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Abstract

Antiferromagnetic spintronics is a complex and valuable field of ongoing research, critical
for the development of beyond-start-of-the-art ultrafast, low energy computing and memory
devices. Since they are largely unaffected by external magnetic fields, laser excitation, applied
currents, and dynamic temperature changes represent the only methods for spintronic control
in antiferromagnets. With the vast range of conducting, semi-conducting, and insulating
antiferromagnets available to materials science, along with limitless multilayer combinations,
there is a crucial need for advanced simulation techniques applicable to time and size scales
orders of magnitude faster and smaller than ferromagnets. MnyAu is of high interest to the
spintronics community due to the presence of an intrinsic spin-orbit torque allowing for field-
free spintronic control. Likewise, MnjyAu presents an ideal platform for advanced atomistic
spin dynamics model development: a high Néel temperature, high conductivity, and ordered
collinear magnetic and metallic structure make it especially appropriate for highly physical
simulations with minimal compromises to model integrity.

Here, we use atomistic spin dynamics to model and simulate Mn, Au magnetic domain and
domain wall control using existing and novel spintronic control methods. A chief result of this
thesis is the implementation from ab initio theory of a novel laser induced torque using linearly
polarised light to switch single domains and drive domain walls. The symmetry of this torque
can be leveraged to produce robust toggle, preferential, and deterministic all-optical switching,
even under conditions of extreme transient laser heating. This torque is also applied to domain
walls, with the symmetry allowing for efficient, ultrafast domain wall motion, domain wall
pinning, and domain wall contraction. An additional result with our domain wall simulations
is the redescription of the model Hamiltonian used for Mn; Au in atomistic modelling. This
Hamiltonian allows for calculation of the temperature-dependent anisotropy and exchange
scaling for use in micromagnetic simulations. Lastly, we expand the drift-diffusion formalism
for spin transport to include the current-induced spin polarisation generating the intrinsic Néel
spin-orbit torque, calculating directly the correlated effect of non-linear spin accumulation

through a domain wall with the intrinsic current-induced spin accumulation of Mn,Au.



iv

Thus, this thesis presents advances in model development for atomistic spin dynamics
simulations and spintronic control methods for antiferromagnets. With spintronics poised as the
foundation for next generation computing devices and hardware, advances to antiferromagnetic
modeling capabilities are highly relevant to fundamental, developmental, and applications
focused research. As such, it is the hope of the author that this thesis will prove useful for a

variety of groups and fields beyond the atomistic modeling community.
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Motivation

The current decade has seen many landmark moments for the computing and data industries:
the inevitable failure of Moore’s law for data storage, the exponential growth of both power
and data storage requirements for the machine learning industry, and, more optimistically, the
commercial release of devices making use of heat assisted magnetic recording (HAMR) media
for ultra-high density memory storage. While HAMR devices have entered the market with
an already impressive energy improvement of 50% over traditional HDD storage media, the
lifetime and scope of the technology is limited by the storage medium itself. The problems
affecting HAMR technology has often been referred to as a "quadrilemma" [1]. HAMR
technology requires high thermal stability, low error rate, high bit density, and minimal external
fields. Even with an ideal material, however, HAMR would always remain a technology
which is efficient but slow; with a bit recovery time on the order of nanoseconds and write
time limited to microseconds, HAMR does not lend itself to ultrafast memory storage. This,
perhaps, extends our quadrilemma into a pentalemma [2]: not only must our ideal storage
media be stable and high density, it must be fast. Faster, at least, than conventional HDD
storage techniques.

In the push to ultrafast memory storage, speedup is not measured in percentages, but
orders of magnitude. While state-of-the-art memory devices can read and write up to 20 GB/s,
the theoretical limit for magnetic-based operations exists in the range of TB/s [3-5]. The

base rational for this drastic difference in operation timescale comes from a change in the



2 Motivation

fundamental physics used to read and write memory. In general, operations with ferromagnets
are limited to the nanosecond (ns) range (GB/s) [6]. Similar to how the tension of a piano wire
determines its frequency, the energetic coupling in a ferromagnet (FM) operates at frequencies
in the GHz (ns) range. Antiferromagnets, however, operate at an entirely different set of
frequencies, from the high GHz to low THz (picosecond, ps) range [7]. Thus, platforms using
antiferromagnets (AFMs) for their devices could see orders of magnitude speedup, saving costs
in efficiency and drastically improving performance.

But this opportunity is not without physical limitations. Since AFMs emit no stray magnetic
fields, control options are limited to the other available nanoscale forces: electric fields, current,
lasers, pressure, temperature, and structure. Thus, development of AFMs for commercial
storage and computing use requires research into not just device fabrication, but also control
schemes able to read and write AFMS on their ultrafast timescale. In general, any singular AFM
control method, alone, invariably fails to satisfy a condition of the ’pentalemma’ from above.
The solution, perhaps, takes inspiration from HAMR: seek combinations of control methods to
satisfy our criteria. Just as HAMR utilises local changes in temperature to increase the density
of storage bits accessible to a magnetic field, combinations of AFM control mechanisms could
allow ultrafast dynamics without compromising on storage density or power consumption.

One promising development in the field has been the discovery of AFMs which respond
asymmetrically to electric fields, either in the form of an applied potential to generate current
or the electric field directly. This response has been known for AFMs for nearly twenty years,
but in the form of laser excitation [8]. Its use, however, was restricted to insulating AFMs,
and only for very low temperatures (< 80K). The direct control of an AFM using an electric
field from an applied potential would take another decade [9]. The distinction of an electric
field generated by an applied potential is made from an applied current due to a nuanced
distinction in the mechanism of control: up until recently, applied currents to AFMs were
used as a transfer medium for spin injection, either from a heavy metal layer (called spin-orbit
torque (SOT)) or from a reference FM layer (generally called spin-transfer torque (STT)).
The details of these mechanisms will be covered later, but they of course form the basis for

the field of spintronics: the coupling of the electron’s charge and spin nature [3]. While a



changing electric current will generate a magnetic field through Faraday’s Law, spintronics uses
instead the intrinsic effect spin-polarised charge currents can have to interact with materials.
Useful for both measuring and modifying FMs and AFMs, the spin-polarised charge current
already represents a combined control method from those listed above; except for very specific
cases, the charge current requires a structure of multiple materials in order to become spin
polarised. Two materials, however, have recently been discovered to be spintronically-active
without the need for multilayered heterostructures to spin polarise charge currents. CuMnAs
[9] and MnyAu [10]-both metallic AFMs stable at room temperature—respond asymmetrically
to applied electric fields generating a current induced spin polararisation (CISP) which exerts
torque on the AFMs depending on the direction of the applied field [11, 12]. This effect has
been used experimentally to switch the magnetic domains of AFMs [13, 14] and inject spin
currents to other magnetic materials [15], and predicted computationally to drive domain walls
[16, 17].

The distinction of magnetic control between current and electric field is hardly a semantic
one. For clarity, in this thesis control of AFMs using current will reference the moving charge
of electrons which can gain a spin polarised component, while control from an applied field
refers to the CISP caused by the intrinsic nature of the material itself [12]. Both control methods
will generate torque with the right symmetry to switch AFM domains and drive domain walls
[18, 19] (more detail in Chapter 4), and Chapter 6 details the modelling of both processes
simultaneously). But while the intrinsic CISP is traditionally activated through a DC applied
potential, recent experiments have also excited AFM dynamics using THz frequencies to drive
AC currents which generate a CISP [20, 21].

This brings in another control method mentioned earlier, laser excitation. Once again, the
distinction between torque generated by an electric field and a laser excitation is not a semantic
one, and is in fact the main result of this thesis: laser excitations, even at an optical frequency,
can generate dynamics distinct from those caused by CISPs, spin injections carried by current,
and rapid changes in temperature. This torque—so called the laser optical torque (LOT) due to
its similarity to SOT-nonetheless has its own set of symmetry rules affecting switching [22]

and domain wall driving [23]. The source of this control stems from the 2" order coupling of



4 Motivation

the electric field to the susceptibility tensor of the electronic structure of the material, generally

described in [24, 25] as:
SS,'ZlijEj(l‘)‘i‘XijkEj(l‘)Ek(t) (1.1)

where the term linear in E () corresponds to the SOT [12], even if driven by a THz electric
field. This makes a 2" order excitation distinct from the CISP generated by an applied potential
or a THz electric field supplied by laser excitation. And indeed, the electric field from THz
excitation likewise carries a substantial 2" order coupling term in addition to the CISP [25].
While this effect has been known for insulating AFMs [26, 8], it has not been applied to metallic
systems useful for spintronics.

The goal of this thesis, therefore, is to present the use of this novel LOT-in combination
with traditional control measures for metallic AFMs—as a control method in Mn,Au useful for
spintronic devices. MnyAu provides an excellent material platform for modelling and model
development of magnetic control using atomistic spin dynamics simulations. It has a very
high Néel temperature (above 1000K) [10] and strong metallic character [20], and its collinear
structure allows relatively straightforward analytic descriptions [17, 27], at least compared to
non-collinear systems such as Mn3Sn [28]. And, unlike complex non-collinear systems such as
Mnj3Sn, dynamic modelling of system sizes approaching nanoscale devices does not require
simplification of the physics. This thesis presents results on the use of a LOT for single domain
switching (Chapter 3), domain wall driving at OK (Chapter 4), and domain wall driving at finite
temperatures (Chapter 5) in MnyAu. As a step towards combined spintronic control, this thesis
also presents development integrating a drift-diffusion spin accumulation model with the CISP

generated from an applied potential (Chapter 6).



Background and Theory

2.1 Atomistic Spin Models

At the atomistic level, magnetism is intrinsically a quantum phenomena. The fundamental
magnetic moment, (g, is quantised directly in the angular momentum part of the solution to
the Schrédinger equation as g = eh/2m, = 9.274 x 107247 /T . Fortunately for us, while each
electron has an intrinsic magnetic moment of ug, 1.8 L of water with its times 1.08 x 10?7
electrons does not have a moment of 10.6 x 10%J/T. Otherwise, in Earth’s gentle magnetic
field of 50 uT, we could boil our pasta—or ourselves—with nothing but a mechanical stirrer. In
fact, it was this very conundrum—the discrepancy between the electrons’ magnetic moments
and the correspondingly minimal saturated magnetic moments displayed in materials—that
contributed to early push-back of the intrinsic spin-moment of the electron. The competition
between spin order and disorder is thankfully resolved by the Pauli exclusion principle and
Hund’s rules: unpaired electrons are to be found only in the valence band (generalising without
any photoexcitation or other transient effects). This is not to say, however, that only valence
spins contribute to the magnetic landscape of a material. Fig. 2.1 demonstrates a general
transition metal material with an unequal density of states (DoS) between "spin up" and "spin
down" electrons in the valence band (the Fermi level for metallic materials). While the Fermi

level is dominated by spin down states, the total spin of the states from zero energy to the Fermi

level would give a net up value.
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D (E)

Fig. 2.1 Majority and minority picture of density of states for a generic transition metal.
The narrow in energy bands represent the d-orbitals and the wide bands are the sp-orbitals.
Figure from [29].

Multiple phenomena compete at the quantum level to dominate this trend, both inside the
atom and between atoms, requiring robust ab initio theory which often gives results counter to
our intuition. Atomistic spin models serve as the in-between scale for quantum mechanical
ab initio calculations and experimental laboratory results. To do this, Fig. 2.2 illustrates the
separation of the multi-scale dynamics of the magnetic system: the basic magnetic material is
composed of ordered spins, fixed in place, which represent the subatomic magnetic structure of
the material. For materials suitable for ASD modelling, the magnetic texture inside the atomic
volume is highly localised and static.

From the experimental side, information about the atomistic magnetic moment is informed

by measurements utilising the dipole nature of magnetism:
E=-m-B

gives the energy for a magnetic moment m in the presence of an external field B. The moment
relates to the saturated magnetisation of the system, M;, through m = M;V. With a known
crystal geometry to give the ratio of atoms to volume, the atomic spin Li; can be reasonably
calculated from ps = MV /ngoms. More complex materials can have multiple contributing
spins in a unit cell. Since these specific contributions can be measured and calculated separately,

we can represent the magnetic contribution from species i as mu, ; = My ;V /Raoms ;. Unusual
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Fig. 2.2 Schematic illustration of multi-scale spin models from subatomic to bulk material.
The homogeneous region between the atoms contains no (or static) magnetisation compared to
the highly localised magnetic texture inside the atomic volume. Figure from [30].

cases of magnetism correspond to a loss of the ability to represent the magnetisation of a
material as arising from an orientation of spins confined to a non-periodic volume, such as
a highly dispersive charge-density wave. But for transition metal magnets, nearly all of the
moment is localised to the d orbitals. Ab initio methods can indeed match closely with the
experimentally measured p; [30], but beyond L, there are few easily comparable variables
accessible to both ab initio and experimental methods. Instead, we must rely on the simulation
and modelling of magnetic systems using ab initio constants to compare with experimental

measurements. Thus, we turn to the background behind ASD constants.

2.1.1 First Principles Background

First principles calculations are especially important for atomistic modelling, as rarely are
we interested in the bulk case of a material with only simple ferromagnetism. In such a
case, the relationship for p; above becomes less useful: while we may know the individual

moment of each magnetic species, it can be difficult to assign energetic preferences between
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them. On the first principles scale, more sophisticated methods than the Stoner model allow
for calculation of complex systems with strong spin polarised states above and below the
Fermi level, anisotropic preferences for orbital and spin density, and multiple spin species
with varying magnetic moments. Much work must be done, however, to reach the appropriate
atomistic constants from the quantum mechanical models. The full many-body Hamiltonian
for a quantum mechanical system lattice of electrons and nuclei requires a description of all

nuclei-nuclei (1,J), electron-electron (i, j), and electron-nuclei (i, /) interactions [30]:

M] 1#1471-80 |R[—R]| 2m
2.1
1 e? Z 1 Z]€2 @
4reg |l‘, | 47758() |l‘, R[|

i#]

Since there is no exact solution to the many-body equation, and brute-force numerical methods
are computational impossible for even the largest computing systems, numerous mathematical
approaches have been explored to simplify the problem. Often, only the electron-electron
interactions are important for magnetism (though this is not always the case). The Kohn-Sham
equation provides a method for calculating these interactions by optimising the wavefunction of
the electrons according to a reduced Hamiltonian containing only the electron kinetic operator

V?2 and a parameterised electron potential Veg(r):

(57 Verlr)) watr) = et 2

which gives a one-electron solution to the many-body Hamiltonian by simplifying the full
electron-electron and electron-nuclei Coulomb potential into more solvable solutions given
by Vegr. The field of Density Functional Theory (DFT) simplifies the problem of variationally
optimising the wavefunction by operating on the electron density, given as the sum of the
probability density of the occupied wavefunctions n(r) = ¥; |y;(r)|>. We can introduce an

additional degree of freedom by considering the spin up (") and spin down () electrons (as
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diagrammed in Fig. 2.1), resolving the probability density as n'™")(r) = ¥ W/,-Tu) (r)|%. The

magnetisation density is then defined as:

m(r) = n' (r) —n*(r). (2.3)

and the magnetic moment can be the integrated magnetisation density:

m; = /Qi m(r)dr. (2.4)

The problem, of course, is that the Kohn-Sham equation written above does not allow for spin
up and spin down electrons. Two separate versions of Eq. (2.2) can be written—one for each
electron channel-but without an energetic distinction between spin up and spin down electrons,
they will give identical solutions. The integral above gives the entire magnetic moment, but
sometimes it can be useful to decompose m; into the spin and orbital contributions by summing

the spin and orbital operators over the occupied wavefunctions [30]:

ms=Y,k(¥Yx|o|¥)
mp= Y (Vikll|¥ik)

Fundamental to the DFT process is identifying the necessary changes to the effective

(2.5)

potential in Eq. (2.2) to give a one-electron solution based off many-electron interactions.
Hartree-Fock formalism models the electrons interacting with a "mean field" approximation,

and gives a Hamiltonian:

(—1V%+Vext(r)+2/d1"w> %(x)—Z/dr’ij(x)&j:Sill/i(x)

i
2 iz ri —1j| oy —rj|
(2.6)

Vext 18 the electron-nuclei interaction, and the first integral is the Coulomb potential. But the
second integral is the purely quantum mechanical result of exchange energy arising from the
Fermion description built into the Slater determinate of Hartree-Fock theory: the electrons have

an energetic reason to be in different orbitals with their spin aligned. This obvious preference



10 Background and Theory

towards materials having a magnetic moment is a result of the mean field approximation; it is a
limitation of the one-electron wavefunctions that it cannot take into account the response of the
other electrons when evaluating its operators. This so named electron "correlation" can result
in, among other things, reduction of the magnetisation in a similar manner as lattice orbital
quenching. Methods to introduce correlation to the Hartree-Fock method exist (e.g. multi-
configurational SCF and coupled-cluster theory [31]), but are untenable for lattice systems
and even but the smallest molecules. Instead, the Kohn-Sham Hamiltonian is used, with a less
severe restriction to the wavefunction than Hartree-Fock’s Slater determinate. Rather than use
the "exact exchange" present in Eq. (2.6) (which contains no correlation), a modified—and often
phenomenological-functional is used to enforce a mix of exchange and correlation. The V ¢ in
Eq. (2.2) can now finally be defined:

d&xc[n(r)]

d*r + &x[n(r)] —l—n(r)T(r) (2.7)

%ﬂm:wﬂm+/

n(r')
v —r|
where Vi 1s still the electron-nuclei interaction, the integral is the Coulomb potential, and
the last two parts are the exchange and correlation functionals, respectively. Two versions of
Eq. (2.7) get defined for spin up and spin down electrons, finally allowing for self-consistent,
variational calculations to be made to the electron density representing our magnetisation.
Multiple forms of functionals exist, constructed and optimised for different elements, phenomena,
and operators, but the motivation remains the same: to calculate something useable by the
sciencist.

For the atomistic spin-dynamicist, no ab initio constant is more important than the Heisenberg
exchange J;; between two interacting spin moments. To describe this system, the Hamiltonian
usually avoids dealing with changes to the local magnetic density m; from Eq. (2.4), and instead

holds the local magnetisation magnitude (i, constant to deal with the magnetic orientation S;:

1
Hz—EZJ,-jsj-sj (2.8)
i#j
Numerous methods exist to extract this energy, but the precise calculation of these constants

is firmly in the realm of ab initio rather than ASD. Instead, we acknowledge the limitations
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working with the Heisenberg Hamiltonian places on ASD: while all methods to calculate the
exchange constant seek to quantify the energetic relationship between spins at sites i and J,
the Heisenberg exchange is inter-atomic. Sites i, j for J;; are differing atoms, rather than
differing electrons, orbitals, or even nuclei location. This is a true approximation only in the
sense that the above corrections are usually small compared to the Heisenberg constant, but do
express themselves in crucial physics (see [32-36]). In metals the full calculation can take a
complex arrangement due to induced-polarisation of the d-orbitals acting non-locally through
the conduction band. This so named RKKY theory (for additional ab initio background beyond
[30] see [37, 38]) explains the AFM ordering typical of layered metals: in general, metals
in-plane order parallel; metals out-of-plane order antiparallel. But this is less of a correction to
the Heisenberg Hamiltonian than it is an analysis technique.

The largest correction necessary to the Heisenberg Hamiltonian—on the basis of energy
rather than fundamental approximations—is the directional variation in J;; at site i independent
of j. Often called the magnetocrystalline anisotropy energy (MAE) or magnetic crystalline
anisotropy (MCA), this anisotropic preference for the moment is usually treated as a property
independent of exchange (i.e., using its own constant k; rather than J;). This is especially true
for models dealing with larger systems simulating shape effects. For materials with symmetric,
strong spin-orbit coupling, it is possible instead to build the anisotropic contribution into an

exchange tensor. This adjusts the Heisenberg Hamiltonian slightly to:

1
H= _EZSiJiij_Zki(Si'ei)n (2.9)
i#] i

where J§ is the exchange tensor, k; is the MCA constant depending purely on i spins, and
n is the so-called "anisotropy order" exponent representing the energetic scaling of the
anisotropy and spin. Anisotropies which are truly "single-ion" and which belong in the
exchange tensor can be difficult to differentiate, even with first principles formalism. d-orbital
projections to Cartesian space can introduce additional directional components to the magnetic
preference beyond the exchange splitting of interatomic bands. This can take the form of

crystal field splitting—localised charge polarisation around the magnetic moment breaking the
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orbital symmetry—or spin-orbit coupling. Both sources of anisotropy have a strong lattice
symmetry component, allowing for decomposition of the anisotropy constant in (2.9) into a
phenomenological description combining both the crystal-field and spin-orbit contributions
dependent on symmetry orders [39]. For metals with weak ionic potentials the crystal field
splitting is less important than the spin-orbit coupling [29]: the spin-orbit coupling strength &
is proportional to dV(r) /rdr, and can be on the order of exchange interactions for transition
metals (or larger for rare-earth elements) [30]. The spin-orbit interaction £/ - s must enter into
the Kohn-Sham equation effective potential (Eq. (2.7))—usually from a perturbation approach.
Then, the spin-orbit coupling (SOC) strength along direction i for spins s,s’, on occupied and
unoccupied states i, j (respectively), wavefunctoin K, and orbitals /,/’ on atom g from other

atoms ¢’ is [30]:

ZZZ qls‘éql S’ql/ I>< /l/sl‘éq’l's’qll/s>

E&j — &

ss’ A
Esoc,q Il

(2.10)
kij ¢

The value of & ; — &; weights the contribution of the MAE towards states on opposite sides
of the Fermi energy but still close in energy. The MAE is then the difference of orientation

energies for all atoms and spins:

EMAE“ZEYM i) — B3, (o) 2.11)
gss'

For systems with strong, ordered spin-orbit interactions or strong applied fields [29], the
exchange splitting gets enhanced when aligned to certain directions, making the perturbation
approach less-accurate and requiring self-consistent approaches to SOC [40]. In this case, the
anisotropic contribution is considered "two-site" [41], and should be considered as part of the

exchange tensor [39].

2.1.2 Atomistic Spin Dynamics

Modelling the spin on the atomic scale uses the Landau-Liftshitz-Gilbert (LLG) equation of
motion (Eq. (2.12)) for the local moment to describe the precession and damping path in the

presence of the local moment’s effective field. This motion is a classical derivation, requiring
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minimal quantum mechanical routes of energy transfer out of the atomic moment (e.g. through
intra-atomic spin transitions). The damping term for the LLG equation, o, represents the atomic
preference for the magnetic moment to align with the effective field, rather than precess around
it, and is an intrinsic property of materials relating to interactions with the phonon lattice,
conduction band, and other magnetic moments. Various theories exist to describe the damping
term, but in the LLG equation it is a phenomenological, dimensionless quantity representing
the ratio of precession to damping in the system. For metals of high crystalline order and
quality, the value can be on the order of 1073. The LLG equation combines the precession of
the moment in the effective field as well as the damping of the spin:
d Si _ Ye

iy {s,— x BT 4+ oS, x (sl- X Bg‘ffﬂ (2.12)

The effect of temperature on the motion of the atomic spin is a topic of rich analysis, with
ongoing research for many theory and computation groups [42, 36, 43, 44], and the full details
are beyond the scope of this thesis. The inclusion of temperature into the LLG equation is done
by linking the conduction band heat bath to the effective field of each moment according to
dissipation-diffusion theory so the so called Langevin thermostat. The fluctuations of the field
from moment-to-moment (2.13) have a Gaussian distribution I'(¢) with width determined by
the size of the moment L, Gilbert damping parameter o, effective temperature T, and the

time-step Az, averaging out to zero for each spin (2.14).

20tksT,
Blterm — 1(7), | SXB el (2.13)
Ye s At

(Btherm (1)) =0 (2.14)

This thermal field is then added to the effective field from the derivative of the Hamiltonian:

1 dB

eff therm

ett _ _ _— B! 2.15
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To solve the LLG equation, we utilise an explicit 2"¢ order Runge-Katta integration scheme
with predictor-correction step (i.e. the Heun integrator) due to its computational performance
and convergence with the fluctuation-dissipation formulation of the stochastic thermal fields
[30]. This involves a two-step solution to the EoM with a normalisation step between each to

preserve the spin length [45]:

N (2 . eff A . eff
fa. AS; = — o [Si B +as; x (Si < B

1b. S} =S;+ ASAs

lc. S;=S8!/IS}|

R 1 pleff / 1, pleft
% A8 == o [S) x B + 1) x (sle, )}

< 1
2b. S =8, + 5 [ASi +AS]]Ar

+Ar _ QA /|1QtHA
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A well-known phenomenon of the Langevin thermostat is to overestimate the thermal
activation at low temperatures. Corrections to this effect are varied, and likewise outside the
scope of this thesis [42, 46]. We use the method by Kuz’min to adjust the effective temperature
of the spin activation by the ratio of the material temperature relative to the Néel temperature.
This rescales the Curie-Bloch law to include an additional exponent term, where Q¢p is the
phenomenological rescaling exponent (different from the atomistic Gilbert damping term in
the LLG equation above), Ty is the Néel temperature, and f3 is the usual Curie-Bloch critical
exponent for a 3D Heisenberg spin [47]. This rescaling is performed for all simulations with

finite temperature:
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where Ty 1s the rescaled thermodynamic temperature for the spin, Ty is the Néel temperature,
and T, the desired simulation temperature, which differs from the effective temperature
of the spin bath. This approximates the correction to the system necessary for quantum
thermodynamics without the need for the magnon spectra of the material [48, 46]. This

introduces an additional exponent for the standard Curie-Bloch law:

me(T) = m(0) {1 — (T“al) ac} : (2.17)

In

2.1.3 Energy Landscape

The energy landscape of the spin system can be further explored using a Monte Carlo (MC)
Metropolis simulation. There, the temperature enters into the Boltzmann energy of the move-
step—rescaled by Eq. (2.17)—and the state of the system is revealed through sampling of the MC
simulation after sufficient time-steps have passed to ensure equilibrium has been reached [45].
The MC simulation makes direct use of the Heisenberg Hamiltonian to calculate the energy
difference between two spin positions AE = H(S}) — H(S;). The probability for switching is

then:

P =exp (— AE ) (2.18)

kpTetr
Generation of the trial spin state S/ is determined through a modified Hinke-Nowak
algorithm which combines spin-flip, random-spin, and small-angle changes to efficiently
sample the full phase space, including an adaptive angle rate to speed up convergence for high
temperature systems [49]. The small-angle change is proportional to the effective temperature

of the system:

S;+ol
/ 1
= 2.19
" |S;+oT ( )
where o is the cone width scaled by a Gaussian distribution I". The cone width can be adjusted
by an additional multiplicative factor f such that, if the total rate of success of the Boltzmann

probability in Eq. (2.18) R differs from 50%, the width ¢ can be scaled by f = 0.5/(1 —R).
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This has been shown to improve the MC performance for systems operating near 0 K and Ty

regions [49]. The width of o then is given as:

1/5
kBTeff) (2.20)

2
G_fg< Up

The MC algorithm can also be used to sample the energy landscape of constrained systems
in order to explore high-energy configurations. The so-called Constrained MC (CMC) technique
establishes thermodynamic equilibrium for the system at the simulated temperature and
constraint configuration [50, 49], and is especially useful for modelling the torque response
at certain spin angles for a range of temperatures in order to calculate the anisotropy scaling
effects with increasing temperature. Likewise, the CMC simulation is also used to calculate
the effective torque response over a range of temperatures on a constrained spin-spiral. This
method gives a value of the exchange scaling with temperature. There, the spin steps in Eq.
(2.19) are evaluated by an additional criteria that the total magnetisation for a given subset of
the full spin system M i=X;Si/IL; S|~ M;"“Straim. Spins outside the subset j are evaluated
using the standard criteria Eq. (2.18) and spins inside the subset j under a new probability

criteria [50]:

A 2
A AN ( AE)
Pl =—| —Lexp|-— (2.21)
M) ISP\ ksTen

This allows microscopic equilibrium of the subset for a given temperature. Specific details for

the subsets and constraints in the CMC simulations utilised in Chapter 5 are given there.

2.1.4 Dynamic Temperature

Dynamically, laser excitation causes changes to the temperature of the magnetisation heat bath
on the ultrafast timescale. This is included through the use of the "two temperature model"!,

applicable for transition row metals. Since the heat bath coupling to the magnetic spin in metals

' A popular microscopic model of ultrafast demagnetisation from thermal processes is the three temperature
model, which adds an additional degree of freedom for the magnetisation coupling through the spin temperature
of the system [51, 52]. For atomistic simulations, the need for a microscopic spin bath is replaced by the natural
excitation of the LLG equation by the Langevin thermostat.
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occurs through the electron system, which has a much lower heat capacity than the phonon
lattice, the magnetisation experiences a transient temperature peak before cooling to match the
phonon temperature. Often, this transient heating can raise the temperature above the Néel
temperature—on the order of picoseconds—causing sharp reduction in the system magnetisation
without fully causing a phase change to the paramagnetic state. For longer timescales—on the
order of tens of picoseconds—the metal thin film cools to the temperature of the insulating
substrate through phonon coupling.

The energy added to the system from a laser excitation of a Gaussian temporal profile with
full width at half height 7, is [53]:

S(t) = —n2 () (2.22)

F
Z—tp6 \/m exp
where F is the fluence of the laser pulse in J/m? and § is the thickness of the film. A full
description of the laser heating includes a height-dependence impacted by the attenuation of
the laser. Provided the thermal conductivity of the material is high and the film is thin, the
temperature of the system can be assumed independent of depth. For complex relationships
between the intensity of the laser pulse and the heating of the electron thermostat, a more
involved expression for S(z,7) and F is required.

The time-dependent temperature of the system is given in the coupled differential equations
for energy transfer between the electron temperature 7, and phonon temperature 7, (with
cooling to the substrate temperature 7) by the electron-phonon coupling constant G and
characteristic cooling time 7,. In general, these values begin to become temperature-dependent
near the Fermi temperature, but in metals this is far above the heating from ultrafast laser
excitation. The differing heat capacities for the electrons C, = yT, and phonons C,, link the

temperature of the two systems in thermodynamic equilibrium through their energy:

2 — 61, - 1) +50)
Jt (2.23)
oT, T,—T, :
C, 5 = G(T.~T) -

P ot T,
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2.2 Atomistic Modelling of Mn,Au

Mn;Au is an ordered, bimetallic material with single or multigrain structure [20, 54]. The full
Hamiltonian used for Mn, Au in this thesis contains the exchange tensor, a uniaxial out-of-plane
anisotropy term of 4" order, and an in-plane rotational anisotropy term of 4" order. This gives
a strong in-plane spin preference, with the four spin easy axes along (110) (see Fig. 2.3b). 6
describes the polar angle from the Z coordinate, and ¢ the azimuth angle from the X coordinate.
Then, the ab initio Hamiltonian from DFT calculations in Shick et al. [41] and Khmelevskyi et

al. [55] is given as:

H= —% ) JijSi-8;—Kj ) sin® 6 — Ky, Y sin® 6 — K| )_sin*6cosdg (2.24)
i<j i i i

A thorough discussion of this Hamiltonian and the consequence of its trigonometric descriptions

in the anisotropy components is given in Chapter 5, but for now we note there are nuances

involved with the above description. The parametrised macroscopic constants [(2{ K4y, and K

in Eq. (2.24) we use in our atomistic LLG and MC simulations is given here for immediate

reference, with more details in Chapter 5:

H=— Y SulS;— ke Y (St~ 335%) = Lkar(Sh— 652,52, + 1), (2.25)
i#] i i

The exchange constant in Eq. (2.25) is now a tensor containing the K2L anisotropic contribution

leading to the easy-plane orientation of the spins. This anisotropy is of the two-ion type. The

4™ order anisotropies have been written in an orthogonal Cartesian form parametrised as k4 and

K4, to distinguish from the macroscopic constants in Eq. (2.24) (more details in Chapter 5).
The exchange interactions for the unit cell from Khmelevskyi consist of two antiferromagnetic

inter-species and one ferromagnetic intra-species term, consistent with RKKY metals. This

gives a total of 9 interactions per atom. The groups of Oppeneer and Novak provide long-
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Mn+4

Mng ‘i

Fig. 2.3 Unit cell with exchange interactions. (a): The tetragonal unit cell has lattice constant
a = 6.291 along the x and y Cartesian coordinate and ¢ = 16.142 along the z coordinate. J;
and J, are the antiferromagnetic inter-species exchange interactions and J3 is ferromagnetic
intra-species interaction. (b): in-plane orientation of spin vectors along (110) easy axes. Strong
AFM coupling ensures a collinear Néel vector along the same. Grey arrows show the Néel
vector with 90 degree rotation, equivalent in energy to the starting dark arrows. Cartesian axes
x,y are hard axes.
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Fig. 2.4 ab initio DoS and exchange constants. (a): Atom resolved DoS in the AFM ground
state (top) and the disordered local moment (DLM) state (bottom). (b): exchange constants as
function of inter-atomic distance for two DFT methods: (1) relativistic torque method (RTM)
and (2) spin-cluster-expansion (SCE) from the DLLM reference state. The SCE corresponds to a
high-temperature phase (without phonon interactions or lattice expansion). Both figures from
[56].

range RKKY exchange up to 9™ order (=~ 1 nm) (Fig. 2.4b)[56], but MC and switching
simulations show minimal impact of including these interactions. The SCE constants in
Fig. 2.4b correspond to the high-temperature (fully disordered) magnetic phase, and shows
the rigidity of the Mn local spin moments (3.71 up vs. 3.74 ug) [56]. Likewise, the high-
temperature DLM DoS in Fig. 2.4a shows minimal qualitative change compared to the collinear
AFM ground state beyond loose thermal broadening. This supports the use of the constants in
Table 2.1 even for high-temperature simulations, though no work on spin-phonon coupling or
thermal lattice expansion has been done so far on MnyAu. The work done by Shick et al. find
an orbital moment on the Mn sublattices of F-0.013 up (antiparallel to the spin contribution of
the moment). For our atomistic simulations we approximate this to zero [41].

With the Néel temperature of MnyAu being above the ordered crystalline point of the
material, estimates to the exchange constants are made from a combination of ab initio and
experimental calculations. Two AFM THz modes (Eqgs. (2.26)), as well as single domain wall

widths, have been measured, providing upper and lower bounds for the Néel temperature and
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rotational anisotropy [57]. We use the exchange values calculated originally by Khmelevskyi
[55], though other groups ([58, 56]) have published a range of values consistent with the
experimental results. The rotational anisotropy constants from Shick et al. (k4,) [41] fit in the
middle of the range measured by experiment in Sapozhnik et al. [57]. In simulations we also
make use of lower bound values from [57] (k4H). Both values are used for simulations. Our

complete table of values is provided in Table 2.1.

Interactions Jrx Jyy Jzz Unit
Ji -1.46923  -1.46923 -1.45932 102 J/link
Js -1.09430  -1.09430 -1.08691 1020 J/link
5 0.31826  0.31826 0.31826 10729 J/link
Parameter Value Unit
M 3.72 Up
ky | —1.9727 x 10722 J/atom
ka 3.710 x 1072 J/atom
ky| 1.855x 107> J/atom
ka, 8.0255 x 1072 J/atom
Ty 1225 K
a,c 6.291, 16.142 A

Table 2.1 Hamiltonian constants

To determine the Néel temperature of our system, we simulate a (10 nm)? computational cell
with periodic boundary conditions using a standard Monte Carlo Metropolis for calculation of
me(T). We determine the Néel temperature of 1227 K by performing a Monte Carlo Metropolis
simulation and fitting to the modified Curie-Bloch expression (Eq. (2.17)) for the average
sublattice magnetization m, = (m; +mj) /2, where 8 = 0.3324+0.02 is the high temperature
critical exponent and the Bloch exponent & = 1 in the classical limit [59, 10]. We then apply
the spin temperature rescaling method [59] for oicp = 2 as derived from spin wave theory for
antiferromagnets and recover a temperature-dependent sublattice magnetisation curve from our
semi-classical simulation in very close agreement with neutron scattering measurements [10].
As shown in Fig. 2.5 the fits and data in the quantum cases are in excellent agreement, with the
Curie-Bloch equation accurately describing the temperature dependent ordering of MnjAu in

the full temperature range.
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Fig. 2.5 Ty from Monte Carlo simulations. (Classical): sublattice magnetisation with
temperature using the unscaled Langevin thermostat. (Quantum): phenomenological
temperature rescaling in Eq. (2.17) with ocp = 2 showing excellent agreement with the
experimental trend over the traditional Lanvegin thermostat.

For simulations with dynamic temperature effect, we utilise the TTM in Eq. (2.23). For
simulations where cooling from the substrate is far longer than the timescale of the simulation,
we set Ty in Eq. (2.23) to 0. Constants are from [60] and are consistent with experimental

results in [20, 61].

Symbol Value Unit
y Ix10° J/K*m’
C,  6934x10° JKm?
G 25%x 107 JKm?
Ts 20 ps
Table 2.2 Two temperature model parameters.

Of great interest to spintronics is the advent of readily-accessible THz devices and emitters.

As a collinear AFM, Mn,Au has two well described THz modes [62, 63]:

f§ = g2 dy V2 ~ 0.85 THz

3 = gL I (dy — d.)]'/? ~ 2.9 THz

(2.26)
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Fig. 2.6 THz modes for collinear, easy plane AFMs. Figure from [62] with coordinate scheme
adjusted for specific Mny Au symmetry.

where d,, and d, are the k4, and k; | anisotropy constants. The two modes scale with the
anisotropy and AFM exchange energies. The lower frequency mode oscillates in the xy-plane
(o in Fig. 2.6), while the higher frequency mode has an additional boost from the out-of-plane
component activating d,. In Chapter 5 the presence of a DW shows thermal activation of the
anisotropy breathing mode (see Fig. 5.7). ASD simulations have also shown activation of the
THz modes in Eq. (2.26) [63, 64]. Experimentally, Mn; Au THz emissions have been measured

from THz excitation [20] and FM bilayer optical excitation [65].






Laser Optical Torque Switching

3.1 Introduction

The potential for fast, deterministic control of the order parameter in metallic antiferromagnets
(AFMs) at room-temperature without heavy-metal spin injection is highly promising for
spintronics research and device applications. Currently, the most understood method for
controlling the AFM order parameter in Mn, Au devices is the application of spin orbit torque
(SOT) [66, 19, 67, 68]. But also of interest is the use of spin transfer torques (STTs) [69,
63, 70, 71] and THz excitations to drive AFM switching [20]. However, limitations to these
novel methods provide challenges for practical implementation: SOT control using applied
currents requires either precise timing to prevent over-switching [72, 69, 18], weaker fields
for longer duration [27], or repeated short pulses [13, 73]. STT driven switching requires
complex heterostructures [63, 18, 65], and over-shooting beyond 90-degrees is still a risk
[69, 63]. THz driven dynamics represent the most precise method of control, but have not been
shown to switch the AFM Néel vector with the current experimental THz excitation strength
[20]. The ultrafast control of magnetism using laser excitation started with the seminal work of
Beaurepaire and Bigot and their demagnetisation of Ni [74]. Since then, all-optical control has
been demonstrated in a host of systems using ultrafast heating to switch FM domains ([75, 76]
to cite only a few). For ultrafast control of AFMs using optical frequency laser pulses, domain

switching has been limited to classes of insulating rare-earth orthoferrites at extremely low
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temperatures [8, 77, 26]. So far for metallic AFMs, optical control has been limited to THz
excitations [20, 78-80].

Recent ab initio work [25] has presented a new option for direct manipulation of the order
parameter in metallic Mnp Au AFM: the induction of staggered fields using direct optical laser
excitation. The production of staggered fields is crucial for efficient switching in AFMs, as
it cants the AFM sublattices, generating a much larger in-plane torque which switches the
Néel vector, rather than relying on the laser induced torque itself to switch the magnetisation.
The experimental evidence for these torques in metals has been seen in ferromagnetic (FM)
materials [71, 81], but only recently has the same theoretical formalism [24] been applied
to AFMs [82] (and specifically MnyAu [25, 83]). The frequency dependence of the induced
staggered magnetic fields is calculated for optical and THz excitations, and is shown to generate
a net non-staggered torque (see Fig. 3.1). We demonstrate through atomistic spin simulations
that this torque could potentially switch the AFM order parameter.

This chapter presents atomistic spin dynamics simulations of an optical frequency excitation
from ultrafast laser pulses on MnyAu using the coupling scheme suggested in Freimuth et
al. [25]. To distinguish between other laser induced torques acting through spin transfer
techniques or THz frequency excitation, we call this generated torque a laser optical torque
(LOT). Recently, experiments using ultrafast THz pulses have demonstrated induced Mn,;Au
dynamics, with modelling predicting the potential for coherent domain switching [20]. Unlike
THz pulses, which are predicted to induce both LOT and SOT fields [25], the optical frequency
is too far above the AFM frequency (= 1 — 15 THz [20, 65, 63]) to excite SOT dynamics. Thus,
we focus our work here on demonstrating the possibility to switch the Néel vector in AFMs
using purely LOTs in optical frequencies. Additionally, we provide a method using the LOT
symmetry to preferentially control the switching direction of the Néel vector, allowing for

deterministic, non-toggle all-optical switching (AOS) in AFMs.
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MCA || (110)

Fig. 3.1 Diagram of net torques from Eq. (3.8) with linearly polarised light parallel to the
azimuthal angle ¢ from x and fourth order in-plane magneto-crystalline anisotropy (MCA)
along (110). (brown/green): magnetisation vector for Mn; (Mnjy) sublattice, (gold): induced
field, (blue): resultant torque. (blue curve): relative magnitude and sign of LOT, (dashed line):
guide to eye for maximal torque location. (a): electric field of laser polarised along y axis.
(b): electric field polarised along ¢ = 57/8 axis. (c): electric field polarised along ¢ = 57/8
with Mn magnetisation sublattices further along rotation path. Note: an electric field of the
laser polarised along x will produce equal and opposite torques to the polarisation in (a). For
consistency we use the polarisation in (a) in our easy axes simulations.

3.2 Methodology

3.2.1 Atomistic System

We perform atomistic spin dynamics simulations in Mn, Au AFM based on the Landau-Lifshitz-
Gilbert (LLG) equation using the open source code VAMPIRE [45] where we included new
LOT torques. Unless specified, for the majority of simulations we use a cubic crystal lattice
of 1600 spins with periodic boundary conditions (10 x 10 x 4 unit cells). Fig.2.3 illustrates
the MnAu unit cell implemented in the atomistic simulations. The effective Heisenberg
spin Hamiltonian (Eq. (2.25)) includes the ferromagnetic (FM) and antiferromagnetic (AFM)

exchange interaction terms, two-ion anisotropy mediated by the Au sublayers, fourth-order out-
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of-plane anisotropy, and the fourth-order rotational in-plane anisotropy (easy axes orientated
along the (110) directions).

The local magnetic moment directions are given by unit vectors S; with length p,. 6
gives the polar angle of magnetisation, and ¢ the azimuthal angle of magnetisation from the
x-coordinate. Table 2.1 summarizes the parameters used in the simulations. Shick et al. [41]
discussed situations where thin films of Mn, Au have an additional, in-plane, uniaxial strain
anisotropy creating a preferential 180-degree orientation along the [+100] or [0 £ 10] directions
(depending on the strain vector). While SOTs/STTs have been simulated to switch 180-degree
domains in MnyAu [72, 63], we confine our simulations to 90-degree domains without the

additional strain anisotropy.

3.2.2 Torque Constant from Susceptibility Tensors

Optically-induced torques show strong crystal symmetry and frequency-dependent coupling to
the polarised electric field components of the laser. A full analysis of the symmetry requirements
in the Mn,Au bulk crystal was previously presented by Freimuth ef al. [25] based on the
Keldysh non-equilibrium formalism. There, a linearly or circularly polarised laser pulse was
shown to be capable of inducing a torque acting on the Néel vector parameter L via staggered
magnetic fields induced by the second order electric field coupling, which act on the Mn spins
in the distinct sublattices of the AFM. The magnitude and spatial symmetry of the predicted
torque depend both on the local orientation of the Néel vector L, as well as the electric field
€ direction of the applied optical pulse. Both in-plane and out-of-plane torques are allowed
by symmetry, but only the out-of-plane torque takes advantage of exchange enhancement to
drive precessional switching. To achieve magnetic switching using an in-plane torque, the
induced field must be at least equal to the in-plane rotational anisotropy field value of 10.3 mT
[72]. Assuming a constant linear relationship between torque and laser intensity, this would
require pulses on the order of 2000 mJ/cm?, which would damage and ablate the sample. Thus,
this work seeks to apply out-of-plane torques to take advantage of the exchange enhancement

characteristic of antiferromagnetic switching [72, 18].
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The second order optical effects are generated by oscillating electric field with frequency @
and polarisation €. Then, the corresponding perturbation to the Kohm-Sham Hamiltonian is

[24, 25]:

OH(t) =ev-A(t) (3.1)

where e is the elementary charge, Vv is the velocity operator, and

(3.2)

A(f) = Re [M}

0]
Ey is assumed to be real valued, but the light polarisation vector € may be complex, describing

circularly polarised light. The electric field of the laser is then:

— Re[Epee '] (3.3)

In general the time varying second-order susceptibility of the spin S; to the electric field is:

0Si(t) = xijkEi(t)E;j(t) (3.4)

where j,k indices on the right-hand-side are the vector components of the electric fields.
Already, this suggests the possibility for a time-constant component to the susceptibility

through the expansion:

E} : :
Ei(t)E;(t) = 70 ei€; + & €+ eigje” P + g ¥ (3.5)
In the Keyldish nonequilibrium formalism, the torque 7; is then:

E:a—gl(g—H)ZImZ)(-H giefLiL (3.6)
c \ho jklm”m]klm '

where ag = 4meyh?/(me?) is the Bohr radius, & the vacuum permittivity, 7 the reduced
Plank’s constant, m the mass of the free electron, ¢ the speed of light, ¢ the fundamental

electron charge, [ = eocEg /2 the laser intensity calculated from the electric field component E,
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En=é* /(4mepap) the Hartree energy, €; the jth Cartesian component of the electric field and
L; the jth Cartesian component of the Néel vector, and J; jx;», the corresponding susceptibility
components. The torque value in Eq. (3.6) above follows the same format as the second-order
susceptibility in Eq. (3.4), but with the additional degree of freedom depending on the direction
of the Néel vector. Importantly, the induced torque sums as the square of the vector components
for €; and L,,, so the resultant symmetry of the torque can be non-trivial for laser polarisations
not along the Cartesian basis vectors or the magnetisation easy axes. The Cartesian vector
components of € and L = (sinfcos¢, sinBsing,cos@)” (we will use ¢ as the azimuthal angle
from x for the laser polarisation and the azimuthal angle of the Néel vector as ¢).

Freimuth ez al. [25] present thirty susceptibility tensors x;jx, which are allowed by
the Mn,Au orbital symmetry and which produce a torque perpendicular to the Néel vector
(i.e., induce a field not parallel to the sublattice magnetisation). Since Mn;Au has in-plane
magnetisation, we disregard tensors corresponding to an out-of-plane Néel vector component to
good approximation (m,/up < 10~ 2evenduringcanting). Since we are interested in exchange
enhanced precessional switching, we choose a laser geometry with the generated torque to be
out-of-plane; Freimuth et al. find that light incident normal to the AFM plane with electric
field linearly polarised parallel to the in-plane angle ¢ produces the largest torque values. This
geometry reduces the set of thirty tensors to two (tensors 4 and 24 in Freimuth et al.) (Table
3.1). The remaining two tensors calculate an identical magnitude, with the total torque being

the sum of each tensor.

Tensor X3 jkim

4 (32212) — (31112)

24 (31211) — (32122)
Table 3.1 5" rank susceptibility tensors. Note: the i index for the susceptibility tensor y; kim
is shown here as 3, corresponding to an out-of-plane torque to take advantage of the efficient
exchange enhancement switching.

The different polarisation and Néel vector dependencies are parametrised according to the

Cartesian vector components, such that
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4=T5({32212) - (31112)) ~ T; (sin(p)?cos(6) sin(9) —cos(¢)cos(9) sin(9))
_ —gcos(%p) sin(29)
24 =T5 ((31211) — (32122)) = Ts (sin(9) cos(@) cos(9)” — sin(¢) cos() sin(9)*) (3.7
_ %m(z@cos(m)

4424~ ?sin(2¢—2¢).

This allows the full Keyldish expression in Eq. (3.6) to be parametrised using trigonometric

relations for the laser polarisation angle ¢ and Néel vector ¢ as:

Hi o = ‘uiT(I) sin(2¢ —2¢)2 x S (3.8)

S

The torque constant 7'(7) used in Eq. (3.8) represents the combination of material and
experimental constants given in Eq. (3.6) (which are not affected by the laser intensity, laser
polarisation, and Néel vector orientation) and the calcualted value of the susceptibility tensor
Xijkim itself, taken from [25]. For a laser intensity of 10 GW/cm? with photon energy 1.55 eV,
the torque constant 73 ~ 12 x 10724 J, for a field value of 145 mT on each spin.

For comparison, we can also consider a sub-optimal switching polarisation geometry with
the laser polarisation rotated further along the polar angle: an electric field polarisation along
[101], photon energy of 1.55 eV, intensity of 10 GW/cm?, and Néel vector along (100) produces
an in-plane torque on each magnetic site of ~ 1072* J (Hy o7 = 0.05 mT) [25].

The directions of the induced fields for various light polarisation angles are illustrated in
Fig. 3.1. The staggered fields then lead to a non-staggered effective torque. Fig. 3.1a shows
the laser polarisation directions corresponding with the maximal torques useful for switching.
Fig. 3.1b shows the light polarisation along ¢ = 57 /8, producing a maximal torque when the
Néel vector is off the easy axes. Fig. 3.1c maintains the same polarisation, with the example

Néel vectors progressed further along the rotation pathway.
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Eq. (3.6) provides a linear relationship with laser intensity. Thus, to simulate the influence
of the LOT generated by an ultrafast laser pulse, we scale the laser intensity following a
Gaussian time-dependent profile, with the pulse duration ¢, € [0.02, 6] ps giving the time at
full-width at half-height of the pulse intensity [53]:

T() = T(I)exp{—4ln2 (t_ 1‘5”’)2 } (3.9)

Ip
This value is then used to calculate the spin-dependent field in Eq. (3.8) which is then added to
the effective field in the LLG equation (2.12).

3.2.3 Discussion on the Origin of the LOT

In the Kohn-Sham framework, the electric field in Eq. (3.3) will induce a change to the spin

polarisation quantified by:

88 = / d>r&s(r) (3.10)

where Js(r) is the non-equilibrium spin density. To calculate the resultant torque, the non-

equilibrium spin density is crossed with the spin vector S:

T= 2%/413;{2“@)85(1') 8 3.11)

However, since 8s(r) and the exchange field Q*(r) vary strongly on the atomic scale, it is
usually not feasible to calculate the torque directly from the non-equilibrium spin density.
Instead, the torque is calculated via lesser Green’s function G through the operator 7 (r) =
—updS x SQ*(r), giving T = iTr[TG<] [24].

Qualitatively, the torque operator only measures the effect of the non-equilibrium spin
density, not the phenomena itself. Thus, while the Keyldish formalism can calculate the
resultant torque generated by the laser pulse, the physical origin for the LOT phenomena is

still undetermined. Several mechanisms have been discussed: 1) optical intersite spin transfer
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(OISTR), ii) local ultrafast demagnetisation, ii1) SOT induced by charge photocurrents, iv) STT
induced by spin photocurrents, and v) inverse Faraday effect (IFE).

While the OISTR can be a critical effect in AFMs [84], in Mn,Au the LOT excitation
energy hw = 1.5 eV is too small to interact with the bulk of the d-orbitals responsible for
the magnetisation (< -2 eV E — Er). As discussed in Chapter 2, the magnetic moment and
exchange splitting are highly resistant to the high-temperature, disordered local moment (DLM)
calculations [56, 55]. Likewise, the LOT in [25] uses a constant broadening parameter I" to
simulate the steady-state temperature, rather than comparing between the ground state and
DLM. This suggests that OISTR and local ultrafast demagnetisation do not contribute to the
LOT.

The spin and charge currents induced by linearly polarised optical excitation in MnyAu
have been investigated in a follow-up study to the work in Freimuth ef al. [83]. There, the
induced charge photo current, spin photo current, and inverse Faraday effect are analysed
for their symmetry properties. The photo currents for charge (propagating along i) and spin
(propagating along i with polarisation j) are both effects second-order with the electric field

polarisation and first-order in the Néel vector:

4
Ji= 1 EEL

j _ .,(55p)
Q; = ijklmEkEl* L

(3.12)

(5sp)

where the tensors Y i ki

(ffla) and x

ij include the designation fourth-order staggered axial and
fifth-order staggered polar, respectively. This can be compared to the tensor symmetry for
the LOT found in [25]: fifth-order axial. Thus, while the charge photo currents and spin
photo currents do have allowed torques by symmetry, they do not match precisely the torque
symmetries for the LOT.

Lastly, [83] calculate the IFE resulting from laser pulses as the overall induced spin moments
in the unit cell. This is reported as the sum of all induced spin moments §S™ and the staggered
component of the spin moments S~ = %[SS(MnA) — 8S(Mngp)]. For a linearly polarised

optical frequency (hiw = 1.5 eV) excitation and Néel vector along the easy axis [110], 65

gives a response which changes sign upon 90 degree rotation of the laser polarisation between
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€| fand ¢ |

9, with 8S. =0. When € || Nore L N, 85 =0, exactly in line with the symmetry
of the LOT in Fig. 3.1. This measurement gives the direct change to the spin moments resulting
in a canted state, rather than the induced STT or SOT fields generated by the spin photocurrents
or charge photocurrents, respectively, in Egs. (3.12). In other words, the torque response
calculated in Eq. (3.6) measures the torque necessary to generate §S™, rather than the torque
generated by the canted moments.

The lifetime of the 8S; spin polarisation-represented as the effect of increasing broadening
I'-shows a ~ log(I") decay with increasing T, rather than the inverse relation seen in SSIN and
SSWN (i.e., the in-plane components of the spin polarisation). This indicates the potential for a
separate band-dependence excitation for the out-of-plane component of the IFE compared to
the in-plane components.

Thus, while the symmetry analysis of the IFE, charge photo currents, and spin photo
currents suggests that the IFE is responsible for the LOT, more work remains to be done on the
effects of the photo currents on the AFM sublattice.

An additional comment can be made on the torque generated by the non-equilibrium spin
density: namely, that it is the spin density only contributing to the torque, with no contribution
from the orbital moment. Recently, a similar symmetry analysis to the work in [85] was
performed for the metallic altermagnet RuO, [33] which did include the laser induced orbital
contributions, as well as a single element calculation of the laser induced orbital contributions
for transition row metals [86]. Both showed large orbital responses to optical frequency light.
However, no calculation was performed for the torque generated. [56] estimates the torque
from the orbital contribution of the SOT in Mn;Au (more details in Chapter 6), with the orbital
field around five times larger than the resultant spin field. This suggests the orbital component
of the non-equilibrium density could have important contributions to both the LOT and orbital

photo current excitations.

3.2.4 Laser Heating Temperature Effects

The thermal effects are modelled in the LLG Eq. using the TTM equations detailed in Sec.

2.1 with constants in Sec. 2.2. Fig. 3.2 gives example electron and phonon temperatures and
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Fig. 3.2 Transient TTM electron and phonon temperature for Fig. 3.9. Inset: corresponding
dynamic sublattice magnetisation length. Solid lines are the electron temperature, while the
dashed lines are the corresponding phonon temperature (several omitted for clarity).

sublattice magnetisation values for various laser intensities and pulse durations used in the
simulations.

The switching probability for simulations above 0 K are calculated using 10 random seed
LLG simulations with lattice size 75nm X 75nm x 10nm (periodic boundary conditions along x
and y) to simulate a thin film single domain structure. The application of the LOT for domain
wall driving is studied in Chapters 4, 5, but multi-domain, multi-grain switching with LOT is
an area for future research.

The Keyldish formalism in [24, 25] uses a constant broadening parameter I to simulate
disorder and finite lifetimes from thermal broadening with a 1/I" relationship in the susceptibility
tensor. A I' =25 meV approximates a clean metallic sample at room temperature, though
recent experiments suggest the I value for Mn, Au may in fact be lower [20], leading to a
larger torque constant. This value takes into account the non-equilibrium disorder from the
laser excitation, so we hold it constant during the simulation. This is a sufficient approximation
provided the laser torque is faster than the predominant electron thermalisation (< 1 ps). For

longer pulse durations (> 1 ps), a time-dependent broadening parameter may be necessary.
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Initial

Fig. 3.3 Trace of sublattice magnetisation vectors switching from [110] to [—110] with
€ || (010). (Opaque): initial orientation. (Bar): precession axis. (grey): ¢, = 400 fs, [ =2
GW/cm?, (gold): t, = 400 fs, I = 4 GW/cm?, and (blue): 7, = 3 ps, I = 5 GW/cm?, o = 0.001
(z magnetisation scaled for visibility).

Since a direct relationship between I and temperature is unknown, we hold it constant for all

simulations.

3.3 Results

3.3.1 Toggle Switching

The LOT modelled by Eq. (3.8) produces 90, 180, and 270-degree precessional switching of
the Néel vector in Mny Au by exchange enhancement generated by the out-of-plane canting
as also seen in simulations of the SOT switching [72, 56]. Fig. 3.3 provides example of
sublattice magnetisation traces for 90 (grey and blue) and 180-degree (gold) switching. The
initial laser induced field causes an out-of-plane canting of the magnetisation, generating a
large non-staggered torque on the magnetisation sublattices to rotate the Néel vector.

We model the action of the LOT using four sequential pulses 400 fs long and 8 ps
apart for laser intensities 7 = 2 GW/cm? (Hpax = 42 mT; blue) and [ = 4 GW/cm? (Hpax =

84 mT; gold). Each consequent pulse produces switching, as shown in Fig. 3.4. Note the
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absence of the L, component; i.e. the Néel vector is rotated in-plane as also typical for the SOT
switching [20]. Unlike the SOT considered in [72, 27], the LOT has the additional feature of
changing sign during the switching: the intrinsic spatial symmetry defined in Eq. (3.8) ensures
the induced LOT changes its sign for any 90-degree rotation of the Néel vector. This allows
for both clockwise and counter-clockwise switching by means of the same laser polarisation,
1.e. toggle switching (see Fig. 3.4) reminiscient of the AOS switching seen from ferrimagnetic
thing films [75]. In contrast is the SOT torque, where the direction of the applied current needs
to be constantly inverted to change the handedness of rotation for 90-degree switching [13, 20].

180-degree switching is possible with LOT for the same laser polarisation used to generate
90-degree switching, but with strong enough intensities capable to induce larger out-of-plane
canting, providing more exchange enhanced torque for the Néel vector rotation (compare the
magnitude of the torques in (b) and magnetisation in (d) of Fig. 3.4). The 180-degree switching
events are in the same direction, consistently inducing an out-of-plane magnetisation with the
same sign.

Fig. 3.5 presents the switching phase diagrams as a function of laser intensity and duration
for two Gilbert damping parameters o = 0.001 and o = 0.01. The colour variation shows
intervals of 90-degree switching, typical for precessional switching. Importantly, the switching
can be produced by ultrafast laser pulses of several picosecond duration and even below. The
absorbed fluence of the sample is approximately linear with intensity and pulse duration [24, 83].
Remarkably, we observe an absorbed fluence of 0.5 mJ/cm? (I =0.3 GW/cmz, H..; =6.34mT)
is sufficient to induce switching on the sub-picosecond timescale for the smaller damping value
of @ = 0.001. Increasing the damping parameter shows a linear dependence in the critical field
(see Fig. 3.5b), commensurate with the theory of SOT switching [27].

Analytically, the dynamic behaviour of collinear AFMs under staggered in-plane SOT fields
is discussed in [72]. Here, the critical field (H,,;;) for switching has been shown to depend on
the characteristic exchange, anisotropy, and induced magnetic fields. Following the method of
[72] - modified for the LOT induced field - the dynamics of the Néel vector in the xy plane can

be described by the following equation:
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Fig. 3.4 Toggle switching of the Néel vector with multiple optical pulses (a): laser intensity
of the pulse (400 fs) 8 ps apart. (b): total torque. Note that the 7; has been scaled 100x for
visibility. (dashed): T; (dot-dashed): Ty; (solid): T;. (c): x and y Néel vector components L; =
(my —my)/2. Ly = up. (dashed): ; (dot-dashed): L,. (d): Net magnetisation m; = (m; +my) /2.
my = Up. (dashed): m, = my; (dash-dot): m, (scaled 200x for visibility). Blue lines show
90-degree toggle switching for four sequential pulses. Gold shows 180-degree toggle switching
for four sequential pulses.
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Fig. 3.5 Switching phase diagram in terms of laser intensity and duration. Colours represent
the end change of angle from starting orientation along [110]. The corresponding maximum
field strength for the laser intensity is given on the second y-axis. Solid colour lines show the
analytic He;; values from Eq. (3.15) (a) for & = 0.001. Black line: He,ir = y)/(27) = 5.16
mT. (b) ¢ = 0.01 Black line: 10x H,;.
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2
. @ ([, 0
¢+TRCOS4¢—’]/(06 U,0)

sin(2¢ —2¢) + 20w, ¢ =0 (3.13)

s
where @, = [5(J; +4J>)|y/ s is the AFM exchange frequency (ignoring the 2-ion anisotropy
term to good approximation), @, = 2Ykay, 1s the fourth order in-plane anisotropy frequency,
o is the atomistic damping parameter, ¥ is the gyromagnetic ratio, and g = /2@, @y . The
parameter 7(/,®) /s corresponds to the amplitude of the LOT field. If the Néel vector is only
considered in the interval of its azimuthal angle ¢ € [0, /4], the critical field for infinitely long
pulse lengths is Heri = @y /(2y): a factor of 2 larger than for SOT [72, 27], due to the sin2¢
dependence of the LOT field. Analytically, our constants predict an H.,;; = 5.16 mT, matching
well with our simulations (see horizontal line in Fig. 3.5a).

For short pulse lengths the critical switching field can be evaluated as

H.; ( 2lp COR>
et ¢oth TR (3.14)
Hcrit(f — °°) TV 2T D

where 7, ~ 7/(2@,) is the timescale of the exchange interaction (characteristic precessional
time for the Néel vector for rotation over 90-degrees), which is then scaled in Eq. (3.14)
by /27 /2 to account for the Gaussian profile of the laser pulse. Then, T, can be called the
characteristic pulse duration 7, = 27, @,/ @g such that coth(2) ~ 1 [72, 27].

Importantly, only for high intensities and short pulse duration is the inertia generated by
the exchange torque susceptible to overshooting, either to the [—1 — 10] (180-degrees) or even
[1 — 10] (270-degrees) states (orange and light blue colour in Fig. 3.5). Qualitatively, this is
illustrated by the gold track in Fig. 3.3 For pulse lengths beyond 1 ps: rather than continually
drive the precessional switching using exchange enhancement, the long pulse duration has
the Néel vector precessing along the laser polarisation axis (blue curve in Fig. 3.3). The
timing of these precessions follows the characteristic exchange period, and can be modelled
by modifying Eq. (3.14) to take into account the additional precessions around the LOT
polarisation vector: for n precessions, the minimum pulse time to switch the Néel vector at
high intensity is proportional to the exchange precession timescale and precession number,

4n7t,+/27. This gives a rough approximation to the critical field and laser pulse time:
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(3.15)

C

nT.\/ 21w, tp

The analytical estimates of fields and pulse durations are presented in Fig. 3.5a), showing

2t,® dnt, /21
Herig(T,n) = ”HTJWCO&I( T )

a good agreement for n < 3 with the lowest damping value, especially considering the
approximations made. Since the precession frequency of these excitations are determined
by the exchange and anisotropy values, it represents an activation of the in-plane AFM THz
mode—an unusual opportunity to activate a THz mode using optical excitation. Importantly,
this represents an opportunity for all optical toggle switching where the driving mechanism is
predicted to be induced fields, rather than thermal activation (see Sec. 3.3.4 for temperature

simulations).

3.3.2 Preferential Switching

Eq. (3.6) shows that the quadratic reliance on the electric field polarisation of the generated
torque in Eq. (3.8) allows a shift of the maximum torque away from the easy axis by rotation
of the laser polarisation vector. Contrary to the toggle switching caused by ¢ || [£100] or
[0+ 10] displayed in Fig. 3.4, shifting the azimuthal angle of the laser polarisation will create
an asymmetric torque profile, influencing the Néel vector dynamical path from the four easy
axes (see Fig.3.6).

Thus, the magnetisation will experience a larger torque when starting from only two of
the four easy axis directions, giving a preference between clockwise and counter-clockwise
switching (Fig. 3.6). This breaks the four-fold degenerate easy axis into "large" and "small"
generated torques.

Fig. 3.7 shows the phase diagram of laser pulse intensity and duration which distinguishes
between non-toggle (preferential) switching and toggle switching for starting orientations [110)]
(Fig. 3.7a) and [—110] (Fig. 3.7ab). The switching area labelled "toggle" switching in Fig. 3.7
is the region where both starting orientations switch either 90 or 180 degrees. Furthermore,
Fig. 3.7a has preferential right-handed switching for the [110] orientation at low fluence, with

toggle switching for both orientations at higher fluence and middling pulse duration. A 45
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@ =57/8

Fig. 3.6 Magnetisation trace of preferential switching under asymmetric torque. (Dark blue
line): relative size and direction of the out-of-plane torque as a function of the magnetisation
direction for electric field polarisation ¢ || 57/8. Opaque shows comparable torque and field
sizes further along the path of motion from the easy axis. Note the unequal torque generated
between clockwise and counter-clockwise motion. (Faded blue line): the same for ¢ || 7/2.
Gold vectors denote relative field size and direction.
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orientation [110] vs (b) preferential left-handed switching for starting orientations [—110].
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degree rotation of the laser polarisation changes the sign of the preferential torque, making
left-handed switching from [—110] easier at low fluence (Fig. 3.7b). Either laser orientation
can be used to preferentially write the Néel vector to a desired orientation without changing the

polarisation angle by using variable pulse duration/intensity (as shown in the next section).

3.3.3 Deterministic Switching

The preference for rotation direction and starting orientation can be used in combination with
the toggle switching achieved by the same laser polarisation but with more intense pulses to
deterministically control the Néel vector. Though the preferential switching provides only
two control options: "small" and "large" torques, anisotropic magneto-resistance (AMR)
measurements typically used to determine the magnetic state in antiferromagnets [13] depend
only on the parallel component of the Néel vector "aligned" or "anti-aligned" with the resistance
measurement vector in Hall devices. Thus, the /4 and —n/4 (3w /4 and —37/4) Néel states
can be considered equivalent starting orientations for AMR measurements, so 90 or 180
degree switching from both starting orientations can be considered as toggle switching (the
notation used in the previous section for Fig. 3.7). To demonstrate how preferential and toggle
switching pulses from the same laser polarisation could be used to switch the Néel vector
deterministically, we simulate a series of four laser pulses of varying intensity for each of the
four starting orientations.

Fig. 3.8 details the Néel vector dynamics following sequential laser pulses with starting
AFM order parameters along each of the MCA easy axes with laser polarisation parallel to the
57 /8 azimuthal angle. The pulses are separated by 16 ps to allow the magnetisation to return
to equilibrium. The second pulse is scaled to have more intensity than the others (Fig. 3.8a).
Fig. 3.8b shows that the first, "small" pulse failed to switch the 37 /4 and —7x /4 orientations,
but switching took place with the second, "large" pulse. Now that the magnetisation has been
reoriented to the quadrant which experiences the maximal torque, it does successfully switch
following a small pulse. This dependence is shown with the /4 and —37 /4 orientations as

well: since they start their magnetisation in the maximal torque quadrant, they show switching
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Fig. 3.8 Dynamics of the Néel order parameter showing deterministic switching. Four
sequential pulses of 400 fs width and 16 ps apart. Each panel shows the Néel vector starting
along each easy axis. The second pulse has an intensity of 2.6 GW/cm?; all others are 2
GW/cm?. Light polarisation is parallel to the angle ¢ = 57/8.
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Fig. 3.9 Stochastic switching result for toggle, preferential, and deterministic laser
polarisations. Switching probability for a grain 75 x 75 x 10 nm>. (a) with laser polarisation
along @ = 7/2. Laser intensity I = 0.4 GW/cm?. Unpolarised (thermal-only) laser pulses (not
shown) have very low switching probability. (b) Probability of switching depending on starting
orientation. Laser polarisation along ¢ = 37 /8. Laser intensity I = 0.3 GW/cm?. Blue and
yellow data both represent 90 degree switching, but in different directions. (blue): left-handed
switching. (yellow): right-handed switching. (c) Same laser polarisation as (b). Laser intensity
increased to I = 1.2 GW/cm?. Data legend the same as (b).

following the first, "small" pulse, as well as the second and third pulses, but not the fourth,

since the magnetisation has moved to a minimum torque quadrant.

3.3.4 Temperature

A full analysis of temperature effects on LOT switching in multi-grain, multi-domain systems
is beyond the scope of this article and would require a very large system size and large
statistics. Here we consider a single domain, single crystal structure thin film, (75 x 75 x 10
nm?) with periodic boundary conditions along £ and ¥, with thickness similar to the ones
experimentally studied in [79, 78, 87]. As seen in other temperature switching models [56, 27,
82], the inclusion of temperature lowers the anisotropy barrier for switching and introduces

the superparamagnetic effect, which is system-size dependent. To confirm the absence of the
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superparamagnetic effect for our domain volume size, we ran ten LLG random seeds for 80
ps and observed no spontaneous switching. As is seen in Fig. 3.9a, in the absence of LOT
and the presence of laser heating, this system does not present the superparamagnetic effect.
Moreover, the transient heating from the laser pulse for intensities we consider is not enough to
fully quench the magnetisation, and successive pulses do not raise the lattice temperature of the
system substantially, which could potentially damage the sample. We calculate the switching
probability for this grain. The results in Fig. 3.9a show the toggle switching with the probability
approaching one in a range of pulse durations for a given intensity and ¢ = /2 polarisation.
Fig. 3.9b shows the preferential right-handed vs left-handed switching probabilities for a
rotated ¢ = /3 laser orientation on different Néel vector starting orientations. Thus, the
addition of temperature to the simulations lowers the energy barrier for the system, but the
laser heating for low fluence is not substantial enough to remove the anisotropy energy barrier
and very high switching probability is obtained for our domain size consistent with the phase

diagrams calculated at OK.

3.4 Summary

By means of atomistic spin dynamics simulations with LOT we predict the possibility for
metallic AFM all optical switching (AOS) on the sub- and low picosecond timescale. The
unique symmetry relations of this torque prioritise 90-degree toggle switching for long pulse
times, but also allow 180 or 270-degree switching provided sufficiently large pulse intensities
are used.

Importantly, repeated laser pulses do not drive the order parameter continuously clockwise
(counter-clockwise) like SOT/STT excitations, but instead provides toggle switching to the
Néel vector.

We also predict that rotation of the laser polarisation to generate a quadrant-asymmetric
torque introduces an additional level of control to the switching process, allowing for preferential,

non-toggle switching. Temperature simulations which include the effects of laser heating on
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the metallic sample show results consistent with the OK diagrams. These results suggest the
significant opportunity the LOT could provide for deterministic AOS in AFM spintronics.

The efficiency of the LOT may be preferred to other AOS methods. The minimum pulse
intensity and fluence necessary to switch on the low sub-picosecond timescale using the LOT
is estimated 1 GW/cm? and 0.65 mJ/cm?, respectively. This is compared to the fluence for
GdFeCo AOS in [75] of 4.4 mJ/cm? and the 6.51 mJ/cm? for Fe ultrafast demagnetisation
generating spin current which is used for the STT switching in [63]. Additionally, the LOT has
the advantage of not needing to be applied over short fs time scales to outpace the large laser
heating effect from large intensities [82].

The category of the torque as an optical-frequency excitation also has direct implications for
ease of experimental procedure: the generation of THz frequencies is a non-trivial procedure,
and metallic AFM switching using THz excitation remains hampered by insufficient effective
electric fields [20]. The LOT may thus offer a more accessible route to activating THz AFM
modes for room-temperature spintronic devices, even with the large frequency discrepancy
between the laser pulse and AFM mode. This application could be extended to Mn,Au
heterostructure systems with exchange bias or multi-domain systems used for neuromorphic
computing [88] where THz activation through current or STT is less-preferable.

Applications of this torque method could be done in place of (or in conjunction with)
spin-injected SOT/STT and intrinsic NSOT control methods to improve the efficiency of
switching [72], domain wall driving [60], or THz generation [89, 90]. Moreover, this work
seeks to expand the efficacy of second order laser coupling schemes for AFMs: while the
results presented here are specifically for Mn; Au, we extend the comment in Freimuth et al.
that LOT is not unique to MnyAu [25]; second order terms with exotic and useful symmetries
have been calculated to exist for altermagnets RuO; and CoF, [33] and even the 2D van Der
Waals FM Fe;GeTe; [91]. While the effects of second order optical coupling has been used to
switch insulating AFMs at cryogenic temperatures [26, 92], their effects have not been studied
for metallic AFMs. As the study and characterisation of asymmetric AFM responses to external

stimuli continues, more materials of relevant symmetry should be included in the theoretical
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and experimental study of optically generated spin torques beyond the first order coupling

traditionally explored for metallic magnetic materials.






Domain Wall Driving Using Laser Optical Torque

4.1 Introduction

The study of domain walls (DW5s) is of significant interest to spintronics for their potential
applications in racetrack memory and computing, neuromophic computing, and reservoir
computing [93, 88]. They can be naturally driven by unpolarised charge currents [94, 95], but
are also sensitive to temperature [60, 96], temperature gradients [97, 19, 98], SOT and STT
[99], and magneto-optical effects [100, 101]. Chapter 6 shows how a DW itself can be a useful
tool for controlling spin injection in multilayer systems, but for neuromorphic computing they
serve as a control feature for two disparate magnetic domains [88]. As with SOT-STT MRAM
devices, the perpendicular resistance measurement will change as a ratio of the domains in
the thin film [102]. AFMs are a natural choice for this category of device, as they avoid the
high-power requirements to move FM DWs at fast-velocities without encountering Walker-
breakdown of the magnetic texture [103, 104]. Numerous forms of DWs exist, especially
for FMs, but for the case of AFM DWs we focus here on those with in-plane magnetisation.
The most general definition of a DW is that it is the transition magnetic texture between two
magnetic domains and will naturally take a form which minimises the energy of the texture. In
our case we can describe the transition with an analytic solution based on the soliton solution
of the Klein-Gordon equation (the so called sine-Gordon solution). The width of the DW is the

determining factor for DW driving (in AFMs), and the width is governed by the gradient of
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exchange interactions along the direction of the DW and the in-plane anisotropy stabilising the
two domains [17]. This chapter serves to introduce the analytic background behind AFM DW's
and their motion and demonstrate the ability of the LOT (introduced in Chapter 3) to efficiently
drive and control these DWs, along with its possibility to nucleate additional magnetic textures

beyond the original two domains in the system.

4.2 Methods

4.2.1 Analytic Domain Wall Description

The magnetisation landscape extant between two domains orientated at 90° to each other
can be described by a solution to the Euler-Lagrange equation containing the exchange and
anisotropy energy throughout the DW. To achieve this, we shall first rewrite the extended
Heisenberg Hamiltonian for MnyAu in terms of orthogonal unit vectors 1 = 1(Sg —Sa) and
n— %(S A +SB), as done in similar fashion as [105, 106] and based on the pioneering work of
[107, 108]. For this Hamiltonian we also make use of the tetragonal symmetry for the in-plane
4™ order anisotropy, rather than the rotational form in Eq. (2.25), in order to better match the
analytic formalism of the previous works referenced above. This gives the Hamiltonian in this

chapter as:

Ky

1 1
H(n1) = SAn’ + 2a(dul)? + Ko |12 = =202 - =L

5 : [(1-2)* 4+ (1-9)*] + 2971 H-OT,

4.1)
where the first two terms encapsulate the exchange energy contributions in a continuum limit,
given by the homogeneous exchange constant A = 16|J{'*"| and the inhomogeneous exchange
constant a = 8aj(J§/™ + |J{"™| /2), respectively. It is important to note the AFM J, interaction
along the Z axis of the tetragonal unit cell is disregarded in this analytical treatment, as it was
shown previously to have a negligible influence on the in-plane 180° DW dynamics of a MnyAu
thin film [106]. Also of note is the analytic distinction in the exchange constants of energy per

atom, connected by a factor of 1/2 to our constants defined as energy per link. We maintain
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this assumption in the case of our in-plane 90° wall dynamics. The Zeeman-like energy term
containing the H-CT makes use of the relationship pigus = 27h.

Different to the description of 180° DWs in [17], our Hamiltonian includes the Ky
anisotropy contribution in addition to the K4 | and K, | terms, while it disregards the second-
order, easy-axis contribution labelled K2|\ in [106]. For ease of calculation, in this analytical
model we align the Ky easy-axes along £ and J, rather than the +7/4 axes of the crystal
structure. This rotated symmetry does not affect the result of the formalism. Note another
factor of 1/2 in the definition between upper case anisotropy K defined as energy per unit cell
volume, and the anisotropy defined in Table 2.1 with lower case k as energy per atom.

The LLG equation for a two sublattice magnetisation system (S, Sg) can in the limit

a < 1 be written in a Landau-Lifshitz (LL) form:

Sa = —7Sa x Hip — yaSa x (Sa x HA), (4.2)
Sp = —Sp x Hoy — yaSp x (Sp x Hy). (4.3)
Coupling the two sublattices are the two effective magnetic fields Hgf; = —2—%%

defined with respect to the Hamiltonian in Eq. (4.1) and corresponding to the n and 1 vectors.

HeAf’fB in equations (4.2), (4.3) satisfy the following relationships:

HZy = HiY -+ Hlg, (4.4)

HE, =H",—H . (4.5)

Based on equations (4.2), (4.3), (4.4) and (4.5) it is possible to reduce the dynamics of our two
sublattice magnetisation system in the exchange limit |n| < [1| to the form below [109, 105,

106]:
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1= yHgy x1, (4.6)

n= (yHL; — ai) x 1. (4.7)

Writing the explicit forms of the HY; terms in equation (4.6) removes the n vector dependence
for the system. Hence, the system of equations (4.6), (4.7) can be rewritten solely in terms of

the Néel order parameter 1 [109, 107, 108]:

Ix (92— —i— 222 _p o —ni| =0, (4.8)
%

where we collectively represent the distinct anisotropy contributions via the umbrella term
Hani = Ko |(1-2)2 = K41 2)% — ZL[(1-x)* + (1-y)*]. hLOT is the reduced field hop =
SaﬂHLOT. a is the same inhomogenous exchange constant in Eq. (4.1). v,, = vaA/(4h) =
43.39 km/s is the so-called "magnon speed" governed by the exchange interactions. n = 8ah/a
is the dissipation constant containing the small damping constant «.

One last transformation is performed to describe the dynamics of the system in spherical

coordinates. The relationship of the Cartesian coordinates to the coordinate of the system is:

l=u, =cos@x+sin ¢y, 4.9)
uy = —sinPx+cos ¢y, (4.10)
up = 4. (.11)

Finally, in this new coordinate system Eq. (4.8) reduces to the familiar SG-like equation below:

1. 1
—¢— msin4<p =0. (4.12)

2
m 0

029 —

)%

where Ag =y /a/(8Ky)|) = 50.8 nm is now the DW width factor. Eq. (4.12) gives the time-

varying and spatially varying solution for the Néel vector angle ¢. At the moment, the
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contribution from the driving field H*°T and thus the dissipation factor 7 are not included
in order to relate the DW width factor Ag to the spatially-varying magnetisation solution by
reducing the expression to a second-order differential equation in space. The configuration

energy of the DW at rest is now expressed as:

E = 2 (9:9)" — Ky sin4g, (4.13)

We can now reintroduce the 7 /4 easy axes of the system with no loss of generality and
apply the boundary conditions of the two domains d,¢ (x — +o0) =0 and ¢ (Foo) = (£ /4)

to reduce the second-order differential equation above to first-order in space:

(d@) =80 sin2¢, (4.14)
K4H
where Q = £1 represents the DW chirality. Integrating the previous expression, taking into

account that the DW centre position x( can be defined as ¢ (x = xp) = 0, it can be found that:

/ﬂjz(t sin2¢ Q\/i/ ox (+15)

which allows us to obtain the spatial dependence of the in-plane azimuthal angle, ¢:

¢ (x) = arctan (exp{ w}) - g (4.16)
0

For our simulations we analyse a DW with Q value +1. The sin of the azimuth can now give

the magnetisation component m,, of the DW:

My = M Sin@ = m, sin (arctan (exp{x;xo }) — 7r/4> (4.17)
0

4.2.2 Laser Optical Torque

To obtain the time-dynamic solution for Eq. (4.12), we reintroduce the LOT field H*°T and
dissipation term 7). For ease of calculation in the analytical model above, we performed a 45°

in-plane rotation such that the easy-axes point along the X and y Cartesian directions instead.
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Fig. 4.1 Diagram of the LOT symmetry across a 90° DW.

For this reason, the angular variation of the LOT acting on the Néel vector 1 from Eq. (3.8) in

Chapter 3 also needs to be adjusted here to:

Hior = “17(1) cos(2¢ —2¢)2 x 1 (4.18)

s

The symmetry of the induced fields from Eq. (4.18) follows the same relationship as in Fig.
3.1. To drive a 90° DW, care must be taken in choosing the laser polarisation angle ¢. Because
of the change in torque sign, the only polarisation angle which gives uniform torque across the
domains and DW is ¢ = +7/4, which results in maximal torque at the centre of the DW where
¢ = 0 (Fig. 4.1a). Alternative polarisations along ¢ = 7 /2 or ¢ = 0 result in mismatched
torque on the domains (Fig. 4.1b). This can have the result of widening or contracting the DW
without a change in position xo. These results are considered later, but not in the context of the
sine-Gordon solution. For now, the polarisation angle is fixed to ¢ = /4.

A unique consequence of the LOT torque symmetry is its apparent inability to drive 180°
DWs. This can be understood as a consequence of the same polarisation requirements to drive
90° walls, except there is no polarisation angle which produces uniform torque on the system.
This is visualised in Figs. 4.2b and 4.2a. Again, the LOT could be used to widen or contract
these 180° DWs, but their appearance in Mn;Au is not supported by experiment [13, 110].

The laser polarisation can be oriented along +7/4 to produce equal but opposite torques
to drive the DW forward or reverse, depending on the handedness of the DW configuration
rotation (Q factor in Eq. (4.16)). Because of the four-fold anisotropy symmetry, there are

thus eight combinations of DW configuration and laser polarisation. Fig. 4.3 shows three
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Fig. 4.2 Diagram of the LOT symmetry across a 180° DW.
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Fig. 4.3 DW and torque configurations. (a) Mapping the in-plane Néel vector orientation
in the magnetic track along the unit circle. We display the four possible 90° DW boundaries
corresponding to the Ky easy directions. Taking as reference the Néel vector parallel to the
[110] diagonal, we can obtain two DW geometries with right and left handedness, labeled (b-1)
and (b-2) respectively. The corresponding spin configurations are displayed in subplot (b).
Distinctly, the (b-3) wall geometry is driven towards —X. Figure courtesy of P. Gavriloaea in
[23].

example calculations of the torque and configuration symmetry to describe the forward or
reverse motion.

Mapping the spin configuration along the unit circle, one can trace the eight possible 90°
DW geometries in our bi-axial AFM. The direction of motion depends on the sign of the
torque relative to the handedness of the wall. We assign C = +1 for right-hand side DW
handedness (clock-wise spin rotation) and C = —1 for left-hand side DW handedness (counter
clock-wise spin rotation). Since the torque maintains its sign across the DW configuration,
we can distinguish two situations, positive and negative torque 77T = +1. If the product

TOTC is positive, the DW will displace towards +£, otherwise the motion will take place
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in the opposite direction. In Fig. 4.3b we exemplify this behaviour for three distinct DW
configurations. Taking as a reference the Néel vector parallel to the (110) direction in subplot
(a), we construct two 90° DW configurations following a right or left-hand side rotation along
the unit circle. The corresponding spin arrangements labeled (b-1) and (b-2) can be observed
in subplot (b) of Fig. 4.3. Both T"OT and C change their sign in between the two geometries,
hence the product T"°TC remains positive and the DW displacement direction is preserved.
Depending on the sign of 71OT, the resulting in-plane rotation of the Néel vector will take place

TROT — 41 gives rise to counter clock-wise rotation, while THOT — 1

in opposite directions.
promotes clock-wise rotation. To maintain the DW direction of motion, the handedness of
this in-plane rotation must oppose the handedness of the wall. Therefore the T"°T change of
sign in between configurations (b-1) and (b-2) matches this requirement and thus preserves the
direction of motion towards +X.

The situation changes if we compare the (b-2) and (b-3) 90° DW profiles. Here the TLOTC
product changes sign which promotes displacement in opposite directions as confirmed by our

ASD simulations. Taking as reference any other 90° DW configuration along the unit circle in

Fig. 4.3a, we observe the same behaviour.

4.2.3 Domain Wall Driving

For the sine-Gordon solution then, steady-state motion is achieved when the Zeeman energy

from the induced field is balanced by the dissipation term 7. The reduced field #-©T is then
described as:
h h hA sin(2
pLot = 3ot _ 8¥quor | 8yiAsin@0) o oy, 4.19)
a a a
This gives the full macrospin solution for the DW:
1. 1 .
%9 — 56— o sindd — BT sin(2¢) —né =0. (4.20)

m 0
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The velocity of the DW under steady-state motion is vy = 4AghCT /M, with the exchange
components a ultimately cancelling to give the velocity dependent only on the width factor,
field, and damping constant. The factor of four comes from the 90° DW. In real simulation

variables, the steady-state velocity in the linear regime from a driving H7 is:

vo = 4yAgH T /ot 4.21)

Beyond the linear regime approaching the saturation velocity, the relationship is more
complex. A well known behaviour of AFM solitons, mainly discussed previously for 180°
DWs [99, 16, 17], is the Lorentz invariance of Eq. (4.20). Since the magnon limit v,, functions
as the "speed of light" for the medium, a soliton velocity at an appreciable percentage of this

limit must undergo the appropriate Lorentz transformations:

AW) =Agy[1— — (4.22)

which is the traditional length contraction. Since the width of the DW affects the steady-state
velocity, the contracted width must be used to calculate the resultant velocity. This can be

rearranged to solve for the velocity in terms of the width factor at rest Ay and the effective field
FLOT.

Vm

v — _ (4.23)
J1+%
Yo
For 90° DWs under traditional SOT driving, the Lorentz contraction in Eq. (4.22) is much
more difficult to derive due to non-zero torque on the boundaries changing the boundary
conditions used to derive Eq. (4.16). Methods to address this are discussed in Chapter 6, but is
not applicable here under LOT driving.
The driving mechanism comes from the staggered fields induced on the Mn sublattices
generating a non-staggered torque on the Néel vector. This engages the exchange enhancement

from the AFM exchange to rotate the spins, driving the DW.
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Fig. 4.4 Numerical results and SG predictions of steady-state 90° DW dynamics. (a)
Steady-state velocity for simulation LOT field for damping parameters & = 10~2 and o = 1073
and tetragonal and rotational forms of the anisotropy. Points represent the data and lines the
analytic calculation from Eq. (4.23). (b) Contraction of the DW width as a function of the
propagation velocity.

4.3 Results

For our atomistic simulations we use thin wire one unit cell tall (z = 0.86 nm) and two unit cells
wide (y = 0.66 nm) with periodic boundary conditions along y only. The laser pulse follows
a square profile with 30 ps maximum intensity and a half Gaussian profile of 8 ps to give the
DW smooth excitation to reach the steady-state velocity in order to compare with the analytic
expressions (Fig. 4.5c, Fig. 4.7¢). The track length was 5000 nm to prevent the DW being
driven out of the system. ASD simulations with a larger cross-section were performed at 0 K to
confirm agreement with our unit cell track.

Fig. 4.4 shows our results for maximum steady-state velocity and minimum width factor
for increasing laser intensities (converted to field for Fig. 4.4a) for better comparison with
[99, 17]). In this result we also perform simulations with the rotational in-plane anisotropy
described in Eq. (2.25), rather than the tetragonal form used in the sine-Gordon derivation for
the DW motion. The results show no serious deviation from the analytic model once the change
in rest width is used for Egs. (4.22) and (4.23) (17.39 nm vs 50.9 nm), showing clear Lorentz
invariance of the rotational anisotropy (an analytic discussion of the impact of rotational and
tetragonal forms of anisotropy on the DW is in Chapter 5). The saturation velocity is slightly

larger than the calculated magnon speed of 43.39 km/s. For the tetragonal form, the fit to Eq.
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(4.22) for the data in Fig. 4.4b gives v,, = 45.4 km/s. The rotational form has a slightly higher
v = 45.79 km/s (better seen in the saturated velocity of Fig. 4.4). This slight deviation in
vin could be from asymmetries in the DW profile which are a departure from the sine-Gordon
soliton solution.

Another application of the LOT to DWs could be its use in proliferating new, additional
textures beyond the starting two domains. Fig. 4.5 shows this occur for a DW accelerated
with a field beyond the magnon limit. Emanated spin waves moving at v,, trail behind the
supermagnonic DW (see Fig. 4.5a) in an effort for the DW to lose effective mass (see [16, 111]).
The DW is no longer following the soliton solution for Eq. (4.20), as both the leading and
trailing edge of the DW no longer follow Eq. (4.16). This enhances the LOT driving, forming
a resonance effect to further increase the velocity of the magnetic texture. Nucleation occurs
when the energy of the texture overcomes the energy barrier necessary to nucleate an additional
DW pair [16]. The topological nature of this new texture depends on the LOT symmetry and
DW configuration, as in Fig. 4.3. Fig. 4.5e shows this new DW pair configuration. The original
wall and the new 90° wall function as an effective 180° wall, and are thus locked in place by
the LOT (see Fig. 4.2a). Larger laser intensities affect the equilibrium distance between the pair
of DWs, and the system will relax into a stable pair provided they do not overlap other textures.
This result confirms the possibility from Figs. 4.2b and 4.2a for the LOT to manipulate, but not
drive, 180 ° textures.

The second 90° wall continues to propagate in the same direcction as the original, steadily
building up new effective mass (see Fig. 4.5b). Continued driving of the DW, or driving with
higher laser intensities, sees further nucleation of magnetic texture. The stability of these
textures after laser excitation is determined by their distance and topological character [16].
The pair of spin textures are stable in a reasonable time frame achieved by atomistic simulations
after the laser pulse is stopped, provided they do not overlap.

Since the Zeeman energy contribution always remains zero in our case, as the geometry in
Eq. (4.18) maintains H?pt always perpendicular to the local spin direction S;, the question is,
therefore, from where does the energy required for the nucleation of additional magnetisation

textures arise? In subplot (a) of Figure 4.5, we represent the azimuthal angle ¢ along the
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Fig. 4.5 Proliferation event in the supermagnonic regime. (a) ¢(x,t) variation along the track
during the 90° DW displacement and nucleation. (b) Energy variation during the nucleation.
Subplots (a) and (b) share the time legend. (c) Laser intensity protocol with peak laser intensity
of I = 0.65 GW/cm?. (d-e) Schematics of the Néel vector configuration corresponding to
the purple and green shaded regions in (a), at 1; =40 ps and 73 = 90 ps respectively. Figure
courtesy of P. Gavriloaea in [23].

track during a 90° wall displacement excited via a half-Gaussian, laser pulse of peak intensity
I = 0.65 GW/cm? (see laser profile in subplot ¢). Time-steps f1, t», t3 show the characteristic
low-frequency SW, lagging behind and broadening the width of the 90° DW as it is pushed
beyond the magnonic barrier. A gradual, corresponding decrease in the exchange energy is
evidenced by subplot (b). Due to the competition between the anisotropy and exchange energies,
this broadening cannot indefinitely take place, forcing a rebound process characterised by a
contraction of the wall. A drastic reduction of the DW width can be observed between 73 and 4
along with a large increase in the exchange energy. This continuous deformation leads to the
appearance of oscillatory patterns at the front of the propagating wall, which on a ps time-scale
invest part of the relativistic energy carried by the DW towards the nucleation of an additional
magnetisation texture, as evidenced at 74 and #5. Visible at g, #7 and g, the initial spin structure
morphs into a static magnetisation texture pinned around the x = 3.5 um mark, while its surplus,
relativistic energy is invested towards pushing ahead a novel spin structure.

The physical origin of the effect relies on the rapid transfer of relativistic energy from a
propagating DW near the magnonic barrier into new stable magnetisation textures. Comparing
snapshots #3 and t5, we estimate the energy transfer across the track from the parent to the child

magnetic texture takes place with an average velocity of 89 km/s (0.89 um travelled in 10 ps),



4.3 Results 63

140 3
o=m/2 —®— |7
120 - 4
¢ =0 - * |
100 '
/ /1
E s 2
< , [
2 60 »
s R .
40 + 4
20 - [
0 T T T T - 0
0 0.4 0.8 1.2 1.6 2

Intensity (GW/cm?)

Fig. 4.6 DW expansion and contraction under rotated laser polarisation. The steady-state
topological charge of the DW under

largely exceeding the magnonic limit for a pure soliton or spin wave. Further work is needed
to characterise the critical intensity needed to nucleate these new textures in a deterministic
manner, as the addition of temperature to the DW is likely to make nucleation a stochastic
process (see Chapter 5). Likewise are the effects of temperature and laser heating on the DW
driving investigated in the next chapter.

We have also investigated the use of the LOT to manipulate static DWs, rather than drive
them. Fig. 4.1b shows a laser polarisation which does not produce torque to drive the DW.
Instead, a laser polarised along 47 /2 will either expand or contract the DW, depending on the
configuration handedness. Fig. 4.6 shows this effect as a function of the laser intensity. Unlike
the laser polarisation angles used to drive the DW in Fig. 4.2, the angles used to expand/contract
the DW do exert a non-zero torque on the domain boundaries of the system—leading to the
non-conserved topological charge seen in Fig. 4.6. This makes describing the system using the
SG solution difficult. Qualitatively, it can be observed that the width expansion/contraction
(also reported in Fig. 4.6 as the topological charge) shows an asymptotic approach to the limits
of the DW geometry. For the expansion, this limit is given by the critical switching field (see

Chapter 3. For contraction, the theoretical limit is given by the exchange of the system, and is
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far beyond a reasonable laser intensity. The DW width under contraction reaches an appreciable
minimum value at a larger intensity than the expansion polarisation overcomes the in-plane
anisotropy of the system. This has interesting effects for systems with multiple domains—each
experiencing expansion or contraction—which will be studied in more detail at a later date, as it
has implications for AFM spin pumps and DW springs using optical control [112-114].

Fig. 4.7 displays the DW width vs. time for this phenomenon for three increasing
laser intensities. The oscillation frequencies of the DW widths are independent of the laser
intensities. The phase of the frequency, however, changes between the laser polarisations
expanding/contracting the DW. The opportunity for the LOT to excite DW's without driving them
presents new opportunities for AFM characterisation. Recent experiments with Mn, AulNiFe
bilayers have shown the ability to differentiate the relative Néel orientation distribution in a
multidomain sample between all four in-plane easy axes using THz excitation [113]. With the
additional level of symmetry in the LOT compared to the SOT driven by THz excitation, the

use of optical frequency characterisation of AFMs is of significant interest to AFM spintronics.

4.4 Summary

In conclusion, our simulations and analytic model reveal the possibility to drive a 90° AFM
DW under the novel LOT introduced in Chapter 3. Interestingly, this excitation protocol does
not allow the motion of 180° DWs, but can affect the width. In the same way, 90° DW walls
can be manipulated without driving depending on the laser polarisation and DW configuration.
Since the contracted DW is at an elevated soliton energy, the relaxation will mimic a relaxing
magnetic spring, emanating spin waves as it decays to the ground state. This could be used for
sensing or memory applications, or to generate THz emissions. Chapter 6 explores the effect
DWs have on spin currents, so an oscillating DW in combination with an injected or intrinsic
spin current could be a source of THz charge currents.

An important result of our simulations is the driving efficiency of the LOT for 90° DWs.
Typical experiments of laser-induced DW dynamics in FMs make use of fluences in the range

of a few mJ/cm? which amount to intensities normally in the 1 and 10 GW/cm? interval for
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Fig. 4.7 DW expansion and contraction dynmics under varying laser intensities. Figure
courtesy of P. Gavriloaea in [23].
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DW motion on the order of m/s [115, 116]. In comparison, we predict kinematics up to the
supermagnonic limit (v = 46 km/s) by single pulse excitation below 0.3 GW/cm?, though effort
will need to be made to control the thermal heating generated by the laser pulse (see Chapter
5). Manipulating highly non-linear dynamics in magnetic systems may play an important role
in the development of future reservoir computing archetypes [117-119]. We envision thus a
combined, opto-electronic experimental scheme towards the realisation of a multiple-node
reservoir. Driven by an optical input, fast and periodic nucleation events could be manipulated
in an AFM DW fabric [120]. The anisotropic magnetoresistive effect [121] allows an output
electrical signal to be correlated to changes in the magnetic texture, thus posing an interest for
pattern recognition and prediction applications. The use of LOT in AFM materials could be an

opportunity for ultra-low energy driving and reading of AFM textures at room temperature.



Temperature-dependent magnetic properties of the

antiferromagnet Mn,Au

5.1 Introduction

Antiferromagnetic (AFM) materials are a key feature in nearly all magnetic recording devices.
More recently, it has been discovered that using the AFM as the active element, instead
of a ferromagnet, could massively outperform conventional devices in terms of mechanism
speed and energy consumption/dissipation [122, 123, 66, 124—-127]. AFMs are especially
interesting due to their intrinsically ultrafast dynamics and higher data density. One of the
most promising materials for these devices is MnyAu due to its high Néel temperature [10],
low in-plane anisotropy [128], and high conductivity [20]. In electrically driven switching of
AFMs the necessary current densities are very high, and the resultant Joule heating thermal
effects become especially important [129-132, 13]. Thus, it is essential to understand the
role of thermal spin fluctuations and temperature dependent magnetic properties of AFM
materials. A correct account of the thermal effects is especially important when modelling
spin-orbit-torque magnetisation dynamics and switching in nanoscale systems, which can be
done with atomistic [133, 134, 60, 135, 136] or micromagnetic [137—-140] simulations. For
the latter, effective models (where thermodynamic averages of the sublattice spin order are

used), the knowledge of the temperature scaling of the magnetic anisotropy—the micromagnetic
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exchange stiffness—and the domain wall width become crucial for a realistic modelling of
electrically-induced spin-orbit-torque magnetic switching.

In this Chapter, we present atomistic spin dynamics (ASD) simulations of the intricate
temperature dependent magnetic properties of Mnj Au, guided by previous ab initio calculations
[141, 142]. Taking into account the description of two-ion anisotropy in Shick et al. [142], we
introduce a modified uniaxial term to the exchange tensor for 2" order anisotropy. Likewise,
we calculate the different temperature scaling of the azimuthal and rotational anisotropies
governing the domain wall dynamics of the system. Through calculation of the temperature
dependent domain wall width we reconfirm the temperature dependence of the micromagnetic
exchange energy simulated from constrained Monte Carlo modelling. This provides an exact
analytical expression for the domain wall profile with rising temperature for low temperature
up to the thermal breakdown of the 4™ order anisotropy at ~ 800K. Our findings strengthen
our understanding of MnyAu and open the door to an accurate theoretical exploration that can

pave the way to all-AFM spintronic applications.

5.2 Methods

5.2.1 Hamiltonian

In developing spin Hamiltonians it is important to consider the thermodynamic context in
which they are used. In particular, it is important to take note of the origin of the anisotropy
itself. For example, in the case of uniaxial anisotropy of order / and azimuthal angle 6, if
the anisotropy has a single site origin, the usual form E(0) < sin’ 6 will be applicable for
all temperatures. However, if the anisotropy has a 2-site origin as in MnyAu (usually from
an exchange anisotropy) the above form will be applicable only at 0 K, where the spins are
fully aligned. In this case the temperature-dependence of the anisotropic contribution to the
Hamiltonian will not be physically reproduced by a single-ion term. The departure comes from
the treatment of temperature-dependent anisotropy and exchange in the atomistic Hamiltonian.

The formalism for anisotropy allows for two implementations:
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* As an anisotropic exchange term describing its fundamental origin, or
* with isotropic exchange and single-ion anisotropic contribution

As discussed in Chapter 2, the origin of the anisotropy is distinct between the two implementations,
but are equivalent at 0 K. The intrinsic link between exchange, lattice, and temperature, however,
makes the effect of temperature on anisotropic exchange difficult to untangle for both DFT
and experimental fields. For atomistic Hamiltonians and single-ion anisotropy, there is little
difference between the two implementations above, as the exchange and anisotropy are not
temperature-dependent constants. But for macroscopic Hamiltonians, careful parametrisation
is necessary in order to produce constants which accurately reflect the effect of temperature on
exchange and anisotropy for both inter- and intra-cell constants. For bimetallic systems with
large two-ion anisotropic contributions to exchange (e.g., MnyAu, IrMn [41], and FePt [143]),
the origin of the anisotropy must be respected even for the atomistic Hamiltonian. Thus, this
sections presents construction of our atomistic spin Hamiltonian guided by the physical origin
of the anisotropic contributions for each order of crystal symmetry in the phenomenological

Hamiltonian [41]:

E(6,9) =K, sin® 0 + Ky, sin* 0 + Ky sin® O cos 49, (5.1)

The tetragonal lattice symmetry phenomenologically follows the symmetry orders presented
in the equation above (Eq. (5.1)), giving three non-zero anisotropy symmetry contributions. To
distinguish our atomistic Hamiltonian constants from the macroscale constants in Eq. (5.1),
we will use lower case k for atomistic constant and upper case K for macroscale. A note is
first made about the unit conversion from ab initio calculations to this work: the foundational
anisotropic contributions calculated by Shick et al. in [41] utilise a tetragonal lattice symmetry
with two fundamental unit (f.u.) cells per crystal lattice. Since the anisotropy constants are
reported as energy density, we convert from energy per volume to energy per atom by noting
four magnetic atoms present in the tetragonal lattice, giving two atoms per f.u.. This factor of

two has already been taken into account for the constants in Table 2.1.
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Experimentally, it has been observed that the Akulov-Zener-Callen-Callen [144—-146]
relation (ZACC):

k(me) = me T/ (5.2)

where [ is the power order of the anisotropy (e.g. 2", 4™ etc.) often describes the macroscopic
parametrisation of the anisotropy with reduced magnetisation m, = (m)/mg from increased
temperature. In order to allow our atomistic spin Hamiltonian to produce anisotropy and
exchange constants which follow the ZACC relation, we describe the phenomenological
Hamiltonian in Eq. (5.1) using orthogonal functions which maintain the power order /
of the symmetry. The usual sin’ @ power expansion of anisotropies in Eq. (5.1) are not
orthogonal functions and so do not produce accurate temperature-dependent constants with
our ASD simulations. For time-dynamic solutions using the LLG equations of motion, this
is especially important due to the torque derivatives necessary to produce the effective field
creating anisotropy terms of different order. Specifically, this is a problem for the 2" and 4
order uniaxial contributions K, | and Ky | , respectively, in Eq. (5.1). We therefore express the
uniaxial anisotropies as an orthogonal function following the spherical harmonic expansions
shown in [147]. The 4" order in-plane term corresponding to Ky sin* @ cos4¢ is already
orthogonal in the Cartesian basis, and can be expressed in Cartesian coordinates the following
way:

Substituting into the energy density expression E = Ky sin* @ cos4¢ using cosd¢ =

8cos* ¢ —8cos? ¢ + 1 gives

E =Ky sin* 0 (8 cos* ¢ —8cos® ¢ + 1)

E =K, [8 sin* @ cos” ¢ —38 sin* @ cos? O+ sin® 9] .

The polar coordinate substitution uses sin® 6 = 1 — cos? 6, giving:
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E =Ky [8 sin @ cos* ¢ — 8(1 — cos® 0) sin? 6 cos? ¢ + (1 — cos? 9)2]

E =Ky 8 sin* 0 cos* ¢ — 8(1 — cos? 8) sin® O cos” ¢ + 1 —2cos? 6 + cos” 6] .
Substituting for S, = cos 0, S, = sin 0 cos ¢ then gives

E =Ky 85 —8S3(1—S82) +1—252+ 5]

E =Ky [1+8S) — 857 +85:57 — 287457 .

Equivalently, the energy can be expressed in terms of S, through the substitution Sf =

1—57 -8

E =Ky [1+85f — 8857 +857(1— 87 —8;) —2(1—S; = 87) + (1 - S; — 5)*] .

E =Ky [1+85) — 857 +857 — 8857 — 85782 — 242857 +25; — 257 — 28, +25:55 + ST+ 5} .

which reduces to give

E = k4r(S} — 65357+ S;) (5.3)

where k4, = Ky /2 is the atomistic, rather than macroscopic, constant.
The 4" order uniaxial term follows a straightforward transformation to Cartesian coordinates

using the identity sin> = 1 —cos”> 6 and S, = cos 0:

E =Ky, (1 —2cos> 8 +cos*0)

E =Ky, (1-282+54

Orthogonality is maintained by adding a small 2" order contribution to match the spherical

harmonic form in [147]. This shifts the anisotropy into the form:
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6
E = ky(S7 — 553) (5.4)

where k4 = K4, /2 and the constant value has been removed because it does not contribute to

the energy landscape of the Hamiltonian. The contribution %]MS% added to the 4" order term

must be subtracted from the 2™ order term.

Kyl Ky Ky
MnyAu -2.44 0.02 0.01
Au -2.772 0.01 0.01
Mn, 0.28 0.01 0.00
Table 5.1 Element resolved anisotropy constants from Shick et al. [148]. Units in meV per
fu..

The dominant anisotropy is the two-ion, 2" order, uniaxial term with a negative component,
giving a large in-plane preference for the magnetisation. The two-ion contribution occurs from

large spin-orbit coupling in the Au layers enhancing the 3d — 5d exchange splitting [41]:

o 5d .2 i,o j,a i,o Jj,a
E=—-kx" Y, 3 sal3a—saMsq My,
oij

X is the local spin susceptibility and kg‘i is proportional to the spin-orbit coupling parameter
észd, determined through self-consistent second-variational procedure. Table 5.1 gives the
element resolved contribution to the three anisotropies in Eq. (5.1). The Jégx_s dMé’;fz term
above suggests that the two-ion contribution is proportional to the Au and Mn bonds. We
have used this proportionality and the J; and J, exchange couplings to describe the calculated
anisotropy constant K, | as a tensorial correction to the exchange constants [143]. (While Shick
et al. do not report the SOC parameter for the Au species, [56] estimate an effective SOC
coupling parameter & = 46 meV from the energy shift between the d3 /2 and ds , resonances).

This is done by relative weight of the exchange constants J; and J>. First, the easy
plane anisotropy is given by K, | = 2.44 meV/f.u which becomes —1.95444 x 10~2? J/atom.
Removing the 2" order component added to the 4™ order term kp |, = —1.95444 x 1022 —

1.60218 x 1072 % 40/35 = —1.9727506 x 10722 J / atom. Note this value is already the
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one shown in Table 2.1. Then, the relative exchange contributions determine the two-ion
distribution: the total isotropic AFM exchange is — (4 x 1.0942959 + 1 % 1.469234) x 10720 =

—5.8464176 x 1072Y J/atom. The fractional contributions to the exchange are:

J1/Jarm = €1 = 1.0942959/5.8464176 = 0.18717374893
Do /Jarm = € = 1.4692340/5.8464176 = 0.25130500428

The contribution of the anisotropy to each exchange value is then

ko 1 J1 /Jarp = 0.18717374893 % 1.9727506 x 10722 = 0.00369247125 x 10~2Y J/atom

ky | Jo/Jary = 0.25130500428 % 1.9727506 x 10722 = 0.00495762097 x 10~ J/atom

An exchange tensor incorporates the isotropic and 2-ion exchange contributions JS with
JxxsJyy,Joz + €jko | for inter-sublattice interactions as an addition to the usual isotropic terms
[149]. Note that the anisotropic contribution values < 10726 can be truncated due to the
time-step size.

We combine the exchange tensor above with Egs. (5.4) and (5.3) to give the new atomistic

spin Hamiltonian:

H=—Y SdiSi—k ¥ (St - 55%) —ku L(sh - 6S2h, +5%). (59)
l

i<j i

We make two notes regarding the two-ion anisotropy composition above. First, for a more
complete description of the effect of the two-site polarisation on exchange, one would have to
redo the ab initio calculations of Schick et al. with site-resolved contributions for exchange and
construct the spin Hamiltonian from those data. This would include the effect of the two-ion
source on the 4™ order uniaxial and in-plane anisotropies. This effect, however, is minimal
compared to the dominant 2™ order anisotropy. Second, Shick e al. calculate element specific
contributions to the anisotropy orders. With minimal spin-orbit coupling on the Mn terms (see
column Ky in Table 5.1), it is likely that only the Au contribution is enhanced by the Mn

exchange splitting. Thus, the 2" order anisotropy is likely a combination of single and two-ion
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contributions, though the two-ion contribution (-2.72 meV/f.u.) is larger than the single-ion

(0.28 meV/f.u.).

5.2.2 Domain Wall Analysis

In Chapter 4 we previously gave the formalism describing a 90° DW. That formalism is extended
to this chapter in order to study the temperature-dependent magnetic properties of our new
Hamiltonian, as well as the effects of DW driving at elevated temperatures. The fundamental
Hamiltonian used in Chapter 4, expressed here for reference, described the in-plane 4" order

anisotropy using a tetragonal form:

%mM:}mhéawﬂH&gua%——aﬂ“~—KLW+aﬁﬂ, (5.6)

This can be shown to be equivalent to the Hamiltonian in Eq. (5.5) by returning to the
generic tetragonal basis. Then, considering only the in-plane anisotropy due to the sine-Gordon

dependence only on k4, the in-plane tetragonal form for a generic basis is:

K4 R
E:raﬂ(sfuo4+@fuﬁ4 (5.7)
%, ¥ and Z represent the unit Cartesian basis with @} = % (£49) and @i = \iﬁ (£—79) for

the easy axes along + /4. This can be re-written in spin-component form as

SR

Ky
E =g | (SutSi)* + (S — 83

_ Ky

E
2

This leaves

K
E=§M$+Mﬁw%$%+ﬁw$+6@m}4$%+$$§4%%+%)
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which after gathering terms reduces to the the Cartesian expression in Eq. (5.5) and inserting
the atomistic anisotropy for the macroscopic constant gives:

o
E = % (Sh+6S2.8% +S1). (5.8)

The rotated easy axes in Eq. (5.6) can be recovered directly from Eq. (5.7) by letting @i} = %
and G, = y. By comparing the coefficients in Egs. (5.8) and (5.6) to the expression in Eq.
(5.3), it is apparent a factor of eight connects the two formalism. This exists as a factor of two
between the macroscopic and atomistic constant and a factor of four between the Cartesian
expressions. Thus, while the analytic descriptions of the DWs in Chapter 4 apply to the results
in this Chapter, a factor of eight is needed in the DW width factor to bring parity between
the spherical description in Egs. (5.1) and (5.3) and the tetragonal description in Eq. (5.7).
Since this change in coefficients occurs at the level of the Hamiltonian, the DW width itself is
affected, rather than it being a superficial change to the analysis. As such, this Chapter will
continue under the Hamiltonian introduced in Eq. (5.5), with the relevant changes made to
the coefficients in the sine-Gordon solution. This factor can be introduced to the sine-Gordon
Hamiltonian in Eq. (5.6) with a change only in the coefficient of the resultant DW width factor
Ag. Since we are interested in the temperature-dependent properties of the DW, we include in
our notation now the temperature-variable exchange and anisotropy parameters for the DW

width factor.

A(0)

A0 =1/ 8Ky (0)

= 8.65 nm (5.9)

The DW width factor enters into the spatial dependence of the in-plane azimuthal angle the

same way in Eq. (4.16), repeated here for reference:

0 = (arctan (exp{xA_( (;C)O }) . 7:/4) (5.10)

For comparison with experimental results, the solution given by the sine-Gordon equation

may no longer reflect the physical nature of the DW. In particular, the Bloch definition given
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Fig. 5.1 90° DW lattice profile. Arrows above show the Néel vector along the DW direction X.

by A(0) does not reflect the length that the magnetic texture occupies extent between the two
domains. As a consequence of this, it is possible to represent the DW width in such a way that
it accounts for the slope of the in-plane azimuthal angle, ¢, which translates into a value Jgy
through the conversion 8g,, = 2w A(0)/+/2. These scaled values are the ones reported in the
results and so called the DW width, as opposed to A(0) the DW width factor.

5.2.3 Simulations

Computationally, we perform ASD simulations on systems with variable length along x and
set width and height of (I x 7.7 x 7.7) nm? with periodic boundary conditions along y and z.
For systems without excitation, we use a 1000 nm track. For DW driving, we use up to 3000
nm. The DW direction along x gives no variation in y or z, and we confirm our operation in the
exchange limit by fitting the DW width factor to the magnetisation of atomically thin slices
along y and z with minimal statistic variance. In order to better collect thermodynamic data
in the microcell approximation, we fit Eq. (5.11) to the average magnetisation in atomically
thin microcells with dimensions 0.65 x 7.7 x 0.14 nm>. This allows an approximation for the
sublattice magnetisation expectation value (m,(T)) = (m)/m; above 0 K. To fit the microcell
magnetisation to the DW width factor and DW centre x(, we use a modified Eq. (4.17) from
Chapter 4:
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me(T) sin = me(T) sin (arctan (exp{%}) - n/4> (5.11)

where m, (T) is either the microcell average or the calculated value from the modified phenomenological
Curie-Bloch law in Eq. (2.17). The modified Curie-Bloch law gives excellent agreement to the
experimental magnetisation (see Fig. 2.5), and allows for rescaling of the temperature term in
the Langevin thermostat to better reflect the quantum nature of the stochastic field (Eq. (2.16)).
For the DW, we initially directed half of the Mn sublattices of the system along the [110] and
[—1 —10] directions, while the other half have been defined between the [1 — 10] and [—110]
axes. The spatially inhomogeneous region between both domains was initialised according to
the expected soliton solution given in Eq. (4.17). Subsequently, the system was first thermalised
using a Monte Carlo preconditioning algorithm, then allowed to equilibrate for 20 ps, followed
by 80 ps of data collection (250 ps for driving simulations). At elevated temperatures, the DW
becomes highly diffusive. We compensate for this by fitting Eq. (5.11) to each configuration
snapshot, allowing the determination of the wall width parameter A(T). At T = 0 K we find
A(0) = 8.64 nm, in very good agreement with the analytic value A(0) = 8.65 nm.
Experimental measurements of the macroscopic Gilbert damping suggest a low value of
A = 0.008 [20]. Due to the high degree of crystalline order, we explore a range of atomistic

damping constants A = 0.1 —0.001.

5.3 Results

5.3.1 Temperature-dependent anisotropy

For the temperature dependence of the anisotropy and exchange stiffness, we use a constrained
Monte Carlo calculation [50] with an adaptive move [49] (see Chapter 2). 5000 averaging MC
steps per temperature point gives low variance in the magnetisation. Due to the symmetry of
the system, we are able to separate the rotational anisotropy in the x — y plane from the polar
contributions along the z-axis by choosing special constraint angles in the CMC simulations.

The restoring torques for the rotational anisotropy are given by T = —VEy, which for the special
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Fig. 5.2 Anisotropy geometry and temperature scaling. (a) Simulated torque curve and
anisotropy energy for the rotational anisotropy of MnyAu at 7 = 0 K, normalised to the
rotational anisotropy constant k4, compared to the analytical result. (b) Computed temperature
dependent normalised anisotropies (points) k2L and k4, plotted against the normalised sublattice
magnetisation < m, >. Lines show low-temperature fits to the expected temperature dependent
scaling of k5 (n) = n>32, expected for pure 2-ion anisotropy [150, 1491, and k4,(n) = n®"7,
expected for 4™ order rotational anisotropy from the ZACC scaling law.

case of 8 = 90° is T;|g—gp> = 4k4,sin4¢. For the case of 6 = 90°, the azimuthal anisotropies
kzL and k4 both have zero torques dE /d0, ¢|g—9p> = 0 and so do not contribute to the torque
curve. The simulated total torque and corresponding anisotropy energy are shown in Fig. 5.2a.
It can be seen that there is a maximum for the torque at ¢ = 22.5° and so we use this point to
calculate the temperature dependent anisotropy, applying a quadrature rule [50] to determine
the integral of the torque using a single constraint angle.

Uniquely determining the temperature scaling of the large easy-plane anisotropy using
quadrature as above is not possible due to the presence of a finite torque from the rotational 4™
order component; however, it is possible to remove the torque arising from the 4™ order uniaxial
anisotropy by choosing a suitable angle of theta where the 4" order torque is zero, given by
6 = arccos (M) ~ 49.1°. Since the easy-plane anisotropy k2L is an order of magnitude
larger than the rotational torque, removing the uniaxial torque allows us to uniquely determine
the scaling of the easy-plane anisotropy, using a single angle calculation at 0 =49.1°,¢ =0

and applying the quadrature rule.
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The scaling of the anisotropies with the sublattice magnetisation m, is shown in Fig. 5.2b.
At low temperatures the anisotropies follow the expected scaling relations, fit by k5| (m,) =
ky | m232 for two-ion [150] and K, (m,) = kaymg-"" for the 4™ order anisotropy. Although not
presented here, the 4th order uniaxial anisotropy k4 follows the same scaling relation as the
rotational term, with k} (m,) = ksym!9. The temperature-dependent sublattice magnetisation
follows the modified Curie-Bloch scaling law Eq. (2.17), allowing parametrisation of the

anisotropy scaling (K (7)) with temperature instead of magnetisation.

5.3.2 Temperature-dependent exchange stiffness in Mn,Au

Due to the different directionality of the exchange interactions in the unit cell, where the AFM
contribution denoted by J; contributes both along the thickness of the sample and through a
non-zero projection on the xy FM basal planes, it becomes complex to find constriction angles
to isolate their individual effects as we did with the anisotropy-based contributions. Instead, the
effective single-moment exchange stiffness can be calculated by sampling the thermodynamic
energy landscape of a Néel vector fixed in-plane, rotated through its antiparallel to perpendicular
state along the X coordinate to produce a spin-spiral, at increasing temperatures. In the exchange
limit that the magnetic texture along y and Z remains uniform and the spin gradient along £ is
small, this method gives the exchange stiffness A(T) for increasing temperature.

Fig. 5.3 shows the scaled anisotropy constant and exchange stiffness with increasing
temperature. Our calculation gives an A(0) value of 2.91 x 10~!! J/m-a value dependent on
the exchange constants used. The temperature dependence of A gives a good fit to the scaling
law m,(T)"#3. This scaling matches well with the expected FM-like trends in AFM materials
with 2-ion anisotropy according to Rézsa and Atxitia [150]. We note that this exponent arises
from a fit over the whole temperature range, which is used later to parametrise the temperature
dependence of the domain wall width. A fit at low temperatures (< 200 K) gives an exponent
of 1.68, agreeing with the value given in Ref. [150]. From spin wave theory, the departure
from the FM exponent 2 — € by a value of € = 0.32 ought to appear in the two-ion exponent
as 2+ €. A result which is indeed shown in Fig. 5.2. Combining our calculations for the

temperature-dependent anisotropy and the exchange stiffness we are able to investigate the



80 Temperature-dependent magnetic properties of the antiferromagnet Mn, Au

Simulation: A(T) = Fit: mg 183
ka(T) @ meg'77

A(T)/A(0), K(T)/K(0)

0 200 400 600 800 1000 1200 1400
Temperature (K)

Fig. 5.3 Exchange stiffness and anisotropy stiffness calculations scaling with temperature.
Low Temperature (< 200 K) fit for exchange stiffness returns an exponent of 1.68.

temperature dependence of the DW width for a direct comparison with the computational

results in the following section.

5.3.3 Temperature dependent domain wall width

Sapozhnik et al. [128] report a DW best fit using the ratio 0.5 x 10~* < 8Ky /(|J;| +2J3) <2 x
10~*. A difference in the configurational energy based on the f.u. cell (Sapozhnik ez al. Eq. 2)
vs geometric unit cell (Eq. (5.6)) gives a factor of 2 between the analytic results. This scales the
Sapozhnik et el. fit for the f.u. cell correction (1 x 107% < 4kgpr /(5 + [J17]/2) <4x 1079,
giving a domain wall width w range of 7.37 to 30.37 nm. This relates to a &y, value of 14.73
to 60.74 nm. At 300 K our simulations calculate a DW width &, (300K) = 27/+/2A(300K)
of 42 £4.5 nm, well within the experimental margin. It is important to note that Shick et
al. calculate their Ky value with an uncertainty of +50%. This gives an ab initio range of
27.17 < 8,4y, < 54.33 nm. Recent, more precise, DFT calculations with a 25% uncertainty
report kg = 6.321 X 102 [151]. Still well within our range of values.

In view of Egs. (5.11) and (2.17) and the results in Sec. 5.3.1, a non-zero temperature will
not only weaken the in-plane anisotropy-based energy landscape—blurring the magnetic soliton

transition—but also reduce the sublattice magnetisation in the domains. Atomistically, this is
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minimum fit width and points. (gold): maximum fit width and points.

caused by fluctuating moments away from the easy axes. This has a result that as the thermal
effects increase the DW spatial extent characterisation becomes less accurate, as it can be seen
in Fig. 5.4. In addition, both the DW widths and positions must be extracted from the data, lest
a time average of the magnetisation fail to capture the hard axis magnetisation profile.

Fig. 5.5 shows time resolved data averaged for several random seeds. The standard
deviation is of the time-averaged positions for increasing damping constants, and is comparable
to the DW diffusivity. The need for averaging over several random seeds to calculate the
diffusivity is an artefact of the size of the simulation system: even small thermal field exerting
an uncompensated torque at the DW centre—where the rotational anisotropy torque is maximum-—
will generate large in-plane fluctuations of the atomic magnetisation [152]. This is the same
exchange enhancement phenomenon used to switch domains and drive DW walls in Chapters 3
and 4, respectively. Such excitations are also the cause of the sizeable variation of the average
DW widths seen in Fig. 5.6.

MC simulations, by their very nature, minimise this broadening through a different thermal
activation process than the Langevin thermostat, avoiding strong uncompensated fields. The
MC simulations produce results analogous to LLG simulations with large damping in Fig.
5.5. Provided the DW is at thermodynamic equilibrium, the magnetisation averaging process
in the MC simulation can reduce variations in width. The intrinsic a-dynamic nature of
MC simulations can, however, lead to problems where the DW is stuck in a high energy
configuration. Thus, at high temperature the large number of MC steps required for a sufficient

average is computationally comparable to LLG simulations. A Fourier transform of the LLG
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Fig. 5.7 FFT of the DW width for various LLG damping parameters.

simulation time resolved data from Fig. 5.6 shows clear activation of a THz mode at 0.88 THz
(Fig. 5.7), which is a DW-rather than AFM-mode proportional to v/k4, [104] (despite its close
value to the THz AFM mode in Eq. (2.26)). The FFT in Fig. 5.7 for &« = 0.001 and o = 0.01
show peaks at ~ 0.88 THz. Increasing damping contributes larger thermal noise and suppresses
the lifetime and effect of the excitation.

Analytically, the results in Secs. 5.3.2 and 5.3.1 make their way into the DW width factor
by way of Eq. (5.11). When discussing the exchange stiffness and anisotropy scaling with
DWs, however, it is more common to utilise hyperbolic solutions for the spatial dependence of
¢ [153-155]. There, the DW width factor is a direct calculation from A(7') and K(T):

2 |A(T)

A(T)
where the factor of /2 allows conversion between the width factor in Eq. (5.12) and the width
factor derived for the sine-Gordon Hamiltonian used in Eq. (5.10).

For comparison between the simulations and parametrised results in Fig. 5.8 we normalise

the width factor to the 7 = 0 K value of A(0) from Eq. (5.9). Taking the fit values from Fig.

5.3, we describe the DW width factor as a parametrised function of temperature:
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me(T)1'83

AT) =803 o

(5.13)

The average DW width factors at finite temperature during 80 ps of simulations thus give good
agreement with the width factor calculated from Eq. (5.14). For easy description of the DW
width factor based only in temperature and not the magnetisation, the modified Curie-Bloch
law which gives the sublattice magnetisation as a function of temperature (Eq. (2.17)) can be

inserted into Eq. (5.13) and reduced to give:

e
A(T) = A(0) (1— (T_N) ) (5.14)

where for our constants 7y = 1225 K. It is important to note, however, that the parametrisation
above may not be true for cases where the magnetisation does not follow the modified Curie-
Bloch law in Eq. (2.17), as will be shown later for TTM simulations.

Fig. 5.8 shows the average DW widths for increasing temperature for LLG and Monte Carlo

simulations compared to the equation parametrised from the exchange and anisotropy scaling
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with temperature Eq. (5.14). We see no significant difference in the average widths calculated
from the Monte Carlo simulations or LLG simulations with varying damping parameters.
Thermal activation of the DW boundary causes oscillations to the soliton’s instantaneous
width profile, giving a distribution of values which increases with temperature. The averaged
data agrees strongly with the parametrised calculation, up to the temperature threshold where

thermal activation can overcome the in-plane anisotropy barrier (=~ 800 K).

5.3.4 Domain Wall Motion

The effect of increasing temperature on DW motion can be qualified into two categories:
diffusion, which is the nature of the DW to drift under stochastic conditions, and viscosity,
which is how easily the DW moves under a driving force. Qualitatively, it is understood that
DWs become more mobile at increased temperature. The velocity for 900 DWs driven by the

LOT in Chapter 4 can be given by:

vior = 2yHOTA(T) / a (5.15)

Approximating the minimal temperature impact to «, this equation should scale with the DW
width factor. To compare with the 0 K results presented in Chapter 4, we equilibrate then excite
a DW using the anisotropy constant k4 and the tetragonal Hamiltonian in Eq. (5.6). This has a
0 K DW width factor A(0) = 50.2 nm (giving a DW width &, far outside the experimental
bounds [57, 156]). The width, however, does not change the analytic form of the equations to
describe the DW at 0 K (as shown in Fig. 4.4), so we have not changed the results of Chapter 4
in light of the improved constants and Hamiltonian derived here.

At 300 K, the DW width factor A(300K), according to Eq. (5.14), is 54.46 nm. Eq. (4.21)
then gives a steady-state, linear regime velocity of 30.7 km/s. Since this is an appreciable
value of v, the steady-state Lorentz transformed velocity is only ~ 25 km/s. The exact
relationship between temperature and the magnon limit v,,—determined by exchange—is not
known, as thermal excitation now involves the out of plane exchange constant J,, previously

irrelevant to the sine-Gordon solution, as well as the reduction of the exchange stiffness with
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Fig. 5.9 LOT excitation position and width without laser heating effects. Laser excitation
I =0.01 GW/cm? follows a 10 ps Gaussian profile with no temperature change. The upper
portion shows the average width (gold) and seed widths (blue).

decreased magnetisation at temperature. Thus, for simplicity we note only the comparison that
the maximum velocity achieved in Fig. 5.9-a static temperature simulation—is ~ 30 km/s, an
apparent improvement in the driving efficiency predicted by the 0 K analytic descriptions.

As shown in Chapter 3, however, the effects of transient laser heating on the metallic system
can have considerable impact to the magnetisation dynamics. To better simulate the effects of
long pulse times on the DW, we involve the TTM introduced in Chapter 2 and utilised in Chapter
3. For pulse times beyond 10 ps, temperature dynamics between the magnetic thin film and the
substrate need be taken into account. The TTM simulates this effect by phenomenologically
cooling the phonon temperature to the starting temperature of the substrate (modelled as an
infinite heat sink due to the large difference in heat capacities). The characteristic cooling time
T, used in Eq. (2.23) is the time for the system to cool to half its maximum temperature. Since
different substrates for Mnj Au exist, we show the effect various characteristic cooling times

have on the temperature dynamics in Fig. 5.10. 7, = 100 ps corresponds to slow cooling typical
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Fig. 5.10 TTM for two characteristic cooling times 7,. Example laser intensity I = 0.15
GW/cm?. The laser profile follows the second y axis.

of an insulating substrate [61], while 7, = 20 ps is more in line with a metallic HM substrate
[157].

Moving towards simulating more physical DW models, we use the in-plane anisotropy
constant k4, and Hamiltonian in Eq. (5.5) which gives a DW width at 300 K 8,,,(300K) = 43
nm. The commensurate width factor is A(300K) = 9.78 nm. For a laser intensity I = 0.075
GW/cm?, the induced H7 is 2.2 mT, giving a linear velocity of 15 km/s according to the 0
K results in Chapter 4. The resultant velocity in Fig. 5.11b shows the average DW velocity
failing to meet this prediction, even when taking into account the larger width during laser
heating. The diminished actual velocity compared to the calculated value could be a result
of uncompensated stochastic fields in the Langevin term larger than the relatively minimal
HOT causing nonphysical DW drift. However, removing the more spurious random seed paths
shown in Fig. 5.11 increases the maximum velocity to only 7 km/s, compared to 3 km/s.

This suggests that rather than non-physical motion skewing the data, the diminished velocity
is a result of finite size effects, akin to the super-paramagnetic effect for small magnetic

domains. Since the driving mechanism for the DW is inertial rotation generated from exchange

enhancement, even small changes to the S, atomistic moments can overshadow the LOT. Larger
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Fig. 5.11 LOT driving including TTM for laser intensity / = 0.075 GW/cm? (total fluence
J = 12 J/m?). The parametrised width is according to Eq. (5.14) using the time resolved TTM
electron temperature 7.
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Fig. 5.12 TTM with unpolarised light for laser intensity / = 0.075 GW/cm? (total fluence
J = 12 J/m?). The parametrised width is according to Eq. (5.14) using the time resolved TTM
electron temperature 7.

DW volume simulations are necessary to remove this effect, with increased lattice parameters
along ¥ and Z, rather than £, in order to increase the DW volume. For comparison, we simulate
a laser excitation using unpolarised light to study the effect of transient TTM heating on the
DW without generated torque.

The TTM heating in Fig. 5.12 without LOT shows remarkable similarity to the LOT driving
simulation in Fig. 5.11. The fit widths both show significant broadening which follows the
parametrised prediction using the transient 7, from the TTM. The unpolarised simulation,
however, does not show the same driving velocity in the LOT simulation, revealing there is a

net effect of the LOT, even with finite size effects.
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Fig. 5.13 Largescale simulations with LOT driving including TTM for laser intensity / =
0.075 GW/cm? (total fluence J = 12 J/m?). The parametrised width is according to Eq. (5.14)
using the time resolved TTM electron temperature 7.

Largescale simulations increasing the volume of spins around the DW reduce these
excitations attributed to finite size effects. By increasing the depth of the lattice from 8
nm to 40 nm, spurious torques in the DW can be reduced. The width in Fig. 5.13a fits well the
parametrised value using the TTM T,, even without the averaging effect from many starting
seeds. The effect of the LOT, by contrast, is clearly visible in the DW velocity (Fig. 5.13b) of
the largescale simulation, reaching a peak velocity of 8 km/s.

The larger simulation size also allows simulation of increasing laser intensities. Despite
multiple random starting seeds, the transient temperature increase from a I = 0.1 GW/m?
laser pulse causes spontaneous nucleation of additional domains in the 8 nm deep simulations.
Increasing the system depth to 40 nm removes this effect and shows increased DW velocity
from the LOT, up to 12 km/s (Fig. 5.14). These velocities are still short of the predicted values
from Chapter 4, and especially the values from Eq. 5.15 using the TTM width expansion. It is
possible this is a continued effect of spurious torques on the DW-and thus larger simulations

volumes would again see an increase in the velocity—but those results have not been confirmed.

5.4 Summary

We have analysed the temperature-dependent properties of Mn, Au using ASD simulations using

arobust first principles Hamiltonian and applied it to simulations involving dynamic temperature
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Fig. 5.14 Largescale simulations with LOT driving including TTM for laser intensity / = 0.1
GW/cm? (total fluence J = 16 J/m?). The parametrised width is according to Eq. (5.14) using
the time resolved TTM electron temperature 7.

and laser excitation. We first develop a magnetic spin Hamiltonian reflecting the origin of the
dominant 2-ion anisotropy demonstrated in ab initio calculations in Ref. [142]. The temperature
scaling for anisotropy and exchange—a critical component for micromagnetic simulations and
traditionally difficult to calculate for AFMs—is calculated for Mn; Au using a CMC spin-spiral
at increasing temperatures. This method is confirmed by MC and LLG finite-temperature
simulations of 90° DWs. Interestingly, increasing the value of the damping parameter does
not affect the simulated width, but rather decreases the thermal width fluctuations around the
average. The calculated exchange and anisotropy stiffness follows the well-known temperature-
dependence for ferromagnets, as well as the AFM corrections present in literature [149, 150].
These calculations can allow large-scale micromagnetic simulations with high precision. The
LOT used to drive DWs in Chapter 4 was also introduced to simulations at finite and dynamic
temperature. These reveal the robust efficiency of AFM DWs even at elevated temperature,
with low intensity pulses driving the DW at km/s speeds. With its high Néel temperature,
metallic properties, and intrinsic spin-orbit torque response, MnyAu represents a crucial
material for next-generation spintronic devices. With research pointing towards the critical role
temperature plays in metallic spintronic devices [129], there is a growing need for accurate,

finite-temperature simulations of DW and switching processes.



Spin Transport Model of the Intrinsic SOT in
Mn,Au

6.1 Introduction

Spin transport theory lies at the very heart of spintronics, providing the mechanism for coupling
charge, spin, and the magnetic moment for non-equilibrium time-dependent processes. At a
foundational level, spin transport is responsible for the giant magneto-resistance (GMR) effect
which serves as the basis for magnetic memory storage in modern computers. Increasingly
complex heterostructures utilizing atomically thin material layers allow for a staggering range
of material combinations, with transport modelling theory a crucial tool for understanding the
equivalently vast range of material parameters. Gone are the days of tri-layer FM/metal/FM
systems. Now, metals, semi-metals, and semi-conductor stacks containing all range of
ferromagnetic, ferrimagnetic, antiferromagnetic, spin polarising, and non-magnetic materials
are possible. While the focus of this thesis is not on spin transport, we do devote a chapter of
the results to work done on describing the intrinsic SOT phenomena for MnjAu using a spin
transport formalism. Traditionally, the SOT arising from intrinsic CISP in MnyAu and CuMnAs
is modelled using a Néel field-like torque—a staggered field addition to the LLG equation on
each spin sublattice. At its source, however, the CISP inducing the staggered field is a spin

transport phenomena, not a magnetic field phenomena. For bulk modelling, the distinction is
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Fig. 6.1 Diagrammic representation of spin accumulation from a driving charge current
polarised by the Mn moments (teal arrows) and Au SOI (gold arrows) across a domain wall.

irrelevant; for multilayer structures, or non-simplistic magnetic textures, the mechanisms differ
widely. It is the latter scenario this chapter investigates.

DWs in traditional AFMs without intrinsic SOT can be driven using in-plane charge currents
(which exert a torque on the DW from spin polarisation of the current passing through the
magnetic domain) or from HM injected SOT (which exert a torque on the DW as well as
the domains). For MnjAu, an in-plane charge current will do both, and the mechanism to
simulate each phenomenon using ASD is the same. This chapter presents a description of our
adapted spin transport model for describing coupled spin-magnetisation and current induced
spin interactions—a result on its own—as well as the results of our model applied to simulations

of DW driving in Mn;Au.

6.2 Theory

To construct a model of the Néel vector-dependent and charge current vector-dependent induced

spin accumulation leading to the intrinsic spin-orbit torque, we apply the Zhang-Levy-Fert
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(ZLF) drift-diffusion formalism for spin transport to the Rashba-Edelstein effect responsible
for the intrinsic SOT in MnAu. This spin accumulation-based description is then applied to
domain wall driving and single domain switching. Two mechanisms exist in the spin transport
dynamics for domain wall driving. Firstly, the above mentioned intrinsic spin-orbit torque
generated in MnyAu from a charge current. And secondly, the spin polarisation of the sublattice
magnetisation driven by the charge current (i.e., spin motive force). While each mechanism
operates through s — d exchange coupling from spin polarisation at the Fermi level, the physical
source differs between them. Here, the theoretical background for each mechanism is explored

before being combined into our model.

6.2.1 Current Induced Spin Polarisation

At its source, the intrinsic SOT in MnjAu arises when a non-polarised charge current, moving
in-plane, generates a staggered current induced spin polarisation (CISP) on each magnetic
sublattice which results in a non-staggered torque (and consequently activating the exchange
enhancement useful for switching). Traditionally, such a torque was achieved in AFMs through
an extrinsic SOT generated by a heavy metal base layer (called the spin Hall effect (SHE)).
Also available for broken inversion symmetry interfaces is the inverse spin Galvanic effect
(ISGE). Qualitatively, the SHE and ISGE can both generate non-equilibrium spin polarisations
which can exert a torque on the magnetic moment '. What differs is the underlying physical
phenomena driving the interactions: while the SHE is a bulk effect from SOC, the ISGE
occurs at the interface [159]. Fig. 6.2 gives a diagrammatic comparison between the SHE and
ISGE. While naturally occurring (in some magnitude) for any interface with broken inversion
symmetry at the band-structure level, the ISGE can exist for bulk materials as well, either
through SOC or noncentrosymmetric crystal symmetry [12]. For FMs—where efficient switching
and DW driving are highly dependent on torque symmetry and damping—often the ISGE is too

weak for spintronic applications. For AFMs relying on exchange enhancement for efficient

IFor the magnetic moment, there is no difference for ASD implementations between torques generated by the
inverse SHE and ISGE other than that of symmetry: the SHE induces a predominately anti-damping-like torque,
while the ISGE induces a predominately field-like torque. But field-like and anti-damping-like contributions to the
SHE and ISGE, respectively, exist beyond the zero-order approximation [158]
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Fig. 6.2 Diagram of heterostructure-based spin torques arising from the SHE (left) and
ISGE (right)-here called the interfacial Rashba-Edelstein effect. For the SHE, the SOC present
in the "N’ non-magnetic layer induces a spin current perpendicular to the direction of the charge
current. For the ISGE, a spin accumulation is generated only at the interface with broken
inversion symmetry. Figure from [159].

driving, the ISGE allows an in-plane current to generate a torque on the magnetisation without
heterostructures (i.e., heavy metal bilayers to inject spin polarised currents), though Mn,Au
and CuMnAs are so far the only metallic AFMs to exhibit this effect at room temperature [9].

At the DFT level, the change to the spin accumulation is not calculated by equations of
motion (EoM) but by response functions. The quantum mechanical description of spin current
Js—more accurately, the spin polarised flux density, but referred to as spin current here and
in the literature—is described by the tensor product of the Pauli spin operator (related to spin

operator S = 76/2) and velocity operator v on the electron density y [159]:

ﬁZ

o =Re((yloavly)). 6.1
The Kubo linear response formalism expands the generic expression of Eq. (6.1) to include
non-equilibrium changes to the charge density from the applied electric field E through the

susceptibility tensor y (such that dm = yE) [160]:

eh

,a,b

8| wich) (Vich [E - 9| Wi a) x [G{fyaGﬁb — Gy G (6.2)
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where Gfi .= (Gﬁj )" = (Ep — Ex,+i0)~!, Ep is the Fermi energy, Ex, is the energy
dispersion of band a, V' is the system volume, and I" is the broadening parameter connected to
the finite lifetime T = //(2I"). dm (8S in Ref. [12, 160, 11] and Fig. 6.3 but changed in our
text to avoid confusion with the atomic moment S) is the current induced spin polarisation. The
summation in Eq. (6.2) contains both a = b (intraband) and a # b (interband) contributions.
Qualitatively, if the broadening parameter is small, Eq. (6.2) can be expanded into intra- and
interband terms, with the interband terms further expanded to real and complex contributions,
as dm = oSmi"ra 5mi1mer + 6mizmer. Though the formalism in [160] is in the context of FMs,
their use is extended by Zelezny et al. in [12] to MnyAu (or any AFM or FM with multiple
sublattice species). With no loss of generality, we transition our notation to the description in
[12] in terms of the susceptibility tensors dm = Y E. For AFMs or multiple sublattice species,
the susceptibility tensor ¥ becomes the susceptibility tensor ), for sublattice a. As with Eq.

(@) (b)

(6.2) xa is given as xo = x) + o @ + ¥ 1O,

eh A N
XCI,,,',- ~Tor Z<Wnk‘5a,i|l//nk><‘/’nk‘vj‘l//nk> x 6 (Skn _Ef>

k,n

11(a) 5 . % — (exn — &m)*
Xoi =ehi Y Im (W] S i Wonk ) (Wonk | V| Wik} ] (fin — fim)

M k,nz;zm ’ ((ekn _Skm)2+rz)2

11(b) 5 . I'(&kn — &km)
Xaii' = 2eh Re[(Wnk’sa,i‘llfmkMka’v..‘Wnkﬂ X (fkﬂ_fkm)

M k,nz#:m ] ((gkn _Skm)2+rz>2

(6.3)

where n, m are band indices, Y,k and g,k are Bloch eigenfunctions and eigenvectors, respectively,
Sk, the Fermi-Dirac distribution, and Sa, ; the dimensionless spin-operator projected on sublattice
a.

The separation of Eq. (6.2) into m = (! + xil(“) + xcl,l(b) )E allows a qualitative understanding
of the physical response to the applied field E. The intraband term ! represents the electric field
modification of the Fermi-Dirac carrier distribution. The susceptibility is inversely proportional
to I, and diverges in the I' — 0 limit, analogous to the conductivity diverging in a perfectly

periodic crystal [12]. As in Freimuth et al. in Chapter 3, at room temperature [’ ~ 25 meV
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for an ordered metallic system with low impurities. This relates to a momentum scattering
time T = h/(2T) ~ 13 fs. Zelezny et al. extend the note that the susceptibility tensor x. can be

obtained from the Boltzmann transport equation with constant scattering time.

(a), xg(b) can be considered not as the distortion of the Fermi-Dirac

distribution, but the distortion of the carrier particle wavefunctions (i.e., Berry curvature) [160].

(b)

The interband terms xCI,I

While x! decays with increasing T, xg is directly proportional to increasing I, and thus

(@)

has minimal contribution in the low I' consideration. The final term XCI,I
(@)

is independent
of the broadening parameter provided (& — &,k > I'). Thus, )(;I is the only intrinsic
susceptibility tensor, not dependent on thermal or impurity scattering. Though the results for
this chapter are simulated at 0 K (minimal broadening), the results utilising the LOT in previous
chapters use a broadening value of I' = 25 meV. For brief comparison, such a broadening
value (comparable to 300 K) shifts x;l(b) (FC'=25meV) =—0.1 xclll(a) (C'=0meV), )(;I(a) (C'=
25 meV) = 0.75x0 (I = 0 meV), and x!(T" = 25 meV) ~ 0.05x}(T" = 0.0013 meV) [12].
While the reduction to x) from increased broadening appears substantial, it is important to
remember that the susceptibility tensors in Eq. (6.3) calculate only the CISP and provide rough
estimates on the resulting generated torque. More comprehensive DFT calculations for the SOT
using the Keyldish formalism estimate a torkance between 2-8 mT per 107 A/cm? [9, 161, 25]—
matching well with experimental measurements [20]-compared to the CISP estimated value
of 0.22 mT per 107 A/cm? [12]. Experimentally, charge current pulses have indeed been
successful in switching the Néel vector at room temperature [13, 129, 14, 162].

The advantage of the tight-binding models (as opposed to full DFT calculations) is the
tractable analytic descriptions of the resulting dm,, predicting the symmetry of the induced
fields [11, 160, 12]. While the ISGE discussed above does not make explicit mention of the
AFM order parameter, it is a critical factor when determining the torque symmetry, with the
Néel vector naturally having a strong effect on the SOC mediated by the Au atoms (see Chapter
5). Fig. 6.3 shows the CISP for the tight binding 3D model and the 2D AFM model containing
only a Rashba SOC. Generally, these follow the normal symmetries of injected SOT: the

intraband ( xclw- ;) component follows Z x ¢E, with the interband ( xcllll(f)) component following
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m X (2 x ¢E), where 2 is the Cartesian coordinate, usually out of plane. The current induced
spin polarisation 6m,, induces a field according to [12]:
om,

B,=—Jyu S (6.4)

which produces a torque T, perpendicular to the atomic moment S,:
T, =S, xB,. (6.5)

The work of Selzer et al. calculate the current induced spin and orbital polarisation using the
linear response formalism [56]. There, the induced orbital moment is orders of magnitude larger
than the induced spin moment and follows the zeroth-order Rashba symmetry in [12]. This
results in staggered fields more than 10x larger than the torque calculated in [163]. Since we
are interested in developing a model for spin currents, however, we do not consider the orbital
contribution. A more developed model which takes into account spin and orbital accumulation
(and the spin and orbital current interactions) is of interest for future research.

The CISP Mn sublayer specific response follows the Onsager relations for symmetry (i.e.,
x5 = —xg" ded = xgdd). The Néel vector dependent spin accumulation induced on each
Mn moment has been calculated, and is in line with the symmetry expected for the adiabatic
(precessional) and non-adiabatic (damping-like) terms in the Slonczewski formalism.

Fig. 6.3a and c show the results of Egs. (6.3) using the 3D Mn, Au tight binding Hamiltonian
described in [12], while b and d show the 2D AFM Rashba model. The 3D Hamiltonian
calculation shows the accumulation deviating from the Z X eE symmetry in the 2D model. We
can parametrise the CISP (including the numerical deviations from the zeroth-order symmetries)

using higher-order trigonometric functions:

Omy/Ome = 0.5sin2¢
Smy/8me = 1.4+ sin’¢ (6.6)
Om;/O0me = —0.14cos ¢
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Fig. 6.3 Non-equilibrium spin polarisation for Mn,Au and 2D AFM Rashba models. CISP
induced from electric field E || x,y for intraband contribution (a, b) and interband contribution
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E || (100)

'

Fig. 6.4 CISP symmetry and resultant torque specifically for electric field E || (100). The
field vectors change sign with a reverse in current direction. A field || (010) swaps the x and y
accumulation.

The dm, component changes sign between sublattices to preserve the Onsager relation. Since
the unit vector of the induced field follows the unit vector of the spin accumulation, we
can see the symmetry of the induced fields (gold) and generated torque (blue) as a function
of the magnetisation angle ¢, shown in Fig. 6.4, by use of Eq. (6.5). Though sharing a
similar symmetry relationship as SOT for adiabatic (intraband) and non-adiabatic (interband)
torque, the driving physics behind the CISP in Mn,Au introduces higher-order corrections not
present or adequately represented in the 2D tight-binding model containing only Rashba SOC
[12, 160] (see Fig. 6.3). While quantitative agreement is not anticipated between the simplistic
2D model’s analytic calculation and the more comprehensive 3D model requiring numerical
calculations, it does demonstrate the inherent complexity present in modern magnetic materials.

The results in Fig. 6.3 calculate the spin polarisation magnitude normalised by the charge
current density. Two factors, however, prevent us from implementing directly into the LLG
equation the values shown in Fig. 6.3: first, the CISP represents a change to the equilibrium

spin accumulation, but it is unknown how that change interacts with spin currents beyond the
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calculation. Second, the Kubo response formalism calculates the spin accumulation response
from the expectation value of the equilibrium spin density. In order to properly calculate the
torque from the induced spin accumulation, the expectation value of the torque operator would
need to be taken from the non-equilibrium spin density self-consistently calculated with the
resultant change to the atomic moment exchange splitting [83, 24]. These two factors make the
parametrisation in Eqgs. (6.6) a poor method to implement in the same manner we used for the
field-like torque of the LOT in Chapter 3. Instead, we apply the microscopic ZLF drift-diffusion
equations to the spin polarisation of the spin current flowing between the Au and Mn layers in
order to generate the non-equilibrium spin accumulation, rather than directly assuming the spin
accumulation itself. For all further results, the CISP will reference the induced fields generated
from the changing spin accumulation calculated by the following ZLF drift-diffusion formalism,
rather than Eqs (6.6). We will reference Egs. (6.6), however, to discuss the symmetry of the

calculated spin accumulation for ease of discussion.

6.2.2 Domain Wall Driving using STT

While the mechanism for driving AFM 180° DWs using SOT was mentioned in Chapter 4, the
effect on 90° DWs is more nuanced, as torque is exerted not just on the DW itself, but also each
domain. Likewise is the torque generated from the STT mechanism when driven by an in-plane
charge current: the torque profile is non-linear, non-adiabatic, and asymmetric across the DW,
making straightforward analytic descriptions difficult. Modelling the movement of DW's from
the intrinsic SOT has so far ignored the contribution of polarised in-plane spin currents exerting
a non-adiabatic torque on the DW (called here the STT due to its similarities to current driven
DWs in FMs), despite it being a chief mechanism for current driven FM DWs, in favor of
intrinsic or injected SOT being more efficient for driving DWs in AFMs. The inclusion of
the STT caused by the non-adiabatic spin accumulation moving through the DW in-plane is
not expected to greatly modify the driving dynamics. The purpose of this section, however,
is less on the impact the spin accumulation of the intrinsic SOT has on the DW, and more on
how the DW profile changes the spin accumulation of the intrinsic SOT. The Néel SOT-when

implemented as a field-like torque—does not account for the small, but significant, spin currents
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acting in-plane through the domain wall. Thus, analysis of DWs driven using the field-like SOT
is performed only insofar as to compare between the two models.

Utilising the same DW formalism introduced in Chapter 4, the effect of an in-plane STT
on an AFM is described by a combination of the precessional torque terms—used to activate
the dominant exchange enhancement—and the non-adiabatic terms—which exert an asymmetric
torque on the DW chiefly described by the spin-diffusion A; or spin-flip length A,s. A third
term describes the additional precession of the electron out of plane, The Lamor spin precession
length @y, and spin coherence length @, are used to describe the transverse damping term Ay,
and is on the order of magnitude of A;. Ata simple level ignoring additional sources of spin
accumulation or spin currents other than what the charge current generates moving through
the DW, the torque on a DW using a macrospin approach, expressed as —7 = M/, can be

expressed analytically as [159]:

hBg
2eMZ(1+8?)

hB

—TZWMX[MX(JQ-V)MH—

Mx(J.-V)M.  (6.7)

The first term on the rhs gives the damping-like torque, and the second term gives the
field-like torque caused by the non-adiabatic contribution. { in this case is the spin-misstracking
parameter, and helps to qualitatively compare the ratio of damping-like to field-like torque by
representing the ratio of spin-diffusion vs. spin flip scattering through § = (A;/Asf)>. When a
large amount of spin-orbit coupling is present, the additional factor of the spin dephasing length
must be included §’ = (A, + Ay)?/A2,. The ratio of damping-like to field-like torque can then
generally be given by { or {’. For materials with low spin-orbit coupling { << 1; materials
with large spin-orbit effects have {’ >> 1. As we will see in the results of Sec. 6.4.2, the STT
effect is not a significant driving force in Mnp Au DWs. It is, however, a dependent factor for
the spin currents generated out-of-plane by the DW. Thus, we will consider the effects { ~ 1
and ¢’ > 1 have on the generated spin currents by the DW.

Since the formalism of 90° DWs was introduced in Chapter 4, we will include only the
relevant results equations here for easier reference. Recall, the width factor of a 90° DW at rest
Ao is a combination of the effective exchange a and the in-plane anisotropy (given by the 41

order rotational term kg, ):
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AO = a/(8k4r) = 17.79nm (6.8)

If the boundary domains are fixed at -7 /4, this gives an azimuthal angle solution for the extant

of the DW:
o (x) = arctan[e(x_PO)/A] T

) (6.9)

The saturation velocity for the pure soliton solution in Eq. (6.9) is the magnon limit,

determined by the lattice parameter ag and relevant exchange interactions:

\/8a3I (75 + 1] /2)

W (6.10)

Vm

In the linear regime at 0 K, the steady state DW velocity is related to the damping constant,
DW width, and staggered field H through vy < AgH /o For velocities nearing the magnon
limit, the Lorentz invariant relationship between velocity and width (Eq. (6.11)) delivers a
contraction of the width, reducing vg. For the velocity beyond the linear regime v, the Lorentz

contracted width is:

A=Agy1—— 6.11)

Thus, for a driving staggered field H, the velocity v beyond the linear regime in terms of
invariant width Ag is:

V=V ——— (6.12)

where h is the reduced field & «< YH /o, where parity is determined by a coefficient from the
symmetry of the torque.

Complicating matters is the non-zero torque present on the boundary domains (see Fig.
6.5) changing the soliton solution in Eq. (6.9). To minimise this effect and recover a fit
which matches the analytic descriptions in Egs. (6.11) and (6.12), we allow the solution in Eq.

(6.9) to vary the boundary condition set by 7/4 in Eq. (6.9) whilst fitting A and ¢ to the m,
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Fig. 6.5 SOT torque symmetry for 90° DWs for two different H*” orientations: a) H** 1 m/4
and b) H*’ || ¥ and thus perpendicular to the magnetisation at the DW centre. Figure courtesy
of collaborator J. Vélez.

magnetisation component:
my(x) = sin (arctan[e(x_")/A] — qo) (6.13)

This form of Eq. (6.9) allows for a fitting of A which delivers a DW width factor applicable to
Egs. (6.11) and (6.12), even under the changing boundary conditions creating an asymmetric
DW profile.

Fig. 6.5 shows two relevant H** symmetries for 90° DW driving. Fig. 6.5b corresponds to
our simulation geometry (with a 90° rotation so the boundary domains are along +7/4 giving

identical symmetry).

6.3 Method

In the two-current model, where the electron spin is restricted to project purely on the up (1)
and down (|) quantisation axes, the charge current and spin current are conveniently expressed
as je = j' +j* and js = jT — j*, respectively. This can be extended into the continuum approach
with a three dimensional Cartesian projections of the net moment by a rank 2 tensor to describe

the polarised current moving in each Cartesian coordinate. Then, j3 is the spin current with spin
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Fig. 6.6 Representation of pure and mixed spin and charge currents. Image from Y. F. Feng
etal, [164].

polarisation along s and direction of propagation d. This tensor can likewise be decomposed
into "up" and "down" currents, though now the spin polarisation and current direction must be
taken into account. Instead, it is helpful when visualising the combination of multiple layers of
spin injection into one magnetic layer. Fig. 6.6 gives a diagrammatic representation for pure
charge, pure spin, and partial spin polarised currents in a material.

What is not represented in Fig. 6.6 is the static case of no spin current flux density but
remaining spin polarisation. This is of course the spin accumulation m. The distinction between
the itinerant moment generated by m and the static atomic moment S is a convenient one:
the atomic moment S—which has the majority of its density around -3 eV below the Fermi
level-remains largely unperturbed by charge currents and spin-flip scattering events. This is
due to its energetic distance from the carrier density at the Fermi surface, located at the high
symmetry point X in the band structure (corresponding to the k-space vector (1/2,1/2.0))
in Fig. 6.7. The flat dispersion around the X point is due to the high degree of crystalline
symmetry in-plane. The spin accumulation m, however, must be described using a combination
of electronic and magnetic means. These equations of motion for the spin accumulation are
given by Zhang, Levy, and Fert in Ref. [165] (and expanded in Ref. [166]), and implemented
into the VAMPIRE code in Ref. [167]. The full derivation of this solution is detailed in the

appendix of this chapter (6.5).
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Fig. 6.7 Density of states and band structure for Mn;Au from Merte et al. [83]. The high
symmetry point X corresponds to the k-space vector (1/2,1/2,0).
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To take into account the ISGE described above, we consider a spin current polarised along
the +y axis and injected in the £z direction from each Au sublayer (blue and red arrows in
Fig. 6.8). This in-plane polarised spin current propagating out-of-plane is proportional to
the charge current magnitude j, and ®;5Gg, which is analogous to the spin Hall angle Ogy
in that it parametrises the conversion of charge to spin. The spin accumulation caused by
the spin current at the Au-Mn interface will experience EoM described by Eq. (6.17). The
component of the spin accumulation now transverse to the atomic moment will exert a torque
on the magnetisation. In other words, we allow the drift-diffusion solution in Eq. (6.14) to
recreate the CISP symmetry described above. This requires a modification to the standard ZLF
EoM (traditionally used only for the direction of the flowing current (grey arrow)) to consider
perpendicular spin currents. For our case, we separate the orthogonal directions of the spin
current travelling into the 4z axis—the currents induced from the ISGE—and the +x axis—the
spin currents driven by the charge current j, || x, which will be approximated to pick up no
intrinsic spin polarisation other than what is traditionally caused by the magnetic moment (3 j,)
(i.e., ignoring SOC from the Mn). This is done by separating the lattice into atomically thin
stacks along x (blue rectangles in Fig. 6.8) and z (atomically thin planes with grey planes to
guide the eye). These stacks contain the microcells necessary to solve the spin accumulation
EoM using a finite difference method [167, 168]. For the decomposition along the 7 axis, the
height is given as the average vertical distance between atomic sites (7 = ¢/6 = 2.69 A; for the
decomposition along the x axis, we choose a spacing of 1 nm (which amounts to an increment
< 10% of the DW width). Since the spin currents propagating in the y axis are symmetric in the
exchange-limit of our system, they are not considered for this case.

Then, the two directions of spin current propagation are given by:

d
= Ors6Ejed T — ZDO{ —BB'S ( mz>] (6.14)

and

=Bj.S— 2D0B——BBS( a;:)} 6.15)
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h

Stacks in x

Fig. 6.8 Diagram of ISGE and spin polarised charge currents in Mn;Au. Grey arrow is the
direction of the charge current. The bright blue and red arrows are the in-plane polarised spin
accumulation from the ISGE. The green arrows are the charge currents polarised by the Mn
sublattice magnetisation. The large blue rectangles represent the microcell decomposition for
solving the spin accumulation EoM.
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E || (100)

Fig. 6.9 Torque curves for in-plane magnetisation with staggered SOT field from (gold)
standard field-like SOT, (blue) modified field-like torque using Eq. (6.18), and (red) spin
accumulation parametrised using Egs. (6.6).

where the second term in each equation is the drift-diffusion solution to the spin current
generated by spatial gradients in the spin accumulation. The first term in Eq. (6.14) is the
modelled spin current generated by the ISGE, and is parametrised as a fraction ®;sgg of the
charge current j, polarised along the +§ directions. The corresponding fj.S term in Eq.
(6.15) gives the non-polarised charge current converted into spin from the equilibrium spin
polarisation 3 at the Fermi level parallel to the magnetic moment S. The density of states (DoS)
(see Fig. 2.4a) at the Fermi level for spin up and spin down electrons give an equilibrium spin
accumulation me. = n(1) —n(}) = 1.484+0.78 x 10’ C/m? [55, 56, 83]. The spin conversion
factor then is B = n(1) —n(l)/(n(1) +n(l)).

The equation of motion for the spin accumulation m—without spin currents—contains the
transverse damping term dependent on the spin dephasing length (J/hwp®, ), the precession

term dependent on s-d exchange (//1), and the spin-flip relaxation time (7,r):

dm m B oL
E__Tsf (J/h)m x S (J/ﬁ)wle(mxS) (6.16)
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The solution for the self-consistent EoM is given in [167]. For the spin current direction along
+z, we solve the system of equations using the alternating direction scheme (applied to a
similar system in [168]). Since the spin current along x is only in one direction, we use the
initial boundary condition jj- = B j.S to propagate the solution along +x.

The combined solution for the spin accumulation EoM and spatially varying spin current is:

1 om  J’m
2Dy dt  0x2,+y?

2
J°m )_mxS Sx(mxS) m 6.17)

—BB’S(S- m)_mxS SxmxS) m
ox%, +y A7 7L¢ lsf

where Ay = \/2hDy/J, Ay = \/2hDow, /(Jor), and Ay = \/2DyTss. The Lamor spin
precession length wy, and spin coherence length @, are used to describe the transverse damping
term Ay, and is on the order of magnitude of A;. The diffusion term Dy and spin diffusion
term 8/ are not apparent from ab initio calculations, and are usually fit from experiment. Since
the physical constants in Eq. (6.16) differ for the direction of propagation, we use different
values for the +z and +x equations. Dy, B’, Jy4, and A r for x are the usual values for metallic
AFM in-plane [63, 169].

Since the ZLF drift-diffusion model is usually used to describe in-plane transport and
torque for microscale systems, its use in calculating the CISP from the ISGE of a bulk material
is pushing the limits of the model approximations. Two requirements for the drift-diffusion
solution in Egs. (6.15), (6.14) are that 1) the gradient of the spin accumulation be smooth over
the spatial discretisation [167], and ii) the length-scale of the spin current evolution be larger
than the discretisation [170, 171]. Since we are investigating a perpendicular spin transport
across—rather than along—the AFM coupled layered Mn sublattices, the gradient of the spin
accumulation varies sharply with each spatial step. Since we are interested in modelling the
CISP from the ISGE caused by the Au-Mn interface, the spin current must naturally evolve
to the steady-state over a single interatomic distance (= 2.6A). In order to stabilise the spin
current across the AFM layered sublattices, we solve the spin current diffusion using the two
channel model (where by symmetry in the DoS in Fig. 6.7 m2 = —m?2). Thus, the gradient

along the z axis is able to vary gradually for each separate spin current propagating along +z,
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respectively. The final spin current leading to the spin accumulation exerting a torque is the
difference of the up/down channels.

For the short length-scale of the CISP, it is necessary to approximate the diffusion between
the Au and Mn layers using a large volume. Since the height between the layers is so narrow,
this requires a commensurately large surface area. In the zero temperature limit and with no
spin current propagating along the y axis, we can normalise the spin accumulation by volume
to remove this dependence. The solution to Eq. (6.17) likewise requires a steady-state solution
(dm/dt = 0 in the time-scale of the atomic moment precession). As discussed above, the
broadening parameter I" used to calculate the susceptibility tensors in Eq. (6.3) can correspond
to the non-equilibrium lifetime of the carrier particle’s excited state, and for low broadening can
be on the order of 10s fs. Since the time-scale of the magnetisation dynamics are on the order
of 100s fs-10 ps, we hold the evolution of the CISP are entirely driven by the magnetisation,
with no time solution. It is unclear if allowing the CISP lifetimes to interact on the time-
scale of the varying magnetisation will produce new symmetry features, but a comprehensive
time-dependent DFT analysis beyond the approximate model used here would certainly be
required.

The advantage of incorporating the CISP in this way is the ability to self-consistently
calculate the resulting spin accumulation torque from spin currents with varying symmetries,
either in the case of a DW (as simulated below), or a combined in-plane charge current and out-
of-plane spin injected current (for future research). The later is of interest for heterostructure
experiments using heli-domain Mn, Au/Pt bilayers [172].

The constants in the +-z column of Table 6.1 have been empirically adjusted such that the
spin accumulation induced field when E || £ matches the estimated field torkance in [163, 20]
and CISP symmetry in [12] (shown in Fig. 6.3). The empirical values do, however, match
experimental trends well. Measurements using MnyAu as a source for spin polarised current
injection into a FM calculate a large Ogy = 0.22 [15], compared with the ®;s5gg = —0.16 (the
sign of the conversion angle can change depending on symmetry convention). The sd exchange
parameter for the out-of-plane direction has been increased, reflecting the stronger torque for

s band spins moving out of plane. Likewise the spin flip length is much decreased compared
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to in-plane. The diffusion constant D and the spin diffusion constant 3/, however, represent
non-physical values. This is necessary to enhance the spin current. The following table details

the used constants:

Direction +x +z Unit
B 0.23 0.23 -
B’ 0.56 3.65 -

Dy 0.001 0.007 m?3/s
Jo 0.05 0.3 eV

Ast 3.6 09615 nm

y, 1 — -

| 1 — —
OrsGE — -0.16 —

Table 6.1 Drift-Diffusion constants.

To compare between the traditional model of including the intrinsic SOT as a field-like
torque into the LLG Eq., we generate 90 degree switching (Fig. 6.10) and DW driving data
(Fig. 6.12) for a staggered SO field Hy, || §. To better match the higher order ¢ dependence of

the CISP, we involve an asymmetry factor to the Hy, of the form:

1
CIHIS (2% (2xE))P

HY™ = H (6.18)

Eq. (6.18) corresponds to the blue line in Fig. 6.9. [ = 0.80 is a constant from the
best fit to the red curve in Fig. 6.9. This asymmetry factor is of a higher order correction
to the traditional STT asymmetry factor used in [173]. Additionally, the asymmetry factor
mimics the reduced net torque generated from the induced field’s varying X and Z component
(see Fig. 6.9). According to Eqgs. (6.4) and (6.6), at ¢ = m/4 the CISP produces a field
Hsmlp—pija/Jsa = (0.5sin27/4,1.440.8 sin? 7w /4, —0.14cos/4)T. Compared to a Hy, || §

with equivalent field magnitude |H,| = |Hgm|, the effective torque decreases by a factor of
0.603, by numerical calculation. For the asymmetric torque in Eq. (6.18), the effective torque
decreases by a factor of 0.563. This approximation is confirmed in the switching phase diagrams

in Fig. 6.10, where the critical switching field H is scaled by A = 1/0.603.



112 Spin Transport Model of the Intrinsic SOT in Mn;Au

@
S

270

N
@

N
=3

(gW/V 1,01 X) Wwaund

180

N
i

70 70

Herip (7=00) —— H,
AHgrt (T=00) = = - AHgit (T=0) = = =
60 60

Hgo (MT)
N
N

orit (T%) ——

n
o
(soaubap) Buiyoums

3

50 50

>

40 40
05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5
Pulse time (ps) Pulse time (ps) Pulse time (ps)

Fig. 6.10 Switching phase diagram for SOT as function of field and pulse duration. Lines
correspond to the analytic solution described in [27]. a) field-like SOT. b) field-like SOT with
24 order asymmetry factor in Eq. (6.18). ¢) SOT from spin accumulation model.

6.4 Results

6.4.1 Switching

The spin injection from the atomic Au layers into each Mn sublayer causes a shift in the
spin accumulation away from equilibrium. The normalised polarisation of the resultant spin
accumulation §m; /me. = (m} —m;) /m.. is compared to the ab initio calculations from Zelezny
et al. [12]. To avoid ab initio differences in methodology in regards to atomic-sized magnetic
moment spin currents and torque, we find it is more reasonable to compare between the direction
and magnitude of the induced field, rather than the non-equilibrium spin accumulation. The
magnitude of the induced spin accumulation differs widely from the tight-binding model, but
the effective induced field from the non-equilibrium spin polarisation is comparable due to a
difference in the used s — d exchange value. We use a J,; constant on the order of the Mn-Mn
ferromagnetic exchange (0.5 meV), rather than Zelezny et al.’s 1 eV. Due to a larger magnitude
of spin accumulation from our model, both constants produce a staggered field near 2 mT per
107 A/cm?, in line with recent experimental measurements in [20].

We construct phase diagrams for Hy, || § with and without the asymmetry factor in Eq.
(6.18). The asymmetry weakens the total torque experienced during the switching but does not

significantly change the coth(z,) relationship between field and pulse duration. As mentioned
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Fig. 6.11 Time dynamics for field-like SOT and CISP SOT for sublattice magnetisation
mg = (m; +my)/2 and Néel vector Ly = (L — L) /2 for a) field-like SOT with asymmetry
factor and Hy, || § = 0.82 mT and b) CISP j, = 24 x 10" A/m?. Pulse duration 2 ps. m, and L,
scaled by factor 100x for visibility.

above, the phase diagrams for the SOT mechanism using the spin accumulation model increase
the critical switching field by a factor of 1.66, calculated from the reduced effective torque due
to a weaker magnitude induced field, as well as a field no longer aligned || . The introduction
of the 2" order asymmetry factor cannot reproduce the changing field direction, but does
reproduce the reduced effective torque.

Fig. 6.11 shows the time dynamic sublattice magnetisation and Néel vector for a 2 ps pulse
for the asymmetric field-like H,, and the CISP model. Both cases display nearly identical
switching dynamics, with both switching on the picosecond scale for induced fields moderately
above H,,;;. The CISP switching, however, displays an additional resonance pattern in the z

components due to the dm, induced field component represented in Eq. (6.6), though it is quite
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Fig. 6.12 DW steady state velocities for driving field from field-like SOT with asymmetry
factor from Eq. (6.18) (blue) and CISP (gold, orange). The second y axis shows the
corresponding charge current for the CISP simulations. The line shows the analytic expression
for expected DW velocity for Gilbert damping 0.001 under field-like SOT, where H;,. . is the
SOT field at the DW centre. (Gold): velocity vs. field relationship for the Heysp || § on the
boundary domains. (Orange): velocity vs. field relationship for the Heysp || § on the DW centre.
(Brown): data for comparison of a 180° DW under field-like H*° from [17].

minimal (scaled 100x for visibility). For the field-like torque not containing the asymmetry
factor in Eq. (6.18), the dynamics are identical to a), however with a field reduced by 1/ to
match the effective torque. Thus, for most switching simulations the inclusion of Eq. (6.18) is
enough to reproduce the effective torque from the CISP calculated using the ZLF drift-diffusion

model.

6.4.2 Domain Wall Driving

In the section above, the CISP calculated from the ZLF drift-diffusion model of spin accumulation
showed no significant effect on the switching dynamics, once the proper asymmetry factors
were taken into account to reduce the effective torque. More significant differences emerge for

DW driving.
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Fig. 6.12 shows the results for DW steady state velocity under field-like SOT and CISP. For
comparison, we also include data from [17] driving 180° DWs using a field-like SOT which
follows the analytic relationship in Eq. (6.12) with a reduced field #*° = yAoH*°. The results
from the CISP driving agree well with the field-like SOT in the linear regime, diverging at
larger driving currents. The saturation velocity for the CISP is likewise larger than the field-like
SOT, which in turn is larger than the calculated magnon limit for Mn,Au (see Chapter 4). This
occurs from the non-zero torque on the boundary conditions perturbing the pure soliton solution
of the DW, giving v297 = 47.89 km/s from numerical fitting to Eq. (6.12). The CISP results
show a further increase in the saturation velocity of v¢/5F = 49.62 km/s, owing to the small
contribution from the in-plane STT on the DW. Simulations of DW driving calculating only the
effect of the in-plane STT show an order of magnitude reduction in driving efficiency due to
the asymmetric nature of the torque on the DW, in line with other STT calculations in [174].

Comparing the adjusted DW width with the velocity in Fig. 6.13 shows good agreement to
the analytic description in Eq. (6.11) for the field-like SOT. Simulations with only the in-plane
STT contribution display instead a slight broadening of the DW: another consequence of the
non-adiabatic nature of the STT. This effect may help to explain why the DW width from the
CISP simulations diverges from the analytic description for high current values: rather than
emit the excess energy in the form of spin waves or nucleate additional DW textures as was the
case of the LOT driving in Chapter 4, the DW generates instead excess spin currents which act
on the wall non-adiabatically.

The DW exceeding the analytic magnon velocity calculated in Chapter 4 is not an unexpected
result: the saturation velocity holds only for a perfect soliton solution driven only by compensated
torques. Indeed, any solution at finite temperature (as in Chapter 5) will also be an approximation

to the saturation velocity.

6.4.3 Spin Accumulation

The ZLF drift-diffusion model allows for direct calculation of the spin current torque on the
DW without relying on analytic approximations, such as in Eq. (6.7). More importantly, it

reveals how the DW torques the spin current. To begin, we first compare between simulations
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Fig. 6.13 DW width vs. steady state velocity for field-like SOT (blue), CISP (gold), and
STT-only (orange). The analytic expression is from Eq. (6.11) using v,, = 47.89 km/s fit in
from Eq. (6.12).

containing the additional dephasing length term A, introduced from strong spin-orbit coupling
(e.g. when {’ >> 1) to minimal spin-orbit coupling ({ = 1). Qualitatively, this can be related
to the ratio of the Larmor precession frequency @y, (intrinsic to the electron band) and the
transverse precession frequency @, (loosely scaling with the strength of the magnetisation and
spin-orbit coupling) [166]. In the context of Eq. (6.16), strong spin-orbit coupling (or a short
frequency) leads to a large amount of transverse precession in the equation of motion. For the
dephasing length 44 in Eq. (6.17), @ = @, gives Ay = A;. This has the effect of increasing
the out-of-plane component of spin accumulation through the DW (orange line in Fig. 6.14).
We extend this comparison for the spin current propagating along x (J3, Fig. 6.15a) and
along z (J%, Fig. 6.15b). The impact of dephasing shown in Fig. 6.14 is small for m_, but in Fig.
6.15 the effect on the spin current is larger in magnitude, on the order of 100% increase for J7.

This effect could increase for materials with a larger Ay than the Ay ~ A; constants used here.
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6.5 Summary

The sublattice resolved model shows the effect of the CISP on the spin currents propagating
along x and z. For the J* propagation, J; and J§ are equal and opposite. J7, surprisingly, follows
the same sign for both sublattices. This is due to opposite rotations of the spin accumulation
from each sublattice through the DW. Surprisingly, this contribution occurs from the adiabatic
torque on the spin accumulation, rather than the non-adiabatic torque, even though the non-
adiabatic contribution to DW motion has been shown to be the driving factor [175]. The actual
out-of-plane rotation is caused by the (m x S)/A? term in Eq. (6.17). While Fig. 6.15 shows
dephasing increasing the magnitude of the out of plane spin current, this is from an increase
in the volume of spin current moving non-adiabatically past the centre of the DW. Thus, this
out of plane spin current is not an effect of DW driving, but rather passing a spin polarised
current through the DW. This is also seen through the out of plane contribution from the CISP
being smaller in magnitude than the STT contribution, meaning this effect could be accessed in
magnetic materials without intrinsic SOT or ISGE.

The out-of-plane contribution from the CISP contribution is opposite the sign of the STT
contribution, though the magnitude and direction of propagation are different. The J: term
is scaled 100x in Fig. 6.15b, compared to 10x in a. The physical impact of the direction of
propagation for a spin current at an interface is a matter of ongoing debate, as multiple factors
are now involved regarding the spin mixing, boundary reflection, and spin conductance of the
new layer [176]. Regardless, future improvements to this model would allow such simulations,
as well as other interface effects such as tunneling magneto-resistance (TMR) with insulators.
Mn;Au is an especially promising AFM in this regard, with an unusually high TMR proposed
by ab initio calculations [67, 177, 178]. With recent experiments showing THz emission
from ultrafast charge currents following laser excitation [79], Mny Au multilayer, multidomain
structures could be a promising candidate for neuromorphic and reservoir computing devices.

Tracking the spin accumulation across the DW allows for calculation of potential spin
injection sources from MnyAu, rather than into it, as is common with AFMs. This has

direct implications for AFM multilayer structures used in memory, resevoir computing, and
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neuromorphic computing. Rather than have the AFM inject isotropic spin currents based on
a single domain structure, a DW structure injects a time-varying and spatially varying spin
injection, allowing for more sophisticated devices. At the current model stage, more work is
needed to asses the spin injection from spin accumulation and spin currents passing through the
multilayer interface, as the effects will be highly material dependent. At the moment, however,
the model reveals the potential for AFM DWs to introduce additional control features for spin
injection. This could also be the case even for AFMs without the intrinsic SHE or ISGE, as an

injected spin current passing through the DW will experience the local adiabatic torque as well.
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Appendix

Here we detail the full solution of m in the ZLF EoM Eq. 6.17. Firstly, consider the magnetic
multilayer system as shown in Fig. 6.1. The charge current is injected along the x direction
causing the spin current to flow perpendicularly along y and z across the planes of the layers.
Based on the two-channel model, the density of the spin current is determined by the density of
the current induced by the electric field and the density of the propagation current arising from

changes in the spin-up and spin-down populations n with the following relationships:

i = o'E—D'eva'

ji = o'E—D'evn!

jo = j'"+j*=0E—-DVn—pB'DVm

js = j'—j'=BoE+656e6( — B'DVn—DVm (6.19)

The charge current and spin accumulation vector are assumed to polarize along the direction
of the magnetization vector M according to the relation j. = j.M and the direction of the SOC
vector defined as § = (Z x E) = e,. Therefore, the magnetization current or spin current (jy)
can be written in terms of the modulus of the electrical current (j,) and the spin accumulation
(m) as,

js = ﬁjeM + 6[SGE]'eey — 2Dy [Am - ﬁﬁ/M (M : Am)] (6.20)

where M is the normalised magnetisation of the free layer. Oisgg is the inverse spin Galvanic
effect coefficient—determining the in-plane charge current conversion to out-of-plane spin
current. The spin polarisation parameter 3 for the conductivity is defined as 6 = foyM and 8’
is the spin polarisation for the diffusion constant defined as D = 8’DyM. Coefficients oy and

Dy are 6/2 and D/2, respectively.
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In the system of MnjAu, the charge current is injected into the x direction and the spin
current arising from the spin-hall effect flows in the z direction. Without loss of generality, the
spin current induced by the SOC can be determined as flowing along the 7 axis, allowing a
separation of variables for the gradient of spin accumulation in Eq. (6.20) to be along £ and Z,
with the spin current and spin accumulation in the y plane symmetric in our system exchange
limit. The following details the solution process for the spin current propagating along Z, with
the solution for the X propagating current equivalent but for the differentiation along £ in Eq.
(6.21).

For the current propagating along Z, the current is assumed to be a spin only current, i.e., no
charge current. This sets the 8 j.M component to zero. It will be included in these equations,
however, as reference for the solution propagating along x. Thus, solving for the spin current
propagating along Z simplifies Eq. (6.20) to:

0 0
.]§ = ﬁjeM+ GISGEjeey - 2DO {ai;l — ﬁﬁ/M (M %)} (6.21)

The motion of the spin accumulation is described via the s-d exchange interaction between
the spin accumulation and the local magnetisation, H;,; = —Jm- M. The equation of motion of

the spin accumulation can be expressed as:

d—m+(1/ﬁ)me+(J/ﬁ)&M><(me):—E (6.22)
dr | Tsf

where m is the spin accumulation, M is the unit vector for the local magnetisation of the
magnetic layer, J is the exchange energy between the electron spin and the local magnetisation,
h is the reduced Planck constant, @y and @, are the electron Larmor precession and transverse
precession length, respectively, and 7,s is the spin-flip relaxation time of the conduction
electrons.

The stationary solution of the spin accumulation (m) decomposed into longitudinal and
transverse components with respect to magnetization direction can be determined under the
assumption that the relaxation time (7;s) is much shorter than the timescale of magnetization

changes. To determine the components of the spin accumulation, we replace ii—‘;‘ in Eq. (6.22)
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by 5° a aJ‘ (removing the z notation from j, for readability) leading to
om 9 (ipimxM— (J/h) M x (mx M) — 2 (6.23)
ar 8z T f' '

Then we consider the value of %—j; to replace in the above equation as

R )

Subsequently, we obtain:

2 2
1 dm J°m 6m> m mxM Mx(mxM) 6.24)

A A (U B E R

where Asr = \/2DoTsr, Ay = /20Dy /J, and Ay = \/2hDowr /@ J.

Stationary solution of spin accumulation

The spin accumulation is time and position dependent. However, because the timescale of
the magnetisation changes is much slower than changes in spin accumulation (attosecond
precession frequency vs picosecond frequency), the stationary solution of spin accumulation
can be obtained with the assumption that the local magnetization is fixed and by setting

dm/dt = 0. This gives:

2 2
_8m (MBm) m mxM Mx(mxM) 6.25)

92 ) AL A A3

The solution of the spin accumulation can be separated into two parts: longitudinal (m)
and transverse (m | ) modes which are parallel and perpendicular to the direction of the local
magnetization. The transformation matrix is used here to rotate the magnetization in arbitrary

direction to the basis coordinate system.
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Fig. 6.16 Spin accumulation in the changed basis for (left) magnetization in the global
coordinate system, and (right) in the rotated basis system.

The solution of spin accumulation is directly represented by the basis of its transverse
and longitudinal modes, with the basis of the spin accumulation demonstrated relative to the
magnetisation in the Cartesian coordinate in Fig. 6.16. To solve the coefficients, the spin system
is discretised into microcells along Z and X (for the spin current propagating along x). The
separation of variables is assumed to be orthogonal, and solved using an alternating direction
scheme [168]. This gives a microcell size of 10 X d X 0.14A3, where d is the y depth of the
atomic lattice due to uniform spin accumulation. In its basis, the spin accumulation solution for

the ODE in Eq. (6.25) using arbitrary boundaries is:

my () = [ m(ee) 4 [my(0) —my (e0)] =3/ |
m;(z) = 2e”‘1‘sz[ucos(k26z)—vsin(kzéz)][f2

m, 3(z) = 27192 [usin(ky8z) + veos (k2 8z2)] bs, (6.26)

with (k; £ iky) = /A, £iA; % and 8z the microcell height.

The coefficients m(0), u and v are constants which can be determined from the interface

condition by continuity of spin current (where the solution for j; would utilise the microcell

width 8x):
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m, (0)+im, 30) "t iv
2

m, ,(0)—im,3(0) "y iv
5 -

Spin current at the interface

The spin current at the interface between the layers (z = 0) is as follows

jme(0) = BjeMy = 2Do(BB'M; ~1) angz(o) +2Do ' MMy 8n32(0) +2Do B’MxMz—a”"aZZ(())

Jmy(0) — B jeMy — OjsGe jeey = 2DofB'M M, ”;Z( )+2D0(ﬁﬁlMy2_l) HSZ( )+2D0ﬁﬁ/MyMz H;Zz( :
dm,(0 d 0 0 0

jmz(0) = BjeM: = 2DoBB'M:M; n;; ) 2D0p MM, n;yz( >+zDO(Bﬁ’M§—1)—n§Z< )

For this case, the charge current injected perpendicular to the plane is zero. The incoming
spin current at z = 0 is js(0) = j.6isgee,. Then one finds the first derivative of the spin
accumulation with respect to the distance at z = 0 in the matrix form as below. It is expressed
in terms of the transport parameters of the layer and the incoming spin current j,,(0) from the

previous layer:

-1

IO\ {opg(BE/ME—~1)  2DoBB'MM,  2DoP MM, jmx(0)

om, o .

—éz(0> = | 2DoBB'M:M, 2Do(BB'M2—1)  2DofB'M,M, Jmy(0)| (6.27)
et 2DBP'MM.  2DoBBMM.  2Do(BEME—1)| | jme(0)

Next, we need to consider %—’Z‘ in the global coordinate system from the spin accumulation

in the basis coordinate system.

Spin accumulation at the interface

The final step is to use the derivatives of m using the interface conditions in Eq. (6.27) to

evaluate the constants 2 (0), u and v which completely determine the solution for m. The
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solution of spin accumulation Eq. (6.26) in the basis coordinate system, by, b, and b3 can be

rewritten to present in the global coordinate system:

my(2)€ +my(z)€y+m ()€, = m (z

= m Z blxéx+b1yéy+blzéz]

Determine the first derivative of the spin accumulation with respect to the distance z,

Imi(z) . Imy(z) Im; 5(z) om, 3(z)
dmy(z) om|(z) om »(z) om, 3(z)
dz = by 0z b2y 0z sy 0z
Imy(z) . Im(z) dm 5(z) dm 3(z)
9z = by, 9z + by, 9z + b3, Ep
where the derivative takes the form:
Imy(x) _ [my(=) —myO)] .,
aZ Asdl
Imy(z) G2 1, ] Gs /1
aZ l+ l,
dmi3(@) [ Gy Gy g
8—Z = —1 |:—Z€ + lTe :| .
At the interface (z = 0), one obtains
Im(0)  _ [my (o) —my(0)]
aZ Asdl
Ima(0) _ {@ +@] — kyu—2kv
81 l+ [
Imis0) [—@ + Gﬂ — 2kyu— 2kyv
aZ l+ [_

b+ mJ_,Z(Z)BZ +m 3 (2)53

)

1(2)
+ m | 2(z) [boy + Doy, + bcé,]
+ 1.3(

’

(6.28)

(6.29)
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which is substituted into Eq. (6.28). Subsequently one has the following matrix form:

angz(()) ( ) bix —i]:;l (—2b2xk1 —l—2b3xk2) (—szxk2—2b3xk1) mH(O)
ny oo ’
3mayz(0) = )|L|«dl 1y + —;l:;l (—szyk1+2b3yk2) (—szykz—Zbg,ykl) u
s :
D) biz| |75 (=2baki+2bscks) (=2baky —2bscki) | | v
Consequently,
—1
by om,(0 byym (°°)
my (0) — 3 (=2baki +2b3,ks)  (—2backs —2b3.ki) 7o) 2 i
— biy Amy(0)  biymy (o)
u | = |2 (—2bayki +2b3yky)  (—2bayky — 2bayky) 7l _ bxs'dé |
b Z 0 7 0 b z e
v — 75 (2boki +2b3cks)  (—2backs —2b3cky) i D
(6.30)

For simplicity, the coefficients b;; in Eq. (6.32) above can be restricted to the in-plane

magnetisation enforced by the strong easy-plane anisotropy of Mn,Au:

M, M, 0
bi] = |-M, M, 0 (6.31)
0 0 1

This is then substituted into the matrix form in Eq. (6.32):

M, om,(0)  Mum)(e)
m| (0) v 2M.ky 2My k> 9 N T
i | = o oMk oMk | |20 M) (6:32)
v 0 2%k -2k 9me(0)

Finally, the unknown coefficients m(0), u and v can be calculated by substituting the first
am(0)

derivative of the spin accumulation at interface, —5r > as equation (6.27) into equation (6.32).
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Sophisticated spintronic control of magnetic materials is a required foundation for ultrafast
memory, reservoir and neuromorphic computing, and very-low energy data storage mediums.
AFMs currently provide the best platform for these applications, at least in terms of theoretical
performance. Actual control methods for multilayer AFM spintronic devices remain too coarse
than the level necessary for widescale device implementation. Advancing simulation tools
in order to provide accurate, high-throughput modelling and analysis of complex multilayer
structures is a serious focus for the computational magnetism community. At the same time,
advances in sensors and first principles calculations have discovered physical phenomena
outside the bounds of bulk materials modelling. This thesis focused on applying some of these
novel physical control methods to traditional ASDs simulations in the AFM MnjAu, in both
isolated and combined forms, in order to demonstrate opportunities to control AFMs using novel
methods. MnjyAu is one of the most promising spintronic materials, but experimental studies
have shown the difficulties of robust magnetic control using traditional spintronic mechanisms.
Mn, Au is an ideal material for ADSs simulations, operating as collinear, ferromagnetic, metallic
sublattices with antiparallel exchange coupling. This allows minimal model approximations
while maintaining large-scale simulation performance. This conclusion will summarise the key
results for spintronic control in Mny Au and expand on future work to be applied to additional

AFM materials.



128 Conclusions

7.0.1 All optical switching

Chapter 3 focused on the introduction and application of a novel first principles laser torque
operating at optical frequencies to single domain switching. The unusual nature of this torque
allows for ultrafast laser control of the AFM order without applied field, current, THz lasers, or
circularly polarised light. Such all-optical control methods have previously been demonstrated
only for ferrimagnetic systems, but only for toggle (i.e., non-deterministic) switching. The
LOT in Mn;Au can be applied in such a way as to create preferential torque patterns for the
AFM order, allowing sequential pulses to deterministically change the magnetic structure
regardless of the initial state. Simulations involving temperature effects of the laser-heating on
the magnetisation confirm this result is not thermally-driven as it is for ferrimagnetic switching,
and is robust even up to several hundred degrees above room temperature.

The existence of this novel torque has been known to the ab initio and experimental
community, but only for insulating AFM systems at cryogenic temperatures. The application
of linearly polarised optical frequencies to AFMs which are magnetic at room temperature
has so far rarely been considered in the geometry presented in Chapter 3. Since the ab initio
foundation of this LOT is based on the P7 symmetry of the system, and is not unique to
Mn, Au. Thus, future work will focus on applications of the LOT to additional AFM materials,

as well as further large-scale simulations with multi-grain domain states.

7.0.2 Domain Wall Control

Chapter 4 further applied the novel LOT to magnetic DW textures. DW modelling and control
is crucial for magnetic simulations, not just as a consequence of real-world materials science
but also as a feature. AFM DWs do not exhibit the Walker-breakdown present for FM systems,
allowing DW driving up to the magnon limit. This is often on the order of tens of km/s—tens of
nm/ps for nanoscale devices. This means even um scale devices can manipulate DWs across
the span of the device in nanoseconds, far beyond even the fastest FM DWs. Since AFMs
do not emit stray fields for sensing or control, DWs represent one of the chief opportunities

for encoding magnetic information for AFMs. The novel symmetry of the LOT, different in
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geometry from traditional SOT/STT driving mechanisms, was shown to more efficiently drive
the DW to the magnon limit than SOT fields. The symmetry of the LOT also allows for control
of the DW width without driving by expanding or contracting the system. This is a direct
improvement to current-based mechanisms, which require changes to the current direction in
order to invert the DW propagation.

Chapter 5 extended the modelling of DWs by including temperature effects to the system.
This involved rewriting the Heisenberg spin Hamiltonian from the microspin form found in
the ab initio work of Khmelevskyi [55] and Shick [148]-into a form suitable for atomistic
modelling with temperature. The resultant Hamiltonian was shown to produce macroscale
constants consistent with thermodynamic scaling trends, giving proof of concept for more
advanced multiscale modelling involving ASD simulations. This Hamiltonian was applied to
characterise Mn, Au DW dynamics at elevated temperatures, seeing excellent agreement with
the newly constructed analytic temperature-dependent description of the DW. Excitation of
the DW with the LOT showed increased efficiency over the 0 K results in Chapter 4, further
supporting the use of LOT for ultrafast, low-energy spintronic control.

The future of DW simulations lies in large-scale computations modelling multi-DW
interactions at temperature. This is another foundational area of research for real systems
with multiple domains, and indeed the area of research for reservoir computing. ASD is the
platform of choice for these experiments, as the mechanics of DW collisions beyond the most
trivial cases are analytically opaque, and the micromagnetic platforms cannot handle the severe
changes in magnetisation present for high-energy collisions. On a slightly smaller scale, more
work is needed on the application of the LOT to DWs at elevated temperature in order to expand
and contract the DW. The spin waves excited by the DW spring may be overshadowed by the

thermal excitation of the system, so careful deconvolution must be performed.

7.0.3 Spin Transport

Chapter 6 presented implementation of a more robust ZLF drift-diffusion model for spin
transport. Though results were presented for MnyAu, such a model is applicable to any

magnetic material where simultaneous in-plane and out-of-plane spin transport is of interest.
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The results highlight the differences between SOT and STT switching and DW driving compared
to LOT and pure SOT switching for AFMs. Even though the STT mechanism represents only a
small perturbation to the DW driving with SOT alone, the model allows for direct calculation
of spin polarised currents applied and generated to the DW.

Though future work needs focus on the addition of multilayer interface effects on the spin
currents and boundary spin accumulation, such a model would allow true multiscale simulations
of magnetic heterostructure materials involving multiple spintronic control methods. Already,
the model allows simulation of the control methods applied in Chapters 4 and 5 (namely LOT
on DWs at temperature), with such simulations being the next focus of this project, as well as
simulations of the DW-spring driving on the spin currents.

Modifying the current spin transport model to include interface effects would also allow
reproduction of experiments utilising spin pumping. This is an area of spin excitation outside
the realm of ZLF theory, as the generation of the ultrashort spin current pulses relies on either
phenomenological descriptions of the laser-magnetism-current interaction or time-dependent
Boltzmann transport solutions at the interface, rather than the Cartesian finite-difference method
used in the drift-diffusion model.

Lastly, more work is needed investigating how the LOT generation of spin currents interacts
with interfaces and DWs. The ab initio formalism for the torque mechanism in Chapter 3
calculates only the net torque on the magnetisation from the non-equilibrium charge density.
Further work from the same group later applied the same Kubo linear response formalism behind
the CISP discussed in Chapter 6 to the LOT, calculating the non-equilibrium laser induced spin
polarisation (LISP) response generating the LOT (analogous to the CISP generating the intrinsic
SOT) [83]. For single domain systems or systems without interfaces, the LOT implementation
in Chapter 3 is sufficient. In the context of DWs or interfaces, however, there is ambiguity
behind the effective torque and driving mechanism. This does not undermine the results of
Chapters 4 or 5, but instead presents yet another potential control feature for AFM spintronics

in need of investigation.
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7.0.4 Summary

Overall, this thesis focused on the development and implementation of additional control
features for AFMs into ASD simulations. The chief feature being the implementation and
analysis of a novel all-optical torque mechanism, we present ASD simulations in combination
of this method. Additional supporting changes to the ASD model present in the open-source
software package VAMPIRE, such as the modified spin transport model and improved atomistic
spin Hamiltonian at elevated temperatures, will allow further multiscale calculations for
Mn, Au and other complex AFM materials. Thorough understanding of the constituent parts of
spintronic devices, both in isolation and combination, will pave the way for next-generation,

ultrafast, efficient devices for memory, storage, and computing applications.
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