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Abstract

Medical imaging plays a critical role in diagnosing and monitoring various dis-
eases, with chest radiographs (CXRs) being one of the most widely used tools for
pulmonary disease detection. However, the interpretation of CXRs is often chal-
lenging due to overlapping tissue features, low contrast, and the presence of co-
occurring diseases. Traditional deep learning approaches, which often focus on
single-disease classification, fail to account for the complexities of multi-pathology
presentations and raise concerns about bias and interpretability. This thesis ad-
dresses these limitations by advancing explainable, multi-label deep learning frame-
works tailored for the detection and explanation of co-occurring pulmonary dis-
eases in CXRs.

I highlight the risks of single-disease approaches, using COVID-19 detection as
a case study, and demonstrate the benefits of multi-label classification in capturing
disease interdependencies and mitigating model bias. To improve interpretability, I
propose sparse prior variational autoencoder (VAE) and hierarchical VAE models,
which provide precise visual explanations through gradient-guided latent traver-
sals. These methods outperform traditional deep CNN-based explainability tech-
niques in feature isolation and disease localisation but face challenges with recon-
struction quality and predictive accuracy. By advancing explainable, multi-label
frameworks, this thesis advances the development of trustworthy, transparent di-
agnostic tools.
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Chapter 1

Introduction

Medical imaging is essential to modern medicine, enabling non-invasive visualiza-
tion of internal structures and physiological processes. Traditional imaging modal-
ities, including X-rays, computed tomography, magnetic resonance imaging, ul-
trasound, and positron emission tomography, continue to play a pivotal role in de-
tecting, diagnosing, and monitoring a wide range of diseases and conditions—from
fractures and tumours to cardiovascular diseases and neurological disorders. Among
various imaging modalities, chest radiographs (CXRs) is one of the most widely
used diagnostic tools, particularly for pulmonary diseases (Hussain et al., 2022).
However, the interpretation of medical images presents significant challenges, es-
pecially when patients present with multiple concurrent conditions, as is likely in
hospital populations. The complexity of co-occurring diseases, combined with in-
creasing clinical workloads and the subtle nature of radiographic findings, creates
a pressing need for automated assistive systems (Fabbri et al., 2023). In particular,
the interpretation of CXRs, a 2D projection of 3D thoracic organs/structures, can be
especially challenging. The resulting ‘overlapping’ tissue features makes identifica-
tion of object boundaries challenging due to insufficient tissue contrast, impeding
detection of abnormalities. The advent of deep learning, particularly its applica-
tion in computer vision, has demonstrated remarkable potential in medical image
analysis (Hosny et al., 2018). These systems can process vast amounts of imaging
data with high accuracy, potentially matching or exceeding human performance
in specific diagnostic tasks. However, the transition from promising research to
reliable clinical implementation faces several critical challenges. Most notably, cur-
rent approaches often struggle with model bias and the complexity of co-occurring
diseases, where multiple pathologies manifest simultaneously in a single image
(DeGrave, Janizek, and Lee, 2021).

Traditional deep learning models for medical image analysis have predomi-
nantly focused on single-disease classification, treating each pathology as an in-
dependent entity. This approach, while computationally convenient, fails to cap-
ture the intricate relationships between different diseases and their combined ra-
diographic presentations. Furthermore, the use of uninterpretable deep learning
systems, often described as "black box" models, raises concerns about their reliabil-
ity and trustworthiness in clinical settings (Hosny et al., 2018).
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1.1 Explainability Methods

Deep learning models are "black boxes", referred to as such because they are too
complex for humans to understand directly. This creates problems in healthcare,
where doctors need to understand why a model made a particular diagnosis. With-
out this understanding, clinicians cannot trust the system or know when it might
fail. Two approaches exist to address this problem, adding explanations to black
box models, or using simpler, interpretable models like decision trees or linear re-
gression. While interpretable models are transparent, they often lack the perfor-
mance needed for complex medical imaging tasks. Explainable AI tries to solve this
by creating post-hoc explanations of black box decisions; however existing meth-
ods are flawed because if an explanation perfectly captured how the model works,
it would be as complex as the original model, defeating the purpose (Rudin, 2019).

A number of post-hoc explainability methods are popularly applied to deep
learning computer vision models. Gradient-weighted Class Activation Mapping
(Grad-CAM) generates heatmaps by leveraging gradient information flowing into
the final convolutional layer, highlighting image regions deemed most important
for specific class predictions (Selvaraju et al., 2017a). Local Interpretable Model-
agnostic Explanations (LIME) takes a different approach by segmenting images
into superpixels and determining which regions contribute positively or negatively
to model decision (Ribeiro, Singh, and Guestrin, 2016). Guided backpropagation
modifies standard backpropagation to suppress negative influences during the back-
ward pass, theoretically producing cleaner saliency maps (Springenberg et al., 2015).

However, these saliency-based methods suffer from significant limitations that
compromise their utility. Saliency maps often provide insufficient detail to un-
derstand what the model is actually doing with highlighted image regions—they
indicate generally where the model is "looking" but fail to explain the reasoning
processes applied to those regions (Rudin, 2019). Furthermore, saliency maps fre-
quently highlight border regions and edges, often providing remarkably similar ex-
planations across different pathological classes, which raises questions about their
discriminative value.

Recent research has revealed more fundamental concerns about the trustwor-
thiness of these explanations. Adebayo et al. (2020) introduced randomisation tests
that assess whether saliency methods are sensitive to changes in model parameters,
a basic requirement for meaningful explanations. Their cascading randomisation
through model layers investigates whether saliency depends on learned parame-
ters and the relationship between training instances and labels. Alarmingly, their
findings suggest that some widely deployed saliency methods produce explana-
tions that are independent of both the data and the learned model parameters. Of
the methods commonly used in medical imaging, Grad-CAM passes these sanity
checks, while guided backpropagation and guided Grad-CAM fail by remaining
invariant to higher layer parameters.
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In medical imaging specifically, saliency maps performed dramatically worse
than purpose-built localisation networks when tested on pneumonia detection. This
suggests current explanation methods may mislead rather than help clinicians (Arun
et al., 2021).

1.2 Thesis Overview

This thesis addresses the challenges outlined above by:

1. Demonstrating the risks associated with taking a standard single-disease clas-
sification approach, as was popular in the development of COVID-19 detec-
tion models.

2. Developing interpretable, multi-label deep learning frameworks, which I ap-
ply for the detection and explanation of co-occurring pulmonary diseases in
chest radiographs.

The significance of this research extends beyond technical innovation. The abil-
ity to identify model bias and detect and explain multiple co-pathologies enhances
diagnostic support and better assists the clinical workflow where an understand-
ing of the interplay between different pathologies is crucial for effective treatment
planning. We aim to address the flaws of explainable AI by developing inherently
interpretable models from the ground up rather than relying on post-hoc explana-
tions for black box models. By developing interpretable models that can handle
disease co-occurrence, this work aims to help bridge the gap between artificial in-
telligence and clinical practice.
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Chapter 2

Background

2.1 Radiology & Computer Vision

In practice, assessment of medical images is performed by expert radiologists and
specialist physicians. The role of the radiologist is to visually evaluate medical
imaging data in order to detect, characterise or monitor patient disease (Shen, Wu,
and Suk, 2017). With increasing workloads faced by radiologists and the growing
availability of high-quality medical imaging datasets, deep learning, particularly
computer vision, is being increasingly recognised as a transformative tool in clini-
cal radiology (Sogani et al., 2020; Strohm et al., 2020). Recent advancements in deep
learning have demonstrated significant success across various radiological appli-
cations, with many models achieving diagnostic accuracies comparable to those of
expert radiologists. For instance, computer vision algorithms have shown remark-
able performance in detecting pulmonary tuberculosis and other lung pathologies
from chest radiographs (Lakhani and Sundaram, 2017; Wang et al., 2017), as well as
identifying breast masses in mammography scans (Arevalo et al., 2015). These suc-
cesses highlight the potential of deep learning to assist expert humans, streamline
workflows, and improve diagnostic outcomes.

Computer vision, a subfield of deep learning, focuses on enabling machines
to interpret, analyse, and derive meaningful information from digital images and
other forms of visual data. It encompasses a wide range of machine learning and
deep learning techniques that allow computers to see and understand visual inputs
in ways that simulate human perception (Forsyth and Ponce, 2002). Within com-
puter vision, there are numerous specialised tasks, including image classification
(assigning categories to images), object detection (locating specific regions or fea-
tures within an image), and object tracking (following identified objects across a
sequence of images). Each of these tasks plays a critical role in advancing auto-
mated medical image analysis, particularly within radiology.

Computer vision algorithms learn hierarchical representations of data through
artificial neural networks. These networks capture data at multiple levels of ab-
straction, from low-level features like edges and textures to higher-level patterns
such as anatomical structures or pathological regions (LeCun, Bengio, and Hinton,
2015).
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In clinical radiology, deep learning-based computer vision has proven espe-
cially effective for tasks involving the analysis of large imaging datasets, such as
the detection of lung pathologies in chest X-rays. For example, convolutional neu-
ral networks (CNNs)—a class of computer vision algorithm—are commonly em-
ployed to identify anomalies, such as nodules, consolidations, and other abnor-
malities, with high accuracy and efficiency. By training on large-scale annotated
datasets, these models can learn to recognise patterns that might be overlooked
during routine human interpretation. The aim of deep learning is to learn high-
level abstractions of raw input data, where important features of the data are au-
tomatically amplified and insignificant features are deemed irrelevant and sup-
pressed (LeCun, Bengio, and Hinton, 2015). To accomplish this, deep learning
models are typically built in hierarchical layers, where every layer learns data rep-
resentations at different levels of abstraction. Using non-linear modules, each stage
in the hierarchy transforms its input to a higher level, learning more abstract rep-
resentations. Moving further up the hierarchy and away from the raw data input
compounds these modules, building a complex function that can be learned (Le-
Cun, Bengio, and Hinton, 2015).

For a deep learning model to perform its task successfully, it must undergo
a training process. In a typical supervised classification task, where both images
and corresponding ground truth labels are provided as inputs, the model is shown
an image and generates an output vector that assigns scores to each category. To
function as an effective classifier, the model must learn to assign the highest score
to the correct class of the input image. This learning process involves adjusting
the model’s internal parameters, known as "weights" (LeCun, Bengio, and Hinton,
2015). Initially, these weights are randomly initialised with small values. During
training, they are refined through an optimisation process called gradient descent,
which systematically minimises the difference between the model’s output scores
and the target scores. This difference is quantified using an objective function (also
referred to as the loss function). The objective function directs the weight adjust-
ments to minimise this distance, improving the model’s overall performance (Le-
Cun, Bengio, and Hinton, 2015).

The application of deep learning in radiology provides several key advantages.
A significant benefit lies in its ability to automatically learn critical features from
data without requiring pre-defined visual features extracted by human experts.
This allows deep learning models to extract and characterise important pheno-
typic features of tissues directly from imaging data (Hosny et al., 2018). Without
the constraints of human-defined rules, deep learning systems have the capacity
to uncover novel features that may not be immediately apparent to human ob-
servers. When applied to radiology, this capability enables the identification of
disease-specific patterns within medical images, offering unique insights that are
especially valuable for detecting newly emerging diseases with unclear or atypical
radiological features, such as COVID-19.
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Another notable advantage of deep learning in radiology is its quantitative na-
ture. Radiological evaluation has traditionally been viewed as a qualitative and
hypothesis-driven process. Radiologists rely on subjective reasoning, which is of-
ten influenced by their personal experience, education, and the clinical context of
the case provided by non-imaging information (Hosny et al., 2018). As a result,
interpretations can vary between practitioners, leading to potential inconsisten-
cies. Deep learning, on the other hand, facilitates a more quantitative assessment
of medical images. By automatically identifying and analysing features and pat-
terns within the image, deep learning models can provide an objective, measurable
evaluation that supports clinical decision-making (Prior et al., 2020). Quantitative
analysis enabled by deep learning not only enhances the reproducibility of findings
but also improves the reliability of medical diagnoses. This is particularly impor-
tant in complex diagnostic cases where the radiological presentation of a pathology
is subtle or overlaps with other conditions.

However, the growing promise of computer vision in healthcare brings with
it increasing concerns regarding safe and reliable clinical implementation. These
concerns primarily revolve around three critical aspects: data quality, model inter-
pretability, and model fairness.

• Data Quality: The performance of computer vision models is intrinsically
tied to the quality, quantity, and diversity of the training data. Medical imag-
ing datasets often suffer from biases such as imbalances in patient demo-
graphics, disease prevalence, and imaging techniques. Poorly curated datasets
can lead to models that generalise poorly in real-world clinical settings, par-
ticularly when deployed across different healthcare systems or populations.
To mitigate this, rigorous data acquisition, cleaning, and labelling processes,
as well as diverse and representative datasets, are essential (Mittermaier, Raza,
and Kvedar, 2023).

• Model Fairness: Bias in computer vision models represents a critical risk, as
models trained on non-representative data can inadvertently propagate and
exacerbate health disparities. For example, models trained predominantly
on images from one demographic group may underperform when applied
to others, leading to inaccurate or inequitable outcomes. Ensuring fairness
requires ongoing efforts to identify and mitigate bias through diverse, well-
balanced datasets and robust evaluation frameworks (Drukker et al., 2023).

• Model Interpretability: The "black box" nature of many deep learning mod-
els poses significant challenges for clinical adoption. These so-called black
box models can produce highly accurate predictions, but the underlying rea-
soning behind their outputs often remains opaque to users. This lack of in-
terpretability is a major concern in healthcare, where trust, transparency, and
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explainability are crucial for clinical decision-making. Clinicians need to un-
derstand how a model arrives at its conclusions to ensure they align with
medical reasoning (Saporta, Gui, Agrawal, et al., 2022).

The use of "black box" models that generate unexplainable predictions com-
pounds these issues, as they increase the risk of model bias, poor generalisability,
and silent errors—errors that may go undetected during clinical practice. For in-
stance, a model might perform well under controlled conditions but fail when ex-
posed to variations in imaging protocols, equipment, or patient populations. Such
failures can have serious consequences, particularly in high-stakes medical appli-
cations where diagnostic errors can impact patient safety and outcomes (Drukker
et al., 2023). To address these challenges, a multi-disciplinary approach, involv-
ing collaboration between AI researchers and clinicians, is essential. This includes
developing rigorous validation protocols and fostering transparency in model de-
velopment and prediction.

In summary, while deep learning-based computer vision holds immense promise
for transforming medical image analysis, its success depends on addressing critical
concerns around data quality, model interpretability, and model fairness. By over-
coming these challenges, computer vision can assist humans to improve diagnostic
accuracy, and ultimately enhance patient care, paving the way for a more efficient
and equitable healthcare system.

2.2 The Respiratory System

The respiratory system is a complex network of organs and structures responsi-
ble for the vital exchange of oxygen and carbon dioxide between the body and the
environment. This system plays a crucial role in maintaining homeostasis, support-
ing cellular respiration, and facilitating the removal of metabolic waste products.
The system includes the nasal cavity, pharynx, larynx, trachea, bronchi, and lungs.
Each component contributes to the efficient passage, filtration, and conditioning of
inhaled air before it reaches the alveolar surfaces where gas exchange occurs. The
structural integrity and functional efficiency of the lungs are paramount for respi-
ration and overall health. Disruption to the lung structure or mechanism of gas
exchange gives rise to pulmonary disease (Haddad and Sharma, 2023).

As a critical function, any respiratory system impairment or disease can have
a devastating impact on quality of life. Lung diseases, ranging from chronic con-
ditions like asthma and chronic obstructive pulmonary disease (COPD) to acute
infections such as pneumonia and tuberculosis, present a substantial global health
burden (Collaborators, 2020). Early detection and accurate diagnosis of these con-
ditions are essential for effective treatment and management, ultimately improving
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patient outcomes. Advancements in medical imaging technologies have revolu-
tionised the field of respiratory medicine, providing non-invasive, detailed visuali-
sation of lung anatomy and pathology. Techniques such as chest radiography, com-
puted tomography, magnetic resonance imaging, and positron emission tomogra-
phy have become indispensable tools in the detection, diagnosis, and monitoring of
lung diseases (Hosny et al., 2018). These imaging modalities offer critical insights
into the presence, extent, and nature of pulmonary abnormalities, aiding clinicians
in making informed decisions regarding patient care.

Many pulmonary diseases are closely interlinked, the presence of a primary dis-
ease often gives rise to a secondary disease, with shared pathophysiology increas-
ing the likelihood of co-occurrence. In real-world clinical settings, it is common
for patients to present with multiple co-occurring lung conditions simultaneously,
which complicates diagnosis, treatment, and prognosis. For example, a patient
with COPD may also develop pneumonia, or individuals suffering from COVID-
19 may show signs of secondary infections, such as bacterial pneumonia, or long-
term lung damage, such as fibrosis. These overlapping conditions often manifest
with shared clinical symptoms (e.g., shortness of breath, chest pain) and radiologi-
cal features, such as opacities, nodules, or consolidations on CXRs. The presence of
co-occurring pathologies increases diagnostic complexity and uncertainty for hu-
man experts, for computer vision algorithms to assist they must perform reliably
where there is co-occurrence (Fabbri et al., 2023; Putcha et al., 2015). However, the
co-occurrence of pulmonary diseases makes medical image classifiers vulnerable
to learning spuriously correlated features, relying on ‘shortcut’ features to make
predictions. The risk of shortcut learning is heightened in cases of co-occurring
diseases because of their complex and subtle interplay in radiological images (Ong
Ly, Unnikrishnan, Tadic, et al., 2024).

Explainable models can help identify when predictions rely on spurious corre-
lations rather than clinically relevant features, enabling detection of model reliance
on shortcut learning. Furthermore, interpretability mechanisms can reveal how dif-
ferent pathologies interact and manifest in radiological images, potentially uncov-
ering new insights into disease co-occurrence patterns. This is particularly valuable
in complex cases where multiple conditions may present with overlapping or atyp-
ical features, or for newly emerging diseases. By facilitating a transparent decision-
making process, explainable AI systems can help clinicians validate model predic-
tions, identify potential biases, and consider model decisions in the context of their
own clinical expertise. This capability is critical for accurately detecting diseases in
clinical populations, where comorbidities are the norm rather than the exception.
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2.3 Thesis Aims & Objective

This thesis explores the applications of computer vision to medical imaging tasks,
including, disease detection, classification and segmentation. I aim to develop ex-
plainable, trustworthy computer vision models that perform reliably in the pres-
ence of data biases and co-occurring pulmonary diseases. Enhancing interpretabil-
ity not only improves diagnostic support but also bridges the gap between artificial
intelligence and clinical decision-making, ensuring models are aligned with expert
reasoning and clinical needs.

I aim to develop reliable, generalisable, and interpretable deep learning models
capable of detecting co-occurring pulmonary pathologies in CXRs. By evaluating
open datasets and their associated limitations, I aim to highlight the risks of data
biases and the need for real-world, meta data-rich clinical datasets. Through exten-
sive multi-centre benchmarking of binary COVID-19 classifiers, I aim to evaluate
risk of bias in models trained on national hospital datasets. I do this with the larger
motivation of demonstrating the importance of mitigating spurious correlations.

To improve both the performance and interpretability of pulmonary disease di-
agnosis, I propose advanced deep learning frameworks that move beyond single-
disease models. Specifically, I introduce novel approaches leveraging variational
autoencoders (VAEs) and hierarchical VAEs for multi-label classification. These
methods enable the simultaneous prediction of multiple pathologies, providing a
more comprehensive understanding of co-occurring diseases. Additionally, I ad-
dress the critical need for diagnostic transparency by developing explainable AI
techniques that generate interpretable visual explanations and facilitate precise dis-
ease localisation.

By focusing on multi-pathology detection and interpretability, I aim to con-
tribute to the development of deep learning solutions that are better suited for
real-world clinical applications.

2.3.1 Thesis Structure & Outline

I present the methods proposed and work undertaken in this thesis in Chapters 3 -
7. I give concluding remarks and discuss future directions in Chapter 8. In Chapter
3 I describe the key deep learning methods used in my research. I evaluate the risk
of using open source CXR data for the development of binary COVID-19 classifiers
as it pertains to blind shortcut learning and poor research practice in Chapter 4. I
further my investigation of model bias in Chapter 5 by conducting a multi-centre
benchmarking of deep learning COVID-19 classifiers trained on real-world, multi-
site hospital data.

In Chapter 6 I introduce a novel approach for explainable, multi-label predic-
tion of CXRs, using a sparse prior VAE model. I validate this model to assess if
lung pathology features can be localised through visual explanations. Chapter 7
explores the application of hierarchical VAEs (HVAEs) to overcome the limitations
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identified in earlier chapters. I present a comprehensive evaluation of these mod-
els’ capacity for precise explanations, quantifying disease localisation against ra-
diologist annotations and comparing results with established methods like Grad-
CAM++. I also further my work on sparse prior distributions and their impact on
disease feature isolation in variational approaches.
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Chapter 3

Methods

In this section, I provide a detailed overview of the deep learning models and
core principles applied throughout my research. I begin by introducing key con-
cepts in computer vision, including convolutions, convolutional neural networks,
and residual networks. I then explain the theory behind variational autoencoders
(VAEs) and hierarchical variational autoencoders (HVAEs). By leveraging these
methods, I aim to develop models capable of both explainable prediction and the
localisation of lung pathologies. Specifically, I plan to utilise VAEs and HVAEs to
isolate disease features within CXRs, with the goal of offering precise visual expla-
nations of medical image predictions. I contextualise my use of VAE approaches
by introducing the key concepts and theories behind interpretable VAEs and exem-
plify these by explaining key methods in this area of research.

3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of deep learning network that
have become essential to computer vision. CNNs are designed to process imaging
data, where an image is represented by 2D or 3D arrays. To learn visual patterns
and spatial hierarchies CNNs require a combination of convolutional and pool-
ing layers. The architecture of a simple CNN classifier is presented in in Figure
3.1. CNNs are structured in stages, which comprise groups of layers. At its core,
CNNs require only three main types of layer: the convolutional layer, the pool-
ing layer, and fully connected (FC) layer. Each layer in the architecture serves a
purpose (Goodfellow, Bengio, and Courville, 2016). Convolutional layers extract
image features by applying a set of filters (or kernels). In this operation, called a
convolution, each filter is passed over the input image, and with each step a dot
product is calculated between the filter and image patch it covers. As the network
is optimised filter values are updated. With optimisation of the filters, I expect the
output of this operation to be a set of feature maps that highlight certain image
features. Early convolutional layers typically highlight low-level features, such as,
edges, textures. By applying pooling layers, which reduce the spatial dimensions
of its input, features maps can be abstracted and combined by subsequent convo-
lutional layers. By stacking a series of convolutional and pooling layers the model
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is able to learn complex, high-level features. The relationship between these high-
level feature is learned by fully connected layers. The final fully connected layer
produces the class scores, which are then normalised to a probability space with
the softmax transformation,

σ(z)j =
ezj

∑K
k=1 ezk
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FIGURE 3.1: The arrangement of layers in a typical deep CNN ar-
chitecture. Annotations describe the type and order of each layer i.e.
’conv-1’ is the first convolutional layer. Each layer is also labelled
with its corresponding dimensions. The example input image is a
sample from the MNIST dataset, which contains 10 classes of hand-

written digits.

Here I describe the example of a simple CNN shown in Figure 3.1 and the role
played by each layer. The input image (28x28x3) holds the raw pixel value of the
images, where each image has a resolution of 28x28 and pixel values for each of the
three RGB colour channels. The convolutional layer learns features from the previ-
ous layer through use of computational operations called convolutions, an example
convolution operation is presented in Figure 3.2. The convolution operation itself
requires an element called a filter (also referred to as kernel), which is a matrix of
weights. The filter is passed over the image until the entire image is traversed. For
each stride across the image a matrix multiplication is performed between the re-
gion of the image and the filter matrix, producing a convolved feature or feature
map. The number of feature maps I generate depends on the number of filters I
apply. In this example I apply 32 filters in the first convolutional layer, producing 32
feature maps. Convolutional layers are typically paired with an activation function,
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like ReLU, which is important for introducing non-linearity to the model (Goodfel-
low, Bengio, and Courville, 2016). The ReLU function is shown below in equation
3.1.

ReLU(x) = max(0, x) (3.1)

0 1 1 1×1 0×0 0×1 0

0 0 1 1×0 1×1 0×0 0
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FIGURE 3.2: An example of a convolutional operation, with a 7x7
input and 3x3 filter.

A pooling layer is applied following the convolutional layer. This reduces the spa-
tial size of the convolved feature map, reducing the number of parameters to learn
and thus computational cost of model training. In this example (Fig. 3.1), the first
pooling layer reduces the size of the feature maps from 28x28 to 14x14. There are
two main types of pooling used in CNNs, max pooling and average pooling. Max
pooling operations compute the maximum value from the area of the input covered
by the pooling kernel, and average pooling returns the average value. Max pooling
operations work well in CNNs, they help to suppress noise and learn higher level
features (Goodfellow, Bengio, and Courville, 2016).

To complete the CNN classifier, a fully connected layer is required. Neurons
in a fully-connected (FC) layer are each connected to all activations in the previous
layer. In order to combine fully connected layers with convolutional layers, the fea-
ture maps produced by the final convolutional layer are flattened into 1-dimension
and passed to the first FC layer. This is an efficient way of learning non-linear com-
binations of the high-level features extracted by the final convolutional layer. The
dimensions of the final FC layer are equivalent to the number of classes in the clas-
sification task, this layer produces an output of scalar values that represent class
scores. In this example, the final FC layer has the dimensions 1x1x10, and so will
produce 10 scalar values, one for each class. A softmax operation is typically ap-
plied to the output to allow us to represent these discrete values as a probability
distribution (Goodfellow, Bengio, and Courville, 2016).

Under supervised conditions, CNNs can be trained using an objective function,
such as, negative log likelihood (NLL) loss. NLL represents the error of a given clas-
sifier, by comparing the predicted probability of each class with the ground truth
class of the image. Loss can be minimised during model training, through a process
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of gradient descent. Not all layers have parameters that can be optimised during
training, for example, max pooling is only defined by hyperparameters, and activa-
tion operations, such as ReLU, are not parameterised at all. However, importantly,
the parameters, or weights, of the convolutional layer filters and fully connected
layers are learnable. Meaning, during model training, these are adjusted to opti-
mise the learning of important image features (Goodfellow, Bengio, and Courville,
2016).

The development of CNNs has spurred on significant improvements in com-
puter vision, inspiring the use of deep learning in medical imaging tasks, such as,
image segmentation, image fusion, computer-aided diagnosis and prognosis, le-
sion detection, and many more (Esteva et al., 2021). CNNs, in one form or another,
appear essential to deep learning tasks for medical image analysis. Whether used
as the sole deep learning technique or incorporated into a larger strategy, CNNs
have been applied to a number of important tasks in this field, including, risk strat-
ification of COVID-19 patients, and lesion detection and segmentation from chest
X-rays or CTs.

3.1.1 Residual Networks

Residual Networks, or ResNets, were created to address the vanishing gradient
problem, a phenomenon in which gradients become exceedingly small as they
backpropagate through multiple layers. This phenomenon is commonly observed
in CNNs as many layers are required for processing of higher resolution images.
By introducing residual connections, or skip connections, these networks can learn
more efficiently and go much deeper. During model training, gradients are com-
puted and backpropagated through the many layers of a deep learning model, as
they are passed backward each layer introduces a multiplication operation through
the network’s weight matrices, which can lead to gradients approaching zero. This
leads to slow convergence during training and prevents deep networks from cap-
turing hierarchical features and learning meaningful representations. ResNets pro-
vide a solution to this problem through residual learning. Residual transformations
are applied to create shortcut, or skip, connections which allow the direct flow of
information from input to output. Figure 3.3 shows a residual connection in be-
tween convolutional layers of a CNN. Mathematically, the residual block can be
represented as y = F(x) + x, where x is the input, F(x) represents the transforma-
tion learned by the layers within the block, and y is the output. This formulation
ensures that even if the layers in F(x) contribute little or no change, the identity
transformation x can still be directly propagated through the shortcut connection
(Fig. 3.3). Consequently, gradients can flow more easily through the network, par-
ticularly in the residual path, facilitating the training of very deep architectures.
This means medical images can be processed at higher resolutions, revealing sub-
tle details that were previously hard to detect.



3.1. Convolutional Neural Networks 17

FIGURE 3.3: Residual connection in convolutional neural net-
work.

3.1.2 U-Net

U-Net is a type of CNN specifically designed for image segmentation tasks, where
image pixels are predicted to belong to different classes (Ronneberger, Fischer, and
Brox, 2015). Originally developed for biomedical image segmentation, the U-Net
has since been applied to a wide range of segmentation problems. The U-Net con-
sists of an encoder and decoder, which combine with skip connections to give the
U-Net architecture it’s characteristic "U" shape. In medical image analysis U-Nets
have been applied to a host of tasks and have become the standard in image seg-
mentation tasks. The encoder, which consists of repeated convolution and pooling
operations, extracts complex image features. The decoder consists of upsampling
operations and convolutional layers, it increases the spatial dimensions and com-
bines high-level features with corresponding low-level features from the encoder.
Skip connections link corresponding layers of the encoder and decoder through
feature map concatenation. Similar to residual connections, these skip connections
propagate information from the earlier layers to the deeper ones, combining high-
level features with corresponding low-level features, and helping to mitigate the
‘vanishing gradients’ problem. Figure 3.4 shows the architecture of a typical U-Net
model. The U-Net++ extends this approach by adding encoder and decoder sub-
networks that are connected through a series of nested, dense skip pathways and
can be trained under deep supervision, where each nested U-Net is optimised to
its own objective function (Zhou et al., 2018).
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FIGURE 3.4: U-Net model architecture.

3.1.3 Monte Carlo Dropout Uncertainty Estimation

Dropout is a regularisation technique where, during training, randomly selected
neurons are ignored, or dropped out, which prevents the network from becom-
ing overly reliant on specific neurons and promotes the learning of robust features.
Monte Carlo Dropout extends the dropout technique by enabling dropout during
inference to obtain multiple stochastic forward passes through the network. Each
pass results in a slightly different prediction due to the random dropout of neu-
rons. The uncertainty of prediction can be estimated by computing the variance of
the predictions (Gal and Ghahramani, 2016). This approach is reasoned through
principles of Bayesian statistics where uncertainties are expressed as distributions
and properties of the distribution reflect uncertainty i.e., high variances indicates
greater uncertainty.

3.2 Variational AutoEncoders

First introduced by Kingma, Welling, et al. (2019), the Variational AutoEncoder
(VAE) is a class of likelihood-based generative model that merges the autoencoder
framework with variational inference. Like autoencoders, VAEs consist of an en-
coder and decoder which are used together for data compression tasks i.e., the
encoder maps data into a lower dimensional latent representation, then the de-
coder projects the latent representation to recreate, or reconstruct, the input. Intu-
itively, the optimisation of the reconstruction task pushes the model to learn effi-
cient lower-dimensional representations, where the salient features of the data are
preserved in the encoding. By compressing the input into a compact latent space,
the model filters out irrelevant details or noise while retaining essential informa-
tion required for accurate reconstruction. This process enables the model to focus
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on the key patterns and structures in the data, ensuring that the latent representa-
tion captures its most meaningful characteristics.

Variational inference is used in Bayesian statistics as a method to approximate
complex posterior distributions that arise when applying Bayes’ theorem. In many
real-world problems, the exact posterior distribution p(θ|D) is computationally
intractable due to high-dimensional integrals or large datasets. Variational infer-
ence addresses this challenge by framing the problem as an optimisation task:
it approximates the true posterior p(θ|D) with a simpler, tractable distribution
q(θ; ϕ), parametrised by ϕ. The quality of the approximation is measured using the
Kullback-Leibler (KL) divergence, which quantifies the difference between q(θ; ϕ)

and the true posterior. With its reliance on variational inference, VAEs can be de-
scribed as latent variable models (see below for further explanation).

By using variational inference to learn to represent data with probability dis-
tributions, the VAE gains capacity for novel generation i.e., creating new examples
not seen in the training data. This capacity for novel generation is made possible
through distributional variance, where the same image is compressed to represen-
tations that differ with each sampling. This pushes the model to learn to structure
representations efficiently, i.e., similar images are positioned close together in the
distribution and different images far apart. However, this also leads to blurriness in
the generated images due to a overlapping latent representation between different
data samples.

VAEs as probabilistic autoencoders Unlike the ‘classic’ deterministic autoencoder,
the VAE is probabilistic with its optimisation relying on variational inference, hence
the name ‘variational autoencoder’. The encoder, also called the inference model,
learns to map observed, complex D-dimensional data distributions to a lower-
dimensional space, the distribution for which is typically much simpler (i.e., multi-
variate Bernoulli, multivariate Gaussian, or multinomial Dirichlet). The generative
process requires that I draw sample z ∈ RJ where J < D from some parametric
distribution, such as a multivariate Gaussian distribution,

z ∼ N (0, I) (3.2)

I use the decoder to reconstruct the data x̂. The decoder is a deterministic func-
tion that I use to map sample z to a set of parameters ψ that define another dis-
tribution (e.g., data likelihood distribution) that I use to sample x ∈ RD. For the
task of image generation this distribution is typically either Gaussian or Bernoulli,
depending on whether pixel values are continuous or discrete.

VAEs as latent variable models VAEs can be considered deep latent variable
models, for which I apply the assumption that there exists some hidden or ‘latent’
variable z that generates observation x. As only x is observed, I need to infer the
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characteristic of z, or in other words I need to compute p(z|x). I do this by applying
Bayes’ theorem,

p(z|x) = p(x|z)p(z)
p(x)

(3.3)

However, computing p(x) presents a problem, its solution is typically intractable.

p(x) =
∫

p(x|z)p(z)dz (3.4)

Instead, I can approximate the posterior distribution p(z|x) with q(z|x) using
variational inference i.e., I define tractable distribution q(z|x) and define its param-
eters in such a way that it is very similar to p(z|x),

qϕ(z|x) ≈ pθ(z|x) (3.5)

where ϕ and θ define the parameters of the distributions. To ensure similarity of
the true and approximate posterior distributions, I can minimise the KL divergence,
where this term is a measure of difference between two distributions.

min KL(q(z|x))||p(z|x)) (3.6)

The derivation of this term results in the evidence lower bound (ELBO) term
(described in detail in Section 3.2.1).

L = Eq(z|x)[log p(x|z)]−KL(q(z|x)||p(z)) (3.7)

The parameters ϕ for the approximate posterior distribution q(z|x) are approx-
imated through optimisation of encoder parameters, which is used to perform pos-
terior inference over all data points in the dataset i.e., amortized inference. While
the likelihood distribution p(x|z) is defined by the decoder function, with param-
eters θ. Together with a prior distribution p(z), the decoder pθ(x|z) becomes a
generative function that learns a complex joint distribution over data points and
the latent representation pθ(x, z).

3.2.1 Optimisation

The VAE optimisation objective is the evidence lower bound (ELBO), also referred
to as the variational lower bound (VLB). ELBO comprises two terms, the first term
maximises the expected log-likelihood of the data under the decoder distribution,
this captures the model’s ability to reconstruct input data. The second term min-
imises the Kullback-Leibler (KL) divergence between the encoder distribution qϕ(z|x)
and a chosen prior distribution, typically a unit Gaussian. The ELBO term can be
formulated as:

L(θ, ϕ; x, z) = Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)||p(z))
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Often, in the absence of a likelihood distribution, the expected log-likelihood
of the generated data is represented by a reconstruction loss term, such as: mean-
squared error (L2) loss, mean-absolute error (L1) loss, and binary cross entropy
(BCE) loss.

Reparameterisation trick VAEs employ a reparameterisation trick to facilitate
gradient-based optimization of ELBO, as is required for model training. The repa-
rameterisation trick decouples the stochastic sampling process from the parame-
terised network. Here, the latent variables z are sampled from a simple distribution
i.e., Gaussian with parameters µ and σ which are computed by the encoder,

z ∼ N (µenc, σenc)

The reparameterisation trick is then applied to re-express the latent representa-
tion. This is mathematically expressed as,

z = µ + σ⊙ ϵ

where z is the sampled latent variable, µ and σ are the mean and variance vec-
tors of the Gaussian distribution as computed by the encoder and ϵ is a random
noise vector drawn from the chosen distribution (i.e., Gaussian noise with zero
mean and unit variance). Through reparameterisation, the gradient of the sampling
operation can be propagated through the network’s parameters µ and σ, allowing
optimisation via gradient-based techniques.

Importance-weighted Sampling Importance weighting (IW) is used in variational
inference to give a tighter lower bound to the data likelihood, with increasing
samples the lower bound approaches the true log-likelihood (Burda, Grosse, and
Salakhutdinov, 2015).

Here I consider the use of IW in Gaussian-prior VAE optimisation. During train-
ing, multiple samples are drawn from the posterior distributions,

(z1, z2, z3, · · · , zk) ∼ N (µ, σ)

For each sample i an importance weighting wi is computed, these weights are
based on the sample likelihoods under the decoder and prior, i.e.,

wi =
p(x|zi)p(zi)

q(zi)

Data samples are then generated by taking a weighted average of decoder out-
put,

xsamples = ΣN
i=1wi · D(zi)
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where D represents the decoder function. More weight is given to samples that
are more likely under the true data distribution i.e., better reconstructions.

3.2.2 Disentanglement & Decomposition

Disentangled representations are known to improve model interpretability, and can
be useful in a multitude of tasks, e.g., controllable data generation through the
manipulation of latent variables, counterfactual generation, disease decomposition
(separation of normal from abnormal), image registration, semantic segmentation,
and classification tasks, etc. (Liu et al., 2022).

While a formal definition is yet to be agreed, disentanglement, as it is com-
monly referred to in the literature, requires explicit independence between latent
factors, i.e. no single latent factor may describe more than one generative factor
and no two latent factors may describe the same generative factor (Higgins et al.,
2017). Disentanglement of the latent space is achieved when individual latent units
describe a single generative factor which is largely invariant to other factors i.e., a
VAE trained on a dataset of celebrity faces (CelebA) has learnt to describe a sin-
gle independent salient feature (e.g., eyes, hair, beard) with a single latent unit
(Higgins et al., 2017). In line with the agreed definition, disentanglement metrics
are commonly derived from measures of independence between latent dimensions.
Typically, disentanglement is evaluated on simple synthetic datasets e.g. dSprites,
for which the assumption of independence between generative factors holds true
(Matthey et al., 2017). However, I propose that achieving disentanglement, by this
definition, is unsuitable for complex datasets like medical imaging. Dependencies
exist between the true generative factors of complex images, pursuing disentangle-
ment by imposing independence between generative factors results in the loss of
true semantic meaning and thus loss of interpretability.

To redirect work on structured representation learning towards more practical
approaches that capture the true generative factors that describe the data, Math-
ieu et al. (2019) introduce decomposition of latent representations. In this, the image
is decomposed into salient features within the latent representation, but explicit
independence between latent factors is not required i.e, two latent factors may de-
scribe the same salient feature. In other words, decomposition is a generalisation of
disentanglement that permits dependencies between dimensions of the structured
latent representation. At a high-level, decomposition arises by successfully impos-
ing a desired structure on the learned representation. Decomposition can therefore
give rise to disentanglement, where the desired structure specifically requires inde-
pendence between latent dimensions i.e., a multivariate Gaussian with a diagonal
co-variance matrix (identity co-variance). Decomposition is achieved where there
is appropriate overlap between latent representations, i.e., a complete representa-
tion of the data is learned, and where the posterior resembles the prior - with the
prior imposing the desired structure over latent factors. Successful strategies for in-
ducing decomposition in the latent space includes clustering of the latent space and
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use of sparsity-inducing priors. Modelling sparsity in the latent space is motivated
by the presence of ‘non-coding’ latent dimensions in large latent spaces, these di-
mensions do not carry useful information and makes the latent representation less
generalisable and less interpretable (Tonolini, Jensen, and Murray-Smith, 2020).

Here I outline well-known strategies for inducing decomposition and/or dis-
entanglement in the latent space, these include the selective use of prior distribu-
tions, semi-supervision, and the application of inductive priors. I explore and/or
adapt some of these approaches for work in the explainable prediction of CXRs (see
Chapters 6 and 7).

3.2.2.1 β-VAE

β-VAE is a well known approach for disentanglement (Higgins et al., 2017). β-VAE
is an extension of the original VAE framework that introduces adjustable hyper-
parameter β which constrains model optimisation. More specifically, the β value
controls the weight of the KL term in the ELBO objective. With β > 1 the opti-
misation problem is constrained and the model is forced to learn statistically inde-
pendent latent units as prescribed by the use of a factorised unit Gaussian prior,
i.e., more Gaussian noise is added. Greater restriction on the latent bottleneck
pushes the model to learn a more efficient representation of the data. Intuitively, I
would expect the model to learn to group composite features into generative fac-
tors. Where independence between generative factors is observed, unsupervised
disentanglement is achieved. Note that when β = 1, the β-VAE is equivalent to the
original VAE.

L(θ, ϕ; x, z, β) = Eqϕ(z|x)[log pθ(x|z)]− β KL(qϕ(z|x)||p(z))

However, as a consequence of the constrained latent bottleneck β-VAE produces
poor quality image reconstructions compared to the original VAE, i.e., improved
disentanglement is at the expense of good quality reconstructions (Higgins et al.,
2017).

An in-depth study of β-VAE considers the effects of the constrained optimisa-
tion framework on the learned posterior and how the pressures exerted on the pos-
terior gives rise to structured latent representations and disentanglement (Burgess
et al., 2018). Reducing the KL divergence between prior and posterior reduces the
spread of posterior means and increases posterior variances (to resemble the unit
Gaussian prior). Ultimately, this means posterior distributions are forced to over-
lap across different samples of the dataset, which creates confusion between sam-
pled points i.e., where q(z1|x1) overlaps with q(z2|x2), x̂q(z2|x2) can be confused with
x̂q(z1|x1) and vice versa, and thus leads to worse log-likelihoods. This confusion be-
comes increasingly likely as the posterior overlap increases i.e., as KL divergence is
more greatly enforced.
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The cost to log-likelihoods can be minimised by arranging points that are nearby
in data space close together in the latent space; so when a predicted data point x1

is more likely under posterior q(z2|x2) close proximity between x1 and x2 (in the
latent space) prevents significant cost to the log-likelihood. In simple terms, it is
beneficial for the VAE to learn to arrange representations of similar data points
close together in the latent space, then if there is confusion the log-likelihoods are
less affected.

The ongoing incentive to preserve ‘locality’ throughout optimisation gives rise
to disentanglement. Specifically, the alignment of generative factors with inde-
pendent latent dimensions, i.e., disentanglement, emerges due to pressure from
the log-likelihood term. During training, the log-likelihood term incentivises the
VAE to first learn features that are most significant for the efficient improvement of
log-likelihoods. As training continues, more precise information for this feature is
learned, until the log-likelihood plateaus i.e., learning of this feature no longer has a
significant impact on the log-likelihood. At this point of plateau, the VAE is pushed
to learn another factor of variation in the dataset. To preserve the ‘locality’ property,
this new factor of variation is captured in a new latent dimension (Burgess et al.,
2018). With this ‘locality’ property latent traversals, in which a single latent factor is
gradually changed and step-wise latent reconstructions are generated, give rise to
small changes in a generative factor of the data which gives the effect of a smooth
transition.

3.2.2.2 β-TCVAE

Chen et al. (2018) build on the β-VAE by introducing the β- Total Correlation VAE
(β-TCVAE). Assuming a factorised prior, Chen et al. (2018) reformulate ELBO to
identify a term that measures the total correlation between latent variables, which
quantifies the mutual information between latent variables and the data variable.

Ep(n)[KL(q(z|n)||p(z)] = KL(q(z, n)||q(z)p(n)) + KL(q(z)||∏ q(zi))+

∑
i

KL(q(zi)||p(zi))
(3.8)

where zi is the ith dimension of the latent representation, and q(z|n) = q(z|xn)

and q(z, n)p(n) = q(z|n) 1
N , and therefore q(z) = ∑N

n=1 q(z|n)p(n) is the aggregate
posterior, which is an approximation of the latent variables under the data distri-
bution.

Here KL(q(z)||∏i q(zi)) is the total correlation term, the term of interest. Where
all dimensions of z are independent, the joint distribution across q(z) should equal
the product of individual zi distributions, the KL divergence between these terms
should therefore be 0. With increasing correlation between zi variables, q(z) di-
verges from ∏i q(zi), therefore latent dimension independence decreases as the
quantifying divergence term increases.
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Chen et al. (2018) induce disentanglement by evaluating q(z), which depends
on the full dataset, through a Monte Carlo approximation that relies on a mini batch
estimator that weights each batch appropriately (inspired by importance sampling).
From here, the total correlation term can be minimised to enforce independence be-
tween latent dimensions, facilitating disentanglement. This re-formulation of stan-
dard ELBO provides another perspective on how β-VAE achieves disentanglement
within the latent space.

3.2.2.3 FactorVAE

FactorVAE also achieves disentanglement through inducing independence between
latent dimensions (Kim and Mnih, 2018). Motivated by the poor trade-off between
disentanglement and reconstruction observed in β-VAE, FactorVAE introduces a
reinterpretation of the ELBO that includes an additional term for learning a facto-
rial marginal distribution, i.e., latent variables are made to be independent, with
no affect on reconstruction quality. This term is referred to as the total correlation
penalty, and is a popular measure of dependence for multiple random variables,

TC = KL(q(z) ∥ q̄(z)) = Eq(z)
[

log
q(z)
q̄(z)

]
≈ Eq(z)

[
log

D(z)
1− D(z)

]
where q(z) is the marginal posterior and q̄(z) is the product of all marginals in

a batch, q̄(z) := ∏d
j=1 q(zj). In this approach q̄(z) itself is approximated by sam-

pling a batch from q(z) and permuting across the batch for each latent dimension.
The total correlation (TC) penalty is approximated and minimised with the use of a
simple discriminator model D, which is tasked with predicting whether a sample z
belongs to the a marginal distribution q(z) or the product of all marginal distribu-
tions q̄(z). With this task the classifier approximates the density ratio for estimating
total correlation, log q(z)

q̃(z)
Crucially, minimisation of total correlation alone is not enough to encourage

disentanglement. For example, under latent variable collapse i.e., q(z|x) = p(z),
TC = 0. Hence, it is crucial to correctly balance the TC term with reconstruction
error.

3.2.2.4 Sparsity-driven decomposition

Here I discuss sparse representation learning and its relationship to latent space
decomposition. Based on the principle of sparse coding, these approaches aim to
learn a sparse posterior, in which the encoder is induced to represent the data in as
few active latent variables (non-zero) as possible, with a varying number and dif-
fering combination of active latent variables for each data sample (Tonolini, Jensen,
and Murray-Smith, 2020). Intuitively, sparse representations are well-suited for
learning latent representations of images. Most image pixels are redundant, sparse
representations are able to capture key elements while ignoring irrelevant details.
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As previously discussed in Section 3.2.2, sparsity can give rise to decomposition
of the latent space. While the mechanism for sparsity-induced decomposition has
not been formally evaluated in the literature, I suggest that sparsity gives rise to
latent decomposition by further constraining the information bottleneck. To pre-
serve the required information for image reconstruction, the model is motivated
to push low-level features to sparse areas of the posterior and retain high-level,
semantic features in dense areas. Moreover, since the model is restricted to using
only a small proportion of active variables, each variable is encouraged to learn a
specific, isolated features of the image with little overlap or redundancy between
them. This strategy for learning interpretable latent spaces may be more desirable
for complex imaging, where the assumption of independence between image fea-
tures is incorrect.

Within the framework of variational inference, representation of data through
sparse posteriors can be achieved with the application of sparse-inducing prior dis-
tributions, such as, the Spike-and-Slab probability distribution, a ‘sparsified’ mix-
ture of Gaussian distributions, and the Dirichlet distribution (Tonolini, Jensen, and
Murray-Smith, 2020; Mathieu et al., 2019; Joo et al., 2020)

Tonolini, Jensen, and Murray-Smith (2020) propose to model sparsity in the
latent representation with a Spike-and-Slab probability distribution prior VAE. In
Bayesian statistics, the Spike-and-Slab prior is used to separate relevant variables,
or features, from irrelevant variables. This is achieved by defining latent variables
with two different distributions. The "Spike" distribution, typically a Dirac delta
function (δ0) is concentrated near zero and has little-to-no capacity for information
coding. The "Slab" distribution is broader, typically Gaussian, and allows non-
zero values. The Spike-and-Slab prior is expressed as a mixture distribution, the
sparsity parameter controls the proportion of values expected to be zero i.e., the
proportion of "Spike" distributions within the mixture distribution. With this ap-
proach, Tonolini, Jensen, and Murray-Smith (2020) observed decreased tendency
towards posterior collapse, and present an analysis of latent variable activation the
shows improved axis-alignment of generative factors.

Joo et al. (2020) introduce the Dirichlet-prior VAE for sparse representation
learning. Parameterising the Dirichlet prior distribution with α values less than
one creates a sparse, multi-modal distribution. Therefore, when regularising the
VAE to this prior it is forced to learn a sparse posterior over latent variables. Clas-
sification and clustering-based evaluations suggest the Dirichlet-prior VAE learns
superior latent representations to the Gaussian-prior VAE. Note that in works mod-
elling on the Dirichlet prior, the Dirichlet distribution is often approximated by ap-
plying a softmax function to a unimodal Gaussian. However, this transformation
cannot generate a multi-modal distribution and is therefore a poor approximation
of a multi-modal Dirichlet distribution.

Moreover, Mathieu et al. (2019) model a sparse posterior using a mixture of
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Gaussian distributions, where a narrow Gaussian component pushes latent vari-
ables towards zero. This prior is defined as,

p(z) = ∏
i
(1− λ)N (zi; 0, 1) + λN (zi; 0, σ2

0 ),

with σ2
0 = 0.05. A proportion of this mixture of Gaussian distributions is ‘turned

off’, this is controlled by the λ parameter. Where λ≫ 0, a significant proportion of
Gaussians within the mixture are pushed towards zero, creating a sparse prior dis-
tribution. Mathieu et al. (2019) use λ = 0.8 and observe successful decomposition
of the latent space without a notable decrease to reconstruction quality.

3.3 Hierarchical VAEs

Hierarchical Variational Autoencoders (HVAE) have been employed as generative
models across various domains, including medical imaging, where they excel in
capturing complex, multi-scale data distributions. In medical imaging, HVAE have
been utilised for high-fidelity image reconstruction, unsupervised anomaly detec-
tion, and the generation of realistic synthetic data to address data scarcity in train-
ing pipelines (Maaløe et al., 2019; Dorent et al., 2023; Havtorn et al., 2021). By
leveraging their hierarchical latent structure, HVAE effectively represent the inher-
ent multi-resolution features and dependencies present in modalities such as CT
scans, MRIs, and CXRs, facilitating advanced applications in automated diagno-
sis, disease progression modelling, and treatment outcome prediction. For exam-
ple, Dorent et al. (2023) use a HVAE, specifically the Nouveau VAE (NVAE), for
the synthesis of missing images from various medical imaging modalities, such as
ultrasounds. They extend the principal of multi-modal VAEs with a hierarchical
latent structure and apply adversarial learning to generate sharper images. More-
over, Biffi et al. (2020) learn a hierarchy of conditional latent variables that both
models anatomical segmentations and enables the classification of distinct clinical
conditions. The highest stochastic level of the deep hierarchical VAE is specialised
for the classification of clinical conditions, and the generative model is used to fa-
cilitate explainable prediction. This works follows the Ladder VAE formulation.

Hierarchical VAEs (HVAEs) extend the basic VAE framework by introducing
a hierarchy of L stochastic latent variables z = z1, · · · , zL. The hierarchy is or-
dered such that each stochastic level is conditioned on the level above i.e., z =

{z1, · · · , zL} and qϕ(z1, · · · , zL|x), so L = 1 is equivalent to the basic VAE frame-
work. This process requires ancestral sampling, where the sampling of zk is de-
pendent on the prior sampling of its parent stochastic variables i.e., zl−1 (Kingma,
Welling, et al., 2019). Figure 3.5 shows examples of different types of HVAEs.

Typically, Gaussian-prior VAEs assume latent variable independence and are
therefore incapable of capturing dependencies between factors of variation in the
data. By introducing a multi-level framework, where dependencies between the
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lower-level latent variables is permitted, HVAEs are able to learn more flexible pos-
terior distributions that may better approximate the true posterior i.e., they are not
restricted to diagonal multivariate Gaussians (Havtorn et al., 2021).

Hierarchical generative models are typically defined in a top-down manner
(Havtorn et al., 2021),

pθ(x|z) = p(x|z1)pθ(z1|z2) · · · pθ(zL−1|zL),

where L is the top level.
While the inference model can be defined from either the bottom-up,

qϕ(z|x) = qϕ(z1|x)
L

∏
i=2

qϕ(zi|zi−1)

or the top-down,

qϕ(z|x) = qϕ(zL|x)
1

∏
i=L−1

qϕ(zi|zi+1)

Choice of inference model dictates information flow through the model. For
simple HVAEs (like multi-level VAEs), at inference information flows in the bottom-
up direction (BU) and at generation information flows in the top-down (TD) direc-
tion (Fig. 3.5a). To draw comparison with the deterministic autoencoder frame-
work, the BU direction encodes data while the TD direction decodes data.

Typically, HVAEs are much larger models than VAEs, requiring many more
parameters. Generally, the dimensionality of the lowest level stochastic variable
within the hierarchy is similar to the number of pixels of the input image, and
the dimensionality of the latent representation exponentially decreases further up
through the hierarchy (Dorent et al., 2023). Therefore, low level features are typ-
ically captured by bottom levels of the hierarchy. While composite, higher level
features are captured by top levels of the hierarchy.

A deep hierarchy of stochastic latent variables allows a much more expressive
variational model, and facilitates a better approximation of the true posterior. How-
ever, modelling several layers of dependent stochastic variable presents a number
of challenges for training, often higher stochastic levels become too ‘noisy’ and are
vulnerable to latent variable collapse, or posterior collapse, and therefore become
unstable to train1. Subsequent research has aimed to increase the number of train-
able stochastic variable levels with the view to improve log-likelihoods.

Major advancements in HVAE performance have been achieved through imple-
menting more complex information flow, namely, the addition of top-down infer-
ence. Top-down dependencies are already observed in the generative distribution
i.e., information is passed from the highest level of abstraction (top-level stochastic
layers) down to observable variables.

1Posterior collapse can lead a latent variable to become inactive. A latent variable can be defined
as collapsed/inactive if the KL divergence between the posterior and prior is ≈0.
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Top-down inference mirrors these dependencies i.e.,

Q(z1, z2|x) = q(z1|z2, x)q(z2|x)

and permits a shared top-down pathway connecting inference and generative mod-
els through a shared parametrisation. Alongside this a deterministic path takes
information from observable variable x to the top latent variables. This approach
supports much larger hierarchies without posterior collapse, and is a key feature
of LadderVAEs and Bi-directional inference VAEs (BIVA) (Sønderby et al., 2016b;
Maaløe et al., 2019). Further to this, research has explored the use of deep learning
engineering techniques and training strategies for optimal generative performance
(Vahdat and Kautz, 2020).

In this section, I introduce models that represent these major steps in the ad-
vancement of HVAEs, these are: the Multi-level VAE, the Ladder VAE, Bi-directional
inference VAE (BIVA), and the Nouveau-VAE (NVAE) (Havtorn et al., 2021).

FIGURE 3.5: A L=3 layered example of hierarchical Dirichlet-prior
VAEs: (a) Multi-level VAE, (b) Ladder VAE, (c) BIVA and (d)
NVAE. Dirichlet posterior distributions are parameterised by α val-
ues. ∆ indicates the use of residual parameterisation of posterior
distributions, as in NVAE. Red arrows show information flow for
image generation. Blue arrows show how deterministic parameters
are shared between generative and inference models, this describes
the additional deterministic top-down pathway applied in BIVA and
NVAE. Abbrvs: Variational AutoEncoder (VAE); Bidirectional inference

VAE (BIVA); Nouveau VAE (NVAE).
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3.3.1 Multi-level VAE

The multi-level VAE is the most simple extension of a VAE. Here, I define a multi-
level VAE as a VAE with multiple stochastic levels and separate computation of
inference and generative distributions (Fig. 3.5a). In this, top-down information
is incorporated indirectly through conditional priors in the generative model only.
With only this direct information pathway the multi-level VAE can only support
a maximum of two stochastic layers before becoming prone to posterior collapse
(Maaløe et al., 2019).

I introduce an example of a two-level VAE, made up of latent variables z1 and
z2. For this HVAE the generative process is simple, relying solely on ancestral sam-
pling. z2 is sampled first, then z1 is sampled given z2 and finally x is sampled
given z2. Variational inference is used to approximate the posterior, q(z1, z2|x) with
KL divergence computed per layer. However, previous research shows that with
a powerful decoder and random initialisation of latent variables, the model will
likely find the optimum of the top-level KL term KL[q(z2|z1)||p(z2)]. This means
the top-level will collapse to the prior, i.e., q(z2|z1) ≈ p(z2) ≈ N (0, 1), and the
HVAE is effectively reduced to a single-level. As more levels are added to the hier-
archy, this phenomenon becomes more likely.

3.3.2 Ladder VAE

Sønderby et al. (2016b) introduce a new strategy for information flow through the
stochastic levels of Hierarchical VAEs. They introduce the Ladder VAE (LVAE) by
proposing a new inference model that combines a Gaussian likelihood p(x|z) with
the generative model p(x, z) by sharing parameters between inference and genera-
tive models and adding a top-down inference method (Fig. 3.5b). In this process,
the likelihood distribution is first approximated with a deterministic upward pass
i.e., images are deterministically embedded into feature space and distribution pa-
rameters are estimated from this. This is followed by a stochastic downward pass,
in which stochastic latent variables are ancestrally sampled to recursively compute
the approximate posterior,

q(z|x) = q(zL|x)
L−1

∏
i=1

q(zi|zi+1)

and generative distribution p(x, z). Note that while the inference model is made
more complex, the generative model of LVAE follows the same information flow as
a multi-level VAE i.e., simple ancestral sampling.

The Ladder VAE achieves much better log-likelihoods, supporting active la-
tent variables in up to 5 levels of stochastic layers. However, despite significant
progress, LVAEs are still challenging to train, top-level stochastic latent variables
have a tendency collapse to the prior.. Gradual warm up from deterministic to
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variational was found to be crucial to prevent posterior collapse in higher layers
(Sønderby et al., 2016a).

3.3.3 Bidirectional inference VAE

The Bidirectional inference VAE (BIVA) approach introduces a bi-directional stochas-
tic inference pathway with the goal of further improving the expressivity of the ap-
proximate posterior (Sønderby et al., 2016a). BIVA is made up of a deep hierarchy
of stochastic variables, using skip-connections to improve information flow and
to prevent inactive latent units. As in the Ladder VAE, the bidirectional inference
pathway uses stochastic variables in top-down (TD) inference pathways. How-
ever, BIVA extends the Ladder VAE by adding a stochastic bottom-up path (Fig.
3.5c). The inference model can therefore be thought of as comprising top-down
and bottom-up stochastic latent variables,

zi = {zBU
i , zTD

i }

where zBU
i belongs to a bottom-up inference path and zTD

i belongs to the top-
down path. This factorisation is done at each level of the hierarchy. Information
from the BU approximated likelihood p(x|z) is combined with TD information
from the generative distributions p(x, z) to give the approximate posterior q(z|z, x).
Here, both the generative model and inference model are dependent on top down
information flow. In other words, the new inference model recursively corrects the
generative distribution p(x, z). First, data flows through the deterministic upward
pass to approximate the likelihood distribution p(x|z). Then the stochastic down-
ward pass computes the approximate posterior and generative distribution. The
inference model is therefore a combination of BU information an TD information
flowing from the prior.

Skip connections between data dependent information and lower stochastic
levels are also incorporated, allowing data dependent information to skip stochas-
tic variables lower in the hierarchy. Together, these additional information paths
facilitate a highly expressive model that is capable of approximating very complex
datasets. BIVA significantly outperforms the Ladder VAE, supporting 20-level hi-
erarchies and improving substantially on Ladder VAE log-likelihoods.

3.3.4 Nouveau VAE

By exploring the best model architecture and training strategies, with Nouveau
VAE (NVAE) Vahdat and Kautz (2020) achieve state-of-the-art results among non-
auto-regressive likelihood-based generative models (Fig. 3.5d). Through exten-
sive engineering, Vahdat and Kautz (2020) identify three key model design con-
siderations for better log-likelihoods and higher-resolution image generation with
a BIVA-based information flow strategy, these are: (1) residual cells, (2) spectral
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regularisation and (3) residual paramerisation of the approximate posterior for im-
proved optimisation of KL objective.

Residual cells are used in both the inference and generative model to allow the
long-range correlations in the data to be learned. Spectral regularisation controls
model complexity by directly penalising the spectral norm of model weight matri-
ces, these values typically correspond to weights with high variance. NVAE uses
spectral regularisation to prevent the encoder output from changing dramatically
with input changes and to stabilise training (Vahdat and Kautz, 2020; Dorent et al.,
2023).

Residual parametrisation of posteriors is also key to stabilising HVAE training,
Figure 3.6 gives an overview of how this is implemented in NVAE. The determin-
istic bottom-up path is used to modify the parameters of the top-down path. The
deterministic path gives two deterministic variables r1 = f1(x) and r2 = f2(r1),
where f1 and f2 are deep neural networks (DNNs). Additional DNNs are then used
to compute modifications to distribution parameters i.e., for a Gaussian NVAE,
[∆µi, ∆σ2

i ] = NN∆i(ri). Modifications are used to parametrise the variational pos-
teriors for top-down sampling in the generative process. For the top-level of a
Gaussian NVAE this can be expressed as, zl ∼ N (0 + ∆µl , 1 · ∆σ2

l ), and for subse-
quent layers as, zi ∼ N (µi + ∆µi, σ2

i · ∆σ2
i ), where [µi, σ2

i ] = DNNi(zi + 1).

FIGURE 3.6: A graphical diagram of residual parametrisation of
variational posteriors in a NVAE with 3 stochastic layers. At each
level, neural networks are applied to learn the modifications of each
distribution from r, which represents the deterministic variables for
each level. ∆ represents residual parametrisation. Abbrvs: Nouveau

VAE (NVAE).



3.4. Data 33

3.4 Data

I share a number of datasets across multiple chapters, here I introduce these datasets
as a reference for subsequent research. I divide these datasets into two categories,
COVID-19 CXR datasets and multi-label CXR datasets. The COVID-19 CXR datasets
used in this work are exclusively binary or multi-class datasets, meaning each in-
stance can only be assigned to one label.

For each dataset I give detail on labelling protocol (where possible). I consider
risk of inaccurate or ‘noisy’ ground truth with datasets that provide little-to-no in-
formation on labelling protocol and datasets which use only one radiologist. In
particular, I note that CheXpert labels are extracted from radiologist reports using
NLP, adding another level of labelling noise i.e., the report must be entirely ac-
curate and the NLP algorithm must predict accurately. If ground truth labels are
provided by expert radiologists, risk of inaccuracy is increased with less experi-
enced radiologists and where multiple classes are considered. Inaccurate labelling
can be mitigated by use of expert panels. With multiple labels, majority voting and
consensus can be used to derive more accurate labels and provide a measure of
label uncertainty.

3.4.1 COVID-19 CXR datasets

The COVID-19 CXR datasets used in this work includes a mix of public datasets
and hospital datasets, for which I was granted exclusive access. I consider domain-
specific pre-training datasets applied to COVID-19 detection models, namely, CheX-
pert (as a multi-label dataset CheXpert is described in the relevant section).

COVIDX COVIDX is the largest and most popularly used open-source COVID-
19 CXR dataset, comprising 13,975 CXR images across 13,870 patient cases at the
time of the use. I use this dataset in Chapter 4 in my evaluation of potential pit-
falls in using open-source data to develop medical image classifiers. First intro-
duced in Wang, Lin, and Wong (2020), COVIDX is made up of a number of pub-
lic data repositions these are, RSNA, CHOWDHURY, COHEN, Figure1, and Ac-
tualMed (Cohen, Morrison, and Dao, 2020; Rahman, n.d.; Cohen and Chung, n.d.;
IEEE8023, n.d.; Chung, 2020). To form this dataset, the creators combined and mod-
ified these five data repositories, leveraging specific patient cases from each of the
data repositories. Exclusively COVID-19 CXRs are taken from Figure1, ActualMed
and CHOWDHURY repositories. COVID-19 and non-COVID-19 pneumonia CXRs
are taken from COHEN. Only non-COVID-19 pneumonia and pneumonia negative
CXRs are taken from RSNA. This dataset provides CXRs with corresponding labels
for three classes: COVID-19, non-COVID-19 pneumonia and pneumonia negative.
Note that data labelling protocols for these sources were not accessible and likely
vary across data sources.



34 Chapter 3. Methods

RSNA International COVID-19 Open Annotated Radiology Database The RSNA
International COVID-19 Open Annotated Radiology Database (RICORD) comprises
998 CXRs from 361 patients located at four international sites (Tsai et al., 2021).
All participants are over 18 years old and have received a positive diagnosis for
COVID-19. I combine this dataset with CheXpert to create an external test set used
to evaluate COVID-19 detection models in Chapter 4.

Leeds Teaching Hospital NHS Trust Data Leeds Teaching Hospital NHS Trust
(LTHT), a large teaching hospital based in Leeds, UK, provided a dataset of CXR
images of patients alongside PCR test results for COVID-19 diagnosis and non-
COVID pneumonia diagnosis. I use data from this source in Chapter 4 and Chapter
5. Access was limited at time of study for Chapter 4, I was provided with a total of
1369 CXRs with COVID-19 labels. COVID-19 label was derived from the outcome
of RT-PCR testing, where the swab was taken during a patient’s hospital stay. No
further patient information was given. For Chapter 5, full data access was granted
which provided us with 11,204 CXRs with labelled COVID-19 outcomes. I addi-
tionally gained participant demographic data, such as, sex, age and ethnicity data,
which I link to CXRs.

National COVID-19 Chest Imaging Database The National COVID-19 Chest Imag-
ing Database (NCCID) is a centralised UK COVID-19 database (Cushnan et al.,
2021). Data is collected from 26 hospital centres, totalling 45,635 CXRs from 19,700
patients across the UK in the form of de-identified DICOM image files and header
information (at time of access). NCCID provides clinical data associated with imag-
ing, these include the results of RT-PCR tests. Dates for both CXR exams and
COVID-19 RT-PCR swabs are provided. COVID-19 outcomes are derived from this
information. This dataset is used in Chapter 5 as the training data for COVID-19
detection model benchmarking experiments.

COVID-GR The COVIDGR dataset was developed in collaboration with expert
radiologists at Hospital Universitario San Cecilio. It comprises 852 anonymised
CXRs, evenly balanced between 426 COVID-19 positive and 426 COVID-19 nega-
tive cases. COVID-positive cases were defined by a positive RT-PCR test within
24 hours of the image acquisition. All images were acquired using standardised
equipment and protocol, consisting exclusively of postero-anterior chest radiographs
(Tabik et al., 2020). This dataset is used in Chapter 5 as a test dataset for benchmark-
ing COVID-19 detection models.

COVID-QU-Ex COVID-QU-Ex was released as a public COVID-19 dataset, the
dataset comprises 11,956 COVID-19, 11,263 non-COVID-19 pneumonia, and 10,701
normal CXR images. In addition to CXRs and class labels, ground-truth lung masks
were also included. Masks were generated by humans with machine assistance. All



3.4. Data 35

CXRs are either postero-anterior or antero-posterior, i.e., only frontal view CXRs are
included. I use this data to train and evaluate a U-Net++ lung segmentation model,
described in Chapter 5.

3.4.2 Multi-label CXR datasets

A multi-label dataset refers to a dataset where each instance can be assigned mul-
tiple labels simultaneously. This contrasts with single-label classification, where
each instance is associated with only one label. The concept of multi-label classi-
fication is important for tasks where multiple categories or attributes are relevant
for each input. I use a number of multi-label CXR datasets in my work on explain-
able prediction of co-occurring lung pathologies (Chapters 6 and 7), these include,
CheXpert, CheXlocalise, and VinDr-CXR.

Multi-label CXR datasets include classes for common lung pathologies, such as,
consolidation, lung opacity or airspace opacity, and pleural effusion. Consolidation
refers to the filling of airspaces (like alveoli) in the lung with fluid, inflammatory
exudate, or other material, obscuring the margins of vessels and airway walls. As
such, consolidation is often observed in the middle-to-lower regions of the lung
space (Lee et al., 2013). Pleural effusion is defined as the abnormal accumulation
of fluid in the pleural space, which is the thin cavity between the pleural layers
surrounding the lungs (Krishna et al., 2024). Lung opacity, or airspace opacity, is
a broader descriptor, referring to any area of increased density or whiteness on an
x-ray. This term can be used to describe consolidation, pleural effusion, and other
conditions like ground-glass opacity (Türk and Kökver, 2023). Support devices
are also included as a class in the multi-label CXR datasets considered. Support de-
vices, or medical devices, represent a broad category of therapeutic and monitoring
equipment visible on chest radiographs. This term encompasses various implanted
or externally placed devices including pacemakers, central venous catheters, endo-
tracheal tubes, chest tubes, and other interventional hardware used for patient care
and monitoring Hunter et al., 2004.

CheXpert The CheXpert dataset is a large-scale dataset of CXRs, it contains over
224,000 CXRs from more than 65,000 patients (Irvin et al., 2019). CXRs are labelled
for 14 common chest conditions, which are generated using a NLP-based radiology
report labelling tool. The CheXpert labels are:

• No Finding

• Enlarged Cardiomediastinum: Cardiomegaly

• Lung Lesion

• Lung Opacity: Edema, Consolidation, Pneumonia, Atelectasis, Pneumotho-
rax, Pleural Effusion, Pleural Other
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• Fracture

• Support Devices

Labels follow a hierarchical structure, which groups pathologies by radiographic
features. For example, observations like "Lung Opacity" encompass several specific
findings, such as "Edema" and "Consolidation," which are often interrelated in clin-
ical contexts. Additionally, labels include uncertainty annotations (e.g., positive,
negative, uncertain), which reflects the ambiguity of ground truth annotations.

CheXlocalise CheXlocalise is a subset of the CheXpert dataset with radiologist
annotations for disease localisation (Saporta, Gui, Agrawal, et al., 2022). The dataset
is divided into two annotation sets: (1) ground-truth pixel-level segmentations,
which is provided by two board-certified radiologists, and (2) benchmark pixel-
level segmentations and most-representative points, which is provided by a sepa-
rate group of three board-certified radiologists. I use only the ground-truth pixel-
level annotations which is annotated on the validation and test set of CheXpert.
The validation set contains 234 chest X-rays from 200 patients, while the test set
includes 668 chest X-rays from 500 patients. The dataset focuses on 10 pathologies:
Atelectasis, Cardiomegaly, Consolidation, Edema, Enlarged Cardiomediastinum,
Lung Lesion, Airspace/Lung Opacity, Pleural Effusion, Pneumothorax, and Sup-
port Devices. As a localisation dataset, the CheXlocalise dataset does not consider
the No Finding class of CheXpert. I use this dataset in Chapter 7 to quantitatively
evaluate visual explanations generated by multi-label prediction models.

VinDr-CXR The VinDr-CXR dataset is a large publicly available dataset of chest
radiographs (Nguyen, Lam, Le, et al., 2022). The dataset contains more than 18,000
CXR scans collected from two major hospitals in Vietnam from 2018 to 2020. Each
CXR is provided with radiologists’ annotations for classification of common tho-
racic lung diseases and localisation of disease findings. The images were labelled
for 28 different radiographic findings, where each scan was annotated by a group
of three radiologists, with a total of 17 experienced radiologists contributing anno-
tations. The dataset is divided into a training set of 15,000 and test set of 3,000 CXR.
Limited by open access restrictions, I exclusively use the training set and split this
into training, validation, and test data. I use this dataset in Chapter 7 to evaluate
the predictive performance and visual explanations of lung pathologies.
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Chapter 4

The Pitfalls of using Open Data
for COVID-19 Detection in CXRs

4.1 Introduction

The unprecedented clinical need arising from the recent severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) or COVID-19 pandemic prompted consid-
erable interest from the AI community, with particular focus on the detection of
COVID-19 in CXRs. Supported by shared data repositories, publicly available
anonymised datasets, and open-source software, researchers developed deep learn-
ing systems with the aim of assisting with COVID-19-related clinical tasks (Cohen,
Morrison, and Dao, 2020). A large volume of research was published for the detec-
tion of COVID-19 in chest radiographs, with researchers developing deep learning
solutions to assist with the triaging of patients to prioritise primary diagnostic re-
sources i.e., polymerase chain reaction with reverse transcription (RT-PCR) assays
or more sensitive imaging techniques e.g. CT scans. With further research inves-
tigating the potential for automated imaging-based COVID-19 detection systems
as a ‘second-check’ option for cases with suspected false negative RT-PCR results,
a consequence of this test’s well-documented low sensitivity (Kortela et al., 2021;
Watson, Whiting, and Brush, 2020).

Early work into deep learning models for the automated prediction of COVID-
19 from CXRs reported exceptional model performance, matching or even surpass-
ing the reported capabilities of deep learning for pneumonia-detection prior to the
COVID-19 outbreak (Wang, Lin, and Wong, 2020). However, upon a closer review
of the literature and in-depth analysis of the used datasets, I identified serious lim-
itations associated with this area of research. As detailed in this chapter, I perform
an in-depth analysis of a popularly used open-source COVID-19 dataset, COVIDX
(Wang, Lin, and Wong, 2020). I explore its risk of bias to deep learning models
through evaluation of performance on an external hospital dataset, implementa-
tion of post-hoc explainability methods, and an in-depth exploration of sources of
bias within the dataset. Through in-depth data analysis and model evaluation, I
aim to show that the popular open-source data is not representative of the real clin-
ical problem and that model performance results on these datasets are inflated.
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With the sudden advent of the COVID-19 virus and limited availability of COVID-
19 imaging, the majority of early publications relied on a heterogeneous mix of
open-source/public data repositories, with non-COVID-19 CXRs sourced from larger
pre-existing repositories and COVID-19 CXRs obtained from the public datasets cu-
rated in response to the sudden demand for COVID-19 related data. Four COVID-
19 CXR repositories were used most frequently: (1) COVID-19 Image Data Col-
lection (COHEN) (Cohen, Morrison, and Dao, 2020), (2) COVID-19 Chest X-ray
Dataset Initiative (Cohen and Chung, n.d.) (FIG1), (3) ActualMed COVID-19 Chest
X-ray Dataset Initiative (ACTMED) (Chung, 2020), and (4) COVID-19 Radiogra-
phy Database (CHOWDHURY) (Rahman, n.d.). These four data sources were com-
bined with established pre-COVID-19 datasets that comprise CXRs of patients with
various other lung pathologies e.g., the Radiological Society of North America
(RSNA) Pneumonia Detection Challenge dataset (RSNA Pneumonia Detection Chal-
lenge 2018). These five data repositories have been collated into one large open-
source dataset, termed COVIDX (Wang, Lin, and Wong, 2020). I term this aggregate-
style of dataset, a Frankenstein dataset (Roberts et al., 2021). As a purpose-built
dataset, this style of open source COVID-19 data typically includes a maximum of
three outcomes: normal, pneumonia, and COVID-19; and gives no additional patient
data.

In this work I explore the risks and common pitfalls associated with the use of
this style of open data for the detection of COVID-19 in CXRs. Specifically, I con-
duct an in-depth review of the COVIDX dataset and evaluate the generalisability
of COVIDX-trained models to real-world hospital data, with careful consideration
of model bias.

4.2 Experiment I: Model generalisability

In this component of my research I aim to assess bias within models trained on
COVIDX data. In assessing the generalisability of existing deep learning approaches
for the detection of COVID-19 from CXRs, I select three highly cited models. I train
these models on a balanced version of COVIDX and evaluate them on two exter-
nal test datasets. Models are evaluated for the task of classifying CXRs into one
of three classes: COVID-19, non-COVID-19 pneumonia, and pneumonia negative.
Classification performance is assessed through ROC curves and standard classifi-
cation metrics, such as, AUROC, F1 score, precision, recall, and accuracy. Post-hoc
explainability methods are implemented to explore the image features considered
most important to classification.
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Models were selected based on publication impact factor from those with open-
source data and code availability. From these criteria I selected three models: COVID-
Net (Wang, Lin, and Wong, 2020), DarkCovidNet. (Ozturk et al., 2020) and Coro-
Net (Khobahi, Agarwal, and Soltanalian, 2020). All three models utilise convolu-
tional neural networks (CNNs) for feature learning. While COVIDNet and Dark-
CovidNet are standard deep CNN classifiers, CoroNet relies on a two stage process
to classify images, comprising convolutional autoencoders in the first stage and a
standard CNN classifier in the second stage (Khobahi, Agarwal, and Soltanalian,
2020).

The DarkCovidNet is adapted from the Darknet-19 model, a network that has
proven itself in computer vision through success in object detection tasks. Darknet-
19 consists of 19 convolutional layers and five pooling layers, DarkCovidNet makes
small adjustments to this architecture, removing two convolutional layers. The
final result is a straight forward deep CNN that makes efficient use of convolu-
tional and max pooling operations (Ozturk et al., 2020). The COVIDNet architec-
ture is more complex with much greater diversity in design. It leverages residual
connections alongside selective long range connectivity and projection-expansion-
projection-extension (PEPX) design patterns. It is worth noting that the COVIDNet
model itself is inaccessible due to copyright restrictions and so, while training and
evaluation is possible, implementation of additional explainability modules is chal-
lenging (Wang, Lin, and Wong, 2020).

Unlike COVIDNet and DarkCovidNet, CoroNet employs a strategy of a repre-
sentation learning, where two separate autoencoders are assigned a class of either
’healthy’ or non-COVID pneumonia and are trained independently to learn the la-
tent representation of their assigned class. The learned latent representations are
then used to create reconstruction of any class of input image. Calculating pixel-
wise intensity differences between the input image and the reconstructed image
allows for anomaly detection, I would expect to observe anomalous reconstruc-
tions where a given input image falls outside of the autoencoder’s data manifold,
or in other words if the image does not belong to the learned class of the autoen-
coder. The differences between image input and reconstruction are calculated and
termed residual images, these are passed to a ResNet-18 classifier, which is trained
to produce class predictions (Khobahi, Agarwal, and Soltanalian, 2020).

For this work, I define a training dataset and two external test sets. As the
largest and most popular open-source COVID-19 CXR dataset, I selected COVIDX
as my exemplar open-source training dataset. I approximated the COVIDX data
used in previous research using files and code made available at: https://github.
com/lindawangg/COVIDNet. The COVIDX dataset is comprised of multiple open-
source data repositories, including RSNA, CHOWDHURY, COHEN, etc. The COVIDX
dataset combines pre-COVID-19 repositories with purpose-built COVID-19 datasets
made readily available online, providing normal, pneumonia, and COVID-19 CXRs.

https://github.com/lindawangg/COVIDNet
https://github.com/lindawangg/COVIDNet


40 Chapter 4. The Pitfalls of using Open Data for COVID-19 Detection in CXRs

In updated versions of COVID-19, the RSNA International COVID-19 Open Ra-
diology Database (RICORD) dataset is also included (Tsai et al., 2021). However,
to more closely match the COVIDX data used in early research and to reserve RI-
CORD for use in external testing, I exclude all RICORD CXRs from the training
data. I exclude pneumonia cases and normal cases at random to better balance the
data classes. Ultimately, the balanced COVIDX data contains 4,638 normal cases,
4,347 pneumonia CXRs and 3,027 COVID-19 CXRs.

I also create a bespoke external test set from the well-established open-source
CXR repositories, the CheXpert dataset, and the reserved RICORD dataset for ex-
ternal evaluation of the trained models (Irvin et al., 2019; Tsai et al., 2021). I refer
to this dataset as the external open test data throughout. In my inclusion of CheX-
pert data, I am careful to restrict pneumonia positive cases to include pneumonia-
labelled cases exclusively. Sampling from the CheXpert dataset provides 998 pneu-
monia negative and 997 non-COVID-19 pneumonia cases. My assignment of CheX-
pert labels to the negative and pneumonia classes was reviewed by a clinical expert
to ensure they were appropriate. I ensured the pneumonia negative class includes
a wide variety of other lung pathologies, such as, cardiomegaly, pleural effusion,
and lung mass/nodules. While I take care to keep the non-COVID-19 pneumonia
class to exclusively pneumonia CXRs (although these may include CXRs with co-
occurring pathologies). I exclude any pneumonia case with an uncertain label, as
defined by the CheXpert labelling schema, to mitigate potential noise. However,
I acknowledge that uncertain labels may correspond to more complex CXRs and
therefore the blanket removal of CXRs with uncertain labels may bias the dataset.

Additionally, a large teaching hospital based in Leeds, UK, provided a dataset
of CXR images of patients alongside RT-PCR test results for COVID-19 diagnosis
and non-COVID pneumonia diagnosis. I randomly sampled a subset of CXRs from
the Leeds data, giving 611 COVID-19 cases, 459 pneumonia-negative cases, and 299
non-COVID pneumonia cases. Here, a CXR is considered COVID-19 positive if the
CXR has an associated positive RT-PCR swab, i.e., both exams conducted during a
patient’s hospital stay. Due to data access limitations, I was unable to define a more
uniform diagnostic window. I refer to this dataset as LTHT.

I trained models on COVIDX data under 3-fold cross validation. Hyperparame-
ters were selected according to the training protocol described in the original publi-
cation. Where possible I implemented GradCAM to identify the features that have
the greatest impact on classification1 (Selvaraju et al., 2017b). I implement a learn-
ing rate scheduler and early stopping criteria, where if validation loss does not
improve for 10 epochs the learning rate is reduced by 10%, and if validation loss
does not improve for 20 epochs, training is stopped.

I conducted three rounds of evaluations using (1) the COVIDX test dataset, (2)
the external open test dataset, and (3) the LTHT data. I evaluated model weights
from each set of cross validation and recorded all performance metrics, i.e., area

1It was not possible to perform GradCAM on COVIDNet due to restricted model access.
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under the receiver operator characteristic (AUROC), accuracy, recall, precision, and
F1 score. For each model, I selected the best cross validation iteration according to
F1 score; ROC curves were evaluated based on this selection.

4.3 Experiment II: Analysis of Frankenstein Data

To evaluate risk of model bias in using a Frankenstein dataset, I conduct further,
more data-centric investigations. Specifically, I train and test a deep CNN on the
COVIDX dataset to predict the original source of COVIDX images. The capacity
for a deep learning model to separate CXR by source is indicative of the presence
of source-specific features that COVID-19 predictors are vulnerable to learning to
rely on i.e., shortcut features.

4.3.1 Frankenstein Dataset

I use COVIDX data as the basis for the exemplar Frankenstein data. I include RI-
CORD data but to prevent severe imbalance of target classes, I exclude images from
less significant COVIDX contributors, such as ACTMED and FIG1. The end result
is a COVIDX dataset that comprises images from only the four main COVIDX con-
tributors, RSNA, COHEN, CHOWDHURY and RICORD. The frequency of image
by source is presented in Figure 4.2c. For this task I resize all images in the Franken-
stein data to 224x224 and apply min-max normalisation. During training I apply
data augmentation techniques, such as, image rotation, zoom and flipping.

To predict image source, I use a deep CNN based on the established ResNet-18
classifier (He et al., 2015). During training if the validation loss does not improve
for 10 epochs, learning rate is reduced by 10%, and if validation loss does not im-
prove for 20 epochs, training is halted. I evaluate the deep CNN model on a held-
out COVIDX test set with standard classification performance metrics, i.e., ROC
curves, accuracy, precision, recall,and F1 score.

I generate saliency maps to identify the most predictive features for this task. I
assess class separability by extracting the hidden features from the final layer of the
deep CNN during inference. I use principal component analysis (PCA) to reduce
feature dimensionality from 512 to 20, then use t-SNE to project this into 2D for
visualisation (Wold, Esbensen, and Geladi, 1987). I use this t-SNE plot to evaluate
the hidden features associated with each image source (Maaten and Hinton, 2008).

4.4 Results

4.4.1 Experiment I: Model generalisability

I present model performance metrics for all three test sets in Table 4.2. All models
achieved AUROCs of more than 0.93 across all classes, also exceeding 86% predic-
tion accuracy when evaluated on COVIDX test data. Results indicate that all of
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Dataset (abbr.) Frankenstein Sub-datasets Open contribution

COHEN ✓
SIRM, EURORAD,
CORONACASES ✓

RSNA ✕ N/A ✕

KERMANY ✕ N/A ✕

MOONEY* ✕ N/A ✕

CHOWDHURY
✓

SIRM, COHEN, MOONEY
✓FIG1 ✕ N/A ✓

ACTMED ✕ N/A ✓

CHEST-XRAY-8 ✕ N/A ✕

CHEST-XRAY-14 ✕ N/A ✕

COVIDX
✓

COHEN, FIG1, ACTMED,
RSNA, CHOWDHURY ✓

CHEXPERT ✕ N/A ✕

SIRM ✕ N/A ✕

RADIOPAEDIA ✕ N/A ✓

EURORAD ✕ N/A ✓

CORONACASES ✕ N/A ✕

JSRT ✕ N/A ✕

RICORD** ✕ N/A ✕

TABLE 4.1: A summary of public datasets commonly used in DL
systems for detecting COVID-19 from CXRs. *MOONEY is the
same as the KERMANY dataset, but hosted on Kaggle. **RICORD
provides only COVID-19 images. Abbrvs: Chest X-ray (CXR); Deep

Learning (DL).

the chosen models were able to reliably separate each of the target classes. How-
ever, comparison of model performance on the COVIDX test set with model perfor-
mance on the external and LTHT datasets shows a steep decline, e.g., COVIDNet
prediction accuracy falls from 0.86 on COVIDX test data to 0.44 on LTHT data and
0.38 on External open test data. Moreover, the CoroNet model shows a drop in
prediction accuracy of 66% when comparing performance on COVIDX data versus
LTHT data.

Figure 4.1 shows GradCAM saliency maps of correct DarkCovidNet predictions
for all classes. From this I observe a trend in highlighted features positioned outside
the lung field. I observe a pattern of highlighted regions around lettering, markers,
and the collarbone, although as these features are small and irregularly shaped
it is difficult to be precise. Clinical review of GradCAM saliency maps confirms
that, despite strong prediction performance on COVIDX test data, models rely on
clinically irrelevant features often highlighting confounding features originating in
the COVIDX dataset.

4.4.2 Experiment II: Frankenstein data

The Frankenstein classifier predicted CXR data source with an overall F1 score of
0.89. Model performance varies with CXR source, achieving AUROC scores of 1.00,
0.99, 0.91, and 1.00 on CHOWDHURY, RSNA, COHEN and RICORD CXRs, respec-
tively (Figure 4.2b).



4.4. Results 43

N
EG

AT
IV
E

CO
VI
D
-1
9

PN
EU

M
O
N
IA

FIGURE 4.1: Saliency maps of correct DarkCovidNet predictions
of COVIDX test CXRs. Examples of negative, pneumonia and
COVID-19 are included side-by-side with the predicted image and
saliency maps are generated with GradCAM. Abbrvs: Chest X-rays

(CXRs)

The t-SNE projected 2D features learned by the deep CNN model shows dis-
tinct, separate clustering of the RICORD CXR features, which contributes exclu-
sively COVID-19 positive CXRs (Fig. 4.2a). These features share little-to-no over-
lap with RSNA CXR features, demonstrating the separability of COVID-19 positive
CXRs from COVID-19 negative CXRs by source-specific features alone. CHOWD-
HURY features are especially clustered, and are far removed from alternative sources.
While COHEN CXR features are more dispersed, overlapping with the feature
clusters of other CXR sources. I attribute this to the heterogenous nature of the
COHEN dataset i.e., its own incorporation of source repositories (Table 4.1). More-
over, CHOWDHURY is the only significant contributor of paediatric images to the

Model Test set Precision Recall F1 score Accuracy

DarkCovidNet
COVIDX Data 0.87 ±0.00 0.80 ±0.00 0.82 ±0.00 0.88 ±0.00
External Data 0.44 ±0.00 0.43 ±0.00 0.41 ±0.00 0.43 ±0.00

LTHT Data 0.47 ±0.01 0.46 ±0.00 0.44 ±0.01 0.45 ±0.00

CoroNet
COVIDX Data 0.81 ±0.05 0.90 ±0.01 0.84 ±0.05 0.88 ±0.03
External Data 0.18 ±0.07 0.34 ±0.02 0.19 ±0.03 0.35 ±0.01

LTHT Data 0.24 ±0.01 0.30 ±0.00 0.15 ±0.01 0.22 ±0.00

COVIDNet
COVIDX Data 0.86 ±0.03 0.69 ±0.05 0.72 ±0.05 0.86 ±0.02
External Data 0.34 ±0.05 0.36 ±0.01 0.29 ±0.02 0.38 ±0.01

LTHT Data 0.43 ±0.01 0.39 ±0.00 0.37 ±0.01 0.44 ±0.03

TABLE 4.2: Model performance metrics across all test datasets,
with standard deviation, across cross-validation folds.
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FIGURE 4.2: Frankenstein data analysis results. (a) 2D t-SNE pro-
jection of hidden features extracted from the trained Frankenstein
classifier during inference on the held-out test set of the Frankenstein
data. (b) Frankenstein data classifier ROC curves, ‘area’ denotes the
area under the curve metric. (c) Frequency of image source in the
Frankenstein dataset. Abbrvs: Receiver Operator Characteristic (ROC).

Frankenstein dataset and so can be separated on this basis. Notably, all CHOWD-
HURY paediatric images are COVID-19 negative, it therefore follows that age-
related features can be used as a ‘shortcut’ for the detection of COVID-19 in CXRs.

GradCAM saliency maps highlight the risk of bias associated with using unver-
ified and untrustworthy public datasets (Fig. 4.3). The saliency maps generated
for the CHOWDHURY and RSNA images demonstrate the importance of sym-
bols and annotations for source classification e.g., arrows and lettering. Despite
the inclusion of independent COVID-19 source repositories, predictive features do
not appear related to COVID-19 disease features. Few saliency maps consistently
highlight clinically-relevant areas, instead features of significance are generally lo-
calised to the collarbone and shoulders.

Data source Precision Recall F1 score Accuracy AUROC

RSNA 1.00 0.88 0.94 0.88 0.99
CHOWDHURY 0.97 0.99 0.98 0.99 1.00

COHEN 0.18 0.66 0.28 0.66 0.91
RICORD 0.58 0.99 0.73 0.99 1.00

TABLE 4.3: Frankenstein Deep CNN classifier performance met-
rics. The Deep CNN classifier is trained to predict image source.
RSNA provides only COVID-19 negative images, CHOWDHURY
and COHEN give a mix of COVID-19 negative and COVID-19 posi-
tive images and are themselves Frankenstein dataset, RICORD gives

only COVID-19 positive images.
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FIGURE 4.3: Frankenstein prediction saliency maps. A random
sample of GradCAM images generated by Deep CNN predictions

on Frankenstein test data.

The strong performance of the Frankenstein classifier prompted a manual review
of each data source. From this, I identified a number of potential sources of bias in
the COVIDX data set. CHOWDHURY, a major contributor of COVIDX COVID-19
images, blindly blends paediatric CXR images with adult images and is the only
large source of paediatric images within COVIDX, introducing significant feature
biases. Manual inspection of ACTMED data revealed the consistent presence of
disk-shaped markers in COVID-19 CXRs. For most data sources, images are pre-
processed images and vary in size. For example, the images from the RSNA data
set are 1024x1024 in resolution, while all CHOWDHURY-provided images are a
resolution of 299x299. Most methods resize images to resolutions between these;
smaller images must be up-sampled and larger images must be down-sampled.
This risks the generation of artefacts that may bias the model. Similarly, additional
bias may be introduced by the random application of image pre-processing (i.e.,
cropping and padding) in COVID-19 repositories, COHEN and CHOWDHURY,
and the absence of image pre-processing in pre-established non-COVID-19 data
sources.
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4.5 Discussion

By reproducing their work and evaluating models on external datasets, I show that
models fail to generalise outside COVIDX and perform poorly in hospital popula-
tions.

Through the evaluation of COVIDX as a Frankenstein dataset I highlight the
risk of bias and confounding to models trained on undocumented open data. I
identify spurious non-clinical features (e.g., image resolution, symbols and annota-
tions, or age) that correlate with image source within the Frankenstein dataset. Risk
of bias increases where data sources only provide one class of image. For exam-
ple, the RSNA dataset provides only COVID-19 negative CXRs and is the largest
contributor to COVIDX. RSNA-specific features can therefore be used by models
as shortcuts for the prediction of COVID-19 negative images. These shortcuts do
not translate to real world hospital data, hence I observe poor model generalisa-
tion to the LTHT dataset. Many of the studies that do not employ exact replicas
of the COVIDX dataset still use Frankenstein datasets, combining CXR repositories
from the pre-COVID era with COVID-19 data sources. The broad use of Franken-
stein data indicates that my findings are of significance to this domain as a whole
and may apply to other problem domains that rely on similar approaches for data
collation.

Central to the inappropriate use of open-source data in the detection of COVID-
19 from CXRs is the lack of patient information. Open-source datasets often lack
critical details, such as demographic data (e.g., age, gender, ethnicity), clinical con-
text (e.g., comorbidities, disease severity), and image acquisition information (e.g.,
type of imaging equipment, protocols). Without this essential metadata, researchers
cannot identify or account for key confounding factors that could influence the
performance and reliability of deep learning models. In this work, I identify age
as a major confounding factor i.e., the inclusion of paediatric chest X-rays in only
COVID-19 negative classes. Without age-related metadata, models may inadver-
tently learn patterns that reflect the distribution of ages in the dataset rather than
the underlying disease characteristics. The presence of age-related bias can lead
to incorrect predictions, particularly for age groups under-represented or over-
represented in the population, raising serious concerns about the generalisability
and fairness of these deep learning models.

Clinical review of GradCAM saliency maps confirm that to predict COVID-19
models depend on clinically irrelevant features, and exhibit a pattern of relying
on bias and confounding originating from the Frankenstein nature of the COVIDX
dataset. This highlights the critical need for model interpretability in the clinical
domain, particularly where external validation is unavailable or limited.
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4.6 Conclusion

My work demonstrates that without external validation, early research using the
COVIDX dataset reported overly optimistic results. By reproducing these stud-
ies and evaluating the models on external datasets, I show that models trained on
COVIDX fail to generalise to real-world hospital populations and perform poorly
outside of the training distribution. My evaluation of COVIDX as a Frankenstein
dataset highlights the significant risk of bias and confounding factors in models
trained on undocumented open data that comprise many data repositories. I iden-
tified various non-clinical features, or "shortcuts" (such as image resolution, sym-
bols, annotations, and age), that correlated with image sources within this dataset.
I found that a lack of metadata prevents researchers from accounting for confound-
ing factors, like age, which I identified as a major source of model bias. To iden-
tify model bias interpretability is essential, especially in the absence of external
validation where evaluation of generalisability is not possible. Clinical review of
GradCAM saliency maps reveals that models are heavily influenced by non-clinical
features derived from the biases within the COVIDX dataset. Real-world datasets
with detailed patient information are required for the development of automated
diagnostic tools. Moreover, thorough model evaluation on hospital populations
made up of diverse demographics is essential to properly investigate the efficacy
of deep learning in assisting with the detection of COVID-19 from CXRs. Over-
all, poor performance of deep learning models trained on the COVIDX dataset on
both publicly available external test data and LTHT data demonstrates that the ex-
ceptional performance reported widely across the problem domain is inflated, that
model performance results are misrepresented, and that models do not generalise
well to clinically-realistic data.
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Chapter 5

Multi-centre Benchmarking of
Deep Learning Models for
COVID-19 Detection in CXRs

5.1 Introduction

The identification of risk of bias and confounding to COVID-19 classifiers trained
on an amalgamation of open data sources in Chapter 4 has motivated further in-
vestigation. In this work, I aim to address the key questions raised by my previous
research:

• How do deep learning models perform in real world hospital populations?

• Which clinical factors contribute to an increased risk of model errors?

• Does risk of model bias persist when models are trained on a real-world,
multi-site hospital dataset?

I conduct a retrospective study to evaluate the performance of existing deep
learning models developed for COVID-19 detection in CXRs. I train models on a
national dataset of COVID-19 CXRs purposely set up to support the development
of deep learning solutions. I validate these models, under clinical guidance, by con-
sidering the practical challenges of interpreting chest X-rays in suspected COVID-
19 cases. Perhaps foremost of these challenges is that COVID-19 infection often
does not develop into COVID-19 pneumonia, in which case diagnostic features of
COVID-19 cannot be observed in the CXR. Moreover, where COVID-19 pneumo-
nia can be observed, its heterogeneous presentation mimics a broad spectrum of
lung pathologies, making it difficult to identify COVID-19 pneumonia due to con-
founding conditions. The presence of co-occurring conditions, or comorbidities,
can also complicate the detection of COVID-19, especially in cases where the dis-
ease is mild and features are subtle. Furthermore, the unpredictable temporal pro-
gression of COVID-19 presents a challenge for radiologists, as unexplained rapid
advancements in the disease and low resolution in CXRs contribute to ambiguity
(Sverzellati et al., 2020). Collectively, these factors lead to substantial diagnostic
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uncertainty when using medical imaging for the detection of COVID-19. With this
understanding I conduct a thorough evaluation of model error, scrutinising these
factors to better understand model failures, the demographics of those affected,
and potential avenues for model improvement.

Here, I present a comprehensive benchmarking study comparing state-of-the-
art DL methods and conducting exhaustive model evaluations on independent,
multi-national clinical datasets, with the goal of identifying model strengths and
weaknesses while assessing the suitability of automated DL systems as clinical de-
cision support tools in COVID-19 detection.

5.2 Materials and Methods

In this section, I present my methodology, providing detailed descriptions of the
evaluated models, my training procedures, my evaluation methods, and a thor-
ough review of the datasets used (Fig. 5.1).

5.2.1 Overview of the experimental approach

I utilise two independent UK-based datasets and a further dataset from outside the
UK. I train a diverse set of deep learning models on one of the UK-based datasets
(NCCID) and validate national generalisability using data from the other UK-based
dataset, which is from an independent hospital site, the Leeds Teaching Hospital
Trust (LTHT) (Cushnan et al., 2021). I consider international generalisability using
open-source data from a Spanish hospital (COVIDGR) (Tabik et al., 2020).

I investigate model performance variation by patient-level factors e.g., demo-
graphic and smoking history. I also evaluate model vulnerability to confounding
variables, which requires the use of counterfactual datasets created from a subset of
the LTHT population for whom non-COVID-19 pneumonia status was recorded. In
this population I modified the definition of the positive and control classes, result-
ing in two additional counterfactual datasets. The first dataset referred to as LTHT
PNEUMONIA (P) simulates a pneumonia detection setting where the positive class
includes non-COVID-19 pneumonia cases i.e., no distinction is drawn between
COVID-19 and other pneumonia types. The second scenario named LTHT NO
PNEUMONIA (NP) replicates a COVID-19 detection scenario where all instances
of non-COVID-19 pneumonia were deliberately excluded.

Following primary evaluation, I identify the top-performing models for further
analysis. I train and validate the best models on region-of-interest (ROI)-extracted
CXRs to test whether overall performance of COVID-19 detection is improved with
the use of ROIs and if, as is commonly assumed, cropping to the ROI helps to mit-
igate any inherent data biases. Furthermore, I apply explainable AI techniques to
examine highlighted features, i.e., features significant to model prediction. Iden-
tification of certain features can indicate model reliance on spurious correlations,
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which can lead to poor generalisation. The presence of these ‘shortcut’ features
has been identified in prior work on models trained with open-source data, I eval-
uate NCCID-trained models for reliance on similar ‘shortcut’ features (DeGrave,
Janizek, and Lee, 2021).

FIGURE 5.1: Overall experimental design for multi-centre evalu-
ation of COVID-19 detection models. (A) ROI-cropped CXRs are
generated from semantic segmentations of the left and right lung
fields, automated prediction uncertainty-based post-processing is
applied to ensure reliable cropping for both classes of CXR. The red
box highlights over-segmentation of the lung fields, post-processing
removes this structure prior to extracting the region of interest. (B)
Some models are pre-trained, for these models hyper-parameters
are tuned on ImageNet or CheXpert data (domain-specific dataset).
After pre-training, model hyper-parameters are refined for the
COVID-19 detection task and trained on full CXRs from the NC-
CID. Models are subsequently evaluated on three independent pop-
ulations: the unseen NCCID population, the LTHT, and COVIDGR.
(C) Following primary training and evaluation, the best perform-
ing models are selected for (ii) training and (iii) evaluation on ROI-
extracted CXRs. Abbrvs: National COVID-19 Chest Imaging Database
(NCCID); Leeds Teaching Hospital Trust (LTHT); Region Of Interest

(ROI); Chest X-ray (CXR).

5.2.2 Data

This study utilises three independent datasets, NCCID, COVIDGR sourced from a
hospital in Spain, and a purpose built single site dataset derived from Leeds Teach-
ing Hospitals NHS Trust (LTHT). The NCCID dataset is available upon request,
COVIDGR can be found online and the LTHT dataset is not available publicly, how-
ever the hospital has a formal data access process through which researchers may
apply.

Uniform exclusion criteria were applied to the NCCID and LTHT datasets. CXRs
were excluded if case data was insufficient to confidently assign a COVID-19 label,
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e.g. missing RT-PCR swab date or missing RT-PCR test result data for CXRs col-
lected post-2019. Inclusion criteria was considered using data collected from Digi-
tal Imaging and Communication in Medicine (DICOM) headers and associated ra-
diology reports. Note that the international dataset (COVIDGR) did not include RT-
PCR swab date or CXR exam date data. Instead, CXR labels were pre-defined with
CXRs considered positive if acquired 24 hours before or after a positive COVID-19
swab. The labelling schema for all datasets are described and I outline this in Figure
5.3. For all datasets, only frontal CXRs, antero-posterior (AP) and postero-anterior
(PA), were included and only clinical testing (SARS-CoV-2 RT-PCR) results were
used in producing COVID-19 labels, radiological features indicative of COVID-19
infection were not considered. Figure 5.2 presents a CONSORT diagram describing
the full exclusion criteria applied during data preparation for this study.

I note a methodological concern in COVID-19 chest radiograph analysis that
relates to the temporal heterogeneity of imaging data. A substantial proportion
of COVID-19 CXR datasets contain images acquired using pre-2019 protocols and
scanner configurations, which are likely to change post-2019 due to the pandemic.
This temporal mismatch introduces a possible systematic bias into model training
and evaluation, as the imaging parameters and image acquisition protocols may
differ between pre-2019 and COVID-19 CXRs.

Sex (n) Age Ethnicity (n)
Male Female Unknown Asian Black Multiple Other White Unknown

NCCID
Positive 61% (5113) 38% (3215) 0% (9) 67±17 13% (1120) 8% (739) 1% (118) 4% (379) 67% (5,592) 5% (389)
41% (8,337)
Negative 58% (7122) 42% (5054) 0% (2) 70±17 14% (1687) 7% (913) 2% (230) 3% (421) 70% (559) 3% (3680
59% (12,178)
N=20,515
NCCID TEST
Positive 71% (190) 29% (78) 0% (0) 66±15 11% (29) 7% (19) 1% (4) 5% (13) 72% (192) 4% (11)
33% (268)
Negative 64% (357) 36% (199) 0% (0) 69±16 12% (67) 8% (42) 3% (14) 4% (20) 71% (392) 4% (21)
67% (556)
N=824

LTHT
Positive 17% (1061) 14% (691) 0% (0) 72±16 10% (177) 7% (125) 1% (8) 3% (47) 67% (1171) 13% (224)
16% (1,752)
Negative 83% (5034) 86% (4417) 0% (1) 63±26 6% (549) 2% (117) 1% (64) 1% (113) 59% (5,566) 32% (2,983)
84% (9,452)
N=11,204

TABLE 5.1: Demographic subgroups of training and test data. Age
is presented as mean ± standard deviation. Sex and ethnicity are
presented both as absolute counts (n) and as percentages relative to
the COVID-19 positive/negative cohort. Abbrvs: National COVID-19
Chest Imaging Database (NCCID); Leeds Teaching Hospital Trust (LTHT);

Region of Interest (ROI).

Pre-training data (ImageNet & CheXpert) Pre-trained models were trained on
either ImageNet natural images or domain-specific CheXpert CXRs prior to NC-
CID training (as dictated by original model implementations). ImageNet is a large-
scale image classification dataset comprising 14 million annotated natural images
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(A) (B)

FIGURE 5.2: Exclusion criteria for pre-processing (A) NCCID and
(B) LTHT datasets. CXRs were excluded if missing crucial acquisi-
tion data (exam date and submission centre) and if not frontal view
(AP or PA). NCCID CXRs were eliminated if submitted from Leeds-
based hospitals. CXRs were divided into two cohorts: pre-2019 and
post-2019. Pre-2019 CXRs were automatically labelled COVID-19
negative, while post-2019 CXRs were evaluated for COVID-19 out-
comes. Post-2019 CXRs were eliminated if missing data essential for
determining COVID-19 outcome i.e., CXR acquisition date, RT-PCR
swab date or outcome. CXRs were also excluded if exam date fell be-
tween diagnostic windows of multiple positive RT-PCR swabs. The
COVIDGR dataset is not subject to the same exclusion criteria due
to a lack of patient data. As a pre-prepared dataset, some exclusion
criteria is already applied i.e., COVIDGR includes only PA CXRs.
Abbrvs: National COVID-19 Chest Imaging Database (NCCID); Leeds
Teaching Hospital Trust (LTHT); Antero-posterior (AP); Postero-anterior

(PA); Chest X-ray (CXR).
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from more than 21,000 classes e.g., hummingbird, hen, lion etc. ImageNet 1 is pub-
licly accessible and available for download. CheXpert is a large dataset containing
224,316 chest X-rays from 65,240 patients, each image has recorded outcomes for 14
observations, such as, pleural effusion, cardiomegaly and consolidation (generated
from radiology reports) (Irvin et al., 2019). CheXpert2 is also publicly accessible
and available for download.

Training data (NCCID) The National COVID-19 Chest Imaging Database (NC-
CID) is a centralised UK database derived from 26 hospital centres, storing 45,635
CXRs from 19,700 patients across the UK in the form of DICOM image files and
header information (de-identified) (Cushnan et al., 2021). To preserve the indepen-
dence of the single-site evaluation dataset (LTHT), I excluded from NCCID all cases
originating from the Leeds area, leaving CXRs collected from 25 different hospital
centres. The removed CXRs were neither utilised for model training nor model
evaluation on NCCID. NCCID CXRs are provided alongside clinical data, includ-
ing the results of RT-PCR tests. Dates for both CXR exams and RT-PCR swabs are
provided. If exam date or RT-PCR dates were unavailable, the CXR was excluded
from the study. RT-PCR was used to define ground truth labels for CXRs. As no
standard recognised definition exists within the literature, I sought expert opinion
from a radiologist, a respiratory physician, and a clinical oncologist to inform my
definition of COVID-19 positive CXRs. I treated CXRs with a positive COVID-19
RT-PCR test anywhere from 14 days before to 28 days after image acquisition as
COVID-19 positive. I treated images without a positive RT-PCR test within this
diagnostic window as COVID-19 negative (Fig. 5.3). After data preparation, the
NCCID training dataset consists of 20,515 exams, with 8,337 positive exams and
12,178 control CXRs. Figure 5.2 presents a CONSORT diagram outlining the full
exclusion criteria applied to both NCCID and LTHT datasets.

Testing data (LTHT & COVIDGR) External validation data is collected from two
independent sources, LTHT, a UK-based hospital in Leeds (nationally-sourced),
and COVIDGR, made up of CXRs from San Cecelio University Hospital in Granada,
Spain (internationally-sourced) (Tabik et al., 2020). LTHT provides patient CXR
images (DICOMs), with RT-PCR test results for COVID-19 diagnosis. In LTHT, RT-
PCR date is provided relative to CXR exam date to allow precise classification of
COVID-19 status according to my chosen diagnostic window (Fig. 5.3). The exclu-
sion criteria for LTHT and COVIDGR datasets is summarised in Table 5.2).

Additionally, for a subset of LTHT patients, non-COVID-19 pneumonia diag-
nostic status was available, from this subset of the LTHT population the coun-
terfactual datasets LTHT (P) and LTHT (NP) were created. To create LTHT (NP)
all participants with recorded non-COVID-19 pneumonia were removed from the

1https://www.image-net.org/
2https://stanfordaimi.azurewebsites.net/datasets
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Data

NCCID LTHT COVIDGR

Criteria Principle Pre-2019 Post-2019 Pre-2019 Post-2019 Pre-2019 Post-2019

AP/PA CXRs ✓ ✓ ✓ ✓ ✓ ✓

Submission centre data ✓ ✓

Complete swab data (data & outcome) ✓ ✓
Inclusion

Complete image acquisition data (date & ID) ✓ ✓ ✓ ✓

Lateral or transverse CXRs ✓ ✓ ✓ ✓ ✓ ✓

LTHT submission centre ✓ ✓Exclusion

Exam data outside RT-PCR+ swab window ✓

TABLE 5.2: Inclusion and exclusion criteria of CXR exam from NC-
CID, LTHT and COVIDGR data. For all datasets, CXRs are elimi-
nated if not frontal view. NCCID and LTHT CXR exams conducted
after 2019 are eliminated if COVID-19 swab or image acquisition
data is incomplete. For NCCID data, CXRs are also eliminated if
submission centre data is incomplete or if the CXR exam date falls
in between two non-overlapping windows of COVID-19 infection.
Abbrvs: National COVID-19 Chest Imaging Database (NCCID); Leeds
Teaching Hospital Trust (LTHT); Antero-posterior (AP); Postero-anterior

(PA); Chest X-ray (CXR).

LTHT dataset. To construct the LTHT (P) dataset the image labelling criteria was
changed such that all CXRs positive for pneumonia (COVID-19 or non-COVID-19
pneumonia) were labelled positive. I do this to evaluate the models’ capacity to
separate COVID-19 from non-COVID-19 pneumonia cases, a major confounding
pathology. For both LTHT (P) and LTHT (NP) populations, participants without
non-COVID-19 labels were not considered.

The COVIDGR dataset provides a total of 852 CXRs sourced from the San Ce-
celio University Hospital in Granada, Spain. The dataset is balanced, containing
426 positive and 426 negative CXRs. In the creation of the COVIDGR dataset CXRs
were chosen through manual selection. COVID-19 CXRs are defined by a positive
RT-PCR test, conducted within 24 hours of the CXR exam. All CXRs were pre-
cropped prior to being compiled into COVIDGR. COVIDGR includes only postero-
anterior (PA) views which were acquired with the same scanner type. In addition,
RALE severity scores are provided for all positive cases, as well as 76 CXRs in
which COVID-19 is not observed (NORMAL-PCR+), 100 mild (MILD), 171 moder-
ate (MODERATE) and 79 serious (SEVERE) cases.

5.2.2.1 Label generation

For NCCID and LTHT data, CXR labels were generated according to a pre-defined
diagnostic window. Under clinical guidance, I defined the COVID-19 diagnostic
window as 14 days before and 28 days after the acquisition data of a positive RT-
PCR test swab. CXR exam date was evaluated relative to the nearest positive RT-
PCR COVID-19 swab date, CXRs that fell inside this window (-14/+28 days) were
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(A)

(B)

FIGURE 5.3: Labelling schema for (A) NCCID and LTHT datasets,
which share identical labelling protocol, and (B) COVIDGR data.
For each protocol I present examples of different label outcomes.
(A) CASE 1: An illustration of CXR acquisition preceding the RT-
PCR swab date diagnostic window (-14/+28 days), this case is there-
fore considered COVID-19 negative. (A) CASE 2: An example of
CXR acquisition prior to the RT-PCR swab date but within the di-
agnostic window, as a result this case is labelled COVID-19 posi-
tive. (A) CASE 3: A scenario involving CXR elimination, where
multiple swab tests are documented for a single case. If a CXR is
acquired within the time frame between the windows around the
swab dates, it is excluded from the dataset. (B) CASE 1: A case in
which the CXR was acquired within the diagnostic window, specif-
ically within 24 hours of the RT-PCR swab date (-1/+1 days). As a
result, this case is designated as COVID-19 positive. (B) CASE 2: An
example of CXR acquisition occurring after the diagnostic window,
leading to the categorisation of this case as COVID-19 negative. Ab-
brvs: Chest X-ray (CXR); National COVID-19 Chest Imaging Database
(NCCID); Leeds Teaching Hospital Trust (LTHT); Reverse Transcription

Polymerase Chain Reaction (RT-PCR).
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NCCID (TRAIN) NCCID (TEST) LTHT COVIDGR COVID-QU-Ex

Lung segmentation model
✓training & testing

Model training ✓

Model performance
✓ ✓ ✓ ✓evaluation

Sub-population analysis ✓

Counterfactual ✓(subset w/ known
evaluation pneumonia outcomes)

RALE-dependent
✓performance evaluation

TABLE 5.3: Overview of individual dataset use throughout this
study, including ROI-extraction, model training and evaluations.
For evaluation of models under counterfactual conditions I used a
subset of LTHT with recorded non-COVID-19 pneumonia status.
Abbrvs: National COVID-19 Chest Imaging Database (NCCID); Leeds
Teaching Hospital Trust (LTHT); Region of Interest (ROI); Radiographic

Assessment of Lung Edema (RALE).

labelled COVID-19 positive. In some cases, evaluation of serial patient swab dates
created multiple non-overlapping diagnostic windows, I treated these as separate
instances of COVID-19 infection and CXRs that fell between these windows were
removed from the dataset. For COVIDGR, CXRs are provided with COVID-19 la-
bels, COVID-19 CXRs are defined by a positive RT-PCR swab within 24 hours of
CXR acquisition. I provide an illustration of the labelling schema through case by
case examples (Fig. 5.3).

5.2.2.2 Models

The models I selected for this benchmarking study are diverse in design and lever-
age different learning paradigms i.e., supervised, transfer, semi-supervised and
self-supervised learning (Table 5.4). I found that the majority of proposed DL
methods for COVID-19 detection in CXRs rely on supervised or transfer learn-
ing. Here I define supervised models as models trained for COVID-19 detection
from randomly initialised weights. All transfer learning approaches used weights
pre-trained on either ImageNet or CheXpert and were later fine-tuned in a fully
supervised manner on the training dataset (NCCID) for the task of COVID-19 de-
tection.

Within the supervised learning category, I explored the use of various well-
established deep convolutional neural network (CNN) backbones. Of these, I iden-
tified XCEPTION NET (Khan, Shah, and Bhat, 2020) and ECOVNET (Chowdhury
et al., 2021) from highly cited publications as influential models of interest. Sim-
ilar approaches place emphasis on domain-specific tuning, rather than applying
a pre-defined deep CNN backbone. For example, COVIDNET (Wang, Lin, and
Wong, 2020) is defined by a generative neural architecture search (NAS) for optimal
COVID-19 detection performance. Other deep CNN approaches employ unique
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designs to encourage the recognition of domain-specific features, such as RES.
ATTN. (Sharma and Dyreson, 2020) which incorporates attention mechanisms, and
MAG-SD (Li et al., 2021) which uses hierarchical feature learning. Although all of
these approaches share some similarities, training strategies differ. For each model,
I reproduce the pre-training strategies outlined in their respective studies in or-
der to maintain consistency with first reported implementations. Under the su-
pervised learning category, I also include a vision transformer (XVITCOS), a deep
CNN-ensemble network (FUSENET) (Abdar et al., 2023), and a capsule network
(CAPSNET) (Afshar et al., 2020).

I select CORONET (Khobahi, Agarwal, and Soltanalian, 2020) as an example
of semi-supervised learning. First introduced in Chapter 4, CORONET relies on
a two stage process to classify images, comprising a convolutional autoencoder in
the first stage and a standard CNN classifier in the second stage. First, the convolu-
tional autoencoder is trained to reconstruct COVID-19 negative CXRs from learned
low-dimensional latent representations. The classifier is then trained to predict
CXR outcomes taking images comprising the pixel-wise differences between orig-
inal CXRs and autoencoder reconstructions (residual images) as inputs. The intu-
ition is that the reconstructions of CXRs from the unseen class (COVID-19 positive)
will fail to preserve radiographic features of COVID-19 infection, which will appear
in residual images. Other approaches like SSL-AM (Park, Kwak, and Lim, 2021),
follow a self-supervised pre-training strategy. In SSL-AM, representations learned
during pre-training are enhanced through 2D transformations, such as, distortion,
in-painting and perspective transformations. During pre-training, SSL-AM is com-
prised of a U-Net-style network architecture which learns domain-specific features
independent of the disease class. Following pre-training, the decoder portion of the
U-Net is subsequently discarded, while, the encoder and its pre-trained, domain-
specific weights are incorporated into a COVID-19 classifier.

Model Reference Abbrvs. DL type Pre-trained [Y/N] Params.

(Data) (#)

Deep CNN generated by NAS (Wang, Lin, and Wong, 2020) COVIDNET Supervised Y (CheXpert) 50,150,485

Multiscale attention guided network
(Li et al., 2021) MAG-SD Supervised Y (ImageNet) 23,835,968

with soft distance regularisation

Vision transformer (Mondal et al., 2022) XVITCOS Supervised Y (CheXpert) 86,537,477

Ensemble of deep CNNs (Abdar et al., 2023) FUSENET Supervised Y (ImageNet) 17,245,921

Deep CNN with Xception backbone (Khan, Shah, and Bhat, 2020) XCEPTION NET Supervised Y (ImageNet) 21,331,753

Deep CNN with residual connections
(Sharma and Dyreson, 2020) RES. ATTN. Supervised N 5,476,673

and attention component

Deep CNN with EfficientNet backbone (Chowdhury et al., 2021) ECOVNET Supervised Y (ImageNet) 7,304,737

Convolutional capsule network (Afshar et al., 2020) CAPSNET Supervised Y (CheXpert) 523,072

Convolutional autoencoder with classifier (Khobahi, Agarwal, and Soltanalian, 2020) CORONET Semi-supervised Y (ImageNet) 11,230,978

Deep CNN with attention mechanism,
(Park, Kwak, and Lim, 2021) SSL-AM Self-supervised Y (CheXpert) 6,753,905

pre-trained under self-supervised conditions

TABLE 5.4: Summary of the evaluated models. Models are de-
scribed and presented alongside source reference, pre-training sta-
tus and deep learning category. Models are referred to by their des-
ignated abbreviations. Abbrvs: Deep Learning (DL); Neural Architec-

ture Search (NAS); Parameters (Params.).
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5.2.3 Model training

I apply a pre-defined training protocol designed to facilitate uniform comparison
in model performance. I train models on NCCID training data across 5-fold cross-
validation experiments, each of which comprises a balanced number of COVID-19
negative and COVID-19 positive cases. Prior to training I, where necessary, adapt
the original models for the task of binary classification of CXRs, i.e., to accommo-
date larger image resolution (than was used in the original implementation of any
of the selected models) or to predict two classes instead of three.

I used the CheXpert dataset for models that required pre-training on domain-
specific datasets. Specifically, model weights were optimised for the task of pre-
dicting lung pathologies in CXRs.

Models that required pre-training on natural images were pre-trained on Im-
ageNet. The choice of dataset, and if pre-training is even required, is dictated by
the original model implementation. For all training stages, images were resized to
480x480 and standard image transformations were applied. I also tuned the learn-
ing rates for each model, at each stage of training, using Optuna which is an open
source hyperparameter optimisation framework. As models are identified from
pre-existing, published works I accepted model architecture hyper-parameters as
fixed and do not tune these to the training datasets.

Lung segmentation (ROI) Automatic segmentation of lung fields is often applied
to mitigate the influence of confounding variables and background artefacts/noise.
To test this, the top three performing models are also trained using CXRs cropped to
the lung fields, which have been separated from background tissue using semantic
segmentation. To generate these segmentations I trained a U-Net++ model on the
open-source dataset COVID-QU-Ex, containing 33,920 COVID-19, pneumonia, and
normal CXRs, all with ground truth segmentation masks (Tahir et al., 2021).

To improve segmentation robustness and reduce the risk of introducing a seg-
mentation quality bias to the downstream classification task, I applied a novel epis-
temic uncertainty-based post-processing algorithm to revise predictions or flag pre-
dictions for manual inspection where necessary (Stone et al., 2022). For the task
of lung field segmentation, correct segmentations are expected to comprise two
connected components, each component corresponding to the left or right lung
field. Additionally, successful segmentations are assumed to have corresponding
pixel-wise prediction uncertainty maps that are unimodal with uncertainty pre-
dominantly concentrated along the borders of the lungs. This is what would be
expected if a panel of radiologists were tasked with outlining lung fields in CXRs
(and inter-rater variability/uncertainty was quantified). Thus, I also assume that a
bimodal uncertainty frequency is evidence of erroneous segmentation outside nor-
mal inter-rater variability.

If predicted segmentation masks were found to have more than two uncon-
nected components, their corresponding uncertainty maps were then assessed for



60
Chapter 5.

Multi-centre Benchmarking of Deep Learning Models...

(A)

(B)

FIGURE 5.4: Post-processing of COVID-19 CXR semantic lung seg-
mentation to generate reliable ROIs. (A) An example of severe
COVID-19 in a CXR resulting in an uncertain prediction, with a
total prediction uncertainty of 620. The right lung field is under-
segmented, the additional structure is highlighted in the semantic
segmentation and corresponding uncertainty map. This creates an
overly large ROI around the lungs. Pixel-wise prediction uncer-
tainty is used to isolate the extra structure, which is eliminated dur-
ing post-processing of the semantic segmentation. (B) A COVID-
19 CXR with under-segmentation of the lung fields (highlighted in
the semantic segmentation and uncertainty map). Pixel-wise uncer-
tainty is used to remove this structure from the semantic segmenta-
tion before creating a ROI. Total prediction uncertainty of this exam-

ple is 230. Abbrvs: Region Of Interest (ROI); Chest X-ray (CXR).
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Bimodality using Hartigans’ dip test. Predictions that produce bimodal pixel-wise
uncertainty frequency distributions, and give a total uncertainty below an empiri-
cally defined threshold, are highlighted as likely erroneous predictions and excess
structures are iteratively eliminated according to greatest total uncertainty per seg-
mented area i.e., structures with the greatest density of uncertainty are removed
first. Figure 5.5 provides an overview of this post-processing algorithm and Figure
5.4 gives a visual example of its application. Predictions that exceed the total un-
certainty limit are put forward for manual inspection. As a result of preliminary
experiments, I applied a total uncertainty limit of 800, which I found facilitated
selection of the best candidates for post-processing. Once this process is applied,
I crop CXRs to the remaining segmented areas, this produces the region of inter-
est (ROI). I use ROI instead of semantic segmentation for added robustness and to
ensure that all clinically significant thoracic structures are included e.g., the medi-
astinum.
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FIGURE 5.5: Example of unsupervised lung segmentation post-
processing algorithm on NCCID data. The U-Net++ model is used
to generate semantic segmentation of the left and right lung field.
Monte Carlo dropout is applied to approximate uncertainty of pre-
diction, total uncertainty is calculated and frequency of uncertainty
is evaluated for Bimodality with Hartigans’ test. In this example,
uncertainty is less than the threshold for required manual inspection
and prediction uncertainty is bimodal so automatic post-processing
is applied. In post-processing, unconnected structures are identified
and the density of uncertainty is calculated per structure. Excess
structures (more than the two lung fields) are iteratively removed,
with the most uncertain structures removed first. A ROI is gener-
ated from the post-processed semantic segmentation, the ROI was
selected to be the minimum bounding box around the segmented
lung fields. Abbrvs: Region of interest (ROI); National COVID-19 Chest

Imaging Database (NCCID).

With a total uncertainty threshold of 800, region of interest (ROI) prediction
Dice scores improved from 0.96 to 0.98. While improvements in scores on data
from the same training distribution are modest, it is expected that applying the
proposed uncertainty-based post-processing algorithm will help improve overall
ROI-extraction accuracy for CXR data from unseen domains. Qualitative evalua-
tion of segmentations performed on the NCCID training data showed that applying
the post-processing algorithm improved the accuracy and robustness of predicted
ROIs (Fig. 5.6).
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A

B

(A)

(B)

FIGURE 5.6: ROI-extractions of post-processed semantic lung seg-
mentations. (A) Examples of ROI-extracted NCCID control cases.
(B) ROI-extracted NCCID COVID-19 cases. Abbrvs: Region Of Inter-

est (ROI); National COVID-19 Chest Imaging Database (NCCID).

5.2.4 Performance evaluation

I evaluated predictive performance on multiple independent test populations, with
classification thresholds set to 0.5 for ease of comparison. However, this may be a
limitation for performance accuracy metrics that rely on a probability threshold. To
compare the classification performance of all models, I evaluated performance met-
rics, such as, accuracy, precision, recall, F1, and AUROC. To consider average per-
formance over all iterations of the 5-fold cross-validation, I calculated confidence
intervals for all ROC curves and mean± standard deviations for classification met-
rics. Models were ranked according to their individual performance metrics and
all metric rankings were considered equally to give an overall model ranking. I
performed Tukey’s honestly significant difference (HSD) statistical test to compare
model performance. I investigated model explanation techniques, including Grad-
CAM and guided backpropagation visualisation methods. Additionally, I trained
the top-performing models on ROI-extracted CXRs, allowing us to directly com-
pare these ROI-trained models with their counterparts trained on the entire CXR.

Model evaluation in national and international hospital populations Model ca-
pacity to generalise to national populations was evaluated using external NHS hos-
pital data from LTHT. With this evaluation I estimate how the models perform in
an unseen hospital trust, in which patient demographics and clinical practices may
vary.

Furthermore, I conducted an assessment of model generalisability to interna-
tional hospital populations, utilising data from the Grenada Hospital in Spain (re-
ferred to as COVIDGR). Note that the evaluation of international generalisability
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is limited due to an uncontrollable label shift across patient populations (a conse-
quence of different labelling strategies).

Model performance under counterfactual conditions I also created counterfac-
tual datasets from a subset of LTHT data for which non-COVID-19 pneumonia la-
bels are also available. I adjusted the definition of the positive and control classes in
LTHT data, resulting in the creation of two alternative scenarios for comparison of
model performance under counterfactual conditions. The first scenario, referred to
as LTHT (P), encompasses a general pneumonia detection scenario where the pos-
itive class includes non-COVID-19 pneumonia CXRs. The second scenario, named
LTHT (NP), represents a COVID-19 detection scenario where all instances of non-
COVID-19 pneumonia were excluded. I evaluate models according to standard
performance metrics and perform sub-population analysis under counterfactual
conditions.

Model performance variation by patient-level factors Sub-population analysis
was performed on LTHT data. I assessed model performance across different pa-
tient sub-populations, grouped according to ethnicity, age, sex, smoking status, and
the presence of comorbidities within the CXR. To create CXR-observable comorbid-
ity subgroups I convert patient recorded comorbidities into a binary label that de-
scribes whether the comorbidity is likely observable in the CXR. Moreover, ethnic
subgroups are defined according to NHS ethnic categories, which I in turn group
into five larger populations: Black, White, Asian, Multiple and Other. ‘Other’ de-
scribes any ethnicity that does not fall under the aforementioned ethnic categories,
cases with unknown ethnicity are not considered in my analysis.

I perform one-way analysis of variance (ANOVA) tests to evaluate the statis-
tical significance of differences in model performance across different subgroups.
I also assessed model error rate and its correlations with various clinical and de-
mographic factors. I examined the effects of CXR projection, RALE-defined CXR
severity, and proximity to the COVID-19 diagnostic window on the rates of false
positive and false negative predictions. Refer to Table 5.3 for a summary of which
dataset is used for each specific task.

5.3 Results

In this section I present the results of my study, providing a comprehensive descrip-
tion of the key findings and observations drawn from the analysis of the considered
models and datasets.
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5.3.1 Evaluation of model performance in national and international hos-
pital populations

All models generalised well to a national-level but perform poorly when applied to
international datasets. Table 5.6 shows that there is a marginal decrease in model
performance when applied beyond the training domain (NCCID) to the unseen
NHS trust population (LTHT).

During LTHT population testing AUROC scores ranged from 0.65 to 0.78. XCEP-
TION NET (Khan, Shah, and Bhat, 2020), XVITCOS (Mondal et al., 2022) and SSL-
AM (Park, Kwak, and Lim, 2021) emerged as top-performing models, with AU-
ROCs between 0.74 and 0.78. I identify RES. ATTN. (Sharma and Dyreson, 2020),
CAPSNET (Afshar et al., 2020), and FUSENET (Abdar et al., 2023) as the poorest
performing models. Table 5.6 shows that RES. ATTN., the only model without a
pre-training strategy, gives the lowest performance across all evaluated metrics.
RES. ATTN., FUSENET and CAPSNET AUROCs scores are lower than all other
models, this is statistically significant to a confidence interval of 95% (Tukey multi-
ple comparisons tests, p < 0.05; Table 5.5).

Even top-performing models are susceptible to returning high rates of false pos-
itives, as evidenced by universally low precision scores (Table 5.6). However, even
without classification threshold tuning, the top-performing models detect COVID-
19 in LTHT populations similarly to radiologist performance in a variety of per-
formance metrics. Model accuracy scores ranged from 0.69 to 0.75 and one study
reports the average accuracy scores of radiologist groups as between 0.76 to 0.84,
depending on professional experience (Cozzi et al., 2020). Comparison with an-
other study shows that the best performing model AUROCs exceed radiologist
performance, with scores of 0.78 compared to 0.71 (Albiol et al., 2022).

Figure 5.7 shows a significant drop in performance when models are applied to
an international dataset (COVIDGR). I found CORONET gives the most substantial
decrease in performance, with model recall halving from LTHT (0.52) to COVIDGR
(0.26). This decline in performance is further evidenced by a large drop in AU-
ROC values from 0.70 in the national population (LTHT) to 0.60 in the international
population (COVIDGR) (Table 5.6).
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FIGURE 5.7: ROC curves of COVID-19 detection. Each row
presents a different model, the first of each row presents ROC curves
for all test data, the following columns present direct comparison be-
tween NCCID ROC curves and the dataset of interest, correspond-
ing AUROC values can be found in Table 5.6. Shaded regions corre-
spond to 95% confidence interval. Abbrvs: Receiver Operating Charac-
teristic (ROC); National COVID-19 Chest Imaging Database (NCCID);
Leeds Teaching Hospital Trust (LTHT); Area Under the Receiver Operat-

ing Characteristic (AUROC).

5.3.2 Model performance under counterfactual conditions

The exploration of model performance in counterfactual scenarios gives insight
into the impact of confounding disease features on COVID-19 detection i.e., non-
COVID-19 pneumonia. In LTHT (NP) which removes other pneumonia types from
the population, I observed clear improvements. All models achieve near perfect
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precision scores, ranging from 0.95 to 0.98, as well as substantially improved AU-
ROC and recall scores (Fig. 5.7 and Table 5.6). XCEPTION NET, the best-performing
model in real-world LTHT cohorts, further improved with increases in AUROC
scores from 0.78 to 0.88, recall scores from 0.65 to 0.73, and precision scores from
0.34 to 0.98 (Table 5.6).

When evaluating models under the alternative counterfactual scenario, using
LTHT (P) where both COVID-19 and non-COVID-19 pneumonia are treated as
the positive class i.e., models become general pneumonia classifiers, model perfor-
mances diverge relative to performance on LTHT. Top-performing models in real-
world data (LTHT) decrease in performance, as evidenced by especially reduced
recall scores (Table 5.6). Of the best performing models I observe the greatest de-
cline in AUROC in SSL-AM, from 0.74 (LTHT) to 0.66, suggesting that SSL-AM is
best able to isolate features of COVID-19 pneumonia from non-COVID-19 pneu-
monia. The worst performing models (RES. ATTN., ECOVNET, CAPSNET and
CORONET) all demonstrate improved performance on LTHT (P), suggesting that
these were unable to learn to separate features of COVID-19 pneumonia from other
pneumonia types.

When comparing top-performing models with their ROI-trained counterparts,
the reduction in their performance under this counterfactual is greater. For exam-
ple, XCEPTION NET (ROI) AUROC falls from 0.77 to 0.71, while the decrease in
XCEPTION NET performance is less substantial. This indicates that ROI-trained
models, compared to their full CXR trained counterparts, may have improved ca-
pacity for separating COVID-19 from non-COVID-19 pneumonia (Fig. 5.14b).

5.3.3 Subgroup analysis

During sub-population analysis with independent NHS hospital data (LTHT), I ob-
serve disparities in model performance across demographic subgroups. I consider
sex, ethnicity, age, smoking, and subgroups with comorbidities that are likely ob-
servable in a CXR. I report smoking and comorbidity analysis together due to over-
lap in clinical interest. Subgroups are described in detail in Section 5.2.

Performance variations across demographic and clinical populations raise FAIR
principle concerns regarding fairness, accountability, interpretability, and reliabil-
ity. While overall model performance was satisfactory, certain subgroups demon-
strated notable disparities in performance metrics, indicating potential equity is-
sues in deployment across diverse patient populations. To mitigate these FAIR
concerns I recommend establishing clearer indications for use that explicitly define
optimal performance populations and contexts where alternative approaches may
be more appropriate. Additionally, developing specialised models tailored to spe-
cific subgroups could address observed performance disparities through more rep-
resentative training datasets. Future iterations should incorporate enhanced data
collection strategies for balanced subgroup representation and implement ongoing
monitoring systems to detect real-world performance degradation.
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Sex I found that, according to AUROC values, models perform better in male
populations compared to female populations (Fig 5.9 and Table 5.8). There is a
consistent pattern of increased false negative predictions in the female population
i.e., a greater proportion female COVID-19 cases are missed (Fig. 5.8). Statistical
significance in model AUROC disparities is confirmed in 5 out of 10 models (One-
way ANOVA, p < 0.05; Table 5.7).

Sex bias persists even under counterfactual conditions; with the exception of
XVITCOS, I observe this bias in models when applied to populations without al-
ternative pneumonia types, LTHT(NP). This suggests that this bias cannot be due
to differences in the prevalence of the non-COVID-19 pneumonia across the sexes.
Upon further examination using real-world data (LTHT), I see that sex bias is not
mitigated by ROI-extraction, the ROI-trained version of XVITCOS returns a higher
rate of false negatives in the female population compared to the male population
which is reflected in a larger recall scores in males (0.75) compared to females
(0.62)(Table 5.8 and Fig. 5.8).

Ethnicity I also see statistically significant model performance disparities across
ethnic subgroups (One-way ANOVA, p < 0.05; Table 5.7). XCEPTION NET AU-
ROCs vary from 0.72 to 0.91 (Table 5.8). All models appear to perform better when
applied to Black and Asian groups, with significantly fewer false negatives. Ta-
ble 5.8 shows all models return higher precision score when applied to Black and
Asian groups compared to White groups. XCEPTION NET precision falls from
0.73 (Black) and 0.52 (Asian) to 0.37 (White). This disparity of performance is also
observed in the counterfactual without other pneumonia types, LTHT (NP). The
performance gap between White, and Black and Asian groups, is unchanged with
the use of ROI-trained models i.e., training on ROI CXRs has no effect.

Age I can observe similar statistically significant disparities in model performance
across different age groups (One-way ANOVA, p < 0.05; Table 5.7). Generally,
models perform best in the 50-74 age group, which is in line with COVID-19 preva-
lence by age group in the training data (Table 5.1). However, I observe that top-
performing models appear more likely to return false negatives for the 75-99 age
group, an age group at greater risk of adverse COVID-19 outcomes (Fig. 5.8). Un-
der counterfactual conditions, where all pneumonia types are included in the posi-
tive class, I see XCEPTION NET and XVITCOS models improve in performance in
the 75-99 age group, indicating a reduced ability to separate COVID-19 pneumonia
from non-COVID-19 pneumonia in older age groups (Fig. 5.8). These comparisons
should be interpreted cautiously, considering that the prevalence of non-COVID-19
pneumonia differs among subgroups.

Figure 5.8 shows that models return the lowest false positive rate in the youngest
age group i.e., 0-24 years, although this may be due to low prevalence of COVID-19
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Chapter 5.

Multi-centre Benchmarking of Deep Learning Models...
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in this age group as indicated by combined low false positive rates and low preci-
sion scores (Table 5.8). XVITCOS (ROI) gives improved performance in this age
group compared to XVITCOS, with AUROC scores rising from 0.73 to 0.79. How-
ever, other ROI-trained models show a trend in reduced performance in this age
group when compared to full CXR-trained counterparts, more so than other age
groups (Fig. 5.8). Comparison of SSL-AM and SSL-AM (ROI) shows a drastic fall
in AUROC scores from 0.78 to 0.56 (Table 5.8). Moreover, under the counterfactual
condition in which models become general pneumonia classifiers, LTHT (P), I find
that models perform particularly poorly in this age group (Fig 5.9); which could
be interpreted as evidence of better separation of COVID-19 from non-COVID-19
pneumonia. I also observe that under LTHT (NP) conditions, with non-COVID-19
pneumonia removed, models perform better than in real-world populations of this
subgroup (LTHT) e.g., XVITCOS AUROC scores increase from 0.73 to 0.96 (Fig 5.9).

Smoking status & comorbidities I observe a universal decline in model perfor-
mance in the subgroup with CXR observable comorbidities. For 9 out of 10 models
I evaluate statistically significant differences in model performance (AUROC) in
these groups (One-way ANOVA, p < 0.05; Table 5.7). However, model perfor-
mance on these subgroups could not be evaluated under counterfactual scenarios
due to a lack of data.

In addition, I find that all models perform worse when applied to subgroups
with a history of smoking (both former and current smokers) e.g., XCEPTION NET
AUROC falls from 0.79 in subgroups without any smoking history to 0.73 and 0.51
in former and current smoker subgroups, respectively (Table 5.8). I see increased
false negative rates in these groups compared to non-smokers (Fig. 5.8). Under
counterfactual conditions where non-COVID-19 pneumonia is removed from the
population, I see that model performance disparities between groups of different
smoking status do not decrease. Models still perform best when applied to sub-
groups without any history of smoking, and performance disparities between for-
mer smoker and current smoker groups is sustained (Fig. 5.9).

5.3.4 Model error analysis

I explore the influence of clinical and experimental factors on model error rate. As
the best performing model, I used XCEPTION NET predictions for this analysis.
During NCCID test population evaluation, I examined the relationship between
the frequency of false positives and the recorded distance from CXR exam date
to swab date-derived diagnostic window. According to this analysis, COVID-19
negative CXRs acquired in close proximity to the COVID-19 diagnostic window are
more frequently predicted as COVID-19 compared to those obtained further away,
with XCEPTION NET delivering the most false positives for CXRs 1-5 days before
or after the diagnostic window (Fig. 5.10A). I examine the correlation of incorrect
COVIDGR predictions with radiologist-defined CXR severity. For this evaluation I
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FIGURE 5.8: Average FPRs and FNRs of top-performing models,
(A) XCEPTION NET, (B) SSL-AM, and (C) XVITCOS, and their
ROI-trained counterparts in LTHT subgroups. Subgroup popula-
tion size is referred to by n. Error bars correspond to standard de-
viation across cross-validations. Abbrvs: False Negative Rate (FNR);
False Positive Rate (FPR); Region of Interest (ROI); Leeds Teaching Hos-

pital Trust (LTHT).
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(A) ROC curves of XCEPTION NET performance in smoker, sex, ethnicity and age sub-
groups.
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(B) ROC curves of SSL-AM performance in smoker, sex, ethnicity and age subgroups.
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(C) ROC curves of XVITCOS performance in smoker, sex, ethnicity and age subgroups.

FIGURE 5.9: ROC curves of COVID-19 detection in smoker, sex,
ethnicity and age subgroups for top-performing models: (A)
XCEPTION NET, (B) SSL-AM, and (C) XVITCOS. The top row
presents model performance in the real-world scenario and the bot-
toms rows present model performance under counterfactual condi-
tions, LTHT (P) and LTHT (NP). Subgroup population size is re-
ferred to by n. Subgroups that do not exist in LTHT (P) or LTHT
(NP) populations are excluded. Shaded regions correspond to 95%
confidence intervals. Abbrvs: Receiver Operating Characteristic (ROC);

Area Under Curve (AUC); Leeds Teaching Hospital Trust (LTHT).
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characterised each CXR according to RALE criteria (Warren et al., 2018), labelling as
‘NORMAL-PCR+’, ‘MILD’, ‘MODERATE’ and ‘SEVERE’. I observe a strong pattern
of increasing frequency of false negative predictions for CXRs with milder features
of COVID-19 disease i.e., MILD CXRs are more frequently missed. As expected,
I find that 99% NORMAL-PCR+ CXRs are missed i.e., cases in which radiologists
were unable to identify COVID-19 features. Even MILD and MODERATE COVID-
19 CXRs exhibit high rates of false negatives, with COVID-19 being missed ≈94%
and ≈70% of the time (Fig. 5.10B). I find that CXRs categorised as SEVERE are less
frequently missed, yet 32.9% are still falsely classed as COVID-19 negative.

With XCEPTION NET predictions, I evaluate the relationship between the pro-
jection view of the CXR and the frequency of false positive predictions. I found AP
projected CXRs are more commonly misidentified as COVID-19 compared to PA
projected CXRs (Fig. 5.10C). Figure 5.10C also shows that ROI-trained XCEPTION
NET makes more false positive predictions in AP projected CXRs than the full CXR
trained XCEPTION NET.
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FIGURE 5.10: Analysis of XCEPTION NET prediction error. Fre-
quency of (A) false positive predictions on NCCID TEST data ac-
cording to proximity of CXR exam date to the diagnostic window,
(B) false negative predictions on COVIDGR according to RALE-
defined CXR severity and (C) false positive predictions on LTHT
data according to CXR projection, alongside evaluation of ROI-
trained XCEPTION NET false positive frequency. Abbrvs: Radio-
graphic Assessment of Lung Edema (RALE); Region of Interest (ROI);

Chest X-ray (CXR); Antero-posterior (AP); Postero-anterior (PA).
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FIGURE 5.11: (A) XCEPTION NET, (B) SSL-AM and (C) XVITCOS
AUROCs for LTHT subgroup and LTHT (P) subgroups. Only sub-
groups that exist in the LTHT (P) population are included. n is the
subgroup population size. Error bars correspond to standard devi-
ation across cross validations. Abbrvs: Area Under Receiver Operator

Characteristic (AUROC); Region of Interest (ROI).
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5.3.5 Model explanations & shortcut features

To investigate model reliance on spurious features, I create saliency maps using
GradCAM and gradient backpropagation and examine the features that have the
most influence on model predictions for both full CXR and ROI-trained models. I
explore true positive COVID-19 predictions made by XCEPTION NET (Fig. 5.12).
Review of GradCAM saliency maps shows model reliance on both COVID-19 pathol-
ogy and undesirable ‘shortcut’ features. I found that clinically-relevant regions
were consistently highlighted, with regions of significance often localised to the
lower lung areas, as well as the heart margins of the cardiac silhouette. I observed
similar activations in gradient backpropagation saliency maps. However, with this
improved granularity I also observe highlighted support devices (i.e., heart moni-
tor wiring, portacaths or endotracheal tubing) and radiograph annotations, possi-
bly representing reliance on spurious ‘shortcut’ features (Fig. 5.12A).

(a)

(b)

(i) (ii) (iii) (vii)(iv) (v) (vi) (viii)1 2 3 4 5 6 7

(A)

(B)

8

FIGURE 5.12: Saliency maps of correct XCEPTION NET predic-
tions of COVID-19 positive CXRs. CXRs are sourced from the
LTHT dataset and saliency maps are generated with (A) Gradient
backpropagation and (B) GradCAM. Abbrvs: Leeds Teaching Hospital

Trust (LTHT); Chest X-rays (CXRs).

5.3.6 Comparative validation of the impact of lung segmentation on model
performance

I find that training models on ROI-extracted CXRs does not improve model perfor-
mance. Against expectation, ROI-trained model performance is marginally worse
compared to full CXR trained models when testing in NHS centre populations
(LTHT). Notably, for XCEPTION NET and XVITCOS models, I find that training
on ROI CXRs does not worsen performance in international population, instead
performance marginally improves (Fig. 5.14).

Manual inspection of the ROI-extracted CXRs showed that, with the use of a
post-processing algorithm, lung regions were preserved (Fig. 5.6). Without loss of
clinical features, I propose that the decrease in model performance is linked to the
exclusion of non-clinical ‘shortcut’ features, such as radiograph annotations, which
have been identified in saliency maps of full CXR-trained models (Fig. 5.12). These
‘shortcut’ features are typically located outside the thoracic area, and are cropped
out during ROI extraction (Fig. 5.6). However, while non-clinical features that
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(a)

(i) (ii) (iii) (vii)(iv) (v) (vi)

(b)

1 2 3 4 5 6 7

(A)

(B)

FIGURE 5.13: Gradient backpropagation feature attribution maps
of true positive COVID-19 predictions. Saliency maps are gener-
ated for (A) XCEPTION NET predictions and (B) XCEPTION NET
(ROI) predictions. XCEPTION NET (ROI) is trained and evaluated
on CXRs cropped to the region of interest, while XCEPTION NET is
trained on full CXRs. Abbrvs: Leeds Teaching Hospital Trust (LTHT);

Chest X-rays (CXRs); Region Of Interest (ROI).

exist outside the lung fields can be removed by cropping to the ROI, general health
indicators e.g., presence of support devices, bone density, etc., remain in view and
are highlighted in saliency maps, suggesting influence over model predictions (Fig.
5.13).

Moreover, I find that ROI-trained models are worse at distinguishing COVID-
19 from other pneumonia types, as evidenced by the evaluation of ROI-trained
models in a subset of the LTHT populations with known pneumonia outcomes:
LTHT (P) and LTHT (NP). ROI-trained models produce a much higher error rate in
non-COVID-19 pneumonia populations. I observe that the ROI-trained version of
XCEPTION NET performs much worse than its full CXR trained counterpart, with
error rates of 0.51 compared to 0.40.

5.4 Discussion

The main goal of this research is to evaluate the use of deep learning approaches
for the detection of COVID-19. Specifically, to evaluate model performance in real
world clinical populations and identify factors contributing to model bias or error.

When comparing the main findings with the existing literature I found that the
model performances evaluated in this study contradict initial reports of model per-
formance in many of the source publications, many of which report AUROC scores
as exceeding 0.90. I identify several methodological flaws in this literature. Roberts
et. al. (2021) considered 62 studies, including many of the studies selected for this
benchmarking, and identified substantial limitations that placed the majority of
models at high risk of bias (Roberts et al., 2021). The main limitations considered
by Roberts et. al. (2021) were the use of inappropriate training data, inadequate
external validation and lack of subgroup evaluation (Roberts et al., 2021). An addi-
tional critical analysis identifies that the data used in source publications put deep
learning models at high risk of learning spurious ‘shortcuts’ (DeGrave, Janizek,
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FIGURE 5.14: ROC curves of (A) SSL-AM, (B) XCEPTION NET,
and (C) XVITCOS model evaluations on each dataset and their
ROI-trained counterparts. Shaded regions correspond to the 95%
confidence intervals. Abbrvs: Receiver Operating Characteristic (ROC);

Area Under Curve (AUC); Region Of Interest (ROI).

and Lee, 2021). This retrospective study corrects these issues, with the use of multi-
centre hospital data and extensive model validation on independent datasets. I
report new findings in deep learning model performance and consider the major
pitfalls in the development of deep learning models for clinical application.

Radiologists achieve performances of 0.78 AUROCs, as reported in Albiol et al.
(2022). Although direct comparison between radiologist performance and model
performance is inappropriate due to differences in test populations, at face-value
deep learning models show promise as an assistive tool for use in future pan-
demics.

A comparison of model performance shows that the best performances on the
real-world LTHT population are achieved by supervised deep CNN models that
employ transfer learning. Pre-trained with ImageNet weights, top-performer XCEP-
TION NET can be characterised by the application of depth-wise separable convo-
lutional operations for more efficient use of model parameters. The SSL-AM and
XVITCOS models give the next strongest performances. SSL-AM is pre-trained
with CheXpert data under self-supervised conditions to fully leverage the under-
lying data structures of a common domain. XVITCOS is a vision transformer, pre-
trained on CheXpert, this approach uses positional embedding and self-attention to
learn efficient CXR representations that incorporate both local features and global
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dependencies. In contrast, RES. ATTN. is the only model that does not apply pre-
trained weights, and records the lowest performance metrics out of all evaluated
models. From this I can speculate that transfer learning, domain-specific or other-
wise, is needed to achieve strong model performance.

While classification metrics indicate adequate model performance, this study
gives conclusive evidence that DL models perform poorly on clinically complex
cases i.e., where comorbidities/confounding features are present, and frequently
fail at separating COVID-19 from non-COVID-19 pneumonia. For example, de-
creased model performance is observed in populations with an increased incidence
of clinically relevant underlying conditions e.g., the 74-99 age group, active/previous
smokers, etc., these complex cases are disproportionately represented in hospital
populations. Therefore, my findings suggest that existing COVID-19 detection
models have limited value as an assistive tool for frontline radiologists, who are
tasked with making challenging diagnoses for high risk patients that require ur-
gent treatment.

These model failings can, in part, be attributed to inadequate data. In the ab-
sence of labels for alternative pathologies/classes supervised DL models are not
equipped to learn to separate the similar features of different pathologies, e.g., non-
COVID-19 pneumonia, emphysema, lung cancer, etc. Where pathologies co-occur
more frequently with the class of interest than the negative class, models are vul-
nerable to blindly learning these features as ‘shortcuts’ (DeGrave, Janizek, and Lee,
2021). Scarcity of multi-label datasets and widespread inadequacies in model val-
idation highlight the need for clinicians and deep learning researchers to address
the current shortfalls in data collection and to define criteria for clinically-oriented
DL model development. My future work centres on multi-labelled prediction to de-
velop models that accurately classify co-occurring pathologies. Using multi-label
datasets, I aim to address the complexities of overlapping diseases in medical imag-
ing, reducing reliance on shortcuts and improving generalisability across clinical
settings.

I tested models on the COVIDGR dataset to evaluate performance in interna-
tional populations (Spain) where typical NHS clinical pathways and data acquisi-
tion protocols do not apply. Evaluation in COVIDGR shows that models generalise
poorly outside NHS populations. However, in addition to changes in population
characteristics, there are critical differences in how COVID-19 was defined. The di-
agnostic window I use to define COVID-19 cases in the NHS populations (-14/+28
days around RT-PCR+ swab) was decided under clinical guidance taking into con-
sideration: the importance of early detection; poor RT-PCR sensitivity, particularly
with low viral load as is observed in early stages of infection; and, typical time for
CXR resolution post-infection. This is in stark contrast to COVIDGR which was
pre-defined with a much shorter diagnostic window of 24 hours before or after a
positive RT-PCR swab. This raises the issue that without a standardised COVID-19
labelling protocol, which should balance technical feasibility with clinical utility,
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detection models are vulnerable to poor generalisability as a consequence of la-
bel shift. The likely use of open-source datasets in emergent pandemic situations,
which can be compiled with inconsistent labelling as seen with COVID-19, high-
lights the importance of pro-active collaboration. For example, without clinical in-
put deep learning researchers may unintentionally adopt a disease definition that
maximises quantitative metrics i.e., accuracy, precision, recall etc., at the expense of
clinical utility.

Moreover, I observe increased rates of false positive predictions in negative
COVID-19 CXRs acquired close to the diagnostic window. With this evidence of
increased diagnostic uncertainty and the understanding that, for a large portion of
COVID-19 CXRs, disease features persist for a long time after infection, I suggest
that current labelling strategies result in a noisy ground truth. A portion of post-
COVID-19 resolved CXRs are either incorrectly considered COVID-19 or persistent
disease features enter the control population. To reconcile this source of label noise,
I propose the use of an additional category of COVID-19 disease which would sep-
arate chronic changes, i.e., persistent disease features post-infection, from active
COVID-19 infection.

Additionally, the detection of COVID-19 through RT-PCR is flawed with low
sensitivity and high rates of false negatives. Therefore, deriving COVID-19 status
from RT-PCR testing alone adds further noise to the ground truth labels. In prac-
tice, the clinical diagnosis of COVID-19 takes into account more than just RT-PCR
outcomes, e.g., clinical signs and symptoms, recent exposures, comorbidities, and
patient medical history. In fact, 20% of symptomatic patients receive a clinical di-
agnosis of COVID-19 despite negative RT-PCR testing (Middleton et al., 2021). I
further propose a multi-modal labelling approach that would incorporate all rel-
evant patient data, this would drastically reduce ground truth noise and benefit
deep learning models, particularly supervised models.

In evaluating model performance awareness of bias and fairness is critical. In-
adequate evaluation can allow biased deep learning models to amplify systemic
healthcare disparities in under-served communities. My evaluation of the models
shows varied performance across different sub-populations, with top-performing
models exhibiting obvious demographic biases, including unequal performance
depending on ethnicity, sex and age. However, clinical evidence suggests that
observed model performance disparities may be a consequence of varied disease
severity between demographics. Generally, models perform better when applied
to demographics which experience COVID-19 more severely, e.g., ethnic minori-
ties, males, and older age groups (Sun et al., 2022; Joseph et al., 2020). The clinical
factors affecting the severity of COVID-19 infection are still not fully understood.
Before clinical implementation, a greater understanding is required to determine if
these disparities in model performance might result in greater health inequity.

Crucially, my findings show that ROI-extraction was insufficient to prevent
these disparities. Therefore, if bias is identified researchers should be cautioned
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against applying segmentation techniques with the assumption that the removal
of background noise will fully mitigate the bias. Additionally, I find that crop-
ping CXRs to the ROI prior to training does not improve overall model perfor-
mance. This contradicts previous studies in which ROI-trained models performed
better (Nafisah et al., 2023). A key difference between their approaches and mine is
that I undertake a more rigorous methodology in which the segmentation model is
trained on an external dataset. Whereas conflicting studies typically use the same
data for both segmentation training and classification training, an approach that is
not supportable in a clinical setting (Nafisah et al., 2023).

I evaluated the impact of CXR projection on model predictions, as recommended
by Roberts et al. (2021). AP projected CXRs are used when the patient is not able
to get into the correct position for the standard PA projection, for example, if the
patient is too ill or is in isolation (Rubin et al., 2020). As a result, algorithms are
at risk of learning to associate COVID-19 with projection rather than the clinically-
relevant CXR features. I observe over-representation of AP CXRs in the disease
class of the training data, 83% of positive COVID-19 images were AP projected,
whilst only 65% of negative COVID-19 images were AP projected. Saliency maps
provide evidence that projection may have been a spurious shortcut features, as
they consistently highlight features around heart borders, a region of the CXR that
varies greatly depending on projection. Moreover, AP CXR predictions are more
commonly false positive. While GradCAM saliency maps are useful here for high-
lighting vague areas of interest in the CXR, I find evaluation challenging due to a
lack of precision. Similarly, I find the widespread pixel activation from gradient
activation maps challenging to interpret. In future work I will consider alternative
approaches to identify salient features important for image classification, with the
goal of improving model transparency in clinical settings.

Evaluations of a wide range of models suggests CXRs alone may not be suf-
ficient to detect COVID-19. In a head-to-head comparison, performance metrics
indicate that the top models are unable to compete with the gold standard clini-
cal test, RT-PCR. Models often fail to separate COVID-19 from other pneumonia
types and are unable to detect COVID-19 in RALE-defined NORMAL-PCR+ cases,
in which 99% of COVID-19 positive CXRs are missed. Here, it is important to note
that not all COVID-19 infections develop into COVID-19 pneumonia, in which case
diagnostic features of COVID-19 cannot be observed in the CXR and even the very
best DL models would be unable to detect COVID-19 infection. In practice, it is
rare for a disease diagnosis to be wholly determined by a single test. In fact, reduc-
ing the source of diagnostic information to a single modality risks losing diagnostic
features of a disease. Where imaging is incongruous with patient health, clinicians
often rely on additional sources of information. The incorporation of multi-modal
information e.g., exposure data, symptoms, medical history, etc. during data cura-
tion should be more widely adopted to facilitate the development of improved DL
models for the detection of COVID-19.
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5.5 Conclusion

This benchmarking of COVID-19 detection models trained on multi-centre hospi-
tal data highlights the need for clinical guidance in developing reliable predictive
models, for disease diagnosis and medical image interpretation. In particular, I
highlight the need for early and consistent disease definition, in order to ensure
model generalisablity across international and jurisdictional populations. Disease
definitions should also be continually reviewed for clinical utility, for instance, I
suggest COVID-19 detection models could be improved by the separation of CXRs
that exhibit long-term changes as a result of prior infection from CXRs of patients
with active infection. To the extent that comparison is possible, the deep learning
models evaluated detect COVID-19 with apparent similar performance to radiolo-
gists. However, both fall short of the gold standard clinical test, RT-PCR. I suggest
that a multi-modal approach under clinical guidance, where additional clinical fac-
tors are incorporated, can be used to improve model performance; with the aim of
developing a reliable assistive tool, on par with the existing gold standard.

Moreover, COVID-19 detection models have extreme difficulty identifying COVID-
19 in complex clinical cases, as demonstrated by my evaluation of models in sub-
groups with higher incidences of confounding pathologies and comorbidities. Mod-
els are also vulnerable to learning ‘shortcut’ features. Neither of these issues are
mitigated by the use of lung segmentation. Ultimately, I suggest that to accurately
predict disease in real clinical populations, where patients have comorbidities, it is
essential to apply multi-label training objectives where possible. Multi-label clas-
sification requires the model to learn a more complete understanding of the data,
preventing excessive reliance on ‘shortcut’ features and improving model general-
isability across clinical settings.
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Chapter 6

Multi-task VAEs for the
Explainable Prediction of
Co-Occurring Pulmonary Diseases

6.1 Introduction

The presence of co-occurring diseases in medical imaging datasets makes deep
learning models vulnerable to learning shortcut features. Shortcut learning refers
to the phenomenon where a model relies on spurious correlations or superficial
patterns in the data, rather than the fundamental features indicative of the disease
pathology (Ong Ly, Unnikrishnan, Tadic, et al., 2024). Pathologies that frequently
co-occur with the disease of interest become ‘shortcuts’ to the prediction of this dis-
ease, particularly where co-occurring pathologies are larger or more salient than
the disease of interest, e.g., emphysema as a shortcut to lung nodules. Reliance on
‘shortcuts’ can lead to poor performance outside the training distribution, harm
model robustness and increase risk of model bias, which may go undetected if
shortcuts persist outside the training distribution and model explanation is insuf-
ficient1 (Ong Ly, Unnikrishnan, Tadic, et al., 2024). Shortcut learning can be mit-
igated through careful data curation, adversarial approaches that penalise model
reliance on confounding features, the removal of confounding image features from
the training dataset, or with the use of multi-label classification objectives. Re-
moval of confounding image features can be achieved through data curation strate-
gies and counterfactual image generation, where data curation is performed to ‘re-
balance’ disease feature occurrence and counterfactual image generation is used
to ‘edit’ images directly to remove secondary disease features. Following a data
curation strategy may lead to an unacceptable loss of training data, particularly
where over-representation of co-occurrence is severe, as is often observed in medi-
cal datasets (Banerjee et al., 2023).

Weng et al. (2023) apply diffusion-based counterfactual image generation to
synthetically remove or add shortcut features to samples of a CXR data. Key to
this approach is the preservation of the remaining image features in the generated

1More details on shortcut learning are covered in Chapter 5
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shortcut-free counterfactuals, despite best efforts to prevent this, this approach to
mitigating shortcut learning risks removal of salient clinically-relevant features.

A multitude of adversarial approaches have been developed to prevent short-
cut learning, these approaches create an adversarial optimisation task to preventing
shortcut learning. By maximising the primary task (i.e., disease classification) and
minimising the performance of spuriously correlated factor prediction, they can
enforce shortcut invariance. Another popular solution to this is ‘subspace’ disen-
tanglement. This term encapsulates a class of approaches that rely on the division
of an embedding space into subspaces, where z1 encodes the primary classification
task and z2 encodes the spuriously correlated variable. With this disentanglement
regularisation objectives can be applied to enforce independence between the sub-
spaces (Müller et al., 2024).

For example, Fay et al. (2023) use a deep CNN to embed brain MRIs into a
feature vector, which is split into two parts. With the first part they train a classi-
fier to predict the disease status of the image, and with the other part they predict
spuriously correlated factors, such as, age and sex. To make these two feature sub-
vectors independent from each other, they apply an objective to reduce the mutual
information between them. Similar approaches have applied a distance correla-
tion objective, which measures the linear and non-linear dependence between two
random vectors (in this case sub-vectors), to the same effect (Müller et al., 2024).
However, subspace disentanglement and adversarial approaches both require prior
knowledge of shortcut features and annotation of the datasets, which is highly im-
practical. Moreover, these approaches are largely applied to prevent the learning
of demographic data, such as sex and age, as shortcuts. Prevention of shortcuts
arising from co-occurring pathologies is largely unexplored.

Of the aforementioned strategies, multi-label prediction is preferred as an in-
tuitive regularisation strategy to prevent shortcut learning. By applying a multi-
label prediction framework, where the prediction of each label is independent, the
model learns a more complex, robust understanding of the data. Framing image
classification as a multi-label prediction problem acts as an inherent form of regu-
larisation. The model is required to generalise across multiple labels, reducing the
risk of overfitting and preventing the model from narrowing focus to any single as-
pect of the data and developing a reliance on features that spuriously correlate with
this aspect. Consider, an image classification task where the goal is to predict lung
cancer in CXRs. In a multi-class framework, the model can learn to associate this
label with features that evidence a history of smoking (e.g., emphysema or fibrosis)
as smoking is a known risk factor for lung cancer. While in a multi-label setting,
the model must learn to identify multiple pathologies within the same CXR (e.g.,
fibrosis, emphysema, lung nodules, pneumonia etc.), to predict each of these labels
the model must learn to focus on the pathological features themselves as how these
pathologies present and co-occur will vary.

Moreover, where shortcut learning persists, explainable prediction is essential
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for the identification of model biases. Clear and precise localisation of predictive
features is crucial for providing radiologists with confidence where interpretation
and model prediction is uncertain, as is often the case for complex CXRs with co-
occurring pathologies. Common methods for explainable prediction of images, in-
clude, GradCAM, GradCAM++, and LIME, etc. (Selvaraju et al., 2017a; Chattopad-
hay et al., 2018; Ribeiro, Singh, and Guestrin, 2016). These are post-hoc approaches
that deliver saliency maps or attribution maps that describe the features of the im-
ages that are most important to prediction. Crucially, while these approaches offer
spatial localisation of significant features, they do not offer clear pixel-level expla-
nation of the relationship between input features and model predictions. The gen-
erated saliency maps are imprecise and so produce especially poor localisations of
irregularly shaped, small features (Saporta, Gui, Agrawal, et al., 2022). This is par-
ticularly problematic for explanation of co-occurring pathologies where features
of different pathologies may exist close together. To mitigate the risk of shortcut
learning and overcome the limitations of popular post-hoc explainability methods,
I propose to use a multi-task generative approach to provide pixel-level explana-
tions of multi-label predictions. This chapter addresses the existing shortcomings
and discusses the use of VAEs for the explainable prediction of pulmonary disease
in CXRs with co-occurring pathologies.

6.2 VAEs for Explainable Prediction

Variational Autoencoders (VAEs) are a type of generative model that applies prin-
ciples of variational learning to an encoder-decoder model architecture to learn a
distribution over data, typically Gaussian, in which factors of variation are cap-
tured in a lower-dimensional, latent representation2 (Kingma, Welling, et al., 2019).

Achieving explainable prediction with VAEs requires that they learn interpretable
latent spaces. Popular methods for learning interpretable latent spaces require dis-
entanglement of the latent space. Disentanglement is achieved when each latent
dimension describes some salient feature of the data. While a precise definition
of disentanglement has not yet been agreed, a disentangled representation is gen-
erally understood to require statistical independence between latent dimensions
(Burgess et al., 2018). This is popularly achieved by enforcing independence be-
tween the dimensions of the learned multivariate Gaussian posterior e.g., β-VAE
(Higgins et al., 2017), Factor-VAE (Kim and Mnih, 2018), etc. (described in Section
3.2.2), and has been demonstrated on simple, toy datasets in which factors of varia-
tion are strictly independent. However, disentanglement - which requires indepen-
dence between latent dimensions - is impractical for complex medical imaging data
in which dependencies between salient features is assumed. For example, consider
a healthy chest X-ray in which key features such as clear lung areas, normal heart
size and shape, and symmetric breathing muscles correlate. These dependencies

2Described in more detail in chapter 3
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capture how different parts of healthy anatomy support each other and are consid-
ered together. With this in mind decomposition of the latent space is more suitable.
In this, data is decomposed into salient features, but independence between latent
dimensions is not required 3.

For my application the VAE is required to learn structured representations of
clinically complex medical images, where anatomical, pathological, and image acquisition-
related features are separated from relevant disease features. Complex medical
imaging describes a wide variety of non-independent visual and clinical concepts.
Therefore it follows that learning a dense, unimodal Gaussian distribution over
complex data, where independence between latent dimensions is enforced, is re-
strictive and counter-intuitive. To overcome the existing limitation of the Gaus-
sian VAE, I propose to learn a sparse, multi-modal distribution over medical imag-
ing data (Tonolini, Jensen, and Murray-Smith, 2020). Specifically, I introduce the
Dirichlet-prior VAE (DirVAE) for decomposed representation learning of medi-
cal images. To encourage further separation of disease features I train models
under the influence of an auxiliary multi-label classification task. I hypothesise
that training classifiers on randomly sampled image representations complements
multi-label prediction in regularising against shortcut learning. For explainable
prediction, I hypothesise that with a prior distribution that facilitates distributional
sparsity and multi-peak sampling, i.e., Dirichlet, the VAE will learn a sparse, multi-
modal posterior that can be influenced by the auxiliary classifiers to separate disease-
related features that are important for label prediction from non-clinical features
that are not significant.

6.2.1 Prior distributions: Gaussian vs Dirichlet

In this work I compare the use of a dense Gaussian-prior with the use of a sparse
Dirichlet-prior. Prior distributions serve as a regularisation tool during training
and as a means to impose structure and constraints on the latent space. They can
therefore be selected to enforce desirable properties in the latent representation
(Kingma, Welling, et al., 2019). The preference between dense and sparse priors
depends on the purpose of the generative model. A sparse prior distribution is
characterised by having many zero or near-zero probabilities for most of the pos-
sible values, only a small subset of possible values has a high probability of being
selected (Tonolini, Jensen, and Murray-Smith, 2020). While the probabilities of a
dense distribution are more evenly spread out across the possible values. This im-
plies that every possible value has a non-negligible probability of being selected.
Given these properties, dense priors are generally preferred when the goal is to
generate a wide variety of high-quality samples and when the underlying data dis-
tribution is complex. While sparse priors are preferred when the goal is to identify

3Disentanglement and decomposition are discussed in more detail in section 3.2.2
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key features, sparsity limits the complexity of the latent distribution and therefore
is less suited for the generation of high quality samples.

6.2.1.1 Gaussian Distribution

The latent space of a VAE is typically assumed to follow a multivariate Gaussian
distribution, which means that each element of the latent vector follows an inde-
pendent Gaussian distribution (Kingma and Welling, 2013). The Gaussian distribu-
tion is therefore parametrised by two vectors: the mean vector (µ) and the diagonal
covariance matrix (σ2).

The Gaussian probability density function is defined as,

N (x; µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (6.1)

6.2.1.2 Dirichlet Distribution

The Dirichlet distribution is a continuous multivariate probability distribution, it
is defined over a set of discrete distributions and can be considered a multivariate
case of the continuous Beta distribution (Joo et al., 2020). The Dirichlet distribution
is parametrised by a K-dimensional vector typically referred to as the concentra-
tion, where, K corresponds to the number of discrete distributions and K ≥ 2.
This value shapes the distribution and controls how concentrated the distribution
is around the mean vector. Here the Dirichlet probability density function is de-
fined as,

p(x1, · · · , xK; α1, · · · , αK) =
1

B(α)

K

∏
i=1

xai−1
i (6.2)

Where B is the Beta function and α is the concentration parameter.
Alternatively, the Dirichlet distribution can be defined through Gamma func-

tions,

p(x|α) = Γ(∑k
i=1 αi)

∏k
i=1 Γ(αi)

k

∏
i=1

xαi−1
i (6.3)

where, αi > 0 and Γ(·) is the gamma function. Note that each xi is a positive
real number and together must sum to 1.

The Dirichlet concentration parameter determines the shape of the distribution
on the probability simplex, with its value controlling the balance between distri-
butional sparsity and smoothness. In order to capture latent distributions with
multiple modes, which I theorise encourages an explainable latent space, I use a
Dirichlet concentration that promotes sparsity.

As a continuous distribution, optimisation of the Dirichlet posterior can be
achieved through pathwise derivation (aka the reparameterisation trick), as shown
below.
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FIGURE 6.1: 3D Dirichlet distributions with different concentra-
tions (α).

z ∼ qϕ(z|x), z = g(ϕ, x, ϵ), ϵ ∼ Dir(α) (6.4)

where z is continuous, i.e., sampled from a continuous distribution, and z is cast
as a function of fixed noise (Jankowiak and Obermeyer, 2018).

6.2.2 Generating visual explanations

I qualitatively assess latent space explainability using two core techniques: latent
traversals and latent interpolations. Latent traversals involve varying one or few
latent dimensions at a time while fixing all others, allowing observation of how
specific features (e.g., size, shape, style) evolve and identification of semantically
meaningful attributes. While latent interpolations blend two latent vectors, typi-
cally belonging to different classes of data, showing how transitions occur between
different data concepts.

I adapt the classical latent traversal approach and introduce a gradient-guided
latent traversal (GGLT) method to be used at inference to explain predictions. I first
identify a single latent factor with the largest gradient activation from a positive
classifier i.e. where the class of interest to a classifier was correctly detected for the
input image. The identified latent factor is adjusted incrementally or ‘traversed’,
while all other factors are preserved. I visualise the influence of changing the sin-
gle factor of interest on the decoder reconstructions. Intuitively, if changing only
a single latent factor results in class-specific structural changes in the CXR recon-
structions, I can assume that the latent space has been successfully structured in a
way that isolates visual features relating to the class of interest. Pixel-wise variance
is used to summarise changes across a traversal and identify features controlled by
a specific latent factor. Algorithm 1 describes this process in pseudo-code.

Additionally, I explore latent interpolation as a method for explainable pre-
diction. To isolate label-specific features I perform partial interpolations between
label-positive CXR latent representations and a confounding-variable matched ‘No
Finding’ CXR 4. The most ‘active’ latent dimensions of the label-positive CXR is
assumed to hold disease specific features and there are expected to be ‘inactive’ in
CXRs without recorded pathologies. I describe interpolations as partial because I
interpolate between only the n most different latent dimensions. In the presented

4To account for possible confounding visual features, the destination ‘No Finding’ CXR is matched
to the label-positive CXRs matching age group and sex.
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evaluations, cases with co-occurring labels are not considered, to simplify inter-
pretation (as co-occurring labels would require exploring multiple relevant latent
factors simultaneously and ground truth disease features were unavailable).

Algorithm 1 Gradient-guided latent traversal

1: Input: Latent representation, Logistic regression classifiers
2: Output: Saliency maps for each label prediction
3: for each label i do
4: Predict the probability of label i from latent representation

z : Probi = Classifieri(z)

5: Compute and identify largest gradients in the classifier:

Gradientsi = ∇Classifieri Loss(Probi)

6: Extract most predictive latent factors from gradients:

LatentFactorsi = z[argmax(Gradientsi)]

7: Perform latent traversal using the selected factors:

LatentTraversali = Traverse(LatentFactorsi)

8: Generate saliency map from pixel value variance across the traversal:

Saliency mapi = Variance(Pixel values along LatentTraversali)

9: end for

6.3 Application: Explainable Prediction of Multi-label CXRs

My approach uses a VAE with an attached classification module comprising an en-
semble of logistic regression classifiers (a classifier for each label). The encoder is
made up of 4 blocks, each of which comprises a convolutional layer, batch normal-
isation layer, activation layer and pooling layer. With each block the convolutions
extract increasing numbers of kernels, from 64 to 512. The decoder is made up of
4 blocks, mirroring the encoder. Transposed convolutions are used to upscale the
kernel dimensions. I apply a Gaussian prior distribution of diagonal covariance to
define the GVAE and apply a Dirichlet prior distribution for the DirVAE. I define
this distribution for extreme sparsity. The Dirichlet prior is defined as, Dir(0.5 · 1k),
where k is the dimensionality of the distribution and the concentration value is set
to 0.5 in all dimensions k.

I apply this approach to the CheXpert data set, one of the largest publicly avail-
able CXR datasets with multi-label outcomes (described in Chapter 3). To overcome
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FIGURE 6.2: CheXpert co-occurrence heatmap, raw counts of each
label are included. Co-occurrence is normalised to a 0-1 scale.

issues of severe class imbalance in the data, and simplify training of the logistic re-
gression classifiers, I randomly sample 17,000 images of each of the four most repre-
sented classes featured in the CheXpert dataset, namely, No Finding, Lung Opacity,
Pleural Effusion, and Support Devices, allowing for co-occurrence between classes.
Figure 6.2 presents the frequency of classes of interest as well as their frequency of
co-occurrence. I split the CheXpert dataset into train (n = 52,943), validation (n =
5057) and test (n = 10,000) sets.

To encourage separation of latent factors according to clinically-significant fea-
tures I apply an ensemble of simple independent logistic regression models, where
each unit is optimised to predict one of four CheXpert labels from the learned latent
space and outputs are combined to produce a set of independent label probabili-
ties i.e., multi-label probabilities. For the DirVAE I apply the log transformation to
map Dirichlet-sampled latent vectors from the simplex to a Euclidean space. This
transformation removes the sum-to-one constraint and enables the use of linear
classifiers.

Both the DirVAE and GVAE were trained in four stages categorised as follows:
(1) reconstruction, (2) reconstruction and regularisation, (3) classifier initialisation,
and (4) joint training. During the first stage, the model is trained using just the
reconstruction loss (L1 loss), defined as L1 = ∑n

i=1 |xi − f (xi)|, where f denotes
the encoder-decoder functions. In the second stage, the Kullback-Leibler (KL) di-
vergence term is used to regularise model training by minimising the divergence
between the approximated posterior distribution of the latent factors and the as-
sumed prior distribution (i.e. Dirichlet for DirVAE and centered multivariate Gaus-
sian for GVAE). KL divergence is defined as LKL = DKL(qϕ(z|x) ∥ pθ(z|x)), and for
DirVAE is derived as in below,

KL(Q ∥ P) = ∑ logΓ(αk)−∑ logΓ(α̂k) + ∑(α̂k − αk)ψ(α̂k) (6.5)

where P is the prior distribution, equal to MultiGamma(α, β · 1k), Q represents
the learned posterior, Q = MultiGamma(α̂, β · 1k) and ψ is a digamma function (Joo
et al., 2020).

In the next stage, the weights of the pre-trained VAE are frozen and each of
the four class-specific logistic regression classifiers are independently optimised
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for their respective binary classification tasks with binary cross entropy loss, taking
the log of the CXR latent representations as inputs (for the DirVAE only). Once each
classifier is fully optimised, the ensemble of logistic regression models are trained
together, this objective takes the form,

LBCE =
1
4

4

∑
c=1
− 1

n

n

∑
i=1

(yc,i · log(pc,i) + 1− yc,i · log(1− pc,i)), (6.6)

where y represents the class labels, p is the predicted probabilities and c repre-
sents the different classes.

In the final stage of training, the VAEs and logistic regression classifiers are
trained jointly, where, the reconstruction loss, KL divergence loss and all four clas-
sifier losses are combined into a single training objective and minimised. Based on
preliminary experiments, I found that training the multi-label GVAE and DirVAE
models in this stage-wise manner helped stabilise the training process, relative to
training the models end-to-end from the beginning. Figure 6.3 gives an overview
of the DirVAE and classifier framework.

In this stage VAE optimisation is influenced by the classification task, and the
ELBO term can be re-expressed to reflect this,

ELBO = Eq(z|x)[log p(x|z)]− λKL[q(z|x)||p(z)] + Eq(z|x)[log q(y|x, z)]

where y represents the class label in the auxiliary classification task, and λ is a
weighting factor that controls the importance of the KL divergence term relative to
the reconstruction and regularisation terms. As the focus of this study is explain-
able prediction, not image generation, I down-weight the KL divergence term in
the multi-task objective and set λ = 0.01. Preliminary experiments demonstrate
that this improved classification performance and reconstruction quality. Both the
DirVAE and GVAE were optimised using the Adam algorithm. Logistic regression
models were optimised under stochastic gradient descent (SGD). Table 6.1 present
the experimental setting used for Dirichlet-prior and Gaussian-prior VAE training.

I pursue joint optimisation on the assumption that optimising the latent space
with the multi-label classification task will re-structure the latent space such that
‘active’ latent dimensions explain class-specific visual features. This allows sim-
ple linear classifiers (logistic regression) to predict the CXR target classes from the
learned latent space. I theorise that this will also enhance latent space interpretabil-
ity. Latent factors with greater discriminative power for predicting a given class
correctly, should correspondingly encode visual features in the CXR image that are
representative of that class. Intuitively, if only a few factors have significant impact
on the predicted probabilities of a logistic regression model, the latent space can be
assumed to be decomposed into clinical features relating to the pathology of inter-
est. With this in mind, I explore my proposed strategy for explainable multi-label
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FIGURE 6.3: Overview of DirVAE with auxiliary ensemble of lo-
gistic regression classifiers. The DirVAE is trained under a multi-
task objective combining a (a) reconstruction task with (b) a multi-

label prediction task.

prediction, gradient-guided traversals: for each label, I use classifier gradients to
identify the most important latent dimensions for classifier prediction and traverse
these dimensions to isolate features that are significant for prediction (Algorithm
1). I evaluate the Dirichlet-prior VAE and the conventional Gaussian-prior VAE
for their capacity to learn class-separable, explainable representations of medical
imaging (Kingma, Welling, et al., 2019).

Parameter Setting

Deterministic WU epochs 1000
Training epochs 1500
KL weighting 0.001
Learning rate 0.0001
Optimiser Adam

TABLE 6.1: Experimental Settings for Dirichlet-prior and
Gaussian-prior VAE training.

The goal of this study is to evaluate the capacity of the DirVAE to learn ex-
plainable, decomposed latent representations of CXR images, for multi-label clas-
sification. Accordingly, I assess the performance of the DirVAE by evaluating the
performance of their logistic regression classifiers on the multi-label classification
problem, and qualitatively assessing the explainability of their respective learned
latent spaces. Classifier performance is evaluated through standard classification
metrics (evaluated per-class) and multi-label metrics, Hamming score and Exact
Match Ratio (EMR). All results are compared directly with GVAE performance.

The Hamming score assesses the accuracy of predicted labels against true labels
on a per-sample basis. It is calculated as the proportion of correctly predicted la-
bels, accounting for both matches (correct positives and negatives) and mismatches
(false positives and negatives). The score ranges from 0 to 1, with 1 indicating per-
fect predictions.
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In mathematical form,

Hamming Score =
1
n

n

∑
i=1

|Truei ∩ Predi|
|Truei ∪ Predi|

where Truei and Predi are the sets of true and predicted labels for the i-th sam-
ple, and n is the total number of samples.

The Exact Match Ratio (EMR) measures the percentage of samples where the
predicted labels exactly match the true labels across all classes.

The formula for EMR is,

Exact Match Ratio =
1
n

n

∑
i=1

1(Truei = Predi)

where 1 is a function that returns 1 if the true label set Truei exactly matches the
predicted label set Predi for sample i, and 0 otherwise, and n is the total number of
samples.

6.3.1 Results

Table 6.2 shows logistic regression model performances, for both the DirVAE and
Gaussian VAE. The DirVAE classifiers perform marginally better than the GVAE
classifiers, with performance metrics marginally higher across most metrics. Multi-
label prediction metrics show that the DirVAE classifiers perform modestly when
considered together, with an exact match rate (EMR) of 0.38±0.01 and Hamming
loss of 0.25±0.02. Similarly, the Gaussian VAE achieved an EMR of 0.37±0.01 and
Hamming loss of 0.26±0.01.

Label Dirichlet VAE Gaussian VAE

Acc
ura

cy
No Finding 0.82±0.01 0.82±0.01
Lung Opacity 0.72±0.01 0.72±0.01
Pleural Effusion 0.70±0.01 0.70±0.01
Support Devices 0.74±0.02 0.72±0.01

Pre
cis

io
n

No Finding 0.61±0.06 0.62±0.03
Lung Opacity 0.82±0.06 0.82±0.02
Pleural Effusion 0.81±0.01 0.82±0.02
Support Devices 0.87±0.01 0.89±0.01

Rec
all

No Finding 0.74±0.01 0.72±0.01
Lung Opacity 0.69±0.02 0.68±0.02
Pleural Effusion 0.72±0.01 0.72±0.01
Support Devices 0.76±0.02 0.74±0.01

AUROC
No Finding 0.87±0.02 0.87±0.01
Lung Opacity 0.78±0.02 0.77±0.01
Pleural Effusion 0.75±0.01 0.74±0.01
Support Devices 0.78±0.03 0.76±0.02

TABLE 6.2: Label-wise logistic regression classification perfor-
mance results.

I informally investigate the sparsity of the DirVAE posterior by visualising the
frequency of values in a sampled latent representation given a randomly selected
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FIGURE 6.4: Dirichlet-prior VAE ‘sparseness’. (a) Frequency of val-
ues sampled from the Dirichlet-prior VAE posterior, z ∼ q(z|x). (b)
Example of classifier weights extracted from the Pleural Effusion clas-

sifier paired with Dirichlet-prior VAE.

CXR. Correspondingly a kind of ‘sparsity’ in the classifier weights is observed. Fig-
ure 6.4 shows the Pleural Effusion logistic regression classifier weights, the vast ma-
jority of values are near zero, while the weight indexed at 987 has a much larger
absolute value. This suggests that regularisation to the sparse Dirichlet-prior suc-
cessfully induced sparsity over the posterior distribution, and that training linear
classifiers on samples from this sparse distribution results in disproportionately
large weight assigned to a single dimension. This large weight is indicative of fea-
ture dominance, where a particular feature (or the corresponding input dimension)
has a disproportionately large influence on classifier predictions.

Figure 6.6 presents the results of traversing the latent spaces in the direction of
the most predictive latent dimension, where the most predictive latent dimension
is identified from classifier gradients i.e., GGLT. For the DirVAE, clear structural
changes are observed for each class. Typically, latent traversals gradually remove
or intensify disease-related features, in a manner specific to the input CXR image.
I consider both types of change as evidence of disease-/class-specific and image-
specific isolation, and so generate pixel intensity variance maps (presented along-
side each traversal, bottom right corner of each panel) in order to capture both types
of feature change.

I find that the features highlighted by DirVAE traversals are not only disease-
and image-specific but also clinically relevant. The feature changes observed dur-
ing latent traversals for the Pleural Effusion class are largely isolated to the lower
regions of the lungs, typically affecting the appearance of the costophrenicangles
and hemidiaphragm region, two key areas of diagnostic relevance for this pathol-
ogy (Fig. 6.6). For Lung Opacity cases, DirVAE traversals consistently highlight
areas of suspected consolidation (verified by clinical expert). Clinically, the radio-
graphic presentation of lung opacities varies greatly, this is reflected in the diversity
of feature changes observed during DirVAE traversals. Traversals capture features
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FIGURE 6.5: Saliency maps representing variance over all recon-
structions in a gradient-guided latent traversal series, performed
for the Support Devices class, with comparison between GVAE
and DirVAE. The colour bar shows pixel variance over the traversal,

which is rescaled to 0-1 range.

of consolidation that vary in shape, size and position, matching the appearance of
diagnostic features in the example CXRs (Fig. 6.6).

Similarly, in evaluating traversals of the Support Devices class, I observe a di-
verse set of well-defined structural changes in all areas of the CXR, with signifi-
cant changes mirroring the location and shape of support devices in the evaluated
CXR (Fig. 6.6). These results indicate that the DirVAE has the capacity to learn
disease/class-specific latent factors that are representative of all modes within the
class of interest. I consider the use of gradient-guided traversals for the identifica-
tion of classifier reliance on ‘shortcut’ and confounding features. With successful
isolation of salient features in the latent space ‘spurious’ and confounding features
can be observed in some cases (indicated by red boxes overlaying CXR images in
Fig. 6.6). Here, I also see that latent traversal causes feature changes relating to radi-
ology annotation, co-occurring classes (particularly support devices) and shoulder
position. In Figure 6.6 Support Devices C I observe specific changes that resemble
wiring begin to appear, this is a feature that spuriously correlates with the sup-
port device class but is not itself deemed a support device. This indicates that the
decomposed latent space learned by the DirVAE could also be used to identify spu-
rious features resulting from biases in the data, which is a requisite for mitigating
the same. Crucially, no such class-specific changes are observed during evaluation
of GVAE latent traversals, for any class (Fig. 6.5).

For GVAE GGLTs, traversal variance appears diffuse across the reconstructed
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FIGURE 6.6: DirVAE gradient-guided latent traversals, with exam-
ples from each CXR class. Each grid presents a different example,
the top left image in the grid is the original reconstruction, the en-
tire traversal is presented sequentially in the grid. The bottom right
image presents a pixel-wise variance map summarising the entire
traversal. Green arrows in the variance map point to disease-related
feature changes while red arrows point to likely confounding fea-
tures. Similarly, red and green boxes are used to highlight key fea-

tures changes in the final reconstruction.
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FIGURE 6.7: Partial latent interpolations (n=10) between label-
positive CXRs and a confounding variable matched No Finding
sample. n is the number of latent dimensions interpolated. I in-
clude Pleural Effusion (top row), Support Devices (middle row) and
Lung Opacity (bottom row) examples, and compare the Dirichlet-
prior (left) and Gaussian-prior VAE (right). In each row the first col-
umn is the input image, columns 2-4 shows the progressive change
in the reconstructions over the interpolation series, and column 5
(final) is the residual between the unchanged reconstruction and re-

construction post-interpolation.

image, showing only subtle changes in anatomical areas and little to no change in
areas of diagnostic relevance. Where disease-related feature changes are observed
they are not localised to regions relevant to the class of interest, but are accompa-
nied by changes to other features across the images. Changes in clavicle, shoul-
der position, mediastinum and lung width are often observed together, causing
non-specific changes in the size or shape of the lung air space. With non-specific
changes GVAE traversals appear similar for all examples and localisation of CXR
features of significance is near impossible. This is especially apparent in Figure 6.5,
which presents a direct comparisons between DirVAE and GVAE traversal saliency
maps (for the same input CXR images), with Support Devices as the class of interest.

Partial interpolations offer another method for generating visual explanation
from DirVAE-based predictions. Figure 6.7 demonstrates that DirVAE is able to
isolate label-specific features, while the visual explanations from GVAE partial in-
terpolations appear largely unrelated to label features. Figure 6.9 shows image
changes and corresponding changes in predicted probability over partial latent in-
terpolation. As the Pleural Effusion latent representation is adjusted towards the
No Finding latent representation, there are clear changes in the lower lung field.
Correspondingly, I observe increasing classifier probabilities for No Finding and
decreasing probabilities for Lung Opacity probabilities. I also see small decreases
in the predicted probabilities for Pleural Effusion, a pathology that shares features
with Lung Opacity.
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FIGURE 6.8: Comparison of GVAE and DirVAE traversals, with
examples from the Support Devices class. Each row presents a dif-
ferent example, the top left image in the grid is the input CXR, the
next image is the original reconstruction, the entire traversal is then
presented sequentially in the grid. The bottom right image presents
a pixel-wise variance map summarising the entire traversal. Green
arrows in the variance map point to class-related feature changes.
Similarly, green boxes are used to highlight key features changes in

the final reconstruction.

6.3.2 Discussion

Analysis of latent traversals suggests that the DirVAE learns a more explainable
representation (than its GVAE counterpart), despite the challenges presented by
a multi-label task, where the co-occurrence of disease features complicates repre-
sentation learning. In addition, DirVAE classifiers perform marginally better than
GVAE. The improvement in latent structure afforded by the DirVAE, relative to
the GVAE, is attributed to the sparsity and multi-modal characteristics of the latent
space learned by the former. Specifically, the sparsity of the Dirichlet prior is en-
forced by setting its concentration parameter α = 0.5 across all experiments. This
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FIGURE 6.9: Partial interpolation (n=10) from Lung Opacity CXR
to No Finding CXR latent representation. n is the number of latent
dimensions interpolated. Top: Panel of image reconstructions re-
sulting from interpolation between Lung Opacity CXR and No Find-
ing CXR. (A) Original reconstruction of Lung Opacity CXR and (B)
Reconstruction after interpolation to No Finding CXR. Bottom: (A)
Probabilities predicted from latent representation of Lung Opacity
CXR. (B) Probabilities predicted from latent representation after par-

tial interpolation towards No Finding.
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pushes areas of the posterior distribution towards zero, i.e. the inner areas of the
simplex (Fig. 6.1) and creates a narrower information bottleneck.

My approach to encouraging interpretability in the latent space follows a sim-
ilar principle to β-VAE, but with a different strategy for narrowing the informa-
tion bottleneck (Higgins et al., 2017). In order to generate quality reconstructions
under strict sparsity constraints the latent factors have to capture more global fea-
tures. Consider the impact of a narrower bottleneck on the reconstruction objec-
tive as well as the classification objective, which influences the model to prioritise
the learning of disease-related features, this strategy encourages the learned la-
tent variables to capture ‘global disease features’ and explain away noise i.e., in the
posterior distribution high-level disease features are pushed to dense regions while
non-predictive features are pushed to sparse areas.

This principle can be observed in latent traversal evaluations, by traversing
latent dimensions important for lung opacity classification. There are no diffuse
changes in unrelated CXR features, but clear changes in homologous features of the
image. Moreover, there is evidence of DirVAE capacity to decompose global pat-
terns of disease features, with localised regions of consolidation changing across
both lungs and in upper and lower lung regions. Similarly, global features are
observed in Support Device classification, where all support structures, including
connecting wiring (irregularly shaped and distributed spatially across the image)
are altered during traversal; during traversal coordinated feature changes can be
observed across the entire image, for all images classes. Isolated feature changes
is also observed with partial, confounding-controlled interpolation method. Over-
all, the proposed use of latent representation manipulation for identification of the
salient visual features underlying classifier predictions facilitates improved model
explainability.

Within my explainability approach, successful decomposition of DirVAE latent
representations allow us to more clearly observe the appearance of ‘spurious corre-
lations’ along side disease features, across traversals. Examples of observed ‘spuri-
ous correlation’ includes, sex changes, the appearance of various support devices,
as well as changing body position (relating to switches from AP to PA projection)
(Jabbour et al., 2020). Highlighting the influence of confounders and biases in pre-
dictions made by learning-based systems is essential for building safer and fairer
predictive models. This is especially relevant for translating learning-based com-
puter aided diagnostic/ screening systems to routine clinical care (Gaube et al.,
2023). Particularly, multi-label classification tasks, where the co-occurrence of dis-
ease makes deep learning models more vulnerable to reliance on confounding fac-
tors. Typical approaches to multi-label image classification explainability, includ-
ing GradCAM, have been criticised for their inability to highlight smaller patholo-
gies or structures with complex shapes, for example, mechanical wiring (Selvaraju
et al., 2017a; Saporta, Gui, Agrawal, et al., 2022). They are similarly poor at high-
lighting important featured that are distributed far apart in the image.
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My work opens doors to a novel approach for this task. By interrogating the
direct influence of important/identified latent factors on the generated images and
the classification of independent outcomes (or indeed the fluctuation in the pre-
dicted class-specific probabilities) for the generated images, my approach provides
a systematic framework to identify relevant class-specific features and confounders
and/or biases in image data. Interrogating the effects of the most predictive la-
tent factor demonstrates that this approach is able to clearly highlight small and
complex features as well as important correlations with, potentially, confounding
image features (Saporta, Gui, Agrawal, et al., 2022). This is well-illustrated by an
example of confounding highlighted in a Lung Opacity traversal, where the classi-
fier appears to mistake the gas in the digestive system for opacities in the lower
lung regions (highlighted by red box and arrows) (Fig. 6.6e). Strong classification
results alongside unclear traversals suggest that GVAE classifiers rely on latent fac-
tors that combine to explain shared variation and describe the CXR image (and
its corresponding class(es)) as a whole, rather than rely on a sparse set of disen-
tangled latent factors that describe the presence/absence of disease-/class-specific
features(as with the DirVAE). While some disease-/class-specific features are vis-
ible in the latent traversals visualised for GVAE, these are attributed to the effects
of multi-task representation learning, i.e. to the joint training of the GVAE with
the logistic regression classifiers for multi-label classification. Due to the dense and
unimodal nature of Gaussian distributions, the learned latent space appears unable
to separate disease-/class-specific features from other image-specific features. This
is particularly evident in the latent traversals presented for CXR images from the
Support Devices class (see Fig. 6.8). From this, I can conclude that in this framework
the GVAE has limited functionality as a method for prediction explainability.

While I am able to demonstrate success in explainable prediction and its utility
in identifying shortcut features, further evaluation is needed to determine the ex-
tent of shortcut feature learning. Moreover, without knowledge of true generative
factors of variation in dataset (i.e., dSprites). It is difficult to quantify the ‘decom-
position’ or ‘disentanglement’ of the latent representations. Some work proposes a
linear classifier-based approach to quantifying - on the reasoning that linear separa-
bility suggests some degree of axis-aligned semantic feature learning (Carbonneau
et al., 2022). However, the influence of the classification objective on representation
learning disqualifies this as a suitable approach. Further work should go to assess-
ing and quantifying the decomposability of the latent representations learned by
DirVAE under the influence of the auxiliary classification task.

In addition, I observe some limitations compared to existing work, such as
counterfactual generation, namely that my current application of latent traversals
offers no directional control, i.e., I can only generate feature changes not remove
or intensify relevant features. Moreover, I identify that generally CXR reconstruc-
tions are of too low quality to be used directly as counterfactual explanations, I
find the clearest means of interpretation is via the traversal variance saliency map.
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I propose that with improved reconstruction quality and directional control GGLT
explanations can rival counterfactual generation. Further work will concentrate on
this.

6.4 Conclusion

In this work I demonstrated that decomposition of class-/disease-specific (and po-
tentially, clinically-relevant) features can be achieved using my DirVAE model and
that its capacity for class-/disease-specific disentanglement is superior to a GVAE.
I introduced a promising new approach for explainable multi-label classification,
where I applied an ensemble of simple logistic regression classifiers and explored
latent dimensions of significance to class predictions through so-called ‘gradient-
guided latent traversals’. With this I provided visual explanations that highlighted
regions in CXR images clinically relevant to the class(es) of interest and addition-
ally, I was able to identify cases where classification was biased and relied on spu-
rious feature correlations.

Future work will explore the use of metrics to quantify explainability in order to
formalise my qualitative assessment and improve image reconstruction/generation
quality, with a view to improve the clarity of feature changes during latent traver-
sals. With better reconstruction quality the developed approach would have appli-
cations in both explainable medical AI and synthetic data.
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Multi-task Hierarchical VAEs for
Disease Localisation

7.1 Introduction

As demonstrated in Chapter 6, through the use of sparse-priors and multi-task
training, VAEs are able to learn a posterior distribution in which factors of varia-
tion are captured in a structured lower-dimensional, latent representation. I aim to
further this work by applying the same principal to Hierarchical VAEs (HVAEs).
HVAEs extend the basic VAE framework by introducing a hierarchy of stochastic
latent variables. With this hierarchy, HVAEs can better approximate complex dis-
tributions by allowing for dependencies between latent variables at different levels
(Maaløe et al., 2019). By increasing the expressivity of the learned posterior HVAEs
should be able to improve on the capacity for VAEs to predict CXR labels and gener-
ate higher resolution images for more explainable prediction, a limitation of single
VAEs that I have already observed in Chapter 6. With this in mind I hypothesise
that representations learned by HVAEs can give better classification performance
and more precise localisation of disease features within the visual explanations.

In this work I introduce multi-task sparse-prior HVAEs for decomposed repre-
sentation learning of complex medical images under the influence of an auxiliary
multi-label classification task. I hypothesise that, like the Dirichlet-prior VAE, the
sparse-prior HVAE will learn a sparse, multi-modal posterior that can be influenced
by the auxiliary classifier to separate class-related features that are important for la-
bel prediction from irrelevant features. I intend to use this property to facilitate the
explainable prediction of complex, multi-label CXRs. I explore the use of a sparse
mixture of Gaussian distributions as a prior distribution (Sparse-prior) to the HVAE
model, specifically the bi-directional inference model (BIVA), and compare the per-
formance of this sparse-prior HVAE with that of the standard dense Gaussian-prior
HVAE1. HVAEs are evaluated for the predictive performance of their latent repre-
sentations as well as for their capacity to isolate class-specific features in the latent

1I initially explore the use of Dirichlet-priors for this but find that the extreme sparsity imposed
by the Dirichlet posterior makes HVAE-training unstable, instead I pursue Gaussian-based sparse
priors.
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representation, which I quantitatively evaluate via a disease localisation task. Lo-
calisation is visualised through classifier-informed latent traversals, where classi-
fier gradients are used to identify the most predictive latent factors, which are then
traversed to generate a corresponding change in the generated images i.e., GGLT.

For baseline comparison I explore the application of Dirichlet-prior, Sparse mix-
ture of Gaussians-prior, and Gaussian-prior VAEs in this multi-task framework. I
evaluate these VAEs for their predictive performance as well as their capacity for
explainable prediction. I compare all variational models with a deep CNN trained
under a multi-label objective. This avenue of investigation extends my work on
Dirichlet-prior VAEs (Chapter 6) with the quantitative evaluation of disease local-
isation as a measure of explainability and additional comparison with alternative
sparse-prior distributions (e.g., Sparse-prior).

In this Chapter my research aims are as follows:

• Evaluate the performance of multi-task sparse-prior HVAEs for the multi-
label prediction of co-occurring pathologies in CXRs, with comparison to
multi-task VAE performance as the baseline method for variational approaches,
and comparison to the Gaussian-prior HVAE as the standard choice of prior
distribution for HVAEs.

• Explore the use of HVAEs for explainable prediction, proposing novel meth-
ods for visual explanations through latent traversal, and quantifying this through
comparison with radiologist annotated disease features.

• Compare variational approaches with a deep CNN trained under a multi-
label classification objective, and compare traversal-generated explanations
with GradCAM++, a popular post-hoc method for generating visual expla-
nation.

7.2 Related Work

My work using sparse-prior HVAEs draws on principles of sparse coding, gener-
ative modelling, and explainable prediction. For context, I introduce the concept
of sparse representation learning and its application to variational inference, and I
discuss existing methods for the explainable prediction of medical images, with a
focus on HVAEs.

A number of published methods have combined principles of sparse coding
with variational inference. Based on the core principle of sparse coding, these ap-
proaches aim to learn a sparse posterior, in which the encoder is induced to repre-
sent the data in as few active latent variables (non-zero) as possible, with a varying
number and differing combination of active latent variables for each data sample
(Tonolini, Jensen, and Murray-Smith, 2020). Intuitively, sparse representations are
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well-suited for learning efficient latent representations of images. Complex imag-
ing datasets contain a vast number of features, but only a small subset is present
in any given image. Sparse representations can capture the factors of variation that
describe these datasets by activating only a few latent dimensions for each image.
Different images activate different combinations of these dimensions, which allows
for a compact and efficient way to represent diverse visual information with mini-
mal redundancy. The properties of sparse representations naturally facilitate inter-
pretability, and is often demonstrated through isolation of salient visual features in
latent traversals. Sparse-inducing prior distributions can be truly sparse or near-
sparse. Here I introduce existing methods that apply sparsity to VAEs. Gyawali
et al. (2019) use the Indian buffet process as a truly sparse prior distribution in a
VAE framework. The Indian buffet process is defined by binary sampling: each ob-
servation i draws discrete 0/1 values for each existing feature k with probability mk

i

(where mk is previous occurrences), followed by sampling Poisson( α
i ) new features.

This inherently generates sparse matrices since most entries are zero and all entries
are discrete binary values. Gyawali et al. (2019) have used this process to demon-
strate improved isolation of disease features in complex imaging data, including a
skin lesion image dataset.

Similar to the Indian buffet process, the stick-breaking process is a truly sparse
distribution that works by recursively breaking off portions of a unit interval i.e., a
"stick" of length 1, where each break point is drawn from a Beta distribution. The
length of each broken piece determines the probability of selecting that feature, nat-
urally leading to a sparse set of active features as the remaining stick length dimin-
ishes exponentially. This creates a sequence of decreasing probabilities that sum to
1, effectively prioritising a small subset of features while allowing for theoretically
infinite dimensions. Nalisnick and Smyth (2017) use this process as a prior in a VAE
framework and demonstrate improved discriminative power in semi-supervised
classification tasks compared to Gaussian-prior VAEs.

Alternatively, near-sparse distributions constrain areas of the distribution to
near-zero, through this sparsity can be represented despite distributions not being
truly sparse. When applied to variational inference, I observe that the latent rep-
resentation of data through sparse posteriors can be achieved with the application
of near-sparse prior distributions, such as, the Spike-and-Slab probability distribu-
tion, the Dirichlet distribution, and a ‘sparsified’ mixture of Gaussian distributions.

Tonolini, Jensen, and Murray-Smith (2020) propose to model sparsity in the
latent representation with a Spike-and-Slab probability distribution prior VAE. In
Bayesian statistics, the Spike-and-Slab prior is used to separate relevant variables,
or features, from irrelevant variables. I describe this method in more detail in
Chapter 3. Fallah and Rozell (2022) propose a new approach to sparse coding that
uses learned thresholding. To facilitate variational sparse coding they apply a soft-
threshold function which sets some samples from the latent representation to zero.
They demonstrate that the thresholded samples are identically distributed to the
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Spike-and-Slab distribution but their method offers greater control over the degree
of sparsity imposed. With this method they show efficient feature decomposition
of the CelebA dataset.

The Dirichlet-prior VAE was first introduced by Joo et al. (2020). In this work,
they consider the sparse multimodal properties of the Dirichlet distribution, by
setting α = 0.99 · 1dim, where dim is the number of latent dimensions. Parametris-
ing the Dirichlet prior distribution with α values less than one creates a sparse,
multi-modal distribution. They demonstrate successful factorisation through la-
tent traversals over the MNIST dataset. Similarly, Xu, Fan, and Liu (2023) demon-
strate unsupervised disentanglement via the Dirichlet VAE through latent traversal
over dSprites and 3dShapes datasets. Although this work does rely on the softmax
Laplace approximation of the Dirichlet distribution, which has been shown to be a
restrictive, inaccurate approximation of a multi-modal Dirichlet.

Moreover, Mathieu et al. (2019) model a sparse posterior using a mixture of
Gaussian distributions, where a narrow Gaussian component pushes latent vari-
ables towards zero. Of the sparse distributions discussed here I select the sparse
mixture of Gaussians-prior as the HVAE sparse prior for two key properties, an
easily controllable degree of sparsity and stable Gaussian optimisation. I describe
this probability distribution in more detail in Section 7.3.1.

Research on the use of HVAEs for explainable prediction remains relatively lim-
ited, although a handful of recent studies across different domains have begun to
explore this area. Li et al. (2023) implement a multimodal hierarchical conditional
VAE for salient object detection. This method incorporates RGB imaging along-
side auxiliary modalities, including, thermal data, depth data, and image captions.
This method integrates HVAEs into a mixture of products of experts framework
to aggregate the multimodal latent variables, which are also concatenated with
deterministic features to be delivered to the decoder for salient object detection.
Vercheval and Pižurica (2021) use HVAEs to learn a posterior distribution over
latent variables that is conditioned on ground truth data. They visualise salient
objects by varying the conditional variable, decoding the latent variables and cap-
turing changes in image reconstruction.

Hierarchical VAEs have also been used for visual counterfactual generation. In
this work, the HVAE learns latent representations of images, specifically celebrity
faces (CelebA), conditioned on predicted probabilities from an independent clas-
sifier trained to predict sex (Vercheval and Pižurica, 2021). Counterfactuals are
then generated by varying the conditioning variable i.e., probability value. Both
approaches require a conditioning variable to generate explanations and do not
present evidence of decomposition of generative factors within an unconditional
latent representation.

Recent work indicates it is possible to achieve explainable HVAEs without the
need for a conditioning variable. Vafaii, Yates, and Butts (2024) encourage dis-
entanglement through the β-VAE mechanism of up-weighting the KL divergence
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term of the ELBO objective. In this work an NVAE, a type of HVAE described in
Chapter 3, was applied to predict neuron response in the motion processing path-
way of primates. With the β-VAE objective they were able to identify generative
factors through varying a single latent factor in top level NVAE latent represen-
tations. Additionally, in the medical imaging domain Biffi et al. (2020) apply the
LVAE (see Chapter 3) to learn 3D anatomical shapes in cardiac and brain MRs. They
apply a MLP classifier to the top level of the LVAE for disease prediction, train-
ing LVAE+MLP end-to-end to encourage learning of class discriminative features.
With this framework they demonstrate explainable prediction of disease classes
from anatomical shape segmentations. Explanations are generated through latent
traversals in the 2-dimensional top level of the LVAE, these showed clear, clinically-
relevant changes in anatomical shape. However, the datasets used here to describe
anatomical shape are binary segmentation maps, with only a few generative factors
this data is simple compared to the complex array of features comprising CXRs. To
my knowledge the explainable prediction of CXRs through HVAEs has yet to be
explored.

7.3 Bi-directional inference VAE

For this work I use the bi-directional inference VAE (BIVA). The BIVA model is a
type of hierarchical VAE, which extends the classical single-level VAE.

BIVA inference combines the likelihood model p(x|z) with the generative model
p(x, z) by sharing parameters between inference and generative models as part of
a top-down inference method. In this process, the likelihood distribution is first
approximated with a stochastic upward pass i.e., distribution parameters are esti-
mated from the deterministic feature space and distributions are ancestrally sam-
pled.

This is followed by a stochastic downward pass, in which stochastic latent vari-
ables are ancestrally sampled i.e., p(zi|zi+1), to recursively compute the approxi-
mate posterior

q(z|x) = q(zK|x)
L−1

∏
i=1

q(zi|zi+1),

where L is the number of layers, and the generative distribution p(x, z). The in-
ference model can therefore be thought of as comprising top-down and bottom-up
stochastic latent variables,

zi = {zBU
i , zTD

i }

where zBU
i belongs to a bottom-up inference path and zTD

i belongs to the top-
down path. Figure 7.1 shows information flow through the BIVA inference model.
I define deterministic blocks as Di, where the deterministic function Di+1 outputs a
lower dimensional feature space than Di. BIVA uses a top-down deterministic path
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in which
(
zBU

i+1, zTD
i+1

)
and Di+1 features are combined and passed to zi. Informa-

tion from the BU approximated likelihood p(x|z) is combined with TD information
from the generative distributions p(x, z) to give the approximate posterior q(z|z, x).
Here, both the generative model and inference model are dependent on top down
information flow. In other words, the inference model recursively corrects the gen-
erative distribution p(x, z). Step-by-step, the data flows through the deterministic
upward pass to approximate the likelihood distribution p(x|z). Then the stochastic
downward pass computes the approximate posterior and generative distribution.
The inference model is therefore a combination of BU information and TD infor-
mation flowing from the prior. Together, these information paths facilitate highly
expressive models that are capable of approximating very complex datasets.

Moreover, in this work I add a classification model qϕ(y|x, zBU
<L) to the inference

network i.e., I include an auxiliary multi-label prediction task and train an ensem-
ble of logistic regression classifiers with the top latent level as input. Note that for
Dirichlet-prior VAEs, a log transform is applied to the classifier input in order to
project this vector from the simplex into euclidean space. The number of logistic
regression classifiers depends on the number of classes, which varies depending on
the prediction task.

BIVA

FIGURE 7.1: 3 layer BIVA inference model. Dotted lines indicate
shared parameters. Black arrows indicate bottom-up information

flow and red arrows indicate top-down information flow.

7.3.1 Prior distributions

In this work I explore the use of the Gaussian distribution and a Sparse mixture of
Gaussian distribution as prior distributions for VAE and BIVA models, I also fur-
ther my use of the Dirichlet prior for VAEs. I described the Dirichlet and Gaussian
distributions in Chapter 6 and introduce the Sparse mixture of Gaussian distribu-
tions, which I refer to as the Sparse distribution for brevity, here.
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Mixture of Gaussians Sparse Mixture of Gaussians

FIGURE 7.2: Simulated sparse Gaussian mixture. I sample from
four 2D Gaussian distributions and fit a Gaussian kernel to estimate
density across the mixture of distributions. To simulate the sparsity
constraint I restrict the variance of two out of the Gaussian distribu-

tions to 0.01.

7.3.1.1 Sparse mixture of Gaussian distributions

As in Mathieu et al. (2019), I define the sparse Gaussian mixture prior distribution
as,

p(z) = ∏
d
(1− γ)N (zd; 0, 1) + γN (zd; 0, σ2

0 )

where σ2
0 = 0.01, d defines the number of distributions within the mixture, and

γ defines the proportion of sample distributions within the mixture restricted to
near 0, i.e., are bounded to a mean of 0 and variance of σ2

0 . Intuitively, distri-
butions restricted in this way are limited in their capacity to encode information
and so are ‘switched off’. As γ defines the proportion of distributions that are re-
stricted, this can be thought of as the ‘sparsifying’ parameter. Figure 7.2 shows a
sparse Gaussian mixture alongside an unconstrained Gaussian mixture. Side-by-
side comparison demonstrates the effects of ‘sparsifying’ the mixture of Gaussians,
a multimodal distribution with vast areas of sparsity between modes is created.

7.3.2 Generating visual explanations with BIVA

As in Chapter 6, I use latent traversals to generate visual explanations of model pre-
dictions. I explore the use of two different algorithms for explanation generation,
which I have termed gradient-guided latent traversals (GGLTs)2 and optimised la-
tent traversals (OLTs).

To perform a GGLT for a given prediction, the largest classifier gradients are
identified, the aligning latent dimensions are identified as the most predictive fac-
tors and latent traversals are performed over these factors. During traversal itera-
tive changes are made to the selected factors and images are generated with each
iteration. Pixel variances across the traversal are calculated to generate a saliency
map. Conversely, OLTs require direct optimisation of the latent representation used

2Introduced and described in more detail in Chapter 6
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as input to the classifiers. All models weights are frozen and classifier gradients are
used to update the latent representation w.r.t a BCE loss classification objective for
which I construct a new target vector with the predicted label set to 0. The latent
representation is then updated to minimise the probability of observing the class
of interest for any given positive prediction. Algorithm 2 describes this process in
pseudo-code. For the OLT experiments, I use a SGD optimiser and optimise over
2000 iterations. The size of the updates is controlled by the optimiser learning rate,
which I vary depending on the prior distribution.

Counterfactual generation A key difference between GGLT and OLT, is that OLT
explanations are directional. The OLT method updates the latent representation to
explicitly minimise label probability, while GGLT makes non-directional changes
to the latent representation. OLT can therefore also give directional feature change
i.e., features change to explicitly minimise label probability, which may be observed
as disappearing disease features. This motivates my use of OLTs despite previous
proven success with GGLTs.

Moreover, from this perspective OLTs are akin to counterfactual generation,
which has been popularly applied to explainable medical image prediction. Coun-
terfactual generation describes the process in which generative models are used to
change specific features of an input while keeping others fixed, in order to generate
an alternative scenario that would result in a different prediction. By generating
these alternative scenarios, it is possible to better understand which features are
most influential in the model’s decision-making process.

Sun et al. (2023) present a counterfactual generation method specifically for ex-
plainable prediction in a multi-label setting. In their framework, they use a gen-
erative adversarial network (GAN) to first generate class-specific attribution maps
based on counterfactuals, and then simple logistic regression classifier is used to
make predictions based solely on these attribution maps. They present convincing
qualitative examples, but do not quantitatively evaluate against ground truth radi-
ologist annotations. Due to their adversarial nature, GANs can be difficult and time
consuming to train. Cohen et al. (2021) instead take a simple autoencoder approach
to generating counterfactual explanations for CXRs. They train an autoencoder and
classifier independently, they generate a latent representation, which is then per-
turbed to cause a change in the classifier predictions. Image samples are produced
from the perturbed representations and optical flow is computed on a sequence
of generated images to visualise feature changes. They summarise counterfactual
changes and compare highlighted regions against ground truth radiologist anno-
tation masks. While, counterfactual image generation in medical imaging is well
established, existing approaches do not have a capacity for protecting against short-
cut learning. Through my evaluations I aim to demonstrate the natural advantages
of OLTs for identifying ‘shortcuts’ in this framework.
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For GGLTs and OLTs, I summarise traversal changes by finding the absolute
pixel-wise differences between the initial reconstruction and the post-traversal re-
construction. I consider explanations of binary predictions, where only a single
class is evaluated, as well as explanations of multi-label predictions, where the pre-
dictive features of all positive predictions in a CXR are interrogated. I use these
methods to explain model predictions and compare resulting saliency maps to
identify which methods, VAEs or HVAEs, and which priors, Sparse prior or Gaus-
sian prior, offer the clearest explanations. I compare model prediction performance
against that of a multi-label deep CNN. Traversal-based saliency maps (derived
from OLTs or GGLTs) are also compared against conventional post-hoc explainabil-
ity modules such as, GradCAM++, which is applied to a deep CNN classifier. To
generate visual explanations of multi-label deep CNN predictions, I binarise Grad-
CAM++ saliency maps and quantitively evaluate all disease feature localisation
through comparison of resulting bounding boxes with ground truth radiologist an-
notations.

Algorithm 2 Optimised Latent Traversals

Require: Learned posterior distribution q(z|x), set of independent classifiers
{C1, C2, . . . , CK} (one per class), classification loss function Lclass, learning rate
η, input x, number of optimisation steps N

Ensure: Optimised latent representations {z∗1 , z∗2 , . . . , z∗K} for each class
1: Initialise: Sample initial latent representation z ∼ q(z|x)
2: for each class k in {1, 2, . . . , K} do
3: Set zk ← z (initialise latent representation for class k)
4: for t = 1 to N do
5: Compute prediction for class k: ŷk ← Ck(zk)
6: Evaluate classification loss: Lk ← Lclass(ŷk, ytarget,k)
7: Compute gradient of the loss w.r.t. zk: ∇zkLk
8: Update latent representation for class k: zk ← zk − η · ∇zkLk
9: end for

10: end for
11: Return: Optimised latent representations {z∗1 , z∗2 , . . . , z∗K}

Bounded generative model For HVAEs, to visualise the meaningful changes that
are observed by the classifier modules, I use bounded variation on the standard
ELBO which removes the influence of lower level latent variables (Maaløe et al.,
2019). Initially devised to remove the influence of data in the lower-levels of the
HVAE for improved out-of-distribution detection, the bounded ELBO term restricts
data-dependent information flow through the TD information path of HVAEs (Maaløe
et al., 2019). I adapt the use of a bounded ELBO term for improved localisation of
disease features in multi-task HVAEs.

The flow of information through the hierarchy of latent variables in the genera-
tive model of BIVA makes evaluation through latent traversal more complex. The
lower layers, which receive deterministic bottom up information, dilute the impact
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FIGURE 7.3: A comparison of a (a) L=3 layered BIVA and (b)
single-level VAE generative models.

of top level changes on the reconstructed image (Fig. 7.3). To minimise the impact
of BU information at image generation I place a bound on the generative model.

Consider the generative model of a L = 3 layered BIVA,

pθ(x, z) = pθ(x|z)pθ(zL)
L−1

∏
i=1

pθ(zBU
i |z>i)pθ(zTD

i |z>i)

where θ are the parameters of the generative model. The likelihood pθ(x|z)
depends on z1 and z>1 through the deterministic TD path. As shown in Figure 7.3a,
Information flows from zL to z2 and z1, which additionally received information
from deterministic variable d2.

By placing a bound on the generative model I sample the k lowest latent vari-
ables from the conditional prior z1, ..., zL ∼ pθ(z≤k|z>k) and only the L > k highest
level from the approximate posterior zk+1, ..., zL ∼ qθ(z>k|x). With this I can evalu-
ate reconstructions x from each latent variable. To maximise the effect of changes in
zL (the traversed latent variable) on the image reconstruction, I set k = L− 1. Fig-
ure 7.4 shows the impact of bounding the generative model on information flow to
the data likelihood p(x|z) i.e., the reconstruction.

The logistic regression classifiers are trained on only the top-level latent vari-
ables. Similarly, these are the only variables changed during latent traversal. By
eliminating the influence of the lower level stochastic variables, the image recon-
structions offer a more direct visual representation of the changes observed by the
classifier.

7.4 Application: Explainable Prediction of Multi-label CXRs

I apply models to two examples of populations of multi-label CXRs, CheXpert and
VinDr-CXR. Both datasets are described in Chapter 3. When applying VAE and
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FIGURE 7.4: Examples of bounded BIVA generative models of L =
3 layered BIVA. Red nodes indicate where the conditional prior is

used and k defines the bounding level.

HVAE methods to CheXpert I consider only 4 of the 14 classes labelled in the
dataset these are, No Finding, Lung Opacity, Pleural Effusion, and Support Devices,
which I select for their salient features and prevalence in the dataset. Figure 7.5
presents the co-occurrence matrix of the considered labels in the training set. I
observe that the highest rate of co-occurrence is between the Lung Opacity class
and Support Devices class. Models trained on CheXpert are also evaluated on the
CheXlocalise dataset for their explainable prediction performance. CheXlocalise is
a subset of the CheXpert dataset with radiologist annotations in the form of pixel-
wise class annotation. As a localisation dataset, the CheXlocalise dataset does not
include No Finding CXRs. I therefore evaluate this dataset for only Airspace Opacity
(which corresponds to the Lung Opacity class in CheXpert), Pleural Effusion, and
Support Devices labels.

When applying methods to VinDr-CXR, I consider the following seven labels:
Pleural Thickening, Lung Opacity, No Finding, Other Lesion, Pleural Effusion, Cardiomegaly,
Aortic Enlargement. Figure 7.6 presents the co-occurrence of classes in the training
dataset, showing the highest frequency co-occurrence is between Cardiomegaly and
Aortic Enlargement classes, I also observe high frequency co-occurrence between
Pleural Thickening and Aortic Enlargement classes.

For my experiments BIVA models have L = 3 stochastic layers (depicted in Fig-
ure 7.1). For each stochastic level li I define a deterministic level Di which connects
the stochastic layers. Deterministic levels are made up of 3 ResNet blocks, which
produce the feature maps for the corresponding stochastic level. Each block com-
prises convolutional layers, ReLU activation functions, and weight normalisation,
with residual connections.

Deterministic blocks D1 and D2 are defined by 64x5x5 (number of kernels x
kernel width x kernel height) convolutional layers and an overall stride of 2. D3

is defined by 64x3x3 convolutional layers with an overall stride of 2. Stochastic
latent variables in L1 and L2 are convolutionally connected layers of dimension



118 Chapter 7. Multi-task Hierarchical VAEs for Disease Localisation
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FIGURE 7.5: Heatmap of label co-occurrence in CheXpert training
data.

32x120x120 and 16x30x30. Stochastic latent variables in l3 are densely connected
with dimensions of 1024.

For my experiments VAE models have a single stochastic layer with a dimen-
sionality of 1024, which is densely connected to the deterministic encoder and de-
coder functions. The encoder function comprises 3 blocks of convolutional layers,
ReLU activation functions, and weight normalisations, with residual connections.
All convolutional layers are defined by 64x5x5 with strides of 2.

Hyperparameter VAE BIVA

Optimizer Adam Adamax
Learning rate 1e-3 5e-4
Epochs 1500 3000
WU epochs 500 1500
λ 0.01 0.01

TABLE 7.1: Experimental settings for optimisation of VAE and 3-
layer BIVA models. λ is the weighting factor for the classification

term.

Each of the label-specific logistic regression classifiers are optimised for their
respective binary classification tasks with minimisation of a multi-label BCE loss,
which computes independent losses for each label based on their respective ground-
truth values. VAE models and attached classifiers are trained with a batch size of
128 using the Adam optimisation algorithm.

For BIVA models, only the top-level latent representation is used as input to the
classifiers. For training on CheXpert data, I use 4 logistic regression classifiers and
for the VinDr-CXR task I use 7 logistic regression classifiers.

With the same multi-task optimisation task as in Chapter 6, I apply a similar
training strategy. The reconstruction loss, KL divergence loss and classifier losses
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FIGURE 7.6: Heatmap of disease co-occurrence in VinDr-CXR
training data, with raw counts of class co-occurrence.

are combined into a single training objective and minimised. Instead of applying a
multi-stage optimisation strategy (as in Chapter 6), the BIVA and logistic regression
classifiers are trained jointly from the start. The classifier losses and KL divergence
loss are slowly annealed, this prevents latent variable collapse. KL divergence loss
annealing is a commonly used strategy in HVAEs, and is referred to as determinis-
tic warm up (WU) (Maaløe et al., 2019).

Through combined losses, model optimisation is influenced by the classification
task, and I can re-express the ELBO term to reflect this,

ELBO = Eq(z|x)[log p(x|z)]−KL[q(z|x)||p(z)] + λEq(z|x)[log q(y|x, z)]

where y represents the class labels in the auxiliary classification task, and λ is
a weighting factor that controls the importance of the classification term relative to
the reconstruction and regularisation terms.

BIVA models and attached classifiers are trained with a batch size of 28 and
optimised using Adamax as in Maaløe et al. (2019). I train BIVA models for 3000
epochs, with deterministic warm up over 1500 epochs i.e., increasing the weighting
of the KL divergence term. The classification loss is included in this warm up.
Additional details of BIVA and VAE model training settings are included in Table
7.1.

As seen in Chapter 6, optimising the latent space with the multi-label classifica-
tion task encourages the latent factors to explain class-specific visual features and
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allows the classifiers to predict target classes from the learned latent space. This
enhances the explainability of the learned latent space as latent factors with higher
importance/discriminative power for predicting a given class correctly, should cor-
respondingly encode visual features in the CXR image that are representative of
that class. To this end I select simple linear logistic regression functions as the aux-
iliary classifiers. I theorise that by restricting the classification model, I reduce the
risk of overfitting and the posterior distribution will be greater influenced to min-
imise the classification objective.

For both GGLT and OLT implementations, hyperparameters were selected through
qualitative evaluation of visual explanations. For OLTs I use an Adam optimizer
with learning rates of 0.0001 for Gaussian and Sparse-prior models, and 0.00001 for
Dirichlet-prior models, optimizing over 2000 iterations. In GGLTs I traverse the sin-
gle most significant latent dimension (determined by classifier gradient) with step
sizes of 0.0001 for Gaussian/Sparse models and 0.00001 for Dirichlet models, over
2000 steps. These hyperparameters were applied consistently across both VAE and
BIVA architectures.

For comparison with deep CNN methods I adapt a ResNet-18 architecture,
which is characterised by its residual learning framework (He et al., 2015). The
network comprises 18 layers with a combination of convolutional, batch normal-
ization, and ReLU activation layers interspersed with residual blocks. I use a pre-
trained ResNet-18 model initialised with ImageNet weights. The fully connected
layer of the original model was replaced to align with the multi-label classifica-
tion objective i.e., to give the correct number of output nodes for the classification
task. I apply a sigmoid activation function to each output. I include a dropout
layer (p = 0.2) for model regularisation purposes. I trained this model using a
multi-label BCE loss function until validation loss converged. For training I used
the Adam optimiser with a learning rate of 0.0001.

Under the hypothesis that "sparseness" leads to decomposed latent representa-
tions, I evaluate the sparsity of the posterior distribution over latent variables by
applying the Hoyer metric and Gini index to the sampled latent representation.
The Hoyer metric is a normalised measure of sparsity and is defined as:

H(x) =

√
n− ∥x∥1

∥x∥2√
n− 1

,

where x is the sampled latent representation under evaluation, n is its dimen-
sionality. This metric ranges from 0, which indicates a uniform distribution of val-
ues i.e., no sparsity, to 1, where only one element is non-zero i.e., maximum spar-
sity.

The Gini index, a standard measure of inequality, is computed as:

G =
∑n

i=1 ∑n
j=1 |xi − xj|

2n ∑n
i=1 xi

,
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where xi and xj are individual elements of the posterior distribution and n is the
total number of elements. The Gini index ranges from 0 (perfect equality where all
values are identical) to 1 (maximum inequality where all values are concentrated
in a single element). For my experiments, the Gini index and Hoyer metric were
applied to the sampled latent space of VAE and BIVA models.

I train and evaluate single-level VAEs on CheXpert and CheXlocalise data. I
do the same for BIVA models, with the addition of training and evaluating on
the VinDr-CXR dataset. I evaluate per-label binary model prediction performance
through standard classification metrics e.g., AUROC, precision, recall, and F1 score.
I also evaluate prediction performance with multi-label metrics such as, Hamming
score and Exact Match Ratio (EMR). To assess quality of visual explanations, I man-
ually review latent traversal-derived explanations as well as GradCAM++ saliency
maps (applied to deep CNN predictions). I also evaluate visual explanations by
applying a disease localisation task in which I compare explanations against ra-
diologist annotations. To measure this I use object detection and segmentation
metrics, intersect-over-union (IoU), hit-or-miss (HoM), and Dice scores to quan-
titatively evaluate how well visual explanations isolate disease features. The HoM
metric is calculated as the proportion of ’hits’ among all predicted bounding boxes.
I define a ’hit’ as where the predicted bounding box and ground truth bounding
box overlap.

7.4.1 Results

7.4.1.1 Model fit

Comparison of Gaussian-prior VAE and Gaussian-prior BIVA reconstructions (Fig.
7.7a and Fig. 7.9b) shows that, as expected, BIVA models give much better image
reconstruction quality. The same is observed for Sparse-prior models (Fig. 7.8a and
Fig. 7.9b).

Figure 7.7, 7.8, and 7.9 show that BIVA models also give higher quality image
generation, which is quantified by the likelihoods log p(x) reported in Table 7.4. I
evaluate images generated by bounded BIVA models to verify that top-level latent
representations have not collapsed to the prior. Figure 7.8b (k = 2) and Figure 7.7b
(k = 2) shows that Gaussian-prior and Sparse-prior BIVA learn meaningful top-
level posterior distributions i.e., k = 2 bounded reconstructions resemble the input
data. This demonstrates that the latent representations seen by the classifiers carry
meaningful data for the multi-label prediction task.

Table 7.3 presents measures of the degree of sparsity of VAE and BIVA models
latent representations. As expected, according to Hoyer and Gini Index metrics, the
Sparse-prior VAE and Sparse-prior BIVA models learn a more sparse posterior dis-
tribution than their Gaussian-prior model counterparts. Against expectation, the
latent representation of the Dirichlet-prior VAE (parametrised for extreme sparsity)
is less sparse than the Sparse-prior VAE (according to these metrics).
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FIGURE 7.7: Gaussian-prior BIVA model fit. Model fit is described
by (a) Bounded model image generation, where k is the bounding
level i.e, L > k, (b) image reconstruction, first row is the input im-
age, second row is the image reconstruction, the third row is the
image reconstruction from the mean and, (c) images generated from

a random sample of the prior distribution.
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FIGURE 7.8: Sparse-prior BIVA model fit. Model fit is described by
(a) bounded model image generation, where k is the bounding level
i.e, L > k, (b) image reconstruction, first row is the input image,
second row is the image reconstruction, the third row is the image
reconstruction from the mean and, (c) images generated from a ran-

dom sample of the prior distribution.
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B CA Sparse VAEGaussian VAE Dirichlet VAE

FIGURE 7.9: (A) Gaussian-prior VAE, (B) Sparse-prior VAE, and
(C) Dirichlet-prior VAE model fit. Top images are image recon-
structions: first row is the input image, second row is the image
reconstruction, the third row is the image reconstruction from the
mean. Bottom images are samples generated from a random sample

of the prior distribution.

Metric Sparse BIVA Gaussian BIVA Dirichlet VAE Gaussian VAE Sparse VAE

KL q(z|x), p(z) 15964 31032 4569 695 1102
log p(x) -194261 -181961 -866960 -871128 -863280
log p(x|z) -178296 -150929 -866960 -870432 -862177

TABLE 7.2: Model fit metrics for VAE and BIVA models.

Model Prior Distribution Hoyer Metric Gini Index

VAE Sparse-prior 0.30 0.54
Gaussian-prior 0.25 0.45
Dirichlet-prior 0.26 0.48

BIVA Sparse-prior 0.28 0.53
Gaussian-prior 0.21 0.42

TABLE 7.3: Sparsity measure of VAE and BIVA model posteriors.
Sparsity is measured in the top stochastic level of BIVA models

.

7.4.1.2 Multi-label prediction

I compare the predictive performance of the Gaussian-prior, Sparse-prior, and Dirichlet-
prior VAE on CheXpert data. Label-wise classification metrics show that VAE mod-
els perform similarly on CheXpert data regardless of prior distribution (Table 7.4).
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FIGURE 7.10: ROC curves of (A) Gaussian-prior VAE, (B)
Dirichlet-prior VAE, (C) Sparse-prior VAE, (D) Gaussian-prior
BIVA, (E) Sparse-prior BIVA, and (F) Multi-label deep CNN pre-
dictions on CheXpert data. Abbrvs: Receiver Operator Character-

istic (ROC).

Best performance is recorded for No Finding CXRs, with AUROCs ranging from
0.78 to 0.79. VAEs perform the worst at predicting Lung Opacity CXRs, with AU-
ROCs between 0.60 and 0.61. Evaluation of multi-label performance metrics shows
that the Sparse-prior VAE achieved best performance according to multi-label per-
formance metrics, with an EMR of 0.18 and a Hamming loss of 0.54. While the
Gaussian-prior VAE and Dirichlet-prior VAE performed marginally worse, both
giving EMR scores of 0.17 and Hamming losses of 0.48.

Surprisingly, the predictive performance of Sparse-prior and Gaussian-prior
BIVA models does not far exceed their VAE counterparts. Gaussian-prior BIVA



126 Chapter 7. Multi-task Hierarchical VAEs for Disease Localisation

Model Label AUROC Precision Recall F1-Score F1-Threshold

Sparse-prior VAE No Finding (n=176) 0.78 0.32 0.45 0.37 0.20
Lung Opacity (n=934) 0.61 0.52 0.93 0.67 0.33
Pleural Effusion (n=761) 0.71 0.52 0.80 0.63 0.36
Support Devices (n=1089) 0.62 0.60 0.95 0.73 0.32

Gaussian-prior VAE No Finding (n=176) 0.79 0.31 0.53 0.39 0.17
Lung Opacity (n=934) 0.61 0.51 0.96 0.67 0.28
Pleural Effusion (n=761) 0.72 0.50 0.86 0.63 0.27
Support Devices (n=1089) 0.64 0.58 0.98 0.73 0.27

Dirichlet-prior VAE No Finding (n=176) 0.78 0.29 0.53 0.38 0.21
Lung Opacity (n=934) 0.60 0.52 0.93 0.66 0.28
Pleural Effusion (n=761) 0.70 0.52 0.83 0.64 0.16
Support Devices (n=1089) 0.64 0.58 0.97 0.73 0.15

Sparse-prior BIVA No Finding(n=176) 0.80 0.31 0.52 0.39 0.27
Lung Opacity (n=934) 0.60 0.51 0.97 0.67 0.16
Pleural Effusion (n=761) 0.73 0.51 0.86 0.64 0.26
Support Devices (n=1089) 0.72 0.64 0.91 0.75 0.39

Gaussian-prior BIVA No Finding (n=176) 0.78 0.28 0.55 0.38 0.73
Lung Opacity (n=934) 0.59 0.50 0.96 0.66 0.25
Pleural Effusion (n=761) 0.69 0.51 0.82 0.63 0.73
Support Devices (n=1089) 0.66 0.60 0.94 0.73 0.39

Multi-label deep CNN No Finding (n=176) 0.85 0.42 0.49 0.45 0.21
Lung Opacity (n=934) 0.68 0.56 0.92 0.70 0.31
Pleural Effusion (n=761) 0.84 0.64 0.84 0.73 0.33
Support Devices (n=1089) 0.81 0.71 0.89 0.79 0.29

TABLE 7.4: Label-wise performance metrics on CheXpert for VAE
models, BIVA models, and the multi-label deep CNN.

Model Label AUROC Precision Recall F1-Score F1-Threshold

Dirichlet-prior VAE Airspace Opacity (n=116) 0.63 0.68 1.00 0.81 0.01
Pleural Effusion (n=64) 0.69 0.53 0.75 0.62 0.33
Support Devices (n=99) 0.49 0.58 1.00 0.73 0.00

Gaussian-prior VAE Airspace Opacity (n=116) 0.62 0.68 1.00 0.81 0.00
Pleural Effusion (n=64) 0.65 0.56 0.66 0.60 0.34
Support Devices (n=99) 0.54 0.60 0.99 0.99 0.75

Sparse-prior VAE Airspace Opacity (n=116) 0.64 0.70 0.98 0.81 0.13
Pleural Effusion (n=64) 0.69 0.50 0.84 0.44 0.40
Support Devices (n=99) 0.57 0.58 1.00 0.73 0.00

Gaussian-prior BIVA Airspace Opacity (n=116) 0.72 0.77 0.87 0.82 0.38
Pleural Effusion (n=64) 0.68 0.49 0.80 0.60 0.62
Support Devices (n=99) 0.59 0.59 0.99 0.74 0.18

Sparse-prior BIVA Airspace Opacity (n=116) 0.74 0.693 0.99 0.82 0.13
Pleural Effusion (n=64) 0.72 0.52 0.89 0.66 0.28
Support Devices (n=99) 0.66 0.63 0.90 0.74 0.44

Multi-label deep CNN Airspace Opacity (n=116) 0.815 0.831 0.888 0.858 0.29
Pleural Effusion (n=64) 0.883 0.807 0.719 0.760 0.38
Support Devices (n=99) 0.778 0.721 0.889 0.796 0.31

TABLE 7.5: Label-wise performance metrics on CheXlocalise for
Dirichlet-prior VAE, Gaussian-prior VAE, and Sparse-prior VAE

models.
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Label AUROC Precision Recall F1-Score F1-Threshold

Gaussian-prior BIVA Pleural thickening (n=43) 0.84 0.26 0.47 0.33 0.50
Lung Opacity (n=18) 0.81 0.11 0.44 0.17 0.36
No finding (n=753) 0.90 0.87 0.96 0.92 0.09
Other lesion (n=11) 0.74 0.10 0.27 0.15 0.41
Pleural effusion (n=10) 0.91 0.20 0.40 0.27 0.45
Cardiomegaly (n=133) 0.91 0.72 0.61 0.66 0.56
Aortic enlargement (n=192) 0.92 0.78 0.65 0.71 0.61

Sparse-prior BIVA Pleural thickening (n=43) 0.80 0.22 0.44 0.29 0.64
Lung Opacity (n=18) 0.81 0.14 0.17 0.15 0.71
No finding (n=753) 0.91 0.86 0.97 0.91 0.04
Other lesion (n=11) 0.85 0.17 0.18 0.17 0.73
Pleural effusion (n=10) 0.94 0.14 0.60 0.23 0.55
Cardiomegaly (n=133) 0.92 0.67 0.67 0.67 0.79
Aortic enlargement (n=192) 0.92 0.64 0.78 0.70 0.65

Multi-label deep CNN Pleural thickening (n=43) 0.86 0.34 0.26 0.31 0.64
Lung Opacity (n=18) 0.86 0.40 0.22 0.29 0.72
No finding (n=753) 0.96 0.95 0.95 0.95 0.11
Other lesion (n=11) 0.84 0.12 0.18 0.14 0.56
Pleural effusion (n=10) 0.99 0.91 1.00 0.95 0.59
Cardiomegaly (n=133) 0.98 0.84 0.77 0.80 0.86
Aortic enlargement (n=192) 0.98 0.81 0.82 0.81 0.76

TABLE 7.6: Multi-label prediction performance of BIVA models
and multi-label deep CNN on VinDr-CXR test data.

multi-label prediction metrics are indeed the same as the Gaussian-prior VAE, pre-
dicting CheXpert multi-label CXRs with an EMR of 0.17 and Hamming score of
0.48. Label-wise metrics show that, like the Gaussian VAE, Gaussian BIVA per-
forms best at predicting No Finding CXRs (0.78 AUROC) and gives worst perfor-
mance on Lung Opacity CXRs (0.59 AUROC). Sparse-prior BIVA marginally im-
proves on this predicting No Finding with an AUROC of 0.80 and performs much
better than the Gaussian BIVA at predicting Pleural Effusion and Support Devices
classes. Pleural Effusion AUROC improves from 0.69 to 0.73 and Support Devices
AUROC increases from 0.66 to 0.72. Both models are significantly outperformed
by the multi-label deep CNN (Fig. 7.10F). The multi-label CNN demonstrates im-
proved performance across all CheXpert labels, achieving an AUROC of 0.85 for
No Finding CXRs and 0.68 for Lung Opacity CXRs (Table 7.4).

I compare the predictive performance of the Sparse-prior BIVA and Gaussian-
prior BIVA on VinDr-CXR. Both models perform similarly in VinDr-CXR data (Fig.
7.11), achieving strong label-wise prediction performance. Gaussian-prior BIVA
predicts Pleural Effusion, Cardiomegaly and Aortic Enlargement CXRs the best, with
AUROCs of 0.91, 0.91 and 0.92, respectively. Sparse-prior BIVA performance ex-
ceeds that of Gaussian BIVA, with AUROCs of 0.94, 0.92 and 0.92 for the compared
classes. Moreover, Sparse-prior BIVA performs notably better at predicting Other
Lesion CXRs (Gaussian-prior BIVA AUROC of 0.74; Sparse-prior BIVA AUROC of
0.85). However, again, the deep CNN performs better, with near perfect perfor-
mance in Pleural Effusion, Cardiomegaly and Aortic Enlargement classes, achieving
AUROCs ranging from 0.98 to 0.99 (Table 7.6).



128 Chapter 7. Multi-task Hierarchical VAEs for Disease Localisation

A

B

C

FIGURE 7.11: ROC curves of Gaussian-prior BIVA, Sparse-prior
BIVA and multi-label deep CNN on VinDr-CXR data. Abbrvs: Re-

ceiver Operator Characteristic (ROC).
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7.4.1.3 Visual explanations

Here I report on the quality of visual explanations generated by the two proposed
methods for latent traversals, GGLT and OLT (as applied to VAE and BIVA mod-
els). I evaluate the capacity of these methods for explaining multi-label prediction
and compare against the popular post-hoc visual explainer, GradCAM++, applied
to the deep CNN. I perform qualitative and quantitative evaluation on radiolo-
gist annotated datasets, reporting hit-or-miss localisation metrics and IoU metrics
for VinDr-CXR and CheXlocalise evaluations. For CheXlocalise evaluations, which
provides pixel-wise ground truth masks, I additionally evaluate Dice score.

Prior Metric Airspace Opacity Pleural Effusion Support Devices Average

OLT Dirichlet VAE IoU 0.00 0.00 0.00 0.00
Dice 0.24 0.09 0.22 0.18
HoM 0.15 0.14 0.36 0.22

Sparse VAE IoU 0.01 0.01 0.01 0.01
Dice 0.25 0.13 0.17 0.18
HoM 0.17 0.17 0.35 0.23

Gaussian VAE IoU 0.00 0.00 0.01 0.00
HoM 0.14 0.13 0.40 0.22
Dice 0.14 0.06 0.22 0.14

Sparse BIVA IoU 0.01 0.00 0.01 0.01
HoM 0.11 0.07 0.24 0.14
Dice 0.19 0.06 0.13 0.13

Gaussian BIVA IoU 0.01 0.00 0.01 0.01
HoM 0.28 0.25 0.42 0.32
Dice 0.08 0.01 0.09 0.06

GGLT Dirichlet VAE IoU 0.01 0.00 0.00 0.00
HoM 0.16 0.16 0.37 0.23
Dice 0.26 0.10 0.22 0.19

Sparse VAE IoU 0.01 0.01 0.01 0.01
HoM 0.15 0.12 0.34 0.20
Dice 0.25 0.09 0.19 0.18

Gaussian VAE IoU 0.00 0.00 0.00 0.00
HoM 0.14 0.15 0.36 0.22
Dice 0.13 0.06 0.19 0.13

Sparse BIVA IoU 0.01 0.01 0.00 0.01
HoM 0.10 0.05 0.23 0.13
Dice 0.21 0.04 0.12 0.12

Gaussian BIVA IoU 0.00 0.00 0.01 0.00
HoM 0.23 0.28 0.42 0.31
Dice 0.10 0.02 0.08 0.07

TABLE 7.7: VAE localisation of CheXlocalise disease features by
OLTs and GGLTs methods across different labels. Abbrvs: Opti-
mised Latent Traversal (OLT); Gradient Guided Latent Traversal (GGLT);

Hit-or-Miss (HoM).

Metric Aortic Enlargement Pleural Thickening Cardiomegaly Average

Sparse-prior BIVA HoM 0.11 0.39 0.17 0.22
IoU 0.01 0.00 0.01 0.01

Gaussian-prior BIVA HoM 0.07 0.00 0.09 0.05
IoU 0.01 0.00 0.00 0.00

Multi-label deep CNN HoM 0.98 0.88 1.00 0.95
IoU 0.10 0.21 0.21 0.17

TABLE 7.8: Localisation performance of Sparse-prior BIVA and
Gaussian-prior BIVA GGLTs on VinDr-CXR data compared to
localisation of multi-label deep CNN GradCAM++. Classes
with low prevalence in VinDr-CXR test data are omitted. Abbrvs:

Gradient-guided latent traversals (GGLTs)
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VAE explanations Figure 7.12 presents multi-label CheXlocalise examples of dis-
ease feature localisation using the GGLT method. While the CXR reconstructions
generated by VAE methods are generally of low quality and difficult to interpret di-
rectly, with bounding boxes generated by post-processing feature changes over the
traversal can be observed. The Dirichlet-prior VAE GGLTs produce feature changes
relating to the diseases of interest. However, these changes are not fully isolated,
examples show additional changes outside disease-relevant areas. For instance,
Figure 7.13C shows a distinct pattern of bounding box activations that highlights
changes related to the Support Device (label of interest) in the left lobe (right of im-
age), with false positive bounding boxes predicted over the pleural edge. Figure
7.13A gives an Airspace Opacity example, this shows disease-specific changes, par-
ticularly around the heart margin, with additional false positive bounding boxes
predicted over the diaphragm and pleural edge. There is a similar pattern of dis-
ease feature localisation with false positives in Sparse VAE GGLTs (Fig. 7.14). There
is a general trend of limited disease feature localisation in Gaussian VAE GGLTs.
Figure 7.12A gives a visual explanation of an Airspace Opacity prediction where
bounding boxes are largely localised outside the lung field and no significant mor-
phological changes can be viewed in the disease area of interest in the traversal
reconstructions. The same observation can be made for Figure 7.12D, a Support
Device example in which the features of the support device i.e., the intubation tube,
are ignored.

Despite qualitative evaluation showing that the Sparse VAE and Dirichlet VAE
GGLTs give meaningful clinical explanations with some degree of disease feature
localisation, metrics suggest overall performance of VAE GGLTs is poor (Table 7.7).
GGLT explanations give low IoU scores, with all model scores at zero or near-zero
for all classes, although HoM and Dice scores are comparatively much better, with
scores averaged over all classes ranging from 0.20-0.23 and 0.13-0.0.19, respectively.

Comparison of Dice scores suggests that Dirichlet VAE and Sparse VAE GGLT
explanations localise disease features better than Gaussian VAE GGLTs; this is most
apparent in the Airspace Opacity class in which Dirichlet VAE and Sparse VAE expla-
nations identify disease features with a Dice score of 0.26 and 0.25, while Gaussian
VAE explanations achieve only 0.13. However, HoM scores suggest a smaller gap
in performance, with this metric VAEs give similar scores for all classes. For Sup-
port Devices localisation, there is a substantial increase in HoM scores compared to
other classes, with scores upwards of 0.34.

VAE OLT explanations perform similarly to GGLT according to disease feature
localisation performance metrics. IoU scores are universally low, and Dice and
HoM scores exist in a similar range (Table 7.7). I provide a more in-depth compari-
son of GGLT and OLT methods in the evaluation of BIVA explanations.

Bounded BIVA GGLT explanations Figure 7.4 shows the importance of using the
bounded BIVA for generating clear changes in traversal-based visual explanations.
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FIGURE 7.12: Gaussian-VAE GGLTs for each evaluated label of the
CheXlocalise dataset. Start traversal is the original reconstruction
prior to GGLT. End traversal is the final reconstruction post-GGLT.
Red boxes are predicted disease regions (derived from differences
between start traversal and end traversal) and blue boxes are radiol-
ogist annotated ground truths. Abbrvs: Gradient-guided latent traver-

sals (GGLTs).
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FIGURE 7.13: Dirichlet-VAE GGLTs for each evaluated label of the
CheXlocalise dataset. Start traversal is the original reconstruction
prior to GGLT. End traversal is the final reconstruction post-GGLT.
Red boxes are predicted disease regions (derived from differences
between start traversal and end traversal) and blue boxes are radiol-
ogist annotated ground truths. Abbrvs: Gradient-guided latent traver-

sals (GGLTs).
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FIGURE 7.14: Sparse-VAE GGLTs for each evaluated label of the
CheXlocalise dataset. Start traversal is the original reconstruction
prior to GGLT. End traversal is the final reconstruction post-GGLT.
Red boxes are predicted disease regions (derived from differences
between start traversal and end traversal) and blue boxes are radiol-
ogist annotated ground truths. Abbrvs: Gradient-guided latent traver-

sals (GGLTs).
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The GGLTs produced by the unbounded Sparse-BIVA fail to show any significant
changes in images generated across the traversal 3. With the bounded Sparse-BIVA
(L > 2) I observe clear, isolated changes in the generated images. Red arrows
and residual images highlight where these changes appear disease-specific. Figure
7.16 shows examples of the GGLTs produced by bounded (L > 2) Gaussian BIVA
and Sparse BIVA models. With higher quality image generation, side-by-side com-
parison of Sparse-prior BIVA and Gaussian-prior BIVA shows the advantages of
learning sparse posteriors for explainable prediction. I compare examples of Aor-
tic Enlargement GGLTs generated by bounded BIVA models. For Gaussian-BIVA
(L > 2) non-specific changes that appear to correlate to increasing noise in the gen-
erated images. Contrastingly, with Sparse-BIVA (L > 2) localised, interpretable
changes in the CXR can be observed. Changes are isolated to the heart and me-
diastinum region, suggesting these features are correlated with Aortic Enlargement
and are disease specific. Further qualitative evaluation suggests that regions high-
lighted in the residual image are clinically-relevant to the class of interest. Subse-
quently all BIVA GGLT explanations are obtained from the bounded BIVA (L > 2)
BIVA model.

The GGLT method is non-directional, this means changes to the latent rep-
resentation may increase the probability of observing the evaluated label. With
BIVA models providing higher quality image reconstructions, it is possible to ob-
serve changes to the generated image that reflect this. Figure 7.17 clearly shows
that Sparse-BIVA GGLTs gives two types of feature change, the intensification and
de-intensification of changing features. I consider Aortic Enlargement examples for
their salient disease features and ease of interpretation (Figure 7.17). Explanations
of Aortic Enlargement in Example C shows morphological changes that reduces the
appearance of aortic enlargement in the CXR i.e., the pronounced structure around
the aortic knuckle is reduced. While another GGLT explanation of an Aortic Enlarge-
ment example shown in Figure 7.17D give changes that intensify the appearance of
the aortic knuckle through increased opacification of the pronounced structure.

Figure 7.17 gives additional examples of Sparse-BIVA GGLT, with these exam-
ples disease isolation within the same multi-label CXR can be observed. In addition
to traversal images I generate the expected residual image, which captures variance
in image generation over repeated sampling so as to demonstrate disease features
are not simply highlighted because they are observed less frequently in the train-
ing data and are therefore more challenging to reconstruct. Figure 7.17C and Figure
7.17D show GGLT explanations of co-occurring Cardiomegaly prediction and Aortic
Enlargement prediction, which co-occur frequently in the VinDr-CXR dataset. While
there is some overlap in highlighted image features, it is possible to observe inde-
pendent, disease-specific changes in each traversal. Comparison of the final image
reconstruction (end traversal) demonstrates that performing GGLT in a disease-
specific manner generates two distinctly different destination images.

3The same was observed in preliminary experiments with step size > 1.
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FIGURE 7.15: Comparison of GGLT generated by unbounded
Sparse-BIVA (k=0) and bounded L > 2 Sparse-BIVA (k=2). Each
case corresponds to a different multi-label CXR. Start traversal is the
original reconstruction prior to GGLT. End traversal is the final recon-
struction post-GGLT. Expected residual is a map of pixel variance over
repeated reconstructions without traversal. Residual is the absolute
difference in pixel values between the start traversal and end traver-
sal images. Red arrows point to observable changes in the images
generated over the traversal. Abbrvs: Gradient-guided latent traversal

(GGLT)
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Similarly Figure 7.17G and 7.17H shows a CXR with co-occurring Pleural Thick-
ening and Aortic Enlargement. The Pleural Thickening GGLT gives a destination im-
age with changes in ‘border’ areas around the edge of the lung field and decreased
contrast over the clavicle, where Pleural Thickening is observed in this case. While
Aortic Enlargement GGLT generates a destination image with significant changes to
the heart margins and aortic knuckle.

Sparse BIVAGaussian BIVA
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FIGURE 7.16: Side-by-side comparison of Gaussian BIVA (L > 2)
and Sparse BIVA (L > 2) GGLTs applied to multi-label VinDr-
CXR examples. Each case corresponds to a different multi-label
CXR. Start traversal is the original reconstruction prior to GGLT. End
traversal is the final reconstruction post-GGLT. Expected residual is a
map of pixel variance over repeated reconstructions without traver-
sal. Residual is the absolute difference in pixel values between the
start traversal and end traversal images. Red arrows point to areas
of significant change. Abbrvs: Gradient-guided latent traversal (GGLT);

Chest X-ray (CXR).

Bounded OLT explanations Similar results are observed for bounded BIVA OLTs.
Figure 7.18 shows examples of Sparse-BIVA (L > 2) OLTs applied to multi-label ex-
amples of VinDr-CXR. Qualitatively I observe that changes to the generated images
are directional i.e., updates are made to the latent representation to minimise dis-
ease probability, image changes correspond to this and show the partial removal of
disease features.

Figures 7.19 and 7.20 show the probability changes of an OLT and GGLT when
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FIGURE 7.17: Sparse-BIVA (L > 2) GGLTs applied to multi-label
VinDr-CXR examples. Each case corresponds to a different multi-
label CXR. Start traversal is the original reconstruction prior to GGLT.
End traversal is the final reconstruction post-GGLT. Expected resid-
ual is a map of pixel variance over repeated reconstructions without
traversal. Residual is the absolute difference in pixel values between
the start traversal and end traversal images. Red arrows point to
structural changes that relate to the evaluated disease in generated
images. Red boxes are predicted disease regions (derived from the

residual) and blue boxes are radiologist annotated ground truths.
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FIGURE 7.18: Sparse-BIVA (L > 2) OLTs applied to multi-label
VinDr-CXR examples. Start traversal is the original reconstruction
prior to GGLT. End traversal is the final reconstruction post-GGLT.
Expected residual is a map of pixel variance over repeated reconstruc-
tions without traversal. Residual is the absolute difference in pixel
values between the start traversal and end traversal images. Red
boxes are predicted disease regions (derived from the residual) and
blue boxes are radiologist annotated ground truths. Abbrvs: Opti-

mised Latent Traversals (OLTs).
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applied to a multi-label CXR for explanation of Aortic Enlargement and Pleural Thick-
ening prediction. Comparison of 7.19A with 7.20A clearly shows OLT leads to re-
duced probability of Pleural Thickening, while GGLT leads to increases in probabil-
ity. For example, in Figure 7.19A it is possible to observe decreasing probabilities
in disease classes alongside Pleural Effusion, e.g., Pleural Effusion (0.60 to 0.49) and
Cardiomegaly (0.78 to 0.60). Some disease probability changes are in fact more sig-
nificant than changes to the disease of interest, which is shown clearly in the Aortic
Enlargement example, where the probability of Aortic Enlargement decreases from
0.95 to 0.88 while the probability of Pleural Thickening decreases from 0.73 to 0.65.

Localisation performance I compare VAE and BIVA explanations against CheXlo-
calise ground truth annotations. Both traversal-based methods show limited per-
formance in disease localisation metrics (Table 7.5). While Gaussian-prior BIVA
achieved the highest HoM (0.42), followed by Dirichlet-prior VAE (0.37), Gaussian-
prior VAE (0.36), and Sparse-prior VAE (0.34), all models show poor Dice scores
due to limited overlap with ground truth annotations and frequent false positive
predictions. The OLT method shows similar performance patterns across models
and disease classes. The Sparse-prior BIVA gives reduced localisation performance
compared to Sparse-prior VAE, with IoU scores near zero for OLT in both mod-
els. Dice scores decrease from 0.18 to 0.13 and HoM drops substantially from 0.23
to 0.14, with similar declines in GGLT. Conversely, Gaussian BIVA improves upon
Gaussian VAE HoM scores, with 0.31 compared to 0.22, despite a slight decrease in
Dice scores (0.13 to 0.07).

On VinDr-CXR, both Sparse-prior and Gaussian-prior BIVA models achieve
higher HoM scores (0.22) compared to their VAE counterparts (0.05). However, the
multi-label deep CNN significantly outperforms all BIVA models with near-perfect
HoM (0.95), particularly in Cardiomegaly (1.00) and Aortic Enlargement (0.98). The
CNN also achieves substantially higher IoU scores (0.17) compared to BIVA mod-
els (≤0.01).

While GradCAM++ achieves perfect HoM for the Cardiomegaly class of VinDr-
CXR, its low IoU scores reflect limitations in localisation precision. Qualitative eval-
uation confirms GradCAM++ generates overly large, non-specific bounding boxes
compared to both traversal-based methods and ground truth annotations. Figure
7.21 shows a comparison in GGLT and GradCAM++ visual explanations for a mix
of VinDr-CXR examples. For the same examples, the GGLT explanations are much
more localised. Overall traversal-based methods give an advantage in identifying
irregularly-shaped or very small structures.

Qualitative evaluations show that post-processing of pixel changes via traversal
to binarised activations and ultimately bounding boxes is ineffective, and results in
a loss of information. The predicted bounding boxes are small and spread diffusely,
which can be difficult to interpret and leads to a loss of information compared to
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FIGURE 7.19: Probability changes over label-specific OLT for
multi-label example of VinDr-CXR. (A) Changes in probabilities
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OLT for Aortic Enlargement. (C) Changes in image generation over
OLT for Pleural Thickening. (D) Changes in image generation over
OLT for Aortic Enlargement. Red asterisks * point to the evaluated

class. Abbrvs: Optimised Latent Traversals (OLTs)
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FIGURE 7.20: Probability changes over a GGLT for a multi-label
example of VinDr-CXR. (A) Changes in probabilities for GGLT for
Pleural Thickening. (B) Changes in probabilities for GGLT for Aortic
Enlargement. (C) Changes in image generation over GGLT for Pleu-
ral Thickening. (D) Changes in image generation over GGLT for
Aortic Enlargement. Red arrows point to areas of significant change
in the traversal. The residual image is the absolute pixel-wise differ-
ence between the start traversal and end traversal images. Bounding
boxes are identified from the binarised residual image. Red asterisks
* point to the evaluated class. Abbrvs: Gradient-guided latent traversals

(GGLTs).
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direct visualisation of morphological changes to image (shown in the residual im-
age of a traversal). Moreover, morphological changes by their nature happen at the
boundaries of structures, not the centre, and therefore pixel changes are typically
around the edges of disease feature regions, which is translated into off-centred
bounding boxes. Evaluations show examples of noisy reconstructions produced
by bounded BIVA models, in which changes to ‘grainy’ areas overshadow disease-
related feature changes. This is carried over in translation of pixel changes into
bounding boxes, and is perhaps another possible cause of poor localisation met-
rics despite observation of consistent disease-related morphological changes (Fig.
7.17).

CA
RD

IO
M

EG
AL

Y
AO

RT
IC

 
EN

LA
RG

EM
EN

T
AO

RT
IC

 
EN

LA
RG

EM
EN

T
CA

RD
IO

M
EG

AL
Y

PL
EU

RA
L 

EF
FU

SI
O

N

CXR START TRAVERSAL END TRAVERSAL GGLT OVERLAY GRADCAM++ GRADCAM++ OVERLAY

A

B

C

D

E

FIGURE 7.21: Comparison of BIVA GGLT visual explanations and
multi-label deep CNN GradCAM++ with post-processed locali-
sation. Start traversal is the original image reconstruction prior to
GGLT. End traversal is the image generated post-GGLT. GGLT over-
lay displays the GGLT-derived bounding boxes (red) and ground
truth radiologist annotations (blue), likewise for GradCAM++ over-
lay. GradCAM++ was selected as the baseline saliency method
due to its improved localisation performance over standard Grad-
CAM and its ability to pass sanity checks that verify dependence
on learned model parameters (Chattopadhay et al., 2018; Adebayo
et al., 2020). Red arrows point to structural changes that relate to
the evaluated disease in generated images. Abbrvs: Gradient-guided

latent traversals (GGLTs).

Shortcut features I use qualitative evaluation of visual explanations to gain in-
sight to model reliance on shortcut features. I observe model reliance on shortcut
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features with traversal-based methods and GradCAM++. Aortic Enlargement and
Cardiomegaly co-occur frequently within the VinDr-CXR dataset and I observe re-
lated shortcut learning when evaluating explanations for each target class. While
latent dimensions isolate predictive features i.e., image features learned by the
model to be associated with the target class, results suggest variational methods
are unable to separate these features from shortcut features, particularly where
these co-occurrences are dominant in the dataset, i.e., they exist together more fre-
quently than independently or with any other label. Figure 7.17 presents examples
of GGLTs applied to a multi-label CXR, where explanations are generated for each
class. Explanations for Aortic Enlargement examples highlight features around both
the aortic knuckle and heart margins, disease features in these areas are typically
related to aortic enlargement and cardiomegaly, respectively. This pattern of corre-
lated feature change is also observed in explanations for Cardiomegaly (Fig. 7.17).
Moreover, the Pleural Effusion sample in Figure 7.21 shows an interesting example
of GGLT feature changes. The opacity in the upper regions of the CXR and edge
of the effusion begins to disappear, at the same time a dense, circular object forms,
which could relate to the Support Device class.

For traversal-based approaches I also include visualisation of changing proba-
bilities for each class-specific traversal (Fig. 7.20). I observe significant changes in
probability in non-target classes. There is a large increase in Cardiomegaly proba-
bility, even more so than the increase in Aortic Enlargement probabilities (the target
class). I see similar results for Pleural Thickening, with large increases in Pleural Ef-
fusion and Cardiomegaly probabilities. This is suggestive of shortcut learning of co-
occurring pathologies. I attempt to visually evaluate shortcut learning with Grad-
CAM++ explanations of Aortic Enlargement but the identified region of interest is
large and non-specific, overlapping with Pleural Thickening features (Fig. 7.20).

7.4.2 Discussion

While VAE and BIVA models offer reasonable multi-label prediction performance,
these models significantly underperform compared to the deep CNN. This drop in
performance compared to CNN models is a key limitation of my proposed BIVA
approach. In clinical settings, CXRs often present multiple co-occurring patholo-
gies, thus accurately identifying all relevant conditions from a single image is cru-
cial for effective patient management. In practice, a multi-label prediction model
that can correctly predict the presence of multiple conditions simultaneously pro-
vides a more accurate and actionable representation of the patient’s health status,
and is a more useful tool for clinicians. This performance gap could stem from
the inherent complexity of multi-task optimisation applied to variational models.
While CNNs focus solely on classification, VAEs and BIVAs must simultaneously
optimise for input reconstruction, latent space structure (through KL divergence),
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and multi-label classification. Future work should explore methods to better bal-
ance these competing objectives, such as dynamic loss weighting schemes or en-
hanced training protocols, to improve classification performance while maintain-
ing the models’ generative capabilities.

Despite using regularisation through multi-label prediction and KL divergence,
the visual explanations revealed that both variational models and CNNs still relied
on shortcut features. To address this, future research should explore incorporating
additional objectives like adversarial training and synthetic counterfactuals into the
multi-task framework. The persistence of shortcut learning is particularly concern-
ing in clinical settings, where it can both degrade model performance and create
dangerous divergences from medical expertise. These findings emphasise the im-
portance of transparent visual explanations to identify such model behaviours.

Variational methods, particularly the BIVA approaches, demonstrated their own
merits as explainable models. Through exploration of well-structured latent repre-
sentations, the sparse-prior BIVA provides good visual explanations that offer in-
sights into the underlying relationships between image features in complex data.
Comparison with the popular post-hoc visual explainer GradCAM++ highlights
the improved precision of BIVA explanations. These advantages are particularly
valuable in cases of co-occurring pathologies, the diagnostic features which may
exist close together in the CXR. However, quantitative localisation performance
places GradCAM++ above traversal-based methods. This goes against what is ob-
served with direct interpretation of residual/saliency maps. I propose that quan-
tification that relies on post-processing steps disadvantages the pixel-wise expla-
nations of variational methods, for which many small bounding boxes are pre-
dicted, against class-activation map explanations, which most frequently produce
a single, large bounding box. Cohen et al. (2021), who follow a similar traversal-
based strategy for generating explanations with VAEs, observe similar results in
their study, reporting low overlap with ground truth pathology masks despite their
reader (panel of expert radiologists) study indicating that the models are generally
looking at the correct features.

While explanation precision is greatly improved, I identify a number of limita-
tions in Sparse BIVA explanations. Traversal-based explanations appear generally
limited to the boundaries of the pathology, which make interpretation more dif-
ficult and would further disadvantage these methods in this quantification work-
flow. In Cohen et al. (2021), radiologists also comment, that like my method, their
method looks at the boundaries of the abnormality. Additionally, bounded BIVA
traversals can suffer noisy reconstructions, which can lead to false positive activa-
tions when summarising feature changes.
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7.5 Conclusion

This study examined the strengths and weaknesses of variational deep learning
models, compared against deep CNN methods, for multi-label prediction of CXRs.
While VAEs and BIVAs have promise as explainable models, they struggle with
multi-label prediction due to the difficulty in balancing classification with recon-
struction and regularisation objectives during training. This trade-off limits their
ability to effectively predict co-occurring pathologies, which is critical in clinical
settings. Furthermore, both VAE/BIVA and CNN models were prone to short-
cut learning, despite efforts to mitigate this with regularisation. Despite these
challenges, the sparse-prior BIVA models were shown to provide valuable inter-
pretability through structured latent representations. While qualitative evaluation
showed that these models improve on GradCAM++ in explanation precision, they
lagged behind when quantitatively evaluated for disease feature localisation. This
suggests that localisation metrics may not fully capture the nuances of multi-label
prediction explanations through generative methods. Overall, while VAEs and BI-
VAs offer advantages in explainability, their performance in multi-label prediction
tasks remains limited. Further research is needed to improve the multi-label pre-
diction performance of variational methods, fully mitigate shortcut learning, and
reduce false positive activations in traversal-derived explanations. Pursuing these
research directions would ultimately serve to improve the clinical utility of multi-
label prediction models in medical imaging.
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Chapter 8

Conclusion

8.1 Key Findings

This thesis explored the challenges and advancements in deep learning models for
the detection of complex lung pathologies from chest X-rays (CXRs). My primary
findings can be summarised as follows:

Chapters 4 and 5 underscore the critical importance of proper evaluation and
clinical guidance in developing reliable predictive models for disease diagnosis and
medical image interpretation, particularly in the context of COVID-19 detection. I
found that models trained on the open source COVID-19 datasets (e.g., COVIDX)
generalised poorly to real-world hospital populations. I showed that the early stud-
ies that used open data and reported optimistic model performance results were
overly reliant on non-clinical features, such as image resolution and annotations.
My evaluation of the COVIDX dataset as a "Frankenstein" dataset, which combined
multiple data sources, highlighted the significant risks of bias and confounding fac-
tors in the absence of proper metadata.

My evaluation of hospital data trained COVID-19 detection models showed
performance comparable to radiologists, but inferior to the gold standard RT-PCR
test. One of the major challenges identified in my evaluation is the difficulty in
detecting COVID-19 in complex clinical cases, particularly among patients with
comorbidities and co-occurring pathologies. These models are prone to learning
shortcut features, which compromises their ability to generalise effectively and
limits predictive performance. Moreover, I identified the need for precise visual
explanations for complex cases with multiple pathologies to build trust in model
prediction and identify model bias, which often arises due to shortcut learning. To
address this, I proposed the integration of multi-label training objectives. Multi-
label classification forces models to learn a more comprehensive understanding of
the data, perhaps preventing shortcut learning, thereby improving their robustness
and generalisability across varied clinical populations.

In Chapter 6 I introduced a novel approach to explainable multi-label classi-
fication using the Dirichlet-prior VAE model, where the Dirichlet distribution is
parametrised for extreme sparsity. By leveraging gradient guided latent traversals,
I was able to provide precise visual explanations of model predictions, making the
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decision-making process more transparent. I demonstrated that the Dirichlet-prior
VAE was able to isolate disease-specific features much better than the standard
Gaussian-prior VAE model. This approach has the potential to improve clinical
decision-making by ensuring that AI-driven predictions are interpretable and re-
liable. However, I observed a limited capacity for model fit to the complex medi-
cal imaging data, leading to poor quality reconstructions, and reduced prediction
capacity and explanation quality. To address this I examined the use of HVAEs,
such as BIVAs, in multi-label prediction tasks (Chapter 7). I demonstrated model
capacity for precise explanations through latent traversal methods by quantifying
disease localisation against radiologist annotations, and compared these against
GradCAM++ explanations (a popular post-hoc approach to visual explanations)
from a multi-label deep CNN. I again showed improved disease feature isolation
with the use of sparse prior distributions compared to the regular dense Gaussian
prior.

Overall, with these improvements I make strides toward enhancing the inter-
pretability of deep learning models in medical imaging, offering a framework that
balances predictive accuracy with explainability. My findings highlight the poten-
tial of structured latent variable models like HVAEs in addressing the limitations
of current deep learning approaches, particularly in multi-label classification tasks
where feature isolation is crucial.

8.2 Limitations & Future Works

While this thesis presents significant advances in understanding and addressing
the limitations of deep learning models in pulmonary disease detection, several
limitations remain, and future work is required to build upon these findings.

Chapter 5 demonstrated that deep learning models remain vulnerable to learn-
ing shortcut features that may not represent clinically relevant information. Fur-
ther research is needed to improve model robustness, particularly in the presence
of confounding factors, like co-occurring pathologies. Multi-label classification,
as I suggest in Chapter 6, may help mitigate this issue, but further exploration is
needed to refine multi-label training objectives to prevent shortcut learning, and
further investigation is needed to verify reliance on shortcut learning.

The explainable AI methods proposed in Chapter 6, while promising, require
further refinement. Future work should focus on developing metrics to quantita-
tively assess explainability, as well as improving image reconstruction and genera-
tion quality in order to make latent traversals more interpretable. These improve-
ments will enhance the practical utility of explainable models in clinical decision-
making. I propose that an approach that combines the directional OLT method
with the selective GGLT method may improve visual explanations further.

While variational methods like DirVAE and Sparse BIVA show promise, their
performance in multi-label prediction tasks is still limited. The trade-off between
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classification accuracy, reconstruction quality, and regularisation needs to be ad-
dressed through more advanced training techniques and model architectures. Com-
parison of multi-label prediction performance with a deep CNN highlighted this
as a key issue. Additionally, efforts should be made to reduce false positive activa-
tions and improve the localisation of disease features to enhance the clinical utility
of these models.

In conclusion, while deep learning models for complex pulmonary disease de-
tection hold great promise, there remain significant challenges to overcome, par-
ticularly in terms of model generalisation, bias mitigation, and explainability. Ad-
dressing these challenges will require continued collaboration between AI researchers
and clinicians to ensure that AI tools are not only accurate but also transparent and
trustworthy in real-world clinical environments.
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FIGURE A.1: Required evidence of ethics approval granted by the
Health Research Authority for use of NHS data.
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