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Abstract

Antiferromagnetic spintronics is a complex and valuable field of ongoing research, critical
for the development of beyond-start-of-the-art ultrafast, low energy computing and memory
devices. Since they are largely unaffected by external magnetic fields, laser excitation, applied
currents, and dynamic temperature changes represent the only methods for spintronic control
in antiferromagnets. With the vast range of conducting, semi-conducting, and insulating
antiferromagnets available to materials science, along with limitless multilayer combinations,
there is a crucial need for advanced simulation techniques applicable to time and size scales
orders of magnitude faster and smaller than ferromagnets. Mn2Au is of high interest to the
spintronics community due to the presence of an intrinsic spin-orbit torque allowing for field-
free spintronic control. Likewise, Mn2Au presents an ideal platform for advanced atomistic
spin dynamics model development: a high Néel temperature, high conductivity, and ordered
collinear magnetic and metallic structure make it especially appropriate for highly physical
simulations with minimal compromises to model integrity.

Here, we use atomistic spin dynamics to model and simulate Mn2Au magnetic domain and
domain wall control using existing and novel spintronic control methods. A chief result of this
thesis is the implementation from ab initio theory of a novel laser induced torque using linearly
polarised light to switch single domains and drive domain walls. The symmetry of this torque
can be leveraged to produce robust toggle, preferential, and deterministic all-optical switching,
even under conditions of extreme transient laser heating. This torque is also applied to domain
walls, with the symmetry allowing for efficient, ultrafast domain wall motion, domain wall
pinning, and domain wall contraction. An additional result with our domain wall simulations
is the redescription of the model Hamiltonian used for Mn2Au in atomistic modelling. This
Hamiltonian allows for calculation of the temperature-dependent anisotropy and exchange
scaling for use in micromagnetic simulations. Lastly, we expand the drift-diffusion formalism
for spin transport to include the current-induced spin polarisation generating the intrinsic Néel
spin-orbit torque, calculating directly the correlated effect of non-linear spin accumulation
through a domain wall with the intrinsic current-induced spin accumulation of Mn2Au.



iv

Thus, this thesis presents advances in model development for atomistic spin dynamics
simulations and spintronic control methods for antiferromagnets. With spintronics poised as the
foundation for next generation computing devices and hardware, advances to antiferromagnetic
modeling capabilities are highly relevant to fundamental, developmental, and applications
focused research. As such, it is the hope of the author that this thesis will prove useful for a
variety of groups and fields beyond the atomistic modeling community.
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Hso ⊥ π/4 and b) Hso ∥ ŷ and thus perpendicular to the magnetisation at the
DW centre. Figure courtesy of collaborator J. Vélez. . . . . . . . . . . . . . 103

6.6 Representation of pure and mixed spin and charge currents. Image from Y.
F. Feng et al., [164]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Density of states and band structure for Mn2Au from Merte et al. [83]. The
high symmetry point X corresponds to the k-space vector ⟨1/2,1/2,0⟩. . . . 105

6.8 Diagram of ISGE and spin polarised charge currents in Mn2Au. Grey
arrow is the direction of the charge current. The bright blue and red arrows
are the in-plane polarised spin accumulation from the ISGE. The green arrows
are the charge currents polarised by the Mn sublattice magnetisation. The
large blue rectangles represent the microcell decomposition for solving the spin
accumulation EoM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.9 Torque curves for in-plane magnetisation with staggered SOT field from
(gold) standard field-like SOT, (blue) modified field-like torque using Eq.
(6.18), and (red) spin accumulation parametrised using Eqs. (6.6). . . . . . . 108

6.10 Switching phase diagram for SOT as function of field and pulse duration.
Lines correspond to the analytic solution described in [27]. a) field-like SOT.
b) field-like SOT with 2nd order asymmetry factor in Eq. (6.18). c) SOT from
spin accumulation model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.11 Time dynamics for field-like SOT and CISP SOT for sublattice magnetisation
ms = (m1+m2)/2 and Néel vector Ls = (L1−L2)/2 for a) field-like SOT with
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data for comparison of a 180◦ DW under field-like Hso from [17]. . . . . . . 114

6.13 DW width vs. steady state velocity for field-like SOT (blue), CISP (gold),
and STT-only (orange). The analytic expression is from Eq. (6.11) using
vm = 47.89 km/s fit in from Eq. (6.12). . . . . . . . . . . . . . . . . . . . . . 116

6.14 Spin accumulation m through the DW for mx, my, and mz components.
Including the dephasing length λφ has no effect on mx and my. (Orange): mz

including dephasing. Dashed line shows the DW centre. . . . . . . . . . . . . 117
6.15 Spin current Js through the DW for Jx, and Jz components. Including

the dephasing length λφ has no effect on Jx and Jy. (Orange): Jz including
dephasing. Dashed line shows the centre of the DW. . . . . . . . . . . . . . . 117

6.16 Spin accumulation in the changed basis for (left) magnetization in the global
coordinate system, and (right) in the rotated basis system. . . . . . . . . . . . 123





1

Motivation

The current decade has seen many landmark moments for the computing and data industries:

the inevitable failure of Moore’s law for data storage, the exponential growth of both power

and data storage requirements for the machine learning industry, and, more optimistically, the

commercial release of devices making use of heat assisted magnetic recording (HAMR) media

for ultra-high density memory storage. While HAMR devices have entered the market with

an already impressive energy improvement of 50% over traditional HDD storage media, the

lifetime and scope of the technology is limited by the storage medium itself. The problems

affecting HAMR technology has often been referred to as a "quadrilemma" [1]. HAMR

technology requires high thermal stability, low error rate, high bit density, and minimal external

fields. Even with an ideal material, however, HAMR would always remain a technology

which is efficient but slow; with a bit recovery time on the order of nanoseconds and write

time limited to microseconds, HAMR does not lend itself to ultrafast memory storage. This,

perhaps, extends our quadrilemma into a pentalemma [2]: not only must our ideal storage

media be stable and high density, it must be fast. Faster, at least, than conventional HDD

storage techniques.

In the push to ultrafast memory storage, speedup is not measured in percentages, but

orders of magnitude. While state-of-the-art memory devices can read and write up to 20 GB/s,

the theoretical limit for magnetic-based operations exists in the range of TB/s [3–5]. The

base rational for this drastic difference in operation timescale comes from a change in the
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fundamental physics used to read and write memory. In general, operations with ferromagnets

are limited to the nanosecond (ns) range (GB/s) [6]. Similar to how the tension of a piano wire

determines its frequency, the energetic coupling in a ferromagnet (FM) operates at frequencies

in the GHz (ns) range. Antiferromagnets, however, operate at an entirely different set of

frequencies, from the high GHz to low THz (picosecond, ps) range [7]. Thus, platforms using

antiferromagnets (AFMs) for their devices could see orders of magnitude speedup, saving costs

in efficiency and drastically improving performance.

But this opportunity is not without physical limitations. Since AFMs emit no stray magnetic

fields, control options are limited to the other available nanoscale forces: electric fields, current,

lasers, pressure, temperature, and structure. Thus, development of AFMs for commercial

storage and computing use requires research into not just device fabrication, but also control

schemes able to read and write AFMS on their ultrafast timescale. In general, any singular AFM

control method, alone, invariably fails to satisfy a condition of the ’pentalemma’ from above.

The solution, perhaps, takes inspiration from HAMR: seek combinations of control methods to

satisfy our criteria. Just as HAMR utilises local changes in temperature to increase the density

of storage bits accessible to a magnetic field, combinations of AFM control mechanisms could

allow ultrafast dynamics without compromising on storage density or power consumption.

One promising development in the field has been the discovery of AFMs which respond

asymmetrically to electric fields, either in the form of an applied potential to generate current

or the electric field directly. This response has been known for AFMs for nearly twenty years,

but in the form of laser excitation [8]. Its use, however, was restricted to insulating AFMs,

and only for very low temperatures (< 80K). The direct control of an AFM using an electric

field from an applied potential would take another decade [9]. The distinction of an electric

field generated by an applied potential is made from an applied current due to a nuanced

distinction in the mechanism of control: up until recently, applied currents to AFMs were

used as a transfer medium for spin injection, either from a heavy metal layer (called spin-orbit

torque (SOT)) or from a reference FM layer (generally called spin-transfer torque (STT)).

The details of these mechanisms will be covered later, but they of course form the basis for

the field of spintronics: the coupling of the electron’s charge and spin nature [3]. While a
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changing electric current will generate a magnetic field through Faraday’s Law, spintronics uses

instead the intrinsic effect spin-polarised charge currents can have to interact with materials.

Useful for both measuring and modifying FMs and AFMs, the spin-polarised charge current

already represents a combined control method from those listed above; except for very specific

cases, the charge current requires a structure of multiple materials in order to become spin

polarised. Two materials, however, have recently been discovered to be spintronically-active

without the need for multilayered heterostructures to spin polarise charge currents. CuMnAs

[9] and Mn2Au [10]–both metallic AFMs stable at room temperature–respond asymmetrically

to applied electric fields generating a current induced spin polararisation (CISP) which exerts

torque on the AFMs depending on the direction of the applied field [11, 12]. This effect has

been used experimentally to switch the magnetic domains of AFMs [13, 14] and inject spin

currents to other magnetic materials [15], and predicted computationally to drive domain walls

[16, 17].

The distinction of magnetic control between current and electric field is hardly a semantic

one. For clarity, in this thesis control of AFMs using current will reference the moving charge

of electrons which can gain a spin polarised component, while control from an applied field

refers to the CISP caused by the intrinsic nature of the material itself [12]. Both control methods

will generate torque with the right symmetry to switch AFM domains and drive domain walls

[18, 19] (more detail in Chapter 4), and Chapter 6 details the modelling of both processes

simultaneously). But while the intrinsic CISP is traditionally activated through a DC applied

potential, recent experiments have also excited AFM dynamics using THz frequencies to drive

AC currents which generate a CISP [20, 21].

This brings in another control method mentioned earlier, laser excitation. Once again, the

distinction between torque generated by an electric field and a laser excitation is not a semantic

one, and is in fact the main result of this thesis: laser excitations, even at an optical frequency,

can generate dynamics distinct from those caused by CISPs, spin injections carried by current,

and rapid changes in temperature. This torque–so called the laser optical torque (LOT) due to

its similarity to SOT–nonetheless has its own set of symmetry rules affecting switching [22]

and domain wall driving [23]. The source of this control stems from the 2nd order coupling of
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the electric field to the susceptibility tensor of the electronic structure of the material, generally

described in [24, 25] as:

δSi = χi jE j(t)+χi jkE j(t)Ek(t) (1.1)

where the term linear in E j(t) corresponds to the SOT [12], even if driven by a THz electric

field. This makes a 2nd order excitation distinct from the CISP generated by an applied potential

or a THz electric field supplied by laser excitation. And indeed, the electric field from THz

excitation likewise carries a substantial 2nd order coupling term in addition to the CISP [25].

While this effect has been known for insulating AFMs [26, 8], it has not been applied to metallic

systems useful for spintronics.

The goal of this thesis, therefore, is to present the use of this novel LOT–in combination

with traditional control measures for metallic AFMs–as a control method in Mn2Au useful for

spintronic devices. Mn2Au provides an excellent material platform for modelling and model

development of magnetic control using atomistic spin dynamics simulations. It has a very

high Néel temperature (above 1000K) [10] and strong metallic character [20], and its collinear

structure allows relatively straightforward analytic descriptions [17, 27], at least compared to

non-collinear systems such as Mn3Sn [28]. And, unlike complex non-collinear systems such as

Mn3Sn, dynamic modelling of system sizes approaching nanoscale devices does not require

simplification of the physics. This thesis presents results on the use of a LOT for single domain

switching (Chapter 3), domain wall driving at 0K (Chapter 4), and domain wall driving at finite

temperatures (Chapter 5) in Mn2Au. As a step towards combined spintronic control, this thesis

also presents development integrating a drift-diffusion spin accumulation model with the CISP

generated from an applied potential (Chapter 6).
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Background and Theory

2.1 Atomistic Spin Models

At the atomistic level, magnetism is intrinsically a quantum phenomena. The fundamental

magnetic moment, µB, is quantised directly in the angular momentum part of the solution to

the Schrödinger equation as µB = eℏ/2me = 9.274×10−24J/T . Fortunately for us, while each

electron has an intrinsic magnetic moment of µB, 1.8 L of water with its times 1.08× 1027

electrons does not have a moment of 10.6×102J/T . Otherwise, in Earth’s gentle magnetic

field of 50 µT , we could boil our pasta–or ourselves–with nothing but a mechanical stirrer. In

fact, it was this very conundrum–the discrepancy between the electrons’ magnetic moments

and the correspondingly minimal saturated magnetic moments displayed in materials–that

contributed to early push-back of the intrinsic spin-moment of the electron. The competition

between spin order and disorder is thankfully resolved by the Pauli exclusion principle and

Hund’s rules: unpaired electrons are to be found only in the valence band (generalising without

any photoexcitation or other transient effects). This is not to say, however, that only valence

spins contribute to the magnetic landscape of a material. Fig. 2.1 demonstrates a general

transition metal material with an unequal density of states (DoS) between "spin up" and "spin

down" electrons in the valence band (the Fermi level for metallic materials). While the Fermi

level is dominated by spin down states, the total spin of the states from zero energy to the Fermi

level would give a net up value.
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Fig. 2.1 Majority and minority picture of density of states for a generic transition metal.
The narrow in energy bands represent the d-orbitals and the wide bands are the sp-orbitals.
Figure from [29].

Multiple phenomena compete at the quantum level to dominate this trend, both inside the

atom and between atoms, requiring robust ab initio theory which often gives results counter to

our intuition. Atomistic spin models serve as the in-between scale for quantum mechanical

ab initio calculations and experimental laboratory results. To do this, Fig. 2.2 illustrates the

separation of the multi-scale dynamics of the magnetic system: the basic magnetic material is

composed of ordered spins, fixed in place, which represent the subatomic magnetic structure of

the material. For materials suitable for ASD modelling, the magnetic texture inside the atomic

volume is highly localised and static.

From the experimental side, information about the atomistic magnetic moment is informed

by measurements utilising the dipole nature of magnetism:

E =−m ·B

gives the energy for a magnetic moment m in the presence of an external field B. The moment

relates to the saturated magnetisation of the system, Ms, through m = MsV . With a known

crystal geometry to give the ratio of atoms to volume, the atomic spin µs can be reasonably

calculated from µS = MsV/natoms. More complex materials can have multiple contributing

spins in a unit cell. Since these specific contributions can be measured and calculated separately,

we can represent the magnetic contribution from species i as mus,i = Ms,iV/natoms,i. Unusual
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Fig. 2.2 Schematic illustration of multi-scale spin models from subatomic to bulk material.
The homogeneous region between the atoms contains no (or static) magnetisation compared to
the highly localised magnetic texture inside the atomic volume. Figure from [30].

cases of magnetism correspond to a loss of the ability to represent the magnetisation of a

material as arising from an orientation of spins confined to a non-periodic volume, such as

a highly dispersive charge-density wave. But for transition metal magnets, nearly all of the

moment is localised to the d orbitals. Ab initio methods can indeed match closely with the

experimentally measured µs [30], but beyond µs there are few easily comparable variables

accessible to both ab initio and experimental methods. Instead, we must rely on the simulation

and modelling of magnetic systems using ab initio constants to compare with experimental

measurements. Thus, we turn to the background behind ASD constants.

2.1.1 First Principles Background

First principles calculations are especially important for atomistic modelling, as rarely are

we interested in the bulk case of a material with only simple ferromagnetism. In such a

case, the relationship for µs,i above becomes less useful: while we may know the individual

moment of each magnetic species, it can be difficult to assign energetic preferences between
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them. On the first principles scale, more sophisticated methods than the Stoner model allow

for calculation of complex systems with strong spin polarised states above and below the

Fermi level, anisotropic preferences for orbital and spin density, and multiple spin species

with varying magnetic moments. Much work must be done, however, to reach the appropriate

atomistic constants from the quantum mechanical models. The full many-body Hamiltonian

for a quantum mechanical system lattice of electrons and nuclei requires a description of all

nuclei-nuclei (I,J), electron-electron (i, j), and electron-nuclei (i, I) interactions [30]:

H=−ℏ2

2 ∑
I

∇2
I

MI
+

1
2 ∑

I ̸=J

1
4πε0

ZIZJe2

|RI −RJ|
− ℏ2

2m ∑
i

∑
i

∇
2
i +

∑
i ̸= j

1
4πε0

e2

|ri − r j|
−∑

i,I

1
4πε0

ZIe2

|ri −RI|

(2.1)

Since there is no exact solution to the many-body equation, and brute-force numerical methods

are computational impossible for even the largest computing systems, numerous mathematical

approaches have been explored to simplify the problem. Often, only the electron-electron

interactions are important for magnetism (though this is not always the case). The Kohn-Sham

equation provides a method for calculating these interactions by optimising the wavefunction of

the electrons according to a reduced Hamiltonian containing only the electron kinetic operator

∇2 and a parameterised electron potential Veff(r):

(
−1

2
∇

2 +Veff(r)
)

ψi(r) = εiψi(r) (2.2)

which gives a one-electron solution to the many-body Hamiltonian by simplifying the full

electron-electron and electron-nuclei Coulomb potential into more solvable solutions given

by Veff. The field of Density Functional Theory (DFT) simplifies the problem of variationally

optimising the wavefunction by operating on the electron density, given as the sum of the

probability density of the occupied wavefunctions n(r) = ∑i |ψi(r)|2. We can introduce an

additional degree of freedom by considering the spin up (n↑) and spin down (n↓) electrons (as
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diagrammed in Fig. 2.1), resolving the probability density as n↑(↓)(r) = ∑i |ψ
↑(↓)
i (r)|2. The

magnetisation density is then defined as:

m(r) = n↑(r)−n↓(r). (2.3)

and the magnetic moment can be the integrated magnetisation density:

mi =
∫

Ωi

m(r)dr. (2.4)

The problem, of course, is that the Kohn-Sham equation written above does not allow for spin

up and spin down electrons. Two separate versions of Eq. (2.2) can be written–one for each

electron channel–but without an energetic distinction between spin up and spin down electrons,

they will give identical solutions. The integral above gives the entire magnetic moment, but

sometimes it can be useful to decompose mi into the spin and orbital contributions by summing

the spin and orbital operators over the occupied wavefunctions [30]:

ms = ∑i,k⟨Ψik|σ |Ψik⟩

ml = ∑i,k⟨Ψik|l|Ψik⟩
(2.5)

Fundamental to the DFT process is identifying the necessary changes to the effective

potential in Eq. (2.2) to give a one-electron solution based off many-electron interactions.

Hartree-Fock formalism models the electrons interacting with a "mean field" approximation,

and gives a Hamiltonian:

(
−1

2
∇

2
i +Vext(r)+∑

i̸= j

∫
dr′

ψ∗
j (x’)ψi(x’)

|ri − r j|

)
ψi(x)−∑

i̸= j

∫
dr′

ψ∗
j (x

′)ψi(x′)

|ri − r j|
ψ j(x)δi j = εiψi(x)

(2.6)

Vext is the electron-nuclei interaction, and the first integral is the Coulomb potential. But the

second integral is the purely quantum mechanical result of exchange energy arising from the

Fermion description built into the Slater determinate of Hartree-Fock theory: the electrons have

an energetic reason to be in different orbitals with their spin aligned. This obvious preference
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towards materials having a magnetic moment is a result of the mean field approximation; it is a

limitation of the one-electron wavefunctions that it cannot take into account the response of the

other electrons when evaluating its operators. This so named electron "correlation" can result

in, among other things, reduction of the magnetisation in a similar manner as lattice orbital

quenching. Methods to introduce correlation to the Hartree-Fock method exist (e.g. multi-

configurational SCF and coupled-cluster theory [31]), but are untenable for lattice systems

and even but the smallest molecules. Instead, the Kohn-Sham Hamiltonian is used, with a less

severe restriction to the wavefunction than Hartree-Fock’s Slater determinate. Rather than use

the "exact exchange" present in Eq. (2.6) (which contains no correlation), a modified–and often

phenomenological–functional is used to enforce a mix of exchange and correlation. The Veff in

Eq. (2.2) can now finally be defined:

Veff(r) =Vext(r)+
∫ n(r′)

|r− r′|
d3r′+ εxc[n(r)]+n(r)

∂εxc[n(r)]
∂n(r)

(2.7)

where Vext is still the electron-nuclei interaction, the integral is the Coulomb potential, and

the last two parts are the exchange and correlation functionals, respectively. Two versions of

Eq. (2.7) get defined for spin up and spin down electrons, finally allowing for self-consistent,

variational calculations to be made to the electron density representing our magnetisation.

Multiple forms of functionals exist, constructed and optimised for different elements, phenomena,

and operators, but the motivation remains the same: to calculate something useable by the

sciencist.

For the atomistic spin-dynamicist, no ab initio constant is more important than the Heisenberg

exchange Ji j between two interacting spin moments. To describe this system, the Hamiltonian

usually avoids dealing with changes to the local magnetic density mi from Eq. (2.4), and instead

holds the local magnetisation magnitude µs constant to deal with the magnetic orientation Si:

H=−1
2 ∑

i̸= j
Ji jS j ·S j (2.8)

Numerous methods exist to extract this energy, but the precise calculation of these constants

is firmly in the realm of ab initio rather than ASD. Instead, we acknowledge the limitations
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working with the Heisenberg Hamiltonian places on ASD: while all methods to calculate the

exchange constant seek to quantify the energetic relationship between spins at sites i and j,

the Heisenberg exchange is inter-atomic. Sites i, j for Ji j are differing atoms, rather than

differing electrons, orbitals, or even nuclei location. This is a true approximation only in the

sense that the above corrections are usually small compared to the Heisenberg constant, but do

express themselves in crucial physics (see [32–36]). In metals the full calculation can take a

complex arrangement due to induced-polarisation of the d-orbitals acting non-locally through

the conduction band. This so named RKKY theory (for additional ab initio background beyond

[30] see [37, 38]) explains the AFM ordering typical of layered metals: in general, metals

in-plane order parallel; metals out-of-plane order antiparallel. But this is less of a correction to

the Heisenberg Hamiltonian than it is an analysis technique.

The largest correction necessary to the Heisenberg Hamiltonian–on the basis of energy

rather than fundamental approximations–is the directional variation in Ji j at site i independent

of j. Often called the magnetocrystalline anisotropy energy (MAE) or magnetic crystalline

anisotropy (MCA), this anisotropic preference for the moment is usually treated as a property

independent of exchange (i.e., using its own constant ki rather than Ji). This is especially true

for models dealing with larger systems simulating shape effects. For materials with symmetric,

strong spin-orbit coupling, it is possible instead to build the anisotropic contribution into an

exchange tensor. This adjusts the Heisenberg Hamiltonian slightly to:

H=−1
2 ∑

i ̸= j
SiJi jS j −∑

i
ki(Si · ei)

n (2.9)

where JT
i j is the exchange tensor, ki is the MCA constant depending purely on i spins, and

n is the so-called "anisotropy order" exponent representing the energetic scaling of the

anisotropy and spin. Anisotropies which are truly "single-ion" and which belong in the

exchange tensor can be difficult to differentiate, even with first principles formalism. d-orbital

projections to Cartesian space can introduce additional directional components to the magnetic

preference beyond the exchange splitting of interatomic bands. This can take the form of

crystal field splitting–localised charge polarisation around the magnetic moment breaking the
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orbital symmetry–or spin-orbit coupling. Both sources of anisotropy have a strong lattice

symmetry component, allowing for decomposition of the anisotropy constant in (2.9) into a

phenomenological description combining both the crystal-field and spin-orbit contributions

dependent on symmetry orders [39]. For metals with weak ionic potentials the crystal field

splitting is less important than the spin-orbit coupling [29]: the spin-orbit coupling strength ξ

is proportional to dVeff(r)/rdr, and can be on the order of exchange interactions for transition

metals (or larger for rare-earth elements) [30]. The spin-orbit interaction ξ l · s must enter into

the Kohn-Sham equation effective potential (Eq. (2.7))–usually from a perturbation approach.

Then, the spin-orbit coupling (SOC) strength along direction n̂ for spins s,s′, on occupied and

unoccupied states i, j (respectively), wavefunctoin k, and orbitals l, l′ on atom q from other

atoms q′ is [30]:

Ess′
soc,q(n̂) ∝ −∑

ki j
∑
q′

∑
l

⟨qls|ξql · s|ql′s′⟩⟨q′l′s′|ξq′l · s|q′l′s⟩
εk j − εki

(2.10)

The value of εk j − εki weights the contribution of the MAE towards states on opposite sides

of the Fermi energy but still close in energy. The MAE is then the difference of orientation

energies for all atoms and spins:

EMAE ∝ ∑
qss′

Ess′
soc,q(n̂1)−Ess′

soc,q(n̂2) (2.11)

For systems with strong, ordered spin-orbit interactions or strong applied fields [29], the

exchange splitting gets enhanced when aligned to certain directions, making the perturbation

approach less-accurate and requiring self-consistent approaches to SOC [40]. In this case, the

anisotropic contribution is considered "two-site" [41], and should be considered as part of the

exchange tensor [39].

2.1.2 Atomistic Spin Dynamics

Modelling the spin on the atomic scale uses the Landau-Liftshitz-Gilbert (LLG) equation of

motion (Eq. (2.12)) for the local moment to describe the precession and damping path in the

presence of the local moment’s effective field. This motion is a classical derivation, requiring
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minimal quantum mechanical routes of energy transfer out of the atomic moment (e.g. through

intra-atomic spin transitions). The damping term for the LLG equation, α , represents the atomic

preference for the magnetic moment to align with the effective field, rather than precess around

it, and is an intrinsic property of materials relating to interactions with the phonon lattice,

conduction band, and other magnetic moments. Various theories exist to describe the damping

term, but in the LLG equation it is a phenomenological, dimensionless quantity representing

the ratio of precession to damping in the system. For metals of high crystalline order and

quality, the value can be on the order of 10−3. The LLG equation combines the precession of

the moment in the effective field as well as the damping of the spin:

dSi

dt
=− γe

(1+α2)

[
Si ×Beff

i +αSi ×
(

Si ×Beff
i

)]
(2.12)

The effect of temperature on the motion of the atomic spin is a topic of rich analysis, with

ongoing research for many theory and computation groups [42, 36, 43, 44], and the full details

are beyond the scope of this thesis. The inclusion of temperature into the LLG equation is done

by linking the conduction band heat bath to the effective field of each moment according to

dissipation-diffusion theory so the so called Langevin thermostat. The fluctuations of the field

from moment-to-moment (2.13) have a Gaussian distribution Γ(t) with width determined by

the size of the moment µs, Gilbert damping parameter α , effective temperature Teff, and the

time-step ∆t, averaging out to zero for each spin (2.14).

Btherm
i = Γ(t)

√
2αkBTeff

γeµs∆t
(2.13)

⟨Btherm
i (t)⟩= 0 (2.14)

This thermal field is then added to the effective field from the derivative of the Hamiltonian:

Beff
i =− 1

µs

∂B
∂Si

+Btherm
i (2.15)
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To solve the LLG equation, we utilise an explicit 2nd order Runge-Katta integration scheme

with predictor-correction step (i.e. the Heun integrator) due to its computational performance

and convergence with the fluctuation-dissipation formulation of the stochastic thermal fields

[30]. This involves a two-step solution to the EoM with a normalisation step between each to

preserve the spin length [45]:

1a. ∆Si =− γe

(1+α2)

[
Si ×Beff

i +αSi ×
(

Si ×Beff
i

)]
1b. S̃′

i = Si +∆S∆t

1c. S′
i = S̃′

i/|S̃′
i|

2a. ∆Si =− γe

(1+α2)

[
S′

i ×B′eff
i +αS′

i ×
(

S′
i ×B′eff

i

)]
2b. S̃t+∆t

i = Si +
1
2
[
∆Si +∆S′

i
]
∆t

2c. St+∆t
i = S̃t+∆t

i /|S̃t+∆t
i |

A well-known phenomenon of the Langevin thermostat is to overestimate the thermal

activation at low temperatures. Corrections to this effect are varied, and likewise outside the

scope of this thesis [42, 46]. We use the method by Kuz’min to adjust the effective temperature

of the spin activation by the ratio of the material temperature relative to the Néel temperature.

This rescales the Curie-Bloch law to include an additional exponent term, where αCB is the

phenomenological rescaling exponent (different from the atomistic Gilbert damping term in

the LLG equation above), TN is the Néel temperature, and β is the usual Curie-Bloch critical

exponent for a 3D Heisenberg spin [47]. This rescaling is performed for all simulations with

finite temperature:

Teff

TN
=

(
Treal

TN

)αCB

(2.16)
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where Teff is the rescaled thermodynamic temperature for the spin, TN is the Néel temperature,

and Treal the desired simulation temperature, which differs from the effective temperature

of the spin bath. This approximates the correction to the system necessary for quantum

thermodynamics without the need for the magnon spectra of the material [48, 46]. This

introduces an additional exponent for the standard Curie-Bloch law:

me(T ) = me(0)
[

1−
(

Treal

TN

)αCB
]β

(2.17)

2.1.3 Energy Landscape

The energy landscape of the spin system can be further explored using a Monte Carlo (MC)

Metropolis simulation. There, the temperature enters into the Boltzmann energy of the move-

step–rescaled by Eq. (2.17)–and the state of the system is revealed through sampling of the MC

simulation after sufficient time-steps have passed to ensure equilibrium has been reached [45].

The MC simulation makes direct use of the Heisenberg Hamiltonian to calculate the energy

difference between two spin positions ∆E =H(S′
i)−H(Si). The probability for switching is

then:

P = exp
(
− ∆E

kBTeff

)
(2.18)

Generation of the trial spin state S′
i is determined through a modified Hinke-Nowak

algorithm which combines spin-flip, random-spin, and small-angle changes to efficiently

sample the full phase space, including an adaptive angle rate to speed up convergence for high

temperature systems [49]. The small-angle change is proportional to the effective temperature

of the system:

S′
i =

Si +σΓ

|Si +σΓ|
(2.19)

where σ is the cone width scaled by a Gaussian distribution Γ. The cone width can be adjusted

by an additional multiplicative factor f such that, if the total rate of success of the Boltzmann

probability in Eq. (2.18) R differs from 50%, the width σ can be scaled by f = 0.5/(1−R).
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This has been shown to improve the MC performance for systems operating near 0 K and TN

regions [49]. The width of σ then is given as:

σ = f
2

25

(
kBTeff

µB

)1/5

(2.20)

The MC algorithm can also be used to sample the energy landscape of constrained systems

in order to explore high-energy configurations. The so-called Constrained MC (CMC) technique

establishes thermodynamic equilibrium for the system at the simulated temperature and

constraint configuration [50, 49], and is especially useful for modelling the torque response

at certain spin angles for a range of temperatures in order to calculate the anisotropy scaling

effects with increasing temperature. Likewise, the CMC simulation is also used to calculate

the effective torque response over a range of temperatures on a constrained spin-spiral. This

method gives a value of the exchange scaling with temperature. There, the spin steps in Eq.

(2.19) are evaluated by an additional criteria that the total magnetisation for a given subset of

the full spin system M̂ j ≡ ∑ j S j/|∑ j S j| ≈ M̂constraint
j . Spins outside the subset j are evaluated

using the standard criteria Eq. (2.18) and spins inside the subset j under a new probability

criteria [50]:

P j =

(
M̂′

M̂

)2
|S j|
|S′

j|
exp
(
− ∆E

kBTeff

)
(2.21)

This allows microscopic equilibrium of the subset for a given temperature. Specific details for

the subsets and constraints in the CMC simulations utilised in Chapter 5 are given there.

2.1.4 Dynamic Temperature

Dynamically, laser excitation causes changes to the temperature of the magnetisation heat bath

on the ultrafast timescale. This is included through the use of the "two temperature model"1,

applicable for transition row metals. Since the heat bath coupling to the magnetic spin in metals

1A popular microscopic model of ultrafast demagnetisation from thermal processes is the three temperature
model, which adds an additional degree of freedom for the magnetisation coupling through the spin temperature
of the system [51, 52]. For atomistic simulations, the need for a microscopic spin bath is replaced by the natural
excitation of the LLG equation by the Langevin thermostat.
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occurs through the electron system, which has a much lower heat capacity than the phonon

lattice, the magnetisation experiences a transient temperature peak before cooling to match the

phonon temperature. Often, this transient heating can raise the temperature above the Néel

temperature–on the order of picoseconds–causing sharp reduction in the system magnetisation

without fully causing a phase change to the paramagnetic state. For longer timescales–on the

order of tens of picoseconds–the metal thin film cools to the temperature of the insulating

substrate through phonon coupling.

The energy added to the system from a laser excitation of a Gaussian temporal profile with

full width at half height tp is [53]:

S(t) = 2
F

tpδ
√

π/ln2
exp−4ln2

(
t

tp

)2

(2.22)

where F is the fluence of the laser pulse in J/m2 and δ is the thickness of the film. A full

description of the laser heating includes a height-dependence impacted by the attenuation of

the laser. Provided the thermal conductivity of the material is high and the film is thin, the

temperature of the system can be assumed independent of depth. For complex relationships

between the intensity of the laser pulse and the heating of the electron thermostat, a more

involved expression for S(z, t) and F is required.

The time-dependent temperature of the system is given in the coupled differential equations

for energy transfer between the electron temperature Te and phonon temperature Tp (with

cooling to the substrate temperature Ts) by the electron-phonon coupling constant G and

characteristic cooling time τs. In general, these values begin to become temperature-dependent

near the Fermi temperature, but in metals this is far above the heating from ultrafast laser

excitation. The differing heat capacities for the electrons Ce = γTe and phonons Cp link the

temperature of the two systems in thermodynamic equilibrium through their energy:

Ce
∂Te

∂ t
=−G(Te −Tp)+S(t)

Cp
∂Tp

∂ t
= G(Te −Tp)−

Tp −Ts

τs

(2.23)
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2.2 Atomistic Modelling of Mn2Au

Mn2Au is an ordered, bimetallic material with single or multigrain structure [20, 54]. The full

Hamiltonian used for Mn2Au in this thesis contains the exchange tensor, a uniaxial out-of-plane

anisotropy term of 4th order, and an in-plane rotational anisotropy term of 4th order. This gives

a strong in-plane spin preference, with the four spin easy axes along ⟨110⟩ (see Fig. 2.3b). θ

describes the polar angle from the ẑ coordinate, and φ the azimuth angle from the x̂ coordinate.

Then, the ab initio Hamiltonian from DFT calculations in Shick et al. [41] and Khmelevskyi et

al. [55] is given as:

H=−1
2 ∑

i< j
Ji jSi ·S j −K⊥

2 ∑
i

sin2
θ −K4⊥∑

i
sin4

θ −K∥∑
i

sin4
θcos4φ (2.24)

A thorough discussion of this Hamiltonian and the consequence of its trigonometric descriptions

in the anisotropy components is given in Chapter 5, but for now we note there are nuances

involved with the above description. The parametrised macroscopic constants K⊥
2 , K4⊥, and K∥

in Eq. (2.24) we use in our atomistic LLG and MC simulations is given here for immediate

reference, with more details in Chapter 5:

H=−∑
i ̸= j

SiJT
i jS j − k4 ∑

i

(
S4

i,z −
30
35 S2

i,z

)
−∑

i
k4r(S4

i,x −6S2
i,xS2

i,y +S4
i,y), (2.25)

The exchange constant in Eq. (2.25) is now a tensor containing the K⊥
2 anisotropic contribution

leading to the easy-plane orientation of the spins. This anisotropy is of the two-ion type. The

4th order anisotropies have been written in an orthogonal Cartesian form parametrised as k4 and

K4r to distinguish from the macroscopic constants in Eq. (2.24) (more details in Chapter 5).

The exchange interactions for the unit cell from Khmelevskyi consist of two antiferromagnetic

inter-species and one ferromagnetic intra-species term, consistent with RKKY metals. This

gives a total of 9 interactions per atom. The groups of Oppeneer and Novak provide long-
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Fig. 2.3 Unit cell with exchange interactions. (a): The tetragonal unit cell has lattice constant
a = 6.291 along the x and y Cartesian coordinate and c = 16.142 along the z coordinate. J1
and J2 are the antiferromagnetic inter-species exchange interactions and J3 is ferromagnetic
intra-species interaction. (b): in-plane orientation of spin vectors along ⟨110⟩ easy axes. Strong
AFM coupling ensures a collinear Néel vector along the same. Grey arrows show the Néel
vector with 90 degree rotation, equivalent in energy to the starting dark arrows. Cartesian axes
x,y are hard axes.
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(a) DoS (b) Exchange Constants

Fig. 2.4 ab initio DoS and exchange constants. (a): Atom resolved DoS in the AFM ground
state (top) and the disordered local moment (DLM) state (bottom). (b): exchange constants as
function of inter-atomic distance for two DFT methods: (1) relativistic torque method (RTM)
and (2) spin-cluster-expansion (SCE) from the DLM reference state. The SCE corresponds to a
high-temperature phase (without phonon interactions or lattice expansion). Both figures from
[56].

range RKKY exchange up to 9th order (≈ 1 nm) (Fig. 2.4b)[56], but MC and switching

simulations show minimal impact of including these interactions. The SCE constants in

Fig. 2.4b correspond to the high-temperature (fully disordered) magnetic phase, and shows

the rigidity of the Mn local spin moments (3.71 µB vs. 3.74 µB) [56]. Likewise, the high-

temperature DLM DoS in Fig. 2.4a shows minimal qualitative change compared to the collinear

AFM ground state beyond loose thermal broadening. This supports the use of the constants in

Table 2.1 even for high-temperature simulations, though no work on spin-phonon coupling or

thermal lattice expansion has been done so far on Mn2Au. The work done by Shick et al. find

an orbital moment on the Mn sublattices of ∓0.013 µB (antiparallel to the spin contribution of

the moment). For our atomistic simulations we approximate this to zero [41].

With the Néel temperature of Mn2Au being above the ordered crystalline point of the

material, estimates to the exchange constants are made from a combination of ab initio and

experimental calculations. Two AFM THz modes (Eqs. (2.26)), as well as single domain wall

widths, have been measured, providing upper and lower bounds for the Néel temperature and
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rotational anisotropy [57]. We use the exchange values calculated originally by Khmelevskyi

[55], though other groups ([58, 56]) have published a range of values consistent with the

experimental results. The rotational anisotropy constants from Shick et al. (k4r) [41] fit in the

middle of the range measured by experiment in Sapozhnik et al. [57]. In simulations we also

make use of lower bound values from [57] (k4∥). Both values are used for simulations. Our

complete table of values is provided in Table 2.1.

Interactions Jxx Jyy Jzz Unit
J1 -1.46923 -1.46923 -1.45932 10−20 J/link
J2 -1.09430 -1.09430 -1.08691 10−20 J/link
J3 0.31826 0.31826 0.31826 10−20 J/link

Parameter Value Unit
µs 3.72 µB

k2⊥ −1.9727×10−22 J/atom
k4 3.710×10−25 J/atom
k4∥ 1.855×10−25 J/atom
k4r 8.0255×10−25 J/atom
TN 1225 K
a,c 6.291, 16.142 Ȧ

Table 2.1 Hamiltonian constants

To determine the Néel temperature of our system, we simulate a (10 nm)3 computational cell

with periodic boundary conditions using a standard Monte Carlo Metropolis for calculation of

me(T ). We determine the Néel temperature of 1227 K by performing a Monte Carlo Metropolis

simulation and fitting to the modified Curie-Bloch expression (Eq. (2.17)) for the average

sublattice magnetization me = (m1 +m2)/2, where β = 0.332±0.02 is the high temperature

critical exponent and the Bloch exponent α = 1 in the classical limit [59, 10]. We then apply

the spin temperature rescaling method [59] for αCB = 2 as derived from spin wave theory for

antiferromagnets and recover a temperature-dependent sublattice magnetisation curve from our

semi-classical simulation in very close agreement with neutron scattering measurements [10].

As shown in Fig. 2.5 the fits and data in the quantum cases are in excellent agreement, with the

Curie-Bloch equation accurately describing the temperature dependent ordering of Mn2Au in

the full temperature range.
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Fig. 2.5 TN from Monte Carlo simulations. (Classical): sublattice magnetisation with
temperature using the unscaled Langevin thermostat. (Quantum): phenomenological
temperature rescaling in Eq. (2.17) with αCB = 2 showing excellent agreement with the
experimental trend over the traditional Lanvegin thermostat.

For simulations with dynamic temperature effect, we utilise the TTM in Eq. (2.23). For

simulations where cooling from the substrate is far longer than the timescale of the simulation,

we set τs in Eq. (2.23) to 0. Constants are from [60] and are consistent with experimental

results in [20, 61].

Symbol Value Unit
γ 1×103 J/K2 m3

Cp 6.934×106 J/K m3

G 2.5×1017 J/K m3

τs 20 ps
Table 2.2 Two temperature model parameters.

Of great interest to spintronics is the advent of readily-accessible THz devices and emitters.

As a collinear AFM, Mn2Au has two well described THz modes [62, 63]:

f α
0 = γ

2πµs
[2Jinterdxy]

1/2 ≈ 0.85 T Hz

f β

0 = γ

2πµs
[2Jinter(dxy −dz)]

1/2 ≈ 2.9 T Hz
(2.26)
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[001]

Fig. 2.6 THz modes for collinear, easy plane AFMs. Figure from [62] with coordinate scheme
adjusted for specific Mn2Au symmetry.

where dxy and dz are the k4r and k2⊥ anisotropy constants. The two modes scale with the

anisotropy and AFM exchange energies. The lower frequency mode oscillates in the xy-plane

(α in Fig. 2.6), while the higher frequency mode has an additional boost from the out-of-plane

component activating dz. In Chapter 5 the presence of a DW shows thermal activation of the

anisotropy breathing mode (see Fig. 5.7). ASD simulations have also shown activation of the

THz modes in Eq. (2.26) [63, 64]. Experimentally, Mn2Au THz emissions have been measured

from THz excitation [20] and FM bilayer optical excitation [65].





3

Laser Optical Torque Switching

3.1 Introduction

The potential for fast, deterministic control of the order parameter in metallic antiferromagnets

(AFMs) at room-temperature without heavy-metal spin injection is highly promising for

spintronics research and device applications. Currently, the most understood method for

controlling the AFM order parameter in Mn2Au devices is the application of spin orbit torque

(SOT) [66, 19, 67, 68]. But also of interest is the use of spin transfer torques (STTs) [69,

63, 70, 71] and THz excitations to drive AFM switching [20]. However, limitations to these

novel methods provide challenges for practical implementation: SOT control using applied

currents requires either precise timing to prevent over-switching [72, 69, 18], weaker fields

for longer duration [27], or repeated short pulses [13, 73]. STT driven switching requires

complex heterostructures [63, 18, 65], and over-shooting beyond 90-degrees is still a risk

[69, 63]. THz driven dynamics represent the most precise method of control, but have not been

shown to switch the AFM Néel vector with the current experimental THz excitation strength

[20]. The ultrafast control of magnetism using laser excitation started with the seminal work of

Beaurepaire and Bigot and their demagnetisation of Ni [74]. Since then, all-optical control has

been demonstrated in a host of systems using ultrafast heating to switch FM domains ([75, 76]

to cite only a few). For ultrafast control of AFMs using optical frequency laser pulses, domain

switching has been limited to classes of insulating rare-earth orthoferrites at extremely low
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temperatures [8, 77, 26]. So far for metallic AFMs, optical control has been limited to THz

excitations [20, 78–80].

Recent ab initio work [25] has presented a new option for direct manipulation of the order

parameter in metallic Mn2Au AFM: the induction of staggered fields using direct optical laser

excitation. The production of staggered fields is crucial for efficient switching in AFMs, as

it cants the AFM sublattices, generating a much larger in-plane torque which switches the

Néel vector, rather than relying on the laser induced torque itself to switch the magnetisation.

The experimental evidence for these torques in metals has been seen in ferromagnetic (FM)

materials [71, 81], but only recently has the same theoretical formalism [24] been applied

to AFMs [82] (and specifically Mn2Au [25, 83]). The frequency dependence of the induced

staggered magnetic fields is calculated for optical and THz excitations, and is shown to generate

a net non-staggered torque (see Fig. 3.1). We demonstrate through atomistic spin simulations

that this torque could potentially switch the AFM order parameter.

This chapter presents atomistic spin dynamics simulations of an optical frequency excitation

from ultrafast laser pulses on Mn2Au using the coupling scheme suggested in Freimuth et

al. [25]. To distinguish between other laser induced torques acting through spin transfer

techniques or THz frequency excitation, we call this generated torque a laser optical torque

(LOT). Recently, experiments using ultrafast THz pulses have demonstrated induced Mn2Au

dynamics, with modelling predicting the potential for coherent domain switching [20]. Unlike

THz pulses, which are predicted to induce both LOT and SOT fields [25], the optical frequency

is too far above the AFM frequency (≈ 1−15 THz [20, 65, 63]) to excite SOT dynamics. Thus,

we focus our work here on demonstrating the possibility to switch the Néel vector in AFMs

using purely LOTs in optical frequencies. Additionally, we provide a method using the LOT

symmetry to preferentially control the switching direction of the Néel vector, allowing for

deterministic, non-toggle all-optical switching (AOS) in AFMs.
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(Mn1)
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Fig. 3.1 Diagram of net torques from Eq. (3.8) with linearly polarised light parallel to the
azimuthal angle ϕ from x and fourth order in-plane magneto-crystalline anisotropy (MCA)
along ⟨110⟩. (brown/green): magnetisation vector for Mn1 (Mn2) sublattice, (gold): induced
field, (blue): resultant torque. (blue curve): relative magnitude and sign of LOT, (dashed line):
guide to eye for maximal torque location. (a): electric field of laser polarised along y axis.
(b): electric field polarised along ϕ = 5π/8 axis. (c): electric field polarised along ϕ = 5π/8
with Mn magnetisation sublattices further along rotation path. Note: an electric field of the
laser polarised along x will produce equal and opposite torques to the polarisation in (a). For
consistency we use the polarisation in (a) in our easy axes simulations.

3.2 Methodology

3.2.1 Atomistic System

We perform atomistic spin dynamics simulations in Mn2Au AFM based on the Landau-Lifshitz-

Gilbert (LLG) equation using the open source code VAMPIRE [45] where we included new

LOT torques. Unless specified, for the majority of simulations we use a cubic crystal lattice

of 1600 spins with periodic boundary conditions (10 x 10 x 4 unit cells). Fig.2.3 illustrates

the Mn2Au unit cell implemented in the atomistic simulations. The effective Heisenberg

spin Hamiltonian (Eq. (2.25)) includes the ferromagnetic (FM) and antiferromagnetic (AFM)

exchange interaction terms, two-ion anisotropy mediated by the Au sublayers, fourth-order out-
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of-plane anisotropy, and the fourth-order rotational in-plane anisotropy (easy axes orientated

along the ⟨110⟩ directions).

The local magnetic moment directions are given by unit vectors Si with length µs. θ

gives the polar angle of magnetisation, and φ the azimuthal angle of magnetisation from the

x-coordinate. Table 2.1 summarizes the parameters used in the simulations. Shick et al. [41]

discussed situations where thin films of Mn2Au have an additional, in-plane, uniaxial strain

anisotropy creating a preferential 180-degree orientation along the [±100] or [0±10] directions

(depending on the strain vector). While SOTs/STTs have been simulated to switch 180-degree

domains in Mn2Au [72, 63], we confine our simulations to 90-degree domains without the

additional strain anisotropy.

3.2.2 Torque Constant from Susceptibility Tensors

Optically-induced torques show strong crystal symmetry and frequency-dependent coupling to

the polarised electric field components of the laser. A full analysis of the symmetry requirements

in the Mn2Au bulk crystal was previously presented by Freimuth et al. [25] based on the

Keldysh non-equilibrium formalism. There, a linearly or circularly polarised laser pulse was

shown to be capable of inducing a torque acting on the Néel vector parameter LLL via staggered

magnetic fields induced by the second order electric field coupling, which act on the Mn spins

in the distinct sublattices of the AFM. The magnitude and spatial symmetry of the predicted

torque depend both on the local orientation of the Néel vector LLL, as well as the electric field

εεε direction of the applied optical pulse. Both in-plane and out-of-plane torques are allowed

by symmetry, but only the out-of-plane torque takes advantage of exchange enhancement to

drive precessional switching. To achieve magnetic switching using an in-plane torque, the

induced field must be at least equal to the in-plane rotational anisotropy field value of 10.3 mT

[72]. Assuming a constant linear relationship between torque and laser intensity, this would

require pulses on the order of 2000 mJ/cm2, which would damage and ablate the sample. Thus,

this work seeks to apply out-of-plane torques to take advantage of the exchange enhancement

characteristic of antiferromagnetic switching [72, 18].
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The second order optical effects are generated by oscillating electric field with frequency ω

and polarisation ε . Then, the corresponding perturbation to the Kohm-Sham Hamiltonian is

[24, 25]:

δH(t) = eν ·A(t) (3.1)

where e is the elementary charge, ν is the velocity operator, and

A(t) = Re
[

E0εe−iωt

iω

]
(3.2)

E0 is assumed to be real valued, but the light polarisation vector ε may be complex, describing

circularly polarised light. The electric field of the laser is then:

E(t) =−∂A(t)
∂ t

= Re[E0εe−iωt ] (3.3)

In general the time varying second-order susceptibility of the spin Si to the electric field is:

δSi(t) = χi jkEi(t)E j(t) (3.4)

where j,k indices on the right-hand-side are the vector components of the electric fields.

Already, this suggests the possibility for a time-constant component to the susceptibility

through the expansion:

Ei(t)E j(t) =
E2

0
2
[εiε

∗
j + ε

∗
i εi + εiε je−2iωt + ε

∗
i ε

∗
j e2iωt ] (3.5)

In the Keyldish nonequilibrium formalism, the torque Ti is then:

Ti =
a3

0I
c

(
EH

ℏω

)2

Im ∑
jklm

χi jklmε jε
∗
k LlLm (3.6)

where a0 = 4πε0ℏ2/(me2) is the Bohr radius, ε0 the vacuum permittivity, ℏ the reduced

Plank’s constant, m the mass of the free electron, c the speed of light, e the fundamental

electron charge, I = ε0cE2
0/2 the laser intensity calculated from the electric field component E0,
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EH = e2/(4πε0a0) the Hartree energy, ε j the jth Cartesian component of the electric field and

L j the jth Cartesian component of the Néel vector, and χi jklm the corresponding susceptibility

components. The torque value in Eq. (3.6) above follows the same format as the second-order

susceptibility in Eq. (3.4), but with the additional degree of freedom depending on the direction

of the Néel vector. Importantly, the induced torque sums as the square of the vector components

for ε j and Lm, so the resultant symmetry of the torque can be non-trivial for laser polarisations

not along the Cartesian basis vectors or the magnetisation easy axes. The Cartesian vector

components of εεε and LLL = (sinθcosφ ,sinθsinφ ,cosθ)T (we will use ϕ as the azimuthal angle

from x for the laser polarisation and the azimuthal angle of the Néel vector as φ ).

Freimuth et al. [25] present thirty susceptibility tensors χi jklm which are allowed by

the Mn2Au orbital symmetry and which produce a torque perpendicular to the Néel vector

(i.e., induce a field not parallel to the sublattice magnetisation). Since Mn2Au has in-plane

magnetisation, we disregard tensors corresponding to an out-of-plane Néel vector component to

good approximation (mz/µB < 10−2evenduringcanting). Since we are interested in exchange

enhanced precessional switching, we choose a laser geometry with the generated torque to be

out-of-plane; Freimuth et al. find that light incident normal to the AFM plane with electric

field linearly polarised parallel to the in-plane angle ϕ produces the largest torque values. This

geometry reduces the set of thirty tensors to two (tensors 4 and 24 in Freimuth et al.) (Table

3.1). The remaining two tensors calculate an identical magnitude, with the total torque being

the sum of each tensor.

Tensor χ3 jklm

4 ⟨32212⟩−⟨31112⟩
24 ⟨31211⟩−⟨32122⟩

Table 3.1 5th rank susceptibility tensors. Note: the i index for the susceptibility tensor χi jklm
is shown here as 3, corresponding to an out-of-plane torque to take advantage of the efficient
exchange enhancement switching.

The different polarisation and Néel vector dependencies are parametrised according to the

Cartesian vector components, such that
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4 ≡T3 (⟨32212⟩−⟨31112⟩)≈ T3

(
sin(ϕ)2 cos(φ)sin(φ)− cos(ϕ)2 cos(φ)sin(φ)

)
=−T3

2
cos(2ϕ)sin(2φ)

24 ≡T3 (⟨31211⟩−⟨32122⟩)≈ T3

(
sin(ϕ)cos(ϕ)cos(φ)2 − sin(ϕ)cos(ϕ)sin(φ)2

)
=

T3

2
sin(2ϕ)cos(2φ)

4+24 ≈ T3

2
sin(2ϕ −2φ).

(3.7)

This allows the full Keyldish expression in Eq. (3.6) to be parametrised using trigonometric

relations for the laser polarisation angle ϕ and Néel vector φ as:

HLOT =
1
µs

T (I)sin(2ϕ −2φ)ẑ×S (3.8)

The torque constant T (I) used in Eq. (3.8) represents the combination of material and

experimental constants given in Eq. (3.6) (which are not affected by the laser intensity, laser

polarisation, and Néel vector orientation) and the calcualted value of the susceptibility tensor

χi jklm itself, taken from [25]. For a laser intensity of 10 GW/cm2 with photon energy 1.55 eV,

the torque constant T3 ≈ 12×10−24 J, for a field value of 145 mT on each spin.

For comparison, we can also consider a sub-optimal switching polarisation geometry with

the laser polarisation rotated further along the polar angle: an electric field polarisation along

[101], photon energy of 1.55 eV, intensity of 10 GW/cm2, and Néel vector along ⟨100⟩ produces

an in-plane torque on each magnetic site of ≈ 10−24 J (HLOT = 0.05 mT) [25].

The directions of the induced fields for various light polarisation angles are illustrated in

Fig. 3.1. The staggered fields then lead to a non-staggered effective torque. Fig. 3.1a shows

the laser polarisation directions corresponding with the maximal torques useful for switching.

Fig. 3.1b shows the light polarisation along ϕ = 5π/8, producing a maximal torque when the

Néel vector is off the easy axes. Fig. 3.1c maintains the same polarisation, with the example

Néel vectors progressed further along the rotation pathway.
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Eq. (3.6) provides a linear relationship with laser intensity. Thus, to simulate the influence

of the LOT generated by an ultrafast laser pulse, we scale the laser intensity following a

Gaussian time-dependent profile, with the pulse duration tp ∈ [0.02, 6] ps giving the time at

full-width at half-height of the pulse intensity [53]:

T (t) = T (I)exp
{
−4ln2

(
t −1.5tp

tp

)2}
, (3.9)

This value is then used to calculate the spin-dependent field in Eq. (3.8) which is then added to

the effective field in the LLG equation (2.12).

3.2.3 Discussion on the Origin of the LOT

In the Kohn-Sham framework, the electric field in Eq. (3.3) will induce a change to the spin

polarisation quantified by:

δS =
∫

d3rδ s(r) (3.10)

where δ s(r) is the non-equilibrium spin density. To calculate the resultant torque, the non-

equilibrium spin density is crossed with the spin vector Ŝ:

T =
2µB

ℏ

∫
d3rΩ

xc(r)δ s(r)× Ŝ (3.11)

However, since δ s(r) and the exchange field Ωxc(r) vary strongly on the atomic scale, it is

usually not feasible to calculate the torque directly from the non-equilibrium spin density.

Instead, the torque is calculated via lesser Green’s function G< through the operator T (r) =

−µBδS× ŜΩxc(r), giving T = iTr[T G<] [24].

Qualitatively, the torque operator only measures the effect of the non-equilibrium spin

density, not the phenomena itself. Thus, while the Keyldish formalism can calculate the

resultant torque generated by the laser pulse, the physical origin for the LOT phenomena is

still undetermined. Several mechanisms have been discussed: i) optical intersite spin transfer
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(OISTR), ii) local ultrafast demagnetisation, iii) SOT induced by charge photocurrents, iv) STT

induced by spin photocurrents, and v) inverse Faraday effect (IFE).

While the OISTR can be a critical effect in AFMs [84], in Mn2Au the LOT excitation

energy ℏω = 1.5 eV is too small to interact with the bulk of the d-orbitals responsible for

the magnetisation (< -2 eV E −EF ). As discussed in Chapter 2, the magnetic moment and

exchange splitting are highly resistant to the high-temperature, disordered local moment (DLM)

calculations [56, 55]. Likewise, the LOT in [25] uses a constant broadening parameter Γ to

simulate the steady-state temperature, rather than comparing between the ground state and

DLM. This suggests that OISTR and local ultrafast demagnetisation do not contribute to the

LOT.

The spin and charge currents induced by linearly polarised optical excitation in Mn2Au

have been investigated in a follow-up study to the work in Freimuth et al. [83]. There, the

induced charge photo current, spin photo current, and inverse Faraday effect are analysed

for their symmetry properties. The photo currents for charge (propagating along i) and spin

(propagating along i with polarisation j) are both effects second-order with the electric field

polarisation and first-order in the Néel vector:

Ji = χ
(4sa)
i jkl E jE∗

k Ll

Q j
i = χ

(5sp)
i jklm EkE∗

l Lm

(3.12)

where the tensors χ
(4sa)
i jkl and χ

(5sp)
i jklm include the designation fourth-order staggered axial and

fifth-order staggered polar, respectively. This can be compared to the tensor symmetry for

the LOT found in [25]: fifth-order axial. Thus, while the charge photo currents and spin

photo currents do have allowed torques by symmetry, they do not match precisely the torque

symmetries for the LOT.

Lastly, [83] calculate the IFE resulting from laser pulses as the overall induced spin moments

in the unit cell. This is reported as the sum of all induced spin moments δS+ and the staggered

component of the spin moments δS− = 1
2 [δS(MnA)− δS(MnB)]. For a linearly polarised

optical frequency (ℏω = 1.5 eV) excitation and Néel vector along the easy axis [110], δS+z

gives a response which changes sign upon 90 degree rotation of the laser polarisation between
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ε ∥ x̂ and ε ∥ ŷ, with δS−z = 0. When ε ∥N or ε ⊥N, δS+z = 0, exactly in line with the symmetry

of the LOT in Fig. 3.1. This measurement gives the direct change to the spin moments resulting

in a canted state, rather than the induced STT or SOT fields generated by the spin photocurrents

or charge photocurrents, respectively, in Eqs. (3.12). In other words, the torque response

calculated in Eq. (3.6) measures the torque necessary to generate δS+, rather than the torque

generated by the canted moments.

The lifetime of the δS+z spin polarisation–represented as the effect of increasing broadening

Γ–shows a ≈ log(Γ) decay with increasing Γ, rather than the inverse relation seen in δS+⊥N and

δS+∥N (i.e., the in-plane components of the spin polarisation). This indicates the potential for a

separate band-dependence excitation for the out-of-plane component of the IFE compared to

the in-plane components.

Thus, while the symmetry analysis of the IFE, charge photo currents, and spin photo

currents suggests that the IFE is responsible for the LOT, more work remains to be done on the

effects of the photo currents on the AFM sublattice.

An additional comment can be made on the torque generated by the non-equilibrium spin

density: namely, that it is the spin density only contributing to the torque, with no contribution

from the orbital moment. Recently, a similar symmetry analysis to the work in [85] was

performed for the metallic altermagnet RuO2 [33] which did include the laser induced orbital

contributions, as well as a single element calculation of the laser induced orbital contributions

for transition row metals [86]. Both showed large orbital responses to optical frequency light.

However, no calculation was performed for the torque generated. [56] estimates the torque

from the orbital contribution of the SOT in Mn2Au (more details in Chapter 6), with the orbital

field around five times larger than the resultant spin field. This suggests the orbital component

of the non-equilibrium density could have important contributions to both the LOT and orbital

photo current excitations.

3.2.4 Laser Heating Temperature Effects

The thermal effects are modelled in the LLG Eq. using the TTM equations detailed in Sec.

2.1 with constants in Sec. 2.2. Fig. 3.2 gives example electron and phonon temperatures and
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Fig. 3.2 Transient TTM electron and phonon temperature for Fig. 3.9. Inset: corresponding
dynamic sublattice magnetisation length. Solid lines are the electron temperature, while the
dashed lines are the corresponding phonon temperature (several omitted for clarity).

sublattice magnetisation values for various laser intensities and pulse durations used in the

simulations.

The switching probability for simulations above 0 K are calculated using 10 random seed

LLG simulations with lattice size 75nm×75nm×10nm (periodic boundary conditions along x

and y) to simulate a thin film single domain structure. The application of the LOT for domain

wall driving is studied in Chapters 4, 5, but multi-domain, multi-grain switching with LOT is

an area for future research.

The Keyldish formalism in [24, 25] uses a constant broadening parameter Γ to simulate

disorder and finite lifetimes from thermal broadening with a 1/Γ relationship in the susceptibility

tensor. A Γ = 25 meV approximates a clean metallic sample at room temperature, though

recent experiments suggest the Γ value for Mn2Au may in fact be lower [20], leading to a

larger torque constant. This value takes into account the non-equilibrium disorder from the

laser excitation, so we hold it constant during the simulation. This is a sufficient approximation

provided the laser torque is faster than the predominant electron thermalisation (< 1 ps). For

longer pulse durations (> 1 ps), a time-dependent broadening parameter may be necessary.
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Fig. 3.3 Trace of sublattice magnetisation vectors switching from [110] to [−110] with
εεε ∥ ⟨010⟩. (Opaque): initial orientation. (Bar): precession axis. (grey): tp = 400 fs, I = 2
GW/cm2, (gold): tp = 400 fs, I = 4 GW/cm2, and (blue): tp = 3 ps, I = 5 GW/cm2, α = 0.001
(z magnetisation scaled for visibility).

Since a direct relationship between Γ and temperature is unknown, we hold it constant for all

simulations.

3.3 Results

3.3.1 Toggle Switching

The LOT modelled by Eq. (3.8) produces 90, 180, and 270-degree precessional switching of

the Néel vector in Mn2Au by exchange enhancement generated by the out-of-plane canting

as also seen in simulations of the SOT switching [72, 56]. Fig. 3.3 provides example of

sublattice magnetisation traces for 90 (grey and blue) and 180-degree (gold) switching. The

initial laser induced field causes an out-of-plane canting of the magnetisation, generating a

large non-staggered torque on the magnetisation sublattices to rotate the Néel vector.

We model the action of the LOT using four sequential pulses 400 fs long and 8 ps

apart for laser intensities I = 2 GW/cm2 (Hmax = 42 mT; blue) and I = 4 GW/cm2 (Hmax =

84 mT; gold). Each consequent pulse produces switching, as shown in Fig. 3.4. Note the
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absence of the Lz component; i.e. the Néel vector is rotated in-plane as also typical for the SOT

switching [20]. Unlike the SOT considered in [72, 27], the LOT has the additional feature of

changing sign during the switching: the intrinsic spatial symmetry defined in Eq. (3.8) ensures

the induced LOT changes its sign for any 90-degree rotation of the Néel vector. This allows

for both clockwise and counter-clockwise switching by means of the same laser polarisation,

i.e. toggle switching (see Fig. 3.4) reminiscient of the AOS switching seen from ferrimagnetic

thing films [75]. In contrast is the SOT torque, where the direction of the applied current needs

to be constantly inverted to change the handedness of rotation for 90-degree switching [13, 20].

180-degree switching is possible with LOT for the same laser polarisation used to generate

90-degree switching, but with strong enough intensities capable to induce larger out-of-plane

canting, providing more exchange enhanced torque for the Néel vector rotation (compare the

magnitude of the torques in (b) and magnetisation in (d) of Fig. 3.4). The 180-degree switching

events are in the same direction, consistently inducing an out-of-plane magnetisation with the

same sign.

Fig. 3.5 presents the switching phase diagrams as a function of laser intensity and duration

for two Gilbert damping parameters α = 0.001 and α = 0.01. The colour variation shows

intervals of 90-degree switching, typical for precessional switching. Importantly, the switching

can be produced by ultrafast laser pulses of several picosecond duration and even below. The

absorbed fluence of the sample is approximately linear with intensity and pulse duration [24, 83].

Remarkably, we observe an absorbed fluence of 0.5 mJ/cm2 (I = 0.3 GW/cm2, Hcrit = 6.34 mT)

is sufficient to induce switching on the sub-picosecond timescale for the smaller damping value

of α = 0.001. Increasing the damping parameter shows a linear dependence in the critical field

(see Fig. 3.5b), commensurate with the theory of SOT switching [27].

Analytically, the dynamic behaviour of collinear AFMs under staggered in-plane SOT fields

is discussed in [72]. Here, the critical field (Hcrit) for switching has been shown to depend on

the characteristic exchange, anisotropy, and induced magnetic fields. Following the method of

[72] - modified for the LOT induced field - the dynamics of the Néel vector in the xy plane can

be described by the following equation:
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Fig. 3.4 Toggle switching of the Néel vector with multiple optical pulses (a): laser intensity
of the pulse (400 fs) 8 ps apart. (b): total torque. Note that the Tz has been scaled 100x for
visibility. (dashed): Tx; (dot-dashed): Ty; (solid): Tz. (c): x and y Néel vector components LLLi =
(mmm1−mmm2)/2. Ls = µB. (dashed): ; (dot-dashed): Ly. (d): Net magnetisation mmmi = (mmm1+mmm2)/2.
ms = µB. (dashed): mx = my; (dash-dot): mz (scaled 200x for visibility). Blue lines show
90-degree toggle switching for four sequential pulses. Gold shows 180-degree toggle switching
for four sequential pulses.
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Fig. 3.5 Switching phase diagram in terms of laser intensity and duration. Colours represent
the end change of angle from starting orientation along [110]. The corresponding maximum
field strength for the laser intensity is given on the second y-axis. Solid colour lines show the
analytic Hcrit values from Eq. (3.15) (a) for α = 0.001. Black line: Hcrit = ω4∥/(2γ) = 5.16
mT. (b) α = 0.01 Black line: 10x Hcrit .
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φ̈ +
ω2

R
4

cos4φ − γωe
τ(I,ω)

µs
sin(2ϕ −2φ)+2αωeφ̇ = 0 (3.13)

where ωe = |5(J1 +4J2)|γ/µs is the AFM exchange frequency (ignoring the 2-ion anisotropy

term to good approximation), ω4∥ = 2γk4rot is the fourth order in-plane anisotropy frequency,

α is the atomistic damping parameter, γ is the gyromagnetic ratio, and ωR =
√

2ωeω4∥. The

parameter τ(I,ω)/µs corresponds to the amplitude of the LOT field. If the Néel vector is only

considered in the interval of its azimuthal angle φ ∈ [0,π/4], the critical field for infinitely long

pulse lengths is Hcrit = ω4∥/(2γ): a factor of 2 larger than for SOT [72, 27], due to the sin2φ

dependence of the LOT field. Analytically, our constants predict an Hcrit = 5.16 mT, matching

well with our simulations (see horizontal line in Fig. 3.5a).

For short pulse lengths the critical switching field can be evaluated as

Hcrit

Hcrit(τ → ∞)
= coth

(
2tp

τe
√

2π

ωR

ωe

)
, (3.14)

where τe ≈ π/(2ωe) is the timescale of the exchange interaction (characteristic precessional

time for the Néel vector for rotation over 90-degrees), which is then scaled in Eq. (3.14)

by
√

2π/2 to account for the Gaussian profile of the laser pulse. Then, τp can be called the

characteristic pulse duration τp = 2τeωe/ωR such that coth(2)≈ 1 [72, 27].

Importantly, only for high intensities and short pulse duration is the inertia generated by

the exchange torque susceptible to overshooting, either to the [−1−10] (180-degrees) or even

[1−10] (270-degrees) states (orange and light blue colour in Fig. 3.5). Qualitatively, this is

illustrated by the gold track in Fig. 3.3 For pulse lengths beyond 1 ps: rather than continually

drive the precessional switching using exchange enhancement, the long pulse duration has

the Néel vector precessing along the laser polarisation axis (blue curve in Fig. 3.3). The

timing of these precessions follows the characteristic exchange period, and can be modelled

by modifying Eq. (3.14) to take into account the additional precessions around the LOT

polarisation vector: for n precessions, the minimum pulse time to switch the Néel vector at

high intensity is proportional to the exchange precession timescale and precession number,

4nτe
√

2π . This gives a rough approximation to the critical field and laser pulse time:
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Hcrit(τ,n) = nHτ→∞
crit coth

(
2tpωR

nτe
√

2πωe
− 4nτe

√
2π

tp

)
(3.15)

The analytical estimates of fields and pulse durations are presented in Fig. 3.5a), showing

a good agreement for n ≤ 3 with the lowest damping value, especially considering the

approximations made. Since the precession frequency of these excitations are determined

by the exchange and anisotropy values, it represents an activation of the in-plane AFM THz

mode–an unusual opportunity to activate a THz mode using optical excitation. Importantly,

this represents an opportunity for all optical toggle switching where the driving mechanism is

predicted to be induced fields, rather than thermal activation (see Sec. 3.3.4 for temperature

simulations).

3.3.2 Preferential Switching

Eq. (3.6) shows that the quadratic reliance on the electric field polarisation of the generated

torque in Eq. (3.8) allows a shift of the maximum torque away from the easy axis by rotation

of the laser polarisation vector. Contrary to the toggle switching caused by ϕ ∥ [±100] or

[0±10] displayed in Fig. 3.4, shifting the azimuthal angle of the laser polarisation will create

an asymmetric torque profile, influencing the Néel vector dynamical path from the four easy

axes (see Fig.3.6).

Thus, the magnetisation will experience a larger torque when starting from only two of

the four easy axis directions, giving a preference between clockwise and counter-clockwise

switching (Fig. 3.6). This breaks the four-fold degenerate easy axis into "large" and "small"

generated torques.

Fig. 3.7 shows the phase diagram of laser pulse intensity and duration which distinguishes

between non-toggle (preferential) switching and toggle switching for starting orientations [110]

(Fig. 3.7a) and [−110] (Fig. 3.7ab). The switching area labelled "toggle" switching in Fig. 3.7

is the region where both starting orientations switch either 90 or 180 degrees. Furthermore,

Fig. 3.7a has preferential right-handed switching for the [110] orientation at low fluence, with

toggle switching for both orientations at higher fluence and middling pulse duration. A 45
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Fig. 3.6 Magnetisation trace of preferential switching under asymmetric torque. (Dark blue
line): relative size and direction of the out-of-plane torque as a function of the magnetisation
direction for electric field polarisation ϕ ∥ 5π/8. Opaque shows comparable torque and field
sizes further along the path of motion from the easy axis. Note the unequal torque generated
between clockwise and counter-clockwise motion. (Faded blue line): the same for ϕ ∥ π/2.
Gold vectors denote relative field size and direction.
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Fig. 3.7 Switching phase diagram for off-easy axis laser polarisations. (a)ϕ = 5π/8 and (b)
ϕ = 3π/8 showing (a) preferential right-handed switching for starting magnetisation vector
orientation [110] vs (b) preferential left-handed switching for starting orientations [−110].
White spaces correspond to a lack of switching.
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degree rotation of the laser polarisation changes the sign of the preferential torque, making

left-handed switching from [−110] easier at low fluence (Fig. 3.7b). Either laser orientation

can be used to preferentially write the Néel vector to a desired orientation without changing the

polarisation angle by using variable pulse duration/intensity (as shown in the next section).

3.3.3 Deterministic Switching

The preference for rotation direction and starting orientation can be used in combination with

the toggle switching achieved by the same laser polarisation but with more intense pulses to

deterministically control the Néel vector. Though the preferential switching provides only

two control options: "small" and "large" torques, anisotropic magneto-resistance (AMR)

measurements typically used to determine the magnetic state in antiferromagnets [13] depend

only on the parallel component of the Néel vector "aligned" or "anti-aligned" with the resistance

measurement vector in Hall devices. Thus, the π/4 and −π/4 (3π/4 and −3π/4) Néel states

can be considered equivalent starting orientations for AMR measurements, so 90 or 180

degree switching from both starting orientations can be considered as toggle switching (the

notation used in the previous section for Fig. 3.7). To demonstrate how preferential and toggle

switching pulses from the same laser polarisation could be used to switch the Néel vector

deterministically, we simulate a series of four laser pulses of varying intensity for each of the

four starting orientations.

Fig. 3.8 details the Néel vector dynamics following sequential laser pulses with starting

AFM order parameters along each of the MCA easy axes with laser polarisation parallel to the

5π/8 azimuthal angle. The pulses are separated by 16 ps to allow the magnetisation to return

to equilibrium. The second pulse is scaled to have more intensity than the others (Fig. 3.8a ).

Fig. 3.8b shows that the first, "small" pulse failed to switch the 3π/4 and −π/4 orientations,

but switching took place with the second, "large" pulse. Now that the magnetisation has been

reoriented to the quadrant which experiences the maximal torque, it does successfully switch

following a small pulse. This dependence is shown with the π/4 and −3π/4 orientations as

well: since they start their magnetisation in the maximal torque quadrant, they show switching
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Fig. 3.8 Dynamics of the Néel order parameter showing deterministic switching. Four
sequential pulses of 400 fs width and 16 ps apart. Each panel shows the Néel vector starting
along each easy axis. The second pulse has an intensity of 2.6 GW/cm2; all others are 2
GW/cm2. Light polarisation is parallel to the angle ϕ = 5π/8.
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Fig. 3.9 Stochastic switching result for toggle, preferential, and deterministic laser
polarisations. Switching probability for a grain 75×75×10 nm3. (a) with laser polarisation
along ϕ = π/2. Laser intensity I = 0.4 GW/cm2. Unpolarised (thermal-only) laser pulses (not
shown) have very low switching probability. (b) Probability of switching depending on starting
orientation. Laser polarisation along ϕ = 3π/8. Laser intensity I = 0.3 GW/cm2. Blue and
yellow data both represent 90 degree switching, but in different directions. (blue): left-handed
switching. (yellow): right-handed switching. (c) Same laser polarisation as (b). Laser intensity
increased to I = 1.2 GW/cm2. Data legend the same as (b).

following the first, "small" pulse, as well as the second and third pulses, but not the fourth,

since the magnetisation has moved to a minimum torque quadrant.

3.3.4 Temperature

A full analysis of temperature effects on LOT switching in multi-grain, multi-domain systems

is beyond the scope of this article and would require a very large system size and large

statistics. Here we consider a single domain, single crystal structure thin film, (75×75×10

nm3) with periodic boundary conditions along x̂ and ŷ, with thickness similar to the ones

experimentally studied in [79, 78, 87]. As seen in other temperature switching models [56, 27,

82], the inclusion of temperature lowers the anisotropy barrier for switching and introduces

the superparamagnetic effect, which is system-size dependent. To confirm the absence of the



3.4 Summary 47

superparamagnetic effect for our domain volume size, we ran ten LLG random seeds for 80

ps and observed no spontaneous switching. As is seen in Fig. 3.9a, in the absence of LOT

and the presence of laser heating, this system does not present the superparamagnetic effect.

Moreover, the transient heating from the laser pulse for intensities we consider is not enough to

fully quench the magnetisation, and successive pulses do not raise the lattice temperature of the

system substantially, which could potentially damage the sample. We calculate the switching

probability for this grain. The results in Fig. 3.9a show the toggle switching with the probability

approaching one in a range of pulse durations for a given intensity and ϕ = π/2 polarisation.

Fig. 3.9b shows the preferential right-handed vs left-handed switching probabilities for a

rotated ϕ = π/3 laser orientation on different Néel vector starting orientations. Thus, the

addition of temperature to the simulations lowers the energy barrier for the system, but the

laser heating for low fluence is not substantial enough to remove the anisotropy energy barrier

and very high switching probability is obtained for our domain size consistent with the phase

diagrams calculated at 0K.

3.4 Summary

By means of atomistic spin dynamics simulations with LOT we predict the possibility for

metallic AFM all optical switching (AOS) on the sub- and low picosecond timescale. The

unique symmetry relations of this torque prioritise 90-degree toggle switching for long pulse

times, but also allow 180 or 270-degree switching provided sufficiently large pulse intensities

are used.

Importantly, repeated laser pulses do not drive the order parameter continuously clockwise

(counter-clockwise) like SOT/STT excitations, but instead provides toggle switching to the

Néel vector.

We also predict that rotation of the laser polarisation to generate a quadrant-asymmetric

torque introduces an additional level of control to the switching process, allowing for preferential,

non-toggle switching. Temperature simulations which include the effects of laser heating on
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the metallic sample show results consistent with the 0K diagrams. These results suggest the

significant opportunity the LOT could provide for deterministic AOS in AFM spintronics.

The efficiency of the LOT may be preferred to other AOS methods. The minimum pulse

intensity and fluence necessary to switch on the low sub-picosecond timescale using the LOT

is estimated 1 GW/cm2 and 0.65 mJ/cm2, respectively. This is compared to the fluence for

GdFeCo AOS in [75] of 4.4 mJ/cm2 and the 6.51 mJ/cm2 for Fe ultrafast demagnetisation

generating spin current which is used for the STT switching in [63]. Additionally, the LOT has

the advantage of not needing to be applied over short fs time scales to outpace the large laser

heating effect from large intensities [82].

The category of the torque as an optical-frequency excitation also has direct implications for

ease of experimental procedure: the generation of THz frequencies is a non-trivial procedure,

and metallic AFM switching using THz excitation remains hampered by insufficient effective

electric fields [20]. The LOT may thus offer a more accessible route to activating THz AFM

modes for room-temperature spintronic devices, even with the large frequency discrepancy

between the laser pulse and AFM mode. This application could be extended to Mn2Au

heterostructure systems with exchange bias or multi-domain systems used for neuromorphic

computing [88] where THz activation through current or STT is less-preferable.

Applications of this torque method could be done in place of (or in conjunction with)

spin-injected SOT/STT and intrinsic NSOT control methods to improve the efficiency of

switching [72], domain wall driving [60], or THz generation [89, 90]. Moreover, this work

seeks to expand the efficacy of second order laser coupling schemes for AFMs: while the

results presented here are specifically for Mn2Au, we extend the comment in Freimuth et al.

that LOT is not unique to Mn2Au [25]; second order terms with exotic and useful symmetries

have been calculated to exist for altermagnets RuO2 and CoF2 [33] and even the 2D van Der

Waals FM Fe3GeTe2 [91]. While the effects of second order optical coupling has been used to

switch insulating AFMs at cryogenic temperatures [26, 92], their effects have not been studied

for metallic AFMs. As the study and characterisation of asymmetric AFM responses to external

stimuli continues, more materials of relevant symmetry should be included in the theoretical
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and experimental study of optically generated spin torques beyond the first order coupling

traditionally explored for metallic magnetic materials.





4

Domain Wall Driving Using Laser Optical Torque

4.1 Introduction

The study of domain walls (DWs) is of significant interest to spintronics for their potential

applications in racetrack memory and computing, neuromophic computing, and reservoir

computing [93, 88]. They can be naturally driven by unpolarised charge currents [94, 95], but

are also sensitive to temperature [60, 96], temperature gradients [97, 19, 98], SOT and STT

[99], and magneto-optical effects [100, 101]. Chapter 6 shows how a DW itself can be a useful

tool for controlling spin injection in multilayer systems, but for neuromorphic computing they

serve as a control feature for two disparate magnetic domains [88]. As with SOT-STT MRAM

devices, the perpendicular resistance measurement will change as a ratio of the domains in

the thin film [102]. AFMs are a natural choice for this category of device, as they avoid the

high-power requirements to move FM DWs at fast-velocities without encountering Walker-

breakdown of the magnetic texture [103, 104]. Numerous forms of DWs exist, especially

for FMs, but for the case of AFM DWs we focus here on those with in-plane magnetisation.

The most general definition of a DW is that it is the transition magnetic texture between two

magnetic domains and will naturally take a form which minimises the energy of the texture. In

our case we can describe the transition with an analytic solution based on the soliton solution

of the Klein-Gordon equation (the so called sine-Gordon solution). The width of the DW is the

determining factor for DW driving (in AFMs), and the width is governed by the gradient of
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exchange interactions along the direction of the DW and the in-plane anisotropy stabilising the

two domains [17]. This chapter serves to introduce the analytic background behind AFM DWs

and their motion and demonstrate the ability of the LOT (introduced in Chapter 3) to efficiently

drive and control these DWs, along with its possibility to nucleate additional magnetic textures

beyond the original two domains in the system.

4.2 Methods

4.2.1 Analytic Domain Wall Description

The magnetisation landscape extant between two domains orientated at 90◦ to each other

can be described by a solution to the Euler-Lagrange equation containing the exchange and

anisotropy energy throughout the DW. To achieve this, we shall first rewrite the extended

Heisenberg Hamiltonian for Mn2Au in terms of orthogonal unit vectors l = 1
2(SB −SA) and

n = 1
2(SA +SB), as done in similar fashion as [105, 106] and based on the pioneering work of

[107, 108]. For this Hamiltonian we also make use of the tetragonal symmetry for the in-plane

4th order anisotropy, rather than the rotational form in Eq. (2.25), in order to better match the

analytic formalism of the previous works referenced above. This gives the Hamiltonian in this

chapter as:

H(n, l) =
1
2

An2+
1
8

a(∂xl)2+ |K2⊥|(l · ẑ)2− K4⊥
2

(l · ẑ)4−
K4||
2
[
(l · x̂)4 +(l · ŷ)4]+2γℏl ·HLOT,

(4.1)

where the first two terms encapsulate the exchange energy contributions in a continuum limit,

given by the homogeneous exchange constant A = 16|Jatom
1 | and the inhomogeneous exchange

constant a = 8a2
0(J

atom
3 + |Jatom

1 |/2), respectively. It is important to note the AFM J2 interaction

along the ẑ axis of the tetragonal unit cell is disregarded in this analytical treatment, as it was

shown previously to have a negligible influence on the in-plane 180◦ DW dynamics of a Mn2Au

thin film [106]. Also of note is the analytic distinction in the exchange constants of energy per

atom, connected by a factor of 1/2 to our constants defined as energy per link. We maintain
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this assumption in the case of our in-plane 90◦ wall dynamics. The Zeeman-like energy term

containing the HLOT makes use of the relationship µ0µs = 2γℏ.

Different to the description of 180◦ DWs in [17], our Hamiltonian includes the K4||

anisotropy contribution in addition to the K4⊥ and K2⊥ terms, while it disregards the second-

order, easy-axis contribution labelled K2|| in [106]. For ease of calculation, in this analytical

model we align the K4|| easy-axes along x̂ and ŷ, rather than the ±π/4 axes of the crystal

structure. This rotated symmetry does not affect the result of the formalism. Note another

factor of 1/2 in the definition between upper case anisotropy K defined as energy per unit cell

volume, and the anisotropy defined in Table 2.1 with lower case k as energy per atom.

The LLG equation for a two sublattice magnetisation system (SA, SB) can in the limit

α ≪ 1 be written in a Landau-Lifshitz (LL) form:

ṠA =−γSA ×HA
eff − γαSA × (SA ×HA

eff), (4.2)

ṠB =−γSB ×HB
eff − γαSB × (SB ×HB

eff). (4.3)

Coupling the two sublattices are the two effective magnetic fields Hn,l
eff = − 1

2γℏ
δH(n,l)
δ (n,l)

defined with respect to the Hamiltonian in Eq. (4.1) and corresponding to the n and l vectors.

HA,B
eff in equations (4.2), (4.3) satisfy the following relationships:

HA
eff = Hn

eff +Hl
eff, (4.4)

HB
eff = Hn

eff −Hl
eff. (4.5)

Based on equations (4.2), (4.3), (4.4) and (4.5) it is possible to reduce the dynamics of our two

sublattice magnetisation system in the exchange limit |n| ≪ |l| to the form below [109, 105,

106]:
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l̇ = γHn
eff × l, (4.6)

ṅ = (γHl
eff −α l̇)× l. (4.7)

Writing the explicit forms of the Hn
eff terms in equation (4.6) removes the n vector dependence

for the system. Hence, the system of equations (4.6), (4.7) can be rewritten solely in terms of

the Néel order parameter l [109, 107, 108]:

l×
[

∂
2
x l− 1

v2
m

l̈− 4
a

∂Hani

∂ l
−hopt −η l̇

]
= 0, (4.8)

where we collectively represent the distinct anisotropy contributions via the umbrella term

Hani = |K2⊥|(l · z)2 − K4⊥
2 (l · z)4 − K4||

2

[
(l ·x)4 +(l ·y)4]. hLOT is the reduced field hopt =

8γℏ
a HLOT. a is the same inhomogenous exchange constant in Eq. (4.1). vm =

√
aA/(4ℏ) =

43.39 km/s is the so-called "magnon speed" governed by the exchange interactions. η = 8αℏ/a

is the dissipation constant containing the small damping constant α .

One last transformation is performed to describe the dynamics of the system in spherical

coordinates. The relationship of the Cartesian coordinates to the coordinate of the system is:

l ≡ ur = cosφ x̂+ sinφ ŷ, (4.9)

uφ =−sinφ x̂+ cosφ ŷ, (4.10)

uθ =−ẑ. (4.11)

Finally, in this new coordinate system Eq. (4.8) reduces to the familiar SG-like equation below:

∂
2
x φ − 1

v2
m

φ̈ − 1
4∆2

0
sin4φ = 0. (4.12)

where ∆0 =
√

a/(8K4||) = 50.8 nm is now the DW width factor. Eq. (4.12) gives the time-

varying and spatially varying solution for the Néel vector angle φ . At the moment, the
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contribution from the driving field HLOT and thus the dissipation factor η are not included

in order to relate the DW width factor ∆0 to the spatially-varying magnetisation solution by

reducing the expression to a second-order differential equation in space. The configuration

energy of the DW at rest is now expressed as:

E =
a
8
(∂xφ)2 −K4∥ sin4φ , (4.13)

We can now reintroduce the ±π/4 easy axes of the system with no loss of generality and

apply the boundary conditions of the two domains ∂xφ (x →±∞) = 0 and φ (±∞) = (±π/4)

to reduce the second-order differential equation above to first-order in space:

√ p
K4∥

(∂xφ) = 8Q sin2φ , (4.14)

where Q =±1 represents the DW chirality. Integrating the previous expression, taking into

account that the DW centre position x0 can be defined as φ (x = x0) = 0, it can be found that:

∫
φ(x)

π/4

∂φ

sin2φ
= 8Q

√
K4∥
a

∫ x

x0

∂x (4.15)

which allows us to obtain the spatial dependence of the in-plane azimuthal angle, φ :

φ (x) = arctan
(

exp
{

Q(x− x0)

∆0

})
− π

4
. (4.16)

For our simulations we analyse a DW with Q value +1. The sin of the azimuth can now give

the magnetisation component my of the DW:

my = me sinφ = me sin
(

arctan
(

exp
{

x− x0

∆0

})
−π/4

)
(4.17)

4.2.2 Laser Optical Torque

To obtain the time-dynamic solution for Eq. (4.12), we reintroduce the LOT field HLOT and

dissipation term η . For ease of calculation in the analytical model above, we performed a 45◦

in-plane rotation such that the easy-axes point along the x̂ and ŷ Cartesian directions instead.
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Fig. 4.1 Diagram of the LOT symmetry across a 90◦ DW.

For this reason, the angular variation of the LOT acting on the Néel vector l from Eq. (3.8) in

Chapter 3 also needs to be adjusted here to:

HLOT =
1
µs

T (I)cos(2ϕ −2φ)ẑ× l (4.18)

The symmetry of the induced fields from Eq. (4.18) follows the same relationship as in Fig.

3.1. To drive a 90◦ DW, care must be taken in choosing the laser polarisation angle ϕ . Because

of the change in torque sign, the only polarisation angle which gives uniform torque across the

domains and DW is ϕ =±π/4, which results in maximal torque at the centre of the DW where

φ = 0 (Fig. 4.1a). Alternative polarisations along ϕ = π/2 or ϕ = 0 result in mismatched

torque on the domains (Fig. 4.1b). This can have the result of widening or contracting the DW

without a change in position x0. These results are considered later, but not in the context of the

sine-Gordon solution. For now, the polarisation angle is fixed to ϕ = π/4.

A unique consequence of the LOT torque symmetry is its apparent inability to drive 180◦

DWs. This can be understood as a consequence of the same polarisation requirements to drive

90◦ walls, except there is no polarisation angle which produces uniform torque on the system.

This is visualised in Figs. 4.2b and 4.2a. Again, the LOT could be used to widen or contract

these 180◦ DWs, but their appearance in Mn2Au is not supported by experiment [13, 110].

The laser polarisation can be oriented along ±π/4 to produce equal but opposite torques

to drive the DW forward or reverse, depending on the handedness of the DW configuration

rotation (Q factor in Eq. (4.16)). Because of the four-fold anisotropy symmetry, there are

thus eight combinations of DW configuration and laser polarisation. Fig. 4.3 shows three
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Fig. 4.2 Diagram of the LOT symmetry across a 180◦ DW.

Fig. 4.3 DW and torque configurations. (a) Mapping the in-plane Néel vector orientation
in the magnetic track along the unit circle. We display the four possible 90◦ DW boundaries
corresponding to the K4|| easy directions. Taking as reference the Néel vector parallel to the
[110] diagonal, we can obtain two DW geometries with right and left handedness, labeled (b-1)
and (b-2) respectively. The corresponding spin configurations are displayed in subplot (b).
Distinctly, the (b-3) wall geometry is driven towards −x̂. Figure courtesy of P. Gavriloaea in
[23].

example calculations of the torque and configuration symmetry to describe the forward or

reverse motion.

Mapping the spin configuration along the unit circle, one can trace the eight possible 90◦

DW geometries in our bi-axial AFM. The direction of motion depends on the sign of the

torque relative to the handedness of the wall. We assign C = +1 for right-hand side DW

handedness (clock-wise spin rotation) and C =−1 for left-hand side DW handedness (counter

clock-wise spin rotation). Since the torque maintains its sign across the DW configuration,

we can distinguish two situations, positive and negative torque T LOT = ±1. If the product

T LOTC is positive, the DW will displace towards +x̂, otherwise the motion will take place
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in the opposite direction. In Fig. 4.3b we exemplify this behaviour for three distinct DW

configurations. Taking as a reference the Néel vector parallel to the ⟨110⟩ direction in subplot

(a), we construct two 90◦ DW configurations following a right or left-hand side rotation along

the unit circle. The corresponding spin arrangements labeled (b-1) and (b-2) can be observed

in subplot (b) of Fig. 4.3. Both T LOT and C change their sign in between the two geometries,

hence the product T LOTC remains positive and the DW displacement direction is preserved.

Depending on the sign of T LOT, the resulting in-plane rotation of the Néel vector will take place

in opposite directions. T LOT =+1 gives rise to counter clock-wise rotation, while T LOT =−1

promotes clock-wise rotation. To maintain the DW direction of motion, the handedness of

this in-plane rotation must oppose the handedness of the wall. Therefore the T LOT change of

sign in between configurations (b-1) and (b-2) matches this requirement and thus preserves the

direction of motion towards +x̂.

The situation changes if we compare the (b-2) and (b-3) 90◦ DW profiles. Here the T LOTC

product changes sign which promotes displacement in opposite directions as confirmed by our

ASD simulations. Taking as reference any other 90◦ DW configuration along the unit circle in

Fig. 4.3a, we observe the same behaviour.

4.2.3 Domain Wall Driving

For the sine-Gordon solution then, steady-state motion is achieved when the Zeeman energy

from the induced field is balanced by the dissipation term η . The reduced field hLOT is then

described as:

hLOT =
8γℏ

a
HLOT =

8γℏ
a

TLOT
l × l =−8γℏAsin(2φ)

a
uθ ×ur =−hLOTuφ . (4.19)

This gives the full macrospin solution for the DW:

∂
2
x φ − 1

v2
m

φ̈ − 1
4∆2

0
sin4φ −hLOT sin(2φ)−ηφ̇ = 0. (4.20)
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The velocity of the DW under steady-state motion is v0 = 4∆0hLOT/η , with the exchange

components a ultimately cancelling to give the velocity dependent only on the width factor,

field, and damping constant. The factor of four comes from the 90◦ DW. In real simulation

variables, the steady-state velocity in the linear regime from a driving HLOT is:

v0 = 4γ∆0HLOT/α (4.21)

Beyond the linear regime approaching the saturation velocity, the relationship is more

complex. A well known behaviour of AFM solitons, mainly discussed previously for 180◦

DWs [99, 16, 17], is the Lorentz invariance of Eq. (4.20). Since the magnon limit vm functions

as the "speed of light" for the medium, a soliton velocity at an appreciable percentage of this

limit must undergo the appropriate Lorentz transformations:

∆(v) = ∆0

√
1− v2

v2
m

(4.22)

which is the traditional length contraction. Since the width of the DW affects the steady-state

velocity, the contracted width must be used to calculate the resultant velocity. This can be

rearranged to solve for the velocity in terms of the width factor at rest ∆0 and the effective field

HLOT:

v =
vm√

1+ v2
m

v2
0

(4.23)

For 90◦ DWs under traditional SOT driving, the Lorentz contraction in Eq. (4.22) is much

more difficult to derive due to non-zero torque on the boundaries changing the boundary

conditions used to derive Eq. (4.16). Methods to address this are discussed in Chapter 6, but is

not applicable here under LOT driving.

The driving mechanism comes from the staggered fields induced on the Mn sublattices

generating a non-staggered torque on the Néel vector. This engages the exchange enhancement

from the AFM exchange to rotate the spins, driving the DW.
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Fig. 4.4 Numerical results and SG predictions of steady-state 90◦ DW dynamics. (a)
Steady-state velocity for simulation LOT field for damping parameters α = 10−2 and α = 10−3

and tetragonal and rotational forms of the anisotropy. Points represent the data and lines the
analytic calculation from Eq. (4.23). (b) Contraction of the DW width as a function of the
propagation velocity.

4.3 Results

For our atomistic simulations we use thin wire one unit cell tall (z = 0.86 nm) and two unit cells

wide (y = 0.66 nm) with periodic boundary conditions along y only. The laser pulse follows

a square profile with 30 ps maximum intensity and a half Gaussian profile of 8 ps to give the

DW smooth excitation to reach the steady-state velocity in order to compare with the analytic

expressions (Fig. 4.5c, Fig. 4.7c). The track length was 5000 nm to prevent the DW being

driven out of the system. ASD simulations with a larger cross-section were performed at 0 K to

confirm agreement with our unit cell track.

Fig. 4.4 shows our results for maximum steady-state velocity and minimum width factor

for increasing laser intensities (converted to field for Fig. 4.4a) for better comparison with

[99, 17]). In this result we also perform simulations with the rotational in-plane anisotropy

described in Eq. (2.25), rather than the tetragonal form used in the sine-Gordon derivation for

the DW motion. The results show no serious deviation from the analytic model once the change

in rest width is used for Eqs. (4.22) and (4.23) (17.39 nm vs 50.9 nm), showing clear Lorentz

invariance of the rotational anisotropy (an analytic discussion of the impact of rotational and

tetragonal forms of anisotropy on the DW is in Chapter 5). The saturation velocity is slightly

larger than the calculated magnon speed of 43.39 km/s. For the tetragonal form, the fit to Eq.
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(4.22) for the data in Fig. 4.4b gives vm = 45.4 km/s. The rotational form has a slightly higher

vm = 45.79 km/s (better seen in the saturated velocity of Fig. 4.4). This slight deviation in

vm could be from asymmetries in the DW profile which are a departure from the sine-Gordon

soliton solution.

Another application of the LOT to DWs could be its use in proliferating new, additional

textures beyond the starting two domains. Fig. 4.5 shows this occur for a DW accelerated

with a field beyond the magnon limit. Emanated spin waves moving at vm trail behind the

supermagnonic DW (see Fig. 4.5a) in an effort for the DW to lose effective mass (see [16, 111]).

The DW is no longer following the soliton solution for Eq. (4.20), as both the leading and

trailing edge of the DW no longer follow Eq. (4.16). This enhances the LOT driving, forming

a resonance effect to further increase the velocity of the magnetic texture. Nucleation occurs

when the energy of the texture overcomes the energy barrier necessary to nucleate an additional

DW pair [16]. The topological nature of this new texture depends on the LOT symmetry and

DW configuration, as in Fig. 4.3. Fig. 4.5e shows this new DW pair configuration. The original

wall and the new 90◦ wall function as an effective 180◦ wall, and are thus locked in place by

the LOT (see Fig. 4.2a). Larger laser intensities affect the equilibrium distance between the pair

of DWs, and the system will relax into a stable pair provided they do not overlap other textures.

This result confirms the possibility from Figs. 4.2b and 4.2a for the LOT to manipulate, but not

drive, 180 ◦ textures.

The second 90◦ wall continues to propagate in the same direcction as the original, steadily

building up new effective mass (see Fig. 4.5b). Continued driving of the DW, or driving with

higher laser intensities, sees further nucleation of magnetic texture. The stability of these

textures after laser excitation is determined by their distance and topological character [16].

The pair of spin textures are stable in a reasonable time frame achieved by atomistic simulations

after the laser pulse is stopped, provided they do not overlap.

Since the Zeeman energy contribution always remains zero in our case, as the geometry in

Eq. (4.18) maintains Hopt
i always perpendicular to the local spin direction Si, the question is,

therefore, from where does the energy required for the nucleation of additional magnetisation

textures arise? In subplot (a) of Figure 4.5, we represent the azimuthal angle φ along the
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Fig. 4.5 Proliferation event in the supermagnonic regime. (a) φ (x,t) variation along the track
during the 90◦ DW displacement and nucleation. (b) Energy variation during the nucleation.
Subplots (a) and (b) share the time legend. (c) Laser intensity protocol with peak laser intensity
of I = 0.65 GW/cm2. (d-e) Schematics of the Néel vector configuration corresponding to
the purple and green shaded regions in (a), at t1 = 40 ps and t8 = 90 ps respectively. Figure
courtesy of P. Gavriloaea in [23].

track during a 90◦ wall displacement excited via a half-Gaussian, laser pulse of peak intensity

I = 0.65 GW/cm2 (see laser profile in subplot c). Time-steps t1, t2, t3 show the characteristic

low-frequency SW, lagging behind and broadening the width of the 90◦ DW as it is pushed

beyond the magnonic barrier. A gradual, corresponding decrease in the exchange energy is

evidenced by subplot (b). Due to the competition between the anisotropy and exchange energies,

this broadening cannot indefinitely take place, forcing a rebound process characterised by a

contraction of the wall. A drastic reduction of the DW width can be observed between t3 and t4

along with a large increase in the exchange energy. This continuous deformation leads to the

appearance of oscillatory patterns at the front of the propagating wall, which on a ps time-scale

invest part of the relativistic energy carried by the DW towards the nucleation of an additional

magnetisation texture, as evidenced at t4 and t5. Visible at t6, t7 and t8, the initial spin structure

morphs into a static magnetisation texture pinned around the x = 3.5 µm mark, while its surplus,

relativistic energy is invested towards pushing ahead a novel spin structure.

The physical origin of the effect relies on the rapid transfer of relativistic energy from a

propagating DW near the magnonic barrier into new stable magnetisation textures. Comparing

snapshots t3 and t5, we estimate the energy transfer across the track from the parent to the child

magnetic texture takes place with an average velocity of 89 km/s (0.89 µm travelled in 10 ps),
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Fig. 4.6 DW expansion and contraction under rotated laser polarisation. The steady-state
topological charge of the DW under

largely exceeding the magnonic limit for a pure soliton or spin wave. Further work is needed

to characterise the critical intensity needed to nucleate these new textures in a deterministic

manner, as the addition of temperature to the DW is likely to make nucleation a stochastic

process (see Chapter 5). Likewise are the effects of temperature and laser heating on the DW

driving investigated in the next chapter.

We have also investigated the use of the LOT to manipulate static DWs, rather than drive

them. Fig. 4.1b shows a laser polarisation which does not produce torque to drive the DW.

Instead, a laser polarised along ±π/2 will either expand or contract the DW, depending on the

configuration handedness. Fig. 4.6 shows this effect as a function of the laser intensity. Unlike

the laser polarisation angles used to drive the DW in Fig. 4.2, the angles used to expand/contract

the DW do exert a non-zero torque on the domain boundaries of the system–leading to the

non-conserved topological charge seen in Fig. 4.6. This makes describing the system using the

SG solution difficult. Qualitatively, it can be observed that the width expansion/contraction

(also reported in Fig. 4.6 as the topological charge) shows an asymptotic approach to the limits

of the DW geometry. For the expansion, this limit is given by the critical switching field (see

Chapter 3. For contraction, the theoretical limit is given by the exchange of the system, and is
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far beyond a reasonable laser intensity. The DW width under contraction reaches an appreciable

minimum value at a larger intensity than the expansion polarisation overcomes the in-plane

anisotropy of the system. This has interesting effects for systems with multiple domains–each

experiencing expansion or contraction–which will be studied in more detail at a later date, as it

has implications for AFM spin pumps and DW springs using optical control [112–114].

Fig. 4.7 displays the DW width vs. time for this phenomenon for three increasing

laser intensities. The oscillation frequencies of the DW widths are independent of the laser

intensities. The phase of the frequency, however, changes between the laser polarisations

expanding/contracting the DW. The opportunity for the LOT to excite DWs without driving them

presents new opportunities for AFM characterisation. Recent experiments with Mn2Au|NiFe

bilayers have shown the ability to differentiate the relative Néel orientation distribution in a

multidomain sample between all four in-plane easy axes using THz excitation [113]. With the

additional level of symmetry in the LOT compared to the SOT driven by THz excitation, the

use of optical frequency characterisation of AFMs is of significant interest to AFM spintronics.

4.4 Summary

In conclusion, our simulations and analytic model reveal the possibility to drive a 90◦ AFM

DW under the novel LOT introduced in Chapter 3. Interestingly, this excitation protocol does

not allow the motion of 180◦ DWs, but can affect the width. In the same way, 90◦ DW walls

can be manipulated without driving depending on the laser polarisation and DW configuration.

Since the contracted DW is at an elevated soliton energy, the relaxation will mimic a relaxing

magnetic spring, emanating spin waves as it decays to the ground state. This could be used for

sensing or memory applications, or to generate THz emissions. Chapter 6 explores the effect

DWs have on spin currents, so an oscillating DW in combination with an injected or intrinsic

spin current could be a source of THz charge currents.

An important result of our simulations is the driving efficiency of the LOT for 90◦ DWs.

Typical experiments of laser-induced DW dynamics in FMs make use of fluences in the range

of a few mJ/cm2 which amount to intensities normally in the 1 and 10 GW/cm2 interval for
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Fig. 4.7 DW expansion and contraction dynmics under varying laser intensities. Figure
courtesy of P. Gavriloaea in [23].
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DW motion on the order of m/s [115, 116]. In comparison, we predict kinematics up to the

supermagnonic limit (v = 46 km/s) by single pulse excitation below 0.3 GW/cm2, though effort

will need to be made to control the thermal heating generated by the laser pulse (see Chapter

5). Manipulating highly non-linear dynamics in magnetic systems may play an important role

in the development of future reservoir computing archetypes [117–119]. We envision thus a

combined, opto-electronic experimental scheme towards the realisation of a multiple-node

reservoir. Driven by an optical input, fast and periodic nucleation events could be manipulated

in an AFM DW fabric [120]. The anisotropic magnetoresistive effect [121] allows an output

electrical signal to be correlated to changes in the magnetic texture, thus posing an interest for

pattern recognition and prediction applications. The use of LOT in AFM materials could be an

opportunity for ultra-low energy driving and reading of AFM textures at room temperature.



5

Temperature-dependent magnetic properties of the

antiferromagnet Mn2Au

5.1 Introduction

Antiferromagnetic (AFM) materials are a key feature in nearly all magnetic recording devices.

More recently, it has been discovered that using the AFM as the active element, instead

of a ferromagnet, could massively outperform conventional devices in terms of mechanism

speed and energy consumption/dissipation [122, 123, 66, 124–127]. AFMs are especially

interesting due to their intrinsically ultrafast dynamics and higher data density. One of the

most promising materials for these devices is Mn2Au due to its high Néel temperature [10],

low in-plane anisotropy [128], and high conductivity [20]. In electrically driven switching of

AFMs the necessary current densities are very high, and the resultant Joule heating thermal

effects become especially important [129–132, 13]. Thus, it is essential to understand the

role of thermal spin fluctuations and temperature dependent magnetic properties of AFM

materials. A correct account of the thermal effects is especially important when modelling

spin-orbit-torque magnetisation dynamics and switching in nanoscale systems, which can be

done with atomistic [133, 134, 60, 135, 136] or micromagnetic [137–140] simulations. For

the latter, effective models (where thermodynamic averages of the sublattice spin order are

used), the knowledge of the temperature scaling of the magnetic anisotropy–the micromagnetic
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exchange stiffness–and the domain wall width become crucial for a realistic modelling of

electrically-induced spin-orbit-torque magnetic switching.

In this Chapter, we present atomistic spin dynamics (ASD) simulations of the intricate

temperature dependent magnetic properties of Mn2Au, guided by previous ab initio calculations

[141, 142]. Taking into account the description of two-ion anisotropy in Shick et al. [142], we

introduce a modified uniaxial term to the exchange tensor for 2nd order anisotropy. Likewise,

we calculate the different temperature scaling of the azimuthal and rotational anisotropies

governing the domain wall dynamics of the system. Through calculation of the temperature

dependent domain wall width we reconfirm the temperature dependence of the micromagnetic

exchange energy simulated from constrained Monte Carlo modelling. This provides an exact

analytical expression for the domain wall profile with rising temperature for low temperature

up to the thermal breakdown of the 4th order anisotropy at ≈ 800K. Our findings strengthen

our understanding of Mn2Au and open the door to an accurate theoretical exploration that can

pave the way to all-AFM spintronic applications.

5.2 Methods

5.2.1 Hamiltonian

In developing spin Hamiltonians it is important to consider the thermodynamic context in

which they are used. In particular, it is important to take note of the origin of the anisotropy

itself. For example, in the case of uniaxial anisotropy of order l and azimuthal angle θ , if

the anisotropy has a single site origin, the usual form E(θ) ∝ sinl
θ will be applicable for

all temperatures. However, if the anisotropy has a 2-site origin as in Mn2Au (usually from

an exchange anisotropy) the above form will be applicable only at 0 K, where the spins are

fully aligned. In this case the temperature-dependence of the anisotropic contribution to the

Hamiltonian will not be physically reproduced by a single-ion term. The departure comes from

the treatment of temperature-dependent anisotropy and exchange in the atomistic Hamiltonian.

The formalism for anisotropy allows for two implementations:
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• As an anisotropic exchange term describing its fundamental origin, or

• with isotropic exchange and single-ion anisotropic contribution

As discussed in Chapter 2, the origin of the anisotropy is distinct between the two implementations,

but are equivalent at 0 K. The intrinsic link between exchange, lattice, and temperature, however,

makes the effect of temperature on anisotropic exchange difficult to untangle for both DFT

and experimental fields. For atomistic Hamiltonians and single-ion anisotropy, there is little

difference between the two implementations above, as the exchange and anisotropy are not

temperature-dependent constants. But for macroscopic Hamiltonians, careful parametrisation

is necessary in order to produce constants which accurately reflect the effect of temperature on

exchange and anisotropy for both inter- and intra-cell constants. For bimetallic systems with

large two-ion anisotropic contributions to exchange (e.g., Mn2Au, IrMn [41], and FePt [143]),

the origin of the anisotropy must be respected even for the atomistic Hamiltonian. Thus, this

sections presents construction of our atomistic spin Hamiltonian guided by the physical origin

of the anisotropic contributions for each order of crystal symmetry in the phenomenological

Hamiltonian [41]:

E(θ ,φ) = K2⊥ sin2
θ +K4⊥ sin4

θ +K4∥ sin4
θ cos4φ , (5.1)

The tetragonal lattice symmetry phenomenologically follows the symmetry orders presented

in the equation above (Eq. (5.1)), giving three non-zero anisotropy symmetry contributions. To

distinguish our atomistic Hamiltonian constants from the macroscale constants in Eq. (5.1),

we will use lower case k for atomistic constant and upper case K for macroscale. A note is

first made about the unit conversion from ab initio calculations to this work: the foundational

anisotropic contributions calculated by Shick et al. in [41] utilise a tetragonal lattice symmetry

with two fundamental unit (f.u.) cells per crystal lattice. Since the anisotropy constants are

reported as energy density, we convert from energy per volume to energy per atom by noting

four magnetic atoms present in the tetragonal lattice, giving two atoms per f.u.. This factor of

two has already been taken into account for the constants in Table 2.1.
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Experimentally, it has been observed that the Akulov-Zener-Callen-Callen [144–146]

relation (ZACC):

k(me) = ml(l+1)/2
e (5.2)

where l is the power order of the anisotropy (e.g. 2nd, 4th, etc.) often describes the macroscopic

parametrisation of the anisotropy with reduced magnetisation me = ⟨m⟩/ms from increased

temperature. In order to allow our atomistic spin Hamiltonian to produce anisotropy and

exchange constants which follow the ZACC relation, we describe the phenomenological

Hamiltonian in Eq. (5.1) using orthogonal functions which maintain the power order l

of the symmetry. The usual sinl
θ power expansion of anisotropies in Eq. (5.1) are not

orthogonal functions and so do not produce accurate temperature-dependent constants with

our ASD simulations. For time-dynamic solutions using the LLG equations of motion, this

is especially important due to the torque derivatives necessary to produce the effective field

creating anisotropy terms of different order. Specifically, this is a problem for the 2nd and 4th

order uniaxial contributions K2⊥ and K4⊥, respectively, in Eq. (5.1). We therefore express the

uniaxial anisotropies as an orthogonal function following the spherical harmonic expansions

shown in [147]. The 4th order in-plane term corresponding to K4∥ sin4
θ cos4φ is already

orthogonal in the Cartesian basis, and can be expressed in Cartesian coordinates the following

way:

Substituting into the energy density expression E = K4∥ sin4
θ cos4φ using cos4φ =

8cos4 φ −8cos2 φ +1 gives

E =K4∥ sin4
θ
(
8cos4

φ −8cos2
φ +1

)
E =K4∥

[
8sin4

θ cos4
φ −8sin4

θ cos2
φ + sin4

θ
]
.

The polar coordinate substitution uses sin2
θ = 1− cos2 θ , giving:
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E =K4∥
[
8sin4

θ cos4
φ −8(1− cos2

θ)sin2
θ cos2

φ +(1− cos2
θ)2]

E =K4∥
[
8sin4

θ cos4
φ −8(1− cos2

θ)sin2
θ cos2

φ +1−2cos2
θ + cos4

θ
]
.

Substituting for Sz = cosθ , Sx = sinθ cosφ then gives

E =K4∥
[
8S4

x −8S2
x(1−S2

z )+1−2S2
z +S4

z
]

E =K4∥
[
1+8S4

x −8S2
x +8S2

xS2
z −2S2

z +S4
z
]
.

Equivalently, the energy can be expressed in terms of Sy through the substitution S2
z =

1−S2
x −S2

y :

E =K4∥
[
1+8S4

x −8S2
x +8S2

x(1−S2
x −S2

y)−2(1−S2
x −S2

y)+(1−S2
x −S2

y)
2] .

E =K4∥
[
1+8S4

x −8S2
x +8S2

x −8S4
x −8S2

xS2
y −2+2S2

x +2S2
y −2S2

x −2S2
y +2S2

xS2
y +S4

x +S4
y
]
.

which reduces to give

E = k4r(S4
x −6S2

xS2
y +S4

y) (5.3)

where k4r = K4∥/2 is the atomistic, rather than macroscopic, constant.

The 4th order uniaxial term follows a straightforward transformation to Cartesian coordinates

using the identity sin2
θ = 1− cos2 θ and Sz = cosθ :

E =K4⊥(1−2cos2
θ + cos4

θ)

E =K4⊥(1−2S2
z +S4

z )

Orthogonality is maintained by adding a small 2nd order contribution to match the spherical

harmonic form in [147]. This shifts the anisotropy into the form:
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E = k4(S4
z −

6
7

S2
z ) (5.4)

where k4 = K4⊥/2 and the constant value has been removed because it does not contribute to

the energy landscape of the Hamiltonian. The contribution 40
35k4S2

z added to the 4th order term

must be subtracted from the 2nd order term.

K2⊥ K4⊥ K4∥
Mn2Au -2.44 0.02 0.01

Au -2.72 0.01 0.01
Mn2 0.28 0.01 0.00

Table 5.1 Element resolved anisotropy constants from Shick et al. [148]. Units in meV per
f.u..

The dominant anisotropy is the two-ion, 2nd order, uniaxial term with a negative component,

giving a large in-plane preference for the magnetisation. The two-ion contribution occurs from

large spin-orbit coupling in the Au layers enhancing the 3d −5d exchange splitting [41]:

E =−k5d
2⊥χ

2
∑
α,i j

Ji,α
3d−5dJ j,α

3d−5dMi,α
3d,zM

j,α
3d,z

χ is the local spin susceptibility and k5d
2⊥ is proportional to the spin-orbit coupling parameter

ξ 2
5d , determined through self-consistent second-variational procedure. Table 5.1 gives the

element resolved contribution to the three anisotropies in Eq. (5.1). The Ji,α
3d−5dMi,α

3d,z term

above suggests that the two-ion contribution is proportional to the Au and Mn bonds. We

have used this proportionality and the J1 and J2 exchange couplings to describe the calculated

anisotropy constant K2⊥ as a tensorial correction to the exchange constants [143]. (While Shick

et al. do not report the SOC parameter for the Au species, [56] estimate an effective SOC

coupling parameter ξ = 46 meV from the energy shift between the d3/2 and d5/2 resonances).

This is done by relative weight of the exchange constants J1 and J2. First, the easy

plane anisotropy is given by K2⊥ = 2.44 meV/f.u which becomes −1.95444×10−22 J/atom.

Removing the 2nd order component added to the 4th order term k2⊥ = −1.95444× 10−22 −

1.60218× 10−24 ∗ 40/35 = −1.9727506× 10−22 J / atom. Note this value is already the
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one shown in Table 2.1. Then, the relative exchange contributions determine the two-ion

distribution: the total isotropic AFM exchange is −(4∗1.0942959+1∗1.469234)×10−20 =

−5.8464176×10−20 J/atom. The fractional contributions to the exchange are:

J1/JAFM = ε1 = 1.0942959/5.8464176 = 0.18717374893

J2/JAFM = ε2 = 1.4692340/5.8464176 = 0.25130500428

The contribution of the anisotropy to each exchange value is then

k2⊥J1/JAFM = 0.18717374893∗1.9727506×10−22 = 0.00369247125×10−20 J/atom

k2⊥J2/JAFM = 0.25130500428∗1.9727506×10−22 = 0.00495762097×10−20 J/atom

An exchange tensor incorporates the isotropic and 2-ion exchange contributions JT
i j, with

Jxx,Jyy,Jzz + ε jk2⊥ for inter-sublattice interactions as an addition to the usual isotropic terms

[149]. Note that the anisotropic contribution values < 10−26 can be truncated due to the

time-step size.

We combine the exchange tensor above with Eqs. (5.4) and (5.3) to give the new atomistic

spin Hamiltonian:

H=−∑
i< j

SiJi jS j − k4 ∑
i

(
S4

i,z −
6
7 S2

i,z

)
− k4r ∑

i
(S4

i,x −6S2
i,xS2

i,y +S4
i,y). (5.5)

We make two notes regarding the two-ion anisotropy composition above. First, for a more

complete description of the effect of the two-site polarisation on exchange, one would have to

redo the ab initio calculations of Schick et al. with site-resolved contributions for exchange and

construct the spin Hamiltonian from those data. This would include the effect of the two-ion

source on the 4th order uniaxial and in-plane anisotropies. This effect, however, is minimal

compared to the dominant 2nd order anisotropy. Second, Shick et al. calculate element specific

contributions to the anisotropy orders. With minimal spin-orbit coupling on the Mn terms (see

column K4∥ in Table 5.1), it is likely that only the Au contribution is enhanced by the Mn

exchange splitting. Thus, the 2nd order anisotropy is likely a combination of single and two-ion
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contributions, though the two-ion contribution (-2.72 meV/f.u.) is larger than the single-ion

(0.28 meV/f.u.).

5.2.2 Domain Wall Analysis

In Chapter 4 we previously gave the formalism describing a 90◦ DW. That formalism is extended

to this chapter in order to study the temperature-dependent magnetic properties of our new

Hamiltonian, as well as the effects of DW driving at elevated temperatures. The fundamental

Hamiltonian used in Chapter 4, expressed here for reference, described the in-plane 4th order

anisotropy using a tetragonal form:

H(n, l) =
1
2

An2 +
1
8

a(∂xl)2 + |K2⊥|(l · ẑ)2 − K4⊥
2

(l · ẑ)4 −
K4||
2
[
(l · x̂)4 +(l · ŷ)4] , (5.6)

This can be shown to be equivalent to the Hamiltonian in Eq. (5.5) by returning to the

generic tetragonal basis. Then, considering only the in-plane anisotropy due to the sine-Gordon

dependence only on k4r, the in-plane tetragonal form for a generic basis is:

E =
K4∥
2

[
(Si · û1)

4 +(Si ·u2)
4
]

(5.7)

x̂, ŷ and ẑ represent the unit Cartesian basis with û1 =
1√
2
(x̂+ ŷ) and û2 =

1√
2
(x̂− ŷ) for

the easy axes along ±π/4. This can be re-written in spin-component form as

E =
K4∥
2

[[
Si · (x̂+ ŷ)√

2

]4

+

[
Si · (x̂− ŷ)√

2

]4
]

This leaves

E =
K4∥
8

[
(Six +Siy)

4 +(Six −Siy)
4
]

E =
K4∥
8
(
S4

ix +4S3
ixSiy +6S2

ixS2
iy +4SixS3

iy
)
+
(
S4

iy +S4
ix −4S3

ixSiy +6S2
ixS2

iy −4SixS3
iy +S4

iy
)
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which after gathering terms reduces to the the Cartesian expression in Eq. (5.5) and inserting

the atomistic anisotropy for the macroscopic constant gives:

E =
k4r

8
(
S4

ix +6S2
ixS2

iy +S4
iy
)
. (5.8)

The rotated easy axes in Eq. (5.6) can be recovered directly from Eq. (5.7) by letting û1 = x̂

and û2 = ŷ. By comparing the coefficients in Eqs. (5.8) and (5.6) to the expression in Eq.

(5.3), it is apparent a factor of eight connects the two formalism. This exists as a factor of two

between the macroscopic and atomistic constant and a factor of four between the Cartesian

expressions. Thus, while the analytic descriptions of the DWs in Chapter 4 apply to the results

in this Chapter, a factor of eight is needed in the DW width factor to bring parity between

the spherical description in Eqs. (5.1) and (5.3) and the tetragonal description in Eq. (5.7).

Since this change in coefficients occurs at the level of the Hamiltonian, the DW width itself is

affected, rather than it being a superficial change to the analysis. As such, this Chapter will

continue under the Hamiltonian introduced in Eq. (5.5), with the relevant changes made to

the coefficients in the sine-Gordon solution. This factor can be introduced to the sine-Gordon

Hamiltonian in Eq. (5.6) with a change only in the coefficient of the resultant DW width factor

∆0. Since we are interested in the temperature-dependent properties of the DW, we include in

our notation now the temperature-variable exchange and anisotropy parameters for the DW

width factor.

∆(0) =

√
A(0)

4 ·8K4∥(0)
= 8.65 nm (5.9)

The DW width factor enters into the spatial dependence of the in-plane azimuthal angle the

same way in Eq. (4.16), repeated here for reference:

φ =

(
arctan

(
exp
{

x− x0

∆(0)

})
−π/4

)
(5.10)

For comparison with experimental results, the solution given by the sine-Gordon equation

may no longer reflect the physical nature of the DW. In particular, the Bloch definition given
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x

y
z

ϕ

+π /4

−π /4

Fig. 5.1 90◦ DW lattice profile. Arrows above show the Néel vector along the DW direction x̂.

by ∆(0) does not reflect the length that the magnetic texture occupies extent between the two

domains. As a consequence of this, it is possible to represent the DW width in such a way that

it accounts for the slope of the in-plane azimuthal angle, φ , which translates into a value δdw

through the conversion δdw = 2π ∆(0)/
√

2. These scaled values are the ones reported in the

results and so called the DW width, as opposed to ∆(0) the DW width factor.

5.2.3 Simulations

Computationally, we perform ASD simulations on systems with variable length along x and

set width and height of (l ×7.7×7.7) nm3 with periodic boundary conditions along y and z.

For systems without excitation, we use a 1000 nm track. For DW driving, we use up to 3000

nm. The DW direction along x gives no variation in y or z, and we confirm our operation in the

exchange limit by fitting the DW width factor to the magnetisation of atomically thin slices

along y and z with minimal statistic variance. In order to better collect thermodynamic data

in the microcell approximation, we fit Eq. (5.11) to the average magnetisation in atomically

thin microcells with dimensions 0.65×7.7×0.14 nm3. This allows an approximation for the

sublattice magnetisation expectation value ⟨me(T )⟩= ⟨m⟩/ms above 0 K. To fit the microcell

magnetisation to the DW width factor and DW centre x0, we use a modified Eq. (4.17) from

Chapter 4:
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me(T )sinφ = me(T )sin
(

arctan
(

exp
{

x− x0

∆(T )

})
−π/4

)
(5.11)

where me(T ) is either the microcell average or the calculated value from the modified phenomenological

Curie-Bloch law in Eq. (2.17). The modified Curie-Bloch law gives excellent agreement to the

experimental magnetisation (see Fig. 2.5), and allows for rescaling of the temperature term in

the Langevin thermostat to better reflect the quantum nature of the stochastic field (Eq. (2.16)).

For the DW, we initially directed half of the Mn sublattices of the system along the [110] and

[−1−10] directions, while the other half have been defined between the [1−10] and [−110]

axes. The spatially inhomogeneous region between both domains was initialised according to

the expected soliton solution given in Eq. (4.17). Subsequently, the system was first thermalised

using a Monte Carlo preconditioning algorithm, then allowed to equilibrate for 20 ps, followed

by 80 ps of data collection (250 ps for driving simulations). At elevated temperatures, the DW

becomes highly diffusive. We compensate for this by fitting Eq. (5.11) to each configuration

snapshot, allowing the determination of the wall width parameter ∆(T ). At T = 0 K we find

∆(0) = 8.64 nm, in very good agreement with the analytic value ∆(0) = 8.65 nm.

Experimental measurements of the macroscopic Gilbert damping suggest a low value of

λG = 0.008 [20]. Due to the high degree of crystalline order, we explore a range of atomistic

damping constants λ = 0.1−0.001.

5.3 Results

5.3.1 Temperature-dependent anisotropy

For the temperature dependence of the anisotropy and exchange stiffness, we use a constrained

Monte Carlo calculation [50] with an adaptive move [49] (see Chapter 2). 5000 averaging MC

steps per temperature point gives low variance in the magnetisation. Due to the symmetry of

the system, we are able to separate the rotational anisotropy in the x− y plane from the polar

contributions along the z-axis by choosing special constraint angles in the CMC simulations.

The restoring torques for the rotational anisotropy are given by τττ =−∇E4r which for the special
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Fig. 5.2 Anisotropy geometry and temperature scaling. (a) Simulated torque curve and
anisotropy energy for the rotational anisotropy of Mn2Au at T = 0 K, normalised to the
rotational anisotropy constant k4r compared to the analytical result. (b) Computed temperature
dependent normalised anisotropies (points) k⊥2 and k4r plotted against the normalised sublattice
magnetisation < me >. Lines show low-temperature fits to the expected temperature dependent
scaling of k⊥2 (n) = n2.32, expected for pure 2-ion anisotropy [150, 149], and k4r(n) = n9.77,
expected for 4th order rotational anisotropy from the ZACC scaling law.

case of θ = 90◦ is τz|θ=90◦ = 4k4r sin4φ . For the case of θ = 90◦, the azimuthal anisotropies

k⊥2 and k4 both have zero torques dE/dθ ,φ |θ=90◦ = 0 and so do not contribute to the torque

curve. The simulated total torque and corresponding anisotropy energy are shown in Fig. 5.2a.

It can be seen that there is a maximum for the torque at φ = 22.5◦ and so we use this point to

calculate the temperature dependent anisotropy, applying a quadrature rule [50] to determine

the integral of the torque using a single constraint angle.

Uniquely determining the temperature scaling of the large easy-plane anisotropy using

quadrature as above is not possible due to the presence of a finite torque from the rotational 4th

order component; however, it is possible to remove the torque arising from the 4th order uniaxial

anisotropy by choosing a suitable angle of theta where the 4th order torque is zero, given by

θ = arccos
(√

15/35
)
≈ 49.1◦. Since the easy-plane anisotropy k⊥2 is an order of magnitude

larger than the rotational torque, removing the uniaxial torque allows us to uniquely determine

the scaling of the easy-plane anisotropy, using a single angle calculation at θ = 49.1◦,φ = 0

and applying the quadrature rule.
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The scaling of the anisotropies with the sublattice magnetisation me is shown in Fig. 5.2b.

At low temperatures the anisotropies follow the expected scaling relations, fit by k′2⊥(me) =

k2⊥m2.32
e for two-ion [150] and k′4r(me) = k4rm9.77

e for the 4th order anisotropy. Although not

presented here, the 4th order uniaxial anisotropy k4 follows the same scaling relation as the

rotational term, with k′4(me) = k4rm10
e . The temperature-dependent sublattice magnetisation

follows the modified Curie-Bloch scaling law Eq. (2.17), allowing parametrisation of the

anisotropy scaling (K(T )) with temperature instead of magnetisation.

5.3.2 Temperature-dependent exchange stiffness in Mn2Au

Due to the different directionality of the exchange interactions in the unit cell, where the AFM

contribution denoted by J1 contributes both along the thickness of the sample and through a

non-zero projection on the xy FM basal planes, it becomes complex to find constriction angles

to isolate their individual effects as we did with the anisotropy-based contributions. Instead, the

effective single-moment exchange stiffness can be calculated by sampling the thermodynamic

energy landscape of a Néel vector fixed in-plane, rotated through its antiparallel to perpendicular

state along the x̂ coordinate to produce a spin-spiral, at increasing temperatures. In the exchange

limit that the magnetic texture along ŷ and ẑ remains uniform and the spin gradient along x̂ is

small, this method gives the exchange stiffness A(T ) for increasing temperature.

Fig. 5.3 shows the scaled anisotropy constant and exchange stiffness with increasing

temperature. Our calculation gives an A(0) value of 2.91×10−11 J/m–a value dependent on

the exchange constants used. The temperature dependence of A gives a good fit to the scaling

law me(T )1.83. This scaling matches well with the expected FM-like trends in AFM materials

with 2-ion anisotropy according to Rózsa and Atxitia [150]. We note that this exponent arises

from a fit over the whole temperature range, which is used later to parametrise the temperature

dependence of the domain wall width. A fit at low temperatures (< 200 K) gives an exponent

of 1.68, agreeing with the value given in Ref. [150]. From spin wave theory, the departure

from the FM exponent 2− ε by a value of ε = 0.32 ought to appear in the two-ion exponent

as 2+ ε . A result which is indeed shown in Fig. 5.2. Combining our calculations for the

temperature-dependent anisotropy and the exchange stiffness we are able to investigate the



80 Temperature-dependent magnetic properties of the antiferromagnet Mn2Au

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

A
(T
)/
A
(0
),
K
(T
)/
K
(0
)

Temperature (K)

Simulation: A(T)

k4r(T)

Fit: me
1.83

me
9.77

Fig. 5.3 Exchange stiffness and anisotropy stiffness calculations scaling with temperature.
Low Temperature (< 200 K) fit for exchange stiffness returns an exponent of 1.68.

temperature dependence of the DW width for a direct comparison with the computational

results in the following section.

5.3.3 Temperature dependent domain wall width

Sapozhnik et al. [128] report a DW best fit using the ratio 0.5×10−4 ≤ 8K4/(|J1|+2J3)≤ 2×

10−4. A difference in the configurational energy based on the f.u. cell (Sapozhnik et al. Eq. 2)

vs geometric unit cell (Eq. (5.6)) gives a factor of 2 between the analytic results. This scales the

Sapozhnik et el. fit for the f.u. cell correction (1×10−4 ≤ 4k4rot/(Jxx
3 +

∣∣Jxx
1

∣∣/2)≤ 4×10−4),

giving a domain wall width w range of 7.37 to 30.37 nm. This relates to a δdw value of 14.73

to 60.74 nm. At 300 K our simulations calculate a DW width δdw(300K) = 2π/
√

2∆(300K)

of 42 ±4.5 nm, well within the experimental margin. It is important to note that Shick et

al. calculate their K4∥ value with an uncertainty of ±50%. This gives an ab initio range of

27.17 ≤ δdw ≤ 54.33 nm. Recent, more precise, DFT calculations with a 25% uncertainty

report k4r = 6.321×10−25 [151]. Still well within our range of values.

In view of Eqs. (5.11) and (2.17) and the results in Sec. 5.3.1, a non-zero temperature will

not only weaken the in-plane anisotropy-based energy landscape–blurring the magnetic soliton

transition–but also reduce the sublattice magnetisation in the domains. Atomistically, this is
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Fig. 5.4 DW sublattice magnetisation component profile for a) 0K, b) 300K. (light blue):
minimum fit width and points. (gold): maximum fit width and points.

caused by fluctuating moments away from the easy axes. This has a result that as the thermal

effects increase the DW spatial extent characterisation becomes less accurate, as it can be seen

in Fig. 5.4. In addition, both the DW widths and positions must be extracted from the data, lest

a time average of the magnetisation fail to capture the hard axis magnetisation profile.

Fig. 5.5 shows time resolved data averaged for several random seeds. The standard

deviation is of the time-averaged positions for increasing damping constants, and is comparable

to the DW diffusivity. The need for averaging over several random seeds to calculate the

diffusivity is an artefact of the size of the simulation system: even small thermal field exerting

an uncompensated torque at the DW centre–where the rotational anisotropy torque is maximum–

will generate large in-plane fluctuations of the atomic magnetisation [152]. This is the same

exchange enhancement phenomenon used to switch domains and drive DW walls in Chapters 3

and 4, respectively. Such excitations are also the cause of the sizeable variation of the average

DW widths seen in Fig. 5.6.

MC simulations, by their very nature, minimise this broadening through a different thermal

activation process than the Langevin thermostat, avoiding strong uncompensated fields. The

MC simulations produce results analogous to LLG simulations with large damping in Fig.

5.5. Provided the DW is at thermodynamic equilibrium, the magnetisation averaging process

in the MC simulation can reduce variations in width. The intrinsic a-dynamic nature of

MC simulations can, however, lead to problems where the DW is stuck in a high energy

configuration. Thus, at high temperature the large number of MC steps required for a sufficient

average is computationally comparable to LLG simulations. A Fourier transform of the LLG



82 Temperature-dependent magnetic properties of the antiferromagnet Mn2Au

0

15

30

45

60

75

200 300 400 500 600 700

S
ta
nd
ar
d
D
ev
ia
tio
n
(n
m
)

Temperature (ps)

LLG
λ = 0.001

0.01
0.1

400

600

0 20 40 60 80

P
os
iti
on

(n
m
)

Time (ps)

Fig. 5.5 DW random motion under thermal activation. Main: Standard deviation of the
time-averaged positions for different random seeds for different damping parameters. Inset:
Fit DW position at 300K for LLG random seeds with damping parameter λ = 0.001 and MC
simulation. (Blue line): averaged LLG position. (Gold line): MC position. (Blue dashed): LLG
random seeds.

7

8

9

10

11

12

13

14

15

0 1000 2000 3000 4000 5000 6000 7000 8000

D
om

ai
n
w
al
lw
id
th
(n
m
)

Time Step

LLG
MC

Fig. 5.6 Fit DW width factor during simulation for LLG and MC simulations. Temperature:
400K. α = 0.001.



5.3 Results 83

5

10

15

20

1 2 3 4 5 6 7 8 9 10

A
m
pl
itu
de

(a
.u
.)

Frequency (THz)

λ = 10-3
λ = 10-2
λ = 10-1

Fig. 5.7 FFT of the DW width for various LLG damping parameters.

simulation time resolved data from Fig. 5.6 shows clear activation of a THz mode at 0.88 THz

(Fig. 5.7), which is a DW–rather than AFM–mode proportional to
√

k4r [104] (despite its close

value to the THz AFM mode in Eq. (2.26)). The FFT in Fig. 5.7 for α = 0.001 and α = 0.01

show peaks at ≈ 0.88 THz. Increasing damping contributes larger thermal noise and suppresses

the lifetime and effect of the excitation.

Analytically, the results in Secs. 5.3.2 and 5.3.1 make their way into the DW width factor

by way of Eq. (5.11). When discussing the exchange stiffness and anisotropy scaling with

DWs, however, it is more common to utilise hyperbolic solutions for the spatial dependence of

φ [153–155]. There, the DW width factor is a direct calculation from A(T ) and K(T ):

∆(T ) =
2
π

√
A(T )
K(T )

. (5.12)

where the factor of π/2 allows conversion between the width factor in Eq. (5.12) and the width

factor derived for the sine-Gordon Hamiltonian used in Eq. (5.10).

For comparison between the simulations and parametrised results in Fig. 5.8 we normalise

the width factor to the T = 0 K value of ∆(0) from Eq. (5.9). Taking the fit values from Fig.

5.3, we describe the DW width factor as a parametrised function of temperature:
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∆(T ) = ∆(0)

√
me(T )1.83

me(T )9.77 . (5.13)

The average DW width factors at finite temperature during 80 ps of simulations thus give good

agreement with the width factor calculated from Eq. (5.14). For easy description of the DW

width factor based only in temperature and not the magnetisation, the modified Curie-Bloch

law which gives the sublattice magnetisation as a function of temperature (Eq. (2.17)) can be

inserted into Eq. (5.13) and reduced to give:

∆(T ) = ∆(0)

(
1−
(

T
TN

)2
)−1.318

(5.14)

where for our constants TN = 1225 K. It is important to note, however, that the parametrisation

above may not be true for cases where the magnetisation does not follow the modified Curie-

Bloch law in Eq. (2.17), as will be shown later for TTM simulations.

Fig. 5.8 shows the average DW widths for increasing temperature for LLG and Monte Carlo

simulations compared to the equation parametrised from the exchange and anisotropy scaling
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with temperature Eq. (5.14). We see no significant difference in the average widths calculated

from the Monte Carlo simulations or LLG simulations with varying damping parameters.

Thermal activation of the DW boundary causes oscillations to the soliton’s instantaneous

width profile, giving a distribution of values which increases with temperature. The averaged

data agrees strongly with the parametrised calculation, up to the temperature threshold where

thermal activation can overcome the in-plane anisotropy barrier (≈ 800 K).

5.3.4 Domain Wall Motion

The effect of increasing temperature on DW motion can be qualified into two categories:

diffusion, which is the nature of the DW to drift under stochastic conditions, and viscosity,

which is how easily the DW moves under a driving force. Qualitatively, it is understood that

DWs become more mobile at increased temperature. The velocity for 90◦ DWs driven by the

LOT in Chapter 4 can be given by:

vLOT = 2γHLOT
∆(T )/α (5.15)

Approximating the minimal temperature impact to α , this equation should scale with the DW

width factor. To compare with the 0 K results presented in Chapter 4, we equilibrate then excite

a DW using the anisotropy constant k4∥ and the tetragonal Hamiltonian in Eq. (5.6). This has a

0 K DW width factor ∆(0) = 50.2 nm (giving a DW width δdw far outside the experimental

bounds [57, 156]). The width, however, does not change the analytic form of the equations to

describe the DW at 0 K (as shown in Fig. 4.4), so we have not changed the results of Chapter 4

in light of the improved constants and Hamiltonian derived here.

At 300 K, the DW width factor ∆(300K), according to Eq. (5.14), is 54.46 nm. Eq. (4.21)

then gives a steady-state, linear regime velocity of 30.7 km/s. Since this is an appreciable

value of vm, the steady-state Lorentz transformed velocity is only ≈ 25 km/s. The exact

relationship between temperature and the magnon limit vm–determined by exchange–is not

known, as thermal excitation now involves the out of plane exchange constant J2, previously

irrelevant to the sine-Gordon solution, as well as the reduction of the exchange stiffness with
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decreased magnetisation at temperature. Thus, for simplicity we note only the comparison that

the maximum velocity achieved in Fig. 5.9–a static temperature simulation–is ≈ 30 km/s, an

apparent improvement in the driving efficiency predicted by the 0 K analytic descriptions.

As shown in Chapter 3, however, the effects of transient laser heating on the metallic system

can have considerable impact to the magnetisation dynamics. To better simulate the effects of

long pulse times on the DW, we involve the TTM introduced in Chapter 2 and utilised in Chapter

3. For pulse times beyond 10 ps, temperature dynamics between the magnetic thin film and the

substrate need be taken into account. The TTM simulates this effect by phenomenologically

cooling the phonon temperature to the starting temperature of the substrate (modelled as an

infinite heat sink due to the large difference in heat capacities). The characteristic cooling time

τe used in Eq. (2.23) is the time for the system to cool to half its maximum temperature. Since

different substrates for Mn2Au exist, we show the effect various characteristic cooling times

have on the temperature dynamics in Fig. 5.10. τe = 100 ps corresponds to slow cooling typical
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of an insulating substrate [61], while τe = 20 ps is more in line with a metallic HM substrate

[157].

Moving towards simulating more physical DW models, we use the in-plane anisotropy

constant k4r and Hamiltonian in Eq. (5.5) which gives a DW width at 300 K δdw(300K) = 43

nm. The commensurate width factor is ∆(300K) = 9.78 nm. For a laser intensity I = 0.075

GW/cm2, the induced HLOT is 2.2 mT, giving a linear velocity of 15 km/s according to the 0

K results in Chapter 4. The resultant velocity in Fig. 5.11b shows the average DW velocity

failing to meet this prediction, even when taking into account the larger width during laser

heating. The diminished actual velocity compared to the calculated value could be a result

of uncompensated stochastic fields in the Langevin term larger than the relatively minimal

HLOT causing nonphysical DW drift. However, removing the more spurious random seed paths

shown in Fig. 5.11 increases the maximum velocity to only 7 km/s, compared to 3 km/s.

This suggests that rather than non-physical motion skewing the data, the diminished velocity

is a result of finite size effects, akin to the super-paramagnetic effect for small magnetic

domains. Since the driving mechanism for the DW is inertial rotation generated from exchange

enhancement, even small changes to the Sz atomistic moments can overshadow the LOT. Larger
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Fig. 5.11 LOT driving including TTM for laser intensity I = 0.075 GW/cm2 (total fluence
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Fig. 5.12 TTM with unpolarised light for laser intensity I = 0.075 GW/cm2 (total fluence
J = 12 J/m2). The parametrised width is according to Eq. (5.14) using the time resolved TTM
electron temperature Te.

DW volume simulations are necessary to remove this effect, with increased lattice parameters

along ŷ and ẑ, rather than x̂, in order to increase the DW volume. For comparison, we simulate

a laser excitation using unpolarised light to study the effect of transient TTM heating on the

DW without generated torque.

The TTM heating in Fig. 5.12 without LOT shows remarkable similarity to the LOT driving

simulation in Fig. 5.11. The fit widths both show significant broadening which follows the

parametrised prediction using the transient Te from the TTM. The unpolarised simulation,

however, does not show the same driving velocity in the LOT simulation, revealing there is a

net effect of the LOT, even with finite size effects.
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Fig. 5.13 Largescale simulations with LOT driving including TTM for laser intensity I =
0.075 GW/cm2 (total fluence J = 12 J/m2). The parametrised width is according to Eq. (5.14)
using the time resolved TTM electron temperature Te.

Largescale simulations increasing the volume of spins around the DW reduce these

excitations attributed to finite size effects. By increasing the depth of the lattice from 8

nm to 40 nm, spurious torques in the DW can be reduced. The width in Fig. 5.13a fits well the

parametrised value using the TTM Te, even without the averaging effect from many starting

seeds. The effect of the LOT, by contrast, is clearly visible in the DW velocity (Fig. 5.13b) of

the largescale simulation, reaching a peak velocity of 8 km/s.

The larger simulation size also allows simulation of increasing laser intensities. Despite

multiple random starting seeds, the transient temperature increase from a I = 0.1 GW/m2

laser pulse causes spontaneous nucleation of additional domains in the 8 nm deep simulations.

Increasing the system depth to 40 nm removes this effect and shows increased DW velocity

from the LOT, up to 12 km/s (Fig. 5.14). These velocities are still short of the predicted values

from Chapter 4, and especially the values from Eq. 5.15 using the TTM width expansion. It is

possible this is a continued effect of spurious torques on the DW–and thus larger simulations

volumes would again see an increase in the velocity–but those results have not been confirmed.

5.4 Summary

We have analysed the temperature-dependent properties of Mn2Au using ASD simulations using

a robust first principles Hamiltonian and applied it to simulations involving dynamic temperature
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Fig. 5.14 Largescale simulations with LOT driving including TTM for laser intensity I = 0.1
GW/cm2 (total fluence J = 16 J/m2). The parametrised width is according to Eq. (5.14) using
the time resolved TTM electron temperature Te.

and laser excitation. We first develop a magnetic spin Hamiltonian reflecting the origin of the

dominant 2-ion anisotropy demonstrated in ab initio calculations in Ref. [142]. The temperature

scaling for anisotropy and exchange–a critical component for micromagnetic simulations and

traditionally difficult to calculate for AFMs–is calculated for Mn2Au using a CMC spin-spiral

at increasing temperatures. This method is confirmed by MC and LLG finite-temperature

simulations of 90◦ DWs. Interestingly, increasing the value of the damping parameter does

not affect the simulated width, but rather decreases the thermal width fluctuations around the

average. The calculated exchange and anisotropy stiffness follows the well-known temperature-

dependence for ferromagnets, as well as the AFM corrections present in literature [149, 150].

These calculations can allow large-scale micromagnetic simulations with high precision. The

LOT used to drive DWs in Chapter 4 was also introduced to simulations at finite and dynamic

temperature. These reveal the robust efficiency of AFM DWs even at elevated temperature,

with low intensity pulses driving the DW at km/s speeds. With its high Néel temperature,

metallic properties, and intrinsic spin-orbit torque response, Mn2Au represents a crucial

material for next-generation spintronic devices. With research pointing towards the critical role

temperature plays in metallic spintronic devices [129], there is a growing need for accurate,

finite-temperature simulations of DW and switching processes.



6

Spin Transport Model of the Intrinsic SOT in

Mn2Au

6.1 Introduction

Spin transport theory lies at the very heart of spintronics, providing the mechanism for coupling

charge, spin, and the magnetic moment for non-equilibrium time-dependent processes. At a

foundational level, spin transport is responsible for the giant magneto-resistance (GMR) effect

which serves as the basis for magnetic memory storage in modern computers. Increasingly

complex heterostructures utilizing atomically thin material layers allow for a staggering range

of material combinations, with transport modelling theory a crucial tool for understanding the

equivalently vast range of material parameters. Gone are the days of tri-layer FM/metal/FM

systems. Now, metals, semi-metals, and semi-conductor stacks containing all range of

ferromagnetic, ferrimagnetic, antiferromagnetic, spin polarising, and non-magnetic materials

are possible. While the focus of this thesis is not on spin transport, we do devote a chapter of

the results to work done on describing the intrinsic SOT phenomena for Mn2Au using a spin

transport formalism. Traditionally, the SOT arising from intrinsic CISP in Mn2Au and CuMnAs

is modelled using a Néel field-like torque–a staggered field addition to the LLG equation on

each spin sublattice. At its source, however, the CISP inducing the staggered field is a spin

transport phenomena, not a magnetic field phenomena. For bulk modelling, the distinction is



92 Spin Transport Model of the Intrinsic SOT in Mn2Au
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Fig. 6.1 Diagrammic representation of spin accumulation from a driving charge current
polarised by the Mn moments (teal arrows) and Au SOI (gold arrows) across a domain wall.

irrelevant; for multilayer structures, or non-simplistic magnetic textures, the mechanisms differ

widely. It is the latter scenario this chapter investigates.

DWs in traditional AFMs without intrinsic SOT can be driven using in-plane charge currents

(which exert a torque on the DW from spin polarisation of the current passing through the

magnetic domain) or from HM injected SOT (which exert a torque on the DW as well as

the domains). For Mn2Au, an in-plane charge current will do both, and the mechanism to

simulate each phenomenon using ASD is the same. This chapter presents a description of our

adapted spin transport model for describing coupled spin-magnetisation and current induced

spin interactions–a result on its own–as well as the results of our model applied to simulations

of DW driving in Mn2Au.

6.2 Theory

To construct a model of the Néel vector-dependent and charge current vector-dependent induced

spin accumulation leading to the intrinsic spin-orbit torque, we apply the Zhang-Levy-Fert
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(ZLF) drift-diffusion formalism for spin transport to the Rashba-Edelstein effect responsible

for the intrinsic SOT in Mn2Au. This spin accumulation-based description is then applied to

domain wall driving and single domain switching. Two mechanisms exist in the spin transport

dynamics for domain wall driving. Firstly, the above mentioned intrinsic spin-orbit torque

generated in Mn2Au from a charge current. And secondly, the spin polarisation of the sublattice

magnetisation driven by the charge current (i.e., spin motive force). While each mechanism

operates through s−d exchange coupling from spin polarisation at the Fermi level, the physical

source differs between them. Here, the theoretical background for each mechanism is explored

before being combined into our model.

6.2.1 Current Induced Spin Polarisation

At its source, the intrinsic SOT in Mn2Au arises when a non-polarised charge current, moving

in-plane, generates a staggered current induced spin polarisation (CISP) on each magnetic

sublattice which results in a non-staggered torque (and consequently activating the exchange

enhancement useful for switching). Traditionally, such a torque was achieved in AFMs through

an extrinsic SOT generated by a heavy metal base layer (called the spin Hall effect (SHE)).

Also available for broken inversion symmetry interfaces is the inverse spin Galvanic effect

(ISGE). Qualitatively, the SHE and ISGE can both generate non-equilibrium spin polarisations

which can exert a torque on the magnetic moment 1. What differs is the underlying physical

phenomena driving the interactions: while the SHE is a bulk effect from SOC, the ISGE

occurs at the interface [159]. Fig. 6.2 gives a diagrammatic comparison between the SHE and

ISGE. While naturally occurring (in some magnitude) for any interface with broken inversion

symmetry at the band-structure level, the ISGE can exist for bulk materials as well, either

through SOC or noncentrosymmetric crystal symmetry [12]. For FMs–where efficient switching

and DW driving are highly dependent on torque symmetry and damping–often the ISGE is too

weak for spintronic applications. For AFMs relying on exchange enhancement for efficient

1For the magnetic moment, there is no difference for ASD implementations between torques generated by the
inverse SHE and ISGE other than that of symmetry: the SHE induces a predominately anti-damping-like torque,
while the ISGE induces a predominately field-like torque. But field-like and anti-damping-like contributions to the
SHE and ISGE, respectively, exist beyond the zero-order approximation [158]
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Fig. 6.2 Diagram of heterostructure-based spin torques arising from the SHE (left) and
ISGE (right)–here called the interfacial Rashba-Edelstein effect. For the SHE, the SOC present
in the ’N’ non-magnetic layer induces a spin current perpendicular to the direction of the charge
current. For the ISGE, a spin accumulation is generated only at the interface with broken
inversion symmetry. Figure from [159].

driving, the ISGE allows an in-plane current to generate a torque on the magnetisation without

heterostructures (i.e., heavy metal bilayers to inject spin polarised currents), though Mn2Au

and CuMnAs are so far the only metallic AFMs to exhibit this effect at room temperature [9].

At the DFT level, the change to the spin accumulation is not calculated by equations of

motion (EoM) but by response functions. The quantum mechanical description of spin current

Js–more accurately, the spin polarised flux density, but referred to as spin current here and

in the literature–is described by the tensor product of the Pauli spin operator (related to spin

operator S = ℏσ/2) and velocity operator v on the electron density ψ [159]:

ℏ2

4e
Js =Re(⟨ψ|σ ⊗v|ψ⟩) . (6.1)

The Kubo linear response formalism expands the generic expression of Eq. (6.1) to include

non-equilibrium changes to the charge density from the applied electric field E through the

susceptibility tensor χ (such that δm = χE) [160]:

δm =
eℏ

2πV
Re ∑

k,a,b
⟨ψk,a|ŝ|ψk,b⟩⟨ψk,b|E · v̂|ψk,a⟩×

[
GR

k,aGA
k,b
−GR

k,aGR
k,k
]

(6.2)
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where GR
k,a = (GA

k,a)
∗ = (EF − Ek,a + iΓ)−1, EF is the Fermi energy, Ek,a is the energy

dispersion of band a, V is the system volume, and Γ is the broadening parameter connected to

the finite lifetime τ = ℏ/(2Γ). δm (δS in Ref. [12, 160, 11] and Fig. 6.3 but changed in our

text to avoid confusion with the atomic moment S) is the current induced spin polarisation. The

summation in Eq. (6.2) contains both a = b (intraband) and a ̸= b (interband) contributions.

Qualitatively, if the broadening parameter is small, Eq. (6.2) can be expanded into intra- and

interband terms, with the interband terms further expanded to real and complex contributions,

as δm = δmintra +δminter
1 +δminter

2 . Though the formalism in [160] is in the context of FMs,

their use is extended by Železný et al. in [12] to Mn2Au (or any AFM or FM with multiple

sublattice species). With no loss of generality, we transition our notation to the description in

[12] in terms of the susceptibility tensors δm = χE. For AFMs or multiple sublattice species,

the susceptibility tensor χ becomes the susceptibility tensor χa for sublattice a. As with Eq.

(6.2) χa is given as χa = χ I
a +χ

II(a)
a +χ

II(b)
a :

χ
I
a,i j =− eℏ

2Γ
∑
k,n

⟨ψnk|Ŝa,i|ψnk⟩⟨ψnk|ν̂ j|ψnk⟩×δ
(
εkn −E f

)
χ

II(a)
a,i j = eℏ ∑

k,n ̸=m
Im
[
⟨ψnk|Ŝa,i|ψmk⟩⟨ψmk|ν̂ j|ψnk⟩

]
× Γ2 − (εkn − εkm)

2

((εkn − εkm)2 +Γ2)
2 ( fkn − fkm)

χ
II(b)
a,i j = 2eℏ ∑

k,n̸=m
Re
[
⟨ψnk|Ŝa,i|ψmk⟩⟨ψmk|ν̂ j|ψnk⟩

]
× Γ(εkn − εkm)

((εkn − εkm)2 +Γ2)
2 ( fkn − fkm)

(6.3)

where n,m are band indices, ψnk and εnk are Bloch eigenfunctions and eigenvectors, respectively,

fk,n the Fermi-Dirac distribution, and Ŝa,i the dimensionless spin-operator projected on sublattice

a.

The separation of Eq. (6.2) into δm=(χ I
a+χ

II(a)
a +χ

II(b)
a )E allows a qualitative understanding

of the physical response to the applied field E. The intraband term χ I
a represents the electric field

modification of the Fermi-Dirac carrier distribution. The susceptibility is inversely proportional

to Γ, and diverges in the Γ → 0 limit, analogous to the conductivity diverging in a perfectly

periodic crystal [12]. As in Freimuth et al. in Chapter 3, at room temperature Γ ≈ 25 meV
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for an ordered metallic system with low impurities. This relates to a momentum scattering

time τ = ℏ/(2Γ)≈ 13 fs. Železný et al. extend the note that the susceptibility tensor χ I
a can be

obtained from the Boltzmann transport equation with constant scattering time.

The interband terms χ
II(a)
a , χ

II(b)
a can be considered not as the distortion of the Fermi-Dirac

distribution, but the distortion of the carrier particle wavefunctions (i.e., Berry curvature) [160].

While χ I
a decays with increasing Γ, χ

II(b)
a is directly proportional to increasing Γ, and thus

has minimal contribution in the low Γ consideration. The final term χ
II(a)
a is independent

of the broadening parameter provided (εnk − εmk ≫ Γ). Thus, χ
II(a)
a is the only intrinsic

susceptibility tensor, not dependent on thermal or impurity scattering. Though the results for

this chapter are simulated at 0 K (minimal broadening), the results utilising the LOT in previous

chapters use a broadening value of Γ = 25 meV. For brief comparison, such a broadening

value (comparable to 300 K) shifts χ
II(b)
a (Γ = 25 meV) =−0.1χ

II(a)
a (Γ = 0 meV), χ

II(a)
a (Γ =

25 meV) = 0.75χ
II(a)
a (Γ = 0 meV), and χ I

a(Γ = 25 meV) ≈ 0.05χ I
a(Γ = 0.0013 meV) [12].

While the reduction to χ I
a from increased broadening appears substantial, it is important to

remember that the susceptibility tensors in Eq. (6.3) calculate only the CISP and provide rough

estimates on the resulting generated torque. More comprehensive DFT calculations for the SOT

using the Keyldish formalism estimate a torkance between 2-8 mT per 107 A/cm2 [9, 161, 25]–

matching well with experimental measurements [20]–compared to the CISP estimated value

of 0.22 mT per 107 A/cm2 [12]. Experimentally, charge current pulses have indeed been

successful in switching the Néel vector at room temperature [13, 129, 14, 162].

The advantage of the tight-binding models (as opposed to full DFT calculations) is the

tractable analytic descriptions of the resulting δma predicting the symmetry of the induced

fields [11, 160, 12]. While the ISGE discussed above does not make explicit mention of the

AFM order parameter, it is a critical factor when determining the torque symmetry, with the

Néel vector naturally having a strong effect on the SOC mediated by the Au atoms (see Chapter

5). Fig. 6.3 shows the CISP for the tight binding 3D model and the 2D AFM model containing

only a Rashba SOC. Generally, these follow the normal symmetries of injected SOT: the

intraband (χ I
a,i j) component follows ẑ× eE, with the interband (χ II(a)

a,i j ) component following
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m× (ẑ× eE), where ẑ is the Cartesian coordinate, usually out of plane. The current induced

spin polarisation δma induces a field according to [12]:

Ba =−Jsd
δma

Sa
(6.4)

which produces a torque Ta perpendicular to the atomic moment Sa:

Ta = Sa ×Ba. (6.5)

The work of Selzer et al. calculate the current induced spin and orbital polarisation using the

linear response formalism [56]. There, the induced orbital moment is orders of magnitude larger

than the induced spin moment and follows the zeroth-order Rashba symmetry in [12]. This

results in staggered fields more than 10x larger than the torque calculated in [163]. Since we

are interested in developing a model for spin currents, however, we do not consider the orbital

contribution. A more developed model which takes into account spin and orbital accumulation

(and the spin and orbital current interactions) is of interest for future research.

The CISP Mn sublayer specific response follows the Onsager relations for symmetry (i.e.,

χeven
A =−χeven

B ; χodd
A = χodd

B ). The Néel vector dependent spin accumulation induced on each

Mn moment has been calculated, and is in line with the symmetry expected for the adiabatic

(precessional) and non-adiabatic (damping-like) terms in the Slonczewski formalism.

Fig. 6.3a and c show the results of Eqs. (6.3) using the 3D Mn2Au tight binding Hamiltonian

described in [12], while b and d show the 2D AFM Rashba model. The 3D Hamiltonian

calculation shows the accumulation deviating from the ẑ× eE symmetry in the 2D model. We

can parametrise the CISP (including the numerical deviations from the zeroth-order symmetries)

using higher-order trigonometric functions:

δmx/δm∞ = 0.5sin2φ

δmy/δm∞ = 1.4+ sin2
φ

δmz/δm∞ =−0.14cosφ

(6.6)
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a b

dc

Intraband

Interband

Mn2Au 2D Rashba AFM

Fig. 6.3 Non-equilibrium spin polarisation for Mn2Au and 2D AFM Rashba models. CISP
induced from electric field E ∥ x,y for intraband contribution (a, b) and interband contribution
(c,d). x axis is the orientation of Sa. Figure from [12].
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E ∥ ⟨100⟩

−y x

z
ϕ

̂T

Ĥ

Fig. 6.4 CISP symmetry and resultant torque specifically for electric field E ∥ ⟨100⟩. The
field vectors change sign with a reverse in current direction. A field ∥ ⟨010⟩ swaps the x and y
accumulation.

The δmz component changes sign between sublattices to preserve the Onsager relation. Since

the unit vector of the induced field follows the unit vector of the spin accumulation, we

can see the symmetry of the induced fields (gold) and generated torque (blue) as a function

of the magnetisation angle φ , shown in Fig. 6.4, by use of Eq. (6.5). Though sharing a

similar symmetry relationship as SOT for adiabatic (intraband) and non-adiabatic (interband)

torque, the driving physics behind the CISP in Mn2Au introduces higher-order corrections not

present or adequately represented in the 2D tight-binding model containing only Rashba SOC

[12, 160] (see Fig. 6.3). While quantitative agreement is not anticipated between the simplistic

2D model’s analytic calculation and the more comprehensive 3D model requiring numerical

calculations, it does demonstrate the inherent complexity present in modern magnetic materials.

The results in Fig. 6.3 calculate the spin polarisation magnitude normalised by the charge

current density. Two factors, however, prevent us from implementing directly into the LLG

equation the values shown in Fig. 6.3: first, the CISP represents a change to the equilibrium

spin accumulation, but it is unknown how that change interacts with spin currents beyond the
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calculation. Second, the Kubo response formalism calculates the spin accumulation response

from the expectation value of the equilibrium spin density. In order to properly calculate the

torque from the induced spin accumulation, the expectation value of the torque operator would

need to be taken from the non-equilibrium spin density self-consistently calculated with the

resultant change to the atomic moment exchange splitting [83, 24]. These two factors make the

parametrisation in Eqs. (6.6) a poor method to implement in the same manner we used for the

field-like torque of the LOT in Chapter 3. Instead, we apply the microscopic ZLF drift-diffusion

equations to the spin polarisation of the spin current flowing between the Au and Mn layers in

order to generate the non-equilibrium spin accumulation, rather than directly assuming the spin

accumulation itself. For all further results, the CISP will reference the induced fields generated

from the changing spin accumulation calculated by the following ZLF drift-diffusion formalism,

rather than Eqs (6.6). We will reference Eqs. (6.6), however, to discuss the symmetry of the

calculated spin accumulation for ease of discussion.

6.2.2 Domain Wall Driving using STT

While the mechanism for driving AFM 180◦ DWs using SOT was mentioned in Chapter 4, the

effect on 90◦ DWs is more nuanced, as torque is exerted not just on the DW itself, but also each

domain. Likewise is the torque generated from the STT mechanism when driven by an in-plane

charge current: the torque profile is non-linear, non-adiabatic, and asymmetric across the DW,

making straightforward analytic descriptions difficult. Modelling the movement of DWs from

the intrinsic SOT has so far ignored the contribution of polarised in-plane spin currents exerting

a non-adiabatic torque on the DW (called here the STT due to its similarities to current driven

DWs in FMs), despite it being a chief mechanism for current driven FM DWs, in favor of

intrinsic or injected SOT being more efficient for driving DWs in AFMs. The inclusion of

the STT caused by the non-adiabatic spin accumulation moving through the DW in-plane is

not expected to greatly modify the driving dynamics. The purpose of this section, however,

is less on the impact the spin accumulation of the intrinsic SOT has on the DW, and more on

how the DW profile changes the spin accumulation of the intrinsic SOT. The Néel SOT–when

implemented as a field-like torque–does not account for the small, but significant, spin currents
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acting in-plane through the domain wall. Thus, analysis of DWs driven using the field-like SOT

is performed only insofar as to compare between the two models.

Utilising the same DW formalism introduced in Chapter 4, the effect of an in-plane STT

on an AFM is described by a combination of the precessional torque terms–used to activate

the dominant exchange enhancement–and the non-adiabatic terms–which exert an asymmetric

torque on the DW chiefly described by the spin-diffusion λJ or spin-flip length λs f . A third

term describes the additional precession of the electron out of plane, The Lamor spin precession

length ωL and spin coherence length ω⊥ are used to describe the transverse damping term λφ ,

and is on the order of magnitude of λs f . At a simple level ignoring additional sources of spin

accumulation or spin currents other than what the charge current generates moving through

the DW, the torque on a DW using a macrospin approach, expressed as −τ = Ṁ/γ , can be

expressed analytically as [159]:

−τ =
ℏβ

2eM3
S(1+ζ 2)

M× [M× (Je ·∇)M]+
ℏβζ

2eM2
S(1+ζ 2)

M× (Je ·∇)M. (6.7)

The first term on the rhs gives the damping-like torque, and the second term gives the

field-like torque caused by the non-adiabatic contribution. ζ in this case is the spin-misstracking

parameter, and helps to qualitatively compare the ratio of damping-like to field-like torque by

representing the ratio of spin-diffusion vs. spin flip scattering through ζ = (λJ/λs f )
2. When a

large amount of spin-orbit coupling is present, the additional factor of the spin dephasing length

must be included ζ ′ = (λJ +λφ )
2/λ 2

sd . The ratio of damping-like to field-like torque can then

generally be given by ζ or ζ ′. For materials with low spin-orbit coupling ζ << 1; materials

with large spin-orbit effects have ζ ′ >> 1. As we will see in the results of Sec. 6.4.2, the STT

effect is not a significant driving force in Mn2Au DWs. It is, however, a dependent factor for

the spin currents generated out-of-plane by the DW. Thus, we will consider the effects ζ ≈ 1

and ζ ′ > 1 have on the generated spin currents by the DW.

Since the formalism of 90◦ DWs was introduced in Chapter 4, we will include only the

relevant results equations here for easier reference. Recall, the width factor of a 90◦ DW at rest

∆0 is a combination of the effective exchange a and the in-plane anisotropy (given by the 4th

order rotational term k4r):
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∆0 =
√

a/(8k4r) = 17.79nm (6.8)

If the boundary domains are fixed at ±π/4, this gives an azimuthal angle solution for the extant

of the DW:

φ(x) = arctan[e(x−p0)/∆]− π

4
(6.9)

The saturation velocity for the pure soliton solution in Eq. (6.9) is the magnon limit,

determined by the lattice parameter a0 and relevant exchange interactions:

vm =

√
8a2

0|J1|(J3 + |J1|/2)

ℏ
(6.10)

In the linear regime at 0 K, the steady state DW velocity is related to the damping constant,

DW width, and staggered field H through v0 ∝ ∆0H/α . For velocities nearing the magnon

limit, the Lorentz invariant relationship between velocity and width (Eq. (6.11)) delivers a

contraction of the width, reducing v0. For the velocity beyond the linear regime v, the Lorentz

contracted width is:

∆ = ∆0

√
1− v2

v2
m

(6.11)

Thus, for a driving staggered field H, the velocity v beyond the linear regime in terms of

invariant width ∆0 is:

v = vm
1√

1+ v2
m

h∆0

(6.12)

where h is the reduced field h ∝ γH/α , where parity is determined by a coefficient from the

symmetry of the torque.

Complicating matters is the non-zero torque present on the boundary domains (see Fig.

6.5) changing the soliton solution in Eq. (6.9). To minimise this effect and recover a fit

which matches the analytic descriptions in Eqs. (6.11) and (6.12), we allow the solution in Eq.

(6.9) to vary the boundary condition set by π/4 in Eq. (6.9) whilst fitting ∆ and ϕ to the my
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Fig. 6.5 SOT torque symmetry for 90◦ DWs for two different Hso orientations: a) Hso ⊥ π/4
and b) Hso ∥ ŷ and thus perpendicular to the magnetisation at the DW centre. Figure courtesy
of collaborator J. Vélez.

magnetisation component:

my(x) = sin
(

arctan[e(x−p)/∆]−ϕ

)
(6.13)

This form of Eq. (6.9) allows for a fitting of ∆ which delivers a DW width factor applicable to

Eqs. (6.11) and (6.12), even under the changing boundary conditions creating an asymmetric

DW profile.

Fig. 6.5 shows two relevant Hso symmetries for 90◦ DW driving. Fig. 6.5b corresponds to

our simulation geometry (with a 90◦ rotation so the boundary domains are along ±π/4 giving

identical symmetry).

6.3 Method

In the two-current model, where the electron spin is restricted to project purely on the up (↑)

and down (↓) quantisation axes, the charge current and spin current are conveniently expressed

as je = j↑+ j↓ and js = j↑− j↓, respectively. This can be extended into the continuum approach

with a three dimensional Cartesian projections of the net moment by a rank 2 tensor to describe

the polarised current moving in each Cartesian coordinate. Then, js
d is the spin current with spin
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Fig. 6.6 Representation of pure and mixed spin and charge currents. Image from Y. F. Feng
et al., [164].

polarisation along s and direction of propagation d. This tensor can likewise be decomposed

into "up" and "down" currents, though now the spin polarisation and current direction must be

taken into account. Instead, it is helpful when visualising the combination of multiple layers of

spin injection into one magnetic layer. Fig. 6.6 gives a diagrammatic representation for pure

charge, pure spin, and partial spin polarised currents in a material.

What is not represented in Fig. 6.6 is the static case of no spin current flux density but

remaining spin polarisation. This is of course the spin accumulation m. The distinction between

the itinerant moment generated by m and the static atomic moment S is a convenient one:

the atomic moment S–which has the majority of its density around -3 eV below the Fermi

level–remains largely unperturbed by charge currents and spin-flip scattering events. This is

due to its energetic distance from the carrier density at the Fermi surface, located at the high

symmetry point X in the band structure (corresponding to the k-space vector ⟨1/2,1/2,0⟩)

in Fig. 6.7. The flat dispersion around the X point is due to the high degree of crystalline

symmetry in-plane. The spin accumulation m, however, must be described using a combination

of electronic and magnetic means. These equations of motion for the spin accumulation are

given by Zhang, Levy, and Fert in Ref. [165] (and expanded in Ref. [166]), and implemented

into the VAMPIRE code in Ref. [167]. The full derivation of this solution is detailed in the

appendix of this chapter (6.5).
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Fig. 6.7 Density of states and band structure for Mn2Au from Merte et al. [83]. The high
symmetry point X corresponds to the k-space vector ⟨1/2,1/2,0⟩.
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To take into account the ISGE described above, we consider a spin current polarised along

the ±y axis and injected in the ±z direction from each Au sublayer (blue and red arrows in

Fig. 6.8). This in-plane polarised spin current propagating out-of-plane is proportional to

the charge current magnitude je and ΘISGE , which is analogous to the spin Hall angle ΘSH

in that it parametrises the conversion of charge to spin. The spin accumulation caused by

the spin current at the Au-Mn interface will experience EoM described by Eq. (6.17). The

component of the spin accumulation now transverse to the atomic moment will exert a torque

on the magnetisation. In other words, we allow the drift-diffusion solution in Eq. (6.14) to

recreate the CISP symmetry described above. This requires a modification to the standard ZLF

EoM (traditionally used only for the direction of the flowing current (grey arrow)) to consider

perpendicular spin currents. For our case, we separate the orthogonal directions of the spin

current travelling into the ±z axis–the currents induced from the ISGE–and the +x axis–the

spin currents driven by the charge current je ∥ x, which will be approximated to pick up no

intrinsic spin polarisation other than what is traditionally caused by the magnetic moment (β je)

(i.e., ignoring SOC from the Mn). This is done by separating the lattice into atomically thin

stacks along x (blue rectangles in Fig. 6.8) and z (atomically thin planes with grey planes to

guide the eye). These stacks contain the microcells necessary to solve the spin accumulation

EoM using a finite difference method [167, 168]. For the decomposition along the z axis, the

height is given as the average vertical distance between atomic sites (h = c/6 ≈ 2.69 Ȧ; for the

decomposition along the x axis, we choose a spacing of 1 nm (which amounts to an increment

< 10% of the DW width). Since the spin currents propagating in the y axis are symmetric in the

exchange-limit of our system, they are not considered for this case.

Then, the two directions of spin current propagation are given by:

j±z
s = ΘISGE jeŷ∓−2D0

[
∂m

∂ ± z
−ββ

′S
(

S · ∂m
∂ ± z

)]
(6.14)

and

jx
s = β jeS−2D0

[
∂m
∂x

−ββ
′S
(

S · ∂m
∂x

)]
(6.15)
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x
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z

je
θISGE je 

Stacks in x

Stacks in y

β je 

Fig. 6.8 Diagram of ISGE and spin polarised charge currents in Mn2Au. Grey arrow is the
direction of the charge current. The bright blue and red arrows are the in-plane polarised spin
accumulation from the ISGE. The green arrows are the charge currents polarised by the Mn
sublattice magnetisation. The large blue rectangles represent the microcell decomposition for
solving the spin accumulation EoM.
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E ∥ ⟨100⟩

−y x

z
ϕ

̂Tδm

Ĥδm

Fig. 6.9 Torque curves for in-plane magnetisation with staggered SOT field from (gold)
standard field-like SOT, (blue) modified field-like torque using Eq. (6.18), and (red) spin
accumulation parametrised using Eqs. (6.6).

where the second term in each equation is the drift-diffusion solution to the spin current

generated by spatial gradients in the spin accumulation. The first term in Eq. (6.14) is the

modelled spin current generated by the ISGE, and is parametrised as a fraction ΘISGE of the

charge current je polarised along the ±ŷ directions. The corresponding β jeS term in Eq.

(6.15) gives the non-polarised charge current converted into spin from the equilibrium spin

polarisation β at the Fermi level parallel to the magnetic moment S. The density of states (DoS)

(see Fig. 2.4a) at the Fermi level for spin up and spin down electrons give an equilibrium spin

accumulation m∞ = n(↑)−n(↓) = 1.48±0.78×107 C/m3 [55, 56, 83]. The spin conversion

factor then is β = n(↑)−n(↓)/(n(↑)+n(↓)).

The equation of motion for the spin accumulation m–without spin currents–contains the

transverse damping term dependent on the spin dephasing length (J/ℏωLω⊥), the precession

term dependent on s-d exchange (J/ℏ), and the spin-flip relaxation time (τs f ):

dm
dt

=− m
τs f

− (J/ℏ)m×S− (J/ℏ)
ωL

ω⊥
S× (m×S) (6.16)



6.3 Method 109

The solution for the self-consistent EoM is given in [167]. For the spin current direction along

±z, we solve the system of equations using the alternating direction scheme (applied to a

similar system in [168]). Since the spin current along x is only in one direction, we use the

initial boundary condition jx
j = β jeS to propagate the solution along +x.

The combined solution for the spin accumulation EoM and spatially varying spin current is:

1
2D0

∂m
∂ t

=
∂ 2m

∂x2,±y2 −ββ
′S
(

S · ∂ 2m
∂x2,±y2

)
− m×S

λ 2
J

− S× (m×S)
λ 2

φ

− m
λ 2

s f
(6.17)

where λJ =
√

2ℏD0/J, λφ =
√

2ℏD0ω⊥/(JωL), and λs f =
√

2D0τs f . The Lamor spin

precession length ωL and spin coherence length ω⊥ are used to describe the transverse damping

term λφ , and is on the order of magnitude of λs f . The diffusion term D0 and spin diffusion

term β ′ are not apparent from ab initio calculations, and are usually fit from experiment. Since

the physical constants in Eq. (6.16) differ for the direction of propagation, we use different

values for the ±z and +x equations. D0, β ′, Jsd , and λs f for x are the usual values for metallic

AFM in-plane [63, 169].

Since the ZLF drift-diffusion model is usually used to describe in-plane transport and

torque for microscale systems, its use in calculating the CISP from the ISGE of a bulk material

is pushing the limits of the model approximations. Two requirements for the drift-diffusion

solution in Eqs. (6.15), (6.14) are that i) the gradient of the spin accumulation be smooth over

the spatial discretisation [167], and ii) the length-scale of the spin current evolution be larger

than the discretisation [170, 171]. Since we are investigating a perpendicular spin transport

across–rather than along–the AFM coupled layered Mn sublattices, the gradient of the spin

accumulation varies sharply with each spatial step. Since we are interested in modelling the

CISP from the ISGE caused by the Au-Mn interface, the spin current must naturally evolve

to the steady-state over a single interatomic distance (≈ 2.6Ȧ). In order to stabilise the spin

current across the AFM layered sublattices, we solve the spin current diffusion using the two

channel model (where by symmetry in the DoS in Fig. 6.7 mA
∞ =−mB

∞). Thus, the gradient

along the z axis is able to vary gradually for each separate spin current propagating along ±z,
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respectively. The final spin current leading to the spin accumulation exerting a torque is the

difference of the up/down channels.

For the short length-scale of the CISP, it is necessary to approximate the diffusion between

the Au and Mn layers using a large volume. Since the height between the layers is so narrow,

this requires a commensurately large surface area. In the zero temperature limit and with no

spin current propagating along the y axis, we can normalise the spin accumulation by volume

to remove this dependence. The solution to Eq. (6.17) likewise requires a steady-state solution

(∂m/∂ t = 0 in the time-scale of the atomic moment precession). As discussed above, the

broadening parameter Γ used to calculate the susceptibility tensors in Eq. (6.3) can correspond

to the non-equilibrium lifetime of the carrier particle’s excited state, and for low broadening can

be on the order of 10s fs. Since the time-scale of the magnetisation dynamics are on the order

of 100s fs-10 ps, we hold the evolution of the CISP are entirely driven by the magnetisation,

with no time solution. It is unclear if allowing the CISP lifetimes to interact on the time-

scale of the varying magnetisation will produce new symmetry features, but a comprehensive

time-dependent DFT analysis beyond the approximate model used here would certainly be

required.

The advantage of incorporating the CISP in this way is the ability to self-consistently

calculate the resulting spin accumulation torque from spin currents with varying symmetries,

either in the case of a DW (as simulated below), or a combined in-plane charge current and out-

of-plane spin injected current (for future research). The later is of interest for heterostructure

experiments using heli-domain Mn2Au/Pt bilayers [172].

The constants in the ±z column of Table 6.1 have been empirically adjusted such that the

spin accumulation induced field when E ∥ x̂ matches the estimated field torkance in [163, 20]

and CISP symmetry in [12] (shown in Fig. 6.3). The empirical values do, however, match

experimental trends well. Measurements using Mn2Au as a source for spin polarised current

injection into a FM calculate a large ΘSH = 0.22 [15], compared with the ΘISGE =−0.16 (the

sign of the conversion angle can change depending on symmetry convention). The sd exchange

parameter for the out-of-plane direction has been increased, reflecting the stronger torque for

s band spins moving out of plane. Likewise the spin flip length is much decreased compared
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to in-plane. The diffusion constant D0 and the spin diffusion constant β ′, however, represent

non-physical values. This is necessary to enhance the spin current. The following table details

the used constants:

Direction +x ±z Unit
β 0.23 0.23 –
β ′ 0.56 3.65 –
D0 0.001 0.007 m2/s
Jsd 0.05 0.3 eV
λs f 3.6 0.9615 nm
ωL 1 – –
ω⊥ 1 – –

ΘISGE – -0.16 –
Table 6.1 Drift-Diffusion constants.

To compare between the traditional model of including the intrinsic SOT as a field-like

torque into the LLG Eq., we generate 90 degree switching (Fig. 6.10) and DW driving data

(Fig. 6.12) for a staggered SO field Hso ∥ ŷ. To better match the higher order φ dependence of

the CISP, we involve an asymmetry factor to the Hso of the form:

Hasym
so = Hso

1
1+ l[S · (ẑ× (ẑ×E))]2

(6.18)

Eq. (6.18) corresponds to the blue line in Fig. 6.9. l = 0.80 is a constant from the

best fit to the red curve in Fig. 6.9. This asymmetry factor is of a higher order correction

to the traditional STT asymmetry factor used in [173]. Additionally, the asymmetry factor

mimics the reduced net torque generated from the induced field’s varying x̂ and ẑ component

(see Fig. 6.9). According to Eqs. (6.4) and (6.6), at φ = π/4 the CISP produces a field

Hδm|φ=pi/4/Jsd = (0.5sin2π/4,1.4+ 0.8sin2
π/4,−0.14cosπ/4)T. Compared to a Hso ∥ ŷ

with equivalent field magnitude |Hso| = |Hδm|, the effective torque decreases by a factor of

0.603, by numerical calculation. For the asymmetric torque in Eq. (6.18), the effective torque

decreases by a factor of 0.563. This approximation is confirmed in the switching phase diagrams

in Fig. 6.10, where the critical switching field Hcrit is scaled by λ = 1/0.603.
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Fig. 6.10 Switching phase diagram for SOT as function of field and pulse duration. Lines
correspond to the analytic solution described in [27]. a) field-like SOT. b) field-like SOT with
2nd order asymmetry factor in Eq. (6.18). c) SOT from spin accumulation model.

6.4 Results

6.4.1 Switching

The spin injection from the atomic Au layers into each Mn sublayer causes a shift in the

spin accumulation away from equilibrium. The normalised polarisation of the resultant spin

accumulation δmi/m∞ = (m′
i−mi)/m∞ is compared to the ab initio calculations from Železný

et al. [12]. To avoid ab initio differences in methodology in regards to atomic-sized magnetic

moment spin currents and torque, we find it is more reasonable to compare between the direction

and magnitude of the induced field, rather than the non-equilibrium spin accumulation. The

magnitude of the induced spin accumulation differs widely from the tight-binding model, but

the effective induced field from the non-equilibrium spin polarisation is comparable due to a

difference in the used s−d exchange value. We use a Jsd constant on the order of the Mn-Mn

ferromagnetic exchange (0.5 meV), rather than Železný et al.’s 1 eV. Due to a larger magnitude

of spin accumulation from our model, both constants produce a staggered field near 2 mT per

107 A/cm2, in line with recent experimental measurements in [20].

We construct phase diagrams for Hso ∥ ŷ with and without the asymmetry factor in Eq.

(6.18). The asymmetry weakens the total torque experienced during the switching but does not

significantly change the coth(tp) relationship between field and pulse duration. As mentioned
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Fig. 6.11 Time dynamics for field-like SOT and CISP SOT for sublattice magnetisation
ms = (m1 +m2)/2 and Néel vector Ls = (L1 −L2)/2 for a) field-like SOT with asymmetry
factor and Hso ∥ ŷ = 0.82 mT and b) CISP je = 24×1011A/m2. Pulse duration 2 ps. mz and Lz
scaled by factor 100x for visibility.

above, the phase diagrams for the SOT mechanism using the spin accumulation model increase

the critical switching field by a factor of 1.66, calculated from the reduced effective torque due

to a weaker magnitude induced field, as well as a field no longer aligned ∥ ŷ. The introduction

of the 2nd order asymmetry factor cannot reproduce the changing field direction, but does

reproduce the reduced effective torque.

Fig. 6.11 shows the time dynamic sublattice magnetisation and Néel vector for a 2 ps pulse

for the asymmetric field-like Hso and the CISP model. Both cases display nearly identical

switching dynamics, with both switching on the picosecond scale for induced fields moderately

above Hcrit. The CISP switching, however, displays an additional resonance pattern in the z

components due to the δmz induced field component represented in Eq. (6.6), though it is quite
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minimal (scaled 100x for visibility). For the field-like torque not containing the asymmetry

factor in Eq. (6.18), the dynamics are identical to a), however with a field reduced by 1/λ to

match the effective torque. Thus, for most switching simulations the inclusion of Eq. (6.18) is

enough to reproduce the effective torque from the CISP calculated using the ZLF drift-diffusion

model.

6.4.2 Domain Wall Driving

In the section above, the CISP calculated from the ZLF drift-diffusion model of spin accumulation

showed no significant effect on the switching dynamics, once the proper asymmetry factors

were taken into account to reduce the effective torque. More significant differences emerge for

DW driving.
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Fig. 6.12 shows the results for DW steady state velocity under field-like SOT and CISP. For

comparison, we also include data from [17] driving 180◦ DWs using a field-like SOT which

follows the analytic relationship in Eq. (6.12) with a reduced field hso = γ∆0Hso. The results

from the CISP driving agree well with the field-like SOT in the linear regime, diverging at

larger driving currents. The saturation velocity for the CISP is likewise larger than the field-like

SOT, which in turn is larger than the calculated magnon limit for Mn2Au (see Chapter 4). This

occurs from the non-zero torque on the boundary conditions perturbing the pure soliton solution

of the DW, giving vSOT
m = 47.89 km/s from numerical fitting to Eq. (6.12). The CISP results

show a further increase in the saturation velocity of vCISP
m = 49.62 km/s, owing to the small

contribution from the in-plane STT on the DW. Simulations of DW driving calculating only the

effect of the in-plane STT show an order of magnitude reduction in driving efficiency due to

the asymmetric nature of the torque on the DW, in line with other STT calculations in [174].

Comparing the adjusted DW width with the velocity in Fig. 6.13 shows good agreement to

the analytic description in Eq. (6.11) for the field-like SOT. Simulations with only the in-plane

STT contribution display instead a slight broadening of the DW: another consequence of the

non-adiabatic nature of the STT. This effect may help to explain why the DW width from the

CISP simulations diverges from the analytic description for high current values: rather than

emit the excess energy in the form of spin waves or nucleate additional DW textures as was the

case of the LOT driving in Chapter 4, the DW generates instead excess spin currents which act

on the wall non-adiabatically.

The DW exceeding the analytic magnon velocity calculated in Chapter 4 is not an unexpected

result: the saturation velocity holds only for a perfect soliton solution driven only by compensated

torques. Indeed, any solution at finite temperature (as in Chapter 5) will also be an approximation

to the saturation velocity.

6.4.3 Spin Accumulation

The ZLF drift-diffusion model allows for direct calculation of the spin current torque on the

DW without relying on analytic approximations, such as in Eq. (6.7). More importantly, it

reveals how the DW torques the spin current. To begin, we first compare between simulations
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containing the additional dephasing length term λφ introduced from strong spin-orbit coupling

(e.g. when ζ ′ >> 1) to minimal spin-orbit coupling (ζ ≈ 1). Qualitatively, this can be related

to the ratio of the Larmor precession frequency ωL (intrinsic to the electron band) and the

transverse precession frequency ω⊥ (loosely scaling with the strength of the magnetisation and

spin-orbit coupling) [166]. In the context of Eq. (6.16), strong spin-orbit coupling (or a short

frequency) leads to a large amount of transverse precession in the equation of motion. For the

dephasing length λφ in Eq. (6.17), ωL ≈ ω⊥ gives λφ ≈ λJ . This has the effect of increasing

the out-of-plane component of spin accumulation through the DW (orange line in Fig. 6.14).

We extend this comparison for the spin current propagating along x (Jx
s , Fig. 6.15a) and

along z (Jz
s, Fig. 6.15b). The impact of dephasing shown in Fig. 6.14 is small for mz, but in Fig.

6.15 the effect on the spin current is larger in magnitude, on the order of 100% increase for Jx
z .

This effect could increase for materials with a larger λφ than the λφ ≈ λJ constants used here.
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6.5 Summary

The sublattice resolved model shows the effect of the CISP on the spin currents propagating

along x and z. For the Jx propagation, Jx
x and Jx

y are equal and opposite. Jx
z , surprisingly, follows

the same sign for both sublattices. This is due to opposite rotations of the spin accumulation

from each sublattice through the DW. Surprisingly, this contribution occurs from the adiabatic

torque on the spin accumulation, rather than the non-adiabatic torque, even though the non-

adiabatic contribution to DW motion has been shown to be the driving factor [175]. The actual

out-of-plane rotation is caused by the (m×S)/λ 2
J term in Eq. (6.17). While Fig. 6.15 shows

dephasing increasing the magnitude of the out of plane spin current, this is from an increase

in the volume of spin current moving non-adiabatically past the centre of the DW. Thus, this

out of plane spin current is not an effect of DW driving, but rather passing a spin polarised

current through the DW. This is also seen through the out of plane contribution from the CISP

being smaller in magnitude than the STT contribution, meaning this effect could be accessed in

magnetic materials without intrinsic SOT or ISGE.

The out-of-plane contribution from the CISP contribution is opposite the sign of the STT

contribution, though the magnitude and direction of propagation are different. The Jz
z term

is scaled 100x in Fig. 6.15b, compared to 10x in a. The physical impact of the direction of

propagation for a spin current at an interface is a matter of ongoing debate, as multiple factors

are now involved regarding the spin mixing, boundary reflection, and spin conductance of the

new layer [176]. Regardless, future improvements to this model would allow such simulations,

as well as other interface effects such as tunneling magneto-resistance (TMR) with insulators.

Mn2Au is an especially promising AFM in this regard, with an unusually high TMR proposed

by ab initio calculations [67, 177, 178]. With recent experiments showing THz emission

from ultrafast charge currents following laser excitation [79], Mn2Au multilayer, multidomain

structures could be a promising candidate for neuromorphic and reservoir computing devices.

Tracking the spin accumulation across the DW allows for calculation of potential spin

injection sources from Mn2Au, rather than into it, as is common with AFMs. This has

direct implications for AFM multilayer structures used in memory, resevoir computing, and



6.5 Summary 119

neuromorphic computing. Rather than have the AFM inject isotropic spin currents based on

a single domain structure, a DW structure injects a time-varying and spatially varying spin

injection, allowing for more sophisticated devices. At the current model stage, more work is

needed to asses the spin injection from spin accumulation and spin currents passing through the

multilayer interface, as the effects will be highly material dependent. At the moment, however,

the model reveals the potential for AFM DWs to introduce additional control features for spin

injection. This could also be the case even for AFMs without the intrinsic SHE or ISGE, as an

injected spin current passing through the DW will experience the local adiabatic torque as well.
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Appendix

Here we detail the full solution of m in the ZLF EoM Eq. 6.17. Firstly, consider the magnetic

multilayer system as shown in Fig. 6.1. The charge current is injected along the x direction

causing the spin current to flow perpendicularly along y and z across the planes of the layers.

Based on the two-channel model, the density of the spin current is determined by the density of

the current induced by the electric field and the density of the propagation current arising from

changes in the spin-up and spin-down populations n with the following relationships:

j↑ = σ
↑E−D↑e∇n↑

j↓ = σ
↓E−D↓e∇n↓

jc = j↑+ j↓ = σE−D∇n−β
′D∇m

js = j↑− j↓ = βσE+θISGEσζ −β
′D∇n−D∇m (6.19)

The charge current and spin accumulation vector are assumed to polarize along the direction

of the magnetization vector M according to the relation jc = jeM and the direction of the SOC

vector defined as ζ = (ẑ×E) = ey. Therefore, the magnetization current or spin current (js)

can be written in terms of the modulus of the electrical current ( je) and the spin accumulation

(m) as,

js = β jeM+θISGE jeey −2D0
[
∆m−ββ

′M(M ·∆m)
]

(6.20)

where M is the normalised magnetisation of the free layer. θISGE is the inverse spin Galvanic

effect coefficient–determining the in-plane charge current conversion to out-of-plane spin

current. The spin polarisation parameter β for the conductivity is defined as σσσ = βσ0M and β ′

is the spin polarisation for the diffusion constant defined as D = β ′D0M. Coefficients σ0 and

D0 are σ/2 and D/2, respectively.
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In the system of Mn2Au, the charge current is injected into the x direction and the spin

current arising from the spin-hall effect flows in the z direction. Without loss of generality, the

spin current induced by the SOC can be determined as flowing along the ẑ axis, allowing a

separation of variables for the gradient of spin accumulation in Eq. (6.20) to be along x̂ and ẑ,

with the spin current and spin accumulation in the y plane symmetric in our system exchange

limit. The following details the solution process for the spin current propagating along ẑ, with

the solution for the x̂ propagating current equivalent but for the differentiation along x̂ in Eq.

(6.21).

For the current propagating along ẑ, the current is assumed to be a spin only current, i.e., no

charge current. This sets the β jeM component to zero. It will be included in these equations,

however, as reference for the solution propagating along x̂. Thus, solving for the spin current

propagating along ẑ simplifies Eq. (6.20) to:

jz
s = β jeM+θISGE jeey −2D0

[
∂m
∂ z

−ββ
′M
(

M · ∂m
∂ z

)]
(6.21)

The motion of the spin accumulation is described via the s-d exchange interaction between

the spin accumulation and the local magnetisation, Hint =−Jm ·M. The equation of motion of

the spin accumulation can be expressed as:

dm
dt

+(J/ℏ)m×M+(J/ℏ)
ωL

ω⊥
M× (m×M) =− m

τs f
(6.22)

where m is the spin accumulation, M is the unit vector for the local magnetisation of the

magnetic layer, J is the exchange energy between the electron spin and the local magnetisation,

ℏ is the reduced Planck constant, ωL and ω⊥ are the electron Larmor precession and transverse

precession length, respectively, and τs f is the spin-flip relaxation time of the conduction

electrons.

The stationary solution of the spin accumulation (m) decomposed into longitudinal and

transverse components with respect to magnetization direction can be determined under the

assumption that the relaxation time (τs f ) is much shorter than the timescale of magnetization

changes. To determine the components of the spin accumulation, we replace dm
dt in Eq. (6.22)
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by ∂m
∂ t + ∂ js

∂ z (removing the z notation from js for readability) leading to

∂m
∂ t

= −∂ js

∂ z
− (J/ℏ)m×M− (J/ℏ)

ωL

ω⊥
M× (m×M)− m

τs f
. (6.23)

Then we consider the value of ∂ js
∂ z to replace in the above equation as

∂ js

∂ z
= −2D0

[
∂ 2m
∂ z2 −ββ

′M
(

M · ∂ 2m
∂ z2

)]

Subsequently, we obtain:

1
2D0

∂m
∂ t

=
∂ 2m
∂ z2 −ββ

′M
(

M · ∂ 2m
∂ z2

)
− m

λ 2
s f

− m×M
λ 2

J
− M× (m×M)

λ 2
φ

(6.24)

where λs f =
√

2D0τs f , λJ =
√

2ℏD0/J, and λφ =
√

2ℏD0ωL/ω⊥J.

Stationary solution of spin accumulation

The spin accumulation is time and position dependent. However, because the timescale of

the magnetisation changes is much slower than changes in spin accumulation (attosecond

precession frequency vs picosecond frequency), the stationary solution of spin accumulation

can be obtained with the assumption that the local magnetization is fixed and by setting

∂m/∂ t = 0. This gives:

0 =
∂ 2m
∂ z2 −ββ

′M
(

M · ∂ 2m
∂ z2

)
− m

λ 2
s f

− m×M
λ 2

J
− M× (m×M)

λ 2
φ

(6.25)

The solution of the spin accumulation can be separated into two parts: longitudinal (m∥)

and transverse (m⊥) modes which are parallel and perpendicular to the direction of the local

magnetization. The transformation matrix is used here to rotate the magnetization in arbitrary

direction to the basis coordinate system.
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Fig. 6.16 Spin accumulation in the changed basis for (left) magnetization in the global
coordinate system, and (right) in the rotated basis system.

The solution of spin accumulation is directly represented by the basis of its transverse

and longitudinal modes, with the basis of the spin accumulation demonstrated relative to the

magnetisation in the Cartesian coordinate in Fig. 6.16. To solve the coefficients, the spin system

is discretised into microcells along ẑ and x̂ (for the spin current propagating along x̂). The

separation of variables is assumed to be orthogonal, and solved using an alternating direction

scheme [168]. This gives a microcell size of 10×d ×0.14Ȧ3, where d is the y depth of the

atomic lattice due to uniform spin accumulation. In its basis, the spin accumulation solution for

the ODE in Eq. (6.25) using arbitrary boundaries is:

m∥(z) =
[
m∥(∞)+

[
m∥(0)−m∥(∞)

]
e−δ z/λsdl

]
b̂1

m⊥,2(z) = 2e−k1δ z [ucos(k2δ z)− vsin(k2δ z)] b̂2

m⊥,3(z) = 2e−k1δ z [usin(k2δ z)+ vcos(k2δ z)] b̂3, (6.26)

with (k1 ± ik2) =
√

λ
−2
sf ± iλ−2

J and δ z the microcell height.

The coefficients m∥(0), u and v are constants which can be determined from the interface

condition by continuity of spin current (where the solution for jx
s would utilise the microcell

width δx):
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m⊥,2(0)+ im⊥,3(0)
2

= u+ iv

m⊥,2(0)− im⊥,3(0)
2

= u− iv

Spin current at the interface

The spin current at the interface between the layers (z = 0) is as follows

jmx(0)−β jeMx = 2D0(ββ
′M2

x −1)
∂mx(0)

∂ z
+2D0ββ

′MxMy
∂my(0)

∂ z
+2D0ββ

′MxMz
∂mz(0)

∂ z

jmy(0)−β jeMy −θISGE jeey = 2D0ββ
′MxMy

∂mx(0)
∂ z

+2D0(ββ
′M2

y −1)
∂my(0)

∂ z
+2D0ββ

′MyMz
∂mz(0)

∂ z

jmz(0)−β jeMz = 2D0ββ
′MxMz

∂mx(0)
∂ z

+2D0ββ
′MyMz

∂my(0)
∂ z

+2D0(ββ
′M2

z −1)
∂mz(0)

∂ z
.

For this case, the charge current injected perpendicular to the plane is zero. The incoming

spin current at z = 0 is js(0) = jeθISGEey. Then one finds the first derivative of the spin

accumulation with respect to the distance at z = 0 in the matrix form as below. It is expressed

in terms of the transport parameters of the layer and the incoming spin current jm(0) from the

previous layer:


∂mx(0)

∂ z
∂my(0)

∂ z
∂mz(0)

∂ z

=


2D0(ββ ′M2

x −1) 2D0ββ ′MxMy 2D0ββ ′MxMz

2D0ββ ′MxMy 2D0(ββ ′M2
y −1) 2D0ββ ′MyMz

2D0ββ ′MxMz 2D0ββ ′MyMz 2D0(ββ ′M2
z −1)


−1

jmx(0)

jmy(0)

jmz(0)

 (6.27)

Next, we need to consider ∂m
∂ z in the global coordinate system from the spin accumulation

in the basis coordinate system.

Spin accumulation at the interface

The final step is to use the derivatives of m using the interface conditions in Eq. (6.27) to

evaluate the constants m∥(0), u and v which completely determine the solution for m. The
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solution of spin accumulation Eq. (6.26) in the basis coordinate system, b1, b2 and b3 can be

rewritten to present in the global coordinate system:

mx(z)êx +my(z)êy +mz(z)êz = m ∥(z)b̂1 +m⊥,2(z)b̂2 +m⊥,3(z)b̂3

= m ∥(z)
[
b1xêx +b1yêy +b1zêz

]
+ m ⊥,2(z)

[
b2xêx +b2yêy +b2zêz

]
+ m ⊥,3(z)

[
b3xêx +b3yêy +b3zêz

]
Determine the first derivative of the spin accumulation with respect to the distance z,

∂mx(z)
∂ z

= b1x
∂m∥(z)

∂ z
+b2x

∂m⊥,2(z)
∂ z

+b3x
∂m⊥,3(z)

∂ z
∂my(z)

∂ z
= b1y

∂m∥(z)
∂ z

+b2y
∂m⊥,2(z)

∂ z
+b3y

∂m⊥,3(z)
∂ z

∂mz(z)
∂ z

= b1z
∂m∥(z)

∂ z
+b2z

∂m⊥,2(z)
∂ z

+b3z
∂m⊥,3(z)

∂ z
, (6.28)

where the derivative takes the form:

∂m∥(z)
∂ z

=

[
m∥(∞)−m∥(0)

]
λsdl

e−x/λsdl

∂m⊥,2(z)
∂ z

= −
[

G2

l+
e−x/l+ +

G3

l−
e−x/l−

]
∂m⊥,3(z)

∂ z
= −i

[
−G2

l+
e−x/l+ +

G3

l−
e−x/l−

]
.

At the interface (z = 0), one obtains

∂m∥(0)
∂ z

=

[
m∥(∞)−m∥(0)

]
λsdl

∂m⊥,2(0)
∂ z

= −
[

G2

l+
+

G3

l−

]
=−2k1u−2k2v

∂m⊥,3(0)
∂ z

= −i
[
−G2

l+
+

G3

l−

]
= 2k2u−2k1v (6.29)
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which is substituted into Eq. (6.28). Subsequently one has the following matrix form:
∂mx(0)

∂ z
∂my(0)

∂ z
∂mz(0)

∂ z

=
m∥(∞)

λsdl


b1x

b1y

b1z

+

− b1x

λsdl
(−2b2xk1 +2b3xk2) (−2b2xk2 −2b3xk1)

− b1y
λsdl

(−2b2yk1 +2b3yk2) (−2b2yk2 −2b3yk1)

− b1z
λsdl

(−2b2zk1 +2b3zk2) (−2b2zk2 −2b3zk1)




m∥(0)

u

v


Consequently,


m∥(0)

u

v

=


− b1x

λsdl
(−2b2xk1 +2b3xk2) (−2b2xk2 −2b3xk1)

− b1y
λsdl

(−2b2yk1 +2b3yk2) (−2b2yk2 −2b3yk1)

− b1z
λsdl

(−2b2zk1 +2b3zk2) (−2b2zk2 −2b3zk1)


−1

∂mx(0)
∂ z − b1xm∥(∞)

λsdl
∂my(0)

∂ z − b1ym∥(∞)

λsdl
∂mz(0)

∂ z − b1zm∥(∞)

λsdl


(6.30)

For simplicity, the coefficients bi j in Eq. (6.32) above can be restricted to the in-plane

magnetisation enforced by the strong easy-plane anisotropy of Mn2Au:

[biα ] =


Mx My 0

−My Mx 0

0 0 1

 (6.31)

This is then substituted into the matrix form in Eq. (6.32):


m∥(0)

u

v

=


− Mx

λsdl
2Mxk1 2Myk2

− My
λsdl

−2Mxk1 −2Mxk2

0 2k2 −2k1


−1

∂mx(0)
∂ z − Mxm∥(∞)

λsdl
∂my(0)

∂ z − Mym∥(∞)

λsdl
∂mz(0)

∂ z

 (6.32)

Finally, the unknown coefficients m∥(0), u and v can be calculated by substituting the first

derivative of the spin accumulation at interface, ∂m(0)
∂ z , as equation (6.27) into equation (6.32).
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Conclusions

Sophisticated spintronic control of magnetic materials is a required foundation for ultrafast

memory, reservoir and neuromorphic computing, and very-low energy data storage mediums.

AFMs currently provide the best platform for these applications, at least in terms of theoretical

performance. Actual control methods for multilayer AFM spintronic devices remain too coarse

than the level necessary for widescale device implementation. Advancing simulation tools

in order to provide accurate, high-throughput modelling and analysis of complex multilayer

structures is a serious focus for the computational magnetism community. At the same time,

advances in sensors and first principles calculations have discovered physical phenomena

outside the bounds of bulk materials modelling. This thesis focused on applying some of these

novel physical control methods to traditional ASDs simulations in the AFM Mn2Au, in both

isolated and combined forms, in order to demonstrate opportunities to control AFMs using novel

methods. Mn2Au is one of the most promising spintronic materials, but experimental studies

have shown the difficulties of robust magnetic control using traditional spintronic mechanisms.

Mn2Au is an ideal material for ADSs simulations, operating as collinear, ferromagnetic, metallic

sublattices with antiparallel exchange coupling. This allows minimal model approximations

while maintaining large-scale simulation performance. This conclusion will summarise the key

results for spintronic control in Mn2Au and expand on future work to be applied to additional

AFM materials.
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7.0.1 All optical switching

Chapter 3 focused on the introduction and application of a novel first principles laser torque

operating at optical frequencies to single domain switching. The unusual nature of this torque

allows for ultrafast laser control of the AFM order without applied field, current, THz lasers, or

circularly polarised light. Such all-optical control methods have previously been demonstrated

only for ferrimagnetic systems, but only for toggle (i.e., non-deterministic) switching. The

LOT in Mn2Au can be applied in such a way as to create preferential torque patterns for the

AFM order, allowing sequential pulses to deterministically change the magnetic structure

regardless of the initial state. Simulations involving temperature effects of the laser-heating on

the magnetisation confirm this result is not thermally-driven as it is for ferrimagnetic switching,

and is robust even up to several hundred degrees above room temperature.

The existence of this novel torque has been known to the ab initio and experimental

community, but only for insulating AFM systems at cryogenic temperatures. The application

of linearly polarised optical frequencies to AFMs which are magnetic at room temperature

has so far rarely been considered in the geometry presented in Chapter 3. Since the ab initio

foundation of this LOT is based on the PT symmetry of the system, and is not unique to

Mn2Au. Thus, future work will focus on applications of the LOT to additional AFM materials,

as well as further large-scale simulations with multi-grain domain states.

7.0.2 Domain Wall Control

Chapter 4 further applied the novel LOT to magnetic DW textures. DW modelling and control

is crucial for magnetic simulations, not just as a consequence of real-world materials science

but also as a feature. AFM DWs do not exhibit the Walker-breakdown present for FM systems,

allowing DW driving up to the magnon limit. This is often on the order of tens of km/s–tens of

nm/ps for nanoscale devices. This means even µm scale devices can manipulate DWs across

the span of the device in nanoseconds, far beyond even the fastest FM DWs. Since AFMs

do not emit stray fields for sensing or control, DWs represent one of the chief opportunities

for encoding magnetic information for AFMs. The novel symmetry of the LOT, different in
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geometry from traditional SOT/STT driving mechanisms, was shown to more efficiently drive

the DW to the magnon limit than SOT fields. The symmetry of the LOT also allows for control

of the DW width without driving by expanding or contracting the system. This is a direct

improvement to current-based mechanisms, which require changes to the current direction in

order to invert the DW propagation.

Chapter 5 extended the modelling of DWs by including temperature effects to the system.

This involved rewriting the Heisenberg spin Hamiltonian from the microspin form found in

the ab initio work of Khmelevskyi [55] and Shick [148]–into a form suitable for atomistic

modelling with temperature. The resultant Hamiltonian was shown to produce macroscale

constants consistent with thermodynamic scaling trends, giving proof of concept for more

advanced multiscale modelling involving ASD simulations. This Hamiltonian was applied to

characterise Mn2Au DW dynamics at elevated temperatures, seeing excellent agreement with

the newly constructed analytic temperature-dependent description of the DW. Excitation of

the DW with the LOT showed increased efficiency over the 0 K results in Chapter 4, further

supporting the use of LOT for ultrafast, low-energy spintronic control.

The future of DW simulations lies in large-scale computations modelling multi-DW

interactions at temperature. This is another foundational area of research for real systems

with multiple domains, and indeed the area of research for reservoir computing. ASD is the

platform of choice for these experiments, as the mechanics of DW collisions beyond the most

trivial cases are analytically opaque, and the micromagnetic platforms cannot handle the severe

changes in magnetisation present for high-energy collisions. On a slightly smaller scale, more

work is needed on the application of the LOT to DWs at elevated temperature in order to expand

and contract the DW. The spin waves excited by the DW spring may be overshadowed by the

thermal excitation of the system, so careful deconvolution must be performed.

7.0.3 Spin Transport

Chapter 6 presented implementation of a more robust ZLF drift-diffusion model for spin

transport. Though results were presented for Mn2Au, such a model is applicable to any

magnetic material where simultaneous in-plane and out-of-plane spin transport is of interest.
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The results highlight the differences between SOT and STT switching and DW driving compared

to LOT and pure SOT switching for AFMs. Even though the STT mechanism represents only a

small perturbation to the DW driving with SOT alone, the model allows for direct calculation

of spin polarised currents applied and generated to the DW.

Though future work needs focus on the addition of multilayer interface effects on the spin

currents and boundary spin accumulation, such a model would allow true multiscale simulations

of magnetic heterostructure materials involving multiple spintronic control methods. Already,

the model allows simulation of the control methods applied in Chapters 4 and 5 (namely LOT

on DWs at temperature), with such simulations being the next focus of this project, as well as

simulations of the DW-spring driving on the spin currents.

Modifying the current spin transport model to include interface effects would also allow

reproduction of experiments utilising spin pumping. This is an area of spin excitation outside

the realm of ZLF theory, as the generation of the ultrashort spin current pulses relies on either

phenomenological descriptions of the laser-magnetism-current interaction or time-dependent

Boltzmann transport solutions at the interface, rather than the Cartesian finite-difference method

used in the drift-diffusion model.

Lastly, more work is needed investigating how the LOT generation of spin currents interacts

with interfaces and DWs. The ab initio formalism for the torque mechanism in Chapter 3

calculates only the net torque on the magnetisation from the non-equilibrium charge density.

Further work from the same group later applied the same Kubo linear response formalism behind

the CISP discussed in Chapter 6 to the LOT, calculating the non-equilibrium laser induced spin

polarisation (LISP) response generating the LOT (analogous to the CISP generating the intrinsic

SOT) [83]. For single domain systems or systems without interfaces, the LOT implementation

in Chapter 3 is sufficient. In the context of DWs or interfaces, however, there is ambiguity

behind the effective torque and driving mechanism. This does not undermine the results of

Chapters 4 or 5, but instead presents yet another potential control feature for AFM spintronics

in need of investigation.
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7.0.4 Summary

Overall, this thesis focused on the development and implementation of additional control

features for AFMs into ASD simulations. The chief feature being the implementation and

analysis of a novel all-optical torque mechanism, we present ASD simulations in combination

of this method. Additional supporting changes to the ASD model present in the open-source

software package VAMPIRE, such as the modified spin transport model and improved atomistic

spin Hamiltonian at elevated temperatures, will allow further multiscale calculations for

Mn2Au and other complex AFM materials. Thorough understanding of the constituent parts of

spintronic devices, both in isolation and combination, will pave the way for next-generation,

ultrafast, efficient devices for memory, storage, and computing applications.
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