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Abstract 

Some studies to optimise the turbine blade profile to mitigate or overcome the 

dynamic stall issues that plague Vertical Axis Wind Turbines (VAWTs) have shown 

promise, however, they do not consider how the new optimised dynamic turbine 

blade profile could be replicated in an actual turbine, and typically utilise prescribed 

uninformed deformation profiles for the turbine blade. This thesis uses a novel 

approach by creating a dynamically changing turbine blade profile that alters the 

blade profile’s camber based on azimuthal position, but the profile is derived from 

using a genetic algorithm optimisation process. The core body of work is in 

developing a genetic algorithm to optimise the blade camber magnitude at specific 

positions within the turbine’s rotation, significantly improving overall and 

instantaneous power generation. Three techniques were tested for predicting the 

torque of each candidate camber profile in the GA optimisation process: using XFOIL 

to quickly predict torque at the desired azimuthal positions, using a transient rotating 

VAWT CFD simulation to model real-time blade deformation, and using an Artificial 

Neural Network Surrogate to predict torque based on turbine tip speed ratio, 

windspeed and azimuthal angle be. These three methods were integrated into a 

bespoke genetic algorithm optimiser, to find the optimal turbine blade profiles 

through it’s rotation. The thesis also explores variations in the genetic algorithm’s 

optimisation parameters, such as the number of optimisation positions, bounds of 

camber adjustment, and variations in the aerofoil configurations. All three 

techniques integrated into the GA showed significantly strong improvements in 

turbine power generation and reduced blade loading. The XFOIL GA showed the 

lowest improvement in mean moment at 59.1%, the CFD-In-The-Loop provided an 

uplift of 150% and the ML optimiser had an impressive 164% improvement!  
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1 

1 Introduction 

1.1 Background of Renewable Energy 

With further increasingly ambitious renewable energy targets being set and a rapidly 

approaching hard deadline for climate change reversal, it is more important than 

ever before to improve renewable energy technology. One of the most powerful 

driving factors in renewable energy research is the European Union’s (EU) proactive 

stance on climate change, encouraging environmental concerns to be included in 

other policy areas such as agriculture and transport. Additionally at the 7th EAP, a 

call for a minimum of 20% of the EU budget for 2014-2020 to be devoted to climate 

change mitigation was made [1]. Alongside the EU, the United Nations (UN) have also 

been actively involved in promoting green energy. In late 2015 governing bodies of 

various nations met to discuss goals to combat climate change, discussing the steps 

required by all member nations. These terms were defined in The Paris Agreement 

of early 2016. The Paris Agreement has a collection of important and ambitious goals 

and targets, but also outlines the methods that should be taken to reach those targets. 

Articles 9, 10 and 11 of the 2016 Paris Agreement outlines the importance of helping 

developed countries to establish renewable energy systems. It also states the 

importance of developed countries to continue to utilise a wealth of financial 

resources, enabling innovation to help achieve their long-term goals such as “limiting 

the temperature increase to 1.5°C above pre-industrial levels” [2]. 

One of the fastest growing areas of renewable energy is in wind energy, with 

investments accounting for 63% of all renewable energy within Europe in 2018 [3]. It 

is therefore crucial that these investments are properly utilised, further lowering our 

dependence on fossil fuels. Wind energy is converted to mechanical and often 

electrical energy by devices known as wind turbines. These devices convert the 

kinetic energy of the wind flow into kinetic energy of the turbine rotor. This rotates a 

shaft which is utilised as is required. Historically, windmills could be considered the 

first wind turbines, using the wind energy to turn a mill for grinding wheat into flour 

as early as the 7th century. Whilst these devices are commonly used still today, 
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because of electrical advances, it is more common to attach the shaft to an electrical 

generator. 

One emergent area of research is in the use of Vertical Axis Wind Turbines (VAWTs) 

due to their adaptability to the unsteady and erratic winds of urban environments. 

VAWTs are also able to utilise wind from any direction, unlike the more common 

Horizontal Axis Wind Turbines (HAWTs) which require a yaw adjustment to face into 

the oncoming wind [4]. Regardless of the extensive advantages of VAWTs over 

HAWTs, they are much less well established in industry, likely due to the low power 

production due to their inherent design. Therefore, it is crucial that they are 

thoroughly investigated to bring them to a comparably viable energy generation 

method. 

1.2 Types of Vertical Axis Wind Turbines 

There are two primary types of VAWTs; lift and drag based. The drag-based wind 

turbine is known as the Savonius, invented and patented by the Finnish engineer 

Sigurd Johannes Savonius in 1925. It utilised 2 overlapping vanes curved to create “an 

S-like passage of substantially constant area” [5], as seen in Figure 1-1a. These 

turbines have exceptional self-starting ability but have a drastic performance drop at 

higher tip speed ratios [6]. The primary limiting factor of drag based wind turbines, 

however, is their inability to achieve tip speeds higher than unity, as their tangential 

speed cannot be faster than the windspeed. 

Lift-based VAWTs are often referred to as the Darrieus wind turbine, named after its 

inventor; Darrieus Georges Jean Marie, who filed the patent in late 1925 [7]. Rather 

than using the ’scoop’ type rotor blades of the Savonius, a Darrieus wind turbine 

utilises aerofoils, which create a lift force and, as such, a moment coefficient. This 

moment then produces a torque which is characteristically used to drive a generator. 

A pictorial description of the Darrieus Turbine can be seen in Figure 1-1b. Albeit the 

Darrieus wind turbine was patented in the same year (1931) that the first HAWT we 

are familiar with was built, they are moderately unresearched in comparison. A 

newer adaptation of the Darrieus Turbine is more common in modern usage, which 

uses straight blades similar to an aircraft wing, known as the H-Type VAWT. The H-
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Type quickly grew in popularity due to it’s 20% reduction in cost compared to the 

curved blades of the Darrieus turbine [8], [9].  

Whilst the robustness and versatility of VAWTs is certainly a promising prospect, 

they still fall behind conventional HAWTs in terms of power output and efficiency 

[10]. One of the most active areas of research is therefore on the aerodynamic 

optimisation of Lift Based VAWTs to extend their reach and applicability. 

The current literature on VAWT aerodynamic improvements varies from aerofoil 

shapes and optimisation to the employment of additional devices, providing static 

and active flow control options. This project aims to build upon the latter, active flow 

control through a combination of previously researched devices. By analysing the 

current literature, an understanding of the weaknesses and strengths of current 

technologies can be explored. This knowledge can then be employed in the 

combination and adaption of current technologies, and/or used to develop new 

technologies. 

 

Figure 1-1: (a) Schematic of the Savonious Rotor Patent [5] (b) Schematic of the Darrieus Rotor 
Patent [7]. 
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1.3  Aerodynamic Concepts 

One reason for the extensive research on VAWTs is their complex, unsteady 

aerodynamics. This subsection outlines some of the core concepts that define their 

ability to operate, providing the reader with a fundamental understanding of the 

factors influencing their performance. 

1.3.1 Conventional Aerofoils 

A variety of aerofoils have been developed for different use cases. They are normally 

defined by the maximum thickness and position thereof, maximum camber and 

position thereof, alongside a series of other properties such as design Cl. One 

common feature between all NACA series aerofoils is that their last 2 digits are their 

maximum thickness in percentage chord. 

The four primary types of NACA aerofoil are 4-Series, 5-Series, 1-Series and 6-Series. 

They vary based on different premises, for example the NACA 5-series defines the 

design Cl, NACA 1-series the position of minimum pressure etc. Within lift-based 

VAWTs, the 4-series is the most employed aerofoil profile due to its symmetric profile 

[11]. The general formulae for defining the NACA aerofoil with a sharp trailing edge 

include the thickness distribution 𝑡(𝑥), the mean camber line 𝑦𝑐(𝑥), the camber line 

gradient at x 𝑑𝑦𝑐
𝑑𝑥

, mean camber line angle at x; θ, and finally the x and y coordinates 

for the upper surface (𝑥𝑈̅̅ ̅, 𝑦𝑈̅̅̅̅  ) and the lower surface (𝑥𝐿̅̅ ̅, 𝑦𝐿̅̅ ̅ ). The value for x is given 

for 0→1 (as in percentage along the chord for a unit chord length). The visualisation 

of these lines is seen in Figure 1-2.  

𝑦𝑡(𝑥) =  5𝑡𝑐 [ 0.2969√{𝑥} −  0.1260𝑥 −  0.3516𝑥
2 +  0.2843𝑥3 −  0.1036𝑥4] 1.1 

𝑦𝑐(𝑥) =  

𝑚

𝑝2
(2𝑝 𝑥 − 𝑥2)

𝑚

(1 −  𝑝)2
((1 −  2𝑝) +  2𝑝 𝑥 − 𝑥2)

}  𝑖𝑓 
0 ≤ 𝑥 ≤ 𝑝

𝑝 < 𝑥 ≤ 1
 1.2 
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dyc
dx

  =  

2𝑚

𝑝2
 ( 𝑝  −  𝑥̅ )

2𝑚

(1 − 𝑝)2
(𝑝 − 𝑥̅)

}
 

 

 𝑖𝑓 
0 ≤ 𝑥 ≤ 𝑝

𝑝 < 𝑥 ≤ 1
 1.3 

θ = arctan (
𝑑𝑦𝑐
𝑑𝑥
) 1.4 

𝑥𝑈̅̅̅̅ = 𝑥̅ − 𝑦𝑡 sin𝜃 

𝑦𝑈̅̅̅̅   =  𝑦𝑐   +  𝑦𝑡   cos 𝜃   
1.5 

xL̅̅ ̅  =  x̅  +  𝑦𝑡 sinθ 

𝑦𝐿̅̅ ̅ = 𝑦𝑐 − 𝑦𝑡 cos𝜃 
1.6 

 

 

Figure 1-2: Cambered NACA 4 Series Aerofoil Schematic [12] 

For an uncambered aerofoil, the mean camber line contributions in Equations 1.5 

and 1.6 would be 0, the resulting equations are therefore seen in Equations 1.7 to 1.11. 

𝑦𝑐(𝑥) = 0 1.7 

dyc
dx

= 0 1.8 

θ = arctan (
0

𝑑𝑥
) = arctan(0) = 0 1.9 

𝑥𝑈̅̅̅̅ = 𝑥̅ − 𝑦𝑡 sin𝜃 

𝑦𝑈̅̅̅̅   =  0 +  𝑦𝑡   cos 0 =
𝑦𝑡
𝑐
  

1.10 

xL̅̅ ̅  =  x̅  +  𝑦𝑡   sin θ 1.11 
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𝑦𝐿̅̅ ̅ = 0 − 𝑦𝑡 cos(0) = 𝑦𝑡  1.12 

1.3.2 Lift Generation 

There are a few different ways of explaining how lift is generated. Still, they 

effectively all boil down to the same concept of turning the fluid direction, which 

creates a pressure difference and in turn creates a net force perpendicular to the 

direction of the incoming fluid flow. For the remainder of this explanation, the lifting 

body will be referring specifically to aerofoils, as they are the profiles that are 

extruded to form the blades of a H-Type Darrieus VAWT. Other examples of lifting 

bodies could be as complex as the wing of a fighter jet, as intriguing as a spinning golf 

ball or as simple as a flat plate. 

There are two common groups when it comes to describing the lift generation, those 

that base the description on Bernoulli’s principle and those that base the description 

on Newton’s third law of motion. But there are three common incorrect theories 

about how these principles generate lift.  

First incorrect theory is that a change in velocity of the fluid is often mistakenly 

assumed to be a result of “Equal Transit Theory” [13]. This theory claims that if two 

fluid particles travel parallel towards the lifting body, once they reach the lifting 

body, they will split, where one particle goes over the upper surface and one particle 

travels across the lower surface of the aerofoil. They are then assumed to reach the 

end of the aerofoil at the same time, which means for a cambered aerofoil, the 

particle that travelled across the upper surface has a longer distance to travel, and as 

such must travel faster. This is then fed into Bernoulli’s principle that pressure must 

remain constant, so there is a lower pressure on the top surface than the bottom 

surface, generating a net upwards force. This is clearly incorrect, because this theory 

would suggest that uncambered aerofoils would not be able to produce lift, as the 

upper surface has an identical path length as the lower surfaces. 

𝑃 +
1

2
𝜌𝑉2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1.13 
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The second common incorrect method of describing lift generation is a fallacy called 

“Skipping Stone Theory” [14]. This theory suggests that the incoming flow deflects off 

the suction surface and thus imparts a momentum change on the lifting body. Whilst 

the principle of a change in velocity is true, its origin is misunderstood.  

The third incorrect method is the “Venturi Theory” [15].  This theory suggests that the 

flow velocity accelerates above a cambered aerofoil or symmetric aerofoil at a 

positive angle of attack, as a result of constricting the flow, in the same way that a 

Venturi nozzle does due to conservation of momentum. This relationship is shown 

mathematically in Equation 1.14 

𝑚̇ = 𝑟 ∗ 𝑉 ∗ 𝐴 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1.14 

 This is fed into Bernoulli's principle, which would suggest that the dynamic pressure 

would be higher and so the static pressure is lower above the aerofoil, creating a net 

pressure difference in the upward direction and creating a lifting force. The reason 

why this is inaccurate however is that there is no arbitrary wall above the aerofoil 

that will create the nozzle and accelerate the flow, instead the velocity will slowly 

tend to the free stream velocity as you move away from the aerofoil [15].  

 The accurate description of how lift is a combination of aerodynamic concepts which 

describe how an aerofoil or any other lifting body turns fluid flow. In it’s simplest 

form, the turning effect of the aerofoil can be described using the Joukowski analysis 

method, with the Kutta condition. This theorem, aptly named the Kutta-Joukowski 

Theorem, was derived by the early 20th century aerodynamicists Martin Kutta and 

Nikolai Joukowski. Its premise is that the fluid streamlines are a superposition of 

rotating and translational streamlines, with the camber and α of the aerofoil 

providing the rotating component. The Kutta condition is critical to defining the flow 

as meeting smoothly at the trailing edge rather than recirculating on the upper 

surface, or the absence of a trailing edge separation bubble. In practice this results 

in streamlines that are more densely packed on one surface than the other, resulting 

in different static pressures and as such, a pressure difference creating a net force. 

Figure 1-3 depicts this effect, and it can be clearly seen that downstream of the leading 

edge, there is a larger density of streamlines. The limitations with this theory 
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however are that it is designed for inviscid, irrotational, attached flow, but has been 

seen to be applicable in most operating conditions of aerofoils [16]. 

 

Figure 1-3: Typical Streamlines for Aerofoils at a = 0 [17]. (a) Streamlines of Flow around 
Symmetrical Aerofoil. (b) Streamlines of Flow around Cambered Aerofoil. 

To understand how this turning effect imposes a lift force, consider the aerofoil in 

Figure 1-3(b) with chord 𝑐 and infinite span (effectively equivalent to 2D) moving 

through a fluid of density ρ at a speed of V. The velocity above the aerofoil can be 

defined as V+c and the velocity on the lower side is V 

Combining Bernoulli’s conservation of energy approach and Newton’s conservation 

of mass results in a complex series of equations known as the Euler Equations. Later, 

the Navier-Stokes equations included the concept of viscosity, to aid in modelling the 

boundary layer growth effect on the “shape” of the aerofoil. These equations only 

have analytical solutions in very limited applications and are therefore normally 

“solved” using numerical iterative processes employed in commercial codes. 

Arguably the most important concept in the lift generation is the angle of attack (α), 

defined as “The angle between the free stream and chord line of the aerofoil” [16]. There is 

a well-defined relationship between the lift coefficient (Cl), drag coefficient (Cd) and 

angle of attack (AOA). Typically, the Cl will increase until the stall angle, after which 
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the lift will rapidly decrease until no lift is produced. This can be seen in Figure 1-4. 

 

Figure 1-4: Effects of Angle of Attack on Lift Coefficient for a Cambered Aerofoil [18]. 

It should be noted that the Cl −α curve shown is for a cambered aerofoil, as a 

symmetrical aerofoil does not produce lift at α = 0°.  

The stall phenomenon occurs due to a large separation of the flow on the upper 

(pressure) surface. The separation is not present at low angles of attack, as the 

adverse pressure gradient of the flow near the trailing edge is not sufficient, but as α 

increases, a separation bubble starts creeping towards the leading edge [18].  

Typically, the geometrical factors which have the largest influence on the aerofoil 

performance are the thickness and camber. Thickness does not directly affect the lift 

production of an aerofoil and mainly affects the transition and separation properties 

[19]. Camber however is one of the largest contributors to the lift for several theories.   

1.3.3 VAWT Aerodynamic Theory 

The relative velocity triangles seen in Figure 1-5. are used to derive the proceeding 

equations (1.15 → 1.21), which can be used to calculate the theoretical AoA (α). It is 

important to clarify the difference between the theoretical angle of attack, and the 

true angle of attack. In situ, some of the energy of the flow is extracted in the 

upstream wake, 0 ≤ ϕ ≤ 180, thus reducing the flow’s velocity magnitude and therefore 

reducing the downstream α based on the wake of the upstream stroke. In this 

diagram, 𝑉𝑡 represents the tangential blade velocity, as calculated using Equation 1.15 
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and Equation 1.16, 𝑉∞ represents the freestream velocity, ω is the radial velocity of 

the turbine , r is the turbine radius and ϕ represents the azimuthal angle, taken from 

0° at the top of the turbine rotation. Using simple trigonometry, it is possible to 

calculate the relative blade velocity (𝑉𝑟) as in Equation 1.17 and the theoretical flow 

angle of attack (α), Equation 1.18 as a function of tip speed ratio and azimuthal 

position.  

 

Figure 1-5: Relative flow velocity triangles for a rotating aerofoil and constant inflow velocity 

 

 𝜔 =
𝑇𝑆𝑅 ∗ 𝑉∞

𝑟
 1.15 

 𝑉𝑡 = 𝜔 ∗ 𝑟 1.16 

 𝑉𝑟 = √(𝑉𝑇 + 𝑉∞ cos(𝜙))
2 + (𝑉∞si n(𝜙))

2 1.17 

 𝛼 =
sin(𝜙)

𝑇𝑆𝑅 + cos(𝜙)
  

1.18 

By analysing the lift and drag polars, one can calculate the effective local tangential 

force coefficient, 𝐶𝑡. The tangential force coefficient calculated is generated using 

Equation 1.19, where 𝐶𝑙 represents the blade’s coefficient of lift and 𝐶𝑑 is the blades 

coefficient of drag. 
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 𝐶𝑡 = 𝐶𝑙 sin(𝛼) − 𝐶𝑑 cos(𝑎)  1.19 

 𝑀 = 
√((𝜔 ∙ 𝑅) + 𝑉∞ cos(𝜙))

2 + (𝑉∞sin (𝜙))
2

√𝛾𝑅𝑇
 

1.20 

 𝑅𝑒 =
𝜌 ∙ √((𝜔 ∙ 𝑅) + 𝑉∞ cos(𝜙))

2 + (𝑉∞sin (𝜙))
2 ∙ 𝑐

𝜇
 

1.21 

The Reynolds number and blade angle of attack are proportional to the tip speed ratio 

of the turbine, with lower tip speed ratios having significant portions where the angle 

of attack is significantly greater than the stall angle for most symmetric NACA 

aerofoils. Looking at Figure 1-6, the aerofoil will be clearly stalled in most of the 

turbine rotation for tip speed ratios of 2.29 and 3, and a significant portion at a tip 

speed ratio of 1.5.  

 

Figure 1-6: Angle of attack comparison for multiple tip speed ratios 

As an increase of Reynold’s number also helps delay boundary layer separation  
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Figure 1-7: Reynolds Number Comparison for multiple tip speed ratios with a wind speed of 7 m/s 
and a turbine radius of 0.85m 

1.4 Aims and Objectives 

As a result of the current requirements and environmental demands, straight bladed 

VAWTs will be the scope of this thesis as their adaptability makes them suitable in 

the ever growing urban sprawl throughout the world. 

The primary aims of this thesis is to improve the aerodynamic performance and 

efficiency of the VAWT, to offset their typically asymmetrical power generation, 

through design optimisations of the turbine blade profile. As a result, various 

relevant techniques and methods will be researched in the following sections to 

achieve this. State-of-the-art computational fluid dynamics (CFD) simulations will be 

utilised for the modelling and investigation approach, due to their adaptability and 

substantial cost savings over physical model testing in wind tunnels.  

These aims will be achieved through three different approaches to modelling the 

turbine profile’s performance characteristics; using a high speed panel method 

solver, a complex and thorough transient CFD simulation and finally a CFD surrogate 

AI model to estimate turbine power based on blade profile characteristics and 

operating conditions. These tools will all be fed into a genetic algorithm (GA) 
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optimiser to find the most suitable variant of the blade profile’s camber magnitude at 

pre-specified azimuthal positions in the turbine’s rotation. The primary research 

objectives will therefore be; 

1. Creation and validation of a verified 2D CFD simulation to provide accurate 

and reliable understanding of the turbine flow physics and performance. 

2. Generation of a Genetic Algorithm Optimiser procedure that can be easily 

ported between different turbine simulation tools. 

3. Investigation and implementation of the GA in a publicly available panel 

method solver and understanding of it’s limitations. 

4. Investigation and implementation of the GA in a complex and robust CFD-In-

The-Loop optimisation procedure to consider the transient effects of the 

turbine rotation on the blade profile. 

5. Design, build and training of an artificial neural network (ANN) to act as a CFD 

surrogate including dataset generation, pre and post processing of the data, 

ANN architecture investigation and implementation in the GA as a 

replacement for the panel methods. 
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2 Literature Review 

There are numerous technologies currently being employed in trying to improve the 

performance of the Vertical Axis Wind Turbine. They vary substantially from 

implementing ancillary technology to entirely altering the overall turbine design or 

blade aerofoils. This chapter aims to outline some of these performance improving 

techniques and to critique their strengths and weaknesses. 

Due to the aerodynamics of VAWTs being comparable to that of the wings on aircraft 

or helicopter rotors in certain azimuthal angles, the technology used in the latter is 

often applied to the former. The most crucial comparable aspects are dynamic stall 

[31], [32] as it has been shown to have significant impacts on the performance [33], 

[34], [35] of both VAWTs and helicopter rotors. It is therefore crucial to investigate if 

the techniques implemented to reduce dynamic stall in aircraft wings and helicopter 

rotors are appropriate within the scope of VAWTs. The primary areas of this research 

are aerofoil profile modifications, application of optimisation techniques for VAWT 

blades and machine learning utilisation, which will therefore be the target of the 

literature review.  

2.1 High Lift Devices 

High lift devices have been widely used within the aviation industry for almost a 

century [36], but only marginally in wind turbines, and less so specifically in VAWTs. 

These devices work by creating an effective increase in the camber of the aerofoil, in 

turn altering the circulation of the flow, and as such the strength of the vortex 

generated [37]. Typically, these devices are situated at the trailing or leading edge in 

the form of flaps or slats, respectively. It is worth mentioning that static slats, in that 

their angle of attack cannot be altered and they are more commonly referred to as 

slots.
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Flow controlling devices have an extensive amount of well-established research due 

to the attraction of retrofitting current VAWTs with this technology. This provides the 

opportunity for the performance of existing wind turbines to be increased, without 

complete overhaul of design. They are typically split into 2 subsections: active and 

passive. Active devices are often implemented within a feedback loop to provide 

stability to an aircraft. This allows constant parameter to change without the 

intervention of the user, thus optimising the efficiency. Passive devices however are 

set to a constant value, i.e. deflection angle, and then forgotten. These passive devices 

are sometimes automated, in the sense that their flow conditions actively change 

their workings, but are not controlled by the user. These ’automated’ passive devices 

subtract somewhat from the appeal of using passive flow control devices, due to the 

necessity of maintenance required to maintain their functionality. 

2.1.1 Leading Edge Devices 

Research on slats was first published by F. Handley Page on December 22nd, 1921 

[38]. They found that creating a slotted wing allows for air acceleration in the passage 

between the auxiliary and main aerofoil. This in turn appeared to drastically improve 

the lift scalar, thus reducing the onset of stall whilst simultaneously increasing the 

lift coefficient [38]. Their primary use is during take-off and landing of aircraft but 

have occasionally been considered for VAWTs too. 

Chougule et al. [39] tested the influence of slat angle on VAWTs. They tested a series 

of angles of attack for the slat aerofoil and compared the lift and drag polars with the 

standard design. It was found that the 20° slat angle (β) had not yet initiated stall at 

the maximum testing angle of 24°, and aerodynamic performance quickly started 

deteriorating at β = 25° and greater. To compare the power coefficients of their new 

blade with a commercially available wind turbine, they used the Double Multiple 

Stream Tube Method (DMSTM) numerical analysis method. They maintained the same 

design parameters such as rotor height, diameter etc. but compared the numerical 

simulation of their turbine with experimental results of the commercial turbine. It 

should also be noted that the flow is assumed to be inviscid for the DMSTM model, 

which could have a substantial influence on the power coefficients. The numerical 

simulation suggests a largely different power coefficient, but similar total power 
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output as seen in Figure 2.1, which appears to be contradictory from the expected 

performance due to the different chord lengths used between the DMSTM and 

experimental data. 

Whilst convention is to place the slat such that the flow stream is guided to the 

pressure surface, Scungio et al. [4] examined the influence of placing them on the 

suction side, this can be seen in Figure 2.2. An experimental comparison between a 

standard three bladed wind turbine and their specialised turbine was undertaken. 

The wind tunnel used is a closed-circuit open chamber, with pressure sensors to 

ensure the constant flow velocity accounting for blockage effects. They discovered 

that the use of an optimal slat improved the self-starting ability of the wind turbine 

and more dynamic torque at low wind speeds [4]. 



 

17 

 

Figure 2-1:  Chougule et al. Verification of the DMSTM model [39]. 

 

Figure 2-2: Scungio et al. Auxiliary Blade Layout Compared with Standard Darrieus Turbine [40]. 

  



 

18 

2.1.2 Trailing Edge Devices 

Flaps also have a long history in aviation, first being produced on the Fairey Hamble 

Baby aircraft in 1916 [41]! This flap is now known as a plain flap, in which the flap is 

formed as part of the aerofoil. These are typically not seen as much nowadays due to 

improvements on the design but are still the most fundamentally simple. 

The plain flap has been developed and adapted since it’s conception, with the most 

notable innovations being the Fowler flap, Junkers flap and slotted flap. These 

advanced flaps all have varying characteristics with the aim of altering the 

performance of the core aerofoil. The Fowler flap uses a very complex system of 

hydraulics to extend the flap out of the original aerofoil, thus assisting not only with 

camber and AOA alterations, but also for increasing wing surface area. The Fowler 

flap does not modify the existing aerofoil but rather has an ancillary aerofoil acting 

as the flap. However, these progressive flaps do not mean plain flaps are not suitable 

for use in VAWTs, as their simplicity assists in minimising maintenance costs. 

Additionally, their simplicity allows for cost-effective and easily managed 

implementations. 

The Fowler flap has widespread use in modern aircraft but has not been investigated 

in the use of VAWTs and this is likely due to the structural complexities that would be 

associated. This may be an effective solution to the balance between start-up ability 

and higher power coefficients as a blade optimised for higher tip speed ratios (TSR) 

could still show some self-starting properties. 

Minor research has been performed on the use of Junkers flaps in the form of 

auxiliary blades on the wind turbine. Li et al. [42] studied the effect of various fixing 

angles of a secondary blade for a series of symmetrical NACA aerofoils. A 

commercially available CFD code (ANSYS FLUENT) was used with the Reynolds 

Averaged Navier Stokes (RANS) equations, employing the RNG k-ϵ turbulence model. 

It was found that using an auxiliary blade, with an appropriate thickness and angle 

of attack (AoA), significantly altered the overall static torque and power production 

of the turbine [42]. They also discovered that by setting the flap at a small angle to the 

main blade it further improved the performance. 
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Albeit that the slotted flap is slightly dated in modern aviation, its use in VAWTs has 

previously been explored. Wei and Li [43] briefly investigated the effect of having a 

two-element aerofoil. Unfortunately, their experimentation was not particularly 

thorough, with most of the publications comparing different simulation methods 

such as experimental, XFOIL and CFD. The brief experimentation of the two-element 

model was tested at a 0° and 10° deflection, and\ their comparison was based solely 

on the lift-coefficient. It was noted that the use of the flap altered the angle of attack 

of the blade, resulting in a lower Cl-α curve, and that a proper deflection profile could 

improve the performance. It is important to note that their computational models are 

not optimal either. When using the Spalart-Allmaras model, it is necessary to keep 

the y+ value either less than one or greater than 30, due to its wall functions, whereas 

theirs varies from 0.5 to 9 [44]. Building on from this work, Yang et al. [45] used the 

same theory of utilising a slotted flap, but with an active control system. A two-

dimensional unsteady CFD study was undertaken using dynamic meshes. The datum 

aerofoil was a NACA0012 with a trailing edge slotted flap, which creates room for 

some speculation of the results. Comparing the flapping aerofoil with a flapped 

aerofoil with no deflection on the flap, does not provide the authors the opportunity 

to compare it to the common “single seam” aerofoils. By implementing active control 

on the deflection angle of the flap, the dynamic stall was able to be delayed [45]. The 

active control was a sinusoidal profile, changing the flap angle with respect to 

azimuthal angle. This is represented pictorially in Figure 2.3. Additionally, it was 

found that there was a positive effect on the trailing edge wake and on the amplitude 

of oscillations [45]. In terms of turbine performance, the peak power coefficient was 

increased by 10%, and probably this is due to the minimised flow separation from the 

lower angle of attack. 

Some alternative approaches to the flap have also been undertaken. Liu et al. [46] 

created a movable flap close to the trailing edge, and studied it’s influence on noise 

and aerodynamic performance. They considered the position, length and angle of the 

flap’s effect on performance and noise generation. The numerical method employed 

was the Detached-Eddy Simulation (DES) which is based on the Spalart-Allmaras 

single equation turbulence model and can be treated like the Large Eddy Simulation 
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(LES) in refined enough sections of mesh and Reynolds Averaged Navier Stokes 

(RANS) elsewhere [46]. They had a series of tests with this flap, starting with a series 

of static inflow tests to calculate the aerodynamic polars. This showed that at lower 

angles of attack the flap hinders performance, causing large separation. When 

testing in the scenario of a vertical axis wind turbine however, they found that the 

flap helped to suppress the vortices when an active control was implemented. The 

flap would open between azimuth angles (ϕ) of 90 and 135 and then proceed to close 

at 135° < ϕ < 180°. This resulted in higher torque coefficients at each tested TSR, albeit 

only from 1.2 to 1.5. 
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Figure 2-3: Angle of Attack as a function of the Azimuth Angle, Yang et al. [5]. 
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Gurney Flaps are most commonly known from their presence in motorsports such as 

Formula 1, to assist in increasing their grip [47]. Recently, they have also been shown 

to be adaptable to VAWTs. Bianchini et al. [48] tested this theory using 2D unsteady 

CFD simulations in both static and rotating domains. Three initial static test cases 

were made for aerodynamic polar calculation; a flap on the pressure side, suction 

side and on both sides and compare against a baseline aerofoil. A sensitivity analysis 

on the flap height was also undertaken at 3% chord length (𝑐̅) and 4%𝑐̅ against the 

baseline 2%𝑐̅. Finally, the optimised flap was implemented on a three bladed vertical 

axis wind turbine through a rotational domain. The SST k-ω turbulence model with 

enhanced wall treatment was used alongside an unsteady RANS method, with the 

Coupled pressure-density algorithm. The 2%c on the inner side of the aerofoil created 

a 23.1% increase in the power coefficient at a TSR=3.3 [48]. This comparison can be 

seen in Figure 2.4. When the 3%c analysis was undertaken, it is seen that the use of 

an inner flap improves the pressure coefficient at TSR < 2.7 before the baseline 

aerofoil starts to perform better. This can be seen in Figure 2.5. Zhu et al. [49] also 

researched Gurney Flaps on wind turbines, but considered the effect of solidity, 

rather than one base turbine, alongside both conventional and dimple Gurney flaps. 

It was noted that increasing the solidity improved the power coefficient (𝐶𝑝) at lower 

TSR but also reduced the peak TSR alongside the performance at higher TSR. This 

was seen in both the turbine with and without dimples, but only an outboard Gurney 

flap. The Transition SST model was used due to its accuracy in relation to the 

experimental data, but requires a very fine boundary mesh. This was well 

implemented and as such, the results can be considered reliable. Increasing solidity 

improves Cp at low TSR but reduces peak TSR and performance at higher TSR.
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Figure 2-4 Pressure Coefficient as a function of TSR for 2%c Flap [48] 

 

Figure 2-5: Pressure Coefficient as a function of TSR for 3%c Flap [48] 
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2.2 Turbine Blade Modification 

Auxiliary devices are not the only techniques that have been explored in an attempt 

of improving turbine performance. There has been a vast array of alternative 

aerofoils, some of which are drastic and some minor changes. 

2.2.1 Flow Manipulation Techniques 

A promising research avenue is in the use of jets to help delay flow separation at lower 

tip speed ratios, but it must be remembered that there is a certain amount of power 

draw that will be taken from the pumping devices. Rezaeiha et al. [50] recently 

investigated this by implementing a suction slot on the inner surface of a NACA0018 

wind turbine with a solidity of 0.06. Their study was numerically simulated using 

ANSYS Fluent with a well defined mesh (y+,max < 1) using the Transition SST 

turbulence model within an incompressible URANS approach. The slot had a velocity 

inlet boundary condition of -6.23m/s. The suction scenario greatly increased the 

overall power coefficient, due to the improved lift to drag coefficient ratio. Sensitivity 

analysis was also undertaken to determine if the slot’s inlet velocity, position and 

Reynolds number of the flow. Whilst the velocity magnitude did not seem to affect 

the moment coefficient much from 0.5% freestream velocity (U∞) to 10% of U∞, the 

different positions and Reynolds number drastically altered the performance of the 

turbine. The effect of the position is more prominent at lower TSR and tends to 

converge as TSR increases. Figure 2-6 shows the positions to help give perspective to 

Figure 2-7 which displays the effect of changing the position at a TSR of 2.5. For the 

given wind turbine a sizeable improvement is seen, particularly at low TSR. If the 

power required for the pump is taken into consideration and assumed to have a 

constant flow rate, that is to ignore any pressure differences on the inner surface, a 

net power gain for the TSR of 2.5, 3 and 3.5 was 219.6%, 74.3% and 19.6% respectively
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Figure 2-6: - Suction Slots Locations [50] 

 

Figure 2-7: Suction Slots Performance [50] 

 

Figure 2-8: Depiction of flow jet domain for a) NACA0015, b) generic CFJ-NACA0015 and c) CFJ-
NACA0015 for VAWT application [51]. 
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A similar concept was researched by Sun et al. [51] known as a co-flow jet. Rather 

than sucking from the suction side of the aerofoil, the flow is siphoned form near the 

trailing edge of the pressure side and injected near the leading edge of the pressure 

side as seen in Figure 2.8. They performed a comparison between the different 

turbulence models to decide on the most appropriate, whilst ensuring appropriate y+ 

values were created in the mesh for each. The SST k − ω model was selected as it best 

matched the experimental data. To ensure mass continuity the two jet sections were 

set as velocity inlets with the same magnitude but different sign. It greatly improved 

the low TSR performance of the turbine by 170%, 120% and 17% at TSR of 0.8, 1 and 

1.25 respectively. This was particularly prevalent when using their intermittent 

method. The intermittent method simply alternates the co-flow jet between the inner 

and outer blade surface dependant on azimuthal position.
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2.2.2 Aerofoil Profile 

Arguably the most important areas of research within the scope of VAWTs is that of 

the aerofoil profile itself. This can include using asymmetrical aerofoils, increasing 

camber, modifying specific sections etc. 

Song et al. [52] investigated the influence of altering the leading-edge radius of a 

standard aerofoil within the industry, a NACA0015. An unsteady, two dimensional 

CFD approach was undertaken using the Realisable k − ϵ with the SIMPLE pressure 

scheme. Whilst the y+ value is 6.2 for the selected mesh, it might still be able to 

resolve the viscous sub layer due to the higher Reynolds number [44]. It seems that 

by increasing the leading-edge radius, it tends to slightly increase the power 

coefficient up until 6%c, whereafter, it quickly reduces in performance. For 3%c to 

7%c the performance is marginally better than the conventional NACA0015, but 1%, 

1.5%, 2%, 8% and 9% all appeared to have worsened performance. This can be seen 

in Figure 2.9. 

Wang and Zhuang [53] tested if dynamic separation could be minimised or limited by 

adding sinusoidal serrations on the leading edge. Star-CCM+, a commercial CFD 

software, was used for modelling the flow and numerical simulation. A thorough 

mesh dependence study was undertaken to validate the reliability of the numerical 

simulation and to build confidence in the results it output. This found that the 

Realisable k − ϵ model used under predicted the vortex shedding of the shafts and 

turbine blades at some azimuth angle, but was otherwise satisfactorily [53]. The 

discretisation process resulted in y+ values along the blade profile of mostly 30-50, so 

the all y+ wall treatment was used. First a series of fixed wavelength, increasing 

amplitude serrations were compared with the base profile. The reduced amplitude 

designs improved the Cp, with the smallest amplitude (0.025c) having a consistently 

better Cp for all TSR. The 0.025c design was then tested with different wavelengths 

and the smallest (0.33c) wavelength had the most improved overall performance, 

with a 18.7% improvement on CP at a TSR of 2.  
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Figure 2-9: Leading Edge Radius Power Coefficient [53]. 

Whilst altering existing commonly used aerofoils develops an understanding of what 

improving the established norm does, investigating alternative aerofoils is another 

promising approach. Wang et al. [54] investigated the feasibility of this concept by 

investigating the aerodynamic performance of a series of different aerofoils in a 

VAWT scenario. A thorough array of profiles were selected and tested numerically 

through the use of CFD with an O type grid and sliding mesh methods. The kω − SST 

model was used for turbulence modelling. The tested aerofoils are a series of NACA 

00XX, NACA63-0XX, NACA4X15 and NACA X015. For the symmetrical aerofoils, the 

positions of maximum thickness were altered to understand their influence on 

performance. It was found that moving the maximum thickness from LE to TE 

resulted in increasing and then decreasing Cp after an optimal value. It was also 

found that the asymmetrical NACA 4 and 6 series aerofoils performed better at lower 

TSRs, with performance decreasing as TSR increased. It should be noted that the 

surface pressure curves indicated that a smaller maximum camber allowed for larger 

work ability [54]. Liu and Xiao [55] investigated the impact that structural stresses 

may have on the power extraction performance of VAWTs. A focus on spanwise 

deformation with a priority on bending and twist deflection was used. They utilised 

Fluid-Structure-Interaction (FSI) within a commercially available software to 

simulate the coupled behaviour that aerodynamic and structural loads exhibited in-

situ. It was found that the stiffness of the blade drastically effects the performance of 
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the turbine, with less rigid turbines showing poorer performance, likely due to the 

poor aerodynamic shape because of larger deflections. This provides plenty of insight 

into design constraints that should be considered in the manufacturing of these 

machines. 

Zeiner-Gundersen [56], [57] looked at the use of a Vertical Axis Tidal Turbine (VATT) 

with flexible aerofoils and spring-loaded pitching. It was found that the flexible 

aerofoils allowed the turbine to remain at an almost constant TSR variation, only 

increasing by a factor of 1.3 with a doubled inflow velocity! Additionally, this turbine 

resulted in typically higher power coefficients at low TSR when compared with static, 

fixed blade turbines with lower solidity. This is impressive, as typically the lower 

solidity results in a larger Cp and narrower operating range of TSRs. Additionally, it 

appeared to improve the startup ability of the turbine. Miao et al. [58] researched the 

effect of a flexing aerofoil on its propulsive efficiency. Whilst the propulsive aspects 

of a flapping are not of particular relevance in the scope of VAWTs, some of the 

aerodynamic concepts discussed, such as lift and drag, are useful. They utilised an 

unsteady, laminar flow model in Fluent 6.1 with a deforming mesh. The mesh is a 

structured, conforming C-type grid close to the aerofoil before having the far field as 

a triangular coarser mesh. Noticeably, one of the most significant results is the fact 

that the larger the frequency of flapping, the larger the required input power to power 

the flapping is. Additionally, if the flexure amplitude is increased too much, there is 

substantially more drag than thrust produced. It should also be noted that as the 

Reynolds number of the flow increases, the peak propulsive efficiency occurs with 

lower flap frequency. Based on these conclusions, this type of technology is likely 

better suited to large offshore turbines, due to their typically lower tip speed ratios, 

alongside their usually larger initial investment costs. 

Zhuang et al. [59] investigated what impact having a morphable trailing edge would 

have on aerodynamic load control in the design of HAWTs. Whilst the aerodynamics 

are fairly different to that of a VAWT, some of the techniques employed and 

conclusions are equally valid. The use of a deforming mesh boundary layer allows for 
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simulation of a smooth and consistent aerofoil deformation according to the 

transformation matrix. This uniformity is dependent on the node count on the 

aerofoil surface, with little improvement in smoothing for coarse discretization [59]. 

The diffusion coefficient method is used for remeshing, allowing for good mesh 

properties in the outer flow regions. A diffusion coefficient of 1.2 is used in this paper, 

which is rather conservative. The larger amplitude of deflection turbine aerofoil 

showed a substantially larger lift to drag ratio at low (-5° to 7°) and approximately 

equal to the rigid at higher angles (7° to 25°). An analysis of deflection length, 

amplitude and phase was also undertaken. Increasing the deflection length enables 

better load control, a key issue with VAWTs. The slight phase lag and lead also helped 

to limit the fluctuation in lift coefficient, with a phase-lag of π8 reducing Cl,mean by 50% 

[59]. Liu et al. [60] took inspiration from nature in investigating alternative energy 

extraction methods. Using a rainbow trout and a hawkmoth for the formation of their 

turbine blade, they tested the flapping of a rigid, LE control mode, TE control mode 

and integrated mode. The integrated mode is of most interest in this review, as it 

seems to drastically reduce performance in comparison to the rigid blade. This seems 

to be primarily due to the LE control method, as the TE control method appears to 

increase the peak power considerably. This is likely due to the LE and TE having the 

same direction of deflection and as such are counteracting each other and causing 

large leading-edge vortices resulting in flow separation and stall. 

Bouzaher et al [26] investigated the influence of using the work of Miao et al. [58], and 

Liu et al. [60], and applying it to Vertical Axis Tidal Turbines (VATTs) through the 

application of CFD. They used the spring-based remeshing method for their 

deforming mesh, with entirely triangular elements, but a y+ of approximately 1. They 

confirmed that the use of a flexible aerofoil can increase the power output compared 

to a rigid aerofoil [26], but only if the flexibility does not become excessive. 

Additionally, only the trailing edge is deformed and the effect of leading-edge 

deflection is not considered, which could change the performance drastically. To 

come to a more robust conclusion of the flexible aerofoils power increase, it was 
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compared on multiple aerofoils, it was found that the NACA0024 aerofoil had the 

greatest increase with a average power coefficient increase of 0.13! 

Whilst most of the research has been utilising numerical simulations, Wang et al. [61] 

decided to physically implement the system and perform wind tunnel testing. It was 

found that after a certain level of deflection, the lift enhancement gets outweighed by 

the increased frictional resistance [61]. Using a single shaft transmission model, as 

seen in Figure 2.10, the NACA0012 aerofoil was able to deflect such that “the profile 

after rotation should be close to the NACA4412 as possible”. It was interesting to note 

that there was no true comparison between the NACA4412 deflected aerofoil and 

other experimental NACA4412 data, or numerical data. The only comparison is 

between their version of the NACA0012 (deflection parameter, d* = 0) and their 

deflected models. This data however shows that at lower AoA, the lift to drag ratio is 

comparable between the deformed and undeformed models, until about 18°. All 

these conclusions should be considered apprehensively however, as the test platform 

used does not consider the blockage or wall effects, as seen in Figure 2.11.

 

Figure 2-10: CAD Model of an Aerofoil Assembly [61] 
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Figure 2-11: CAD Model of an Aerofoil Assembly [61] 

2.3 Optimisation Techniques 

There are many ways of optimising a design that is employed in engineering, with 

varying levels of mathematical and computational complexity, with the best suited 

optimisation method being dictated by the problem at hand. Some techniques that 

have been employed in the scope of VAWTs include using parametric design studies, 

adjoint optimisation for turbine blade optimisation, and evolutionary algorithms. A 

summary of some of these studies is discussed in this subchapter. 

2.3.1 Parametric Design Studies 

The application of parametric design studies allows for the ability to explore the 

impact of many design variables in a systematic manner, such as blade 

characteristics including twist [62] or aerofoil characteristics such as thickness [63], 

[64]and camber [63]. This also opens the door to the opportunity to create reduced 

order models of the VAWT profile, such as Mifsud et al. [65] using a mixed fidelity 

model which is created from a range of high fidelity aerofoil geometry simulations, 

but allows for simpler models to be implemented to predict between the datapoints, 

similarly to what was done by LeGresley and Alonso [66]. This technique has also 

been applied to turbomachinery by Epureanu et al. [67]. Whilst using these reduced 

order models can assist in speeding up predictions, they do no appear to be broad 
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enough or refined enough to be applicable to the range of scenarios a single VAWT 

would experience.  

2.3.2 Adjoint Optimisation 

Adjoint Optimisation utilises a gradient decent approach to optimise design problems 

and has been used for the optimisation of VAWT blade designs, as it is very 

considerate of the complex flow fields that a VAWT blade experiences, resulting in 

designs unique to a specific turbine’s features and operating conditions, typically 

showing promising results. Day et al. [23] showed that adjoint optimisation can be 

used at a single snapshot in the turbine’s rotation to improve overall turbine power 

generation, and also at multiple snapshots [68].  

2.3.3 Evolutionary Algorithms 

Evolutionary algorithms are a set of optimisation algorithms designed to mimic 

natural selection. They work by mimicking how nature utilises selective 

reproduction, mutation and recombination to improve a species as a whole, to 

gradually improve a design until there is no longer any improvements between 

parents and their offspring. Whilst there are a few variations of evolutionary 

algorithms, this work focuses on the use of genetic algorithms (GAs) as they allow for 

a wide breadth of search but strong ability to find the true optimal design for specific 

operating conditions. 

Ferreira and Geurts [69] showed the strength  of using genetic algorithm optimisation 

with a panel methods code, with significant improvements to the lift to drag ratio of 

the VAWT blade. The work was performed at high tip speed ratios, so the angle of 

attack is lower, and not reflective of the complex dynamic stall that a VAWT blade 

experiences at lower angles of attack. Tejeda-del-Cueto et al. [70] optimised the lift 

coefficient of some aerofoils using an XFOIL based Genetic Algorithm from 0-10° 

angle of attack and found at least a 10.7% increase in lift coefficient. They noted that 

XFOIL had an approximately 5% difference in results compared to CFD.  Wu et al. 
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[71] demonstrated the strength of joining the evolutionary algorithm with using a 

deep neural network surrogate, showing four orders of magnitude improvement of 

speedup for aerofoil lift-drag prediction.  

2.3.4 Machine Learning (ML) 

Whilst evolutionary algorithms could be considered a form of AI due to their self 

regulating methods, they do not train a general model that can be applied to other 

operating conditions in the same way that machine learning is able to infer trends 

from massively complex and sparse datasets. This is where machine learning has an 

opportunity to aid engineers in developing appropriate turbine designs, particularly 

for deforming VAWT blades. If the machine learning model is trained sufficiently 

accurately and on a wide enough scale of data, it is theoretically possible to simply 

place in some operating conditions and estimate exactly what the turbine’s 

performance will be! This could be as complex as considering wind patterns, turbine 

locations and accessibility and maintenance availability, to something as standard as 

a user providing specific wind speed, TSR and rotation position. This vast adaptability 

provides the opportunity to have in depth trends within the coupled effects of design 

choices too be analysed and exploited without extensive and complex manual 

statistical analysis. As a result, some work has been done on utilising machine 

learning and artificial intelligence to optimise and search aerofoils and VAWT blades, 

with varying levels of applicability.  

Ahmed et al. [72] created a CFD surrogate using a machine learning model, but did 

not provide validation, only statistical analysis of their results. Du et al. [73] created a 

CFD surrogate for aerofoils which shows very strong agreement to the training data 

(which consisted of 3000 profiles, with the pressure, temperature and velocity in x 

and y directions for the grid), comparing the flow fields, pressure coefficients and 

they also implemented their model into an optimisation method to optimise the lift 

to drag coefficient of input aerofoils. They utilised the latin hypercube sampling 

method to generate a design space for mach numbers between 0.3 and 0.6, AoA from 

0→6° and Reynold Number from 6x10e6 to 1.2x10e7. This is a relatively narrow field 
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for so many training points which would explain the good predictions of the model, 

but seems like an excessive number of simulations for what is arguably a limited 

applicability. Sun et al. [74] also created a physics informed neural network (PINN) 

to act as a surrogate for CFD simulations of aerofoils, and implemented it into a 

stochastic gradient descent optimiser but found that they often converged on local 

minima in the optimisation, as the PINN had differing convergence many times. They 

did utilise a smart usage of adaptive sampling, allowing the PINN to be trained on 

more points near the desired optimal point improving it’s accuracy, but it could be 

argued that at that point it is not much of a neural network and is effectively just 

linearly interpolating around points it believes to be optimal. Karbasian and van Rees 

[75] provided an interesting model that aligns well with the intentions of the thesis; 

using a surrogate model to optimise morphing aerofoils. Their dataset is calculated 

using XFOIL to predict the Cl, Cd and Cm characteristics based on a hinge position, 

and found that often XFOIL fails to converge for large angles of attack, so they discard 

these datapoints. Thy tested two datasets; one containing 200 samples and one 

containing 400 samples, so a relatively small sample size, but as it is a supplement for 

an FSI approach, it was found to be several orders of magnitude more efficient. 

2.4 Summary and Thesis Outline 

In summary, this thesis will look at the different methods of generating optimised 

transiently deforming camber lines of standard VAWT blade profiles.  

One of the primary issues with the Vertical Axis Wind Turbines is the impact of the 

blade-wake interactions and sensitivity to the operational tip speed ratio of the 

turbine. Some previous investigations have shown that using a cambered aerofoil can 

improve the overall turbine performance [20], [21], [22], but this is often at the cost of 

increasing the variance in the turbine moment generation. Furthermore, 

optimisation techniques, such as the adjoint optimisation, have shown promise in 

optimising the turbine performance, in  single and multiple snapshot techniques [23]. 

Most of these optimisation techniques however are not necessarily an improvement 

throughout the turbine’s rotation, often resulting in an increase in the performance 
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at the optimised snapshot position, but a reduction in performance at other positions 

as a side-effect. The inherently transient nature of the flow angle experienced by a 

turbine blade profile results in large separation in certain regions of the rotation and 

the generation of dynamic stall issues [24], [25]. Other investigators have shown that 

a prescribed deforming blade profile, bending the camber line of the aerofoil with 

respect to time, has shown an increase in the turbine performance [26]. However, 

these deformation profiles tend to use arbitrary selections of frequency and 

amplitude of sinusoidal profiles such as 𝐶𝑎𝑚𝑏𝑒𝑟 =  𝐴𝑠𝑖𝑛(𝜔𝑡) and then conclusions 

are drawn upon the use of these variables, such as the deflection magnitude (A) or 

the deflection frequency (ω). This leads to the question as to whether these variable 

combinations are sufficiently broad in their investigative bounds to truly make 

generalised conclusions on the impact of the deforming turbine profile, or are they 

simply making broad generalised conclusions? Baghdadi et al. [27] used a freeform 

deformation algorithm to optimise the aerofoil profile based on the tip speed ratio 

and azimuthal angle, but had a predefined optimisation constraint of only deforming 

the final 30%c of the aerofoil, but the actual deformation was completely free, which 

could alter the thickness of the blade in some regions. They optimised the blade 

shape every 30°, 60° and 120°, and tested it at 4 tip speed ratios: 1, 1.5, 2 and 2.5, using 

a polynomial fit to create a smooth curve for the resulting moment plots. They 

showed a very strong increase in the power coefficient for all the optimisation 

scenarios. This work builds on the work of Baghdadi et al. [27] through characterising 

the deforming blade profile, utilising a genetic algorithm to optimise the camber for 

each optimisation position, and testing the influence of different optimisation 

constraints for the genetic algorithm and the aerofoil. This will allow for a much 

better understanding of which aerofoil parameters are providing the largest 

influence on the deforming blade profile, thus potentially opening further avenues 

of research. 

If optimising a single position in the turbine’s rotation can improve the turbine 

performance using techniques such as the adjoint method, then one can confidently 

apply this optimisation at multiple positions in the turbine rotation to further 
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improve the turbine performance. This has been discussed in the literature [27] with 

the conclusion that applying the multi-snapshot technique to a dynamically 

deforming blade profile will have further performance improvements.  However, 

using the adjoint or free-form deformation optimisation technique limits the realistic 

applicability of this dynamic optimisation. It is unrealistic for a turbine to deform its 

entire shape and thickness dynamically, but some parameters could be relatively 

easily be controlled such as the thickness or camber magnitude.  Whilst the thickness 

has been shown to change the performance of a VAWT [28], such as increasing the 

power coefficient at low TSRs with thicker aerofoils, this would be an incredibly 

complex system to replicate in an actual turbine. This thickness investigation would 

be very interesting and novel, but does not align with the ethos of this thesis, which 

is to optimise a dynamic aerofoil profile that could be easily implemented into real 

world scenarios. By bending the aerofoil, one can increase the curvature of the flow 

and the lift generation of the aerofoil [29][30]. If the characterisation of the bending 

shape is that of the generalised NACA 4-series shape equations, then it is relatively 

straightforward and self-explanatory to convert a typical VAWT blade profile from 

something such as the NACA0015 by prescribing the deformation centre and 

magnitude of the deformation to create a highly cambered aerofoil such as a 

NACA9315. As a result, alternative optimisation techniques would be more 

appropriate.  

The concluded Thesis plan is therefore to initially evaluate the ability of using a 

genetic algorithm to create an optimised deforming turbine blade camber profile, by 

optimising the camber at multiple positions in the turbine’s rotation and utilising 

linear interpolation between each azimuthal position to create a dynamic profile 

based on the turbine blade’s azimuthal position. In Chapter 4 this theory is initially 

evaluated in XFOIL to develop the genetic algorithm workflow for the actual 

optimisation process and test the impact of varying different GA parameters such as; 

the number of optimisation points to use in the rotation, the optimisation camber 

bounds and convergence conditions. These findings are carried forward to Chapter 5 

to investigate a transient optimisation procedure, where the turbine is rotated and 

the blade profile is continuously deformed up to the desired optimisation position, 
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which incorporates the transient effects of the deformation into the optimisation 

procedure. This work is evaluated at multiple operating conditions such as sampling 

count, aerofoil constraints and tip speed ratios to develop an understanding of how 

turbine and aerofoil parameters influence the camber profile, and the moment 

generation increase. Finally, to alleviate the computational cost of the transient 

simulation, but for more fidelity than using XFOIL, utilising an Artificial Neural 

Network (ANN) as a torque prediction surrogate is tested and applied to the optimal 

GA conditions discovered in Chapter 5, including using a publicly available ANN 

model trained on XFOIL data and developing a custom ANN utilising hundreds of 

static aerofoil CFD simulations to predict tangential force coefficient similarly to that 

which was established in Chapter 4. 
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3 Methodology 

Many methods are employed throughout the thesis including Computational Fluid 

Dynamics (CFD) software (primarily ANSYS Fluent), genetic algorithms for camber 

optimisation and dynamic mesh motion within the CFD process. These techniques 

will be described in this section, allowing for understanding and appreciation of the 

various procedures and tools before detailing the different studies into the camber 

profile optimisation. 

3.1 Computational Fluid Dynamics 

Throughout this thesis, the primary tool for CFD analysis is ANSYS Fluent, a 

commercially available package that has been in continuous use and development 

since the late 20th century, which is a thoroughly verified and trustworthy tool for 

conducting a wide range of highly complex CFD studies. ANSYS Fluent uses the finite 

volume method to iteratively “solve” the Navier-Stokes equations, which describe 

how any fluid moves and interacts with it’s environment. 

3.1.1 Navier Stokes Equations 

To study the aerodynamics of any problem, it is fundamentally crucial to understand 

and appreciate the underlying physics that dictate fluid dynamics. These vary widely 

depending on the specific area you are studying, ranging all the way from atomic 

level physics to generalised macroscopic fluid flow. 

There are however a few concepts that are uniformly applicable to any type of fluid 

flow, namely Newton’s Laws and conservation laws. These can be compiled into a set 

of equations that govern fluid flows. In the scope of inviscid fluids, these equations 

are referred to as the Euler equations, but when applied to viscous fluids the Navier-

Stokes equations are used, named after the French physicist Claude-Louis Navier who 

first defined them, and the Irish physicist George Gabriel Stokes who first explained 

their significance. The Navier-Stokes equations are based on Newton’s second law of 

motion but applied to fluid motion with viscous effects included, with the 
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conservation of mass and momentum included. Often, the Navier-Stokes equations 

are used in conjunction with other supplementary formulae such as energy 

equations, but this can be negated in systems where no work is being done to or taken 

from the fluid volume being studied.  

The mass continuity equation of the Navier-Stokes equations is given as; 

 ∂ρ

∂𝑡
+ ∇ ⋅ (ρ𝑢⃗ ) = 0 

3.1 

The conservation of momentum is given as; 

 
𝜌 [
𝜕𝑉⃗ 

𝜕𝑡
+ 𝑉⃗ ⋅ ∇𝑉⃗ ] = −∇𝑝 + ∇ ⋅ 𝝉𝑖𝑗 + 𝐹𝑏⃗⃗⃗⃗  

3.2 

 
𝐅 + 𝜌𝐠 − 𝛻𝑝 + ∇ ⋅ 𝝉𝑖𝑗 = 𝜌

𝑑𝐕

𝑑𝑡
 

3.3 

 
𝛕ij  =   [

τ𝑥𝑥 τ𝑦𝑥 τ𝑧𝑥
τ𝑥𝑦 τyy 𝜏zy
τ𝑥𝑧 τyz τ𝑧𝑧

] 
3.4 

 
V = 

∂𝐕

∂𝑡
+ 𝑢

∂𝐕

∂𝑥
+ 𝑣

∂𝐕

∂𝑦
+ 𝑤

∂𝐕

∂𝑧
 

3.5 

This essentially means the External body forces + gravity force per unit volume + 

viscous force per unit volume = density * acceleration of the fluid volume [16].  

We can break the Navier-Stokes equation down into it’s expanded parts, which allows 

us to understand how each term affects physical flow properties and phenomena. If 

we expand in the x direction, our equation would become: 

 
ρ
∂𝑢

∂𝑡
+ ρ (𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
+ 𝑤

∂𝑢

∂𝑧
) = −

∂𝑃

∂𝑥
+
∂τ𝑥𝑥
∂𝑥

+
∂τ𝑦𝑥

∂𝑦
+
∂τ𝑧𝑥
∂𝑧

+ ρ𝑓𝑥 

                     [1]                           [2]                            [3]                     [4]                     [5] 

3.6 

1. Refers to transient acceleration of the fluid flow 

2. The inertia term, describing the inertia of the fluid, or the acceleration due to 

movement from one location to another 
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3. The source/sink term, the driving force behind the flow, providing the energy 

for movement. 

4. Diffusion Terms. These terms refer to the viscous stresses within the fluid 

element and are the effect of viscosity, shearing and changing the volume of 

the element. 

5. 𝑓𝑥 refers to the body forces per unit volume that can act on a fluid element. 

These could include gravitational effects, magnetics etc. 

It is important to clarify what the viscous stress tensor physically means, however.  

Implementing Newton’s law of viscosity (Equation to our stress tensor and adding the 

following assumptions made by Stokes; 

 τ = μ
∂𝑢

∂𝑦
 3.7 

1. Newton’s law of viscosity is followed meaning stress is linearly proportional to 

the velocity gradient and viscous stress is linearly proportional to the strain 

rate 

2. The fluid is isotropic (has the same fluid property in all directions) 

3. The viscous force only acts tangentially to the fluid element, it’s normal is null. 

4. Rigid body rotation of the fluid element doesn’t provide any source of viscous 

stress. 

The resulting stress tensor is therefore given as 

 𝛕ij  =   [

τ𝑥𝑥 τ𝑦𝑥 τ𝑧𝑥
τ𝑥𝑦 τyy 𝜏zy
τ𝑥𝑧 τyz τ𝑧𝑧

] =  

[
 
 
 
 
 
 2μ

∂𝑢

∂𝑥
𝜇 (
∂𝑢

∂𝑦
+
∂𝑣

∂𝑥
) 𝜇 (

∂𝑤

∂𝑥
+
∂𝑢

∂𝑧
)

𝜇 (
∂𝑢

∂𝑦
+
∂𝑣

∂𝑥
) 2μ

∂𝑣

∂𝑦
𝜇 (
∂𝑣

∂𝑧
+
∂𝑤

∂𝑦
)

𝜇 (
∂𝑤

∂𝑥
+
∂𝑢

∂𝑧
) 𝜇 (

∂𝑣

∂𝑧
+
∂𝑤

∂𝑦
) 2μ

∂𝑤

∂𝑧 ]
 
 
 
 
 
 

 3.8 

Or in a simplified manner; 

 𝛕𝑖𝑗  =  2μ [𝜀𝑖𝑗 −
1

3
∇ ⋅ 𝑉⃗ 𝛿𝑖𝑗] 3.9 
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 εij =
1

2
[
∂𝑢𝑖
∂𝑥𝑗

+
∂𝑢𝑗

∂𝑥𝑖
] 3.10 

Where μ is the fluid’s dynamic viscosity and δ𝑖𝑗 is the Kronecker delta. Implementing 

this definition of the stress tensor, the convective or non-conservative form of the 

Navier-Stokes is given as; 

 𝜌 [
∂𝑉⃗ 

∂𝑡
+ 𝑉⃗ ⋅ ∇𝑉⃗ ] = −∇𝑝 + 𝜇∇2𝑉⃗ +

1

3
μ∇(∇ ⋅ 𝑉⃗ ) + ρ𝑔 + 𝐹𝑏⃗⃗⃗⃗  3.11 

The non-conservative and conservative versions of the Navier-Stokes momentum 

equation are only equivalent for “smooth” flows, but if discontinuities are present 

such as shocks, the non-conservative version is invalid, and in such scenarios, the 

conservative version must be used [76]. 

When applied to slow moving external aerodynamics (such as that experienced by a 

VAWT) we can simplify the Navier-Stokes Equations. Due to the low (subsonic, 

M<0.3) speed and fluid properties of air (Newtonian Fluid), the flow field is assumed 

to have a constant density and viscosity and allows the negation of all external body 

forces including gravity. 

Sometimes it is necessary to also include the conservation of energy and species 

when analysing fluid flows. Scenarios where this might be the case include 

supersonic flows, heat transfer and combustion scenarios. Heat transfer doesn’t 

always require species conservation due to a lack of chemical reactions, but very 

high-speed flows (hypersonic) can cause chemical breakdown of fluids such as air, 

and as such it is necessary to maintain species continuity. These can both be negated 

for the consideration of flow fields impacted by VAWTs, unless complex devices are 

being investigated to influence the flow field such as icing on blades. 

 

 
𝜌 [
𝜕ℎ

𝜕𝑡
+ ∇ ⋅ (ℎ𝑉

→
)] = −

𝐷𝑝

𝐷𝑡
+ ∇ ⋅ (𝑘∇𝑇) + 𝜙 

[1]              [2]              [3]         [4]             [5] 

3.12 
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Again, each section of the equation explains a different source of energy in the fluid. 

1. Enthalpy change with respect to time 

2. Convection 

3. Pressure Work 

4. Diffusion of energy 

5. Dissipation of energy 

3.1.2 Boundary Conditions 

The Navier-Stokes equations can only be solved for a finite number of situations, such 

as Stokes or creep flow, which is incredibly low Reynolds number flow, or Couette 

flow, inviscid flow through a pipe. But these cases, and any other case, require the 

implementation of boundary conditions, on the edge of our flow volume. These vary 

significantly but in the scope of VAWTs, the most relevant include: 

1. Inlets 

a. Velocity Inlets 

b. Pressure Far fields 

c. Mass flow inlets 

2. Outlets 

a. Pressure Outlet 

b. Mass flow outlets 

3. Symmetry 

4. Walls 

a. Free shear 

b. No-slip 

5. Interfaces 

Most commonly it is found to have a velocity inlet as the inlet boundary condition for 

a VAWT CFD flow domain, as it allows for the wind speed that the turbine will 

experience to be defined. Pressure outlets are typically used to “vent” the flow 
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domain to atmospheric conditions, which can prevent creating a pressure 

differential at the outlet which would cause a flow acceleration in the domain. 

Symmetry is often used at the outer faces of the flow domain, or on symmetry planes 

of 3D simulations (such as at a blade midspan) as it minimises the blockage effects of 

the wind turbine in the domain, allowing for smaller domains to be used than if walls 

were applied. No-slip walls are assigned to the components of the VAWT such as the 

blades and the shaft to model the boundary layer generation on these surfaces as they 

would in real life. Finally, an interface pair is created between the rotating mesh 

region containing the turbine geometry and the static flow domain. There are two 

primary methods implemented; conformal and non-conformal interfaces. 

Conformal interfaces have a matching mesh either side of the interface, so the 

vertices on the edge of each respective fluid domain’s interface are connected and 

share topology. Non-conformal interfaces are when the two fluid domains have 

different mesh resolutions on their respective interfaces, or they do not share 

topology, for example the interface of one domain could have 100 nodes, but the 

other domain could have 200 nodes, or if one of the domains moves w.r.t the other 

domain. All interfaces share one key feature; they conserve the flux of mass, 

momentum and energy across the boundaries. In the VAWT CFD, a non-conformal 

interface is applied to the common edge between the flow domain and the rotating 

turbine domain. To maintain the flux conservation, Fluent computes the flux across 

the interface and interpolates the values for each overlapping cell on the domain, by 

calculating the area-weighted average from one side, it can then interpolate what the 

appropriate flux will be on the opposite domain’s cells each time-step.  

3.1.3 Turbulence Modelling 

When studying these fluid flows there are a finite count of situations where they can 

be analytically solved [77], such as Stokes flow which is incredibly low Reynolds 

number flows or inviscid flow through a pipe. Other more complex flow scenarios 

that are more common in engineering research and development require the use of 

CFD  codes to investigate and study flow fields. Due to the nature of the Navier-Stokes 
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equations, it is necessary to use some form of discretisation with carefully selected 

boundary conditions to model complex flow phenomena such as turbulence. There 

are three primary methods of modelling the Navier-Stokes equations in order of 

increasing flow resolution; 

1. Reynolds Averaged Navier-Stokes 

2. Large Eddy Simulation 

3. Direct Numerical Simulation 

Whilst the resolution of the flow decreases, the computational requirements also 

rapidly decrease. Modern advances in computing ability allow for simulation of the 

flow fields around complex bodies such as aircraft from a device as simple as a 

laptop! Of course, this comes with the caveat that it is necessary to utilise lower 

resolution models but is regardless an impressive feat considering the complex 

computing power that was necessary a few decades ago. The computationally 

cheapest method, Reynolds Averaged Navier-Stokes, uses Reynolds averaging to split 

the flow parameters into two terms, their absolute value and their fluctuations due to 

turbulence. These fluctuations are defined as the deviation of a variable, in this 

example u,  from their average value [16]; 

 
𝑢 =

1

𝑇
∫ 𝑢 𝑑𝑡
𝑇

0

 
3.13 

Therefore 

 𝑢 = 𝑢 + 𝑢′ 3.14 

 

It is mathematically clear that the mean of 𝑢′ has zero value, but this is not true of the 

mean square of the fluctuation, 𝑢′2, is not zero, and can be used as a measure of 

turbulent intensity [16]. Oscar Reynolds used this idea to split all the variables in the 

Navier-Stokes equations, to produced time-averaged versions, replacing velocity and 

pressure components with their averaged counter parts i.e. 
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 u = u + u′ 3.15 

 𝑣 = 𝑣 + 𝑣′ 3.16 

 𝑤 = 𝑤 +𝑤′ 3.17 

 𝑝 = 𝑝 + 𝑝′ 3.18 

As a result, however, there are some terms left that cannot be resolved and require 

an empirical formula or alternative method of calculation.  

 ∂

∂𝑡
(ρ𝑢𝑖) +

∂

∂𝑥𝑗
(ρ𝑢𝑖𝑢𝑗) = −

∂P

∂xi
+
∂

∂xj
[μ (

∂ui
∂xj

+
∂uj

∂xi
−
2

3
δij
ui
xj
)] +

∂

∂𝑥𝑗
(−ρ𝑢𝑖

′𝑢𝑗
′) 

3.19 

These turbulent based stresses (−ρ𝑢𝑖
′𝑢𝑗
′) are referred to as Reynolds Stresses and 

create a closure problem within the Reynolds Averaged Navier-Stokes equations. The 

most common method of calculating the Reynolds stresses is through the application 

of a turbulence model. Just like the fact that there are differing methods of solving 

the Navier-Stokes equations with varying levels of computational complexity, there 

are differing levels of resolution for formulating the Reynolds stresses. Each 

turbulence model has particular use cases that they were designed for, and as a result 

have different formulations.  

The most common approach to closing the Reynolds Averaged Navier-Stokes 

equations is to use the Boussinesq Approximation. This method links the mean 

velocity gradient to create a new viscosity for eddies, the eddy viscosity. One of the 

primary drawbacks of this method is that the eddies are considered isotropic, this is 

not the case for the Reynolds Stress Model (RSM) that is included in some commercial 

solvers such as ANSYS Fluent, which solves the transport equation for the eddies 

directly, with an equation for dissipation of the eddies [78]. The formulation of the 

Reynolds Stresses when using the Boussinesq Approximation is 

 
−ρ𝑢𝑖′𝑢𝑗′ = μ𝑡 (

∂𝑢𝑖
∂𝑥𝑗

+
∂𝑢𝑗

∂𝑥𝑖
) −

2

3
(ρ𝑘 + μ𝑡

∂𝑢𝑘
∂𝑥𝑘

) 𝛿𝑖𝑗  
3.20 
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Where the different turbulent models will have different methods of calculating 𝑘 

and 𝜇𝑡. The most commonly employed in VAWTs are the 𝑘 − 𝜔 𝑆𝑆𝑇 and 𝑘 − 𝜖 models 

due to their ability to model the freestream turbulence well, but k-w is preferred for 

its ability to capture complex flow phenomena such as boundary layer separation and 

vortex shedding [79]. The full derivation of the mathematical definition of these 

turbulence models can be found in common literature, and is left as an exercise to 

the reader. 

3.2 CFD Setup and Validation 

To validate the results produced by the various optimisation techniques within this 

thesis, the deformation profile will be placed within a CFD simulation and compared 

to a symmetric NACA0015 aerofoil. The turbine used for comparison  is the same as 

that used by El Sakka et al.[80] and Li et al.[81], with the latter study testing the turbine 

experimentally at three TSRs. The turbine parameters are selected to match the 

published data, corresponding to a TSR of 2.29, freestream velocity of 7 m/s, turbine 

radius of 0.85m, blade chord length of 0.225m with the leading edge shifted forward 

of the shaft center by 25% chord. For the validation studies, the blade has a setting 

angle of 6° as is found in the work of Li et al. [81]. 

3.2.1 Geometry 

A two-dimensional simulation is setup using the domain arrangement seen in Figure 

3-1. The C-Grid far field technique is used to optimise and control the mesh structure 

as it requires less elements than a rectangular domain would for a given mesh 

density. A sufficiently large domain is crucial to minimise wall effects affecting the 

flow solution and capturing the flow field adequately. Due to the large domain, a 

structured mesh is created to optimise the allocation of elements, ensuring they are 

in regions of flow where high fidelity is desired, including the boundary layers, the 

turbine wake and the turbine core.  

A series of domain sizes were tested and validated against the literature (the work of 

Elsakka et al. [80]) by comparing the average tangential force coefficient. The 
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different comparisons for the domain sizing are listed in Table 3-1 below. Domain D 

was the final design consideration, as it provided the most stable simulation results 

(consistent max residuals target of 1e-5 achieved each timestep) and also when 

running the full turbine simulation, it was found to match the literature results most 

accurately. 

Property A B C D 

Downstream 

Length (m) 

5.325 11.7 8.5 12.55 

Perpendicular 

domain 

Thickness (m) 

5.1 8.5 8.5 8.5 

Aerofoil O-Grid 

Size (m) 

0.3375 0.255 0.3 0.3 

Rotating 

Domain Size 

(m) 

2.1 2.1 1.9 2.5 

Table 3-1: Domain sizing comparisons 

The final geometrical sizes include 10 turbine radii downstream (8.5m), and an inlet 

radius of 5 radii (4.25m). The wake region is sized to be 0.75 diameters (1.19m) ahead 

of and above the turbine domain and 1 diameter aft of the turbine (1.7m).  
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Figure 3-1: Image of entire flow domain geometry 
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Figure 3-2: Zoomed image of geometry around fluid turbine fluid zone 

The solver is the ANSYS Fluent software with the double precision solver. The 

COUPLED method is employed to ensure good convergence behaviour and help with 

any divergence that may be experienced. Furthermore, all solver methods are set to 

Second Order Upwind to ensure solution stability. The Unsteady Reynolds-Averaged 

Navier Stokes approach is undertaken to reduce the computational costs, but with 

good acceptance of their applicability in the application of VAWT simulations. The k-

ω SST turbulence model is employed due to its design for capturing separated flow 

more accurately than most other turbulence models and resistance to adverse 

pressure gradients [82], as is typically present in stalled vertical axis wind turbine 

blades.  
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3.2.2 Mesh Independence Study 

To validate the mesh chosen for the design, and ensure the mesh accurately captures 

the flow physics, whilst minimising element count for computational efficiency, a 

mesh independence study is undertaken. 

The mesh design was altered by changing the element dimensional sizing in the near 

blade flow region, as this alters the number of nodes along the aerofoil surface and 

reduces/increases the number of elements for capturing the blade wake. The 

inflation layer settings are kept constant to ensure an appropriate y+ is maintained in 

the 5 studies, ensuring confidence that the difference in results is purely due to blade-

wake resolution. Furthermore, if the inflation layer settings were adjusted (number 

of layers or first cell height), then the turbulence model employed, k-omega SST, 

might underpredict the boundary layer effects for a coarse inflation due to the lack 

of wall functions [83] or too fine and it might employ the k-epsilon model too close to 

the wall rather than the k-omega model as the boundary layer isn’t fully resolved by 

the inflation. The change between each mesh was simply to alter the body sizing of 

the mesh size in the o-grid region around the turbine blade profile. The different 

sizing are listed in Table 3-1. 

Element 

Count 

425 625 774 1100 1900 

O-Grid 

Element Size 

(m) 

6e-4 5e-4 4e-4 3e-4 2e-4 

Table 3-2: O-Grid Sizing Comparison for Mesh Independence Study 

Figure 3-3 shows that the overall capture of the moment for the VAWT is very similar 

between all mesh resolutions, with the main differences in the peak value and the 

variance seen in the downstream period of rotation (ϕ > 180°). Taking a closer look at 

the averaged moment value however shows that there is significant variation 

between the different meshes. A mesh with 1.1 million elements is less than 1% 
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different to 1.9 million elements, but with substantially faster computation time 

(wall-clock time ~17 hours versus ~29 hours respectively with 96 CPU Cores). The 

mesh with 1.1 million elements is therefore selected as the optimal mesh for further 

CFD cases, including validation against previous literature and genetic algorithm 

evaluation. 

 

Figure 3-3: Instantaneous Moment Comparison at Multiple Mesh Sizes 

 

Figure 3-4: Mean Moment averaged over period of rotation 
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3.2.3 Final Mesh Characteristics 

A y+ ≈ 1 is used in the mesh as is required by the k-ω SST model, with no wall 

functions. This y+ value is achieved by the application of inflation layers at the 

aerofoil and shaft surface, with a first layer height of 1.94e-5m, 30 layers and a growth 

rate of 1.1. The final mesh count is 360k for each of the O-Grid regions encapsulating 

the aerofoils, 264.8k for the remainder of the rotating turbine area, and 125k for the 

rest of the stationary fluid far-field region, creating a total mesh size of 1.1098M 

elements.  

To enable the application of the deforming mesh motion, it is better to utilise an 

unstructured mesh in the near aerofoil flow region, particularly in the vicinity of the 

trailing edge due to the large deformation and step in geometry experienced in these 

regions by the application of a flapping mesh motion. This mesh sizing is controlled 

by applying the inflation layer mesh control and specifying a face element sizing 

within ANSYS’ meshing tool.  Additionally, the number of elements along the span of 

the aerofoil wall is controlled to ensure a smooth transition between the quadrilateral 

inflationary boundary layer and the triangular elements. The resultant overall flow 

discretisation and near-blade regions can be seen in Figure 3-5, Figure 3-6 and Figure 

. 

 

Figure 3-5: Entire Flow Domain Mesh 
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Figure 3-6: Near Blade Mesh 

 

Figure 3-7: Near Blade Mesh at Sharp Trailing Edge 

The flow domain boundary conditions are highlighted in Figure 3-8. A velocity inlet 

is setup, with symmetry walls at the outer edges (yellow lines) and a pressure outlet 

as seen in Figure 3-8. The inlet velocity is set to 7m/s in the X direction, 0m/s in the Y 

direction and 0m/s in the Z direction (seen in blue) to match the work of  Li et al.[81]. 

Furthermore, a no-slip wall condition is employed on the turbine blade edges and on 

the central shaft (seen in grey), with a defined rotational speed of 18.86 rad/s applied 

to the turbine fluid domain by application of mesh motion (corresponding to a TSR 

of 2.29, as seen in the work of Li et al.[81] and El Sakka et al.[80]) and a corresponding 

timestep size of 0.0004238656755s (1° per timestep). In addition, there is a mesh 

interface created between the turbine flow domain and the far field domain (shown 
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as the yellow circle in the domain centre) to ensure accurate flow physics by using 

the sliding mesh model. A symmetry wall boundary condition is applied to the top 

and bottom domain edges (yellow) to encapsulate the flow and reduce the need for a 

much larger domain required for the no-slip wall conditions. A pressure outlet is used 

with atmospheric conditions, seen in red at the rear of the flow domain. 

 

Figure 3-8: Boundary Conditions Highlighted on Flow Domain Edges 

 

Figure 3-9: Single Blade Torque Coefficient Comparison with Li et al.[81] and El Sakka et al.[80] 
works 

It is clear from Figure 3-9 that there is strong agreement in the CFD setup results with 

the upstream torque performance compared with the experimental work of Li et 
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al[81]. The difference in the downstream between this work’s CFD study and the 

experimental data can be due to a variety of factors, including the lack of tip vortices 

affecting the performance that are not present in the 2D simulations (this work and 

El Sakka et al. [80] but are in the experiment and 3D simulations (Li et al.[81]).  

This CFD setup shows good agreement in the upstream region (0° < ϕ < 180°) with the 

CFD work of Li et al.[81] and El Sakka et al.[80], and also good similarity with the 

downstream region of  El Sakka et al.[80]. It is therefore considered suitable for 

investigating the turbine performance improvement by application of GA 

optimisation.  

3.2.4 Timestep Independence Study 

To understand the impact of temporal resolution on the accuracy of the CFD model, 

the simulation is run with three different timestep sizes; 1° of rotation per timestep, 

0.5° of rotation per timestep and 0.25° of rotation per timestep. The resultant torque 

vs azimuthal angle is presented in Figure 3-10 for a 0 degree setting angle of the 

turbine parameters described  in Section 3.2, with the green line representing the 1° 

case, the blue line is the 0.5° case and the orange line is the 0.25° case. The overall 

torque behaviour is captured well for all three setups, with negligible differences in 

the initial period of rotation from 0° to 180°. The main differences start to appear 

around the peak, where the 0.5 degree has the highest single blade torque, but the 

downstream period of rotation is very similar between all 3 cases. The variance 

between the temporal resolutions clearly starts at the first large peak around 90° 

azimuth, I suspect this is due to the difference in resolutions predict a different angle 

at which the leading edge vortex sheds and the blad stalls, this would also then have 

significant impact at around 144° again as the blade rotates, cutting through the 

previously shed vortex that was carried downwind, again with a minor difference in 

the position in rotation causing a small butterfly effect and exacerbating the 

difference in turbine power generations due to coupling with the blade’s lift and drag 

generation at the different angles of attack. For example, if we take the large peak 

position, the angle of attack is the highest in magnitude that the aerofoil experiences 
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and the aerofoil performance would be very sensitive to any changes in the flow 

conditions. By shedding the vortex a half degree earlier in rotation, the small change 

in angle of attack could result in the flow remaining attached that tiny bit more 

resulting in a slightly higher peak. 

As this case will be later utilised for transient GA optimisation, the computational cost 

will be directly associated with the time step size, and as such the minor difference 

in turbine performance differences are acceptable for the large improvement in 

simulation wall clock time. 

 

Figure 3-10: Comparison of Blade Torque for 1°, 0.5° and 0.25° of Rotation per Timestep. 

 

3.3 Deforming VAWT Methodology 

It is crucial to evaluate the performance of how the optimised VAWT blade camber 

profiles perform in the scope of a full rotating VAWT to understand the impacts on 

dynamic flow effects such as dynamic stall, leading edge separation bubbles and 
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blade wake interactions. This was achieved by implementing the camber profile into 

a complex UDF in ANSYS Fluent that will deform the turbine blade aerofoil profile 

based on it’s azimuthal position and operating characteristics. The UDF and an 

example setup of the parametrised CFD simulation that is detailed below can be 

found on GitHub at [84]. 

As stated in Section 4.1.3.1, the optimisation algorithm is applied at a 0° setting angle 

to reduce the modelling complexity of the flapping profile on a 6° setting angle. 

Additionally, as this work intends to solely explore the impact of the GA on the 

flapping motion, it is crucial to attempt to eliminate any coupled effects that may be 

presented by the application of a flapping turbine with a 6° setting angle. By having 

the 6° setting angle included, there could be unforeseen impacts on the flow physics, 

resulting in our conclusions potentially being misplaced due to exacerbation or even 

damping of the flapping profile’s impact.  

A user defined function (UDF) is implemented to deform the aerofoil profile to the 

maximum camber profile determined in the CFD analysis. A series of linear 

interpolation functions were created between each optimisation point and the 

mathematical representation of this line created an equation for the relation of the 

camber against azimuthal position. Linear interpolation was utilised instead of 

complex polynomial curve fitting as curve fitting would be very computationally 

complex and inefficient within the CFD process, significantly increasing the time 

taken per timestep. Additionally, a curve would need to be recalculated for every 

potential genotype, which would require an incredibly robust polynomial to ensure 

that all possible phenotypes would not be overfitted, nor would they be under fitted. 

This is an unnecessary complexity in the scheme of this thesis, but could be an 

interesting point of research in future works. These lines can be used to interpolate 

the camber at any specified azimuthal position, allowing for easy adaptation to other 

turbine optimisation scenarios.  

For example, if at θ = 36° the camber value is given as 5%c, the UDF will calculate the 

required deflection between the current timestep’s shape (based on the camber) and 

the next timestep’s shape (based on the camber value at the next step). NACA 
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equations for a 4-digit cambered aerofoil with a maximum camber position of 

(NACAXX15) and calculate the local y and x values for the nodes as if the aerofoil 

leading edge x value is 0, then translate them back into the global reference frame. 

This is a necessary requirement to use the NACA 4-digit modelling method, as the 

leading edge is defined as x=0. This is repeated for every node along the aerofoil blade 

surface. A graphical representation of the parameters required to calculate the node 

positions is seen in Figure 3-11. 

 

Figure 3-11: Visual representation of Deflection Model 

The black aerofoil is the standard NACA0015 aerofoil profile, with the X and Y co-

ordinates at any point on the boundary described by the NACA 4-Series set of 

equations described in Section 1.3.1. 

To calculate the deflected aerofoil (the red aerofoil in Figure 3-11) the UDF will take 

the X and Y coordinates of the current aerofoil, transpose them onto the local XY 

frame for the NACA 4 Series (where the XY value at the leading edge would be x=0, y 

= 0), calculate the required translation of every node on the aerofoil surface to the 

next timestep position, add that vertical translation (calculated with Equations 3.21 

and 3.22) to each node and transpose the aerofoil back to the correct azimuthal 

position.  

𝑚 = 𝑚𝜙 −𝑚𝜙−1 3.21 

𝑑𝑦𝑐 = 

−𝑚𝑐̅ (
𝑝𝑐̅ − 𝑥

𝑝𝑐̅
)
2

 

−𝑚𝑐̅  (
𝑥 − 𝑝𝑐̅

𝑐 − 𝑝𝑐̅
)
2

}
 
 

 
 
𝑥 < 𝑝𝑐̅
𝑥 ≥ 𝑝𝑐̅

 3.22 

𝑦𝑐(𝜙) = 𝑦𝑐(𝑥) −  𝑑𝑦𝑐 3.23 
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Where 𝑦𝑐(𝜙) is the updated co-ordinate position of the node, 𝑑𝑦𝑐 is the vertical 

displacement of the node, m is the camber value, 𝑐̅ is the chord length, 𝑚𝜙is a 

function of the azimuthal angle.  

There is no change in the x-coordinate of each node, because whilst it is shown to 

change in the original NACA 4-Series equations, the difference is negligible as we are 

not calculating the deformation by shifting every node along the blade surface for the 

curvature. For example, if you have a symmetrical aerofoil, the leading edge node 

would be at exactly x=0, but when you take a positively cambered aerofoil, that exact 

leading edge shifts slightly positively, however, the next node along the aerofoil 

upper surface would be in approximately the same x position as the previously 

leading edge. This very minor difference is negligible in the shape, but implementing 

it into the UDF would increase complexity significantly and would affect skewness 

and even generate negative cell volumes of the first wall elements on the aerofoil 

surface. 

Each optimised position i.e., ϕ = 36°, has a corresponding camber value associated, 

as such, linear interpolation is used to calculate the instantaneous camber value 

between each optimised position. For example, if at ϕ = 0, m = 36 and at ϕ = 72°, m = 

5, then to calculate the camber at 54°: 

𝑚𝜙 =
5−0

72−36
∗ (𝜙 − 36) + 0, for ϕ = 54, 𝑚𝜙 = 2.5 3.24 

When this deflection model is applied within the UDF, some assumptions must be 

taken. For example, as the linear interpolation points are only defined between 0° 

and 360°, the instantaneous azimuthal angle must be translated into this region. In 

order to implement this, a series of simple if statements are used i.e., if ts < 360, 

completed revolutions count (rev) = 0, if 360 < ts < 720, rev = 1 etc. which is 

implemented into Equation 3.25. 

𝜙 = (𝑡𝑠 − 𝑡𝑠𝑟 ∗ 𝑟𝑒𝑣) ∗
360

𝑡𝑠𝑟
 

3.25 
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Where 𝑡𝑠 is the current timestep, 𝑡𝑠𝑟 is the number of timesteps per rotation, rev is 

the current turbine rotation number. 𝑡𝑠𝑟 is calculated by simply defining how many 

timesteps per degree of rotation are desired, i.e., 4 𝑡𝑠 per degree of rotation or 0.25° 

per timestep results in 𝑡𝑠𝑟 = 1440.  

The full UDF is provided in the thesis Appendix or available on the provided GitHub 

repo [84], but a summary will be provided. 

Firstly, in the actual ANSYS Fluent simulation, the user provides a series of input 

parameters named camber_n, where n is any number up to the maximum 

optimisation positions, with each value set as the percentage value of chord that the 

profile camber should be at position n i.e. for NACA5315 at 36° camber_1 would be 5 

for 10 optimisation points. For this thesis, n=24, as there was no benefit found to 

doing more, although most applications of the GA only used n=11, but the 

justification and study on this is explained in the subsequent chapters. The opt_count 

parameter and p parameter are also set in Fluent to define the number of 

optimisation positions (for calculating the angle between optimisation points) and 

the position of maximum camber respectively. Then some parameters relevant to the 

turbine are defined in the UDF, including the blade chord length, turbine radius, tip 

speed ratio, windspeed and %c LE offset. These are specific to the actual CFD turbine 

setup and co-ordinate frame so care should be taken to ensure these are accurate. 

During the simulation, the angular rotation per timestep is calculated based on the 

simulation timestep size and the turbine parameters. This is then used to calculate 

the deflection magnitude (using equations ) by calculating the current azimuthal 

angle, it’s respective camber value, and the next timestep camber value and then 

applying the difference to the blade shape. To apply the deformation, each timestep 

the aerofoil is translated to the global co-ordinate center such that the LE is at (0,0) 

using the matrix in Equation 3.26 

 
[
𝑥𝑁𝐴𝐶𝐴
𝑦𝑁𝐴𝐶𝐴

] =  [
cos(𝜙) sin(𝜙)
−sin(𝜙) cos(𝜙)

] [
𝑥𝐺𝑙𝑜𝑏𝑎𝑙
𝑦𝐺𝑙𝑜𝑏𝑎𝑙

] 3.26 
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then the aerofoil is deformed, using equations 3.21→3.25, before being 

translated/rotated back to the correct azimuthal position using the inverse of 

equation 3.26, shown using equation 3.27. 

 
[
𝑥𝐺𝑙𝑜𝑏𝑎𝑙
𝑦𝐺𝑙𝑜𝑏𝑎𝑙

] =  [
cos(𝜙) −sin(𝜙)
sin(𝜙) cos(𝜙)

] [
𝑥𝑁𝐴𝐶𝐴
𝑦𝑁𝐴𝐶𝐴

] 3.27 

3.4 Genetic Algorithm Optimiser 

A genetic algorithm, also often referred to as an evolutionary algorithm, is a type of 

sequential optimisation algorithm designed to evaluate and improve a specific 

criterion. These are often found in computer science journals as sorting algorithms 

[85], for example creating an optimal route, such as the travelling salesman problem 

[86] or finding optimal designs. It is based on the Darwinian Evolution Theory [87], 

primarily, the concept of natural selection[88, p. 444]. This theory states that more 

organisms are created than can survive due to limited resources, therefore in a bid to 

survive, variations in certain characteristics are developed in order to maximise the 

chances of survival. These organisms breed with other surviving variations and cause 

further variations, and sometimes random variations are seen, independent of 

parents, and this is known as mutations. The best adapted individuals continue to 

survive and thrive, whilst less-fit members of the population slowly get extinct, thus 

the term coined “Survival of the fittest” [88, p. 444]. 

This concept is yet to be applied to dynamically controlled vertical axis wind turbines 

(VAWTs) but would allow the prior research in dynamically controlled VAWTs to be 

expanded on. It is achieved by using the Genetic Algorithm to find the optimal 

aerofoil camber based on a selected maximum thickness of the aerofoil, within the 

user defined bounds at pre-specified positions. The magnitude of these positions is 

known as the azimuthal angle, calculated as the angle taken between the position 

where the blade chord is parallel to the freestream velocity and its current position, 

this value is signified by ϕ in Figure 1-5. These azimuthal positions are selected as an 

array of equally spaced positions in the turbine’s rotation i.e., at 18°, 36° … 306°, 324° 

to create a wholistic view of the deformation profile. The equally spaced positions are 
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used to improve the overall turbine performance by feeding the optimised cambers 

into the 2D VAWT Transient CFD simulation described in Chapter 3.3, to model the 

dynamic deflection of the blade as the turbine rotates. It is possible for the user to use 

as many optimisation positions as desired, at the cost of computational time. The 

chosen azimuthal angles are then used to calculate the theoretical angle of attack (α) 

on the turbine blade profile, based on the tip speed ratio (TSR) of the turbine and the 

wind freestream velocity. The steps to optimise each azimuthal position are outlined 

in the following sections.  

3.4.1 Flow chart and logic flow 

The general logic flow for the genetic algorithm crossover can be seen in Figure 3-12. 

It is relatively straight-forward in its methodology, with a multitude of logical 

arguments to ensure a reliable, accurate, and repeatable optimisation procedure. It 

starts with defining the algorithm constraints such as number of optimisation 

positions, crossover functions and the constraints of the turbine such as the TSR, 

blade chord and turbine radius. These parameters are then utilised to initialise the 

first generation of genotypes. Each of these genotypes are evaluated in the chosen 

tool (i.e. XFOIL, CFD or ANN) to calculate their torque, which is the fitness function 

of choice for the genetic algorithm in this work. Other fitness functions could also be 

easily implemented such as delaying the flow separation point on the aerofoil as 

much as possible, or maybe reducing the wake vorticity as much as possible, but 

these are outside the scope of this thesis. 

The genotypes are sorted by best to worst to assign the parent genotypes for the next 

generation before creating the offspring and mutated genotypes. A simple check is 

undertaken to ensure that the genotypes are within the defined optimisation bounds, 

and if not, some normalization is applied to set the value to the closest optimisation 

bounds. Finally, after a number of generations, a convergence check is undertaken, 

to see if there has been any change in torque coefficient. If there has been an increase 

in torque over the convergence period, the simulation continues until there is no 

longer any changes in tangential force coefficient.  
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Figure 3-12: Example Logic Flowchart for the Genetic Algorithm 

An example of the Genetic Algorithm’s logic flow in action is presented in Figure 3-13. 

The initial generation is seen in the first row, with the optimal genotypes (camber 

values) highlighted. The offspring aerofoils are presented in the second row. These  

offspring include the parent genotypes, an offspring at the centre point of the 

parents, ±5/10% variations in camber magnitude, and a randomised genotype. 
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Figure 3-13: Example of offspring genotype generation 

 The crossover variation is to enable searching around local optima to increase the 

algorithm’s searching efficiency. The randomisation is crucial to enabling a large 

breadth of search in the algorithm and prevents premature convergence on a local 

optimum aerofoil, rather than the overall optimal aerofoil. The crossover functions 

allow the algorithm to converge onto the optimal solution simultaneously, until the 

convergence criteria are met. In this scenario the convergence criteria is defined as 

either no change in the tangential force coefficient, as that is the value being 

optimised, for the last twenty-five generations, or until an upper limit to the number 

of generations is reached. Once this limit is reached, the algorithm is terminated, and 

the latest Parent A phenotype is taken as the optimised value. The reasoning for 

utilising twenty-five generations for the residual calculation is to ensure that there is 

sufficient time for any sudden changes in the searching for optimal aerofoils, based 

on the assumption that after 25 generations of no changes, the optimal would have 

been found. The 25 generations value was chosen as it was found that any less 

resulted in large variance in outputs, when the GA was repeated at certain azimuthal 

positions i.e., optimal camber at 36° varied across three runs (7.8%c, 9.8%c, 6.3%c). 

Any larger values resulted in excessive algorithm runtime without any 

improvements, the optimisation would plateau, and be considered as an optimal 

result, wasting computational resources and time for no further benefit. 
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3.4.2 Tuning the Genetic Algorithm 

It should be noted, that based on Equation 1.19, the lift would not contribute to the 

tangential force generation at azimuthal angles of 0°, 180° and 360°, based on the 

reference frame. Therefore, the only way to maximise the tangential force at these 

angles, is to minimise the drag contribution. As the induced drag is increased from 

higher lifting profiles, such as a cambered profile, the conclusion is that a simple 

symmetrical aerofoil would be the optimal aerofoil at θ = 0°, 180° and 360°. Other 

parameters are tuned for the GA, including the chance of having mutations occur, 

the bounds of the algorithm and the mutation magnitudes. There are arrays of studies 

on the decision of these parameters within this thesis, and the complex factors that 

can affect these decisions. 
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4 NACA Aerofoil Camber Optimisation of a 

VAWT Blade Deformation Profile at 

Predefined Angles of Attack using XFOIL 

4.1 Introduction 

This chapter will outline the investigation into the benefits, drawbacks and 

limitations of utilising a genetic algorithm to optimise a transiently deforming blade 

profile for the VAWT design described in Section 3.2. The study's primary objective 

is to optimise the performance of the VAWT blade aerofoil profile through 

computationally efficient and inexpensive methods. XFOIL [89] is utilised as a rapid 

analysis tool to calculate and evaluate the performance of various genotypes, XFOIL 

is used to predict each potential aerofoil’s tangential force coefficient within the 

genetic algorithm optimisation process with minimal computational cost. Whilst 

XFOIL is well established as an aerofoil analysis tool below a Mach number of 0.4 and 

in the linear angle of attack range [90], it has difficulties capturing viscous effects 

such as flow separation at high angles of attack and transitional flow. A commercial 

Computational Fluid Dynamics analysis software is therefore utilised to facilitate a 

more accurate evaluation of the optimised turbine shape profile in situ of a rotating, 

transient VAWT simulation. This chapter details the analysis between these methods, 

considering the reliability of XFOIL’s predictions and provides recommendations on 

the utilization of XFOIL in future work.  
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4.1.1 Xfoil Specific Genetic Algorithm Implementation 

To evaluate this theory, it is crucial to understand the detailed workings of a GA and 

its typical components. All files created as a result of employing this methodology 

can be found on GitHub at  [91]. Firstly, the implementation of the GA in XFOIL is 

discussed, followed by some of the modifications made to the GA workflow which are 

unique to it’s implementation in XFOIL including geometry generation, turbine 

conditions and limitations.  

4.1.2 XFOIL Genetic Algorithm Workflow 

XFoil was used as the aerofoil performance calculation tool for the GA. It was chosen 

due to its robust accuracy and flow analysis performance as shown by Morgado et al. 

[92] and it has a relatively inexpensive overhead, allowing for the GA to be run with a  

fast turnaround. Additionally, due to its command line-based process, it is possible 

to implement within batch scripts to allow for an automated and input free 

optimisation process. 

To create the GA, a series of MATLAB functions are required, and these include: 

i. A MATLAB function for creating a .dat file containing the XY coordinates of 

vertices, depicting the aerofoil profile to be assessed, defined using the NACA 4-

Series profile equations (discussed earlier in Section 1.3.1). 

ii. A MATLAB function for inputting the filename for the respective aerofoil into a 

script that is readable by Xfoil, along with defining the simulation parameters 

such as the Mach and Reynolds number. 

iii. A MATLAB function that parses the output data from Xfoil and imports it into a 

MATLAB session for data analysis and recombination. 

iv. A MATLAB function for the mutation/crossover of parent genotypes to generate 

offspring. 

Function (i) would use the equations detailed in the thesis methodology for a NACA 

4-series aerofoil to calculate the co-ordinates of the aerofoil surface. XFOIL limits the 
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number of points per curve file to 494, so that was selected as the number of points 

to span the aerofoil chord, such that if the chord is a unit length (1m), each point 

would have an x-value in the NACA frame; with x=0 at the leading edge and x=1 at the 

trailing edge, increasing in value by 1/494 for each successive position i.e. If one was 

to calculate the co-ordinate of the 5th point, the value for x that is submitted into the 

respective NACA equations would be 5/494. 

Function (ii) acts as a setup script for XFOIL, it sets the angle of attack, Mach number, 

Reynolds number using Equations 1.18, 1.20 and 1.21 respectively for each 

optimisation position. The function then proceeds to import the previously generated 

aerofoil co-ordinates file, and instructs XFOIL to run the solution. 

Function (iii) uses regular expressions to read the output file from XFOIL (containing 

the performance polars i.e. lift and drag coefficient) and the simulation’s operating 

conditions as specified in Function (ii). The complex regular expressions allow for 

the imported text file to be turned into a tabulated data set and then manipulated as 

needed to be feed into the optimisation algorithm or utilised for figure creation, the 

full script outlines the expressions and tabulation procedure in the code repository 

[91]. 

Function (iv) is the most crucial function for the genetic algorithm setup. This 

function takes the working dataset (containing the tangential force coefficients 

calculated using Equation 1.19 and camber of each generation’s phenotypes) and 

sorts them by highest to lowest tangential force coefficient.  

This sorted array is used to create the offspring candidate of the next generation from 

the two current most optimal candidate aerofoils, and mutations and variations of the 

offspring are utilised to create a new array of optimal candidates for testing. This 

function also evaluates convergence of the algorithm to establish the point at which 

the optimal candidate is found and the optimisation process can be terminated.  

These functions are combined into one script to ensure consistency, and a “for” loop 

is iterated from the first non-zero angle of attack to the (n − 1)th term. In this study, 

the total number of optimised positions (n) is varied, but if the selected number of 
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points was 10, then the profile would be optimised every 36° of azimuthal rotation. 

Azimuthal angles multiples of 180° are not optimised due to the assumptions 

discussed in Section 0, where at 0°, 180° and 360° the camber would be negatively 

dominated by drag, so it is not necessary to run the algorithm at these angles of 

attack. 

It was found that MATLAB would develop what is assumed to be a memory leak and 

would often stop the loop after an undetermined number of generations at an 

arbitrary number of angles of attack.  This issue was attempted to be resolved in a 

multitude of ways, including running on multiple computers and running for less 

generations before restarting the computer. It was ultimately found that the optimal 

method was to create a function within the Genetic Algorithm script to run the 

optimisation process with ease and successfully. This allowed for the memory to be 

cleared and reset between each optimisation generation, thus preventing data 

conflicts and the resultant corruption.  

For the sake of efficiency, it is crucial to automate the process of running this 

function in parallel. Due to the development environment being based on Windows 

10, it was found that creating Windows Batch Files would enable the user to easily 

run separate instances of the function at the same time in the command terminal, 

and these scripts could be easily implemented on alternative operating systems such 

as Linux. These batch files required a folder structure as follows: 

Main Source Folder -> Batch_gen.m + Output Data Folder 

When one runs the batch_gen.m function with the required input arguments, it will 

create a series of batch files that run the GA function, alongside a single batch file 

called Parallel.bat. This parallel file sets the affinity of the optimisation process to 

ensure each process has sufficient computational power, rather than all the 

processes potentially sharing the compute power, reducing the chances of memory 

and file corruption.  

The Parallel.bat GA script will therefore run at various AoA simultaneously, and once 

the desired convergence criteria (in this study the peak moment must not have 
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changed by more than 1% in the previous 25 generations) is met, the data and 

variables will be saved in an appropriately named MATLAB file, and images of the 

GA process is saved.  

4.1.3 Genetic Algorithm Modifications in XFOIL 

A handful of features of the Genetic Algorithm workflow are discussed in Section 3.4 

have been modified specifically for suitability with XFOIL, due to the specific 

configuration and requirements of using XFOIL. One of the most important 

variations is the number of generations used for the convergence checking, which 

required extensive generations when using XFOIL. The algorithm was tested with one 

generation, 10 generations and 25 generations as the sampling count. The turbine 

operating conditions used to evaluate the different convergence checks matched the 

turbine design discussed in Section 3.2, namely a two-bladed turbine with a radius of 

0.85m, utilising a NACA0015 blade profile with a chord length of 0.225m, wind speed 

of 7 m/s, and a tip speed ratio of 2.29. These values are chosen as they are the 

characteristics of the turbine design and operating conditions used by many 

established and impactful studies [23], [80], [93], [94], and is, therefore, a well-

understood turbine that will allow for deep insights into the applicability, 

performance and reliability of the Genetic Algorithm optimised turbine blade profile 

technique. These tests were run three times for each configuration, namely Test A, 

Test B and Test C as an example to ensure consistency and reliability in the genetic 

algorithm optimisation workflow. 

4.1.3.1 XFOIL Normalisation Effect 

To select the most appropriate and efficient method of calculating aerofoil 

characteristics such as lift, drag, and, as a result, the tangential force coefficient, it is 

important to understand how XFOIL interprets the geometrical inputs created in the 

genotype candidate creation due to the non-unit-length chord of the turbine blade 

profile. 
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According to the XFOIL User Guide, the lift coefficient is not normalised with the 

chord length [89]. There is a weak Reynolds number effect on the lift due to the chord 

length of the turbine, but the chord length significantly impacts the drag due to its 

coupling with the chord Reynolds number [89]. Extensive studies have shown that 

increasing Reynolds number should reduce drag coefficient and increase lift 

coefficient for an aerofoil [95], [96]. As a result, when instructing XFOIL to import an 

aerofoil geometry file (.dat file), if the chord length is less than a unit metre, XFOIL 

will largely underpredict the lift coefficient and over-predict the drag [97]. The user 

guide states that a solution to this issue is to increase the Reynolds number 

proportionally with a reduction in the chord length. According to the user guide 

theory, this should weakly increase the lift coefficient and decrease the drag 

coefficient in line with what would be expected of a unit-length aerofoil. The guide 

also mentions that enabling normalisation in the XFOIL menu will scale the imported 

aerofoil up to unit chord length, and therefore, the imported aerofoil lift and drag 

properties of the aerofoil should match that of a unit chord aerofoil if it were 

generated within XFOIL’s geometry generation.  

To ensure the XFOIL user guide’s accuracy, a series of solution settings combinations 

were tested for a NACA5315 aerofoil at the equivalent flow conditions of the VAWT 

described in Section 3.2 at an azimuthal angle of 36°. This aerofoil was selected due 

to XFOIL’s geometry generation methods; namely that when creating a NACA aerofoil 

using the built-in tools, an integer value is required to be provided for all 4 sections 

of the NACA 4-Series code i.e. you cannot request a camber of 4.335%c, it must be 4% 

or 5%. The 15%c thickness was chosen as that is the same thickness as the original 

turbine and is used for all other sections within the thesis (ensuring consistent 

solidity, as that can alter the optimal tip-speed ratio otherwise), and the 30%c position 

of maximum camber was selected as it is simply a commonly selected option for most 

examples. The 36° azimuthal position was implemented as it is in the linear region of 

the aerofoil’s angle of attack – Cl range still, ensuring that the aerofoil would not be 

stalled, ensuring that any conclusions drawn are solely based on XFOIL setup 

parameters, rather than differences in XFOIL’s simulation abilities. 
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The configurations included an increased chord length aerofoil (1m rather than 

0.225m), normalisation enabled in the XFOIL menus, and scaling the Reynolds 

number appropriately according to the .dat chord length. These are all recommended 

techniques for normalising non-chord length aerofoils, either in common knowledge 

or provided in the XFOIL user manual. The five test scenarios were as follows: 

1. Original 0.225m chord length aerofoil geometry file 

2. Original 0.225m chord length aerofoil geometry file with a Reynold number 

set using a chord length of 1/0.225 

3. Original 0.225m chord length aerofoil geometry file with normalisation 

enabled in the XFOIL menus 

4. Original 0.225m chord length aerofoil geometry file with normalisation 

enabled in the XFOIL menus and the increased Reynolds number 

5. Generating the aerofoil geometry within XFOIL 

The MATLAB geometry and XFOIL profile were both NACA5315 aerofoils, as this 

relatively high camber design will accentuate any potential method irregularities, 

with the base flow conditions listed in Table 4-1. 

Table 4-1: Flow Conditions for different XFOIL setup test scenarios 

Case Type: 1 2 3 4 5 

Angle of Attack (°) 10.746 

Mach Number 0.0474 

Reynolds Number in 

XFOIL 
2.34 e+5 1.040 e+6 2.34 e+5 1.040 e+6 2.34 e+5 

Effective Chord 

Length in Geometry 

(m) 

0.225 4.44 0.225 4.44 1 

XFOIL 

Normalisation? 
No No Yes Yes No 
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The resultant lift and drag coefficients for the NACA5315 are shown in Figure 4-1. The 

original workflow (black bar) disagrees significantly with the aerofoil generated by 

XFOIL’s input functions. This signifies that the imported .dat file with a chord length 

of 0.225m significantly underpredicts the lift coefficient and drastically over-predicts 

the drag coefficient, this is suspected to be due to the change in profile drag from the 

larger chord lengths, additionally, the local Reynolds number would vary altering the 

transition length on the aerofoil surface. If the Reynolds number is scaled 

accordingly by a factor of 𝑐−1, then, according to the XFOIL documentation [98], this 

should accurately report the lift and drag polar, but it is clear this is not the case. 

Utilising XFOIL’s built-in normalisation command provides significantly improved 

results. The lift coefficient for the normalised .dat geometry is slightly below the 

NACA5315 generated in XFOIL, as is the case for the drag coefficient. Again, 

increasing the Reynolds number proportionally shows better agreement with the 

XFOIL lift coefficient but severely underpredicts the drag coefficient. It is therefore 

concluded that importing the true-to-scale (c = 0.225m) file generated from MATLAB 

and then applying normalisation within XFOIL is the most suitable method, as the 

lift-to-drag ratio (which dictates the tangential force coefficient) is closest to that of 

the XFOIL generated profile. Using the XFOIL generated profile as the baseline is a 

reliable and safe choice, as it is a well-established and robust program that has been 

extensively utilised in the literature for aerofoil lift and drag evaluation [99], [100], 

[101] and is well validated [92].  
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Figure 4-1: Comparison of NACA5315 Aerodynamic Coefficients for Different XFOIL Setup 
Methods 

To further ensure the validity of the XFOIL methodology for implementing the GA 

optimisation, the most robust geometry method from the XFOIL setup studies 

(MATLAB Geometry generation with normalisation enabled in XFOIL) is compared 

to a CFD simulation of a NACA2412 blade as completed by Hetyei et al. [102]. The 

study was using the conditions of 0° and 10° angle of attack for a free stream velocity 

of 42.89 m/s, for air with a density of 1.2041 kg/m3 and a kinematic viscosity of 

1.511083 × 10−5 𝑚2/𝑠. The Reynolds number provided was 2.85 × 106, meaning the 

chord length is 1m. This was implemented into the MATLAB geometry generator and 

then the MATLAB XFOIL interface detailed in Section 4.1.1. The resultant values from 

XFOIL and the literature are presented in Table 4-2. 
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 Lift Coefficient at 0° AoA Lift Coefficient at 10° AoA 

Literature [102](CFD) 0.23217 1.253836 

XFOIL Method (This work) 0.2479 1.3195 

Percentage Difference 6.78% 5.23% 

Table 4-2: Lift Coefficient comparison between XFOIL and published literature [102] 

Whilst the difference between XFOIL and the CFD method is not negligible, it is 

somewhat expected due to XFOIL’s design of a panel method, which simplifies 

complex flow phenomena such as turbulence, laminar to turbulent transition and 

separation. These simplified models will introduce some assumptions which can 

result in overpredicting lift coefficients, but the results are considered acceptable for 

the significant increase in computational speed, which is ideal for this preliminary 

GA camber profile optimisation study.  

4.1.3.2 Limitations with XFOIL based optimisation 

One of the disadvantages of utilising XFOIL as the aerofoil performance analysis tool 

is the difficulty in the convergence when separated flows are present. This is seen in 

lower TSR turbines (TSR < 3), where the theoretical AoA is often within the deep stall 

region [80]. The solution would be to apply this methodology to higher TSR turbines, 

where the effective AoA is often lower, but that severely limits the overall 

applicability of XFOIL. Some specialised techniques to aid the method's reliability 

include ‘initialising’ the solution by solving at an angle of attack of 1° before 

calculating the lift and drag coefficients at the target angle of attack and setting the 

iteration count to 1000. 1000 iterations is chosen as it allows for sufficient opportunity 

for the solution to converge, but effectively limits the timeout to ~15 seconds. Finally, 

if XFOIL can still not get the aerofoil performance at the desired flow conditions, the 

corresponding torque value is set to -9999 in MATLAB. This effectively creates NULL 

values for the problematic phenotypes, removing it from the pool of potential 

candidates. This is implemented as the phenotype is clearly unsuitable for use in the 
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turbine, and should therefore not be considered, as XFOIL is unable to converge as a 

result of significant flow separation.   

Due to the lack of transient effects in the instantaneous XFOIL optimisation 

technique, it is crucial to verify and validate the XFOIL-based optimised camber 

profile by using a CFD solver, such as ANSYS Fluent. CFD is used instead of 

experimental data due to the increased time and monetary requirements of creating 

a physical flapping turbine model compared to CFD, and it allows for substantial 

flexibility in the optimisation, such as testing alternative positions of maximum 

camber.  

4.1.3.3 Turbine Conditions 

The GA is applied to the turbine investigated by El Sakka et al. [80] and Li et al.[81], 

which have been experimentally evaluated at a series of TSRs. The turbine 

parameters are presented in Table 4-3. 

Parameter Aerofoil 

Profile 

Aerofoil 

Thickness (m) 

Chord 

Length (m) 

Turbine 

Radius (m) 

Setting 

Angle (°) 

Value NACA0015 0.035 0.225 0.85 6 

Table 4-3: Turbine Parameters 

The setting angle is defined as the position that the blade is at in relation to the 0 

azimuthal angle. For reference, a 0° setting angle would correspond to the chord 

being parallel to the freestream flow at ϕ (Azimuthal Angle) = 0°, so a 6° setting angle 

would result in rotating the blade leading edge outwards (away from the turbine 

centre). For a graphical representation, please refer back to Section 0. These turbine 

parameters are input to the XFOIL input and aerofoil profile generation functions to 

define the angle of attack, Reynolds Number, Mach number, and aerofoil shape, 

based on the formulae previously discussed.  
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4.2 XFOIL-Based Genetic Algorithm Results 

With the turbine parameters described in Section 4.1.3.3, the GA is run at a TSR of 

2.29 to replicate the flow physics best and compare it with the validated CFD case 

found in Section 3.2. An array of different variations of configurations for the GA are 

tested, including using a turbine setting angle of 6° as the validation CFD case uses 

and tested at a 0° setting angle. Furthermore, these setting angle cases are tested for 

both an original geometry coordinates definition with the turbine chord length 

(0.225m) and with aerofoil normalisation enabled within XFOIL to understand the 

impact of this setting and deciding which is most appropriate, by comparing with 

generating the aerofoil profile within XFOIL’s internal design scheme. Additionally, 

alternative angle of attack formulations including an induced velocity technique and 

a more complex CFD based profile by Elsakka et al. are detailed and used to 

approximate and apply the genetic algorithm to a more realistic angle of attack. The 

standard angle of attack formulation is based on the theoretical angle of attack 

calculated using the formulae described in Section 0, this is not the case in the turbine 

scenario, as the energy extraction in the upstream rotation results in a lower 

freestream velocity impacting the downstream section, combined with the wake 

impact on flow vorticity and direction. Accurately implementing the changes in the 

flow vorticity, turbulence, pressure, etc. from the upstream optimised blade’s wake 

is outside the scope of this work but would be an interesting avenue for exploration 

in future works. 

4.2.1 Optimisation Limits Investigation (Setting Angle = 6°) 

The turbine parameters state a setting angle of 6°, which was incorporated in the GA 

angle of attack definition by simply adding the setting angle to the calculated 

theoretical angle of attack (see Section 0 for details on how this angle is calculated). 

This was used to establish some of the GA bounds for later investigations, such as 

whether a 0° setting angle would increase the overall turbine performance and what 

would be appropriate bounds for the optimisation search. 
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The initial test of the Genetic Algorithm was run for both a 0° and 6° setting angle to 

investigate if a ±5%c camber magnitude bound was appropriate. This bound was 

tested to limit the range of motion of the blade flapping, which can assist in reducing 

the power consumption of the motors driving said motion and improve the overall 

turbine performance and efficiency in situ. After the initial testing, it was found that 

for the 6° setting angle, the GA would hit the predefined camber constraints  when set 

to a ±5%c limit and, as a result, would reduce the overall performance of the GA. 

Therefore, it was also evaluated with a camber limit of ±10%c, this was found to 

validate the hypothesis of the GA trying to exceed the predefined bounds. If we take 

the optimisation at ϕ = 108° as an example, the ±5%c limit is chosen as the optimised 

camber, but when allowed to explore values of ±10%c, the found optimal is ≈ 10%c. 

The optimisation positions with a camber value greater than ±5%c also resulted in a 

larger tangential force coefficient.  

These points selected are placed every 36° of rotation and are chosen as they are 

evenly dispersed through the entire blade’s rotation, whilst maintaining enough 

points to reflect the primary points of interest in the rotation such as at 108° which 

was approximately the ximum torque generation, but also covers other points of 

interest such as around the 180° position. If this number were to be increased, 

computationally cost will increase proportionally, but it might not provide further 

overall benefit to the turbine’s power generation ability. Linear interpolation is 

applied between the optimised positions to provide a gradual deformation between 

each camber magnitude. The linear interpolation was found to be appropriate as it 

provides the most flexibility in implementing the deformation profile in CFD, but also 

allows for the camber profile at the optimised positions to be exactly as intended; if 

some form of polynomial curve fitting were applied (instead of linear interpolation) 

to have a continuous equation describing the deformation, the positions of large 

camber increase or decrease rate would overshoot, resulting in large camber 

magnitudes than the GA found, causing a reduction in relative performance. 

Figure 4-2 shows the tangential force coefficient for the NACA0015, ±5%c 

optimisation bounds and ±10%c optimisation bound at the optimised azimuthal 



 

80 

positions at a 6° blade setting angle. The overall average tangential force coefficient 

for the GA Optimised deformation profile is significantly better than that of the 

symmetric NACA0015 aerofoil at all optimised positions. This conclusion is valid for 

both the ±5%c and ±10%c limits. This is a result of not only the increased lift to drag 

ratio of the cambered aerofoils in comparison to the NACA0015 aerofoil, but further 

emphasised by the fact that only the optimised profiles were able to report the torque 

values. By not reporting torque values (especially emphasised at 108° azimuth), it 

implies that XFOIL is unable to converge the simulation, which is a result of 

significant separation of the aerofoil. This in turn implies that the cambered aerofoil 

has significantly less separation than the NACA0015 at some of the optimisation 

positions such as 72°, 108°, 144° and 252°. The positive tangential force generation at 

0°, 180° and 360° is a result of the 6° setting angle, but for the 0° blade setting angle it 

is expected to have no tangential force generation (as a symmetric aerofoil produces 

no lift at 0° angle of attack). 

 

Figure 4-2: Tangential Force Coefficient for 6 degree setting angle with NACA0015, ±5%c 
Optimisation Bounds and ±10%c Optimisation Bounds profiles 
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Figure 4-3 shows the aerofoil maximum camber magnitude at each optimised 

position for the ±5%c and ±10%c optimisation bounds. Looking at the 72° and 252° 

optimised camber positions shows that both optimised camber positions have less 

separation than the symmetric NACA0015 aerofoil. Interestingly, the 144° position 

only has a converged aerofoil for the ±10%c bounds, which suggests that one cause 

of reduced separation could be the dipping effect of the leading edge to the incoming 

flow, as a 5%c bound was insufficiently cambered to improve the lift enough to offset 

the increase in profile drag. It is expected that the optimisation positions that 

correlate with a lower angle of attack would have the highest camber magnitude, as 

these positions are less susceptible to the aerofoil stalling. This also explains why the 

5%c bound was hit for all optimisations in the downstream rotation and in the 

upstream region, where the angle of attack was significantly reduced enough due to 

the setting angle, as the aerofoil could produce a better lift to drag ratio. 

 

Figure 4-3: Aerofoil maximum camber value for 6 degree setting angle with ±5%c Optimisation 
Bounds and ±10%c Optimisation Bounds profiles 

When tested at a setting angle of 6° as seen in Li et al. [81], the tangential force 

coefficient is lower at the downstream azimuthal positions (ϕ > 180°), as a result of 

the lower angle of attack experienced by the blade, due to the positive setting angle 
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reducing the blade angle of attack magnitude and the effects of the blade-wake 

interaction. This will result in uneven turbine loading, which is one of the issues 

plaguing VAWTs, and this work reduces, by significantly improving the downstream 

tangential force generation and reducing overall tangential force variance in the 

turbine rotation. Therefore, it is decided that the GA is best suited to a zero-degree 

setting angle to alleviate this uneven weighting of the tangential force contribution 

and for the simplicity of application when incorporated into the rotating turbine CFD 

model in ANSYS Fluent. In addition, it should be noted that due to XFOIL’s solution 

methods, it struggles in the stall scenarios, as mentioned in Section 4.1.3.1. This 

resulted in some optimisation positions not completing as the Genetic Algorithm 

process would crash due to XFOIL's inability to complete lift and drag evaluations. 

An example of such is when the blade had a 6° setting angle, with the peak angle of 

attack = 31.4° at ϕ = 108°, evidenced by the Tangential Force Coefficient being zero at 

these positions. This is an inherent limitation of XFOIL for the high angle of attack 

scenarios, the only method that would circumvent the issue would be to test at 

significantly higher tip speed ratios, as the angle of attack would be sufficiently 

reduced to ensure XFOIL is able to converge. Alternatively, these positions, wherein 

the GA is unable to converge, could be ignored for the camber profile creation and 

instead the camber value could be interpolated between the last and next optimised 

position. Taking the 108° azimuthal position example again, that would suggest that 

the camber value would be ~9%c, by interpolating between the ~9%c camber 

optimum found at 72° and the same at 144°. This technique was employed for 

calculating the mean tangential force coefficients to alleviate the NACA0015’s 

difficulty to converge, which would heavily skew the statistics. 

Table 4-4  contains the period averaged tangential force coefficient for the standard 

NACA0015 aerofoil compared to the GA optimised camber profile for the ±5%c and 

±10%c camber bounds.  

To calculate the mean tangential force coefficient value for each dataset, the 

Equation 4.1 is used to calculate and to calculate the relative time averaged 

performance, Equation 4.2 is used. 𝐶𝑡,𝑖 is the instantaneous torque coefficient, n is 
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the number of optimised / tested positions and 𝐶𝑡,𝑟𝑒𝑙 is the relative tangential force 

coefficient and 𝐶𝑡,𝑁𝐴𝐶𝐴0015 is the average tangential force coefficient of the NACA0015. 

𝐶𝑡 =
∑ 𝐶𝑡,𝑖
𝑛
𝑖=0

𝑛
 

4.1 

𝐶𝑡,𝑟𝑒𝑙 =
𝐶𝑡̅

𝐶𝑡,𝑁𝐴𝐶𝐴0015
 

4.2 

The relative difference to the standard aerofoil is provided to quantify the significant 

improvement in the turbine performance. Both optimised profiles have significantly 

higher average tangential force coefficients than the NACA0015 profile, with the 

±10%c case performing considerably better than the ±5%c case. This is a result of two 

factors; a “missing” optimisation point at 144° and secondly, the camber consistently 

being limited to the maximum bounds at all the optimised positions. The ±5%c case 

not converging at an azimuthal angle of 144° is hypothesised to be the result of the 

leading edge not being drooped enough to accommodate the high angle of attack 

(21.6475°) at that optimisation position. The impact of regularly reaching the 

optimisation bounds is that the tangential force coefficient is also stunted, shown by 

the larger magnitude of the tangential force coefficient seen in Figure 4-2. 

Aerofoil Average Tangential force 

Coefficient 

Relative Time Averaged 

Performance (%) 

NACA0015 0.1239625 100 

GA (±5 %c) 0.24954444444444446 201.3 

GA (±10 %c) 0.34784000000000004 280.6 

Table 4-4: Tangential Force Coefficient Comparison for different Genetic Algorithm Bounds with a 
6° Blade Setting Angle  
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4.2.2 Setting Angle Comparisons 

The original turbine utilised a setting angle of 6°. This is selected as it “corresponds 

to the maximum power coefficient” [81] for the turbine being optimised, assuming 

that it increases the average power coefficient, but without any details for this 

selection reasoning, it is difficult to infer whether this premise is accurate. Figure 4-4 

shows the angle of attack against the azimuthal angle for a turbine operating at a tip 

speed ratio of 2.29. The 0° azimuthal position is given as the point at the top of the 

turbine’s rotation, where the wind travels parallel to the blade’s chord, with the 

leading edge upstream of the trailing edge. The 0° setting angle shows a perfectly 

symmetrical distribution about the azimuthal angle of 180°, where the angle of attack 

flips due to the turbine blade rotating in the downstream period of rotation. The angle 

of attack of 6° setting angle is offset vertically by 6°, resulting in a higher peak angle 

of attack, but also a higher minimum angle of attack. In theory, this practice can help 

to improve the power generation in the downstream period of rotation due to less 

time spent in the regions of significant static stall of the blade [103].  

 

Figure 4-4: Angle of attack Comparison for a 0° and 6° setting angle of the turbine blade. 
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4.2.3 0° Blade Setting Angle 

Running the GA with a 0° setting angle gives a better understanding of the GA 

methodology and applicability. Figure 4-5 shows the comparison of the tangential 

force coefficient for the NACA0015 and ±5%c and ±10%c optimisation bounds, with a 

setting angle of 0°  

Figure 4-5 shows the results of the tangential force coefficient from the optimisation 

process compared to the standard NACA0015 aerofoil, with a 0° setting angle. One of 

the key takeaways is that the NACA0015 is completely stalled at ϕ = 108°, 144°, 216° 

and 252°, shown by the 0 tangential force coefficient as XFOIL is unable to converge 

the solution. In contrast, the optimised shapes are not only able to have their 

performance evaluated but also show significant improvements overall. Every 

optimisation position is higher than the symmetric NACA0015, particularly for the 

±10%c bounds. The symmetric profile is expected, as the use of the theoretical angle 

of attack means that the angle magnitude is symmetric at 180°, as seen in Figure 1-6 

in Section 1.  
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Figure 4-5: Tangential Force Coefficient Comparison for NACA0015, ±5%c 

Optimisation Bounds and ±10%c Optimisation Bounds profiles 

The camber plot in Figure 4-6 for the ±5%c and ±10%c optimisation also suggests that 

the optimisation typically finds the highest possible camber that is not fully stalled at 

each angle of attack, and the magnitude of this camber reduces after the peak angle 

of attack is reached. It is also clear that the ±5%c bounds do not provide a large 

enough searching space for the optimisation algorithm, with all the optimisation 

positions found to be greater when ± 10%c bounds are tested.  
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Figure 4-6: Camber magnitude at the optimised positions for different optimisation bounds of 
±5%c and ±10%c 

 

Table 4-5 further demonstrates the strength of the GA optimisation procedure, with 

the GA process showing significant improvements over the NACA0015 based on the 

averaging of the instantaneous XFOIL results.  

Aerofoil Average Tangential force 

Coefficient 

Relative Time Averaged 

Performance (%) 

NACA0015 0.0747 100.00 

GA (±5 %c) 0.2788 372.23 

GA (±10 %c) 0.3431 459.3 

Table 4-5: Mean Tangential Force Coefficient for 0 degree setting angle comparison for ±5%c 
Optimisation Bounds and ±10%c Optimisation Bounds profiles 
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4.2.4 Convergence Conditions 

Figure 4-7 shows the variation in instantaneous tangential force coefficient of the 

basic GA configuration, taken from XFOIL after the GA optimisation procedure at the 

6th optimisation position, which demonstrates the variation within each convergence 

condition across the three runs. The 6th position was selected as it was often found to 

be the most problematic optimisation position to optimise, and would provide the 

most hardened conclusions as a result. This position was at an azimuthal angle of 144° 

or in the case of this turbine the angle of attack was 21.65° with a Reynolds number 

of 169845 and a Mach number of 0.032508.  The conditions were altered by changing 

the number of generations that the convergence was checked over, with 3 values 

tested; n-1, n-10 and n-25, such that n is the current generation count. For example, 

n-1 would imply that if the optimal camber of the second generation is less than 1% 

larger than the first generation’s optimal camber profile, the optimisation would be 

considered converged and would terminate. n-25 would comparatively start 

comparing between the 1st generation and 26th generation. 

Figure 4-8 shows the same variations but on a reduced scale, allowing for a more in 

depth comparison. For the single generation of convergence checking method, it was 

found that the final camber value was different for one of the tests with one 

generation of convergence checking. However, the resultant torque value is much 

lower than the 10 and 25-generation cases, validating the hypothesis that insufficient 

generations to converge results in a non-global optimised value for camber. The ten 

generations case had a different conclusion, with each test providing a different 

torque, showing that the optimisation proves still insufficient generations for 

optimisation. The 25 generations case had the smallest spread in the torque 

generation, and the highest overall torque produced, so is clearly the most suitable 

convergence method for further tests. It is not necessary to run more convergence 

periods than 25, as the 25 generation case consistently converged, without the need 

for further generations.  
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Figure 4-7: Variation in optimised tangential force coefficient for different convergence conditionsp 

 

Figure 4-8: Reduced scale view of variation in optimised Tangential Force Coefficient for different 
convergence conditions. 
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Figure 4-9 is a plot showing the progression and gradual increase in torque as the 

optimisation generation count increases. During the period of generation from 15-25, 

the torque is constant but then increases slightly further thereafter, emphasising that 

a convergence range of 10 generations is insufficient and would lead to the premature 

conclusion of the optimisation process. 

 

 

Figure 4-9: Optimisation Convergence Plot for 1, 10 and 25 Convergence Generations. 

It is crucial to understand that the setup of the genetic algorithm is not the cause for 

the variation in optimal camber for each test. This is purely a result of the XFOIL and 

MATLAB interface creating memory leaks and memory corruption within the testing 

environment, resulting in very minor variations in the optimal camber. For example, 

when running the genetic algorithm optimisation process, one of the optimal camber 

values was found to be 7.8489 %c. Repeating the XFOIL run for this case by simply 
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specifying the input camber and allowing the scripts to generate an identical set of 

input files for XFOIL meant that the reported torque in the GA (0.4613) was not the 

same as that in the standalone XFOIL run (0.4598). As this minor error is consistent 

throughout the optimisation process, every value would be comparably offset and, 

can therefore still produce reliable insights into the validity of applying the genetic 

algorithm optimisation of a deforming VAWT blade camber profile.  

The other modification tested in the XFOIL-based genetic algorithm was in the actual 

convergence condition itself. The difference across the sample range was considered 

converged when the difference in tangential force coefficient was less than 0.01. This 

value was selected as it is small enough to ensure the global optima is found, but 

coarse enough to avoid diminishing returns and excessive generations. If the value 

for convergence is too small, it could also cause the algorithm to run continuously, 

as the convergence criteria value (tangential force coefficient difference) could 

simply be smaller than the variance in the calculated tangential force coefficient. 

This could also be the case if using a percentage-based convergence criteria, as the 

criteria could be reached prematurely unless it is set to be very small. For example, 

the calculated tangential force coefficient is calculated to 6 decimal places (due to the 

rounding for the lift and drag coefficients reported from XFOIL), so if one were to set 

the difference to 0.000001, then the likelihood of convergence is significantly 

reduced.  

4.2.5  Sampling Count Analysis 

To understand if the GA is properly optimising the overall camber profile, it is 

important to test at an increased number of sampling points, as it will allow us to 

infer if the reduced sampling count significantly hampers the potential performance 

gains. Figure 4-10 shows the camber of the optimisation procedure for 10 

optimisation points in the turbine rotation (every 36°) or 20 optimisation points (every 

18°). Running additional sampling points shows that the optimisation count makes a 

negligible impact on the overall camber profile, with the only significant difference 

being how quickly the optimal camber profile reaches 10%c. As a result, it is decided 
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that 10 optimisation points is sufficient for generating the camber deformation 

profile, due to it’s very similar performance to the 20 point optimisation, but with half 

of the computational resource requirements. 

 

Figure 4-10: Comparison for number of Sampling points between every 36° and every 18° of 
azimuthal rotation 

4.2.6  Reynolds Number Sensitivity 

It is crucial to understand how the GA Optimised VAWT blade profile might work in 

different Reynolds number ranges, as it allows for the method to be applied to the 

same turbine, but placed in various regions of differing wind conditions. Considering 

Equation 4.3) below, it is evident that the Reynold number is directly proportional to 

fluid density (ρ), speed (U) and characteristic length (l), and inversely proportional to 

the fluid’s viscosity (μ). 
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As the aim is to demonstrate the optimisation’s applicability at different Reynold’s 

numbers, any of these values can be changed to alter the testing Reynolds number, 

but changing density and viscosity is not realistic in situ as it would imply either 

changing the air temperature/pressure significantly or changing the fluid altogether, 

which would result in an unfair comparison to the baseline VAWT as the intention is. 

This leads to changing the characteristic length or fluid velocity, and as the 

characteristic length is the turbine blade’s chord length, altering this would change 

the solidity of the turbine, making it an unfair comparison. The turbine solidity can 

be calculated using Equation 4.4); where N is the number of turbine blades, c is the 

blade chord length and R is the turbine radius. 

 
𝜎 = 𝑁 ∗ 𝑐 ∗ 𝑅 4.4 

As a result, the fluid velocity is the most sensible parameter to change, but it is crucial 

to maintain the same TSR to have the same blade angle of attack distribution, so the 

windspeed and turbine rotational velocity are both increased to maintain TSR, but 

change the tangential velocity that the turbine blade would experience. The 

rotational velocity and wind speed are intrinsically coupled because of a fixed TSR, 

so for the sake of simplicity, the input that is changed between the tests is the wind 

speed.  

To evaluate how the Reynolds number impacts the performance gains by the GA, the 

method was tested at two alternative inlet velocities of 5 and 9 ms-1, with the tip speed 

ratio kept constant at 2.29. These values were selected, as they allow for an even 

comparison of the method applied in a high and low windspeed region, but by using 

a ± 2ms-1 windspeed difference, there is a sufficiently large difference in Reynolds 

number between each test to allow for testing more extreme wind speed scenarios. 

Considering the average wind speed for different regions of the Europe vary 

significantly, with averages of around 5ms-1 in the south of France in the Bordeaux 

region to highs of around 9ms-1 in the Peak District [104], these alternative test 

velocities demonstrate the ability to optimise the VAWT across Europe. The peak 

 
𝑅𝑒 =

𝜌 ∗ 𝑈 ∗ 𝑙

𝜇
 4.3 
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turbine tangential velocity tested was, therefore, 11.45 ms-1, 16.03 ms-1 and 20.61 ms-

1 for freestream velocities of 5, 7 and 9 ms-1, meaning the airspeed the blade 

experiences is 16.45m/s, 23.03m/s and 29.61m/s respectively. As the chord length is 

0.225m, using Equation 4.3 with a characteristic length equal to the chord length 

(0.225m), the velocity is the relative airflow velocity experienced by the blade or 

aerofoil and the density/viscosity of air at atmospheric conditions, the Reynolds 

number is found to be 240164, 350699 and 450898 for 5, 7 and 9ms-1 windspeeds.  

The expected outcome is that at the azimuthal positions that correlate to higher 

angles of attack (around 108° ± 36° and 252 ± 36°), there will be a better tangential 

force coefficient at the high Reynolds test, due to the significant reduction in drag 

and increase in lift coefficient [105], [106]. Figure 4-11 shows the resultant tangential 

force coefficient through the turbine’s rotation for the NACA0015 and the GA 

optimised blade profile, run at the lower and higher tip speed ratios. This figure 

corroborates the hypothesis, as the 9 m/s tests have a higher tangential force 

coefficient at all points within the GA Optimised Blade profiles and show a 

significantly higher tangential force coefficient at 72° azimuth due to the reduced 

separation and higher lift at high Reynolds numbers. 
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Figure 4-11: Impact of Reynolds Number on Tangential Force Coefficient 

4.2.7  Tip Speed Ratio Sensitivity 

It is also crucial to understand the limits of the application by testing at multiple tip 

speed ratios. As mentioned in Section  

VAWT Aerodynamic Theory, in low tip speed ratio cases, the angle of attack is likely 

to be larger than the stall angle of a NACA0015 symmetric aerofoil for most of the 

turbine’s rotation. By testing the methodology at two additional tip speed ratios, 1.5 

and 3.5, we can infer if there is an inherent tip speed ratio or Reynolds number-based 

impact on the overall GA performance increase. Figure 4-12 displays the variations 

in angle of attack and compares them for all 3 TSRs and their respective Reynolds 

number variations through the turbine’s rotations. 

 

Figure 4-12: Angle of Attack and Reynolds Number Variation with respect to Azimuthal Angle for 
TSRs of 1.5, 2.29 and 3 

Looking at the results from Figure 4-13, some interesting conclusions can be inferred. 

For example, it was expected that the lowest TSR case (TSR = 1.5) would likely have 

―   TSR 1.5 

- -   TSR 2.29 

•    TSR 3 
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the worst performance around the peak angle of attack (at ϕ ≅ 100°) as a result of the 

aerofoil being significantly stalled and also the reduced Reynolds number which 

would suggest the stall angle is reduced [107]. It should be noted however, that the 

higher angle of attack at low azimuthal position explains why the first optimisation 

point has a higher tangential force coefficient than the higher TSRs before quickly 

stalling and performing worse. Figure 4-14 displays the camber profiles generated for 

the three tip speed ratios that were tested; 1.5, 2.29 and 3. The sharp drop in camber 

magnitude for the TSR 1.5 scenario is a result of the very high angle of attack (38.61°) 

that the blade experiences at that azimuthal position (108°) for a TSR of 1.5, causing 

significant separation and complete stall of the blade. At the higher TSRs due to the 

lower angle of attack and higher Reynolds number the blade experiences, there is 

less separation, and as such the blade to be less sensitive to the adverse pressure 

gradient of the high camber. 

 

Figure 4-13: Comparison of Tip Speed Ratio on the Performance of the Optimised VAWT Camber 
profile. attack formulations 
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Figure 4-14: Comparison of Camber Profile of the VAWT Optimisation process at multiple tip speed 
ratios 

4.2.8 Alternative Angle of Attack Formulations 

According to the formulae derived in Section 0, the turbine angle of attack will have 

a periodic angle of attack magnitude (i.e. at ϕ = 20° the AoA is the same as at 200°, 

with opposite sign). This is not realistically true, due to the wake of the turbine blade, 

thus causing fluctuations in the velocity magnitude and swirl. Considering the 

Starting Vortex theory, there will be an induced vorticity from the lift generation of 

the turbine blade, imparting the swirl component on the blade wake and increasing 

turbulence intensity in this region of high circulation. The reduction in velocity is 

because of the turbine extracting energy from the freestream flow, without sufficient 

time and opportunity to diffuse with the freestream velocity and increase before the 

downstream turbine region.  

To ensure the GA method's breadth of applicability, alternative angle of attack 

profiles are also tested to bridge the gap between the theoretical angle of attack and 

the true angle of attack experienced by the rotating VAWT blade due to blade wake 
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interactions. These include the application of an angle of attack profile derived from 

work in the current literature by El Sakka et al. [80] and using a mean velocity from a 

non-deforming turbine simulation.  

The work of El Sakka et al. [80] uses sampling points just ahead of the turbine blade 

profile to estimate the incoming flow velocity magnitude on the turbine blade. These 

relative flow velocities are then utilised in calculating the angle of attack that is 

experienced by the turbine blade. This is completed for both a 0° setting angle and a 

6° setting angle.  

Figure 4-15 → Figure 4-18 display the velocity contours around the NACA0015 turbine 

blade profile from 150° to 180° at a TSR of 2.29. A large vortex is seen to be carried 

downstream, which causes a large reduction in tangential force generation at 150°-

180° azimuthal angle. This separation bubble is a combined result of the large angle 

of attack and effective heaving of the aerofoil at the start of this range, and due to the 

relatively low TSR, the blade is effectively unable to escape the large recirculation, 

severely reducing the circulation generated by the blade and in turn reducing the lift 

coefficient and increasing pressure drag significantly. 

 

Figure 4-15: Velocity Contour of NACA0015 Blade Profile at 150° Azimuthal Angle 



 

99 

 

Figure 4-16: Velocity Contour of NACA0015 Blade Profile at 160° Azimuthal Angle 

 

Figure 4-17: Velocity Contour of NACA0015 Blade Profile at 170° Azimuthal Angle 
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Figure 4-18: Velocity Contour of NACA0015 Blade Profile at 180° Azimuthal Angle 

This in turn causes the flow velocity magnitude to be higher in these regions, hence 

the sudden increase in velocity at the radial distance from -0.25m to -0.75m seen in 

the velocity profile in Figure 4-19.  

Figure 4-19 shows the flow velocity along a sampling line spanning from 0° azimuth 

vertically down to 180° azimuth, taken from the datum NACA0015 VAWT simulation. 

By plotting the flow velocity magnitude against radial distance (top to bottom of the 

turbine) from the non-deforming turbine simulation with a 0-degree setting angle, it 

is possible to see the effect of the flow velocity reducing due to the extraction of 

energy by the turbine. The small gap in the centre of the line is due to the presence 

of a rotating circular wall in the CFD setup that would replicate the shaft of the 

turbine. 
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Figure 4-19: Turbine Velocity Plot at the Centre Line (ϕ  = 0° to 180°) extracted from the Baseline 
NACA0015 VAWT CFD Model in ANSYS Fluent 

By taking the mean velocity at this centre line, it is found that the freestream velocity 

incident on the blade from ϕ = 180° to 360° is 5.22 m/s, or 74.6% of the initial 

freestream velocity. This will effectively increase the tip speed ratio in the 

downstream section, as the turbine maintains a constant rotational speed. As a result, 

the angle of attack will be reduced. 

It should be noted that both the alternative angle of attack profiles (Induced Velocity 

and Elsakka et al. findings) tested are based on the symmetric NACA0015 aerofoil at 

a TSR of 2.29. If one was to optimise the camber profile based on the true angle of 

attack in the downstream portion of rotation, it would be a very involved and 

computationally expensive setup. This could be achieved by optimising the upwind 

stroke of the turbine, and feeding that optimised camber profile into the CFD study 

detailed in Chapter 3.3, with the angle of attack approximation technique employed 

by Elsakka et al. [80] to calculate the angle of attack experienced by the blade for each 

optimisation position in the downstream period of rotation. This would be iterated 

for every optimisation position in the downstream, to ensure that the blade-wake 
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interaction’s influence on the angle of attack is properly modelled. As a result, this 

would result in taking the fast turnaround of the XFOIL optimised methodology and 

significantly increasing the total computational time to create the full optimised GA 

profile. This is outside the scope of this chapter, but is a promising path for future 

research, to potentially further amplify the benefits of using the GA to optimise the 

turbine blade’s camber profile.  

The resulting Induced Velocity angle of attack method is calculated using the new 

mean freestream velocity in the downwind rotation (180° to 360°), to calculate the new 

effective TSR in this period and maintaining the same rotational velocity of the 

turbine. As the mean velocity was found to be 5.22m/s; and the tangential blade 

velocity is 16.03m/s, the new TSR is 3.0708. This new TSR is used to calculate the 

theoretical angle of attack and is seen from 180°→360° azimuthal position in Figure 

4-20. As the TSR is higher in this region, the angle of attack the blade experiences can 

be seen to be lower. 

A comparison of the three proposed angles of attack formulations is presented in 

Figure 4-20. El Sakka shows a dip in the AoA curve at 252°, and this is likely due to the 

increased flow velocity impacting on the blade from the upstream vortex shedding 

interaction mentioned earlier. Another point of interest in Elsakka et al.’s findings is 

that the angle of attack is not 0° at 0, 180° and 360° azimuth; this could be a result of 

the inductance effect of the turbine that has been found in other works [108]. 
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Figure 4-20: Angle of Attack (°) Comparison for different quantification methods. 

Interestingly, Figure 4-21 (the camber profile comparison for the three angle of attack 

definitions) shows that there is very little variation in the optimal camber selection 

among the three different angle of attack methods. One common trait however 

appears to be that the lower the angle of attack experienced by the blade, the larger 

the optimal camber is. This is due to the 0-lift angle being higher for the higher 

camber aerofoils, thus producing more lift at the lower angles of attack.  
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Figure 4-21: Optimised camber profile for the three variations of the angle of attack. 

This increase in lift directly translates to an increase of the tangential force 

coefficient, and in turn the power coefficient. 

Figure 4-22 and Figure 4-23 show the resultant tangential force coefficient for the 

Elsakka et al. [80] angle of attack definition, as shown Figure 4-22 and the theoretical 

induced angle of attack definition, in Figure 4-23 respectively. The induced method 

saw an increase in average tangential force coefficient from 0.06883 to 0.3337, 

signifying a 484.82% increase. A comparable result is seen for the angle of attack of 

El Sakka et al. [80] with an increase from 0.09961 to 0.3032, corresponding to a 

304.39% increase. This is fundamentally important, as the tangential force coefficient 

is the force that drives the turbine’s rotation, and results in the vertical axis wind 

turbine’s ability to generate power from rotating the rotors in the attached generator.  
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Figure 4-22: Tangential force coefficient comparison between the optimised blade and the 
NACA0015 blade profile for the Induced angle of attack definition 

 

Figure 4-23: Tangential force coefficient comparison between the optimised blade and the 
NACA0015 blade profile for the Elsakka et al. angle of attack definition. 
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In the more advanced angle of attack models (induced angle of attack and Elsakka et 

al.’s model) there is a clear trend of a reduction in the tangential force coefficient in 

the downstream portion of the rotation. This effect was not evident for the theoretical 

angle of attack, and this is a result of a combination of factors. These factors include 

the reduced kinetic energy in the freestream airflow in the downstream section, 

resulting in less power being available for the turbine to extract, compounded with 

the reduced angle of attack in the regions because of the increased effective tip speed 

ratio. The lower angle of attack implies lower lift coefficient from the turbine 

optimisation results, even using the same aerofoil profile, as the tangential force is 

directly proportional to the lift force. 

4.3 CFD Analysis of the Genetic Algorithm Optimised 

Deformation Profiles 

It is crucial to understand how the Genetic Algorithm performs in the scope of the 

dynamic VAWT model, to consider how the blade wake interactions, and transient 

flow effects the validity of the XFOIL based GA optimisation when applied in situ of a 

VAWT. This is achieved by applying the camber profile that the GA optimisation 

procedure creates within the turbine that was detailed in Section 3.3, and the results 

of that CFD procedure are discussed in the following sections. The profiles were 

implemented using a custom made User-Defined Function subroutine in ANSYS 

Fluent, enabling the dynamic deformation of the turbine blade profile as the blade 

rotates.  

4.3.1 Genetic Algorithm Evaluation in CFD 

Utilising the force report feature in ANSYS Fluent, it was straightforward to extract 

the single blade moment generation at any point in the turbine rotation. For the 

initial comparison, the different angle of attack model optimised camber profiles are 

compared at the azimuthal angles that the optimisation procedure was evaluated at 

(every 36° from 0° → 360°).  
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The blade moments are presented in Table 4-6, the cell highlighting indicates an 

improvement or decrease in performance in comparison to the NACA0015 

symmetrical aerofoil. A red highlight implies a worse performance and green 

indicates a better performance than the non-deforming NACA0015 aerofoil. There is 

a significant difference in the torque and therefore power generation between the 

symmetrical NACA0015 and GA optimised aerofoil profiles for both normalised and 

standard XFOIL solution methods. Both methods create a significant increase in the 

mean torque, with less variance in torque generation throughout the turbine 

rotation. It is interesting to note that the genetic algorithm has a worse performance 

than the symmetric aerofoil in the upstream part of the rotation (0° < ϕ < 180°), but it 

has significant improvements in the downstream section. There could be a few 

possibilities for this upstream reduction; firstly, due to the angle of attack differences 

between the real turbine and the values provided in XFOIL, causing an early onset of 

stall. Secondly, it could be the result of an effectively increased blockage of the 

turbine due to the improved downstream performance which could be slowing the 

upstream flow velocity or changing the flow angle the blade experiences.   
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Azimuthal 

Angle (°) 
Moment (Nm) 

  NACA0015 
Normalised 

XFOIL GA 

Induced AoA 

GA 

El Sakka et al. 

AoA GA 

0 -1.3351 -1.4026 -1.4392 -1.3405 

36 2.3226 -1.3741 -1.172 -1.2348 

72 15.6634 15.465 15.5546 15.5002 

108 6.8144 6.7249 -2.7976 4.0255 

144 -6.6655 1.2623 2.8307 1.532 

180 -2.1934 -1.1929 -0.2343 -0.2511 

216 0.0776 4.9497 6.6008 8.5072 

252 0.5467 2.8585 0.1028 1.3361 

288 0.7657 1.0837 0.8153 1.0556 

324 0.8911 1.7279 1.5963 1.8321 

Table 4-6: Moment Force Comparison for multiple Genetic Algorithm setups 

Figure 4-24 shows the continuous moment generation data for a single blade in the 

turbine CFD simulation, for the results seen in Table 4-6. The distinct second peak 

present in all four genetic algorithm methods reinforces these findings, and a 

negligible moment for the symmetrical non-deforming NACA0015 aerofoil.  
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Figure 4-24: Moment comparison for the different Angle of Attack models from a transient turbine 
CFD simulation 

The lower peak is likely attributed to the reduction in freestream velocity 

experienced by the incoming blade as seen in the velocity contours of the optimised 

turbine profile simulation compared to the non-deforming NACA0015 profile, in 

Figure 4-25 (a) and (b). It is shown by the increase in velocity upstream of the blade 

at 0° azimuthal angle in the NACA0015 datum simulation compared to the Optimised 

GA deformation profiles, which would provide more energy to the turbine blade, 

allowing for greater torque production. This arises due to the increased energy 

extraction from the preceding cambered blade.  
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Figure 4-25: Velocity Contours from 0->50m/s at ϕ = 0° for (a) NACA0015 Non-Deforming  & (b) 
XFOIL Normalised GA Deformation Profile Turbine. 

The alternative angle of attack characterisations (Induced and El Sakka definitions) 

and the Standard XFOIL method have a similar shape to the original NACA0015 

around the region of 100° – 144°, with the drop in the moment force before a rapid 

increase again, followed by a gradual dip again. This trough is much shallower for 

the Standard XFOIL method with the standard angle of attack, but the shape is still 

similar. This does not appear to be the case for the Normalised XFOIL case, as it has 

a much more gradual reductions in the moment force, the Normalised profile only 

briefly reached a negative moment force at an azimuthal angle of 160°.  

Comparing the variation of the moment plot allows for a much better understanding 

of the fluctuations experienced by the blade and provides a wholistic rather than 

localised viewpoint. 

From Table 4-7 

 NACA0015 
Normalised 

XFOIL GA 

Induced AoA 

GA 

El Sakka et al. 

AoA GA 

Median Moment 

Value (Nm) 
0.1888 1.622 1.136 1.294 

Mean Moment Value 

(Nm) 
1.615 2.842 2.577 2.654 



 

111 

Table 4-7: , which shows some of the statistical properties of the turbine’s moment 

distribution, it is evident that all the genetic algorithm method variations tested allow 

for much lower standard deviations in the moment force, combined with higher 

median and mean moments than that of the non-deforming NACA0015. The 

significance of this finding translates to a reduction in the overall blade fatigue and 

an increase in the life of the blade due to the more constant blade loading. 

Additionally, the wear that is commonly found in the shaft’s load bearing would be 

reduced as there would not be a large resistance in certain regions of the bearings.  

Table 4-7: Statistical Analysis of the Turbine's Moment Comparisons 

The mean moment values are significantly higher, with Normalised GA presenting 

the largest value, followed by the Elsakka et al. AoA definition, and finally the 

Induced AoA GA. The trend is different if we compare the standard deviation, with a 

Standard Deviation of 

Moment Value (Nm) 
6.293 4.702 4.824 5.105 

Mean: Standard 

Deviation Ratio 
0.2566 0.6044 0.5342 0.5200 

 NACA0015 
Normalised 

XFOIL GA 

Induced AoA 

GA 

El Sakka et al. 

AoA GA 

Median Moment 

Value (Nm) 
0.1888 1.622 1.136 1.294 

Mean Moment Value 

(Nm) 
1.615 2.842 2.577 2.654 

Standard Deviation of 

Moment Value (Nm) 
6.293 4.702 4.824 5.105 

Mean: Standard 

Deviation Ratio 
0.2566 0.6044 0.5342 0.5200 
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lower standard deviation signifying that more of the turbine’s rotation produces a 

moment close to the mean value. The lowest variance is experienced by the 

Normalised GA, then the Induced AoA GA and finally then the El Sakka et al. AoA GA.  

By comparing the ratio of the mean to the standard deviation, the conclusion can be 

made of the wholistically best method tested. The larger the ratio, the larger is the 

mean or the smaller is the standard deviation. The best overall method tested is 

therefore the Normalised Method using the theoretical angle of attack. This value did 

not have the highest mean value, but the median value was the highest and the 

standard deviation the lowest, resulting in the conclusion that it is the best method 

overall to employ in a real life VAWT. 

Figure 4-26 depicts a violin plot of the moment distributions for the compared 

optimisation characterisations, with the thickness at any one torque value 

representing the relative commonality of said torque value. One can therefore 

conclude that the thickest section of the graph indicates the mode of the data, which 

is easily read as the Y-Value of the white dot seen in the plot.  The tips of the chart 

show the minimum and maximum values of the distribution, in this work that 

translates to the minimum and maximum torque experienced by the VAWT in it’s 

rotation. The smaller the difference between the peaks, the more constant the torque 

experienced by the blade, so the perfect scenario would be a perfectly flat line at a 

single torque value as that would eliminate any vibrational fatigue in the structure, 

improving the turbine blade’s lifespan. Finally, the rectangular box with the two thin 

strips is known as a box and whisker plot. The white point represents the median, the 

black rectangle is the interquartile range of the distribution and the whiskers 

represent 1.5x the interquartile range. 
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Figure 4-26: Violin Plots representing the Distribution in Torque for the different Variations of the 
XFOIL Based Genetic Algorithm 

4.4 Summary of Findings 

This investigation shows the viability and power of using a Genetic Algorithm 

optimisation technique to characterise the deformation profile of an actively 

deforming vertical axis wind turbine blade. The use of a GA with both a 5%c and 10%c 

limit on the GA search bounds showed substantial improvements in the turbine’s 

tangential force coefficient. When evaluated in XFOIL, the optimisation technique 

showed large increases in the time-averaged torque coefficient, enabling an increase 

in the overall power generation of the turbine. The optimised aerofoil had a higher 

torque coefficient value at all the sampling positions when compared to the 
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symmetric NACA0015. These conclusions are confirmed when applied in CFD by 

creating a user defined function to deform the aerofoil profile to the optimised 

camber magnitudes as it rotates in the VAWT scenario. The mean and standard 

deviation of the moment force is shown to be significantly higher when the genetic 

algorithm profile is applied. The lowest improvement in standard deviation of the 

moment is 19.9% and the lowest improvement in mean moment is 59.1%! 

The optimal Genetic Algorithm settings was found to be for the turbine consisting of 

a 10%c bound, with the Normalised XFOIL geometry setup and the theoretical angle 

of attack. The corresponding tangential force coefficient and camber profile is seen 

in Figure 4-5 and Figure 4-6 respectively. 

The downfalls of utilising XFOIL as the flow solver method were multifaceted. These 

include its inability to capture the flow properties when there is large flow separation, 

it also does not capture the upstream flow induction effects of the turbine in the 

downstream sections. Fixing these issues are topics of improvement that will assist 

to further demonstrate the strengths of the GA methodology and even further 

improve the turbine performance. As such, the recommended further work is to 

implement the GA technique in a CFD solver, i.e., the ANSYS Fluent software for a 

rotating turbine situation to better understand and incorporate the effects of the 

VAWT’s dynamic flow effects.  
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5 Transient Genetic Algorithm 

Optimisation of a VAWT Blade Profile 

5.1 Introduction 

The previous chapter highlighted some of the weaknesses of using XFOIL in the scope 

of VAWT blade aerodynamic performance calculation, due to many failures in 

calculating lift and drag for high angles of attack. Furthermore, the limitations of the 

theoretical VAWT aerodynamics based on first principles showed that even more 

complex angle of attack models failed in capturing the dynamic flow conditions that 

the blade experiences. This chapter overcomes these issues, and builds on the 

successes, through the implementation of several additions to the methodology, 

including utilising transient rotating VAWT CFD simulations instead of XFOIL to 

evaluate the performance of each genotype, having a coupled time marching of the 

turbine profile such that the previous optimisation camber is taken as the starting 

point for the following optimisation position, and also utilising a transient approach 

to evaluate the aerofoil performance and the modelling of time-dependent 

aerodynamic events such as the leading-edge stall on the aerofoil. Implementing 

these complex deformation profiles into a CFD-in-the-loop based Genetic Algorithm 

is a new avenue of research for VAWT optimisation, which will provide valuable 

insights into the effect of the transient flow phenomena. Variations in the GA’s 

parameters were investigated including crossover function variations, phenotype 

counts and sampling count tests to optimise the computational efficiency of the 

optimiser, without sacrificing performance and ability to increase VAWT power 

generation. Additionally, the position of maximum camber’s influence on deforming 

VAWT blade performance was found to have significant impacts on the regions of 

largest gain in the VAWT’s rotation, and the contribution of the leading edge and 

trailing edge deformations was studied; finding that the leading edge improves the 

upstream turbine power generation and trailing edge deformations improve 

downstream power generation. 
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Computational Fluid Dynamics is an appropriate method for evaluating the 

phenotype’s viability and fitness function calculation. Whilst other methods are 

available to evaluate the aerofoil performance, such as the panel method solvers 

including XFOIL or JAVAFOIL, these methods limit the initial flow conditions 

because of the limitations discussed in Section 4.1.3.2, the primary issue being the 

inability to measure the lift and drag when the aerofoil boundary layer is completely 

separated.  In XFOIL, the user can define the Reynolds number, Mach Number, angle 

of attack and freestream turbulence level (Ncrit), but when attempting to optimise 

the camber at multiple azimuthal positions, it does not consider the wake or 

inductance effects on the flow at the subsequent optimisation positions. 

Furthermore, the dynamic flow characteristics are not carried over between the 

optimisation positions in XFOIL, as the flow uses instantaneous characteristics. 

Transient CFD simulations, however, allows for the wake effects to be carried 

between each optimisation position due to the time-marching progression of the 

simulation, allowing the optimisation to capture the previous flow conditions as the 

starting point (the new optimisation position’s initial conditions), and optimise the 

following position (the targeted angle of attack for camber optimisation) accounting 

for the true local flow field at the desired optimisation position. 

5.2 CFD-In-the-Loop Transient Optimisation Setup 

The computational domain and setup used for the VAWT blade camber optimisation 

and the turbine torque performance is the same as that described in Section 4.3 of the 

thesis. As this investigation uses the same two-dimensional computational domain 

sizing and the same turbine characteristics as the previously validated turbine 

studies, in Section 3.2, and current literature [23], [68], [93], [94], it is 

considered satisfactory for the basis of the current study. This CFD domain allows for 

the validation and investigation of all the required aerofoil genotypes that the 

optimisation process undertakes, regardless of the combinations used. 



 

117 

5.2.1 Genetic Algorithm Process Flowchart 

For a general overview of the workflow of the optimisation process, the following 

simplified overview outlines the steps: 

i. Initialise the GA 

ii. Create the initial array of phenotypes (camber values) 

iii. Evaluate each phenotype individually 

a. Open the case file 

b. Append the associated camber input parameter 

c. Run the GA for a user specified number of time steps to reach the 

desired optimisation position 

d. Export the Moment Force from the CFD to the desired dataset 

iv. Capture the flow image 

v. Sort all moment values from the highest to the smallest 

vi. Create the next generation of phenotypes based on the current generation’s 

moment values 

vii. Repeat steps iii to vi until the convergence criteria is met 

viii. Output the final optimised camber 

ix. Run the case file with the optimised camber for the defined time steps 

x. Save the final case/data file for the next optimisation position 

In order to complete the first step--initialising the genetic algorithm, it is necessary 

to understand how the algorithm works and which defining characteristics are 

required for the process. These include the aerofoil thickness, rotational centre, 

turbine size and speed, and the general flow conditions such as the freestream 

velocity.  

The initial array of camber values is simply an array of the potential values evenly 

distributed over the user-specified range. For this investigation, ± 10%c is used as the 

bounds for the camber magnitude. Whilst the NACA profiles could theoretically 

model substantially larger camber values, the convention is that the camber typically 

only has a range of ±9.5%c for most NACA aerofoils in use due to the naming 
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convention (single integer in name i.e. NACA5315). If one were to decide on using 

11genotypes per generation to evaluate every 36°, the initial generation can be seen 

in Table 5-1. 

Genotype 

ID 
0 1 2 3 4 5 6 7 8 9 10 

Camber 

Value 
-10 -8 -6 -4 -2 0 2 4 6 8 10 

Table 5-1: Example of the Camber Values for the First Generation of Genetic Algorithm 
Optimisation 

The details of the later stages in the optimisation are now described in detail. To 

evaluate each phenotype, the potential aerofoil must be solved in the CFD solver 

(ANSY Fluent) to capture the flow field around the aerofoil and derive the force 

coefficients appropriately. This allows for consistent, methodical and precise 

comparison between each genotype. The sorting is applied in Python, extracting the 

data from ANSYS, and then organising and mutating them as necessary. For details 

on the full process, see Section 3.4 which breaks down the function of each step in a 

genetic algorithm optimisation. 

The most important step in evolutionary algorithms is the child creation. This is 

referred to as crossover, where two parent genotypes combine to form an offspring, 

as is seen in nature. The typical crossover function takes the optimal values from the 

previous generation and treats them as Parents, the child is then taken as the 

midpoint value (camber in this investigation) between the two parents, and the 

predefined mutations on the child genotype is added to the generation to maintain 

the genetic diversity, ensuring that the global optima are found rather than the local 

optima in the searching space [109]. 

5.2.2 Fitness Function 

Many different parameters can be used to define the fitness function of a genetic 

algorithm, and they are one of the factors of the problem that one is attempting to 



 

119 

optimise. A basic example that is commonly used for teaching the fundamentals of 

the genetic algorithm is the travelling sales person--where the individual has to visit 

a list of cities exactly once before returning home, but the optimisation function is to 

minimise the total distance travelled by the sales person. 

In the case of VAWTs, the fitness function could be related to the structure, 

aerodynamics or even the physical mechanisms of transferring the generated power 

back to the grid. One could investigate the optimal winding pattern of the magnets in 

the generator, the minimum thickness of carbon fibre layup to provide sufficient 

structural rigidity, or in the case of this investigation, the aerodynamic properties 

that directly correlate to the power generation--namely Lift, Drag, Tangential Force 

and Moment of the turbine blades. It should be noted that the moment force is likely 

to be the most suitable parameter to optimise, as this is the most holistic 

characteristic used to define the turbine performance. The power generation and 

power coefficient of the VAWT are directly proportional to the moment on the 

turbine blades, which in turn is a result of the tangential force and the lift and drag 

forces on the blade.  

5.2.3 Convergence Criteria 

To terminate the genetic algorithm, it is necessary to define some criteria for when 

the optimisation has been completed. Much like the iterative algorithms used when 

solving the traditional Navier-Stokes-based finite volume or finite element methods, 

some sort of convergence criteria must be set. Otherwise, the process will continue 

indefinitely or until there is user intervention. There are multiple ways that this can 

be achieved due to the number of variables within the process. One option is to check 

the difference in the optimal camber between each generation and limit what is 

acceptable. This difference could be a percentage difference or an absolute 

difference, e.g. 1% or 0.01 in value. The issue with utilising absolute values is that the 

optimisation process could terminate early, potentially focusing on a local optimum 

and negating the impacts of the randomisation factor in the offspring crossover 

functions. Furthermore, utilising the camber as the value to consider for 
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convergence, can also contribute to this early termination concept, as after a few 

generations there can be large changes in the moment coefficient for very small 

changes in the aerofoil camber. 

Considering these effects, the most appropriate convergence criteria is therefore 

selected as a percentage difference in the moment force between the strongest 

genotype of each generation. The convergence criteria are only evaluated after 10 

generations of optimisation to ensure sufficient randomisation before the 

convergence checks are implemented. Starting the convergence testing prematurely 

or setting the convergence criteria too large can potentially cause local optima to be 

selected, rather than searching for the global optima. In this investigation, the 

criteria for convergence is a 0.01 absolute difference in optimum moment, as shown 

in Equation 5.1. 0.01 was found to be a good balance in the previous chapter’s 

investigations and was therefore utilised in this chapter. 

𝑀𝑜𝑚𝑒𝑛𝑡𝑛 −𝑀𝑜𝑚𝑒𝑛𝑡𝑛−1 < 0.01, 𝑛 > 10 5.1 

There are many factors that influence what would be considered a sufficient 

convergence condition; two small a convergence condition and the optimisation 

process could end up running for a very long time without much increase in 

performance of the optimised design. It is especially crucial to minimise this when 

using CFD simulations as the source of chromosome evaluation, as it results in 

unnecessary consumption of energy and restricts access to the high-performance 

clusters typically used for intensive CFD. Too large a convergence condition and it 

leads to uncertainty in the validity of the optimised result, and whether it is truly the 

optimal design in the search space. It could result in premature optimisation, which 

defeats the purpose of utilizing the evolutionary algorithm in the first place! Case file 

/ UDF setup 

The mesh method defined previously in Chapter 4.3 is utilised in the cases for the 

genetic algorithm evaluation stage. It has input parameters defined within ANSYS 

Fluent which can be easily altered as appropriate, using ANSYS’s pythonic fluent 

interface library. These are set as the camber magnitude at each optimisation 
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position, which is used within the User-Defined Function (UDF), thus allowing for the 

dynamic changing of the variables within the UDF. This pythonic interface method 

does not need to recompile the UDF between each case, thus improving the 

evaluation speed for each phenotype. Furthermore, using the Pythonic interface 

means that it is not necessary to programmatically change the variable values in the 

UDF file, which would require the use of complex regular expressions to parse the 

UDF file and change a value without altering the formatting of the UDF file. As the 

UDF is written in the C programming language, it is susceptible to indenting, 

formatting and inclusion of punctuation for proper line-by-line evaluation. Editing 

any of these factors in the UDF would result in a failed compilation of the UDF and, 

therefore, the failure to properly implement the flapping motion in ANSYS Fluent. 

The UDF, therefore, uses the same method of pulling the Input parameter values 

from within ANSYS Fluent to define the values of each variable in the camber profile 

of the turbine.  

The general data flow for the transient simulation-based genetic algorithm process is 

as follows:  

i. Compile the UDF, ensuring the appropriate camber variables are defined to 

match what is used in the case file. 

ii. Create matching input parameters in ANSYS Fluent. 

iii. Save the Baseline Simulation Case File. 

iv. Change the Input Parameter in ANSYS Fluent through Pythonic Interface, 

which corresponds to the relevant optimisation position. 

v. Run the ANSYS simulation for the necessary amount timesteps to achieve 

rotation and deformation to the required optimisation position. 

vi. Export Moment values from ANSYS Fluent to the python session 

vii. Sort genotypes (camber) by corresponding values of their phenotypes 

(moment). 

viii. Repeat steps iv to vii for each genotype in a generation. 

ix. Create the next generation of offspring, including mutations and crossover 

between parents. 
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x. Repeat steps viii and ix for each genotype per generation until convergence is 

achieved. 

This is summarised visually in Figure 5-1, which shows how the variables are carried 

between the different coding environments. 

 

Figure 5-1: Transferred variables between Genetic Algorithm Simulation Control steps 

5.3 PyFluent Functions 

In order to implement the genetic algorithm within ANSYS Fluent dynamically, it is 

necessary to utilise some sort of interface between the dataset and the ANSYS Fluent 

simulation settings. This could be implemented by using regular expressions to 

modify text files such as the UDF script or journal files to be read by ANSYS Fluent, 

as was implemented in Chapter 4 for the automation of XFOIL. This could work, but 

leads to very complex text based scripts and would require separate scripts each time 

a setup variation is changed.  

In the past few years, ANSYS has started developing a pythonic connection library 

that allows for users to control the ANSYS software through specially made python 

libraries. One of their first Pythonic libraries was PyFluent, a Pythonic interface to 

ANSYS Fluent which allows the control of all the settings in ANSYS Fluent, either 

through commands that follow the same format as journal files or with a specialised 

Settings API. This allows for all setup variables to be dynamically changed and fed 

into the Fluent client directly without a need for recompiling UDFs for each genotype, 

rapidly increasing simulation turnaround for each optimisation candidate. The 

settings API is a newer addition, so it does not have full coverage of all the settings in 
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ANSYS Fluent. For this investigation, the TUI-based method is used. The details of 

these scripts are found in the following section.   

5.3.1.1 Solver 

The workflow for implementing the genetic algorithm in ANSYS Fluent has a similar 

principle to that used in the previous chapter based on XFOIL. The XFOIL workflow 

utilised a script to generate a text script containing the coordinates of each 

phenotype’s profile, which is imported into the XFOIL solver instead of utilising the 

built-in NACA aerofoil generator. Even though all the genotypes use the NACA shape 

profiles, the typical cambered NACA aerofoil has a maximum possible camber of 

9.5%c. 

This investigation changes the camber of the aerofoil by using a UDF, which actively 

deforms the aerofoil as it rotates to the optimisation position. The camber is linearly 

interpolated between the optimisation positions, which allows for gradual changes 

in the aerofoil shape as the turbine rotates. By transforming the camber as the 

turbine rotates, one can capture the transient effects of the camber deformation 

process. More importantly, the data utilised for optimisation considers the extensive 

differences in the flow characteristics.  

Turbine flow characteristics are largely dominated by their tip speed ratio, radius, 

and free stream velocity [110]. By optimising the camber profile in the context of the 

turbine’s rotation, this algorithm allows for these flow characteristics and their 

impact on the torque and power generation to be incorporated into the optimisation 

procedure. Theoretically, the angle of attack and flow speed are identical between 

the upwind (0° < ϕ ≤ 180°)  and downwind (180° < ϕ ≤ 360°)  portions of rotation, as is 

the windspeed and tip speed ratio. Actually, due to the turbine extracting energy from 

the flow in the upwind region, the windspeed that the turbine blade experiences is 

actually lower than the windspeed. The result is that the TSR is therefore, higher in 

the downwind region and subsequently, the angle of attack experienced by the blade 

and the energy in the flow is much lower [108]. The full script that was implemented 
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to control the solver functions and define the aerofoil characteristics is found in the 

Appendix and online on my GitHub repository. 

 

5.3.1.2 Image Capture 

A script was also developed that allows for a snapshot of the flow to be taken after 

each optimised aerofoil. This is useful when analysing the optimised camber profile, 

as it allows for easier comparison of the aerofoil near flow field whilst reducing the 

post-processing time. The script takes the current azimuthal position, rotates the 

camera by that same angle in the opposite direction and zooms in on the flow field 

around the blade. This can be easily implemented within the optimisation loop to 

take an image of the flow field local to the blade for every single genotype if so 

desired, but to reduce the computational overhead and reduce the total disk usage of 

the optimisation workflow. 

5.3.2 Implementation in cluster-based computer resources 

There are several ways of running the optimisation methods discussed so far. The 

options available range from being as simple as running the Python script on a 

personal desktop computer to creating complex scripts for asynchronous job 

submissions on high-performance clusters. Using asynchronous submission allows 

for each genotype to be evaluated simultaneously every generation, with the system 

waiting for all genotypes to be evaluated before creating the next series of genotypes 

and submitting the offspring evaluation simulations.  

The alternative method is to have a serial case, where a standard single job runs, and 

sequentially evaluates the genotypes using ANSYS’ new PyFluent pythonic interface 

library. This allows the user to create and control ANSYS Fluent sessions through a 

Python API, passing through any variables within the Python session directly into 

ANSYS. This avoids the complex and tedious method of recreating new submission 

scripts for every genotype to be tested, using complex regular expressions, and 

potentially introducing issues into the solver due to syntactic errors in the scripts. For 
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example, between versions of ANSYS, the text user interface (TUI) occasionally 

changes, which can result in a script used in ANSYS 22.2 not being compatible with 

ANSYS 23.1. To correct this, it is necessary to rewrite the regular expressions to be 

compatible with each specific version of ANSYS Fluent. Using the PyFluent API 

however does not have this same issue, simply change the version of ANSYS that one 

intends to load in the script’s initialisations and then run the script as normal, and no 

alterations are needed!  

 

5.4 Results & Discussion 

It is crucial to understand the impacts of the various features of the genetic algorithm, 

and as such, it is necessary to evaluate and experiment with variations of the different 

aspects of the algorithm setup. Studying the effect of these factors allows for the 

opportunity to minimise the genetic algorithm’s computational cost whilst 

simultaneously exploring its ability to optimise different aerofoil characteristics and 

operating conditions. 

Firstly, the effects of variations to the genetic algorithm are studied to ensure the 

computational efficiency and the potential impacts of altering parameters on the 

GA’s ability to fully optimise the blade camber. This is followed by a study of the 

aerofoil shape constraints to better understand the contribution of each section of 

the blade’s influence on the performance. Finally the most optimal genetic algorithm 

combination found is implemented on the same turbine at a lower tip speed ratio of 

1.5 and a higher tip speed ratio of 3 to provide insight into the effects of blade angle 

of attack, Reynolds number and flow conditions on the genetic algorithm in order to 

form more well-rounded conclusions of its applications. 

The following characteristics of the genetic algorithm were investigated in this 

investigation: 

i. Crossover Variation 

ii. Phenotype Count 
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iii. Sampling Count 

The aerofoil constraints include; 

iv. Position of maximum camber 

v. Leading edge only optimisation and trailing edge only optimisation. 

5.4.1 Genetic Algorithm Parameters Investigation 

The characteristics mentioned above are studied and compared in this sub section. It 

focuses on the parameters of the GA from a computational perspective, but also 

ensures that the actual turbine performance is not impacted by altering the different 

components. 

5.4.1.1 Crossover Variation 

The crossover function has an array of methods of creating the offspring genotypes, 

with variations on randomisation, overlapping between parents and mutation 

magnitudes. The standard crossover follows the following trend:  

i. Parent A 

ii. Parent B 

iii. (Parent A + Parent B) / 2 = Offspring 

iv. Offspring +- random(0-10%) 

v. Offspring +- random(0-5%) 

vi. 3 x Random(lower bound, upper bound) 

Incorporating the randomisation is a two-sided method. The benefit includes the 

potential to converge to an appropriate genotype more quickly, ensuring the breadth 

of search to prevent local minima convergence to tend towards the global maximum. 

On the other hand, it forces the process to potentially run unnecessary simulations 

that don’t improve the overall optimisation process, thus increasing the overall 

computational time with no meaningful reward. 

An alternative method is to replace genotypes 4 and 5 by using a variable offspring 

mutation instead of using a predefined variation (+- 0.1 or +- 0.05). This method is 
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likely to be much faster as the minimum change in the camber would be 0.025 (form 

the offspring in the next generation), whereas with the randomisation method the 

change in camber can be as low as 0.005 between generations, resulting in another 

generation of  the simulation being required, but for potentially a negligible increase 

in the actual blade moment. 

These two crossover methodologies were compared to gauge which technique 

captures a more optimised camber profile, and to ensure the most reliable method is 

used for the later aerofoil characteristic investigations. Figure 5-2 shows the resultant 

moment plot of the optimised profile for the two techniques and Figure 5-3 shows the 

camber magnitudes of the profile based on their azimuthal position. 

 

Figure 5-2: Impact of a randomised crossover magnitude compared to a  constant crossover 
magnitude 
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Figure 5-3: Camber profile comparison for randomised and constant crossover techniques. 

The moment comparisons are almost identical for both profiles, with the only 

noticeable differences at 144°, ~175° and 324°. These regions of difference directly 

correspond to the positions where the optimiser has converged on a different camber 

value between the two methods. The 144° position only has a moment difference of 

around 1Nm, but the randomised crossover had a 3%𝑐̅  larger camber magnitude. 

This shows how important it is to have a robust and consistent optimiser, as a 

significantly different camber profile might not have a significant impact on the 

performance. This is emphasised at the other two azimuthal positions mentioned, 

175° and 324°, where the camber difference is ~3.5%c bar larger in magnitude for the 

randomised crossover, but with only ~0.5Nm and 0.1Nm difference, respectively. 

The computational time was almost identical for the randomised and constant 

crossover in the offspring generation. This means that the only deciding factor for 

which method to implement in further testing is that of the overall performance and 

reliability.  

As a result, it is decided to utilise the randomised crossover for future studies. The 

primary reason is the robustness of the technique—by introducing randomisation, 
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the chance of missing a global optimum profile at the desired azimuthal angle is 

reduced. An example of this scenario would be if, during the optimisation process, 

an aerofoil camber genotype of 10%c is found to produce the greatest moment. If we 

have a set crossover value of, say, 0.2%c, then the child genotypes would be 9.8% and 

10.2%. If, however, there was a randomised value up to 0.2%c, then there is an 

infinite number of potentially better candidates to be found in the range of 9.8-10%c 

or 10-10.2%c. If the true global optimum is 10.1%c, then a specific and constant 

crossover would never find the global optimum unless a very small variation value 

(i.e. ±0.01%c) is used, which would make the optimisation process a very slow and 

steady climb and is still limited to the precision of the selected crossover magnitude.  

5.4.1.2 Phenotype Count Comparison 

Another method for improving the turnaround times of the genetic algorithms is by 

optimising the phenotype array between each generation. The main factor impact 

the computational cost of the genetic algorithm is how long it takes for each genotype 

within each generation to be simulated in the CFD solver, and it is reasonably 

consistent that each simulation takes around 5 minutes to solve on a 32 CPU Core 

machine on the University of Sheffield High Performance Cluster (HPC). Therefore 

in order to reduce the total CPU time and in turn the amount of wall clock time for 

the simulation, it is necessary to reduce the number genotypes per generation 

without sacrificing the overall effectiveness of the genetic algorithm. 

As a refresher, the array described in Section 5.4.1.1 forms eleven genotypes each 

generation as follows; 

i. Parent A 

ii. Parent B 

iii. (Parent A + Parent B) / 2 = Offspring 

iv. Offspring + random(0-10%) 

v. Offspring - random(0-10%) 

vi. Offspring + random(0-5%) 

vii. Offspring - random(0-5%) 
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viii. Random(lower bound, upper bound) 

ix. Random(lower bound, upper bound) 

x. Random(lower bound, upper bound) 

xi. Random(lower bound, upper bound) 

This results in 11 simulations being required for each generation. If the number of 

genotypes is reduced to 5, the computational time will also significantly reduce. One 

of the primary issues with this method is that it may take more generations to reach 

convergence. However, the number of generations to convergence would need to 

more than double to take the same computational time as the original eleven 

phenotypes method.  

An alternative phenotype formulation is the following:  

i. Parent A 

i. (Parent A + Parent B) / 2 = Offspring 

ii. Offspring + random(0-5%) 

iii. Offspring - random(0-5%) 

iv. Random(lower bound, upper bound) 

The reduced phenotype formulation would still carry the same optimisation 

philosophy as the previous generation--the optimal phenotype from the previous 

generation would be carried forward, and the offspring and offspring mutations 

would still be implemented similarly, but with only one randomised entry each 

generation, instead of four.  

To check that the five-phenotype method doesn’t have an impact on the overall 

turbine performance, it is compared with the moment of the eleven-phenotype 

method that was previously implemented in Section 4.2, as that is shown to be a 

reliable setup. Figure 5-4 shows the moment distribution for both the eleven-

genotype model and the 5-genotype model, displaying that the difference in 

performance is negligible and almost identical between the two techniques overall. 

The moment curve is identical from 0° to around 120° degrees azimuthal angle, with 

a minor increase in the eleven-phenotype setup at 144°. It is then almost identical 
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between the two techniques again until the first noticeable difference at around 252°, 

where the eleven-phenotype method is lower than the five-phenotype method. The 

average moment for the eleven and five phenotype methods is 6.90426 and 6.918025, 

respectively, resulting in a difference of only 0.2%. This demonstrates that utilising a 

smaller generation size has a negligible impact on the overall performance of the 

camber deflection profile but radically improves the optimisation turnaround time. 

Comparing the camber profile of the two genotype implementations in Figure 5-5 

shows that there is a small difference in camber profile at the optimisation positions 

of 288° and 324° but the performance difference is so negligible that this would not 

warrant a cause for concern in the method’s reliability to find an optimal camber 

profile. 

 

Figure 5-4: Moment contribution comparison for eleven phenotype method and five phenotype 
method. 



 

132 

 

Figure 5-5: Genotype count comparison impact on camber profile  

As was explained in Section 5.4.1.2, the use of a reduction in the phenotype count has 

the potential to reduce the overall computational requirements of the genetic 

algorithm optimisation procedure. Both optimisation procedures are carried out on 

identical hardware; a single node on the Stanage HPC Cluster at the University of 

Sheffield. These nodes consist of 4GB of memory per CPU core and two 32 core 

processing units per node, resulting in a total capacity of 64 CPU cores and 256GB of 

physical memory. Both cases only required 10 generations for sufficient optimisation 

to be achieved before the process was terminated. As there were less than half the 

number of phenotypes evaluated each generation, this directly equates to an almost 

double increase in efficiency of the system, taking half the time to complete!  

Based on these conclusions, it is decided that for any subsequent tests and variations 

in the genetic algorithm setup, the five-phenotype model will be used. The effect of 

this decision increases the computational efficiency, allowing for better turnaround 

of the method and in the future, allows the method to be more accessible by other 

users of the method, due to the reduced computational requirements. 
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5.4.1.3 Sampling Count Comparison – TSR 2.29, p = 30%c, t=15%c 

Another method of potentially optimising the genetic algorithm’s computational 

efficiency is to test if changing the sampling points will be beneficial to the overall 

performance of the algorithm. Two scenarios are compared, labelled as 10S and 24S. 

The 10S case implies ten sampling positions, or every 36 of azimuthal rotation the 

camber value is defined, whereas the 24S case samples/optimises the camber every 

15 of rotation.  

This computational efficiency gain is based on the same premise as earlier 

subsections of this chapter: reducing the number of simulations will reduce the 

computational time as each simulation is approximately the same duration.  

Figure 5-6 and Figure 5-8 show the difference in the single blade moment and 

optimised camber value respectively. Note that there are some gaps in the curve for 

for optimised blade moment, this is due to spikes in the output file generated in 

ANSYS Fluent, which would cause the resultant curves to be misleading. These spikes 

coincide perfectly with the location of the optimisation points in the UDF, but there 

is no significant change in the camber across these points, suggesting some sort of 

unrealistic mathematical error at the exact instance the rate of camber deformation 

changes. An additional figure is seen for the sake of transparency in Figure 5-7, which 

contains the original raw data from ANSYS Fluent before it was pre-processed. This 

is emphasised by the lack of spikes seen in the moment of the 24 sample count 

method’s downstream period of rotation, wherein the blade deformation is more 

gradual and not as sudden.  
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Figure 5-6: Effect of Sampling Count on Optimised Turbine Profile. 

 

Figure 5-7: Raw CFD data for Sampling Count effect. 
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Figure 5-8: Impact of Sampling Count on Optimised Turbine Camber Profile 

Alternatively, one could use predetermined optimisation positions. Rather than 

optimising the camber every n degrees of azimuthal rotation, the user could consider 

the impact of simply optimising the camber at the desired optimisation position. For 

example, the potential single position optimisation candidates could be the middle of 

the downstream stroke (260), or at the peak moment position (100).  

As a result of the GA configuration investigations, the proposed GA techniques that 

will be carried forward for the remaining studies will be to use 10 sampling points 

(every 36°), with 5 phenotypes within each optimisation generation and randomised 

crossover.  

5.4.2 Aerofoil Variations 

Moving from optimising the efficiency and testing the limitations of the genetic 

algorithm, the next logical step is to study the effects of altering the aerofoil 

constraints of the genetic algorithm. As was described in the introduction of the 

thesis, it is mechanically complex to design a blade mechanism that can alter the 
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blade thickness, and extending the chord length could have significant structural 

implications for the turbine. Therefore the aerofoil constraints investigated are all 

components of the camber—namely the position of max camber and whether it is 

better suited to only have the leading edge deforming, the full blade length 

deforming, or only the aft edge deforming (similar to what was described in the thesis 

introduction). 

5.4.2.1 Position of Maximum Camber 

The first consideration for aerofoil variations is the position of the maximum camber, 

defined as a distance along the chord line, such as 20% from the leading edge to the 

trailing edge, 30%, etc. Altering the aerofoil’s position of maximum camber has 

significant effects on the aerofoil’s aerodynamic performance. 

It is theorised that by shifting the position of the maximum camber towards the 

leading edge, the aerofoil could be pointing into the direction of the incoming flow 

better, reducing the incident angle of the flow on the blade, especially at high angles 

of attack. This is a result of the camber line (which is centered in the aerofoil along 

the blade profile from leading to the trailing edge) potentially being parallel to the 

incoming flow, allowing for smoother airflow over the blades [111].  

A potential downside, however, from the dropped leading edge of the turbine blade 

is that the overall curvature of the aerofoil is very high. This will create a sizeable 

curvature of the flow, which has the potential to increase the aerofoil’s lift 

generation, but also comes at the cost of an increased pressure gradient on the 

aerofoil’s boundary layer. The position of maximum camber will also be the location 

of maximum aerofoil curvature, and can therefore be very disruptive to the turbine 

performance—if this position is too close to the leading edge, it could result in larger 

regions of the blade being separated and lead to stall at lower angles of attack than if 

the position of maximum camber was shifted towards the trailing edge.  

To investigate these hypotheses, the genetic algorithm aerofoil constraints for the 

position of maximum camber was altered and tested at a series of different positions 

of maximum camber (denoted by the letter p in common notation when discussing 
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NACA aerofoils). Figure 5-9 shows the results of the moment across the turbine’s 

rotational period for the tested positions and provides interesting insights into the 

effects of altering the position of maximum camber. The first clear conclusion is that 

the 20%c case performed the worst among all of the tested maximum camber 

positions. This ties in with the theory that if the position of maximum camber is 

shifted too far forward, a more significant amount of the aerofoil will stall—resulting 

in a drop in the lift and consequently a reduction in torque. The significant stall can 

be seen from the peak @ 90° azimuthal angle, through to around 126° where the 

aerofoil recovered slightly. The stalled region is still better performing than the 

NACA0015, but the overall trend in the moment generation is very similar, suggesting 

that the position of maximum camber is too close to the leading edge. The 50%c 

maximum camber position seems to support this conclusion, as shifting the position 

further back might allow for a gentler curvature of the blade, resulting in less stall of 

the aerofoil. In fact, from 0 to 180 degrees, the trend of the moment generation plot 

almost mirrors the theoretical angle of attack plot for a VAWT blade (described in 

Figure 1-6), reinforcing the conclusion that the blade has not stalled.  

 

Figure 5-9: Deflection Centre Influence on Torque Profile 



 

138 

Figure 5-10 shows the camber value of the optimised aerofoil throughout the turbine 

rotation. Each vertex in the figure represents the actual camber value that was 

optimised by the genetic algorithm, with linear interpolation between the points. 

Interestingly, the optimised azimuthal position is identical for the 30%c and 50%c 

aerofoil variations before the 50%c position continues to increase in camber at 108° 

whilst the 30%c position camber decreases slightly, as a result of the improved 

separation in the 50%c case. 144° has the opposite result, but interestingly this is not 

reflected in the blade moment, with the 30%c blade having a larger deflection, but a 

moment of almost half that of the 50%c blade! This is a result of the optimisation case 

not considering the potential consequences of it’s optimisation i.e. the 108° 

optimisation of the 30%c blade is the best option, but this could result in a less 

energetic flow impacting the blade at the next optimisation position (144°) resulting 

in a poorer blade torque, but potential for a larger blade camber.  

 

Figure 5-10: Position of maximum camber effect on the turbine camber profile 
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Looking at the flow snapshot at these two optimisation points (72° and 108°), there is 

clear differences in the velocity of the airflow, particularly in the wake and the 

magnitude of separation that the blade experiences. Comparing the velocity contours 

at 72° first, seen in Figure 5-11 and Figure 5-13, demonstrates that the optimised 

camber profile is very similar in performance at this point, regardless of the aerofoil’s 

position of maximum camber, seen by the almost indistinguishable differences in the 

aerofoil’s wake. The separation point appears to be approximately around the 

position of the maximum camber, which is understandable, as that is the position 

where the rate of the local blade normal angle is changing the most, implying the 

potential for an adverse pressure gradient is increased at that position.  

 

Figure 5-11: Velocity contour for aerofoil optimised at 72 degrees with a 20%c maximum camber 
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Figure 5-12: Velocity contour for aerofoil optimised at 72 degrees with a 50%c max camber 

Figure 5-13 and Figure 5-14 show the velocity contours for the 20&c and 50%c blades, 

respectively, at 108° azimuth. They tell a significantly different story than the 72° 

optimisation position, as the wakes and separation points are different! For starters, 

the 20%c case had an optimised camber of only slightly above 0, whereas the 50%c 

case had a camber magnitude of 6%c! The 20%c case is lower as all other camber 

values resulted in worse tangential force generation, due to significantly increased 

flow separation and increased drag due to the larger region of low-pressure wake. 

Conversely, the 50%c position had more of the blade attached (albeit not much more), 

resulting in a later separation and reduced separation bubble size and magnitude. 

The magnitude is lower compared to the 20%c case, displayed by the lack of red 

velocity region, whereas the high-velocity region in the 20%c case signifies a much 

stronger vortex in the wake of the adverse pressure.  
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Figure 5-13: Velocity contour for aerofoil optimised at 108 degrees with a 20%c max camber 

 

Figure 5-14: Velocity contour for aerofoil optimised at 108 degrees with a 50%c max camber 

5.4.3 Half Blade Deflection Model 

The two regions of camber deflection have two different reasons for improving the 

turbine blade performance. When the leading edge is pointing into the flow 

direction, it reduces the adverse pressure and assists to reduce the separation on the 
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suction side of the turbine blade [112]. By increasing the blade curvature in the 

trailing edge region, it effectively increases the camber of the aerofoil and, as such, 

increases the circulation that the blade will impart on the fluid flow.  

The impact of each respective region of deformation is investigated to observe the 

impact of each region separately, and to understand how they impact the flow 

structures. This is particularly useful when considering the validity of this method in 

the context of vertical axis wind turbines, as they are very sensitive to the blade’s 

incoming flow conditions such as swirl, angle of attack and energy [113]. This was 

achieved by creating a new version of the UDF, which simply specified that 𝑑𝑦𝑐 = 0 

in the section of the aerofoil that was intended to remain stationary. The adapted 

formulae for the deflection magnitude are seen in Equations 5.2 and 5.3, where the 

symbols are the same as described in Sections 0 and 03.3 

𝐹𝑜𝑟 𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝑂𝑛𝑙𝑦 𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛: 
𝑑𝑦𝑐 = −

𝑚

𝑝2
(2𝑝 𝑥 − 𝑥2)

𝑑𝑦𝑐 = 0
}
𝑥 ≤ 𝑝 ∗ 𝑐
𝑥 ≥ 𝑝 ∗ 𝑐

 
5.2 

𝐹𝑜𝑟 𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝑂𝑛𝑙𝑦 𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛: 

𝑑𝑦𝑐 = 0

𝑑𝑦𝑐 = −𝑚𝑐̅ (
𝑥 − 𝑝𝑐̅

𝑐 − 𝑝𝑐̅
)
2}
𝑥 ≤ 𝑝 ∗ 𝑐
𝑥 ≥ 𝑝 ∗ 𝑐

 
5.3 

This UDF version was utilised to run the genetic algorithm optimisation process 

much the same as the other methods implemented so far.  

Figure 5-15 shows the instantaneous single-blade moment through the turbine 

rotation. There are three lines presented: a solid line for the standard NACAX515 

aerofoil with continuous deflection from the leading to trailing edge through the 

turbine rotation, a dashed line for the result of only deforming the forward half of the 

turbine blade up to the position of maximum camber, and a dotted line showing the 

results of deflecting only the rear half of the turbine blade profile starting from the 

position of maximum camber. All three lines use the position of maximum camber 

as half chord, therefore for the 50c_LE and 50c_TE curves, the static part of the blade 

will remain to have the same shape as a standard NACA0015 aerofoil. Interestingly, 

the LE deformation model is almost identical to the NACA0015 up until 90° azimuthal, 
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at which point the blade chord is perpendicular to the wind direction, before being 

significantly improved for most of the rotation, before lining up with the NACA 

profile again at ~330°. Conversely, the TE only model starts slightly higher (~2Nm 

more) than the NACA model, but then is lower from ~30° until 100° azimuthal, and 

maintains that trend through the remainder of the rotation, with a particular increase 

in the downstream half of the rotation. Both these findings suggest that the LE model 

assists with reducing stall at the high angles of attack experienced in the upstream 

rotation (0° →180°), but then the trailing edge model can extract more energy in the 

downstream rotation, either due to the reduced energy extraction in the upstream 

rotation, or due to simply improved aerodynamic efficiency in the downstream 

rotation. Overall, the LE model has the highest average moment generation, followed 

by a ~0.5Nm reduction for the NACAX515 model, then another ~0.5Nm reduction for 

the TE model, and then finally a comparatively large reduction for the standard 

NACA0015 aerofoil of ~2Nm. 

As a result, although the LE model has marginally better average moment than the 

NACAx515 model, the larger variance in the moment generation would lead to a 

larger structural fatigue on the blade. The NACAx515 model appears to strike a 

balance between the LE and TE models, namely; the reduced upstream performance 

of the TE model, followed by the impressive performance of the LE model from 90° 

to 180°, before the improved downstream performance of the TE model.  
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Figure 5-15: Moment Distribution for a Standard NACA Aerofoil Shape, Leading-edge only 
Deformation, Trailing-edge only Deformation and combined NACAx515 deformation model. 

Figure 5-16 shows the camber magnitude profile of the LE and TE optimisations. The 

vertices signify the optimised azimuthal positions, and linear interpolation is used 

between each point, as has been shown (i.e. Figure 5-3, Figure 5-5 and Figure 5-10) in 

the chapter. The dotted line represents the TE only deformation, the dashed line is 

the LE only deformation, and the solid line represents the deformation based on the 

traditional NACA 4 Series formulation. Interestingly, at 36°, the NACA and LE model 

have the same camber magnitude, before the LE model increases to 10%c, and the 

NACA model is slightly reduced (suggesting better stall resistance of the LE model) 

but then the opposite is seen at the following optimised position, with the LE model 

slightly lower than the NACA. The lower LE than NACA could be a result of the LE 

model having a rapid loss in lift from the previous position, but then the trend returns 

at 108° azimuthal.  
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Figure 5-16: Camber deflection magnitude profile for the standard NACAX515 Profile, Leading 
Edge only Deformation and Trailing Edge only Deformation. 

5.4.3.1 Summary of Findings 

Based on the study of the genetic algorithm variations, the best camber profile was 

found using the 5 Phenotype, 10 Samples with Randomised Crossover techniques 

with a deflection center of 50%c. This camber profile is seen in Figure 5-10, and 

allowed for a significant increase in the average blade moment from 1.42 Nm to 3.56 

Nm! Figure 5-17 shows the incredible improvements in average turbine blade 

moment, with an increase of 250.7% for the best configuration, and even 178.9% for 

the worst GA configuration investigated. These increases were all primarily due to 

the reduced stall magnitude of the optimised turbine blade profile, resulting in 

significant improvements in turbine performance in azimuth range from 100° → 180°. 

The optimised profiles also provided some improvements over the standard 

NACA0015 aerofoil in the downstream turbine rotation from 180° → 360°. 
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Figure 5-17:Average Turbine Moment over one period of rotation 

5.4.4 Optimisation of VAWT blade camber profile at TSR = 1.5 & 

TSR = 3  

Due to the extensive number of genetic algorithm parameter comparisons made in 

this aerofoil parameter study, including the genotype count, sampling count and 

maximum camber position, only the optimal configuration is selected for 

comparison at alternative TSRs to the NACA0015. This was shown to be the 5-

genotype model, with 11 optimisation positions and the position of maximum camber 

at 50%c.1 

To ensure the validity and the understanding of the limitations of the transient 

simulation genetic algorithm technique, it was tested at a lower tip speed ratio of 1.5 

and at a higher tip speed ratio of 3. The primary consideration in comparison to a tip 

speed ratio of 2.29 is the much higher angle of attack that the turbine blade profile 
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would experience at low tip speed ratios and the lower angle of attack at the higher 

tip speed ratio of 3. The secondary comparison is the difference in Reynolds Number 

(as a result of the change in airspeed that the blade experiences) at different tip speed 

ratios, as it is well known that the Reynolds Number directly influences the lift and 

drag experienced by an aerofoil section [114]. 

Examining the 1.5 tip speed ratio case first, the torque against azimuthal angle plot 

can be seen in Figure 5-18. The clearest improvement is in the mean torque that the 

blade experiences, increasing from 0.05 -> 2.8 for the optimised camber profile 

compared to the non-deforming NACA0015. The primary region of the moment 

contribution is from 225° to 360° where the turbine blade experiences high angles of 

attack, but also experiences a lower Reynolds number due to the reduced flow 

velocity that is experienced in the downstream half of the rotation. The optimised 

profile has a lower torque contribution in the 180° to 225° rotational region, which is 

a result of the optimised deformation profile not experiencing the same high 

intensity vortex shedded from the blade that is carried downstream which is 

exhibited in the symmetric NACA0015 case. The lack of vortex is a result of the change 

in the upstream rotation of the optimised profile reducing separation, and therefore 

resulting in a more uniform trailing flow field experienced by the deformed blade. 

The reduction in moment generation could also be a result of a lower mean flow 

velocity due to a greater power extraction from the flow in the upstream region. 
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Figure 5-18: Comparison between the Transient Genetic Algorithm Optimised Camber Profile and 
Symmetric NACA0015 Turbine Blade Profile at TSR=1.5 

Figure 5-19Figure 5-18 shows the deformation profile’s moment generation in 

comparison to the non-deforming NACA0015 aerofoil at a higher tip speed ratio 

scenario (TSR = 3). The results show an interesting result wherein the upstream 

section is reduced in the power region, but the downstream region is entirely more 

performant in the optimised profile. This could be a consequence of the optimisation 

process only being carried out on a single period of rotation, and then running the 

optimised profile for 3 full turbine rotations before sampling the output. Therefore, 

the increased power generation in the downstream region could result in a coupling 

to the flow that wouldn’t be seen in the first rotation (where the optimisation is 

undertaken). As a result, the overall turbine performance of the optimised aerofoil is 

slightly lower than the NACA0015, but the reduced variance in power generation 

between the upstream and downstream portions of the rotation could assist in the 

mechanical fatigue that the blade experiences.  
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Figure 5-19: Comparison between the Transient Genetic Algorithm Optimised Camber Profile and 
Symmetric NACA0015 Turbine Blade Profile at TSR=3 

Figure 5-20 shows the camber profile for both tip speed ratios, which provides insight 

into the potential causes of the moment difference with the TSR=2.29 case. Firstly, 

for TSR=1.5 there is a rapid change in camber between 108° and 144° , which 

interestingly keeps the moment above the NACA0015. This location also coincides 

with the rotational position where the blade starts to build up significant separation, 

which could be the reason that a highly negative camber is converged upon; in an 

attempt for the blade to reduce the separation.  

The TSR=3 case interestingly has a lower camber at 72° than the TSR=1.5. Which is 

surprising, as one would expect the lower angle of attack and higher Reynolds 

number for TSR=3 to allow the blade to increase camber before separation, but this 

does not seem to be the case. This lower camber could also lead to the reduced 

moment generation from 0°-180° than the NACA0015, as the dynamic profile change 

could increase the profile drag faster than the increase in lift generation. 
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Figure 5-20: Camber profile for optimisation at TSR = 1.5 and TSR = 3 

5.4.4.1 Summary of Findings 

The transient GA method improved the average tangential force coefficient 

significantly for the lower tip speed ratio scenario (TSR = 1.5), but had a minor 

reduction in the higher tip speed ratio scenario (TSR = 3). This is a result of the GA 

being run over a single turbine rotation, meaning that the changes in upstream 

windspeed (as a result of blockage effects from the optimised turbine’s increased 

downstream energy extraction). The only method to circumvent this  
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5.5 Summary of Findings 

This chapter has shown the strength of utilising the transient CFD simulation of a 

VAWT for evaluating the optimal camber at user-specified positions in the turbine’s 

rotation. Whilst other work has considered using optimisation techniques to change 

the aerofoil shape to improve the overall torque generation, the blade shape that they 

generate typically will improve either the upstream or downstream region whilst 

performing worse in the other region. This work introduces a new performance-

inspired optimisation procedure, as each position’s optimisation is used as a starting 

point for the next optimisation, thus allowing for continuous feedback considering 

the instantaneous flow fields at each optimisation position. As a result, almost all the 

optimised positions perform better than their symmetric NACA0015 counterparts 

within the GA optimisation. 

A variety of configurations for the genetic algorithm setup was evaluated, including 

randomisation of the crossover mutations, number of samples per rotation and 

reducing the number of genotypes per optimisation generation. It was found that a 

reduction in genotype count from 11 to 5 reduced computational costs significantly, 

but had negligible impact on the optimised profile’s power generation capabilities. 

Aerofoil variations were also considered including the position of maximum camber, 

and having a leading or trailing edge only deflection. As a result it was seen that the 

leading edge deflection was the largest contributor to power generation for the 

bending profile as a result of the reduced separation that it allowed at the tested 

operating conditions.  

All optimised scenarios significantly improved the turbine’s performance in the 

power generation, and reduced the variance in the power generation throughout the 

rotation by improving the downstream power generation significantly. This will have 

a knock-on effect of reducing the wear experienced by the turbine due to reduced 

fluctuations in the aerodynamic loading. Also, there is the potential that the 

reduction in separation of the turbine could also contribute to a reduction in the noise 

generation.   
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6 Artificial Neural Network Surrogate for 

the Optimisation of the Aerofoil Camber 

Deformation Profile 

6.1 Introduction 

This chapter leverages the unique capabilities of an artificial neural network for the 

optimisation of turbine blade profile aerofoil camber prediction. The artificial neural 

network can swiftly provide an estimated instantaneous torque value by inputting the 

operating parameters of a desired turbine design, including azimuthal position, tip 

speed ratio and wind speed. This torque and camber is fed into a genetic algorithm 

to generate the optimal aerofoil design at the desired azimuthal position, which is 

then implemented into an azimuthal position-dependent camber profile.  

The training data provided is the aerodynamic efficiency (lift-to-drag ratio) of a two-

dimensional airfoil section in a steady-state airflow. Each data point has a different 

Reynolds number and angle of attack, which corresponds precisely with the tip speed 

ratios, windspeeds, and azimuthal positions.  

The model’s fitting accuracy is evaluated using mean square error and is compared 

against the theoretical torque that XFOIL would predict, using the workflow 

described in Chapter 1. The artificial neural network-based genetic algorithm camber 

optimiser has shown strong consistency and high degrees of performance 

improvement for the turbine blade. The comparison provides valuable insights into 

the efficiency and accuracy of the ANN in predicting optimal airfoil designs.  

Finally, the ANN profile is compared to the employment of both the static GA and 

transient GA to assess the vertical axis wind turbine performance improvement and 

the total computational efficiency, highlighting the promising potential of ANNs in 

enhancing the wind turbine performance, as well as considerations that should be 
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made when designing and utilising artificial neural networks for aerofoil 

performance prediction. 

The genetic algorithm showed promise in achieving the optimal camber of the 

turbine blade profile for specific testing parameters, i.e. tip speed ratio, free stream 

velocity and azimuthal angle, but transient optimisation such as that employed in 

Chapter 2 required significant amounts of simulations to achieve the optimal camber 

at each localised azimuthal position, and the method in Chapter 1 struggled with 

optimising the camber position at high angles of attack.  

This limits the accessibility of using the transient genetic algorithm for optimising 

VAWTs, as the user would require significant computational power or time for every 

specific optimisation position. For example, if the designer wants to optimise the 

camber magnitude at an azimuthal angle of 36° for a freestream of 7m/s and a tip 

speed ratio of 2.29 (one of the scenarios that was optimised in the previous chapter), 

they will need to run the transient genetic algorithm optimisation workflow for that 

specific condition. Then, if one wants to see the difference between a higher and 

lower tip speed ratio, one will have to rerun the optimisation algorithm with different 

optimisation conditions. There is no opportunity to use the previously tested 

conditions to help inform the current optimisation. If we take one of the previous 

chapter’s scenarios, 36 generations of optimisation generations, for 11 genotypes, 

each generation will have a simulation count of 396! For this to be repeated at another 

tip speed ratio would double the number of simulations and for a total of 792 

simulations to only optimise two positions! 

This is where the potential for employing another form of optimisation, such as 

Kriging and Response Surface Optimisation, provide a potential advantage. These 

methods are used to create predictions based on trends in their optimisation dataset 

to allow a user to input some variables (such as tip speed ratio, wind speed and 

azimuthal position) and have an output provided (in the scope of this thesis, that 

would be a tangential force value).  

 These optimisers have their limitations, of course; Kriging is typically poor at 

optimising multiple variables, and Response Surface Optimisation (RSO) is very 
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susceptible to being trapped in local maxima or minima due to the methodology 

[115]. Kriging and RSO are typically limited to the number of variables that can be 

used to create the optimised design. On the other hand, artificial neural networks 

(ANNs) can have any number of potential inputs, hence their common usage in 

analysing massive datasets [116]. 

ANNs can be split into subcategories, with two main themes referring to how the 

model learns. The method of learning is referred to as supervised or unsupervised 

training, which has an ironic implication in that for it to be supervised or 

unsupervised suggests it needs to be carefully monitored as if teaching a young child, 

when neither method entails any supervision in the actual training process, but 

instead in the way that the data is used to train the setup. Supervised learning refers 

to using labelled training data, but unsupervised learning does not use labelled 

training data. The three main tasks of unsupervised learning are clustering, 

association, and dimensional reduction [117], whereas supervised learning has two 

primary categories; classification and regression [118].  

6.2 Machine Learning Model  

The approach used in this chapter to optimise the turbine camber profile has the 

same overall process as in the previous chapters; pre-process the 

geometry/simulation, generate the torque coefficient, and feed the camber and 

equivalent torque into the genetic algorithm optimiser. The novelty of this approach 

is to utilise an artificial neural network in place of XFOIL or a CFD simulation for 

generating the torque value. Many of the tasks needed to generate the artificial neural 

network are, therefore, a result of the automation required to easily generate, model 

and analyse the dataset. 

First, a baseline domain was created and meshed manually, and it was modified by 

all data points as required within ANSYS Fluent. To generate the dataset, the main 

steps in the flow are to submit a substantial amount of 2D aerofoil CFD simulations 

with variations in the flow conditions, modify the dataset to normalise all data points 

(for efficiency of the machine learning), define the machine learning model, fit the 
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data set to the model (forward-propagation), evaluate the model (backpropagation) 

against the test dataset to quantify the weights of all the nodes per layer and repeat 

the training until the error between the predicted and tested values is sufficiently 

small based on the evaluation criteria decided by the engineer. The trained model 

can then be utilised to predict the torque for any set of operating conditions that it 

was trained on. In this case, the training data is the tip speed ratio, camber, 

windspeed and azimuthal position, which is modelled to estimate the torque of the 

aerofoil profile. Once trained, predicting the torque coefficient is almost 

instantaneous, resulting in the potential to create a turbine blade camber 

deformation profile in almost real-time, potentially significantly reducing the overall 

energy costs in computing when optimising multiple positions.  

6.2.1 Dataset generation method 

It is crucial to establish a dataset for the training model that is sufficiently broad to 

cover a variety of optimisation scenarios, but it is equally important to ensure that 

the difference between the data points is not excessively large. If the datapoints are 

too sparsely distributed in the operating conditions range, it could result in poor 

generalisation of the model, and if they are too dense it will increase the 

computational cost significantly, and risk overfitting the model. 

Space optimal filling [119], a technique used for design of experiments to maximise 

breadth with the least experiments possible, is used to generate a series of 

randomised two-dimensional CFD runs of a static two-dimensional aerofoil with 

different operating conditions equivalent to the theoretical flow conditions that a 

rotating turbine would experience. Whilst it is understood that static aerofoils do not 

experience the dynamic flow physics of a VAWT, the computational cost of producing 

a VAWT ML prediction model would be exorbitant as every possible datapoint would 

need a transient simulation with very careful consideration for the turbine operating 

parameters, particularly the azimuthal angle of the datapoint. Each CFD simulation 

is solved to a satisfactory convergence level of 1e-4, and the aerodynamic efficiency 

is appended to a dataset compiling operating conditions and resultant torque value, 
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which is used for training the artificial neural network. In this thesis, the dataset's 

variables would be the tip speed ratio, windspeed, azimuthal angle and camber as 

inputs and the blade torque as the output. Some example techniques for generating 

the parameters of the dataset are the Full Factorial, Fractional Factorial design  and 

latin hypercube sampling. 

6.2.1.1 Full Factorial 

The full factorial method [120] employs changing only one variable between each 

data point. This is the most robust and extensive method for designing an experiment 

plan, but also the costliest. To appropriately quantify the data set, it requires a 

factorial number of experiments, hence the name. In an example distribution, if one 

would like to test two variables, say the tip speed ratio and camber, but one wanted, 

say, ten samples for each variable, then this would require 100 experiments to cover 

all of the possible combinations of the two variables. The mathematical 

representation of the number of possible combinations is straightforward and is seen 

below in Equation 3.1, where N is the number of samples and Y is the number of 

variables. 

𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑁𝑌 . 

6.2.1.2 Fractional Factorial Design 

This is a derivative of the full factorial model but uses a reduced subset of the sample 

range. Instead of sampling say 10 different camber values from -10 to 10, we could 

just do 3 samples that span the domain, but with larger spacing between each value, 

i.e. the 3 values for camber could be -10, 0 and 10. This would still result in several 

combinations that are directly proportional to the testing range but would allow for 

a significant reduction in the computational expense for dataset generation due to 

the reduced number of experiments. Of course, one of the major downsides of having 

a uniform distribution of samples is that the full factorial will always be the most 

robust sampling method as it covers all potential combinations of the variables within 
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the experimental domain, thus providing a more thorough and robust dataset to train 

the machine learning model on. 

6.2.1.3 Latin Hypercube Sampling 

Latin hypercube sampling [121] is a method for generating a semi-randomised 

sample of parameters. The randomisation allows for the reduction in the bias of the 

dataset, but the breadth of the design is optimised such that it spans the full breadth 

of the search domain. The true advantage of the Latin hypercube sampling, however, 

is its ability to utilise any number of design parameters, making it particularly suited 

and often used in the generation of datasets used for the training of machine learning 

models, due to their expansive training variables that are used.  

As the turbine’s characteristics in this case are known already (the turbine, blade 

profile chord length and azimuthal angle) it is possible to derive the angle of attack 

and local windspeed on the turbine blade when provided with the tip speed ratio, free 

stream velocity and azimuthal angle, utilising the equations outlined in Section 2.4. 

The aerofoil characteristics used to characterise the dataset in this study is simply the 

camber magnitude. As was found in previous work (namely Chapter 4) the optimal 

position of the maximum camber is at the half-chord of the aerofoil, and therefore as 

such, the position of the maximum camber is set as constant for all the testing 

conditions. Furthermore, this study only considers the effects of camber, rather than 

including the thickness distributions of the aerofoil (maximum thickness as 

percentage of chord), to provide findings that could be relatively easily implemented 

into future VAWT designs that utilise a NACA0015 blade and can be built and 

controlled in a relatively straightforward manner. Future work should include 

increasing the breadth of the testing dataset to train the model on more potential 

turbine designs and improve the breadth of application of this technique.  

This generated dataset is used to train the ANN model, as these input variables allow 

for the widest range of application for this turbine. If one wished to optimise a 

different profile, this model should still be valid even at different operating 

conditions such as wind speed, tip speed ratio and chord length. 
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6.2.2 Two-dimensional static airfoil simulation for Machine 

Learning Model Generation 

To generate the training data for the machine learning model, a Python script was 

created to automate the geometric creation, make the mesh, set up the simulation, 

and calculate the solution data.  

Whilst it is possible to automate this process using XFOIL, as was done in earlier work 

(Section 4) there would be limitations when reaching the edge cases, such as the high 

stall angles with low Reynolds number and large camber. It was, therefore, decided 

that ANSYS Fluent would be used to evaluate the performance characteristics of each 

data sample. This also provides the additional option for further work to be 

implemented wherein other characteristics can also be implemented within a 

machine learning workflow, potentially utilising unsupervised learning to find 

correlations between characteristics such as separation, vortex shedding frequency 

and overall turbine performance. Furthermore, using ANSYS Fluent enables the 

additional option to implement a qualitative approach to the candidate comparison, 

as the user can infer how the different turbine operating conditions and design 

choices can impact on the overall flow field, not only the quantitative performance 

improvements. 

The general workflow is as follows: 

i. Initialise the array of candidate simulations for the dataset generation 

ii. Use the dataset parameters to generate the appropriate geometries 

iii. Mesh the geometries created in step ii 

iv. Setup the simulation using operating conditions assigned in step i 

v. Solve the flow field using the mesh from step iii 

vi. Take the relevant data from the simulation results and append to the original 

dataset 

vii. Generate the AI model for the predictive simulation 
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viii. Utilise the AI model as the torque prediction tool within a genetic algorithm 

to find the optimal camber for the desired operating parameters. 

The design plan is to create a highly structured flow domain around the aerofoil, 

controlling the stability of the simulation well and the placement of the elements to 

maintain the appropriate level of mesh resolution required in key areas of the flow 

field. The angle of attack would then be controlled by changing the components of 

the incoming airflow and the lift and drag forces used to calculate the blade’s torque 

generation.  

The entire geometry, mesh and solution steps is controlled through the PyAnsys 

libraries, allowing for the easy parameterised automation of the potentially 

thousands of datapoints that will be generated for the machine learning training 

dataset.  

The geometry generation script takes the provided NACA aerofoil parameters 

(camber, thickness, maximum camber position and chord length), allowing for any 

NACA 4-Series aerofoil to be generated as required when creating the training dataset 

simulations. This script creates a list of tuples containing the XY coordinates of the 

aerofoil surface points. Initially, this script made very blocky curves with sharp 

edges, so it was altered to create segment lines, merged into a single spline of best fit 

in Spaceclaim [122]. If a flat trailing edge were to be used, it would be necessary to 

implement some form of flag in the geometrical construction to label the co-

ordinates of the trailing edge node for both the pressure and suction surface, and 

create a line between them, and a line to split the decomposition into an additional 

surface. 

There have been some investigations that look into the shape of the trailing edge and 

its influence on the aerofoil performance prediction accuracy [123][124][125], of 

course, an infinitely sharp trailing edge is not manufacturable [126], but the flat 

trailing edge can lead to significant inaccuracies in the aerofoil’s wake from the 

increased separation compared to a rounded or sharp trailing edge, especially in the 

stall region. The domain decomposition includes a vertical split at the aerofoil trailing 

edge and 10 percent chord length downstream of the leading edge to help reduce 
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element skewness; a split also spans from the O-Grid’s curve downstream of the 

boundary’s midspan to the aerofoil leading edge, and from the trailing edge to the 

midspan of the furthest downstream boundary of the domain. Figure 6-1 shows this 

domain region for clarity. This is decomposed into quadrilateral regions to allow for 

strong mesh control to create a fully structured conformal mesh with a maximum y-

plus value of 1, as is required by the 𝑘 − 𝜔 turbulence model [127]. Figure 6-1 shows 

the resulting domain decomposition after implementing the philosophies discussed, 

with the shared edges visible as the blue lines.  

 

Figure 6-1: Preliminary 2D CFD Domain Block Decomposition 

The sizing on all the topologically shared edges was used for implementing a gradual 

inflation from the aerofoil surface, alongside controlling the number of divisions 

along the aerofoil edge, thus allowing for a more straightforward study of mesh 

independence and control of the overall mesh resolution. This also makes it easier to 
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control the aspect ratio of the cells and y-plus in the boundary layer regions. One of 

the most significant benefits due to the structured mesh being fully defined, however 

is actually in the speed of the meshing and the simulation [128]. A structured 

quadrilateral mesh also provides the benefit of reducing the numerical diffusion 

[129], particularly in the flow regions that are typically linear, such as within the 

attached boundary layer [129].  

Upon saving the generated flow domain geometry, it meshes within SpaceClaim for 

the controlled meshing along the named selections generated in the geometry file 

using the edge sizes described before, including a 0.2mm element sizing on the 

aerofoil surface and all corresponding edges of the domain which are topologically 

parallel to the aerofoil. This element sizing reduces skewness when allocating a first 

cell height of 1.94e-5m on the aerofoil surface to ensure a y+ < 1.  

As the named selections are pre-defined in the geometry generation stage, they are 

used to specify the edge sizes that are unique to each region more easily.  The final 

mesh is then imported into an ANSYS Fluent case with the boundary conditions set 

up for the simulation. The conditions include symmetry on the top and bottom edges 

of the solution domain to reduce the wind tunnel effect of having a domain that is too 

small, a velocity inlet and a velocity outlet upstream and downstream of the aerofoil, 

respectively, and no-slip walls on the aerofoil edges, which is necessary to enable the 

viscous flow effects for proper aerodynamic evaluation, such as the circulation 

needed for generating lift. If the aerofoil walls were slippery (no-shear stress on the 

fluid-wall surface), then the lift and drag of the aerofoil would not be well captured. 

6.2.3 CFD Validation and Verification 

In order to ensure that the simulation setup is effective and accurate, it is compared 

against the trustworthy source of Elsakka et al.’s study on the ‘Angle of attack 

estimation for a VAWT turbine’ [80], which is in turn validated against the work of Li 

et al. [130] on the 3D aerodynamics of VAWTs. There are two main methods of 

simulation accuracy comparison that were used; Lift and Drag polar comparison, and 

Pressure Coefficient along the aerofoil surface.  
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Using the pressure coefficient on the aerofoil surface is a more robust method than 

using lift and drag, as it allows for more nuanced evaluation such as if more 

refinement is required in certain regions around the blade. Using the pressure 

coefficient distribution provides a more nuanced understanding of the flow 

characteristics, as the lift and drag are calculated directly from the aerofoil surface 

pressure distribution, but don’t provide the details about how the flow is behaving, 

especially at higher angles of attack [131].  

6.2.3.1 Preliminary Design 

The initial design was to have a common C-Grid for the domain shaping which 

connects with a rectangular section, seen in Figure 6-1. This proved to be a poor 

design choice as the shaping resulted in large skewness and poor orthogonal quality 

as the elements were blocked between the arc inlet and the aerofoil edge. Some 

alternative domains and setups were studied including: 

i. A flat trailing edge – 5c upstream arc, 7c downstream arc 

ii. Flat trailing edge + Blocked Domain – Worse convergence than FF, same 

domain 

iii. Flat trailing edge with blocked domain – 10C upstream, 30C downstream 

iv. Sharp trailing edge with blocked domain – 10C upstream, 30C downstream 

However, after much refinement, it was found that it was not possible to create a valid 

comparison to the published results, and as such, the structured meshing approach 

needed a rethink. This is mentioned merely for the reader to avoid making the same 

design decisions if undertaking a verification study of their own, so the pressure 

coefficient plots for the poor designs will not be included. 

6.2.3.2 Final Design 

The best course of action would be to replicate the 2D design provided by El Sakka et 

al. [94], as the domain methods mentioned briefly in Section 6.2.3.1 had very different 

pressure coefficient plots to the published data. This consisted of an aerofoil within 

a small circular domain with a structured mesh, connected by a non-conformal 



 

163 

interface to a structured far field mesh which is rectangular in shape. The 

geometrical design with dimensions is shown in Figure 6-2. This allowed for the 

aerofoil domain to be rotated as required to the desired angle of attack without any 

need to alter the inflow boundary conditions, leaving the inlet flow perpendicular to 

the inlet face. 

 

Figure 6-2: The 2D CFD domain with the blocking lines visible 

 The mesh is generated such that the first cell is sufficiently accurate to capture the 

viscous sub-layer in the boundary layer, but it is also designed such that the elements 

are concentrated in regions of large gradients, particularly near the blade and in its 

wake. An O-Grid was also blocked around the aerofoil to assist in the transition of the 

mesh, reducing the skewness and allowing for better control of the region near the 

aerofoil, whilst maintaining a coarser mesh in the far field where flow gradients are 

not as likely, and therefore a coarser mesh will suffice [132]. The resultant mesh sizes 

include ~0.2mm element edges along the aerofoil blade and ~0.05mm edge sizing at 

the curved trailing edge region to reduce the skewness in the highly curved region. 
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Biased edge sizes were also placed throughout the far-field of the domain, with small 

elements close to the aerofoil domain progressively increasing in size to the 

boundaries. 110 divisions were allocated for all edges normal to the aerofoil surface 

with a bias factor of 421 to set the first cell height to 5.4e-7m, followed by 50 divisions 

in the rotating section housing the aerofoil at a bias factor of 4. This resulted in a high-

quality mesh, with the minimum orthogonal quality at 0.7 and maximum at 1. There 

were 100 elements with a bias factor of 5 along the 30c length edges (vertical and 

horizontal upstream of the blade), and 300 elements with a bias factor of 5 along the 

50c wake edges (horizontal, downstream of the aerofoil) from the aerofoil to the 

outlet boundary. An image of the full meshed domain is seen in Figure 6-3Error! 

Reference source not found., a zoomed image nearer to the aerofoil in Figure 6-4, 

and a zoomed image of the region near the aerofoil is seen in Figure 6-5 and Figure 

6-6.  

 

Figure 6-3: The fully meshed CFD domain for the NACA0015 aerofoil 
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Figure 6-4: Domain mesh in the vicinity of the rotating aerofoil fluid zone 

 

Figure 6-5: The zoomed mesh with blocking 
edges of the aerofoil region 

Figure 6-6: Zoomed in mesh around the blade 
trailing edge with blocking edges 

This final mesh was implemented into an ANSYS Fluent CFD simulation, with the 

following boundary conditions: 
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1. A velocity inlet at the X-Min boundary, with air at standard atmospheric 

conditions, travelling at 10 ms-1 along the vector of [1
0
]. 

2. Pressure outlet at the X-Max boundary. 

3. No-slip walls on the aerofoil surface. 

4. A non-conformal interface between the circular fluid-zone containing the 

aerofoil (Figure 6-5) and the corresponding edge of the larger outer flow 

domain. 

5. Symmetry on the Y-Min and Y-Max boundaries to minimise any wind-tunnel 

effects and prevent boundary-layer growth on outer domain edges. 

The aerofoil fluid-zone is rotated by 10° clockwise to create an angle of attack of the 

turbine blade section of 10° to replicate the flow conditions of the static aerofoil 

simulation evaluated by Elsakka et al. [80]. Namely a 10m/s wind speed and 10° angle 

of attack. The turbulence model used is the 𝑘 − 𝜔 𝑆𝑆𝑇 model, which is appropriate as 

the first cell height has a y+ of < 1 with the mesh sizing described, and helps to predict 

the separation of the aerofoil better than the 𝑘 − 𝜖 or SA models that are commonly 

used in aerospace applications .  

Comparing the pressure coefficient along the aerofoil surface with that obtained by 

the work of Elsakka et al. [80]  is seen in Figure 6-7.  The plot shows a very strong 

agreement in pressure coefficient along the entire span of the aerofoil, and as such 

this simulation’s domain sizing, mesh and simulation settings is deemed to be 

properly setup and can be used for generating the machine learning dataset with 

confidence.  
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Figure 6-7: Cp Plot Comparison from the present setup in this study compared to that of El Sakka et 
al.[80] 

To ensure this is the most computationally efficient mesh, that also captures the 

required flow physics, a mesh independence study was performed to compare the lift 

coefficients for four meshes – 260k, 350k, 585k 756k elements. The sizing variations 

were implemented by changing the number of divisions on the aerofoil edge, and the 

associated edges in the circular domain section as seen in Figure 6-5. Figure 6-8 shows 

that there is almost no difference between the use of the two finest meshes so the 

second finest mesh tested is used for all the remaining studies and the ML dataset 

generation to improve computational efficiency. The 756k mesh could show a 

reduction in lift by more accurately marking the separation point on the aerofoil 

surface, but it is almost indistinguishable from the 585k mesh. 
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Figure 6-8: Mesh independency study for the 2D aerofoil simulation used as datum for generating 
the ML Training dataset. 
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6.3 Machine Learning Model for the Blade Torque 

Prediction 

This section outlines the techniques for creating the ML model, testing other existing 

regression models, and evaluating the performance and validity of the ML Models. 

6.3.1 Existing Regression Models 

There are some available models and studies available [133], [134], [135] for 

predicting aerofoil performance using a machine learning model, but there is 

currently not a model that is suitable for the range of conditions that the designed 

VAWT operates in. 

The model is therefore trained using the sci-kit-learn library [136], which is much 

more straightforward and has a high-level library, thus allowing for data scientists to 

more readily focus on the actual connections in the data and outcomes instead of the 

time-consuming task of fine-tuning neural networks in TensorFlow [137] and 

PyTorch [138]. Furthermore, it has been seen that if the dataset generated is 

insufficiently complex or sparse for the neural network to be fully utilised, thus likely 

to result in strong overfitting of the data, leading to poor regression performance and 

poor performance on the un-seen data. Scikit-learn [139] is used in much the same 

way as TensorFlow [137] but has the entire process of hidden layers and 

hyperparameter tuning that is hidden away from the user.  

The scikit-learn based methodology was deemed to be insufficient, as the comparison 

between the predicted and true values was significantly poor. See Figure 6-9 for the 

comparison between the predicted and true values, which clearly shows that the 

there is very poor fitting between the predicted and true values. A perfect fit would 

match the dashed red line visible. This line is simply y=x, or in this case the 

predicted value = true value, which is clearly a best case scenario in which every 

predicted value is the same as the trained/tested value, but is near impossible to 

achieve in practice. 
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Figure 6-9: Scikit-Learn Multivariate Regression Fitting Comparison between Model Predicted 
Values and True Values from the training dataset. 

An already established, the trained machine learning model to predict aerofoil 

performance was found on GitHub as an opensource project. This project is called 

NeuralFoil and is a neural network predictor that was trained on millions of XFOIL 

runs with varying angles of attack, aerofoil parameters and Reynolds numbers. This 

clearly displays the significant breadth of the dataset required for generating a neural 

network for a complex interweb of variables as is the aerofoil design and 

optimisation. NeuralFoil runs ~10x faster than XFOIL, making the optimisation 

process incredibly fast.  

6.3.2 MLVAWT Artificial Neural Network 

Neural networks typically have a few layers split into four categories: input, "hidden”, 

sorting, and output. Figure 6-10 shows an example of the structure of a simplified 

artificial neural network. 

(Ct) 

 

(C
t)
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• The input layer acts as the first step between the dataset preparation and 

model training, wherein the user defines the characteristics that they are 

interested in. This stage also applies min-max scaling to manipulate the input 

data into a form that is more efficient for the matrix operations when 

employing the training model [140], and a common step is to normalize the 

data to a unit range. 

• The 'hidden' layers in the neural network are where the coefficients or factors 

of the specific machine learning model implemented are utilized to weight the 

different inputs as it was trained. These layers play a crucial role in the 

learning process, processing the input data and applying the learned factors 

to make predictions.  

• The sorting layer plays a crucial role in the neural network. It categorises the 

factored/scaled data and combines all hidden layers. This process is essential 

for organizing and processing the data effectively, thus leading to accurate 

predictions. 

• The output layer is the final stage of the neural network. Depending on the 

specific design parameters and the user's requirements, this could be a yes or 

no answer, an estimated value, or a specific category.  In the context of wind 

turbine design, the output layer would be regression based, so this layer would 

provide the optimal camber profile for a given set of turbine operating 

conditions, as the user desires. As a result of only having one optimised 

variable, this layer “squashes” the nodes of the previous layers into a single 

node, but it could be expanded to as many output variables as needed 

depending on the scenario. 
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Figure 6-10: Graphical representation of the layers of a simple neural network [141] 

The dataset that is generated in this application uses input parameters that are all 

operating conditions of the turbine that would be pre-defined before selecting the 

optimal aerofoil. The parameters used in this study are providing the azimuthal 

angle, camber, wind speed and tip-speed ratio, with the output of the model being 

the predicted tangential force coefficient. The range of the parameters are seen in 

Table 6-1 below. 

 

Parameter Minimum Value Maximum Value 

TSR 1 5 

Phi 0 360 
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Windspeed 0.1 14 

Camber -9.5 9.5 

Table 6-1: Bounds of the Input Variables for the Training Dataset 

These parameters are used to create a set of CFD simulations to generate the 

tangential force coefficients for specific operating conditions, which is fed into the 

machine learning model to create the torque predictor, as that is the driving force 

that allows a turbine to generate power. It is possible to directly predict the power 

coefficient, but that is a factor in the operating conditions, and the simplicity of taking 

a value that is directly proportional to the turbine blade’s lift and drag allows for less 

variance in the prediction. The model is used to replace the CFD solution stage 

employed in the previous chapter’s genetic algorithm.  By using the ANN to predict 

the torque for a blade at specified operating conditions, it is possible to optimise the 

turbine profile in under a minute instead of over the course of several hours.  

The hidden layers are how the weights are calculated for each data point, with three 

primary functions: tanh, sigmoid and Rectified Linear Unit (ReLU). There are many 

other activation types, but they are not as commonly used. The ReLU function is the 

simplest function, it simply takes a number and turns negative values into 0 and lets 

the output equal the input if the value is positive. It is very efficient and allows the 

network to learn quickly, but sometimes it can lead to “dead neurons” resulting in 

many nodes not aiding in the training of the model if many of the inputs are negative 

[142]. The sigmoid function takes a value and “squashes” it to a value between 0 and 

1. This is very useful in binary classifications such as A/B Testing, but not much use 

in regression as it is limited by vanishing gradients, where if the value is very small 

or very large, the learning is very small, thus slowing the training down. The Tanh 

function is similar to the sigmoid function but scales to -1 -> 1 instead of 0 -> 1. As it 

is based around 0, it learns faster than the sigmoid function, but it is also susceptible 

to the vanishing gradient problem. Leaky ReLU works similar to ReLU, but allows a 

small gradient when the value of x is small, eliminating the dead neuron issue, 

allowing the network to continuously learn. The mathematical representation of 
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these functions is shown in Equations 6.1), 6.2), 6.3) and 6.4). A graphical 

representation is also shown in Figure 6-11, where the X axis represents the input to 

the function, and the Y-Axis is the function output.  

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) 6.1 

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 = {
𝑥

 0.01𝑥
      

𝑖𝑓 𝑥 > 0
𝑖𝑓 𝑥 ≤ 0

 6.2 

𝜎(𝑥) =  
1

1 + 𝑒−𝑥
 6.3 

𝑇𝑎𝑛ℎ =   
𝑒𝑥 − 𝑒−𝑥 

𝑒𝑥 + 𝑒−𝑥
 6.4 

 

Figure 6-11: Neural Network Activation Functions for the Input vs Output 

Four variations of the model were created and these are seen in Table 6-2. The 

machine learning model’s configurations are used to investigate the effects of the 
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different parameters on the efficiency of the model training and the accuracy of the 

model. Due to significant advances in graphical processing units (GPU) in the last 

decade [143], it is now possible to rapidly accelerate the model training process using 

the GPU instead of CPU, and this is due to their thousands of parallel threads [144]. 

Due to the embarrassingly parallel nature and incredible matrix mathematical 

efficiency of GPU computing, there are also some model optimisers built into the 

most common machine learning libraries such as TensorFlow and PyTorch [145]. 

These optimisers are outside the scope of this chapter, but would be a worthy 

investigation in future work. 

Number of Layers Layers Density Layer Activation Functions 

3 128 x 64 x 32 Tanh, ReLU, ReLU 

3 256 x128 x 64 Tanh, ReLU, ReLU 

3 128 x 64 x 32 Tanh, Tanh, Tanh 

5 512 x 256 x128 x 64 x 32 Tanh, Tanh, Tanh, Tanh, Tanh 

Table 6-2: TensorFlow Machine Learning Model Configurations 

The tested model structures vary by changing the density of the TensorFlow model 

layers including 128x64x32x1 and 256x128x64x1 nodes per layer, respectively. Both 

cases also use the tanh activation in the first layer, followed by ReLU in the two 

following layers. These model architectures were used to ensure that their depth 

would allow for strong reflection of the underlying trends in the dataset, but also are 

not too thick so that training is relatively fast due to the reduced number of variables 

that the model is trained on. 

As this model is a regression model, the performance and accuracy is gauged using 

the measure Mean Square Error. This measures the average of the squared difference 

between the predicted and actual values. The formula for MSE is shown in Equation 

6.5, where 𝑦𝑖 is the target value (taken as the value in the test dataset), 𝑦̂𝑖is the 

predicted value and n is the number of samples. The mean squared error is used 

because it amplifies any large errors in the model and penalises them significantly 
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more, thus allowing the model to minimise large mistakes in the prediction [146]. The 

primary drawback to this approach is the sensitivity to outliers, which can end up 

affecting the model performance negatively. This was avoided by filtering the data to 

only include points that were reported as converged in ANSYS Fluent, based on all 

residuals being less than 0. If it is not possible to easily filter outliers from the dataset, 

then it is better to use the Mean Absolute Error instead, namely. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 6.5 

6.4 MLVawt ANN Specification and Validation 

The model was trained on 2000 simulations using the Latin hypercube sampling with 

the parameters described before. An 80:20 split between the training and testing data 

was created, to ensure there is sufficient data to train on, but also enough test samples 

to ensure good adaptability of the model. This is the industry standard ratio split 

between training and testing data. The most performant model was found to be the 

thick tanh model (5 x 512 x 256 x128 x 64 x 32 x 1) with minor dropout (5%) 

implemented within the model to prevent overfitting. 

Good accuracy was achieved with the training model, with a very low mean square 

error with a value of approximately 5e-5. The training history is plotted in Figure 6-12, 

the smaller the loss the better the model is at modelling the trends in the provided 

dataset. The spikes in the training history seen in Figure 6-12 are a result of 

implementing dropout within the layers, which means that in each training iteration 

a certain number of nodes will be deactivated, assisting in reducing the likelihood of 

overfitting, but causing temporary spikes as there is a single model . 



 

177 

 

Figure 6-12: Training history for the 5 layered Tanh Activation Model 

This provides much confidence that the predictions that the model makes are reliable 

and can be trusted with little reservation. A comparison between the predicted and  

actual values of the torque for the same inputs allows us to determine the reliability 

with a great deal of certainty. This is evaluated by entering the input parameters for 

the validation dataset into the ML model, and then comparing the predicted value to 

the actual corresponding tangential force for those flow conditions. In an ideal case, 

the predicted values from the machine learning model would match perfectly with 

the tested values, that is for a given input, the prediction is identical to the 

corresponding testing data. This relationship is visualised as a line with a gradient of 

1 on a plot of the predicted vs true values as is seen in Figure 6-13. The closer the 

grouping to the line of 𝑦 = 𝑥, the closer to a perfect fit our machine learning model 

is. A perfect fit would imply that for each given datapoint in the testing set, the 

predicted value would be exactly the same as the actual value for that datapoint. 
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Figure 6-13: Regression fitting accuracy of the CFD based Machine Learning Model 

To verify the validity of this model in the scope of VAWT blade torque prediction, it 

is important to firstly quantify that the machine learning models can predict the 

aerodynamic trends such as azimuthal angle and tip speed ratio, that can be observed 

within Vertical Axis Wind Turbines, before utilising the models for optimisation. The 

models are therefore tested for a standard NACA0015 VAWT that has been used 

throughout the previous chapters, operating at a 7m/s wind speed, TSR = 2.29, turbine 

radius = 0.85m and chord length= 0.225m 

Figure 6-10 shows the torque distribution plot of the VAWT when predicted using 

NeuralFoil. The first point of interest is that NeuralFoil appears to have similar 

limitations with the lift and drag at higher angles of attack as was found in XFOIL. 

This is reasonable however, just as a child learning from a parent, it will learn the 

same traits and trends seen in the tool that it was trained on, and mimic them. In this 

case, XFOIL struggles to predict the lift and drag coefficients when the aerofoil is in 

deep stall due to the limitations with XFOIL, which is evident in the plot of the 

azimuthal angle vs torque for a NACA0015 as shown in Figure 6-14. This figure is 

generated by using the flow conditions for the theoretical angle of attack (described 
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in Section 1.3.3 and using NeuralFoil to predict the torque of the blade profile at every 

azimuthal angle. 

 

Figure 6-14: NeuralFoil prediction of the torque generation of the NACA0015 VAWT blade across 
the turbine rotation 

Figure 6-15 shows the distribution of torque for the VAWT when using the different 

ANN models configurations that were tested. The ML models developed from the 

CFD dataset have a slightly different issue, where they model the overall trend better 

such as the sudden drop in the torque at the higher angles of attack which was seen 

in the rotating turbine CFD. However, the azimuthal angle that correlates with the 

peak torque appears to be earlier than that which is seen in the rotating turbine study 

in Chapter 4. 
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Figure 6-15: Prediction of NACA0015 Aerofoil for the design turbine (TSR = 2.29, Windspeed = 
7m/s) 

This is likely a result of the static training data not capturing the transient effects that 

are apparent in a rotating VAWT such as the leading-edge separation bubble that 

slowly grows before suddenly bursting and this reduces the lift. The rotating turbine 

is likely to have some inertial effects that “grabs” this separation bubble, resulting in 

the bursting at a later point in the rotation. This early peak could also be a result of 

insufficient data that causes poor fitting. This emphasises the importance of a large 

training dataset for complex problems including predicting the aerodynamic 

efficiency of a vertical axis wind turbine blade. One of the largest issues with a small 

dataset is the risk of overfitting the data or capturing noise in the dataset, which in 

turn would result in poor generalization of the model when being  exposed to unseen 

data (data which the model hasn’t been trained or tested on) [147]. Upon reflection of 

the work, it was discovered that the generated dataset did not utilise the full LHS 

based sample domain, rather only the first 2/5th of the dataset were simulated and 

compiled for training the MLVawt ANN, and is likely the root cause of the asymmetry 

that is seen Figure 6-15 between the 0→180° and 180→360° sections. Figure 6-16 shows 
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the distribution of the intended dataset and the true dataset, with the intended dataset 

shown in blue and the generated dataset in red. These plots were generated by 

plotting each variable against one of the other input variables. The flat histograms of 

the intended dataset demonstrate that their would have been an even distribution of 

every variable, seen by the moderately flat histogram distribution, or the almost solid 

blue square appearance of the scatter plots. The training dataset used (in red) is 

clearly not as even or well distributed, with a clear bias in camber for high camber 

aerofoils, and more focus on lower azimuthal angles or TSR values. This is reflected 

in the scatter plots, which show gaps in the distribution, which indicate a missing 

comparison point. These biases would be reflected in the trained model, and as a 

result it is expected that the model would be unable to model the negative camber or 

low windspeed combinations as effectively, which is seen by the uneven torque 

distributions of Figure 6-15. A well designed ANN which is trained on a broad and 

evenly distributed dataset would almost perfectly reflect the theoretical turbine 

torque profile (described in Section 1.3.3), as it would not have any gaps in its 

underlying knowledge base (the training data) and due to it being trained on static 

aerofoil data, transient effects would not be present. 
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Figure 6-16: Pair plot of the dataset distribution of the intended dataset in blue, and simulated 
dataset in red. 

6.4.1 Sample Distribution Comparison 

A series of ANNs were created using the same model formulation, but were trained 

on different size datasets. The underlying domain of the dataset is identical;  1≤TSR≤

5, -10 ≤m≤10 %c, 1≤V≤ 14 m/s and 0≤ϕ≤360, but the number of points used to create the 

dataset are different. The tested dataset size was 104 samples, to understand if utilising 

the larger training samples is beneficial to the overall model performance, and where 

the balance may lie between computational expense and model accuracy. A dataset 

containing 10000 points was used as an edge case, with the logic that if it were to 
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significantly improve model performance, then it would be worth investigating the 

point of diminishing return by balancing the model accuracy and the time taken to 

generate the model including the dataset. If there is no improvement over the 2000 

point model, then clearly 2000 is already sufficient for our use case. 

The dataset had models created using the keras tuner python module, which is a 

module which automates tuning of the hyperparameters of the ANN model 

automatically, to see if it is a valid technique for creating an ANN without the typical 

expertise and in-depth understanding of machine learning architecture. The model 

was tested with 3 variations; the thick tanh model architecture and two automated 

keras tuner models; one with the full dataset (uncleaned), and one with the data set 

cleaned by removing any outliers that were outside 1.5 times the interquartile range 

of the dataset. The resultant NACA0015 tangential force estimation is seen in Figure 

6-17.  

 

Figure 6-17: Predicted NACA0015 Tangential Force for a 10000 sample dataset 

Clearly cleaning the dataset was fundamentally crucial in capturing the overall 
trend in the tangential force (two symmetrical distinct curves are expected), but the 
results were not much better than the initial partial dataset model, and due to the 
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reduced computational cost of the partial dataset, that model is taken forwards for 
comparison and utilisation in the GA optimisation process.  
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6.5 Genetic Algorithm Optimisation of the Camber 

Profile for VAWT Blade 

The genetic algorithm logic flow is in the same format as that established in Chapter 

1 and 2, but due to the reduced limitations on the torque estimation for a specific 

genotype, it is possible to have more extensive searching parameters. Taking the 

crossover as an example, previously it was found that only having 5 genotypes per 

generation was a good trade-off between accuracy and speed for the optimisation 

procedure, but this is unnecessary when it takes only a few seconds to calculate the 

torque value, and it has an unnoticeable difference in the performance if each 

generation consists of 20 genotypes.  

With the new trained model, we can replace the previous data generation methods 

such as complex UDFs, or automation scripts for XFOIL and ANSYS Fluent, with a 

simple one-line tool to predict a value of torque from the new model. The resulting 

workflow is as follows: 

i. Generate the initial camber population 

ii. For each genotype, evaluate the desired property, in this case it is the blade 

driving the moment or torque by inputting the parameters into the ANN 

model. 

iii. Sort the genotype by best to worst from their respective Ct values. 

iv. Take the two best genotypes from the generation and pass to the next 

generation. 

v. Apply crossover functions and mutations to generate the next generation of 

cambers. 

vi. Repeat steps 2 -> 5 until sufficient convergence in the Ct value, or until a 

desired number of generations has been completed. 

Taking the NeuralFoil tool as the lift and drag polar generator, one can make an 

extensively complex and intricate optimised camber deformation profile. One edge 

case example tested was to optimise 360 positions (every degree of azimuthal angle) 

with 21 genotypes per generation, which only took 22 minutes on a standard desktop 
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computer! Previously the XFOIL studies would take around 30 minutes for 11 

genotypes and 10 optimisation positions, every 36 degrees of rotation. At first this was 

assumed to be a parallelism speed up, as XFOIL is a single threaded application, but 

NeuralFoil is also single threaded, so the speedup is simply due to the computational 

efficiency of the ANN. Similar speed up is seen in this new machine learning model, 

with the full 21 genotype, 360 optimised positions case taking 36 minutes. 

Using the genetic algorithm workflow, the optimal camber profile is generated for 

the standard VAWT operating conditions in the same way as in the previous chapter. 

The constraints are labelled in Table 6-3. 

Windspeed 

(m/s) 

Tip 

Speed 

Ratio 

Turbine 

Radius 

(m) 

Chord 

Length  

(m) 

Position of 

Max 

Camber 

(%c) 

Blade 

Thickness 

(%c) 

Setting 

Angle 

(degrees) 

7 2.29 0.85 0.225 50 15 0 

7 1.5 0.85 0.225 50 15 0 

7 3 0.85 0.225 50 15 0 

Table 6-3: VAWT Operating Conditions and VAWT Blade Parameters Tested. 

The optimised camber profiles for both ML predictors have been compared between 

their estimation of the VAWT torque profile for a symmetric NACA0015 and the 

optimised camber profile design to ensure fair baseline comparisons. These 

comparisons are shown in Figure 6-18 for NeuralFoil and Figure 6-13 for the new 

machine learning model. Of course, neither of these are perfectly accurate at 

matching to the CFD studies of a rotating VAWT but this is expected due to the fact 

that they are a prediction which acts as a best guess. Although the training loss tends 

to a very small number (~4e-5), this does not necessarily mean that the prediction will 

be accurate, as it could also indicate that the model is overfitting the training data and 

capturing noise as source values.  
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Both the NeuralFoil and the TensorFlow models can substantially improve the torque 

generation of the turbine at every optimised point by significant margins with a peak 

increase of 10 Nm for the Neural Foil results (seen in Figure 6-18) and as high as 20 

Nm for the ANN Optimised Profile (seen in Figure 6-19). These figures show the 

results from the prediction models, where the TSR is constrained to 2.29, the 

windspeed is 7m/s and the deformation is based on the NACAX515 profile (NACA0015 

with max camber at 50%c and the optimiser selecting the camber magnitude). It is 

impractical to run the GA for every azimuthal angle as it would be complex to set up 

in the ANSYS Fluent simulation for transient turbine evaluation, so the torque is only 

calculated and the profile is optimised every 15 degrees of rotation.  

 

Figure 6-18: Torque generation of the NeuralFoil optimised camber deformation profile 
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Figure 6-19: Torque generation of the MLVawt optimised camber deformation profile 

The camber profiles (seen in Figure 6-20 for the NeuralFoil model and Figure 6-21 for 

this ANN) suggest that it may be best to increase the breadth of the camber bounds to 

be greater than the current limits of ±9.5%c, as they regularly hit the bounds and are 

being capped, similarly to what was seen with the XFOIL optimiser in Chapter 1. This 

was tested at an excessive camber (±100%c) to determine what the result would be, 

but the optimised profiles were completely non-sensible. Specifically, the exact same 

behaviour was seen in that the camber quickly converges to the maximum value, and 

this resulted in being almost constantly at 100%c camber, which is impossible to 

recreate physically and leads to untrustworthy results. This is a result of the 

limitations of utilising a machine learning model, and this is because it is essentially 

just mathematical regression at its core, and this provides the opportunity to 

extrapolate the data, potentially to extreme extents. It is therefore strongly 

recommended to stay within the trained bounds when using the model, so in the 

present case within TSR = 1 -> 5, Camber -9.5 -> 9.5 and Windspeed = 1-10 m/s. 
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Figure 6-20: Optimised camber profile using the NeuralFoil predictor 

 

Figure 6-21: Camber profile optimised using the Tensor Flow Machine Learning Prediction 
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The reason for the asymmetry in the camber profile is unknown, but due to the fact 

that it is found in both NeuralFoil and in the present machine learning model 

suggests that it is likely to be a side-effect of an over-fitted model or due to the bias in 

the training dataset, i.e. for the testing of the training split of the dataset, maybe more 

of the training was on the positive angles of attack, thus allowing for a better 

prediction in that region, which is reflected in Figure 6-13, with the shift in the bias 

to the bottom left suggesting a lower camber, TSR or phi data points dominated in the 

overall dataset. 

The optimised camber profiles were fed into the same CFD setup and the UDF was 

used as in Chapter 2, to quantify the improvement in comparison to the original 

symmetric NACA0015 turbine blade profile in situ. The optimised positions were 

added to each input parameter, which are read into the UDF when the simulation is 

running, allowing the camber of the aerofoil to be continuously changed each 

timestep. An interesting point to note is that the results from ANSYS Fluent tends to 

have massive fluctuations in the aerodynamic forces on the aerofoil around the 

optimisation points. It is unclear what causes this, as the velocity contours around 

the aerofoil do not show any significant differences between the problematic 

timesteps, so is considered a reporting error within the CFD software.  

Figure 6-22 shows an example of how the moment force reports on one of the aerofoil 

blades changes with rotation, which is smooth and continual for the symmetric 

NACA0015, but choppy and sharp every ~15° of azimuthal rotation for the genetic 
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algorithm optimised bending profile in ANSYS Fluent. 

 

Figure 6-22: Raw Torque values of the NeuralFoil optimised GA Camber Profile from ANSYS 
Fluent Report Definition 

It was tested if this was a result of the mesh displacement being too large per 

timestep, by reducing the timestep size significantly to around 10 timesteps/degree 

of rotation from the azimuthal position before to the azimuthal position after the 

optimised position. This proved to make no difference, but rapidly increased the 

computation time by introducing an additional 192 timesteps per turbine rotational 

period. As a result, it was concluded that this is likely a reporting error in ANSYS 

Fluent regarding the points associated with the dynamic mesh when the simulation 

is reloaded and restarted and can be ignored, potentially due to the way the UDF is 

setup but this can be investigated in future works. To circumvent this sampling issue, 

a 20-degree polynomial was fitted to the raw data to provide a smoother and more 

realistic flow profile by eliminating the outliers and large spikes that are non-

sensible.  

The fitted curve is mapped over the original torque data reported in ANSYS in Figure 

6-23 and Figure 6-24, for the NeuralFoil based camber profile CFD results and 
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TensorFlow based camber profile CFD results respectively, and it is clear that there 

is a strong fit to the raw data.  

 

Figure 6-23 : Polynomial Curve Fitted to NeuralFoil based GA Optimised Camber Profile Torque 

 

Figure 6-24: TensorFlow based GA Optimised Camber Profile Torque 
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The residual of the polynomial fitting is plotted in Figure 6-25 and Figure 6-26, which 

is calculated as the difference between the raw and predicted value at each azimuthal 

position. With a very small residual range of around 1e-4, that equates to a negligible 

difference, but to better understand how well it matches the mean squared error the 

R2 values are calculated, which are measures of the mean error and variance, 

respectively. A lower MSE means a closer average value, and an R2 value closer to 1 

means there is less variance, which is arguably the most important measure.  

  

Figure 6-25: Residuals of Polynomial Fitting between the fitted and raw Torque for the NeuralFoil 
Optimised Camber CFD Results 
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Figure 6-26: Residuals of Polynomial Fitting between the fitted and raw Torque for the TensorFlow 
Optimised Camber CFD Results 

The Mean Squared Error and R2 values are remarkedly small (seen in  Table 6-4) 

demonstrating the very good match, with the majority of the error present in the 

points near the end of rotation (see Figure 6-25 and Figure 6-26). The polynomial 

fitted data technique is therefore used for further comparisons to the NACA0015 

blade profile performance, due to its ability to negate noise in the data, whilst 

capturing the data’s underlying trends.  

Model Mean Squared Error R2 value 

NeuralFoil 3.123e-11 0.999 

TensorFlow 3.519e-11 0.999 

Table 6-4: Polynomial Curve Fitting Statistics 

Figure 6-27, Figure 6-28 show the torque distribution through the turbine’s rotation 

for the NeuralFoil based optimised blade deformation profile and the Tensorflow 

optimised blade deformation profile compared to the NACA0015 static profile. Figure 

6-29 shows all three datasets overlaid for easier comparison. All three figures also 
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have dashed horizontal lines, which display the mean torque for the respective blade 

profile methods. 

Comparing the results between the optimised GA Profiles and the NACA0015 shows 

the good increase in the torque coefficient at nearly all points, but is lower in the 

initial period of rotation from 0 -> ~75°. This period of lower torque generation is a 

result of the blade-wake of the preceding blade of the turbine and the increase in 

torque generation in the downstream section causing a deceleration in the flow in the 

upstream half of rotation.  

The rapid dip that is seen in the NACA0015 is not present in the ML Optimised and 

the NF Optimised blade profiles, indicating that the blade stall is significantly 

mitigated by optimising the camber profile, especially when using the TensorFlow 

ML predictor. The same trend is seen throughout the turbine rotation, from 90° 

through to the end of the turbine rotation, with the optimised profiles both having a 

better torque generation than the NACA0015.  

 

Figure 6-27: NeuralFoil Optimised Torque compared to NACA0015 turbine blade torque 
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Figure 6-28: Custom TensorFlow Optimised Torque compared to NACA0015 turbine blade 

 

Figure 6-29: NACA0015 vs NeuralFoil Based GA vs TensorFlow Based GA Torque Profile 

 

The CFD Contour Plots provide some context to the reasoning behind the significant 
difference between the optimised and NACA profile at some locations. For both 
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optimised camber models, the key positions of difference are at the azimuthal 
angles 15°, 150° and 225°, where the difference between the optimised and 
NACA0015 profiles are greatest.  

At 15°, the optimised designs perform significantly worse than the symmetrical 
NACA0015, which is surprising as that was not seen in the Genetic Algorithm 
workflow, and was also not seen in the transient genetic algorithm of Chapter 2. 
The likely cause of this difference is due to the significant rate of change in the 
aerofoil shape around this optimisation position, going from -8.43%c camber to 
7.473%c camber in the space of 30 degrees of rotation (from 345° to 15°). This fast 
deflection could result in an onset of dynamic stall, which would not be considered 
by the genetic algorithm, as the solution used to initialise the optimiser is based on 
the converged results of a standard NACA0015 turbine blade. The only way to 
consider this method would be to implement an iterative optimisation procedure, 
where the turbine profile would be optimised through one rotation, optimised again 
in the next rotation at the same points, and repeated until there is no change in the 
optimisation process. This would require development of a complex feedback loop 
between the CFD, machine learning and genetic algorithm and is outside the scope 
of this work.   

Looking at the contours of the velocity taken at 15 degrees azimuth in Figure 6-30, 
the cambered aerofoils of the optimised designs have the stagnation point shifted 
slightly onto the aerofoil’s pressure side, causing a loss in the lift due to the change 
in circulation that the aerofoil shape can generate. Furthermore, after careful 
inspection, it is apparent that the flow velocity magnitude upstream of the blade for 
the optimised profiles is lower than that of the NACA0015, seen by the darker flow 
near the leading edge of the aerofoil. 

 

Figure 6-30: Velocity Contour at 15° Azimuth. a) NACA0015, b) NeuralFoil Based Optimisation 
Profile, c) TensorFlow Based Optimisation Profile 

Figure 6-31 shows the velocity contours taken at 150° azimuth for the NACA0015, 
NeuralFoil optimisation and the TensorFlow optimisation results. The contours 
show a much clearer example of the flow field differences and the impact the 
camber profile has on the VAWTs instantaneous power generation. The large 
region of accelerated flow in the NACA0015 and NeuralFoil Optimised Camber is a 
highly rotational vortex that was shedded from the turbine blade as the Reynolds 
number starts to drop and the angle of attack has just passed the peak value. The 
reason that it is seen in the NeuralFoil and not the TensorFlow Optimised Camber 
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profiles is due to the differences in camber magnitude through the rotation, 
particularly the fact that the NeuralFoil profile snaps back to a symmetric aerofoil at 
60° azimuthal angle, and then bends back to 9.5%c camber in the next optimisation 
stage. The local flow acceleration due to the camber increasing in this region will 
create an adverse pressure gradient that will cause the separation to occur earlier in 
the turbine’s rotation. The TensorFlow profile is consistently set to a high camber 
with little fluctuation, so doesn’t create the same local acceleration phenomena, 
allowing the flow to remain better attached to the aerofoil profile.  

 

Figure 6-31: Velocity Contour at 150° Azimuth. a) NACA0015, b) NeuralFoil Based Optimisation 
Profile, c) TensorFlow Based Optimisation Profile 

The flow profile is very similar between the NeuralFoil profile and TensorFlow 
profile at 225°, seen in Figure 6-32, which explains the reason for the small 
difference in power generation at that point in rotation. Looking in the bottom right 
corner of Figure 6-32, it is clear the effect of the earlier separation vortex is still 
influencing the flow field around the blade, which would quantify the small 
increase in power due to a likely increased lift from higher vorticity in the incoming 
flow to the blade. There is very little separation in all 3 profiles, but looking at the 
angle of the shear layer at the wake of the aerofoil coming from the trailing edge, 
there is very little circulation around the symmetric aerofoil (as the shear layer is 
almost parallel to the chord line), which suggests that very little lift is being 
produced and as such, very little torque, which in turn causes very little power 
generation. The much steeper angles of the optimised profiles reinforce the theory 
that they are producing more lift at that azimuthal angle, due to the larger 
circulation that is being imparted onto the flow. 

 

Figure 6-32: Velocity Contour at 225° Azimuth. a) NACA0015, b) NeuralFoil Based Optimisation 
Profile, c) TensorFlow Based Optimisation Profile 



 

199 

6.5.1 Testing with Alternative Turbine Conditions 

To establish the validity of utilising the artificial neural network technique at various 

turbine parameters, it was tested at two additional tip speed ratios: one, which is low 

at a tip speed ratio of 1.5 and one scenario with a higher tip speed ratio of 3. The lower 

tip speed ratio would be the case of most significance, as this is part of the startup 

period of the turbine, which is one of the most problematic areas that vertical axis 

wind turbines face. 

Looking at the higher tip speed ratio of 3 allows us to understand if the reduced peak 

angle of attack (which is inversely proportional to tip speed) will be utilised in 

maximising the camber throughout the turbine rotation. Similarly, the lower tip 

speed ratio case will effectively demonstrate the ability of the machine learning 

models to predict stall at high angles of attack and lower Reynolds numbers.  

Interestingly, at the lower tip speed ratio, the average torque value is marginally 

lower for the NeuralFoil optimised GA profile, seen in Figure 6-33: Torque of 

NeuralFoil GA Optimised Blade Deformation profile TSR = 1.5 and Figure 6-34: 

Torque of MLVAWT ANN GA Optimised Blade Deformation profile for TSR = 1. The 

flow field images for low tip speed NACA0015 shows a peak in torque generation at 

around 200°, as the vortex that was shedded at 150° is carried downstream, only for 

the turbine blade to cut into it again. This is just one example of the flow physics that 

would not be considered in the ANN, due to the data it is trained on. The data in our 

case is trained on a steady-state flow over an aerofoil, so it doesn’t have the level of 

complexity needed to model the circulating flow that the aerofoil blade travels 

through. Implementing this into the model would require significant complex data 

generation. The MLVawt model however did show significant improvement in the 

average tangential force coefficient, particularly in the upstream section (which is 

somewhat expected due to the general lack of complex flow phenomena that the 

blade experiences in this region) but less performant from 180-216° than the 

NACA0015 as it was encountering that vortex which sheds around 144° and is carried 

downstream, before recovering to perform better than the NACA0015 again.  
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Figure 6-33: Torque of NeuralFoil GA Optimised Blade Deformation profile TSR = 1.5 

 

Figure 6-34: Torque of MLVAWT ANN GA Optimised Blade Deformation profile for TSR = 1.5 

The higher tip speed ratio also somewhat demonstrates this susceptibility to not 

knowing the true flow conditions that the blade is experiencing. At the high tip speed 
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ratio, the upstream stroke behaves much closer to the theoretical profile for the ML 

model, but it stalls significantly earlier in the NF optimised model, seen in Figure 

6-35.  Additionally, the NF model has a negligible average blade torque, whereas the 

NACA0015 is substantially better, this could be a limit of NeuralFoil’s training data or 

the inherent characteristics of XFOIL.  

 

Figure 6-35 : NeuralFoil Based GA compared with NACA0015 at TSR=3 

The MLVawt model has significantly better results than the NACA0015 almost 

throughout the turbine’s rotation, as is shown in Figure 6-36. The NACA0015 is slightly 

more performant from 108° → 180°, but this marginal difference does not offset the 

significant improvements in the downstream rotation and slight improvement from 

18→108° allowing the ML average moment to be better overall. The  primary benefit 

of the ML GA model is the increased camber in the downstream section, allowing for 

more lift to be produced, and improving the tangential force of the blade in this 

region.  
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Figure 6-36 : TensorFlow Based GA compared with NACA0015 at TSR=3 
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6.6 Summary of Findings 

This chapter leverages a genetic algorithm integrated with a machine learning model 

trained on a dataset derived from two-dimensional computational fluid dynamics 

(CFD) simulations of aerofoils, to optimise the camber profile of a transiently 

deforming vertical axis wind turbine blade. Whilst there have been very few studies 

on using optimisation to create a transiently deforming turbine blade profile, none 

have utilised a genetic algorithm, and none have used a machine learning model to 

predict the aerofoil performance characteristics. The newly created machine 

learning model is also compared to a well-established and trusted machine learning 

model called NeuralFoil for predicting aerofoil performance, which is trained on 

millions of XFOIL simulations. 

It has been shown that using Machine Learning models can be utilised to 

substantially improve the time taken for the optimisation of a VAWT blade camber 

profile. In the case of the deforming blade camber magnitude optimisation, it was 

found that each genotype’s torque evaluation took only around 4ms on NeuralFoil 

[148] and around 1ms with the new proposed machine learning regression model on 

a single thread of a machine equipped with an AMD Ryzen 5950X CPU. When 

compared to the few seconds per XFOIL run (with 2 cores) and minutes per CFD run 

(with 32 CPU cores), its time-savings are substantial and impressive, but one must 

also make sure to consider the time and computational resources required to train 

the initial prediction model. Even with only 4 input parameters and one output 

parameter, the predictions of the blade torque were made with good accuracy 

between the predicted and trained values, but this can be easily expanded to consider 

other parameters such as the aerofoil thickness as an input and separation point as 

an output. The average torque increased significantly for all tested TSRs when using 

the MLVAWT Model, but was only better at a TSR of 2.29 for the NeuralFoil optimiser, 

and even performed worse at the lower and higher tip speed ratios.  

The machine learning model trained in this chapter was trained on the tip speed 

ratio, wind speed, azimuthal angle, camber magnitude and torque magnitude, to 
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quantify the flow conditions for a two-dimensional steady-state CFD simulation of an 

aerofoil. As a result, it should be relatively straightforward to create different 

optimisation profiles for any wind speed and tip-speed ratio combination of the 

designated turbine.  

Future work could include training on Reynolds number instead and then simply 

calculating the Reynolds number that correlates with specific operating conditions, 

which would allow the model to be applied to any NACAXX15 based VAWT. 

Additionally, increasing the dataset size by using more samples and testing other 

positions of max camber would help increase the breadth of application further still. 

Implementing an additional model to predict incoming flow characteristics would 

further improve the accuracy of the tangential force prediction, alternatively creating 

a coupled CFD-in-the-loop optimisation could allow for better prediction of the actual 

incoming flow angle, velocity and vorticity to better replicate the flow field that is 

experienced by a VAWT blade, by extracting flow angles and magnitudes from the 

CFD simulation to feed into the ML model for each optimisation step, as a step 

between the work in Section 5 and this chapter.  

The optimised camber profile for the standard turbine operating conditions 

(TSR=2.29) is found in Figure 6-21 and Figure 6-24 respectively.   
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7 Thesis Conclusions and Future Work 

7.1 Conclusion 

In summary, this thesis has demonstrated how to implement a mesh deformation for 

the blade of a rotating turbine simulation, has displayed the strengths and 

weaknesses of the different methods of generating the optimal camber values for the 

bending profile of the blade, and has provided source code to allow the reader to 

readily implement and adapt these techniques as they see fit.  

An initial study was undertaken to utilise XFOIL to predict the tangential force 

coefficient of each candidate aerofoil profile within the genetic algorithm, which 

showed the strength of the genetic algorithm optimisation technique due to 

significant improvements in turbine torque generation, and was verified using a 2D 

CFD simulation of a rotating VAWT. This work also demonstrated the weakness of 

XFOIL when trying to calculate lift and drag coefficients at high angles of attack 

and/or large magnitudes of camber deflection, as it would often be unable to 

complete the calculation, demonstrating the limitations to utilising it for the VAWT 

optimisation.  

The optimal Genetic Algorithm settings was found to be for the turbine consisting of 

a 10%c bound, with the Normalised XFOIL geometry setup and the theoretical angle 

of attack. The corresponding tangential force coefficient and camber profile is seen 

in Figure 4-5 and Figure 4-6 respectively. The lowest improvement in standard 

deviation of the moment is 19.9% and the lowest improvement in mean moment is 

59.1%! 

Building from the findings of the XFOIL based genetic algorithm, a more complex 

and intensive method of calculating the torque was investigated utilising a transient 

VAWT simulation to gather the lift and drag coefficient. This was achieved by 

marching the rotating VAWT simulation up to the desired optimisation position, 

linearly interpolating the difference between the prior optimised position and the 

current optimised position as it rotated, and then taking the value for torque at the 
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optimised position. This technique showed excellent improvement in the torque 

generation, particularly in the downwind half of rotation, by capturing and 

considering the transient effects on the turbine blade as it progressed to the 

optimisation position. A multitude of variations in turbine parameters such as 

position of maximum camber, number of optimisation positions, the size of each 

optimisation generation and the impact of various crossover functions were tested to 

develop a better understanding of their influence on the optimised camber profile’s 

power generation performance.  

The final optimal design was the 5 Phenotype, 10 Sampling points Genetic Algorithm 

applied with a 50%c position of max camber. The corresponding moment and 

camber plots are found in Figure 5-9 and Figure 5-10 respectively. This resulted in the 

mean moment increasing from 1.425 Nm to 3.559 Nm or an increase of 150%, and the 

standard deviation reducing from 6.036 Nm to 4.97 Nm or a reduction by 22%! 

Finally, an alternative to XFOIL is investigated, to alleviate the issues that were found 

in using XFOIL, but also to avoid the high computational cost of running transient 

genetic algorithm optimisation studies. This was achieved by utilising an Artificial 

Neural Network as a surrogate for the CFD procedure. A pre-established model which 

is publicly available named NeuralFoil, which is trained on XFOIL simulations, was 

investigated as one potential source for the surrogate model. Additionally, 2000 Static 

two-dimensional CFD simulations of a two-dimensional aerofoil were performed 

using flow conditions to emulate the theoretical characteristics that would be 

experienced by a VAWT blade based on the tip speed ratio, windspeed, azimuthal 

angle and camber magnitude. Both ANNs were fed into the genetic algorithm as the 

tool for torque estimation and showed incredible speedup in data gathering, being 

anywhere from fifteen times faster than XFOIL and over 1000 times faster than the 

transient CFD method. This technique did highlight the dependence of high-quality 

data to train the machine learning model, and also the fact that a well architected 

model will also reflect the characteristics of the training data. 

The optimised camber profile for the standard turbine operating conditions 

(TSR=2.29) is found in Figure 6-21 and Figure 6-24 respectively. This camber profile 
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results in an increase in mean from 1.43 Nm to 3.78 Nm, an increase of 164% and a 

reduction in standard deviation from 6.04 Nm to 5.40 Nm, a reduction by 11.9%! 

7.2 Future Work 

Based on the findings and conclusions of this thesis, there a small number of logical 

steps for continuing this research avenue. The most impactful and interesting 

addition would be to implement a multi-cycle optimisation loop. This would be 

implemented by optimising the turbine for one full rotation, running a few rotations 

to stabilise the periodicity of the solution, optimising the turbine in one rotation 

again, and repeating this process until the average period-averaged turbine power or 

moment coefficient no longer changes between the optimisation loops. The primary 

cause for this is to alleviate the discrepancy seen in Figure 5-19, where the upstream 

rotation (0°<ϕ<180°) is lower moment generation in the optimised turbine than in 

the standard NACA0015. 
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8 Appendix A 

The following  pages are the images of the velocity contours from 0 → 30 m/s for the 

50%c Position of Max Camber, 5 Genotypes, 10 Optimisation Positions case. 
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9 Appendix B – AI Regression Based 

Optimised VAWT Camber Profile Velocity 

Field Images 

The three following pages contain the velocity contours at all optimised positions, 

taken from the rotating VAWT simulations. It contains the images for the cases: 

• NACA0015 Symmetrical Standard VAWT Blade with no deflection 

• NeuralFoil Based Genetic Algorithm Optimised VAWT Blade Camber Profile 

• TensorFlow CFD Trained Genetic Algorithm Optimised VAWT Blade Camber 

Profile 
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10 Appendix C – Parametric Deforming 

VAWT Blade UDF 

#include "udf.h" 

DEFINE_GRID_MOTION(blade0, domain, dt, time, dtime) 

{ 

    Thread* tf = DT_THREAD(dt); 

    face_t f; 

    Node* v; 

 

    real lamtest, Xqrt, Yqrt, dXqn1, dYqn1, dXqn2, dYqn2, dx, x, Xc, Yc, Xr, 

Yr, r, dy, y, newYc, newYr, newXc, newXr, theta; 

    real ts1, ts0, y0, y1, x0, x1, m1, m0, m, yNACA; 

    #define chord 0.225 // chord length 

    #define Rturb 0.85 // Turbine Radiues 

    #define TSR 3.0 // Turbine Tip Speed Ratio 

    #define Vflow 7.0 // Free flow velocity 

    #define offset 0.25 // %c distance between LE and global origin in X 

direction. Positive offset => LE < y(0) 

    #define count 360.0 // %c Number of timesteps per rotation 1degree/Ts = 

360, 0.5deg/Ts = 720 etc. 

    int n; 

    real camber_0 = Get_Input_Parameter("camber_0"); // 36 

    real camber_1 = Get_Input_Parameter("camber_1"); // 36 

    real camber_2 = Get_Input_Parameter("camber_2"); // 72 

    real camber_3 = Get_Input_Parameter("camber_3"); // 108 

    real camber_4 = Get_Input_Parameter("camber_4"); // 144 

    real camber_5 = Get_Input_Parameter("camber_5"); // 216 

    real camber_6 = Get_Input_Parameter("camber_6"); // 252 

    real camber_7 = Get_Input_Parameter("camber_7"); // 288 

    real camber_8 = Get_Input_Parameter("camber_8"); // 324 

    real camber_9 = Get_Input_Parameter("camber_9"); // 36 

    real camber_10 = Get_Input_Parameter("camber_10"); // 72 

    real camber_11 = Get_Input_Parameter("camber_11"); // 108 

    real camber_12 = Get_Input_Parameter("camber_12"); // 144 

    real camber_13 = Get_Input_Parameter("camber_13"); // 216 

    real camber_14 = Get_Input_Parameter("camber_14"); // 252 

    real camber_15 = Get_Input_Parameter("camber_15"); // 288 

    real camber_16 = Get_Input_Parameter("camber_16"); // 324 

    real camber_17 = Get_Input_Parameter("camber_17"); // 288 

    real camber_18 = Get_Input_Parameter("camber_18"); // 324 

    real camber_19 = Get_Input_Parameter("camber_19"); // 324 

    real camber_20 = Get_Input_Parameter("camber_20"); // 324 

    real camber_21 = Get_Input_Parameter("camber_21"); // 288 

    real camber_22 = Get_Input_Parameter("camber_22"); // 324 
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    real camber_23 = Get_Input_Parameter("camber_23"); // 324 

    real camber_24 = Get_Input_Parameter("camber_24"); // 324 

 

    int opt_count = Get_Input_Parameter("opt_count"); 

    real p = Get_Input_Parameter("p"); 

     

    real origin = p * chord; 

    real omega = (Vflow * TSR) / Rturb; 

    real T = 2 * M_PI / omega; 

    real ts = dtime * omega * 180/M_PI; 

 

    real flowtime = time; 

    real phi = (flowtime * omega) * 180/M_PI; 

     

    int rev = phi/360; 

 

    double currentTime = CURRENT_TIME; 

    double previousTime = PREVIOUS_TIME; 

    double timeUDF = time; 

 

    double phiCurrent = omega * currentTime * 180/M_PI; 

    double phiPrevious = omega * previousTime * 180/M_PI; 

    double phiTime = omega * timeUDF * 180/M_PI; 

 

    ts1 = flowtime*omega*180/M_PI - 360 * rev; 

    ts0 = ts1-ts; // Previous timestep calculation 

    if (ts0 < 0) 

    { 

      ts0 +=360; 

    } 

 

    // Create array containing all Camber Values 

    float camber_array[] = {camber_0, camber_1, camber_2, camber_3, camber_4, 

camber_5, camber_6, camber_7, camber_8, camber_9, camber_10, camber_11, 

camber_12, camber_13, camber_14, camber_15, camber_16, camber_17, camber_18, 

camber_19, camber_20, camber_21, camber_22, camber_23, camber_24}; 

    int opt_phi_count = 360/opt_count; // Calculate azimuth spacing between 

each optimisation position 

 

    int phi_array[opt_count]; // Create Array of Correct Size for Phi 

Distribution 

    int length = sizeof(phi_array) / sizeof(phi_array[0]); // Calculate Length 

of Phi Array 

 

    for (int k=0; k<length+1; k++) 

    { 

        phi_array[k] = k * opt_phi_count; // Fill Phi Array with Appropriate 

Values 
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        // printf("%d ", phi[k]); 

    } 

     

    int l1 = ts1/opt_phi_count; // Check which section of rotation following 

timestep is in / Optimisation Position 

    //printf("\nSection of Optimisation: %d", l1); 

 

    // Parameters for linear interpolation 

    int x0_1 = phi_array[l1]; 

    int x1_1 = phi_array[l1+1]; 

    float y0_1 = camber_array[l1]; 

    float y1_1 = camber_array[l1+1]; 

     

    int l0 = ts0/opt_phi_count; // Check which section of rotation current 

timestep is in 

    //printf("\nSection of Optimisation: %d", l0); 

    // Parameters for linear interpolation 

    int x0_0 = phi_array[l0]; 

    int x1_0 = phi_array[l0+1]; 

    float y0_0 = camber_array[l0]; 

    float y1_0 = camber_array[l0+1]; 

     

    m1 = ((y1_1 - y0_1) / (x1_1 - x0_1)) * (ts1 - x0_1) + y0_1; 

    m0 = ((y1_0 - y0_0) / (x1_0 - x0_0)) * (ts0 - x0_0) + y0_0; 

     

    //printf("\nm0 Camber Value: %f", m0); 

    //printf("\nm1 Camber Value: %f", m1); 

 

    m = (m1 - m0)/100; 

    // Message0("\nRevolution: %i    UDF Phi: %f    ts1: %f    ts0: %f    m1: 

%f    m0 %f", rev, phi, ts1, ts0, m1, m0); 

    // Message0("phi: %f ,time: %g, current time: %g ts0: %f , ts1: %f , m0: 

%f , m1: %f \n", phi, ts0, ts1, m0, m1, flowtime, CURRENT_TIME); // Print 

Variables 

   

  SET_DEFORMING_THREAD_FLAG(THREAD_T0(tf)); 

 

  begin_f_loop(f,tf) // Begin looping across the wall i select in qsh after 

enabling deform mesh  

   { 

     

    f_node_loop(f,tf,n) // Begin looping across every node on face "f"  

     { 

         

        Xqrt = 0 - Rturb * sin(omega * time); 

        Yqrt = Rturb - Rturb * (1 - cos(omega * time)); 

        v = F_NODE(f,tf,n); // Get node properties for node n on face t 

        Xr = NODE_X(v); 
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        Yr = NODE_Y(v); 

        dXqn1 = Xr - Xqrt; 

        dYqn1 = Yr - Yqrt; 

        lamtest = (dYqn1 * sin(omega * time)) + (dXqn1 * cos(omega * time)) + 

0.25 * chord; 

 

        if (lamtest < origin && NODE_POS_NEED_UPDATE (v)) // Deflection 

happens if node is in aileron zone ie x coord is greater than pin. this is ok 

if blade is stationary  

        { 

            NODE_POS_UPDATED(v); // Check if node has been updated in loop  

            Xc = (dYqn1 * sin(omega * time)) + (dXqn1 * cos(omega * time)) + 

0.25 * chord; 

            Yc = (dYqn1 * cos(omega * time)) - (dXqn1 * sin(omega * time)); 

            x = Xc; // Variables for x-Coordinate of Node 'v'  

            y = Yc; 

            yNACA = m * chord * pow(origin - x, 2) / pow(origin,2); 

            dy = yNACA; 

            dx = 0; 

            newXc = Xc + dx - 0.25 * chord; 

            newYc = Yc + dy; 

            dXqn2 = (newXc * cos(omega * time)) - (newYc * sin(omega * time)); 

            dYqn2 = (newXc * sin(omega * time)) + (newYc * cos(omega * time)); 

            newXr = Xqrt + dXqn2; 

            newYr = Yqrt + dYqn2; 

            NODE_X(v) = newXr; 

            NODE_Y(v) = newYr; 

        } 

 

        if (lamtest > origin && NODE_POS_NEED_UPDATE (v)) // Deflection 

happens if node is in aileron zone ie x coord is greater than pin. this is ok 

if blade is stationary  

        { 

            NODE_POS_UPDATED(v); // Check if node has been updated in loop  

            Xc = (dYqn1 * sin(omega * time)) + (dXqn1 * cos(omega * time)) + 

0.25 * chord; 

            Yc = (dYqn1 * cos(omega * time)) - (dXqn1 * sin(omega * time)); 

            x = Xc; // Variables for x-Coordinate of Node 'v'  

            y = Yc; 

            yNACA = m * chord * pow(x-origin, 2) / pow(chord - origin,2); 

            dy = yNACA; 

            dx = 0; 

            newXc = Xc + dx - 0.25 * chord; 

            newYc = Yc + dy; 

            dXqn2 = (newXc * cos(omega * time)) - (newYc * sin(omega * time)); 

            dYqn2 = (newXc * sin(omega * time)) + (newYc * cos(omega * time)); 

            newXr = Xqrt + dXqn2; 

            newYr = Yqrt + dYqn2; 
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            NODE_X(v) = newXr; 

            NODE_Y(v) = newYr; // Update new Y position. ill need to have node 

x update as well, so a new line for /newX and a new line for NODE_X(v)  

        } 

     } 

   } 

  end_f_loop(f,tf); 

} 

 

DEFINE_GRID_MOTION(blade180,domain,dt,time,dtime) 

{ 

  Thread *tf = DT_THREAD(dt); 

  face_t f; 

  Node *v; 

 

    real lamtest, Xqrt, Yqrt, dXqn1, dYqn1, dXqn2, dYqn2, dx, x, Xc, Yc, Xr, 

Yr, r, dy, y, newYc, newYr, newXc, newXr, theta; 

    real ts1, ts0, y0, y1, x0, x1, m1, m0, m, yNACA; 

    #define chord 0.225 // chord length 

    #define Rturb 0.85 // Turbine Radiues 

    #define TSR 3.0 // Turbine Tip Speed Ratio 

    #define Vflow 7.0 // Free flow velocity 

    #define offset 0.25 // %c distance between LE and global origin in X 

direction. Positive offset => LE < y(0) 

    int n; 

 

    // Message0("Period of rotation: %g, Timetep size: %g, Deg per timestep: 

%g\n", T, CURRENT_TIMESTEP, ts); 

    real camber_0 = Get_Input_Parameter("camber_0"); 

    real camber_1 = Get_Input_Parameter("camber_1");  

    real camber_2 = Get_Input_Parameter("camber_2");  

    real camber_3 = Get_Input_Parameter("camber_3");  

    real camber_4 = Get_Input_Parameter("camber_4");  

    real camber_5 = Get_Input_Parameter("camber_5");  

    real camber_6 = Get_Input_Parameter("camber_6");  

    real camber_7 = Get_Input_Parameter("camber_7"); 

    real camber_8 = Get_Input_Parameter("camber_8");  

    real camber_9 = Get_Input_Parameter("camber_9"); 

    real camber_10 = Get_Input_Parameter("camber_10"); 

    real camber_11 = Get_Input_Parameter("camber_11"); 

    real camber_12 = Get_Input_Parameter("camber_12");  

    real camber_13 = Get_Input_Parameter("camber_13"); 

    real camber_14 = Get_Input_Parameter("camber_14");  

    real camber_15 = Get_Input_Parameter("camber_15");  

    real camber_16 = Get_Input_Parameter("camber_16");  

    real camber_17 = Get_Input_Parameter("camber_17");  

    real camber_18 = Get_Input_Parameter("camber_18");  

    real camber_19 = Get_Input_Parameter("camber_19");  



 

222 

    real camber_20 = Get_Input_Parameter("camber_20");  

    real camber_21 = Get_Input_Parameter("camber_21");  

    real camber_22 = Get_Input_Parameter("camber_22");  

    real camber_23 = Get_Input_Parameter("camber_23");  

    real camber_24 = Get_Input_Parameter("camber_24");  

 

    int opt_count = Get_Input_Parameter("opt_count"); 

    real p = Get_Input_Parameter("p"); 

     

    real origin = p * chord; 

    real omega = (Vflow * TSR) / Rturb; 

    real T = 2 * M_PI / omega; 

    real ts = dtime * omega * 180/M_PI; 

    // real rev; 

 

    real flowtime = time; 

    real phi = (flowtime * omega) * 180/M_PI + 180; 

     

    int rev = phi/360; 

 

    ts1 = flowtime*omega*180/M_PI - 360 * rev + 180; 

    ts0 = ts1-ts; // Previous timestep calculation 

    if (ts0 < 0) 

    { 

      ts0 +=360; 

    } 

    // Create array containing all Camber Values 

    float camber_array[] = {camber_0, camber_1, camber_2, camber_3, camber_4, 

camber_5, camber_6, camber_7, camber_8, camber_9, camber_10, camber_11, 

camber_12, camber_13, camber_14, camber_15, camber_16, camber_17, camber_18, 

camber_19, camber_20, camber_21, camber_22, camber_23, camber_24}; 

    int opt_phi_count = 360/opt_count; // Calculate azimuth spacing between 

each optimisation position 

 

    int phi_array[opt_count]; // Create Array of Correct Size for Phi 

Distribution 

    int length = sizeof(phi_array) / sizeof(phi_array[0]); // Calculate Length 

of Phi Array 

 

    for (int k=0; k<length+1; k++) 

    { 

        phi_array[k] = k * opt_phi_count; // Fill Phi Array with Appropriate 

Values 

        // printf("%d ", phi[k]); 

    } 

     

    int l1 = ts1/opt_phi_count; // Check which section of rotation following 

timestep is in / Optimisation Position 



 

223 

    //printf("\nSection of Optimisation: %d", l1); 

 

    // Parameters for linear interpolation 

    int x0_1 = phi_array[l1]; 

    int x1_1 = phi_array[l1+1]; 

    float y0_1 = camber_array[l1]; 

    float y1_1 = camber_array[l1+1]; 

     

    int l0 = ts0/opt_phi_count; // Check which section of rotation current 

timestep is in 

    //printf("\nSection of Optimisation: %d", l0); 

    // Parameters for linear interpolation 

    int x0_0 = phi_array[l0]; 

    int x1_0 = phi_array[l0+1]; 

    float y0_0 = camber_array[l0]; 

    float y1_0 = camber_array[l0+1]; 

     

    m1 = ((y1_1 - y0_1) / (x1_1 - x0_1)) * (ts1 - x0_1) + y0_1; 

    m0 = ((y1_0 - y0_0) / (x1_0 - x0_0)) * (ts0 - x0_0) + y0_0; 

     

    //printf("\nm0 Camber Value: %f", m0); 

    //printf("\nm1 Camber Value: %f", m1); 

 

    m = (m1 - m0)/100; 

 

   

  SET_DEFORMING_THREAD_FLAG(THREAD_T0(tf)); 

 

  begin_f_loop(f,tf) // Begin looping across the wall i select in qsh after 

enabling deform mesh  

   { 

    f_node_loop(f,tf,n) // Begin looping across every node on face "f"  

     { 

        // omega = 83.7; // angular rotation rate of aileron linking to how 

many 'i' that im morphing with so it indirectly decides the max angle achieved  

        Xqrt = 0 - Rturb * sin(omega * time + M_PI); 

        Yqrt = Rturb - Rturb * (1 - cos(omega * time + M_PI)); 

        v = F_NODE(f,tf,n); // Get node properties for node n on face t 

        Xr = NODE_X(v); 

        Yr = NODE_Y(v); 

        dXqn1 = Xr - Xqrt; 

        dYqn1 = Yr - Yqrt; 

        lamtest = (dYqn1 * sin(omega * time + M_PI)) + (dXqn1 * cos(omega * 

time + M_PI)) + 0.25 * chord; 

 

        if (lamtest < origin && NODE_POS_NEED_UPDATE (v)) // Deflection 

happens if node is in aileron zone ie x coord is greater than pin. this is ok 

if blade is stationary  
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        { 

            NODE_POS_UPDATED(v); // Check if node has been updated in loop  

            Xc = (dYqn1 * sin(omega * time + M_PI)) + (dXqn1 * cos(omega * 

time + M_PI)) + 0.25 * chord; 

            Yc = (dYqn1 * cos(omega * time + M_PI)) - (dXqn1 * sin(omega * 

time + M_PI)); 

            x = Xc; // Variables for x-Coordinate of Node 'v'  

            y = Yc; 

            yNACA = m * chord * pow(origin - x, 2) / pow(origin,2); 

            dy = yNACA; 

            dx = 0; 

            newXc = Xc + dx - 0.25 * chord; 

            newYc = Yc + dy; 

            dXqn2 = (newXc * cos(omega * time + M_PI)) - (newYc * sin(omega * 

time + M_PI)); 

            dYqn2 = (newXc * sin(omega * time + M_PI)) + (newYc * cos(omega * 

time + M_PI)); 

            newXr = Xqrt + dXqn2; 

            newYr = Yqrt + dYqn2; 

            NODE_X(v) = newXr; 

            NODE_Y(v) = newYr; // Update new Y position. ill need to have node 

x update as well, so a new line for /newX and a new line for NODE_X(v)  

        } 

 

        if (lamtest > origin && NODE_POS_NEED_UPDATE (v)) // Deflection 

happens if node is in aileron zone ie x coord is greater than pin. this is ok 

if blade is stationary  

        { 

            NODE_POS_UPDATED(v); // Check if node has been updated in loop  

            Xc = (dYqn1 * sin(omega * time + M_PI)) + (dXqn1 * cos(omega * 

time + M_PI)) + 0.25 * chord; 

            Yc = (dYqn1 * cos(omega * time + M_PI)) - (dXqn1 * sin(omega * 

time + M_PI)); 

            x = Xc; // Variables for x-Coordinate of Node 'v'  

            y = Yc; 

            yNACA = m * chord * pow(x-origin, 2) / pow(chord - origin,2); 

            dy = yNACA; 

            dx = 0; 

            newXc = Xc + dx - 0.25 * chord; 

            newYc = Yc + dy; 

            dXqn2 = (newXc * cos(omega * time + M_PI)) - (newYc * sin(omega * 

time + M_PI)); 

            dYqn2 = (newXc * sin(omega * time + M_PI)) + (newYc * cos(omega * 

time + M_PI)); 

            newXr = Xqrt + dXqn2; 

            newYr = Yqrt + dYqn2; 

            NODE_X(v) = newXr; 
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            NODE_Y(v) = newYr; // Update new Y position. ill need to have node 

x update as well, so a new line for /newX and a new line for NODE_X(v)  

        } 

     } 

   } 

  end_f_loop(f,tf); 

} 
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