1. Tasks

4.3 presents an overview of the environment and an example of the original RGB image

and the image after pre-processing. The input to the networks is a length-4096 vector

reshaped from the processed image. The action space consists of 5 actions: move in 4

ways horizontally with a step size of 0.03m, and move upward/downward with a step size

of 0.05m. The end-effector of the arm is constrained to move in a 0.2m × 0.3m × 0.22m

rectangular space. The target object is a cube with a side length of 0.05m, and its position

is randomly selected from 50 randomly generated positions (among which 45 for training

and 5 for validation/testing). The reward is defined to be: +10 for target-reaching, +1

for target-approaching, and 0 otherwise. The maximum length of training is set to 10k

episodes.

Figure 4.1: Example state original observation in the DOOM task.

(a) (b)

Figure 4.2: Example state observations in the AI2THOR task. (a) An original state observation.
(b) A pre-processed state observation.

The motivations for selecting these tasks are as follows. (1) The MNIST task is selected because

it is a single-step RL task, making its performance less affected by the training efficiency and

exploration strategy. (2) The GYMIP task is selected because it is a standard task widely

used in the literature [46, 185, 186]. Also, its state variables are unbounded, providing a good

example of state mapping for SVPG. (3) The DOOM task is selected because it involves a

high-dimensional vision input and a long episode horizon, which challenges the methods’ overall

49

4.2. Methods for Comparison Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

(a) (b) (c)

Figure 4.3: Example images in the ROBOTARM task. (a) An overview of the environment.
The blue cuboid close to the gripper is the vision sensor. (b) An example state observation. (c)
A pre-processed state observation.

capability. (4) The AI2THOR and ROBOTARM are used to reflect the methods’ applicability to

real-world tasks. In particular, AI2THOR provides photo-realistic scenes [69] (lighting, texture,

etc.) and simulates collisions and noises in the robot’s movements. In addition, the robot needs

to generalize to new starting points (AI2THOR) or target positions (ROBOTARM).

I would like to emphasize that an encoding of the state observation is necessary to get the firing

probabilities of the state neurons, because the latter is constrained to range [0, 1]. In MNIST,

DOOM, AI2THOR, and ROBOTARM, the elements in state observations have limited values

so can be linearly mapped to [0, 1]. In GYMIP, the state values are unbounded; therefore, pre-

training samples are needed to estimate the range and then clip and map the observations to

the range of [0, 1].

4.2 Methods for Comparison

4.2.1 Method Selection

I select three representative learning methods for comparison. The first one serves as a conven-

tional approach in deep RL and the other two are common approaches in SNN-based RL.

• BP [187] on a three-layer multi-layer perceptron (MLP) with the ReLU function for the

hidden layers, which is a conventional baseline ANN model.

• ANN2SNN with the methods from [125] and code implementation from SpikingJelly [188].

This method is based on the training results from the BP method.

• Fast sigmoid BPTT (backpropagation through time) from [189]. The code implementation

is based on snnTorch [190].

50

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.2. Methods for Comparison

For these methods, the number of hidden layers is set to 1. In all the comparisons, I use the

same optimizer (RMSprop or Adam), discount factor γ, number of hidden neurons, and base

RL algorithm.

I also considered two local-learning-rule-based methods. The first is a hybrid method of STDP

and R-STDP [191], implemented on SpykeTorch [192], and designed for MNIST. I refer to it as

Mozafari et al. This method enables the training of deep networks by applying STDP to hidden

layers. For a fair comparison, I changed its network structure to an MLP with the same shape

as other methods and removed the difference of the Gaussian filter. Other designs, including

latency encoding and adaptive learning rate, are kept. The second is a local gradient-based

optimization method [193], implemented for CartPole, an environment similar to GYMIP. I refer

to it as Aenugu et al. This method uses the generalized linear model as neurons and updates

connection weights based only on the local spiking activity and the global reward information.

I reduced the size of the hidden layer to make the comparison fair. The input encoding, sparse

connection, critic model, and voting mechanism are kept. Note that this method only considers

networks with one hidden layer. Therefore, my setting of the number of hidden layers in other

methods to one enables a fair comparison to this method.

Notice that the RWTA network in my method is fully connected, so it has more learnable

parameters than other methods under the same number of hidden neurons. Therefore, I add

a variant SVPG-shrink with fewer hidden WTA circuits, of which the number of learnable

parameters is equal to or less than the networks in other methods.

4.2.2 Implementation Details

The performance of the methods can be dependent on the network sizes and RL hyperparameters.

For the networks, I adapt the methods to have networks of the same size. Considering that

different methods may need different RL hyperparameters to generate the best performance,

I train the methods with a range of RL hyperparameters and report the result with the best

zero-perturbation testing performance. Note that the methods of “Mozafari et al” and “Aenugu

et al” have their own design of optimization, so the results are based on their original setting.

51

4.2. Methods for Comparison Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

RL hyperparameters

For all the tasks in my experiments, the discount factor γ is set to 0.97. This makes the

discounted return reflect the length of the episodes in GYMIP and DOOM, so that the agent

learns to complete the task. In MNIST, DOOM, AI2THOR, and ROBOTARM, I use Monte-

Carlo sampling to learn the critic; in GYMIP, I use temporal difference to learn the critic and

adopt a memory buffer with size 1000. The epoch number in PPO is set to 5, and the clipping

parameter is set to 0.2. Due to the instability in training BPTT on DOOM, I specially set the

epoch number to 10 for BPTT on DOOM. To encourage the agent to explore different actions,

I use a weighted sum of the policy gradient and the entropy of the agent’s policy distribution to

train the agent. This introduces a hyperparameter of the entropy ratio.

SVPG
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 0.7448 0.8056 0.8042 0.8914 0.8605 0.8894 0.4123 0.3054

0.001 0.9284 0.9270 0.9292 0.9271 0.9270 0.9262 0.8467 0.7938

0.0001 0.9233 0.9236 0.9232 0.9230 0.9235 0.9231 0.9088 0.8997

(a)

SVPG-shrink
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 0.8053 0.8344 0.8960 0.9211 0.8598 0.9139 0.4226 0.3295

0.001 0.9267 0.9281 0.9282 0.9269 0.9261 0.9242 0.8491 0.8018

0.0001 0.9235 0.9246 0.9237 0.9243 0.9252 0.9232 0.9157 0.9036

(b)

BP
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 0.5871 0.9339 0.9357 0.8858 0.5548 0.2746 0.1121 0.1093

0.001 0.9781 0.9763 0.9691 0.9565 0.9512 0.9276 0.9069 0.8924

0.0001 0.9760 0.9761 0.9774 0.9779 0.9792 0.9739 0.9639 0.9578

(c)

BPTT
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 0.4356 0.4257 0.5191 0.1884 0.1032 0.1032 0.1695 0.1370

0.001 0.7783 0.8371 0.8580 0.9001 0.9252 0.4060 0.2116 0.1638

0.0001 0.9729 0.9735 0.9744 0.9748 0.9745 0.9624 0.9434 0.9211

(d)

ANN2SNN
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 0.5866 0.9349 0.9292 0.8805 0.5477 0.2680 0.1121 0.1093

0.001 0.9788 0.9764 0.9660 0.9525 0.9490 0.9253 0.9040 0.8899

0.0001 0.9765 0.9766 0.9779 0.9782 0.9784 0.9727 0.9618 0.9550

(e)

Figure 4.4: The effect of hyperparameters of learning rate and entropy ratio in the MNIST task
with different models (a: SVPG; b: SVPG-shrink; c: BP; d: BPTT; e: ANN2SNN). Values
shown are the classification accuracies (higher is better).

52

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.2. Methods for Comparison

SVPG
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 96.58 149.96 112.58 173.95 184.05 200.00 183.24 165.09

0.001 166.17 143.15 197.29 182.36 200.00 200.00 200.00 200.00

0.0001 62.56 88.81 132.89 149.40 148.90 161.22 140.45 137.65

(a)

BP
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 105.02 200.00 200.00 200.00 200.00 200.00 198.99 183.77

0.001 99.71 198.52 200.00 200.00 200.00 200.00 199.56 191.98

0.0001 199.97 200.00 200.00 200.00 200.00 200.00 199.79 146.59

(b)

BPTT
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 128.25 128.14 92.38 119.06 121.89 139.57 165.00 103.20

0.001 178.22 137.88 141.44 159.98 143.33 174.51 167.23 120.84

0.0001 141.44 176.86 129.18 191.03 159.71 192.64 198.18 113.56

(c)

ANN2SNN
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 104.45 188.40 187.12 172.05 189.72 199.83 181.75 150.33

0.001 99.70 176.54 175.77 191.43 189.83 197.75 171.04 157.82

0.0001 187.74 190.20 200.00 187.35 198.34 179.52 167.63 99.39

(d)

Figure 4.5: The effect of hyperparameters of learning rate and entropy ratio in the GYMIP task
with different models (a: SVPG; b: BP; c: BPTT; d: ANN2SNN). Values shown are episode
lengths (higher is better).

In practice, I find that the learning rate and the entropy ratio have a large impact on the zero-

noise test results. Therefore, I tune these two hyperparameters for each method and report the

one with the best testing performance. On MNIST and GYMIP, I compare the entropy ratio

with values {0, 0.1, 0.2, 0.5, 1, 2, 5, 10} and the learning rate with values {0.01, 0.001, 0.0001}. On

DOOM, I compare entropy ratio with values {0.02, 0.2, 2, 5} and learning rates {0.001, 0.0001}.

On AI2THOR, I compare the entropy ratio with values {0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5} and

learning rates {0.0001, 0.00001}. On ROBOTHOR, I compare the entropy ratio with values

{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10} and learning rates {0.0001, 0.00001}. For each setting

of the hyperparameters, I perform 10 independent trainings for GYMIP and DOOM, and 3

independent trainings for MNIST, AI2THOR, and ROBOTARM. The tuning results are pro-

vided in Figure 4.4, 4.5, 4.6, 4.7, and 4.8. The values presented are the mean values of the

zero-perturbation testing performances.

Note that some methods may produce performances close to their best one under multiple dif-

ferent RL hyperparameters. This is particularly evident in GYMIP and AI2THOR. Therefore,

53

4.2. Methods for Comparison Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

SVPG
Entropy Ratio

0.02 0.2 2 5

Learning

Rate

0.001 503.24 525.00 525.00 462.67

0.0001 435.57 513.73 517.78 483.61

(a)

BP
Entropy Ratio

0.02 0.2 2 5

Learning

Rate

0.001 525.00 224.25 129.12 124.32

0.0001 525.00 517.14 292.26 217.13

(b)

BPTT
Entropy Ratio

0.02 0.2 2 5

Learning

Rate

0.001 121.92 124.91 108.34 97.14

0.0001 394.98 296.02 112.10 127.80

(c)

ANN2SNN
Entropy Ratio

0.02 0.2 2 5

Learning

Rate

0.001 525.00 200.85 125.76 122.96

0.0001 475.15 495.38 283.69 223.23

(d)

Figure 4.6: The effect of hyperparameters of learning rate and entropy ratio in the DOOM task
with different models (a: SVPG; b: BP; c: BPTT; d: ANN2SNN). Values shown are episode
lengths (higher is better).

for the robustness test later, I choose to average the performances over satisfactory results.

Specifically, on GYMIP, I consider the average of all hyperparameters that generate the best

zero-noise performance; to tolerate noises in the zero-noise performance, I adopt the hyperpa-

rameters with zero-noise performance greater than or equal to 99% of the best performance. On

AI2THOR, BP and ANN2SNN generate multiple best zero-noise results; all the corresponding

hyperparameters are considered. For the other tasks, i.e., MNIST, DOOM, and ROBOTARM,

there is generally only one best performance, so the hyperparameters corresponding to the best

performance are selected. For the occasional multiple best performances (DOOM), the perfor-

mance at a level of perturbation is considered. For input perturbations, the level value is set

to 0.2; for network parameter perturbations, the level value is 2.0. Based on this criterion, the

BP-0.001-0.02 (method-learning rate-entropy ratio) is selected; the SVPG-0.001-2.0 is selected

for input perturbations and the SVPG-0.001-0.2 is selected for network parameter perturbations.

During training, a checkpoint of the network parameters is saved every 100 episodes. The

checkpoints are validated using the validation environment, and the best one is used in testing.

The validation environment in the MNIST task is created by randomly dividing the training

set according to a ratio of 9:1, where the latter part is used as the validation set. The vali-

dation environments in GYMIP and DOOM are the same as the training environments. For

AI2THOR, the validation environment uses the same scene as in training, but the starting points

are randomly sampled from a list of positions different from training. For ROBOTARM, in the

validation environment, the initial position of the target cube is randomly sampled from a list

different from training.

54

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.3. Results

0.02 0.05 0.1 0.2 0.5 1 2 5

0.0001 200.00 142.13 142.15 200.00 200.00 146.04 83.04 200.00

0.00001 24.00 82.67 82.67 44.83 27.67 33.67 37.38 32.38

SVPG
Entropy Ratio

Learning

Rate

(a)

0.02 0.05 0.1 0.2 0.5 1 2 5

0.0001 34.67 28.60 40.13 28.77 24.00 82.69 200.00 141.79

0.00001 38.42 32.81 25.63 26.33 24.00 24.02 24.04 24.06

BP
Entropy Ratio

Learning

Rate

(b)

0.02 0.05 0.1 0.2 0.5 1 2 5

0.0001 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00

0.00001 200.00 200.00 82.77 141.33 200.00 200.00 141.33 141.73

BPTT
Entropy Ratio

Learning

Rate

(c)

0.02 0.05 0.1 0.2 0.5 1 2 5

0.0001 87.42 66.73 84.79 45.98 24.02 83.65 200.00 141.63

0.00001 141.58 40.90 32.69 62.21 24.00 24.13 24.15 24.00

ANN2SNN
Entropy Ratio

Learning

Rate

(d)

Figure 4.7: The effect of hyperparameters of learning rate and entropy ratio in the AI2THOR
task with different models (a: SVPG; b: BP; c: BPTT; d: ANN2SNN). Values shown are
average numbers of steps (lower is better).

4.3 Results

4.3.1 Assumption Verification

In the theory part (chapter 3), there are two assumptions. (1) In section 3.2.3, I assume that

iterating the firing probabilities with the policy inference function Eq. (3.5) can reach numeric

convergence. (2) In section “practical considerations” 3.5.1, I propose an approximated imple-

mentation of SVPG. Here I use empirical results to verify these assumptions.

Convergence verification

The policy inference part of SVPG, either rate-based or spike-based, relies on the iteration of

the policy inference function Eq. (3.5). Here I use the MNIST task to empirically verify the

convergence of the iteration process.

I monitor the firing probabilities of hidden and action neurons and set a stopping criterion for

the iteration, which is that the mean absolute changes in those probabilities in an iteration are

smaller than 0.005, or that the iteration exceeds 50 steps. Note that this stopping criterion is

also adopted in training rate-based SVPG. I feed the RWTA network with the testing images

55

4.3. Results Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10

0.0001 31.50 24.87 35.20 41.93 38.40 38.33 45.47 12.07 10.47 19.83

0.00001 16.60 10.93 8.47 11.47 10.17 8.20 7.43 12.90 9.07 7.47

Entropy Ratio

Learning

Rate

SVPG

(a)

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10

0.0001 32.20 42.47 60.00 52.87 46.00 56.60 60.00 60.00 60.00 60.00

0.00001 7.00 7.53 7.33 7.13 7.13 7.13 6.93 7.40 7.13 7.67

Entropy Ratio

Learning

Rate

BP

(b)

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10

0.0001 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00

0.00001 60.00 27.87 31.53 52.73 25.40 42.47 31.80 60.00 60.00 60.00

Entropy Ratio

Learning

Rate

BPTT

(c)

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10

0.0001 39.07 42.47 60.00 52.87 46.40 58.07 60.00 60.00 60.00 60.00

0.00001 27.40 20.53 16.93 20.20 20.67 23.93 17.13 7.20 10.27 14.00

Entropy Ratio

Learning

Rate

ANN2SNN

(d)

Figure 4.8: The effect of hyperparameters of learning rate and entropy ratio in the ROBOTARM
task with different models (a: SVPG; b: BP; c: BPTT; d: ANN2SNN). Values shown are average
numbers of steps (lower is better).

one by one and record their corresponding iteration lengths. The distribution of the iteration

lengths is plotted in Figure 4.9. As shown, for all the tested images, the iteration converges

within 30 steps. Also, most images correspond to an iteration length smaller than 10. These

empirically verify that the policy inference function converges under most input cases.

Rate-based SVPG implementation

I compare the rate-based SVPG implementation with the original spike-based implementation on

MNIST and GYMIP. The testing results with different strengths of perturbations to input and

network parameters are shown in Figure 4.10 and Figure 4.11. The curves are averaged across 10

independent trainings, and the shaded regions represent the standard deviation values. Details

of perturbations are in Section 4.3.3.

As shown, the two implementations generate similar results under the tested perturbations,

indicating that the rate-based implementation can be used as a replacement for spike train

simulation. In the following experiments, I use the rate-based implementation to represent

SVPG.

56

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.3. Results

0 10 20 30 40 50
Iteration Length

100

101

102

103

104

N
um

be
r o

f S
am

pl
es

Figure 4.9: Distribution of SVPG convergence iteration lengths in the MNIST task.

0.0 0.5 1.0 1.5
Noise standard deviation

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

SVPG-rate
SVPG-spike

(a)

0.0 0.1 0.2 0.3 0.4 0.5
Noise amplitude

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

SVPG-rate
SVPG-spike

(b)

0.0 0.1 0.2 0.3 0.4 0.5
Noise amplitude

0.800

0.825

0.850

0.875

0.900

0.925

A
cc

ur
ac

y

SVPG-rate
SVPG-spike

(c)

0 1 2 3 4 5
Noise standard deviation

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

SVPG-rate
SVPG-spike

(d)

0 1 2 3 4 5
Noise amplitude

0.7

0.8

0.9

A
cc

ur
ac

y

SVPG-rate
SVPG-spike

(e)

Figure 4.10: Comparison of spike-based and rate-based SVPG implementations in the MNIST
task in different scenarios of noise perturbation. (a) Input Gaussian noise. (b) Input salt noise.
(c) Input pepper noise. (d) Network Gaussian noise. (e) Network uniform noise.

4.3.2 Task Performances

I train different methods respectively on the five tasks. For the optimizer, I use Adam on MNIST,

DOOM, AI2THOR, and ROBOTARM, and use RMSprop on GYMIP. This brings variances to

the selection of the optimizer and can better check the effectiveness of SVPG. For the base RL

algorithm, in a preliminary version of this study [194], I used REINFORCE. Here I upgrade it

to PPO-clip because of its popularity and training efficiency.

Zero-perturbation testing performances

The zero-perturbation testing performances are shown in Table 4.1.

57

4.3. Results Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

0.0 0.5 1.0 1.5
Noise standard deviation

0

50

100

150

200

Sc
or

e

SVPG-rate
SVPG-spike

(a)

0.0 0.1 0.2 0.3 0.4 0.5
Noise amplitude

50

100

150

200

Sc
or

e

SVPG-rate
SVPG-spike

(b)

0 1 2 3 4 5
Noise standard deviation

0

50

100

150

200

Sc
or

e

SVPG-rate
SVPG-spike

(c)

0 1 2 3 4 5
Noise amplitude

0

50

100

150

200

Sc
or

e

SVPG-rate
SVPG-spike

(d)

Figure 4.11: Comparison of spike-based and rate-based SVPG implementations in the GYMIP
task with different scenarios of noise perturbation.. (a) Input Gaussian noise. (b) Input uniform
noise. (c) Network Gaussian noise. (d) Network uniform noise.

Table 4.1: Zero-Noise Testing Performances on the 5 Tasks. △: Higher better. ▽: Lower better.

Tasks SVPG BP BPTT ANN2SNN Mozafari et al. Aenugu et al.

MNIST △ 0.929±0.001 0.979±0.001 0.975±0.001 0.978±0.002 0.587±0.010 -
GYMIP △ 200.00±0.00 200.00±0.00 198.18±3.68 200.00±0.00 - 195.11±7.30
DOOM △ 525.00±0.00 525.00±0.00 394.98±151.14 525.00±0.00 - -

AI2THOR ▽ 24.00±0.00 24.00±0.00 82.77±82.89 24.00±0.00 - -
ROBOTARM ▽ 7.43±0.26 6.93±0.19 25.40±24.47 7.20±0.16 - -

The values for MNIST, GYMIP, and DOOM are from 10 independent trainings and the values

for AI2THOR and ROBOTARM are from 3 independent trainings. The presented values are in

the form of mean±standard deviation. For the first three tasks, a higher performance value is

better; for the last two tasks, a lower performance value is better.

• On MNIST, the performance is measured by the testing accuracy. SVPG performs not as

well as BP, BPTT, and ANN2SNN.

• On GYMIP, the performance is measured by the length of testing episodes, and the opti-

mum value is 200. SVPG achieves optimal performance.

• On DOOM, the performance is measured by the length of testing episodes, and the optimal

value is 525. SVPG achieves optimal performance.

58

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.3. Results

• On AI2THOR, the performance is measured by the average number of steps the agent

used to reach the target from different starting points. The optimal value is 24. SVPG

achieves optimal performance.

• On ROBOTARM, the performance is measured by the average number of steps the agent

used to reach the target from different starting points. SVPG achieves near-optimal per-

formance.

These results indicate that SVPG with the RWTA network is able to solve image-input, long-

horizon, and realistic RL tasks. The results also show that SVPG has a better performance

than the compared R-STDP or local rule-based methods, i.e., Mozafari et al. and Aenugu et

al.. There are two contributors to these results. The first is that the RWTA network brings

better capacity than the layered networks. The recurrent design and the extra connections

between hidden circuits and between state and action neurons allow representation of a more

complex mapping. The contributions of the connections will be demonstrated in the ablation

tests (section 4.3.4). The second is that the variational inference-based approximation in the

policy inference enables the SVPG learning rules to be applied to all the learnable parameters,

instead of only the output layer as in the Mozafari et al. method.

Computational costs

The computational costs are important for the practical applications of the methods. Here I

provide results on the time complexity, space complexity, and sample efficiency. The Mozafari

et al. R-STDP method and the Aenugu et al. method are not measured because their imple-

mentation [191, 193] does not support parallel processing of multiple samples, resulting in low

space complexity and high time complexity.

(1) Time complexity. I measure the time required for the inference and optimization steps

to reflect the time complexity. The MNIST task is selected for this test because it has a

consistent batch size and that the high-dimensional state induces a large computational cost.

The implementation of the methods is all based on PyTorch and runs on the same machine,

with a NVIDIA T600 GPU. The results are shown in Table 4.2. The values are averaged across

500 inference/optimization steps.

As shown, the rate coding variant of SVPG is more than 100 times faster than the spiking

variant, which supports that using the rate approximation can reduce computation costs. Since

59

4.3. Results Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

Table 4.2: Time Complexity on MNIST. (Time measured in milliseconds)

Time SVPG-rate SVPG-spike BP BPTT

Inference 3.26±0.28 677.21±13.50 0.18±0.02 8.51±0.17

Optimization 1.40±0.17 1.49±0.15 1.43±0.06 5.54±0.06

the inference stage of RWTA requires iterations, the cost is higher than BP in which the MLP

only needs a forward propagation. In addition, the rate-based SVPG is faster than the BPTT

method. For the optimization stage, SVPG is faster than all the compared methods. This is

because SVPG is a local learning method. That is, the update of the parameters does not need

a layer-by-layer computation process and can be completed in one step. Future work could

leverage the local learning property of SVPG and implement it with neuromorphic hardware to

improve the inference speed.

(2) Space complexity. I measure the memory costs of each method to reflect their space

complexity. Again, the MNIST task is selected because it offers a consistent episode length that

enables fair comparison. Different from normal training, in this test, I set the program to only

use one CPU thread and no GPU, so the memory usage includes all the variables a method

creates. I use the psutil package for Python to get the memory usage of the program before

initialization and after training for 20 episodes, and use their difference as the memory costs.

The results are presented in Table 4.3. The values are the mean and standard deviation values

of results from 10 independent runs.

Table 4.3: Space Complexity on MNIST. (Total memory used in megabytes)

Method SVPG-rate SVPG-spike BP BPTT

Memory Cost 603.7±10.8 611.2±17.7 520.4±6.5 1180.5±27.5

As shown, the memory cost of the spiking variant of SVPG is slightly higher than that of the

rate-based variant. This is mainly due to the extra spike train recording in policy inference.

Nevertheless, the memory cost of the spike-based SVPG is only slightly higher than BP (17.4%)

and much lower than BPTT (48.2%). The similarity to BP can be attributed to the fact

that SVPG only needs to store the final state of the network for the optimization process,

which is similar to that of BP. The slightly higher cost in SVPG could probably be due to the

experiment scripts not being sufficiently optimized. As for BPTT, its memory cost depends on

the implementation in the snnTorch library [190], which may not be optimal. Nevertheless, the

60

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.3. Results

500 1000 1500 2000
Training steps

0

50

100

150

200

Sc
or

e

SVPG
BP
BPTT

(a)

0 2000 4000 6000 8000 10000
Training steps

100

200

300

400

500

Sc
or

e

SVPG
BP
BPTT

(b)

0 2000 4000 6000 8000
Training steps

200

150

100

50

0

Sc
or

e

SVPG
BP
BPTT

(c)

0 2000 4000 6000 8000 10000
Training steps

60

50

40

30

20

10

Sc
or

e

SVPG
BP
BPTT

(d)

Figure 4.12: Learning curves of different models in four tasks. (a) GYMIP. (b) DOOM. (c)
AI2THOR. (d) ROBOTARM. The horizontal axis is the RL training step number. The vertical
axis is the validation score/performance (higher is better), which is measured during training in
periods of 100 training steps. The curves are smoothed using exponential smoothing [195] with
smoothing factor α = 0.4 (0 < α < 1; a smaller α means stronger smoothing).

results indicate that SVPG may not cause much difficulty for practical applications in terms of

space complexity.

(3) RL sample efficiency. The total training time depends on both the time complexity

(time per step) and the sample complexity (number of steps in RL training). Here I plot the

learning curves to compare the RL sample efficiency of the methods. The four tasks with

sequential decision-making are used (i.e., GYMIP, DOOM, AI2THOR, and ROBOTARM). For

each method and each task, a hyperparameter (entropy ratio and learning rate) that produces

the best testing performance is chosen. The results are presented in Figure 4.12. The curves are

the mean values of validation performances, and the shaded regions are the standard deviations.

For MNIST, GYMIP, and DOOM, the curves are the average of 10 independent trainings. For

AI2THOR and ROBOTARM, the curves are the average of 3 independent trainings.

Note that, for ease of viewing, I take the opposite value of the curves for AI2THOR and ROB-

OTARM. Specifically, the “score” equals (-1) times the step number. This makes the trends of

these curves the same as those of the other three tasks. This is also done for other figures on

these two tasks.

61

4.3. Results Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

As shown, the curves of SVPG are generally close to those of BP. Both SVPG and BP learn

steadily and faster than BPTT. This indicates that the sample efficiency of SVPG is similar

to BP and better than BPTT. SVPG has the potential to be applied to scenarios where the

efficiency of a traditional ANN is acceptable. A possible explanation of this result is that BPTT

uses a surrogate gradient and has a longer path for gradient propagation than BP and SVPG.

The approximation error in the gradient and the gradient explosion or vanishing effects make

BPTT unstable. From this point, the sample efficiency could be an advantage of local learning

rules like SVPG.

4.3.3 Perturbation Tests

It has been shown in many studies that SNNs (trained with ANN2SNN and BPTT methods) can

exhibit better robustness to input and synapse weight noises [31,72] and adversarial attacks [196]

than ANNs. Here I perform tests on trained models to investigate whether SVPG can produce

robustness.

I test three types of perturbations, namely input noise, network parameter noise, and envi-

ronmental variation (in GYMIP). The input noises reflect inevitable sensor noises in the real

world. The network parameter noise corresponds to parameter inaccuracies in neuromorphic

hardware [197]. The environment variation in GYMIP represents differences in environment

dynamics between the simulation and the real world.

• Input noise is independently added to each dimension of state observations. For MNIST,

DOOM, AI2THOR, and ROBOTARM, Gaussian, salt, salt&pepper, and Gaussian&salt

noises are considered. For GYMIP, Gaussian and uniform noises are considered. Some

illustrations of the MNIST and DOOM tasks are shown in Figure 4.13, 4.14.

• Network parameter noise is independently added to each learnable parameter in the

policy networks. Gaussian and uniform noises are adopted. Considering that different

parts of the trained networks may have different scales of parameters, I divide the param-

eters into groups and normalize the noise using the mean absolute values within groups.

For the RWTA network, the synapse weights W are divided according to the types of

neurons connected, e.g., connections between state neurons and action neurons; the intrin-

sic excitability b forms one group. For the layered networks in other compared methods,

62

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.3. Results

the parameters are divided by layers and weight/bias. Note that this type of noise is

regenerated for each testing episode.

• Environmental variations in GYMIP. In the GYMIP task, the optimal policy relies on

the length and thickness of the pendulum. In training, I set ⟨length=1.5, thickness=0.05⟩.

In testing, I change the length to be in the range of [0.5, 4.9] and the thickness of [0.02, 0.30].

Figure 4.15 illustrates these variations.

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.13: Example input images with different strengths of Gaussian noises in the MNIST
task. Standard deviation noted above images.

0.00 0.04 0.08

0.12 0.16 0.20

Figure 4.14: Example input images with different strengths of salt noises in the DOOM task.
Noise ratio noted above images.

(a) (b)

Figure 4.15: Environmental variations in GYMIP testing. (a) Length. (b) Thickness.

As mentioned above in section 4.2.2, for each type of perturbation and each method, I select

the hyperparameter (learning rate and entropy ratio) that generates the best zero-noise perfor-

mance. When there are multiple hyperparameters that are selected, the results are averaged

to measure the robustness performance. In the following results, Figure 4.16, 4.17 and 4.18,

the curves are from the average of 10 independent trainings for MNIST, GYMIP, and DOOM,

and 3 independent trainings for AI2THOR and ROBOTARM. The shaded regions represent the

standard deviation values. Note that the Aenugu et al. method contains an input encoder and a

voting mechanism, which are not included in other methods. These may affect the robustness to

63

4.3. Results Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

input and network parameter perturbations. Therefore, I only test its robustness to environment

variations in the GYMIP task.

0.0 0.1 0.2 0.3 0.4
Noise standard deviation

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

SVPG
BP
BPTT
SVPG-shrink
ANN2SNN
Mozafari et al.

(a) MNIST Gaussian

0.000 0.025 0.050 0.075 0.100 0.125
Noise amplitude

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

SVPG
BP
BPTT
SVPG-shrink
ANN2SNN
Mozafari et al.

(b) Salt

0.00 0.05 0.10 0.15
Noise amplitude

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

SVPG
BP
BPTT
SVPG-shrink
ANN2SNN
Mozafari et al.

(c) Gaussian&Salt

0.0 0.1 0.2 0.3
Noise amplitude

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

SVPG
BP
BPTT
SVPG-shrink
ANN2SNN
Mozafari et al.

(d) Salt&Pepper

0.0 0.1 0.2 0.3
Noise standard deviation

0

50

100

150

200

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(e) GYMIP Gaussian

0.0 0.1 0.2 0.3 0.4 0.5
Noise amplitude

0

50

100

150

200

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(f) Uniform

0.0 0.1 0.2 0.3 0.4
Noise standard deviation

0

100

200

300

400

500

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(g) DOOM Gaussian

0.000 0.025 0.050 0.075 0.100 0.125
Noise amplitude

100

200

300

400

500

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(h) Salt

0.00 0.05 0.10 0.15
Noise amplitude

0

100

200

300

400

500

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(i) Gaussian&Salt

0.0 0.1 0.2 0.3
Noise amplitude

0

100

200

300

400

500

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(j) Salt&Pepper

0.0 0.5 1.0 1.5
Noise standard deviation

200

150

100

50

0

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(k) AI2THOR Gaussian

0.0 0.1 0.2 0.3 0.4 0.5
Noise amplitude

200

150

100

50

0

Sc
or

e SVPG
BP
BPTT
ANN2SNN

(l) Salt

0.0 0.1 0.2 0.3 0.4 0.5
Noise amplitude

200

150

100

50

0

Sc
or

e SVPG
BP
BPTT
ANN2SNN

(m) Gaussian & salt

0.0 0.1 0.2 0.3 0.4 0.5
Noise amplitude

200

150

100

50

0

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(n) Salt & pepper

0.0 0.5 1.0 1.5
Noise standard deviation

60

40

20

0

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(o) ROBOTARM Gaussian

0.0 0.1 0.2 0.3 0.4 0.5
Noise amplitude

60

40

20

0

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(p) Salt

0.0 0.1 0.2 0.3 0.4 0.5
Noise amplitude

60

40

20

0

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(q) Gaussian & salt

0.0 0.1 0.2 0.3 0.4 0.5
Noise amplitude

50

40

30

20

10

0

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(r) Salt & pepper

Figure 4.16: Input noise tests in the five tasks. (a)–(d) MNIST. (e)–(f) GYMIP. (g)–(j) DOOM.
(k)–(n) AI2THOR. (o)–(r) ROBOTARM.

Input noises

The results are plotted in Figure 4.16. In each test, I apply a range of different strengths

of noise to the state inputs and test the agents’ performance. For MNIST, the test uses all

the samples from the testing images in the MNIST dataset. In GYMIP, DOOM, AI2THOR,

64

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.3. Results

0 1 2 3 4 5
Noise standard deviation

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

SVPG
BP
BPTT
SVPG-shrink
ANN2SNN
Mozafari et al.

(a) MNIST Gaussian

0 1 2 3 4 5
Noise amplitude

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

SVPG
BP
BPTT
SVPG-shrink
ANN2SNN
Mozafari et al.

(b) MNIST Uniform

0.00 0.25 0.50 0.75 1.00
Noise standard deviation

0

50

100

150

200

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(c) GYMIP Gaussian

0.0 0.5 1.0 1.5
Noise amplitude

0

50

100

150

200

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(d) GYMIP Uniform

0 1 2 3 4 5
Noise standard deviation

100

200

300

400

500

Sc
or

e SVPG
BP
BPTT
ANN2SNN

(e) DOOM Gaussian

0 1 2 3 4 5
Noise amplitude

100

200

300

400

500

Sc
or

e SVPG
BP
BPTT
ANN2SNN

(f) DOOM Uniform

0 1 2 3 4 5
Noise standard deviation

200

150

100

50

0

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(g) AI2THOR Gaussian

0 1 2 3 4 5
Noise amplitude

200

150

100

50

0

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(h) AI2THOR Uniform

0 1 2 3 4 5
Noise standard deviation

60

40

20

0

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(i) ROBOTARM Gaussian

0 1 2 3 4 5
Noise amplitude

60

40

20

0

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(j) ROBOTARM Uniform

Figure 4.17: Network parameter noise tests in the five tasks.

and ROBOTARM, the test score for each training is the average value of 10 episodes. As the

strength of the noises increases, the performance decreases. The speed of the decrease reflects

the robustness of the methods.

As shown, for the tested types of input noises on all three tasks, the performance of SVPG

generally degrades more slowly than other methods. Instead of being robust on one task and

sensitive on another (such as BPTT which is the best on MNIST but the worst on GYMIP),

SVPG displays a more consistent robustness across tasks. This shows that SVPG produces

better inherent robustness to the tested input noises.

Network parameter noises

The results are plotted in Figure 4.17. The experiment settings are the same as the test on input

noises.

As shown, on all 5 tasks, SVPG achieves the slowest degradation of performance as the amplitude

of noise increases. These indicate that SVPG generally produces better robustness to network

perturbations than the other methods.

65

4.3. Results Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

Also note that in the above results on input and network parameter noises, SVPG-shrink and

SVPG exhibit similar performances and robustness. This indicates that it is not the larger

number of learnable parameters in the RWTA network that brings the difference in robustness.

Environmental variations in GYMIP

Results on variations in the pendulum’s length and thickness in GYMIP are shown in Figure

4.18. When the shape of the pendulum deviates from the one in training, i.e., ⟨length=1.5,

thickness=0.05⟩, the performance of all the methods degrades. For pendulum length, the per-

formance of SVPG degrades more slowly than other methods. For pendulum thickness, SVPG

is close to the best when the thickness is smaller than 0.15. These reveal that the policy trained

using SVPG naturally adapts to a larger range of pendulums with different shapes.

1 2 3 4 5
Pendulum length

100

150

200

Sc
or

e

SVPG
BP
BPTT
ANN2SNN
Aenugu et al.

(a) Pendulum length

0.0 0.1 0.2 0.3
Pendulum thickness

50

100

150

200

Sc
or

e

SVPG
BP
BPTT
ANN2SNN
Aenugu et al.

(b) Pendulum thickness

Figure 4.18: Environmental variations on GYMIP.

So far, I have tested the robustness to input noises, network parameter noises, and environmental

variations. As discussed, SVPG shows better robustness to most types of perturbations than

the compared methods. I emphasize that in all these robustness tests, the noises are only added

in testing. The results support the idea that SNNs could have better inherent robustness than

conventional neural network models.

A possible explanation of the robustness results on input and network parameters is that the

simulation of the RWTA network involves a random firing process for each neuron, which serves

as perturbations added to the training process. Therefore, after training, the policy can adapt

to perturbations to the input, hidden, and action neurons, which correspond to input and

network parameter perturbations. Additionally, as will be introduced later (section 4.3.5), the

RWTA network has noisy hidden WTA circuits after training, which may also contribute to the

robustness. The investigation of how the robustness is produced is left as future work.

66

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.3. Results

4.3.4 Ablation Studies

I perform ablation tests to understand the effects of different parts of the connections in the

RWTA network. The MNIST task is used because the classification accuracy can better reflect

the differences between performances.

Effect of regional connection removal in training

In this test, I remove different parts of connections in the RWTA network before training to

investigate their contributions to learning. I divide the connections in the network according to

the types of neurons they connect – connections between hidden and hidden neurons, hidden and

action, state and action, and state and hidden. For conciseness, I use HH, HA, SA, and SH to

represent these types. For example, I use “RM-HH” to refer to removing all connections between

hidden WTA circuits. By “original”, I refer to the original RWTA network. I add perturbations

to the input or network parameters during testing to better discriminate the performances. The

results are shown in Figure 4.19. As shown, for the tested perturbations, the original RWTA

network produces the best performances. The settings of SH and HA produce performances

slightly lower than the original network. The settings of SA bring the most degradation, followed

by HHSA and HH. This indicates that SA connections play the most important role in training.

After them are the HH connections.

0.0 0.1 0.2 0.3 0.4 0.5
Noise amplitude

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Original
RM-HHSA
RM-HH
RM-SA
RM-SH
RM-HA

(a)

0 1 2 3 4 5
Noise amplitude

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Original
RM-HHSA
RM-HH
RM-SA
RM-SH
RM-HA

(b)

Figure 4.19: Effects of connection removal in the RWTA network in training on MNIST. (a)
Input Pepper noise. (b) Network parameter uniform noise.

I emphasize that the “RM-HHSA” setting corresponds to a three-layer structure in the RWTA

network that is the same as [47]. As shown, the performance of this variation is obviously worse

than the original network. This indicates that under the condition of the same number of hidden

67

4.3. Results Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

neurons, extending the model from layered to fully connected improves the training performance

and robustness.

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of removal

0.80

0.85

0.90

Pe
rf

or
m

an
ce

RRM-all
RRM-SA
RRM-SH
RRM-HA
RRM-HH

(a)

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of removal

0

50

100

150

200

Pe
rf

or
m

an
ce RRM-all

RRM-SA
RRM-SH
RRM-HA
RRM-HH

(b)

Figure 4.20: Effects of connection removal in RWTA network in testing on (a) MNIST, (b)
GYMIP. “RRM” means random removal of connections.

Effect of random connection removal in testing

In this test, I look at the effects of connection removal in testing to check their contribution

to testing performance. I randomly remove a number of connections from a trained RWTA

network, i.e., set the weight values to 0. I perform this test on connections in different parts

of the network, and use HH, HA, SA, and SH to represent these types. I use ALL to refer

to removing all four types of connections at the same time. As for measuring the strength

of removal, I use the ratio of the number of removed connections to the number of original

connections in the corresponding type.

This test is done on MNIST and GYMIP, and the results are plotted in Figure 4.20. As shown,

as the ratio of removed connections increases, the testing accuracy drops in settings ALL, HA,

and SA; it does not change significantly in settings SH and HH. This indicates that the testing

performance depends more on HA and SA connections than on SH and HH connections. Among

HA and SA connections, the effects of removing SA connections are stronger. This indicates

that SA connections play a more important role than HA in testing performance. Although

in the previous test, i.e., effects of connections in training, HA connections do not contribute

significantly to training, the results here show that HA connections do have effects on the

testing performances. This further demonstrates the effectiveness of the fully connected network

structure.

68

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.3. Results

(a) (b)

(c) (d)

Figure 4.21: Visualization of spike trains in WTA circuits on MNIST. (a, b) Action WTA circuit.
(c, d) A hidden WTA circuit. (a, c) Randomly initialized RWTA network. (b, d) Trained RWTA
network.

4.3.5 Network Visualizations

Here I provide visualizations of the RWTA network for a more intuitive understanding of its

properties.

Firing process visualization on MNIST

I collect the spike trains when a randomly selected image (No. 901) in the MNIST testing

dataset is fed to the RWTA network, and plot them in Figure 4.21. The size of the hidden and

action WTA circuits is 10. In each plot, there are 10 spike trains, each corresponding to one

neuron in the WTA circuit. The lengths of the simulation time and spike response window are

100 and 30 spike time steps. In practice, I start updating the firing probabilities at the 29th

spike time step, which is marked with dotted vertical lines.

As shown, in the RWTA network before training, the spike trains of the action circuit (Figure

4.21a) and hidden circuit (Figure 4.21c) are both noisy and evenly distributed across the neurons,

even after some iterations of the firing probabilities. In contrast, in the trained RWTA network

69

4.3. Results Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

(Figure 4.21b, 4.21d), the spike trains quickly gather to a few neurons during the iteration of

firing probabilities. This is consistent with the previous conclusion that the inference process

converges quickly on MNIST.

0 20 40 60
Spike time step

0.0

0.5

1.0

1.5

2.0

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

(a)

0.0 0.5 1.0 1.5 2.0
Circuit entropy

100

101

102

103

104

N
um

be
r o

f s
am

pl
es

circuit a
circuit h1

(b)

Figure 4.22: Entropy values of WTA circuits on MNIST. (a) Change of entropy values of 5
hidden circuits and the action circuit during inference. (b) Distribution of entropy values of a
hidden circuit and the action circuit on MNIST.

I further calculate the entropy of the firing probability distribution in WTA circuits to measure

their selectivity (after training). I first look at how the selectivity of the action WTA circuit

and 5 randomly selected hidden WTA circuits changes during the inference process. In Figure

4.22a, circuits h1 to h5 are hidden circuits, and circuit a is the action circuit. As shown, in

the policy inference process, the entropy of the circuits decreases sharply at the beginning and

slowly afterward. The entropy of the action circuit is lower than the hidden circuits. I then look

at the distribution of the entropy values when the MNIST testing set is fed to the network. As

shown in Figure 4.22b, the distribution of the action WTA circuit concentrates at a value close

to zero, while the distribution of the hidden circuit is smoother. These results indicate that,

although the output of the RWTA network tends to converge to one neuron, the hidden part is

less selective. The low selectivity in hidden circuits indicate that a source of randomness exists

in the input to the action neurons in training, which may be an explanation for the robustness

of the RWTA network.

Firing process visualization on GYMIP

Different from MNIST, GYMIP involves changes in the environment states, which allows visu-

alization of how the network dynamics changes with the environment.

70

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.3. Results

Step Number Environment State Entropy Values of WTA
Circuits

Spike Trains of A Hidden
WTA Circuit

Spike Trains of the
Action WTA Circuit

1

0 20 40 60
Spike time step

1.6

1.7

1.8

1.9

2.0

2.1

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

2

0 20 40 60
Spike time step

1.6

1.7

1.8

1.9

2.0

2.1

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

3

0 20 40 60
Spike time step

1.6

1.7

1.8

1.9

2.0

2.1

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

4

0 20 40 60
Spike time step

1.6

1.7

1.8

1.9

2.0

2.1

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

Figure 4.23: Visualization of network dynamics of SVPG on GYMIP. Before training.

I consider an untrained network and a trained network. For each network, I perform one test

episode and record the network dynamics at each step. The results are presented respectively

in Figure 4.23 and Figure 4.24. In these figures, the first column is the step number in the

test episode. The second column is a visualization of the environment state. The third column

presents the entropy values of the action WTA circuit and some hidden WTA circuits during

the firing process. The last two columns respectively present the actual spike trains generated

by neurons in a hidden WTA circuit and the action WTA circuit.

As shown, there is a significant difference between a random network and a trained network.

In a trained network, the entropy values of WTA circuits quickly decrease in the firing process.

Additionally, the firing patterns of the presented hidden and action neurons change when the

environment state changes. I also notice that the action WTA circuit does not always converge

to output one action quickly; instead, it may gradually change its output to the final action, as

shown in step 9 and step 50 in Figure 4.24. This indicates that the firing process is necessary

for the generation of the final decision output.

Distribution of parameters in RWTA network on MNIST

Here I visualize the distribution of weight values in the networks and compare SVPG with

BP. To make the comparison fair, I use the SVPG-shrink variant so that the total number of

71

4.3. Results Chapter 4. Evaluation of SVPG on Benchmark RL Tasks

Step Number Environment State Entropy Values of WTA
Circuits

Spike Trains of A Hidden
WTA Circuit

Spike Trains of the
Action WTA Circuit

1

0 20 40 60
Spike time step

0.0

0.5

1.0

1.5

2.0

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

2

0 20 40 60
Spike time step

0.0

0.5

1.0

1.5

2.0

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

3

0 20 40 60
Spike time step

0.0

0.5

1.0

1.5

2.0

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

5

0 20 40 60
Spike time step

0.0

0.5

1.0

1.5

2.0

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

7

0 20 40 60
Spike time step

0.0

0.5

1.0

1.5

2.0

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8
N

eu
ro

n
ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

9

0 20 40 60
Spike time step

0.0

0.5

1.0

1.5

2.0

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

20

0 20 40 60
Spike time step

0.0

0.5

1.0

1.5

2.0

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

30

0 20 40 60
Spike time step

0.0

0.5

1.0

1.5

2.0

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

50

0 20 40 60
Spike time step

0.0

0.5

1.0

1.5

2.0

En
tro

py

circuit h1
circuit h2
circuit h3

circuit h4
circuit h5
circuit a

0 20 40 60 80 100
Spike time step

0

2

4

6

8

N
eu

ro
n

ID

0 20 40 60 80 100
Spike time step

0

1

2

3

4

N
eu

ro
n

ID

Figure 4.24: Visualization of network dynamics of SVPG on GYMIP. After training.

weight values is close to that in BP. I plot the distribution of the weight values in a trained

RWTA network and an MLP in Figure 4.25a. I also plot different types of weights in the RWTA

network separately in Figure 4.25b. Note that the distribution is the stack of values across 10

independent trainings.

72

Chapter 4. Evaluation of SVPG on Benchmark RL Tasks 4.4. Chapter Summary

0.2 0.1 0.0 0.1 0.2
Weight value

0

2

4

6
N

um
be

r

×105

BP
SVPG-shrink

(a)

5.0 2.5 0.0 2.5 5.0
Weight values

101

103

105

N
um

be
r

HH
HA
SH
SA

(b)

Figure 4.25: Histograms of network weight values on MNIST. (a) Comparison of SVPG-shrink
and BP. (b) Comparison of different types of connections in SVPG-shrink.

As shown, the ratio of zero weights in SVPG is greater than in BP. This indicates that SVPG

tends to learn a more sparse network. This can be helpful for hardware implementation because

a sparse network requires less computational resource and consumes less energy. In SVPG,

SH and HH types of connections exhibit a sharp spike at value 0 in their weight distributions,

indicating a more distinguished sparsity in those areas when compared to the other two types.

This, to some extent, explains the results in section 4.3.4, where the random removal of these

connections brings less effect to the performance than other types of connections.

4.4 Chapter Summary

In this chapter, I verified the convergence assumption for the RWTA network and tested SVPG

on several representative RL tasks, including a challenging DOOM task and two realistic robot

control tasks. The performances demonstrated that SVPG is capable of obtaining satisfactory

policies in these tasks. The robustness test revealed that SVPG can produce policies with

better inherent robustness to various types of perturbations than standard methods. The test

of computation costs showed that SVPG has a fast optimization speed, slow inference speed,

and comparable space complexity and sample efficiency to BP. The ablation study examined the

contributions of parts of the RWTA network to the performance. The visualizations revealed

properties of the RWTA network including selectivity and sparsity.

73

Chapter 5

Reinforcement Learning for Visual

Search Behaviors

Visual search is a sequential cognitive process. Understanding the mechanism behind visual

search behavior is beneficial for many fields including health care. Building a brain-like model for

visual search, in addition, facilitates bridging the brain structures to the functions. For extracting

the motivation behind the visual search behavior, IRL methods are promising because the reward

functions they learn are a natural representation of motivation. However, in existing methods,

the reward functions are dependent on the agent policy [55,57–60], so they cannot reflect how the

stimulus in visual search tasks affects the behavior. This chapter proposes a new IRL method,

map-based maximum entropy (MME), to extract a policy-independent reward representation.

Based on this, the brain-inspired SVPG method, developed in previous chapters, is applied to

the visual search modeling task. MME is further applied to the pattern analysis of social and

non-social visual search behaviors, which provides new insights into potential mechanisms of

brain disorders.

This chapter first presents the MME method, followed by experiment results on standard visual

search behaviors. This chapter then presents the results of the application of SVPG to the

scanpath modeling task, as well as more in-depth analysis results on social and non-social visual

search behaviors. The code for this part of the work is made publicly available at my code

repository1.

1https://github.com/yzlc080733/VS_MME/

74

https://github.com/yzlc080733/VS_MME/

Chapter 5. RL for Visual Search 5.1. Method Design

5.1 Method Design

The design of the new IRL method aims to resolve the issue that the learned reward function is

coupled with the agent policy, hindering downstream analysis of the stimulus. The new method

is based on the maximum entropy IRL method, which uses a probability distribution to imitate

human behavior. The method design consists of three parts. The first part is a decoupled

reward function formulation. This is the core part that achieves the objective of learning a

static motivation representation. A problem is that, in conventional maximum entropy IRL,

the score formulation is undiscounted, which cannot preserve the sequence of human fixations.

This necessitates the second design, i.e., the discounted score formulation. The third design is

a constraint on the range of reward values to avoid numerical issues in practical computation.

5.1.1 Decoupled Reward Function

As reviewed in section 2.3, all IRL studies for visual search scanpath modeling that I am aware of

learn a reward function that depends on state-action pairs. This is a normal choice for standard

IRL tasks, but it is not ideal for the extraction of the motivation behind eye movements. The

reliance of the reward function on actions makes it dynamic with respect to the search image and

the target image. This makes it hard to compare the attractiveness between different regions of

the search image.

From this perspective, a natural design is to learn a reward function that only depends on the

state, i.e., R(s|Isearch, Itarget). This reward function can be viewed as a static map on the search

image, conditioned on the target image. In the following, I use Rmap to denote this function.

However, this form of reward function is not capable of generating human-like scanpaths. A key

difference between visual search and conventional IRL tasks (e.g., maze navigation) is that there

is no constraint on the fixation – the agent is free to saccade from any point to an arbitrary

point. Formally, this means that the state space for a certain search and target image is fully

connected and that there is a one-to-one mapping fa→s from the actions to the states. There-

fore, the optimal action at any state is to always saccade to the point with the largest reward

value: π∗(s|Isearch, Itarget) = arg max
a∈A

Rmap(fa→s(a)|Isearch, Itarget). This is not similar to human

scanpaths, which often contain fixations at different positions.

For this problem, I propose to add environmental rewards to the reward map. The environmental

rewards are designed to capture certain properties of the scanpaths, including saccade amplitude

75

5.1. Method Design Chapter 5. RL for Visual Search

and revisitation. The choice of saccade amplitude is inspired by previous studies like [155], which

considers decreasing the likelihood of long saccades. The revisitation is inspired by the IOR

mechanism, often used in the literature [50, 139]. Specifically, the saccade amplitude reward is

triggered when the distance from the current fixation point ft−1 to the next fixation point ft is

larger than a threshold. The revisitation penalty is triggered when the next fixation point exists

in the ongoing scanpath. Formally, they are defined as:

Rrevisit(at|a0, . . . , at−1) =


−αrevisit if ∃k ∈ {0, . . . , t− 1}, s.t. at = ak,

0 otherwise,

(5.1)

Ramplitude(at|at−1) =


−1 if ∥at − at−1∥2 > αamplitudesizesearch,diag,

0 otherwise,

(5.2)

where sizesearch,diag is the length of the diagonal of the search image, αamplitude and αrevisit are

positive hyperparameters, (at− at−1) means the saccade vector between the two fixation points

and the unit length is one pixel. The combined reward function is then

R(st, at|Isearch, Itarget, a0, . . . , at−1) =Rmap(st|Isearch, Itarget)

+Rrevisit(at|a0, . . . , at−1) +Ramplitude(at|at−1) .

(5.3)

With suitably set hyperparameters αamplitude and αrevisit, this reward function encourages the

agent to saccade away from visited points and to keep a normal amplitude of saccades. This

resolves the above-mentioned problem. Note that my revisitation reward is different from IOR,

which directly prohibits revisitation. Considering that human scanpaths often contain revisita-

tions, especially when discretized into a course grid, my reward-based mechanism is more flexible

as it allows revisitations.

As shown in Eq. (5.1) and Eq. (5.2), although the two additional rewards are dependent on

the agent’s history actions, they are independent of the search image and target image. This

formulation of the reward function Eq. (5.3) can be viewed as decoupling the reward function

into two parts – an image-dependent part and an agent-dependent part. In contrast, in existing

IRL studies on visual search, the reward function is determined by the agent’s action, which

further relies on the image observations.

76

Chapter 5. RL for Visual Search 5.1. Method Design

Since my target is an explicit reward map Rmap, GAIL [164] and IQ-Learn [165] do not suit

my needs. The maximum entropy IRL method [160] is suitable because it learns a reward

function directly. Although the transition function is known in visual search, the state space

is high-dimensional. Therefore, I adopt the sample-based learning method from guided cost

learning [161].

5.1.2 Discounted Score

The decoupled reward function formulation facilitates learning of the static reward map while

enabling the agent to perform sequences of fixations. However, standard maximum entropy IRL

methods do not capture the sequence of fixations by humans. This is because of the undiscounted

form of the score function. In this study, I propose to use a discounted score function, i.e., setting

γ < 1. Below I give a toy example to demonstrate the effect of the discount factor in the score

function.

Suppose there is only one human scanpath in the dataset, and the action space is dis-

cretized into a 1 × 2 grid. This means there are only two states, which I denote as

sA and sB. The actions for fixating on these states are aA and aB. I omit the nota-

tion of the search and target images for conciseness. Suppose the human scanpath has

T = 2 and ξh = (s0, aA, sA, aB, sB). In this example, the agent’s scanpath space is Ξ =

{(s0, aA, sA, aB, sB), (s0, aB, sB, aA, sA), (s0, aA, sA, aA, sA), (s0, aB, sB, aB, sB)}. Then the log-

likelihood function in Eq. (2.12) is

log[p(ξh)] =c(ξh)− log

∑
ξa∈Ξ

exp[c(ξa)]


=Rmap(sA) + γRmap(sB)

− log
{
exp[Rmap(sA) + γRmap(sB)] + exp[Rmap(sB) + γRmap(sA)]

exp[Rmap(sA) + γRmap(sA)] + exp[Rmap(sB) + γRmap(sB)]
}
.

(5.4)

For succinctness, I use rA to denote Rmap(sA) and rB to denote Rmap(sB). The partial derivation

of the target over the rewards is

∂ log[p(ξh)]

∂rA
=
(1− γ)erB+γrA + (−γ)erA+γrA + erB+γrB

erA+γrB + erB+γrA + erA+γrA + erB+γrB

∂ log[p(ξh)]

∂rB
=− ∂ log[p(ξh)]

∂rA
,

(5.5)

77

5.1. Method Design Chapter 5. RL for Visual Search

where the numerator can be written as

(1− γ)erB+γrA + (−γ)erA+γrA + erB+γrB = erB+γrA
[
1− γ − γerA−rB + e−γ(rA−rB)

]
, (5.6)

which is monotonically decreasing with reference to erA−rB . (1) When γ = 1, ∂ log[p(ξh)]
∂rA

is

negative when rA > rB, positive when rA < rB, and is zero when rA = rB. The opposite is

true for ∂ log[p(ξh)]
∂rB

. This means the IRL target tends to make the reward values closer to each

other during training. (2) In contrast, when γ < 1, there is a certain threshold r∆ > 0 such that
∂ log[p(ξh)]

∂rA
is positive when rA − rB < r∆. The differential is only negative when rA − rB > r∆.

This means the objective tends to make rA > rB. This is good for replicating the ordering of

fixations in the human scanpath.

The above example presents a toy scene where the agent scanpaths can be enumerated. In

practice, the agent scanpaths are sampled according to the agent policy, which may be noisy or

even biased. I further examine the effect of the discounted score in the ablation study, which

will be introduced in section 5.2.5.

Note that the extension of standard maximum entropy IRL to discounted score functions has

been studied in a previous work [198]. A further extension proposes to estimate an appropriate

discount factor [199]. My contribution is to emphasize the importance of a discounted score for

map-based IRL for visual search.

5.1.3 Constraint on Value Range

The original objective function Eq. (2.12) does not guarantee a value range for the learned reward

values. Previous studies add regularization terms, e.g., weight decay [200] and encouragement

for monotonic decrease in values [161], to the loss function. These methods can, to some extent,

prevent the reward values from growing to infinity. However, there is no clear upper bound for

the values.

I observe that in the calculation of the probability value Eq. (2.11), the exponential of the score

can be intractably large when the rewards are too large. Specifically, when the discounted sum

of rewards along a sampled or human scanpath exceeds 89, the exponential value will be greater

than 4.49× 1038, exceeding the largest representable number of “float32”, the default data type

in PyTorch [182]. This motivates me to set up a fixed bound for the sum of all reward values.

78

Chapter 5. RL for Visual Search 5.1. Method Design

To facilitate the comparison of rewards between different images, I also set a fixed value range

for each reward value. These rules are designed as regularization terms for the loss function, as

shown in Eq. (5.7) and Eq. (5.8) below.

Lreg,upper(Isearch, Itarget) =
1

2

∑
st

[Rmap (st|·)2]

·max
{
fReLU[max

st
Rmap(st|·)− βmax], fReLU[

∑
st

Rmap(st|·)− βsum]
}
,

(5.7)

Lreg,lower(Isearch, Itarget) =
∑
st

fReLU[−Rmap(st|·)], (5.8)

where fReLU(x) = max(x, 0). The Isearch, Itarget in the notation of Rmap is omitted for concise-

ness. For the upper bound, all the values in the reward map are reduced together when the sum

of the values or the maximum value exceeds the corresponding threshold βsum, βmax. By using

the squared loss, the amount of reduction is proportional to the original values. This 1) keeps

the original order of the reward values, and 2) prevents the reward values from being negative.

For the lower bound, each reward value is tuned separately when it falls below zero.

With the above two regularization terms, the overall objective function is

L(θr) =
1

|D|
∑

(ξh,Isearch,Itarget)∈D

{
log[p(ξh|θr)]

− αupperLreg,upper(Isearch, Itarget)− αlowerLreg,lower(Isearch, Itarget)
}
,

(5.9)

where αupper and αlower are hyperparameters for weighting the losses.

5.1.4 Implementation Details

To implement the above designs, I create an algorithm based on the guided cost learning

method [161]. Here I introduce the details of the algorithm design, including state process-

ing, environment model, and sample augmentation.

State processing. It is widely believed [55,57,60,145] that human eyes perceive visual infor-

mation in a different way from cameras. The information near the fixation point is perceived

with a higher resolution, while other parts are perceived with a lower resolution. Therefore,

following these existing works, I also consider two views of the search image – a low-resolution

full view and a high-resolution partial view at the fixation point.

79

5.1. Method Design Chapter 5. RL for Visual Search

Specifically, given a search image, I first resize it to the shape of 1024 × 768. In the following

text, unless otherwise specified, the resizing of images is performed with bilinear interpolation.

The low-resolution full view is constructed by resizing the search image to the size of 256× 192.

For the partial observation, I design it to center at the fixation point, and the field of view has

a size of 40% of the search image. The observed part of the image is resized to the shape of

256× 192, so it has a higher resolution than the processed search image. Note that the fixations

can be near the borders of the search image, which means the field of view contains areas outside

the search image. In my implementation, the outliers are filled with a gray background.

The target images are cropped from the search image. In practice, the image patches can have

different sizes. To make the size of the target images consistent, I fit them to the size of 128×96.

The image patch is resized to be as large as possible but within the limit of 128× 96 and put at

the center of the target image. The background is also set to be gray. Note that the resizing of

the image patch takes into consideration the ratio of the length and width so that the processed

search image and target image have the same ratio for their contents.

Note that previous visual search studies often use a feature extractor in processing the search

image. For example, in [55], a Panoptic-FPN network is used to extract segmentation maps for

different categories of objects in the image. In [60], a fixation density map is predicted to be

observed by the IRL agent. These representations replace the original textures with semantic-

based or saliency-related information, thus helping to improve the generalizability of the models.

In this thesis, the model is applied to different types of visual search datasets, including both

natural and synthetic ones. A single feature extractor may not work well on all the datasets.

Thus, I choose to build my model on the raw images. Future work may consider extensions with

different feature extractors.

Figure 5.1 shows a pair of search image and target image. They are drawn for illustration only

and are not from the datasets I use.

Environment model. I design the agent to start from the center of the search image. This

follows the design in [155, 201]. Note that this starting point does not count toward the length

of the agent scanpath. At each fixation step, the agent obtains a high-resolution partial ob-

servation of the search image. To incorporate historical observations, I keep a record of two

recent observations. For the first step, the low-resolution full view is used to pad the history

80

Chapter 5. RL for Visual Search 5.1. Method Design

(a) (b)

Figure 5.1: Examples of pre-processed (a) search image and (b) target image.

record. Apart from this history record, the agent also has access to the target image, which

remains unchanged during the visual search process. Figure 5.2 shows the agent’s perceptions

in an example scanpath.

observation

target image

step # 0 1 2 3 4

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4

Figure 5.2: Illustration of state observations along a scanpath.

For the action discretization, I set the grid size sizegrid,x = 8 and sizegrid,y = 6. This results in

48 actions in total.

For the termination condition, I set that the agent always performs the same number of fixations

as humans. This enables the application of fixation-pair-based similarity measurements. To

implement this setting, the agent’s scanpath sampling is conditioned on the human scanpaths.

State encoding for SVPG. The application of the SVPG method requires that the state

observation be represented as a vector of firing probabilities. In this visual search modeling

task, I reshape the partial observation history and the target image into vectors and convert the

RGB values to [0, 1] by dividing by 255. Considering that a state vector that is too long induces

a high memory cost for the RWTA network, I reduce the size of the partial observations and

the target image. Specifically, each observation in the history record is resized from 256 × 192

81

5.1. Method Design Chapter 5. RL for Visual Search

to 80 × 60. The target image is resized from 128 × 96 to 40 × 30. The final state vector is a

concatenation of these images and has a length of 32400. Note that this state vector is much

longer than the ones in previous standard RL tasks, e.g., 4800 in the DOOM task, thus posing

a greater challenge. Figure 5.3 illustrates the state processing for SVPG.

observation

target image

40×30128×96

256×192 80×60

32400resize

reshape &

concatenate

Figure 5.3: Illustration of processed state vector for SVPG.

Modifications to guided cost learning As mentioned earlier, my idea to learn an explicit

reward map motivates me to choose maximum entropy IRL. Further, the high dimensionality of

the state space necessitates an efficient sample-based method, so I choose to base my method

on the guided cost learning [161] method.

The main features of the guided cost learning method include [161]:

1. A high-dimensional function approximator for the reward function;

2. Sample-based estimation of the partition function Z;

3. Policy optimized with entropy added to the loss function;

4. Importance sampling;

5. Sample augmentation: append human scanpaths to the agent’s samples;

6. Regularization for reducing high-frequency variations and encouraging an increase in the

reward values along each scanpath.

Here I keep the first three designs to facilitate learning the reward map from samples. For

the importance sampling part, the original implementation keeps a record of all the scanpath

samples from the agent, so the agent dataset Da is a mixture of policy distributions. In my task,

the high dimensionality of the agent observations and the conditions of the search image and

82

Chapter 5. RL for Visual Search 5.1. Method Design

target image make it intractable to keep a full record of agent samples. Therefore, I propose

to only use the most recently sampled batch of scanpaths to update the reward model. The

importance sampling weights are calculated with reference to the agent’s current policy. This

corresponds to the term p(ξa) in Eq. (2.13).

About the sample augmentation technique. The original motivation is to help prevent the learn-

ing object from growing to infinity in practice [161]. In my case, there are already regularization

terms in the objective function Eq. (5.9) to constrain the reward values. Therefore, I remove

this sample augmentation technique. An ablation study is done to check the effect of sample

augmentation. As will be shown in section 5.2.5, the augmentation of human scanpaths to the

agent samples makes the training progress slower.

The regularizations on reward values are removed in my method. In my task, with the effect of

the revisitation penalty, an ideal form of reward value should be decreasing along the scanpath,

which is contrary to the original design [161]. The other regularization, which aims to reduce

high-frequency variations, could be helpful for learning a smoother reward map and improving

generalizability. Future work may investigate its effect on learning performance.

Apart from these modifications, I also propose some other designs to the IRL method. (1)

Because the reward model is updated in an online manner, I increase the randomness of the

scanpaths sampled by the agent. This is implemented by smoothing the policy distribution.

Specifically, the policy π′ used for sampling scanpaths for the reward model is obtained by

adding a constant value to the original policy π and re-normalizing:

π′(st, at) =
π(st, at) + ν∑

a∈A[π(st, a) + ν]
, (5.10)

where ν is the constant. In my experiments, ν is set to 0.1.

(2) For the training of the agent, I use the PPO algorithm [65]. Because the reward function

is changing in training, I add a greedy policy to the sampling process to accelerate the learning

of the agent. The greedy policy selects actions according to the reward map predicted by the

reward model. To simulate the revisitation penalty, the penalty value αrevisit is subtracted from

the reward map after each visitation. During training, I use the greedy policy πgreedy randomly

with a probability of 0.3, and use the original agent policy for the rest of the time.

83

5.1. Method Design Chapter 5. RL for Visual Search

Function approximators. I propose two implementations of my method. One is based on a

conventional ANN, and the other is the RWTA network trained by SVPG.

The ANN-based implementation is for verifying the effectiveness of my IRL algorithm. It offers

a better training speed and lower memory cost. In my implementation, the ANN consists of

two convolutional blocks and some fully connected layers. One convolutional block processes

the observation history and the other processes the target image. The output features of these

two blocks are concatenated and then input to the fully connected layers. The output of the

fully connected layers is normalized with the softmax function and its size is 48, corresponding

to the possible fixation positions.

The SVPG-based implementation is for testing the effectiveness of SVPG in solving the visual

search IRL task. The RWTA network is configured to have 32400 state neurons, 100 hidden

WTA circuits, each with 10 neurons, and 48 action neurons corresponding to the possible fixation

positions.

For the above two implementations, a critic model is also built to learn the Q-values for the

agent, which is part of the PPO algorithm [65]. The critic model is implemented with a network

whose shape is mostly the same as the ANN-based agent, except that the final softmax function

is removed.

5.1.5 MME Algorithm

Since my method belongs to the maximum entropy IRL methods and features learning a reward

map, I name it as map-based maximal entropy (MME) IRL, and use MME in the following text

for succinctness.

The MME algorithm is summarized in Algorithm 3. In my experiments, the default values for

some of the hyperparameters are that γr = 0.9, αrevisit = 10, αamplitude = 1 (indicating absence

of saccade amplitude penalty), βmax = 10, βsum = 40, αupper = 1, and αlower = 5. MME

works in epochs and each epoch contains two parts. Firstly, a number of human scanpaths are

sampled from the dataset, episodes are run to collect agent scanpaths, and the agent is updated

using current estimation of the reward map. Then, some more episodes are run to collect agent

samples, evaluate human and agent scanpaths, and update the reward model.

84

Chapter 5. RL for Visual Search 5.2. Experiments on Visual Search

Algorithm 3 map-based maximal entropy IRL (MME)
Input: Set of human scanpath D,
Parameter: γr, sizegrid,x, sizegrid,y, αrevisit, αamplitude, βmax, βsum, αupper, αlower,
Ntrain, Nagent, Nreward, Nsample,
Output: Reward model parameter θr, agent model parameter θa.
1: Initialize θr, θa.
2: for Epoch = 1, . . . , Ntrain do
3: for Agent episode = 1, . . . , Nagent do {Train agent}
4: Sample (ξ, Isearch, Itarget) from D.
5: Calculate Rmap(st|Isearch, Itarget) with θr.
6: With 0.3 probability, obtain scanpath ξa with πgreedy;
7: Otherwise, predict scanpath ξa with π.
8: Evaluate ξa with R according to Eq. (5.3).
9: Update agent model θa with the PPO algorithm.

10: end for
11: for Reward episode = 1, . . . , Nreward do {Train reward}
12: Sample (ξ, Isearch, Itarget) from D.
13: Calculate Rmap(st|Isearch, Itarget) with θr.
14: Evaluate ξ with R according to Eq. (5.3).
15: Calculate score c(ξ) according to Eq. (2.7), with reward gamma γr.
16: for Agent sample i = 1, . . . , Nsample do
17: Predict scanpath ξa,i with smoothed policy π′.
18: Calculate score c(ξa,i) according to Eq. (2.7), with reward gamma γr.
19: end for
20: Update θr with L(θr) according to Eq. (5.9) and Eq. (2.13).
21: end for
22: end for

5.2 Experiments on Visual Search

I apply the MME method to different visual search datasets and compare it with standard visual

search methods to verify its effectiveness. The experiments contain four parts.

1. To verify the ability of MME in replicating human scanpaths, I test the ANN-based im-

plementation on three datasets and compare it with standard methods.

2. I look at the effects of different settings of the environmental reward functions on the

training performance.

3. I perform ablation studies to check the contribution of designs in MME to the performance.

4. I apply SVPG to the training of the agent to check the performance of SVPG in solving

this IRL task.

85

5.2. Experiments on Visual Search Chapter 5. RL for Visual Search

5.2.1 Datasets and Measurements

I consider three visual search datasets, namely COCO-Search18 [140], IVSN [50], and ASD [30].

The COCO-Search18 dataset features natural search images and is popular among recent visual

search studies. The IVSN dataset is picked from the object array experiment in reference [50].

The search images are synthetic, containing 6 small images. Both the COCO-Search18 and the

IVSN datasets are collected from normal participants. The ASD dataset includes scanpaths

from different types of subjects, including people with amygdala lesions and people with ASD.

The search images in the ASD dataset are synthetic and contain 24 objects (presented as small

image patches) whose social/non-social category information is available. The target images are

also classified as social or non-social. Therefore, the ASD dataset facilitates investigation into

the effect of social/non-social items and the behavior patterns of different types of subjects.

Dataset pre-processing. I first discard target-absent scanpaths and only keep the ones in

which the target image exists in the search image. To use the MultiMatch similarity metric, I

remove scanpaths that contain only one fixation, so that all scanpaths I use have a minimum

length of three when the initial fixation is prepended. I also notice that some human scanpaths

contain fixations outside the search images. For these outlier points, I constrain their coordinates

to the size of the search image.

For the IVSN dataset, the available eye movement data is raw and not sorted into fixations. I

generate fixations from the raw coordinate data by clustering points that are close to each other.

The threshold for the clustering is set to 5.

The ASD dataset contains scanpaths from 50 subjects, among which 13 subjects have epilepsy,

3 subjects have amygdala lesions, 2 subjects are labeled as “stroke”, 13 subjects have ASD, 8

subjects form the control group of ASD, and 11 subjects are from the NUS as another control

group [30]. After screening, each subject has around 80 scanpaths for social-item-targeted scan-

paths and around 80 for non-social-item-targeted scanpaths. The total number of scanpaths in

the ASD dataset is 7413.

To save the computational cost, I shrink the COCO-Search18 and IVSN datasets. This is done

by randomly sampling 80 scanpaths for each subject. There are respectively 10 and 16 subjects

in the COCO-Search18 and the IVSN dataset. Therefore, after sampling, there are 800 and

1280 scanpaths in total. The scanpaths for each subject, having a number similar to the ASD

86

Chapter 5. RL for Visual Search 5.2. Experiments on Visual Search

dataset, enable comparison of models trained on subject-wise sub-datasets. Abusing notation,

in the following, I still use “COCO-Search18” and “IVSN” to refer to these shrunk datasets. The

performance of methods on the full set of COCO-Search18 and IVSN datasets is left for future

work.

Table 5.1: Scanpath length statistics.

Dataset Min length Max length Mean Length

COCO-Search18 2 34 3.875
IVSN 2 54 7.073
ASD 2 78 7.660

0 20 40 60 80
Scanpath length

0

250

500

750

1000

1250

N
um

be
r

ASD
COCO-Search18
IVSN

Figure 5.4: Histograms of scanpath lengths on the three datasets.

Table 5.1 and Figure 5.4 show the statistics and histograms of the scanpath lengths on the three

datasets. As shown, most scanpaths have a length shorter than 10.

Measurements. For the measurements, I use the Levenshtein similarity [169], MultiMatch

[168], and average point distance. The Levenshtein similarity neglects the spatial relationship

between fixations, while the MultiMatch metric keeps it. The average point distance is similar

to the position dimension of the MultiMatch metric, but it does not simplify the scanpaths.

Therefore, it is more sensitive to subtle differences in fixation positions.

In practice, the Levenshtein similarity requires a grid size to convert pixel-valued coordinates to

letters. I choose the grid size to be 8× 6. The implementation is based on a public code reposi-

tory2. Specifically, each grid is assigned a different letter. This transforms the two scanpaths to

be compared into two strings. The minimum number of edits is calculated as the Levenshtein

distance value. The allowed types of edits include replacement, insertion, and deletion. The
2https://github.com/rapidfuzz/Levenshtein/

87

https://github.com/rapidfuzz/Levenshtein/

5.2. Experiments on Visual Search Chapter 5. RL for Visual Search

Levenshtein distance can be calculated in a recursive way as shown below:

d (h1, h2) =



|h1| if |h2| = 0,

|h2| if |h1| = 0,

d (rm(h1), rm(h2)) if first(h1) = first(h2),

1 + min
{
d (rm(h1), rm(h2)) , d (h1, rm(h2)) ,

d (rm(h1), h2)
} otherwise.

(5.11)

where h1 and h2 are two strings to be compared, first(·) is the first letter in a string, rm(·) is the

string with the first letter removed, |·| is the length of a string, and d (h1, h2) is the Levenshtein

distance between string h1 and h2. Given the Levenshtein distance, the Levenshtein similarity

value mLevenshtein is calculated as

mLevenshtein = 1− d (h1, h2)

|h1|+ |h2|
. (5.12)

The MultiMatch metric considers scanpaths as sequences of two-dimensional vectors. A sim-

plification step and an alignment of the scanpaths are performed to remove noise and extract

meaningful fixations. Specifically, the simplification step combines consecutive saccades into one

saccade when their amplitudes are smaller than a threshold and when their differences in angle

are smaller than a threshold. The alignment operation is performed on the simplified scanpaths;

a comparison matrix is constructed where each element is the vector difference between each

pair of saccades; the Dijkstra algorithm is used to find the shortest path that goes from the

top left element to the bottom right element, with the matrix values regarded as cost values;

only movements that goes down, right, or lower right are allowed to preserve the sequence of

fixations. After these steps, the two scanpaths to be compared have the same length. Multi-

Match reports five similarity values, respectively characterizing the average differences in shape

(i.e., saccade vector difference), length, direction (i.e., angular difference), fixation position, and

fixation duration. To normalize the values to the range of [0, 1], the first three values are divided

by the diagonal of the search image, the direction value is divided by π, and the duration value is

divided by the maximum duration value being compared. In this thesis, the duration similarity

88

Chapter 5. RL for Visual Search 5.2. Experiments on Visual Search

value is discarded because fixation duration is not modeled. The implementation is based on a

public code repository3.

The average point distance is calculated as the mean Euclidean distance between fixation points

at the same step in a scanpath and is noted as “point distance” in the following text. Specifically,

the distance value mpoint distance is defined as

mpoint distance(ξa, ξh) =
1

T

T−1∑
t=0

[
(xa,t − xh,t)

2 + (ya,t − yh,t)
2
] 1

2
, (5.13)

where the scanpaths ξa and ξh are assumed to have the same length T , and the subscripts a and

h respectively means the coordinate values of the fixations of the agent and human.

5.2.2 Methods for Comparison

For the comparison methods, I choose representatives for different types of predictive visual

search models. The categories include unsupervised, supervised, RL, and IRL.

IVSN. This is selected as a representative of unsupervised saliency prediction methods. The

implementation is based on [142]. To apply the feature extractor, the search image is cropped

into patches of size 224 × 224. The target image is resized to 32 × 32. A VGG16 network

pre-trained on the ImageNet dataset is used to extract the features and calculate the saliency

map. An IOR mechanism is used to generate the scanpath from the saliency map. At each step,

the point with the largest saliency value is selected as the next fixation, and then the saliency

values in a square area around the point are set to zero, implementing the inhibition. The side

length of the square is set to 210 for the ASD dataset, 100 for the COCO-Search18 dataset, and

170 for the IVSN dataset.

nnIBS. This is selected as a representative of unsupervised scanpath prediction methods. The

method is from references [142,157] and the implementation is based on the code for [142]. The

prior distribution is calculated with DeepGazeIIE, and the target similarity map is calculated

using the IVSN method. The position of fixation is discretized into a grid where each cell is

square and the side length is 32 pixels. The other hyperparameters are kept the same as in the

implementation in [142].

3https://github.com/adswa/multimatch_gaze

89

https://github.com/adswa/multimatch_gaze

5.2. Experiments on Visual Search Chapter 5. RL for Visual Search

ℎ10

ℎ1

⋮

history partial

observations

CNN

1

(shared)

⋮

𝐼𝑡

target

image

CNN

2

token

Attention

layers
⋮

FC

layers

action

prediction

12 features

embedding

Figure 5.5: Network structure for attention analysis.

Behavior cloning. This is representative of supervised learning methods. I use a Transformer

as the function approximator. The model takes the most recent 10 partial observations and the

target image as input and outputs the distribution of the next fixation. Figure 5.5 presents

the structure of the Transformer. The token is sampled from a normal distribution. For early

fixations, the history is padded with gray images. The action space is evenly discretized into

an 8 × 6 grid. The model is trained with the cross-entropy loss. In the following text, I use

“BCtransformer” to denote this method.

RL. This is selected to represent RL methods. The method is from reference [54]. The reward

generation is based on the ScanMatch similarity metric. The search image is input to the

model. The attention map required by the model is generated using the ground truth, i.e., a

binary map where the area for the target image is marked with 1 and elsewhere 0. The action

space is discretized using a 40 × 30 grid. Hyperparameters for training are kept the same as

in [54].

GAIL. This is selected to represent IRL methods. The implementation is based on [142]

and [55]. The code from [142] is used to build the high-resolution and low-resolution belief

maps. Then, the code from [55] is used to train the agent and the discriminator. To enable the

use of the original code, the search image is resized to 520 × 312, and the target image has a

shape of 128× 96. The action space is discretized to 32× 20. Hyperparameters for training are

kept the same as in [55].

90

Chapter 5. RL for Visual Search 5.2. Experiments on Visual Search

Reward

Learning Rate

Agent

Learning Rate
0.5 1 2 4 8

0.00001 268.338 266.571 265.741 266.404 267.714

0.0001 268.016 267.12 264.957 269.317 266.712

0.00001 263.269 263.859 258.897 259.131 260.755

0.0001 270.674 267.315 263.617 263.559 266.412

Entropy

0.00001

0.0001

Figure 5.6: Hyperparameter tuning of MME on the ASD dataset.

Random uniform distribution. This is added as a baseline model. The agent always sam-

ples an action from a uniform distribution over the search image. The action is represented in

pixels, i.e., without action discretization. In the following, I use “randuniform” to refer to this

model.

For all the above methods, the termination is set to make the length of the agent’s scanpath the

same as humans. For methods that require resizing the search image, the fixation coordinate val-

ues of human scanpaths are transformed accordingly. After training, the predicted fixations are

converted back to the original size of the search image to ensure the fairness of the comparison.

5.2.3 Benchmark

I compare the performance of MME to other standard visual search predictive methods. This

is based on the ANN-implementation of MME. In this experiment, the datasets are randomly

split into a training set and a validation set, each containing 90% and 10% of the scanpaths.

I begin with the hyperparameter tuning for MME. This is done on the ASD dataset. The

learning rates of the agent and reward model and the entropy ratio are tuned. Each setting is

run once. The models are trained for 30k steps, and a checkpoint is saved every 2k steps. All

the checkpoints are evaluated on the validation set, and the best performance is reported. Note

that the agent acts greedily in the validation, i.e., always selects the action with the largest

probability. To compare the performance of different hyperparameter settings, I use the point

distance metric.

Figure 5.6 presents the performance values under all the settings. The best performance is

marked with bold text. As shown, among the considered range of hyperparameters, the best

setting is 2.0 for the entropy ratio, 1e−4 for the reward learning rate, and 1e−5 for the agent

learning rate. This setting is used in the rest of the experiments unless otherwise specified.

91

5.2. Experiments on Visual Search Chapter 5. RL for Visual Search

For the BCtransformer, RL, and GAIL methods, considering that the learning target and the

validation metric can be different, I save 10 checkpoints through the training process, evalu-

ate them on all the metrics, and report the best performance. This experiment is run for 3

independent repetitions.

The results are plotted in Figure 5.7. The COCO-Search18 dataset is denoted as “COCO” for

clarity. The mean performances on MultiMatch (four dimensions), Levenshtein similarity, and

point distance are drawn as horizontal bars. The error bars show the standard deviations. For

point distance, a smaller value means better similarity; for the other metrics, a larger value

means better similarity.

From these results, it can be inferred that:

• For most methods and metrics, the performances on the COCO-Search18 dataset are

higher than the ASD and the IVSN datasets. Considering that not all methods rely

on pre-trained feature extractors, this means that the scanpaths in the COCO-Search18

dataset are relatively simpler to replicate. There is no significant difference between the

ASD and the IVSN dataset.

• For most datasets and metrics, the random uniform distribution generates the worst per-

formance. This indicates that all other methods, no matter pre-trained or trained, can

generate scanpaths more similar to humans than random.

• In general, the unsupervised methods (i.e., IVSN and nnIBS) and GAIL have performances

lower than other learning methods. For the unsupervised methods, the discrepancy be-

tween the pre-training datasets and the target dataset can be a contributor. For the GAIL

method, the sensitivity to hyperparameters and training instability may contribute to the

performance. Future work can consider tuning the hyperparameters instead of using the

default ones.

• The best performances under different metrics are obtained by RL, BCtransformer, MME,

and nnIBS. Considering the 18 combinations of dataset and metric, MME obtains the best

performance in 9 cases.

I would like to emphasize that my method MME is tuned on the ASD dataset, while the other

methods, although with multiple checkpoints preserved, are based on default hyperparameters.

Therefore, obtaining the best performance on many metrics and datasets does not necessarily

92

Chapter 5. RL for Visual Search 5.2. Experiments on Visual Search

0.50 0.55 0.60 0.65 0.70 0.75

ASD

COCO

IVSN

MultiMatch-Direction

(a)

0.75 0.80 0.85 0.90 0.95

ASD

COCO

IVSN

MultiMatch-Length

(b)

0.70 0.75 0.80 0.85 0.90 0.95 1.00

ASD

COCO

IVSN

MultiMatch-Position

(c)

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975

ASD

COCO

IVSN

MultiMatch-Shape

(d)

0.0 0.1 0.2 0.3 0.4

ASD

COCO

IVSN

Levenshtein

(e)

100 200 300 400 500 600

ASD

COCO

IVSN

Point Distance

(f)
MME
GAIL

RL
BCtransformer

nnIBS
IVSN

randuniform

Figure 5.7: Validation performances of different methods on all the datasets.

mean MME is better than the other methods. However, the results do show that MME can get

a good performance comparable to the standard visual search models.

As discussed in section 5.1.1, learning a reward map alone does not replicate human scanpaths.

Here, the performance of MME indicates that the two environmental rewards are sufficient for

modeling human scanpaths. In addition, the results also suggest a property of human scanpaths

that they are driven by two separate forces – one based on the image stimulus and the other

based on history fixations. Based on this understanding, MME makes it possible to separately

analyze the effects of image stimulus and behavior patterns (specifically, revisitation and saccade

amplitude). This can improve the analysis of both aspects by removing the influence of the

93

5.2. Experiments on Visual Search Chapter 5. RL for Visual Search

2 3 4 5 6 7 8 9 10
Revisit Penalty

170

172

174

176

178

180

182
Po

in
t D

is
ta

nc
e

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Saccade Amplitude Limit

174

176

178

180

182

Po
in

t D
is

ta
nc

e

(b)

Figure 5.8: Effects of different reward settings on the performance, measured by the point
distance metric.

other aspect. Potential applications include document design where the effects of document

components on the observers need to be measured, as well as mental health-related research

where the behavior patterns of people need to be extracted. The following section 5.2.4 provides

an example analysis of the effect of environmental rewards. In section 5.3, MME is applied to

the study of ASD-related analysis.

5.2.4 Effect of Environmental Rewards

In this part of the experiment, I focus on the effects of different settings of the environmental

reward function on the performance. Specifically, there are two key hyperparameters, αrevisit

and αamplitude. For αrevisit, a value of 0 means no penalty for revisiting fixations. Consider that

I limit the maximum of the reward values to 10, a value greater than or equal to 10 will result in

a negative reward for all revisitations. For αamplitude, a value of 1 means no penalty. A smaller

value poses a smaller threshold for the saccade amplitude to be penalized.

Here I modify these two hyperparameters. I try 2.0, 4.0, 6.0, 8.0 for αrevisit and 0.4, 0.6, 0.8 for

αamplitude. This test is performed on the COCO-Search18 dataset. Note that I do not make the

validation split. The agent learning rate is 0.001. The length of training is 30k. The training

is performed three times independently. The measurement is the point distance, and the best

checkpoint is used.

The results are presented in Figure 5.8. The error bars are the standard deviations of the

three training repetitions. As shown, the fitting performance displays a relationship to the

hyperparameters. For the revisit penalty, a smaller value can generate scanpaths more similar

94

Chapter 5. RL for Visual Search 5.2. Experiments on Visual Search

to humans, from the perspective of averaged point distance. For the amplitude threshold, a value

close to 0.6 times the length of the diagonal of the search image produces the best result. This

reveals that the human scanpaths may exhibit a pattern of revisitation and a certain saccade

amplitude, and that the two environmental reward functions designed in MME indeed contribute

to the scanpath modeling. By applying this test to comparable scanpath datasets, the behavior

patterns of the corresponding subject groups can be compared. These patterns of revisitation

and saccade amplitude may help with the diagnosis of certain types of mental disorders.

Note that the effect of the revisitation reward depends on the discretization method. A finer

grid can reduce the occurrence of revisitations and change the effect of the revisitation penalty.

Also, note that the current results display a high variance. Future work may perform more

repetitions of training to obtain a more reliable result.

5.2.5 Ablation Tests

In this part, I check the effectiveness of the designs in my method. There are three core designs,

including the decoupled reward function, the discounted score formulation, and the constraints

on value ranges. In the implementation, some modifications are also made to the guided cost

learning method, including the removal of human sample augmentation, the policy smoothing,

and the greedy policy for sampling.

Among the three core designs, the decoupled reward function is the fundamental design for

guaranteeing that a static reward map is learned. Without this design, there is no such guarantee.

Also, the previous section 5.2.4 demonstrated that the designed environmental reward functions

contribute to the performance. For the constraints on value ranges, I notice NaN errors in

experiments caused by out-of-bound values when the constraints are removed. These errors

hinder the experiment scripts from running. When these constraints are present, the experiments

run normally and get the results such as those presented in Figure 5.7. This demonstrates

the effectiveness of the constraints. In the following experiment, I test the effectiveness of

the discounted score formulation, as well as the effectiveness of the removal of human sample

augmentation. The other modifications, i.e., policy smoothing and greedy policy for sampling,

are left as future work.

In this test, I select a single human scanpath from the ASD dataset that does not contain

revisitations, so the default setting should be able to exactly replicate it. I use “agent score”

95

5.2. Experiments on Visual Search Chapter 5. RL for Visual Search

0 100 200 300 400 500
Step

5

4

3

2

1

0

A
ge

nt
 sc

or
e

no discount
with discount
human aug. no discount
human aug. with discount

Figure 5.9: Learning curves of different variations of MME.

to measure the performance of the agent in training, which is the opposite value of the average

point distance. Note that the point distance here is calculated by converting the fixations

from pixels to grids according to Eq. (2.8). That is, the Euclidean distance between the

discretized representations. Therefore, despite that the human fixations may not be at the

center of the grids, this agent score can be zero when the agent fixates on the same grid as

humans. Considering that the grid size is 128, the amplitude of the agent score is roughly 1/128

of the point distance in pixels.

The learning curves are plotted in Figure 5.9. The shaded regions in the figure show the standard

deviation over 5 independent trainings. The curves are processed with exponential smoothing

[195] with a smoothing factor of 0.5. The default MME is labeled as “with discount”. The

variation without reward discount, i.e., γr = 1 is labeled as “no discount”. Also, the variants

that augment agent samples with human scanpaths during training of the reward model are

marked with “human aug.”.

As shown, the discounted score makes a significant contribution to the performance. The vari-

ants with discounting can converge to the optimal performance, while the variants without

discounting cannot. For the scanpath augmentation, I notice that the final performance is not

affected, but the learning speed is slower than the default MME, indicating that the removal of

human scanpath augmentation improves the learning efficiency.

96

Chapter 5. RL for Visual Search 5.2. Experiments on Visual Search

0.5 1 2

0.0001 180.721 182.056 179.286

0.00001 192.76 192.452 190.299

Entropy Ratio

Learning

Rate

Figure 5.10: Hyperparameter tuning of SVPG on COCO-Search18 dataset.

5.2.6 Performance of SVPG

Finally, I examine the performance of SVPG on this visual search IRL task. As already men-

tioned, the length of the state vector is 32400, which is longer and more challenging than that in

the other standard RL tasks. In addition, the reward functions are static in standard RL tasks

but dynamic in IRL tasks, posing another challenge to training.

This test is done on the COCO-Search18 dataset. Since I aim to verify the ability of SVPG to

replicate the human scanpaths, I train and validate it using the full 800 scanpaths, i.e., without

a validation split. The training lasts 40k steps, and the model is validated every 50 steps. In

validation, the agent acts greedily according to the policy distribution. The validation metric is

the same as the “agent score” described before. A checkpoint corresponding to the best validation

performance is saved and reported.

I tune the learning rate for the agent model and the entropy ratio in the PPO algorithm. The

learning rate for the reward model is set to 0.0001. The mean performances, measured by pixel-

wise point distance, over three independent trainings are reported in Figure 5.10. The best

performance is marked with bold text.

The learning curves corresponding to the best setting are plotted in Figure 5.11, including the

agent’s validation performance and the reward loss. The shaded region shows the standard

deviation value. The two curves are processed with exponential smoothing [195]. The reward

loss curve uses a smoothing factor of 0.05, and the agent validation score curve uses 0.5.

As shown, the MME method, when implemented with the RWTA network and SVPG algorithm,

can learn the visual search IRL task smoothly. Consider that the actions are discretized and

the side length of the grids is 128, the current result indicates that, after training, the average

difference between a human fixation and the corresponding prediction is less than twice the size

of a grid.

97

5.2. Experiments on Visual Search Chapter 5. RL for Visual Search

0 10k 20k 30k 40k
Step

1.8

1.7

1.6

1.5

1.4

Va
lid

at
io

n
sc

or
e

(a) Agent validation score.

0 10k 20k 30k 40k
Step

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

R
ew

ar
d

lo
ss

(b) Reward loss.

Figure 5.11: Learning curves of SVPG on COCO-Search18 dataset.

(a) (b) (c)

Figure 5.12: Visualizations of reward map, human scanpath, and a sampled agent scanpath on
COCO-Search18.

Furthermore, I visualize the scanpaths of the agent and human. I randomly pick scanpath data

from the dataset and plot the scanpaths, as shown in Figure 5.12 4. The target image is drawn

to the upper right corner of the search image. The human scanpath and agent scanpath are

respectively presented as blue and green lines, with the beginning marked by a big circle dot

and subsequent fixations marked by small dots. Each reward map is normalized separately by

dividing its maximum value, resized to the image size by nearest neighbor interpolation, and is

shown in a red heatmap. A red region implies a high reward value.

As shown, the reward map and the agent’s scanpaths capture the human scanpaths. The

sequential information in the scanpaths is preserved in the agent. This shows the ability of

SVPG to solve this IRL task.

The above successful application of SVPG to visual search scanpath modeling further demon-

strates the capability of the RWTA network in representing complex functions and the effective-

ness of the SVPG learning method. In addition, this is the first application of an R-STDP-based

4Figure 5.12a is adapted from “Emirates Business Class” by Isriya Paireepairit, used under CC BY-NC 2.0.
Figure 5.12b is adapted from “clock” by Imbreathingyummyair, used under CC BY 2.0. Figure 5.12c is adapted
from “Dinner 6-11-06” by Alvin Smith, used under CC BY-NC 2.0.

98

https://www.flickr.com/photos/isriya/9219463201
https://creativecommons.org/licenses/by-nc/2.0/deed.en
https://www.flickr.com/photos/naarasilva/8326576355
https://creativecommons.org/licenses/by/2.0/deed.en
https://www.flickr.com/photos/heather_joy/165397787
https://creativecommons.org/licenses/by-nc/2.0/deed.en

Chapter 5. RL for Visual Search 5.3. Experiments on Social and Non-social Visual Search

biologically plausible model to visual search. The brain-like model and learning rules make it

possible to investigate the relationship between brain structure and brain function. For exam-

ple, certain neurons in the network may be perturbed to test their effects on the visual search

behavior.

5.3 Experiments on Social and Non-social Visual Search

Analysis of eye movement patterns of ASD can help improve the understanding of ASD and

its detection techniques. In the previous sections, I designed MME, a new IRL method that

can not only extract static reward maps from a set of human scanpaths but also compare the

effect of different settings of environmental rewards. In this section, I perform a more thorough

application of MME to the ASD dataset by training it on scanpaths from different types of

subjects. Apart from MME, I also apply standard predictive models, including two behavior

cloning methods, to extract other aspects of the behavior patterns. The contribution of this

chapter can be viewed as an extension of the statistics-based analysis in [30]. As far as I know,

this is the first attempt to use scanpath prediction models in ASD analysis.

5.3.1 Target-Conditioned Spatial Attention

I first look at the spatial attention extracted by MME. This is measured by applying the trained

reward model to certain search images and target images. Following reference [30], I focus on

scanpaths from four groups of subjects, namely people with amygdala lesions, ASD, ASD control

group, and NUS control group. I use “amygdala”, “ASD”, “ASDctrl”, and “NUS” to refer to these

subject groups. There are respectively 3, 13, 8, and 11 subjects in these groups. The numbers

of available scanpaths, after pre-processing, are 469, 2067, 1236, and 1756.

I train an MME model for each subject group. There is no validation split. The models use the

same default hyperparameters and are trained for 30k steps. The final checkpoint is used for the

analysis. Because the numbers of scanpaths in each subject group are different, this approach

ensures that the reward model and the agent model are trained for the same number of steps. A

better approach may split the sub-dataset for each group into a training set and a validation set

and get models that have the best validation performance. However, the amygdala group has a

limited number of scanpaths, thus this can be challenging. A pre-trained feature extractor may

help improve the generalization. This is left for future work.

99

5.3. Experiments on Social and Non-social Visual Search Chapter 5. RL for Visual Search

To examine spatial attention, I apply the trained reward model to all the search images and

target images. In the ASD dataset [30], there are 20 search images. Each search image contains

12 social objects and 12 non-social objects. All the objects are used as target images. This results

in 480 combinations of search and target images, and thus there are 480 reward map predictions

for each subject group. To facilitate analysis of image contents, I resize the reward map from the

original size 8×6 to the size of the search image 1024×768. This is done by assigning the reward

values to the pixels at the center of corresponding grids and then smoothing the map with a

Gaussian kernel. The smoothing is implemented with the “GaussianBlur” function in OpenCV,

and the kernel size is set to 513. For comparison between subject groups, the reward maps are

normalized with respect to subjects so that the sum of reward values over search images and

target images is the same across groups. For visualization, the smoothed reward map is divided

by its maximum value and added to the red channel of the search image. Figure 5.13 presents

two example reward maps obtained for a search image under two different targets. The target

images are shown to the upper right corner of the search image.

(a) (b)

Figure 5.13: Examples of reward map on a search image under different target images.

Note that, for each human subject, only a portion of the objects are presented as target images

in the data collection process. An advantage of my predictive model is that it can be applied to

unseen search or target images, making the testing data consistent across subject groups.

In addition, I emphasize that the reward map is different from a saliency map or initial fixation

distribution. A saliency map captures the frequency of fixations on different areas, while a

reward map reflects the priority of looking at different areas. An initial fixation distribution

may display which part of the search image is more attractive, but it is subject to changes

100

Chapter 5. RL for Visual Search 5.3. Experiments on Social and Non-social Visual Search

during the visual search process. In contrast, a reward map is static and is only conditioned on

the environmental reward functions set during training.

I calculate the coverage of the smoothed reward map on different types of objects under different

conditions to investigate the subject’s spatial attention. The positions of the objects and the

type (social or non-social) are provided in the ASD dataset. I use two maps to represent the

positions of social and non-social objects. The maps are binary, with value 1 indicating objects

and 0 otherwise. The coverage is calculated by multiplying the smoothed reward map by an

object map and summing the values. It is then scaled by multiplying it by a positive constant

for ease of presentation.

Amygdala ASD ASDctrl NUS

10.2

10.4

10.6

10.8

C
ov

er
ag

e
sc

or
e

Summary

social coverage nonsocial coverage

(a)

Amygdala ASD ASDctrl NUS

10.0

10.5

11.0

11.5

C
ov

er
ag

e
sc

or
e

Target type comparison

social target, social coverage
social target, nonsocial coverage

nonsocial target, social coverage
nonsocial target, nonsocial coverage

(b)

Figure 5.14: Coverage values across types of subjects and target images.

101

5.3. Experiments on Social and Non-social Visual Search Chapter 5. RL for Visual Search

Figure 5.14a presents the coverage values of social objects and non-social objects for the four

subject groups. Each setting is run three times, and the mean values are reported. The error bars

show the standard deviation. A higher coverage value indicates larger reward values assigned

to corresponding areas. As shown, for all the subject groups, the social objects are assigned

higher reward values than non-social objects. This means that the social items attracted more

attention than non-social items. This is consistent with the finding in [30] that neither people

with ASD nor amygdala lesions have deficits in social preference. For the difference between

groups, I find that the absolute coverage value does not differ significantly between the ASD

group and the two control groups. In contrast, the amygdala group displays a significantly lower

coverage value for both social and non-social objects. Considering that the sum of reward values

is the same across groups, this means that more reward value is assigned to the background area

for the amygdala group. This indicates a deficit of general attention to objects.

A further comparison of the spatial attention under social versus non-social target images is

shown in Figure 5.14b. In this test, the reward models are evaluated on either social target

images or non-social target images. The number of search-target image pairs is 240. As shown,

all the subject groups exhibit a higher coverage value for objects of the same type as the target

image. In addition, the preference for social objects when searching for a social target is stronger

than in the case of non-social targets. This is consistent with the finding in [30]. However, my

results do not show a significant difference between subject groups. In [30], the authors find that

the ASD group shows reduced target-relevant effects at early fixations but not in later fixations.

Considering that the higher values in my method correspond to early fixations, it is possible to

extract the areas for early fixations from the reward map. Future work may take a closer look

at the distribution of reward values in the reward maps.

5.3.2 Effects of Environment Variations

Next, I look at the effects of environmental variations on the performance of MME on scanpaths

from different subject groups. In the previous section, I discovered a relationship between the two

environmental reward functions and the training performance. Here, I additionally investigate

the effects of perturbations on agent actions.

102

Chapter 5. RL for Visual Search 5.3. Experiments on Social and Non-social Visual Search

This part of the experiments trains one MME model for each subject group. There is no

validation split for the dataset. The training lasts 30k steps, and a checkpoint is saved every 2k

steps. For each metric, all the checkpoints are evaluated, and the best performance is reported.

Environmental Noise in Fixations

The environmental noise simulates randomness in the fixations. I implement this noise by

perturbing the agent’s fixation coordinates with two random variables independently sampled

from the normal distribution. The strength of the noise is adjusted by multiplying the random

variables with αnoise ∗ sizesearch,diag, where αnoise is a hyperparameter to be tuned.

I train MME models under different noise strengths from 0.0 to 0.6. For each setting, I repeat

training three times and report the mean values. The error bars are the standard deviation

values. The noise strength of 0.0 corresponds to the default setting, i.e., no noise added. Note

that the environmental noise is added to both training and testing.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Noise strength

0.66

0.68

0.70

0.72

M
ul

tiM
at

ch
-D

ire
ct

io
n

MultiMatch-Direction_Noise strength

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Noise strength

0.88

0.89

0.90

0.91

0.92

0.93

0.94

M
ul

tiM
at

ch
-L

en
gt

h

MultiMatch-Length_Noise strength

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Noise strength

0.83

0.84

0.85

0.86

0.87

0.88

M
ul

tiM
at

ch
-P

os
iti

on

MultiMatch-Position_Noise strength

(c)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Noise strength

0.91

0.92

0.93

0.94

0.95

M
ul

tiM
at

ch
-S

ha
pe

MultiMatch-Shape_Noise strength

(d)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Noise strength

0.26

0.28

0.30

0.32

0.34

0.36

0.38

Le
ve

ns
ht

ei
n

Levenshtein_Noise strength

(e)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Noise strength

260

280

300

320

340

Po
in

t D
is

ta
nc

e

Point Distance_Noise strength

(f)
Amygdala ASD ASDctrl NUS

Figure 5.15: Effect of environmental noise on performances.

Figure 5.15 presents the results under six metrics. It can be inferred that:

• Under all the MultiMatch metrics, the amygdala group generates the lowest score. This

indicates that the corresponding scanpaths are more difficult to replicate by the MME

model.

103

5.3. Experiments on Social and Non-social Visual Search Chapter 5. RL for Visual Search

• Under MultiMatch metrics, the two control groups do not exhibit significant changes in

performance when the noise strength changes. When the noise strength increases, the ASD

group shows a decrease in MultiMatch-direction, and the amygdala group shows an increase

in MultiMatch-shape. Considering that MultiMatch-shape captures the vector differences

and that MultiMatch-direction measures the angular distance, my results imply that (1)

the direction of saccades from the ASD group may be less random than the control groups,

so that add noise brings more harm to the performance, and (2) the shape of scanpaths

from the amygdala group may be more noisy than the other groups.

• Similarly, under the Levenshtein similarity, I observe that the performances of ASD and

the two control groups gradually decrease as the noise strength increases. This is normal

because a stronger noise can make the agent deviate from the expected scanpath with a

higher probability. In contrast, the amygdala group does not exhibit a significant per-

formance decrease. This implies a stronger inherent randomness in the fixations of the

amygdala group.

Revisitation Penalty

In MME, the revisitation penalty is part of the additional environmental reward. A higher

penalty better prevents the agent from fixating on fixated points in the current scanpath. When

there are no revisitations in human scanpaths, a higher revisitation penalty may help accelerate

training. When there are many revisitations in human scanpaths, a high revisitation penalty

will hinder the agent from replicating human behavior. In this test, I test the choice of αrevisit

from 0, 2, 4, 6, 8, 10. The value 10 is the default setting, which, together with regularization,

makes the combined reward always negative for revisitations. The training procedure is the

same as the previous test of environmental noise.

Figure 5.16 presents the performances under six metrics. The results under the point distance

metric show that all subject groups show a slight performance increase when the revisitation

penalty is lowered. This means revisitations exist in human scanpaths, and that allowing revis-

itations in agent scanpaths can make their fixations closer to humans. For the other metrics,

significant results exist for the ASD group. With a smaller revisitation penalty, the MultiMatch-

shape performance increases, and the MultiMatch-direction performance decreases. The changes

in the performances of other groups are not significant. This shows the outstanding sensitivity

104

Chapter 5. RL for Visual Search 5.3. Experiments on Social and Non-social Visual Search

0 2 4 6 8 10
Revisit penalty

0.66

0.68

0.70

0.72

M
ul

tiM
at

ch
-D

ire
ct

io
n

MultiMatch-Direction_Revisit penalty

(a)

0 2 4 6 8 10
Revisit penalty

0.88

0.89

0.90

0.91

0.92

0.93

0.94

M
ul

tiM
at

ch
-L

en
gt

h

MultiMatch-Length_Revisit penalty

(b)

0 2 4 6 8 10
Revisit penalty

0.83

0.84

0.85

0.86

0.87

0.88

M
ul

tiM
at

ch
-P

os
iti

on

MultiMatch-Position_Revisit penalty

(c)

0 2 4 6 8 10
Revisit penalty

0.89

0.90

0.91

0.92

0.93

0.94

M
ul

tiM
at

ch
-S

ha
pe

MultiMatch-Shape_Revisit penalty

(d)

0 2 4 6 8 10
Revisit penalty

0.28

0.30

0.32

0.34

0.36

0.38

Le
ve

ns
ht

ei
n

Levenshtein_Revisit penalty

(e)

0 2 4 6 8 10
Revisit penalty

260

280

300

320

340

Po
in

t D
is

ta
nc

e

Point Distance_Revisit penalty

(f)
Amygdala ASD ASDctrl NUS

Figure 5.16: Effect of revisitation penalty on performances.

of the ASD group to the revisitation penalty. Revisitations in scanpaths from the ASD group

contribute to the scanpath shape while also making it more difficult to replicate the saccade

directions.

Saccade Amplitude Penalty

The saccade amplitude penalty is another environmental reward. A threshold hyperparameter

αamplitude of value 1 means no penalty. A smaller value will encourage the agent to take short

saccades. Therefore, if human scanpaths contain many long saccades, a small αamplitude will

likely decrease the performance.

The histogram of saccade lengths can be explicitly calculated. The contribution of this test

is to understand “what performance can be obtained in imitating humans when the agent is

constrained to make short saccades”. This is a combination of partial observation, other sources

of reward, and similarity metrics.

I test the choice of αamplitude from 1.0, 0.8, 0.7, 0.6, 0.5, 0.4, and 0.3. The value 1.0 is the default

setting. The training procedure is the same as the previous test of environmental noise.

105

5.3. Experiments on Social and Non-social Visual Search Chapter 5. RL for Visual Search

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Saccade amplitude

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

M
ul

tiM
at

ch
-D

ire
ct

io
n

MultiMatch-Direction_Saccade amplitude

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Saccade amplitude

0.88

0.89

0.90

0.91

0.92

0.93

0.94

M
ul

tiM
at

ch
-L

en
gt

h

MultiMatch-Length_Saccade amplitude

(b)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Saccade amplitude

0.83

0.84

0.85

0.86

0.87

0.88

M
ul

tiM
at

ch
-P

os
iti

on

MultiMatch-Position_Saccade amplitude

(c)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Saccade amplitude

0.89

0.90

0.91

0.92

0.93

0.94

M
ul

tiM
at

ch
-S

ha
pe

MultiMatch-Shape_Saccade amplitude

(d)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Saccade amplitude

0.28

0.30

0.32

0.34

0.36

0.38
Le

ve
ns

ht
ei

n
Levenshtein_Saccade amplitude

(e)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Saccade amplitude

260

280

300

320

340

Po
in

t D
is

ta
nc

e

Point Distance_Saccade amplitude

(f)
Amygdala ASD ASDctrl NUS

Figure 5.17: Effect of threshold for saccade penalty on performances.

Figure 5.17 presents the results. For the range of hyperparameters I test, the ASD, ASDctrl, and

NUS groups do not show significant differences in performance under all the metrics considered,

meaning these human scanpaths can be well simulated with short saccades. In contrast, the

performance of the amygdala group is more affected. A larger threshold generates a better

performance under the MultiMatch-direction metric, indicating a contribution of long saccades to

better capture the saccade directions. Although less clear, trends are evident for the MultiMatch-

length and MultiMatch-shape metrics.

In summary, the tests in this section demonstrate outstanding properties of scanpaths from the

ASD group and the amygdala group. The amygdala group displays sensitivity to action noises

and saccade amplitude under certain metrics, while the ASD group is sensitive to action noises

and revisitation penalty under certain metrics.

5.3.3 Memory Load

In reference [30], a test of the effects of cognitive load is performed by comparing the target-

relevant effects on tasks with different numbers of objects in the search images. In this study, I

focus on the memory load and take a more direct and economic method by training predictive

models with different memory capacities and comparing their performances.

106

Chapter 5. RL for Visual Search 5.3. Experiments on Social and Non-social Visual Search

I use a behavior cloning model implemented with an LSTM network. The network consists of

some convolutional layers for the processing of the partial observation and the target image, and

an LSTM layer for capturing historical information. The features extracted by the convolutional

layers are concatenated together and input to the LSTM layer, followed by some fully connected

layers that output the action distribution. I change the size of the LSTM layer to modify the

memory capacity of the network for historical information. A larger size is able to capture more

information.

In this test, I split the scanpaths according to the target image type and subjects and train one

model for each of them. Considering the small number of available scanpaths for each subject,

there is no validation split in the dataset. All the models are trained for the same number of

500 steps. The final checkpoint is used for evaluation. For the size of the LSTM layer, I test the

choices of 25, 50, 100, 200, and 400.

0 100 200 300 400 500
Step

0

1

2

3

4

Lo
ss

(a) LSTM size 25.

0 100 200 300 400 500
Step

0

1

2

3

4

Lo
ss

(b) LSTM size 400.

Figure 5.18: BC-LSTM. Learning curves with different sizes of the LSTM layer.

Figure 5.18 presents the learning curves on the scanpaths targeting non-social objects from the

30th subject. The curves are obtained from LSTM layer sizes of 25 and 400, representing the

two extreme cases. The curves display the loss value, and the shaded regions show the standard

deviation from 3 independent runs. The curves are smoothed in the same way as for Figure

5.11. As shown, the 500 number of steps is appropriate to make the training converge.

I then look at the performances. Figure 5.19 presents the mean performance values with respect

to the LSTM sizes. The curve labels indicate the subject group and the type of target images.

The values are averaged across scanpaths, subjects, and 10 independent trainings. As shown,

there is a consistent increase in performance value when the LSTM size increases, regardless

of the subject group, target type, and the performance metric. This shows that historical

107

5.3. Experiments on Social and Non-social Visual Search Chapter 5. RL for Visual Search

0 100 200 300 400
LSTM size

0.6

0.7

0.8

0.9

Pe
rf

or
m

an
ce

 v
al

ue
Levenshtein

(a)

0 100 200 300 400
LSTM size

0.75

0.80

0.85

0.90

Pe
rf

or
m

an
ce

 v
al

ue

MultiMatch-Direction

(b)

0 100 200 300 400
LSTM size

0.93

0.94

0.95

0.96

Pe
rf

or
m

an
ce

 v
al

ue

MultiMatch-Length

(c)

0 100 200 300 400
LSTM size

0.95

0.96

0.97

Pe
rf

or
m

an
ce

 v
al

ue

MultiMatch-Shape

(d)

0 100 200 300 400
LSTM size

0.90

0.92

0.94

0.96

Pe
rf

or
m

an
ce

 v
al

ue

MultiMatch-Position

(e)
Amygdala-social
Amygdala-nonsocial

ASD-social
ASD-nonsocial

ASDctrl-social
ASDctrl-nonsocial

NUS-social
NUS-nonsocial

Figure 5.19: BC-LSTM. Comparison of performances with different sizes of the LSTM layer.

information is critical to replicating human scanpaths. Additionally, the increase in performance

is weaker for larger LSTM sizes, meaning that there may be a threshold for size that just captures

all historical information.

For a clearer comparison, in Figure 5.20, I plot the performances for the setting where the

LSTM size is 200. The bar lengths are the mean values over training repetitions, subjects,

and scanpaths. The error bars are the deviation over subjects. As shown, the two control

groups exhibit similar performances. The ASD group has lower performance under the Leven-

shtein, MultiMatch-direction, and MultiMatch-position metrics. The amygdala group has lower

performance under all the metrics. Considering that increasing the LSTM size improves the

performance of all the groups, these results imply that a larger LSTM size is needed for the

ASD and amygdala groups to obtain the same level of performance as the control group. That

is, the scanpaths from the amygdala group display a larger memory load than the ASD group

and the control group.

Figure 5.20 displays large standard deviations in performance values. To understand the source

of the deviations, I calculate the deviations over the repetitions of training. Example results

108

Chapter 5. RL for Visual Search 5.3. Experiments on Social and Non-social Visual Search

0.7 0.8 0.9
Performance value

Amygdala

ASD

ASDctrl

NUS

Amygdala

ASD

ASDctrl

NUS

Amygdala

ASD

ASDctrl

NUS

Amygdala

ASD

ASDctrl

NUS

Amygdala

ASD

ASDctrl

NUS

Amygdala

ASD

ASDctrl

NUS
Levenshtein

(a)

0.80 0.85 0.90
Performance value

Amygdala

ASD

ASDctrl

NUS

Amygdala

ASD

ASDctrl

NUS
MultiMatch-Direction

(b)

0.940 0.945 0.950 0.955 0.960
Performance value

Amygdala

ASD

ASDctrl

NUS

Amygdala

ASD

ASDctrl

NUS

Amygdala

ASD

ASDctrl

NUS
MultiMatch-Length

(c)

0.955 0.960 0.965 0.970
Performance value

Amygdala

ASD

ASDctrl

NUS
MultiMatch-Shape

(d)

0.93 0.94 0.95 0.96
Performance value

Amygdala

ASD

ASDctrl

NUS

Amygdala

ASD

ASDctrl

NUS

Amygdala

ASD

ASDctrl

NUS

Amygdala

ASD

ASDctrl

NUS
MultiMatch-Position

(e)

Figure 5.20: Comparison of performances on data from different types of subjects.

are in Table 5.2. As shown, the standard deviations among repetitions are much lower than in

subjects. This shows that the deviations mainly come from the subject differences.

Table 5.2: Comparison of standard deviation values over subject groups and training repetitions.

Group-Metric Mean Std-subject Std-repetition

NUS- Levenshtein 0.8447 0.0864 0.0101
Amygdala-MultiMatch-Length 0.9446 0.0050 0.0024

ASD-Point Distance 128.5935 43.3348 1.9948

A further inspection of the target image types is shown in Figure 5.21. For convenience, I use

straight lines to mark the social-non-social pairs for all subject groups and LSTM sizes. As

shown, for the ASD group and the control groups, the scanpaths under social targets have a

consistently lower performance, meaning that social targets drive a search process that makes

more use of historical information. For the amygdala group, there are a few discrepancies under

the MultiMatch-shape and the MultiMatch-length metrics. This may indicate an abnormality

in the balance between social and nonsocial targets, but may also be due to noise in data and

training.

109

5.3. Experiments on Social and Non-social Visual Search Chapter 5. RL for Visual Search

0.6 0.8 1.0
Performance value

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Levenshtein

(a)

0.7 0.8 0.9
Performance value

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

MultiMatch-Direction

(b)

0.92 0.94 0.96
Performance value

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

MultiMatch-Length

(c)

0.94 0.95 0.96 0.97
Performance value

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

MultiMatch-Shape

(d)

0.875 0.900 0.925 0.950
Performance value

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

Amygdala-social

Amygdala-nonsocial

ASD-social

ASD-nonsocial

ASDctrl-social

ASDctrl-nonsocial

NUS-social

NUS-nonsocial

MultiMatch-Position

(e)
BClstm-25 BClstm-50 BClstm-100 BClstm-200 BClstm-400

Figure 5.21: Comparison of performances on data collected with different types of target images.

5.3.4 Temporal Attention

Another perspective of memory is the temporal attention, which is concerned with the impor-

tance of information at different time-steps. I use the BCtransformer method in the previous

section to extract attention maps from the sequence of recent histories.

The datasets are prepared in the same way as in section 5.3.3. A BCtransformer model is trained

for each subject and social/non-social type of targets. The Transformer I use has three attention

blocks. To extract the attention map, I multiply the attention weights from the attention blocks

sequentially. The attention corresponding to the output is used, which reflects the importance

of each historical observation to the fixation decision. In my setting, the history length is 10, so

the attention map has 10 values. I normalize each attention map by dividing it by the attention

value for the most recent step, so the process values represent the relative importance with

respect to the current observation. I average the attention maps over fixations and subjects to

obtain a summary. Considering that the observation history is padded with placeholders for

early fixations, I summarize the attention maps separately for each length of valid history. For

example, the attention maps of fixations that are at the 6th step of a scanpath are treated as

110

Chapter 5. RL for Visual Search 5.3. Experiments on Social and Non-social Visual Search

one group. The attention maps for fixations at the 10th step or later are treated as one group

because their lengths of valid history are all 10.

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 1.00

0.22 0.22 0.22 0.23 0.22 0.23 0.22 0.22 0.82 1.00

0.31 0.30 0.31 0.30 0.30 0.30 0.31 0.90 0.97 1.00

0.41 0.41 0.39 0.39 0.40 0.40 0.97 0.97 0.95 1.00

0.54 0.52 0.57 0.53 0.53 1.05 1.01 0.95 0.97 1.00

0.74 0.73 0.71 0.73 1.12 1.05 0.96 0.95 0.98 1.00

1.01 1.02 1.05 1.21 1.05 0.96 0.95 0.99 0.97 1.00

1.60 1.50 1.26 1.10 0.97 1.02 0.96 0.94 0.91 1.00

2.60 1.19 0.98 0.84 0.86 0.86 0.81 0.77 0.83 1.00

1.00 0.88 0.84 0.80 0.81 0.82 0.83 0.85 0.92 1.00
0.6

0.8

1.0

1.2

1.4

Amygdala-social-mean

(a)

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 1.00

0.18 0.18 0.18 0.19 0.18 0.18 0.18 0.18 0.82 1.00

0.24 0.25 0.25 0.25 0.25 0.25 0.24 0.88 0.95 1.00

0.33 0.33 0.33 0.32 0.33 0.32 0.94 0.96 0.96 1.00

0.43 0.43 0.43 0.43 0.42 1.00 0.99 0.95 0.95 1.00

0.57 0.58 0.57 0.58 1.06 1.03 0.97 0.94 0.95 1.00

0.81 0.82 0.82 1.14 1.08 0.99 0.94 0.94 0.95 1.00

1.22 1.23 1.18 1.10 0.99 0.93 0.92 0.92 0.93 1.00

2.41 1.27 1.17 1.07 0.96 0.93 0.94 0.95 0.98 1.00

1.01 0.93 0.87 0.85 0.84 0.84 0.86 0.88 0.92 1.00
0.6

0.8

1.0

1.2

1.4

ASD-social-mean

(b)

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 1.00

0.19 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.79 1.00

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.80 0.92 1.00

0.32 0.32 0.33 0.32 0.32 0.32 0.86 0.93 0.94 1.00

0.44 0.43 0.42 0.43 0.44 0.91 0.95 0.95 0.95 1.00

0.58 0.57 0.58 0.58 0.97 0.99 0.97 0.96 0.96 1.00

0.81 0.80 0.80 1.01 1.03 1.00 0.95 0.95 0.95 1.00

1.24 1.22 1.03 1.07 1.03 0.93 0.94 0.94 0.93 1.00

2.43 1.12 1.12 1.10 1.01 1.00 0.95 0.95 0.94 1.00

1.03 0.94 0.89 0.85 0.85 0.84 0.84 0.88 0.92 1.00
0.6

0.8

1.0

1.2

1.4

ASDctrl-social-mean

(c)

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 1.00

0.18 0.17 0.18 0.18 0.17 0.17 0.17 0.17 0.76 1.00

0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.80 0.94 1.00

0.30 0.31 0.31 0.31 0.31 0.31 0.85 0.94 0.96 1.00

0.41 0.42 0.42 0.41 0.41 0.91 0.97 0.97 0.97 1.00

0.57 0.55 0.56 0.56 0.97 1.00 0.99 0.98 0.98 1.00

0.77 0.78 0.79 1.03 1.01 0.99 0.98 0.94 0.96 1.00

1.20 1.20 1.08 1.04 1.05 1.00 0.96 0.96 0.98 1.00

2.22 1.11 1.05 1.02 0.99 0.96 0.91 0.92 0.95 1.00

1.02 0.95 0.92 0.91 0.86 0.85 0.87 0.88 0.94 1.00
0.6

0.8

1.0

1.2

1.4

NUS-social-mean

(d)

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

0.18 0.17 0.18 0.17 0.17 0.17 0.17 0.17 0.17 1.00

0.19 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.82 1.00

0.26 0.26 0.25 0.25 0.26 0.26 0.26 0.87 0.97 1.00

0.35 0.34 0.35 0.34 0.34 0.36 0.97 1.00 1.00 1.00

0.46 0.44 0.45 0.45 0.47 1.04 1.03 0.97 0.97 1.00

0.64 0.60 0.63 0.61 1.11 1.09 1.05 0.98 0.99 1.00

0.86 0.85 0.88 1.26 1.19 1.09 1.02 0.90 1.04 1.00

1.24 1.24 1.24 1.16 1.05 0.97 0.95 0.91 0.95 1.00

2.17 1.26 1.18 1.04 0.94 0.88 0.87 0.84 0.87 1.00

1.06 0.92 0.88 0.81 0.85 0.83 0.83 0.90 0.88 1.00
0.6

0.8

1.0

1.2

1.4

Amygdala-nonsocial-mean

(e)

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 1.00

0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.77 1.00

0.27 0.26 0.27 0.26 0.27 0.27 0.27 0.83 0.96 1.00

0.37 0.37 0.36 0.36 0.36 0.36 0.89 0.97 0.95 1.00

0.50 0.50 0.49 0.48 0.49 0.95 1.01 0.95 0.96 1.00

0.69 0.68 0.68 0.69 1.04 1.06 1.00 0.99 0.95 1.00

0.95 0.96 0.97 1.10 1.12 1.03 0.98 0.96 0.96 1.00

1.47 1.48 1.14 1.12 1.06 1.02 0.93 0.91 0.95 1.00

2.79 1.21 1.16 1.07 1.03 0.97 0.90 0.93 0.93 1.00

1.04 0.97 0.94 0.89 0.87 0.84 0.87 0.86 0.91 1.00
0.6

0.8

1.0

1.2

1.4

ASD-nonsocial-mean

(f)

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 1.00

0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.71 1.00

0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.73 0.93 1.00

0.35 0.36 0.35 0.36 0.35 0.36 0.79 0.95 0.96 1.00

0.46 0.47 0.48 0.48 0.48 0.84 0.98 0.98 0.96 1.00

0.64 0.65 0.66 0.66 0.94 1.03 1.02 0.96 0.96 1.00

0.85 0.88 0.87 0.91 1.04 0.98 0.93 0.90 0.93 1.00

1.38 1.37 1.02 1.13 1.09 1.01 0.97 1.00 1.00 1.00

2.43 1.00 1.13 1.06 0.99 0.92 0.96 0.96 0.92 1.00

1.06 0.99 0.94 0.89 0.90 0.88 0.86 0.87 0.92 1.00
0.6

0.8

1.0

1.2

1.4

ASDctrl-nonsocial-mean

(g)

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 1.00

0.21 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.71 1.00

0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.76 0.94 1.00

0.39 0.39 0.39 0.39 0.40 0.39 0.79 0.92 0.95 1.00

0.54 0.52 0.53 0.52 0.51 0.85 0.95 0.95 0.96 1.00

0.72 0.72 0.72 0.74 0.93 1.00 1.02 0.98 1.00 1.00

0.97 0.95 0.97 0.93 0.98 0.97 0.93 0.94 0.94 1.00

1.44 1.46 0.98 1.02 1.00 0.96 0.94 0.97 0.96 1.00

2.73 1.01 1.03 1.00 0.98 0.95 0.93 0.97 0.97 1.00

0.98 0.95 0.91 0.90 0.84 0.86 0.87 0.84 0.91 1.00
0.6

0.8

1.0

1.2

1.4

NUS-nonsocial-mean

(h)

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.00

0.03 0.02 0.03 0.03 0.03 0.04 0.03 0.03 0.01 0.00

0.05 0.05 0.06 0.05 0.04 0.04 0.05 0.03 0.00 0.00

0.06 0.07 0.04 0.04 0.06 0.04 -0.00 -0.03 -0.04 0.00

0.09 0.09 0.12 0.08 0.06 0.01 -0.02 -0.02 0.00 0.00

0.10 0.13 0.09 0.12 0.01 -0.04 -0.08 -0.03 -0.01 0.00

0.14 0.17 0.17 -0.05 -0.15 -0.13 -0.08 0.08 -0.07 0.00

0.36 0.26 0.02 -0.06 -0.08 0.05 0.01 0.03 -0.03 0.00

0.43 -0.07 -0.20 -0.20 -0.08 -0.02 -0.06 -0.07 -0.04 0.00

-0.07 -0.04 -0.04 -0.01 -0.04 -0.01 -0.00 -0.05 0.04 0.00

0.3

0.2

0.1

0.0

0.1

0.2

0.3
Amygdala-diff-mean

(i)

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

-0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00

-0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.05 0.00

-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.05 -0.01 0.00

-0.03 -0.04 -0.04 -0.04 -0.04 -0.04 0.05 -0.01 0.01 0.00

-0.07 -0.07 -0.06 -0.05 -0.07 0.05 -0.02 0.01 -0.01 0.00

-0.11 -0.10 -0.11 -0.11 0.03 -0.03 -0.03 -0.06 -0.01 0.00

-0.13 -0.14 -0.15 0.04 -0.04 -0.04 -0.04 -0.02 -0.00 0.00

-0.26 -0.25 0.04 -0.02 -0.06 -0.09 -0.01 0.02 -0.02 0.00

-0.38 0.06 0.01 -0.01 -0.07 -0.03 0.04 0.01 0.05 0.00

-0.04 -0.05 -0.06 -0.03 -0.03 -0.01 -0.01 0.02 0.01 0.00

0.3

0.2

0.1

0.0

0.1

0.2

0.3
ASD-diff-mean

(j)

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

-0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.00 0.00

-0.00 -0.00 -0.00 -0.01 -0.00 -0.00 -0.00 -0.00 0.07 0.00

-0.02 -0.02 -0.02 -0.02 -0.01 -0.02 -0.01 0.07 -0.01 0.00

-0.03 -0.03 -0.02 -0.04 -0.03 -0.03 0.07 -0.02 -0.02 0.00

-0.03 -0.04 -0.05 -0.05 -0.04 0.07 -0.03 -0.03 -0.01 0.00

-0.05 -0.08 -0.08 -0.07 0.03 -0.04 -0.05 -0.00 0.01 0.00

-0.04 -0.08 -0.06 0.10 -0.01 0.02 0.02 0.05 0.02 0.00

-0.15 -0.15 0.01 -0.06 -0.05 -0.08 -0.03 -0.06 -0.07 0.00

-0.00 0.12 -0.01 0.03 0.03 0.08 -0.01 -0.00 0.02 0.00

-0.03 -0.05 -0.05 -0.04 -0.05 -0.05 -0.02 0.00 -0.00 0.00

0.3

0.2

0.1

0.0

0.1

0.2

0.3
ASDctrl-diff-mean

(k)

10 9 8 7 6 5 4 3 2 1
History step#

1
2
3
4
5
6
7
8
9

10

H
um

an
 sc

an
pa

th
 le

ng
th

-0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 0.00

-0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 0.05 0.00

-0.07 -0.06 -0.06 -0.06 -0.07 -0.06 -0.06 0.04 -0.01 0.00

-0.09 -0.09 -0.08 -0.08 -0.09 -0.08 0.06 0.02 0.01 0.00

-0.13 -0.11 -0.11 -0.11 -0.10 0.06 0.02 0.02 0.00 0.00

-0.15 -0.17 -0.16 -0.18 0.04 0.00 -0.03 0.00 -0.03 0.00

-0.20 -0.18 -0.17 0.10 0.04 0.02 0.05 0.00 0.02 0.00

-0.24 -0.25 0.10 0.02 0.04 0.04 0.02 -0.00 0.02 0.00

-0.51 0.10 0.02 0.03 0.01 0.01 -0.02 -0.05 -0.01 0.00

0.04 -0.00 0.01 0.01 0.02 -0.01 -0.00 0.04 0.03 0.00

0.3

0.2

0.1

0.0

0.1

0.2

0.3
NUS-diff-mean

(l)
Amygdala ASD ASDctrl NUS

Figure 5.22: Visualizations of importance values for historical observations. Upper row: Social
target. Middle row: Non-social target. Lower row: Difference. Columns: Amygdala, ASD,
ASDctrl, and NUS.

This test is repeated 10 times, and the mean values are plotted in Figure 5.22. For each plot

in Figure 5.22(a)-(h), the attention maps are plotted horizontally. The first row shows the

attention map for fixations at the first step of a scanpath. The values, from left to right, are the

normalized importance values for old to new observations. The rightmost value corresponds to

the latest observation, so it has a value of 1 after normalization. The other values are smaller

than 1, which is normal because they correspond to placeholders in the history. Similarly, the

rows, from top to bottom, respectively show the attention map for fixations at the second to

ninth steps and the rest steps in a scanpath. For each plot, the lower right area is effective.

111

5.4. Chapter Summary Chapter 5. RL for Visual Search

Table 5.3: Average importance value for the first observation in history.

Subject type Amygdala ASD ASDctrl NUS

Social target 1.051 1.030 0.951 0.952
Non-social target 1.062 0.997 0.901 0.894

The columns of Figure 5.22 show results from the amygdala, ASD, ASDctrl, and NUS control

groups. The first row (a-d) shows the results on scanpaths with social target images. The

second row (e-h) shows the results for non-social target images. To better show the difference

in temporal attention between social and non-social targets, the differences between the social

results and the non-social results are shown in the third row (i-l). For ease of comparison, the

figures in each row share the same color map.

Based on Figure 5.22, the following discussions can be made:

• In plots (a-h), there is a dark area in the middle of the lower right part. This shows that

larger importance values are assigned to the early and late observations in the history.

This is consistent for all subject groups and target image types.

• There is a difference between subject groups in the importance values for early observations

in history. Specifically, for the first observation in history, I average their normalized

importance values (which are located at the anti-diagonal of the plots) and present them in

Table 5.3. As shown, the control groups have similar values, while the ASD and amygdala

groups have larger values. This indicates that the scanpaths from the ASD group and the

amygdala group depend more on the first observations in history.

• The importance values for the first observations are generally higher under social target

images than non-social ones. This holds for the ASD, ASDctrl, and NUS groups, indicating

that social targets demand more attention to early observations. This does not hold for

the amygdala group, where the values for nonsocial settings are similar to those for social

settings. This may reveal excessive attention to early observations under non-social targets

in the amygdala group.

5.4 Chapter Summary

In this chapter, I applied the RL method to visual search modeling tasks. I developed the MME

method for extracting an agent-independent reward map for a better comparison of behavior

112

Chapter 5. RL for Visual Search 5.4. Chapter Summary

motivations. Results showed that MME can achieve a comparable performance to standard

methods, and the environmental reward function in MME has the potential to reflect properties

of visual search behavior. The application of SVPG showed that SVPG can solve the learning

task under MME and replicate human behaviors.

Furthermore, I applied the MME method to the analysis of spatial attention, saccade amplitude,

revisitation, and randomness of the ASD dataset. The reward maps extracted by MME were

used to calculate the accumulated coverage of social and non-social objects under social and

non-social target images. The environmental reward functions in MME were tuned to compare

their effects on the learning performance of different subject groups. Some settings obtained

different results for the ASD and amygdala group than the control groups, meanwhile obtaining

similar results for the two control groups, which validates the comparison. I also included two

tests based on behavior cloning models to analyze temporal attention and memory load. Some

of my findings are consistent with previous studies, while others provide new insights into the

visual search behavior patterns.

113

Chapter 6

Conclusion and Discussion

6.1 Conclusion

In this thesis, I studied the design of novel network models and learning methods for RL tasks. In

addition to examining my models and methods on standard benchmark RL tasks, I also applied

the proposed techniques to real-life human visual search behaviors to understand the cognitive

mechanisms of visual search. The models and methods proposed in this thesis are inspired by

experimental findings from neuroscience. In return, I explored using my proposed methodology

to study human visual behaviors for both understanding the mechanisms of cognitive behaviors

and revealing potential biomarkers for certain brain disorders.

First, I proposed SVPG, a new R-STDP-based SNN RL method. SVPG is designed for the

RWTA network and has the advantage of being biologically plausible. Experiments show that

SVPG can solve a series of standard RL tasks and an IRL-based visual search modeling task.

SVPG also provides better inherent robustness to some types of input noise, network parameter

noise, and environmental variations in the inverted pendulum task. For computation costs,

SVPG is slower than BP in inference on GPU and faster in optimization. The memory cost and

sample efficiency of SVPG are similar to BP, the most popular method for training ANNs. All

parts of the RWTA network contribute to the performance. Other properties of SVPG include

less selectivity in hidden parts than the output after training, and relative sparsity in weights

compared to BP. Since SVPG only relies on the network, it can be combined with a wide range

of existing RL techniques, including environment augmentation, reward engineering, etc.

114

Chapter 6. Conclusion and Discussion 6.1. Conclusion

For the real-life visual search task, I additionally proposed a new IRL method, MME, that fea-

tures decoupling the reward function representation into an agent-independent reward map and

some stimulus-independent environmental reward functions. MME has the advantage of facili-

tating the comparison of the attractiveness of different parts of the stimulus. Experiments show

that MME can achieve comparable performances to standard methods on standard datasets.

The core designs in MME are shown to contribute to the performance. The environmental

reward functions in MME facilitate the investigation of high-level properties of scanpaths. Ap-

plication of MME to an ASD dataset confirms some of the previous findings, while also providing

some new insights about the eye movement behaviors of people with ASD or amygdala lesions.

The success of SVPG in solving challenging RL tasks indicates that R-STDP methods, although

constrained to local learning rules, are capable of achieving comparable performances to stan-

dard backpropagation-based methods. This also reveals the potential of biologically plausible

methods. In this thesis, the key to scaling up the R-STDP methods is the network structure. By

upgrading a three-layer network to a fully-connected network, the performance increased. This,

to some extent, conforms to the trend in the field of deep learning, where network structures

such as convolutional layers [4] and attention blocks [6] bring improvements to the overall per-

formance. In addition, my results further demonstrate the effectiveness of variational inference,

as adopted by existing works [47,64], in deriving R-STDP learning rules for SNNs.

In the application to visual search, a main finding is that human scanpaths, as represented by

the three visual search datasets used in this thesis, can be modeled by two separate drives, i.e.,

a fixation-independent motivation map, and stimuli-independent environment rules (amplitude

penalty and revisitation penalty). It is based on this finding that my method can be applied

to extract motivation maps for understanding social and non-social visual search patterns. In

addition, the successful application of SVPG to this task indicates that the visual search behavior

can be replicated by a biologically plausible model. Further, in the analysis of the ASD dataset,

differences in the experiment and control groups are noticed, which shows the effectiveness of

the static motivation representations extracted by my method.

115

6.2. Limitations and Future Work Chapter 6. Conclusion and Discussion

6.2 Limitations and Future Work

Here I summarize the limitations of the methods and experiments in this thesis and discuss the

potential future work. For clarity, they are grouped into the SVPG part, the visual search part,

and the analysis of social and non-social behavior.

In the design of the RWTA network and SVPG method:

• Neuron model. In the selection of the excitatory postsynaptic potential κ, I used the

rectangle function due to its simplicity. Future work may consider the double exponential

function, which is more common in the literature [110, 111]. For the encoding method,

I used the rate coding due to its popularity. Other encoding methods such as temporal

coding may preserve more details in the spike trains. Future work may investigate how to

adapt the SVPG method to other types of encoding methods.

• Network topology. The current design of the RWTA network has a fixed topology.

Previous works have investigated methods for evolving the structure [119, 120] to obtain

better topologies in training. Future work may investigate this direction to further improve

the task performance. In addition, I assumed that the action space of the RL task contains

a finite number of actions. This makes it possible to assign an action neuron for each action.

However, this design of the RWTA network does not suit RL tasks with a continuous

action space. Future work may investigate adaptations, such as parameterized probability

distributions, to these tasks.

• Learning method. SVPG is slightly beyond the definition of STDP, in which Wpre and

Wpost are constants with reference to neuronal activities. In SVPG, they are replaced by

vi and vj , which are neuronal activities. Nevertheless, SVPG is only based on local signals,

so it is more biologically plausible than backpropagation-based methods. In addition, the

PPO-based implementation is not fully biologically plausible. This is due to the policy

checkpoint required by the PPO algorithm to constrain the size of optimization steps. The

checkpoint contains information beyond local signals. Note that this limitation is specific

to the base RL algorithms. The REINFORCE-based implementation does not have this

limitation.

• Hardware implementation. Experiments in this thesis indicate that SVPG has a slow

inference speed. Since SNNs are event-based, the implementation on neuromorphic hard-

116

Chapter 6. Conclusion and Discussion 6.2. Limitations and Future Work

ware is a promising direction for improving the speed. It will also reveal the energy

consumption of the SVPG method.

• Cause of robustness. In my experiments, I observed that SVPG produces a better

robustness to various types of perturbations than the other methods. Although the random

firing process and the noisy hidden WTA circuits are proposed as possible explanations, the

true reason for the advantage in robustness is unknown. Future work may have a deeper

look at the network and training process to investigate how the robustness is produced.

In the design of the IRL method for visual search scanpath modeling:

• Visual search task modeling. In this thesis, the scanpath prediction task forces the

agent to carry out a scanpath with the same length as humans. That is, the termina-

tion of the visual search process is excluded from the prediction task. Additionally, the

durations of fixations are also neglected. Future work may take this information into con-

sideration and build a more comprehensive scanpath prediction model, which may offer

more insights about behavior patterns. For the partial observation of the agent, I used

the cropped portions of the original search images. This simple setting can be easily ap-

plied to different datasets, but also makes the dimension of the state space high. Due to

the small size of visual search datasets, the generalization to the testing set is difficult.

Previous studies often use a feature extractor to process the search image [55, 60], which

may improve the generalization of the trained models. Future work may adopt feature

extractors to improve the prediction performance. For the space of fixation actions, the

current model uses a coarse grid of action space. Making the grid finer may change the

effects of the environmental reward function such as the revisitation penalty, and change

the task performance of MME. Considering that a larger grid size, or no discretization at

all, leads to a large action space and thus makes training more difficult, future work may

also introduce parameterized distributions to represent the agent policy.

• Ablation study. In my design of the IRL method, I adopted the guided cost learning

method [161] and removed one of its regularizations that aims to reduce high-frequency

variations. Future work may investigate its effect on learning performance. Also, the

effects of two minor designs, i.e., policy smoothing and greedy policy for sampling, can be

investigated in future work.

117

6.2. Limitations and Future Work Chapter 6. Conclusion and Discussion

• Experiments. In the experiments, a shrunk version of the COCO-Search18 and the IVSN

datasets was used to save computation cost. Future work may test the methods on the

full set of these datasets to get more accurate results. In the implementation of baseline

methods such as GAIL, the default hyperparameters were used in training. This may not

generate the best possible performance on certain datasets. Future work may try different

hyperparameters to get a more comprehensive understanding of the performances. In

addition, current results are based on three repetitions of training. Considering the noise

in task performances, more repetitions can help generate more reliable results.

• Applications. This thesis applies the visual search model to pattern analysis of ASD-

related disorders. Since the motivation extraction does not rely on this specific scenario,

it is possible for future work to apply my proposed technique to other scenarios such as

driver assistance.

In the analysis of social and non-social visual search behavior patterns:

• When generating the motivation representations, I use the final checkpoint of MME in

training. Although this makes a fair comparison, the generalization of the model on the

scanpath data can be different for each subject group. When a subject group has a small

number of scanpaths, the corresponding model may not generalize well to the unseen search

and target images, thus affecting the comparison results. Considering the small number

of scanpaths available, future work may adopt techniques that help improve the general-

ization. For example, using a pre-trained feature extractor to reduce the dimensionality

of the observations, and pre-training the models on the entire scanpath dataset before

fine-tuning them on the specific subject groups.

• In the investigation of target-conditioned spatial attention, I did not distinguish early

and late fixations in scanpaths. My results do not show a significant difference between

subject groups, which is different from [30], where the authors find that the ASD group

shows reduced target-relevant effects at early fixations but not in later fixations. Future

work may take a closer look at the temporal distribution of reward values in the reward

maps to have a deeper understanding of this behavioral pattern.

118

Bibliography

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT press, 2018.

[2] C. J. C. H. Watkins and P. Dayan, “Q-Learning,” Machine Learning, vol. 8, pp. 279–292, 1992.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,

“Playing Atari with Deep Reinforcement Learning,” arXiv:1312.5602, Dec. 2013.

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied to Document

Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[5] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8,

pp. 1735–1780, 1997.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-

sukhin, “Attention is All you Need,” in Advances in Neural Information Processing Systems, vol. 30.

Curran Associates, Inc., 2017.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-

miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,

D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-Level Control Through Deep Rein-

forcement Learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[8] G. Lample and D. S. Chaplot, “Playing FPS Games with Deep Reinforcement Learning,” Proceed-

ings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, Feb. 2017.

[9] O. M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki, A. Petron,

M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and

W. Zaremba, “Learning Dexterous in-Hand Manipulation,” The International Journal of Robotics

Research, vol. 39, no. 1, pp. 3–20, Jan. 2020.

[10] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,

M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and

D. Hassabis, “Mastering the Game of Go Without Human Knowledge,” Nature, vol. 550, no. 7676,

pp. 354–359, Oct. 2017.

119

BIBLIOGRAPHY BIBLIOGRAPHY

[11] L. Wu, F. Tian, T. Qin, J. Lai, and T.-Y. Liu, “A Study of Reinforcement Learning for Neural

Machine Translation,” in Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, 2018, pp. 3612–3621.

[12] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep Reinforcement Learning

with Successor Features for Navigation Across Similar Environments,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2017, pp. 2371–2378.

[13] H. Gao, Z. Yang, X. Su, T. Tan, and F. Chen, “Adaptability Preserving Domain Decomposi-

tion for Stabilizing Sim2Real Reinforcement Learning,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems. IEEE, Oct. 2020, pp. 4403–4410.

[14] H. Li, Q. Zhang, and D. Zhao, “Deep Reinforcement Learning-Based Automatic Exploration for

Navigation in Unknown Environment,” IEEE Transactions on Neural Networks and Learning Sys-

tems, pp. 2064–2076, 2019.

[15] H. Quan, Y. Li, and Y. Zhang, “A Novel Mobile Robot Navigation Method Based on Deep Re-

inforcement Learning,” International Journal of Advanced Robotic Systems, vol. 17, no. 3, May

2020.

[16] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A Survey of Deep Reinforcement Learning in Video

Games,” arXiv:1912.10944, Dec. 2019.

[17] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and A. C. Knoll, “A Survey of Robotics Control

Based on Learning-Inspired Spiking Neural Networks,” Frontiers Neurorobotics, vol. 12, 2018, art.

no. 35.

[18] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven Exploration by Self-

supervised Prediction,” in Proceedings of the 34th International Conference on Machine Learning.

PMLR, 2017, pp. 2778–2787.

[19] P.-L. Bacon, J. Harb, and D. Precup, “The Option-Critic Architecture,” in Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence, 2017, pp. 1726–1734.

[20] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain Randomization for

Transferring Deep Neural Networks from Simulation to the Real World,” in IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, Sep. 2017, pp. 23–30.

[21] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn, “Learning to

Adapt in Dynamic, Real-World Environments through Meta-Reinforcement Learning,” in Interna-

tional Conference on Learning Representations, 2019.

[22] K. Wang, B. Kang, J. Shao, and J. Feng, “Improving Generalization in Reinforcement Learning

with Mixture Regularization,” in Advances in Neural Information Processing Systems, vol. 33.

Curran Associates, Inc., 2020, pp. 7968–7978.

120

BIBLIOGRAPHY BIBLIOGRAPHY

[23] C. Tessler, Y. Efroni, and S. Mannor, “Action Robust Reinforcement Learning and Applications

in Continuous Control,” in Proceedings of the 36th International Conference on Machine Learning.

PMLR, May 2019, pp. 6215–6224.

[24] Z. Liu, J. Lu, J. Xuan, and G. Zhang, “Deep Reinforcement Learning in Nonstationary Environ-

ments With Unknown Change Points,” IEEE Transactions on Cybernetics, pp. 5191–5204, 2024.

[25] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,

“Asynchronous Methods for Deep Reinforcement Learning,” in Proceedings of The 33rd Interna-

tional Conference on Machine Learning. PMLR, Jun. 2016, pp. 1928–1937.

[26] M. Chahine, R. Hasani, P. Kao, A. Ray, R. Shubert, M. Lechner, A. Amini, and D. Rus, “Robust

Flight Navigation Out of Distribution with Liquid Neural Networks,” Science Robotics, vol. 8,

no. 77, p. eadc8892, Apr. 2023.

[27] J. Wu, C. Xu, X. Han, D. Zhou, M. Zhang, H. Li, and K. C. Tan, “Progressive Tandem Learning

for Pattern Recognition With Deep Spiking Neural Networks,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7824–7840, Nov. 2022.

[28] A. Suhaimi, A. W. H. Lim, X. W. Chia, C. Li, and H. Makino, “Representation Learning in the

Artificial and Biological Neural Networks Underlying Sensorimotor Integration,” Science Advances,

vol. 8, no. 22, p. eabn0984, Jun. 2022.

[29] Y. Zeng, Y. Zhao, T. Zhang, D. Zhao, F. Zhao, and E. Lu, “A Brain-Inspired Model of Theory of

Mind,” Frontiers in Neurorobotics, vol. 14, Aug. 2020, art. no. 60.

[30] S. Wang, J. Xu, M. Jiang, Q. Zhao, R. Hurlemann, and R. Adolphs, “Autism Spectrum Disorder,

but Not Amygdala Lesions, Impairs Social Attention in Visual Search,” Neuropsychologia, vol. 63,

pp. 259–274, Oct. 2014.

[31] D. Patel, H. Hazan, D. J. Saunders, H. T. Siegelmann, and R. Kozma, “Improved Robustness of

Reinforcement Learning Policies Upon Conversion to Spiking Neuronal Network Platforms Applied

to Atari Breakout Game,” Neural Networks, vol. 120, pp. 108–115, Dec. 2019.

[32] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, and W. Maass, “A Solution

to the Learning Dilemma for Recurrent Networks of Spiking Neurons,” Nature Communications,

vol. 11, no. 1, Dec. 2020, art. no. 3625.

[33] A. Yanguas-Gil, “Coarse Scale Representation of Spiking Neural Networks: Backpropagation

Through Spikes and Application to Neuromorphic Hardware,” in International Conference on

Neuromorphic Systems. ACM, Jul. 2020, pp. 1–7.

[34] N. Frémaux and W. Gerstner, “Neuromodulated Spike-Timing-Dependent Plasticity, and Theory

of Three-Factor Learning Rules,” Frontiers in Neural Circuits, vol. 9, Jan. 2016, art. no. 85.

121

BIBLIOGRAPHY BIBLIOGRAPHY

[35] M. Yuan, X. Wu, R. Yan, and H. Tang, “Reinforcement Learning in Spiking Neural Networks with

Stochastic and Deterministic Synapses,” Neural Computation, vol. 31, no. 12, pp. 2368–2389, 2019.

[36] G. Bellec, F. Scherr, E. Hajek, D. Salaj, R. Legenstein, and W. Maass, “Biologically In-

spired Alternatives to Backpropagation Through Time for Learning in Recurrent Neural Nets,”

arXiv:1901.09049, 2019.

[37] A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. P. Maguire, and T. M. McGinnity, “A Review

of Learning in Biologically Plausible Spiking Neural Networks,” Neural Networks, vol. 122, pp.

253–272, 2020.

[38] H. Ghaemi, E. Mirzaei, M. Nouri, and S. R. Kheradpisheh, “BioLCNet: Reward-Modulated Locally

Connected Spiking Neural Networks,” in International Online & Onsite Conference on Machine

Learning, Optimization, and Data Science, 2022, pp. 564–578.

[39] Z. Bing, C. Meschede, K. Huang, G. Chen, F. Rohrbein, M. Akl, and A. Knoll, “End to End

Learning of Spiking Neural Network Based on R-STDP for a Lane Keeping Vehicle,” in IEEE

International Conference on Robotics and Automation, 2018, pp. 4725–4732.

[40] M. Pfeiffer and T. Pfeil, “Deep Learning with Spiking Neurons: Opportunities and Challenges,”

Frontiers in Neuroscience, vol. 12, 2018, art. no. 774.

[41] A. Sboev, D. Vlasov, R. Rybka, and A. Serenko, “Spiking Neural Network Reinforcement Learning

Method Based on Temporal Coding and STDP,” Procedia Computer Science, vol. 145, pp. 458–463,

Jan. 2018.

[42] Z. Bing, Z. Jiang, L. Cheng, C. Cai, K. Huang, and A. C. Knoll, “End to End Learning of a Multi-

Layered SNN Based on R-STDP for a Target Tracking Snake-Like Robot,” in IEEE International

Conference on Robotics and Automation, 2019, pp. 9645–9651.

[43] H. Asgari, B. M.-N. Maybodi, M. Payvand, and M. R. Azghadi, “Low-Energy and Fast Spiking

Neural Network For Context-Dependent Learning on FPGA,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 67, no. 11, pp. 2697–2701, Nov. 2020.

[44] T. Wunderlich, A. F. Kungl, E. Müller, A. Hartel, Y. Stradmann, S. A. Aamir, A. Grübl, A. He-

imbrecht, K. Schreiber, D. Stöckel, C. Pehle, S. Billaudelle, G. Kiene, C. Mauch, J. Schemmel,

K. Meier, and M. A. Petrovici, “Demonstrating Advantages of Neuromorphic Computation: A

Pilot Study,” Frontiers in Neuroscience, vol. 13, Mar. 2019, art. no. 260.

[45] N. Frémaux, H. Sprekeler, and W. Gerstner, “Reinforcement Learning Using a Continuous Time

Actor-Critic Framework with Spiking Neurons,” PLoS Computational Biology, vol. 9, no. 4, 2013,

art. no. e1003024.

122

BIBLIOGRAPHY BIBLIOGRAPHY

[46] S. Chung and R. Kozma, “Reinforcement Learning with Feedback-modulated TD-STDP,”

arXiv:2008.13044, Aug. 2020.

[47] S. Guo, “State and Action Abstraction in Reinforcement Learning,” Ph.D. dissertation, Tsinghua

University, May 2021.

[48] A. Borji and L. Itti, “State-of-the-Art in Visual Attention Modeling,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 35, no. 1, pp. 185–207, Jan. 2013.

[49] Z. Yang, S. Mondal, S. Ahn, G. Zelinsky, M. Hoai, and D. Samaras, “Predicting Human Attention

using Computational Attention,” arXiv:2303.09383, Apr. 2023.

[50] M. Zhang, J. Feng, K. T. Ma, J. H. Lim, Q. Zhao, and G. Kreiman, “Finding Any Waldo with

Zero-Shot Invariant and Efficient Visual Search,” Nature Communications, vol. 9, no. 1, Sep. 2018,

art. no. 3730.

[51] S. K. Gupta, M. Zhang, C.-C. Wu, J. M. Wolfe, and G. Kreiman, “Visual Search Asymmetry: Deep

Nets and Humans Share Similar Inherent Biases,” in Advances in Neural Information Processing

Systems, vol. 34. Curran Associates, Inc., 2021, pp. 6946–6959.

[52] S. Mondal, Z. Yang, S. Ahn, D. Samaras, G. Zelinsky, and M. Hoai, “Gazeformer: Scalable, Effective

and Fast Prediction of Goal-Directed Human Attention,” in IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Jun. 2023, pp. 1441–1450.

[53] M. Xu, Y. Song, J. Wang, M. Qiao, L. Huo, and Z. Wang, “Predicting Head Movement in Panoramic

Video: A Deep Reinforcement Learning Approach,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 41, no. 11, pp. 2693–2708, Nov. 2019.

[54] X. Chen, M. Jiang, and Q. Zhao, “Predicting Human Scanpaths in Visual Question Answering,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,

pp. 10 876–10 885.

[55] Z. Yang, L. Huang, Y. Chen, Z. Wei, S. Ahn, G. J. Zelinsky, D. Samaras, and M. Hoai, “Predicting

Goal-Directed Human Attention Using Inverse Reinforcement Learning,” in IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2020, pp. 190–199.

[56] X. Chen, L. Yao, X. Wang, A. Sun, and Q. Z. Sheng, “Generative Adversarial Reward Learn-

ing for Generalized Behavior Tendency Inference,” IEEE Transactions on Knowledge and Data

Engineering, vol. 35, no. 10, pp. 9878–9889, Oct. 2023.

[57] K. Zhang, G. Tong, and X. Zhang, “Imitating Human Selective Attention Using Dual Policy Net-

work for Scanpath Prediction,” in IEEE International Conference on Acoustics, Speech and Signal

Processing, Apr. 2025, pp. 1–5.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[58] S. Mathe and C. Sminchisescu, “Action from Still Image Dataset and Inverse Optimal Control to

Learn Task Specific Visual Scanpaths,” in Advances in Neural Information Processing Systems,

vol. 26. Curran Associates, Inc., 2013.

[59] Z. Yang, S. Mondal, S. Ahn, G. Zelinsky, M. Hoai, and D. Samaras, “Target-Absent Human

Attention,” in Computer Vision – ECCV 2022. Springer Nature Switzerland, 2022, pp. 52–68.

[60] S. Chakraborty, Z. Wei, C. Kelton, S. Ahn, A. Balasubramanian, G. J. Zelinsky, and D. Samaras,

“Predicting Visual Attention in Graphic Design Documents,” IEEE Transactions on Multimedia,

vol. 25, pp. 4478–4493, 2022.

[61] Y. Zhou, D. Han, and Y. Yu, “Energy-Efficient Visual Search by Eye Movement and Low-Latency

Spiking Neural Network,” arXiv:2310.06578, Oct. 2023.

[62] Z. Yu, S. Guo, F. Deng, Q. Yan, K. Huang, J. K. Liu, and F. Chen, “Emergent Inference of Hidden

Markov Models in Spiking Neural Networks Through Winner-Take-All,” IEEE Transactions on

Cybernetics, vol. 50, no. 3, pp. 1347–1354, Mar. 2020.

[63] S. Guo, Z. Yu, F. Deng, X. Hu, and F. Chen, “Hierarchical Bayesian Inference and Learning in

Spiking Neural Networks,” IEEE Transactions on Cybernetics, vol. 49, no. 1, pp. 133–145, Jan.

2019.

[64] H. Jang, N. Skatchkovsky, and O. Simeone, “VOWEL: A Local Online Learning Rule for Recur-

rent Networks of Probabilistic Spiking Winner-Take-All Circuits.” in International Conference on

Pattern Recognition, 2020, pp. 4597–4604.

[65] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization

Algorithms,” arXiv:1707.06347, 2017.

[66] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST Database of Handwritten Digits,” 1998,

http://yann.lecun.com/exdb/mnist/.

[67] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,

“OpenAI Gym,” arXiv:1606.01540, 2016.

[68] M. Wydmuch, M. Kempka, and W. Jaśkowski, “ViZDoom Competitions: Playing Doom from

Pixels,” IEEE Transactions on Games, vol. 11, no. 3, pp. 248–259, Sep. 2019.

[69] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu,

A. Gupta, and A. Farhadi, “AI2-THOR: An Interactive 3D Environment for Visual AI,”

arXiv:1712.05474, Dec. 2017.

[70] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi, J. Salvador, D. Schwenk,

E. VanderBilt, M. Wallingford, L. Weihs, M. Yatskar, and A. Farhadi, “RoboTHOR: An Open

124

BIBLIOGRAPHY BIBLIOGRAPHY

Simulation-to-Real Embodied AI Platform,” in IEEE/CVF Conference on Computer Vision and

Pattern Recognition, Jun. 2020, pp. 3161–3171.

[71] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A Versatile and Scalable Robot Simulation

Framework,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp.

1321–1326.

[72] C. Li, R. Chen, C. Moutafis, and S. Furber, “Robustness to Noisy Synaptic Weights in Spiking

Neural Networks,” in International Joint Conference on Neural Networks, Jul. 2020, pp. 1–8.

[73] C. A. Manrique Escobar, C. M. Pappalardo, and D. Guida, “A Parametric Study of a Deep Rein-

forcement Learning Control System Applied to the Swing-Up Problem of the Cart-Pole,” Applied

Sciences, vol. 10, no. 24, Jan. 2020, art. no. 9013.

[74] Z. Yang, S. Guo, Y. Fang, Z. Yu, and J. K. Liu, “Spiking Variational Policy Gradient for Brain In-

spired Reinforcement Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 47, no. 3, pp. 1975–1990, 2024.

[75] R. J. Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement

Learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, May 1992.

[76] J. A. Boyan, “Least-Squares Temporal Difference Learning,” in Proceedings of the Sixteenth Inter-

national Conference on Machine Learning, 1999, pp. 49–56.

[77] T. J. Walsh, I. Szita, C. Diuk, and M. L. Littman, “Exploring Compact Reinforcement-Learning

Representations with Linear Regression,” in Proceedings of the Twenty-Fifth Conference on Un-

certainty in Artificial Intelligence. AUAI Press, Jun. 2009, pp. 591–598.

[78] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double Q-Learning,”

in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 2094–2100.

[79] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust Region Policy Optimization,”

in Proceedings of the 32nd International Conference on Machine Learning. PMLR, 2015, pp. 1889–

1897.

[80] S. Zhang and R. S. Sutton, “A Deeper Look at Experience Replay,” arXiv:1712.01275, Apr. 2018.

[81] A. Heuillet, F. Couthouis, and N. Díaz-Rodríguez, “Explainability in Deep Reinforcement Learn-

ing,” Knowledge-Based Systems, vol. 214, Feb. 2021, art. no. 106685.

[82] N. Justesen and S. Risi, “Automated Curriculum Learning by Rewarding Temporally Rare Events,”

in IEEE Conference on Computational Intelligence and Games, 2018, pp. 1–8.

[83] D. Ha and J. Schmidhuber, “World Models,” arXiv:1803.10122, Mar. 2018.

125

BIBLIOGRAPHY BIBLIOGRAPHY

[84] A. Anand, E. Racah, S. Ozair, Y. Bengio, M.-A. Côté, and R. D. Hjelm, “Unsupervised State

Representation Learning in Atari,” in Advances in Neural Information Processing Systems, vol. 32.

Curran Associates, Inc., 2019.

[85] T. Sadamoto, A. Chakrabortty, and J.-i. Imura, “Fast Online Reinforcement Learning Control

Using State-Space Dimensionality Reduction,” IEEE Transactions on Control of Network Systems,

vol. 8, no. 1, pp. 342–353, Mar. 2021.

[86] O. Nachum, H. Tang, X. Lu, S. Gu, H. Lee, and S. Levine, “Why Does Hierarchy (Sometimes)

Work So Well in Reinforcement Learning?” arXiv:1909.10618, Dec. 2019.

[87] T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman, “Deep Successor Reinforcement Learn-

ing,” arXiv:1606.02396, Jun. 2016.

[88] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-Real Transfer of Robotic

Control with Dynamics Randomization,” in IEEE International Conference on Robotics and Au-

tomation, May 2018, pp. 3803–3810.

[89] C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for Fast Adaptation of Deep

Networks,” in Proceedings of the 34th International Conference on Machine Learning. PMLR,

Jul. 2017, pp. 1126–1135.

[90] I. Adamski, R. Adamski, T. Grel, A. Jędrych, K. Kaczmarek, and H. Michalewski, “Distributed

Deep Reinforcement Learning: Learn How to Play Atari Games in 21 Minutes,” in International

Conference on High Performance Computing. Springer, 2018, pp. 370–388.

[91] M. A. Issa, H. Chen, J. Wang, and M. Imani, “CyberRL: Brain-Inspired Reinforcement Learn-

ing for Efficient Network Intrusion Detection,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 44, no. 1, pp. 241–250, Jan. 2025.

[92] S. R. Razavi Rohani, S. Hedayatian, and M. S. Baghshah, “BIMRL: Brain Inspired Meta Rein-

forcement Learning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,

Oct. 2022, pp. 9048–9053.

[93] A. Ororbia and A. Mali, “Active Predictive Coding: Brain-Inspired Reinforcement Learning for

Sparse Reward Robotic Control Problems,” in IEEE International Conference on Robotics and

Automation, May 2023, pp. 3015–3021.

[94] S. Schmidgall, R. Ziaei, J. Achterberg, L. Kirsch, S. P. Hajiseyedrazi, and J. Eshraghian, “Brain-

Inspired Learning in Artificial Neural Networks: A Review,” APL Machine Learning, vol. 2, no. 2,

May 2024, art. no. 021501.

[95] J. Campbell, “Considerations of Biological Plausibility in Deep Learning,” Cornell Undergraduate

Research Journal, vol. 1, no. 1, pp. 4–12, Apr. 2022.

126

BIBLIOGRAPHY BIBLIOGRAPHY

[96] B. Illing, W. Gerstner, and J. Brea, “Biologically Plausible Deep Learning — But How Far Can

We Go with Shallow Networks?” Neural Networks, vol. 118, pp. 90–101, Oct. 2019.

[97] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep Learning in

Spiking Neural Networks,” Neural Networks, vol. 111, pp. 47–63, Mar. 2019.

[98] Y. Hao, X. Huang, M. Dong, and B. Xu, “A Biologically Plausible Supervised Learning Method

for Spiking Neural Networks Using the Symmetric STDP Rule,” Neural Networks, vol. 121, pp.

387–395, Jan. 2020.

[99] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going Deeper in Spiking Neural Networks:

VGG and Residual Architectures,” Frontiers in Neuroscience, vol. 13, Mar. 2019, art. no. 95.

[100] Q. T. Pham, T. Q. Nguyen, P. C. Hoang, Q. H. Dang, D. M. Nguyen, and H. H. Nguyen, “A

Review of SNN Implementation on FPGA,” in International Conference on Multimedia Analysis

and Pattern Recognition, 2021, pp. 1–6.

[101] A. L. Hodgkin and A. F. Huxley, “A Quantitative Description of Membrane Current and Its

Application to Conduction and Excitation in Nerve,” The Journal of Physiology, vol. 117, no. 4,

pp. 500–544, 1952.

[102] E. M. Izhikevich, “Simple Model of Spiking Neurons,” IEEE Transactions on Neural Networks,

vol. 14, no. 6, pp. 1569–1572, 2003.

[103] ——, “Which Model to Use for Cortical Spiking Neurons?” IEEE Transactions on Neural Networks,

vol. 15, no. 5, pp. 1063–1070, Sep. 2004.

[104] R. Jolivet, T. J., and W. Gerstner, “The Spike Response Model: A Framework to Predict Neuronal

Spike Trains,” in Artificial Neural Networks and Neural Information Processing - ICANN/ICONIP.

Springer, 2003, pp. 846–853.

[105] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian Computation Emerges in Generic

Cortical Microcircuits through Spike-Timing-Dependent Plasticity,” PLoS Computational Biology,

vol. 9, no. 4, 2013, art. no. e1003037.

[106] N. S. Giraldo, S. Isaza, and R. A. Velásquez, “Sailboat Navigation Control System Based on Spiking

Neural Networks,” Control Theory and Technology, vol. 21, no. 4, pp. 489–504, Aug. 2023.

[107] R. V. Florian, “Reinforcement Learning Through Modulation of Spike-Timing-Dependent Synaptic

Plasticity,” Neural Computation, vol. 19, no. 6, pp. 1468–1502, Jun. 2007.

[108] Y. C. Yoon, “LIF and Simplified SRM Neurons Encode Signals Into Spikes via a Form of Asyn-

chronous Pulse Sigma–Delta Modulation,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 28, no. 5, pp. 1192–1205, May 2017.

127

BIBLIOGRAPHY BIBLIOGRAPHY

[109] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics: From Single Neurons

to Networks and Models of Cognition. Cambridge University Press, 2014.

[110] M. Ambard and S. Rotter, “Support Vector Machines for Spike Pattern Classification with a Leaky

Integrate-and-Fire Neuron,” Frontiers in Computational Neuroscience, vol. 6, Nov. 2012, art. no.

78.

[111] I. Carannante, Y. Johansson, G. Silberberg, and J. Hellgren Kotaleski, “Data-Driven Model of

Postsynaptic Currents Mediated by NMDA or AMPA Receptors in Striatal Neurons,” Frontiers in

Computational Neuroscience, vol. 16, May 2022, art. no. 806086.

[112] G. Tang, N. Kumar, and K. P. Michmizos, “Reinforcement co-Learning of Deep and Spiking Neural

Networks for Energy-Efficient Mapless Navigation with Neuromorphic Hardware,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE, Oct. 2020, pp. 6090–6097.

[113] G. Tang, N. Kumar, R. Yoo, and K. Michmizos, “Deep Reinforcement Learning with Population-

Coded Spiking Neural Network for Continuous Control,” in Conference on Robot Learning. PMLR,

Oct. 2021, pp. 2016–2029.

[114] G. Liu, W. Deng, X. Xie, L. Huang, and H. Tang, “Human-Level Control Through Directly Trained

Deep Spiking Q-Networks,” IEEE Transactions on Cybernetics, vol. 53, no. 11, pp. 7187–7198, Nov.

2023.

[115] D. Zhang, T. Zhang, S. Jia, Q. Wang, and B. Xu, “Recent Advances and New Frontiers in Spiking

Neural Networks,” in International Joint Conference on Artificial Intelligence, 2022, pp. 5670–5677.

[116] W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, and Y. Tian, “Deep Residual Learning in

Spiking Neural Networks,” in Advances in Neural Information Processing Systems, vol. 34. Curran

Associates, Inc., 2021, pp. 21 056–21 069.

[117] Z. Zheng, Y. Huang, Y. Yu, Z. Zhu, J. Tang, Z. Yu, and Y. Jin, “SpiLiFormer: Enhancing Spiking

Transformers with Lateral Inhibition,” arXiv:2503.15986, Mar. 2025.

[118] W. Maass, T. Natschläger, and H. Markram, “Real-Time Computing Without Stable States: A

New Framework for Neural Computation Based on Perturbations,” Neural Computation, vol. 14,

no. 11, pp. 2531–2560, 2002.

[119] S. Slade and L. Zhang, “Topological Evolution of Spiking Neural Networks,” in International Joint

Conference on Neural Networks, Jul. 2018, pp. 1–9.

[120] S. Dora, S. Sundaram, and N. Sundararajan, “A Two Stage Learning Algorithm for a Growing-

Pruning Spiking Neural Network for Pattern Classification Problems,” in International Joint Con-

ference on Neural Networks, Jul. 2015, pp. 1–7.

128

BIBLIOGRAPHY BIBLIOGRAPHY

[121] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,

“Continuous Control with Deep Reinforcement Learning,” in International Conference on Learning

Representations, 2016.

[122] M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband, A. Graves, V. Mnih, R. Munos,

D. Hassabis, O. Pietquin, C. Blundell, and S. Legg, “Noisy Networks for Exploration,” in Interna-

tional Conference on Learning Representations, 2018.

[123] Y. Cao, Y. Chen, and D. Khosla, “Spiking Deep Convolutional Neural Networks for Energy-Efficient

Object Recognition,” International Journal of Computer Vision, vol. 113, no. 1, pp. 54–66, May

2015.

[124] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci, “Conversion of Artificial Re-

current Neural Networks to Spiking Neural Networks for Low-Power Neuromorphic Hardware,” in

IEEE International Conference on Rebooting Computing. IEEE, Oct. 2016, pp. 1–8.

[125] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of Continuous-Valued

Deep Networks to Efficient Event-Driven Networks for Image Classification,” Frontiers in Neuro-

science, vol. 11, Dec. 2017, art. no. 682.

[126] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate Gradient Learning in Spiking Neural Networks:

Bringing the Power of Gradient-Based Optimization to Spiking Neural Networks,” IEEE Signal

Processing Magazine, vol. 36, no. 6, pp. 51–63, Nov. 2019.

[127] Y. Li, Y. Guo, S. Zhang, S. Deng, Y. Hai, and S. Gu, “Differentiable Spike: Rethinking Gradient-

Descent for Training Spiking Neural Networks,” in Annual Conference on Neural Information

Processing Systems, vol. 34. Curran Associates, Inc., 2021, pp. 23 426–23 439.

[128] C. Shi, T. Wang, J. He, J. Zhang, L. Liu, and N. Wu, “DeepTempo: A Hardware-Friendly Direct

Feedback Alignment Multi-Layer Tempotron Learning Rule for Deep Spiking Neural Networks,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp. 1581–1585, May

2021.

[129] A. Vigneron and J. Martinet, “A Critical Survey of STDP in Spiking Neural Networks for Pattern

Recognition,” in International Joint Conference on Neural Networks, Jul. 2020, pp. 1–9.

[130] J. N. J. Reynolds, B. I. Hyland, and J. R. Wickens, “A Cellular Mechanism of Reward-Related

Learning,” Nature, vol. 413, no. 6851, pp. 67–70, Sep. 2001.

[131] D. E. Shulz, R. Sosnik, V. Ego, S. Haidarliu, and E. Ahissar, “A Neuronal Analogue of State-

Dependent Learning,” Nature, vol. 403, no. 6769, pp. 549–553, Feb. 2000.

[132] A. Tavanaei and A. Maida, “BP-STDP: Approximating Backpropagation Using Spike Timing De-

pendent Plasticity,” Neurocomputing, vol. 330, pp. 39–47, 2019.

129

BIBLIOGRAPHY BIBLIOGRAPHY

[133] C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training Deep Spiking Convolutional Neural Net-

works With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning,” Fron-

tiers in Neuroscience, vol. 12, Aug. 2018, art. no. 435.

[134] D. Chen, P. Peng, T. Huang, and Y. Tian, “Deep Reinforcement Learning with Spiking Q-learning,”

arXiv:2201.09754, 2022.

[135] G. O’Shea and M. Komeili, “SuperVision: Self-Supervised Super-Resolution for Appearance-Based

Gaze Estimation,” in NeuRIPS 2023 Workshop on Gaze Meets ML, Oct. 2023.

[136] C. Kuang, J. O. Kephart, and Q. Ji, “Interaction-aware Dynamic 3D Gaze Estimation in Videos,”

in NeuRIPS 2023 Workshop on Gaze Meets ML, Oct. 2023.

[137] A. Nakazawa and C. Nitschke, “Point of Gaze Estimation through Corneal Surface Reflection in

an Active Illumination Environment,” in Computer Vision – ECCV 2012. Springer, 2012, pp.

159–172.

[138] Y. Tao and M.-L. Shyu, “SP-ASDNet: CNN-LSTM Based ASD Classification Model using Observer

ScanPaths,” in IEEE International Conference on Multimedia & Expo Workshops, Jul. 2019, pp.

641–646.

[139] G. J. Zelinsky, Z. Yang, L. Huang, Y. Chen, S. Ahn, Z. Wei, H. Adeli, D. Samaras, and M. Hoai,

“Benchmarking Gaze Prediction for Categorical Visual Search,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019, pp. 4321–

4329.

[140] Y. Chen, Z. Yang, S. Ahn, D. Samaras, M. Hoai, and G. Zelinsky, “COCO-Search18 Fixation

Dataset for Predicting Goal-Directed Attention Control,” Scientific Reports, vol. 11, no. 1, Apr.

2021, art. no. 8776.

[141] S. Rashidi, K. Ehinger, A. Turpin, and L. Kulik, “Optimal Visual Search Based on a Model of

Target Detectability in Natural Images,” in Advances in Neural Information Processing Systems,

vol. 33. Curran Associates, Inc., 2020, pp. 9288–9299.

[142] F. Travi, G. Ruarte, G. Bujia, and J. E. Kamienkowski, “ViSioNS: Visual Search in Natural Scenes

Benchmark,” in Advances in Neural Information Processing Systems, vol. 35. Curran Associates,

Inc., Dec. 2022, pp. 11 987–12 000.

[143] H. Griffith, D. Lohr, E. Abdulin, and O. Komogortsev, “GazeBase, a Large-Scale, Multi-Stimulus,

Longitudinal Eye Movement Dataset,” Scientific Data, vol. 8, no. 1, Jul. 2021, art. no. 184.

[144] K. Melnyk, L. Friedman, D. Katrychuk, and O. Komogortsev, “Per-Subject Oculomotor Plant

Mathematical Models and the Reliability of Their Parameters,” Proceedings of the ACM on Com-

puter Graphics and Interactive Techniques, vol. 7, no. 2, pp. 1–20, May 2024, art. no. 24.

130

BIBLIOGRAPHY BIBLIOGRAPHY

[145] S. Baee, E. Pakdamanian, I. Kim, L. Feng, V. Ordonez, and L. Barnes, “MEDIRL: Predicting

the Visual Attention of Drivers via Maximum Entropy Deep Inverse Reinforcement Learning,” in

IEEE/CVF International Conference on Computer Vision, 2021, pp. 13 178–13 188.

[146] Z. Lian, T. Xu, Z. Yuan, J. Li, N. Thakor, and H. Wang, “Driving Fatigue Detection Based

on Hybrid Electroencephalography and Eye Tracking,” IEEE Journal of Biomedical and Health

Informatics, vol. 28, no. 11, pp. 6568–6580, Nov. 2024.

[147] T. L. Botch, B. D. Garcia, Y. B. Choi, N. Feffer, and C. E. Robertson, “Active Visual Search in

Naturalistic Environments Reflects Individual Differences in Classic Visual Search Performance,”

Scientific Reports, vol. 13, no. 1, Jan. 2023, art. no. 631.

[148] C. S. Burlingham, N. Sendhilnathan, O. Komogortsev, T. S. Murdison, and M. J. Proulx, “Mo-

tor “Laziness” Constrains Fixation Selection in Real-World Tasks,” Proceedings of the National

Academy of Sciences, vol. 121, no. 12, Mar. 2024, art. no. e2302239121.

[149] S. Losorelli, J. K. Chang, K. W. Chang, S. P. Most, and M. T. Truong, “Gaze Patterns of Normal

and Microtia Ears Pre- and Post-Reconstruction,” The Laryngoscope, vol. 134, no. 7, pp. 3136–

3142, Feb. 2024.

[150] S. Eraslan, Y. Yesilada, V. Yaneva, and S. Harper, “Autism Detection Based on Eye Movement

Sequences on the Web: A Scanpath Trend Analysis Approach,” in Proceedings of the 17th Interna-

tional Web for All Conference. Association for Computing Machinery, Apr. 2020, pp. 1–10, art.

no. 11.

[151] A. B. Dris, A. Alsalman, A. Al-Wabil, and M. Aldosari, “Intelligent Gaze-Based Screening System

for Autism,” in International Conference on Computer Applications & Information Security, May

2019, pp. 1–5.

[152] Y. Chen, Z. Yang, S. Chakraborty, S. Mondal, S. Ahn, D. Samaras, M. Hoai, and G. Zelinsky,

“Characterizing Target-Absent Human Attention,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2022, pp. 5031–5040.

[153] M. Assens, X. Giro-i-Nieto, K. McGuinness, and N. E. O’Connor, “PathGAN: Visual Scanpath

Prediction with Generative Adversarial Networks,” in Proceedings of the European Conference on

Computer Vision (ECCV) Workshops, 2018, pp. 1–18.

[154] W. Sun, Z. Chen, and F. Wu, “Visual Scanpath Prediction Using IOR-ROI Recurrent Mixture

Density Network,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43,

no. 6, pp. 2101–2118, Jun. 2021.

[155] C. Xia, F. Qi, and G. Shi, “An Iterative Representation Learning Framework to Predict the Se-

quence of Eye Fixations,” in IEEE International Conference on Multimedia and Expo, Jul. 2017,

pp. 1530–1535.

131

BIBLIOGRAPHY BIBLIOGRAPHY

[156] J. Najemnik and W. S. Geisler, “Optimal Eye Movement Strategies in Visual Search,” Nature, vol.

434, no. 7031, pp. 387–391, Mar. 2005.

[157] G. Bujia, M. Sclar, S. Vita, G. Solovey, and J. E. Kamienkowski, “Modeling Human Visual Search

in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach,” Frontiers in

Systems Neuroscience, vol. 16, 2022, art. no. 882315.

[158] M. Kümmerer, M. Bethge, and T. S. A. Wallis, “DeepGaze III: Modeling Free-Viewing Human

Scanpaths with Deep Learning,” Journal of Vision, vol. 22, no. 5, Apr. 2022, art. no. 7.

[159] G. J. Zelinsky and H. Adeli, “Learning to Attend in a Brain-Inspired Deep Neural Network,”

Journal of Vision, vol. 19, no. 10, Sep. 2019, art. no. 282d.

[160] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum Entropy Inverse Reinforcement

Learning,” in AAAI Conference on Artificial Intelligence, 2008, pp. 1433–1438.

[161] C. Finn, S. Levine, and P. Abbeel, “Guided Cost Learning: Deep Inverse Optimal Control via

Policy Optimization,” in Proceedings of The 33rd International Conference on Machine Learning.

PMLR, Jun. 2016, pp. 49–58.

[162] A. Y. Ng and S. Russell, “Algorithms for Inverse Reinforcement Learning,” in Proceedings of the

Seventeenth International Conference on Machine Learning, 2000, pp. 663–670.

[163] D. Ramachandran and E. Amir, “Bayesian Inverse Reinforcement Learning,” in Proceedings of the

20th International Joint Conference on Artifical Intelligence. Morgan Kaufmann Publishers Inc.,

Jan. 2007, pp. 2586–2591.

[164] J. Ho and S. Ermon, “Generative Adversarial Imitation Learning,” in Advances in Neural Infor-

mation Processing Systems, vol. 29. Curran Associates, Inc., 2016.

[165] D. Garg, S. Chakraborty, C. Cundy, J. Song, and S. Ermon, “IQ-Learn: Inverse Soft-Q Learning

for Imitation,” in Advances in Neural Information Processing Systems, vol. 34. Curran Associates,

Inc., 2021, pp. 4028–4039.

[166] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand, “What Do Different Evaluation

Metrics Tell Us About Saliency Models?” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 41, no. 3, pp. 740–757, Mar. 2019.

[167] K. H. Ruddock, D. S. Wooding, and S. Mannan, “Automatic Control of Saccadic Eye Movements

Made in Visual Inspection of Briefly Presented 2-D Images,” Spatial Vision, vol. 9, no. 3, pp.

363–386, Jan. 1995.

[168] R. Dewhurst, M. Nyström, H. Jarodzka, T. Foulsham, R. Johansson, and K. Holmqvist, “It Depends

on How You Look at It: Scanpath Comparison in Multiple Dimensions with MultiMatch, a Vector-

Based Approach,” Behavior Research Methods, vol. 44, no. 4, pp. 1079–1100, Dec. 2012.

132

BIBLIOGRAPHY BIBLIOGRAPHY

[169] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions, and Reversals,” in

Soviet Physics Doklady, vol. 10. Soviet Union, 1966, pp. 707–710.

[170] F. Cristino, S. Mathôt, J. Theeuwes, and I. D. Gilchrist, “ScanMatch: A Novel Method for Com-

paring Fixation Sequences,” Behavior Research Methods, vol. 42, no. 3, pp. 692–700, Aug. 2010.

[171] V. Narayanan and M. Likhachev, “PERCH: Perception via search for multi-object recognition and

localization,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), May

2016, pp. 5052–5059.

[172] Z. Huang, Y. Zhou, J. Zhu, and C. Gou, “Driver Scanpath Prediction Based On Inverse Reinforce-

ment Learning,” in ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Apr. 2024, pp. 8306–8310.

[173] M. Jiang and Q. Zhao, “Learning Visual Attention to Identify People with Autism Spectrum

Disorder,” in IEEE International Conference on Computer Vision, Oct. 2017, pp. 3287–3296.

[174] S. Wang, M. Jiang, X. M. Duchesne, E. A. Laugeson, D. P. Kennedy, R. Adolphs, and Q. Zhao,

“Atypical Visual Saliency in Autism Spectrum Disorder Quantified through Model-Based Eye

Tracking,” Neuron, vol. 88, no. 3, pp. 604–616, Nov. 2015.

[175] M. L. Spezio, R. Adolphs, R. S. E. Hurley, and J. Piven, “Analysis of Face Gaze in Autism Using

“Bubbles”,” Neuropsychologia, vol. 45, no. 1, pp. 144–151, Jan. 2007.

[176] P.-H. Tseng, I. G. M. Cameron, G. Pari, J. N. Reynolds, D. P. Munoz, and L. Itti, “High-

Throughput Classification of Clinical Populations from Natural Viewing Eye Movements,” Journal

of Neurology, vol. 260, no. 1, pp. 275–284, Jan. 2013.

[177] W. Liu, M. Li, and L. Yi, “Identifying Children with Autism Spectrum Disorder Based on Their

Face Processing Abnormality: A Machine Learning Framework,” Autism Research, vol. 9, no. 8,

pp. 888–898, 2016.

[178] H. Duan, G. Zhai, X. Min, Y. Fang, Z. Che, X. Yang, C. Zhi, H. Yang, and N. Liu, “Learning

to Predict where the Children with ASD Look,” in IEEE International Conference on Image

Processing, Oct. 2018, pp. 704–708.

[179] W. Wei, Z. Liu, L. Huang, A. Nebout, and O. Le Meur, “Saliency Prediction via Multi-Level Fea-

tures and Deep Supervision for Children with Autism Spectrum Disorder,” in IEEE International

Conference on Multimedia & Expo Workshops, Jul. 2019, pp. 621–624.

[180] N. Heess, D. Silver, and Y. W. Teh, “Actor-Critic Reinforcement Learning with Energy-Based

Policies,” in European Workshop on Reinforcement Learning, vol. 24, 2012, pp. 43–58.

[181] M. J. Wainwright and M. I. Jordan, “Graphical Models, Exponential Families, and Variational

Inference,” Foundations and Trends® in Machine Learning, vol. 1, no. 1-2, pp. 1–305, 2008.

133

BIBLIOGRAPHY BIBLIOGRAPHY

[182] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-Performance

Deep Learning Library,” in Advances in Neural Information Processing Systems, vol. 32. Curran

Associates, Inc., 2019.

[183] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski, “ViZDoom: A Doom-Based

AI Research Platform for Visual Reinforcement Learning,” in IEEE Conference on Computational

Intelligence and Games, 2016, pp. 1–8.

[184] S. James, M. Freese, and A. J. Davison, “PyRep: Bringing V-REP to Deep Robot Learning,”

arXiv:1906.11176, 2019.

[185] Â. G. Lovatto, T. P. Bueno, and L. N. Barros, “Analyzing the Effect of Stochastic Transitions in

Policy Gradients in Deep Reinforcement Learning,” in Brazilian Conference on Intelligent Systems,

Oct. 2019, pp. 413–418.

[186] R. Özalp, N. K. Varol, B. Taşci, and A. Uçar, “A Review of Deep Reinforcement Learning Algo-

rithms and Comparative Results on Inverted Pendulum System,” in Machine Learning Paradigms:

Advances in Deep Learning-based Technological Applications. Springer International Publishing,

2020, pp. 237–256.

[187] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553, pp. 436–444,

May 2015.

[188] W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier, D. Chen, L. Huang, H. Zhou, G. Li, and

Y. Tian, “SpikingJelly: An Open-Source Machine Learning Infrastructure Platform for Spike-

Based Intelligence,” Science Advances, vol. 9, no. 40, Oct. 2023, art. no. eadi1480.

[189] F. Zenke and S. Ganguli, “SuperSpike: Supervised Learning in Multilayer Spiking Neural Net-

works,” Neural Computation, vol. 30, no. 6, pp. 1514–1541, 2018.

[190] J. K. Eshraghian, M. Ward, E. O. Neftci, X. Wang, G. Lenz, G. Dwivedi, M. Bennamoun, D. S.

Jeong, and W. D. Lu, “Training Spiking Neural Networks Using Lessons From Deep Learning,”

Proceedings of the IEEE, vol. 111, no. 9, pp. 1016–1054, Sep. 2023.

[191] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S. J. Thorpe, and T. Masquelier, “Bio-Inspired

Digit Recognition Using Reward-Modulated Spike-Timing-Dependent Plasticity in Deep Convolu-

tional Networks,” Pattern Recognition, vol. 94, pp. 87–95, Oct. 2019.

[192] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, and T. Masquelier, “SpykeTorch: Efficient Simu-

lation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron,” Frontiers

in Neuroscience, vol. 13, Jul. 2019, art. no. 625.

134

BIBLIOGRAPHY BIBLIOGRAPHY

[193] S. Aenugu, A. Sharma, S. Yelamarthy, H. Hazan, Philip.S.Thomas, and R. Kozma, “Reinforcement

Learning with a Network of Spiking Agents,” in Real Neurons & Hidden Units: Future Directions

at the Intersection of Neuroscience and Artificial Intelligence @ NeurIPS 2019, Jul. 2022, pp. 1–5.

[194] Z. Yang, S. Guo, Y. Fang, and J. Liu, “Biologically Plausible Variational Policy Gradient with

Spiking Recurrent Winner-Take-All Networks,” in British Machine Vision Conference, 2022, art.

no. 358.

[195] P. R. Winters, “Forecasting Sales by Exponentially Weighted Moving Averages,” Management

Science, vol. 6, no. 3, pp. 324–342, 1960.

[196] S. Sharmin, P. Panda, S. S. Sarwar, C. Lee, W. Ponghiran, and K. Roy, “A Comprehensive Analysis

on Adversarial Robustness of Spiking Neural Networks,” in International Joint Conference on

Neural Networks, 2019, pp. 1–8.

[197] N. Zheng and P. Mazumder, “Learning in Memristor Crossbar-Based Spiking Neural Networks

Through Modulation of Weight-Dependent Spike-Timing-Dependent Plasticity,” IEEE Transac-

tions on Nanotechnology, vol. 17, no. 3, pp. 520–532, May 2018.

[198] A. J. Snoswell, S. P. N. Singh, and N. Ye, “Revisiting Maximum Entropy Inverse Reinforcement

Learning: New Perspectives and Algorithms,” in IEEE Symposium Series on Computational In-

telligence, Dec. 2020, pp. 241–249.

[199] B. H. Giwa, “Discount Factor Estimation in Inverse Reinforcement Learning,” Ph.D. dissertation,

University of Toronto (Canada), 2022.

[200] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum Entropy Deep Inverse Reinforcement Learn-

ing,” arXiv:1507.04888, Mar. 2016.

[201] W. Wang, C. Chen, Y. Wang, T. Jiang, F. Fang, and Y. Yao, “Simulating Human Saccadic Scan-

paths on Natural Images,” in Conference on Computer Vision and Pattern Recognition, Jun. 2011,

pp. 441–448.

135

Appendix A

Ethics Review

136

Chapter A. Ethics Review

6 January 2025

Dear Zhile

Your research ethics application reference: 1211

Your research project: Brain-inspired reinforcement learning

I am pleased to inform you that the above research ethics application has been reviewed by the Research Ethics Committee for Engineering and
Physical Sciences which has issued a favourable ethical opinion based on the application submitted. Please retain this email in your project
file as it is evidence of the Committee's approval.

Matters you should note:

Ethics approval does not infer you have the right of access to any member of staff or student or documents and the premises of the University
of Leeds. Nor does it imply any right of access to the premises of any other organisation, including clinical areas. The Committee takes no
responsibility for you gaining access to staff, students and/or premises prior to, during or following your research activities.
It is your responsibility to comply with all relevant Health and Safety, Data Protection and other legal and professional requirements and
guidelines.
You are expected to keep a record of all your approved documentation, as well as documents such as sample consent forms, risk
assessments and other documents relating to the research project. This should be kept in your project file.
Audits are undertaken on approved ethics applications. Your project could be chosen for such an audit. You should therefore ensure your
project files are kept up to date and readily available for audit purposes. You will be given a two week notice period if your project is selected.
Please always include the above research ethics application reference in any correspondence with the Research Ethics team.

If you need to make amendments to the original research project as submitted you are expected to seek approval from the Committee before
taking any further action. Changes could include (but are not limited to) the project end date, project design or recruitment methodology, or study
documentation. Please go to https://secretariat.leeds.ac.uk/research-ethics/how-to-apply-for-research-ethics-amendment/ or contact the
Research Ethics team for further information at Research Ethics.

I hope your research project goes well.

Yours sincerely,

Ms Taylor Haworth, Phoenix Lead, Research Ethics, Governance & Compliance (formerly Secretariat), University of Leeds

On behalf of Dr Virginia Pensabene, Chair, EPS FREC

Page 1 of 1

137

	Introduction
	Background
	Brain-Inspired RL Methods
	Visual Search

	Motivations
	Objectives
	Contributions
	Structure of the Thesis

	Literature Review
	Reinforcement Learning
	Brain-Inspired Reinforcement Learning
	Spiking Neural Networks
	Spiking Neural Networks for Reinforcement Learning

	Visual Search
	Methods for Scanpath Prediction
	Evaluation of Scanpath Predictions
	Applications of Visual Search
	ASD Analysis by Eye Movements

	Spiking Variational Policy Gradient:A Novel Brain-Inspired Reinforcement Learning Algorithm
	Network Design
	Policy Inference
	The Definition of Policy Function
	Validity of Policy Approximation
	Policy Mean-Field Inference
	Policy Inference with RWTA Network

	Policy Optimization
	Policy Optimization for REINFORCE
	Policy Optimization with R-STDP

	Algorithm
	Practical Considerations
	Rate-Based Approximation
	Extension to Other Base RL Algorithms

	Chapter Summary

	Evaluation of SVPG on Benchmark RL Tasks
	Tasks
	Methods for Comparison
	Method Selection
	Implementation Details

	Results
	Assumption Verification
	Task Performances
	Perturbation Tests
	Ablation Studies
	Network Visualizations

	Chapter Summary

	Reinforcement Learning for Visual Search Behaviors
	Method Design
	Decoupled Reward Function
	Discounted Score
	Constraint on Value Range
	Implementation Details
	MME Algorithm

	Experiments on Visual Search
	Datasets and Measurements
	Methods for Comparison
	Benchmark
	Effect of Environmental Rewards
	Ablation Tests
	Performance of SVPG

	Experiments on Social and Non-social Visual Search
	Target-Conditioned Spatial Attention
	Effects of Environment Variations
	Memory Load
	Temporal Attention

	Chapter Summary

	Conclusion and Discussion
	Conclusion
	Limitations and Future Work

	References
	Ethics Review

