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Abstract

Some studies to optimise the turbine blade profile to mitigate or overcome the
dynamic stall issues that plague Vertical Axis Wind Turbines (VAWTSs) have shown
promise, however, they do not consider how the new optimised dynamic turbine
blade profile could be replicated in an actual turbine, and typically utilise prescribed
uninformed deformation profiles for the turbine blade. This thesis uses a novel
approach by creating a dynamically changing turbine blade profile that alters the
blade profile’s camber based on azimuthal position, but the profile is derived from
using a genetic algorithm optimisation process. The core body of work is in
developing a genetic algorithm to optimise the blade camber magnitude at specific
positions within the turbine’s rotation, significantly improving overall and
instantaneous power generation. Three techniques were tested for predicting the
torque of each candidate camber profile in the GA optimisation process: using XFOIL
to quickly predict torque at the desired azimuthal positions, using a transient rotating
VAWT CFD simulation to model real-time blade deformation, and using an Artificial
Neural Network Surrogate to predict torque based on turbine tip speed ratio,
windspeed and azimuthal angle be. These three methods were integrated into a
bespoke genetic algorithm optimiser, to find the optimal turbine blade profiles
through it’s rotation. The thesis also explores variations in the genetic algorithm’s
optimisation parameters, such as the number of optimisation positions, bounds of
camber adjustment, and variations in the aerofoil configurations. All three
techniques integrated into the GA showed significantly strong improvements in
turbine power generation and reduced blade loading. The XFOIL GA showed the
lowest improvement in mean moment at 59.1%, the CFD-In-The-Loop provided an

uplift of 150% and the ML optimiser had an impressive 164% improvement!
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1 Introduction

1.1 Background of Renewable Energy

With further increasingly ambitious renewable energy targets being set and a rapidly
approaching hard deadline for climate change reversal, it is more important than
ever before to improve renewable energy technology. One of the most powerful
driving factors in renewable energy research is the European Union’s (EU) proactive
stance on climate change, encouraging environmental concerns to be included in
other policy areas such as agriculture and transport. Additionally at the 7th EAP, a
call for a minimum of 20% of the EU budget for 2014-2020 to be devoted to climate
change mitigation was made [1]. Alongside the EU, the United Nations (UN) have also
been actively involved in promoting green energy. In late 2015 governing bodies of
various nations met to discuss goals to combat climate change, discussing the steps
required by all member nations. These terms were defined in The Paris Agreement
of early 2016. The Paris Agreement has a collection of important and ambitious goals
and targets, but also outlines the methods that should be taken to reach those targets.
Articles 9, 10 and 11 of the 2016 Paris Agreement outlines the importance of helping
developed countries to establish renewable energy systems. It also states the
importance of developed countries to continue to utilise a wealth of financial
resources, enabling innovation to help achieve their long-term goals such as “limiting

the temperature increase to 1.5°C above pre-industrial levels” [2].

One of the fastest growing areas of renewable energy is in wind energy, with
investments accounting for 63% of all renewable energy within Europe in 2018 [3]. It
is therefore crucial that these investments are properly utilised, further lowering our
dependence on fossil fuels. Wind energy is converted to mechanical and often
electrical energy by devices known as wind turbines. These devices convert the
kinetic energy of the wind flow into kinetic energy of the turbine rotor. This rotates a
shaft which is utilised as is required. Historically, windmills could be considered the
first wind turbines, using the wind energy to turn a mill for grinding wheat into flour

as early as the 7th century. Whilst these devices are commonly used still today,



because of electrical advances, it is more common to attach the shaft to an electrical

generator.

One emergent area of research is in the use of Vertical Axis Wind Turbines (VAWTs)
due to their adaptability to the unsteady and erratic winds of urban environments.
VAWTs are also able to utilise wind from any direction, unlike the more common
Horizontal Axis Wind Turbines (HAWTs) which require a yaw adjustment to face into
the oncoming wind [4]. Regardless of the extensive advantages of VAWTs over
HAWTs, they are much less well established in industry, likely due to the low power
production due to their inherent design. Therefore, it is crucial that they are
thoroughly investigated to bring them to a comparably viable energy generation

method.

1.2 Types of Vertical Axis Wind Turbines

There are two primary types of VAWTs; lift and drag based. The drag-based wind
turbine is known as the Savonius, invented and patented by the Finnish engineer
Sigurd Johannes Savonius in 1925. It utilised 2 overlapping vanes curved to create “an
S-like passage of substantially constant area” [5], as seen in Figure 1-la. These
turbines have exceptional self-starting ability but have a drastic performance drop at
higher tip speed ratios [6]. The primary limiting factor of drag based wind turbines,
however, is their inability to achieve tip speeds higher than unity, as their tangential

speed cannot be faster than the windspeed.

Lift-based VAWTs are often referred to as the Darrieus wind turbine, named after its
inventor; Darrieus Georges Jean Marie, who filed the patent in late 1925 [7]. Rather
than using the ’scoop’ type rotor blades of the Savonius, a Darrieus wind turbine
utilises aerofoils, which create a lift force and, as such, a moment coefficient. This
moment then produces a torque which is characteristically used to drive a generator.
A pictorial description of the Darrieus Turbine can be seen in Figure 1-1b. Albeit the
Darrieus wind turbine was patented in the same year (1931) that the first HAWT we
are familiar with was built, they are moderately unresearched in comparison. A
newer adaptation of the Darrieus Turbine is more common in modern usage, which

uses straight blades similar to an aircraft wing, known as the H-Type VAWT. The H-



Type quickly grew in popularity due to it’'s 20% reduction in cost compared to the

curved blades of the Darrieus turbine [8], [9].

Whilst the robustness and versatility of VAWTSs is certainly a promising prospect,
they still fall behind conventional HAWTSs in terms of power output and efficiency
[10]. One of the most active areas of research is therefore on the aerodynamic

optimisation of Lift Based VAWTSs to extend their reach and applicability.

The current literature on VAWT aerodynamic improvements varies from aerofoil
shapes and optimisation to the employment of additional devices, providing static
and active flow control options. This project aims to build upon the latter, active flow
control through a combination of previously researched devices. By analysing the
current literature, an understanding of the weaknesses and strengths of current
technologies can be explored. This knowledge can then be employed in the
combination and adaption of current technologies, and/or used to develop new

technologies.
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Figure 1-1: (a) Schematic of the Savonious Rotor Patent [5] (b) Schematic of the Darrieus Rotor
Patent [7].



1.3 Aerodynamic Concepts

One reason for the extensive research on VAWTSs is their complex, unsteady
aerodynamics. This subsection outlines some of the core concepts that define their
ability to operate, providing the reader with a fundamental understanding of the

factors influencing their performance.

1.3.1 Conventional Aerofoils

A variety of aerofoils have been developed for different use cases. They are normally
defined by the maximum thickness and position thereof, maximum camber and
position thereof, alongside a series of other properties such as design Cl. One
common feature between all NACA series aerofoils is that their last 2 digits are their

maximum thickness in percentage chord.

The four primary types of NACA aerofoil are 4-Series, 5-Series, 1-Series and 6-Series.

They vary based on different premises, for example the NACA 5-series defines the
design Ci, NACA 1-series the position of minimum pressure etc. Within lift-based
VAWTSs, the 4-series is the most employed aerofoil profile due to its symmetric profile
[11]. The general formulae for defining the NACA aerofoil with a sharp trailing edge
include the thickness distribution t(x), the mean camber line y,(x), the camber line
gradient at x %, mean camber line angle at x; 0, and finally the x and y coordinates

for the upper surface (xy,yy; ) and the lower surface (x,y; ). The value for x is given
for 01 (as in percentage along the chord for a unit chord length). The visualisation

of these lines is seen in Figure 1-2.
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Figure 1-2: Cambered NACA 4 Series Aerofoil Schematic [12]

For an uncambered aerofoil, the mean camber line contributions in Equations 1.5

and 1.6 would be 0, the resulting equations are therefore seen in Equations 1.7 to 1.11.

Ve(x) = 0 1.7
dy.
= 1.8
dx 0
0
8 = arctan (—) = arctan(0) = 0 1.9
dx

Xy =X —Yy;sinf
1.10
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XL, = X + y; sin@ 1.11



YL = 0—1y;cos(0) =y, 1.12
1.3.2 Lift Generation

There are a few different ways of explaining how lift is generated. Still, they
effectively all boil down to the same concept of turning the fluid direction, which
creates a pressure difference and in turn creates a net force perpendicular to the
direction of the incoming fluid flow. For the remainder of this explanation, the lifting
body will be referring specifically to aerofoils, as they are the profiles that are
extruded to form the blades of a H-Type Darrieus VAWT. Other examples of lifting
bodies could be as complex as the wing of a fighter jet, as intriguing as a spinning golf

ball or as simple as a flat plate.

There are two common groups when it comes to describing the lift generation, those
that base the description on Bernoulli’s principle and those that base the description
on Newton’s third law of motion. But there are three common incorrect theories

about how these principles generate lift.

First incorrect theory is that a change in velocity of the fluid is often mistakenly
assumed to be a result of “Equal Transit Theory” [13]. This theory claims that if two
fluid particles travel parallel towards the lifting body, once they reach the lifting
body, they will split, where one particle goes over the upper surface and one particle
travels across the lower surface of the aerofoil. They are then assumed to reach the
end of the aerofoil at the same time, which means for a cambered aerofoil, the
particle that travelled across the upper surface has a longer distance to travel, and as
such must travel faster. This is then fed into Bernoulli’s principle that pressure must
remain constant, so there is a lower pressure on the top surface than the bottom
surface, generating a net upwards force. This is clearly incorrect, because this theory
would suggest that uncambered aerofoils would not be able to produce lift, as the

upper surface has an identical path length as the lower surfaces.

1
P+ Esz = constant 1.13



The second common incorrect method of describing lift generation is a fallacy called
“Skipping Stone Theory” [14]. This theory suggests that the incoming flow deflects off
the suction surface and thus imparts a momentum change on the lifting body. Whilst

the principle of a change in velocity is true, its origin is misunderstood.

The third incorrect method is the “Venturi Theory” [15]. This theory suggests that the
flow velocity accelerates above a cambered aerofoil or symmetric aerofoil at a
positive angle of attack, as a result of constricting the flow, in the same way that a
Venturi nozzle does due to conservation of momentum. This relationship is shown

mathematically in Equation 1.14
m=r=x*V*A = constant 1.14

This is fed into Bernoulli's principle, which would suggest that the dynamic pressure
would be higher and so the static pressure is lower above the aerofoil, creating a net
pressure difference in the upward direction and creating a lifting force. The reason
why this is inaccurate however is that there is no arbitrary wall above the aerofoil
that will create the nozzle and accelerate the flow, instead the velocity will slowly

tend to the free stream velocity as you move away from the aerofoil [15].

The accurate description of how lift is a combination of aerodynamic concepts which
describe how an aerofoil or any other lifting body turns fluid flow. In it’s simplest
form, the turning effect of the aerofoil can be described using the Joukowski analysis
method, with the Kutta condition. This theorem, aptly named the Kutta-Joukowski
Theorem, was derived by the early 20th century aerodynamicists Martin Kutta and
Nikolai Joukowski. Its premise is that the fluid streamlines are a superposition of
rotating and translational streamlines, with the camber and « of the aerofoil
providing the rotating component. The Kutta condition is critical to defining the flow
as meeting smoothly at the trailing edge rather than recirculating on the upper
surface, or the absence of a trailing edge separation bubble. In practice this results
in streamlines that are more densely packed on one surface than the other, resulting
in different static pressures and as such, a pressure difference creating a net force.
Figure 1-3 depicts this effect, and it can be clearly seen that downstream of the leading

edge, there is a larger density of streamlines. The limitations with this theory



however are that it is designed for inviscid, irrotational, attached flow, but has been

seen to be applicable in most operating conditions of aerofoils [16].

Figure 1-3: Typical Streamlines for Aerofoils at a = 0 [17]. (a) Streamlines of Flow around
Symmetrical Aerofoil. (b) Streamlines of Flow around Cambered Aerofoil.

To understand how this turning effect imposes a lift force, consider the aerofoil in
Figure 1-3(b) with chord c and infinite span (effectively equivalent to 2D) moving
through a fluid of density p at a speed of V. The velocity above the aerofoil can be

defined as V+c and the velocity on the lower side is V

Combining Bernoulli’s conservation of energy approach and Newton’s conservation
of mass results in a complex series of equations known as the Euler Equations. Later,
the Navier-Stokes equations included the concept of viscosity, to aid in modelling the
boundary layer growth effect on the “shape” of the aerofoil. These equations only
have analytical solutions in very limited applications and are therefore normally

“solved” using numerical iterative processes employed in commercial codes.

Arguably the most important concept in the lift generation is the angle of attack («),

defined as “The angle between the free stream and chord line of the aerofoil” [16]. There is

a well-defined relationship between the lift coefficient (C1), drag coefficient (C4) and

angle of attack (AOA). Typically, the C; will increase until the stall angle, after which



the lift will rapidly decrease until no lift is produced. This can be seen in Figure 1-4.

Stall

Flight Path

P e ——

Angle of Attack=a

Figure 1-4: Effects of Angle of Attack on Lift Coefficient for a Cambered Aerofoil [18].

It should be noted that the C; -« curve shown is for a cambered aerofoil, as a

symmetrical aerofoil does not produce lift at o« = 0°.

The stall phenomenon occurs due to a large separation of the flow on the upper
(pressure) surface. The separation is not present at low angles of attack, as the
adverse pressure gradient of the flow near the trailing edge is not sufficient, but as «

increases, a separation bubble starts creeping towards the leading edge [18].

Typically, the geometrical factors which have the largest influence on the aerofoil
performance are the thickness and camber. Thickness does not directly affect the lift
production of an aerofoil and mainly affects the transition and separation properties

[19]. Camber however is one of the largest contributors to the lift for several theories.

1.3.3VAWT Aerodynamic Theory

The relative velocity triangles seen in Figure 1-5. are used to derive the proceeding
equations (1.15 - 1.21), which can be used to calculate the theoretical AoA (a). It is
important to clarify the difference between the theoretical angle of attack, and the
true angle of attack. In situ, some of the energy of the flow is extracted in the
upstream wake, 0 < ¢ < 180, thus reducing the flow’s velocity magnitude and therefore
reducing the downstream a based on the wake of the upstream stroke. In this

diagram, V, represents the tangential blade velocity, as calculated using Equation 1.15



and Equation 1.16, V,, represents the freestream velocity, w is the radial velocity of
the turbine , r is the turbine radius and ¢ represents the azimuthal angle, taken from
0° at the top of the turbine rotation. Using simple trigonometry, it is possible to
calculate the relative blade velocity (V}.) as in Equation 1.17 and the theoretical flow
angle of attack (a), Equation 1.18 as a function of tip speed ratio and azimuthal

position.
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Figure 1-5: Relative flow velocity triangles for a rotating aerofoil and constant inflow velocity

_ TSR * Vi

W= 1.15

Vt=w=x*r 1.16

Vi =/ (Vr + Vi cos())? + (Viosin(g))? 1.17
_ sin(¢)

T TSR + cos() 1.18

By analysing the lift and drag polars, one can calculate the effective local tangential
force coefficient, C;. The tangential force coefficient calculated is generated using
Equation 1.19, where (; represents the blade’s coefficient of lift and C; is the blades

coefficient of drag.
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C; = C;sin(a) — Cd cos(a) 1.19

y = Y@ R) + Voo cos(§))? + (Vosin ())? 1.20
B JYRT
po 2 N(@ R+ Ver cOS) + (Vsin (@))€ 1.21
U

The Reynolds number and blade angle of attack are proportional to the tip speed ratio
of the turbine, with lower tip speed ratios having significant portions where the angle
of attack is significantly greater than the stall angle for most symmetric NACA
aerofoils. Looking at Figure 1-6, the aerofoil will be clearly stalled in most of the
turbine rotation for tip speed ratios of 2.29 and 3, and a significant portion at a tip

speed ratio of 1.5.

Angle of attack comparison at different Tip Speed Ratios

—— TSR =1.5
TSR = 2.29
—— T5R=3
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Figure 1-6: Angle of attack comparison for multiple tip speed ratios

As an increase of Reynold’s number also helps delay boundary layer separation
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Reynolds Number comparison at different Tip Speed Ratios
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Figure 1-7: Reynolds Number Comparison for multiple tip speed ratios with a wind speed of 7 m/s
and a turbine radius of 0.85m

1.4 Aims and Objectives

As a result of the current requirements and environmental demands, straight bladed
VAWTSs will be the scope of this thesis as their adaptability makes them suitable in

the ever growing urban sprawl throughout the world.

The primary aims of this thesis is to improve the aerodynamic performance and
efficiency of the VAWT, to offset their typically asymmetrical power generation,
through design optimisations of the turbine blade profile. As a result, various
relevant techniques and methods will be researched in the following sections to
achieve this. State-of-the-art computational fluid dynamics (CFD) simulations will be
utilised for the modelling and investigation approach, due to their adaptability and

substantial cost savings over physical model testing in wind tunnels.

These aims will be achieved through three different approaches to modelling the
turbine profile’s performance characteristics; using a high speed panel method
solver, a complex and thorough transient CFD simulation and finally a CFD surrogate
AT model to estimate turbine power based on blade profile characteristics and

operating conditions. These tools will all be fed into a genetic algorithm (GA)

12



optimiser to find the most suitable variant of the blade profile’s camber magnitude at

pre-specified azimuthal positions in the turbine’s rotation. The primary research

objectives will therefore be;

13

1.

Creation and validation of a verified 2D CFD simulation to provide accurate
and reliable understanding of the turbine flow physics and performance.
Generation of a Genetic Algorithm Optimiser procedure that can be easily
ported between different turbine simulation tools.

Investigation and implementation of the GA in a publicly available panel
method solver and understanding of it’s limitations.

Investigation and implementation of the GA in a complex and robust CFD-In-
The-Loop optimisation procedure to consider the transient effects of the
turbine rotation on the blade profile.

Design, build and training of an artificial neural network (ANN) to act as a CFD
surrogate including dataset generation, pre and post processing of the data,
ANN architecture investigation and implementation in the GA as a

replacement for the panel methods.



2 Literature Review

There are numerous technologies currently being employed in trying to improve the
performance of the Vertical Axis Wind Turbine. They vary substantially from
implementing ancillary technology to entirely altering the overall turbine design or
blade aerofoils. This chapter aims to outline some of these performance improving

techniques and to critique their strengths and weaknesses.

Due to the aerodynamics of VAWTs being comparable to that of the wings on aircraft
or helicopter rotors in certain azimuthal angles, the technology used in the latter is
often applied to the former. The most crucial comparable aspects are dynamic stall
[31], [32] as it has been shown to have significant impacts on the performance [33],
[34], [35] of both VAWTSs and helicopter rotors. It is therefore crucial to investigate if
the techniques implemented to reduce dynamic stall in aircraft wings and helicopter
rotors are appropriate within the scope of VAWTSs. The primary areas of this research
are aerofoil profile modifications, application of optimisation techniques for VAWT
blades and machine learning utilisation, which will therefore be the target of the

literature review.

2.1 High Lift Devices

High lift devices have been widely used within the aviation industry for almost a
century [36], but only marginally in wind turbines, and less so specifically in VAWTs.
These devices work by creating an effective increase in the camber of the aerofoil, in
turn altering the circulation of the flow, and as such the strength of the vortex
generated [37]. Typically, these devices are situated at the trailing or leading edge in
the form of flaps or slats, respectively. It is worth mentioning that static slats, in that
their angle of attack cannot be altered and they are more commonly referred to as

slots.

14



Flow controlling devices have an extensive amount of well-established research due
to the attraction of retrofitting current VAWTs with this technology. This provides the
opportunity for the performance of existing wind turbines to be increased, without
complete overhaul of design. They are typically split into 2 subsections: active and
passive. Active devices are often implemented within a feedback loop to provide
stability to an aircraft. This allows constant parameter to change without the
intervention of the user, thus optimising the efficiency. Passive devices however are
setto a constant value, i.e. deflection angle, and then forgotten. These passive devices
are sometimes automated, in the sense that their flow conditions actively change
their workings, but are not controlled by the user. These ’automated’ passive devices
subtract somewhat from the appeal of using passive flow control devices, due to the

necessity of maintenance required to maintain their functionality.

2.1.1Leading Edge Devices

Research on slats was first published by F. Handley Page on December 22nd, 1921
[38]. They found that creating a slotted wing allows for air acceleration in the passage
between the auxiliary and main aerofoil. This in turn appeared to drastically improve
the lift scalar, thus reducing the onset of stall whilst simultaneously increasing the
lift coefficient [38]. Their primary use is during take-off and landing of aircraft but

have occasionally been considered for VAWTS too.

Chougule et al. [39] tested the influence of slat angle on VAWTSs. They tested a series
of angles of attack for the slat aerofoil and compared the lift and drag polars with the
standard design. It was found that the 20° slat angle () had not yet initiated stall at
the maximum testing angle of 24°, and aerodynamic performance quickly started
deteriorating at § = 25° and greater. To compare the power coefficients of their new
blade with a commercially available wind turbine, they used the Double Multiple
Stream Tube Method (DMSTM) numerical analysis method. They maintained the same
design parameters such as rotor height, diameter etc. but compared the numerical
simulation of their turbine with experimental results of the commercial turbine. It
should also be noted that the flow is assumed to be inviscid for the DMSTM model,
which could have a substantial influence on the power coefficients. The numerical
simulation suggests a largely different power coefficient, but similar total power

15



output as seen in Figure 2.1, which appears to be contradictory from the expected
performance due to the different chord lengths used between the DMSTM and

experimental data.

Whilst convention is to place the slat such that the flow stream is guided to the
pressure surface, Scungio et al. [4] examined the influence of placing them on the
suction side, this can be seen in Figure 2.2. An experimental comparison between a
standard three bladed wind turbine and their specialised turbine was undertaken.
The wind tunnel used is a closed-circuit open chamber, with pressure sensors to
ensure the constant flow velocity accounting for blockage effects. They discovered
that the use of an optimal slat improved the self-starting ability of the wind turbine

and more dynamic torque at low wind speeds [4].
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Figure 2-1: Chougule et al. Verification of the DMSTM model [39].
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2.1.2 Trailing Edge Devices

Flaps also have a long history in aviation, first being produced on the Fairey Hamble
Baby aircraft in 1916 [41]! This flap is now known as a plain flap, in which the flap is
formed as part of the aerofoil. These are typically not seen as much nowadays due to

improvements on the design but are still the most fundamentally simple.

The plain flap has been developed and adapted since it’s conception, with the most
notable innovations being the Fowler flap, Junkers flap and slotted flap. These
advanced flaps all have varying characteristics with the aim of altering the
performance of the core aerofoil. The Fowler flap uses a very complex system of
hydraulics to extend the flap out of the original aerofoil, thus assisting not only with
camber and AOA alterations, but also for increasing wing surface area. The Fowler
flap does not modify the existing aerofoil but rather has an ancillary aerofoil acting
as the flap. However, these progressive flaps do not mean plain flaps are not suitable
for use in VAWTSs, as their simplicity assists in minimising maintenance costs.
Additionally, their simplicity allows for cost-effective and easily managed

implementations.

The Fowler flap has widespread use in modern aircraft but has not been investigated
in the use of VAWTSs and this is likely due to the structural complexities that would be
associated. This may be an effective solution to the balance between start-up ability
and higher power coefficients as a blade optimised for higher tip speed ratios (TSR)

could still show some self-starting properties.

Minor research has been performed on the use of Junkers flaps in the form of
auxiliary blades on the wind turbine. Li et al. [42] studied the effect of various fixing
angles of a secondary blade for a series of symmetrical NACA aerofoils. A
commercially available CFD code (ANSYS FLUENT) was used with the Reynolds
Averaged Navier Stokes (RANS) equations, employing the RNG k-¢ turbulence model.
It was found that using an auxiliary blade, with an appropriate thickness and angle
of attack (AoA), significantly altered the overall static torque and power production
of the turbine [42]. They also discovered that by setting the flap at a small angle to the

main blade it further improved the performance.
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Albeit that the slotted flap is slightly dated in modern aviation, its use in VAWTSs has
previously been explored. Wei and Li [43] briefly investigated the effect of having a
two-element aerofoil. Unfortunately, their experimentation was not particularly
thorough, with most of the publications comparing different simulation methods
such as experimental, XFOIL and CFD. The brief experimentation of the two-element
model was tested at a 0° and 10° deflection, and)\ their comparison was based solely

on the lift-coefficient. It was noted that the use of the flap altered the angle of attack
of the blade, resulting in a lower C-a curve, and that a proper deflection profile could

improve the performance. It is important to note that their computational models are
not optimal either. When using the Spalart-Allmaras model, it is necessary to keep
the y+ value either less than one or greater than 30, due to its wall functions, whereas
theirs varies from 0.5 to 9 [44]. Building on from this work, Yang et al. [45] used the
same theory of utilising a slotted flap, but with an active control system. A two-
dimensional unsteady CFD study was undertaken using dynamic meshes. The datum
aerofoil was a NACA0012 with a trailing edge slotted flap, which creates room for
some speculation of the results. Comparing the flapping aerofoil with a flapped
aerofoil with no deflection on the flap, does not provide the authors the opportunity
to compare it to the common “single seam” aerofoils. By implementing active control
on the deflection angle of the flap, the dynamic stall was able to be delayed [45]. The
active control was a sinusoidal profile, changing the flap angle with respect to
azimuthal angle. This is represented pictorially in Figure 2.3. Additionally, it was
found that there was a positive effect on the trailing edge wake and on the amplitude
of oscillations [45]. In terms of turbine performance, the peak power coefficient was
increased by 10%, and probably this is due to the minimised flow separation from the

lower angle of attack.

Some alternative approaches to the flap have also been undertaken. Liu et al. [46]
created a movable flap close to the trailing edge, and studied it’s influence on noise
and aerodynamic performance. They considered the position, length and angle of the
flap’s effect on performance and noise generation. The numerical method employed
was the Detached-Eddy Simulation (DES) which is based on the Spalart-Allmaras

single equation turbulence model and can be treated like the Large Eddy Simulation
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(LES) in refined enough sections of mesh and Reynolds Averaged Navier Stokes
(RANS) elsewhere [46]. They had a series of tests with this flap, starting with a series
of static inflow tests to calculate the aerodynamic polars. This showed that at lower
angles of attack the flap hinders performance, causing large separation. When
testing in the scenario of a vertical axis wind turbine however, they found that the
flap helped to suppress the vortices when an active control was implemented. The
flap would open between azimuth angles (¢) of 90 and 135 and then proceed to close
at 135° < ¢ < 180°. This resulted in higher torque coefficients at each tested TSR, albeit

only from 1.2 to 1.5.
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Gurney Flaps are most commonly known from their presence in motorsports such as
Formula 1, to assist in increasing their grip [47]. Recently, they have also been shown
to be adaptable to VAWTSs. Bianchini et al. [48] tested this theory using 2D unsteady
CFD simulations in both static and rotating domains. Three initial static test cases
were made for aerodynamic polar calculation; a flap on the pressure side, suction
side and on both sides and compare against a baseline aerofoil. A sensitivity analysis
on the flap height was also undertaken at 3% chord length (¢) and 4%¢ against the
baseline 2%¢. Finally, the optimised flap was implemented on a three bladed vertical
axis wind turbine through a rotational domain. The SST k-w turbulence model with
enhanced wall treatment was used alongside an unsteady RANS method, with the
Coupled pressure-density algorithm. The 2%c on the inner side of the aerofoil created
a 23.1% increase in the power coefficient at a TSR=3.3 [48]. This comparison can be
seen in Figure 2.4. When the 3%c analysis was undertaken, it is seen that the use of
an inner flap improves the pressure coefficient at TSR < 2.7 before the baseline
aerofoil starts to perform better. This can be seen in Figure 2.5. Zhu et al. [49] also
researched Gurney Flaps on wind turbines, but considered the effect of solidity,
rather than one base turbine, alongside both conventional and dimple Gurney flaps.
It was noted that increasing the solidity improved the power coefficient (C,) at lower
TSR but also reduced the peak TSR alongside the performance at higher TSR. This
was seen in both the turbine with and without dimples, but only an outboard Gurney
flap. The Transition SST model was used due to its accuracy in relation to the
experimental data, but requires a very fine boundary mesh. This was well
implemented and as such, the results can be considered reliable. Increasing solidity

improves Cp at low TSR but reduces peak TSR and performance at higher TSR.
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2.2 Turbine Blade Modification

Auxiliary devices are not the only techniques that have been explored in an attempt
of improving turbine performance. There has been a vast array of alternative

aerofoils, some of which are drastic and some minor changes.

2.2.1 Flow Manipulation Techniques

A promising research avenue is in the use of jets to help delay flow separation at lower
tip speed ratios, but it must be remembered that there is a certain amount of power
draw that will be taken from the pumping devices. Rezaeiha et al. [50] recently
investigated this by implementing a suction slot on the inner surface of a NACA0018

wind turbine with a solidity of 0.06. Their study was numerically simulated using
ANSYS Fluent with a well defined mesh (V+max < 1) using the Transition SST

turbulence model within an incompressible URANS approach. The slot had a velocity
inlet boundary condition of -6.23m/s. The suction scenario greatly increased the
overall power coefficient, due to the improved lift to drag coefficient ratio. Sensitivity
analysis was also undertaken to determine if the slot’s inlet velocity, position and

Reynolds number of the flow. Whilst the velocity magnitude did not seem to affect
the moment coefficient much from 0.5% freestream velocity (Us) to 10% of U, the

different positions and Reynolds number drastically altered the performance of the
turbine. The effect of the position is more prominent at lower TSR and tends to
converge as TSR increases. Figure 2-6 shows the positions to help give perspective to
Figure 2-7 which displays the effect of changing the position at a TSR of 2.5. For the
given wind turbine a sizeable improvement is seen, particularly at low TSR. If the
power required for the pump is taken into consideration and assumed to have a
constant flow rate, that is to ignore any pressure differences on the inner surface, a

net power gain for the TSR of 2.5, 3 and 3.5 was 219.6%, 74.3% and 19.6% respectively
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Figure 2-6: - Suction Slots Locations [50]
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Figure 2-8: Depiction of flow jet domain for a) NACA0015, b) generic CFJ-NACA0015 and c) CFJ-
NACA0015 for VAWT application [51].

25



A similar concept was researched by Sun et al. [51] known as a co-flow jet. Rather
than sucking from the suction side of the aerofoil, the flow is siphoned form near the
trailing edge of the pressure side and injected near the leading edge of the pressure

side as seen in Figure 2.8. They performed a comparison between the different
turbulence models to decide on the most appropriate, whilst ensuring appropriate y+

values were created in the mesh for each. The SST k - w model was selected as it best
matched the experimental data. To ensure mass continuity the two jet sections were
set as velocity inlets with the same magnitude but different sign. It greatly improved
the low TSR performance of the turbine by 170%, 120% and 17% at TSR of 0.8, 1 and
1.25 respectively. This was particularly prevalent when using their intermittent
method. The intermittent method simply alternates the co-flow jet between the inner

and outer blade surface dependant on azimuthal position.
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2.2.2 Aerofoil Profile

Arguably the most important areas of research within the scope of VAWTs is that of
the aerofoil profile itself. This can include using asymmetrical aerofoils, increasing

camber, modifying specific sections etc.

Song et al. [52] investigated the influence of altering the leading-edge radius of a
standard aerofoil within the industry, a NACA0015. An unsteady, two dimensional
CFD approach was undertaken using the Realisable k — € with the SIMPLE pressure
scheme. Whilst the y+ value is 6.2 for the selected mesh, it might still be able to
resolve the viscous sub layer due to the higher Reynolds number [44]. It seems that
by increasing the leading-edge radius, it tends to slightly increase the power
coefficient up until 6%c, whereafter, it quickly reduces in performance. For 3%c to
7%c the performance is marginally better than the conventional NACA0015, but 1%,
1.5%, 2%, 8% and 9% all appeared to have worsened performance. This can be seen

in Figure 2.9.

Wang and Zhuang [53] tested if dynamic separation could be minimised or limited by
adding sinusoidal serrations on the leading edge. Star-CCM+, a commercial CFD
software, was used for modelling the flow and numerical simulation. A thorough
mesh dependence study was undertaken to validate the reliability of the numerical
simulation and to build confidence in the results it output. This found that the
Realisable k - € model used under predicted the vortex shedding of the shafts and

turbine blades at some azimuth angle, but was otherwise satisfactorily [53]. The

discretisation process resulted in y+ values along the blade profile of mostly 30-50, so

the all y+ wall treatment was used. First a series of fixed wavelength, increasing

amplitude serrations were compared with the base profile. The reduced amplitude
designs improved the Cp, with the smallest amplitude (0.025c) having a consistently
better Cp for all TSR. The 0.025c design was then tested with different wavelengths
and the smallest (0.33c) wavelength had the most improved overall performance,

with a 18.7% improvement on CP at a TSR of 2.
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Figure 2-9: Leading Edge Radius Power Coefficient [53].

Whilst altering existing commonly used aerofoils develops an understanding of what
improving the established norm does, investigating alternative aerofoils is another
promising approach. Wang et al. [54] investigated the feasibility of this concept by
investigating the aerodynamic performance of a series of different aerofoils in a
VAWT scenario. A thorough array of profiles were selected and tested numerically
through the use of CFD with an O type grid and sliding mesh methods. The kw — SST
model was used for turbulence modelling. The tested aerofoils are a series of NACA
00XX, NACA63-0XX, NACA4X15 and NACA X015. For the symmetrical aerofoils, the
positions of maximum thickness were altered to understand their influence on
performance. It was found that moving the maximum thickness from LE to TE
resulted in increasing and then decreasing Cp after an optimal value. It was also
found that the asymmetrical NACA 4 and 6 series aerofoils performed better at lower
TSRs, with performance decreasing as TSR increased. It should be noted that the
surface pressure curves indicated that a smaller maximum camber allowed for larger
work ability [54]. Liu and Xiao [55] investigated the impact that structural stresses
may have on the power extraction performance of VAWTs. A focus on spanwise
deformation with a priority on bending and twist deflection was used. They utilised
Fluid-Structure-Interaction (FSI) within a commercially available software to
simulate the coupled behaviour that aerodynamic and structural loads exhibited in-
situ. It was found that the stiffness of the blade drastically effects the performance of

28



the turbine, with less rigid turbines showing poorer performance, likely due to the
poor aerodynamic shape because of larger deflections. This provides plenty of insight
into design constraints that should be considered in the manufacturing of these

machines.

Zeiner-Gundersen [56], [57] looked at the use of a Vertical Axis Tidal Turbine (VATT)
with flexible aerofoils and spring-loaded pitching. It was found that the flexible
aerofoils allowed the turbine to remain at an almost constant TSR variation, only
increasing by a factor of 1.3 with a doubled inflow velocity! Additionally, this turbine
resulted in typically higher power coefficients at low TSR when compared with static,
fixed blade turbines with lower solidity. This is impressive, as typically the lower
solidity results in a larger Cp and narrower operating range of TSRs. Additionally, it
appeared to improve the startup ability of the turbine. Miao et al. [58] researched the
effect of a flexing aerofoil on its propulsive efficiency. Whilst the propulsive aspects
of a flapping are not of particular relevance in the scope of VAWTSs, some of the
aerodynamic concepts discussed, such as lift and drag, are useful. They utilised an
unsteady, laminar flow model in Fluent 6.1 with a deforming mesh. The mesh is a
structured, conforming C-type grid close to the aerofoil before having the far field as
a triangular coarser mesh. Noticeably, one of the most significant results is the fact
that the larger the frequency of flapping, the larger the required input power to power
the flapping is. Additionally, if the flexure amplitude is increased too much, there is
substantially more drag than thrust produced. It should also be noted that as the
Reynolds number of the flow increases, the peak propulsive efficiency occurs with
lower flap frequency. Based on these conclusions, this type of technology is likely
better suited to large offshore turbines, due to their typically lower tip speed ratios,

alongside their usually larger initial investment costs.

Zhuang et al. [59] investigated what impact having a morphable trailing edge would
have on aerodynamic load control in the design of HAWTs. Whilst the aerodynamics
are fairly different to that of a VAWT, some of the techniques employed and

conclusions are equally valid. The use of a deforming mesh boundary layer allows for
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simulation of a smooth and consistent aerofoil deformation according to the
transformation matrix. This uniformity is dependent on the node count on the
aerofoil surface, with little improvement in smoothing for coarse discretization [59].
The diffusion coefficient method is used for remeshing, allowing for good mesh
properties in the outer flow regions. A diffusion coefficient of 1.2 is used in this paper,
which is rather conservative. The larger amplitude of deflection turbine aerofoil
showed a substantially larger lift to drag ratio at low (-5° to 7°) and approximately
equal to the rigid at higher angles (7° to 25°). An analysis of deflection length,
amplitude and phase was also undertaken. Increasing the deflection length enables

better load control, a key issue with VAWTs. The slight phase lag and lead also helped
to limit the fluctuation in lift coefficient, with a phase-lag of %s reducing Ci, mean by 50%

[59]. Liu et al. [60] took inspiration from nature in investigating alternative energy
extraction methods. Using a rainbow trout and a hawkmoth for the formation of their
turbine blade, they tested the flapping of a rigid, LE control mode, TE control mode
and integrated mode. The integrated mode is of most interest in this review, as it
seems to drastically reduce performance in comparison to the rigid blade. This seems
to be primarily due to the LE control method, as the TE control method appears to
increase the peak power considerably. This is likely due to the LE and TE having the
same direction of deflection and as such are counteracting each other and causing

large leading-edge vortices resulting in flow separation and stall.

Bouzaher et al [26] investigated the influence of using the work of Miao et al. [58], and
Liu et al. [60], and applying it to Vertical Axis Tidal Turbines (VATTSs) through the

application of CFD. They used the spring-based remeshing method for their
deforming mesh, with entirely triangular elements, but a y+ of approximately 1. They

confirmed that the use of a flexible aerofoil can increase the power output compared
to a rigid aerofoil [26], but only if the flexibility does not become excessive.
Additionally, only the trailing edge is deformed and the effect of leading-edge
deflection is not considered, which could change the performance drastically. To

come to a more robust conclusion of the flexible aerofoils power increase, it was
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compared on multiple aerofoils, it was found that the NACA0024 aerofoil had the

greatest increase with a average power coefficient increase of 0.13!
Whilst most of the research has been utilising numerical simulations, Wang et al. [61]

decided to physically implement the system and perform wind tunnel testing. It was
found that after a certain level of deflection, the lift enhancement gets outweighed by
the increased frictional resistance [61]. Using a single shaft transmission model, as
seen in Figure 2.10, the NACA0012 aerofoil was able to deflect such that “the profile
after rotation should be close to the NACA4412 as possible”. It was interesting to note
that there was no true comparison between the NACA4412 deflected aerofoil and
other experimental NACA4412 data, or numerical data. The only comparison is
between their version of the NACA0012 (deflection parameter, d* = 0) and their
deflected models. This data however shows that at lower AoA, the lift to drag ratio is
comparable between the deformed and undeformed models, until about 18°. All
these conclusions should be considered apprehensively however, as the test platform

used does not consider the blockage or wall effects, as seen in Figure 2.11.

Figure 2-10: CAD Model of an Aerofoil Assembly [61]
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Figure 2-11: CAD Model of an Aerofoil Assembly [61]

2.3 Optimisation Techniques

There are many ways of optimising a design that is employed in engineering, with
varying levels of mathematical and computational complexity, with the best suited
optimisation method being dictated by the problem at hand. Some techniques that
have been employed in the scope of VAWTs include using parametric design studies,
adjoint optimisation for turbine blade optimisation, and evolutionary algorithms. A

summary of some of these studies is discussed in this subchapter.

2.3.1 Parametric Design Studies

The application of parametric design studies allows for the ability to explore the
impact of many design variables in a systematic manner, such as blade
characteristics including twist [62] or aerofoil characteristics such as thickness [63],
[64]and camber [63]. This also opens the door to the opportunity to create reduced
order models of the VAWT profile, such as Mifsud et al. [65] using a mixed fidelity
model which is created from a range of high fidelity aerofoil geometry simulations,
but allows for simpler models to be implemented to predict between the datapoints,
similarly to what was done by LeGresley and Alonso [66]. This technique has also
been applied to turbomachinery by Epureanu et al. [67]. Whilst using these reduced

order models can assist in speeding up predictions, they do no appear to be broad
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enough or refined enough to be applicable to the range of scenarios a single VAWT

would experience.

2.3.2 Adjoint Optimisation

Adjoint Optimisation utilises a gradient decent approach to optimise design problems
and has been used for the optimisation of VAWT blade designs, as it is very
considerate of the complex flow fields that a VAWT blade experiences, resulting in
designs unique to a specific turbine’s features and operating conditions, typically
showing promising results. Day et al. [23] showed that adjoint optimisation can be
used at a single snapshot in the turbine’s rotation to improve overall turbine power

generation, and also at multiple snapshots [68].

2.3.3Evolutionary Algorithms

Evolutionary algorithms are a set of optimisation algorithms designed to mimic
natural selection. They work by mimicking how nature utilises selective
reproduction, mutation and recombination to improve a species as a whole, to
gradually improve a design until there is no longer any improvements between
parents and their offspring. Whilst there are a few variations of evolutionary
algorithms, this work focuses on the use of genetic algorithms (GAs) as they allow for
a wide breadth of search but strong ability to find the true optimal design for specific

operating conditions.

Ferreira and Geurts [69] showed the strength of using genetic algorithm optimisation
with a panel methods code, with significant improvements to the lift to drag ratio of
the VAWT blade. The work was performed at high tip speed ratios, so the angle of
attack is lower, and not reflective of the complex dynamic stall that a VAWT blade
experiences at lower angles of attack. Tejeda-del-Cueto et al. [70] optimised the lift
coefficient of some aerofoils using an XFOIL based Genetic Algorithm from 0-10°
angle of attack and found at least a 10.7% increase in lift coefficient. They noted that

XFOIL had an approximately 5% difference in results compared to CFD. Wu et al.
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[71] demonstrated the strength of joining the evolutionary algorithm with using a
deep neural network surrogate, showing four orders of magnitude improvement of

speedup for aerofoil lift-drag prediction.

2.3.4Machine Learning (ML)

Whilst evolutionary algorithms could be considered a form of AI due to their self
regulating methods, they do not train a general model that can be applied to other
operating conditions in the same way that machine learning is able to infer trends
from massively complex and sparse datasets. This is where machine learning has an
opportunity to aid engineers in developing appropriate turbine designs, particularly
for deforming VAWT blades. If the machine learning model is trained sufficiently
accurately and on a wide enough scale of data, it is theoretically possible to simply
place in some operating conditions and estimate exactly what the turbine’s
performance will be! This could be as complex as considering wind patterns, turbine
locations and accessibility and maintenance availability, to something as standard as
auser providing specific wind speed, TSR and rotation position. This vast adaptability
provides the opportunity to have in depth trends within the coupled effects of design
choices too be analysed and exploited without extensive and complex manual
statistical analysis. As a result, some work has been done on utilising machine
learning and artificial intelligence to optimise and search aerofoils and VAWT blades,

with varying levels of applicability.

Ahmed et al. [72] created a CFD surrogate using a machine learning model, but did
not provide validation, only statistical analysis of their results. Du et al. [73] created a
CFD surrogate for aerofoils which shows very strong agreement to the training data
(which consisted of 3000 profiles, with the pressure, temperature and velocity in x
and y directions for the grid), comparing the flow fields, pressure coefficients and
they also implemented their model into an optimisation method to optimise the lift
to drag coefficient of input aerofoils. They utilised the latin hypercube sampling
method to generate a design space for mach numbers between 0.3 and 0.6, AoA from

0-6° and Reynold Number from 6x10e6 to 1.2x10e7. This is a relatively narrow field
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for so many training points which would explain the good predictions of the model,
but seems like an excessive number of simulations for what is arguably a limited
applicability. Sun et al. [74] also created a physics informed neural network (PINN)
to act as a surrogate for CFD simulations of aerofoils, and implemented it into a
stochastic gradient descent optimiser but found that they often converged on local
minima in the optimisation, as the PINN had differing convergence many times. They
did utilise a smart usage of adaptive sampling, allowing the PINN to be trained on
more points near the desired optimal point improving it’'s accuracy, but it could be
argued that at that point it is not much of a neural network and is effectively just
linearly interpolating around points it believes to be optimal. Karbasian and van Rees
[75] provided an interesting model that aligns well with the intentions of the thesis;
using a surrogate model to optimise morphing aerofoils. Their dataset is calculated
using XFOIL to predict the Cl, Cd and Cm characteristics based on a hinge position,
and found that often XFOIL fails to converge for large angles of attack, so they discard
these datapoints. Thy tested two datasets; one containing 200 samples and one
containing 400 samples, so a relatively small sample size, but as it is a supplement for

an FSI approach, it was found to be several orders of magnitude more efficient.

2.4 Summary and Thesis Outline

In summary, this thesis will look at the different methods of generating optimised

transiently deforming camber lines of standard VAWT blade profiles.

One of the primary issues with the Vertical Axis Wind Turbines is the impact of the
blade-wake interactions and sensitivity to the operational tip speed ratio of the
turbine. Some previous investigations have shown that using a cambered aerofoil can
improve the overall turbine performance [20], [21], [22], but this is often at the cost of
increasing the variance in the turbine moment generation. Furthermore,
optimisation techniques, such as the adjoint optimisation, have shown promise in
optimising the turbine performance, in single and multiple snapshot techniques [23].
Most of these optimisation techniques however are not necessarily an improvement

throughout the turbine’s rotation, often resulting in an increase in the performance
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at the optimised snapshot position, but a reduction in performance at other positions
as a side-effect. The inherently transient nature of the flow angle experienced by a
turbine blade profile results in large separation in certain regions of the rotation and
the generation of dynamic stall issues [24], [25]. Other investigators have shown that
a prescribed deforming blade profile, bending the camber line of the aerofoil with
respect to time, has shown an increase in the turbine performance [26]. However,
these deformation profiles tend to use arbitrary selections of frequency and
amplitude of sinusoidal profiles such as Camber = Asin(wt) and then conclusions
are drawn upon the use of these variables, such as the deflection magnitude (A) or
the deflection frequency (w). This leads to the question as to whether these variable
combinations are sufficiently broad in their investigative bounds to truly make
generalised conclusions on the impact of the deforming turbine profile, or are they
simply making broad generalised conclusions? Baghdadi et al. [27] used a freeform
deformation algorithm to optimise the aerofoil profile based on the tip speed ratio
and azimuthal angle, but had a predefined optimisation constraint of only deforming
the final 30%c of the aerofoil, but the actual deformation was completely free, which
could alter the thickness of the blade in some regions. They optimised the blade
shape every 30°, 60° and 120°, and tested it at 4 tip speed ratios: 1, 1.5, 2 and 2.5, using
a polynomial fit to create a smooth curve for the resulting moment plots. They
showed a very strong increase in the power coefficient for all the optimisation
scenarios. This work builds on the work of Baghdadi et al. [27] through characterising
the deforming blade profile, utilising a genetic algorithm to optimise the camber for
each optimisation position, and testing the influence of different optimisation
constraints for the genetic algorithm and the aerofoil. This will allow for a much
better understanding of which aerofoil parameters are providing the largest
influence on the deforming blade profile, thus potentially opening further avenues

of research.

If optimising a single position in the turbine’s rotation can improve the turbine
performance using techniques such as the adjoint method, then one can confidently

apply this optimisation at multiple positions in the turbine rotation to further
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improve the turbine performance. This has been discussed in the literature [27] with
the conclusion that applying the multi-snapshot technique to a dynamically
deforming blade profile will have further performance improvements. However,
using the adjoint or free-form deformation optimisation technique limits the realistic
applicability of this dynamic optimisation. It is unrealistic for a turbine to deform its
entire shape and thickness dynamically, but some parameters could be relatively
easily be controlled such as the thickness or camber magnitude. Whilst the thickness
has been shown to change the performance of a VAWT [28], such as increasing the
power coefficient at low TSRs with thicker aerofoils, this would be an incredibly
complex system to replicate in an actual turbine. This thickness investigation would
be very interesting and novel, but does not align with the ethos of this thesis, which
is to optimise a dynamic aerofoil profile that could be easily implemented into real
world scenarios. By bending the aerofoil, one can increase the curvature of the flow
and the lift generation of the aerofoil [29][30]. If the characterisation of the bending
shape is that of the generalised NACA 4-series shape equations, then it is relatively
straightforward and self-explanatory to convert a typical VAWT blade profile from
something such as the NACA0015 by prescribing the deformation centre and
magnitude of the deformation to create a highly cambered aerofoil such as a
NACA9315. As a result, alternative optimisation techniques would be more

appropriate.

The concluded Thesis plan is therefore to initially evaluate the ability of using a
genetic algorithm to create an optimised deforming turbine blade camber profile, by
optimising the camber at multiple positions in the turbine’s rotation and utilising
linear interpolation between each azimuthal position to create a dynamic profile
based on the turbine blade’s azimuthal position. In Chapter 4 this theory is initially
evaluated in XFOIL to develop the genetic algorithm workflow for the actual
optimisation process and test the impact of varying different GA parameters such as;
the number of optimisation points to use in the rotation, the optimisation camber
bounds and convergence conditions. These findings are carried forward to Chapter 5
to investigate a transient optimisation procedure, where the turbine is rotated and

the blade profile is continuously deformed up to the desired optimisation position,
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which incorporates the transient effects of the deformation into the optimisation
procedure. This work is evaluated at multiple operating conditions such as sampling
count, aerofoil constraints and tip speed ratios to develop an understanding of how
turbine and aerofoil parameters influence the camber profile, and the moment
generation increase. Finally, to alleviate the computational cost of the transient
simulation, but for more fidelity than using XFOIL, utilising an Artificial Neural
Network (ANN) as a torque prediction surrogate is tested and applied to the optimal
GA conditions discovered in Chapter 5, including using a publicly available ANN
model trained on XFOIL data and developing a custom ANN utilising hundreds of
static aerofoil CFD simulations to predict tangential force coefficient similarly to that

which was established in Chapter 4.
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3 Methodology

Many methods are employed throughout the thesis including Computational Fluid
Dynamics (CFD) software (primarily ANSYS Fluent), genetic algorithms for camber
optimisation and dynamic mesh motion within the CFD process. These techniques
will be described in this section, allowing for understanding and appreciation of the
various procedures and tools before detailing the different studies into the camber

profile optimisation.

3.1 Computational Fluid Dynamics

Throughout this thesis, the primary tool for CFD analysis is ANSYS Fluent, a
commercially available package that has been in continuous use and development
since the late 20" century, which is a thoroughly verified and trustworthy tool for
conducting a wide range of highly complex CFD studies. ANSYS Fluent uses the finite
volume method to iteratively “solve” the Navier-Stokes equations, which describe

how any fluid moves and interacts with it's environment.

3.1.1 Navier Stokes Equations

To study the aerodynamics of any problem, it is fundamentally crucial to understand
and appreciate the underlying physics that dictate fluid dynamics. These vary widely
depending on the specific area you are studying, ranging all the way from atomic

level physics to generalised macroscopic fluid flow.

There are however a few concepts that are uniformly applicable to any type of fluid
flow, namely Newton’s Laws and conservation laws. These can be compiled into a set
of equations that govern fluid flows. In the scope of inviscid fluids, these equations
are referred to as the Euler equations, but when applied to viscous fluids the Navier-
Stokes equations are used, named after the French physicist Claude-Louis Navier who
first defined them, and the Irish physicist George Gabriel Stokes who first explained
their significance. The Navier-Stokes equations are based on Newton'’s second law of

motion but applied to fluid motion with viscous effects included, with the
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conservation of mass and momentum included. Often, the Navier-Stokes equations
are used in conjunction with other supplementary formulae such as energy
equations, but this can be negated in systems where no work is being done to or taken

from the fluid volume being studied.

The mass continuity equation of the Navier-Stokes equations is given as;

dp - 3.1
—+V- =0
3t (p1d)
The conservation of momentum is given as;
o . 3.2
dv 3.3
F+pg—-Vp+V-1 =Par
Txx  Tyx Tazx 3.4
T = [Txy Tyy sz]
Txz Tyz Tgzz
av av av av 3.5

This essentially means the External body forces + gravity force per unit volume +

viscous force per unit volume = density * acceleration of the fluid volume [16].

We can break the Navier-Stokes equation down into it’s expanded parts, which allows
us to understand how each term affects physical flow properties and phenomena. If

we expand in the x direction, our equation would become:

du

E+p(u—x+v—+w—>=

OP 01y,  0Tyx 0Ty 3.6
“ox T ox T dy My P

[1] (2] (3] [4] [5]

1. Refers to transient acceleration of the fluid flow
2. The inertia term, describing the inertia of the fluid, or the acceleration due to

movement from one location to another
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3. The source/sink term, the driving force behind the flow, providing the energy
for movement.

4. Diffusion Terms. These terms refer to the viscous stresses within the fluid
element and are the effect of viscosity, shearing and changing the volume of
the element.

5. f, refers to the body forces per unit volume that can act on a fluid element.

These could include gravitational effects, magnetics etc.
It is important to clarify what the viscous stress tensor physically means, however.

Implementing Newton’s law of viscosity (Equation to our stress tensor and adding the

following assumptions made by Stokes;

du
T= u@ 3.7

1. Newton’s law of viscosity is followed meaning stress is linearly proportional to
the velocity gradient and viscous stress is linearly proportional to the strain
rate

2. The fluid is isotropic (has the same fluid property in all directions)

3. The viscous force only acts tangentially to the fluid element, it’s normal is null.

4. Rigid body rotation of the fluid element doesn’t provide any source of viscous

stress.

The resulting stress tensor is therefore given as

) du (au c’)v) (6W 6u>'
. . . Hox # dy 0x H\ox T oz
ey 2 ou ov ov ov ow
T = Ty Tyy Tzy| = u(@+a) Zu@ ‘H(E-I_E) 3.8
T T T
e (6w au) (av c’)W) dw
# dx 0z H dz dy M(')Z
Or in a simplified manner;
1 —
Tij = ZIJ.[S”—§VV6U] 3.9
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=—|— 3.10
2 axj + 6xl-

Ei]'
Where p is the fluid’s dynamic viscosity and §;; is the Kronecker delta. Implementing
this definition of the stress tensor, the convective or non-conservative form of the

Navier-Stokes is given as;
v L S o1 oL =
plap+V WV =—Vp+,uV2V+§uV(V-V)+pg+Fb 3.11

The non-conservative and conservative versions of the Navier-Stokes momentum
equation are only equivalent for “smooth” flows, but if discontinuities are present
such as shocks, the non-conservative version is invalid, and in such scenarios, the

conservative version must be used [76].

When applied to slow moving external aerodynamics (such as that experienced by a
VAWT) we can simplify the Navier-Stokes Equations. Due to the low (subsonic,
M<0.3) speed and fluid properties of air (Newtonian Fluid), the flow field is assumed
to have a constant density and viscosity and allows the negation of all external body

forces including gravity.

Sometimes it is necessary to also include the conservation of energy and species
when analysing fluid flows. Scenarios where this might be the case include
supersonic flows, heat transfer and combustion scenarios. Heat transfer doesn’t
always require species conservation due to a lack of chemical reactions, but very
high-speed flows (hypersonic) can cause chemical breakdown of fluids such as air,
and as such it is necessary to maintain species continuity. These can both be negated
for the consideration of flow fields impacted by VAWTSs, unless complex devices are

being investigated to influence the flow field such as icing on blades.

dh - Dp
p[E+V-(hV)]——E+V-(kVT)+¢ .

[1] (2] 31 [4] [5]

42



Again, each section of the equation explains a different source of energy in the fluid.

1. Enthalpy change with respect to time
Convection
Pressure Work

Diffusion of energy

A

Dissipation of energy

3.1.2 Boundary Conditions

The Navier-Stokes equations can only be solved for a finite number of situations, such
as Stokes or creep flow, which is incredibly low Reynolds number flow, or Couette
flow, inviscid flow through a pipe. But these cases, and any other case, require the
implementation of boundary conditions, on the edge of our flow volume. These vary

significantly but in the scope of VAWTSs, the most relevant include:

1. Inlets
a. Velocity Inlets
b. Pressure Far fields
c. Mass flow inlets
2. Outlets
a. Pressure Outlet
b. Mass flow outlets
3. Symmetry
4. Walls
a. Free shear
b. No-slip

5. Interfaces

Most commonly it is found to have a velocity inlet as the inlet boundary condition for
a VAWT CFD flow domain, as it allows for the wind speed that the turbine will

experience to be defined. Pressure outlets are typically used to “vent” the flow
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domain to atmospheric conditions, which can prevent creating a pressure
differential at the outlet which would cause a flow acceleration in the domain.
Symmetry is often used at the outer faces of the flow domain, or on symmetry planes
of 3D simulations (such as at a blade midspan) as it minimises the blockage effects of
the wind turbine in the domain, allowing for smaller domains to be used than if walls
were applied. No-slip walls are assigned to the components of the VAWT such as the
blades and the shaft to model the boundary layer generation on these surfaces as they
would in real life. Finally, an interface pair is created between the rotating mesh
region containing the turbine geometry and the static flow domain. There are two
primary methods implemented; conformal and non-conformal interfaces.
Conformal interfaces have a matching mesh either side of the interface, so the
vertices on the edge of each respective fluid domain’s interface are connected and
share topology. Non-conformal interfaces are when the two fluid domains have
different mesh resolutions on their respective interfaces, or they do not share
topology, for example the interface of one domain could have 100 nodes, but the
other domain could have 200 nodes, or if one of the domains moves w.r.t the other
domain. All interfaces share one key feature; they conserve the flux of mass,
momentum and energy across the boundaries. In the VAWT CFD, a non-conformal
interface is applied to the common edge between the flow domain and the rotating
turbine domain. To maintain the flux conservation, Fluent computes the flux across
the interface and interpolates the values for each overlapping cell on the domain, by
calculating the area-weighted average from one side, it can then interpolate what the

appropriate flux will be on the opposite domain’s cells each time-step.

3.1.3Turbulence Modelling

When studying these fluid flows there are a finite count of situations where they can
be analytically solved [77], such as Stokes flow which is incredibly low Reynolds
number flows or inviscid flow through a pipe. Other more complex flow scenarios
that are more common in engineering research and development require the use of

CFD codes to investigate and study flow fields. Due to the nature of the Navier-Stokes
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equations, it is necessary to use some form of discretisation with carefully selected
boundary conditions to model complex flow phenomena such as turbulence. There
are three primary methods of modelling the Navier-Stokes equations in order of

increasing flow resolution;

1. Reynolds Averaged Navier-Stokes
2. Large Eddy Simulation

3. Direct Numerical Simulation

Whilst the resolution of the flow decreases, the computational requirements also
rapidly decrease. Modern advances in computing ability allow for simulation of the
flow fields around complex bodies such as aircraft from a device as simple as a
laptop! Of course, this comes with the caveat that it is necessary to utilise lower
resolution models but is regardless an impressive feat considering the complex
computing power that was necessary a few decades ago. The computationally
cheapest method, Reynolds Averaged Navier-Stokes, uses Reynolds averaging to split
the flow parameters into two terms, their absolute value and their fluctuations due to
turbulence. These fluctuations are defined as the deviation of a variable, in this

example u, from their average value [16];

_ 1 (T 3.13
u=—fudt
0

Therefore

u=u+u 3.14

It is mathematically clear that the mean of u’ has zero value, but this is not true of the
mean square of the fluctuation, u'?, is not zero, and can be used as a measure of
turbulent intensity [16]. Oscar Reynolds used this idea to split all the variables in the
Navier-Stokes equations, to produced time-averaged versions, replacing velocity and

pressure components with their averaged counter parts i.e.
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u=u+u 3.15

v=v+v 3.16
w=w+w' 3.17
p=p+p 3.18

As a result, however, there are some terms left that cannot be resolved and require
an empirical formula or alternative method of calculation.

gt P T g PR = T Toax Mok Tax 300 Pt

These turbulent based stresses (—pu{u]’) are referred to as Reynolds Stresses and

create a closure problem within the Reynolds Averaged Navier-Stokes equations. The
most common method of calculating the Reynolds stresses is through the application
of a turbulence model. Just like the fact that there are differing methods of solving
the Navier-Stokes equations with varying levels of computational complexity, there
are differing levels of resolution for formulating the Reynolds stresses. Each
turbulence model has particular use cases that they were designed for, and as a result

have different formulations.

The most common approach to closing the Reynolds Averaged Navier-Stokes
equations is to use the Boussinesq Approximation. This method links the mean
velocity gradient to create a new viscosity for eddies, the eddy viscosity. One of the
primary drawbacks of this method is that the eddies are considered isotropic, this is
not the case for the Reynolds Stress Model (RSM) that is included in some commercial
solvers such as ANSYS Fluent, which solves the transport equation for the eddies
directly, with an equation for dissipation of the eddies [78]. The formulation of the

Reynolds Stresses when using the Boussinesq Approximation is

— aui+au,- 2( i+ auk)6 3.20
pU; U = e dx;  ox; 3 p Htaxk ij
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Where the different turbulent models will have different methods of calculating k
and y,. The most commonly employed in VAWTs are the k — w SST and k — € models
due to their ability to model the freestream turbulence well, but k-w is preferred for
its ability to capture complex flow phenomena such as boundary layer separation and
vortex shedding [79]. The full derivation of the mathematical definition of these
turbulence models can be found in common literature, and is left as an exercise to

the reader.

3.2 CFD Setup and Validation

To validate the results produced by the various optimisation techniques within this
thesis, the deformation profile will be placed within a CFD simulation and compared
to a symmetric NACA0015 aerofoil. The turbine used for comparison is the same as
that used by El Sakka et al.[80] and Li et al.[81], with the latter study testing the turbine
experimentally at three TSRs. The turbine parameters are selected to match the
published data, corresponding to a TSR of 2.29, freestream velocity of 7 m/s, turbine
radius of 0.85m, blade chord length of 0.225m with the leading edge shifted forward
of the shaft center by 25% chord. For the validation studies, the blade has a setting

angle of 6° as is found in the work of Li et al. [81].

3.2.1 Geometry

A two-dimensional simulation is setup using the domain arrangement seen in Figure
3-1. The C-Grid far field technique is used to optimise and control the mesh structure
as it requires less elements than a rectangular domain would for a given mesh
density. A sufficiently large domain is crucial to minimise wall effects affecting the
flow solution and capturing the flow field adequately. Due to the large domain, a
structured mesh is created to optimise the allocation of elements, ensuring they are
in regions of flow where high fidelity is desired, including the boundary layers, the

turbine wake and the turbine core.

A series of domain sizes were tested and validated against the literature (the work of

Elsakka et al. [80]) by comparing the average tangential force coefficient. The
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different comparisons for the domain sizing are listed in Table 3-1 below. Domain D
was the final design consideration, as it provided the most stable simulation results
(consistent max residuals target of le-5 achieved each timestep) and also when

running the full turbine simulation, it was found to match the literature results most

accurately.
Property A B C D
Downstream 5.325 11.7 8.5 12.55
Length (m)
Perpendicular 5.1 8.5 8.5 8.5
domain

Thickness (m)

Aerofoil O-Grid 0.3375 0.255 0.3 0.3
Size (m)
Rotating 2.1 2.1 1.9 2.5

Domain Size

(m)

Table 3-1: Domain sizing comparisons

The final geometrical sizes include 10 turbine radii downstream (8.5m), and an inlet
radius of 5 radii (4.25m). The wake region is sized to be 0.75 diameters (1.19m) ahead

of and above the turbine domain and 1 diameter aft of the turbine (1.7m).
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Figure 3-1: Image of entire flow domain geometry



Ansys

2024 R2

Figure 3-2: Zoomed image of geometry around fluid turbine fluid zone

The solver is the ANSYS Fluent software with the double precision solver. The
COUPLED method is employed to ensure good convergence behaviour and help with
any divergence that may be experienced. Furthermore, all solver methods are set to
Second Order Upwind to ensure solution stability. The Unsteady Reynolds-Averaged
Navier Stokes approach is undertaken to reduce the computational costs, but with
good acceptance of their applicability in the application of VAWT simulations. The k-
 SST turbulence model is employed due to its design for capturing separated flow
more accurately than most other turbulence models and resistance to adverse
pressure gradients [82], as is typically present in stalled vertical axis wind turbine

blades.
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3.2.2 Mesh Independence Study

To validate the mesh chosen for the design, and ensure the mesh accurately captures
the flow physics, whilst minimising element count for computational efficiency, a

mesh independence study is undertaken.

The mesh design was altered by changing the element dimensional sizing in the near
blade flow region, as this alters the number of nodes along the aerofoil surface and
reduces/increases the number of elements for capturing the blade wake. The
inflation layer settings are kept constant to ensure an appropriate y+ is maintained in
the 5 studies, ensuring confidence that the difference in results is purely due to blade-
wake resolution. Furthermore, if the inflation layer settings were adjusted (number
of layers or first cell height), then the turbulence model employed, k-omega SST,
might underpredict the boundary layer effects for a coarse inflation due to the lack
of wall functions [83] or too fine and it might employ the k-epsilon model too close to
the wall rather than the k-omega model as the boundary layer isn’t fully resolved by
the inflation. The change between each mesh was simply to alter the body sizing of
the mesh size in the o-grid region around the turbine blade profile. The different

sizing are listed in Table 3-1.

Element 425 625 774 1100 1900
Count
O-Grid 6e-4 S5e-4 4e-4 3e-4 2e-4

Element Size

(m)

Table 3-2: O-Grid Sizing Comparison for Mesh Independence Study
Figure 3-3 shows that the overall capture of the moment for the VAWT is very similar
between all mesh resolutions, with the main differences in the peak value and the
variance seen in the downstream period of rotation (¢ > 180°). Taking a closer look at
the averaged moment value however shows that there is significant variation

between the different meshes. A mesh with 1.1 million elements is less than 1%
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different to 1.9 million elements, but with substantially faster computation time
(wall-clock time ~17 hours versus ~29 hours respectively with 96 CPU Cores). The
mesh with 1.1 million elements is therefore selected as the optimal mesh for further
CFD cases, including validation against previous literature and genetic algorithm

evaluation.
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Figure 3-3: Instantaneous Moment Comparison at Multiple Mesh Sizes
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Figure 3-4: Mean Moment averaged over period of rotation
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3.2.3Final Mesh Characteristics

A y+ = 1 is used in the mesh as is required by the k-w SST model, with no wall
functions. This y+ value is achieved by the application of inflation layers at the
aerofoil and shaft surface, with a first layer height of 1.94e-5m, 30 layers and a growth
rate of 1.1. The final mesh count is 360k for each of the O-Grid regions encapsulating
the aerofoils, 264.8k for the remainder of the rotating turbine area, and 125k for the
rest of the stationary fluid far-field region, creating a total mesh size of 1.1098M

elements.

To enable the application of the deforming mesh motion, it is better to utilise an
unstructured mesh in the near aerofoil flow region, particularly in the vicinity of the
trailing edge due to the large deformation and step in geometry experienced in these
regions by the application of a flapping mesh motion. This mesh sizing is controlled
by applying the inflation layer mesh control and specifying a face element sizing
within ANSYS’ meshing tool. Additionally, the number of elements along the span of
the aerofoil wall is controlled to ensure a smooth transition between the quadrilateral
inflationary boundary layer and the triangular elements. The resultant overall flow

discretisation and near-blade regions can be seen in Figure 3-5, Figure 3-6 and Figure

Figure 3-5: Entire Flow Domain Mesh
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Figure 3-6: Near Blade Mesh

Figure 3-7: Near Blade Mesh at Sharp Trailing Edge

The flow domain boundary conditions are highlighted in Figure 3-8. A velocity inlet
is setup, with symmetry walls at the outer edges (yellow lines) and a pressure outlet
as seen in Figure 3-8. The inlet velocity is set to 7m/s in the X direction, Om/s in the Y
direction and Om/s in the Z direction (seen in blue) to match the work of Li et al.[81].
Furthermore, a no-slip wall condition is employed on the turbine blade edges and on
the central shaft (seen in grey), with a defined rotational speed of 18.86 rad/s applied
to the turbine fluid domain by application of mesh motion (corresponding to a TSR
of 2.29, as seen in the work of Li et al.[81] and El Sakka et al.[80]) and a corresponding
timestep size of 0.0004238656755s (1° per timestep). In addition, there is a mesh

interface created between the turbine flow domain and the far field domain (shown
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as the yellow circle in the domain centre) to ensure accurate flow physics by using
the sliding mesh model. A symmetry wall boundary condition is applied to the top
and bottom domain edges (yellow) to encapsulate the flow and reduce the need for a
much larger domain required for the no-slip wall conditions. A pressure outlet is used

with atmospheric conditions, seen in red at the rear of the flow domain.

Ansys
2021 R2
Figure 3-8: Boundary Conditions Highlighted on Flow Domain Edges
Single Blade Torque
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Figure 3-9: Single Blade Torque Coefficient Comparison with Li et al.[81] and El Sakka et al.[80]
works

It is clear from Figure 3-9 that there is strong agreement in the CFD setup results with

the upstream torque performance compared with the experimental work of Li et
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al[81]. The difference in the downstream between this work’s CFD study and the
experimental data can be due to a variety of factors, including the lack of tip vortices
affecting the performance that are not present in the 2D simulations (this work and

El Sakka et al. [80] but are in the experiment and 3D simulations (Li et al.[81]).

This CFD setup shows good agreement in the upstream region (0° < ¢ < 180°) with the
CFD work of Li et al.[81] and El Sakka et al.[80], and also good similarity with the
downstream region of El Sakka et al.[80]. It is therefore considered suitable for
investigating the turbine performance improvement by application of GA

optimisation.

3.2.4 Timestep Independence Study

To understand the impact of temporal resolution on the accuracy of the CFD model,
the simulation is run with three different timestep sizes; 1° of rotation per timestep,
0.5° of rotation per timestep and 0.25° of rotation per timestep. The resultant torque
vs azimuthal angle is presented in Figure 3-10 for a 0 degree setting angle of the
turbine parameters described in Section 3.2, with the green line representing the 1°
case, the blue line is the 0.5° case and the orange line is the 0.25° case. The overall
torque behaviour is captured well for all three setups, with negligible differences in
the initial period of rotation from 0° to 180°. The main differences start to appear
around the peak, where the 0.5 degree has the highest single blade torque, but the
downstream period of rotation is very similar between all 3 cases. The variance
between the temporal resolutions clearly starts at the first large peak around 90°
azimuth, I suspect this is due to the difference in resolutions predict a different angle
at which the leading edge vortex sheds and the blad stalls, this would also then have
significant impact at around 144° again as the blade rotates, cutting through the
previously shed vortex that was carried downwind, again with a minor difference in
the position in rotation causing a small butterfly effect and exacerbating the
difference in turbine power generations due to coupling with the blade’s lift and drag
generation at the different angles of attack. For example, if we take the large peak

position, the angle of attack is the highest in magnitude that the aerofoil experiences
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and the aerofoil performance would be very sensitive to any changes in the flow
conditions. By shedding the vortex a half degree earlier in rotation, the small change
in angle of attack could result in the flow remaining attached that tiny bit more

resulting in a slightly higher peak.

As this case will be later utilised for transient GA optimisation, the computational cost
will be directly associated with the time step size, and as such the minor difference
in turbine performance differences are acceptable for the large improvement in

simulation wall clock time.
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Figure 3-10: Comparison of Blade Torque for 1°, 0.5° and 0.25° of Rotation per Timestep.

3.3 Deforming VAWT Methodology

It is crucial to evaluate the performance of how the optimised VAWT blade camber
profiles perform in the scope of a full rotating VAWT to understand the impacts on

dynamic flow effects such as dynamic stall, leading edge separation bubbles and
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blade wake interactions. This was achieved by implementing the camber profile into
a complex UDF in ANSYS Fluent that will deform the turbine blade aerofoil profile
based on it’'s azimuthal position and operating characteristics. The UDF and an
example setup of the parametrised CFD simulation that is detailed below can be

found on GitHub at [84].

As stated in Section 4.1.3.1, the optimisation algorithm is applied at a 0° setting angle
to reduce the modelling complexity of the flapping profile on a 6° setting angle.
Additionally, as this work intends to solely explore the impact of the GA on the
flapping motion, it is crucial to attempt to eliminate any coupled effects that may be
presented by the application of a flapping turbine with a 6° setting angle. By having
the 6° setting angle included, there could be unforeseen impacts on the flow physics,
resulting in our conclusions potentially being misplaced due to exacerbation or even

damping of the flapping profile’s impact.

A user defined function (UDF) is implemented to deform the aerofoil profile to the
maximum camber profile determined in the CFD analysis. A series of linear
interpolation functions were created between each optimisation point and the
mathematical representation of this line created an equation for the relation of the
camber against azimuthal position. Linear interpolation was utilised instead of
complex polynomial curve fitting as curve fitting would be very computationally
complex and inefficient within the CFD process, significantly increasing the time
taken per timestep. Additionally, a curve would need to be recalculated for every
potential genotype, which would require an incredibly robust polynomial to ensure
that all possible phenotypes would not be overfitted, nor would they be under fitted.
This is an unnecessary complexity in the scheme of this thesis, but could be an
interesting point of research in future works. These lines can be used to interpolate
the camber at any specified azimuthal position, allowing for easy adaptation to other

turbine optimisation scenarios.

For example, if at 6 = 36° the camber value is given as 5%c, the UDF will calculate the
required deflection between the current timestep’s shape (based on the camber) and

the next timestep’s shape (based on the camber value at the next step). NACA
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equations for a 4-digit cambered aerofoil with a maximum camber position of
(NACAXX15) and calculate the local y and x values for the nodes as if the aerofoil
leading edge x value is 0, then translate them back into the global reference frame.
This is a necessary requirement to use the NACA 4-digit modelling method, as the
leading edge is defined as x=0. This is repeated for every node along the aerofoil blade
surface. A graphical representation of the parameters required to calculate the node

positions is seen in Figure 3-11.

position of max camber (p) L chord-p
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Figure 3-11: Visual representation of Deflection Model

The black aerofoil is the standard NACA0015 aerofoil profile, with the X and Y co-
ordinates at any point on the boundary described by the NACA 4-Series set of

equations described in Section 1.3.1.

To calculate the deflected aerofoil (the red aerofoil in Figure 3-11) the UDF will take
the X and Y coordinates of the current aerofoil, transpose them onto the local XY
frame for the NACA 4 Series (where the XY value at the leading edge would be x=0, y
= 0), calculate the required translation of every node on the aerofoil surface to the
next timestep position, add that vertical translation (calculated with Equations 3.21
and 3.22) to each node and transpose the aerofoil back to the correct azimuthal

position.

m=mg—Mg_4 3.21
_ (PE—x\*
—me ( pc ) x <pcC
dyC = i (x _ pf)z x > pC_' 3.22
—mc —
c—pcC
V(@) = Ve — dVe 3.23
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Where y.(¢) is the updated co-ordinate position of the node, dy, is the vertical
displacement of the node, m is the camber value, ¢ is the chord length, myis a

function of the azimuthal angle.

There is no change in the x-coordinate of each node, because whilst it is shown to
change in the original NACA 4-Series equations, the difference is negligible as we are
not calculating the deformation by shifting every node along the blade surface for the
curvature. For example, if you have a symmetrical aerofoil, the leading edge node
would be at exactly x=0, but when you take a positively cambered aerofoil, that exact
leading edge shifts slightly positively, however, the next node along the aerofoil
upper surface would be in approximately the same x position as the previously
leading edge. This very minor difference is negligible in the shape, but implementing
it into the UDF would increase complexity significantly and would affect skewness
and even generate negative cell volumes of the first wall elements on the aerofoil

surface.

Each optimised position i.e., ¢ = 36°, has a corresponding camber value associated,
as such, linear interpolation is used to calculate the instantaneous camber value
between each optimised position. For example, if at =0, m =36 and at ¢ =72°, m =

5, then to calculate the camber at 54°:

_ 5-0
T 72-36

mg * (¢ —36) + 0, for ¢ =54, my, =2.5 3.04

When this deflection model is applied within the UDF, some assumptions must be
taken. For example, as the linear interpolation points are only defined between 0°
and 360°, the instantaneous azimuthal angle must be translated into this region. In
order to implement this, a series of simple if statements are used i.e., if ts < 360,
completed revolutions count (rev) = 0, if 360 < ts < 720, rev = 1 etc. which is

implemented into Equation 3.25.

360
ts, 3.25

¢ = (ts — ts, *rev) *
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Where ts is the current timestep, ts, is the number of timesteps per rotation, rev is
the current turbine rotation number. ts, is calculated by simply defining how many
timesteps per degree of rotation are desired, i.e., 4 ts per degree of rotation or 0.25°

per timestep results in ts, = 1440.

The full UDF is provided in the thesis Appendix or available on the provided GitHub

repo [84], but a summary will be provided.

Firstly, in the actual ANSYS Fluent simulation, the user provides a series of input
parameters named camber_n, where n is any number up to the maximum
optimisation positions, with each value set as the percentage value of chord that the
profile camber should be at position ni.e. for NACA5315 at 36° camber_1 would be 5
for 10 optimisation points. For this thesis, n=24, as there was no benefit found to
doing more, although most applications of the GA only used n=11, but the
justification and study on this is explained in the subsequent chapters. The opt_count
parameter and p parameter are also set in Fluent to define the number of
optimisation positions (for calculating the angle between optimisation points) and
the position of maximum camber respectively. Then some parameters relevant to the
turbine are defined in the UDF, including the blade chord length, turbine radius, tip
speed ratio, windspeed and %c LE offset. These are specific to the actual CFD turbine
setup and co-ordinate frame so care should be taken to ensure these are accurate.
During the simulation, the angular rotation per timestep is calculated based on the
simulation timestep size and the turbine parameters. This is then used to calculate
the deflection magnitude (using equations ) by calculating the current azimuthal
angle, it's respective camber value, and the next timestep camber value and then
applying the difference to the blade shape. To apply the deformation, each timestep
the aerofoil is translated to the global co-ordinate center such that the LE is at (0,0)

using the matrix in Equation 3.26

xNACA] _ [cos(q_')) sin(¢) [xGlobal] 3.96

Ynaca —sin(¢) cos(¢)] Weiobal
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then the aerofoil is deformed, using equations 3.21-3.25, before being
translated/rotated back to the correct azimuthal position using the inverse of

equation 3.26, shown using equation 3.27.

[xGlobal] _ [C05(¢) —sin(¢) [XNACA] 3.27

YGlobal sin(¢) cos(¢) [Ynaca

3.4 Genetic Algorithm Optimiser

A genetic algorithm, also often referred to as an evolutionary algorithm, is a type of
sequential optimisation algorithm designed to evaluate and improve a specific
criterion. These are often found in computer science journals as sorting algorithms
[85], for example creating an optimal route, such as the travelling salesman problem
[86] or finding optimal designs. It is based on the Darwinian Evolution Theory [87],
primarily, the concept of natural selection[88, p. 444]. This theory states that more
organisms are created than can survive due to limited resources, therefore in a bid to
survive, variations in certain characteristics are developed in order to maximise the
chances of survival. These organisms breed with other surviving variations and cause
further variations, and sometimes random variations are seen, independent of
parents, and this is known as mutations. The best adapted individuals continue to
survive and thrive, whilst less-fit members of the population slowly get extinct, thus

the term coined “Survival of the fittest” [88, p. 444].

This concept is yet to be applied to dynamically controlled vertical axis wind turbines
(VAWTS) but would allow the prior research in dynamically controlled VAWTs to be
expanded on. It is achieved by using the Genetic Algorithm to find the optimal
aerofoil camber based on a selected maximum thickness of the aerofoil, within the
user defined bounds at pre-specified positions. The magnitude of these positions is
known as the azimuthal angle, calculated as the angle taken between the position
where the blade chord is parallel to the freestream velocity and its current position,
this value is signified by ¢ in Figure 1-5. These azimuthal positions are selected as an
array of equally spaced positions in the turbine’s rotation i.e., at 18°, 36° ... 306°, 324°

to create a wholistic view of the deformation profile. The equally spaced positions are

62



used to improve the overall turbine performance by feeding the optimised cambers
into the 2D VAWT Transient CFD simulation described in Chapter 3.3, to model the
dynamic deflection of the blade as the turbine rotates. It is possible for the user to use
as many optimisation positions as desired, at the cost of computational time. The
chosen azimuthal angles are then used to calculate the theoretical angle of attack (a)
on the turbine blade profile, based on the tip speed ratio (TSR) of the turbine and the
wind freestream velocity. The steps to optimise each azimuthal position are outlined

in the following sections.

3.4.1Flow chart and logic flow

The general logic flow for the genetic algorithm crossover can be seen in Figure 3-12.
It is relatively straight-forward in its methodology, with a multitude of logical
arguments to ensure a reliable, accurate, and repeatable optimisation procedure. It
starts with defining the algorithm constraints such as number of optimisation
positions, crossover functions and the constraints of the turbine such as the TSR,
blade chord and turbine radius. These parameters are then utilised to initialise the
first generation of genotypes. Each of these genotypes are evaluated in the chosen
tool (i.e. XFOIL, CFD or ANN) to calculate their torque, which is the fitness function
of choice for the genetic algorithm in this work. Other fitness functions could also be
easily implemented such as delaying the flow separation point on the aerofoil as
much as possible, or maybe reducing the wake vorticity as much as possible, but

these are outside the scope of this thesis.

The genotypes are sorted by best to worst to assign the parent genotypes for the next
generation before creating the offspring and mutated genotypes. A simple check is
undertaken to ensure that the genotypes are within the defined optimisation bounds,
and if not, some normalization is applied to set the value to the closest optimisation
bounds. Finally, after a number of generations, a convergence check is undertaken,
to see if there has been any change in torque coefficient. If there has been an increase
in torque over the convergence period, the simulation continues until there is no

longer any changes in tangential force coefficient.
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Figure 3-12: Example Logic Flowchart for the Genetic Algorithm
An example of the Genetic Algorithm’s logic flow in action is presented in Figure 3-13.
The initial generation is seen in the first row, with the optimal genotypes (camber
values) highlighted. The offspring aerofoils are presented in the second row. These
offspring include the parent genotypes, an offspring at the centre point of the

parents, £5/10% variations in camber magnitude, and a randomised genotype.
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Figure 3-13: Example of offspring genotype generation
The crossover variation is to enable searching around local optima to increase the
algorithm’s searching efficiency. The randomisation is crucial to enabling a large
breadth of search in the algorithm and prevents premature convergence on a local
optimum aerofoil, rather than the overall optimal aerofoil. The crossover functions
allow the algorithm to converge onto the optimal solution simultaneously, until the
convergence criteria are met. In this scenario the convergence criteria is defined as
either no change in the tangential force coefficient, as that is the value being
optimised, for the last twenty-five generations, or until an upper limit to the number
of generations is reached. Once this limit is reached, the algorithm is terminated, and
the latest Parent A phenotype is taken as the optimised value. The reasoning for
utilising twenty-five generations for the residual calculation is to ensure that there is
sufficient time for any sudden changes in the searching for optimal aerofoils, based
on the assumption that after 25 generations of no changes, the optimal would have
been found. The 25 generations value was chosen as it was found that any less
resulted in large variance in outputs, when the GA was repeated at certain azimuthal
positions i.e., optimal camber at 36° varied across three runs (7.8%c, 9.8%c, 6.3%c).
Any larger values resulted in excessive algorithm runtime without any
improvements, the optimisation would plateau, and be considered as an optimal

result, wasting computational resources and time for no further benefit.
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3.4.2 Tuning the Genetic Algorithm

It should be noted, that based on Equation 1.19, the lift would not contribute to the
tangential force generation at azimuthal angles of 0°, 180° and 360°, based on the
reference frame. Therefore, the only way to maximise the tangential force at these
angles, is to minimise the drag contribution. As the induced drag is increased from
higher lifting profiles, such as a cambered profile, the conclusion is that a simple
symmetrical aerofoil would be the optimal aerofoil at 8 = 0°, 180° and 360°. Other
parameters are tuned for the GA, including the chance of having mutations occur,
the bounds of the algorithm and the mutation magnitudes. There are arrays of studies
on the decision of these parameters within this thesis, and the complex factors that

can affect these decisions.
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4 NACA Aerofoil Camber Optimisation of a
VAWT Blade Deformation Profile at
Predefined Angles of Attack using XFOIL

4.1 Introduction

This chapter will outline the investigation into the benefits, drawbacks and
limitations of utilising a genetic algorithm to optimise a transiently deforming blade
profile for the VAWT design described in Section 3.2. The study's primary objective
is to optimise the performance of the VAWT blade aerofoil profile through
computationally efficient and inexpensive methods. XFOIL [89] is utilised as a rapid
analysis tool to calculate and evaluate the performance of various genotypes, XFOIL
is used to predict each potential aerofoil’s tangential force coefficient within the
genetic algorithm optimisation process with minimal computational cost. Whilst
XFOIL is well established as an aerofoil analysis tool below a Mach number of 0.4 and
in the linear angle of attack range [90], it has difficulties capturing viscous effects
such as flow separation at high angles of attack and transitional flow. A commercial
Computational Fluid Dynamics analysis software is therefore utilised to facilitate a
more accurate evaluation of the optimised turbine shape profile in situ of a rotating,
transient VAWT simulation. This chapter details the analysis between these methods,
considering the reliability of XFOIL’s predictions and provides recommendations on

the utilization of XFOIL in future work.
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ii.

iii.

iv.

4.1.1Xfoil Specific Genetic Algorithm Implementation

To evaluate this theory, it is crucial to understand the detailed workings of a GA and
its typical components. All files created as a result of employing this methodology
can be found on GitHub at [91]. Firstly, the implementation of the GA in XFOIL is
discussed, followed by some of the modifications made to the GA workflow which are
unique to it’s implementation in XFOIL including geometry generation, turbine

conditions and limitations.

4.1.2 XFOIL Genetic Algorithm Workflow

XFoil was used as the aerofoil performance calculation tool for the GA. It was chosen
due to its robust accuracy and flow analysis performance as shown by Morgado et al.
[92] and it has a relatively inexpensive overhead, allowing for the GA to be run with a
fast turnaround. Additionally, due to its command line-based process, it is possible
to implement within batch scripts to allow for an automated and input free

optimisation process.
To create the GA, a series of MATLAB functions are required, and these include:

A MATLAB function for creating a .dat file containing the XY coordinates of
vertices, depicting the aerofoil profile to be assessed, defined using the NACA 4-
Series profile equations (discussed earlier in Section 1.3.1).

A MATLAB function for inputting the filename for the respective aerofoil into a
script that is readable by Xfoil, along with defining the simulation parameters
such as the Mach and Reynolds number.

A MATLAB function that parses the output data from Xfoil and imports it into a
MATLAB session for data analysis and recombination.

A MATLAB function for the mutation/crossover of parent genotypes to generate

offspring.

Function (i) would use the equations detailed in the thesis methodology for a NACA

4-series aerofoil to calculate the co-ordinates of the aerofoil surface. XFOIL limits the
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number of points per curve file to 494, so that was selected as the number of points
to span the aerofoil chord, such that if the chord is a unit length (1m), each point
would have an x-value in the NACA frame; with x=0 at the leading edge and x=1 at the
trailing edge, increasing in value by 1/494 for each successive position i.e. If one was
to calculate the co-ordinate of the 5% point, the value for x that is submitted into the

respective NACA equations would be 5/494.

Function (ii) acts as a setup script for XFOIL, it sets the angle of attack, Mach number,
Reynolds number using Equations 1.18, 1.20 and 1.21 respectively for each
optimisation position. The function then proceeds to import the previously generated

aerofoil co-ordinates file, and instructs XFOIL to run the solution.

Function (iii) uses regular expressions to read the output file from XFOIL (containing
the performance polars i.e. lift and drag coefficient) and the simulation’s operating
conditions as specified in Function (ii). The complex regular expressions allow for
the imported text file to be turned into a tabulated data set and then manipulated as
needed to be feed into the optimisation algorithm or utilised for figure creation, the
full script outlines the expressions and tabulation procedure in the code repository

[91].

Function (iv) is the most crucial function for the genetic algorithm setup. This
function takes the working dataset (containing the tangential force coefficients
calculated using Equation 1.19 and camber of each generation’s phenotypes) and

sorts them by highest to lowest tangential force coefficient.

This sorted array is used to create the offspring candidate of the next generation from
the two current most optimal candidate aerofoils, and mutations and variations of the
offspring are utilised to create a new array of optimal candidates for testing. This
function also evaluates convergence of the algorithm to establish the point at which

the optimal candidate is found and the optimisation process can be terminated.

These functions are combined into one script to ensure consistency, and a “for” loop
is iterated from the first non-zero angle of attack to the (n — 1) term. In this study,

the total number of optimised positions (n) is varied, but if the selected number of
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points was 10, then the profile would be optimised every 36° of azimuthal rotation.
Azimuthal angles multiples of 180° are not optimised due to the assumptions
discussed in Section 0, where at 0°, 180° and 360° the camber would be negatively
dominated by drag, so it is not necessary to run the algorithm at these angles of

attack.

It was found that MATLAB would develop what is assumed to be a memory leak and
would often stop the loop after an undetermined number of generations at an
arbitrary number of angles of attack. This issue was attempted to be resolved in a
multitude of ways, including running on multiple computers and running for less
generations before restarting the computer. It was ultimately found that the optimal
method was to create a function within the Genetic Algorithm script to run the
optimisation process with ease and successfully. This allowed for the memory to be
cleared and reset between each optimisation generation, thus preventing data

conflicts and the resultant corruption.

For the sake of efficiency, it is crucial to automate the process of running this
function in parallel. Due to the development environment being based on Windows
10, it was found that creating Windows Batch Files would enable the user to easily
run separate instances of the function at the same time in the command terminal,
and these scripts could be easily implemented on alternative operating systems such

as Linux. These batch files required a folder structure as follows:
Main Source Folder -> Batch_gen.m + Output Data Folder

When one runs the batch_gen.m function with the required input arguments, it will
create a series of batch files that run the GA function, alongside a single batch file
called Parallel.bat. This parallel file sets the affinity of the optimisation process to
ensure each process has sufficient computational power, rather than all the
processes potentially sharing the compute power, reducing the chances of memory

and file corruption.

The Parallel.bat GA script will therefore run at various AoA simultaneously, and once

the desired convergence criteria (in this study the peak moment must not have
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changed by more than 1% in the previous 25 generations) is met, the data and
variables will be saved in an appropriately named MATLAB file, and images of the

GA process is saved.

4.1.3 Genetic Algorithm Modifications in XFOIL

A handful of features of the Genetic Algorithm workflow are discussed in Section 3.4
have been modified specifically for suitability with XFOIL, due to the specific
configuration and requirements of using XFOIL. One of the most important
variations is the number of generations used for the convergence checking, which
required extensive generations when using XFOIL. The algorithm was tested with one
generation, 10 generations and 25 generations as the sampling count. The turbine
operating conditions used to evaluate the different convergence checks matched the
turbine design discussed in Section 3.2, namely a two-bladed turbine with a radius of
0.85m, utilising a NACA0015 blade profile with a chord length of 0.225m, wind speed
of 7 m/s, and a tip speed ratio of 2.29. These values are chosen as they are the
characteristics of the turbine design and operating conditions used by many
established and impactful studies [23], [80], [93], [94], and is, therefore, a well-
understood turbine that will allow for deep insights into the applicability,
performance and reliability of the Genetic Algorithm optimised turbine blade profile
technique. These tests were run three times for each configuration, namely Test A,
Test B and Test C as an example to ensure consistency and reliability in the genetic

algorithm optimisation workflow.

4.1.3.1 XFOIL Normalisation Effect

To select the most appropriate and efficient method of calculating aerofoil
characteristics such as lift, drag, and, as a result, the tangential force coefficient, it is
important to understand how XFOIL interprets the geometrical inputs created in the
genotype candidate creation due to the non-unit-length chord of the turbine blade

profile.
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According to the XFOIL User Guide, the lift coefficient is not normalised with the
chord length [89]. There is a weak Reynolds number effect on the lift due to the chord
length of the turbine, but the chord length significantly impacts the drag due to its
coupling with the chord Reynolds number [89]. Extensive studies have shown that
increasing Reynolds number should reduce drag coefficient and increase lift
coefficient for an aerofoil [95], [96]. As a result, when instructing XFOIL to import an
aerofoil geometry file (.dat file), if the chord length is less than a unit metre, XFOIL
will largely underpredict the lift coefficient and over-predict the drag [97]. The user
guide states that a solution to this issue is to increase the Reynolds number
proportionally with a reduction in the chord length. According to the user guide
theory, this should weakly increase the lift coefficient and decrease the drag
coefficient in line with what would be expected of a unit-length aerofoil. The guide
also mentions that enabling normalisation in the XFOIL menu will scale the imported
aerofoil up to unit chord length, and therefore, the imported aerofoil lift and drag
properties of the aerofoil should match that of a unit chord aerofoil if it were

generated within XFOIL’s geometry generation.

To ensure the XFOIL user guide’s accuracy, a series of solution settings combinations
were tested for a NACA5315 aerofoil at the equivalent flow conditions of the VAWT
described in Section 3.2 at an azimuthal angle of 36°. This aerofoil was selected due
to XFOIL’s geometry generation methods; namely that when creating a NACA aerofoil
using the built-in tools, an integer value is required to be provided for all 4 sections
of the NACA 4-Series code i.e. you cannot request a camber of 4.335%c, it must be 4%
or 5%. The 15%c thickness was chosen as that is the same thickness as the original
turbine and is used for all other sections within the thesis (ensuring consistent
solidity, as that can alter the optimal tip-speed ratio otherwise), and the 30%c position
of maximum camber was selected as it is simply a commonly selected option for most
examples. The 36° azimuthal position was implemented as it is in the linear region of
the aerofoil’s angle of attack - Cl range still, ensuring that the aerofoil would not be
stalled, ensuring that any conclusions drawn are solely based on XFOIL setup

parameters, rather than differences in XFOIL’s simulation abilities.
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The configurations included an increased chord length aerofoil (Im rather than

0.225m), normalisation enabled in the XFOIL menus, and scaling the Reynolds

number appropriately according to the .dat chord length. These are all recommended

techniques for normalising non-chord length aerofoils, either in common knowledge

or provided in the XFOIL user manual. The five test scenarios were as follows:

1.
2.

Original 0.225m chord length aerofoil geometry file

Original 0.225m chord length aerofoil geometry file with a Reynold number
set using a chord length of 1/0.225

Original 0.225m chord length aerofoil geometry file with normalisation
enabled in the XFOIL menus

Original 0.225m chord length aerofoil geometry file with normalisation
enabled in the XFOIL menus and the increased Reynolds number

Generating the aerofoil geometry within XFOIL

The MATLAB geometry and XFOIL profile were both NACA5315 aerofoils, as this

relatively high camber design will accentuate any potential method irregularities,

with the base flow conditions listed in Table 4-1.

Case Type: 1 2 3 4 5
Angle of Attack (°) 10.746
Mach Number 0.0474
Reynolds Number in

2.34 e+5 1.040 e+6 2.34 et+5 1.040 e+6 2.34 et+5
XFOIL
Effective Chord
Length in Geometry 0.225 4.44 0.225 4.44 1
(m)
XFOIL
No No Yes Yes No
Normalisation?

Table 4-1: Flow Conditions for different XFOIL setup test scenarios
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The resultant lift and drag coefficients for the NACAS5315 are shown in Figure 4-1. The
original workflow (black bar) disagrees significantly with the aerofoil generated by
XFOIL’s input functions. This signifies that the imported .dat file with a chord length
of 0.225m significantly underpredicts the lift coefficient and drastically over-predicts
the drag coefficient, this is suspected to be due to the change in profile drag from the
larger chord lengths, additionally, the local Reynolds number would vary altering the
transition length on the aerofoil surface. If the Reynolds number is scaled
accordingly by a factor of ¢, then, according to the XFOIL documentation [98], this
should accurately report the lift and drag polar, but it is clear this is not the case.
Utilising XFOIL’s built-in normalisation command provides significantly improved
results. The lift coefficient for the normalised .dat geometry is slightly below the
NACAS5315 generated in XFOIL, as is the case for the drag coefficient. Again,
increasing the Reynolds number proportionally shows better agreement with the
XFOIL lift coefficient but severely underpredicts the drag coefficient. It is therefore
concluded that importing the true-to-scale (c = 0.225m) file generated from MATLAB
and then applying normalisation within XFOIL is the most suitable method, as the
lift-to-drag ratio (which dictates the tangential force coefficient) is closest to that of
the XFOIL generated profile. Using the XFOIL generated profile as the baseline is a
reliable and safe choice, as it is a well-established and robust program that has been
extensively utilised in the literature for aerofoil lift and drag evaluation [99], [100],

[101] and is well validated [92].
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Figure 4-1: Comparison of NACA5315 Aerodynamic Coefficients for Different XFOIL Setup
Methods

To further ensure the validity of the XFOIL methodology for implementing the GA
optimisation, the most robust geometry method from the XFOIL setup studies
(MATLAB Geometry generation with normalisation enabled in XFOIL) is compared
to a CFD simulation of a NACA2412 blade as completed by Hetyei et al. [102]. The
study was using the conditions of 0° and 10° angle of attack for a free stream velocity
of 42.89 m/s, for air with a density of 1.2041 kg/m’ and a kinematic viscosity of
1.511083 x 107> m?/s. The Reynolds number provided was 2.85 X 10°, meaning the
chord length is 1m. This was implemented into the MATLAB geometry generator and
then the MATLAB XFOIL interface detailed in Section 4.1.1. The resultant values from
XFOIL and the literature are presented in Table 4-2.
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Lift Coefficient at 0° AoA Lift Coefficient at 10° AoA

Literature [102](CFD) 0.23217 1.253836
XFOIL Method (This work) 0.2479 1.3195
Percentage Difference 6.78% 5.23%

Table 4-2: Lift Coefficient comparison between XFOIL and published literature [102]

Whilst the difference between XFOIL and the CFD method is not negligible, it is
somewhat expected due to XFOIL’s design of a panel method, which simplifies
complex flow phenomena such as turbulence, laminar to turbulent transition and
separation. These simplified models will introduce some assumptions which can
result in overpredicting lift coefficients, but the results are considered acceptable for
the significant increase in computational speed, which is ideal for this preliminary

GA camber profile optimisation study.

4.1.3.2 Limitations with XFOIL based optimisation

One of the disadvantages of utilising XFOIL as the aerofoil performance analysis tool
is the difficulty in the convergence when separated flows are present. This is seen in
lower TSR turbines (TSR < 3), where the theoretical AoA is often within the deep stall
region [80]. The solution would be to apply this methodology to higher TSR turbines,
where the effective AoA is often lower, but that severely limits the overall
applicability of XFOIL. Some specialised techniques to aid the method's reliability
include ‘initialising’ the solution by solving at an angle of attack of 1° before
calculating the lift and drag coefficients at the target angle of attack and setting the
iteration count to 1000. 1000 iterations is chosen as it allows for sufficient opportunity
for the solution to converge, but effectively limits the timeout to ~15 seconds. Finally,
if XFOIL can still not get the aerofoil performance at the desired flow conditions, the
corresponding torque value is set to -9999 in MATLAB. This effectively creates NULL
values for the problematic phenotypes, removing it from the pool of potential

candidates. This is implemented as the phenotype is clearly unsuitable for use in the
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turbine, and should therefore not be considered, as XFOIL is unable to converge as a

result of significant flow separation.

Due to the lack of transient effects in the instantaneous XFOIL optimisation
technique, it is crucial to verify and validate the XFOIL-based optimised camber
profile by using a CFD solver, such as ANSYS Fluent. CFD is used instead of
experimental data due to the increased time and monetary requirements of creating
a physical flapping turbine model compared to CFD, and it allows for substantial
flexibility in the optimisation, such as testing alternative positions of maximum

camber.

4.1.3.3 Turbine Conditions

The GA is applied to the turbine investigated by El Sakka et al. [80] and Li et al.[81],
which have been experimentally evaluated at a series of TSRs. The turbine

parameters are presented in Table 4-3.

Parameter | Aerofoil Aerofoil Chord Turbine Setting
Profile Thickness (m) Length (m) | Radius (m) Angle (°)
Value NACAO0015 0.035 0.225 0.85 6

Table 4-3: Turbine Parameters

The setting angle is defined as the position that the blade is at in relation to the 0
azimuthal angle. For reference, a 0° setting angle would correspond to the chord
being parallel to the freestream flow at ¢ (Azimuthal Angle) = 0°, so a 6° setting angle
would result in rotating the blade leading edge outwards (away from the turbine
centre). For a graphical representation, please refer back to Section 0. These turbine
parameters are input to the XFOIL input and aerofoil profile generation functions to
define the angle of attack, Reynolds Number, Mach number, and aerofoil shape,

based on the formulae previously discussed.
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4.2 XFOIL-Based Genetic Algorithm Results

With the turbine parameters described in Section 4.1.3.3, the GA is run at a TSR of
2.29 to replicate the flow physics best and compare it with the validated CFD case
found in Section 3.2. An array of different variations of configurations for the GA are
tested, including using a turbine setting angle of 6° as the validation CFD case uses
and tested at a 0° setting angle. Furthermore, these setting angle cases are tested for
both an original geometry coordinates definition with the turbine chord length
(0.225m) and with aerofoil normalisation enabled within XFOIL to understand the
impact of this setting and deciding which is most appropriate, by comparing with
generating the aerofoil profile within XFOIL’s internal design scheme. Additionally,
alternative angle of attack formulations including an induced velocity technique and
a more complex CFD based profile by Elsakka et al. are detailed and used to
approximate and apply the genetic algorithm to a more realistic angle of attack. The
standard angle of attack formulation is based on the theoretical angle of attack
calculated using the formulae described in Section 0, this is not the case in the turbine
scenario, as the energy extraction in the upstream rotation results in a lower
freestream velocity impacting the downstream section, combined with the wake
impact on flow vorticity and direction. Accurately implementing the changes in the
flow vorticity, turbulence, pressure, etc. from the upstream optimised blade’s wake
is outside the scope of this work but would be an interesting avenue for exploration

in future works.

4.2.1 Optimisation Limits Investigation (Setting Angle = 6°)

The turbine parameters state a setting angle of 6°, which was incorporated in the GA
angle of attack definition by simply adding the setting angle to the calculated
theoretical angle of attack (see Section 0 for details on how this angle is calculated).
This was used to establish some of the GA bounds for later investigations, such as
whether a 0° setting angle would increase the overall turbine performance and what

would be appropriate bounds for the optimisation search.
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The initial test of the Genetic Algorithm was run for both a 0° and 6° setting angle to
investigate if a +5%c camber magnitude bound was appropriate. This bound was
tested to limit the range of motion of the blade flapping, which can assist in reducing
the power consumption of the motors driving said motion and improve the overall
turbine performance and efficiency in situ. After the initial testing, it was found that
for the 6° setting angle, the GA would hit the predefined camber constraints when set
to a £5%c limit and, as a result, would reduce the overall performance of the GA.
Therefore, it was also evaluated with a camber limit of +10%c, this was found to
validate the hypothesis of the GA trying to exceed the predefined bounds. If we take
the optimisation at ¢ = 108° as an example, the +5%c limit is chosen as the optimised
camber, but when allowed to explore values of +10%c, the found optimal is % 10%c.
The optimisation positions with a camber value greater than +5%c also resulted in a

larger tangential force coefficient.

These points selected are placed every 36° of rotation and are chosen as they are
evenly dispersed through the entire blade’s rotation, whilst maintaining enough
points to reflect the primary points of interest in the rotation such as at 108° which
was approximately the ximum torque generation, but also covers other points of
interest such as around the 180° position. If this number were to be increased,
computationally cost will increase proportionally, but it might not provide further
overall benefit to the turbine’s power generation ability. Linear interpolation is
applied between the optimised positions to provide a gradual deformation between
each camber magnitude. The linear interpolation was found to be appropriate as it
provides the most flexibility in implementing the deformation profile in CFD, but also
allows for the camber profile at the optimised positions to be exactly as intended; if
some form of polynomial curve fitting were applied (instead of linear interpolation)
to have a continuous equation describing the deformation, the positions of large
camber increase or decrease rate would overshoot, resulting in large camber

magnitudes than the GA found, causing a reduction in relative performance.

Figure 4-2 shows the tangential force coefficient for the NACA0015, +5%c

optimisation bounds and +10%c optimisation bound at the optimised azimuthal
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positions at a 6° blade setting angle. The overall average tangential force coefficient
for the GA Optimised deformation profile is significantly better than that of the
symmetric NACA0015 aerofoil at all optimised positions. This conclusion is valid for
both the +5%c and +10%c limits. This is a result of not only the increased lift to drag
ratio of the cambered aerofoils in comparison to the NACA0015 aerofoil, but further
emphasised by the fact that only the optimised profiles were able to report the torque
values. By not reporting torque values (especially emphasised at 108° azimuth), it
implies that XFOIL is unable to converge the simulation, which is a result of
significant separation of the aerofoil. This in turn implies that the cambered aerofoil
has significantly less separation than the NACA0015 at some of the optimisation
positions such as 72°, 108°, 144° and 252°. The positive tangential force generation at
0°, 180° and 360° is a result of the 6° setting angle, but for the 0° blade setting angle it
is expected to have no tangential force generation (as a symmetric aerofoil produces

no lift at 0° angle of attack).

Comparison of Tangential Force Coefficient for 6 degree Setting Angle
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Figure 4-2: Tangential Force Coefficient for 6 degree setting angle with NACA0015, +5%c
Optimisation Bounds and +10%c Optimisation Bounds profiles
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Figure 4-3 shows the aerofoil maximum camber magnitude at each optimised
position for the +5%c and +10%c optimisation bounds. Looking at the 72° and 252°
optimised camber positions shows that both optimised camber positions have less
separation than the symmetric NACA0015 aerofoil. Interestingly, the 144° position
only has a converged aerofoil for the £10%c bounds, which suggests that one cause
of reduced separation could be the dipping effect of the leading edge to the incoming
flow, as a 5%c bound was insufficiently cambered to improve the lift enough to offset
the increase in profile drag. It is expected that the optimisation positions that
correlate with a lower angle of attack would have the highest camber magnitude, as
these positions are less susceptible to the aerofoil stalling. This also explains why the
5%c bound was hit for all optimisations in the downstream rotation and in the
upstream region, where the angle of attack was significantly reduced enough due to

the setting angle, as the aerofoil could produce a better lift to drag ratio.

Comparison of Camber for 6 degree Setting Angle
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Figure 4-3: Aerofoil maximum camber value for 6 degree setting angle with +5%c Optimisation
Bounds and +10%c Optimisation Bounds profiles

When tested at a setting angle of 6° as seen in Li et al. [81], the tangential force
coefficient is lower at the downstream azimuthal positions (¢ > 180°), as a result of

the lower angle of attack experienced by the blade, due to the positive setting angle
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reducing the blade angle of attack magnitude and the effects of the blade-wake
interaction. This will result in uneven turbine loading, which is one of the issues
plaguing VAWTSs, and this work reduces, by significantly improving the downstream
tangential force generation and reducing overall tangential force variance in the
turbine rotation. Therefore, it is decided that the GA is best suited to a zero-degree
setting angle to alleviate this uneven weighting of the tangential force contribution
and for the simplicity of application when incorporated into the rotating turbine CFD
model in ANSYS Fluent. In addition, it should be noted that due to XFOIL’s solution
methods, it struggles in the stall scenarios, as mentioned in Section 4.1.3.1. This
resulted in some optimisation positions not completing as the Genetic Algorithm
process would crash due to XFOIL's inability to complete lift and drag evaluations.
An example of such is when the blade had a 6° setting angle, with the peak angle of
attack = 31.4° at ¢ = 108°, evidenced by the Tangential Force Coefficient being zero at
these positions. This is an inherent limitation of XFOIL for the high angle of attack
scenarios, the only method that would circumvent the issue would be to test at
significantly higher tip speed ratios, as the angle of attack would be sufficiently
reduced to ensure XFOIL is able to converge. Alternatively, these positions, wherein
the GA is unable to converge, could be ignored for the camber profile creation and
instead the camber value could be interpolated between the last and next optimised
position. Taking the 108° azimuthal position example again, that would suggest that
the camber value would be ~9%c, by interpolating between the ~9%c camber
optimum found at 72° and the same at 144°. This technique was employed for
calculating the mean tangential force coefficients to alleviate the NACA0015’s

difficulty to converge, which would heavily skew the statistics.

Table 4-4 contains the period averaged tangential force coefficient for the standard
NACAO0015 aerofoil compared to the GA optimised camber profile for the +5%c and

+10%c camber bounds.

To calculate the mean tangential force coefficient value for each dataset, the
Equation 4.1 is used to calculate and to calculate the relative time averaged

performance, Equation 4.2 is used. C;; is the instantaneous torque coefficient, n is
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the number of optimised / tested positions and C, ., is the relative tangential force

coefficient and C; yaca0015 i the average tangential force coefficient of the NACA0015.

_ Yr.oc, 4.1
Ct — 11(1 t,i
- C, 4.2
trel = 7
" Cynacaoois

The relative difference to the standard aerofoil is provided to quantify the significant
improvement in the turbine performance. Both optimised profiles have significantly
higher average tangential force coefficients than the NACA0015 profile, with the
+10%c case performing considerably better than the +5%c case. This is a result of two
factors; a “missing” optimisation point at 144° and secondly, the camber consistently
being limited to the maximum bounds at all the optimised positions. The +5%c case
not converging at an azimuthal angle of 144° is hypothesised to be the result of the
leading edge not being drooped enough to accommodate the high angle of attack
(21.6475°) at that optimisation position. The impact of regularly reaching the
optimisation bounds is that the tangential force coefficient is also stunted, shown by

the larger magnitude of the tangential force coefficient seen in Figure 4-2.

Aerofoil Average Tangential force | Relative Time Averaged
Coefficient Performance (%)

NACA0015 0.1239625 100

GA (£5 %c) 0.24954444444444446 201.3

GA (+10 %c) 0.34784000000000004 280.6

Table 4-4: Tangential Force Coefficient Comparison for different Genetic Algorithm Bounds with a
6° Blade Setting Angle
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4.2.2 Setting Angle Comparisons

The original turbine utilised a setting angle of 6°. This is selected as it “corresponds
to the maximum power coefficient” [81] for the turbine being optimised, assuming
that it increases the average power coefficient, but without any details for this
selection reasoning; it is difficult to infer whether this premise is accurate. Figure 4-4
shows the angle of attack against the azimuthal angle for a turbine operating at a tip
speed ratio of 2.29. The 0° azimuthal position is given as the point at the top of the
turbine’s rotation, where the wind travels parallel to the blade’s chord, with the
leading edge upstream of the trailing edge. The 0° setting angle shows a perfectly
symmetrical distribution about the azimuthal angle of 180°, where the angle of attack
flips due to the turbine blade rotating in the downstream period of rotation. The angle
of attack of 6° setting angle is offset vertically by 6°, resulting in a higher peak angle
of attack, but also a higher minimum angle of attack. In theory, this practice can help
to improve the power generation in the downstream period of rotation due to less

time spent in the regions of significant static stall of the blade [103].

Comparison of Camber for 6 degree Setting Angle
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Figure 4-4: Angle of attack Comparison for a 0° and 6° setting angle of the turbine blade.
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4.2.30° Blade Setting Angle

Running the GA with a 0° setting angle gives a better understanding of the GA
methodology and applicability. Figure 4-5 shows the comparison of the tangential
force coefficient for the NACA0015 and +5%c and +10%c optimisation bounds, with a

setting angle of 0°

Figure 4-5 shows the results of the tangential force coefficient from the optimisation
process compared to the standard NACA0015 aerofoil, with a 0° setting angle. One of
the key takeaways is that the NACA0015 is completely stalled at ¢ = 108°, 144°, 216°
and 252°, shown by the 0 tangential force coefficient as XFOIL is unable to converge
the solution. In contrast, the optimised shapes are not only able to have their
performance evaluated but also show significant improvements overall. Every
optimisation position is higher than the symmetric NACA0015, particularly for the
+10%c bounds. The symmetric profile is expected, as the use of the theoretical angle
of attack means that the angle magnitude is symmetric at 180°, as seen in Figure 1-6

in Section 1.
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Comparison of Tangential Force Coefficient for 0 degree Setting Angle
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Figure 4-5: Tangential Force Coefficient Comparison for NACA0015, +5%c

Optimisation Bounds and +10%c Optimisation Bounds profiles

The camber plot in Figure 4-6 for the £5%c and +10%c optimisation also suggests that
the optimisation typically finds the highest possible camber that is not fully stalled at
each angle of attack, and the magnitude of this camber reduces after the peak angle
of attack is reached. It is also clear that the +5%c bounds do not provide a large
enough searching space for the optimisation algorithm, with all the optimisation

positions found to be greater when + 10%c bounds are tested.
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Comparison of Camber for 0 degree Setting Angle
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Figure 4-6: Camber magnitude at the optimised positions for different optimisation bounds of
+5%c and +10%c

Table 4-5 further demonstrates the strength of the GA optimisation procedure, with
the GA process showing significant improvements over the NACA0015 based on the

averaging of the instantaneous XFOIL results.

Aerofoil Average Tangential force | Relative Time Averaged
Coefficient Performance (%)

NACA0015 0.0747 100.00

GA (5 %c) 0.2788 372.23

GA (10 %c) 0.3431 459.3

Table 4-5: Mean Tangential Force Coefficient for O degree setting angle comparison for +5%c
Optimisation Bounds and +10%c Optimisation Bounds profiles
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4.2.4 Convergence Conditions

Figure 4-7 shows the variation in instantaneous tangential force coefficient of the
basic GA configuration, taken from XFOIL after the GA optimisation procedure at the
6™ optimisation position, which demonstrates the variation within each convergence
condition across the three runs. The 6™ position was selected as it was often found to
be the most problematic optimisation position to optimise, and would provide the
most hardened conclusions as a result. This position was at an azimuthal angle of 144°
or in the case of this turbine the angle of attack was 21.65° with a Reynolds number
of 169845 and a Mach number of 0.032508. The conditions were altered by changing
the number of generations that the convergence was checked over, with 3 values
tested; n-1, n-10 and n-25, such that n is the current generation count. For example,
n-1 would imply that if the optimal camber of the second generation is less than 1%
larger than the first generation’s optimal camber profile, the optimisation would be
considered converged and would terminate. n-25 would comparatively start

comparing between the 1 generation and 26" generation.

Figure 4-8 shows the same variations but on a reduced scale, allowing for a more in
depth comparison. For the single generation of convergence checking method, it was
found that the final camber value was different for one of the tests with one
generation of convergence checking. However, the resultant torque value is much
lower than the 10 and 25-generation cases, validating the hypothesis that insufficient
generations to converge results in a non-global optimised value for camber. The ten
generations case had a different conclusion, with each test providing a different
torque, showing that the optimisation proves still insufficient generations for
optimisation. The 25 generations case had the smallest spread in the torque
generation, and the highest overall torque produced, so is clearly the most suitable
convergence method for further tests. It is not necessary to run more convergence
periods than 25, as the 25 generation case consistently converged, without the need

for further generations.
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Grouped Bar Chart for Different Generations and Tests
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Figure 4-7: Variation in optimised tangential force coefficient for different convergence conditionsp
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Figure 4-8: Reduced scale view of variation in optimised Tangential Force Coefficient for different
convergence conditions.
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Figure 4-9 is a plot showing the progression and gradual increase in torque as the
optimisation generation count increases. During the period of generation from 15-25,
the torque is constant but then increases slightly further thereafter, emphasising that
a convergence range of 10 generations is insufficient and would lead to the premature

conclusion of the optimisation process.
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Figure 4-9: Optimisation Convergence Plot for 1, 10 and 25 Convergence Generations.

It is crucial to understand that the setup of the genetic algorithm is not the cause for
the variation in optimal camber for each test. This is purely a result of the XFOIL and
MATLAB interface creating memory leaks and memory corruption within the testing
environment, resulting in very minor variations in the optimal camber. For example,
when running the genetic algorithm optimisation process, one of the optimal camber

values was found to be 7.8489 %c. Repeating the XFOIL run for this case by simply
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specifying the input camber and allowing the scripts to generate an identical set of
input files for XFOIL meant that the reported torque in the GA (0.4613) was not the
same as that in the standalone XFOIL run (0.4598). As this minor error is consistent
throughout the optimisation process, every value would be comparably offset and,
can therefore still produce reliable insights into the validity of applying the genetic

algorithm optimisation of a deforming VAWT blade camber profile.

The other modification tested in the XFOIL-based genetic algorithm was in the actual
convergence condition itself. The difference across the sample range was considered
converged when the difference in tangential force coefficient was less than 0.01. This
value was selected as it is small enough to ensure the global optima is found, but
coarse enough to avoid diminishing returns and excessive generations. If the value
for convergence is too small, it could also cause the algorithm to run continuously,
as the convergence criteria value (tangential force coefficient difference) could
simply be smaller than the variance in the calculated tangential force coefficient.
This could also be the case if using a percentage-based convergence criteria, as the
criteria could be reached prematurely unless it is set to be very small. For example,
the calculated tangential force coefficient is calculated to 6 decimal places (due to the
rounding for the lift and drag coefficients reported from XFOIL), so if one were to set
the difference to 0.000001, then the likelihood of convergence is significantly

reduced.

4.2.5 Sampling Count Analysis

To understand if the GA is properly optimising the overall camber profile, it is
important to test at an increased number of sampling points, as it will allow us to
infer if the reduced sampling count significantly hampers the potential performance
gains. Figure 4-10 shows the camber of the optimisation procedure for 10
optimisation points in the turbine rotation (every 36°) or 20 optimisation points (every
18°). Running additional sampling points shows that the optimisation count makes a
negligible impact on the overall camber profile, with the only significant difference

being how quickly the optimal camber profile reaches 10%c. As a result, it is decided
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that 10 optimisation points is sufficient for generating the camber deformation
profile, due to it’s very similar performance to the 20 point optimisation, but with half

of the computational resource requirements.

Comparison of Camber for Optimisation Count Variation
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Figure 4-10: Comparison for number of Sampling points between every 36° and every 18° of
azimuthal rotation

4.2.6 Reynolds Number Sensitivity

It is crucial to understand how the GA Optimised VAWT blade profile might work in
different Reynolds number ranges, as it allows for the method to be applied to the
same turbine, but placed in various regions of differing wind conditions. Considering
Equation 4.3) below, it is evident that the Reynold number is directly proportional to
fluid density (p), speed (U) and characteristic length (1), and inversely proportional to
the fluid’s viscosity (p).
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As the aim is to demonstrate the optimisation’s applicability at different Reynold’s
numbers, any of these values can be changed to alter the testing Reynolds number,
but changing density and viscosity is not realistic in situ as it would imply either
changing the air temperature/pressure significantly or changing the fluid altogether,
which would result in an unfair comparison to the baseline VAWT as the intention is.
This leads to changing the characteristic length or fluid velocity, and as the
characteristic length is the turbine blade’s chord length, altering this would change
the solidity of the turbine, making it an unfair comparison. The turbine solidity can

be calculated using Equation 4.4); where N is the number of turbine blades, c is the

Re=PU*! 4.3
U
blade chord length and R is the turbine radius.
oc=N=x*xc*R 4.4

As aresult, the fluid velocity is the most sensible parameter to change, but it is crucial
to maintain the same TSR to have the same blade angle of attack distribution, so the
windspeed and turbine rotational velocity are both increased to maintain TSR, but
change the tangential velocity that the turbine blade would experience. The
rotational velocity and wind speed are intrinsically coupled because of a fixed TSR,
so for the sake of simplicity, the input that is changed between the tests is the wind

speed.

To evaluate how the Reynolds number impacts the performance gains by the GA, the
method was tested at two alternative inlet velocities of 5 and 9 ms™, with the tip speed
ratio kept constant at 2.29. These values were selected, as they allow for an even
comparison of the method applied in a high and low windspeed region, but by using
a + 2ms? windspeed difference, there is a sufficiently large difference in Reynolds
number between each test to allow for testing more extreme wind speed scenarios.
Considering the average wind speed for different regions of the Europe vary
significantly, with averages of around 5ms™ in the south of France in the Bordeaux
region to highs of around 9ms® in the Peak District [104], these alternative test

velocities demonstrate the ability to optimise the VAWT across Europe. The peak
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turbine tangential velocity tested was, therefore, 11.45 ms-1, 16.03 ms-1 and 20.61 ms-
1 for freestream velocities of 5, 7 and 9 ms-1, meaning the airspeed the blade
experiences is 16.45m/s, 23.03m/s and 29.61m/s respectively. As the chord length is
0.225m, using Equation 4.3 with a characteristic length equal to the chord length
(0.225m), the velocity is the relative airflow velocity experienced by the blade or
aerofoil and the density/viscosity of air at atmospheric conditions, the Reynolds

number is found to be 240164, 350699 and 450898 for 5, 7 and 9ms™ windspeeds.

The expected outcome is that at the azimuthal positions that correlate to higher
angles of attack (around 108° + 36° and 252 + 36°), there will be a better tangential
force coefficient at the high Reynolds test, due to the significant reduction in drag
and increase in lift coefficient [105], [106]. Figure 4-11 shows the resultant tangential
force coefficient through the turbine’s rotation for the NACA0015 and the GA
optimised blade profile, run at the lower and higher tip speed ratios. This figure
corroborates the hypothesis, as the 9 m/s tests have a higher tangential force
coefficient at all points within the GA Optimised Blade profiles and show a
significantly higher tangential force coefficient at 72° azimuth due to the reduced

separation and higher lift at high Reynolds numbers.

Comparison of Tangential Force Coefficient for different Reynolds Numbers at TSR = 2.29
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It is also crucial to understand the limits of the application by testing at multiple tip

Figure 4-11: Impact of Reynolds Number on Tangential Force Coefficient

4.2.7 Tip Speed Ratio Sensitivity

speed ratios. As mentioned in Section

VAWT Aerodynamic Theory, in low tip speed ratio cases, the angle of attack is likely
to be larger than the stall angle of a NACA0015 symmetric aerofoil for most of the
turbine’s rotation. By testing the methodology at two additional tip speed ratios, 1.5
and 3.5, we can infer if there is an inherent tip speed ratio or Reynolds number-based
impact on the overall GA performance increase. Figure 4-12 displays the variations

in angle of attack and compares them for all 3 TSRs and their respective Reynolds

number variations through the turbine’s rotations.
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Figure 4-12: Angle of Attack and Reynolds Number Variation with respect to Azimuthal Angle for

TSRs of 1.5, 2.29 and 3

Looking at the results from Figure 4-13, some interesting conclusions can be inferred.

For example, it was expected that the lowest TSR case (TSR = 1.5) would likely have
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the worst performance around the peak angle of attack (at ¢ = 100°) as a result of the
aerofoil being significantly stalled and also the reduced Reynolds number which
would suggest the stall angle is reduced [107]. It should be noted however, that the
higher angle of attack at low azimuthal position explains why the first optimisation
point has a higher tangential force coefficient than the higher TSRs before quickly
stalling and performing worse. Figure 4-14 displays the camber profiles generated for
the three tip speed ratios that were tested; 1.5, 2.29 and 3. The sharp drop in camber
magnitude for the TSR 1.5 scenario is a result of the very high angle of attack (38.61°)
that the blade experiences at that azimuthal position (108°) for a TSR of 1.5, causing
significant separation and complete stall of the blade. At the higher TSRs due to the
lower angle of attack and higher Reynolds number the blade experiences, there is
less separation, and as such the blade to be less sensitive to the adverse pressure

gradient of the high camber.

Comparison of Tangential Force Coefficient for different Tip Speed Ratios
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Figure 4-13: Comparison of Tip Speed Ratio on the Performance of the Optimised VAWT Camber
profile. attack formulations
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Comparison of Camber for Different Tip Speed Ratios
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Figure 4-14: Comparison of Camber Profile of the VAWT Optimisation process at multiple tip speed
ratios

4.2.8 Alternative Angle of Attack Formulations

According to the formulae derived in Section 0, the turbine angle of attack will have
a periodic angle of attack magnitude (i.e. at ¢ = 20° the AoA is the same as at 200°,
with opposite sign). This is not realistically true, due to the wake of the turbine blade,
thus causing fluctuations in the velocity magnitude and swirl. Considering the
Starting Vortex theory, there will be an induced vorticity from the lift generation of
the turbine blade, imparting the swirl component on the blade wake and increasing
turbulence intensity in this region of high circulation. The reduction in velocity is
because of the turbine extracting energy from the freestream flow, without sufficient
time and opportunity to diffuse with the freestream velocity and increase before the

downstream turbine region.

To ensure the GA method's breadth of applicability, alternative angle of attack
profiles are also tested to bridge the gap between the theoretical angle of attack and

the true angle of attack experienced by the rotating VAWT blade due to blade wake
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interactions. These include the application of an angle of attack profile derived from
work in the current literature by El Sakka et al. [80] and using a mean velocity from a

non-deforming turbine simulation.

The work of El Sakka et al. [80] uses sampling points just ahead of the turbine blade
profile to estimate the incoming flow velocity magnitude on the turbine blade. These
relative flow velocities are then utilised in calculating the angle of attack that is
experienced by the turbine blade. This is completed for both a 0° setting angle and a

6° setting angle.

Figure 4-15 — Figure 4-18 display the velocity contours around the NACA0015 turbine
blade profile from 150° to 180° at a TSR of 2.29. A large vortex is seen to be carried
downstream, which causes a large reduction in tangential force generation at 150°-
180° azimuthal angle. This separation bubble is a combined result of the large angle
of attack and effective heaving of the aerofoil at the start of this range, and due to the
relatively low TSR, the blade is effectively unable to escape the large recirculation,
severely reducing the circulation generated by the blade and in turn reducing the lift

coefficient and increasing pressure drag significantly.
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Figure 4-15: Velocity Contour of NACA0015 Blade Profile at 150° Azimuthal Angle
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Figure 4-16: Velocity Contour of NACA0015 Blade Profile at 160° Azimuthal Angle
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Figure 4-17: Velocity Contour of NACA0015 Blade Profile at 170° Azimuthal Angle
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Figure 4-18: Velocity Contour of NACA0015 Blade Profile at 180° Azimuthal Angle

This in turn causes the flow velocity magnitude to be higher in these regions, hence
the sudden increase in velocity at the radial distance from -0.25m to -0.75m seen in

the velocity profile in Figure 4-19.

Figure 4-19 shows the flow velocity along a sampling line spanning from 0° azimuth
vertically down to 180° azimuth, taken from the datum NACA0015 VAWT simulation.
By plotting the flow velocity magnitude against radial distance (top to bottom of the
turbine) from the non-deforming turbine simulation with a 0-degree setting angle, it
is possible to see the effect of the flow velocity reducing due to the extraction of
energy by the turbine. The small gap in the centre of the line is due to the presence
of a rotating circular wall in the CFD setup that would replicate the shaft of the

turbine.
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Velocity Plot at Turbine Centre Line
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Figure 4-19: Turbine Velocity Plot at the Centre Line (¢ = 0°to 180°) extracted from the Baseline
NACAO0015 VAWT CFD Model in ANSYS Fluent

By taking the mean velocity at this centre line, it is found that the freestream velocity
incident on the blade from ¢ = 180° to 360° is 5.22 m/s, or 74.6% of the initial
freestream velocity. This will effectively increase the tip speed ratio in the
downstream section, as the turbine maintains a constant rotational speed. As a result,

the angle of attack will be reduced.

It should be noted that both the alternative angle of attack profiles (Induced Velocity
and Elsakka et al. findings) tested are based on the symmetric NACA0015 aerofoil at
a TSR of 2.29. If one was to optimise the camber profile based on the true angle of
attack in the downstream portion of rotation, it would be a very involved and
computationally expensive setup. This could be achieved by optimising the upwind
stroke of the turbine, and feeding that optimised camber profile into the CFD study
detailed in Chapter 3.3, with the angle of attack approximation technique employed
by Elsakka et al. [80] to calculate the angle of attack experienced by the blade for each
optimisation position in the downstream period of rotation. This would be iterated

for every optimisation position in the downstream, to ensure that the blade-wake
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interaction’s influence on the angle of attack is properly modelled. As a result, this
would result in taking the fast turnaround of the XFOIL optimised methodology and
significantly increasing the total computational time to create the full optimised GA
profile. This is outside the scope of this chapter, but is a promising path for future
research, to potentially further amplify the benefits of using the GA to optimise the

turbine blade’s camber profile.

The resulting Induced Velocity angle of attack method is calculated using the new
mean freestream velocity in the downwind rotation (180° to 360°), to calculate the new
effective TSR in this period and maintaining the same rotational velocity of the
turbine. As the mean velocity was found to be 5.22m/s; and the tangential blade
velocity is 16.03m/s, the new TSR is 3.0708. This new TSR is used to calculate the
theoretical angle of attack and is seen from 180°—360° azimuthal position in Figure
4-20. As the TSR is higher in this region, the angle of attack the blade experiences can

be seen to be lower.

A comparison of the three proposed angles of attack formulations is presented in
Figure 4-20. El Sakka shows a dip in the AoA curve at 252°, and this is likely due to the
increased flow velocity impacting on the blade from the upstream vortex shedding
interaction mentioned earlier. Another point of interest in Elsakka et al.’s findings is
that the angle of attack is not 0° at 0, 180° and 360° azimuth; this could be a result of

the inductance effect of the turbine that has been found in other works [108].
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Comparison of Camber for Different Tip Speed Ratios
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Figure 4-20: Angle of Attack (°) Comparison for different quantification methods.

Interestingly, Figure 4-21 (the camber profile comparison for the three angle of attack
definitions) shows that there is very little variation in the optimal camber selection
among the three different angle of attack methods. One common trait however
appears to be that the lower the angle of attack experienced by the blade, the larger
the optimal camber is. This is due to the 0-lift angle being higher for the higher

camber aerofoils, thus producing more lift at the lower angles of attack.
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Comparison of Camber for Different Tip Speed Ratios
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Figure 4-21: Optimised camber profile for the three variations of the angle of attack.

This increase in lift directly translates to an increase of the tangential force

coefficient, and in turn the power coefficient.

Figure 4-22 and Figure 4-23 show the resultant tangential force coefficient for the
Elsakka et al. [80] angle of attack definition, as shown Figure 4-22 and the theoretical
induced angle of attack definition, in Figure 4-23 respectively. The induced method
saw an increase in average tangential force coefficient from 0.06883 to 0.3337,
signifying a 484.82% increase. A comparable result is seen for the angle of attack of
El Sakka et al. [80] with an increase from 0.09961 to 0.3032, corresponding to a
304.39% increase. This is fundamentally important, as the tangential force coefficient
is the force that drives the turbine’s rotation, and results in the vertical axis wind

turbine’s ability to generate power from rotating the rotors in the attached generator.
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Comparison of Camber for Different Tip Speed Ratios
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Figure 4-22: Tangential force coefficient comparison between the optimised blade and the
NACAO0015 blade profile for the Induced angle of attack definition
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Figure 4-23: Tangential force coefficient comparison between the optimised blade and the
NACAO0015 blade profile for the Elsakka et al. angle of attack definition.
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In the more advanced angle of attack models (induced angle of attack and Elsakka et
al.’s model) there is a clear trend of a reduction in the tangential force coefficient in
the downstream portion of the rotation. This effect was not evident for the theoretical
angle of attack, and this is a result of a combination of factors. These factors include
the reduced kinetic energy in the freestream airflow in the downstream section,
resulting in less power being available for the turbine to extract, compounded with
the reduced angle of attack in the regions because of the increased effective tip speed
ratio. The lower angle of attack implies lower lift coefficient from the turbine
optimisation results, even using the same aerofoil profile, as the tangential force is

directly proportional to the lift force.

4.3 CFD Analysis of the Genetic Algorithm Optimised
Deformation Profiles

It is crucial to understand how the Genetic Algorithm performs in the scope of the
dynamic VAWT model, to consider how the blade wake interactions, and transient
flow effects the validity of the XFOIL based GA optimisation when applied in situ of a
VAWT. This is achieved by applying the camber profile that the GA optimisation
procedure creates within the turbine that was detailed in Section 3.3, and the results
of that CFD procedure are discussed in the following sections. The profiles were
implemented using a custom made User-Defined Function subroutine in ANSYS
Fluent, enabling the dynamic deformation of the turbine blade profile as the blade

rotates.

4.3.1 Genetic Algorithm Evaluation in CFD

Utilising the force report feature in ANSYS Fluent, it was straightforward to extract
the single blade moment generation at any point in the turbine rotation. For the
initial comparison, the different angle of attack model optimised camber profiles are
compared at the azimuthal angles that the optimisation procedure was evaluated at

(every 36° from 0° — 360°).
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The blade moments are presented in Table 4-6, the cell highlighting indicates an
improvement or decrease in performance in comparison to the NACA0015
symmetrical aerofoil. A red highlight implies a worse performance and green
indicates a better performance than the non-deforming NACA0015 aerofoil. There is
a significant difference in the torque and therefore power generation between the
symmetrical NACA0015 and GA optimised aerofoil profiles for both normalised and
standard XFOIL solution methods. Both methods create a significant increase in the
mean torque, with less variance in torque generation throughout the turbine
rotation. It is interesting to note that the genetic algorithm has a worse performance
than the symmetric aerofoil in the upstream part of the rotation (0° < ¢ < 180°), but it
has significant improvements in the downstream section. There could be a few
possibilities for this upstream reduction; firstly, due to the angle of attack differences
between the real turbine and the values provided in XFOIL, causing an early onset of
stall. Secondly, it could be the result of an effectively increased blockage of the
turbine due to the improved downstream performance which could be slowing the

upstream flow velocity or changing the flow angle the blade experiences.
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Azimuthal
Moment (Nm)
Angle (°)
Normalised Induced AoA | El Sakka et al.
NACAO0015
XFOIL GA GA AoA GA
0 -1.3351 -1.4026 -1.4392 -1.3405
36 2.3226 -1.3741 -1.172 -1.2348
72 15.6634 15.465 15.5546 15.5002
108 6.8144 6.7249 -2.7976 4.0255
144 -6.6655 1.2623 2.8307 1.532
180 -2.1934 -1.1929 -0.2343 -0.2511
216 0.0776 4.9497 6.6008 8.5072
252 0.5467 2.8585 0.1028 1.3361
288 0.7657 1.0837 0.8153 1.0556
324 0.8911 1.7279 1.5963 1.8321

Table 4-6: Moment Force Comparison for multiple Genetic Algorithm setups

Figure 4-24 shows the continuous moment generation data for a single blade in the

turbine CFD simulation, for the results seen in Table 4-6. The distinct second peak

present in all four genetic algorithm methods reinforces these findings, and a

negligible moment for the symmetrical non-deforming NACA0015 aerofoil.
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Moment Force Plots for Single Blade
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Figure 4-24: Moment comparison for the different Angle of Attack models from a transient turbine
CFD simulation

The lower peak is likely attributed to the reduction in freestream velocity
experienced by the incoming blade as seen in the velocity contours of the optimised
turbine profile simulation compared to the non-deforming NACA0015 profile, in
Figure 4-25 (a) and (b). It is shown by the increase in velocity upstream of the blade
at 0° azimuthal angle in the NACA0015 datum simulation compared to the Optimised
GA deformation profiles, which would provide more energy to the turbine blade,
allowing for greater torque production. This arises due to the increased energy

extraction from the preceding cambered blade.
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Figure 4-25: Velocity Contours from 0->50m/s at ¢ = 0° for (a) NACA0015 Non-Deforming & (b)
XFOIL Normalised GA Deformation Profile Turbine.

The alternative angle of attack characterisations (Induced and El Sakka definitions)

and the Standard XFOIL method have a similar shape to the original NACA0015

around the region of 100° - 144°, with the drop in the moment force before a rapid

increase again, followed by a gradual dip again. This trough is much shallower for

the Standard XFOIL method with the standard angle of attack, but the shape is still

similar. This does not appear to be the case for the Normalised XFOIL case, as it has

a much more gradual reductions in the moment force, the Normalised profile only

briefly reached a negative moment force at an azimuthal angle of 160°.

Comparing the variation of the moment plot allows for a much better understanding

of the fluctuations experienced by the blade and provides a wholistic rather than

localised viewpoint.

From Table 4-7

(Nm)

Normalised Induced AoA | El Sakka et al.
NACA0015
XFOIL GA GA AoA GA
Median Moment
0.1888 1.622 1.136 1.294
Value (Nm)
Mean Moment Value
1.615 2.842 2.577 2.654
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Standard Deviation of
6.293 4.702 4.824 5.105
Moment Value (Nm)

Mean: Standard
0.2566 0.6044 0.5342 0.5200
Deviation Ratio

Table 4-7: , which shows some of the statistical properties of the turbine’s moment
distribution, it is evident that all the genetic algorithm method variations tested allow
for much lower standard deviations in the moment force, combined with higher
median and mean moments than that of the non-deforming NACA0015. The
significance of this finding translates to a reduction in the overall blade fatigue and
an increase in the life of the blade due to the more constant blade loading.
Additionally, the wear that is commonly found in the shaft’s load bearing would be

reduced as there would not be a large resistance in certain regions of the bearings.

Normalised Induced AoA | El Sakka et al.
NACAOQ0015
XFOIL GA GA AoA GA
Median Moment
0.1888 1.622 1.136 1.294
Value (Nm)
Mean Moment Value
1.615 2.842 2.577 2.654
(Nm)
Standard Deviation of
6.293 4,702 4.824 5.105
Moment Value (Nm)
Mean: Standard
0.2566 0.6044 0.5342 0.5200
Deviation Ratio

Table 4-7: Statistical Analysis of the Turbine's Moment Comparisons

The mean moment values are significantly higher, with Normalised GA presenting
the largest value, followed by the Elsakka et al. AoA definition, and finally the

Induced AoA GA. The trend is different if we compare the standard deviation, with a
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lower standard deviation signifying that more of the turbine’s rotation produces a
moment close to the mean value. The lowest variance is experienced by the

Normalised GA, then the Induced AoA GA and finally then the El Sakka et al. AoA GA.

By comparing the ratio of the mean to the standard deviation, the conclusion can be
made of the wholistically best method tested. The larger the ratio, the larger is the
mean or the smaller is the standard deviation. The best overall method tested is
therefore the Normalised Method using the theoretical angle of attack. This value did
not have the highest mean value, but the median value was the highest and the
standard deviation the lowest, resulting in the conclusion that it is the best method

overall to employ in a real life VAWT.

Figure 4-26 depicts a violin plot of the moment distributions for the compared
optimisation characterisations, with the thickness at any one torque value
representing the relative commonality of said torque value. One can therefore
conclude that the thickest section of the graph indicates the mode of the data, which
is easily read as the Y-Value of the white dot seen in the plot. The tips of the chart
show the minimum and maximum values of the distribution, in this work that
translates to the minimum and maximum torque experienced by the VAWT in it’s
rotation. The smaller the difference between the peaks, the more constant the torque
experienced by the blade, so the perfect scenario would be a perfectly flat line at a
single torque value as that would eliminate any vibrational fatigue in the structure,
improving the turbine blade’s lifespan. Finally, the rectangular box with the two thin
strips is known as a box and whisker plot. The white point represents the median, the
black rectangle is the interquartile range of the distribution and the whiskers

represent 1.5x the interquartile range.
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Violin Plot of Moment Distribution

Torque (Nm)

Figure 4-26: Violin Plots representing the Distribution in Torque for the different Variations of the
XFOIL Based Genetic Algorithm

4.4 Summary of Findings

This investigation shows the viability and power of using a Genetic Algorithm
optimisation technique to characterise the deformation profile of an actively
deforming vertical axis wind turbine blade. The use of a GA with both a 5%c and 10%c
limit on the GA search bounds showed substantial improvements in the turbine’s
tangential force coefficient. When evaluated in XFOIL, the optimisation technique
showed large increases in the time-averaged torque coefficient, enabling an increase
in the overall power generation of the turbine. The optimised aerofoil had a higher

torque coefficient value at all the sampling positions when compared to the
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symmetric NACA0015. These conclusions are confirmed when applied in CFD by
creating a user defined function to deform the aerofoil profile to the optimised
camber magnitudes as it rotates in the VAWT scenario. The mean and standard
deviation of the moment force is shown to be significantly higher when the genetic
algorithm profile is applied. The lowest improvement in standard deviation of the

moment is 19.9% and the lowest improvement in mean moment is 59.1%!

The optimal Genetic Algorithm settings was found to be for the turbine consisting of
a 10%c bound, with the Normalised XFOIL geometry setup and the theoretical angle
of attack. The corresponding tangential force coefficient and camber profile is seen

in Figure 4-5 and Figure 4-6 respectively.

The downfalls of utilising XFOIL as the flow solver method were multifaceted. These
include its inability to capture the flow properties when there is large flow separation,
it also does not capture the upstream flow induction effects of the turbine in the
downstream sections. Fixing these issues are topics of improvement that will assist
to further demonstrate the strengths of the GA methodology and even further
improve the turbine performance. As such, the recommended further work is to
implement the GA technique in a CFD solver, i.e., the ANSYS Fluent software for a
rotating turbine situation to better understand and incorporate the effects of the

VAWT’s dynamic flow effects.
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5 Transient Genetic Algorithm

Optimisation of a VAWT Blade Profile

5.1 Introduction

The previous chapter highlighted some of the weaknesses of using XFOIL in the scope
of VAWT blade aerodynamic performance calculation, due to many failures in
calculating lift and drag for high angles of attack. Furthermore, the limitations of the
theoretical VAWT aerodynamics based on first principles showed that even more
complex angle of attack models failed in capturing the dynamic flow conditions that
the blade experiences. This chapter overcomes these issues, and builds on the
successes, through the implementation of several additions to the methodology,
including utilising transient rotating VAWT CFD simulations instead of XFOIL to
evaluate the performance of each genotype, having a coupled time marching of the
turbine profile such that the previous optimisation camber is taken as the starting
point for the following optimisation position, and also utilising a transient approach
to evaluate the aerofoil performance and the modelling of time-dependent
aerodynamic events such as the leading-edge stall on the aerofoil. Implementing
these complex deformation profiles into a CFD-in-the-loop based Genetic Algorithm
is a new avenue of research for VAWT optimisation, which will provide valuable
insights into the effect of the transient flow phenomena. Variations in the GA’s
parameters were investigated including crossover function variations, phenotype
counts and sampling count tests to optimise the computational efficiency of the
optimiser, without sacrificing performance and ability to increase VAWT power
generation. Additionally, the position of maximum camber’s influence on deforming
VAWT blade performance was found to have significant impacts on the regions of
largest gain in the VAWT’s rotation, and the contribution of the leading edge and
trailing edge deformations was studied; finding that the leading edge improves the
upstream turbine power generation and trailing edge deformations improve

downstream power generation.
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Computational Fluid Dynamics is an appropriate method for evaluating the
phenotype’s viability and fitness function calculation. Whilst other methods are
available to evaluate the aerofoil performance, such as the panel method solvers
including XFOIL or JAVAFOIL, these methods limit the initial flow conditions
because of the limitations discussed in Section 4.1.3.2, the primary issue being the
inability to measure the lift and drag when the aerofoil boundary layer is completely
separated. In XFOIL, the user can define the Reynolds number, Mach Number, angle
of attack and freestream turbulence level (Ncrit), but when attempting to optimise
the camber at multiple azimuthal positions, it does not consider the wake or
inductance effects on the flow at the subsequent optimisation positions.
Furthermore, the dynamic flow characteristics are not carried over between the
optimisation positions in XFOIL, as the flow uses instantaneous characteristics.
Transient CFD simulations, however, allows for the wake effects to be carried
between each optimisation position due to the time-marching progression of the
simulation, allowing the optimisation to capture the previous flow conditions as the
starting point (the new optimisation position’s initial conditions), and optimise the
following position (the targeted angle of attack for camber optimisation) accounting

for the true local flow field at the desired optimisation position.

5.2 CFD-In-the-Loop Transient Optimisation Setup

The computational domain and setup used for the VAWT blade camber optimisation
and the turbine torque performance is the same as that described in Section 4.3 of the
thesis. As this investigation uses the same two-dimensional computational domain
sizing and the same turbine characteristics as the previously validated turbine
studies, in Section 3.2, and current literature [23], [68], [93], [94], it is
considered satisfactory for the basis of the current study. This CFD domain allows for
the validation and investigation of all the required aerofoil genotypes that the

optimisation process undertakes, regardless of the combinations used.
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5.2.1 Genetic Algorithm Process Flowchart

For a general overview of the workflow of the optimisation process, the following

simplified overview outlines the steps:

i. Initialise the GA
ii.  Create the initial array of phenotypes (camber values)
iii.  Evaluate each phenotype individually
a. Open the case file
b. Append the associated camber input parameter
c. Run the GA for a user specified number of time steps to reach the
desired optimisation position
d. Exportthe Moment Force from the CFD to the desired dataset
iv.  Capture the flow image
v.  Sort all moment values from the highest to the smallest
vi. Create the next generation of phenotypes based on the current generation’s
moment values
vii.  Repeat steps iii to vi until the convergence criteria is met
viii.  Output the final optimised camber
ix.  Run the case file with the optimised camber for the defined time steps

x.  Save the final case/data file for the next optimisation position

In order to complete the first step--initialising the genetic algorithm, it is necessary
to understand how the algorithm works and which defining characteristics are
required for the process. These include the aerofoil thickness, rotational centre,
turbine size and speed, and the general flow conditions such as the freestream

velocity.

The initial array of camber values is simply an array of the potential values evenly
distributed over the user-specified range. For this investigation, + 10%c is used as the
bounds for the camber magnitude. Whilst the NACA profiles could theoretically
model substantially larger camber values, the convention is that the camber typically

only has a range of +9.5%c for most NACA aerofoils in use due to the naming
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convention (single integer in name i.e. NACA5315). If one were to decide on using

11genotypes per generation to evaluate every 36°, the initial generation can be seen

in Table 5-1.
Genotype
0 1 2 3 4 5 6 7 8 9 10
ID
Camber
-10 -8 -6 -4 -2 0 2 4 6 8 10
Value

Table 5-1: Example of the Camber Values for the First Generation of Genetic Algorithm
Optimisation

The details of the later stages in the optimisation are now described in detail. To
evaluate each phenotype, the potential aerofoil must be solved in the CFD solver
(ANSY Fluent) to capture the flow field around the aerofoil and derive the force
coefficients appropriately. This allows for consistent, methodical and precise
comparison between each genotype. The sorting is applied in Python, extracting the
data from ANSYS, and then organising and mutating them as necessary. For details
on the full process, see Section 3.4 which breaks down the function of each step in a

genetic algorithm optimisation.

The most important step in evolutionary algorithms is the child creation. This is
referred to as crossover, where two parent genotypes combine to form an offspring,
as is seen in nature. The typical crossover function takes the optimal values from the
previous generation and treats them as Parents, the child is then taken as the
midpoint value (camber in this investigation) between the two parents, and the
predefined mutations on the child genotype is added to the generation to maintain
the genetic diversity, ensuring that the global optima are found rather than the local

optima in the searching space [109].

5.2.2 Fitness Function

Many different parameters can be used to define the fitness function of a genetic

algorithm, and they are one of the factors of the problem that one is attempting to
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optimise. A basic example that is commonly used for teaching the fundamentals of
the genetic algorithm is the travelling sales person--where the individual has to visit
a list of cities exactly once before returning home, but the optimisation function is to

minimise the total distance travelled by the sales person.

In the case of VAWTSs, the fitness function could be related to the structure,
aerodynamics or even the physical mechanisms of transferring the generated power
back to the grid. One could investigate the optimal winding pattern of the magnets in
the generator, the minimum thickness of carbon fibre layup to provide sufficient
structural rigidity, or in the case of this investigation, the aerodynamic properties
that directly correlate to the power generation--namely Lift, Drag, Tangential Force
and Moment of the turbine blades. It should be noted that the moment force is likely
to be the most suitable parameter to optimise, as this is the most holistic
characteristic used to define the turbine performance. The power generation and
power coefficient of the VAWT are directly proportional to the moment on the
turbine blades, which in turn is a result of the tangential force and the lift and drag

forces on the blade.

5.2.3 Convergence Criteria

To terminate the genetic algorithm, it is necessary to define some criteria for when
the optimisation has been completed. Much like the iterative algorithms used when
solving the traditional Navier-Stokes-based finite volume or finite element methods,
some sort of convergence criteria must be set. Otherwise, the process will continue
indefinitely or until there is user intervention. There are multiple ways that this can
be achieved due to the number of variables within the process. One option is to check
the difference in the optimal camber between each generation and limit what is
acceptable. This difference could be a percentage difference or an absolute
difference, e.g. 1% or 0.01 in value. The issue with utilising absolute values is that the
optimisation process could terminate early, potentially focusing on a local optimum
and negating the impacts of the randomisation factor in the offspring crossover

functions. Furthermore, utilising the camber as the value to consider for
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convergence, can also contribute to this early termination concept, as after a few
generations there can be large changes in the moment coefficient for very small

changes in the aerofoil camber.

Considering these effects, the most appropriate convergence criteria is therefore
selected as a percentage difference in the moment force between the strongest
genotype of each generation. The convergence criteria are only evaluated after 10
generations of optimisation to ensure sufficient randomisation before the
convergence checks are implemented. Starting the convergence testing prematurely
or setting the convergence criteria too large can potentially cause local optima to be
selected, rather than searching for the global optima. In this investigation, the
criteria for convergence is a 0.01 absolute difference in optimum moment, as shown
in Equation 5.1. 0.01 was found to be a good balance in the previous chapter’s

investigations and was therefore utilised in this chapter.

Moment,, — Moment,_, < 0.01, n>10 5.1

There are many factors that influence what would be considered a sufficient
convergence condition; two small a convergence condition and the optimisation
process could end up running for a very long time without much increase in
performance of the optimised design. It is especially crucial to minimise this when
using CFD simulations as the source of chromosome evaluation, as it results in
unnecessary consumption of energy and restricts access to the high-performance
clusters typically used for intensive CFD. Too large a convergence condition and it
leads to uncertainty in the validity of the optimised result, and whether it is truly the
optimal design in the search space. It could result in premature optimisation, which
defeats the purpose of utilizing the evolutionary algorithm in the first place! Case file

/ UDF setup

The mesh method defined previously in Chapter 4.3 is utilised in the cases for the
genetic algorithm evaluation stage. It has input parameters defined within ANSYS
Fluent which can be easily altered as appropriate, using ANSYS’s pythonic fluent

interface library. These are set as the camber magnitude at each optimisation
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position, which is used within the User-Defined Function (UDF), thus allowing for the
dynamic changing of the variables within the UDF. This pythonic interface method
does not need to recompile the UDF between each case, thus improving the
evaluation speed for each phenotype. Furthermore, using the Pythonic interface
means that it is not necessary to programmatically change the variable values in the
UDF file, which would require the use of complex regular expressions to parse the
UDF file and change a value without altering the formatting of the UDF file. As the
UDF is written in the C programming language, it is susceptible to indenting,
formatting and inclusion of punctuation for proper line-by-line evaluation. Editing
any of these factors in the UDF would result in a failed compilation of the UDF and,
therefore, the failure to properly implement the flapping motion in ANSYS Fluent.
The UDF, therefore, uses the same method of pulling the Input parameter values
from within ANSYS Fluent to define the values of each variable in the camber profile

of the turbine.

The general data flow for the transient simulation-based genetic algorithm process is

as follows:

i.  Compile the UDF, ensuring the appropriate camber variables are defined to
match what is used in the case file.
ii.  Create matching input parameters in ANSYS Fluent.
iii.  Save the Baseline Simulation Case File.
iv.  Change the Input Parameter in ANSYS Fluent through Pythonic Interface,
which corresponds to the relevant optimisation position.
v. Run the ANSYS simulation for the necessary amount timesteps to achieve
rotation and deformation to the required optimisation position.
vi. Export Moment values from ANSYS Fluent to the python session
vii.  Sort genotypes (camber) by corresponding values of their phenotypes
(moment).
viii.  Repeat steps iv to vii for each genotype in a generation.
ix. Create the next generation of offspring, including mutations and crossover

between parents.
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x.  Repeat steps viii and ix for each genotype per generation until convergence is

achieved.

This is summarised visually in Figure 5-1, which shows how the variables are carried

between the different coding environments.

GeneticAlgorithmScripts | | ANSYSInput Parameter | | ANSYS UDF
Tip Speed Ratio Tip Speed Ratio
Optimisation Count Optimisation Count
Max Camber Position Optimised Camber Value
Optimised Camber Value Max Camber Position

Figure 5-1: Transferred variables between Genetic Algorithm Simulation Control steps

5.3 PyFluent Functions

In order to implement the genetic algorithm within ANSYS Fluent dynamically, it is
necessary to utilise some sort of interface between the dataset and the ANSYS Fluent
simulation settings. This could be implemented by using regular expressions to
modify text files such as the UDF script or journal files to be read by ANSYS Fluent,
as was implemented in Chapter 4 for the automation of XFOIL. This could work, but
leads to very complex text based scripts and would require separate scripts each time

a setup variation is changed.

In the past few years, ANSYS has started developing a pythonic connection library
that allows for users to control the ANSYS software through specially made python
libraries. One of their first Pythonic libraries was PyFluent, a Pythonic interface to
ANSYS Fluent which allows the control of all the settings in ANSYS Fluent, either
through commands that follow the same format as journal files or with a specialised
Settings API. This allows for all setup variables to be dynamically changed and fed
into the Fluent client directly without a need for recompiling UDFs for each genotype,
rapidly increasing simulation turnaround for each optimisation candidate. The

settings API is a newer addition, so it does not have full coverage of all the settings in
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ANSYS Fluent. For this investigation, the TUI-based method is used. The details of

these scripts are found in the following section.

5.3.1.1 Solver

The workflow for implementing the genetic algorithm in ANSYS Fluent has a similar
principle to that used in the previous chapter based on XFOIL. The XFOIL workflow
utilised a script to generate a text script containing the coordinates of each
phenotype’s profile, which is imported into the XFOIL solver instead of utilising the
built-in NACA aerofoil generator. Even though all the genotypes use the NACA shape
profiles, the typical cambered NACA aerofoil has a maximum possible camber of

9.5%c.

This investigation changes the camber of the aerofoil by using a UDF, which actively
deforms the aerofoil as it rotates to the optimisation position. The camber is linearly
interpolated between the optimisation positions, which allows for gradual changes
in the aerofoil shape as the turbine rotates. By transforming the camber as the
turbine rotates, one can capture the transient effects of the camber deformation
process. More importantly, the data utilised for optimisation considers the extensive

differences in the flow characteristics.

Turbine flow characteristics are largely dominated by their tip speed ratio, radius,
and free stream velocity [110]. By optimising the camber profile in the context of the
turbine’s rotation, this algorithm allows for these flow characteristics and their
impact on the torque and power generation to be incorporated into the optimisation
procedure. Theoretically, the angle of attack and flow speed are identical between
the upwind (0° < ¢ < 180°) and downwind (180° < ¢ < 360°) portions of rotation, as is
the windspeed and tip speed ratio. Actually, due to the turbine extracting energy from
the flow in the upwind region, the windspeed that the turbine blade experiences is
actually lower than the windspeed. The result is that the TSR is therefore, higher in
the downwind region and subsequently, the angle of attack experienced by the blade

and the energy in the flow is much lower [108]. The full script that was implemented
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to control the solver functions and define the aerofoil characteristics is found in the

Appendix and online on my GitHub repository.

5.3.1.2Image Capture

A script was also developed that allows for a snapshot of the flow to be taken after
each optimised aerofoil. This is useful when analysing the optimised camber profile,
as it allows for easier comparison of the aerofoil near flow field whilst reducing the
post-processing time. The script takes the current azimuthal position, rotates the
camera by that same angle in the opposite direction and zooms in on the flow field
around the blade. This can be easily implemented within the optimisation loop to
take an image of the flow field local to the blade for every single genotype if so
desired, but to reduce the computational overhead and reduce the total disk usage of

the optimisation workflow.

5.3.2Implementation in cluster-based computer resources

There are several ways of running the optimisation methods discussed so far. The
options available range from being as simple as running the Python script on a
personal desktop computer to creating complex scripts for asynchronous job
submissions on high-performance clusters. Using asynchronous submission allows
for each genotype to be evaluated simultaneously every generation, with the system
waiting for all genotypes to be evaluated before creating the next series of genotypes

and submitting the offspring evaluation simulations.

The alternative method is to have a serial case, where a standard single job runs, and
sequentially evaluates the genotypes using ANSYS' new PyFluent pythonic interface
library. This allows the user to create and control ANSYS Fluent sessions through a
Python API, passing through any variables within the Python session directly into
ANSYS. This avoids the complex and tedious method of recreating new submission
scripts for every genotype to be tested, using complex regular expressions, and

potentially introducing issues into the solver due to syntactic errors in the scripts. For
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example, between versions of ANSYS, the text user interface (TUI) occasionally
changes, which can result in a script used in ANSYS 22.2 not being compatible with
ANSYS 23.1. To correct this, it is necessary to rewrite the regular expressions to be
compatible with each specific version of ANSYS Fluent. Using the PyFluent API
however does not have this same issue, simply change the version of ANSYS that one
intends to load in the script’s initialisations and then run the script as normal, and no

alterations are needed!

5.4 Results & Discussion

Itis crucial to understand the impacts of the various features of the genetic algorithm,
and as such, it is necessary to evaluate and experiment with variations of the different
aspects of the algorithm setup. Studying the effect of these factors allows for the
opportunity to minimise the genetic algorithm’s computational cost whilst
simultaneously exploring its ability to optimise different aerofoil characteristics and

operating conditions.

Firstly, the effects of variations to the genetic algorithm are studied to ensure the
computational efficiency and the potential impacts of altering parameters on the
GA’s ability to fully optimise the blade camber. This is followed by a study of the
aerofoil shape constraints to better understand the contribution of each section of
the blade’s influence on the performance. Finally the most optimal genetic algorithm
combination found is implemented on the same turbine at a lower tip speed ratio of
1.5 and a higher tip speed ratio of 3 to provide insight into the effects of blade angle
of attack, Reynolds number and flow conditions on the genetic algorithm in order to

form more well-rounded conclusions of its applications.

The following characteristics of the genetic algorithm were investigated in this

investigation:

i.  Crossover Variation

ii.  Phenotype Count
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iii. ~ Sampling Count
The aerofoil constraints include;

iv.  Position of maximum camber

v. Leading edge only optimisation and trailing edge only optimisation.

5.4.1 Genetic Algorithm Parameters Investigation

The characteristics mentioned above are studied and compared in this sub section. It
focuses on the parameters of the GA from a computational perspective, but also
ensures that the actual turbine performance is not impacted by altering the different

components.

5.4.1.1 Crossover Variation

The crossover function has an array of methods of creating the offspring genotypes,
with variations on randomisation, overlapping between parents and mutation

magnitudes. The standard crossover follows the following trend:

i. ParentA
ii. ParentB
iii.  (Parent A + Parent B) / 2 = Offspring
iv.  Offspring +- random(0-10%)
v.  Offspring +- random(0-5%)

vi. 3 xRandom(lower bound, upper bound)

Incorporating the randomisation is a two-sided method. The benefit includes the
potential to converge to an appropriate genotype more quickly, ensuring the breadth
of search to prevent local minima convergence to tend towards the global maximum.
On the other hand, it forces the process to potentially run unnecessary simulations
that don’t improve the overall optimisation process, thus increasing the overall

computational time with no meaningful reward.

An alternative method is to replace genotypes 4 and 5 by using a variable offspring

mutation instead of using a predefined variation (+- 0.1 or +- 0.05). This method is
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likely to be much faster as the minimum change in the camber would be 0.025 (form
the offspring in the next generation), whereas with the randomisation method the
change in camber can be as low as 0.005 between generations, resulting in another
generation of the simulation being required, but for potentially a negligible increase

in the actual blade moment.

These two crossover methodologies were compared to gauge which technique
captures a more optimised camber profile, and to ensure the most reliable method is
used for the later aerofoil characteristic investigations. Figure 5-2 shows the resultant
moment plot of the optimised profile for the two techniques and Figure 5-3 shows the

camber magnitudes of the profile based on their azimuthal position.

Crossover Comparison

20

—— NACAO0015
— 11P_10S_30C
—— Non-Random Crossover
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Figure 5-2: Impact of a randomised crossover magnitude compared to a constant crossover
magnitude
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Camber Values vs. Azimuthal Angle for Crossover Randomisation Comparison

—— Randomised Crossover Magnitude
—— Constant Crossover Magnitude
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Camber Value
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Figure 5-3: Camber profile comparison for randomised and constant crossover techniques.

The moment comparisons are almost identical for both profiles, with the only
noticeable differences at 144°, ~175° and 324°. These regions of difference directly
correspond to the positions where the optimiser has converged on a different camber
value between the two methods. The 144° position only has a moment difference of
around 1Nm, but the randomised crossover had a 3%c¢ larger camber magnitude.
This shows how important it is to have a robust and consistent optimiser, as a
significantly different camber profile might not have a significant impact on the
performance. This is emphasised at the other two azimuthal positions mentioned,
175° and 324°, where the camber difference is ~3.5%c bar larger in magnitude for the

randomised crossover, but with only ~0.5Nm and 0.1Nm difference, respectively.

The computational time was almost identical for the randomised and constant
crossover in the offspring generation. This means that the only deciding factor for
which method to implement in further testing is that of the overall performance and

reliability.

As a result, it is decided to utilise the randomised crossover for future studies. The

primary reason is the robustness of the technique—by introducing randomisation,
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the chance of missing a global optimum profile at the desired azimuthal angle is
reduced. An example of this scenario would be if, during the optimisation process,
an aerofoil camber genotype of 10%c is found to produce the greatest moment. If we
have a set crossover value of, say, 0.2%c, then the child genotypes would be 9.8% and
10.2%. If, however, there was a randomised value up to 0.2%c, then there is an
infinite number of potentially better candidates to be found in the range of 9.8-10%c
or 10-10.2%c. If the true global optimum is 10.1%c, then a specific and constant
crossover would never find the global optimum unless a very small variation value
(i.e. £0.01%c) is used, which would make the optimisation process a very slow and

steady climb and is still limited to the precision of the selected crossover magnitude.

5.4.1.2 Phenotype Count Comparison

Another method for improving the turnaround times of the genetic algorithms is by
optimising the phenotype array between each generation. The main factor impact
the computational cost of the genetic algorithm is how long it takes for each genotype
within each generation to be simulated in the CFD solver, and it is reasonably
consistent that each simulation takes around 5 minutes to solve on a 32 CPU Core
machine on the University of Sheffield High Performance Cluster (HPC). Therefore
in order to reduce the total CPU time and in turn the amount of wall clock time for
the simulation, it is necessary to reduce the number genotypes per generation

without sacrificing the overall effectiveness of the genetic algorithm.

As a refresher, the array described in Section 5.4.1.1 forms eleven genotypes each

generation as follows;

i. Parent A
ii. ParentB
iii.  (Parent A + Parent B) / 2 = Offspring
iv.  Offspring + random(0-10%)
v.  Offspring - random(0-10%)
vi.  Offspring + random(0-5%)
vii.  Offspring - random(0-5%)
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viii. = Random(lower bound, upper bound)

ix. Random(lower bound, upper bound)

x. Random(lower bound, upper bound)

xi. Random(lower bound, upper bound)
This results in 11 simulations being required for each generation. If the number of
genotypes is reduced to 5, the computational time will also significantly reduce. One
of the primary issues with this method is that it may take more generations to reach
convergence. However, the number of generations to convergence would need to

more than double to take the same computational time as the original eleven

phenotypes method.
An alternative phenotype formulation is the following:

i. ParentA

i. (Parent A + Parent B) / 2 = Offspring
ii.  Offspring + random(0-5%)
iii.  Offspring - random(0-5%)

iv.  Random(lower bound, upper bound)

The reduced phenotype formulation would still carry the same optimisation
philosophy as the previous generation--the optimal phenotype from the previous
generation would be carried forward, and the offspring and offspring mutations
would still be implemented similarly, but with only one randomised entry each

generation, instead of four.

To check that the five-phenotype method doesn’t have an impact on the overall
turbine performance, it is compared with the moment of the eleven-phenotype
method that was previously implemented in Section 4.2, as that is shown to be a
reliable setup. Figure 5-4 shows the moment distribution for both the eleven-
genotype model and the 5-genotype model, displaying that the difference in
performance is negligible and almost identical between the two techniques overall.
The moment curve is identical from 0° to around 120° degrees azimuthal angle, with

a minor increase in the eleven-phenotype setup at 144°. It is then almost identical
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between the two techniques again until the first noticeable difference at around 252°,
where the eleven-phenotype method is lower than the five-phenotype method. The
average moment for the eleven and five phenotype methods is 6.90426 and 6.918025,
respectively, resulting in a difference of only 0.2%. This demonstrates that utilising a
smaller generation size has a negligible impact on the overall performance of the
camber deflection profile but radically improves the optimisation turnaround time.
Comparing the camber profile of the two genotype implementations in Figure 5-5
shows that there is a small difference in camber profile at the optimisation positions
of 288° and 324° but the performance difference is so negligible that this would not

warrant a cause for concern in the method’s reliability to find an optimal camber

profile.
Genotype Count
20
—— NACA0015
15 — 11P_10S_30C
- —— 5P_10S_30C

Moment (Nm)

I R IR IR EN IR IR I IR I N
0 36 72 108 144 180 216 252 288 324 360

Azimuthal Angle (degrees)

Figure 5-4: Moment contribution comparison for eleven phenotype method and five phenotype
method.
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Camber Values vs. Azimuthal Angle for Genotype Count Comparison
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Figure 5-5: Genotype count comparison impact on camber profile

As was explained in Section 5.4.1.2, the use of a reduction in the phenotype count has
the potential to reduce the overall computational requirements of the genetic
algorithm optimisation procedure. Both optimisation procedures are carried out on
identical hardware; a single node on the Stanage HPC Cluster at the University of
Sheffield. These nodes consist of 4GB of memory per CPU core and two 32 core
processing units per node, resulting in a total capacity of 64 CPU cores and 256GB of
physical memory. Both cases only required 10 generations for sufficient optimisation
to be achieved before the process was terminated. As there were less than half the
number of phenotypes evaluated each generation, this directly equates to an almost

double increase in efficiency of the system, taking half the time to complete!

Based on these conclusions, it is decided that for any subsequent tests and variations
in the genetic algorithm setup, the five-phenotype model will be used. The effect of
this decision increases the computational efficiency, allowing for better turnaround
of the method and in the future, allows the method to be more accessible by other

users of the method, due to the reduced computational requirements.
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5.4.1.3 Sampling Count Comparison - TSR 2.29, p = 30%c, t=15%c

Another method of potentially optimising the genetic algorithm’s computational
efficiency is to test if changing the sampling points will be beneficial to the overall
performance of the algorithm. Two scenarios are compared, labelled as 10S and 24S.
The 10S case implies ten sampling positions, or every 36° of azimuthal rotation the
camber value is defined, whereas the 24S case samples/optimises the camber every

15° of rotation.

This computational efficiency gain is based on the same premise as earlier
subsections of this chapter: reducing the number of simulations will reduce the

computational time as each simulation is approximately the same duration.

Figure 5-6 and Figure 5-8 show the difference in the single blade moment and
optimised camber value respectively. Note that there are some gaps in the curve for
for optimised blade moment, this is due to spikes in the output file generated in
ANSYS Fluent, which would cause the resultant curves to be misleading. These spikes
coincide perfectly with the location of the optimisation points in the UDF, but there
is no significant change in the camber across these points, suggesting some sort of
unrealistic mathematical error at the exact instance the rate of camber deformation
changes. An additional figure is seen for the sake of transparency in Figure 5-7, which
contains the original raw data from ANSYS Fluent before it was pre-processed. This
is emphasised by the lack of spikes seen in the moment of the 24 sample count
method’s downstream period of rotation, wherein the blade deformation is more

gradual and not as sudden.
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Figure 5-6: Effect of Sampling Count on Optimised Turbine Profile.
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Figure 5-7: Raw CFD data for Sampling Count effect.

360



Camber Values vs. Azimuthal Angle for Sampling Count Comparison
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Figure 5-8: Impact of Sampling Count on Optimised Turbine Camber Profile

Alternatively, one could use predetermined optimisation positions. Rather than
optimising the camber every n degrees of azimuthal rotation, the user could consider
the impact of simply optimising the camber at the desired optimisation position. For
example, the potential single position optimisation candidates could be the middle of

the downstream stroke (260°), or at the peak moment position (100°).

As a result of the GA configuration investigations, the proposed GA techniques that
will be carried forward for the remaining studies will be to use 10 sampling points
(every 36°), with 5 phenotypes within each optimisation generation and randomised

crossover.

5.4.2 Aerofoil Variations

Moving from optimising the efficiency and testing the limitations of the genetic
algorithm, the next logical step is to study the effects of altering the aerofoil
constraints of the genetic algorithm. As was described in the introduction of the

thesis, it is mechanically complex to design a blade mechanism that can alter the
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blade thickness, and extending the chord length could have significant structural
implications for the turbine. Therefore the aerofoil constraints investigated are all
components of the camber—namely the position of max camber and whether it is
better suited to only have the leading edge deforming, the full blade length
deforming, or only the aft edge deforming (similar to what was described in the thesis

introduction).

5.4.2.1 Position of Maximum Camber

The first consideration for aerofoil variations is the position of the maximum camber,
defined as a distance along the chord line, such as 20% from the leading edge to the
trailing edge, 30%, etc. Altering the aerofoil’s position of maximum camber has

significant effects on the aerofoil’s aerodynamic performance.

It is theorised that by shifting the position of the maximum camber towards the
leading edge, the aerofoil could be pointing into the direction of the incoming flow
better, reducing the incident angle of the flow on the blade, especially at high angles
of attack. This is a result of the camber line (which is centered in the aerofoil along
the blade profile from leading to the trailing edge) potentially being parallel to the

incoming flow, allowing for smoother airflow over the blades [111].

A potential downside, however, from the dropped leading edge of the turbine blade
is that the overall curvature of the aerofoil is very high. This will create a sizeable
curvature of the flow, which has the potential to increase the aerofoil’s lift
generation, but also comes at the cost of an increased pressure gradient on the
aerofoil’s boundary layer. The position of maximum camber will also be the location
of maximum aerofoil curvature, and can therefore be very disruptive to the turbine
performance—if this position is too close to the leading edge, it could result in larger
regions of the blade being separated and lead to stall at lower angles of attack than if

the position of maximum camber was shifted towards the trailing edge.

To investigate these hypotheses, the genetic algorithm aerofoil constraints for the
position of maximum camber was altered and tested at a series of different positions

of maximum camber (denoted by the letter p in common notation when discussing
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NACA aerofoils). Figure 5-9 shows the results of the moment across the turbine’s
rotational period for the tested positions and provides interesting insights into the
effects of altering the position of maximum camber. The first clear conclusion is that
the 20%c case performed the worst among all of the tested maximum camber
positions. This ties in with the theory that if the position of maximum camber is
shifted too far forward, a more significant amount of the aerofoil will stall—resulting
in a drop in the lift and consequently a reduction in torque. The significant stall can
be seen from the peak @ 90° azimuthal angle, through to around 126° where the
aerofoil recovered slightly. The stalled region is still better performing than the
NACAO0015, but the overall trend in the moment generation is very similar, suggesting
that the position of maximum camber is too close to the leading edge. The 50%c
maximum camber position seems to support this conclusion, as shifting the position
further back might allow for a gentler curvature of the blade, resulting in less stall of
the aerofoil. In fact, from 0 to 180 degrees, the trend of the moment generation plot
almost mirrors the theoretical angle of attack plot for a VAWT blade (described in

Figure 1-6), reinforcing the conclusion that the blade has not stalled.

Deflection Center Comparison
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Figure 5-9: Deflection Centre Influence on Torque Profile

137



Figure 5-10 shows the camber value of the optimised aerofoil throughout the turbine
rotation. Each vertex in the figure represents the actual camber value that was
optimised by the genetic algorithm, with linear interpolation between the points.
Interestingly, the optimised azimuthal position is identical for the 30%c and 50%c
aerofoil variations before the 50%c position continues to increase in camber at 108°
whilst the 30%c position camber decreases slightly, as a result of the improved
separation in the 50%c case. 144° has the opposite result, but interestingly this is not
reflected in the blade moment, with the 30%c blade having a larger deflection, but a
moment of almost half that of the 50%c blade! This is a result of the optimisation case
not considering the potential consequences of it's optimisation i.e. the 108°
optimisation of the 30%c blade is the best option, but this could result in a less
energetic flow impacting the blade at the next optimisation position (144°) resulting

in a poorer blade torque, but potential for a larger blade camber.

Camber Values vs. Azimuthal Angle for Genotype Count Comparison
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Figure 5-10: Position of maximum camber effect on the turbine camber profile
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Looking at the flow snapshot at these two optimisation points (72° and 108°), there is
clear differences in the velocity of the airflow, particularly in the wake and the
magnitude of separation that the blade experiences. Comparing the velocity contours
at 72° first, seen in Figure 5-11 and Figure 5-13, demonstrates that the optimised
camber profile is very similar in performance at this point, regardless of the aerofoil’s
position of maximum camber, seen by the almost indistinguishable differences in the
aerofoil’s wake. The separation point appears to be approximately around the
position of the maximum camber, which is understandable, as that is the position

where the rate of the local blade normal angle is changing the most, implying the

potential for an adverse pressure gradient is increased at that position.

Figure 5-11: Velocity contour for aerofoil optimised at 72 degrees with a 20%c maximum camber
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Figure 5-12: Velocity contour for aerofoil optimised at 72 degrees with a 50%c max camber

Figure 5-13 and Figure 5-14 show the velocity contours for the 20&c and 50%c blades,
respectively, at 108° azimuth. They tell a significantly different story than the 72°
optimisation position, as the wakes and separation points are different! For starters,
the 20%c case had an optimised camber of only slightly above 0, whereas the 50%c
case had a camber magnitude of 6%c! The 20%c case is lower as all other camber
values resulted in worse tangential force generation, due to significantly increased
flow separation and increased drag due to the larger region of low-pressure wake.
Conversely, the 50%c position had more of the blade attached (albeit not much more),
resulting in a later separation and reduced separation bubble size and magnitude.
The magnitude is lower compared to the 20%c case, displayed by the lack of red
velocity region, whereas the high-velocity region in the 20%c case signifies a much

stronger vortex in the wake of the adverse pressure.
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Figure 5-13: Velocity contour for aerofoil optimised at 108 degrees with a 20%c max camber
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Figure 5-14: Velocity contour for aerofoil optimised at 108 degrees with a 50%c max camber

5.4.3 Half Blade Deflection Model

The two regions of camber deflection have two different reasons for improving the
turbine blade performance. When the leading edge is pointing into the flow

direction, it reduces the adverse pressure and assists to reduce the separation on the
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suction side of the turbine blade [112]. By increasing the blade curvature in the
trailing edge region, it effectively increases the camber of the aerofoil and, as such,

increases the circulation that the blade will impart on the fluid flow.

The impact of each respective region of deformation is investigated to observe the
impact of each region separately, and to understand how they impact the flow
structures. This is particularly useful when considering the validity of this method in
the context of vertical axis wind turbines, as they are very sensitive to the blade’s
incoming flow conditions such as swirl, angle of attack and energy [113]. This was
achieved by creating a new version of the UDF, which simply specified that dy, = 0
in the section of the aerofoil that was intended to remain stationary. The adapted
formulae for the deflection magnitude are seen in Equations 5.2 and 5.3, where the

symbols are the same as described in Sections 0 and 03.3

m 5.2
dy, =——=Q2px — x?)|x < ’
For Leading Edge Only Deformation: Ye pz( P ) x;p:c
dy. =0 rEpre
dyC:O x<prc 5.3
*
For Trailing Edge Only D tion: x—pe\* 3
or Trailing Edge Only Deformation dy, = —mé (c—gc_) X=p*c

This UDF version was utilised to run the genetic algorithm optimisation process

much the same as the other methods implemented so far.

Figure 5-15 shows the instantaneous single-blade moment through the turbine
rotation. There are three lines presented: a solid line for the standard NACAX515
aerofoil with continuous deflection from the leading to trailing edge through the
turbine rotation, a dashed line for the result of only deforming the forward half of the
turbine blade up to the position of maximum camber, and a dotted line showing the
results of deflecting only the rear half of the turbine blade profile starting from the
position of maximum camber. All three lines use the position of maximum camber
as half chord, therefore for the 50c_LE and 50c_TE curves, the static part of the blade
will remain to have the same shape as a standard NACA0015 aerofoil. Interestingly,

the LE deformation model is almost identical to the NACA0015 up until 90° azimuthal,
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at which point the blade chord is perpendicular to the wind direction, before being
significantly improved for most of the rotation, before lining up with the NACA
profile again at ~330°. Conversely, the TE only model starts slightly higher (~2Nm
more) than the NACA model, but then is lower from ~30° until 100° azimuthal, and
maintains that trend through the remainder of the rotation, with a particular increase
in the downstream half of the rotation. Both these findings suggest that the LE model
assists with reducing stall at the high angles of attack experienced in the upstream
rotation (0° —180°), but then the trailing edge model can extract more energy in the
downstream rotation, either due to the reduced energy extraction in the upstream
rotation, or due to simply improved aerodynamic efficiency in the downstream
rotation. Overall, the LE model has the highest average moment generation, followed
by a ~0.5Nm reduction for the NACAX515 model, then another ~0.5Nm reduction for
the TE model, and then finally a comparatively large reduction for the standard

NACAO0015 aerofoil of ~2Nm.

As a result, although the LE model has marginally better average moment than the
NACAx515 model, the larger variance in the moment generation would lead to a
larger structural fatigue on the blade. The NACAx515 model appears to strike a
balance between the LE and TE models, namely; the reduced upstream performance
of the TE model, followed by the impressive performance of the LE model from 90°

to 180°, before the improved downstream performance of the TE model.
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NACAQQ15 vs GA Optimised Transient Camber Profile for Deflection Sections
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Figure 5-15: Moment Distribution for a Standard NACA Aerofoil Shape, Leading-edge only
Deformation, Trailing-edge only Deformation and combined NACAx515 deformation model.

Figure 5-16 shows the camber magnitude profile of the LE and TE optimisations. The
vertices signify the optimised azimuthal positions, and linear interpolation is used
between each point, as has been shown (i.e. Figure 5-3, Figure 5-5 and Figure 5-10) in
the chapter. The dotted line represents the TE only deformation, the dashed line is
the LE only deformation, and the solid line represents the deformation based on the
traditional NACA 4 Series formulation. Interestingly, at 36°, the NACA and LE model
have the same camber magnitude, before the LE model increases to 10%c, and the
NACA model is slightly reduced (suggesting better stall resistance of the LE model)
but then the opposite is seen at the following optimised position, with the LE model
slightly lower than the NACA. The lower LE than NACA could be a result of the LE
model having a rapid loss in lift from the previous position, but then the trend returns

at 108° azimuthal.
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NACAQQ15 vs GA Optimised Transient Camber Profile for Deflection Sections
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Figure 5-16: Camber deflection magnitude profile for the standard NACAX515 Profile, Leading
Edge only Deformation and Trailing Edge only Deformation.

5.4.3.1 Summary of Findings

Based on the study of the genetic algorithm variations, the best camber profile was
found using the 5 Phenotype, 10 Samples with Randomised Crossover techniques
with a deflection center of 50%c. This camber profile is seen in Figure 5-10, and
allowed for a significant increase in the average blade moment from 1.42 Nm to 3.56
Nm! Figure 5-17 shows the incredible improvements in average turbine blade
moment, with an increase of 250.7% for the best configuration, and even 178.9% for
the worst GA configuration investigated. These increases were all primarily due to
the reduced stall magnitude of the optimised turbine blade profile, resulting in
significant improvements in turbine performance in azimuth range from 100° - 180°.
The optimised profiles also provided some improvements over the standard

NACAOQ015 aerofoil in the downstream turbine rotation from 180° = 360°.
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Figure 5-17:Average Turbine Moment over one period of rotation

5.4.4 Optimisation of VAWT blade camber profile at TSR =1.5 &

TSR =3

Due to the extensive number of genetic algorithm parameter comparisons made in
this aerofoil parameter study, including the genotype count, sampling count and
maximum camber position, only the optimal configuration is selected for
comparison at alternative TSRs to the NACA0015. This was shown to be the 5-
genotype model, with 11 optimisation positions and the position of maximum camber

at 50%¢c.1

To ensure the validity and the understanding of the limitations of the transient
simulation genetic algorithm technique, it was tested at a lower tip speed ratio of 1.5
and at a higher tip speed ratio of 3. The primary consideration in comparison to a tip

speed ratio of 2.29 is the much higher angle of attack that the turbine blade profile
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would experience at low tip speed ratios and the lower angle of attack at the higher
tip speed ratio of 3. The secondary comparison is the difference in Reynolds Number
(as aresult of the change in airspeed that the blade experiences) at different tip speed
ratios, as it is well known that the Reynolds Number directly influences the lift and

drag experienced by an aerofoil section [114].

Examining the 1.5 tip speed ratio case first, the torque against azimuthal angle plot
can be seen in Figure 5-18. The clearest improvement is in the mean torque that the
blade experiences, increasing from 0.05 -> 2.8 for the optimised camber profile
compared to the non-deforming NACA0015. The primary region of the moment
contribution is from 225° to 360° where the turbine blade experiences high angles of
attack, but also experiences a lower Reynolds number due to the reduced flow
velocity that is experienced in the downstream half of the rotation. The optimised
profile has a lower torque contribution in the 180° to 225° rotational region, which is
a result of the optimised deformation profile not experiencing the same high
intensity vortex shedded from the blade that is carried downstream which is
exhibited in the symmetric NACA0015 case. The lack of vortex is a result of the change
in the upstream rotation of the optimised profile reducing separation, and therefore
resulting in a more uniform trailing flow field experienced by the deformed blade.
The reduction in moment generation could also be a result of a lower mean flow

velocity due to a greater power extraction from the flow in the upstream region.
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NACAOO015 vs GA Optimised Transient Camber Profile @ TSR = 1.5

15 =
T —— NACADO015
—— GA Optimised Transient Camber Profile
10—
SN
D  —
_5  —
10 =

S tr °r 11
0 50 100 150 200 250 300 350

Figure 5-18: Comparison between the Transient Genetic Algorithm Optimised Camber Profile and
Symmetric NACA0015 Turbine Blade Profile at TSR=1.5

Figure 5-19Figure 5-18 shows the deformation profile’s moment generation in
comparison to the non-deforming NACAO0015 aerofoil at a higher tip speed ratio
scenario (TSR = 3). The results show an interesting result wherein the upstream
section is reduced in the power region, but the downstream region is entirely more
performant in the optimised profile. This could be a consequence of the optimisation
process only being carried out on a single period of rotation, and then running the
optimised profile for 3 full turbine rotations before sampling the output. Therefore,
the increased power generation in the downstream region could result in a coupling
to the flow that wouldn’t be seen in the first rotation (where the optimisation is
undertaken). As a result, the overall turbine performance of the optimised aerofoil is
slightly lower than the NACA0015, but the reduced variance in power generation
between the upstream and downstream portions of the rotation could assist in the

mechanical fatigue that the blade experiences.
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NACAOQ015 vs GA Optimised Transient Camber Profile @ TSR = 3
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Figure 5-19: Comparison between the Transient Genetic Algorithm Optimised Camber Profile and
Symmetric NACA0015 Turbine Blade Profile at TSR=3

Figure 5-20 shows the camber profile for both tip speed ratios, which provides insight
into the potential causes of the moment difference with the TSR=2.29 case. Firstly,
for TSR=1.5 there is a rapid change in camber between 108° and 144° , which
interestingly keeps the moment above the NACA0015. This location also coincides
with the rotational position where the blade starts to build up significant separation,
which could be the reason that a highly negative camber is converged upon; in an

attempt for the blade to reduce the separation.

The TSR=3 case interestingly has a lower camber at 72° than the TSR=1.5. Which is
surprising, as one would expect the lower angle of attack and higher Reynolds
number for TSR=3 to allow the blade to increase camber before separation, but this
does not seem to be the case. This lower camber could also lead to the reduced
moment generation from 0°-180° than the NACA0015, as the dynamic profile change

could increase the profile drag faster than the increase in lift generation.
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Camber Values vs. Azimuthal Angle for Alternative Tip Speed Ratios
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Figure 5-20: Camber profile for optimisation at TSR = 1.5 and TSR = 3
5.4.4.1 Summary of Findings

The transient GA method improved the average tangential force coefficient
significantly for the lower tip speed ratio scenario (TSR = 1.5), but had a minor
reduction in the higher tip speed ratio scenario (TSR = 3). This is a result of the GA
being run over a single turbine rotation, meaning that the changes in upstream
windspeed (as a result of blockage effects from the optimised turbine’s increased

downstream energy extraction). The only method to circumvent this
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5.5 Summary of Findings

This chapter has shown the strength of utilising the transient CFD simulation of a
VAWT for evaluating the optimal camber at user-specified positions in the turbine’s
rotation. Whilst other work has considered using optimisation techniques to change
the aerofoil shape to improve the overall torque generation, the blade shape that they
generate typically will improve either the upstream or downstream region whilst
performing worse in the other region. This work introduces a new performance-
inspired optimisation procedure, as each position’s optimisation is used as a starting
point for the next optimisation, thus allowing for continuous feedback considering
the instantaneous flow fields at each optimisation position. As a result, almost all the
optimised positions perform better than their symmetric NACA0015 counterparts

within the GA optimisation.

A variety of configurations for the genetic algorithm setup was evaluated, including
randomisation of the crossover mutations, number of samples per rotation and
reducing the number of genotypes per optimisation generation. It was found that a
reduction in genotype count from 11 to 5 reduced computational costs significantly,
but had negligible impact on the optimised profile’s power generation capabilities.
Aerofoil variations were also considered including the position of maximum camber,
and having a leading or trailing edge only deflection. As a result it was seen that the
leading edge deflection was the largest contributor to power generation for the
bending profile as a result of the reduced separation that it allowed at the tested

operating conditions.

All optimised scenarios significantly improved the turbine’s performance in the
power generation, and reduced the variance in the power generation throughout the
rotation by improving the downstream power generation significantly. This will have
a knock-on effect of reducing the wear experienced by the turbine due to reduced
fluctuations in the aerodynamic loading. Also, there is the potential that the
reduction in separation of the turbine could also contribute to a reduction in the noise

generation.
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6 Artificial Neural Network Surrogate for
the Optimisation of the Aerofoil Camber

Deformation Profile

6.1 Introduction

This chapter leverages the unique capabilities of an artificial neural network for the
optimisation of turbine blade profile aerofoil camber prediction. The artificial neural
network can swiftly provide an estimated instantaneous torque value by inputting the
operating parameters of a desired turbine design, including azimuthal position, tip
speed ratio and wind speed. This torque and camber is fed into a genetic algorithm
to generate the optimal aerofoil design at the desired azimuthal position, which is

then implemented into an azimuthal position-dependent camber profile.

The training data provided is the aerodynamic efficiency (lift-to-drag ratio) of a two-
dimensional airfoil section in a steady-state airflow. Each data point has a different
Reynolds number and angle of attack, which corresponds precisely with the tip speed

ratios, windspeeds, and azimuthal positions.

The model’s fitting accuracy is evaluated using mean square error and is compared
against the theoretical torque that XFOIL would predict, using the workflow
described in Chapter 1. The artificial neural network-based genetic algorithm camber
optimiser has shown strong consistency and high degrees of performance
improvement for the turbine blade. The comparison provides valuable insights into

the efficiency and accuracy of the ANN in predicting optimal airfoil designs.

Finally, the ANN profile is compared to the employment of both the static GA and
transient GA to assess the vertical axis wind turbine performance improvement and
the total computational efficiency, highlighting the promising potential of ANNs in

enhancing the wind turbine performance, as well as considerations that should be
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made when designing and utilising artificial neural networks for aerofoil

performance prediction.

The genetic algorithm showed promise in achieving the optimal camber of the
turbine blade profile for specific testing parameters, i.e. tip speed ratio, free stream
velocity and azimuthal angle, but transient optimisation such as that employed in
Chapter 2 required significant amounts of simulations to achieve the optimal camber
at each localised azimuthal position, and the method in Chapter 1 struggled with

optimising the camber position at high angles of attack.

This limits the accessibility of using the transient genetic algorithm for optimising
VAWTSs, as the user would require significant computational power or time for every
specific optimisation position. For example, if the designer wants to optimise the
camber magnitude at an azimuthal angle of 36° for a freestream of 7m/s and a tip
speed ratio of 2.29 (one of the scenarios that was optimised in the previous chapter),
they will need to run the transient genetic algorithm optimisation workflow for that
specific condition. Then, if one wants to see the difference between a higher and
lower tip speed ratio, one will have to rerun the optimisation algorithm with different
optimisation conditions. There is no opportunity to use the previously tested
conditions to help inform the current optimisation. If we take one of the previous
chapter’s scenarios, 36 generations of optimisation generations, for 11 genotypes,
each generation will have a simulation count of 396! For this to be repeated at another
tip speed ratio would double the number of simulations and for a total of 792

simulations to only optimise two positions!

This is where the potential for employing another form of optimisation, such as
Kriging and Response Surface Optimisation, provide a potential advantage. These
methods are used to create predictions based on trends in their optimisation dataset
to allow a user to input some variables (such as tip speed ratio, wind speed and
azimuthal position) and have an output provided (in the scope of this thesis, that

would be a tangential force value).

These optimisers have their limitations, of course; Kriging is typically poor at

optimising multiple variables, and Response Surface Optimisation (RSO) is very
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susceptible to being trapped in local maxima or minima due to the methodology
[115]. Kriging and RSO are typically limited to the number of variables that can be
used to create the optimised design. On the other hand, artificial neural networks
(ANNs) can have any number of potential inputs, hence their common usage in

analysing massive datasets [116].

ANNs can be split into subcategories, with two main themes referring to how the
model learns. The method of learning is referred to as supervised or unsupervised
training, which has an ironic implication in that for it to be supervised or
unsupervised suggests it needs to be carefully monitored as if teaching a young child,
when neither method entails any supervision in the actual training process, but
instead in the way that the data is used to train the setup. Supervised learning refers
to using labelled training data, but unsupervised learning does not use labelled
training data. The three main tasks of unsupervised learning are clustering,
association, and dimensional reduction [117], whereas supervised learning has two

primary categories; classification and regression [118].

6.2 Machine Learning Model

The approach used in this chapter to optimise the turbine camber profile has the
same overall process as in the previous chapters; pre-process the
geometry/simulation, generate the torque coefficient, and feed the camber and
equivalent torque into the genetic algorithm optimiser. The novelty of this approach
is to utilise an artificial neural network in place of XFOIL or a CFD simulation for
generating the torque value. Many of the tasks needed to generate the artificial neural
network are, therefore, a result of the automation required to easily generate, model

and analyse the dataset.

First, a baseline domain was created and meshed manually, and it was modified by
all data points as required within ANSYS Fluent. To generate the dataset, the main
steps in the flow are to submit a substantial amount of 2D aerofoil CFD simulations
with variations in the flow conditions, modify the dataset to normalise all data points

(for efficiency of the machine learning), define the machine learning model, fit the
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data set to the model (forward-propagation), evaluate the model (backpropagation)
against the test dataset to quantify the weights of all the nodes per layer and repeat
the training until the error between the predicted and tested values is sufficiently
small based on the evaluation criteria decided by the engineer. The trained model
can then be utilised to predict the torque for any set of operating conditions that it
was trained on. In this case, the training data is the tip speed ratio, camber,
windspeed and azimuthal position, which is modelled to estimate the torque of the
aerofoil profile. Once trained, predicting the torque coefficient is almost
instantaneous, resulting in the potential to create a turbine blade camber
deformation profile in almost real-time, potentially significantly reducing the overall

energy costs in computing when optimising multiple positions.

6.2.1 Dataset generation method

It is crucial to establish a dataset for the training model that is sufficiently broad to
cover a variety of optimisation scenarios, but it is equally important to ensure that
the difference between the data points is not excessively large. If the datapoints are
too sparsely distributed in the operating conditions range, it could result in poor
generalisation of the model, and if they are too dense it will increase the

computational cost significantly, and risk overfitting the model.

Space optimal filling [119], a technique used for design of experiments to maximise
breadth with the least experiments possible, is used to generate a series of
randomised two-dimensional CFD runs of a static two-dimensional aerofoil with
different operating conditions equivalent to the theoretical flow conditions that a
rotating turbine would experience. Whilst it is understood that static aerofoils do not
experience the dynamic flow physics of a VAWT, the computational cost of producing
a VAWT ML prediction model would be exorbitant as every possible datapoint would
need a transient simulation with very careful consideration for the turbine operating
parameters, particularly the azimuthal angle of the datapoint. Each CFD simulation
is solved to a satisfactory convergence level of 1le-4, and the aerodynamic efficiency

is appended to a dataset compiling operating conditions and resultant torque value,
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which is used for training the artificial neural network. In this thesis, the dataset's
variables would be the tip speed ratio, windspeed, azimuthal angle and camber as
inputs and the blade torque as the output. Some example techniques for generating
the parameters of the dataset are the Full Factorial, Fractional Factorial design and

latin hypercube sampling.

6.2.1.1 Full Factorial

The full factorial method [120] employs changing only one variable between each
data point. This is the most robust and extensive method for designing an experiment
plan, but also the costliest. To appropriately quantify the data set, it requires a
factorial number of experiments, hence the name. In an example distribution, if one
would like to test two variables, say the tip speed ratio and camber, but one wanted,
say, ten samples for each variable, then this would require 100 experiments to cover
all of the possible combinations of the two variables. The mathematical
representation of the number of possible combinations is straightforward and is seen
below in Equation 3.1, where N is the number of samples and Y is the number of

variables.

Combinations = NY

6.2.1.2 Fractional Factorial Design

This is a derivative of the full factorial model but uses a reduced subset of the sample
range. Instead of sampling say 10 different camber values from -10 to 10, we could
just do 3 samples that span the domain, but with larger spacing between each value,
i.e. the 3 values for camber could be -10, 0 and 10. This would still result in several
combinations that are directly proportional to the testing range but would allow for
a significant reduction in the computational expense for dataset generation due to
the reduced number of experiments. Of course, one of the major downsides of having
a uniform distribution of samples is that the full factorial will always be the most

robust sampling method as it covers all potential combinations of the variables within
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the experimental domain, thus providing a more thorough and robust dataset to train

the machine learning model on.

6.2.1.3 Latin Hypercube Sampling

Latin hypercube sampling [121] is a method for generating a semi-randomised
sample of parameters. The randomisation allows for the reduction in the bias of the
dataset, but the breadth of the design is optimised such that it spans the full breadth
of the search domain. The true advantage of the Latin hypercube sampling, however,
is its ability to utilise any number of design parameters, making it particularly suited
and often used in the generation of datasets used for the training of machine learning

models, due to their expansive training variables that are used.

As the turbine’s characteristics in this case are known already (the turbine, blade
profile chord length and azimuthal angle) it is possible to derive the angle of attack
and local windspeed on the turbine blade when provided with the tip speed ratio, free
stream velocity and azimuthal angle, utilising the equations outlined in Section 2.4.
The aerofoil characteristics used to characterise the dataset in this study is simply the
camber magnitude. As was found in previous work (namely Chapter 4) the optimal
position of the maximum camber is at the half-chord of the aerofoil, and therefore as
such, the position of the maximum camber is set as constant for all the testing
conditions. Furthermore, this study only considers the effects of camber, rather than
including the thickness distributions of the aerofoil (maximum thickness as
percentage of chord), to provide findings that could be relatively easily implemented
into future VAWT designs that utilise a NACA0015 blade and can be built and
controlled in a relatively straightforward manner. Future work should include
increasing the breadth of the testing dataset to train the model on more potential

turbine designs and improve the breadth of application of this technique.

This generated dataset is used to train the ANN model, as these input variables allow
for the widest range of application for this turbine. If one wished to optimise a
different profile, this model should still be valid even at different operating

conditions such as wind speed, tip speed ratio and chord length.
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6.2.2 Two-dimensional static airfoil simulation for Machine

Learning Model Generation

To generate the training data for the machine learning model, a Python script was
created to automate the geometric creation, make the mesh, set up the simulation,

and calculate the solution data.

Whilst it is possible to automate this process using XFOIL, as was done in earlier work
(Section 4) there would be limitations when reaching the edge cases, such as the high
stall angles with low Reynolds number and large camber. It was, therefore, decided
that ANSYS Fluent would be used to evaluate the performance characteristics of each
data sample. This also provides the additional option for further work to be
implemented wherein other characteristics can also be implemented within a
machine learning workflow, potentially utilising unsupervised learning to find
correlations between characteristics such as separation, vortex shedding frequency
and overall turbine performance. Furthermore, using ANSYS Fluent enables the
additional option to implement a qualitative approach to the candidate comparison,
as the user can infer how the different turbine operating conditions and design
choices can impact on the overall flow field, not only the quantitative performance

improvements.
The general workflow is as follows:

i.  Initialise the array of candidate simulations for the dataset generation
ii.  Use the dataset parameters to generate the appropriate geometries
iii.  Mesh the geometries created in step ii
iv.  Setup the simulation using operating conditions assigned in step i
v.  Solve the flow field using the mesh from step iii
vi. Take the relevant data from the simulation results and append to the original
dataset

vii.  Generate the Al model for the predictive simulation
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viii.  Utilise the AI model as the torque prediction tool within a genetic algorithm

to find the optimal camber for the desired operating parameters.

The design plan is to create a highly structured flow domain around the aerofoil,
controlling the stability of the simulation well and the placement of the elements to
maintain the appropriate level of mesh resolution required in key areas of the flow
field. The angle of attack would then be controlled by changing the components of
the incoming airflow and the lift and drag forces used to calculate the blade’s torque

generation.

The entire geometry, mesh and solution steps is controlled through the PyAnsys
libraries, allowing for the easy parameterised automation of the potentially
thousands of datapoints that will be generated for the machine learning training

dataset.

The geometry generation script takes the provided NACA aerofoil parameters
(camber, thickness, maximum camber position and chord length), allowing for any
NACA 4-Series aerofoil to be generated as required when creating the training dataset
simulations. This script creates a list of tuples containing the XY coordinates of the
aerofoil surface points. Initially, this script made very blocky curves with sharp
edges, so it was altered to create segment lines, merged into a single spline of best fit
in Spaceclaim [122]. If a flat trailing edge were to be used, it would be necessary to
implement some form of flag in the geometrical construction to label the co-
ordinates of the trailing edge node for both the pressure and suction surface, and
create a line between them, and a line to split the decomposition into an additional

surface.

There have been some investigations that look into the shape of the trailing edge and
its influence on the aerofoil performance prediction accuracy [123][124][125], of
course, an infinitely sharp trailing edge is not manufacturable [126], but the flat
trailing edge can lead to significant inaccuracies in the aerofoil’s wake from the
increased separation compared to a rounded or sharp trailing edge, especially in the
stall region. The domain decomposition includes a vertical split at the aerofoil trailing

edge and 10 percent chord length downstream of the leading edge to help reduce
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element skewness; a split also spans from the O-Grid’s curve downstream of the
boundary’s midspan to the aerofoil leading edge, and from the trailing edge to the
midspan of the furthest downstream boundary of the domain. Figure 6-1 shows this
domain region for clarity. This is decomposed into quadrilateral regions to allow for
strong mesh control to create a fully structured conformal mesh with a maximum y-
plus value of 1, as is required by the k — w turbulence model [127]. Figure 6-1 shows
the resulting domain decomposition after implementing the philosophies discussed,

with the shared edges visible as the blue lines.

Figure 6-1: Preliminary 2D CFD Domain Block Decomposition
The sizing on all the topologically shared edges was used for implementing a gradual
inflation from the aerofoil surface, alongside controlling the number of divisions
along the aerofoil edge, thus allowing for a more straightforward study of mesh

independence and control of the overall mesh resolution. This also makes it easier to
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control the aspect ratio of the cells and y-plus in the boundary layer regions. One of
the most significant benefits due to the structured mesh being fully defined, however
is actually in the speed of the meshing and the simulation [128]. A structured
quadrilateral mesh also provides the benefit of reducing the numerical diffusion
[129], particularly in the flow regions that are typically linear, such as within the

attached boundary layer [129].

Upon saving the generated flow domain geometry, it meshes within SpaceClaim for
the controlled meshing along the named selections generated in the geometry file
using the edge sizes described before, including a 0.2mm element sizing on the
aerofoil surface and all corresponding edges of the domain which are topologically
parallel to the aerofoil. This element sizing reduces skewness when allocating a first

cell height of 1.94e-5m on the aerofoil surface to ensure a y+ < 1.

As the named selections are pre-defined in the geometry generation stage, they are
used to specify the edge sizes that are unique to each region more easily. The final
mesh is then imported into an ANSYS Fluent case with the boundary conditions set
up for the simulation. The conditions include symmetry on the top and bottom edges
of the solution domain to reduce the wind tunnel effect of having a domain that is too
small, a velocity inlet and a velocity outlet upstream and downstream of the aerofoil,
respectively, and no-slip walls on the aerofoil edges, which is necessary to enable the
viscous flow effects for proper aerodynamic evaluation, such as the circulation
needed for generating lift. If the aerofoil walls were slippery (no-shear stress on the

fluid-wall surface), then the lift and drag of the aerofoil would not be well captured.

6.2.3 CFD Validation and Verification

In order to ensure that the simulation setup is effective and accurate, it is compared
against the trustworthy source of Elsakka et al.’s study on the ‘Angle of attack
estimation for a VAWT turbine’ [80], which is in turn validated against the work of Li
et al. [130] on the 3D aerodynamics of VAWTs. There are two main methods of
simulation accuracy comparison that were used; Lift and Drag polar comparison, and

Pressure Coefficient along the aerofoil surface.
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Using the pressure coefficient on the aerofoil surface is a more robust method than
using lift and drag, as it allows for more nuanced evaluation such as if more
refinement is required in certain regions around the blade. Using the pressure
coefficient distribution provides a more nuanced understanding of the flow
characteristics, as the lift and drag are calculated directly from the aerofoil surface
pressure distribution, but don’t provide the details about how the flow is behaving,

especially at higher angles of attack [131].

6.2.3.1 Preliminary Design

The initial design was to have a common C-Grid for the domain shaping which
connects with a rectangular section, seen in Figure 6-1. This proved to be a poor
design choice as the shaping resulted in large skewness and poor orthogonal quality
as the elements were blocked between the arc inlet and the aerofoil edge. Some

alternative domains and setups were studied including:

i.  Aflattrailing edge - 5c upstream arc, 7c downstream arc
ii.  Flat trailing edge + Blocked Domain - Worse convergence than FF, same
domain
iii.  Flat trailing edge with blocked domain - 10C upstream, 30C downstream

iv.  Sharp trailing edge with blocked domain - 10C upstream, 30C downstream

However, after much refinement, it was found that it was not possible to create a valid
comparison to the published results, and as such, the structured meshing approach
needed a rethink. This is mentioned merely for the reader to avoid making the same
design decisions if undertaking a verification study of their own, so the pressure

coefficient plots for the poor designs will not be included.

6.2.3.2 Final Design

The best course of action would be to replicate the 2D design provided by El Sakka et
al. [94], as the domain methods mentioned briefly in Section 6.2.3.1 had very different
pressure coefficient plots to the published data. This consisted of an aerofoil within

a small circular domain with a structured mesh, connected by a non-conformal
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interface to a structured far field mesh which is rectangular in shape. The
geometrical design with dimensions is shown in Figure 6-2. This allowed for the
aerofoil domain to be rotated as required to the desired angle of attack without any
need to alter the inflow boundary conditions, leaving the inlet flow perpendicular to

the inlet face.

30c 50c

R 1.5¢

— c=0.225m

Figure 6-2: The 2D CFD domain with the blocking lines visible

The mesh is generated such that the first cell is sufficiently accurate to capture the
viscous sub-layer in the boundary layer, but it is also designed such that the elements
are concentrated in regions of large gradients, particularly near the blade and in its
wake. An O-Grid was also blocked around the aerofoil to assist in the transition of the
mesh, reducing the skewness and allowing for better control of the region near the
aerofoil, whilst maintaining a coarser mesh in the far field where flow gradients are
not as likely, and therefore a coarser mesh will suffice [132]. The resultant mesh sizes
include ~0.2mm element edges along the aerofoil blade and ~0.05mm edge sizing at

the curved trailing edge region to reduce the skewness in the highly curved region.
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Biased edge sizes were also placed throughout the far-field of the domain, with small
elements close to the aerofoil domain progressively increasing in size to the
boundaries. 110 divisions were allocated for all edges normal to the aerofoil surface
with a bias factor of 421 to set the first cell height to 5.4e-7m, followed by 50 divisions
in the rotating section housing the aerofoil at a bias factor of 4. This resulted in a high-
quality mesh, with the minimum orthogonal quality at 0.7 and maximum at 1. There
were 100 elements with a bias factor of 5 along the 30c length edges (vertical and
horizontal upstream of the blade), and 300 elements with a bias factor of 5 along the
50c wake edges (horizontal, downstream of the aerofoil) from the aerofoil to the
outlet boundary. An image of the full meshed domain is seen in Figure 6-3Error!
Reference source not found., a zoomed image nearer to the aerofoil in Figure 6-4,
and a zoomed image of the region near the aerofoil is seen in Figure 6-5 and Figure

6-6.

Figure 6-3: The fully meshed CFD domain for the NACA0015 aerofoil
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Figure 6-4: Domain mesh in the vicinity of the rotating aerofoil fluid zone

Figure 6-5: The zoomed mesh with blocking Figure 6-6: Zoomed in mesh around the blade
edges of the aerofoil region trailing edge with blocking edges

This final mesh was implemented into an ANSYS Fluent CFD simulation, with the

following boundary conditions:
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1. A velocity inlet at the X-Min boundary, with air at standard atmospheric
conditions, travelling at 10 ms!along the vector of [(1)]

2. Pressure outlet at the X-Max boundary.

3. No-slip walls on the aerofoil surface.

4. A non-conformal interface between the circular fluid-zone containing the
aerofoil (Figure 6-5) and the corresponding edge of the larger outer flow
domain.

5. Symmetry on the Y-Min and Y-Max boundaries to minimise any wind-tunnel

effects and prevent boundary-layer growth on outer domain edges.

The aerofoil fluid-zone is rotated by 10° clockwise to create an angle of attack of the
turbine blade section of 10° to replicate the flow conditions of the static aerofoil
simulation evaluated by Elsakka et al. [80]. Namely a 10m/s wind speed and 10° angle
of attack. The turbulence model used is the k — w SST model, which is appropriate as
the first cell height has a y+ of < 1 with the mesh sizing described, and helps to predict
the separation of the aerofoil better than the k — € or SA models that are commonly

used in aerospace applications .

Comparing the pressure coefficient along the aerofoil surface with that obtained by
the work of Elsakka et al. [80] is seen in Figure 6-7. The plot shows a very strong
agreement in pressure coefficient along the entire span of the aerofoil, and as such
this simulation’s domain sizing, mesh and simulation settings is deemed to be
properly setup and can be used for generating the machine learning dataset with

confidence.
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Pressure Coefficient Comparison
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Figure 6-7: Cp Plot Comparison from the present setup in this study compared to that of El Sakka et
al.[80]

To ensure this is the most computationally efficient mesh, that also captures the
required flow physics, a mesh independence study was performed to compare the lift
coefficients for four meshes - 260k, 350k, 585k 756k elements. The sizing variations
were implemented by changing the number of divisions on the aerofoil edge, and the
associated edges in the circular domain section as seen in Figure 6-5. Figure 6-8 shows
that there is almost no difference between the use of the two finest meshes so the
second finest mesh tested is used for all the remaining studies and the ML dataset
generation to improve computational efficiency. The 756k mesh could show a
reduction in lift by more accurately marking the separation point on the aerofoil

surface, but it is almost indistinguishable from the 585k mesh.
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Mesh Independence Study
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Figure 6-8: Mesh independency study for the 2D aerofoil simulation used as datum for generating
the ML Training dataset.
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6.3 Machine Learning Model for the Blade Torque
Prediction

This section outlines the techniques for creating the ML model, testing other existing

regression models, and evaluating the performance and validity of the ML Models.

6.3.1 Existing Regression Models

There are some available models and studies available [133], [134], [135] for
predicting aerofoil performance using a machine learning model, but there is
currently not a model that is suitable for the range of conditions that the designed

VAWT operates in.

The model is therefore trained using the sci-kit-learn library [136], which is much
more straightforward and has a high-level library, thus allowing for data scientists to
more readily focus on the actual connections in the data and outcomes instead of the
time-consuming task of fine-tuning neural networks in TensorFlow [137] and
PyTorch [138]. Furthermore, it has been seen that if the dataset generated is
insufficiently complex or sparse for the neural network to be fully utilised, thus likely
to result in strong overfitting of the data, leading to poor regression performance and
poor performance on the un-seen data. Scikit-learn [139] is used in much the same
way as TensorFlow [137] but has the entire process of hidden layers and

hyperparameter tuning that is hidden away from the user.

The scikit-learn based methodology was deemed to be insufficient, as the comparison
between the predicted and true values was significantly poor. See Figure 6-9 for the
comparison between the predicted and true values, which clearly shows that the
there is very poor fitting between the predicted and true values. A perfect fit would
match the dashed red line visible. This line is simply y=x, or in this case the
predicted value = true value, which is clearly a best case scenario in which every
predicted value is the same as the trained/tested value, but is near impossible to

achieve in practice.
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Comparison of True vs Predicted Values
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Figure 6-9: Scikit-Learn Multivariate Regression Fitting Comparison between Model Predicted
Values and True Values from the training dataset.

An already established, the trained machine learning model to predict aerofoil
performance was found on GitHub as an opensource project. This project is called
NeuralFoil and is a neural network predictor that was trained on millions of XFOIL
runs with varying angles of attack, aerofoil parameters and Reynolds numbers. This
clearly displays the significant breadth of the dataset required for generating a neural
network for a complex interweb of variables as is the aerofoil design and
optimisation. NeuralFoil runs ~10x faster than XFOIL, making the optimisation

process incredibly fast.

6.3.2 MLVAWT Artificial Neural Network

Neural networks typically have a few layers split into four categories: input, "hidden”,
sorting, and output. Figure 6-10 shows an example of the structure of a simplified

artificial neural network.
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The input layer acts as the first step between the dataset preparation and
model training, wherein the user defines the characteristics that they are
interested in. This stage also applies min-max scaling to manipulate the input
data into a form that is more efficient for the matrix operations when
employing the training model [140], and a common step is to normalize the
data to a unit range.

The 'hidden' layers in the neural network are where the coefficients or factors
of the specific machine learning model implemented are utilized to weight the
different inputs as it was trained. These layers play a crucial role in the
learning process, processing the input data and applying the learned factors
to make predictions.

The sorting layer plays a crucial role in the neural network. It categorises the
factored/scaled data and combines all hidden layers. This process is essential
for organizing and processing the data effectively, thus leading to accurate
predictions.

The output layer is the final stage of the neural network. Depending on the
specific design parameters and the user's requirements, this could be a yes or
no answer, an estimated value, or a specific category. In the context of wind
turbine design, the output layer would be regression based, so this layer would
provide the optimal camber profile for a given set of turbine operating
conditions, as the user desires. As a result of only having one optimised
variable, this layer “squashes” the nodes of the previous layers into a single
node, but it could be expanded to as many output variables as needed

depending on the scenario.



A Simple Neural Network

Input Layer Hidden Layer Output Layer

2 Investopedia

Figure 6-10: Graphical representation of the layers of a simple neural network [141]

The dataset that is generated in this application uses input parameters that are all
operating conditions of the turbine that would be pre-defined before selecting the
optimal aerofoil. The parameters used in this study are providing the azimuthal
angle, camber, wind speed and tip-speed ratio, with the output of the model being
the predicted tangential force coefficient. The range of the parameters are seen in

Table 6-1 below.

Parameter Minimum Value Maximum Value
TSR 1 5
Phi 0 360
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Windspeed 0.1 14

Camber -9.5 9.5

Table 6-1: Bounds of the Input Variables for the Training Dataset

These parameters are used to create a set of CFD simulations to generate the
tangential force coefficients for specific operating conditions, which is fed into the
machine learning model to create the torque predictor, as that is the driving force
that allows a turbine to generate power. It is possible to directly predict the power
coefficient, but that is a factor in the operating conditions, and the simplicity of taking
a value that is directly proportional to the turbine blade’s lift and drag allows for less
variance in the prediction. The model is used to replace the CFD solution stage
employed in the previous chapter’s genetic algorithm. By using the ANN to predict
the torque for a blade at specified operating conditions, it is possible to optimise the

turbine profile in under a minute instead of over the course of several hours.

The hidden layers are how the weights are calculated for each data point, with three
primary functions: tanh, sigmoid and Rectified Linear Unit (ReLU). There are many
other activation types, but they are not as commonly used. The ReLU function is the
simplest function, it simply takes a number and turns negative values into 0 and lets
the output equal the input if the value is positive. It is very efficient and allows the
network to learn quickly, but sometimes it can lead to “dead neurons” resulting in
many nodes not aiding in the training of the model if many of the inputs are negative
[142]. The sigmoid function takes a value and “squashes” it to a value between 0 and
1. This is very useful in binary classifications such as A/B Testing, but not much use
in regression as it is limited by vanishing gradients, where if the value is very small
or very large, the learning is very small, thus slowing the training down. The Tanh
function is similar to the sigmoid function but scales to -1 -> 1 instead of 0 -> 1. As it
is based around 0, it learns faster than the sigmoid function, but it is also susceptible
to the vanishing gradient problem. Leaky ReLU works similar to ReLU, but allows a
small gradient when the value of x is small, eliminating the dead neuron issue,

allowing the network to continuously learn. The mathematical representation of
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these functions is shown in Equations 6.1), 6.2), 6.3) and 6.4). A graphical
representation is also shown in Figure 6-11, where the X axis represents the input to

the function, and the Y-Axis is the function output.

ReLU(x) = max(0, x) 6.1

X if x>0

Leaky ReLU = { 01 ifx<0

1
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Figure 6-11: Neural Network Activation Functions for the Input vs Output

Four variations of the model were created and these are seen in Table 6-2. The

machine learning model’s configurations are used to investigate the effects of the
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different parameters on the efficiency of the model training and the accuracy of the
model. Due to significant advances in graphical processing units (GPU) in the last
decade [143], it is now possible to rapidly accelerate the model training process using
the GPU instead of CPU, and this is due to their thousands of parallel threads [144].
Due to the embarrassingly parallel nature and incredible matrix mathematical
efficiency of GPU computing, there are also some model optimisers built into the
most common machine learning libraries such as TensorFlow and PyTorch [145].
These optimisers are outside the scope of this chapter, but would be a worthy

investigation in future work.

Number of Layers Layers Density Layer Activation Functions
3 128 x 64 x 32 Tanh, ReLU, ReLU
3 256 x128 X 64 Tanh, ReLU, ReLU
3 128 x 64 x 32 Tanh, Tanh, Tanh
5 512x 256 x128 x 64 x 32 | Tanh, Tanh, Tanh, Tanh, Tanh

Table 6-2: TensorFlow Machine Learning Model Configurations

The tested model structures vary by changing the density of the TensorFlow model
layers including 128x64x32x1 and 256x128x64x1 nodes per layer, respectively. Both
cases also use the tanh activation in the first layer, followed by ReLU in the two
following layers. These model architectures were used to ensure that their depth
would allow for strong reflection of the underlying trends in the dataset, but also are
not too thick so that training is relatively fast due to the reduced number of variables

that the model is trained on.

As this model is a regression model, the performance and accuracy is gauged using
the measure Mean Square Error. This measures the average of the squared difference
between the predicted and actual values. The formula for MSE is shown in Equation
6.5, where y; is the target value (taken as the value in the test dataset), y;is the
predicted value and n is the number of samples. The mean squared error is used
because it amplifies any large errors in the model and penalises them significantly
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more, thus allowing the model to minimise large mistakes in the prediction [146]. The
primary drawback to this approach is the sensitivity to outliers, which can end up
affecting the model performance negatively. This was avoided by filtering the data to
only include points that were reported as converged in ANSYS Fluent, based on all
residuals being less than 0. If it is not possible to easily filter outliers from the dataset,

then it is better to use the Mean Absolute Error instead, namely.
n
1 532
MSE == (= 9) 6.5
i=1

6.4 MLVawt ANN Specification and Validation

The model was trained on 2000 simulations using the Latin hypercube sampling with
the parameters described before. An 80:20 split between the training and testing data
was created, to ensure there is sufficient data to train on, but also enough test samples
to ensure good adaptability of the model. This is the industry standard ratio split
between training and testing data. The most performant model was found to be the
thick tanh model (5 x 512 x 256 x128 x 64 x 32 x 1) with minor dropout (5%)

implemented within the model to prevent overfitting.

Good accuracy was achieved with the training model, with a very low mean square
error with a value of approximately 5e-5. The training history is plotted in Figure 6-12,
the smaller the loss the better the model is at modelling the trends in the provided
dataset. The spikes in the training history seen in Figure 6-12 are a result of
implementing dropout within the layers, which means that in each training iteration
a certain number of nodes will be deactivated, assisting in reducing the likelihood of

overfitting, but causing temporary spikes as there is a single model .
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Training History for Thick Tanh Model
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Figure 6-12: Training history for the 5 layered Tanh Activation Model

This provides much confidence that the predictions that the model makes are reliable
and can be trusted with little reservation. A comparison between the predicted and
actual values of the torque for the same inputs allows us to determine the reliability
with a great deal of certainty. This is evaluated by entering the input parameters for
the validation dataset into the ML model, and then comparing the predicted value to
the actual corresponding tangential force for those flow conditions. In an ideal case,
the predicted values from the machine learning model would match perfectly with
the tested values, that is for a given input, the prediction is identical to the
corresponding testing data. This relationship is visualised as a line with a gradient of
1 on a plot of the predicted vs true values as is seen in Figure 6-13. The closer the
grouping to the line of y = x, the closer to a perfect fit our machine learning model
is. A perfect fit would imply that for each given datapoint in the testing set, the

predicted value would be exactly the same as the actual value for that datapoint.
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Model Fit: Actual vs Predicted
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Figure 6-13: Regression fitting accuracy of the CFD based Machine Learning Model

To verify the validity of this model in the scope of VAWT blade torque prediction, it
is important to firstly quantify that the machine learning models can predict the
aerodynamic trends such as azimuthal angle and tip speed ratio, that can be observed
within Vertical Axis Wind Turbines, before utilising the models for optimisation. The
models are therefore tested for a standard NACA0015 VAWT that has been used
throughout the previous chapters, operating at a 7m/s wind speed, TSR =2.29, turbine

radius = 0.85m and chord length=0.225m

Figure 6-10 shows the torque distribution plot of the VAWT when predicted using
NeuralFoil. The first point of interest is that NeuralFoil appears to have similar
limitations with the lift and drag at higher angles of attack as was found in XFOIL.
This is reasonable however, just as a child learning from a parent, it will learn the
same traits and trends seen in the tool that it was trained on, and mimic them. In this
case, XFOIL struggles to predict the lift and drag coefficients when the aerofoil is in
deep stall due to the limitations with XFOIL, which is evident in the plot of the
azimuthal angle vs torque for a NACA0015 as shown in Figure 6-14. This figure is

generated by using the flow conditions for the theoretical angle of attack (described
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in Section 1.3.3 and using NeuralFoil to predict the torque of the blade profile at every

azimuthal angle.
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Figure 6-14: NeuralFoil prediction of the torque generation of the NACA0015 VAWT blade across
the turbine rotation

Figure 6-15 shows the distribution of torque for the VAWT when using the different
ANN models configurations that were tested. The ML models developed from the
CFD dataset have a slightly different issue, where they model the overall trend better
such as the sudden drop in the torque at the higher angles of attack which was seen
in the rotating turbine CFD. However, the azimuthal angle that correlates with the

peak torque appears to be earlier than that which is seen in the rotating turbine study

in Chapter 4.
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ML Models Comparison
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Figure 6-15: Prediction of NACA0015 Aerofoil for the design turbine (TSR = 2.29, Windspeed =
7m/s)

This is likely a result of the static training data not capturing the transient effects that
are apparent in a rotating VAWT such as the leading-edge separation bubble that
slowly grows before suddenly bursting and this reduces the lift. The rotating turbine
is likely to have some inertial effects that “grabs” this separation bubble, resulting in
the bursting at a later point in the rotation. This early peak could also be a result of
insufficient data that causes poor fitting. This emphasises the importance of a large
training dataset for complex problems including predicting the aerodynamic
efficiency of a vertical axis wind turbine blade. One of the largest issues with a small
dataset is the risk of overfitting the data or capturing noise in the dataset, which in
turn would result in poor generalization of the model when being exposed to unseen
data (data which the model hasn’t been trained or tested on) [147]. Upon reflection of
the work, it was discovered that the generated dataset did not utilise the full LHS
based sample domain, rather only the first 2/5" of the dataset were simulated and
compiled for training the MLVawt ANN, and is likely the root cause of the asymmetry

thatis seen Figure 6-15 between the 0—180° and 180—360° sections. Figure 6-16 shows

180



the distribution of the intended dataset and the true dataset, with the intended dataset
shown in blue and the generated dataset in red. These plots were generated by
plotting each variable against one of the other input variables. The flat histograms of
the intended dataset demonstrate that their would have been an even distribution of
every variable, seen by the moderately flat histogram distribution, or the almost solid
blue square appearance of the scatter plots. The training dataset used (in red) is
clearly not as even or well distributed, with a clear bias in camber for high camber
aerofoils, and more focus on lower azimuthal angles or TSR values. This is reflected
in the scatter plots, which show gaps in the distribution, which indicate a missing
comparison point. These biases would be reflected in the trained model, and as a
result it is expected that the model would be unable to model the negative camber or
low windspeed combinations as effectively, which is seen by the uneven torque
distributions of Figure 6-15. A well designed ANN which is trained on a broad and
evenly distributed dataset would almost perfectly reflect the theoretical turbine
torque profile (described in Section 1.3.3), as it would not have any gaps in its
underlying knowledge base (the training data) and due to it being trained on static

aerofoil data, transient effects would not be present.
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Pair Plot (Full Dataset with First 2000 Points Overlay)
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Figure 6-16: Pair plot of the dataset distribution of the intended dataset in blue, and simulated
dataset in red.

6.4.1 Sample Distribution Comparison

A series of ANNs were created using the same model formulation, but were trained
on different size datasets. The underlying domain of the dataset is identical; 1<TSR<
5, -10 <m<10 %c, 1<V< 14 m/s and 0<¢$p<360, but the number of points used to create the
dataset are different. The tested dataset size was 104 samples, to understand if utilising
the larger training samples is beneficial to the overall model performance, and where
the balance may lie between computational expense and model accuracy. A dataset

containing 10000 points was used as an edge case, with the logic that if it were to

182



significantly improve model performance, then it would be worth investigating the
point of diminishing return by balancing the model accuracy and the time taken to
generate the model including the dataset. If there is no improvement over the 2000

point model, then clearly 2000 is already sufficient for our use case.

The dataset had models created using the keras tuner python module, which is a
module which automates tuning of the hyperparameters of the ANN model
automatically, to see if it is a valid technique for creating an ANN without the typical
expertise and in-depth understanding of machine learning architecture. The model
was tested with 3 variations; the thick tanh model architecture and two automated
keras tuner models; one with the full dataset (uncleaned), and one with the data set
cleaned by removing any outliers that were outside 1.5 times the interquartile range

of the dataset. The resultant NACA0015 tangential force estimation is seen in Figure

6-17.
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Figure 6-17: Predicted NACA0015 Tangential Force for a 10000 sample dataset

Clearly cleaning the dataset was fundamentally crucial in capturing the overall
trend in the tangential force (two symmetrical distinct curves are expected), but the
results were not much better than the initial partial dataset model, and due to the

183



reduced computational cost of the partial dataset, that model is taken forwards for
comparison and utilisation in the GA optimisation process.
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6.5 Genetic Algorithm Optimisation of the Camber
Profile for VAWT Blade

The genetic algorithm logic flow is in the same format as that established in Chapter
1 and 2, but due to the reduced limitations on the torque estimation for a specific
genotype, it is possible to have more extensive searching parameters. Taking the
crossover as an example, previously it was found that only having 5 genotypes per
generation was a good trade-off between accuracy and speed for the optimisation
procedure, but this is unnecessary when it takes only a few seconds to calculate the
torque value, and it has an unnoticeable difference in the performance if each

generation consists of 20 genotypes.

With the new trained model, we can replace the previous data generation methods
such as complex UDFs, or automation scripts for XFOIL and ANSYS Fluent, with a
simple one-line tool to predict a value of torque from the new model. The resulting

workflow is as follows:

i.  Generate the initial camber population

ii.  For each genotype, evaluate the desired property, in this case it is the blade
driving the moment or torque by inputting the parameters into the ANN
model.

iii.  Sortthe genotype by best to worst from their respective Ct values.

iv. Take the two best genotypes from the generation and pass to the next
generation.

v. Apply crossover functions and mutations to generate the next generation of
cambers.

vi. Repeat steps 2 -> 5 until sufficient convergence in the Ct value, or until a

desired number of generations has been completed.

Taking the NeuralFoil tool as the lift and drag polar generator, one can make an
extensively complex and intricate optimised camber deformation profile. One edge
case example tested was to optimise 360 positions (every degree of azimuthal angle)

with 21 genotypes per generation, which only took 22 minutes on a standard desktop
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computer! Previously the XFOIL studies would take around 30 minutes for 11
genotypes and 10 optimisation positions, every 36 degrees of rotation. At first this was
assumed to be a parallelism speed up, as XFOIL is a single threaded application, but
NeuralFoil is also single threaded, so the speedup is simply due to the computational
efficiency of the ANN. Similar speed up is seen in this new machine learning model,

with the full 21 genotype, 360 optimised positions case taking 36 minutes.

Using the genetic algorithm workflow, the optimal camber profile is generated for
the standard VAWT operating conditions in the same way as in the previous chapter.

The constraints are labelled in Table 6-3.

Windspeed | Tip Turbine | Chord Position of | Blade Setting
(m/s) Speed | Radius Length | Max Thickness | Angle
Ratio (m) (m) Camber (%c) (degrees)
(%c)
7 2.29 0.85 0.225 50 15 0
7 1.5 0.85 0.225 50 15 0
7 3 0.85 0.225 50 15 0

Table 6-3: VAWT Operating Conditions and VAWT Blade Parameters Tested.

The optimised camber profiles for both ML predictors have been compared between
their estimation of the VAWT torque profile for a symmetric NACA0015 and the
optimised camber profile design to ensure fair baseline comparisons. These
comparisons are shown in Figure 6-18 for NeuralFoil and Figure 6-13 for the new
machine learning model. Of course, neither of these are perfectly accurate at
matching to the CFD studies of a rotating VAWT but this is expected due to the fact
that they are a prediction which acts as a best guess. Although the training loss tends
to a very small number (~4e-5), this does not necessarily mean that the prediction will
be accurate, as it could also indicate that the model is overfitting the training data and

capturing noise as source values.
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Both the NeuralFoil and the TensorFlow models can substantially improve the torque
generation of the turbine at every optimised point by significant margins with a peak
increase of 10 Nm for the Neural Foil results (seen in Figure 6-18) and as high as 20
Nm for the ANN Optimised Profile (seen in Figure 6-19). These figures show the
results from the prediction models, where the TSR is constrained to 2.29, the
windspeed is 7m/s and the deformation is based on the NACAX515 profile (NACA0015
with max camber at 50%c and the optimiser selecting the camber magnitude). It is
impractical to run the GA for every azimuthal angle as it would be complex to set up
in the ANSYS Fluent simulation for transient turbine evaluation, so the torque is only

calculated and the profile is optimised every 15 degrees of rotation.
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Figure 6-18: Torque generation of the NeuralFoil optimised camber deformation profile
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Figure 6-19: Torque generation of the MLVawt optimised camber deformation profile

The camber profiles (seen in Figure 6-20 for the NeuralFoil model and Figure 6-21 for
this ANN) suggest that it may be best to increase the breadth of the camber bounds to
be greater than the current limits of +£9.5%c, as they regularly hit the bounds and are
being capped, similarly to what was seen with the XFOIL optimiser in Chapter 1. This
was tested at an excessive camber (+100%c) to determine what the result would be,
but the optimised profiles were completely non-sensible. Specifically, the exact same
behaviour was seen in that the camber quickly converges to the maximum value, and
this resulted in being almost constantly at 100%c camber, which is impossible to
recreate physically and leads to untrustworthy results. This is a result of the
limitations of utilising a machine learning model, and this is because it is essentially
just mathematical regression at its core, and this provides the opportunity to
extrapolate the data, potentially to extreme extents. It is therefore strongly
recommended to stay within the trained bounds when using the model, so in the

present case within TSR =1 -> 5, Camber -9.5 -> 9.5 and Windspeed = 1-10 m/s.
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Figure 6-20: Optimised camber profile using the NeuralFoil predictor
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Figure 6-21: Camber profile optimised using the Tensor Flow Machine Learning Prediction
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The reason for the asymmetry in the camber profile is unknown, but due to the fact
that it is found in both NeuralFoil and in the present machine learning model
suggests that it is likely to be a side-effect of an over-fitted model or due to the bias in
the training dataset, i.e. for the testing of the training split of the dataset, maybe more
of the training was on the positive angles of attack, thus allowing for a better
prediction in that region, which is reflected in Figure 6-13, with the shift in the bias
to the bottom left suggesting a lower camber, TSR or phi data points dominated in the

overall dataset.

The optimised camber profiles were fed into the same CFD setup and the UDF was
used as in Chapter 2, to quantify the improvement in comparison to the original
symmetric NACA0015 turbine blade profile in situ. The optimised positions were
added to each input parameter, which are read into the UDF when the simulation is
running, allowing the camber of the aerofoil to be continuously changed each
timestep. An interesting point to note is that the results from ANSYS Fluent tends to
have massive fluctuations in the aerodynamic forces on the aerofoil around the
optimisation points. It is unclear what causes this, as the velocity contours around
the aerofoil do not show any significant differences between the problematic

timesteps, so is considered a reporting error within the CFD software.

Figure 6-22 shows an example of how the moment force reports on one of the aerofoil
blades changes with rotation, which is smooth and continual for the symmetric

NACAO0015, but choppy and sharp every ~15° of azimuthal rotation for the genetic

190



algorithm optimised bending profile in ANSYS Fluent.

Raw Torque Data for NeuralFoil based Camber Optimisation Profile

-0 from ANSYS Fluent

15 1

10 1
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Azimuthal Angle (degrees)

Figure 6-22: Raw Torque values of the NeuralFoil optimised GA Camber Profile from ANSYS
Fluent Report Definition

It was tested if this was a result of the mesh displacement being too large per
timestep, by reducing the timestep size significantly to around 10 timesteps/degree
of rotation from the azimuthal position before to the azimuthal position after the
optimised position. This proved to make no difference, but rapidly increased the
computation time by introducing an additional 192 timesteps per turbine rotational
period. As a result, it was concluded that this is likely a reporting error in ANSYS
Fluent regarding the points associated with the dynamic mesh when the simulation
is reloaded and restarted and can be ignored, potentially due to the way the UDF is
setup but this can be investigated in future works. To circumvent this sampling issue,
a 20-degree polynomial was fitted to the raw data to provide a smoother and more
realistic flow profile by eliminating the outliers and large spikes that are non-

sensible.

The fitted curve is mapped over the original torque data reported in ANSYS in Figure

6-23 and Figure 6-24, for the NeuralFoil based camber profile CFD results and
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TensorFlow based camber profile CFD results respectively, and it is clear that there

is a strong fit to the raw data.

NeuralFoil based GA Optimised Torque Profile Raw Data and
Polynomial Fitted Data

—— 0Original Data
— Polynomial Curve Fitted Data
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Figure 6-23 : Polynomial Curve Fitted to NeuralFoil based GA Optimised Camber Profile Torque

Tensorflow ML Model based GA Optimised Torque Profile Raw Data

-0 and Polynomial Fitted Data
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Figure 6-24: TensorFlow based GA Optimised Camber Profile Torque
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The residual of the polynomial fitting is plotted in Figure 6-25 and Figure 6-26, which
is calculated as the difference between the raw and predicted value at each azimuthal
position. With a very small residual range of around le-4, that equates to a negligible
difference, but to better understand how well it matches the mean squared error the
R? values are calculated, which are measures of the mean error and variance,
respectively. A lower MSE means a closer average value, and an R? value closer to 1

means there is less variance, which is arguably the most important measure.
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Figure 6-25: Residuals of Polynomial Fitting between the fitted and raw Torque for the NeuralFoil
Optimised Camber CFD Results
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Figure 6-26: Residuals of Polynomial Fitting between the fitted and raw Torque for the TensorFlow
Optimised Camber CFD Results

The Mean Squared Error and R? values are remarkedly small (seen in Table 6-4)
demonstrating the very good match, with the majority of the error present in the
points near the end of rotation (see Figure 6-25 and Figure 6-26). The polynomial
fitted data technique is therefore used for further comparisons to the NACA0015
blade profile performance, due to its ability to negate noise in the data, whilst

capturing the data’s underlying trends.

Model Mean Squared Error R?value
NeuralFoil 3.123e-11 0.999
TensorFlow 3.519%e-11 0.999

Table 6-4: Polynomial Curve Fitting Statistics
Figure 6-27, Figure 6-28 show the torque distribution through the turbine’s rotation
for the NeuralFoil based optimised blade deformation profile and the Tensorflow
optimised blade deformation profile compared to the NACAO0015 static profile. Figure

6-29 shows all three datasets overlaid for easier comparison. All three figures also
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have dashed horizontal lines, which display the mean torque for the respective blade

profile methods.

Comparing the results between the optimised GA Profiles and the NACA0015 shows
the good increase in the torque coefficient at nearly all points, but is lower in the
initial period of rotation from 0 -> ~75°. This period of lower torque generation is a
result of the blade-wake of the preceding blade of the turbine and the increase in
torque generation in the downstream section causing a deceleration in the flow in the

upstream half of rotation.

The rapid dip that is seen in the NACAO0015 is not present in the ML Optimised and
the NF Optimised blade profiles, indicating that the blade stall is significantly
mitigated by optimising the camber profile, especially when using the TensorFlow
ML predictor. The same trend is seen throughout the turbine rotation, from 90°
through to the end of the turbine rotation, with the optimised profiles both having a

better torque generation than the NACA0015.

NeuralFoil based GA Optimised Torque and NACA0015 Torque
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Figure 6-27: NeuralFoil Optimised Torque compared to NACA0015 turbine blade torque
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Figure 6-28: Custom TensorFlow Optimised Torque compared to NACA0015 turbine blade
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Figure 6-29: NACA0015 vs NeuralFoil Based GA vs TensorFlow Based GA Torque Profile

The CFD Contour Plots provide some context to the reasoning behind the significant
difference between the optimised and NACA profile at some locations. For both
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optimised camber models, the key positions of difference are at the azimuthal
angles 15°, 150° and 225°, where the difference between the optimised and
NACAO0015 profiles are greatest.

At 15°, the optimised designs perform significantly worse than the symmetrical
NACAO0015, which is surprising as that was not seen in the Genetic Algorithm
workflow, and was also not seen in the transient genetic algorithm of Chapter 2.
The likely cause of this difference is due to the significant rate of change in the
aerofoil shape around this optimisation position, going from -8.43%c camber to
7.473%c camber in the space of 30 degrees of rotation (from 345° to 15°). This fast
deflection could result in an onset of dynamic stall, which would not be considered
by the genetic algorithm, as the solution used to initialise the optimiser is based on
the converged results of a standard NACA0015 turbine blade. The only way to
consider this method would be to implement an iterative optimisation procedure,
where the turbine profile would be optimised through one rotation, optimised again
in the next rotation at the same points, and repeated until there is no change in the
optimisation process. This would require development of a complex feedback loop
between the CFD, machine learning and genetic algorithm and is outside the scope
of this work.

Looking at the contours of the velocity taken at 15 degrees azimuth in Figure 6-30,
the cambered aerofoils of the optimised designs have the stagnation point shifted
slightly onto the aerofoil’s pressure side, causing a loss in the lift due to the change
in circulation that the aerofoil shape can generate. Furthermore, after careful
inspection, it is apparent that the flow velocity magnitude upstream of the blade for
the optimised profiles is lower than that of the NACA0015, seen by the darker flow
near the leading edge of the aerofoil.

Figure 6-30: Velocity Contour at 15° Azimuth. a) NACA0015, b) NeuralFoil Based Optimisation
Profile, c) TensorFlow Based Optimisation Profile

Figure 6-31 shows the velocity contours taken at 150° azimuth for the NACA0015,
NeuralFoil optimisation and the TensorFlow optimisation results. The contours
show a much clearer example of the flow field differences and the impact the
camber profile has on the VAWTSs instantaneous power generation. The large
region of accelerated flow in the NACA0015 and NeuralFoil Optimised Camber is a
highly rotational vortex that was shedded from the turbine blade as the Reynolds
number starts to drop and the angle of attack has just passed the peak value. The
reason that it is seen in the NeuralFoil and not the TensorFlow Optimised Camber
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profiles is due to the differences in camber magnitude through the rotation,
particularly the fact that the NeuralFoil profile snaps back to a symmetric aerofoil at
60° azimuthal angle, and then bends back to 9.5%c camber in the next optimisation
stage. The local flow acceleration due to the camber increasing in this region will
create an adverse pressure gradient that will cause the separation to occur earlier in
the turbine’s rotation. The TensorFlow profile is consistently set to a high camber
with little fluctuation, so doesn’t create the same local acceleration phenomena,
allowing the flow to remain better attached to the aerofoil profile.

Figure 6-31: Velocity Contour at 150° Azimuth. a) NACA0015, b) NeuralFoil Based Optimisation
Profile, c) TensorFlow Based Optimisation Profile

The flow profile is very similar between the NeuralFoil profile and TensorFlow
profile at 225°; seen in Figure 6-32, which explains the reason for the small
difference in power generation at that point in rotation. Looking in the bottom right
corner of Figure 6-32, it is clear the effect of the earlier separation vortex is still
influencing the flow field around the blade, which would quantify the small
increase in power due to a likely increased lift from higher vorticity in the incoming
flow to the blade. There is very little separation in all 3 profiles, but looking at the
angle of the shear layer at the wake of the aerofoil coming from the trailing edge,
there is very little circulation around the symmetric aerofoil (as the shear layer is
almost parallel to the chord line), which suggests that very little lift is being
produced and as such, very little torque, which in turn causes very little power
generation. The much steeper angles of the optimised profiles reinforce the theory
that they are producing more lift at that azimuthal angle, due to the larger
circulation that is being imparted onto the flow.

Figure 6-32: Velocity Contour at 225° Azimuth. a) NACA0015, b) NeuralFoil Based Optimisation
Profile, c) TensorFlow Based Optimisation Profile
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6.5.1 Testing with Alternative Turbine Conditions

To establish the validity of utilising the artificial neural network technique at various
turbine parameters, it was tested at two additional tip speed ratios: one, which is low
ata tip speed ratio of 1.5 and one scenario with a higher tip speed ratio of 3. The lower
tip speed ratio would be the case of most significance, as this is part of the startup
period of the turbine, which is one of the most problematic areas that vertical axis

wind turbines face.

Looking at the higher tip speed ratio of 3 allows us to understand if the reduced peak
angle of attack (which is inversely proportional to tip speed) will be utilised in
maximising the camber throughout the turbine rotation. Similarly, the lower tip
speed ratio case will effectively demonstrate the ability of the machine learning

models to predict stall at high angles of attack and lower Reynolds numbers.

Interestingly, at the lower tip speed ratio, the average torque value is marginally
lower for the NeuralFoil optimised GA profile, seen in Figure 6-33: Torque of
NeuralFoil GA Optimised Blade Deformation profile TSR = 1.5 and Figure 6-34:
Torque of MLVAWT ANN GA Optimised Blade Deformation profile for TSR = 1. The
flow field images for low tip speed NACA0015 shows a peak in torque generation at
around 200°, as the vortex that was shedded at 150° is carried downstream, only for
the turbine blade to cut into it again. This is just one example of the flow physics that
would not be considered in the ANN, due to the data it is trained on. The data in our
case is trained on a steady-state flow over an aerofoil, so it doesn’t have the level of
complexity needed to model the circulating flow that the aerofoil blade travels
through. Implementing this into the model would require significant complex data
generation. The MLVawt model however did show significant improvement in the
average tangential force coefficient, particularly in the upstream section (which is
somewhat expected due to the general lack of complex flow phenomena that the
blade experiences in this region) but less performant from 180-216° than the
NACAO0015 as it was encountering that vortex which sheds around 144° and is carried

downstream, before recovering to perform better than the NACA0015 again.
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Figure 6-33: Torque of NeuralFoil GA Optimised Blade Deformation profile TSR = 1.5
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Figure 6-34: Torque of MLVAWT ANN GA Optimised Blade Deformation profile for TSR = 1.5

The higher tip speed ratio also somewhat demonstrates this susceptibility to not

knowing the true flow conditions that the blade is experiencing. At the high tip speed
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ratio, the upstream stroke behaves much closer to the theoretical profile for the ML
model, but it stalls significantly earlier in the NF optimised model, seen in Figure
6-35. Additionally, the NF model has a negligible average blade torque, whereas the
NACAO0015 is substantially better, this could be a limit of NeuralFoil’s training data or
the inherent characteristics of XFOIL.

NeuralFoil based GA Optimised Torque and NACAQ015 Torque @
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Figure 6-35 : NeuralFoil Based GA compared with NACA0015 at TSR=3

The MLVawt model has significantly better results than the NACA0015 almost
throughout the turbine’s rotation, as is shown in Figure 6-36. The NACA0015 is slightly
more performant from 108° - 180°, but this marginal difference does not offset the
significant improvements in the downstream rotation and slight improvement from
18->108° allowing the ML average moment to be better overall. The primary benefit
of the ML GA model is the increased camber in the downstream section, allowing for

more lift to be produced, and improving the tangential force of the blade in this

region.
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Figure 6-36 : TensorFlow Based GA compared with NACA0015 at TSR=3
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6.6 Summary of Findings

This chapter leverages a genetic algorithm integrated with a machine learning model
trained on a dataset derived from two-dimensional computational fluid dynamics
(CFD) simulations of aerofoils, to optimise the camber profile of a transiently
deforming vertical axis wind turbine blade. Whilst there have been very few studies
on using optimisation to create a transiently deforming turbine blade profile, none
have utilised a genetic algorithm, and none have used a machine learning model to
predict the aerofoil performance characteristics. The newly created machine
learning model is also compared to a well-established and trusted machine learning
model called NeuralFoil for predicting aerofoil performance, which is trained on

millions of XFOIL simulations.

It has been shown that using Machine Learning models can be utilised to
substantially improve the time taken for the optimisation of a VAWT blade camber
profile. In the case of the deforming blade camber magnitude optimisation, it was
found that each genotype’s torque evaluation took only around 4ms on NeuralFoil
[148] and around 1ms with the new proposed machine learning regression model on
a single thread of a machine equipped with an AMD Ryzen 5950X CPU. When
compared to the few seconds per XFOIL run (with 2 cores) and minutes per CFD run
(with 32 CPU cores), its time-savings are substantial and impressive, but one must
also make sure to consider the time and computational resources required to train
the initial prediction model. Even with only 4 input parameters and one output
parameter, the predictions of the blade torque were made with good accuracy
between the predicted and trained values, but this can be easily expanded to consider
other parameters such as the aerofoil thickness as an input and separation point as
an output. The average torque increased significantly for all tested TSRs when using
the MLVAWT Model, but was only better at a TSR of 2.29 for the NeuralFoil optimiser,

and even performed worse at the lower and higher tip speed ratios.

The machine learning model trained in this chapter was trained on the tip speed

ratio, wind speed, azimuthal angle, camber magnitude and torque magnitude, to
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quantify the flow conditions for a two-dimensional steady-state CFD simulation of an
aerofoil. As a result, it should be relatively straightforward to create different
optimisation profiles for any wind speed and tip-speed ratio combination of the

designated turbine.

Future work could include training on Reynolds number instead and then simply
calculating the Reynolds number that correlates with specific operating conditions,
which would allow the model to be applied to any NACAXX15 based VAWT.
Additionally, increasing the dataset size by using more samples and testing other
positions of max camber would help increase the breadth of application further still.
Implementing an additional model to predict incoming flow characteristics would
further improve the accuracy of the tangential force prediction, alternatively creating
a coupled CFD-in-the-loop optimisation could allow for better prediction of the actual
incoming flow angle, velocity and vorticity to better replicate the flow field that is
experienced by a VAWT blade, by extracting flow angles and magnitudes from the
CFD simulation to feed into the ML model for each optimisation step, as a step

between the work in Section 5 and this chapter.

The optimised camber profile for the standard turbine operating conditions

(TSR=2.29) is found in Figure 6-21 and Figure 6-24 respectively.
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7 Thesis Conclusions and Future Work

7.1 Conclusion

In summary, this thesis has demonstrated how to implement a mesh deformation for
the blade of a rotating turbine simulation, has displayed the strengths and
weaknesses of the different methods of generating the optimal camber values for the
bending profile of the blade, and has provided source code to allow the reader to

readily implement and adapt these techniques as they see fit.

An initial study was undertaken to utilise XFOIL to predict the tangential force
coefficient of each candidate aerofoil profile within the genetic algorithm, which
showed the strength of the genetic algorithm optimisation technique due to
significant improvements in turbine torque generation, and was verified using a 2D
CFD simulation of a rotating VAWT. This work also demonstrated the weakness of
XFOIL when trying to calculate lift and drag coefficients at high angles of attack
and/or large magnitudes of camber deflection, as it would often be unable to
complete the calculation, demonstrating the limitations to utilising it for the VAWT

optimisation.

The optimal Genetic Algorithm settings was found to be for the turbine consisting of
a 10%c bound, with the Normalised XFOIL geometry setup and the theoretical angle
of attack. The corresponding tangential force coefficient and camber profile is seen
in Figure 4-5 and Figure 4-6 respectively. The lowest improvement in standard
deviation of the moment is 19.9% and the lowest improvement in mean moment is

59.1%!

Building from the findings of the XFOIL based genetic algorithm, a more complex
and intensive method of calculating the torque was investigated utilising a transient
VAWT simulation to gather the lift and drag coefficient. This was achieved by
marching the rotating VAWT simulation up to the desired optimisation position,
linearly interpolating the difference between the prior optimised position and the

current optimised position as it rotated, and then taking the value for torque at the
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optimised position. This technique showed excellent improvement in the torque
generation, particularly in the downwind half of rotation, by capturing and
considering the transient effects on the turbine blade as it progressed to the
optimisation position. A multitude of variations in turbine parameters such as
position of maximum camber, number of optimisation positions, the size of each
optimisation generation and the impact of various crossover functions were tested to
develop a better understanding of their influence on the optimised camber profile’s

power generation performance.

The final optimal design was the 5 Phenotype, 10 Sampling points Genetic Algorithm
applied with a 50%c position of max camber. The corresponding moment and
camber plots are found in Figure 5-9 and Figure 5-10 respectively. This resulted in the
mean moment increasing from 1.425 Nm to 3.559 Nm or an increase of 150%, and the

standard deviation reducing from 6.036 Nm to 4.97 Nm or a reduction by 22%!

Finally, an alternative to XFOIL is investigated, to alleviate the issues that were found
in using XFOIL, but also to avoid the high computational cost of running transient
genetic algorithm optimisation studies. This was achieved by utilising an Artificial
Neural Network as a surrogate for the CFD procedure. A pre-established model which
is publicly available named NeuralFoil, which is trained on XFOIL simulations, was
investigated as one potential source for the surrogate model. Additionally, 2000 Static
two-dimensional CFD simulations of a two-dimensional aerofoil were performed
using flow conditions to emulate the theoretical characteristics that would be
experienced by a VAWT blade based on the tip speed ratio, windspeed, azimuthal
angle and camber magnitude. Both ANNs were fed into the genetic algorithm as the
tool for torque estimation and showed incredible speedup in data gathering, being
anywhere from fifteen times faster than XFOIL and over 1000 times faster than the
transient CFD method. This technique did highlight the dependence of high-quality
data to train the machine learning model, and also the fact that a well architected

model will also reflect the characteristics of the training data.

The optimised camber profile for the standard turbine operating conditions

(TSR=2.29) is found in Figure 6-21 and Figure 6-24 respectively. This camber profile

206



results in an increase in mean from 1.43 Nm to 3.78 Nm, an increase of 164% and a

reduction in standard deviation from 6.04 Nm to 5.40 Nm, a reduction by 11.9%!

7.2 Future Work

Based on the findings and conclusions of this thesis, there a small number of logical
steps for continuing this research avenue. The most impactful and interesting
addition would be to implement a multi-cycle optimisation loop. This would be
implemented by optimising the turbine for one full rotation, running a few rotations
to stabilise the periodicity of the solution, optimising the turbine in one rotation
again, and repeating this process until the average period-averaged turbine power or
moment coefficient no longer changes between the optimisation loops. The primary
cause for this is to alleviate the discrepancy seen in Figure 5-19, where the upstream
rotation (0°<¢$<180°) is lower moment generation in the optimised turbine than in

the standard NACA0015.

207



8 Appendix A

The following pages are the images of the velocity contours from 0 — 30 m/s for the

50%c Position of Max Camber, 5 Genotypes, 10 Optimisation Positions case.
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NACA GA 50%c
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NACA GA 50%c
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NACA GA 50%c
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NACA GA 50%c
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9 Appendix B - AI Regression Based
Optimised VAWT Camber Profile Velocity

Field Images

The three following pages contain the velocity contours at all optimised positions,

taken from the rotating VAWT simulations. It contains the images for the cases:

e NACA0015 Symmetrical Standard VAWT Blade with no deflection

e NeuralFoil Based Genetic Algorithm Optimised VAWT Blade Camber Profile

e TensorFlow CFD Trained Genetic Algorithm Optimised VAWT Blade Camber
Profile
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10 Appendix C - Parametric Deforming

VAWT Blade UDF

#tinclude "udf.h"
DEFINE_GRID MOTION(blade®, domain, dt, time, dtime)
{

Thread* tf = DT_THREAD(dt);

face t f;

Node* v;

real lamtest, Xgrt, Ygrt, dXgnl, dygnl, dXgn2, dygn2, dx, x, Xc, Yc, Xr,

r, dy, y, newYc, newYr, newXc, newXr, theta;

real tsl, tso, yo, yl, x0, x1, ml, mo, m, yNACA;

#define chord 0.225 // chord length

#tdefine Rturb ©.85 // Turbine Radiues

#define TSR 3.0 // Turbine Tip Speed Ratio

#tdefine Vflow 7.0 // Free flow velocity

#tdefine offset 0.25 // %c distance between LE and global origin in X
direction. Positive offset => LE < y(9)

#define count 360.0 // %c Number of timesteps per rotation ldegree/Ts =

360, 0.5deg/Ts = 720 etc.
int n;

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

camber 0
camber_1
camber_2
camber_3
camber_4
camber_5
camber_6
camber_7
camber_8
camber_9
camber_10
camber_11
camber_12
camber_13
camber_14
camber_15
camber_16
camber_17
camber_18
camber_19
camber_20
camber_21
camber_22

Get_Input_Parameter("camber_0");
Get_Input_Parameter("camber_1");
Get_Input Parameter("camber 2");
Get_Input_Parameter("camber_3");
Get_Input_Parameter("camber_4");
Get_Input_Parameter("camber_5");
Get_Input_Parameter("camber_6");
Get_Input_Parameter("camber_7");
Get_Input_Parameter("camber_8");
Get_Input_Parameter("camber_9");

//
//
//
//
//
//
//
//
//
//

Get_Input_Parameter("camber_10");
Get_Input_Parameter("camber 11");
Get_Input_Parameter("camber_12");
Get_Input_Parameter("camber_13");
Get_Input_Parameter("camber_14");
Get_Input_Parameter("camber_15");
Get_Input_Parameter("camber_16");
Get_Input_Parameter("camber_17");
Get_Input_Parameter("camber_18");
Get_Input Parameter("camber_ 19");
Get_Input_Parameter("camber_20");
Get_Input Parameter("camber 21");
Get Input_Parameter("camber 22");




real camber 23 = Get Input Parameter("camber 23"); // 324
real camber_24 = Get_Input_Parameter("camber_24"); // 324

int opt_count = Get Input Parameter("opt count");
real p = Get_Input_Parameter("p");

real origin = p * chord;

real omega = (Vflow * TSR) / Rturb;
real T = 2 * M_PI / omega;

real ts = dtime * omega * 180/M_PI;

real flowtime = time;
real phi = (flowtime * omega) * 180/M _PI;

int rev = phi/360;

double currentTime = CURRENT_TIME;
double previousTime = PREVIOUS TIME;
double timeUDF = time;

double phiCurrent = omega * currentTime * 180/M PI;
double phiPrevious = omega * previousTime * 180/M_PI,;
double phiTime = omega * timeUDF * 180/M_PI,;

tsl = flowtime*omega*180/M_PI - 360 * rev;
ts® = tsl-ts; // Previous timestep calculation
if (tso < 0)
{
ts0 +=360;

}

// Create array containing all Camber Values

float camber_array[] = {camber_0, camber_1, camber_2, camber_3, camber_4,
camber_5, camber 6, camber 7, camber_8, camber 9, camber_ 10, camber 11,
camber_12, camber_ 13, camber_14, camber_ 15, camber_ 16, camber 17, camber_ 18,
camber_19, camber_20, camber_21, camber_22, camber_23, camber_24};

int opt_phi_count = 360/opt_count; // Calculate azimuth spacing between
each optimisation position

int phi_array[opt count]; // Create Array of Correct Size for Phi
Distribution

int length = sizeof(phi_array) / sizeof(phi_array[@]); // Calculate Length
of Phi Array

for (int k=0; k<length+1l; k++)
{
phi_array[k] = k * opt_phi_count; // Fill Phi Array with Appropriate
Values




// printf("%d ", phi[k]);

int 11 = tsl/opt_phi_count; // Check which section of rotation following
timestep is in / Optimisation Position
//printf("\nSection of Optimisation: %d", 11);

// Parameters for linear interpolation
int x0_1 = phi_array[1l1];

int x1_1 = phi_array[11+1];

float y@_1 = camber_array[1l1];

float yl 1 = camber_array[l1+1];

int 10 = ts@/opt_phi_count; // Check which section of rotation current
timestep is in

//printf("\nSection of Optimisation: %d", 1@);

// Parameters for linear interpolation

int x0_0@ = phi_array[l0];

int x1_0@ = phi_array[l0+1];

float y@ @ = camber_array[10];

float yl_@ = camber_array[l0+1];

ml = ((yl .1 -y0 1) / (x1_1 - x0_ 1)) * (tsl - x0_1) + y0 _1;
mo = ((yl1 @ - y@0 0) / (x1. 0 - x0 0)) * (ts@ - x0 @) + yo 0;

//printf("\nm@ Camber Value: %f", mo);
//printf("\nm1 Camber Value: %f", ml);

m= (ml - md)/100;

// Message@("\nRevolution: %i UDF Phi: %f tsl: %f tso: %f ml:
%t mo %f", rev, phi, tsl, tso, ml, mo);

// Message@("phi: %f ,time: %g, current time: %g ts@: %f , tsl: %f , me:
%f , ml: %f \n", phi, tse@, tsl, m@, ml, flowtime, CURRENT_TIME); // Print
Variables

SET_DEFORMING_THREAD_FLAG(THREAD_TO(tf));

begin_f loop(f,tf) // Begin looping across the wall i select in gsh after
enabling deform mesh

{

£ node loop(f,tf,n) // Begin looping across every node on face "f"

{

Xgrt = @ - Rturb * sin(omega * time);
Ygrt = Rturb - Rturb * (1 - cos(omega * time));

= F_NODE(f,tf,n); // Get node properties for node n on face t
Xr = NODE_X(v);




Yr = NODE_Y(v);

dXgnl = Xr - Xqgrt;

dygnl = Yr - Yqgrt;

lamtest = (dYgnl * sin(omega * time)) + (dXgnl * cos(omega * time)) +
0.25 * chord;

if (lamtest < origin && NODE_POS_NEED_UPDATE (v)) // Deflection
happens if node is in aileron zone ie x coord is greater than pin. this is ok
if blade is stationary
{

NODE_POS_UPDATED(v); // Check if node has been updated in loop

Xc = (dYgnl * sin(omega * time)) + (dXgnl * cos(omega * time)) +
0.25 * chord;

Yc = (dYgnl * cos(omega * time)) - (dXgnl * sin(omega * time));

x = Xc; // Variables for x-Coordinate of Node 'v'

y = Yc;

yNACA = m * chord * pow(origin - x, 2) / pow(origin,2);

dy = yNACA;

dx = 0;

newXc = Xc + dx - 0.25 * chord;

newYc = Yc + dy;

dXgn2 (newXc * cos(omega * time)) - (newYc * sin(omega * time));

dygn2 (newXc * sin(omega * time)) + (newYc * cos(omega * time));

newXr = Xgqrt + dXqgn2;

newYr = Ygrt + dYgn2;

NODE_X(v) = newXr;

NODE_Y(v) newYr;

if (lamtest > origin && NODE_POS_NEED_UPDATE (v)) // Deflection
happens if node is in aileron zone ie x coord is greater than pin. this is ok
if blade is stationary

{

NODE_POS_UPDATED(v); // Check if node has been updated in loop

Xc = (dYgnl * sin(omega * time)) + (dXgnl * cos(omega * time)) +
0.25 * chord;

Yc = (dYgnl * cos(omega * time)) - (dXgnl * sin(omega * time));

X = Xc; // Variables for x-Coordinate of Node 'v'

y = Yc;

yNACA = m * chord * pow(x-origin, 2) / pow(chord - origin,2);

dy = yNACA;

dx = 0;

newXc = Xc + dx - 0.25 * chord;

newYc = Yc + dy;

dXgn2 (newXc * cos(omega * time)) - (newYc * sin(omega * time));

dYgn2 = (newXc * sin(omega * time)) + (newYc * cos(omega * time));

newXr = Xgrt + dXqgn2;

newYr = Ygrt + dYgn2;




NODE_X (V)
NODE_Y(v)

newXr;
newYr; // Update new Y position. ill need to have node

x update as well, so a new line for /newX and a new line for NODE_X(Vv)

end f loop(f,tf);
}

DEFINE_GRID_MOTION(bladel80,domain,dt,time,dtime)

{
Thread *tf = DT_THREAD(dt);

face_t f;
Node *v;

real lamtest, Xqgrt, Yqrt, dXgnl, dYgnl, dXgn2, dYgn2, dx, x, Xc, Yc, Xr,

r, dy, y, newYc, newYr, newXc, newXr, theta;
real tsl, tse, yo, yl, x0, x1, ml, mO, m, yNACA;
#tdefine chord 0.225 // chord length

#tdefine Rturb 0.85 // Turbine Radiues

#define TSR 3.0 // Turbine Tip Speed Ratio
#define Vflow 7.0 // Free flow velocity

#tdefine offset 0.25 // %c distance between LE and global origin in X

direction. Positive offset => LE < y(©@)
int n;

// Message@("Period of rotation: %g, Timetep size: %g, Deg per timestep:

%g\n", T, CURRENT TIMESTEP, ts);

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

camber 0 =
camber_1
camber_2
camber_3
camber_4
camber_5
camber_6
camber_7
camber_8
camber_9
camber_10
camber_11
camber_12
camber_13
camber_14
camber_15
camber_16
camber_17
camber_18
camber_19

Get_Input_Parameter("camber_0");
Get_Input_Parameter("camber_1");
Get_Input_Parameter("camber_2");
Get_Input_Parameter("camber_3");
Get_Input_Parameter("camber_4");
Get_Input_Parameter("camber_5");
Get_Input_Parameter("camber_6");
Get_Input_Parameter("camber_7");
Get_Input_Parameter("camber_8");
Get_Input_Parameter("camber_ 9");
Get_Input_Parameter("camber_10");
Get_Input Parameter("camber_ 11");
Get_Input_Parameter("camber_12");
Get_Input_Parameter("camber_13");
Get_Input Parameter("camber_ 14");
Get_Input_Parameter("camber_15");
Get_Input_Parameter("camber_16");
Get_Input_Parameter("camber_17");
Get_Input_Parameter("camber_18");
Get Input Parameter("camber 19");




real camber 20 = Get Input Parameter("camber 20");
real camber_ 21 = Get_Input_Parameter("camber_21");
real camber_ 22 = Get_Input_Parameter("camber_22");
real camber 23 = Get Input Parameter("camber 23");
real camber_24 = Get_Input_Parameter("camber_24");

int opt_count = Get Input Parameter("opt count");
real p = Get_Input_Parameter("p");

real origin = p * chord;

real omega = (Vflow * TSR) / Rturb;
real T = 2 * M_PI / omega;

real ts = dtime * omega * 180/M_PI;
// real rev;

real flowtime = time;
real phi = (flowtime * omega) * 180/M PI + 180;

int rev = phi/360;

tsl = flowtime*omega*180/M_PI - 360 * rev + 180;

ts@ = tsl-ts; // Previous timestep calculation

if (tse < 0)

{

ts0 +=360;

}

// Create array containing all Camber Values

float camber_array[] = {camber_0, camber_1, camber_2, camber_3, camber_4,
camber_5, camber 6, camber 7, camber_8, camber 9, camber_ 10, camber 11,
camber_12, camber_13, camber_14, camber_15, camber_16, camber_17, camber_18,
camber_19, camber_20, camber_21, camber_22, camber_23, camber_24};

int opt_phi_count = 360/opt_count; // Calculate azimuth spacing between
each optimisation position

int phi_array[opt count]; // Create Array of Correct Size for Phi
Distribution

int length = sizeof(phi_array) / sizeof(phi_array[@]); // Calculate Length
of Phi Array

for (int k=0; k<length+l; k++)
{
phi array[k] = k * opt_phi count; // Fill Phi Array with Appropriate
Values

// printf("%d ", phi[k]);

int 11 = tsl/opt_phi_count; // Check which section of rotation following
timestep is in / Optimisation Position




//printf("\nSection of Optimisation: %d", 11);

// Parameters for linear interpolation
int x0_1 = phi_array[1l1];

int x1_1 = phi_array[11+1];

float y@_1 = camber_array[1l1];

float yl 1 = camber_array[l1+1];

int 10 = ts@/opt _phi count; // Check which section of rotation current
timestep is in

//printf("\nSection of Optimisation: %d", 1@);

// Parameters for linear interpolation

int x0_0 = phi_array[l0];

int x1_0 = phi_array[lo+1];

float y@ @ = camber_array[10];

float yl_@ = camber_array[l0+1];

ml = ((yl_1 -y0 1) / (x1_1 - x0_ 1)) * (tsl - x0_1) + yo 1;
mo = ((yl1 @ - y@0 0) / (x1. 0 - x0 0)) * (ts@ - x0 @) + yo 0;

//printf("\nm@ Camber Value: %f", mo);
//printf("\nml1 Camber Value: %f", ml);

m= (ml - mo)/100;

SET_DEFORMING_THREAD_FLAG(THREAD_TO(tf));

begin_f loop(f,tf) // Begin looping across the wall i select in gsh after
enabling deform mesh

{

f node loop(f,tf,n) // Begin looping across every node on face "f"

{

// omega = 83.7; // angular rotation rate of aileron linking to how
many 'i' that im morphing with so it indirectly decides the max angle achieved

Xgrt = @ - Rturb * sin(omega * time + M_PI);

Yqrt = Rturb - Rturb * (1 - cos(omega * time + M_PI));

= F_NODE(f,tf,n); // Get node properties for node n on face t

Xr = NODE_X(v);

Yr = NODE_Y(v);

dXgnl = Xr - Xqgrt;

dygnl = Yr - Yqrt;

lamtest = (dYgnl * sin(omega * time + M PI)) + (dXgnl * cos(omega *
time + M_PI)) + 0.25 * chord;

if (lamtest < origin && NODE_POS_NEED_ UPDATE (v)) // Deflection
happens if node is in aileron zone ie x coord is greater than pin. this is ok
if blade is stationary




NODE_POS_UPDATED(v); // Check if node has been updated in loop

Xc = (dYgnl * sin(omega * time + M _PI)) + (dXgnl * cos(omega *
time + M PI)) + ©0.25 * chord;

Yc = (dYgnl * cos(omega * time + M_PI)) - (dXgnl * sin(omega *
time + M PI));

X = Xc; // Variables for x-Coordinate of Node 'v'

y = Yc;

yNACA = m * chord * pow(origin - x, 2) / pow(origin,2);

dy = yNACA;

dx = 0;

newXc = Xc + dx - 0.25 * chord;

newYc = Yc + dy;

dXgn2 (newXc * cos(omega * time + M_PI)) - (newYc * sin(omega *
time + M_PI));

dygn2 (newXc * sin(omega * time + M PI)) + (newYc * cos(omega *
time + M_PI));

newXr = Xgqrt + dXqgn2;

newYr = Ygrt + dYgn2;

NODE_X(v) = newXr;

NODE_Y(v) = newYr; // Update new Y position. ill need to have node
X update as well, so a new line for /newX and a new line for NODE_X(Vv)

}

if (lamtest > origin && NODE_POS_NEED_UPDATE (v)) // Deflection
happens if node is in aileron zone ie x coord is greater than pin. this is ok
if blade is stationary

{

NODE_POS_UPDATED(v); // Check if node has been updated in loop

Xc = (dYgnl * sin(omega * time + M_PI)) + (dXgnl * cos(omega *
time + M_PI)) + 0.25 * chord;

Yc = (dYgnl * cos(omega * time + M_PI)) - (dXgnl * sin(omega *
time + M_PI));

x = Xc; // Variables for x-Coordinate of Node 'v'

y = Y¢;

yNACA = m * chord * pow(x-origin, 2) / pow(chord - origin,2);

dy = yNACA;

dx = 0;

newXc = Xc + dx - 0.25 * chord;

newYc = Yc + dy;

dXgn2 = (newXc * cos(omega * time + M _PI)) - (newYc * sin(omega *
time + M PI));

dygn2 (newXc * sin(omega * time + M PI)) + (newYc * cos(omega *
time + M_PI));

newXr = Xqrt + dXgn2;

newYr = Ygrt + dYgn2;

NODE_X(v) = newXr;




NODE_Y(v) = newYr; // Update new Y position. ill need to have node
X update as well, so a new line for /newX and a new line for NODE_X(Vv)

end f loop(f,tf);

}
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