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Abstract

Understanding and modelling the interactions between pedestrians and
automated vehicles (AVs) is important for facilitating widespread and safe AV
deployment. During pedestrian-vehicle interactions, pedestrians form and update
their beliefs regarding the vehicle’s behaviour as it approaches. The mechanisms
determining how a pedestrian interprets the behaviour of an approaching vehicle
remain unclear. Previous studies have proposed models of cognitive
mechanisms, such as estimating the goals of other agents, but none has
attempted to apply and model the behaviour estimation mechanism in the real
and dynamic context of pedestrian-vehicle interaction. Drawing inspiration from
cognitive science, a first vehicle behaviour estimation experiment was conducted,
and existing Bayesian observer models of goal estimation were modified and
applied to the pedestrian crossing setting. Thus, an observation-based model
with two alternatives based on 1) direct deceleration perception and 2) a more
plausible visual cue, the rate of change of the relative rate of optical expansion 7,
was proposed. The first experiment demonstrated that pedestrians do not solely
rely on deceleration-related cues to judge whether an approaching vehicle is
stopping, but that the vehicle’s kinematic conditions, specifically its speed, time-
to-arrival, and overall manoeuvre time history, also influence their beliefs. Even
though the observation-based model achieved a relatively high correlation
between model predictions and average pedestrian beliefs, it did not predict all
the average pedestrian belief patterns in detail, being quite limited in predicting
beliefs when the vehicle maintains constant speed. So, it was assumed that
pedestrians may be utilising prior knowledge and situational expectations when
the vehicle is far away, while deceleration observations become more crucial as
the vehicle approaches. Thus, pedestrians likely infer the vehicle’s behaviour by
both directly observing the vehicle’s actions and expecting the driver/AV to follow
the most beneficial (value-maximising) behaviour. This rational, value-maximising
reasoning mechanism was proposed as the value-based model. Both
observation-based (Ob) and value-based (Vb) models were then integrated into
an augmented model (Ob+Vb). All three models were evaluated for their ability to
predict average pedestrian beliefs regarding the approaching vehicle’s behaviour.

This evaluation illustrated that Ob struggled with constant speed scenarios due



to its reliance on deceleration cues, Vb captured most kinematic effects but had
limitations when the approaching vehicle is close to stopping, and Ob+Vb
leveraged the strengths of both previous models, accurately reflecting all
kinematic effects and belief patterns, achieving near-perfect correlation and the
lowest error. Finally, to validate the three behaviour estimation models and test
their generalisability, a second vehicle behaviour estimation experiment was
designed and conducted, and the models’ predictive capabilities were evaluated
on the resulting dataset. Analyses on this dataset demonstrated the replication of
previous findings in identical kinematic scenarios, validating the models,
particularly Ob+Vb, which accurately predicted pedestrian beliefs, again.
Furthermore, Ob+Vb successfully generalised to unseen scenarios with varied
speeds and new manoeuvres, showing its ability to predict beliefs in novel
situations. Additionally, Ob+Vb again exhibited superior performance, obtaining
near-perfect correlation and the lowest error compared to the other models.
Together, these studies demonstrate that: 1) while Bayesian observation of
behaviour may suffice for simple laboratory tasks, it falls short in real traffic
contexts, 2) pedestrians assess approaching vehicle behaviour by combining
observations of vehicle actions with expectations of the driver's most rational,
value-maximising future actions and 3) the proposed augmented model
successfully predicts pedestrian beliefs, reproducing findings quantitatively and
qualitatively, illustrating generalisability, and providing a likely explanation of the
mechanisms with which a pedestrian interprets the behaviour of an approaching
vehicle. Overall, investigating and modelling behaviour estimation in the
pedestrian-vehicle interaction setting and its underlying mechanisms, present a
significant challenge. However, this thesis demonstrates that it is possible to gain
deeper insights into how a pedestrian interprets an approaching vehicle’s
behaviour, by integrating different psychological theories. This thesis not only
enhances the theoretical understanding but also offers practical implications for

designing safer and more intuitive interactions between pedestrians and AVs.
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1 Introduction

1.1 Background and motivation

It was not until the 1970s that walking gained research interest as a mode
of transport (Hitchcock and Mitchell, 1984) even though it has been the most
widespread and originally the primary means of human locomotion. Currently,
walking accounts for the second most popular mode of transport (in terms of the
number of trips per year), after driving cars, in England, as per the Department of
Transport’s National Travel Survey (Department for Transport, 2024). Its
popularity stems not only from its convenience, minimal environmental impact,
and health benefits, but also from its relative importance to access other modes
of transport and foster social connections (Dytrt, 2023; Loukaitou-Sideris, 2020).
However, in transport research, the term “walker” is rarely used, but rather the
most common term is “pedestrian” (Wigan, 1995), borrowed from the Latin
pedester which means “on foot”. Despite the etymology of the word, people with
mobility impairments, sensory deficits or cognitive impairments, who use mobility
aids to navigate, are also considered pedestrians (Federal Highway
Administration, 2013). According to the Cambridge Dictionary the word
‘pedestrian” means “a person who is walking, especially in an area where
vehicles go” (Cambridge Dictionary, 2024). The second part of that definition

implies how important the interaction between pedestrians and vehicles is.

While cars have remained the most popular mode of travel and the English
households’ ownership, of at least one car, increased 5%, since 2002
(Department for Transport, 2024), it is apparent that more interactions or even
conflicts between pedestrians and cars will happen (Zhao et al., 2019). The facts
that pedestrians do not have protective equipment available and are moving
slower than vehicles, make them one of the most vulnerable road users (VRUSs)
(El Hamdani et al., 2020). This vulnerability translates to a significant number of
fatalities and injuries sustained by pedestrians in road accidents annually (World
Health Organization, 2023a). The overall annual global toll of road traffic
accidents resulting in deaths is approximately 1.19 million people, out of which
pedestrians account for the 21% of those fatalities (World Health Organization,
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2023b). Even though the overall road traffic deaths have decreased by 5% over
the last decade, the deaths amongst pedestrians and cyclists remained almost
the same (World Health Organization, 2023b). In the UK, the past two decades
the total number of pedestrian deaths and injuries has decreased from
approximately 35000 to approximately 19000 (Department for Transport, 2023).
Even though this reduction was substantial, the absolute number remained
incredibly high. In the US, during the last decade, only the pedestrian deaths
increased and reached their highest number (7522 people) in 41 years
(Naumann, 2025). While vehicle speed, impairment due to alcohol consumption,
suboptimal road infrastructure and inadequate visibility of pedestrians are the
most common factors resulting in pedestrian deaths and injuries (World Health
Organization, 2013), another cause of pedestrian crashes is misunderstandings
and incorrect expectations during pedestrian-vehicle interactions (Habibovic and
Davidsson, 2012). The criticality of this issue and consequently the need to
increase road safety shows the importance of the research on such traffic
interactions (Markkula et al., 2020). During interactions with approaching
vehicles, pedestrians must correctly interpret the vehicle’s behaviour, to make
their decisions regarding whether to cross the road or not and reach their own
goal safely. So, investigating and modelling how pedestrians infer the behaviour
of an approaching vehicle, from observing its movements, is important for the

field of pedestrian safety.

The focus on road traffic interaction research has been intensified due to
the technological advancements in robotics, sensors and ever-growing
computational capabilities (Department for Transport, 2015; Nissan Motor
Corporation, 2013), the rise of advanced driver assistance systems and the
potential for fully autonomous vehicles (SAE levels 4 and 5; SAE International,
2021). While these autonomous vehicles (AVs) have promised significant societal
and economic benefits (Centre for Connected and Autonomous Vehicles, 2022;
Forrest and Konca, 2007; Reimer, 2014), ensuring safe and smooth interaction
with pedestrians remains a key challenge (Rasouli and Tsotsos, 2020; Brown and
Laurier, 2017; Millard-Ball, 2018). There are some concerns regarding these
vehicles. Overly cautious AV behaviour could lead to frustration and delays on
the roads (Brown and Laurier, 2017; Millard-Ball, 2018; Nordhoff et al., 2025).

Conversely, unexpected actions or ambiguous communication signals by AVs



could cause accidents due to pedestrians’ confusion or misinterpretation
(Alambeigi et al., 2020; Habibovic and Davidsson, 2012; Lee et al., 2024). These
potential problems highlight the urgent need for a deeper understanding of how
humans interact in traffic, encompassing both qualitative and quantitative
research (Kalantari et al., 2023; Rasouli et al., 2017a; Camara et al., 2020b;
Schneemann and Gohl, 2016; Kotseruba and Rasouli, 2023; Markkula et al.,
2023, 2018; Markkula and Dogar, 2022; Sadigh et al., 2018; Schwarting et al.,
2019; Yang et al., 2024). Interactions between pedestrians and manually driven
vehicles have been researched widely during the past few decades and it has
been clear that it is not an easy task to fully understand and model them (Rasouli
etal., 2017b; Guéguen et al., 2015; Markkula and Dogar, 2022; Sun et al., 2002).
In the case of AVs, the absence of a human driver makes the situation even more
complicated as the pedestrian-AV interactions lack communication aspects which
are available in the pedestrian-driver interactions, for example eye contact or
hand gestures (Rasouli and Tsotsos, 2020; Dey and Terken, 2017; Markkula et
al., 2020). However, communication in road traffic interactions involves being able
to convey intentions through movement or “body-language” and explicit signalling
(if needed), confirming that those were understood and understanding the
intentions of other road users (Ackermann et al.,, 2018; Fuest et al., 2018;
Schieben et al., 2019).

So, without a doubt, increased road safety is still needed, especially for
pedestrians, who are the most vulnerable in traffic interactions. The interaction
between a pedestrian who is about to cross the road, and an approaching vehicle
is very common and safety critical. For years, AVs were seen as a promising
solution to keep pedestrians safe from accidents. However, researchers have
realised that figuring out how these cars should interact with people is a big
challenge (Schieben et al., 2019). AVs need to know the safest way to behave
around pedestrians, but pedestrians can be unpredictable, making it hard to
understand how they will react and what these cars should do. Researching and
more specifically modelling pedestrian crossing behaviour is important for making
roads safer and developing safe and interaction-capable AVs. The work
presented in this thesis revolves around modelling the mechanisms with which
pedestrians form and update their beliefs regarding the behaviour of an

approaching vehicle, which communicates its intent only by its movement (no



explicit signals) and hopes to shed light on the relation of those mechanisms with

the overall road crossing decision making process in such interactions.

In the upcoming sections a review of past literature is provided, including
the key causation factors which lead to accidents in pedestrian-vehicle
interactions, observations of pedestrian road crossing behaviour when they
interact with approaching vehicles, how they communicate with such vehicles,
models of the road crossing task, and observations and models of how humans

infer the intentions of an approaching vehicle.

1.2 Road accidents involving pedestrians

As stated in the previous section, VRUs and particularly pedestrians are
those most likely to be harmed in traffic accidents (Department for Transport,
2024; National Highway Traffic Safety Administration, 2024). This primarily
includes pedestrians and people on two wheels (like cyclists and motorcyclists)
because they lack the outer protection of a vehicle (El Hamdani et al., 2020).
Among this group, pedestrians and cyclists are less likely to cause harm to
others, but on the other hand, heavier and faster vehicles, can pose a risk to
them. Among vulnerable road users, some groups are at a higher risk of injury,

including the elderly, people with disabilities, and children.

As stated before, every year, approximately 1.19 million people are losing
their lives in road traffic accidents around the world and VRUs accounted for more
than half of those deaths (World Health Organization, 2023a). More specifically,
in the EU, almost 20% of all road deaths involved pedestrians, which was a higher
proportion in comparison to other VRU groups (European Road Safety
Observatory, 2023). Similarly, in the US the percentage of pedestrian deaths is
approximately 5% of all the road traffic deaths (National Highway Traffic Safety
Administration, 2024).

Several risk factors play an important role in the likelihood and severity of
pedestrian vehicle collisions. A major risk factor that increases the likelihood of a
fatal injury for a pedestrian when struck by a motor vehicle is impact speed
(PikGnas et al., 2004; Tefft, 2013). Alcohol consumption is also a major risk factor

for pedestrian accidents as it impairs judgment, slows reactions, and reduces
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vision, making it more likely for pedestrians to be involved in accidents, in which
either the driver (Phillips and Brewer, 2011) or the pedestrian (Lasota et al., 2020)
is intoxicated. Absent or poorly designed or maintained road infrastructure (such
as sidewalks, crosswalks, traffic signals) can lead to serious accidents as well
(Zegeer and Bushell, 2006). Pedestrians are more likely to be hit if they are hard
to see, which can be caused by lack of streetlights or if they are not wearing
reflective clothing in low-light conditions (World Health Organization, 2004 ). Other
factors that could increase the risk of pedestrian accidents include inattentive and
distracted pedestrians (Ropaka et al., 2020). For the abovementioned issues, the
solutions that have been most often suggested regarding increasing pedestrians’
safety and preventing fatal collisions include interventions on the road design and
infrastructure, the use of protective and alerting equipment and education around
road safety (Yannis et al., 2020; Zegeer and Bushell, 2006).

Although the causation factors which are listed above are more common,
they could be mitigated through safety interventions and prevention measures,
as stated above (World Health Organization, 2013). Conversely, there are other
causation factors for which it is not as clear whether prevention measures would
help. A study by Thomas et al. (2013), which was based on an in-depth analysis
of investigated crashes, identified key human-related factors. For both
pedestrians and drivers, temporary person related factors (inattention/distraction
due to competing external or internal activities), were the most common causation
factor (25% and 28% respectively). A close second causation factor was found to
be interpretation errors (16% for car drivers and 21% for pedestrians), which
occurred either when the road users’ expectations of what the other road users
would do did not match with the reality or due to time/distance misjudgements.
Most analyses/models regarding causation of crashes and near critical situations,
in VRU/pedestrian-vehicle interactions, focus on the driver’s perspective. The
most common causation patterns from the driver's perspective have been found
to be: unawareness of the conflict pedestrian (obstructed line of sight or reduced
visibility), distracted driving, unexpected pedestrian behaviour, improper
estimation of the gap distance between the vehicle and the pedestrian and
infrastructure issues for example lack of pedestrian crossing (Habibovic et al.,
2013; Sheykhfard and Haghighi, 2018; Yue et al.,, 2020). Habibovic and
Davidsson (2012) have provided an exception to the driver-centric view, in their



analysis of accident causation in VRU-vehicle interactions, where they found that
pedestrians’ misinterpretations of the driver’s intentions is a significant causation
factor. They applied the SafetyNet Accident Causation System (SNACS) to a 995
crashes dataset, to systematically classify the crash causation information and
organise that information into causation patterns. SNACS is a standardised
method for systematically classifying crash causation factors. The findings of that
study highlighted that in 70% of 56 crashes which involved VRUs (20 pedestrians
and 36 bicyclists), the VRU was aware of the approaching vehicle but
misinterpreted the situation and/or made an avoidance planning error. For
example, they incorrectly thought the driver had noticed them and would react,
or they miscalculated when to cross. Similarly, Rdsanen and Summala (1998)
suggested two main mechanisms producing bicycle-vehicle collisions, one being
the driver’s misdirected attention and the other one being the cyclist’s erroneous
beliefs about the driver’s intentions. In the second case, those faulty assumptions
were based either on law requirements or the preconception that the driver should
be the one adjusting their behaviour to the behaviour of the more vulnerable road
user, i.e. the cyclist. Thus, to make a step towards increasing pedestrian safety,
there is a need of further research and especially modelling the cognitive
mechanisms through which pedestrians infer the behaviour of an approaching
conflict vehicle. To build such models, the first step would be to explore the overall
pedestrian behaviour and the factors that influence their behaviour during

interactions with approaching vehicles.

1.3 Pedestrian behaviour during road crossing interactions

Crossing the road while oncoming traffic is present is a basic and frequent
task for all pedestrians. Unsurprisingly, most pedestrian crashes occur when
people attempt to cross the road while there are vehicles approaching, or at
crosswalks that are not very safe (Malenje et al., 2018; Sucha et al., 2017;
Zhuang and Wu, 2011). Thus, studying pedestrian road crossing behaviour is
important for improving road safety. Researchers have conducted extensive
studies for years to gain insights into pedestrian crossing patterns and identify
strategies for improving road safety. In addition to improving road safety

researching pedestrian behaviour is also relevant to the development,
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acceptance and eventually deployment of socially capable and safe AVs.
Crossing the road is easy when there are no other road users, but it becomes a
complicated task when there is oncoming traffic (usually vehicles). This more
complicated situation can be regarded as an interaction between a pedestrian
and an approaching vehicle and was chosen as the main traffic scenario in which
this thesis was focused on. Markkula et al. (2020) defined road traffic interactions
as “situations where the behaviour of at least two road users can be interpreted
as being influenced by the possibility that they are both intending to occupy the

same region of space at the same time in the near future”.

Before modelling pedestrian road crossing behaviour during interactions
with vehicles, it is important to review the key findings of past empirical studies
on pedestrian behaviour. Firstly, the research area of pedestrian behaviour can
be divided into macroscopic and microscopic (Papadimitriou et al., 2009). In the
former case the pedestrian behaviour is approached in a more strategic level, for
example overall planning of a journey, scheduling activities/goals and choosing
departure times, whereas in the latter case the pedestrian behaviour is
approached in an operational, local level, such as the road crossing task,
interactions with other road users and obstacle avoidance. It has been argued
that the macroscopic pedestrian behaviour research is lacking detail on the traffic
interaction and is not that directly related to the safety aspect of such interactions
(Papadimitriou et al., 2009). For these reasons the research done was only
focused on the microscopic approach of pedestrian behaviour in this project and

more specifically on the pedestrian road crossing behaviour.

Some typical examples of pedestrian road crossing behaviour are
presented. Pedestrians frequently employ signals or actions to convey their
crossing intentions to approaching vehicles, such as advancing forward, stepping
onto the roadway, leaning forward, placing a foot on the road, observing
oncoming traffic, or utilising informal signals (Risto et al., 2017). Rasouli et al.
(2017b) found that the two most frequent patterns of pedestrian crossing
behaviour, “standing, looking, crossing” and “crossing, looking”, only account for
half of their observed cases. Additionally, they highlighted that one-third of
pedestrians in the non-crossing scenarios found to be waiting at the curb and
looking at the traffic. These findings indicate high variability in the behaviours of

pedestrians at the point of crossing/no-crossing. So, even though pedestrians
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usually tend to stand on the sidewalk to signal their intention to cross, it is not
apparently necessary that crossing the road is their goal (Crowley-Koch et al.,
2011). In some cases, despite pedestrians initiating their crossing, showing their
intention or the presence of markings and traffic signs, drivers do not always slow
down enough as they approach crosswalks (Risto et al., 2017; Varhelyi, 1998).
Sucha et al. (2017) highlighted that drivers were not very willing to yield to
pedestrians who were just waiting at the curb and looking at oncoming traffic, with
no obvious intention to cross. However, the distance between the pedestrian and
the curb is a significant factor in influencing driver behaviour and can be used to
predict the likelihood of a driver yielding (Himanen and Kulmala, 1988; Schroeder,
2008). Research has suggested that drivers are less likely to yield if a pedestrian
is waiting more than half a meter from the curb (Sucha et al., 2017). Pedestrians
cross the street in different ways based on factors like vehicle speed, available
gaps and the number of lanes (Chandra et al., 2014; Lobjois and Cavallo, 2007;
Pawar and Patil, 2015; Schmidt and Farber, 2009; Yannis et al., 2013). If the gap
is not wide enough, pedestrians might step backwards or run to avoid being hit
by a vehicle (Zhuang and Wu, 2011). However, in the cases where the
approaching vehicle is yielding, most pedestrians wait until the vehicle comes to
a complete stop before crossing, rather than relying on their own judgment of
whether it is safe (Sucha et al., 2017). This has been further characterised by a
bimodal distribution in pedestrians’ road crossing decisions (Giles et al., 2019;
Lee et al.,, 2022; Pekkanen et al., 2022; Tian et al., 2025, 2023). According to this
observation, a proportion of pedestrians might choose to cross shortly after they
perceive the approaching vehicle given that it would be safe to cross, and the rest
of the pedestrians would wait for the vehicle to stop or would initiate crossing
before it stopped (and it was obvious that it was coming to a complete stop before
them).

It is important to understand in more detail when pedestrians feel safe to
cross the street and what factors influence their decisions. There has been a large
number of studies in the past that investigated the factors that affect the
pedestrians’ road crossing behaviour (Rasouli and Tsotsos, 2020; Bazilinskyy et
al., 2019; Ezzati Amini et al., 2019; Ishaque and Noland, 2008). The factors
influencing pedestrian behaviour can be divided into internal (sociodemographic
and psychology factors) and external (environmental and traffic-specific factors).



1.3.1 External factors influencing pedestrian road crossing behaviour

Pedestrians’ crossing decisions are influenced by a variety of external
factors, which are primarily related to the behaviour (e.g., speed) and
characteristics of the approaching vehicle (e.g. size), and environmental
characteristics (e.g., weather/lighting conditions, infrastructure, and ways of
communication — the latter is described in detail in the next section), and their

interactions.

Road crossing decisions are based on how safe pedestrians feel (Brill et al.,
2024) to accept an available gap between them and an approaching vehicle. To
that end, they must judge whether the time and distance between them and the
vehicle is sufficient to cross safely (Beggiato et al., 2017; Brewer et al., 2006;
Dipietro et al., 1970; Harrell and Bereska, 1992; Moore, 1953; Nuifiez Velasco et
al., 2019; Petzoldt, 2014; Palmeiro et al., 2018; Schmidt and Farber, 2009; Wang
et al., 2010). Time gap is defined as the temporal separation between two
consecutive vehicles approaching the position of the pedestrian. The pedestrian
can either accept or reject that gap. The minimum gap that a pedestrian would
accept, in order to cross the road is called “critical gap” and is influenced by the
vehicles’ speed and distance, the crossing length, the pedestrians’ speed and
crossing initiation time, the pedestrians’ characteristics and the road conditions
(Department of Transport and Main Roads, 2006; Pawar and Patil, 2016). A
recurring theme in the literature has been the relationship between the distance
and time in pedestrian’s road crossing decisions. While the time-to-arrival (TTA)
has been considered as the most direct measure of safety (Petzoldt, 2014;
Pugliese et al., 2020), studies have suggested that the vehicle’s distance is what
pedestrians might actually rely on in reality (Oxley et al., 2005; Schmidt and
Farber, 2009; Yannis et al., 2020). This could lead to unsafe situations in which
for faster moving vehicles, pedestrians accept shorter gaps, since for a given TTA
the faster the vehicle, the further away it is from the pedestrian (Lobjois and
Cavallo, 2007; Tian et al., 2022). Researchers have suggested that this could be
explained by the human perception mechanisms. Specifically, Petzoldt (2014)
showed that speed consistently affects the TTA estimates of pedestrians, i.e.,
their estimations of TTA were lower for low speeds and higher for high speeds.
Hence, at higher speeds, they made risky crossing decisions because of their

overestimations of TTA rather than because they used an incorrect decision-
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making strategy. It was later found that faster vehicles produce weaker looming
signals on the retinas of the pedestrians for the same TTA (Tian et al., 2022).
Further support to that was the findings of Wang et al. (2025), who replicated
such speed-dependent gap acceptance by assuming that road crossing
decisions are boundedly optimal (noisy visual perception). Research has
provided evidence about pedestrian’s consistently rejecting very short gaps.
Studies found that all pedestrians rejected gaps of less than 3 s (Dipietro et al.,
1970; Schmidt and Farber, 2009). One of the earliest works in gap acceptance
suggested that the minimum accepted gap would not be shorter than 2.5 s
(Cohen et al., 1955). More recent studies highlighted that only a very small
proportion of pedestrians accepted gaps shorter than 2 s (Lee et al., 2022;
Pekkanen et al., 2022). The range of 3 to 6 s has been found to be the critical
window, since the decisions within it are varied. Even though the gap acceptance
for the 3 s is not as common, the rate is notable (Lee et al., 2022). As for the 4
and 5 s, research has found that the proportion of accepted gaps is around 50%
(Cohen et al., 1955; Lee et al., 2022; Pawar and Patil, 2015). For gaps that are
longer than 6 s, almost all pedestrians accept them. The probability of crossing
the road for such gaps has been found to be very close to, if not 100% (Schmidt
and Farber, 2009; Yannis et al., 2013). Eventually, pedestrians who are slower
and avoid to take risks usually take longer to accept a gap (possible explanations
are provided in the next subsection), leading to longer waiting times to accept a
gap (Sun et al., 2002). After waiting too long for the critical gap, such pedestrians

may accept shorter and riskier gaps (Antic et al., 2016).

The speed of a vehicle is one of the main factors that pedestrians consider
when deciding whether to cross or not (Ackermann et al., 2018; Jiang et al., 2011;
Pawar and Patil, 2015; Petzoldt, 2014; Sucha et al., 2017). As described before,
the most frequent counter intuitive finding is the speed-induced unsafe crossing
behaviour, where pedestrians tend to accept shorter time gaps when faced with
faster vehicles. More specifically, in Petzoldt's (2014) study, the mean accepted
time gap was found to be smaller for vehicles at 50 km/h (2.98 s) than at 30 km/h
(3.57 s). Similarly, Tian et al. (2022) found that the gap acceptance percentage
was higher for higher vehicle speeds and for a given time gap. This counter
intuitive observation is illustrated in Figure 1.1 and is explained by the perceptual

mechanisms discussed above.
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Figure 1.1 - Percentage of gap acceptance versus time gap size for different
vehicle speeds. Figure adapted from Tian et al. (2022)

Vehicle speed also affects the behaviour of vehicles towards pedestrians
and more importantly whether and how they would yield, with lower speeds
leading to more yielding (Ackermann et al., 2018; Geruschat and Hassan, 2005;
Himanen and Kulmala, 1988; Sucha et al., 2017; Turner et al., 2006). If drivers
do not slow down as they approach a crosswalk, it can signal that they intend to
maintain priority and not yield (Sucha et al., 2017). However, slowing down before
reaching a crosswalk is important for pedestrian safety (Risser, 1985). Drivers
need enough distance to react to pedestrians who suddenly appear (Varhelyi,
1998). Drivers may also need to slow down or stop completely to avoid hitting
pedestrians who are distracted, running, or crossing unexpectedly/illegally (Katz
et al., 1975; Sucha et al., 2017).

While spatiotemporal distance and vehicle speed are the primary external
factors that affect the pedestrian road crossing behaviour, the (negative) rate of
change of the vehicle’s speed — its deceleration — is also an important factor,
which influences the pedestrians’ crossing decision. The deceleration has two
key components: the timing (onset of braking) and the magnitude (deceleration
rate). An early and gentle braking initiated at a distance from the pedestrian could
be perceived as a clear indication that the vehicle is slowing and giving way,
encouraging an earlier crossing (Dietrich et al., 2020; Risto et al., 2017; Tian et
al., 2023). Conversely, late and harsh braking has the opposite effect and is
perceived as ambiguous. Even though pedestrians can detect higher
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deceleration rates faster, Ackermann et al. (2019) found that they detected
decelerating behaviour faster at lower vehicle speeds. This could suggest that
pedestrians might have the tendency to interpret lower speeds as indicative of
the vehicle yielding even if it is not (Tian et al., 2023). Based on the different time
gap durations, which were described above, it would be safe to assume that
pedestrians expect to perceive vehicle yielding (deceleration) information
between time gaps of 2 and 6 s. This assumption aligns with the observation from
Schneemann and Gohl (2016) that drivers would start to initiate braking typically
at 3 to 4 s from the position of the pedestrians, and the latest at 2.5 s. Beyond
the vehicle kinematics related factors, other external factors affect pedestrians

road crossing behaviour too.

Road features like the width of the road, the number of lanes, and
pedestrian crossing facilities can affect how pedestrians and drivers interact, in
terms of expectations of other users’ behaviour and perceived safety (Brewer et
al., 2006; Chandra et al., 2014; Ishaque and Noland, 2008; Lin et al., 2019; Pawar
and Patil, 2015; Schroeder, 2008; Sucha et al., 2017; Turner et al., 2006; Zhao et
al., 2019; Zhuang and Wu, 2011). A study found that the number of lanes a
pedestrian needs to cross, can help predict whether drivers will yield (Turner et
al., 2006). The type of pedestrian crossing facility can also affect the proportion
of vehicles yielding. Studies have shown that drivers are more likely to yield at
marked unsignalised crossings than at crossings with traffic management
systems or engineering treatments (Schroeder, 2008; Turner et al., 2006).
Pedestrians waiting on central refuge islands may accept shorter gaps than those
waiting at the curb (Hamed, 2001), and they may also accept shorter gaps in
narrow streets (Schmidt and Farber, 2009). The latter could be due to the fact
that the oncoming vehicles are more reluctant to drive in such roads with high
speeds and hence the yielding behaviour is supported (Fitzpatrick et al., 2007;
Sucha et al., 2017; Zegeer and Bushell, 2006). Pedestrian refuge islands and
clear markings can also improve driver compliance on roads with lower speed
limits (Turner et al., 2006). However, Himanen and Kulmala (1988) found that
road width and the presence of refuge islands did not significantly affect the

driver’s nor pedestrian’s behaviour.

A lot more external factors have been studied regarding their effects on the

pedestrian crossing behaviour, such as the size of the vehicle (Ackermann et al.,
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2018; Hamed, 2001; Himanen and Kulmala, 1988; Tian et al., 2020; Pawar and
Patil, 2015; Petzoldt, 2016; Sun et al., 2002), weather and lightning conditions
(Ackermann et al., 2018; Harrell, 1991, 1993; Whetsel Borzendowski et al., 2013),
vehicle deceleration patterns (Ackermann et al., 2018; Carlowitz et al., 2024; Dey
et al., 2021; Lee et al., 2019b, 2024; Tian et al., 2023), pedestrian’s own walking
speed (Federal Highway Administration, 2013; Lobjois and Cavallo, 2007; Willis
et al., 2004), waiting and observation time (Tian et al., 2024; Lobjois et al., 2013;
Schmidt and Farber, 2009), traffic density and different means of communication
between the pedestrian and the approaching vehicle (Rasouli et al., 2017b;
Rasouli and Tsotsos, 2020; Chandra et al., 2014; Ezzati Amini et al., 2019; Tian
et al., 2024; Lobjois et al., 2013; Pawar and Patil, 2015; Risto et al., 2017; Sucha
et al., 2017).

1.3.2 Internal factors influencing pedestrian road crossing behaviour

Demographics, such as age and gender have been heavily investigated in
relation to pedestrian road crossing behaviour. Generally, age has been found to
be the most important factor which influences the cautiousness of pedestrians
waiting to cross, with older pedestrians being more risk averse and cautious than
younger pedestrians (Beggiato et al., 2017; Chandrapp et al., 2016; Harrell,
1991). This has been supported by Lobjois and Cavallo (2007), who examined
the gap acceptance of older and younger individuals under different time
constraints, finding that when there were no time constraints, older individuals
accepted larger gaps therefore demonstrating less risky decision-making. Older
pedestrians have also been found to wait on the curb for a longer time before
accepting a gap in a similar display of more cautious crossing behaviour (Wang
et al., 2010). Moreover, when it comes to estimating the vehicle’s time to arrival
(TTA) — an important estimate used to make road crossing decisions (Beggiato
et al., 2017; Petzoldt, 2014), young children (5-6 years) were found to estimate
TTA based only on the distance from the vehicle, as compared to a) adults (18-
54 years), who were able to integrate both distance and speed for TTA
estimations, and b) older children (7-10 years), who were found to gradually be
developing that ability (Hoffmann, 1994). According to Piaget (1970), children’s
ability to correctly estimate time, distance and speed of objects is under
development approximately up until the age of 8. However, later research has

shown that children’s poor judgments is not due to this inability, but due to the
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problematic attention allocation on the presented task (Droit-Volet et al., 2006;
Meir et al., 2013). So, the inadequate understanding of traffic rules, the lack of
experience in the road crossing task, unpredictable behaviour, distraction and
overly risky behaviour are common reasons behind child pedestrian accidents
(Johansson et al., 2004; Leden et al., 2006; Rosenbloom et al., 2008).
Conversely, Oxley et al. (2005), who studied pedestrian gap selection between
30-45, 60-69 and 75+ years old adults, found that all age groups used vehicle
distance rather than TTA to make their decisions, however, the oldest pedestrians
seemed to need more time to reach a decision. They also indicated that despite
the generally riskier road crossing decisions, younger adults made safer choices
as opposed to older pedestrians. Oxley et al. (2005) suggested that these unsafe
decisions were a result of the deterioration of the older pedestrians’ executive
function (Staplin et al., 2001; Valos and Bennett, 2023), which includes features
such as working memory, strategy application and cognitive flexibility (Gilbert and
Burgess, 2008), rather than not being able to process the available perceptual
cues. The greater risk aversion, possible misinterpretations of the situation and
difficulties to make a decision could possibly be explained by the fact that older
pedestrians (typically 60+) travel at lower speeds, 0.97 - 1.27 m/s, than younger
adults, 1.32 — 1.57 m/s (Ishaque and Noland, 2008), and thus they generally
select larger gaps to compensate for that lower walking speed. Observations by
Bennett et al. (2002) regarding the lower crossing speeds of older (1.35 m/s) than
other pedestrians (1.70 m/s) further support the previous findings. It is assumed
that pedestrians that are most frequently present outside on the roads are young
and middle-aged adults, as has been also indicated by the fact that these
pedestrians have been comprising the majority or a large proportion of studies’
samples (Beggiato et al., 2017; Harrell, 1991; Hoffmann, 1994; Oxley et al.,
2005). Overall, middle-aged pedestrians have been found to not be as cautious
as the elderly, and to accept smaller gaps (Beggiato et al., 2017; Harrell, 1991;
Lobjois and Cavallo, 2007). Despite that, middle-aged pedestrians’ crossing
decisions could be described overall as safer than the decisions of children
(Hoffmann, 1994) and the elderly (Lobjois and Cavallo, 2007), primarily due to
their better performing executive function and movement ability, which result in
better judgments of the traffic situation, and faster reaction and crossing times.

Based on those better judgment skills, it has been suggested that middle-aged
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adults are more aware of their surroundings when crossing the street and they

tend to look at oncoming traffic more often (Zhuang and Wu, 2011).

Another important internal factor in the road crossing behaviour of
pedestrians’ is their gender. A lot of researchers have suggested that female
pedestrians generally exhibit more cautious behaviour and risk aversion than
male pedestrians. For example, studies have consistently shown that women
have the tendency to wait for longer times at the curb before they decide to cross
(Hamed, 2001; Tiwari et al., 2007). According to Holland and Hill (2007) and
Himanen and Kulmala (1988), women have also been found to perceive risky
crossing decisions to have a greater likelihood of resulting in a harmful outcome
than men. Overall, these translate to higher cautiousness levels when deciding
to cross the road for female pedestrians when compared to male pedestrians
(Harrell, 1991). On the other hand, male pedestrians not only show a higher
propensity in risk-taking (O’Dowd and Pollet, 2018), but also generally decide and
cross the road faster than women (Lobjois and Cavallo, 2007). This difference
between the road crossing behaviours of men and women might be explained by
physiological and personality characteristics. Gender has been indicated to be
the controlling factor of the relationship between impulsivity, physiological
responses (such as skin conductance), and risk-taking, while at the same time
conscientiousness is highly associated with safer pedestrian behaviour. Schiff
and Oldak (1990) found that women underestimated the time to arrival more than,
which could be another reason behind their more cautious road crossing
behaviour. However, there have been studies which did not observe such gender
differences on crossing decision tasks, such as time gap selection or safety
margin calculation (Kadali and Vedagiri, 2016; Lobjois and Cavallo, 2007). Kadali
and Vedagiri (2016) suggested that behavioural characteristics common to a big
proportion of pedestrians might be nullifying the effect of gender in specific road
crossing scenarios. The relationship between self-reported and observed road
crossing behaviour is even more complex, for which Papadimitriou et al. (2016)
found that on main roads the difference between reported and actual behaviour
was not influenced by the pedestrians’ gender but in minor residential roads
women tended to overstate their risk-taking (reported crossing but were not),

while men overstated theirs. The abovementioned findings suggest that the effect
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of gender on road crossing behaviour is dependent also on the external factors

as the ones mentioned in the previous subsection.

The size of pedestrian groups waiting to cross the street have been found
to influence both pedestrian behaviour and driver behaviour. Larger groups are
more likely to make drivers yield (Katz et al., 1975; Sucha et al., 2017; Sun et al.,
2002). This can be safer for pedestrians as they would be more noticeable in
groups (Zhuang and Wu, 2011). However, smaller groups can cause more traffic
interruptions and delays due to frequent crossings (Jin et al., 2013; Malenje et
al., 2018). Analysing illegal mid-block group crossings, researchers found that
larger pedestrian groups require more time to cross. This can lead to drivers
having to stop completely, potentially causing traffic waves. To avoid this, drivers
may slow down in anticipation of pedestrians crossing, especially if there is a
large group waiting (Malenje et al., 2018; Yi-Rong et al., 2015). Additionally,
waiting times for pedestrians at zebra crossings can decrease as the group size
increases (Hamed, 2001), possibly because a) drivers would often yield for a
group of pedestrians about to cross the road in comparison to individual
pedestrians (Katz et al., 1975), and b) pedestrians would utilise already

established priority to pass by more pedestrians (Himanen and Kulmala, 1988).

There is plethora of other internal factors that are related to culture (Faria et
al., 2010; Lee et al., 2011; Mihet, 2013; Sueur et al., 2013; Uono and Hietanen,
2015), familiarity of the place (Hamed, 2001; Sucha et al., 2017), social
orientation (Evans and Norman, 1998; Harrell, 1993; Schwarting et al., 2019),
psychological state (Berry and Schwebel, 2009; Coeugnet et al., 2019; Evans and
Norman, 1998) and factors related to illegal behaviour (Jay et al., 2020; King et
al.,, 2009; Pawar and Patil, 2015; Rosenbloom, 2009), which have been

suggested to play a role in pedestrian road crossing behaviour.

After the presentation of the external and internal factors that influence
pedestrians’ road crossing behaviours, it can be acknowledged that there are
several factors that affect the pedestrian road crossing behaviour. However, there
are almost no empirical studies which focus on the question of how pedestrian
understand the intentions of an approaching vehicle.
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1.4 Communication between pedestrians and vehicles

As stated in the previous sections, communication between a pedestrian
and an approaching vehicle is an important aspect of safe interactions and
understanding it better is important for creating safe AVs. Markkula et al. (2020)
have divided pedestrian-vehicle communication into two categories:
communication through explicit and implicit cues. That means that pedestrians
and vehicles communicate, by providing information to each other intentionally or
even unintentionally. Explicit signals are actions that give information to others
without changing the person's own movement or perception, for example
generally conveying information verbally or a driver indicating that they are
yielding to a pedestrian waiting on the curb by smiling or nodding to them (Rasouli
et al., 2017b; Fuest et al., 2018; Mahadevan et al., 2018; Sucha et al., 2017).
Some other common signals that are regarded as explicit cues are eye contact,
hand gestures, and flashing headlights (Farber, 2016; Fuest et al., 2018; Sucha
et al., 2017). Eye contact is important for pedestrians to make sure drivers are
aware of them and sometimes to request the right of way. Hand gestures and
light signals are less common and are used as last resort to resolve ambiguous
situations or conflicts, or as an expression of gratitude or discomfort after the
interaction (Farber, 2016).

Implicit signals are actions that change the person's own movement but at
the same time these signals indicate the person’s intentions to others (Markkula
et al., 2020). For example the body language of a pedestrian waiting at the
sidewalk or a driver applying the vehicle’s brakes early or exaggerating their
deceleration to show their intention to yield before a pedestrian (Fuest et al.,
2018; Risto et al., 2017).

In the case of AVs, where a human driver is not necessarily present,
pedestrian-driver communication is not possible. Past research has suggested
that VRUs would find forms of explicit communication useful when interacting with
AVs (Dey et al., 2021; Merat et al., 2018; Schieben et al., 2019). Examples include
the acknowledgment that they have been detected by the AV or providing
information about the AV’s status or intended behaviour (Carlowitz et al., 2023;
Lee et al., 2019a). The main debate of most studies, regarding the behaviour of

an AV, is whether external human-machine interfaces (eHMIs) are contributing to
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the decision-making of the pedestrians or not. Some studies support eHMIls, as
their findings suggest that they shorten the duration needed to recognise a
yielding behaviour and increase the perceived safety and willingness to cross
when it is needed (Bockle et al., 2017; Chang et al., 2017; de Clercq et al., 2019;
Dey et al., 2021; Kooijman et al.,, 2019). Therefore, researchers and car
manufacturers are exploring different designs for external interfaces that allow
future autonomous vehicles to communicate effectively with pedestrians (Rasouli
and Tsotsos, 2020; Bazilinskyy et al., 2019; Chang et al., 2017; Nissan Motor
Corporation, 2015; Schieben et al., 2019). Researchers have developed different
types of eHMIs for AVs to communicate with pedestrians. These interfaces often
use light-bands, text messages, either on the vehicle or projected onto the road
(Bazilinskyy et al., 2019; Lee et al., 2024; Tabone et al., 2021). Some also use
auditory signals to convey the message (Deb et al., 2018; Lee et al., 2019a).
However, different studies found different types of eHMIs more effective, and
some have argued that already established ways of conveying a message like
the flashing headlights are sufficient or even better than the current eHMI
suggestions (Lee et al., 2022). Researchers have been studying how eHMIs
affect pedestrian behaviour and feelings and the outcomes have been mixed.
Some studies found that eHMIs can make pedestrians feel more comfortable and
trusting of AVs, help make decisions more quickly when an AV had “eyes” on the
pedestrian, reduce the time it took pedestrians to start crossing and can make
pedestrians feel more positive about sharing the road with AVs (Chang et al.,
2017; Deb et al., 2018; Dey et al., 2020; Hollander et al., 2019). Additionally, Dey
et al. (2021) found that pedestrians were more likely to cross when an AV used
an eHMI to signal that it was yielding. However, studies have shown that different
eHMIs were not conveying any different message than the usual no-eHMI design
to pedestrians (de Clercq et al., 2019; Deb et al., 2018; Kooijman et al., 2019), or
provided messages that could be interpreted in different ways / be contradictory
(Carlowitz et al., 2023; Lee et al., 2019a).

Additional evidence towards the importance of implicit cues is provided, as
Domeyer et al. (2019) and Mahadevan et al. (2018) highlighted the importance
of focusing on kinematics and not just the design of eHMIs. According to them,
implicit communication or communication through actions is important and

requires the ability to estimate the behaviour of others. Domeyer et al. (2022),
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reported that in the case of non-intersection scenarios, the pedestrian acts
accordingly to the vehicle’s implicit cues. Rothenblcher et al. (2016), Clamann et
al. (2017) and Moore et al. (2019), have agreed that pedestrians’ decision
making, when interacting with an AV, depends firstly on the vehicle kinematic cues
and then on the eHMIs. For example, Schmidt and Farber (2009) suggested that
distance is the cue affecting the pedestrian’s decision, while they also studied the
parameters that humans use to predict pedestrians’ intentions. According to the
abovementioned studies, implicit signals, alone, can impact how pedestrians
make decisions when crossing the road, especially in situations where drivers do
not have to yield to pedestrians at intersections. For instance, at uncontrolled
intersections, pedestrians are more likely to cross the road if the distance and
time to collision is shorter, and if the vehicle is traveling at a higher speed (Tian
et al., 2022). The kinematic cues that have been found to have significant effect
on the pedestrians’ reaction times in detecting the deceleration of an approaching
vehicle, and their willingness to cross (or not), and also on their crossing
decisions, were the vehicle’s deceleration rate and onset (Ackermann et al.,
2019; Dey and Terken, 2017; Lee et al., 2024, 2022, 2019b; Petzoldt et al., 2018;
Sucha et al., 2017; Wang et al., 2010; Varhelyi, 1998), and speed (Schneemann
and Gohl, 2016; Petzoldt, 2016; Sucha et al., 2017; Varhelyi, 1998). Specifically,
Dey et al. (2021) found that pedestrian willingness to cross the road increases
when vehicles slow down dramatically. They also highlighted that pedestrian
crossing willingness was not affected by eHMIs, but rather by the vehicle's
kinematics in situations where the vehicle brakes aggressively. When
approaching vehicles slow down early and brake gently, pedestrians are able to
detect the vehicle’s yielding intention more accurately and earlier and feel
comfortable initiate crossing (Ackermann et al., 2019). However, if the braking is
late and harsh, it leads to pedestrians’ confusion and mistrust (Dey et al., 2021;
Risto et al., 2017). To summarise, the above studies and their findings suggest
that pedestrians find implicit signals as more trustworthy and consistent indicators
of a vehicle's intention or behaviour than explicit signals, and that different
deceleration patterns can have different effects on pedestrians’ comprehension

of the vehicle’s exhibited behaviour.

Although a lot of research has been focused on the importance of overall

communication in pedestrian-vehicle interactions and some of that on implicit
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cues specifically, there is a lack of detailed empirical studies of how different
vehicle manoeuvre patterns affect the mechanisms with which pedestrians
estimate the intentions of approaching vehicles over the whole period of the

pedestrian-vehicle interaction.

1.5 Modelling the road crossing task

It is valuable to complement empirical investigations with formal modelling,
as it helps to build detailed theories, make more precise and focused inferences,
explain and predict behaviours and improve the reproducibility of research
findings (Guest and Martin, 2021), but also put the models to more direct use in
applications. Computational models can help explain and reproduce the
pedestrian road crossing behaviour and have real-world implications for traffic
safety and infrastructure development (Markkula et al., 2023). The development
of AVs has increased interest in this research area (Rasouli and Tsotsos, 2020;
Camara et al., 2020a; Camara et al.,, 2021). AVs that do not understand
pedestrian behaviour and interact appropriately will not improve traffic efficiency
and safety (Markkula et al., 2020; Millard-Ball, 2018). Having appropriate and
good models of pedestrian crossing behaviour will assist with the development of
capable AVs, meaning that computational models of pedestrian behaviour are
important for the wider deployment of AVs. Many models have been developed
to account for different aspects of the overall pedestrian behaviour, but this thesis

was focused on the road crossing decision-making.

Pedestrian crossing behaviour requires the combination of different mental
processes. Palmeiro et al. (2018), building on Endsley's (1995) model of situation
awareness (SA), suggested that there may be three levels involved: perception,
comprehension and projection, before a crossing decision is made and
performed. As can be seen in Figure 1.2, the pedestrian receives the relevant
environmental information and approaching vehicle’s signals through the
perception system, then combines the perceptual cues with prior knowledge and
expectations and projects the vehicle’s status and predicts the vehicle’s most
likely actions in the near future, before eventually they finalise the crossing

decision and follow the respective action. Based on the division mentioned above,
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the following section will provide a summary of theories and models of pedestrian
road crossing behaviour. In this project the focus remained on modelling the three
levels of situation awareness, which correspond to what it is meant in this thesis
by behaviour estimation, which is also known as action understanding/intent

recognition in the literature.

Environmental factors  Individual factors
« Task demands « Goals
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Figure 1.2 - Model of situation awareness (SA) in dynamic decision making,
describing the interaction between a pedestrian and an AV — as illustrated by
Palmeiro et al. (2018)" and adapted from Endsley (1995)

1.5.1 Perception theory for pedestrian road crossing modelling

It has been argued that, for pedestrians, comprehending the behaviour of
approaching vehicle (yielding to the pedestrian or not) and updating their beliefs
about such behaviour depend on mainly on implicit and sometimes on explicit
cues as well (Ackermann et al., 2019; Lee et al., 2024; Petzoldt et al., 2018). As
stated in Section 1.4, implicit signals play a significant role in pedestrian
behaviour, but people do not seem to base their road crossing decisions on direct
measurements of speed, time-to-arrival (TTA), distance, or deceleration rates
(Lee et al., 2019b; Petzoldt et al., 2018). Instead, they rely on visual cues such
as visual angle, the rate of change in visual angle, t, i.e., the ratio of visual angle
to the change rate of visual angle (could specify the instantaneous TTA of an
approaching vehicle), and 1, i.e., the change rate of t (DeLucia, 2015; Lee, 1976).

When a vehicle approaches the pedestrians, the image of the vehicle on

1 Reprinted from Transportation Research Part F: Traffic Psychology and Behaviour, Volume 58,
Ana Rodriguez Palmeiro, Sander van der Kint, Luuk Vissers, Haneen Farah, Joost C.F. de Winter,
Marjan Hagenzieker, “Interaction between pedestrians and automated vehicles: A Wizard of Oz
experiment”, p. 1006, Copyright (2018), with permission from Elsevier.
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pedestrians' retinas increases as the distance of the vehicle to the pedestrians
decreases (Lee, 1976). DelLucia (2015) suggested that pedestrians might
perceive oncoming collision events from a particular angle, known as the bearing
angle, which is the angle between the vehicle and the pedestrian's direction of
movement. The expansion rate of the image is referred to as looming, which is a
critical visual cue pedestrian may apply to judge events with a potential collision
risk (Ackermann et al., 2019; DeLucia, 2015; Giles et al., 2019; Markkula et al.,
2018; Tian et al., 2025). Generally, looming can be formulated as the change rate
of the visual angle 6 subtended by the vehicle, as follows: 8 = d6/dt. When the
vehicle approaches the pedestrians at a constant speed, looming increases as
the distance decreases. However, in the vehicle yielding scenario, looming starts
to decrease as the vehicle's speed decreases. Therefore, the change rate of
looming may provide the vehicle's decelerating information for pedestrians. In
other words, when the vehicle slows down, the edges of the vehicles seem to
stop moving away from each other. Except looming, it is indicated that humans
might apply a 7 strategy to judge the collision events (DeLucia, 2015; Lee, 1976).
Borrowing from the theory of visual control of braking, the optical variable t is
calculated by the ratio of 8 and 6 (r = 8/6) and has been suggested to be an
important visual cue, as it provides the time to collision information (Lee, 1976).
It can be proven mathematically that the adequacy of the vehicle's deceleration
to stop before a collision occurs is provided by the change rate of 7 and 7. The
collision will occur when 7 is less than -0.5, but not vice versa. The 7 is defined
as the following equation: © = dt/dt. In psychology, researchers have indicated
that humans may apply several visual cues, e.g., distance, looming, 7, to detect

collision events (Lee, 1976; Wann et al., 2011).

Pedestrian perception may depend on both visual cues and thinking
strategies. Research has shown that pedestrians may estimate vehicle behaviour
separately or as part of their decision-making process (Pekkanen et al., 2022;
Tian et al., 2023). When there is a large gap in traffic, pedestrians may focus on
the size of the gap rather than how the vehicle’s behaving (Tian et al., 2023).
DeLucia (2015) found that when conflicts that can result to collisions are far away,
people tend to use simple visual cues. However, the more imminent a collision
event is, the more complex visual information are being used by the pedestrians.

In the case of a road crossing interaction the perception level (Level 1 in Figure
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1.2) could be characterised by the collision perception theory. So, collision
perception theory is an important step to construct a pedestrian’s situational

awareness model.

1.5.2 Decision-making for pedestrian road crossing modelling

As discussed in Section 1.3, empirical observations show that pedestrians
decide whether to cross the road by evaluating the size of the gap between them
and the approaching vehicle. This has led to a group of models based on this
assumption, called gap acceptance models (GA). Raff and Hart (1950) estimated
the critical gap which is considered to be the threshold for a pedestrian to decide
to cross. Later models built on this assumption (fixed critical gap models), where
the critical gap is formulated as a function of factors like pedestrian speed or
distance to the curb (HCM2010, 2010). Additionally, several recent models have
estimated the critical gap by including vehicle speed and distance. Kotseruba's
and Rasouli's (2023) model suggested that the critical gap decreases as the
waiting time increases. A key assumption of the critical gap models is that all
pedestrians are homogeneous. To avoid such limitation researchers introduced
the binary logit models, where the crossing decisions are treated as a “yes/no”
choice (Himanen and Kulmala, 1988; Sun et al., 2002; Zhao et al., 2019). Tian et
al. (2022) combined a gap acceptance with psychophysics (based on visual cues)
being able to capture patterns from pedestrian gap acceptance during continuous
traffic flow. These binary logit models have been used with machine learning
algorithms such as artificial neural networks (ANN), linear regression (LR) and
support vector machines (SVM) to predict the pedestrians’ crossing decisions
based on individual and/or situational characteristics with great efficiency
(Himanen and Kulmala, 1988; Pawar et al., 2016; Raghuram Kadali et al., 2014).
However, these models lack interpretability (Srinivasan et al., 2023; Markkula and
Dogar, 2022; Rudin, 2019), because they learn complex patterns to make
accurate predictions, but their internal operation is not necessarily mapping to
underlying processes that drive human behaviour. Other researchers have split
the road crossing decision-making into strategies depending on the phase of the
pedestrian-vehicle interaction (Tian et al., 2025). All the above models are based
on observed behaviour patterns and are rather descriptive, except for Tian’s
models, which combined descriptive methods with plausible visual information.

On the other hand, there have been researchers who modelled the underlying
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decision-making mechanisms based on psychology theories and that is beneficial
because they are more explanatory and generalisable than the previous group of
models. Thus, computational models that are based on psychological theories
can expand to explain scenarios where the approaching vehicle is yielding or

capture the time dependency of a road crossing.

The development of cognitive models has benefited the somewhat “rigid”
models that were mentioned before. Similarly, Wang et al. (2023), Crosato et al.
(2023) and Markkula et al. (2023) combined models from cognitive science
theories with machine learning approaches in order to explain patterns of
pedestrian crossing behaviour. Another group of models which are based on
psychological and cognitive theories, are the evidence accumulation models
(Giles et al., 2019; Markkula et al., 2018; Pekkanen et al., 2022). These models
have shown that they can overcome the limitations that the gap-based models
are struggling with. Building on the well-established drift-diffusion process theory
in psychology and cognitive neuroscience, these evidence accumulation models
propose that pedestrian crossing decisions are the result of a process where
visual cues and noisy evidence are accumulated (Ratcliff et al., 2016). When the
accumulated evidence reaches a certain threshold, a decision is made. The
resulting response time distribution provides insights into crossing decisions and
their timing. These models offer a powerful tool for explaining pedestrian crossing
decisions guided by perceptual cues from a human cognitive perspective. Other
notable models that have been used to model the dynamic road crossing
decisions are based on game theoretical approaches (Kalantari et al., 2023;
Camara et al., 2021; Wu et al., 2019). An exensive table of details regarding the
different models, their inputs and outputs presented in this subsection, can be
found in Table E.1 of Appendix E .

1.5.3 Action for pedestrian road crossing modelling

As stated in the previous subsection, decision-making models of pedestrians
can capture the time dependency of the road crossing task. Through them, the
crossing initiation time (CIT) — the time it takes for a pedestrian to start crossing
the road, can be calculated. CIT is affected by both internal and external factors
(see section 1.3). For example, males’ and younger adults’ CIT is higher than that
of females and older adults respectively (Lobjois et al., 2013; Lobjois and Cavallo,
2009). Also, when a pedestrian is facing a faster vehicle their CIT increases (Tian
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et al., 2022). Evidence accumulation models have been successful in capturing
the bimodal distribution of road crossings in vehicle-yielding scenarios (Pekkanen
et al., 2022). The distribution of late crossing initiation times is complex and
cannot be described by standard response time distributions, while the
distribution of the early crossing initiation times is similar to that in non-yielding
scenarios, as pedestrians use similar decision-making strategies (Tian et al.,
2023). That leads to the suggestion that when the approaching vehicle is yielding,
the pedestrian might have to employ a road crossing strategy based on a

behaviour estimation mechanism (more details in Section 1.6).

After pedestrians finalise their decision, they initiate crossing and walk across
the road. Walking behaviour has been replicated in microsimulations of models
like social forces model (SF), cellular automata models (CA) and learning-based
models. SF models have been used to simulate pedestrian-vehicle interactions
and large-scale pedestrian flows and are based on Newtonian physics (Helbing
and Molnar, 1995; Moussaid et al., 2010; Zeng et al., 2014). CA have been good
models for simulating complex environments due to their discreet definition
(Layegh et al., 2020; Lu et al., 2016). In contrast to the white-box models that
were mentioned up until now, there are black-box models based on learning-
based approaches. These approaches, learn pedestrian walking behaviour from
data. These models use techniques like artificial neural networks (ANN) (Song et
al., 2018; Ma et al., 2016), Long Short-Term Memory networks (LSTM) (Kalatian
and Farooq, 2022), reinforcement learning (RL), and inverse reinforcement
learning (IRL) (Crosato et al., 2023; Martinez-Gil et al., 2014; Nasernejad et al.,
2023; Wang et al., 2023) to simulate and predict pedestrian movements. The
input on these models can be either the outputs of other models, for example SF,

or image/video datasets.

Despite the variety of models regarding the road crossing task, there has been
little focus and modelling efforts on the mechanisms with which pedestrians infer
the intentions of approaching vehicles (comprehension and projection levels of
SA — see Figure 1.2), which seems to be quite important especially in more
complicated scenarios, like the ones that include changes in the speed of the

vehicle, which in turn are very common in real life.
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1.6 Modelling behaviour estimation mechanisms

The previous sections highlighted that pedestrians rely primarily on the implicit
kinematic cues of an approaching vehicle to communicate with it and to decide
when to cross the road and provided an overview of models of the overall road
crossing task. The current section presents information about how humans infer
the intentions of others and more specifically how pedestrians’ beliefs regarding
the behaviour of an approaching vehicle are formed and updated over time. Thie
cognitive mechanisms of inferring the vehicle’s immediate behaviour (particularly
whether it is stopping or not) is what was defined as “behaviour estimation” in this

thesis.

1.6.1 Human intent prediction models for AVs

Several studies have concentrated on modelling the road crossing behaviour
of pedestrians, as discussed in the previous section but also on developing
systems that promise improved pedestrian safety on the streets. Predicting
pedestrian actions on roads is a safety concern for AVs and has become
increasingly important to the automotive industry. Estimating when pedestrians
will cross streets has proven to be a difficult task, as they can move in various
directions, change their movements unexpectedly, be obscured by obstacles, and
become distracted while talking or using their phones (Ferguson et al., 2015). It
is apparent that their decisions and overall behaviour can be affected by several
factors, as detailed in previous sections. To develop AVs, a lot of effort has been
spent on algorithms for pedestrian detection. The data that these detection
algorithms use include images, 3D point clouds, or a combination of both
(Ferguson et al., 2015; Gandhi and Trivedi, 2008; Schneider and Gauvrila, 2013).
Research on predicting pedestrian behaviour has been focused on both short-
term and long-term applications. Long-term prediction studies often have utilised
static cameras to predict either the final destination or the trajectory to be followed
by pedestrians (Deo and Trivedi, 2017; Karasev et al., 2016; Kitani et al., 2012).
However, long-term predictions have been very challenging to obtain due to the
easiness with which pedestrians can decide to alter their movements (Ferguson
et al., 2015; Gandhi and Trivedi, 2008). On the other hand, despite the challenges
posed by rapid changes in pedestrians’ movements, short-term approaches have
been able predict pedestrian trajectories within horizons of a few seconds.
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Rehder and Kloeden (2015) highlighted the relevance of head orientation and
body movement for short-term predictions, while long-term predictions are more
goal oriented. Researchers have used a pedestrian's posture, and body language
to infer their intentions. The models that have been applied for this application
are mostly data-driven, for example models based on neural networks (Hariyono
and Jo, 2015), Gaussian Process (GP) models (Quintero et al., 2015; Quintero
et al., 2014) and Support Vector Machine (SVM) models (Koehler, 2015; Koehler
et al.,, 2012). Kalman Filters and Particle Filters have been used in many
dynamics-based studies to predict the pedestrians’ positions or paths (Hariyono
et al., 2015; Bertozzi et al., 2004, 2004). Information about head orientation has
been used to improve pedestrian intention estimation. Several studies have
combined pedestrian dynamics and situational awareness to predict pedestrian
intentions (Schulz and Stiefelhagen, 2015a, 2015b; Hashimoto et al., 2015;
Hashimoto et al., 2015). Some notable approaches that have incorporated head
orientation information to the overall dynamics are the Multilayer Perceptron
(MLP) network (Goldhammer et al., 2015) and Latent Dynamic Conditional
Random Fields (LDCRF) system (Schulz and Stiefelhagen, 2015a, 2015b).
However, relying solely on head orientation may not be sufficient, as it may not
always indicate the pedestrian's current real attentiveness. The latest advances
on the intention estimation of pedestrian research have been made by including
the influence of the environment and/or the relations amongst all the involved
interacting road users. To achieve that researchers have used various
techniques, including Recurrent Neural Networks (Bock et al., 2024), Gaussian
Processes (Ferguson et al., 2015; Quintero et al., 2015; Quintero et al., 2014),
and Dynamic Bayesian Networks (Hashimoto et al., 2015; Hashimoto et al., 2015;
Kooij et al., 2014).

Research on VRUS’ intentions estimation has drawn a lot of attention (Ahmed
etal., 2019; Chen et al., 2023; Kwak et al., 2017; Ranga et al., 2020; Saleh et al.,
2020, 2018a, 2018b, 2017a, 2017b, 2017c; Sharma et al., 2022) and itis a crucial
component in the development of AVs. But since the behaviour of those humans
will also depend on their understanding of how the AVs behave (Habibovic et al.,
2018; Jayaraman et al., 2019; Razmi Rad et al., 2020), it is interesting to consider
how humans themselves estimate intent of other humans and especially road

users — this is an understudied area, which is also of relevance in conventional
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traffic safety, since it is known that many crashes occur because of road users

misinterpreting each other’s intentions (Ljung Aust et al., 2012; Yue et al., 2020).

1.6.2 Behaviour estimation in cognitive science

Humans are quite good at inferring the goals, beliefs, and desires of others
through observing their actions (Baker, 2012; Gergely et al., 1995; Woodward,
1998) and this has been the focus of much research in the field of psychology
and cognitive neuroscience. It has been suggested that when someone is
observing someone else’s actions, the observer is able to infer the goals and
intentions of the other, due to the so-called mirror neurons and the cortical regions
of the action-observation network (Kilner, 2011). During interactions, humans
tend to interpret the behaviours of others as goal-directed actions/intentions
(Gergely et al., 1995; Gergely and Csibra, 2003). Human social interaction
depends on the ability to estimate the psychological states that produce
behaviour (Baker et al., 2009). Intent recognition/behaviour estimation has been
well researched in terms of establishing models that could explain their
mechanism in a general sense, though they are limited to tasks such as reach-
to-grasp an object (Amoruso and Urgesi, 2016; lacoboni et al., 2005) and
listening to a birdsong (Friston and Frith, 2015; Friston and Kiebel, 2009a, 2009b;
Friston and Frith, 2015). Additionally, numerous other studies have applied
models of goal/intent estimation, but they all shared the limitation of observing an
agent navigating in a simple maze (Baker et al., 2011, 2005, 2017, 2009; Ramirez
and Geffner, 2010). In these studies, the participants were shown stimuli of
animated agents (and their trajectories) moving towards goals in simple two-
dimensional maze-like environments and were asked to report their beliefs about
the agent’s goal at pre-fixed judgment points (i.e., points in the middle of the
agent’s trajectory before a particular goal was achieved, where participants
reported their subjective inferences regarding the agent’s goal), where the
agent’s movement sequence was paused. The models proposed by the literature
above have been incredibly successful at capturing the approximately rational
inference mechanism in human goal inference. These models were based on the
idea of the Theory of Mind (ToM) — humans’ ability to reason about other people's
mental states — and were formalised as a Bayesian (BToM) inversion of a
probabilistic state-estimation and expected-utility-maximising planning process,

conditioned on observing others’ actions. This BToM framework followed the

28



principle of rationality — the expectation that others form an approximate optimal
plan to achieve their goal and was formulated as a Markov decision process
(MDP) model of goal-directed planning, where the posterior probability of a Goal
(belief) was calculated, conditioned on observed Actions and the Environment,

using Bayesian inference:

P(Goal|Actions, Environment)
o« P(Actions|Goal, Environment)P(Goal|Environment)
Where, P(Actions|Goal, Environment) is the likelihood of the Goal given
observed Actions and the Environment, defined above as probabilistic planning
in an MDP, P(Goal|Environment) is the prior probability of the Goal given
the Environment, which sets up a hypothesis space of goals that are realisable in

the environment.
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Figure 1.3 - Examples of qualitative comparisons between participants’ goal
inferences and the predictions of model M2 of Baker et al. (2009)?

An important illustration of their findings and methods can be seen in Figure
1.3. Panel (a) shows the experimental setup, where A, B and C represent the
possible goals that the agent may pursue (with X being the starting point), and
the numbered points indicate where the agent's movement trajectory was cut and
a subjective judgment was given by the observer participant. Panels (b) and (c)
compare the observed evolution of the average human beliefs with the
predictions of the computational model, showing how the likelihood of each goal

2 Reprinted from Cognition, Volume 113 /Issue 3, Chris L. Baker, Rebecca Saxe, Joshua B.
Tenenbaum, “Action understanding as inverse planning”, p. 337, Copyright (2009), with

permission from Elsevier.
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changes as new movement evidence is obtained over time. The average
subjective ratings showed several patterns of reasoning: participants initially were
uncertain regarding the agent’s goal, but their beliefs became more certain as
they accumulated more evidence from observing the agents’ trajectories. Their
beliefs were updated over time, and changed, for instance when an agent took a

late turn towards a new goal.

Additionally, humans might be inferring others’ goals not only based on
observing the other agents’ actions but also may be relying on their expectations
about how a rational agent should behave (Jara-Ettinger et al., 2020; Markkula
et al., 2023). This concept of rational, value-maximising reasoning aligns with
affordance theory, which posits that perception is not just for interpreting the
world, but for identifying potential actions and their value (Chemero, 2003; Lio et
al., 2020). Therefore, a complete model of behaviour estimation may need to
account for not only the observation of actions but also the expectations of the

most rational or value-maximising actions.

1.6.3 Behaviour estimation in the traffic setting
Before a pedestrian decides to cross the road or wait for the upcoming vehicle

to pass first, they might have to first perceive and estimate the intentions of the
approaching vehicle, as was described in Figure 1.2. Pekkanen et al. (2022) and
Tian et al. (2023) have provided quantitative proof and empirical findings,
respectively, that support that pedestrian road crossing decisions involve a
process of behaviour estimation, as described in the perception paragraph of
Section 1.5. More specifically, Pekkanen et al. (2022) were able to account for
the timing of late crossings by including the time derivative of TTA (i.e. 7, in the
case that TTA is approximated by 7) as one of the accumulated decision sources
of evidence, indicating that pedestrians may be using a process like deceleration
estimation when deciding when to cross the road. In addition to the previous
finding, Tian et al. (2023) found that when the time gap between the vehicle and
the pedestrian is large, crossing decisions and pedestrians’ judgments about the
behaviour of the vehicle are negatively correlated, but when the vehicle is close
and yielding, crossing decisions and pedestrians’ judgments are positively
correlated, indicating that pedestrians follow two different strategies to determine
their crossing decisions: a) an early crossing decision based on a safe distance

and TTA or b) a late crossing based on the speed and yielding behaviour of the
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vehicle. Markkula et al. (2023) have combined a range of existing computational
theories from different psychology subdisciplines into a joint model capable of
capturing behavioural phenomena apparent in a variety of road traffic
interactions. Part of those theories was also a theory of mind regarding others’
intentions. Even though this theory of mind was part of a successful model as a

whole, it was not tested in a behaviour estimation task specifically.

To sum up, much research has been done on machine learning (ML) models
for estimating pedestrian intentions, but it seems that there is a lack of research
on understanding and models of how pedestrians estimate the behaviour of an
approaching vehicle. Also, there is a lack of investigation of the role of
perceptually plausible visual cues in behaviour estimation. Finally, even though
models of goal estimation have been successful in capturing humans’ inferences
when observing simulated agents in cognitive science laboratory paradigms,
there is a lack of translation of those models to significantly more complex

contexts, and more specifically the road traffic setting in this case.

1.7 Research gaps and objectives

Despite extensive research on pedestrian crossing decision modelling,
several important questions remain unanswered. This thesis sought to address
some of these questions by examining pedestrian road crossing behaviour and
integrating these observations into computational models. The following critical
gaps have been identified. Overall, whilst studies investigating the factors that
affect the pedestrian road crossing task are extensive (Rasouli and Tsotsos,
2020; Ishaque and Noland, 2008), there are almost no empirical studies focusing
specifically on how pedestrians estimate the behaviour of approaching vehicles.
Concerning this gap, an in-depth and time-dynamic investigation of what are the
factors affecting the underlying mechanisms of behaviour estimation from the
pedestrians’ perspective remains unexplored. Previous studies on pedestrian
crossing behaviour have often focused on simple traffic scenarios with
approaching vehicles moving at constant speed (Dey et al., 2021; Tian et al.,
2024; Zhao et al., 2019). However, real-world traffic often involves vehicles with

various acceleration patterns and changing behaviours, like a variety of yielding
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manoeuvres (Ackermann et al., 2019; Lobjois et al., 2013; Risto et al., 2017). The
underlying mechanisms with which pedestrians form and update their beliefs
about the behaviour of an approaching vehicle in more complex traffic situations
remain understudied. Misinterpreting a driver's intentions, such as incorrectly
assuming a vehicle will yield or misjudging its approach, is a major causation
factor in pedestrian accidents and can lead to fatal accidents for pedestrians.
Additionally, for AVs to be safe and effective, their intended actions, as conveyed
through their motion, must be unambiguously understood by pedestrians. While
Bayesian Theory of Mind (e.g., Baker et al., 2009) and Value-Maximising
Expectations (e.g., Markkula et al., 2023) offer possible theoretical explanations
for how pedestrians form and update their beliefs, there has been insufficient
experimental and modelling work exploring, in detail, the mechanisms of
behaviour estimation from the pedestrian’s perspective in the road crossing
context. Building on the previous two research gaps and on the motivations to
improve pedestrian safety and make interaction-capable AVs, a third gap
naturally emerges. There is a lack of validated and generalisable models which
provide explanations of the underlying mechanisms of behaviour estimation or in
other words on how pedestrians form and update their beliefs regarding the

behaviour of an approaching vehicle, that could cause a conflict, over time.

To address the research gaps mentioned above, this study had three
objectives. It aimed to a) investigate the factors that affect the cognitive
mechanisms by which pedestrians estimate vehicle behaviour, b) understand the
underlying theories of such mechanisms, and c) create computational models of
behaviour estimation in realistic road crossing situations. To achieve these
objectives, this thesis implemented computational models derived from
established psychological theories. Two experiments were designed to gather
pedestrian belief data in a variety of traffic scenarios. The collected data were

used to test three distinct models:

1) An Observation-based behaviour estimation component model (inspired
by Bayesian observer models) that formulated behaviour estimation as a
mechanism of updating beliefs based on deceleration-related kinematic
observations.

2) A Value-based behaviour estimation component model that assumed

pedestrians estimate behaviour by reasoning about the most rational,

32



value-maximising actions for the approaching vehicle's driver. While the
simulated vehicle used in the experiments was a Level 5 AV with no visible
driver, the model assumed that pedestrians interpret the AV’s behaviour
using the same mechanism that they apply to a human driver. This
assumption was based on the fact that the current research was focused
on the vehicle’s implicit kinematic cues as the primary source of
information. This could allow the Value-based component model to be
applied to pedestrian interpretations of the behaviour of both AV and
human-driven vehicles.

3) An augmented model that integrated the two component models of

behaviour estimation mechanisms.

The structure of this research, outlining how these models were implemented

and tested across the thesis, is depicted in Figure 1.4.

Model 1 - Ob (Observation-based behaviour estimation):

a) Deceleration rate model alternative

b) Tau-dot model alternative Chapter 2
Dataset 1 > Conducted Experiment 1 to collect D1

Analysis 1 - Fitted Ob to D1 and compared the two Ob model alternatives

\ 4

~N
Model 2 > Vb (Value-based behaviour estimation)

Model 3 = Ob+Vb (Integration of the Ob and Vb component models)
Dataset 1 - Used the same data as in Chapter 2
Analysis 2 - Fitted and compared all three models using D1

Chapter 3

A 4

Models - Used all three models formulated in Chapters 2 and 3
Dataset 2 - Conducted Experiment 2 to collect D2
Analysis 3 - Fitted and compared all three models using D2 Chapter 4
Compared findings across D1 and D2
Fitted Ob+Vb per-participant )

Figure 1.4 - Overview of the structure of the research
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1.8 Thesis structure

This section outlines the structure of the thesis, briefly introducing each
chapter to demonstrate how the research addressed the previously set objectives

and contributed to filling the identified gaps in the literature.

Chapter 2, “Behaviour estimation through Bayesian observer models”,
presents the foundation of the current research by detailing the design of the first
experiment and introducing the first behaviour estimation component model,
inspired by Bayesian observer models. This model is tested against the
experimental data to evaluate the strengths and limitations of a purely

observation-based mechanism of behaviour estimation.

It is important to note that the experiment described in this chapter was a
collaborative effort with Dr Kai Tian, which formed the basis of a publication (Tian
et al., 2023). As detailed in the “Intellectual Property and Publications” section,
the candidate was responsible for the initial conceptualisation, experimental
methodology, data collection and data curation alongside Dr Kai Tian. While the
analysis in that publication and subsequently in Kai Tian's thesis (Tian, 2023)
focused primarily on the empirical findings of a) the pedestrian crossing
decisions, b) the pedestrian subjective judgments of the approaching vehicle’s
behaviour and c) the combination of the two, this thesis uses the shared dataset
for a different purpose, that is to implement, validate and generalise models of

the underlying cognitive mechanisms of behaviour estimation.

Chapter 3, “Behaviour estimation through observations and expectations”,
addresses the limitations found in the previous chapter by introducing a second
behaviour estimation component model based on value-maximisation of rational
agents. It then develops an augmented model that integrates both the
observation and value-based mechanisms. All three models are fitted to the
dataset collected in the experiment of the previous chapter and compared with a

model selection technique.

Chapter 4, “Validating and generalising the behaviour estimation models”,
tests the robustness of the behaviour estimation models, and more specifically
the augmented one. A second, more comprehensive experiment with novel

driving manoeuvres is used to validate the models against replicated scenarios
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and investigate its ability to generalise to new situations. Again, all three models
are fitted to the new dataset and compared with the same model selection
technique as in the previous chapter. Finally, the augmented model is fitted on

the per-participant level.

Finally, Chapter 5, “General discussion” provides an overview of the key and
contributions of the research of the current thesis. It discusses the empirical,
methodological, theoretical and practical implications of the research for road
safety and automated vehicle design, acknowledges the study's limitations, and

outlines promising directions for future work.
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2 Behaviour estimation through Bayesian
observer models

This chapter introduces an initial model of how pedestrians use visual
observations to form and update their beliefs about an approaching vehicle's
intent. The model focuses on scenarios where the vehicle communicates its
intentions solely through its movement. As discussed in Section 1.6, numerous
computational modelling attempts have used Bayesian observer approaches, in
order to explain humans’ inferences regarding another agent’s goals, based on
the latter’s actions. These models have been evaluated by experiments using
simplified stimuli. These stimuli were animated representations of agents (small
moving circles and traces of their trajectories trailed behind them) navigating
maze-like environments (a discreet grid of squares with walls displayed as solid
black barriers), presented from an overhead perspective. While successful in
these abstract contexts, the applicability of such Bayesian frameworks to the
distinct and dynamic interactions between pedestrians and approaching vehicles
remains unexplored. Therefore, this research adapts the Bayesian observer
approach to model belief formation and updating in this specific pedestrian-
vehicle setting. The proposed model is subsequently evaluated through an
experiment. This experiment, while inspired by the paradigms used in earlier
studies of goal estimation from observing the actions of another agent (Baker et
al.,, 2009), is specifically designed to investigate how pedestrians' beliefs
regarding vehicle intent evolve in scenarios that reflect key aspects of real-world

road crossing situations.

2.1 Experiment

This section details the experimental methodology employed to investigate
pedestrians' judgments regarding the behaviour of an approaching vehicle. An
immersive virtual environment was used to present participants with various
approaching vehicle scenarios involving different vehicle kinematics. Participants
performed a road crossing task and a subsequent behaviour estimation task,
where they judged whether an approaching vehicle was stopping or not. The data
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collected from the behaviour estimation task were then used for statistical
analysis (described in Section 2.2) and to develop and validate the computational

model of belief updating (described in Section 2.3).

2.1.1 Participants

An experiment was conducted to investigate the research questions related
to vehicle behaviour estimation. The study received ethical approval from the
University of Leeds Ethics Committee (No. LTTRAN-145). 30 healthy adults,
including 17 males and 13 females, aged between 20 and 67 (mean age = 30.73,
standard deviation = 8.63) were recruited from the University of Leeds Virtuocity
participant list. The participants were required to have no significant mobility
issues or medical conditions such as epilepsy. They also needed to have either
normal or corrected-to-normal vision and have lived in the UK within the last 12
months as their experience with road traffic could influence their road crossing
behaviour and judgments. They provided written informed consent before

participating and were given £15 as a reward for their participation.

2.1.2 Apparatus

The experiment was conducted at the Highly Immersive Kinematic
Experimental Research (HIKER) lab at the University of Leeds. The pedestrian
simulator is a CAVE-based simulated environment that utilises three glass wall
projections and a floor projection, as illustrated in Figure 2.1. Participants were
able to move in the simulated environment with a 9 m x 4 m walking space. The
eight 4K projectors behind the glass walls or above the floor projected the
scenarios at 120 Hz. Eight computers controlled the projectors and tracking
system, which was data logging the participant’s position through the tracking
glasses they were wearing on their head, to adjust the projections in line with the
participant’s perspective. The virtual environment was created using the Unity3D
software, where it is possible to record the kinematics information of the vehicles
and participants, such as speed, position and experiment state, on each time

step.
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The vehicle was either maintaining constant
speed with no intention to stop or braking
with the intention to stop.

|

Figure 2.1 - HIKER experimental environment (left) and not-to-scale schematic
bird’s eye view of the experimental paradigm (right)

2.1.3 Experimental design

The design was adapted from Baker et al. (2009), where observers were
shown animations and trajectories of simulated rational agents, that were
navigating inside mazes. After observing the agent’s movements, the participants
had to judge which goal (out of a set of possible goals), was the agent most likely
pursuing. That experimental design was modified in accordance with the
experiments from Pekkanen et al. (2022), Dey et al. (2019) and Ackermann et al.
(2019). More specifically, Pekkanen et al. (2022) designed an experiment in
which participants had to decide when it was safe to cross a road as a vehicle
approached at either a constant speed or decelerated to a stop. Dey et al. (2019),
for instance, measured the willingness of the participants to cross the road in front
of an approaching vehicle at predetermined distances or segments. Ackermann
et al. (2019), similarly, measured the reaction times of the participants in detecting
the decelerating movement of an approaching vehicle. The concept of scenario
segmentation was very relevant to the needs of the current work. Following the
concepts of the experimental designs of the studies above, the successful
cognitive laboratory experimental task by Baker et al. (2009) was expanded to a

realistic traffic setting.

The simulated traffic environment included a residential block with a one-lane
road that was 4.2 meters wide and an intersection without traffic signals, during
daylight hours. A blue sedan vehicle was being controlled by the simulation (its
kinematics were predetermined) and was driving in the centre of the road. The
vehicle was autonomous (absence of driver and passengers) and at the crossing
point there were no markings of a zebra crossing. To focus the study purely on
the interpretation of kinematic cues, participants were deliberately not explicitly
told that the approaching vehicle was an AV. The purpose of these design choices
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was to separate the effects of vehicle kinematics on pedestrian judgments from
other factors that might have affected them, such as biases due to
driver/passenger behaviour (e.g., making eye contact) or the legal expectations
that come with a formal crossing. The aim of the experiment was to investigate
how the vehicle’s movements would influence the behaviour and judgments of
pedestrians, by considering various factors such as the vehicle’s driving
manoeuvre, the time it takes for the vehicle to reach the pedestrian (initial TTA),
and the initial speed of the vehicle. The vehicle approached the pedestrian at
three different initial speeds (25 km/h, 40 km/h and 55 km/h) and with two different
initial TTAs (3 s and 6 s). Three distinct types of driving manoeuvres were

evaluated (illustrated in Figure 2.2):
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Figure 2.2 - Vehicle kinematics of all 18 kinematic scenarios. The vehicle’s speed
profile is denoted using the pink curves and the respective 7 time history by the
dark green curves
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e Constant speed: The vehicle maintained a consistent speed throughout
the simulation of the scenario.

e Deceleration: The vehicle decreased its speed at a constant rate until it
stopped approximately 2.5 m from the participant.

¢ Mixed: The vehicle combined an initial phase of constant speed and then
a deceleration phase, to explore the impact of the vehicle’s behaviour
change, during the simulation, on the pedestrian’s belief updating. In this
scenario, the vehicle kept a steady speed for a certain time (1.5 s for the
3 s initial TTA condition and 3.4 s for the 6 s initial TTA condition) before
slowing down and coming to a stop approximately 2.5 m from the
participant. The mixed manoeuvre scenarios had a higher deceleration
rate than the corresponding deceleration scenarios as the initial TTA and

speed were kept the same.

The initial TTAs and initial speeds were chosen based on existing traffic safety
and perception literature (more details can be found in Subsection 1.3.1) to
investigate pedestrian judgments of vehicle behaviour in conditions similar to
studies that have tested pedestrian road crossing responses/decisions. More
specifically, the TTA range of 3 to 6 s was recognised as the critical window for
pedestrian gap acceptance, in which road crossing decisions could be
significantly variable. The use of these TTA values allowed the investigation of
behaviour estimation under time pressure (3 s) versus sufficient time for
comfortable decision making (6 s). The initial speed values were chosen since
they would represent a range of speeds commonly found in urban environments.
The speed variation was necessary to investigate the influence of spatio-temporal
distance on beliefs and to address the phenomenon where pedestrians' TTA
estimations are influenced by speed. For a given TTA, a higher speed would
mean that the vehicle is further away, allowing to test whether pedestrians rely
on time, distance, or a combination of both when estimating the behaviour of an
approaching vehicle. The deceleration rates in the pure deceleration scenarios
ranged from approximately 0.61 m/s? to 2.63 m/s?. These rates are comparable
to those frequently observed when vehicles yield normally to pedestrians
(Carlowitz et al., 2024; Yang et al., 2024). For the mixed manoeuvre scenarios,
the deceleration rates during the braking phase were higher, ranging from
approximately 1.58 m/s? to 5.87 m/s2. Such rates can be observed when vehicles
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slow down more urgently, for example, before intersections on roads with higher

speed limits or in near-emergency situations (Bokare and Maurya, 2017;

Kudarauskas, 2007). In summary, the experiment consisted of three types of

manoeuvres, three initial speeds and two initial TTAs, resulting in a total of 18

kinematic scenarios. The details of these scenarios can be seen in Table 2.1.

Table 2.1 - Details of kinematic scenarios

Initial Constant
Initial distance speed
Initial Deceleration
Manoeuvre speed to phase
TTA (s) rate (m/s?)
(km/h) | pedestrian duration

(m) (s)
25 20.83 - [0, 3]
3 40 33.33 - [0, 3]
Constant 55 45.83 - [0, 3]
speed 25 41.67 - [0, 6]
6 40 66.67 - [0, 6]
55 91.67 - [0, 6]

25 20.83 1.29 -

3 40 33.33 1.98 -

55 45.83 2.63 -

Deceleration

25 41.67 0.61 -

6 40 66.67 0.97 -

55 91.67 1.04 -
25 20.83 3.15 [0, 1.5]
3 40 33.33 4.63 [0, 1.5]
55 45.83 5.87 [0, 1.5]

Mixed

25 41.67 1.58 [0, 3.4]
6 40 66.67 2.42 [0, 3.4]
55 91.67 3.18 [0, 3.4]

2.1.4 Tasks and procedure
The experiment was consisted of two main tasks which were performed

sequentially: a road crossing task (two blocks) followed by a behaviour estimation
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task (one block). The behaviour estimation task is the primary focus of the
modelling efforts in this thesis. The road crossing task served two purposes: first,
to allow participants to familiarise with the virtual environment and immerse them
in a realistic road crossing mindset before they undertook the behaviour
estimation task and second, to enable potential future comparisons between
behaviour estimation judgments and actual crossing decisions, as presented in
the work by Tian et al. (2023).

The first block of the road crossing task was preceded by a practice session
of 10 ftrials to familiarise participants with the VR environment and task
requirements. For the road crossing task, participants were positioned at a floor
marker 57 cm from the kerb. At the start of each trial, their view of the road to the
right (from which the vehicle would approach) was initially obscured by a grey
virtual plane. Amessage “Look here. Keep looking” was displayed opposite of the
participant (on the other side of the street). After the participants kept looking at
the message for a very brief time, the message disappeared. The participants
were instructed to turn their head to the right (after the message had
disappeared), which caused the grey obstruction plane to become transparent,
revealing the approaching vehicle scenario. The participants were then to decide
whether to cross, if and when they felt safe. The specific instructions regarding
movement were: “If you decide to cross, please walk naturally as you would in
everyday life. If you decide not to cross, please remain standing at your initial
position and wait until you feel safe to cross.”. The trial concluded once the vehicle
had passed the crossing point. Participants then returned to the starting marker
if they had crossed or remained there if they had waited. Both blocks of the road
crossing task included the same 18 experimental scenarios (illustrated in Figure
2.2), presented in a randomised order within each block. After completing the two
road crossing blocks, a short break was provided, before the block of the

behaviour estimation task began.

The second task involved assessing a vehicle's behaviour by determining if it
was stopping to allow the pedestrian cross or if it was maintaining its speed to
pass first. In the behaviour estimation task, the same scenarios as in the road
crossing task were reused, but in line with the paradigm in Baker et al. (2009),
each of the 18 kinematic scenarios was truncated at 4 different points, creating

four different segments of different durations. These segments are illustrated as
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square markers on the speed profiles of the 18 kinematic scenarios in Figure 2.2,
indicating the points where each scenario was truncated. The shortest of these
segments showed just a short time at the start of the scenario in question, giving
very limited information based on which the participant could judge the vehicle’s

behaviour, while the longest segments showed the entire approach of the vehicle.

In the deceleration and mixed scenarios, the first, shortest segment showed
little to no stopping evidence, the second and third displayed increasing stopping
evidence, and the fourth clearly indicated stopping behaviour. As can be seen in
Figure 2.2, the visual cue for collision judgment, 7, increases exponentially as the
vehicle approaches the pedestrian’s position. Therefore, to achieve the intended
progression of increasing deceleration cues in longer segments, a logarithmic

distance division method was applied, given by:

D;=a*%a= 3Dy, i=123and D, =2.5m (2.1)
Where D; refers to the distance between the approaching vehicle and the
pedestrian at the end of the ith segment, a is the logarithmic base based on the
initial distance of the approaching vehicle, D;,; the distance at the end of the 4th
segment of all traffic scenarios equals 2.5 m, i.e., the final stopping distance from

pedestrians.

For the constant speed scenarios, the segments were created by evenly
dividing the vehicle's approach path into four temporal or spatial portions, as the
visual cue for collision judgment, 7, remains constant (¢ = —1). The divisions were
calculated as follows:

Dip; — D
%,i =1,23and D, =25m (2.2)

Where D; refers to the distance between the approaching vehicle and the

Di = Dint — bl,b =

pedestrian at the end of the ith segment, b is the linear base based on the initial
distance of the approaching vehicle, D;,; the distance at the end of the 4th
segment of all traffic scenarios equals 2.5 m, i.e., the final stopping distance from

pedestrians.

In instances where the calculated duration for the first segment was deemed
too short (possibly providing very subtle stimuli or trials being incredibly short for

the participant to comprehend), its duration was fixed at a minimum of 1 s. The
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segmentation process described above resulted in 18 scenarios x 4 segments/

scenario = 72 total segments.

Similarly to the road crossing task, the behaviour estimation task was also
preceded by a practice session of 10 trials using a subset of segments. The trial
initiation procedure was identical to the road crossing task: the view to the right
was initially obstructed, the “Look here. Keep looking” message was shown on
the opposite side of the street, which participants had to look for a brief time, and
then participants turned their head right to observe the presented vehicle
segment. No road crossing was required, meaning that participants had to remain
standing at the floor marker that was used as the starting position in the road
crossing task. After each of the 72 segments/trials (presented in a randomised
order, ensuring each participant viewed each segment once) was shown, the
virtual environment was obscured. Participants were then presented with two
questions on the display screen opposite of where they were standing (see

Appendix C for question format):

1) “Was the vehicle stopping for you or was it maintaining its speed and
passing you?”.

2) “How confident are you in your previous answer? Please rate your
confidence level on a scale from 1 to 9.” — Likert scale from 1 to 9 (1 = not

confident at all, 5 = somewhat confident, 9 = totally confident).

Upon completion of all experimental tasks, participants were asked to fill out
a post-experiment questionnaire. This questionnaire collected demographic

information, including age, gender and driving experience.

2.2 From participant judgement to belief probability

To explore the influence of the kinematics variables that were controlled to
create the 18 scenarios of the experiment on pedestrians’ beliefs, the participants’
judgements from the behaviour estimation task were analysed. Specifically, a
pedestrian’s belief was derived from the combination of the binary choice
between the ‘stopping’ or ‘passing’ vehicle behaviour and the confidence rating

regarding the first answer. Some examples are provided for further clarification:
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If a participant answered that the vehicle was ‘stopping’ and rated their
confidence as 9, that would be translated as 100% belief that the
vehicle was stopping.

If a participant answered the vehicle was ‘passing’ and rated their
confidence as 9, that would be translated as 0% belief that the vehicle
was stopping (or equally as 100% belief that the vehicle was not
stopping).

If a participant answered that the vehicle was ‘stopping’ and rated their
confidence as 1, that would be translated as 50% belief that the vehicle
was stopping. In this case only, an answer that the vehicle was
‘passing’ and rated confidence 1, would provide the exact same belief
(i.e., 50% belief that the vehicle was stopping, which also means 50%
belief that the vehicle was not stopping, indicating maximum
uncertainty).

If a participant answered that the vehicle was ‘stopping’ and rated their
confidence as 5, that would be translated as 75% belief that the vehicle

was stopping.

After extracting all participants’ beliefs, a 4-way factorial ANOVA (Bao, n.d.)

was conducted on these beliefs. The within-subject factors (main effects)

investigated were:

The vehicle manoeuvre (3 levels — Constant speed, Deceleration,
Mixed)

The initial speed (3 levels — 25 km/h, 40 km/h, 55 km/h)

The initial TTA (2 levels —3 s, 6 s)

The segment (4 levels — Segment 1, Segment 2, Segment 3, Segment
4, corresponding to the increasing duration of the vehicle’s approach

presented)

To account for between-individual differences, participant ID was included as

a random effect in the model. The 4-way ANOVA described above was performed
in MATLAB R2022b, utilising the “anovan” function (MATLAB, 2022). This allowed

to identify significant main effects of the four factors mentioned above, as well as

any significant interactions between them, on pedestrians’ beliefs.
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2.3 Model definition

Consider the scenario illustrated in Figure 2.3, where a pedestrian is at the
pavement observing an approaching vehicle. An important cognitive task for the
pedestrian is to infer the vehicle driver's or AV’s intention, specifically whether the
vehicle will stop to allow crossing or continue without stopping. The computational
models in this thesis were built on a distinction between an approaching vehicle's
overarching goal and its immediate behaviour. In the experimental scenarios, the
vehicle's goal was assumed to be known to the pedestrian: to continue driving
along the road. The uncertainty for the pedestrian though lied in the behaviour
that the vehicle would exhibit to achieve this goal. This thesis defined two
mutually exclusive behaviours: stopping (i.e., decelerating with the intention to
yield) and not stopping (i.e., maintaining speed with the intention to pass). The
cognitive process by which a pedestrian infers which of these two behaviours the

vehicle is exhibiting was termed behaviour estimation.

“Is the car stopping or not?"
— :) -

":} u\"——""ﬁ-._ ___,.,-/I‘___

=]

Figure 2.3 - Fundamental scenario of a pedestrian at the pavement observing an
approaching vehicle

The computational model suggested in this chapter is an adaptation of the
Bayesian inverse planning framework proposed by Baker et al. (2009), drawing
specifically from their “Model 1”. This model assumes that an agent pursues a
single, unchanging goal g (or in the current context, behaviour b) throughout an
observation sequence. Although this assumption might be limiting, as in reality a
driver could change their mind, Baker et al. (2009) applied this model to
experiments with both unchanging and changing goals during a trial. Similarly, in
this thesis the adapted model was applied to scenarios of both unchanging
vehicle behaviour (during constant speed and deceleration manoeuvres) and
changing vehicle behaviour (during mixed manoeuvres). A set of two mutually

exclusive behaviours that the approaching vehicle can exhibit, B = {b;, b}, was
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defined, representing the vehicle's possible behaviours of 'stopping' or 'not

stopping', respectively.

This chapter explores models where the pedestrian observes a kinematic
state of the approaching vehicle at discrete time steps t. This observed state, s;,
can be either the vehicle's deceleration rate (d, in m/s?) or the time derivative of
the relative rate of optical expansion (7, dimensionless). As mentioned in
Subsection 1.5.1, 7 essentially gives information of how quickly the time-to-arrival
(TTA or 1, in s; the time it takes for an object to reach a point) is changing and
researchers have suggested that braking is controlled by it. The calculations of
the deceleration rate of the vehicle and © are presented below. To calculate the
deceleration rate during a simulation time step, the following formula was used,
assuming that the deceleration rate is constant between the two time points in
question:

LU v} —vf (2.3)

2 T4= 55

Where, v¢ and v; is the final and initial speed (m/s) of the simulation time step,

respectively, At is the total time of the time step (s) and S is the total distance

travelled during that time step (m).

dTTA _ D
—— and TTA(t) = o) (2.4)

Where, v(t) is the current vehicle speed (m/s) and D(t) is the current distance

T =

(m) between the pedestrian and the vehicle. While 7 (tau) in ecological
psychology is an optical variable defined by the ratio of visual angle to its rate of
change (t = 6/6) — a cue pedestrians use to estimate TTA without calculating
distance or speed directly (Tian et al., 2020; Lee, 1976; Lobo et al., 2018) — this
definition comes with the assumption that it can provide TTA estimations only for
small visual angles and approaching objects that are travelling with constant
speed. For computational simplicity and to avoid the previous assumption since
the simulated vehicle also performed decelerating motion, the model's calculation
of T was set equal to the true, objectively calculated instantaneous TTA. This
implementation kept the theoretical meaning of the variable as the current time
remaining while avoiding the complex mechanisms of real-world visual angle

perception.
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The model’s aim is to estimate the posterior probability (belief) about the
vehicle exhibiting a particular behaviour b € B, given a sequence of T
observations, s;.r = (s4,52,53, ..., S7). This inference is achieved using Bayes'
rule. While Baker et al. (2009) include an “Environment” term (w) in their general
formulation: P(g|sy.7, w) < P(s1.7|g, w)P(g|w) (Equation 5 in their Supplementary
material), in this specific pedestrian-vehicle scenario, the broader environmental
context is considered constant across the observation period relevant to a single
crossing decision. Thus, this term is omitted in the current adapted formulation
for clarity, without affecting the core inference process regarding the vehicle's
behaviour. The derivation of the suggested model is presented below. The belief
at time t is the posterior probability of behaviour b given all observations up to

that point:

P(b) = P(b|sy.) (2.5)
The term s;.; represents the sequence of all observations up to time t. The
current observation s, can be separated from the past observations s;.;_;.

Applying Bayes' rule gives the following:

P(s¢|b, s1:t-1) P(b, S1:4-1)
P(s1.¢)
_ P(s¢|b, s1.c-1) P(bls1.c-1) P(S1:¢-1)
B P(s1:¢)
Similarly to the numerator, the observations in the denominator can be

P(blsy.) =
(2.6)

separated to current and past ones, so that P(sy.;) = P(st, S1.t—1)- 1he definition

of conditional probability is applied on the denominator.

P(s¢|b, s1:¢-1) P(b|S1:t-1) P(S1:¢-1) (2.7)
P(s¢ls1.6-1) P(S1:6-1)
Assuming that P(s;.;—;1) # 0 (meaning the sequence of past observations has

P(blsl:t) =

a non-zero probability of occurring), the term P(s;..—;) can be cancelled.

P(Stlb: Sl:t—l) P(blsl:t—l) (28)
P(s¢ls1:e-1)
The denominator P(s;|s,.;—1) is the marginal likelihood of observing s; given

P(blsy,) =

all the past observations s;.,_; and is a normalising constant (evidence) so that
the posterior probabilities for the possible behaviours {bs, b,s} sum to 1 (discrete

case of marginal likelihood):
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P(stls1:e-1) = ZP(St”?" S1:t-1) P(b'[s1.¢-1) (2.9)
bl

The probability P(s;|b,s;..—1) is usually referred to as the measurement
model. A Markov assumption is made, according to which the past observations
s1.t—1 do not provide additional information for predicting the probability of
observing s; given that the vehicle exhibits behaviour b. Due to that assumption
and since each of the two possible behaviours is linked with specific observation

values, the measurement model can be simplified as shown below:

P(stlb, s1.t-1) = P(s¢|b) (2.10)
Finally, substituting (2.9) and (2.10) back to (2.8) provides the most common

form of recursive Bayesian estimation, which is also the formulation of the

suggested model.

P(Stlb) P(blsl:t—l) (211)
2y P(s¢|b") P(b'[s1:-1)

Where, P(b|s,.;) is the posterior probability (belief) that the vehicle currently

P(b |Sl:t) =

exhibits behaviour b given the observations until time t (sy.;), P(s¢|b) is the
likelihood of the current observation s;, given the current vehicle behaviour b,
P(b;|s1.c~1) is the prior probability that the vehicle exhibited behaviour b given the
observations until time t — 1 (s1.;—1) and Y.,» P(s¢|b") P(b'|s;1.t—1) is the evidence
or marginal likelihood. For the formulation of the model a classical Bayesian
approach was adopted, where the initial prior probability for the two mutually
exclusive behaviours is set to be uniform at t = 0: P(bs) = P(b,s) = 0.5. This
assumption means that before a pedestrian receives any sensory evidence from
the vehicle's kinematics, they are in a state of maximum uncertainty. The
implication of this choice is that any subsequent shift in the belief probability is
driven only by the accumulation of new kinematic evidence. However, this
assumption represents a simplification of real-world cognition. A pedestrian's
belief is likely influenced by prior experience, both in the real world (e.g., learned
traffic norms at an unmarked crossing) and possibly within the context of the
experiment itself (e.g., exposure to previous scenarios). Such experience would
establish a learned prior bias that moves the initial belief away from the neutral
belief. This limitation is addressed in the next chapter by incorporating a prior bias

parameter.
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The likelihood term P(s;|b) quantifies how well the observed kinematics match
what is expected for a given behaviour. This probabilistic mapping from an
underlying vehicle behaviour b to an observed kinematic state s arises from two

main sources:

1) Perceptual Noise: The pedestrian's estimation of the vehicle's deceleration
rate d or © value may not be perfectly accurate. This was modelled as
normally distributed noise with a mean of zero and standard deviation (or
noise intensity) N,, (one of the free parameters of the model).

2) Behavioural Variability: Vehicles may not exhibit a given behaviour (e.g.,
stopping) with an identical kinematic profile every time. This differs from
the primary source of probability in Baker et al.'s (2009) models, where
environmental states are generally known, and agents probabilistically
choose actions to achieve goals based on rational planning. In the
proposed model, the underlying behaviour b (analogous to Baker et al.'s
(2009) goal g) is fixed for the sequence, and the observed s states are
noisy manifestations of this fixed behaviour. This type of uncertainty was

assigned the standard deviation £2,,.

To capture this combined uncertainty, it was assumed that the likelihood of
observing a particular kinematic state s given a behaviour b, P(s.|b), follows a
normal (Gaussian) probability distribution, N (s;; up,, 67). The mean u,, represents
the most typical kinematic value the pedestrian expects for a given behaviour b.
Figure 2.4 illustrates examples of these likelihood distributions for deceleration
rates and 7, showing, for instance, that an observed deceleration rate of 0 m/s?
or 1 = —1 might be most probable under a 'not stopping' behaviour, while a
deceleration of 4 m/s? or © = —0.5 might be most probable under a 'stopping'
behaviour. Specifically, the explanations behind these i values have been
provided in Subsection 1.5.1. The standard deviation g, of this distribution
represents the pedestrians’ overall uncertainty for a given behaviour b. The

overall uncertainty is decomposed to the two sources described above as:

op = ’sz +.Q§

These mean and standard deviation parameters define what kinematic values
are considered typical for 'stopping' versus 'not stopping' behaviour and how

much variability is expected around these typical values. In this study, these
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parameters (u;, and g, for both 'stopping' and 'not stopping' behaviours, and for
both deceleration rate d and i-based alternatives) were treated as free
parameters. All the free parameters’ (us, pns, 0s, 0ps and N,) values were
estimated by fitting the overall model to the experimental data collected from the

participants (details of the fitting procedure are described in the next section.

0.8 0.8
—b,
— _bn,s
0.6 0.6
= =
204 204
A A
0.2 0.2
0 0
-8 -6 -4 -2 0 2 -1 0 1
Acceleration rate (m/s?) 7 (=)

Figure 2.4 - Examples of the P(s|b) probabilities of observing a certain
acceleration rate or © observation given that the vehicle is exhibiting behaviour b.
The likelihood was assumed to be following a normal distribution for both possible
behaviours

In the framework by Baker et al. (2009), the observed agents select a
sequence of actions (e.g., 'move North') probabilistically to achieve a goal state
(e.g., 'reach location X'). Therefore, their model involves an inverse planning step
by the observer to infer agent goals from observed actions. In the current
pedestrian-vehicle context, the vehicle behaviours ('stopping' or 'not stopping')
are analogous to these underlying goals. The observable kinematic states (s), are
direct, albeit noisy, manifestations of these behaviours. Thus, the model focuses
on inferring the behaviour directly from these observed kinematic states, without
an equivalent intermediate layer of planning discrete actions as seen in Baker et

al.'s (2009) original context.

2.4 Model fitting

To determine the optimal values for the free parameters of the behaviour
estimation model, which is based on recursive Bayesian estimation, the
experimental data that were gathered from the designed experiment, were used.

The model alternatives have multiple parameters. As outlined in the previous
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section, the model incorporates several free parameters: the means of the
likelihood distributions for the ‘stopping’ and ‘not stopping’ vehicle behaviours (i
and u,,; respectively), the standard deviations reflecting the process variability for

these behaviours (g5 and o,,5) and a factor for the observation noise (N,,).

It is noteworthy that u,; could be fixed on specific values based on physical
assumptions for both model alternatives, however in the current fitting procedure,

all five listed parameters were treated as free, allowing more flexibility.

1) uns = 0 for the d-based alternative since d = 0 m/s? if the vehicle is
travelling with constant speed

2) uns = —1 for the i-based alternative (as also illustrated in Figure 2.2).

For simplicity, the experimental data (participants’ ratings regarding the
approaching vehicle’s behaviour) were averaged across all subjects, as done by
Baker et al. (2009), and the fit that described the averaged data best, would be
selected as the best-fitting parameter combination. However, with averaging the
data across all participants, it was assumed that all participants are the same,
i.e., can be described by a single model parameterisation. The model output is
the estimated posterior belief (belief probabilities of the most-likely current
behaviour of the vehicle). Since the behaviour estimation model has more than
one free parameter, the multi-parameter model fitting procedure was adopted. A
grid search was performed, i.e., all combinations of the ranges of values for each
parameter, as shown in Table 2.2, were tested. Since the inspiration was drawn
from Baker et al. (2009) in designing the experiment and formulating the model,
the model fitting approach was also adopted directly from the methodology used
in their cognitive science study. More specifically they compared their models
using a bootstrap cross-validated (BSCV) correlational analysis, a non-
parametric technique that fit models on random training subsets and tested them
on the complementary data. That analysis included a grid search that tested a
number of parameter values, ultimately calculating the average correlation
between the participants’ data with the testing datasets to assess goodness-of-fit
of the models. Additionally, since the suggested model was quite simple, including
only five free parameters, a grid model fitting approach allowed an exhaustive

search of the parameter ranges.
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Table 2.2 - Model’'s parameter ranges

Parameters d-based alternative t-based alternative
Us {-6,-5.5, -5, ..., 0} {-1,-0.75,-0.5, ..., 1}
Uns {-6,-5.5, -5, ..., 0} {-1,-0.75,-0.5, ..., 1}
O {0.1,04,0.7, ..., 1.3} {0.1,0.4,0.7, ..., 1.3}
Ons {0.1,04,0.7, ..., 1.3} {0.1,0.4,0.7, ..., 1.3}
N, {0,05,1, ..., 5} {0,0.5,1, ..., 5}

To express participants' ratings, which were originally on a 1 to 9 Likert scale,
as probability beliefs, a linear transformation was applied to convert these ratings
to a 0-100% scale. To quantify the goodness of fit for each parameter
combination, the average correlation coefficient (Spearman’s rho) between the
model’s predictions and the average beliefs of the participants across all 18
kinematic scenarios, was calculated. The Spearman's rank correlation,
represented by ps, shows the relationship between two sets of data. Unlike
Pearson’s correlation that uses the original data values, ps is determined by the
ranked order of the data. In the current case, for a dataset X, which represents
beliefs predicted by a model, and a dataset Y, which represents the average
beliefs of participants, the values in X and Y are converted into their respective
ranks, denoted as RX and RY. The Spearman's correlation (ps) is then calculated

using these ranks.
6y d?
n(mn? —1)

Where d; = RX; — RY; is the difference between the ranks of corresponding

ps=1- (2.12)

data points, and n is the number of data points.

The choice of Spearman’s correlation instead of Pearson’s was made, as the
former assesses the monotonic relationship between two variables, making it
robust even if their connection is not strictly linear and less sensitive to outliers
than the latter. This was deemed appropriate as subjective rating scales may not
perfectly map to linear changes in model probability outputs. Spearman’s
correlation captures the following relationship: if a model probability increases,
subjective rating also tends to increase (or decrease, if negatively correlated),

without assuming a linear transformation. Finally, the parameter combination
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yielding the maximum average correlation was selected as the best-fitting

parameter combination.

2.5 Results

This section presents the key findings from the experiment, performing a
statistical analysis of participants' beliefs across the different experimental
conditions. Following, the performance of the proposed computational model

alternatives in predicting these subjective ratings is evaluated.

2.5.1 Pedestrian beliefs regarding the vehicle’'s behaviour

2.5.1.1 Segments and driving manoeuvres
Figure 2.5 illustrates participants’ beliefs (P;, indicating the belief that the

vehicle is stopping) as a function of the presented segment and the vehicle’s
driving manoeuvre. A 4-way factorial ANOVA was conducted as described in
Section 2.2, to analyse those beliefs. The full table of this analysis is provided in
Appendix A . The analysis revealed a significant main effect of segment on
pedestrians’ beliefs (F(3,1172) = 24.54, p < .001, n2 = 0.130), suggesting that
as more time passed and the participants observed a vehicle’s approach for
longer, the more certain (beliefs closer to 100% or 0%) they were of whether the
vehicle was stopping or not. Pedestrians’ beliefs seemed to be affected by
different vehicle driving manoeuvres, indicated by a significant main effect
(F(2,1172) = 589.59, p < .001, Ny = 0.782) of driving manoeuvre. Notably,
pedestrians generally believed that the vehicle was stopping, with higher
certainty, during Deceleration manoeuvres than during Constant speed or Mixed
manoeuvres. At the same time pedestrians generally believed that the vehicle
was not stopping, with higher certainty, during Constant speed manoeuvres than

during Deceleration or Mixed manoeuvres.
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Figure 2.5 - Pedestrians’ beliefs (P,) regarding that the vehicle is stopping as a
function of segment and the presented driving manoeuvre. Means are
represented by black dots and dashed lines indicate the trends of the average
beliefs

For the Constant speed manoeuvres (green violins and mean trendline in
Figure 2.5) participants’ belief that the vehicle is not stopping strengthened as
more of the scenario was revealed over time. Initially (Segment 1), the average
belief was around 50%, indicating uncertainty, with considerable variability in
participant responses. This variability can be explained by the fact that all different
initial speed and initial TTA levels are grouped under the umbrella of a specific
driving manoeuvre, in this case the Constant speed one. As the vehicle continued
at a constant speed through subsequent segments, this belief shifted even more
decisively towards the vehicle not stopping (closer to P, = 0 %) and the variability
was decreased, as it was more obvious that the vehicle was not stopping in later
segments, for all different initial speeds and TTAs. Targeted post-hoc pairwise
comparisons were conducted to examine differences between successive time
segments (Segment 1 vs. 2, Segment 2 vs. 3, and Segment 3 vs. 4) within the
constant speed manoeuvres (Appendix A ). The results showed that the average
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beliefs of the pedestrians had statistically significant differences for these

sequential time segment comparisons.

Conversely, when the vehicle was observed to be decelerating from the start
of perceived approach (orange violins and mean trendline in Figure 2.5),
pedestrians generally identified the stopping behaviour, and their belief in this (P;)
increased (became more certain) over longer segments. Even in segment 1, the
mean belief was already leaning towards the stopping behaviour and the trend
continued towards high certainty by segment 4. The higher to lower variability
trend can be explained in a similar manner as in the Constant speed manoeuvres.
As in the Constant speed manoeuvres, targeted post-hoc analysis showed that
the average beliefs of the pedestrians had statistically significant differences for
sequential time segment comparisons in the Deceleration manoeuvres (Appendix

A), as well.

As shown in Figure 2.5, in Mixed scenarios (blue violins and mean trendline),
where the vehicle initially (segment 1) maintained constant speed and then (rest
of the segments) decelerated, pedestrians’ beliefs evolved in a different way than
in the other two driving manoeuvres. In early segments, pedestrians seemed to
be, on average, uncertain or were slightly leaning towards the non-stopping
behaviour (consistent with the vehicle’s initial constant speed phase). As the
vehicle began to decelerate in later segments, pedestrians’ beliefs shifted
towards the vehicle stopping behaviour. However, pedestrians’ beliefs in Mixed
manoeuvres often were not reaching the same level of certainty seen in the
Deceleration manoeuvres before the equivalent final segment. Targeted post-hoc
analysis on the Mixed manoeuvres confirmed once again statistically significant

differences in average beliefs between the successive segments (Appendix A ).

Finally, a significant interaction effect involving the segment and the driving
manoeuvre on pedestrians’ beliefs regarding the vehicle’s behaviour
(F(6,1172) = 202.92, p < .001, n3 = 0.668), was found. A targeted post-hoc
analysis was conducted to compare the average pedestrian beliefs between
different driving manoeuvres at each of the four segment levels (Appendix A ).
This analysis showed that the average beliefs of the pedestrians had statistically
significant differences between different driving manoeuvres, at the same

segment levels, except in the case of the comparison between the 4" segments
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of the Deceleration and the Mixed manoeuvres, since at the end of both of these

manoeuvres it was quite evident that the vehicle was stopping.

2.5.1.2 Initial TTAs and initial speeds
Figure 2.6 illustrates how pedestrians’ beliefs regarding the approaching

vehicle’s behaviour was influenced by the vehicle’s initial TTA (left column panels)
and the vehicle’s initial speed (right column panels). The 4-way ANOVA (results
for all factors and interactions detailed in Appendix A ) revealed significant main
effects of initial TTA (F(1,1172) = 98.67, p < .001, n% = 0.158) and initial speed
(F(2,1172) = 132.68, p < .001, 52 = 0.302). In regard to the initial TTA, as also
seen in Figure 2.6, longer initial TTAs generally led pedestrians’ beliefs to lean
more towards the vehicle engaging in stopping behaviour. Conversely to TTA,
higher initial speeds, generally led pedestrians to believe more strongly that the
vehicle was not stopping. The initial TTA had a positive effect on the average
belief of the pedestrians, regarding the decelerating behaviour of the vehicle.
These patterns are consistent for all three driving manoeuvres, as shown in the
Figure 2.6. The 4-way ANOVA also identified a significant interaction between the
initial TTA and initial speed (F(2,1172) =328, p = .0448, n; = 0.006),

suggesting their combined influence on the average pedestrian beliefs.

More significant interaction effects involving initial TTA, initial speed, segment
and driving manoeuvre were found by the 4-way ANOVA, indicating that the way
pedestrians’ beliefs were influenced by a single factor also depended on the
specifics of the other factors. While Figure 2.5 and Figure 2.6 primarily highlight
the overall trends of the pedestrians’ beliefs for the four factors mentioned above,
these more complex interactions, even though they are not easily visualised and

comprehended, are statistically supported by the full ANOVA (Appendix A ).
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Figure 2.6 - Pedestrians’ beliefs regarding the approaching vehicle’s behaviour
as a function of judgment point, initial TTA (left) and initial speed (right) of the

vehicle

2.5.2 Model predictions vs subjective ratings
Spearman’s rank correlation (pg) was used to quantify the relationship

between model predictions and the average pedestrian beliefs (participants’

subjective ratings). With pg, the goal was to assess the strength and direction

(positive or negative) of the relationship between the two variables in question
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(model predictions and average pedestrian beliefs), or in other words if the model
predictions can capture the trends of the average pedestrian beliefs. A ps =1
would indicate that the model makes belief predictions which rank exactly as the
participants’ beliefs, across all 72 segments. On the contrary, a p; = 0 would
indicate that the ranks of model predicted beliefs do not covary with the ranks of
the participants’ beliefs, i.e., there is no monotonic relationship between the two
(for example, a rank increase of participant’s beliefs would not be followed by a
consistent rank increase of model predictions). The model predictions that are
presented in this subsection have been obtained by the parameter combinations
which yielded the highest Spearman’s correlation between the model predictions
and the average pedestrian beliefs. More specifically, the best-fitting parameter

settings for both model alternatives are presented in Table 2.3.

Table 2.3 - Best-fitting parameter settings

d-based alternative t-based alternative
Us -1 m/s? -0.5
Uns 0 m/s? -1
o 1 m/s? 1
Ons 1 m/s? 1
N, 1 0

Figure 2.7 shows the performance of the two model alternatives (using the
best-fitting parameter values as stated above), by displaying scatter plots of the
model predicted beliefs compared to participants’ average ratings (translated in
belief probabilities). As can be seen from the two scatter plots, even though both
model alternatives provided Spearman’s correlations (performance metric),
which are closer to 1 (i.e., perfect rank order relationship, not necessarily linear
as indicated by the identity line and Pearson’s correlation) than O (i.e., no rank
order relationship), between their belief predictions and the participants’
subjective ratings, the i-based model alternative achieved a higher rank
correlation. That means that both model alternatives were able to at least capture
the overall trends of the beliefs of the pedestrians, regarding the approaching
vehicle’s behaviour, with the i-based model alternative performing better in that

aspect. Moreover, i-based model alternative’s better prediction performance is
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reflected by a smaller root mean square error (RMSE) between its predictions
and the average pedestrian beliefs. Qualitatively, the d-based alternative exhibits
a lot more poorly predicted datapoints than the 7-based alternative. Additionally,
the latter’s scatter points are more closely gathered to the identity line, suggesting
that its predictions are better estimates than the respective ones of the d-based

alternative.
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Figure 2.7 - Scatter plots of model predictions using best-fitting parameter
settings (y-axes) versus pedestrians’ average beliefs (x-axes) for all 18 kinematic
scenarios of the approaching vehicle

ps = 0.88 and RMSE = 20.04

Following, a qualitative analysis which compares the model alternatives
predicted beliefs and the average pedestrians’ beliefs, is presented. Through this
analysis, the predictive performance of both model alternatives was assessed on
each specific kinematic scenario (Figure 2.2 illustrates the kinematics of all 18
scenarios), with each one having a different combination of conditions (driving
manoeuvre, initial speed, initial TTA). The presentation below is divided into the
scenarios under the three driving manoeuvres (Constant speed — Figure 2.8,
Deceleration — Figure 2.9 and Mixed — Figure 2.10). Similarly to Figure 2.7, the
d-based and i-based alternative’s predictions are shown in yellow and blue
coloured curves, respectively. The average pedestrian beliefs are illustrated as
standard black standard error of the mean bars at the corresponding segment

timings (as described in Subsection 2.1.4).
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Figure 2.8 - Comparison between model alternatives’ predictions and
pedestrians’ beliefs for the constant speed manoeuvres

As seen in Figure 2.8, in the constant speed manoeuvres, both model
alternatives struggled to fully capture the patterns of the average pedestrian
beliefs regarding the behaviour of the approaching vehicle. Notably, each model
alternative produced a single specific belief curve that is repeated across all six
constant speed scenarios. This occurs because the observation state input for
both model alternatives is constant in these scenarios (d = 0 m/s? and T = —1).
Consequently, the models’ P(s|b) probabilities remain constant throughout these
scenarios, leading to the same belief curve (P;), regardless of the different
kinematic conditions. In contrast, as discussed in Subsection 2.5.1, participants’

early judgements in these scenarios were affected by initial speed and TTA. For
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instance, with lower initial speeds or longer initial TTAs, participants initially
leaned more toward believing the vehicle was stopping. The models' difficulty in
capturing these patterns highlights that their current inputs are insufficient for
these conditions where these cues are not differentiated. This suggests that
pedestrians utilise other information, such as speed and/or spatiotemporal
distance, particularly in early segments when d or 7 cues are not yet informative.
While both alternatives have limitations here, the i-based alternative generally

aligns better with the average pedestrian beliefs.

TTA3s TTAG6 s
100 o 100 @
3 3 % { 3
}
25 = g 50/
kmh
0 0
0 3 6 0 6 12
Time (s) Time (s)
100 100 ®
g % }
40 i 50 ( % 50
km/h
0 0
0 3 6 0 6 12
Time (s) Time (s)
100 . 100 0
} i ¢
55 < 5o % } 50
kmh d alt
T alt
§ ASR
0 0
0 3 6 0 6 12
Time (s) Time (s)

Figure 2.9 - Comparison between model alternatives’ predictions and
pedestrians’ beliefs for the deceleration manoeuvres

In the deceleration manoeuvres, as illustrated in Figure 2.9 and discussed in
Subsection 2.5.1, participants’ early judgments were, as with the constant speed
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scenarios, influenced by the initial speed and TTA. Both model alternatives
demonstrated a better ability to capture the overall pattern of increasing belief in
the vehicle stopping compared to the constant speed scenarios. As deceleration
cues became available, the models captured the human belief patterns more
effectively. A tendency for the d-based alternative, to saturate belief at 0% or
100% very quickly was observed; 1) the higher the deceleration amplitude, the
faster the belief saturation and 2) this might reflect the sensitivity of the chosen
standard deviation parameters of the P(s|b). Later, during the model fitting
process it was confirmed (as presented in Figure 2.11) that the optimal values for
the o parameters were found within the defined search ranges (Table 2.2) and
were not at the boundaries of these ranges. This suggests that model predictions,
with rapid saturation behaviour, is a characteristic of the current model
formulation with its best-fitting parameters, rather than a result of a small grid
search. The i-based alternative, again, generally showed a better agreement to
the average pedestrian beliefs across the different scenarios within this

manoeuvre type.

For the mixed manoeuvres (Figure 2.10), where vehicles initially travelled at
a constant speed before decelerating, both model alternatives captured the
general trends of average pedestrian beliefs, even with this distinct change in
vehicle behaviour happening mid-scenario. The t-based alternative once again
showed a better performance in capturing the patterns of the average pedestrian
beliefs. Notably, the patterns observed in pedestrian beliefs and model
predictions during these mixed manoeuvres mirrored those seen in the other two,
single-behaviour manoeuvres. Specifically, during the initial constant speed
phase of the mixed manoeuvres, the same early belief characteristics and model
limitations observed in the Constant speed scenarios were apparent. However,
once the vehicle began to decelerate in the later segments of the mixed
manoeuvre, the predicted beliefs resembled more to those observed in the pure
Deceleration scenarios, with beliefs shifting towards the vehicle stopping. One
challenging scenario for both model alternatives was the low initial speed and
long initial TTA scenario (25 km/h and 6 s TTA), where average pedestrian beliefs
suggest that they believed that the vehicle was stopping, possibly due to its low
speed and big distance from them, when it was actually exhibiting a non-stopping

behaviour (maintaining constant speed). Both model alternatives, having
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knowledge of the deceleration-related kinematics of the vehicle, predicted that
pedestrians were extremely accurate at inferring the true behaviour of the vehicle,
when in fact they were not, and they were basing their beliefs on other

information/expectations; a nuance that both alternatives were not able to

capture.
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Figure 2.10 - Comparison between model alternatives’ predictions and
pedestrians’ beliefs for the mixed manoeuvres

2.5.3 Parameter analysis
Having established the predictive performance of the model alternatives, this
section delves into an investigation of their fitted parameters. The goals of this

analysis are threefold: to understand the best-fitting parameter settings
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(presented in Table 2.3), to investigate how model fits are affected by variations
of parameter settings and to identify potential correlations between parameters,
which could indicate issues like parameter redundancy. This analysis is illustrated
by pairwise parameter scatterplot matrices for the d-based alternative (Figure
2.11) and the t-based alternative (Figure 2.12).

For the deceleration-rate-based model, the best-fitting parameters were ug =
—1m/s?, pps = 0m/s?, o5 = 1 m/s?, ops = 1 m/s* and N, = 1 m/s*. The mean
for the non-stopping behaviour is physically intuitive, directly representing a
vehicle maintaining constant speed (i.e., zero acceleration/deceleration). The
mean for stopping behaviour reflects a typical, constant deceleration rate, that is
within the range of deceleration rates observed in the designed scenarios of the
experiment. The equal spread of the likelihood probabilities P(s|bs) and P(s|b,s)

is presented in the left panel of Figure 2.13.
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Figure 2.11 - d-based model alternative’s pairwise parameter scatterplot matrix.
The histograms in the diagonal illustrate the one-dimensional marginal
distributions for each parameter, which achieved the highest correlations (above
a threshold of 0.65). The scatterplots show the respective two-dimensional
marginal distributions for each combination of two parameters, which are
represented by black dots (with minor jitter added to improve visibility). The red
circles and lines indicate the best-fitting parameter values (the highest achieved
correlation was equal to 0.70). The x and y ranges of the scatterplots indicate the
full search ranges of the respective parameters
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Figure 2.12 - 7-based model alternative’s pairwise parameter scatterplot matrix.
The histograms in the diagonal illustrate the one-dimensional marginal
distributions for each parameter, which achieved the highest correlations (above
a threshold of 0.8). The scatterplots show the respective two-dimensional
marginal distributions for each combination of two parameters, which are
represented by black dots (with minor jitter added to improve visibility). The red
circles and lines indicate the best-fitting parameter values (the highest achieved
correlation was equal to 0.88). The x and y ranges of the scatterplots indicate the
full search ranges of the respective parameters
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Figure 2.13 - P(s|b) probabilities of observing a certain acceleration rate or 7
given that the vehicle is exhibiting behaviour b. The blue (b;) and orange (b,)
curves refer to the stopping and non-stopping vehicle behaviours, respectively

For instance, with the fitted parameters for the d-based model alternative, the
two likelihood distributions intersect at -0.5 m/s2. This means that any observed
acceleration rate lower than this value makes the 'stopping' behaviour more
probable than the 'non-stopping' behaviour (P(s|bs) > P(s|b,s)), which directs the
belief towards the vehicle stopping. Similarly, for the i-based alternative, the
cutoff value where the one behaviour becomes more probable than the other is
equal to -0.75. Essentially, the u parameters control the distance between P(s|by)
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and P(s|b,s) and the o parameters control how wide or narrow P(s|bs) and
P(s|b,s) are, around their respective means. The combination of all of these
indicates a parameter interplay that dictates the model’s eventual output. A larger
separation between means and smaller standard deviations lead to more certain
belief updates, as linking observations to the two possible behaviours is less
ambiguous. Conversely, greater overlap between the likelihood distributions

results in more uncertainty and slower changes in belief.

To understand the model's sensitivity to its parameters and to identify potential
relationships between them, the parameter space was investigated. As illustrated
in Figure 2.11, the regions of parameter values with the best fits (highest achieved
Spearman’s rank correlations) for the d-based alternative, were found around
us = —1m/s? and u,, = 0m/s? (where the best fit also resided). As for the
standard deviations of the likelihood probabilities there is no clear relationship
that can be reported. Finally, no conclusive observations can be made for N,
either, apart from the fact that there was a tendency for lower perceptual noise

intensities that yielded higher correlations.

The i-based alternative, which demonstrated better overall performance,
yielded the following best-fitting parameters, were u, = —0.5m/s?, p,s =
—1m/s?, o, =1m/s? o, =1m/s* and N, = 0m/s?. Notably, these optimal
mean values and the respective high correlation-yielding areas for the likelihood
distributions are consistent with established concepts in collision avoidance
theory (Lee, 1976) and validate modelling choices of previous pedestrian
behaviour modelling studies that have utilised similar 7 critical values for
modelling pedestrians’ crossing decisions (Giles et al., 2019; Markkula et al.,
2018; Pekkanen et al., 2022). As mentioned in Subsection 1.5.1, a 7 value of -1
signifies no change in the rate of approach, consistent with non-stopping
behaviour, while 7 values around -0.5 (or more positive) could be interpreted as
indicative of significant braking or an intention to yield, as they represent an
adequate braking effort from the driver’s perspective to stop the vehicle before a
pedestrian. Furthermore, an important characteristic of the 7 cue is its situation-
adaptive nature: during any vehicle yielding manoeuvre with adequate braking,
the value of 7 is the same (equal to -0.5), providing the same general vehicle
behaviour information, regardless of the distance and speed of the vehicle. This

contrasts with the deceleration rate, where different distances and speeds would
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require different deceleration rate values to stop before the pedestrian’s position.
Another possible advantage of 7 over the deceleration rate could be the fact that
when the car is stopping and is in a close proximity to pedestrian, 7 increases
towards infinity (as shown in Figure 2.2), whereas the deceleration rate is kept
constant up until the vehicle completely stops. The abovementioned
characteristics of 1, offer it an advantage against d as a perceptual cue for
inferring vehicle stopping intentions. So, the fact that theoretically grounded mean
parameter values were obtained from the model fitting procedure, supports the

psychological validity of the 7-based alternative.

An examination of the pairwise scatterplots in Figure 2.12 helps to identify
potential parameter redundancies. This occurs when different combinations of
parameter values can produce very similar model performance, making it difficult
to uniquely identify the contribution of each individual parameter. More
specifically, the best fits (highest achieved Spearman’s rank correlations) were
found in the parameter regions of u; > —0.5 and u,; = —1, values which are
theoretically grounded as stated before. As for the o parameters, there seems to
be a relationship between them; high correlations can be obtained by
combinations of lower g, and higher g, (or vice versa), which indicates a likely
redundancy in the parametrisation (for example only one o parameter for both
behaviours being sufficient). The fact that in the 7-based alternative the best-fitted
noise intensity parameter is equal to zero (N, = 0), might suggest this model
alternative can account for the uncertainty in the participants' judgements using
only the behavioural variability component of the likelihood function, in

comparison to the d-based alternative (N, = 1), which seemed to require the

uncertainty of perceptual noise to explain the data a bit better.

2.6 Discussion

The work presented in this chapter aimed to investigate how different initial
vehicle speeds, initial Times-To-Arrival (TTAs) and distinct driving manoeuvres
influence pedestrians' beliefs regarding an approaching vehicle's behaviour.
Then, the ability of a Bayesian observer model, adapted from Baker et al. (2009),

to capture the belief updating exhibited by humans in these vehicle approach
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scenarios, was explored. This discussion will begin by interpreting the key
behavioural observations regarding pedestrian beliefs, particularly the impact of
kinematic variables and the temporal dynamics of belief updating. It will then
evaluate the performance of the computational model (with two proposed
alternatives), addressing both their successes in capturing pedestrians’ beliefs

and their limitations.

2.6.1 Behavioural observations

A key contribution of the work presented in this chapter is the detailed
temporal analysis of pedestrian belief updating regarding vehicle behaviour. By
adapting the segmented stimulus presentation approach, inspired by Baker et al.
(2009), to a road crossing context, it was possible to investigate how beliefs
evolved as more kinematic information became available. This contrasts with past
research that, while addressing related topics like gap acceptance or crossing
decisions, e.g., Beggiato et al. (2017); Dey et al. (2019); Dietrich et al. (2020), did
not focus on the continuous belief updating process (behaviour estimation), or
when it focused on behaviour (deceleration) detection (Ackermann et al., 2019)
it just relied on a single reaction/detection/identification time point rather than the
whole temporal spectrum of an approaching vehicle’s scenario. The segmented
approach employed in the experiment which was presented in this chapter,
appears to have been effective in extracting and measuring these evolving
beliefs, as evidenced by the systematic changes and consistent patterns of
participants’ judgements across segments and a variety of kinematic scenarios
(Figure 2.8, Figure 2.9, Figure 2.10). However, a limitation of the experiment was
that it was unable to provide any insight on the initial beliefs, i.e., during the time
before any of the first segments (first judgement point of each of the 18

scenarios).

It was found that pedestrians were generally able to detect and distinguish the
behaviour (maintaining constant speed with no intention to stop or decelerate with
the intention to stop) of the approaching vehicle. Different driving manoeuvres
and segments (i.e., amount of observation time) were found to influence
pedestrians’ beliefs (Figure 2.5). This was expected because with more evidence
over time and with clearer kinematic distinctions between manoeuvres,
pedestrians would become more certain and accurate in judging the approaching
vehicle’s behaviour. More specifically, the later the pedestrian’s belief was
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reported, the more certain the reported ratings were towards the correct vehicle
behaviour, as also indicated by the statistical analysis. This process could be
understood as a form of evidence accumulation, where the input sensory cues
(vehicle kinematics) are integrated, over time, to update an internal belief state
about the most likely vehicle intention/behaviour (stopping or not stopping). Early
on, there was a divergence between the pedestrians’ beliefs between
deceleration manoeuvre scenarios and the other two manoeuvre scenarios. This
divergence is in line with the vehicle kinematics at that stage, i.e., in the first
segments of deceleration scenarios, pedestrians were observing kinematic cues
indicative of the stopping behaviour, while in the first segments of constant speed
and mixed scenarios, those cues were absent. The slight differences between
the pedestrians’ beliefs in the first segments of the respective constant speed and
mixed scenarios could be attributed to the temporal structure of the presented
stimuli. The first segments of the mixed scenarios (presenting a constant speed
phase) were comparable to later segments of the constant speed scenarios. As
a result, the beliefs of these later constant speed manoeuvre segments were
similar to the beliefs of the first mixed manoeuvre segments. As segments
progressed and the kinematics were separated between mixed and constant
speed scenarios, beliefs also diverged. On the other hand, the beliefs observed
in later segments of mixed scenarios converged towards the beliefs observed in
the later segments of deceleration scenarios. Overall, the pedestrians’ beliefs
regarding the approaching vehicle’s behaviour followed the actual kinematics of
the vehicle in a way that one might expect, which provides reassurance that the

segment-based experiment design was efficient.

Two interesting findings are related to the mixed manoeuvres, which could be
considered as later braking onsets than the respective deceleration manoeuvres
(Figure 2.5). First, the average belief’s change of direction, from the non-stopping
behaviour to the stopping behaviour, was evident and seemed to be happening
almost as soon as the vehicle’s behaviour changed. Second, after the first time
segment the rate with which the average belief of the mixed manoeuvres was
increasing towards the stopping behaviour was larger than the rate with which
the average belief of the deceleration manoeuvres was increasing towards the
stopping behaviour, which aligns with the beliefs-vehicle kinematics relationship
that was discussed before. In the later segments of the mixed scenarios the
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deceleration rate magnitude was larger than the deceleration rate of the
deceleration scenarios and thus the evidence related to the stopping behaviour
is stronger in the former case. This observation could validate the finding by
Ackermann et al. (2019), that the harder the braking (larger deceleration rate),
the faster the identification of the stopping (decelerating) behaviour. However,
Ackermann et al. (2019) found no significant influence of the onset of deceleration
to the identification of vehicle behaviour, which contrasts with the finding of the
current work, where pedestrians were overall more certain that the vehicle was
stopping during deceleration manoeuvres than during mixed manoeuvres,
despite the lower deceleration rates observed in the former scenarios. This
suggests that earlier braking onset, even with a lower deceleration rate, could
lead to faster and more accurate beliefs that the vehicle is stopping, possibly due

to the longer duration of integrating decelerating cues.

In the cases of larger spatiotemporal distance between the pedestrian and the
vehicle, the pedestrians’ belief certainty and accuracy were lower (Figure 2.6).
The segments, where the discrepancy between the believed vehicle behaviour
and the actual vehicle behaviour was largest, were mostly earlier segments with
lower vehicle speeds and/or larger TTA, i.e., larger spatiotemporal distances. This
observation contrasts with the previous beliefs-vehicle kinematics relationship
and suggests that also other factors might influence pedestrians’ beliefs,
especially when direct perceptual information of deceleration might be less
salient. Specifically, the effects of initial speeds and initial TTAs on pedestrians’
beliefs remained consistent across all the kinematic scenarios (Figure 2.6).
Generally, pedestrians tended to believe more towards the vehicle's stopping
behaviour when the initial TTA was longer. Conversely, higher initial speeds led
pedestrians to believe that the vehicle was not stopping, which is in line with the

findings by Ackermann et al. (2019).

During the experiment there was no auditory feedback (sound cues) related
to the approaching vehicle, for example engine and/or tyre noise, braking sounds,
etc. That meant that the pedestrian beliefs were based solely on the visual
perception of the vehicle’s motion. The omission of sound cues was intentional to
focus on the interpretation of implicit visual kinematic cues, which aligned with
the core mechanism of the suggested model and its reliance on a visual variable.

That omission represents a limitation, as sound could influence a pedestrian’s
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perception of an approaching vehicle and their road crossing behaviour. While
some studies have suggested that the addition of vehicle sound did not
significantly affect pedestrians’ crossing decisions, which were primarily driven by
visual cues of speed and distance (Soares et al., 2021), other research has
indicated that sound can be important for accurate perception (Wessels et al.,
2023). So, it is possible that including realistic sound cues would have influenced
the speed and certainty with which the participants updated their beliefs, by
providing earlier or more redundant evidence of vehicle deceleration. However,
due to the challenges in simulating high-fidelity, context-specific auditory stimuli
and the initial focus on visual cues, this influence remains an important area for

future investigation.

2.6.2 Computational modelling of pedestrian behaviour estimation
Another contribution of the work presented in this chapter is the development
and evaluation of a behaviour estimation model. This model aimed to adapt a
Bayesian observer model (Baker et al., 2009), which has previously been
successful in capturing humans inferences of others’ goals in simplified laboratory
tasks, to the road crossing context. To do this, kinematic cues, that researchers
have previously proposed are used by humans as interpretation of stopping
behaviour, were used. Specifically, the utilised kinematic cues were the
deceleration rate (d) of a vehicle and the rate of change of the relative rate of

optical expansion (7).

Both behaviour estimation model alternatives suggested (d-based and -
based), were able to provide belief predictions which captured the general trends
of average pedestrian beliefs regarding the behaviour of an approaching vehicle.
The relatively high Spearman’s rank correlations that they achieved, indicate a
strong monotonic relationship between their predictions and the average
pedestrian beliefs and further suggests their ability to follow the overall patterns
of the subjective beliefs. One reason for this relative success could be that
humans, like the model, put a lot of emphasis on deceleration cues when inferring
whether an approaching vehicle is stopping or not. The proposed model
formulates how these cues are processed over time, following an inference
process, in which, sensory information input is updating an internal belief state
and replicates the beliefs-vehicle kinematics relationship discussed in the

previous subsection.
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Another key finding of the modelling work presented is the better performance
of the 7-based alternative in comparison to the d-based one (Figure 2.7). This
better belief prediction was expressed both in quantitative (higher Spearman’s
correlation and lower RMSE between their predictions and the average
pedestrian beliefs) and qualitative (fewer poorly predicted datapoints and
predicted belief curves closer to the actual average subjective ratings) terms. This
provides support for the hypothesis that 7 is perceptually available and more
useful to pedestrians, rather than observations of the deceleration rate of a
stopping vehicle. Another possible reason why the 7-based alternative performs
better than the d-based alternative is based on the fact that it is situation-adaptive
whereas the latter is not. When a vehicle is braking, the value of 7 is the same
regardless of the specific kinematics of the vehicle, providing a ‘universal’ value
which is indicative of vehicle stopping behaviour. In contrast the deceleration rate
d is different for different of stopping manoeuvres. The optimal values for the u
parameters of the likelihood distributions, for the i-based alternative, were found
to be -0.5 for the stopping behaviour and -1 for the non-stopping behaviour; in

line with the collision avoidance theory (Lee, 1976).

Although, the Bayesian observer model has been very successful in capturing
the beliefs of humans in simplified laboratory tasks, the current work suggests
that it is somewhat less successful in the traffic setting. Despite achieving high
positive correlations, a qualitative comparison revealed the model's inability to
capture all observed patterns in human judgments. This failure was most
apparent in cases of larger spatiotemporal distance between the pedestrian and
the vehicle. An obvious limitation which may be contributing to the model’s
difficulty to replicate the average pedestrian beliefs, is its reliance on a single
deceleration related cue. The empirical observations discussed before, more
specifically the influence of initial speed and TTA on beliefs in early segments,
suggest that pedestrians, in addition to deceleration related cues, use also other
sources of information that affect their behaviour estimation mechanism.
Incorporating these sources of information in the modelling of the behaviour
estimation mechanisms could possibly provide belief predictions that capture the

patterns and nuances of the average pedestrian beliefs better.

A further limitation of the modelling work in this chapter is its exclusive focus
on aggregate data. The simplifying assumption of fitting the model to average
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participant data to capture general trends in belief updating was adopted.
However, this approach does not consider the variability between individuals. A
closer inspection of individual participant ratings showed that individuals’ belief
curves tended to follow the overall patterns of the average subjective ratings.
Hence, it could be argued that the model would be limited in fitting the data,
exactly, on the per-participant level. Therefore, it seems like the same basic
mechanisms indeed may be at play for all participants, such that a model that fits

the average data could also probably be fitted to individual participants.

Finally, the values of the behaviour likelihood distribution means (i, and )
and their standard deviations (o, and g,,5) are not uniquely identifiable because
the belief calculation seemed to be depending on the evidence difference of the
two possible behaviours. It is likely that if both u; and u,, were shifted equally by
a constant value, the resulting belief and correlation would remain the same. An
action to correct this non-identifiability would be to fix the values of some of the

parameters that seem to have a clear relationship with other parameters.

2.6.3 Summary

This chapter detailed how pedestrian beliefs regarding an approaching
vehicle's behaviour (stopping or not) change over time. Different segments
(duration of observing the approaching vehicle), driving manoeuvres, vehicle
initial speeds and TTAs influenced the pedestrians’ beliefs regarding the
behaviour of the vehicle. The proposed model, and specifically the 7-based
alternative, was successful in capturing the general trends of the pedestrians’
beliefs, suggesting a basis of modelling of the behaviour estimation mechanism.
However, the model did not succeed at capturing all the details and patterns
observed in the participants’ ratings, especially in scenarios with greater
spatiotemporal distances, highlighting areas for model improvement. In those
cases, a possible explanation of the nuanced patterns observed in the average
pedestrian beliefs might be that these beliefs are based the pedestrians’ prior

knowledge and expectations.
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3 Behaviour estimation through observations
and expectations

In this chapter the aim is to propose a more comprehensive behaviour
estimation model than the proposed model in Chapter 2, which would also be
more successful at predicting the beliefs of pedestrians regarding an approaching
vehicle’s behaviour. As discussed in Section 2.6, relying solely on observations
of a deceleration-related metric is not enough to capture how pedestrians form
and update these beliefs. While the vehicle’s deceleration rate is important for
recognising the driver’'s/AV’s intentions, it does not seem to be the only relevant
cue used by pedestrians in estimating the behaviour of the approaching vehicle
(Ackermann et al., 2019; Petzoldt et al., 2018). Chapter 2 concluded that when a
vehicle is far away (i.e., larger TTA), pedestrians might rely on their prior
knowledge and expectations of the current situation they are facing, while on the
other hand, it seems that an observation-based behaviour estimation would be
more relevant when the vehicle is closer to the pedestrian. As presented in
Section 1.6 humans possess self-awareness and also a “theory of mind”
regarding other agents with whom they interact. There are distinct psychological
theories that elucidate how humans infer the intentions of others by either directly
observing their actions (Baker et al., 2009; Pezzulo et al., 2013) or deducing the
other agent’s behaviour through rational reasoning, or in simpler words expecting
the other agent to follow the behaviour that is the most beneficial (value-

maximising) to them (Markkula et al., 2023; Jara-Ettinger et al., 2020).

Therefore, in Chapter 3, the more detailed behaviour estimation model that is
suggested, is based on the two psychological theories of human intention
inference mentioned above. The first will be referred to as observation-based
behaviour estimation (Ob) and it is the same type of estimation as in the already
proposed model of Chapter 2. The second is based on pedestrians’ expectations
of what behaviour would be rational or value-maximising for the driver/AV and it
will be referred to as value-based behaviour estimation (Vb). Then, a model
combining both mechanisms for behaviour estimation will be introduced, referred
to here as augmented behaviour estimation model (Ob+Vb). These three models
are then evaluated on the same dataset which was collected in the experiment

presented in the previous chapter (Section 2.1). To assess the performance of
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the Ob, Vb, and Ob+Vb models, and to address the critical issue of model
complexity, a Bootstrap Cross-Validation (BSCV) technique (Baker et al. (2009) -
where Ob and the experimental design were also inspired from), was employed.
Specifically, Ob contained 7 parameters, Vb contained 5, and Ob+Vb contained
12 parameters, making it quite a complex model. This model selection technique
was key for mitigating the risk of overfitting, a phenomenon where models fit the
training data too closely and fail to generalise to new data. Overfitting is often
caused by limited data representation or excessive model complexity, as
evidenced by the increasing parameter count. Therefore, BSCV was used to
compare the performance and check the generalisability of the models, by

artificially expanding the data sample and controlling model complexity.

3.1 Model definition

Building on the computational framework of Markkula et al. (2023), this
chapter will progress the modelling of pedestrian beliefs regarding an
approaching vehicle's intentions, with the main focus specifically on the
mechanisms of behaviour estimation. While Markkula et al. (2023) developed a
holistic model of pedestrian crossing behaviour, this work will focus only on and
model the pedestrians’ belief updating regarding the vehicle’s behaviour, allowing
for a more detailed investigation of behaviour estimation, which has previously
been not addressed in this manner. Specifically, in the current work the Markkula
et al. (2023) framework was combined with the Baker et al. (2009) Bayesian
observer models of goal estimation. The overall aim remains the same as in
Chapter 2, that is to implement models that predict pedestrians’ beliefs about the
behaviour of an approaching vehicle, mainly expressed as the probability (belief)

that the driver/vehicle will deceleratel/yield/stop (F;).

3.1.1 Observation-based evidence
In Section 2.3 a formulation for the observation-based mechanism based on

Recursive Bayesian Estimation was introduced. This method involved directly
calculating the posterior belief P,, through a straightforward iterative application
of Bayes' theorem, by multiplying the prior belief to the likelihood and then
normalising over the sum of the products of the two possible behaviours
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(Equation (2.11)). However, this process can be equivalently represented using a
normalised exponential (softmax), such that the Bayes update can be seen as

just iterative additions to a sum of accumulated evidence.

Specifically, the posterior belief P, that the vehicle will exhibit behaviour b can
be expressed as a normalised exponential, or softmax function of the
accumulated observation-based evidence 4, ;, over the sum of the observation-
based evidence for all behaviours b’, using the evidence of the previous time step
t—1:

eAop(t-1)
P(t) = ————— (3.1)

Y, e4ob (=1

The following observation-based evidence update is also assumed:

At At
App(t) = (1 — —> Agp(t — 1) + —InP[i()|i(t — 1),b] (3.2)
T; T,

Where T; is a time constant which represents how quickly someone forgets
older evidence, T, is a time constant which represents the duration of the
evidence updating time step and P[i(t)|i(t — 1),b] is the probability of the
currently observed © given that the vehicle’s current behaviour is b. These
probabilities were modelled as normal distributions for the observed 7, with mean
7 associated to behaviour b and standard deviation g;,. If it is further assumed
that the pedestrian does not forget the observation-based evidence (T — o) and
the duration of the evidence updating time step is set to be equal to the model
time step (T, = At), then the Recursive Bayes Estimation formulation (Equation
(2.11)) can be derived:

Py(t) =

eAorE=Dpli(t)|7(t — 1), b]

O S e o PG 1), b
eAop(t-1) . .
s ehoan T EOIE=1),b]
eAop -1

X

I GY PlE(O)](t — 1),b']

_ R -DPlE@®)|i(¢t - 1), b]
X Py (t = DPLE@)]E(t — 1), b]
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The derivation above provides the special case of pure Bayesian observation-
based behaviour estimation. Initially, the pedestrian does not have any prior ©
observations available. Thus, all 4, are equal to zero and the beliefs regarding
the two possible vehicle behaviours (decelerating/stopping and maintaining

constant speed/not stopping) are equal:

eAO,S(t_l) eO

Pt =0) = e om0 ~ g0 g0~ 0
eAO,ns(t_l) eO

P (t=0)= 0.5

eAO,ns(t_l) + er,s(t—l) - eo + eo -

3.1.2 Value-based evidence

As mentioned in the introduction of Section 3.1, a pedestrian might form their
beliefs regarding the approaching vehicle’s behaviour based on what behaviour
they would expect to be the most rational or value-maximising for the AV or the
driver of the vehicle. Affordance theory posits that perception is not only the
interpretation of someone’s surroundings but is also used to identify potential
interactions and enable the pursuit of effective courses of action (Chemero, 2003;
Lio et al., 2020). Building upon the affordance theory statement above and the
principles of reward-driven behaviour, a reward function was adopted, which
models how a driver could maximise the value of their behaviour over a prediction
horizon, as has been presented in Markkula et al. (2023) and based on models
of optimal human motor and locomotor control (Gawthrop et al., 2011;

Hoogendoorn and Bovy, 2003; Wang et al., 2015).

Reward

kg*v

k g*v-k da*a*2+c_pol

t future = 3sec Future time

Figure 3.1 - Example of future rewards of the two possible behaviours that the
vehicle can exhibit
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It was assumed that pedestrians believe that the driver’s behaviour and

actions are guided by a core reward function, designed to balance the desire for

efficient progress towards their goal with the discomfort of braking and the

collaborative consideration of yielding. This function is defined as:

R(t) = kyv(t) — kqqa®(t) + cpor (3.3)

Here, R(t) represents the reward at time t, quantifying the desirability of a

certain behaviour. k, is a reward parameter associated with speed, v(t) is the

vehicle's current speed, k;, is a cost parameter associated with deceleration,

a(t) is the vehicle's current acceleration, and c,,; is a constant representing a

politeness reward. Equation (3.3) effectively captures the driver's trade-offs:

The positive term k,v(t) encourages driving at higher speeds, reflecting
the desire to reach the destination as fast as possible.

The negative term —kg,a%(t) penalises acceleration/deceleration,
representing the discomfort of accelerating/braking, especially in cases
where the vehicle changes its speed abruptly.

The positive term c,,,; introduces a reward for yielding in the presence of
pedestrians at the curb, reflecting the driver's anticipation of how their
behaviour might be perceived by a naive observer, which can be either
cooperative (higher reward) or non-cooperative (no reward). The use of
“‘politeness” and “pro-social behaviour” definitions in this thesis require
further clarification, as the approaching vehicle in the experiment was an
AV without a visible human driver. The application of these terms was
intentional, serving to model the expectations of the human pedestrian
based on the following assumption. Pedestrians possess a Theory of Mind
of how road users interact, which is based on their lifelong experience with
manually driven vehicles. In interactions with manually driven vehicles the
act of yielding is considered pro-social behaviour which indicates
cooperation, prioritising pedestrians’ safety and convenience. When
interacting with an AV, pedestrians try to infer the vehicle’s intent by
projecting the politeness social value onto its behaviour (Lanzer et al.,
2020; Ribino, 2023; Tsui et al., 2010). The politeness term formalises the
pedestrians’ expectation that a rationally operating vehicle will derive a

positive social reward from acting cooperatively (i.e., yielding).
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This unified reward function can be applied to analyse the two possible
behaviour horizons: maintaining constant speed with no intention to stop and

decelerating with the intention to stop.

In the non-stopping behaviour horizon, which is illustrated as the blue curve
in Figure 3.1, the driver maintains a steady velocity, resulting in zero acceleration
(a(t) = 0). Additionally, in this case, it is assumed that the politeness reward is
inactive, therefore c,, = 0. Substituting these values into Equation (3.3), the
simplified reward function for maintaining constant speed/not stopping is

obtained:

Rys(t) = kgu(t) (3.4)
Conversely, in the stopping behaviour horizon, which is illustrated as the red
curve in Figure 3.1, the driver reduces speed to stop before the pedestrian’s

position, leading to a non-zero deceleration rate, specifically a(t) = a,¢4°(t),
where a,., represents the required deceleration rate to come to a complete stop
at a safe distance from the pedestrian. In this case, the politeness term c,,,

remains active. Substituting these into Equation (3.3), the reward function for

stopping is obtained:

Rs(t) = kgv(t) - kdaareqz(t) + Cpol (35)
Notably, the politeness constant reward could instead be formulated as a
selfishness constant cost in Equation (3.4). The required deceleration rate was

calculated using the deceleration formulae:

v(t)
Areq(t) = t (3.6)
stop
1
S = Eareq () t_?top (3.7)

Here, v(t) is the current vehicle speed, t,, is the time needed for the vehicle
to come to a stop and S is the distance that the vehicle will travel during the
deceleration manoeuvre and is equal to D(t) — Dg,p, D(t) being the current
distance between the vehicle and the pedestrian and Dy, being the distance

between the vehicle and the pedestrian when the vehicle has fully stopped. In

accordance with the “The Highway Code” (2023), Dy,, was chosen to be

approximately 2 to 2.5 m.
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To calculate the value-based evidence Ay, of behaviour b:

t+Th

Ay ,(t) = f Rp[x(t)]dt’ (3.8)

t

Here t is the current time, T), = 3 s is the time horizon that was chosen, as it
was equal to the smallest initial TTA and scenario duration of the experiment
described in Chapter 2 and R, [x] is the reward value for behaviour b and current

kinematic state of the vehicle x. Essentially, A, ,(t) can be found by calculating

the area underneath the R, curves in Figure 3.1.

3.1.3 Pedestrian beliefs of the vehicle’s behaviour

The distinction between the inputs for the Ob and Vb models is based in the
level of cognitive processing assumed, and not on whether the kinematic variable
is physically observable. All kinematic cues (speed, distance, acceleration) are
technically observed variables. However, the Ob component was focused
exclusively on the perceptually salient cue for predicting the behaviour of the
approaching vehicle, in this case the 7. This represented a perceptual processing
mechanism that updates beliefs based on immediate sensory evidence.
Conversely, the Vb component used observed variables like speed and distance
as inputs to a utility calculation (i.e., expected reward). This process models the
pedestrian's rational expectation that the perceived driver/AV acts to maximize its
reward by balancing objectives like minimising braking cost and maximising
maintaining speed towards a goal. Thus, Ob used direct evidence of motion
change, while Vb used observable kinematic cues to form reward expectations
of rational behaviour. Finally, the pedestrians’ overall goal (e.g., to cross safely)
is necessary information for the road crossing decision but is not required as an

input for the intermediate task of behaviour estimation modelled here.

If the observation and value-based behaviour estimation mechanisms are
combined, then the overall evidence that the vehicle is exhibiting behaviour b,
could be modelled as the weighted sum of the estimated observation-based

evidence 4, , and value-based evidence Ay j,.

Ay (t) = BoAop(t) + By, (t) (3.9)

eAb(t_l)
Py(t) = —— (3.10)

Zb,eAbl(t—l)

Where 8, and B, are the weights of the respective evidence type.
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As stated in Subsection 3.1.1, the model that was suggested in Chapter 2,
was reformulated to operate on evidence rather than probabilities and its belief
predictions were successfully replicated by the evidence accumulation
formulation. However, it is important to first consider the theoretical motivation for
the use of the softmax application in the model. As detailed in Markkula et al.
(2023), the softmax function was used for 3 important reasons: (1) it allowed for
the representation of Bayesian belief update as additive evidence accumulation,
(2) it has been commonly used to model decision probabilities as a function of
rewards, particularly in behavioural game theory (Wright and Leyton-Brown,
2017) and (3) it provided a straightforward framework for integrating observation-
based and value-based mechanisms within a single model. In addition, the
correlational analysis in Chapter 2 (Figure 2.7) showed that the relationship
between the model predictions and the average subjective ratings is not linear,
but rather it seemed that an S-shaped correlation could describe the relationship
better. Many natural processes, like the learning curves of complex systems, start
slowly, accelerate, and then level off; this seems to be resembling the overall data
trend in Figure 2.7. In cases where a precise mathematical representation is
unavailable, an S-shaped function has often been applied to approximate this
pattern (Gibbs and MacKay, 2000). More specifically, borrowing from deep
learning (Goodfellow et al., 2016) and pattern recognition (Bishop, 2006), the
softmax function has also been frequently used to map a vector of feature

variables to a posterior probability distribution.

Despite these theoretical advantages, early tests of the model presented in
this chapter suggested that the standard softmax function was not capable of fully
capturing the precise shape of the relationship between model predictions and
the average subijective ratings reported by human observers in the experiment.
To better align the model predictions with the observed subjective ratings, a
modified version of the softmax transformation function was required. Drawing
inspiration from the Richards’ family of growth-models (Richards, 1959; Tjgrve
and Tjgrve, 2010), modifications were introduced to Equation (3.10). It is
important to clarify the relationship between the behaviour probabilities generated
by the model, P,(t), and the judgments provided by the participants during the
experiment, as described in Subsection 2.1.4. While the output of the models is

probabilities representing the pedestrians’ beliefs regarding the behaviour of an
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approaching vehicle, participants provided subjective ratings. These ratings were
subsequently transformed into belief scores to facilitate comparison with the
model's probabilistic output. The introduction of parameters B and M (see
Equations (3.11) and (3.12)) addresses the potential discrepancy between the
model's probabilistic output and the subjective ratings provided by participants.
Although the softmax function transforms evidence to probabilities, the
relationship between belief probabilities and human confidence ratings is not
necessarily linear. This modification achieved a linear relationship between the
model predicted beliefs and the average subjective ratings, addressing the

observed non-linearity between the two, as will be seen in Section 3.4.

o B(As(t=1)+M)

B () = 5 ) 4 eBGsED+ ) (3.11)

e B(Ans (t_l))

Ps(t) = Y eB(ns(t-D)  gB(As(t-D+M) (3.12)

Where P, and P, are the predicted beliefs for the decelerating and constant
speed behaviour respectively, A; and A, are the evidence of the decelerating
and constant speed behaviour, respectively. B is an evidence scaling factor which
adjusts the sensitivity of the softmax function to changes in accumulated
evidence, thereby enabling the model to better capture the observed variability in
subjective belief ratings across different scenarios and M is an added offset
constant applied exclusively to the decelerating behaviour evidence, A,
accounting for potential biases or baseline differences in participants' perception
of the decelerating behaviour. Overall, this transformation facilitates a more
accurate representation of how participants translate internal beliefs into

subjective ratings.

The parameter B, which is referred to as the inverse temperature constant in
literature, is a growth-rate constant that controls the slope at the inflection point
and thus the overall shape of the S-shaped transformation function. Referring
back to Equation (3.4) and reiterating the assumptions of Ty — « and T,, = 4t, it
becomes evident that B has the reverse effect of T,,. Consequently, lower values
of B, correspond to longer duration of evidence-updating. Through the lens of
reinforcement learning, for values of B — 0, both behaviours would have nearly
the same probability. Conversely, as B increases, the influence of accumulated

evidence values on the resultant probability also increases. The impact of the
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scaling parameter B on the predicted beliefs is visualised in Figure 3.2. This figure
illustrates the mapping from behaviour evidence to the belief that the approaching
vehicle is stopping (P;) or not (B,;) for the participants with examples of a low and
a high B value. As shown, a lower B value (blue curve) results in a more gradual
shift in belief as the evidence changes, indicating a lower sensitivity to the
accumulating evidence. Conversely, a higher B value (orange curve) leads to a
much steeper transition, suggesting that individuals with a high B are more
decisive and their beliefs change more rapidly with even small changes in the

perceived evidence.

P<:Rr.~: I

Belief towards behaviour

-60 -40 -20 0 20 40 60
Behaviour Evidence

Figure 3.2 - Effect of scaling parameter B on pedestrians’ beliefs

The parameter M, which is referred to as soft margin in the literature, is an
added constant that has been used in classification tasks to reduce intra-class
and increase inter-class separation, by introducing a distance margin into the
logits. In the current application, this distance margin could be translated as
added evidence to (or bias towards) only one of the two possible behaviours: in
this case the decelerating behaviour. Thus, M is affecting the vertical position of
the predicted beliefs and acts like an additional prior belief in the modified softmax
transformation function. So, the lower the value of M, the lesser the bias towards
the decelerating behaviour. The model lacks any other parameter that explicitly
represents this form of prior belief. Consequently, the incorporation of M does not

only serve to align the beliefs predicted by the model with empirical data. Rather,
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it is underpinned by the theoretical concept of equiprobable prior beliefs — how
people perceive and assign probabilities to events, especially when faced with
uncertainty. The cognitive bias called equiprobability bias is the tendency for
people to assume that random events are equally likely, even when there is no
logical basis for that assumption (Gauvrit and Morsanyi, 2014; Lecoutre, 1992).
Essentially, people often think that everything has an equal chance. In ideal
probabilistic reasoning, especially in Bayesian statistics, prior beliefs are initial
assumptions about the likelihood of events. Some theoretical models use
equiprobable priors as a neutral starting point (especially when there is genuine
lack of information); as was also assumed in the purely observation-based
behaviour estimation. However, in reality, people's prior beliefs are heavily
influenced by experience, knowledge, personal biases and emotional factors
(Kapons and Kelly, 2023). Whether or not people lean towards equiprobable
beliefs depends heavily on the context. For example, in games of chance with
known, fair systems (like a fair die), people might correctly assume
equiprobability, but in real-world situations with complex, uncertain factors,
people's beliefs are rarely equiprobable (Tversky and Kahneman, 1974). So, it is
reasonable to assume that pedestrians do not possess equiprobable prior beliefs,

and M could represent this inherent bias.

Notably, even though B and M affect the absolute values of the belief
probabilities, they have no effect on the rank order of the predicted beliefs. This
is because linear transformations like scaling and shifting do not affect rank

correlations, which are based on the ordinal relationship between data points.

3.1.4 Model parameters
Table 3.1 lists the free parameters associated with purely Ob, purely Vb, and

augmented Ob+Vb models. The search ranges presented in the table reflect the
specific intervals of values within which the fitting algorithm, which will be
described in detail in Section 3.2, is allowed to search for the optimal parameter

values that best match the data.
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Table 3.1 - Free parameters’ search ranges

Parameters | Range Ob Vb Ob+Vb
kg [0, 1] + +
Kaq [0, 1] + +
Cpol [0, 1] + +
He [-1, 0] + +
Ha [-1, 0] + +
o; [0, 1] + +
04 [0, 1] + +
Bo [0, 1] +
By [0, 1] +
Ty [0, 100] + +
B [0, 1] + + +

[0, 100] + + +

3.2 Model fitting

In order to fit the parameters of the three behaviour estimation models, the
same data that were collected during the experiment, described in Section 2.1,
were used. The free parameters of the three models, as well as their respective
research ranges, are presented in the subsection above. In Chapter 2 a grid
search fitting method was described, which was used in accordance with the
Baker et al. (2009) approach. However, the total number of the parameters has
increased, and fitting the augmented model could be computationally incredibly
costly. Thus, there was a need to use a model fitting method which would be able
to decrease the computational cost and running times significantly for a higher
number of parameters. For that reason, CRADLE — a combined local and global
derivative-free optimisation algorithm (Leonetti et al., 2012) was used3. This
technique has found application in policy optimisation (Leonetti et al., 2013) and
system identification (Karras et al., 2013). This optimisation algorithm, which is a

modification of Price's optimisation method (Price, 1983), combines a stochastic

3 The specific implementation of the optimisation algorithm (CRADLE), which was used in the
current thesis for model fitting, was a MATLAB adaptation developed by the first author of the
original paper (Leonetti et al., 2012), Dr Matteo Leonetti.
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global search with a deterministic local search. Its global nature makes it
particularly well-suited for dynamic decision-making problems which need to be
solved on-line and where a priori knowledge of a good initial solution is

unavailable.

The following optimisation problem is considered: minimising a cost function
J(8) over a convex domain D in n-dimensional space. In the current case,
following the Baker et al. (2009) approach also adopted in Chapter 2, this cost
function is the Spearman’s rank correlation between the model’'s belief
predictions given a set of parameters 8 and the participants’ average subjective
ratings. However, since higher correlations indicate better model fit, the negative
correlation as the cost function to be minimised was used. For this optimisation
problem the set of parameters 6 would include all parameters except B and M,
as they can be omitted due to the fact that they do not affect the overall rank

correlation, as stated in Subsection 3.1.3.

As a reminder from Chapter 2, the Spearman's rank correlation coefficient,
denoted as ps, is calculated based on the ranks of the data, not the raw values.
Specifically, for two sets of data, X (model predicted beliefs) and Y (participants’
average beliefs), and their respective ranks are RX and RY (d; = RX; — RY)):
__6%di

n(mn? —1)
From Equations (3.11) and (3.12), it can be seen that the parameter M adds

ps =1 (3.13)

a constant to the evidence A; only in the numerator of the softmax function. Since
the rank correlation is based on the order of the predicted beliefs, adding a
constant to all values associated with the decelerating behaviour (P,) will shift
these values up, but it will not alter their relative ranking. Therefore, M does not
affect the d; values in the rank correlation calculation, and consequently, it does

not affect ps.

Similarly, the parameter B multiplies the evidence 4, in both the numerator
and the denominator of the softmax function. While multiplying the evidence by a
constant might affect the absolute values of the predicted beliefs, it will not
change their relative ordering. Therefore, from a purely mathematical
perspective, B could also be omitted from the parameter set 6, as its multiplication

to the evidence is happening on both the numerator and the denominator of the
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softmax fraction (Equations (3.11) and (3.12)), and similarly to M, the overall rank
correlation is not affected. However, due to computational limitations, values of
B-A, extremely close to each other, i.e., having a difference lower than
MATLAB’s numerical precision, led to those values being recognised as equal,
eventually affecting the overall ranking. For that reason, the parameter B was

included in the set of parameters for the optimisation problems.

As previously discussed, the model provides probability outputs (beliefs),
while participants provided subjective ratings. While a Spearman’s rank
correlation metric assesses the model’s ability to predict the order of participants’
beliefs, an RMSE would evaluate the model’s accuracy in predicting the
magnitude of those beliefs. So, even though the Baker et al. (2009) fitting method
used the correlation between the model’s predicted beliefs and the average
subjective ratings of the participants, it was decided to consider another
optimisation problem where the minimised cost function this time would be the
root mean square error (RMSE) between the model predicted beliefs and the
average subjective ratings. The RMSE was used to measure the average
difference between them, with lower RMSE values indicating more accurate
model predictions (an RMSE = 0 would mean that the model predicted beliefs

match perfectly the average pedestrian beliefs).

n
Here, n is the total number of observations (in this case the 72 segments), y;
is the average pedestrian belief value for the i** observation and 9; is the model

predicted belief value for the i*" observation.
Eventually, two fitting methods were tested:

e The first method included two steps. The objective of the first step was
to maximise the correlation between the model predictions and the
average subjective ratings and obtain the parameter set that produced
that correlation. For the second step, using the parameters obtained in
the first step, the objective was to minimise the RMSE between the
model’s predicted beliefs and the average subjective ratings, which

would provide the best-fitted M parameter value.
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e The second method included only one step, and the objective was to
minimise the RMSE between the model predictions and the average
subjective ratings and obtain the whole parameter set, that produced
that RMSE.

After testing both fitting methods two main takeaways were drawn: a) the
second method was more computationally intensive than the first one, b) the
second method provided parameter sets that not only resulted in the lowest
RMSE values but also produced the highest rank correlations. Conversely, the
first method provided parameter sets that resulted in the highest rank correlations
but not necessarily the lowest RMSE values. So, even though the first fitting
method was faster, the second fitting method seemed more appropriate since it
provided a better alignment in terms of both order and magnitude between the

model predictions and the average pedestrian beliefs.

3.3 Model selection

To compare the predictive accuracy of the models fitted using the methods
described earlier, a quantitative approach was employed. To assess the
differences in predictive accuracy between the three models, bootstrap cross-
validation (BSCV; Baker et al., 2009) was utilised. BSCV is a non-parametric
robust technique for model selection that assesses the goodness-of-fit, while
mitigating overfitting and accounting for model complexity by evaluating model fit

on multiple resampled datasets.

As illustrated schematically in Figure 3.3, the BSCV analysis involves a large
number of iterations, where random subsets of participants’ data are selected to
train models (sampled uniformly with replacement). For each iteration, the model
parameters are optimised to maximise goodness of fit (in this case to maximise
correlation or minimise the RMSE) using the sampled training data, and the
resulting fitted model is then evaluated on a complementary testing dataset,
consisting of the data that was not sampled into the training subset. The ranges
of goodness-of-fit values (correlation or RMSE) achieved by each model across
the 1000 iterations are presented as distributions of model goodness-of-fit which

were obtained from these repeated model optimisations. These distributions were
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tested to compare predictive performance of the three models. Better predictive
performance is indicated by distributions leaning towards higher correlation or
lower RMSE values. While minimally or non-overlapping distributions indicate
more substantial differences, overlapping distributions suggest that differences in
model performance may not be statistically significant. The width of the
distributions represents the variability of the performance of each model across
the different BSCV data subsets, with wider distributions indicating greater
sensitivity to training data. In this case, each BSCV analysis (one for each model)
utilised 1000 iterations, sampling 10 participants (from the total of 30) for each

training subset.
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Figure 3.3 - Bootstrap cross-validation (BSCV) technique for model selection
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3.4 Results

In this section results from several analyses are presented, to show how
accurately the suggested models (Observation based — Ob, Value based — Vb
and Observation and Value based — Ob+Vb) predicted pedestrians’ beliefs
regarding the approaching vehicle’s behaviour, which were collected as

subjective judgements in the experiment described in Section 2.1.

3.4.1 Model predictions vs subjective ratings

Firstly, the analyses focused on how accurately the three different models
predicted pedestrians’ average subjective beliefs by using both measures of
correlation (Spearman’s rank correlation) and error (RMSE). The model
predictions presented in this subsection have been obtained by using the second
model fitting process (minimisation of RMSE between the model predictions and
the average subjective beliefs of the pedestrians), out of the two that were
described in Section 3.2, for the full sets of parameters. The best-fitting parameter

settings are presented in Table 3.2.

Table 3.2 - Best-fitting parameter settings

Ob Vb Ob+Vb

kg 0.88 0.57
Ko 0.36 0.51
Cpol 0.83 1
HUns -1 -1
U -0.47 -0.75
0. 0.55 0.56
o, 0.57 0.58
Bo 0.32
By 0.53
T, 4.56 100
B 0.17 0.14 0.20
M 0 16.13 6.26

To visually represent the performance of these models with the best-fitting
parameters listed in Table 3.2, Figure 3.4 displays scatter plots of the model
predicted beliefs compared to participants' average ratings. As shown in Figure
3.4, Vb and Ob+Vb exhibit the fewest poorly predicted datapoints, while Ob has
the most. Similarly, in terms of correlation, Vb and Ob+Vb were able to produce
values of Spearman’s rank correlation almost equal to 1, showing an almost
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perfect positive monotonic rank association between pedestrians’ average beliefs
and model predictions, while Ob showed a weaker correlation. The fact that Vb’s
and Ob+Vb’s scatter points are so closely gathered to the identity line (Pearson’s
rho equal to 1, in terms of correlation), means that Vb’s and Ob+Vb’s predictions
are almost identical to the pedestrians’ average beliefs (almost perfect positive
linear relationship). Lastly, RMSE is the error metric that shows how close the
scatter points are to the identity line, so the lower the RMSE, the better the model
predictions. From Figure 3.4, Ob+Vb had a lower RMSE than Vb, while Ob was

the worst performing model in terms of error.
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Figure 3.4 - Scatter plots of model predictions using best-fitting parameter
settings (y-axes) versus pedestrians’ average beliefs (x-axes) for all 18 kinematic

scenarios of the approaching vehicle
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The following analysis compares the average pedestrian beliefs and the
model predictions for all 18 kinematic scenarios (as a reminder the details of
these kinematic scenarios are illustrated in Figure 2.2). This analysis shows how
different vehicle kinematic conditions affect the pedestrians’ belief-updating
process regarding the approaching vehicle’s behaviour and shows how closely

the suggested models captured the average of pedestrians’ beliefs.

The different vehicle manoeuvres are highlighted in the following three figures:
Figure 3.5 (constant speed), Figure 3.6 (deceleration) and Figure 3.7 (mixed).
Each is divided into the three different initial vehicle speeds (rows) and the two
different initial TTAs (columns), resulting in 6 different kinematic scenarios per
vehicle manoeuvre. All 18 plots illustrate several general patterns of pedestrians’
beliefs predicted by the three different models. In Figure 3.5, Figure 3.6 and
Figure 3.7 the predictions of Ob, Vb and Ob+Vb are presented by the blue, green
and red curves, respectively, while the average pedestrians’ beliefs are illustrated
as black standard error of the mean bars at the predetermined judgment timings

(as described in Section 2.1).

In the constant speed manoeuvres (Figure 3.5), Vb and Ob+Vb are
performing better than Ob in capturing the patterns of the pedestrians’ beliefs. At
the beginning of each scenario, Ob always predicts that pedestrians are
completely uncertain between the two possible vehicle behaviours (50% belief).
As can be seen in Table 3.2, Ob had its M parameter fitted to zero, meaning that
the optimisation algorithm found that no prior shift was optimal for this model,
which contributed to this consistent 50% initial belief. Conversely, Vb and Ob+Vb
were able to predict that early beliefs would not be 50-50% but would likely be
affected by the speed and TTA of the vehicle. Another limitation of the Ob model
is that it is incapable of providing different beliefs between the six different
constant speed scenarios, since there is no difference in the observed tau-dot
(always equal to -1). That limitation is addressed in Vb and Ob+Vb, which make
use of other sources of information beyond tau-dot observations. The greater the
vehicle’s current speed, the more Vb’s and Ob+Vb’s predicted beliefs lean
towards the non-stopping behaviour (i.e., towards P, = 0%), in line with the beliefs
of human participants. Then, the larger the vehicle’s TTA, the lower the required
deceleration, and eventually, the less Vb’s and Ob+Vb’s predicted beliefs lean

towards the non-stopping behaviour. The patterns described above can be further
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understood by examining the different sources of evidence (more details in
Subsection 3.4.2).
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Figure 3.5 - Comparison between model predictions and pedestrians’ beliefs for
the constant speed manoeuvres

In the deceleration manoeuvres (Figure 3.6), Ob+Vb is performing better than
Ob and Vb in capturing the patterns of the pedestrians’ beliefs. Ob’s initial
predictions are unable to capture the effects of the different vehicle speeds and
TTAs on the pedestrians’ beliefs. However, as time passes and 7 values change,
Ob’s later predictions are more accurate. Vb’s initial predictions are capturing the
speed and TTA effects on the pedestrians’ beliefs, but its final segments’
predictions are not that accurate. The Vb’s limitation happens because the

evidence of the two possible behaviours are equal in the end of each deceleration
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manoeuvre (more details in Subsection 3.4.2).

benefitted by Vb early and by Ob later.

Ob+Vb’s predictions are

TTA3s TTAG6 s
100 100
% ¢
52
25 ;:: 50 RMSE =9.22 50 RMSE = 5.36
km/h RMSE = 6.82 RMSE =5.45
RMSE = 6.33 RMSE = 3.17
0 0
0 2 4 6 0 4 8 12
Time (s) Time (s)
100 100
S
40 = 50 S 50
Ay RMSE = 3.69 —Ob RMSE = 2.18
km/h Vb -
RMSE = 6.71 —_Ob4+Vb RMSE =5.10
RMSE = 4.82 ¢ ASR RMSE = 3.14
0 0
0 2 4 6 0 4 8 12
Time (s) Time (s)
100 100
¢
55 :_,: 50 RMSE =9.76 50 RMSE = 5.02
A
km/h RMSE = 4.67 RMSE = 7.09
RMSE = 3.71 RMSE = 3.45
0 0
0 2 4 6 0 4 8 12
Time (s) Time (s)

Figure 3.6 - Comparison between model predictions and pedestrians’ beliefs for
the deceleration manoeuvres

In the mixed manoeuvre scenarios (Figure 3.7), it can be seen that Ob+Vb is
again performing better than both Ob and Vb. The Ob+Vb model effectively
overcomes Ob’s early and Vb’s later limitations, in a manner similar to how the
limitations observed in the constant speed and deceleration manoeuvers were

addressed.
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Figure 3.7 - Comparison between model predictions and pedestrians’ beliefs for
the mixed manoeuvres

Overall, the Ob+Vb model provided the highest Spearman’s rank correlation
(along with Vb), the lowest RMSE and, based on qualitative assessment
supported by quantitative error values, appeared to be the most accurate in
predicting the pedestrians’ beliefs across all 18 kinematic scenarios. Even though
there are strong indications that Ob+Vb is the best model (out of the three
suggested ones), it is not possible to select it, before a deeper investigation
(Subsection 3.4.2) and a model selection technique that prevents overfitting
(Subsection 3.4.3) are presented. Overfitting occurs when a model fits the training
data too closely, capturing noise and random fluctuations rather than the

underlying patterns. This often happens when a model has too many free
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parameters relative to the amount of data. In this case, Ob has 7 parameters, Vb
has 5, and Ob+Vb has 12. The Ob+Vb model, with its significantly higher
parameter count, carries a greater risk of overfitting compared to the simpler Ob
and Vb models. Therefore, a model selection technique that penalises model
complexity and assesses performance is necessary to ensure the selected model
accurately reflects the underlying cognitive processes rather than being a mere
reflection of the specific dataset. This will help us determine if the improved fit of
the Ob+Vb model is due to genuine cognitive mechanisms or an artifact of its

increased flexibility.

3.4.2 Breaking down the evidence

To better understand how the models are providing their predictions, this
subsection delves deeper into the importance of the approaching vehicle’s
behaviour evidence. As a reminder, A,; refers to non-stopping behaviour
evidence, A, refers to stopping behaviour evidence, A,, refers to behaviour
evidence through the observation-based (Ob) approach and Ay, refers to
behaviour evidence through the value-based (Vb) approach (as an example Ay
refers to the value-based decelerating behaviour evidence). The following

equations are provided for further clarity:

Ans = Aopns + Avpns (3.15)

Ag = Aops + Ayps + M (3.16)
Figure 3.8 presents the effects of different initial speeds and different vehicle
manoeuvres on the vehicle behaviour evidence, for all scenarios with an initial
TTA of 3 s. In scenarios with the same initial speed, the initial values of A, A,
and A — A, are the same. This is because: a) Appns = Aops = 0 since there are
no prior observations leading towards any of the two behaviours, b) M is constant
and c) because the initial speed, the required deceleration rate to stop before the
pedestrian and the politeness constant are the same in all these cases, meaning

that Ayp,s and Ay, also remain the same across these cases.
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Figure 3.8 - Evidence of the two possible behaviours. The initial TTA is 3 s for all
panels

Looking across scenarios with different initial speeds, the effect that has been
discussed previously can be seen: When the initial vehicle speed is higher, there
is a shift towards initially believing that the vehicle will maintain its speed rather
than stop. This is visible in Figure 3.8 as A; — A, is initially more negative for
higher initial speeds. This happens in the model because higher speeds imply a
greater reward for the driver/vehicle if the vehicle maintains its speed, leading to

a stronger initial bias towards non-yielding behaviour.
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In a similar manner, Figure 3.9 illustrates the effects of different initial TTAs
and different vehicle manoeuvres on the vehicle behaviour evidence, for all
presented scenarios having an initial vehicle speed of 40 km/h. In scenarios with
the same initial TTA, the initial values of 4,, A; and A; — A, are the same, for
the same exact reasons as described above, regarding scenarios of the same

initial speeds in Figure 3.8.

Looking across scenarios with different initial TTAs, another effect that has
been discussed previously can be seen: When the vehicle is initially further away
(longer initial TTA), there is a shift toward initially believing that the vehicle will
stop rather than maintain a constant speed and not stop. This is visible in Figure
3.9 as A; — A, is initially less negative for longer initial TTAs. This happens in the
model because larger initial TTAs, mean larger distance between the vehicle and
the pedestrian, which means that the required deceleration rate for the vehicle to
stop before the pedestrian’s position is lower, thus the overall reward for the
decelerating behaviour is larger, leading to a stronger initial bias towards the

stopping behaviour.

However, the main takeaway from these two figures is that the A; — A4,
evidence difference is what dictates the shape of Ob+Vb’s predicted beliefs (red
curves in Figure 3.5, Figure 3.6 and Figure 3.7) regarding the approaching
vehicle’s stopping behaviour (P,). The quantity A; — 4,5, correlates directly with
the behaviour probabilities predicted by the model. If A; — 4, > 0, then P, > P,
and vice versa, meaning that the sign and magnitude of this difference indicate

the relative belief towards the stopping versus the non-stopping behaviour.
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Figure 3.9 - Evidence of the two possible behaviours. The initial speed is 40 km/h
for all panels

Building upon the analysis of vehicle behaviour evidence in the two previous
figures, the individual contributions of the observation-based and value-based
mechanisms are further explored in Figure 3.10 and Figure 3.11. To avoid any
confusion the added soft-margin M has been omitted in Figure 3.10 and Figure
3.11.
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Figure 3.10 - Evidence of the two possible behaviours, divided by behaviour
estimation mechanism. The initial TTA is 3 s for all panels

Specifically, Figure 3.10, which presents the same scenarios as Figure 3.8,
illustrates the effects of different initial speeds and vehicle manoeuvers on the
evidence calculated separately by the observation-based (4,,s and A,,,s) and
value-based (4y,s and Ay,ns) behaviour estimation approaches. Similarly, Figure
3.11, which mirrors the TTA variations seen in Figure 3.9, shows the effects of

different initial TTAs and vehicle manoeuvers on the same evidence components.
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Figure 3.11 - Evidence of the two possible behaviours, divided by behaviour
estimation mechanism. The initial speed is 40 km/h for all panels

Some key points can be drawn from Figure 3.10 and Figure 3.11. In the
beginning of all scenarios, A,,s and Ay, both have zero evidence values since
there is no available 7 observation, but 4y, and Ay,,s have non-zero evidence
values. More specifically, Ay,s(t = 0) > Aypns(t = 0), which is understandable
when considering Equations (3.4) and (3.5), as R(t) = Rys(t) — kaq@req(£)* +
Cpor (With ¢, NOt being substantial enough to compensate for the deceleration
discomfort cost). This means that the estimated value for the car of keeping a
constant speed is always initially greater than the estimated value of yielding.
Since Ob’s performance is based on A,,; and Ay, it is apparent how this

mechanism is limited in accurately capturing the initial beliefs of the pedestrians.
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Conversely, Vb’s performance is based on Ay, and Ay,,, and has been seen
that the effects of different speeds and TTAs on the initial average pedestrian

beliefs are captured.

In the constant speed manoeuvres and the constant speed phase of the mixed
scenarios (Figure 3.10 and Figure 3.11), Ay,,s remains constant since the
vehicle’s speed is constant, A,,; decreases towards —oo since the required
deceleration to stop before the pedestrian increases towards 4+ as the vehicle
gets closer to the pedestrian’s position. During the same periods of time, the
observation-based evidence difference is Agppns — Aops > 0 and increasing, as t©

observations keep being in line with the true vehicle behaviour (constant speed).

In the deceleration manoeuvres and the decelerating phase of the mixed
scenarios (Figure 3.10 and Figure 3.11), Ay, decreases linearly towards 0 since
the vehicle’s speed decreases linearly towards zero. Ay, decreases towards the

value of c¢,, since the vehicle’s speed and required deceleration decrease

towards O (so in the end Ay,,s — Ayps = 0). During the same periods of time, the
observation-based evidence difference is Apps — Aopns > 0 and increasing (with
very large values in the end), as 7 observations keep being in line with the true

vehicle behaviour (stopping).

Looking at the evidence values in Figure 3.10 and Figure 3.11, it is possible
to understand why Vb's performance is limited at the end of deceleration and
mixed scenarios and why Ob performs better. Regarding Vb, as the vehicle
decelerates, Ay,s and Ayp,s converge, meaning that Ay,s = Aypns, reducing the
model's ability to capture the average pedestrian beliefs. In contrast, Ob's
evidence values (4,5 and Ayp,s) continue to diverge, allowing it to accurately
predict the final-stage beliefs, in the cases when the vehicle eventually stops

before the pedestrian’s position.

Therefore, this subsection confirms the benefit of combining Ob and Vb into
Ob+Vb. The analysis has demonstrated that this combination is necessary by
showing the importance of different sources of evidence and the distinct benefits

of each behaviour estimation mechanism.

3.4.3 BSCV model selection
In order to select which model (amongst Ob, Vb, and Ob+Vb) had the best

predictive performance, a Bootstrap Cross-Validation (BSCV) analysis was
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performed, as described in Section 3.3. This analysis was deemed appropriate
as it provides the ability to measure the goodness-of-fit of the models to data
while it mitigates overfitting and controls model complexity — issues that are
particularly relevant for the Ob+Vb model, which has a significantly larger number

of parameters.

As mentioned in Section 3.3, the first BSCV analysis targeted Spearman
correlations, fully in line with the Baker et al. (2009) approach. Figure 3.12
illustrates the distributions of the BSCV correlations for the three suggested
models. From Figure 3.12, it is evident that Ob is the worst performing model.
However, the distributions of Vb and Ob+Vb exhibit substantial overlap, making
it impossible to definitively conclude which of the two correlates more strongly
with the pedestrians’ beliefs. For that reason, it was deemed necessary to perform
a second BSCV analysis, but this time using RMSE as the goodness-of-fit

measure (see Section 3.3).
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Figure 3.12 - Histograms of the BSCV correlations of Ob, Vb and Ob+Vb. The
solid lines are the histograms’ fitted distributions, which were obtained by
MATLAB’s Kernel smoothing function

In Figure 3.13, the distributions of the BSCV RMSEs for the three suggested
models are presented. Once more, Ob is the worst of the three models, exhibiting
the highest RMSE. When comparing Vb’s and Ob+Vb’s BSCV RMSEs, the
picture becomes clearer in comparison to the BSCV Spearman correlations
(Figure 3.12), with the Ob+Vb model showing a distribution shifted towards lower
error values. This BSCV analysis aimed to assess the generalisation

performance of the models by evaluating their goodness-of-fit on multiple
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resampled datasets. To draw definitive conclusions about which model performs
best, the distributions of the goodness-of-fit measures (in this case, RMSE)
should ideally exhibit minimal or no overlap. Still, Figure 3.13 shows a noticeable
overlap between the Vb and Ob+Vb distributions. Although the Ob+Vb
distribution tends towards lower RMSE values, the overlap between the two
distributions implies that the differences in model performance (minimisation of
RMSE between predicted beliefs and average subjective ratings) between Vb

and Ob+Vb might not be substantial or statistically significant.
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Figure 3.13 - Histograms (and their kernel-smoothed distributions) of the BSCV
RMSEs of Ob, Vb and Ob+Vb

Therefore, based on the BSCV RMSE analysis, Ob is clearly the worst
performing model, while Ob+Vb appears to provide a slightly better fit to unseen
data compared to Vb, as it tends to produce lower prediction errors on average.
The results are not fully conclusive because of the noted overlap between the Vb
and Ob+Vb distributions. Additional tests would be needed to evaluate the
significance of the observed differences and determine whether the better

performance of the Ob+Vb model is meaningful and not due to overfitting.

3.4.4 Parameter investigation

To further validate the models and gain a deeper understanding of their
behaviour, an in-depth parameter investigation was performed. This analysis
examined the range of parameter values that yielded good model fits during the
Bootstrap Cross-Validation (BSCV) process. Unlike the grid search method that
was applied in Subsection 2.5.3, through which an extensive range of parameter
settings was investigated, the current analysis was based on the parameter

values obtained directly from the BSCV analysis.
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As explained in Section 3.3, the BSCV technique fitted the suggested models
to resampled datasets. Applying the BSCV model selection, generated a
distribution of values for every parameter of the tested model. That distribution
represented the range of parameter values under which the model performed
best in fitting on the resampled data. These distributions, which are bootstrap
estimates, indicate the likely values of the parameters that would generalise well
to unseen data. By examining these parameter distributions, the robustness of
the models' parameters can be assessed and the sensitivity of the model

predictions to variations in parameter values can be further investigated.
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Figure 3.14 - Histograms (and their kernel-smoothed distributions) of the BSCV-
obtained parameters of Ob, Vb and Ob+Vb
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Figure 3.14 shows the wide range of parameter values, close to the best-fitting
values, which yielded the lowest possible BSCV RMSEs for each model. Ob best
captured pedestrians’ beliefs at low values of u,s (i = —1 indicates constant
speed), intermediate values of ug (¢ = —0.5 indicates adequate deceleration rate
to stop the vehicle safely before a pedestrian, avoiding a collision), low values of
ons (narrow constant speed behaviour distribution), intermediate values of g
(wider decelerating behaviour distribution), all values of Ty (with denser area in
lower values — not forgetting past observed evidence quickly), low values of B
(softer softmax evidence transformation, meaning less sensitivity to differences
in behaviour evidence) and low values of M (almost no prior belief towards the
decelerating behaviour). It is worth noting that M for Ob was fitted across both
positive and negative values. However, the optimisation algorithm consistently
found that, in both cases, M values close to 0 yielded the best Ob fits. This
strongly suggests that the Ob model, as parameterised, does not incorporate any
prior belief shift towards either decelerating or constant speed behaviour. The
algorithm's consistent selection of M = 0 reinforces the idea that, within Ob, the
initial beliefs are purely driven by the observational 7 information, not by any

inherent bias towards one behaviour over the other.

Vb captured pedestrians’ beliefs best at parameter values that highlight the
relative importance of the following factors: the approaching vehicle’s speed (k),
the required deceleration for the vehicle to stop before the pedestrian (k,,), and
the vehicle exhibiting pro-social behaviour (c,,;). The model also favoured a
relatively softer softmax evidence transformation (B) and a substantial prior belief

towards decelerating behaviour (M).

Ob+Vb captured pedestrians’ beliefs best at parameter values that revealed
a nuanced integration of observational and value-based information. Comparing
these values to those of Vb and Ob offers some key insights. Firstly, Ob+Vb
exhibited a slightly higher importance of the approaching vehicle's speed (k,) and
a slightly lower importance of the required deceleration (k,,) compared to Vb.
This suggests that when both observation and value-based information are
available, the model places a greater emphasis on the immediate speed of the
vehicle as a predictor of its behaviour, potentially because speed provides a more

immediate and salient cue. Secondly, Ob+Vb, like Ob, favoured lower values of
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Uns and intermediate values of ., aligning with the theoretical expectations of the
observation information (7). Thirdly, Ob+Vb showed the same rate of forgetting

past observed evidence as Ob (Ty), indicating a similar reliance on recent

observations between these two models. The parameters 3, (equal to 0 would
mean purely value-based behaviour estimation) and g, (equal to 0 would mean
purely observation-based behaviour estimation) act as weights, balancing the
contributions of the value-based and observation-based evidence. Due to their
role as relative scaling factors, one of these two parameters could be fixed without
altering the model's fundamental behaviour. For instance, fixing g, to 1 would
allow By, to represent the relative weight of the value-based evidence compared
to the observation-based evidence. This approach would simplify the model by
reducing the number of free parameters and potentially improve the
interpretability of the remaining parameters. However, it's important to
acknowledge that fixing a beta parameter would likely affect the optimal values
of the other parameters. In this analysis, none of the beta parameters were fixed.
Finally, Ob+Vb favoured a slightly harsher softmax evidence transformation (B)
than both Ob and Vb. This implies that Ob+Vb is more sensitive to small
differences in evidence, leading to sharper transitions in beliefs. This is consistent
with the model's integration of both observation and value-based information,

which might lead to more confident and decisive belief updates.

Figure 3.15, Figure 3.16 and Figure 3.17 illustrate the relationships between
all the pairs of parameters and how they affect the overall fit of the model. Based
on the Bootstrap Cross-Validation (BSCV) analysis, these figures show how
similar model fits (measured by RMSE) can be obtained by a wide range of BSCV
parameter combinations for each of the three models (Ob, Vb, and Ob+Vb).
Specifically, these figures display the same information as the single-parameter
distributions shown in Figure 3.14, but now across two parameter dimensions at
a time. The diagonal panels of Figure 3.15, Figure 3.16 and Figure 3.17 illustrate
the single-parameter distributions, which are identical to those seen in Figure
3.14. The pairwise scatterplots (off-diagonal panels) present the relationships

between the respective pairs of parameters.
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Figure 3.15 - Ob’s pairwise parameter scatterplot matrix. The histograms in the
diagonal illustrate the distribution of the respective parameter values with the

BSCV-obtained RMSEs.
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Figure 3.17 - Ob+Vb’s pairwise parameter scatterplot matrix. The histograms in the diagonal illustrate the distribution of the respective
parameter values with the BSCV-obtained RMSEs. The scatterplots show the pairwise parameter combination areas with obtained RMSEs
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The fact that multiple parameter combinations yield roughly equivalent model
fits indicates that the parameterisation is likely redundant. This means that the
model's performance is not highly sensitive to the precise values of individual
parameters, but rather to the overall balance between them. In other words,
several sets of parameter values can produce similar predictions. This
redundancy limits the interpretability of the frequency distributions (the single-
parameter distributions along the diagonal) and the pairwise scatter plots (the off-
diagonal panels). Because of the observed parameter correlations, interpreting
single-parameter distributions in isolation can be misleading. For instance, if two
parameters are highly correlated, a change in one parameter might necessitate
a corresponding change in the other to maintain optimal model fit. Figure 3.15,

Figure 3.16 and Figure 3.17 indicate correlations between some parameters.

Understanding the behaviour of the models depends much on the different
levels of redundancy found by the parameter analysis among Ob, Vb, and
Ob+Vb.

In the Ob model, a positive correlation was observed between g and o,;,
indicating that the model can achieve similar fits with proportional adjustments to

these parameters. Additionally, a negative correlation between T, and B could

possibly suggest that the duration of forgetting observation-based evidence and
the internal translation of behaviour evidence into beliefs might be changed in a
compensatory way. The wide distributions of these parameters reinforced the

idea that the model's performance is not highly sensitive to their precise values.

The Vb model displayed a different pattern of redundancy. B and M showed
a negative correlation between them, indicating that Vb may balance the internal
translation of behaviour evidence into beliefs and the prior bias towards the
stopping behaviour. Vb also demonstrated flexibility in the weights assigned to
maintaining constant speed to reach a goal and the deceleration discomfort.
However, the rather weak correlations between the other parameters, suggest
that the performance of the model might be more sensitive to individual parameter

values in these cases.

The Ob+Vb model displayed the highest degree of parameter redundancy,
with numerous correlations observed between various parameter pairs. Similar

to the Ob model, a strong positive correlation between g, and a,,; was observed,
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along with a potential negative correlation between T, and B. However, the

Ob+Vb model also exhibited correlations between B,, f, and other parameters,
particularly with Tr, B and M. This suggests that the weighing of observation-
based and value-based evidence is intricately linked with the evidence forgetting
window, the internal translation of behaviour evidence into beliefs and prior
beliefs. It is acknowledged that the model may be overspecified with respect to
the evidence weight parameters. While reducing the parameter space by fixing
one of them (e.g., By = 0.5) would ensure better identifiability, this approach was
avoided in favour of the full theoretical expressiveness of their respective roles in
the evidence summation function. Furthermore, while correlation between other
parameter pairs was observed, Figure 3.17 did not show any clear correlation

between S, and B,.. Therefore, both evidence weights were retained.

The wide parameter ranges observed for most parameters in all three models
indicate that the models’ performance can remain unaffected by a variety of
different parameter values. However, the complexity of compensatory
adjustments varies across models. The Ob and Vb models exhibit relatively
simpler forms of redundancy, primarily involving two parameters at a time. In
contrast, the Ob+Vb model displays a more intricate network of correlations,
suggesting that the model's behaviour is driven by the overall balance between

multiple parameters.

The high degree of redundancy in the Ob+Vb model poses a significant
challenge for interpreting individual parameters. The model's flexibility and
complexity make it important to focus on the overall patterns and relationships
between parameters rather than individual values. For that reason, emphasis
must be put on the interplay between different sources of information and

cognitive factors when interpreting the model's predictions.

In summary, while all three models exhibit parameter redundancy, the Ob+Vb
model stands out for its complex connection of correlations and flexibility,
reflecting its simultaneous integration of both observation and value-based
evidence. This increased complexity necessitates a cautious approach to
parameter interpretation, emphasising the importance of considering the model's
overall behaviour while also requiring further investigation of its ability to

generalise to previously unseen data and scenarios.
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3.5 Discussion

The work presented in this chapter showed that the combination of
observation-based and value-based behaviour estimations can predict the
average pedestrian beliefs quite accurately, across all 18 tested kinematic
scenarios. Firstly, a Bayesian observer model, formulated and tested by Baker et
al. (2009), was adapted to the traffic scenario presented in Chapter 2. In Chapter
3, that model was modified in order to calculate observation-based evidence for
the two possible vehicle behaviours (decelerating to stop and maintaining
constant speed with no intention to stop). In the current chapter a value-based
behaviour estimation mechanism was implemented, based on the pedestrians’
expectations that the driver of the approaching vehicle (or AV) would try to
maximise the value/reward of their own behaviour, originally proposed by
Markkula et al. (2023). Lastly, the two behaviour estimation mechanisms were
combined into a more complex model. Since the number of parameters increased
substantially, new model fitting and validation methods were needed. To address
these two needs, a global controlled random search + local line search

optimisation algorithm and the BSCV technique were adopted and applied.

The results in this chapter have shown that, qualitatively speaking, all three
models were able to capture the majority of the patterns of the pedestrians’
beliefs. More specifically, Ob had the worst predictive performance out of the
three, which may be because it cannot account for any kinematics-related effects
other than deceleration (7 in this particular case). Since this behaviour estimation
model has no access to speed and TTA, its predictions can only change when 7
is changing, which is not true for the human data. This means that Ob provided
poor predictions (the same predicted belief curve) in the constant speed
scenarios and constant speed phases of the mixed scenarios. On the other hand,
Vb was able to accommodate for what Ob was missing. With the use of rewards
related to speed (vehicle’s progress towards the goal), TTA/distance and
deceleration (deceleration discomfort) and pro-social behaviour (yielding
politeness), the majority of kinematic conditions’ effects and belief patterns were
captured by Vb. However, Vb seemed to be limited in predicting the pedestrians’
beliefs at the end of vehicle approaches, when the vehicle was coming to a full
stop. It was shown that the Vb model struggled at predicting pedestrians’ beliefs
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when the vehicle was travelling with relatively low speed because in that type of
situation, the value-based evidence for the stopping and non-stopping behaviours
are approximately equal, as the difference between these sources of evidence is
almost equal to zero. Looking back at the importance of behaviour evidence
(Subsection 3.4.2) for forming and updating the pedestrian beliefs, A, — A4,,, = 0
creates an uncertainty for the model, when in reality the stopping behaviour of
the vehicle is quite apparent. Ob+Vb capitalised on the strengths of the two
behaviour estimation mechanisms mentioned above. It was able to capture all
the kinematic conditions’ effects and belief patterns which were present in the

current dataset.

Quantitatively, Ob+Vb and Vb achieved nearly perfect positive Spearman’s
rank correlations, while Ob’s correlation was lower but still relatively high. In
terms of prediction accuracy, Ob+Vb achieved the lowest RMSE, followed by Vb
and then Ob. These findings were somewhat supported by the BSCV analysis,
which again showed that Ob+Vb and Vb obtained the highest BSCV correlations
and overall lower levels of RMSEs. However, the picture of the BSCV RMSEs
was not very clear in order to decide whether Vb’s or Ob+Vb’s predictive
performance was better, since their BSCV RMSE distributions overlapped,
despite Ob+Vb tending to illustrate lower BSCV RMSEs than Vb on average.
These findings suggest a need for further model comparison to be able to select

the model with the best predictive performance.

However, Ob+Vb’s possible high complexity, also indicated by its observed
parameter redundancy, warrants further discussion. The pairwise correlations
between its parameters suggest that the model's parametrisation is likely
redundant and its performance likely relies on an overall balance between the
values of the multiple interacting parameters, making individual parameter
interpretation challenging. Although the model's complexity vyields higher
predictive accuracy, it demands a thorough analytical approach, as parameter
redundancy could hinder its generalisability. To address this uncertainty, in the
next chapter, a new experiment with new untested scenarios was designed, to
validate the findings of Chapters 2 and 3, and test the models (most importantly

Ob+Vb’s) ability to generalise to unseen data.
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4 Validating and generalising the behaviour
estimation models

Building upon the model formulations and analyses presented in Chapter 3,
this chapter focuses on validation and extrapolation of the developed behaviour
estimation models. While in Chapter 3 the theoretical framework was established,
the evaluation and the initial comparison of the observation-based (Ob), value-
based (Vb), and augmented (Ob+Vb) models, in Chapter 4 the models’ predictive
capabilities were rigorously tested on a novel dataset, thereby assessing their

generalisability.

To this end, a new experiment was designed, drawing upon the
methodological principles established in Chapter 2, but incorporating key
modifications to explore the models' performance under varied conditions. These
varied conditions included scenarios directly comparable to those used in the
experiment described in Chapter 2, allowing for the validation of the previous
findings, as well as entirely new scenarios intended to test the models' predictive
capabilities and assess their ability to extrapolate to other situations. This two-
pronged approach intended to enable both a confirmation of previous results and
an exploration of the models' behaviour in new untested scenarios. The data
acquired from this experiment, in a similar manner to the previous experiment
and analysis of Chapter 3, served as the basis for evaluating the predictive
accuracy and robustness of Ob, Vb, and Ob+Vb. Consistent with the approach
taken in Chapter 3, Bootstrap Cross-Validation (Baker et al., 2009) was employed
to assess the goodness-of-fit of each model to the new dataset. This chapter
details the design and implementation of the new experiment, presents the results
of the model evaluations on the collected dataset, and discusses the implications
of these findings for understanding and predicting pedestrian beliefs about
approaching vehicle behaviour, ultimately validating and extending the findings

presented in the previous chapters.
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4.1 Experiment

As discussed in Chapter 2, the initial experiment was based on artificial
kinematics that were focused on the idea: the vehicle is stopping or not stopping.
Building upon this foundation and aiming to explore a wider range of realistic
driver behaviours, this chapter introduces four manoeuvres grounded in both
empirical observations, theoretical considerations and informal static driving
simulator tests. This shift towards more varied and realistic manoeuvres allowed
for a more nuanced understanding of pedestrian belief formation and updating.
More details regarding the participants, the apparatus, the design and the

procedure of the experiment are presented in the following subsections.

4.1.1 Participants

The study received ethical approval from the University of Leeds Ethics
Committee (via an amendment request to the previous ethical approval, with
reference LTTRAN-145). 30 healthy adults, including 14 males and 16 females,
aged between 22 and 65 (mean age = 36.56, standard deviation = 10.68) were
recruited from the University of Leeds Virtuocity participant list and Microsoft
Teams channels. While the average age was slightly higher in this experiment
than in the previous one, the participant selection criteria established in the
experiment described in Chapter 2, this study maintained all the key requirements
to ensure consistency; participants were required to have no significant mobility
issues or medical conditions such as epilepsy, to have either normal or corrected-
to-normal vision and have lived in the UK within the last 12 months, as their
experience with road traffic could influence their road crossing behaviour and
judgments. they provided written informed consent before participating and were

given £15 as a reward for their participation, as in the first experiment.
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4.1.2 Apparatus

The experimental apparatus, including the projection and tracking equipment,
and virtual environment development software were identical to those described
in Chapter 2, employing the HIKER lab's immersive, multi-projection virtual reality
setup. Participants experienced the new simulated pedestrian scenarios within

this environment.

4.1.3 Experimental design

The experimental design maintained the core principle of presenting
participants with simulated vehicle approaches and requiring them to infer the
vehicle's behaviour (stopping or not stopping) which was an adaptation of the
Baker et al. (2009) original experiment in the pedestrian-vehicle interaction
setting, by once again incorporating elements from the experiments of Pekkanen
et al. (2022) and Dey et al. (2021), in a similar manner to Chapter 2. As stated in
the introduction of this section, the main difference between the new experiment
and the previous one, was that in the new experiment the tested driving

manoeuvres were more varied and could be described as more realistic.

The simulated traffic environment, consistent with the previous experiment,
featured a residential block with a 4.2 m wide, one-lane road and an unsignalised
intersection during daylight hours. An autonomous blue sedan vehicle, travelled
in the centre of the road, simulating the kinematics of the experimental design.
The new experiment had the same independent variables categories as in the
previous experiment: vehicle driving manoeuvres, initial Time-To-Arrival (TTA),

and initial vehicle speed.

However, this experiment differed from the one described in Chapter 2 in the
specific values used for initial vehicle speeds and types of driving manoeuvres.
Specifically, the vehicle approached the pedestrian at initial speeds of 20 km/h,
40 km/h, and 60 km/h, instead of the 25 km/h, 40 km/h, and 55 km/h used
previously. This adjustment was made for two reasons. One was to test the
generalisability of the models and so it was decided to explore a broader range
of speeds, by extrapolating on the low and high speeds, having in mind that these
speeds can also be observed in real life interactions. The second was to validate
the models and so it was decided to keep the intermediate (and quite frequent in
real world interactions) speed the same as in the previous experiment. The initial

TTAs were exactly the same as in the previous experiment (3 and 6 s). The
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decision to retain TTA values of 3 and 6 s in the second experiment was based
on their significance in pedestrian road crossing decision-making literature and
the methodological constraints of the experimental paradigm. As stated before,
this TTA range is recognised as a critical window in pedestrian gap acceptance.
Also, using TTA values which are shorter than 3 s would have been problematic
for the segmentation method. The process of truncating the scenario into four
segments would lead to initial segments that are too short in duration to allow the
participant to perceive the visual stimulus or for the segment kinematics to be
meaningfully differentiated. Lastly, TTAs longer than 6 s were not of interest as
pedestrians would almost always cross the road immediately without probably

needing to interpret the vehicle’s behaviour.

Furthermore, the vehicle's driving manoeuvres were also expanded. The first
two of these manoeuvres were repeated from the first experiment in the light of
validating the previous experiment and findings, while the second two
manoeuvres were designed to test the models’ generalisability to more complex
and realistic driving situations. The design of the second two manoeuvres was
influenced by the informal static driving simulator tests. These informal tests
involved driving in a simulated urban environment. Drivers were reaching and
maintaining a target speed (20, 40, or 60 km/h) and as soon as they were at a
predetermined TTA (3s or 6s) to static virtual pedestrian (waiting at a bus stop),
a beep informed them to perform specific braking manoeuvres. The obtained
qualitative speed profiles (averaging repeated trials with the same kinematic
conditions) helped define the kinematic details of these two manoeuvres, for
which there is a lack of information in the literature. The four driving manoeuvres

of this experiment are listed below and are illustrated in Figure 4.1.
e Asserting priority: Constant Speed Manoeuvre

This manoeuvre reflects a driver's tendency to prioritise their own progress,
even when a pedestrian is present. Research indicates that a significant
proportion of drivers maintain or even increase their speed when approaching a
crossing with a competing pedestrian (Varhelyi, 1998). This behaviour can force
pedestrians to yield, potentially leading to dangerous situations (Rasouli et al.,
2018). This assertive approach contrasts sharply with yielding behaviours and
highlights the potential conflict between driver expediency and pedestrian safety.

This manoeuvre will be referred to as Constant Speed and is similar to the
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constant speed scenarios from Chapter 2. In the constant speed scenarios, the

vehicle maintained a consistent speed throughout the simulation.

¢ Yielding acceptance based on 1-stage braking: Constant Deceleration
Manoeuvre (AV-like)

This manoeuvre, inspired by AV behaviour, emphasises predictability and
smooth deceleration. It aligns with the concept of a "coordination smoother,"
where the vehicle's actions are designed to minimise variability and enhance
predictability (Domeyer et al., 2020). This could be achieved through a consistent,
linear deceleration towards a stop, signalling a clear intention to vyield.
Researchers have indicated that a vehicle’s yielding behaviour (and thus its
intention to stop) is recognised earlier when cues like lower speeds and higher
deceleration rates are observed (Ackermann et al., 2019; Tian et al., 2023). So,
with the constant deceleration manoeuvre the aim was to provide a clear and
unambiguous signal to pedestrians. This manoeuvre will be referred to as
Deceleration and is similar to the deceleration scenarios from Chapter 2. In the
deceleration scenarios, the car decreased its speed at a constant rate until it

stopped 2 to 2.5 meters from the participant.

e Yielding acceptance based on 2-stage braking: Mixed Deceleration

Manoeuvre (Human-like)

This manoeuvre mimics human driver behaviour characterised by a two-stage
deceleration process. Informal tests in a static driving simulator, along with
previous findings (Lee et al., in prep), suggest that drivers often initially reduce
speed by lifting off the gas pedal or applying a light deceleration, followed by a
firmer deceleration to yield before reaching the pedestrian’s position. This mixed
approach reflects the complex sensorimotor communication between driver and
pedestrian (Domeyer et al., 2020), potentially conveying a more nuanced
intention to yield. This manoeuvre was informed by the informal static driving
simulator tests and will be referred to as ‘Two-stage Deceleration’ and even
though its kinematic details are different from the mixed scenarios of the previous
experiment (Chapter 2), their general concept is similar. In the two-stage
deceleration manoeuvre scenarios, the vehicle combined an initial phase of very
subtle deceleration (almost constant speed, which was different from the purely

constant speed phase of the mixed manoeuvres of the previous experiment by a
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slight, controlled speed reduction) and then a second deceleration phase (with
higher deceleration rates), to explore the impact of the vehicle’s behaviour
change, during the simulation, on the pedestrian’s belief updating. In this
scenario, the vehicle applied the subtle deceleration for a certain time (1.2 s for
the 3 s initial TTA condition and 3.4 s for the 6 s initial TTA condition) before
decelerating more to come to a stop 2 to 2.5 meters from the participant. These
brake onset timings were designed based on the previous experiment's mixed
manoeuvres, ensuring 1) that the deceleration rates of the 2-stage deceleration
scenarios were greater than the deceleration rates of the corresponding 1-stage
deceleration scenarios and 2) the 7-level similarity of corresponding segments.
The brake onset timings design was finalised by qualitatively matching the
previous with the patterns observed in the speed profiles from the informal static

driving simulator tests.

e Slowing Early and Approaching: Early Deceleration and Continuation

without Stopping Manoeuvre

This manoeuvre involves an early reduction in speed, maintained as the
vehicle approaches the pedestrian, without a complete stop. This behaviour can
signal to pedestrians that they are acknowledged and can safely cross (Risto et
al., 2017). The strength of this signal, however, is likely linked to the deceleration
rate and the distance from the crossing (Domeyer et al., 2019). This short
stopping or early slowing strategy represents a subtle form of yielding, potentially
balancing driver convenience with pedestrian safety. This manoeuvre design was
based on the qualitative speed profiles obtained by the informal static driving
simulator tests, since it was not tested in the previous experiment and there were
no data available in the literature and will be referred to as Short Slowing. In the
short slowing manoeuvre scenarios, the vehicle combined an initial phase of
sharper deceleration and then a second phase where it maintained constant
speed (lower than the initial speed), to, again, explore the impact of the vehicle’s
behaviour change, during the simulation, on the pedestrian’s belief updating
Initially, it was decided to use the same timings as the brake onsets of the Two-
stage deceleration manoeuvres. However, an informal static driving simulator test
and early experimental design tests in HIKER revealed that these timings were
quite short in this case, leading to high and unrealistic deceleration rates. For that

reason, it was deemed necessary to prolong the decelerating phases’ durations,
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leading to 1.8 s for the 3 s initial TTA condition and 3.6 s for the 6 s initial TTA

condition, which could be still described as exaggerated but within realistic levels.

It is worth noting that that not all 3 different initial speeds were used for all the
vehicle manoeuvres. All initial speeds (20, 40 and 60 km/h) were used for the
‘validation’ manoeuvres (Constant speed and Deceleration), while only the
extrapolated initial speeds (20 and 60 km/h) were used for the ‘generalising’
manoeuvres (Two-stage deceleration and Short slowing). The decision to not
include the 40 km/h initial speed in the 'Two-stage Deceleration' and 'Short
Slowing' manoeuvres was made to manage the overall duration of the experiment
(including all possible combinations of the independent variables would have led

to extremely long experimental sessions for the participants).

In the designed scenarios, the deceleration rates were between 0.12 ~ 4.83
m/s?. The lower deceleration rates that were used in the experiment are
frequently observed when vehicles normally yield to pedestrians (Carlowitz et al.,
2024; Yang et al.,, 2024), while some of the greater deceleration rates are
observed when vehicles slow down before intersections on roads with higher
speed limits or in emergency situations, for example a pedestrian abruptly
stepping on the road (Bokare and Maurya, 2017; Kudarauskas, 2007). The
deceleration rates range of the ‘Deceleration’ scenarios was wider in this
experiment than the respective range in the previous experiment. Similarly, the
deceleration rates range of the ‘Two-stage Deceleration’ scenarios was also
wider in this experiment than the respective range of the ‘Mixed’ scenarios of the
previous experiment. Including this wide range of deceleration rates in the
experimental design, allowed testing the models' ability to predict pedestrian
beliefs under both common and more extreme, potentially more ambiguous,
conditions, when driver behaviours are less typical and/or more urgent. Table 4.1
shows the kinematic parameters of the designed traffic scenarios of the
approaching vehicle. In summary, the experiment consisted of 4 types of
manoeuvres, 3 initial speeds, and 2 initial TTAs, resulting in a total of 20

conditions.
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Figure 4.1 - Vehicle kinematics of all 20 scenarios. The vehicle’s speed profile is
denoted using the pink curves and the respective t time history by the dark green.
The red vertical lines in the Two-stage deceleration and Short slowing
manoeuvres indicate the timings of the harsher brake onset and the brake release
respectively
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Table 4.1 - Parameters for traffic scenarios

Initial Constant
Initial distance speed
Initial Deceleration
Manoeuvre speed to phase
TTA (s) ] rates (m/s?) .
(km/h) | pedestrian duration
(m) (s)
20 16.67 - [0, 3]
3 40 33.33 - [0, 3]
Constant 60 50 - [0, 3]
speed 20 33.33 - [0, 6]
6 40 66.67 - [0, 6]
60 100 - [0, 6]
20 16.67 1.11 -
3 40 33.33 1.98 -
60 50 2.98 -
Deceleration
20 33.33 0.51 -
6 40 66.67 0.97 -
60 100 1.44 -
20 16.67 0.13 & 1.93 -
3
Two-stage 60 50 0.20 &4.83 -
deceleration 20 33.33 0.12 & 1.03 -
6
60 100 0.19 & 3.08 -
20 16.67 1.54 (1.8, 4.8]
3
Short 60 50 4.63 (1.8, 4.8]
slowing 20 33.33 0.77 (3.6, 10]
6
60 100 2.31 (3.6, 10]
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4.1.4 Tasks and procedure

In essence, the core tasks and procedure were maintained from Chapter 2,
with minor adjustments to the order of the tasks and the segments calculations in
order to accommodate the kinematics of the new experimental design and the
expanded scenario set and maintain participant engagement. In the previous
experiment, the participants first completed the two road crossing blocks and then
they completed the two behaviour estimation blocks. In the new experiment, even
though there were again four main experimental blocks (two road crossing and
two behaviour estimation), they were alternated according to the following
sequence: Road crossing (Block 1) - Behaviour estimation (Block 2) - Road
crossing (Block 3) > Behaviour estimation (Block 4), as seen in Figure 4.2, to
better balance participant fatigue throughout the experiment, given the increased
number of scenarios and segments in this study, as the road crossing blocks
included a more active task in comparison to the monotonous behaviour

estimation task.

The road crossing task, consistent with Chapter 2, required participants to
cross the road if and when they felt safe to do so, while interacting with an
approaching (virtual) vehicle. The instructions given to the participants were the
same as the ones described in the previous experiment. Block 1 was preceded
by a practice session with 10 trials for the participants to familiarise themselves
with the task and the environment. The road crossing blocks (1 and 3) included
the same 20 experimental conditions, that were randomised within each of these
two blocks. The initiation and procedure of the trials of the road crossing task
were exactly the same to the previous experiment, as described in detail in
Subsection 2.1.4. After completing each of the road crossing blocks, a short
break was taken, before the respective following behaviour estimation block

began.

The behaviour estimation task, also consistent with Chapter 2, required
participants to judge whether the vehicle was stopping or not stopping. As in
Chapter 2, each of the scenarios was truncated into four segments of varying
lengths, following the paradigm of Baker et al. (2009). The segmentation aimed
to provide increasing visual cues and overall behaviour evidence, in sequence,

during a scenario.
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Figure 4.2 - Procedure of the experiment

However, the calculation of these segment divisions differed slightly from
Chapter 2 due to the overall experimental design changes and more so due to
the inclusion of the 'Short Slowing' manoeuvre. Specifically, the 'Constant Speed'
and 'Short Slowing' scenarios were divided using the linear division method, as
the visual cue for collision judgment remains mostly constant in these scenarios,
as was illustrated in Figure 4.1. The 'Deceleration' and "Two-stage Deceleration'
scenarios were divided using the logarithmic division method. The exact
equations for calculating the division were similar to the equations in Subsection
2.1.4, with the linear division equation now applied also to the short slowing
scenarios. Similarly to the previous experiment, there were cases where the
duration of the 1st segment as calculated by this method was too short, so in
order to avoid these very subtle stimuli, their duration was fixed at 1 s. According
to the above division methods, the traffic scenarios of 20 experimental conditions
were divided into 80 segments in total (indicated as pink square markers on the

speed profiles in Figure 4.1).

The initiation procedure of the behaviour estimation trials replicated the
initiation procedure of the respective task of the previous experiment. After each
segment presentation, the environment was obscured, and the same questions
that were described in Chapter 2, regarding the vehicle's behaviour and the
participant's confidence, followed. So, the participants only had to observe the
traffic scenarios and answer the questions, while no road crossing was required.
The first behaviour estimation block (Block 2 in the experiment; see Figure 4.2)
was preceded by a practice session with 10 trials. The formal behaviour

estimation blocks had a total of 80 segments (40 in Block 2 and 40 in Block 4),
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which were presented in an order that was randomised per participant, meaning

that each participant experienced each segment of each scenario once.

4.2 Model definitions

As a reminder, the models being evaluated in this chapter are the same as in
the previous chapter: the observation-based model (Ob), the value-based model
(Vb), and the combined observation and value-based model (Ob+Vb). Ob
predicts pedestrian beliefs solely based on observed vehicle behaviour, more
specifically © values, (same model that was presented in Chapter 2 and 3). Vb,
which was introduced in Chapter 3, on the other hand, predicts pedestrian beliefs
based on the assumption that pedestrians infer vehicle intentions by considering
what actions would be most rational or value-maximising for the driver. Finally,

Ob+Vb integrates both observation-based cues and value-based reasoning.

It is important to clarify that while the new experiment included four distinct
vehicle manoeuvres, the models aimed to capture the pedestrian's subjective
beliefs regarding two mutually exclusive perceived vehicle behaviours, i.e., the
vehicle decelerating with the intention to stop for them (P;) or the vehicle

maintaining constant speed with no intention to stop for them (B,;).

4.3 Model fitting

This section describes the model fitting approaches of the previously
developed behaviour estimation models to the new dataset acquired collected as
described above. The model fitting followed the same methodology as described
in Chapter 3, employing a global derivative-free optimisation algorithm (Section
3.2) to optimise model parameters. The following three model fitting approaches

were used:

First, to provide a baseline for comparison and assess the generalisability of
the models, model predictions generated using the optimal parameter

combination identified in Chapter 3 were compared against the Chapter 4 data.
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This allowed for an initial evaluation of how well the models, trained on the

previous dataset, generalised to the new experimental scenarios.

Second, a focused model fitting exercise was performed, specifically adjusting
the added margin parameter denoted as M. This parameter represents the
strength of the prior belief towards decelerating behaviour, influencing the value-
based component (Vb) and, consequently, the augmented model (Ob+Vb). The
rationale behind this targeted adjustment stemmed from the observation that the
new experimental scenarios in Chapter 4 might elicit different prior beliefs in
participants compared to those predicted in Chapter 3. For instance, the inclusion
of 'Short Slowing' manoeuvres and the differences between ‘Two-stage
Deceleration' and ‘Mixed’ manoeuvres could alter participants' expectations of
vehicle behaviour. Therefore, the value of M was adjusted from the optimal value
found in Chapter 3 to a new value, while keeping the rest of the parameter
settings constant. This allowed us to explore the sensitivity of the models to this
parameter within the context of the new dataset, and to determine whether the
prior belief strength needed to be recalibrated to better reflect the participants’

inferences in these new experimental conditions.

Finally, a complete model fitting procedure was undertaken. All model
parameters were optimised on the Chapter 4 dataset, again using the
methodology described in Chapter 3. This comprehensive fitting process aimed
to maximise the predictive accuracy of each model on the new data, providing a
benchmark of their performance under optimal conditions for the current
experimental setup. The results of these fitting procedures, including the
optimised parameter values and the resulting model fit metrics, are presented

and discussed in the subsequent sections of this chapter.

4.4 Model selection

The model selection procedure was the same as the one described in Chapter
3. A quantitative approach was employed to assess the predictive accuracy of the
observation-based, value-based, and augmented models on the Chapter 4
dataset. Specifically, Root Mean Squared Errors (RMSEs) were calculated

between model predictions and participant ratings. To compare the predictive
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accuracy of the three models, Bootstrap Cross-Validation (BSCV; Baker et al.,
2009; Cohen et al., 1955), a robust, non-parametric technique for model

selection, was utilised.

4.5 Results

This section presents empirical observations, accompanied with statistical
analysis, from the experiment and then several analyses testing the predictive
accuracy of the proposed models — Observation-based (Ob), Value-based (Vb),
and the combined Observation and Value-based model (Ob+Vb) — in capturing
pedestrians' inferences about an approaching vehicle's behaviour, based on the

data collected in the experiment described in Section 4.1.

4.5.1 Pedestrian beliefs regarding the vehicle’s behaviour

In this subsection the overall trends of the of the participant’s judgements are
presented. As described in Sections 2.1 and 4.1, the participants gave two
answers during the behaviour estimation tasks of the experiments, regarding
which behaviour they believed the vehicle was exhibiting (binary choice between
stopping and maintaining speed) and how certain they were about that (subjective
rating on a 1-9 Likert scale). These two answers were transformed linearly into a
probability P, denoting the pedestrian belief that the approaching vehicle was
exhibiting the stopping (decelerating to stop) behaviour. Notably, P, = 0 would
mean that the pedestrian fully believes that the vehicle was exhibiting the other
possible behaviour, maintaining constant speed with no intention to stop, B, = 1,
since the two behaviours are mutually exclusive and exhaustive (in both

presented experiments), P, + B, = 1.

The pedestrian beliefs regarding the approaching vehicle’s behaviour were
analysed using a mixed-effects linear regression model, instead of a 4-way
ANOVA, as presented in Chapter 2, due to the unbalanced design of the new
experiment (i.e., not all initial speeds were tested for all four manoeuvres). The
pedestrians’ belief that the vehicle exhibited the stopping behaviour was the
dependent variable. The segment, the vehicle’s initial speed, the initial TTA and
the driving manoeuvre were considered to be the fixed effects. Lastly, the
participants’ individual differences were modelled as a random intercept. A model
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incorporating both a random intercept and random slopes (for all main fixed
effects) was also evaluated. While the maximal random effects model yielded a
lower Akaike Information Criterion (AIC) value compared to the random intercept-
only model, the Bayesian Information Criterion (BIC) value it yielded was higher.
The latter indicates that the substantial increase in model complexity from adding
random slopes for all main predictors, on top of the random intercept, was not
justified by a sufficient improvement in fit for this dataset. Therefore, the more
parsimonious random intercept-only model, which effectively accounts for

baseline inter-participant variability, was used for the final analysis.

The analysed mixed-effects linear regression model is presented below, using
the Wilkinson notation (Wilkinson and Rogers, 1973). Equation (4.1) indicates
that the Belief could be predicted by Segment, Manoeuvre, Speed and TTA, along
with their interactions. Then, the last term represents the random intercept
accounting for the inter-individual variability in participants’ (PID) average level of
Belief, meaning that they might be more cautious or more trusting than other

individuals when judging if an approaching vehicle is stopping or not.

Belief ~ Segment * Manoeuvre * Speed * TTA + (1|PID) 4.1)
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Figure 4.3 - Pedestrians’ beliefs regarding the approaching vehicle’s behaviour
as a function of segment, initial TTA (left column) and initial speed of the vehicle

(right column)
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The full results of the mixed-effects linear regression model can be found in
Appendix A . The fixed effects coefficients reveal several statistically significant
predictors of pedestrian beliefs. Notably, 'Speed' exhibited a significant negative
effect (Estimate = -1.169, p < 0.001), indicating that as the initial speed of the
vehicle increased the likelihood of pedestrians believing the vehicle would yield
decreased. This effect can be clearly seen in the panels of the right column of
Figure 4.3. Conversely, "TTA' showed a significant positive effect (Estimate =
13.137, p <0.001), suggesting that longer initial TTA was associated with a higher
probability of pedestrians believing the vehicle would stop. This effect can be
clearly seen in the panels of the left column of Figure 4.3. The two findings
described above were consistent with the results of the 4-way ANOVA
(Subsection 2.5.1.2), which was performed on the data collected from the first

experiment.

The vehicle's ‘Manoeuvre’ also played a significant role in shaping pedestrian
beliefs. The 'Short slowing' manoeuvre was selected as the reference category
for these comparisons, given that it was the newest and most distinct driving
manoeuvre relative to those tested in the previous experiment. ‘Constant speed’
manoeuvres had a significant negative effect (Estimate = -52.852, p < 0.001),
indicating that pedestrians were significantly less likely to believe the vehicle
would stop during a ‘Constant speed’ manoeuvre compared to a vehicle
performing a ‘Short slowing’ manoeuvre (reference category). This could be
because in the beginning of the ‘Short slowing’ manoeuvres the vehicle was
actually stopping, thus shifting the pedestrians’ beliefs more towards the stopping
behaviour than in the beginning of ‘Constant speed’ manoeuvres — for
comparison see the red and purple trends in Figure 4.4. Conversely,
‘Deceleration’ manoeuvres had a significant positive effect (Estimate = 34.857, p
< 0.001), suggesting that pedestrians were significantly more likely to believe the
vehicle would stop during a ‘Deceleration manoeuvre’ compared to a vehicle
performing a ‘Short slowing’ manoeuvre (blue and purple trends in Figure 4.4).
Similarly to ‘Deceleration manoeuvres’, in “Two-stage deceleration’ manoeuvres,
pedestrians tended to believe that the vehicle was stopping more, in comparison
to their beliefs during a ‘Short slowing’ manoeuvre (green and purple trends in
Figure 4.4), supported by a significant positive effect (Estimate = 11.784, p <
0.05). Finally, the model was rerun using the “Two-stage deceleration’ manoeuvre
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as the reference category allowing the comparison between the ‘Two-stage
deceleration’ and ‘Deceleration’ manoeuvre categories. ‘Deceleration’
manoeuvres had a significant positive effect (Estimate = 73.299, p < 0.001),
suggesting that pedestrians’ beliefs were significantly more likely to lean towards
the vehicle stopping during ‘Deceleration’ manoeuvres compared to a vehicle
performing a ‘Two-stage deceleration’ manoeuvre (blue and green trends in

Figure 4.4).

Several significant interaction effects were also observed, indicating that the
influence of one predictor on pedestrian belief depended on the level of another.
For instance, the significant negative interaction for Segment 1 and ‘Speed’
(Estimate = -0.283, p < 0.05) suggests that the negative impact of speed on
believing that the vehicle was yielding was stronger in Segment 1 compared to
the reference segment (Segment 4). The significant positive interaction between
Speed and TTA (Estimate = 0.027, p < 0.05) suggests a complex relationship
where the effect of TTA on belief might be moderated by the vehicle's speed
(Figure 4.3). Furthermore, the significant interaction effects underscore that these
main effects might not be independent but rather contingent on the specific
context defined by the vehicle's segment of approach, speed, and time-to-arrival.
Finally, the random intercept for the inter-participant differences had a standard

deviation of 3.896, indicating significant variability in baseline beliefs across

individuals.
Constant speed Two-stage deceleration
Deceleration Short slowing
100 -
.
.
.
P .
\O .
2 50
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.
.
v I 2 o 3 o 4 B
Segment (-)

Figure 4.4 - Pedestrians’ beliefs regarding the approaching vehicle’s behaviour
as a function of judgement point and the vehicle’s driving manoeuvre. Means are
represented by black dots and dashed lines indicate the trends of the average
beliefs
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Due to the differences in the pedestrians’ beliefs across the different
manoeuvres (Figure 4.4), as explained above, it was deemed necessary to divide
the data per driving manoeuvre and analyse them separately with the following

mixed-effects linear regression model (Equation (4.2)).

Belief ~ Segment * Speed * TTA + (1|PID) 4.2)

In the ‘Constant speed’ manoeuvres, pedestrians were more likely to believe
that the vehicle was stopping when the vehicle had a lower initial speed and the
initial TTA was larger (Estimate = -1.169, p < 0.001 and Estimate = 13.137, p <
0.001) — both effects are apparent in the “red” row panels of Figure 4.3.
Additionally, as time was passing and the vehicle got closer to them, pedestrians
were less likely to believe that the vehicle was stopping, indicated by the

segments having a significant negative effect (Estimate = -15.576, p < 0.01).

In the ‘Deceleration’ manoeuvres, pedestrians were more likely to believe that
the vehicle was stopping only when the vehicle had a lower initial speed (Estimate
= -2.072, p < 0.001). On the other hand, the main effects of initial TTA and
segments were not statistically significant, and especially the latter is clear in the

left “blue” panel of Figure 4.3.

In the “Two-stage deceleration’ manoeuvres, pedestrians were more likely to
believe that the vehicle was stopping when the vehicle had a lower initial speed
(Estimate = -0.932, p = 0.01). As more time passed, and the vehicle got closer,
pedestrians were more likely to believe that the vehicle was stopping (Estimate =
24.292, p < 0.001). On the other hand, the main effect of initial TTA was not

statistically significant and can be seen in the left “green” panel of Figure 4.3.

In the ‘Short slowing’ manoeuvres, pedestrians were more likely to believe
that the vehicle was stopping when the vehicle had a lower initial speed (Estimate
=-1.081, p < 0.05). As more time passed, and the vehicle got closer, pedestrians
were more likely to believe that the vehicle was not stopping (Estimate = -18.708,
p < 0.05). On the other hand, the main effect of initial TTA was not statistically

significant and can be seen in the left “purple” panel of Figure 4.3.
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Besides the specific statistical effects within each manoeuvre type, visual
inspection of the average pedestrian belief trends suggested further nuanced
patterns. The average beliefs of the ‘Two-stage manoeuvres’ seemed to be a
combination of the average beliefs from the first segment of the ‘Constant speed’
manoeuvres and of the later segments of the ‘Deceleration’ manoeuvres. In a
similar manner, the average beliefs of the ‘Short slowing’ manoeuvres seemed to
be a combination of the average beliefs of the first segment of the ‘Deceleration’
manoeuvres and of the later segments of the ‘Constant speed’ manoeuvres. To
assess these qualitative observations, separate mixed-effects linear regression
models were applied. These separate analyses supported the above
observations by not finding any significant differences when comparing the
pedestrian beliefs of the first and later segments between 1) Constant speed and

Two-stage deceleration manoeuvres and 2) Deceleration and Short slowing.

4.5.2 Model predictions vs subjective ratings

The analysis investigated the predictive accuracy of the three distinct models
in estimating pedestrian's average subjective beliefs. This was accomplished by
assessing both correlational (Spearman's rank correlation) and error-based
(RMSE) metrics. The predictive outputs of the models presented in this
subsection were derived using the three model fitting approaches described in
Section 4.3:

1) Using the optimal parameter settings found in the analysis of Chapter 3.
2) Using the optimal parameter settings found in the analysis of Chapter 3
but fitting only the added margin M parameter to the new dataset.

3) Fitting all model parameters to the new dataset.
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Figure 4.5 - Scatter plots of model predictions using best-fitting parameter
settings (y-axes) versus pedestrians’ average beliefs (x-axes) for all 20 kinematic
scenarios of the approaching vehicle. The three columns indicate the tested
model (Ob, Vb and Ob+Vb). The three rows indicate the model fitting approach
that was used (can be found in the enumeration of the previous page)

Figure 4.5 presents scatter plots comparing participant judgments with
predictions from the Ob, Vb, and Ob+Vb models — which are represented by blue,
green and red colours respectively, similarly to the previous chapter, illustrating
their respective accuracies. In the first-row panels, the models were
parameterised according to the best-fitting values found in the analysis of Chapter
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3 (as detailed in Table 3.2). Consistent with the findings from Chapter 3, visual
inspection of Figure 4.5 reveals that Vb and Ob+Vb again exhibited fewer poorly
predicted datapoints compared to Ob. This observation is further supported by
the obtained correlation and RMSE values. Notably, Vb and Ob+Vb demonstrate
the same near-perfect positive monotonic rank association (Spearman's rank
correlation = 1) between pedestrian average beliefs and model predictions as
was observed in the analysis of Chapter 3. In contrast, Ob shows a lower
Spearman's rank correlation on this new dataset than Vb and Ob+Vb, a pattern
which was observed also in the previous chapter. Furthermore, the scatter points
for Vb and Ob+Vb cluster closely along the identity line (Pearson's rho = 1), again
mirroring the near-perfect positive linear relationship found previously and
suggesting that their predictions closely approximate mean pedestrian beliefs.
Finally, considering the Root Mean Squared Error (RMSE), a measure of
proximity to the identity line where lower values indicate better predictive
performance, Ob+Vb demonstrates a lower RMSE than Vb, while Ob exhibits the

highest error, consistent with the findings of Chapter 3.

Importantly, while the Spearman's rank correlations remained identical to
those found in Chapter 3, except for Ob’s (Ob: 0.89->0.86, Vb: 0.98->0.98 and
Ob+Vb: 0.98->0.98), the RMSE values for all three models are slightly higher on
this new dataset. The decrease of Ob’s rank correlation could be due to the
addition of more segments during which the approaching vehicle maintained
constant speed (i.e., the later segments of ‘Short slowing’ manoeuvres), and
since Ob’s predictions were poor in such cases. The RMSE increase for all three
models could be due to testing the models on this new dataset, which was an
extrapolated version of the previous dataset, in terms of initial speeds and driving
manoeuvres. Partial and/or full refitting slightly improved the predictive
performance of the models, bringing their RMSE values very close to the RMSE

values obtained in Chapter 3.

Considering that the models were applied to a completely new set of
pedestrian participants experiencing the new experimental design (with new
untested kinematic scenarios), the level of performance achieved, particularly by
Ob+Vb, could be argued to show a reasonably good degree of generalisation.
The models were able to maintain a strong relationship with the pedestrian's

subjective beliefs even when presented with novel data.
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Following this general analysis of the models’ predictive performance, more
detailed analyses of the models’ behaviour are presented in Subsections 4.5.2.1,
4.5.2.2 and 4.5.2.3. In each one of these subsections, the parameter settings of
the models were obtained by the three model fitting approaches described in
Section 4.3.

4.5.2.1 Parameter settings of Chapter 3
An analysis comparing pedestrian data and model predictions across the new

kinematic scenarios elucidates the influence of varying vehicle kinematic
conditions on pedestrian belief updating regarding the approaching vehicle’s
behaviour and assesses the fidelity with which the proposed models capture the

average pedestrian beliefs.

Specifically, vehicle manoeuvres are categorised and presented in the
following figures: Figure 4.6, Figure 4.7, Figure 4.8 , and Figure 4.9. Figures 4.5
and 4.6 are including the scenarios with 40 km/h initial vehicle speed for both
initial TTAs (3 and 6 s). The average pedestrian beliefs of the last experiment are
shown in these four specific scenarios. These exact kinematic scenarios were
tested in the previous experiment as well, so they could serve as scenarios
through which model and experiment validation were tested. The rest of the
kinematic scenarios were illustrated in the abovementioned figures, aiming to
present all the new scenarios of the new experiment, so they could serve as

scenarios through which model generalisability was tested.

These 20 plots (one for each kinematic scenario) illustrate general patterns in
pedestrian beliefs as predicted by the three models. Within Figure 4.6, Figure 4.7,
Figure 4.8 and Figure 4.9 (and all the rest figures of this chapter), the predictions
of the Ob, Vb, and Ob+Vb models are represented by blue, green, and red
curves, respectively, as was also the case in Chapter 3. The average pedestrian
beliefs are depicted as standard error of the mean bars of the pedestrians’ beliefs
(the black ones indicate the average beliefs from the new dataset, while the grey
ones indicate the average beliefs from the previous dataset) at the pre-defined
judgment timings (as detailed by the pink square marks in Figure 4.1). For
clarification, the model prediction curves in Figure 4.6, Figure 4.7, Figure 4.8 and
Figure 4.9 are exactly the same as the ones produced in Chapter 3. With a quick
visual inspection of the 40 km/h scenarios in Figure 4.6 and Figure 4.7 (second
row panels) it can be seen that the average pedestrian beliefs of the new
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experiment are consistent and quite close to the ones of the previous experiment,

with a slight tendency of the average beliefs of the new experiment to be leaning

a bit more towards the non-stopping behaviour (lower P, or equally higher B).
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Figure 4.6 - Comparison between model predictions and average pedestrian
beliefs for the constant speed manoeuvres. The RMSEs are regarding the new
dataset only (i.e., Average Subjective Ratings 2)

In the constant speed scenarios (Figure 4.6), similarly to Chapter 3, Vb and
Ob+Vb outperformed Ob in capturing the pedestrian belief patterns. Ob
consistently predicted initial 50/50 belief uncertainty, while Vb and Ob+Vb
reflected the influence of speed and TTA. Ob's reliance on 7 limited its ability to
differentiate beliefs across scenarios, a limitation addressed by Vb’s and Ob+Vb's

incorporation of additional information. Higher vehicle speeds correlated with
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stronger predicted beliefs in non-stopping behaviour, while larger TTAs correlated
with weaker such beliefs. These patterns can be further explained by examining
the models' evidence sources (Subsections 3.4.2 and 4.5.3). Ob+Vb’s predictions
in the 40km/h scenarios support the successful validation of the suggested
behaviour estimation mechanisms and the experimental paradigm. In addition,

Vb and Ob+Vb seemed to be able to generalise quite well (especially for the

higher speeds) to the new initial vehicle speeds.
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Figure 4.7 - Comparison between model predictions and average pedestrian
beliefs for the deceleration manoeuvres. The RMSEs are regarding the new
dataset only (i.e., Average Subjective Ratings 2)

In the deceleration scenarios (Figure 4.7), Vb and Ob+Vb generally

demonstrated better performance compared to Ob in replicating pedestrian belief
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patterns. While ODb's initial predictions failed to capture the influence of varying
vehicle speeds and TTAs, its later predictions improved in accuracy as 7 values
changed over time. Vb's initial predictions reflected the effects of speed and TTA,
but its final predictions were less accurate due to the equalisation of the evidence
of the two possible behaviours towards the end of each deceleration manoeuvres
(Subsections 3.4.2 and 4.5.3). Ob+Vb's predictions effectively leveraged the early
predictive strengths of Vb and the later strengths of Ob. Similarly to the constant
speed scenarios (Figure 4.6), Ob+Vb’s predictions in the 40km/h scenarios of
Figure 4.7 support the validation of the suggested behaviour estimation
mechanisms and the experimental paradigm, while Ob+Vb’s predictions in the 20
and 60 km/h scenarios support its generalisability (especially for the lower

speeds, in contrast to the constant speed scenarios).
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Figure 4.8 - Comparison between model predictions and average pedestrian
beliefs for the two-stage deceleration manoeuvres

As can be seen in Figure 4.8, the two-stage deceleration scenarios were very
similar to the mixed scenarios of the previous experiment. Even though kinematic
details of the two-stage deceleration scenarios differed from the ones of the
mixed scenarios, both the model predictions and the average pedestrians’ beliefs

followed similar patterns. In these scenarios Ob+Vb generally exhibited better
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performance compared to Ob and Vb. The previously identified limitations of Ob's
early predictions and Vb's later predictions, observed in the constant speed and
deceleration scenarios respectively, were mitigated in the combined Ob+Vb
model. The similarity in patterns between the two-stage deceleration scenarios
and the mixed scenarios of the previous experiment provided a degree of
validation for the models, particularly the Ob+Vb model. The fact that the model
predictions, and especially the better performance of Ob+Vb, hold even when
presented with slightly different kinematic profiles suggested a certain robustness
and generalisability of the underlying model structures and the relationships they
capture. This indicated that the models were not simply overfitting to the specific
details of the original training data but were capturing more fundamental aspects
of how pedestrians form and update their beliefs about the behaviour of
approaching vehicles. The consistent mitigation of Ob's early and Vb's later
prediction limitations in these new, two-stage deceleration scenarios further
supported the validation and generalisability of the combined Ob+Vb model as a

more comprehensive predictor of pedestrian beliefs across a range of dynamic

situations.
TTA3s TTA 6 s
100 RMSE =21.90
RMSE = 18.43
RMSE = 15.81
20 = ™ =
km/h
6 1.
100 ¢ RMSE =36.29 100 RMSE = 25.41
RMSE = 7.39 RMSE = 3.91
<
60 = 50 } } 50
-
km/h
0 0
0 2 4 6 0 4 8 12
Time (s) Time (s)

Figure 4.9 - Comparison between model predictions and average pedestrian
beliefs for the short slowing manoeuvres
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In the context of short slowing manoeuvres (Figure 4.9), Vb seemed to
generally perform better than both Ob and Ob+Vb in predicting the average
pedestrian beliefs regarding the approaching vehicles behaviour. The previously
noted weakness of Ob when the vehicle speed is constant was again observed.
This limitation was propagated to Ob+Vb due to its incorporation of observation-
based evidence, leading to a slight overestimation of pedestrian beliefs that the
vehicle was stopping (especially at higher vehicle speeds). Vb, conversely,
exhibited the strongest agreement with average pedestrian beliefs during the
short slowing manoeuvres. Importantly, the overall belief curve shape for these
new short-slowing manoeuvres — an initial increase in belief of the vehicle
stopping, followed by a decrease in that belief — is substantially different from
belief curve shapes obtained in the previous experiment. The fact that Vb and
Ob+Vb capture this general curve pattern reasonably well without any parameter
refitting strongly suggests their ability to generalise to new scenarios and provides

evidence that Ob+Vb was not overfitted to the previous dataset.

Across the majority of these 20 kinematic scenarios, when using the
parameter settings that were obtained in Chapter 3, the Ob+Vb model provided
the highest Spearman’s rank correlation (along with Vb), the lowest overall RMSE
and appeared (at least qualitatively) to be the most accurate in predicting the
pedestrians’ beliefs. These are strong indications that Ob+Vb was the best model
(out of the three suggested ones) for capturing the average pedestrian beliefs
regarding an approaching vehicle’'s behaviour. Furthermore, the consistent
performance of Ob+Vb, even when applied to the new dataset and including
novel scenarios (as discussed in relation to Figure 4.8 and Figure 4.9), suggested
that the model possessed a notable ability to generalise and extrapolate to non-
tested kinematic conditions of approaching vehicles. So, a key takeaway from the
analysis so far is that the models fitted to the previous experiment demonstrated
a considerable ability to predict pedestrian beliefs in this new dataset, which
includes new scenarios. This supports the robustness of the underlying model
structures and their ability to capture fundamental aspects of behaviour

estimation.

The question of overfitting for a model as complex as Ob+Vb was a key
consideration from Chapter 3. The results presented in this subsection, offered

valuable insights into this question. The fact that Ob+Vb maintained its superior

146



performance (or at least remained among the top performers) on this new
dataset, without being refitted, suggests that it was likely not substantially
overfitted to the original dataset; overfitting would typically result in a more

significant drop in its predictive accuracy when applied to new, unseen data.

The observation of a slight tendency of the average beliefs of the new
experiment to be leaning a bit more towards the non-stopping behaviour in the
four kinematic scenarios which were exactly the same in both experiments,
indicated a difference in the pedestrians’ prior beliefs between the two
experiments. Hence, to further investigate the influence of prior beliefs within the
model predictions in this new experimental context and to explore the potential
for fine-tuning the model for this specific dataset, the next subsection focused on
the refitting of the added margin parameter M. This would provide additional
insights into the model's sensitivity and the extent to which its performance can

be further optimised for the characteristics of the new experimental context.

4.5.2.2 Partial refitting (only parameter M)
This subsection explores the impact of refitting the added margin parameter

(represented by M) on the predictive performance of the three models, for the
new dataset. It is worth noting that fixing the values of the rest of the parameters
to the best-fitted ones obtained in Chapter 3 and refitting only M, was a
significantly less computationally expensive approach than fully refitting the
models. Table 4.2 shows the best-fitting M values from Chapter 3 and the new

optimal M values after refitting.

Table 4.2 - Parameter M values before and after refitting

Old M Refitted M
Ob 0 0
Vb 16.13 13.79
Ob+Vb 6.26 4.61

A quick comparison of the refitted and the previous M values (Table 4.2),
shows that while M remained at O for Ob (consistent with findings in Chapter 3
where this value was optimal even when negative ranges were explored,
indicating that there was not a model-driven bias towards the stopping behaviour
when using the original search range, [0,100]), it was reduced for both Vb and
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Ob+Vb. By comparing the first and second rows from Figure 4.5 it can be
observed that the vertical displacement of the scatter points are consistent with
the M value differences presented in Table 4.2. After refitting M, Vb and
particularly Ob+Vb, once again offered better predictions of the pedestrian beliefs
compared to Ob (Figure 4.5). The data points of Vb and Ob+Vb were translated
downwards (only on the y-axis) — as a result of their reduced M values — while
Ob’s data points remained fixed since M remained constant and equal to zero. It
is noteworthy that the reduction of the bias towards the stopping behaviour
provided lower RMSEs for Vb and Ob+Vb, bringing them closer to the RMSE

values obtained by the dataset of the previous experiment.
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Figure 4.10 - Comparison between model predictions and average pedestrian
beliefs for examples of constant speed and deceleration scenarios. The dashed
curves illustrate the model predictions using the parameter settings of Chapter 3
and the solid curves the model predictions using the same parameter settings but
with the refitted M. The RMSEs are regarding the model predictions using the
refitted M only

Figure 4.10 illustrates the model predictions, after with and without refitting
the parameter M, against the average pedestrian beliefs, in some of the constant
speed and deceleration scenarios. Essentially, Vb’'s and Ob+Vb’s prediction
curves were translated downwards, while Ob’s remained as before. This

downward translation led to Vb and Ob+Vb capture the average pedestrian
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beliefs even better (decreased the overall RMSE and maintained high rank

correlation) than in Subsection 4.5.2.1, where the parameters settings of Chapter

3 were used.
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Figure 4.11 - Comparison between model predictions and average pedestrian
beliefs for examples of two-stage deceleration and short slowing scenarios. The
dashed curves illustrate the model predictions using the parameter settings of
Chapter 3 and the solid curves the model predictions using the same parameter
settings but with the refitted M. The RMSEs are regarding the model predictions
using the refitted M only

Figure 4.11 demonstrates another example of the improved accuracy of Vb
and Ob+Vb due to the downward translation caused by the smaller prior bias M.
In the case of two-stage deceleration scenarios that shift seemed necessary
especially for the first segments’ judgements where the approaching vehicle was
exhibiting almost-constant speed behaviour and the true P, (participants’ belief
that the vehicle was stopping) was low. Regarding the short slowing scenarios, it
can be seen that the belief overestimation of Ob+Vb observed in the previous
subsection has been diminished due to the reduced bias towards the stopping
behaviour of the vehicle. Thus, Ob+Vb seemed to be performing equally well with

Vb now, in the short slowing manoeuvres.
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In summary, the results of this subsection were obtained by maintaining the
best-fitting parameter settings (all but M) of the previous chapter and then fitting
the models to minimise the RMSE between the model predictions and the
average pedestrian beliefs, through refitting the M parameter. Ob’s predictions
remained the same because the adjusted M value was the same as in the
previous subsection, while Vb’'s and Ob+Vb’s belief predictions were subtly
translated downwards (closer to certain non-stopping behaviour belief or P, = 0).
Once more, Ob+Vb seemed to be performing better than Ob and Vb, based on

both quantitative and qualitative comparisons.

4.5.2.3 Full refitting (all parameters)
Lastly, a rigorous full-model fitting sought to optimise the predictions of each

model with respect to the new dataset. The panels in the third row of Figure 4.5
corroborate the resulting predictive accuracies of the three models after fitting
their whole parameter settings on the new dataset. In consistence with both
previous analyses based on different model fitting approaches (4.5.2.1 and
45.2.2), Ob+Vb demonstrated better predictive performance regarding
pedestrian beliefs compared to Ob and Vb. The arguments behind this recurring
theme are once again the decreased incidence of poorly predicted datapoints,

high rank correlation and lower RMSE value.

A comparison of the new and the previous best-fitting parameter settings
(Table 4.3), shows that:

For Ob, the best-fitting parameters remained similar, with the exception of g,
which was optimised at a higher value than before, meaning that there is a larger
gap between the distributions of P(7|b,) and P(t|b,s). The rest of the parameters
were fitted to values of a similar level to the previous, indicating that Ob’s best
predictions are achieved by a specific parameter set, probably close to the refitted

one.

For Vb, the full refitting resulted in more substantial changes in its optimal
parameter values than Ob. The decrease in k, suggested a reduced sensitivity
to the evidence related to the driver reaching their goal, while the increase in k,,
indicated a greater weight placed on the discomfort associated with deceleration.

The substantial decrease in c,,, implied a diminished influence of the evidence

related to the vehicle’s pro-social behaviour. These changes collectively indicate
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that the value-based considerations influencing pedestrian beliefs may have
been recalibrated in the new experiment, with a greater emphasis on the
immediate dynamics of vehicle deceleration and less on expected driver
intentions. Furthermore, the reduction in M indicated a lower overall bias towards
the belief that the vehicle would stop, in this new dataset, in line with the findings
from the partial refitting in the previous subsection. Moreover, it is noteworthy that
the product of B - M had a lower value after (~2.01) than before (~2.26) refitting,
suggesting that the fixed bias towards the stopping behaviour (in absolute
evidence terms) seemed to be lower in the new experiment compared to the

respective bias of the previous experiment.

Ob+Vb also exhibited notable parameter adjustments upon the full parameter
set refitting. Similar to the Vb model, k, and ¢, decreased, suggesting a reduced
influence of goal-related and pro-social evidence. Conversely to Vb though, kg4,
also decreased. As for the Ob part of the model u,s, us, 0,5, 05 remained similar,
suggesting that the stability shown in the refitting by the pure Ob model might
have been transferred to Ob+Vb as well. Interestingly, the weighting parameter
for the observation-based evidence p,, increased, indicating a potentially
stronger influence of perceptual cues derived from the vehicle's motion.
Conversely, the weighting parameter for the value-based evidence S, decreased,
suggesting a relatively reduced contribution of inferred driver rewards and costs
in the belief formation process for this new dataset. The time constant for
forgetting past evidence Ty decreased substantially, suggesting a greater reliance
on more recent observations, with the new value being closer to the T level of
Ob. M decreased, mirroring the trend observed in the Vb model and indicating a
reduced bias towards the stopping behaviour of the vehicle, once again
consistent with the findings from the partial refitting in the previous subsection.
Similarly to Vb, the product of B - M had a slightly lower value after (~1.17) than
before (~1.25) refitting, suggesting that the fixed bias towards the stopping
behaviour (in absolute evidence terms) seemed to be lower in the new
experiment compared to the respective bias of the previous experiment. These
changes in Ob+Vb suggested a recalibration of the integration process between
observation and value-based evidence, with a slightly greater emphasis on

immediate perceptual information, slightly less emphasis on the expected values

151



than in the previous experiment and a slightly smaller bias towards the stopping

behaviour.

Table 4.3 - Best-fitting parameter settings

Ob Vb Ob+Vb

Old New Old | New | Old | New

ky 088 | 057 | 057 | 038
ke i 036 | 055 | 051 | 043
Cpor 0.83 0 1 0.49
s 1 1 4| -090
s 047 | 021 075 | -0.74
o 0.55 0.59 056 | 068
o 0.57 0.54 i 058 | 068

T, 4.56 5.41 100 | 1.97

Bo 032 | 060
By ) 053 | 037
B 0.17 012 | 014 | 047 | 020 | 045

M 0 0 1613 | 1182 | 626 | 2.60

Examples of the resulting model predictions due to the full refitting can be
seen in Figure 4.12. Figures with model predictions, using the parameter settings
obtained by the full refitting, for all 20 kinematic scenarios can be found in the

Appendix B .

Figure 4.12 illustrates four examples (one for each driving manoeuvre) of
model predictions versus average pedestrian beliefs comparisons. The initial TTA
and initial speed of the vehicle is the same for all these four examples. The solid
lines represent the model predictions obtained by using the fully refitted
parameter settings, while the dashed lines represent the model predictions
obtained by using the partially refitted parameter settings (only M) of the previous
subsection. The patterns observed in the examples of Figure 4.12 were

consistent with the patterns of the rest of the kinematic scenarios.
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Regarding the constant speed scenarios, as can be seen in Figure 4.12, Ob’s
predictions decrease rate was larger because of the adjustment of u; to a higher
value than before, meaning that the model introduced a bigger and clearer
perceptual discrepancy between the two possible behaviours. That could
possibly be explained by the fact that the new experiment had a bigger number
of non-stopping behaviour segments than the previous experiment. Vb's
predictions shifted upwards due to the slight increase of the product B-M
(1.93->2.01). Lastly, Ob+Vb appeared to be averaging the adjustments of the two
behaviour estimation mechanisms, making it have the best prediction accuracy

of the average pedestrian beliefs.
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Figure 4.12 - Comparison between model predictions and average pedestrian
beliefs for examples of all four driving manoeuvres. The dashed curves illustrate
the model predictions using the parameter settings of Chapter 3 with the refitted
M and the solid curves the model predictions using the fully refitted parameter
settings. The RMSEs are regarding the model predictions using the fully refitted
parameter settings only
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Figure 4.12 demonstrates similar consistency with previously reported
findings regarding the strengths and weaknesses of the models in the
deceleration scenarios. As in the constant speed manoeuvres Ob’s predictions
rate was affected by the adjustment of u,. However, since the true vehicle
behaviour in this case was the stopping behaviour, this adjustment of u, meant
that Ob’s predicted belief in the stopping behaviour now increased at a lower rate.
Vb’s predictions were once again shifted downwards due to the same reason as
explained in the constant speed scenario of Figure 4.12. Ob+Vb averaged the

abovementioned effects, achieving the best predictive accuracy.

The results for two-stage deceleration scenario presented in Figure 4.12, are
again consistent with those previously reported when compared to the ones
obtained from the different model fitting approaches of this chapter, but also when
compared to the somewhat similar mixed scenarios of the previous experiment.
From Figure 4.12, in the two-stage deceleration scenarios, Ob’s predictions rate
was affected depending on what was the true vehicle behaviour. More
specifically, in the beginning of these scenarios when the vehicle was almost
maintaining constant speed, Ob’s predicted belief in the stopping behaviour
decreased at a higher rate (consistent with what was observed in the constant
speed scenarios), while in the later stages where the vehicle was decelerating,
Ob’s predicted belief in the stopping behaviour increased at a lower rate
(consistent with what was observed in the deceleration scenarios). Vb’s belief
predictions were shifted downwards, as described before (this downwards shift
was the same for all scenarios). The effect-averaging behaviour of Ob+Vb was

once again apparent.

From Figure 4.12 and conversely to the two-stage deceleration scenario, early
in the short slowing scenario, when the vehicle was decelerating, Ob's predictions
regarding the stopping behaviour increased more slowly (mirroring the
deceleration scenarios), whereas later, during the constant speed phase, its
predicted belief in the stopping behaviour was decreased more rapidly
(consistent with constant speed scenarios). Vb and Ob+Vb were affected the
same way as explained before for all the other driving manoeuvre scenarios, after

fitting their whole parameter settings to the new dataset.

Even though the last obtained parameter settings (refitting all parameters)

obtained the lowest RMSE between model predictions and average pedestrian
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beliefs, for all three models, the parameter settings with the refitted M was
considered to be the most appropriate in balancing predictive accuracy with
simplicity and generalisability to unseen data, possibly ensuring a candidate
model that would perform well in real-world applications. That consideration was
based on three key reasons. First, models with the refitted M parameter settings
obtained RMSE values which were very close to RMSEs obtained by models with
the fully refitted parameter settings. Second, it allowed a more direct and
meaningful comparison of the models and their parameters across two
experiments, rather than a completely new set of parameters. The examination
of how the new dataset specifically influences the bias towards the stopping
behaviour was facilitated, since all parameters except one remain fixed to their
previously established optimal values. Lastly, the computational cost associated
with refitting only a single parameter (M) is significantly lower than that of refitting

a large number of parameters (7 for Ob, 5 for Vb and 12 for Ob+Vb).

Across all three parameter-fitting settings presented in the three previous
subsections and across all 20 kinematic scenarios, the augmented model
(Ob+Vb), consistently exhibited the highest Spearman's rank correlation, the
lowest RMSE and appeared to provide the most accurate predictions of
pedestrian beliefs both qualitatively and quantitatively. These consistent metrics
strongly suggest that Ob+Vb's predictive performance is the best among the three
proposed models. While this provides compelling evidence for Ob+Vb's
effectiveness and suggests it is not overly complex or overfitted (given its strong
performance on a new dataset with parameters fully or largely derived from a
previous one), further investigation into the underlying behaviour evidence
integration (Subsection 4.5.3) and a per-participant analysis (Subsection 4.5.5)
will provide a more comprehensive understanding of the model's strengths and
limitations. To complete this investigation and further understand these aspects,
the Bootstrap Cross-Validation (BSCV) model selection technique (Subsection
4.54) was applied. BSCV offered a robust method for comparing model
performance and generalisability on unseen data, accounting for overfitting,
especially for the more complex Ob+Vb. Additionally, it allowed a more structured

analysis of the obtained model parameters values.
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4.5.3 Breaking down the evidence

This subsection provides a more in-depth analysis of the significance of
evidence related to the approaching vehicle's behaviour. To reiterate, A,
represents evidence of non-stopping behaviour, A; represents evidence of
stopping behaviour, A, represents evidence derived from the observation-based
(Ob) behaviour estimation mechanism and Ay, represents evidence derived from
the value-based (Vb) behaviour estimation mechanism (refer to Equations (3.15)
and (3.16) for clarity). Essentially, this analysis provides insights of how the
proposed models produce their predictions. However, since the constant speed,
deceleration and two-stage deceleration scenarios of the new experiment are
similar to the constant speed, deceleration and mixed scenarios, respectively, of
the previous experiment, and the fact that another comprehensive analysis of
evidence break down was presented in Chapter 3, this subsections’ analysis will

only address the short slowing scenarios.

Figure 4.13 illustrates the influence of varying initial speeds on the derived
vehicle behaviour evidence. In short slowing scenarios with the same initial TTA,
higher initial speed correlated with a shift toward initially believing that the vehicle
will maintain speed rather than stopping. This is visible in Figure 4.13 as Ay — A
being initially more negative for higher initial speeds. This happens in the model
because higher speeds imply a greater reward for the driver/AV if the vehicle
maintains its speed, leading to a stronger initial bias towards the non-stopping
behaviour. This effect, which was apparent in Subsection 3.4.2 for all the other
types of driving manoeuvres, has here been successfully propagated to short

slowing scenarios as well.
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Figure 4.13 - Evidence of the two possible behaviours during short slowing
manoeuvres. The initial TTA is 3 s in both panels

Figure 4.14, using a similar format, demonstrates the impact of different initial
TTAs on vehicle behaviour evidence during short slowing scenarios. When the
vehicle is initially further away (longer initial TTA), there is a shift in evidence
towards the stopping behaviour rather than the non-stopping behaviour. This is
visible in Figure 4.14 as A, — A, being initially larger for longer initial TTAs. The
underlying logic in the model is that a larger initial distance translates to a lower
necessary deceleration rate for the vehicle to stop comfortably and safely before
the position of the pedestrian. This makes the act of decelerating more
advantageous, resulting in a stronger initial tendency to predict the stopping
behaviour. Importantly, the key observation from Figure 4.13 and Figure 4.14 is
that the evidence difference A, — A, is the primary determinant of the shape of
the Ob+Vb model's predicted beliefs, as observed also in Subsection 3.4.2 for

the scenarios studied in the first experiment.
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Figure 4.14 - Evidence of the two possible behaviours during short slowing
manoeuvres. The initial speed is 60 km/h for both panels
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Then the behaviour evidence are broken A, and A, further down to the
observation and value-based behaviour estimation components, as shown in
Equations (3.15) and (3.16). To avoid any confusion the added soft-margin M has
been omitted in Figure 4.15 and Figure 4.16, since it is a constant value and

would be illustrated by the same horizontal line in all the following plots.
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Figure 4.15 - Evidence of the two possible behaviours during short slowing
manoeuvres, divided by behaviour estimation mechanism. The initial TTA is 3 s
for all panels

Figure 4.15 depicts the influence of varying initial speeds during short slowing
manoeuvres on the evidence computed by both the observation-based and
value-based behaviour estimation components of the Ob+Vb model.
Correspondingly, Figure 4.16 illustrates the effects of different initial TTAs during

short slowing manoeuvres on the evidence derived from these same

components.
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Figure 4.16 - Evidence of the two possible behaviours during short slowing
manoeuvres, divided by behaviour estimation mechanism. The initial speed is 60
km/h for all panels
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Figure 4.15 and Figure 4.16 reveal that initially, both A,,,s and A,,s exhibit
zero evidence values during short slowing, due to the lack of early 7 data, while
Aypns @nd Ay,s possess non-zero initial values. Specifically, Ayp,s(t =0) >
Aypns(t = 0), which is consistent with Equations (3.4) and (3.5), given that
Ry(t) = R.(t) — kaa@req () + cpor (With ¢, insufficient to offset the deceleration
discomfort cost). This confirms, once again, observations from the previous
chapter, explaining why the observation-based approach struggles with early
predictions while the value-based approach shows stronger predictive capability

in the initial stages.

During the constant speed phase of short slowing scenarios (also during
constant speed manoeuvres and the near-constant speed phase of two-stage
deceleration scenarios), Ay,,s remains constant since the vehicle’s speed is
constant. Conversely, Ay, decreases towards —o as the required deceleration
to stop before the pedestrian increases with decreasing vehicle-pedestrian
distance. Simultaneously, the evidence difference A,,s — Appns iNCreases, as t

observations continue to align with the actual vehicle behaviour (constant speed).

During the deceleration phase of the short slowing scenarios (also during
deceleration manoeuvres and the decelerating phases of two-stage deceleration)
Aypns decreases linearly towards 0, mirroring the vehicle's linear speed reduction.
Similarly, Ay,s decreases towards c,, as both vehicle speed and required
deceleration approach zero (ultimately converging at Ayps — Aopns = 0).
Concurrently, the evidence difference Ap,s — Aopns iNCreases (reaching
substantial values near the end) as 7 observations continue to reflect the actual
vehicle behaviour, i.e., decelerating to stop. This dynamic explains the reduced
accuracy of Vb's final-stage predictions compared to Ob's performance in
predicting pedestrian beliefs at the conclusion of deceleration and two-stage

deceleration scenarios.

This subsection has thus, once again, validated the combination of Ob and
Vb in the Ob+Vb model by demonstrating the importance of the integration of
different sources of behaviour evidence and highlighting the advantages offered
by the two distinct behaviour estimation mechanisms, even in the context of a

new approaching vehicle kinematic condition.
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4.5.4 BSCV model selection
Besides testing the models on a new dataset, to ensure more robust model
selection and generalisation, a bootstrap cross-validation (BSCV) analysis, as

detailed in Sections 3.3 and 4.3, was implemented.
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Figure 4.17 - Histograms (and their kernel-smoothed distributions) of the BSCV
RMSEs of Ob, Vb and Ob+Vb

Figure 4.17 illustrates the distribution of the BSCV targeted metric, in this case
the RMSEs, for the three proposed models. Consistent with previous
observations, the Ob model exhibited the highest BSCV RMSEs, indicating
inferior performance. A key finding from this analysis is that the BSCV results for
the new experiment provide a clearer separation between the Vb and Ob+Vb
models compared to the BSCV analysis presented in Subsection 3.4.3. As shown
by their respective RMSE distributions in Figure 4.17, while there is still a slight
overlap, Ob+Vb (red distribution) is more clearly shifted towards lower RMSE
values than Vb (green distribution) and its peak is significantly lower. This
suggests that Ob+Vb was the best-performing model. This clearer separation
between the BSCV RMSE distributions of Vb and Ob+Vb in the new experiment
might be due to the inclusion of more complex and varied kinematic scenarios
(i.e., the 'Short Slowing' and "Two-stage Deceleration' manoeuvres and a wider
speed range), which possibly led to a more comprehensive evaluation of the
models, allowing the integrating behaviour estimation mechanisms nature of
Ob+Vb to demonstrate its better predictive performance, more clearly, on unseen
data. Overall, these BSCV results are consistent with those from Chapter 3
regarding model selection but offer stronger evidence for Ob+Vb's better

performance in this new and more comprehensive dataset.
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Another detailed parameter investigation was conducted, in a similar manner
to that in Subsection 3.4.4. Rather than employing an exhaustive grid search
across a broad range of parameter values (as in Subsections 2.5.3), this analysis
focused specifically on the parameter values derived from the bootstrap cross-

validation (BSCV) procedure.
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Figure 4.18 - Histograms (and their kernel-smoothed distributions) of the BSCV-
obtained parameters of Ob, Vb and Ob+Vb

Figure 4.18 presents the histograms of these BSCV-obtained parameter
values for each model, reflecting the range of values that yielded the best model
fits across the BSCV resampled datasets. This BSCV parameter investigation

conducted on the dataset obtained by the new experiment, produced parameter
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distributions for the Ob, Vb, and Ob+Vb models that were remarkably consistent
with those detailed in Chapter 3 (Figure 3.14). This replication across the two
datasets obtained in the two experiments further reinforces the robustness and
stability of the identified optimal parameter ranges for each model. The BSCV-
obtained parameter settings and the indications of potential parameter
redundancy, as illustrated in Figure 3.15, Figure 3.16 and Figure 3.17 in Chapter
3, which were mirrored in the current analysis (can be seen in the pairwise
scatterplots in the Appendix D ), appeared to not be specific to a particular
dataset, possibly suggesting fundamental characteristics of how each model best
captured pedestrians’ beliefs. This consistency strengthens the confidence in the
underlying mechanisms assumed by the models and the obtained optimal

parameter values.

4.5.5 Per-participant model fitting

This subsection presents an analysis on the per-participant level, fitting the
models to each participant’s data from the second experiment. This analysis was
motivated by important concerns regarding the simplifying assumption of using a
single 'average pedestrian' parameterisation, as was done in all previous

analyses.

The participants and humans in general are not identical. They vary in their
cognitive processes, decision-making strategies, prior knowledge and many
other factors. A single model fit to the aggregate data might hide these individual
variations, essentially averaging them out and potentially misrepresenting the
underlying processes for many participants (Ashby et al., 1994; Estes, 1956;
Heathcote et al., 2000). Fitting models per participant allows capturing this
heterogeneity and understanding how the model parameters vary across
individuals, potentially leading to a personalised model that accounts for the
specific characteristics and biases of each participant (Farrell and Lewandowsky,
2018).

Sometimes, even within a population, there might be distinct subgroups with
different underlying processes (Lee and Newell, 2011; Unsworth et al., 2011;
Vandekerckhove et al., 2008; Zhang and Luck, 2008). Fitting the model per
participant could help identifying these subgroups by clustering individuals based
on demographics and experience. This could reveal hidden patterns in the data

that might have been missed by the previous whole-group-level analysis. Also,
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fitting the model per participant could work as a check to whether the model
assumptions hold for each individual or the majority of them. If the model does
not fit well for some participants, it might be an indication that the
framework/model is not specified correctly or that those individuals are using
different strategies. In that case refinement of the model or considering alternative

explanations could be motivated.

To explore the heterogeneity in how individual pedestrians' beliefs align with
the models, a per-participant fitting procedure was performed. Specifically, for
each of the 30 participants, the parameters B and M of all three models were
individually optimised to minimise the RMSE between the model predictions and
the participant's subjective beliefs across all 20 kinematic scenarios. These two
parameters were chosen for the per-participant model fitting as they were directly
related with the subjective judgments of vehicle behaviour in the experiment and
hence were assumed to be capturing the most significant sources of inter-
participant variability. Parameter B, the evidence scaling factor, might be
reflecting the individual differences in response style; how a participant translated
the available behaviour evidence into subjective ratings. Parameter M, the prior
belief bias towards a certain vehicle behaviour, could possibly represent the
individual tendency of each participant to believe that a vehicle will stop, likely
influenced by personal experiences, risk tolerance and expectations. The
remaining model parameters (i.e., those that control the calculation of the
observation and value based evidence) were fixed to their respective best-fitting
values obtained in the analysis of Chapter 3, as they were assumed to represent
the more basic mechanics of the behaviour estimation cognitive process and to

be more consistent across the population.

Figure 4.19 presents the distributions of the resulting RMSEs for each model
across all participants. From the figure can be seen that Ob+Vb yielded the lowest
overall prediction errors when fitted to individual participants, as evidenced by its
RMSE distribution being concentrated at lower values compared to both the Ob
and Vb models. This finding suggests that while model complexity could increase
the risk of overfitting, the integration of both observation and value-based
behaviour estimation mechanisms in the Ob+Vb model is important for accurately
capturing the nuances of individual pedestrian beliefs regarding the behaviour of

the approaching vehicle. The superior performance of Ob+Vb at the individual
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level further strengthened its position as the most promising model among the

three proposed.
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Figure 4.19 - Histograms (and their kernel-smoothed distributions) of the per-
participant RMSEs of the three models

Notably, when comparing Ob+Vb’s individual RMSE distribution (Figure 4.19)
to the RMSE values of Ob+Vb obtained from fitting the model on the “average”
pedestrian data (Figure 4.5), it appears that the RMSE values obtained from
fitting the model to individual participants were larger than those obtained through
the analysis on the aggregated data. This suggests that the predictions of Ob+Vb,
even when its assumed individual-related parameters (B and M) are individually
fitted, exhibit a greater average error when attempting to capture the nuances of
individual pedestrian judgments compared to fitting the model to the averaged

beliefs of a hypothetical “average” pedestrian.

This observation suggests that real human beliefs are likely affected by
different individual factors and inherent variability in judgment, which are
smoothed out when the models are analysed using the aggregated pedestrian
beliefs. The RMSE values at the per-participant level generally seemed to be
higher and more spread out than at the average level. This means that even
though the model was successful at replicating the average pedestrian belief
patterns, it was less accurate in predicting the beliefs of individual pedestrians.
This could be due to variations in attention, risk perception, mechanical skills of
their visual system, interpretation of cues, or even noise in their responses. The
smoother RMSE distributions observed in BSCV analyses, which operated on

averaged data, likely reflected the cancellation of some of this individual
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variability, leading to a seemingly more accurate “average” prediction. To further
investigate potential sources of individual variability and explore whether specific
demographic or experiential factors were associated with differences in how well
the Ob+Vb model captures pedestrian beliefs and the fitted model parameters,
the 30 participants were grouped based on age: <50 vs. >50 years old, gender:
Female vs. Male, and driving experience: Experienced (=5 years of active driving

experience) vs. Non/Novice (<5 years of active driving experience).

Figure 4.20 presents the grouped distributions of the Spearman's rank

correlation (p,) between the Ob+Vb model's predictions and each participant's

beliefs for the abovementioned clusters. A comparison of these distributions
across younger and older participants, female and male participants, and
experienced drivers and non-drivers/novice drivers revealed no clear differences.
This suggests that the degree of model's predicted beliefs rank ordering and
individual participants’ subjective beliefs rank ordering alignment was not

associated with age, gender, or prior driving experience.
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Figure 4.20 - Grouped distributions of Spearman's rank correlation between
Ob+Vb predictions and individual pedestrian beliefs, by age, gender, and driving
experience

Figure 4.21 displays the grouped distributions of the RMSE, providing a
measure of the magnitude of the difference between the model's predictions and
individual beliefs. A comparison of these distributions showed no difference in the
model’s achieved RMSEs between female and male participants, nor between
experienced drivers and non-drivers/novice drivers. This suggests that the
model's predictive accuracy was not influenced by gender or prior driving
experience. In contrast, age appeared to have a minor influence; the model’s
achieved RMSEs of younger participants tended to be lower than those of older
participants, suggesting that the absolute accuracy of the model was somewhat
better for younger participants. In other words, younger participants’ beliefs were

probably closer to the “average” pedestrian beliefs predicted by the model,
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compared to older participants’ beliefs — hence the slightly better predictive

accuracy of the model for younger participants.
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Figure 4.21 - Grouped distributions of RMSE between Ob+Vb predictions and
individual pedestrian beliefs, by age, gender, and driving experience

Figure 4.22 presents the grouped distributions of the best-fitted B parameter.
As a reminder, this parameter controlled the mapping from the model’s calculated
behaviour evidence (essentially the difference between the evidence for the
vehicle stopping, A, and not stopping 4,,;) to a subjective belief rating (essentially
the subjective ratings provided by the participants in the experiment). More
specifically, a higher B value implied a steeper translation of the predicted belief
probability to the ratings provided through the questions of the behaviour
estimation task (Appendix C ). A comparison between the subgroup distributions
of B revealed a noticeable difference due to age; B was greater for older
participants than younger participants. However, this finding was likely affected
by gender. Comparing B distributions for female and male participants revealed
that there was a small subgroup of males for which the B parameter was fitted to
its highest observed values; further inspection showed these were all male
participants over 50. Therefore, the age effect that was suggested previously
might have been an interaction between age and gender, though this is
inconclusive due to the sample imbalance. The distributions of the B parameter
for experienced drivers and non-drivers/novice drivers showed no noticeable
difference in B, however non-drivers and novice drivers showed a slight tendency
towards lower values of B. This suggests that prior experience with driving might
have affected how confidently individuals translated the observed behaviour
evidence into subjective beliefs about the vehicle's behaviour, with less
experience in driving probably being associated with more conservative

translation from behaviour evidence to subjective belief.
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Figure 4.22 - Grouped distributions of the best-fitted translating factor (B) from
behaviour evidence to belief probabilities for individual pedestrians, by age,
gender, and driving experience

This variability in B across participants, as highlighted in Figure 4.22,
underscores individual differences in how behaviour evidence is translated into
subjective beliefs about the vehicle's behaviour. As illustrated in Figure 4.23, itis
worth noting that for small absolute values of behaviour evidence, there is a
substantial difference in the predicted beliefs of individuals with different B
parameter values (red opening brace), while for big absolute values of behaviour

evidence that difference is practically zero (red circle).
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Figure 4.23 - Effect of the lowest and highest obtained scaling parameter B on
the respective individuals' beliefs

Figure 4.24 illustrates the grouped distributions of the best-fitted M parameter,
which represented the prior bias towards believing the approaching vehicle was
stopping. A comparison of these distributions revealed that M was not affected by
participants’ gender or prior driving experience, as both showed no differences
between their respective subgroups. On the contrary, a subtle tendency was
observed for age; younger and older participants showed overall a similar
achieved M, but with older participants’ M values being clustered on the lower
levels of prior bias. This indicated that older participants consistently held a

smaller prior bias towards believing that the vehicle would stop.
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Figure 4.24 - Grouped distributions of the best-fitted prior bias towards yielding
behaviour (M) for individual pedestrians, by age, gender, and driving experience

Figure 4.25 displays example scatterplots of Ob+Vb predictions versus
observed subjective beliefs of four selected individual participants. These four
selected participants were part of different demographic subgroups, i.e., a
younger female, an older female, a younger male, and an older male. As
discussed above, the obtained RMSEs of Ob+Vb at the individual level (Figure
4.19), were generally higher than when fitted to aggregated data. Figure 4.25
provides a visual illustration of this finding, showing higher prediction errors for

individuals than the prediction error for the “average” pedestrian (Figure 4.5).
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Figure 4.25 - Scatter plots of Ob+Vb predictions (y-axes) versus individual
participants’ beliefs (x-axes) for all 20 kinematic scenarios of the approaching
vehicle. The panels provide illustrative examples of the model's fit for individual
participants from different demographic subgroups, highlighting the variability in
individual data and prediction error (RMSE)
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Figure 4.25 offered a more granular view of the group-level results, within the
age and gender groups, visually demonstrating the model's fits for four selected
participants. These examples illustrate the kinds of individual variability that
contribute to the per-participant RMSE distributions (Figure 4.19). For instance,
the scatterplots for the two older participants (right column) exhibit more poorly
predicted datapoints compared to the scatterplots for the two younger
participants (left column). This is consistent with the trend noted earlier where the
model’s prediction error was slightly higher for older participants (Figure 4.21).
Conversely, the model’'s accuracy did not seem to be affected by gender
(comparison between rows). Lastly, as shown in Figure 4.25 by the individual B
values, the pattern of the data points seemed to be influenced by B. In this
instance, both the older example participants had a higher B value compared to
the younger example participants, indicating a steeper relationship (as seen in
Figure 4.23) between their ratings based on the presented evidence and the
model's predictions across the different scenarios. This is evident from the fact
that the data of both older participants were gathered close to the edges of the
individual beliefs, while the data of both younger participants were spread across
the whole belief scale, i.e., the older participants seemed to be more certain than
the younger participants. However, that certainty did not necessarily mean that

their beliefs were more accurate regarding the actual vehicle’s behaviour.

4.6 Discussion

In the work presented in this chapter, the previously developed and suggested
behaviour estimation models (Ob, Vb and Ob+Vb) were fitted to a newly acquired
dataset. This new dataset was more comprehensive than the one from the
previous experiment, as it had more tested kinematic scenarios (20 versus 18),
a wider range of vehicle speeds (20-60 km/h versus 25-55 km/h), and included
two new, more complex driving manoeuvres (Two-stage deceleration was a more
realistic and better-designed version of Mixed manoeuvres, and Short slowing
was not present in the first experiment at all). The reasoning behind designing
another behaviour estimation experiment was to obtain a dataset through which

the validation and generalisation of the suggested models would be enabled.
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With the new experiment, empirical observations replicated patterns and
trends that were observed in Chapter 2, validating the overall experimental design
and empirical findings. The statistical analysis of pedestrian beliefs using a
mixed-effects linear regression revealed significant main effects of initial vehicle
speed (negative correlation with belief in stopping) and initial TTA (positive
correlation), mirroring findings from the previous experiment. Furthermore, the
manoeuvre type significantly influenced pedestrian beliefs, with constant speed
leading to lower beliefs in stopping and deceleration to higher beliefs, relative to

short slowing.

Model validation was achieved by replicating specific kinematic scenarios
from the first experiment, namely, the constant speed and deceleration
manoeuvres at 40 km/h initial speed (for both 3 and 6 s initial TTA). In these
scenarios, Ob+Vb successfully predicted the average pedestrian beliefs with high
Spearman's rank correlation and low RMSE, confirming the findings from Chapter
3. The overall belief patterns, such as the significant negative effect of vehicle
speed and the positive effect of TTA, were also replicated, further validating the
model's predicting behaviour. Another positive outcome was the consistency
between the mixed scenarios of the original experiment and the two-stage
deceleration scenarios of the new experiment, where Ob+Vb was able to capture
the overall similarity and confirm the importance of behaviour-changing scenarios

in the analysis of behaviour estimation.

Beyond validation through replication, the current chapter’s work also sought
to investigate the generalisation capabilities of the models, particularly Ob+Vb.
Generalisation refers to the model's ability to accurately predict pedestrian beliefs
in novel situations not encountered during training, i.e., not tested previously (Bay
and Yearick, 2024; Shepard, 1987). This was assessed by examining the model
performance across a wider range of kinematic scenarios than those used in the
original experiment. Specifically, the new dataset included extrapolated variations
of initial vehicle speeds and new overall manoeuvres, not present in the earlier
experiment. Perhaps the strongest evidence for the model's generalisability was
indicated by its performance before any parameter refitting. Using the parameter
settings derived from the first experiment, Ob+Vb still achieved a near-perfect
Spearman's rank correlation and low RMSE when tested against the new dataset.

The model's predictions for the new initial speeds (20 and 60 km/h) aligned well
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with the trends observed for similar speeds in the first experiment (25 and 55
km/h), showing it could successfully extrapolate. The successful prediction of
pedestrian beliefs in the new manoeuvres (two-stage deceleration and short
slowing) provided more evidence for the model's ability to generalise beyond the
specific conditions of the original training data, which could be considered a key
step towards deploying such models in real-world applications. Furthermore, the
inclusion of the more complex two-stage deceleration and short-slowing
manoeuvres in the new dataset offered a more realistic test of the model's ability
to capture pedestrian beliefs in more dynamic and potentially unpredictable traffic

situations.

Analyses, mirroring the ones performed in Chapter 3, showed that all three
models captured the general trends in pedestrian beliefs, though with varying
degrees of accuracy. Similarly to Chapter 3, Ob exhibited the poorest predictive
performance, when tested on the new dataset, primarily due to its inability to
account for kinematic effects beyond deceleration (7). Lacking access to speed
and time-to-arrival (TTA), or equivalently, distance, Ob's predictive capacity was
limited to scenarios involving a change in tau-dot. Consequently, it struggled to
accurately predict beliefs in constant speed scenarios and during constant speed
phases of two-stage deceleration and short slowing scenarios, producing similar
predicted belief curves regardless of the specific conditions. In contrast, Vb
addressed these shortcomings by incorporating reward functions related to
speed (vehicle progress), TTA/distance, deceleration (deceleration discomfort),
and pro-social behaviour (yielding politeness), as it did in Chapter 3. Thus, Vb
captured the influence of a wider range of kinematic conditions on the
pedestrians’ beliefs. However, Vb's performance, when tested on the new
dataset, once again appeared limited towards the end of vehicle approaches,
particularly as the vehicle comes to a stop. This limitation arises from the near-
equal evidence for both decelerating and constant speed behaviours in these
situations. Given the importance of the difference in behaviour evidence (as
discussed in Subsection 4.5.3), this near equality creates uncertainty for the
model, even though the vehicle's stopping behaviour is often readily apparent to
human observers. Ob+Vb ultimately combined the strengths of both Ob and Vb,
successfully capturing the effects of all kinematic conditions and belief patterns

present in the new dataset.
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Quantitatively, Ob+Vb and Vb demonstrated near-perfect positive
Spearman's rank correlations, while the Ob model exhibited a lower, though still
relatively high, correlation. In terms of RMSE, Ob+Vb achieved the lowest value,
followed by Vb and then Ob. These results were consistently obtained through all
different parameter settings that were used (Subsection 4.5.2). The BSCV
analysis further supported these findings, revealing that Ob+Vb consistently
yielded the lowest bootstrapped RMSE values, indicating its superior predictive
accuracy and robustness against overfitting. This result was more conclusive
than the BSCV analysis in Chapter 3, where the BSCV RMSE distributions for Vb
and Ob+Vb had a more significant overlap. The clearer discrimination in the
BSCV analysis of the current chapter suggests that the design of the second
experiment was more effective for model selection, allowing Ob+Vb’s better
performance to be more apparent. Furthermore, the parameter investigation
using BSCV-obtained parameter ranges showed consistency with the findings of
Chapter 3, indicating overall stability of the optimal parameterisations across

different datasets on the average level.

The per-participant model fitting revealed that while Ob+Vb consistently
showed the lowest prediction errors at the individual level, the RMSE values were
generally higher than when fitted to the aggregated data, highlighting the inherent
variability in individual pedestrian judgments. Analysis of individual differences
based on age, gender, and driving experience showed some trends, particularly
with older male participants exhibiting slightly higher RMSE and tendency to have
a different mapping from behaviour evidence to subjective beliefs (higher B

values) and a lower prior bias towards the stopping behaviour (lower M values).

Based on the consistent quantitative and qualitative superiority of Ob+Vb
across both aggregated and individual levels, and supported by the model
selection through BSCYV, it seems appropriate to select Ob+Vb as the best of the
suggested models and to recommend the parameter settings with the only refitted
parameter being the prior bias (M) for use in subsequent studies or real-world
applications, based on three key reasons. First, this approach is very efficient, as
the computational cost of optimising only one parameter (M) is substantially lower
than optimising multiple parameters (twelve in total for Ob+Vb) during model
fitting. Second, its obtained RMSE value was very close to that of the full refitting.

Third, this choice facilitated a more direct comparison of the models and their
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parameters across the two experiments, rather than introducing a completely
novel parameter configuration. More specifically, regarding M itself, the adjusted
value was found to be lower than in the previous chapter. That could be explained
by the design of the experiments. The original experiment included 72 segments,
out of which the 30 were segments in which the vehicle maintained constant
speed and 42 (56% of the total segments) in which the vehicle was decelerating.
The new experiment included 80 segments, out of which 40 were segments in
which the vehicle maintained constant speed and 40 (50% of the total segments)
where it was decelerating. Therefore, the participants of the original experiment
may have developed a small bias towards the yielding behaviour of the vehicle
since they were experiencing it slightly more, and that could be detected as a

larger M value.
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5 General discussion

For safe and efficient road traffic interactions, pedestrians must process
perceptual signals from approaching vehicles to interpret their behaviour and
intentions. This behaviour interpretation challenge has become increasingly
important with the emergence of automated vehicles (AVs). It might seem intuitive
that pedestrians base their crossing decisions directly on perceived kinematic
cues, such as the vehicle's current speed or distance. Yet, research suggests that
behaviour estimations and road crossing decisions in traffic scenarios often rely
on integrating information over time and expectations about the behaviour of
other road users (Markkula et al., 2023; Tian, 2023). This thesis primarily
investigated the cognitive mechanisms underlying how pedestrians estimate the
behaviour (specifically, the intention to stop or not stop) of an approaching
vehicle, specifically in the context of interactions with AVs. Understanding these
mechanisms is important for improving road safety and designing AVs that can
interact with pedestrians in a safe and intuitive manner. The current research
addressed identified gaps in the literature, such as the lack of detailed empirical
investigation into behaviour estimation from the pedestrians’ perspective, the
limited focus on vehicle manoeuvres that are observed in real-world beyond just
traffic gaps between vehicles that travel with constant speed, and the absence of
validated, generalisable computational models which explain the underlying

behaviour estimation mechanisms.

The work presented in this thesis involved integrating principles from cognitive
science, specifically Bayesian inference based on action observations and
rational, value-maximising reasoning, into computational models. Two
experiments using a CAVE-based pedestrian simulation environment were
conducted to collect data on pedestrian beliefs under various kinematic
conditions, including different vehicle speeds, Time-To-Arrival (TTA), and
manoeuvre types (constant speed, constant deceleration, mixed/ two-stage
deceleration, short slowing). Three main computational models were developed
and evaluated: an Observation-based model (Ob) relying on perceived
deceleration cues (specifically 1), a Value-based model (Vb) assuming
pedestrians expect rational, value-maximising behaviour from the driver/AV, and
an augmented model (Ob+Vb) combining both mechanisms.
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This chapter presents the contributions of this thesis in detail. First, the key
findings from the empirical and modelling work are summarised. Following, the
theoretical and practical significance of these findings are explored, by
contextualising the results in relation to the primacy of implicit kinematic cues and
the specific cognitive mechanisms of behaviour estimation. Then, these
mechanisms are discussed along with cognitive frameworks, pedestrian road
crossing, and possible neurophysiological underpinnings. The final discussion
sections are regarding the practical implications for AV design and road safety,

the limitations of the current work and potential directions for future research.

5.1 Summary of key findings

The research yielded several novel findings regarding pedestrian belief
updating. First, observation models based purely on low-level kinematic features
like deceleration proved insufficient. The initial study (Chapter 2) demonstrated
that while a Bayesian observer model (Ob) using 7 captured some of the
pedestrians’ belief updating, it failed in scenarios lacking clear deceleration, such
as constant speed approaches where initial speed and TTA clearly influenced
beliefs. This highlighted the limitations of relying solely on perceptual processing

in realistic traffic interactions.

Second, the accuracy of pedestrian belief predictions was improved by
incorporating expectations through value-based reasoning. The value-based
model (Vb) introduced in Chapter 3, which modelled driver rewards and costs
(speed, comfort, politeness), was able to capture the influence of initial speed
and TTA, addressing a major limitation of Ob. However, Vb was less accurate in
predicting pedestrians’ beliefs when the vehicle was very close to coming to a
stop, where the calculated utilities for the stopping behaviour versus the non-

stopping behaviour became less distinct.

Third, the augmented model combining both mechanisms (Ob+Vb)
consistently provided the most accurate predictions of pedestrian beliefs across
both experiments (Chapters 3 and 4). It integrated the strengths of Ob (i.e.,
accuracy with clear deceleration cues, especially later in the vehicle’s approach)

and Vb (i.e., capturing initial expectations based on speed/TTA). This combined
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model achieved near-perfect correlations and the lowest prediction errors

(RMSE) against average pedestrian belief data.

Fourth, Ob+Vb demonstrated robustness and generalisability (Chapter 4). It
replicated Chapter 3's findings when tested on a new participant group and
successfully predicted beliefs in novel scenarios involving different speeds and
new manoeuvre types (‘Two-stage deceleration', 'Short slowing'). This suggests
that Ob+Vb captured underlying cognitive mechanisms rather than just fitting

specific data patterns.

Fifth, both experiments confirmed that pedestrian beliefs are significantly
influenced by initial vehicle speed (higher speed correlating with lower belief in
stopping), initial TTA (longer TTA correlating with higher belief in stopping), and
the specific driving manoeuvre and its history. Early and clear deceleration was

particularly effective in signalling yielding intent.

Finally, while models were primarily fitted to average data, per-participant
fitting (Chapter 4) confirmed Ob+Vb's better prediction performance at the
individual level, albeit with higher prediction errors than when fitted to data
averaged across participants. The results also suggested potential links between
age and model parameters governing belief translation (B) and prior bias (M),

indicating individual heterogeneity in belief interpretation and reporting.

5.2 The primacy of implicit kinematic cues

A main theme of this thesis was the fundamental role of implicit
communication through vehicle motion. As stated in Chapter 1, researchers have
suggested that such kinematic cues are important for pedestrians when they are
deciding to cross or not the road (Dey and Terken, 2017; Lee et al., 2021; Rasouli
et al., 2018). The work presented in this thesis indicated that these kinematic
cues are important for the mechanisms with which pedestrians estimate an
approaching vehicle’s behaviour, as well. This emphasis on kinematic
interpretation can be found in several key studies. For instance, the work of Tian
et al. (2023), reporting on the same experiment as presented in Chapter 2 of this
thesis, documented how parameters like vehicle speed, TTA, manoeuvre type

influence both pedestrian crossing decisions and their subjective estimations of
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vehicle behaviour. More specifically, this thesis and the abovementioned work
indicated that the visual cue 7 is a valuable indicator for the stopping behaviour
of a vehicle and that there could possibly be a relationship between crossing
decisions and pedestrians’ judgements, suggesting the use of behaviour
estimation mechanisms during road crossing decisions by pedestrians. While
these findings are shared between the two works, this thesis’ proposed model
(Ob+Vb) extends them by offering a detailed mechanistic explanation of how
different sources of related information are processed and dynamically integrated
into beliefs. Ackermann et al. (2019) highlighted vehicle deceleration as a key
communication signal. They also found that higher deceleration rates and lower
speeds facilitate quicker detection of vehicle deceleration by pedestrians, which
aligns with the findings of this thesis, as higher deceleration rates and lower
speeds led to earlier pedestrian beliefs that the vehicle was stopping. The
detailed investigation of different deceleration profiles in this thesis extended the
findings of Ackermann et al. (2019) by showing how not only the rate but also the
timing and consistency of deceleration influence beliefs dynamically over the
entire vehicle approach. The current thesis moved beyond mere deceleration
detection also by modelling the continuous belief-updating process and
incorporating not only visual cues like 7, a concept also discussed by Tian et al.
(2023) and Ackermann et al. (2019) in relation to the “Tau-Hypothesis”, but also

speed and TTA-related cues (required deceleration to come to a stop).

The prioritisation of vehicle kinematics by the pedestrians has been supported
in the literature. Studies have shown that when explicit eHMI messages are not
aligned with the vehicle's actual movement, pedestrians default to relying on the
vehicle kinematics (Dey et al.,, 2021; Rezwana and Lownes, 2024) and that
vehicle behaviour (yielding versus non-yielding) was the primary determinant of
crossing willingness, regardless of the pedestrian's knowledge of the vehicle's
automation status or its external appearance (Dey et al., 2019). Moreover, this
continuous processing of the vehicle’s kinematic cues in pedestrians’ crossing
decisions, has been supported by studies using multimodal data (e.g., including
eye-tracking; Lyu et al.,, 2024) and also from the driver’s perspective, where
pedestrians’ decisions were affected by different braking strategies (Yang et al.,
2024). These findings align with this thesis' argument that kinematic interpretation
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is the basis of the pedestrians’ road crossing decisions and consequently of their

understanding of the traffic interaction.

While this thesis focused exclusively on implicit kinematic cues, it is interesting
to consider these findings also in the context of explicit communication,
particularly eHMIs. Researchers who have compared implicit and explicit
communication, have suggested a complex relationship between the two. eHMIs
could enhance perceived safety, trust, and willingness to cross (Dey et al., 2019),
but their effectiveness is context-dependent and requires learning and familiarity
(Lee et al.,, 2022). Based on the argument stated before that kinematic
interpretation forms the baseline for pedestrians’ understanding, explicit eHMIs
could act as a supplementary layer, which would be useful for resolving ambiguity
in situations when kinematic cues are inherently weak, e.g., for low speeds, short
distances, unclear priority (Lau et al., 2022). Thus, this supplementary role for
explicit signals, specifically eHMIls, indicates the primary importance of the
vehicle’s kinematic cues in pedestrians’ understanding of the vehicle’s intentions
(Clamann et al., 2017; Lee et al., 2021). This further validates this thesis' main

focus on modelling the interpretation of implicit kinematic cues.

Past research on implicit communication has often focused primarily on the
role of deceleration on both pedestrians’ road crossing decisions and
pedestrians’ inferences about the vehicle’s intent (Ackermann et al., 2019;
Dietrich et al., 2020; Lee et al., 2022; Petzoldt et al., 2018; Tian et al., 2023). The
present research built on the importance of deceleration on the pedestrian beliefs
regarding the vehicle’s behaviour. However, the findings indicated that
pedestrians possibly integrate and process other kinematic information besides
its deceleration, as well (e.g., vehicle speed, distance, TTA). A contribution of the
current thesis was not only to confirm the importance of kinematic cues but to
also offer and validate a computational model (Ob+Vb) that could explain the
cognitive mechanisms with which pedestrians possibly integrate these implicit
signals with their internal expectations to form and update their beliefs about the

behaviour (stopping or not) of an approaching vehicle.
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5.3 Understanding the behaviour estimation mechanisms

5.3.1 Behaviour estimation mechanisms and their integration

The work of this thesis provided significant support to the hypothesis that
human pedestrians employ an integration of perceptual processing and
expectation-based reasoning when interpreting the behaviour of approaching
vehicles. The limitations of the purely observation-based model (Ob) and the
purely value-based model (Vb), contrasted with the success of the combined
Ob+Vb model, suggested that neither mechanism alone is sufficient to fully
capture pedestrians’ beliefs, and the underlying cognitive process of behaviour

estimation involved.

This integration aligned with broader theories in cognitive science that
suggest interaction between perception and cognition in action understanding,
situation awareness, and decision-making under uncertainty (Markkula et al.,
2023). In particular, this integration was formalised by combining the likelihood of
sensory evidence given a hypothesis — similar to the Ob's processing of observed
kinematic cues (Baker et al., 2009; Dindo et al., 2011; Pezzulo et al., 2013; Vilares
and Kording, 2011) with the prior beliefs or expectations about the hypothesis —
similar to Vb’s assumptions about agent rationality (Jara-Ettinger et al., 2020;
Lucas et al., 2014; Markkula et al., 2023; Wright and Leyton-Brown, 2017). The
human mind continuously goes beyond the raw data of experience, making
inductive inferences in uncertain environments, a process well-described by
Bayesian principles (Griffiths et al., 2008; Vilares and Kording, 2011). The
dynamic and complex nature of road crossing interactions, which are
characterised by uncertainty and the need to anticipate others' actions, requires
such an integration; static perceptual cues or fixed expectations are inadequate
given the dynamic situation (Markkula et al., 2023; Wang et al., 2025). The
success of Ob+Vb demonstrated the applicability of these cognitive principles,
often explored in controlled laboratory settings (Baker et al., 2005, 2017, 2009;
Dindo et al., 2011; Jara-Ettinger et al., 2020; Pezzulo et al., 2013; Zhi-Xuan et al.,
2020), to the challenging, applied domain of pedestrian-vehicle interactions.
While each of the two cognitive mechanisms described above, have been

successful on their own, modelling complex behaviour estimation requires
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considering both the likelihood of observations given intentions and reasoning

about the other agent's goals and expected rationality.

The necessity of both the Ob and Vb components for optimal model
performance implied that pedestrian behaviour estimation likely involves more
than a simple summation of perceptual evidence and prior expectations. While
the Ob+Vb formalised this integration with static weights, its success across such
varied conditions suggested that the underlying cognitive process likely involves
a dynamic relationship between these sources of evidence. This relationship was
supported by the complementary performance of the two component models,
where each was effective in areas where the other was limited. Pedestrians might
rely more on their expectations about rational driver behaviour (the Vb
component) when perceptual cues of deceleration are weak or ambiguous, such
as when the vehicle is distant or maintaining a constant speed. Conversely, as
clear kinematic evidence emerges (e.g., noticeable deceleration), the behaviour
evidence might shift towards the observation-based component (Ob). This
dynamic adjustment would explain why the combined model succeeds across a
wider range of scenarios than either component alone. Such dynamic integration
is characteristic of adaptive behaviour in complex systems (Markkula et al., 2023;
Wang et al., 2025).

The value-based component (Vb) could be interpreted through the lens of
computational rationality, affordance theory, and optimal control principles
(Gawthrop et al., 2011; Hoogendoorn and Bovy, 2003; Jara-Ettinger et al., 2020;
Lio et al., 2020; Markkula et al., 2023; Wang et al., 2015). Pedestrians appear to
implicitly model the driver's 'reward function' or utility, predicting behaviour based
on what action would likely maximise the driver's goals (e.g., balancing progress
towards a destination with the costs of braking, potential collision risk, and social
considerations like politeness or adherence to norms). The successful
performance of this component model suggested that pedestrians may be
possessing an intuitive understanding of vehicle dynamics and an intuitive
understanding of driver goals and rationality relevant to traffic interactions. This
aligns with Theory of Mind (ToM) frameworks where observers infer agents'
hidden mental states (goals, beliefs) by inverting a generative model that
assumes rational action (Baker et al., 2009; Dindo et al., 2011; Pezzulo et al.,

2013; Whiten, 1991). Value-maximisation approaches have been increasingly
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applied in human-robot and human-AV interaction research (Kollmitz et al., 2020;
Lin et al., 2022; Lio et al., 2020; Markkula et al., 2023; Wang et al., 2015, 2025).
These models often incorporate similar factors to the Vb model, such as
efficiency, safety, comfort, and social preferences (e.g., inferring selfishness or
altruism; Bansal et al., 2020), risk attitudes (Kwon et al., 2020), or proxemic utility
(Camara and Fox, 2022). A key distinction, however, is that much of the human-
robot interaction literature has been focused on modelling the human from the
robot's perspective to inform robot planning (Camara et al., 2021). This thesis
offered the complementary inverse perspective by developing and validating a
cognitive model of how the pedestrian interprets the vehicle's actions. This
perspective has not been commonly modelled but is equally important for
designing AVs whose behaviour is interpretable and trustworthy from the human

perspective, a point in the section on practical implications further below.

The finding that tau-dot (7) served as a better observational cue within the Ob
model than raw deceleration rate supports research highlighting the importance
of optical variables in collision perception, time-to-arrival judgments, and
understanding motion (Tian et al., 2023; Wang et al., 2025). Some research has
emphasised that visual looming cues, such as the rate of change of the vehicle's
optical size (8), as critical inputs affecting gap acceptance, potentially via inducing
a sense of collision threat (Tian, 2023). The model success based on the visual
cue 7, in this thesis, suggested that pedestrians are sensitive not only to the
presence or magnitude of the deceleration, but more importantly to the rate of
change of the current time-to-arrival. At the same time, this implied an adaptation
to the dynamics of the braking manoeuvre. Such sensitivity explains why different
deceleration profiles (e.g., constant vs. mixed/two-stage deceleration vs. short
slowing) resulted in distinct belief patterns in the experiments (and model
predictions), even when leading to the same outcome of the vehicle stopping for
the pedestrian. Early and consistent deceleration, which would generate a more
stable and informative 7 signal, appeared to communicate the vehicle’s stopping
intent more effectively than later and abrupt braking, aligning with findings on the
importance of deceleration timing and consistency (Ackermann et al., 2019) and
supported the practical importance of clear kinematic cues. The augmented

model's success demonstrated how this plausible perceptual cue could be
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integrated with higher-level expectations over time to form and update beliefs

about vehicle behaviour.

A significant contribution of this research lied in its detailed, time-resolved
investigation of the change of pedestrian beliefs regarding vehicle intentions
(e.g., the perceived probability of the vehicle yielding). The approach of the
current work differed from the single static outcome measures, such as the final
decision to cross the road, reaction-detection times, or ratings of willingness to
cross the road, often reported in previous studies (Ackermann et al., 2019; Dey
et al., 2019; Giles et al., 2019; Markkula et al., 2018; Pekkanen et al., 2022; Tian
et al.,, 2023). The evolving beliefs measured here were able to capture the
dynamic nature of belief formation and updating throughout the duration of a
vehicle’s approach. The findings indicated that pedestrians do not form
instantaneous beliefs; rather, their beliefs are formed and updated over time
through a continuous process of behaviour evidence integration. The evolution of
beliefs over time, that was observed, aligned with the main idea of the Evidence
Accumulation Models (EAMs; Giles et al., 2019; Markkula et al., 2018; Pekkanen
et al., 2022; Zgonnikov et al., 2024). EAMs formulate binary decision-making —
similar to deciding whether an approaching vehicle will stop or not — as a process
during which noisy sensory evidence is accumulated over time towards one of
the two possible outcome thresholds, e.g., stopping vs not stopping (Myers et al.,
2022; Ratcliff et al., 2016). The evidence driving this accumulation process was
derived from the perceived kinematic cues discussed previously (speed,
deceleration, distance, etc.). The pedestrians’ belief curves could possibly be
interpreted as an indication of the drift rate of such an underlying evidence
accumulator. For example, as more evidence leaning towards the belief of the
stopping behaviour is obtained, the belief probability (P;) increases, similar to an
accumulator drifting towards the stopping boundary (Ma et al., 2025; Myers et al.,
2022; Ratcliff et al., 2016). The current research could thus provide empirical
grounding for applying EAMs to pedestrian-AV interactions, potentially informing
the specific inputs (integrated kinematic cues) and the dynamic output (belief
trajectory) required for such models. The novelty of using segmented scenarios
to measure and model the continuous change of the pedestrian beliefs lied in
capturing this belief evolution within the specific, complex context of pedestrian-

vehicle interactions. The output of this integration process could be described as

183



an evolving internal state — a belief, a level of accumulated evidence, or
subjective probability — regarding the vehicle's behaviour. Likely, this evolving
internal state is what drives the decision-making process, triggering a road
crossing action when the belief in the stopping behaviour surpasses a certain
threshold, rather than a single outcome measure. Therefore, studying the
temporal dynamics of pedestrian beliefs offered a new perspective into the
cognitive mechanisms that possibly translate dynamic perception into observable
action, subsequently providing a better understanding of the overall road crossing

decision process.

The theoretical framework and empirical findings presented in this thesis
aligned significantly with the need for, and demonstration of, large-scale
integration of computational psychological theories to explain complex human
road user interactions, as advocated by (Markkula et al., 2023). In their work it
was argued that understanding behaviours in realistic traffic scenarios demands
the development and implementation of integrated models that combine
elements such as Bayesian perception, Theory of Mind, and value-based
decision-making, which moves beyond using beyond isolated cognitive
mechanisms. This thesis supported such approach by combining models of two
different behaviour estimation mechanisms. The successful application and
adaptation of Bayesian observer models from cognitive science (Baker et al.,
2009), and the adoption of components from the computational framework
developed by Markkula et al. (2023) to specifically model pedestrian beliefs about
vehicle stopping intention represented another novel contribution. In particular,
the proposed Ob+Vb model implemented in the current research was built directly

upon the principles of “Short-term payoff values”, “Behaviour probabilities given

actions”, “Behaviour evidence from estimated behaviour value given actions” and
“Behaviour evidence from observation of the other agent” presented in Markkula
et al. (2023), and in conjunction with an adaptation of Model 1 from Baker et al.
(2009). The specific formulation in this thesis integrated the abovementioned
components, to predict pedestrians’ beliefs about an approaching vehicle’s
behaviour. A key contribution of this research is the validation of the suggested
model against empirical pedestrian belief data from two novel experiments, which
were specifically designed to capture the temporal dynamics of pedestrian beliefs

across a range of vehicle manoeuvres. Therefore, this thesis not only supported
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the need for combined theory-building in psychology using real-world situations
like pedestrian-vehicle interaction but also offered a validated task-specific
model. To summarise, the proposed model’s contribution could be explained by
the efficacy it demonstrated when integrating behaviour estimation through

observations and reasoned expectations to capture pedestrian beliefs.

While general mechanistic models are valuable, pedestrian behaviour exhibits
significant variability both between individuals and across different situations. The
theoretical framework employed in this research allowed for exploring several key
factors contributing to this variability: inherent prior beliefs, the mapping of
behaviour evidence onto belief probability, and the adaptive use of information

processing strategies. These topics are visited in the following subsections.

5.3.2 From behaviour evidence to belief probabilities
In addition to the integrated cognitive framework, this thesis also introduced a

methodological refinement in the form of an alternative softmax transformation
function to map accumulated evidence to belief probabilities. Standard softmax
functions have been commonly used in computational models to represent choice
probabilities (Markkula et al., 2023; Wright and Leyton-Brown, 2017). However,
early model testing in this research indicated that a standard softmax did not fully
capture the nuanced relationship between the model's evidence calculations and
the empirically observed subjective belief ratings from participants. To address
this, a modified softmax function was developed, incorporating parameters B
(evidence scaling factor, akin to an inverse temperature term) and M (offset
constant or bias, specifically towards the stopping behaviour). The inclusion of
these parameters, inspired by Richards' family of growth models and concepts
from machine learning, provided greater flexibility. This adapted formulation
proved important in achieving a better alignment between the model's predicted
beliefs and the actual patterns of human subjective ratings, representing a novel
methodological contribution to the modelling of ranked belief states in dynamic

interaction scenarios.

The consistent finding that the model parameter M often differed significantly
from zero (i.e., a 50/50 probability of stopping or not stopping behaviour) provided
support for the existence of prior beliefs or expectations in pedestrians (Vilares
and Kording, 2011). Pedestrians do not approach interactions free of biases;

instead, they bring prior expectations and knowledge regarding the likely
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behaviour of approaching vehicles, particularly about stopping behaviour. This
aligned with Bayesian models of cognition, where prior probabilities representing
existing knowledge or beliefs are combined with incoming sensory evidence to
form updated posterior beliefs (Baker et al., 2005, 2009; Dindo et al., 2011).

The formation of these prior beliefs is likely a process influenced by a variety
of factors. Through countless interactions with conventional traffic, pedestrians
learn typical driver behaviours associated with specific contexts (e.g.,
deceleration rate, speed and stopping distance at marked vs. unmarked
crosswalks, behaviour near schools; Bella and Silvestri, 2015; Fuller, 1984;
Sucha et al., 2017). This learning could also be extended to novel systems, where
repeated exposure to AVs or specific eHMIs would shape future expectations
(Lee et al., 2022). Additionally, formal knowledge, such as traffic laws dictating
right-of-way, contributes to priors (e.g., expecting vehicles to yield at a zebra
crossing; Habibovic et al., 2018; Sucha et al., 2017), while explicit instructions,
like pre-briefings on how an AV or its eHMI functions, could directly shape priors
for subsequent interactions (Liu and Hirayama, 2025). Furthermore, a
pedestrian's overall trust in technology, and AVs specifically, acts as a powerful
prior (Jayaraman et al., 2019). This trust is malleable, influenced by media
portrayals, perceived system reliability and competence, and assessments of
safety and risk, while novelty and unpredictability associated with AVs can initially
lower trust and create more cautious priors (Rezwana et al., 2025). Cultural
norms also play a role, as social and cultural expectations regarding road user
etiquette and assertiveness can significantly shape prior beliefs about vehicle
stopping behaviour beliefs. So, while the formation of these priors is a varied
process, the results of this thesis provided support into how they were shaped in
different contexts. An indication of that was the difference in the best fitted value
of M between the two experiments. In the second experiment, which included a
higher proportion of non-stopping segments compared to the first experiment, the
best fitted value for M was lower. This suggested that participants in the second
experiment did not have the same prior bias as the participants of the first
experiment, but their expectations were based on the specific situation they were
in, essentially having a reduced prior bias towards the stopping behaviour due to

their current experience.
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Moreover, studies comparing pedestrian behaviour across nationalities
suggest cultural differences in willingness to cross and potentially different
baseline expectations of driver behaviour (Feng et al.,, 2024). Individual
differences further modulate prior beliefs, including demographic factors (age,
gender), personality traits (e.g., extraversion, conscientiousness, risk aversion),
and individual risk perception modulate prior beliefs (Li et al., 2025). For instance,
younger individuals or those with higher education levels often report higher
expectations and potentially more optimistic priors regarding AVs (Rezwana et
al., 2025). Finally, priors are not static but are likely modulated by the immediate
situation, such as the type of crossing (signalized vs unsignalized) (Jayaraman
et al., 2019), traffic density, or the behaviour of surrounding pedestrians (social
influence; Tump et al., 2020). The implication of these priors is significant: they
bias the interpretation of the perceived kinematic cues, especially when those
cues are ambiguous or under noisy conditions. A strong prior belief (e.g., “cars
rarely stop here”) may require substantial and clear kinematic evidence to the
contrary (e.g., significant deceleration) before the pedestrian's belief shifts
sufficiently towards the vehicle’s stopping behaviour. The per-participant analysis
in Chapter 4 showed that these priors were not uniform across individuals.
Specifically, the results indicated a tendency for older participants to have a lower
prior bias towards the vehicle’s stopping behaviour. This aligned with the
abovementioned literature suggesting that factors like age and experience affect
expectations in traffic. These findings demonstrated that M was not only an
adjustment to improve the model’s accuracy but also a quantifiable reflection of

these prior beliefs.

Beyond prior beliefs, the research identifies another source of variability
captured by the model parameter B. The consistent estimation of an average
value for B across individuals or conditions suggests a stable mapping function
that translates behaviour evidence into the belief probability. Parameter B
essentially quantifies the sensitivity of the output (belief probability) to changes in
the underlying subjective rating. This finding is possibly connected to the
cognitive concept of metacognition, which refers to the human capacity to
monitor, evaluate, and regulate one's own cognitive processes and states,
including the feeling of confidence or certainty associated with a judgment or

decision (Lee and Hare, 2023). Parameter B can be seen as reflecting an aspect
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of this metacognitive process: how an individual's internal assessment of their
certainty about the vehicle's stopping behaviour is transformed into an
externalisable probability or behavioural propensity. Stronger, clearer, and more
consistent behaviour evidence supporting one interpretation (e.g., stopping
behaviour) over the alternative should lead to a higher degree of internal certainty
(Schooler et al., 2024). Conversely, ambiguous cues, conflicting information, or
high perceptual noise (e.g., at greater distances) would likely result in lower
subjective certainty (Scheller et al., 2025). Importantly, individuals differ in how
they report their internal certainty levels (Lee and Hare, 2023). Some individuals
might exhibit a conservative translation (high B value), requiring a very high level
of internal certainty before reporting a high certainty of believing in a vehicle
behaviour. Others might have a more liberal translation (low B value), expressing
their belief with high certainty even with moderate or even little available
behaviour evidence. These individual differences in the translation from
behaviour evidence to belief probabilities could stem from personality factors
(e.g., general cautiousness, optimism), cognitive style, or learned response
biases; Pallier et al., 2002; Srol and De Neys, 2021). The theoretical implication
was that the reported subjective ratings of vehicle behaviour provided by the
participants were not a direct reflection of the behaviour evidence but needed to
be transformed. Two pedestrians might perceive the same cues and obtain the
same behaviour evidence yet report different subjective ratings due to individual
differences. This highlighted an important source of variability that seemed to be
separate of prior beliefs. The current research did not distinguish whether this
mapping was only in play when providing verbal reports about beliefs or if it is in
play also when deciding on crossing. For the purposes of the current work,
however, modelling this mapping proved important to accurately predict

pedestrians’ reported beliefs.

5.3.3 Adaptive cue processing

The findings hinting at a potential shift in the cues pedestrians prioritise, when
they update their beliefs regarding the approaching vehicle’s behaviour, based
on the spatiotemporal distance to the vehicle suggested an adaptive information
processing strategy, similar to the one proposed by Tian (2023) regarding road
crossing decisions. Specifically, the observation that pedestrians might rely more

on heuristics or prior expectations at larger distances, while potentially integrating
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more detailed kinematic information like deceleration profiles when the vehicle is
closer, points towards dynamic adjustments in how information is utilised
(DelLucia, 2015; Tian, 2023; Wang et al., 2025). This observation is tied with
established principles about optimal cue integration and dynamic cue weighting
in perceptual science (Scheller et al., 2025). Cognitive systems are known to
dynamically adjust the influence assigned to different sensory cues based on their
perceived reliability or certainty in a given context (Fetsch et al., 2009). In the
context of road crossing, visual estimates of vehicle kinematics, particularly
acceleration or deceleration, are inherently noisier and less reliable at greater
distances (Schmidt et al., 2019; Sripada et al., 2021). A computationally rational
system, therefore, should be less influenced by these less reliable cues under
such conditions (Fetsch et al., 2009). This might lead pedestrians to rely more
heavily on simpler, potentially more stable cues like perceived distance or
average speed, or to fall back on pre-existing prior beliefs or learned heuristics
(DelLucia, 2015; Tian, 2023). As the vehicle approaches the pedestrian, the
reliability of detailed kinematic cues (like deceleration pattern and rate) increases,
justifying an increase in their influence in the estimation of the vehicle’s behaviour
and overall decision process (Wang et al., 2025). The potential reliance on
heuristics at larger distances is also noteworthy. Heuristics are cognitive shortcuts
or rules-of-thumb that allow for faster, less effortful decision-making, especially
under conditions of uncertainty or time pressure (Moussaid et al., 2011).
Examples relevant to pedestrian belief updating might include using a simple
distance threshold (e.g., “believe that the vehicle is not stopping if it is within X
meters and travels with Y speed”) or relying on a default prior assumption (e.g.,
“vehicles travelling at highway speed rarely stop unexpectedly”). Employing such
heuristics when detailed kinematic information is unreliable (i.e., at distance)
could be an efficient cognitive strategy (DelLucia, 2015; Tian, 2023; Wang et al.,
2025). The formulation and performance of Ob+Vb implemented in this thesis
provided a computational representation of this adaptive process. In situations
where the deceleration-related cues were unreliable, such as at larger distances
or during constant speed approaches where the observation evidence were weak
Ob underperformed. In these cases, Ob+Vb was driven mainly by the Vb
component, which was the source of expectations or heuristics about rational
driver behaviour. This was the reason why Vb and Ob+Vb captured the
pedestrian belief patterns where Ob failed. Conversely, in cases where the
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vehicle was close to the pedestrian and initiating a clear deceleration, the
observation-based evidence for the stopping behaviour were strong and less
ambiguous. On the other hand, Vb’s evidence regarding the two possible
behaviours were not discriminable. In these cases, Ob and Ob+Vb performed
better than Vb. The better performance of Ob+Vb, which combined the two
behaviour estimation component models, indicated that pedestrians do not rely
on a single strategy, but adapt their information processing to the quality and

nature of the available cues.

Furthermore, the concepts of prior beliefs, subjective certainty, and dynamic
cue weighting are likely interrelated. Prior beliefs (M) establish the baseline
expectation. Its influence was strongest at the beginning of a vehicle approach,
where it affected the initial belief predictions of Vb before stronger observation-
based evidence was accumulated. As the vehicle approach unfolded, the
reliability of the perceived cues determined how much the belief was updated
away from the prior. Lower cue reliability or in other words behaviour evidence
conflict (A; — 4, = 0) leads to lower overall certainty. Consequently, a greater
relative influence of the prior belief on the reported belief, mediated by the
individual's specific evidence-to-belief mapping (B) (Lee and Coricelli, 2020). The
observations presented in this subsection could provide a plausible cognitive
mechanism underpinning the observed shift towards reliance on priors or

heuristics when estimating the behaviour of more distant vehicles.

5.4 Integrating behaviour estimation within the road crossing
task and cognitive frameworks

The behaviour estimation mechanisms modelled in this thesis, particularly the
augmented model (Ob+Vb), represented a plausible precursor to the broader
pedestrian road crossing task. In cognitive science it has been suggested that
internal beliefs and intentions guide overt behaviour (Ajzen, 1991). In the current
thesis, this principle was investigated in the context of pedestrian-vehicle
interactions. For instance, Pekkanen et al. (2022) provided model-based
evidence that pedestrians engage in a process akin to intent recognition showing

that the inclusion of deceleration-related cues (i) was necessary to explain the
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timing of crossing decisions. The current research built upon this, providing a
detailed model that explained how this intent recognition, or in this thesis’ terms
behaviour estimation, occurs through the integration of deceleration-related cues
perception (Ob) and rational expectations of the other agent’s behaviour (Vb).
This estimation of vehicle behaviour was assumed to be an input for subsequent
phases of the road crossing task, informing the decision making, action selection
and eventually execution, as indicated by the computational framework of
Markkula et al. (2023).

Behaviour estimation could also be mapped within established cognitive
frameworks, such as Situation Awareness (SA; Endsley, 1995) and Human
Information Processing (HIP; Lee et al., 2017). The initial sensory processing
stages of the models, where pedestrians receive perceptual cues like 7, speed,
and distance, correspond to Level 1 SA and the Perceptual Stage of HIP. The
computations of Ob+Vb, where these cues are integrated resulting into behaviour
evidence which are translated into probabilities regarding the current behaviour
of the vehicle, represent Level 2 SA (Comprehension) and the Cognitive Stage of
HIP (which includes working memory, decision and response selection). These
beliefs, P;, represent the projection of the vehicle's future state answering to the
question “Is the vehicle stopping or not?”, aligning with Level 3 SA, and is possibly
the precursor to the Action Stage in the HIP model, as described in the paragraph
above. So, a confident and early belief that the vehicle is stopping, for example,
would potentially lead to a smoother, less pressured crossing. Conversely,
uncertainty or a late-forming belief regarding the vehicle’s behaviour might lead
to hesitation or no action. As stated before, a main contribution of this thesis was
providing a validated model (Ob+Vb) that explained how these beliefs are formed
and updated, and in this section its cognitive mechanisms’ plausibility was briefly

discussed.

5.5 Potential neurophysiological underpinning of behaviour
estimation

The behaviour estimation mechanisms proposed in this thesis, particularly the

augmented model (Ob+Vb), exhibited significant similarities and potential
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neurophysiological underpinnings in the operation of the Mirror Neuron System
(MNS). The MNS is consisted of neurons that discharge when an individual
performs a specific action and but importantly also when they observe another
individual performing a similar action (Jeon and Lee, 2018; Kilner et al., 20073,
2007b; Oberman et al., 2007; Proverbio and Zani, 2023; Rizzolatti and Craighero,
2004). This system was first discovered in the premotor cortex (F5) of macaque
monkeys (di Pellegrino et al., 1992; Rizzolatti et al., 2001), while Molenberghs et
al. (2012) and Rizzolatti and Sinigaglia (2016) findings suggested that MNS
properties are also present in the human brain. This unique characteristic has led
researchers to posit the MNS as a fundamental neural underpinning for
understanding the actions and intentions of others (Zhao et al.,, 2024), an
outcome equivalent to what the behaviour estimation mechanisms, investigated

in this thesis, have been described to do.

The ability of humans to infer the intentions of others through the observation
of their actions is basic for social cognition and the MNS is considered a plausible
candidate for mediating this 'mind-reading' ability (Kilner et al., 2007b). However,
the precise mechanism by which intentions are inferred from observed
movements is complex, especially given that similar movements can arise from
different underlying goals or intentions (Kilner et al., 2007a). This is analogous to
the challenges faced by pedestrians in interpreting an approaching vehicle's
behaviour, where similar kinematic cues might precede either a stopping or non-

stopping behaviour.

Kilner et al. (2007b) proposed that the MNS solves this ill-posed problem
through a predictive coding framework based on empirical Bayesian inference.
Within this framework, the most likely cause of an observed movement (i.e., the
underlying intention or goal) is inferred by minimising prediction error across all
relevant cortical levels. This is similar to how Ob+Vb works, where pedestrian
beliefs about vehicle behaviour are updated by integrating direct observations
(akin to sensory input in the MNS) with value-based expectations (akin to prior
predictions or generative models of rational driver behaviour). The MNS,
therefore, is not simply a passive reflection of observed actions but an active
inferential system that predicts the sensory consequences of an observed agent's
motor commands based on an expectation of their goal and then uses prediction

error to update these inferences. Therefore, the main finding of this thesis, that
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an integrated model (Ob+VDb) is required to accurately predict pedestrian beliefs,
provides computational and behavioural support to the idea that action
understanding in this context is an active, inferential process, rather than a

passive representation of vehicle motion.

Furthermore, the MNS is not solely driven by visual input; it also activates
when the sight of a movement is partly occluded, suggesting it predicts the most
likely kinematics regardless of full visibility (Kilner et al., 2007b). Research has
shown that the human MNS is sensitive not only to the physical aspects of an
action but also to the underlying intentions and the social context (Oberman et
al., 2007). For instance, activity in the inferior frontal gyrus (IFG), a key area of
the human MNS, is modulated by the inferred purpose of an observed action
(Oberman et al., 2007). The MNS’ involvement in social cognition is further
highlighted by its proposed role in empathy and theory of mind. Studies using
Electroencephalography (EEG) mu wave suppression as an index of MNS
activity (Fox et al., 2016; Proverbio and Zani, 2023) have shown that mu
suppression is controlled by the degree of social interaction observed, with more
interactive, and socially and contextually relevant stimuli resulting in greater MNS
activity (Oberman et al., 2007; Proverbio and Zani, 2023). This suggests a
specialisation of the human MNS for processing socially relevant stimuli (other
agents’ actions), which is relevant to pedestrian-vehicle interactions as
pedestrians are essentially interpreting the social affordances (Orban et al., 2021)

offered by the approaching vehicle's behaviour.

In essence, just as the MNS allows an observer to transform visual information
about another's actions into knowledge about their internal state (e.g., intentions),
the behaviour estimation mechanisms modelled in this thesis allow a pedestrian
to transform kinematic information from an approaching vehicle into a belief about
its future behaviour. The proposed Ob+Vb model, therefore, can be viewed as a
computational-level description (Marr, 1982) of the processes that might be
implemented at the neuronal level by the MNS and associated brain regions
during the pedestrians’ estimation of the approaching vehicle’s behaviour.
Moreover, as advocated by Marr (1982) and echoed more recently by Niv (2021),
an important objective of computational cognitive science is to successfully
develop computational models that explain behaviour. The validation of such a

behavioural model does not require a direct mapping to its neurophysiological
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underpinning, even though achieving that mapping would be an extra step
towards gaining a better understanding of the cognitive mechanisms involved.
Thus, the aim of the work presented in this thesis was primarily to establish a
computationally sound and behaviourally validated model of behaviour
estimation, rather than to investigate the underlying neurobiological structure per

Se.

5.6 Practical implications

The findings and the developed Ob+Vb model have several practical
implications for the design and deployment of automated vehicles, the

development of driver assistance systems and the enhancement of road safety.

5.6.1 Designing interpretable AV behaviours

A key practical implication of these findings is the need to design AVs to
generate behaviours that are not just safe but also easily and accurately
interpretable by pedestrians. Simply avoiding collisions is insufficient; AV
behaviour must align with human cognitive processes and expectations to foster
trust and efficient interactions (Rezwana and Lownes, 2024). The better
performance of Ob+Vb emphasised that pedestrians interpret vehicle actions
through a combination of observed motion and assumptions about rational
behaviour. AVs should therefore be designed with this combined mechanism in
mind. Based on the findings of this thesis, the following recommendations for AV

kinematic behaviour can be made.

1) AVs should utilise clear, consistent, and timely kinematic cues. The
experiments demonstrated that early and noticeable deceleration is more
effective in signalling stopping intent than late, harsh braking, even if the
latter involves higher peak deceleration rates. This aligns with findings
suggesting defensive deceleration profiles are preferred and lead to earlier
crossing initiation (Ackermann et al., 2019; Dietrich et al., 2020). Constant
speed approach phases should be unambiguous, and unpredictable or
overly subtle changes in speed should be avoided, especially when

nearing pedestrians, as these create uncertainty that hinders accurate
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belief formation. Designing AV motion planners to explicitly generate such
interpretable kinematic profiles is therefore important (Moller et al., 2025).
AVs require sophisticated algorithms to predict pedestrian behaviour for
safe planning (Camara et al., 2020b). This thesis provides the inverse
perspective: a model of how pedestrians predict vehicle behaviour. This
understanding is also important for AVs. If an AV can use a model
analogous to Ob+Vb to simulate a pedestrian's beliefs in real-time, it could
predict whether its planned manoeuvre is likely to be perceived as clear,
ambiguous, or even misleading, and adapt its plan accordingly
(Prédhumeau et al., 2022). For instance, if the model predicts that a
planned deceleration is too subtle to be interpreted as a clear intention to
yield, the AV could proactively adjust its trajectory to be clearer, perhaps
by decelerating slightly earlier or more distinctly. This would possibly allow
for more proactive and cooperative interactions.
The partial success of the value-based component (Vb) suggests that
designing AVs to behave in ways that align with pedestrians' expectations
of rational, goal-directed, and socially considerate behaviour (e.g.,
showing appropriate politeness or caution based on context) could
enhance interpretability and trust (Camara and Fox, 2022). This involves
programming AVs with behaviours that reflect an understanding of implicit
road rules and are in accordance with the appropriate social norms.
A further consideration arising from these implications involves a potential
long-term feedback loop. If cognitive models like Ob+Vb are successfully
used to design AVs that exhibit highly interpretable and predictable
behaviour, the task of interpreting these AVs may become cognitively
simpler for pedestrians over time. As pedestrians learn the consistent
behavioural patterns of AVs, their reliance on complex inferential
processes might decrease. In such a future, simpler cognitive models —
perhaps closer to the Ob or Vb components alone, with strong, learned
priors reflecting established AV norms — might become sufficient to
accurately predict AV intentions. This suggests a potential co-evolution
where human-centred AV design, informed by current cognitive models,
could eventually lead to reduced cognitive load for pedestrians and
potentially shift the dominant cognitive strategies employed in these
interactions.
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5.6.2 Informing driver assistance systems and eHMI design
While the primary focus is on AVs, these principles are also relevant for

advanced driver assistance systems (ADAS) in human-driven vehicles. ADAS

that influence vehicle kinematics should do so in a manner that is clearly

interpretable to nearby pedestrians.

1)

For systems like Adaptive Cruise Control (ACC) that may react to
pedestrians, the findings on effective kinematic cues (e.g., early,
consistent deceleration) are directly applicable. An ACC that decelerates
smoothly and noticeably for a pedestrian far in distance communicates its
intent better than braking later and more sharply.

Furthermore, the Ob+Vb model could be used to evaluate the legibility of
ADAS-controlled vehicle behaviours for pedestrians, ensuring that
automated assistance enhances rather than complicates pedestrian-
vehicle interactions.

Although this thesis focused on implicit communication via vehicle
kinematics, the findings could inform eHMI design. The proposed model
highlights scenarios where pedestrian belief uncertainty is high, typically
when implicit kinematic cues are weak or ambiguous (e.g., a distant
vehicle or one moving at a slow, constant speed). These are scenarios
where an explicit signal from an eHMI could be most beneficial to resolve
ambiguity and clarify intent (Lau et al., 2022). The Ob+Vb model could
potentially be used to identify these ambiguous cases in real-time and
trigger an appropriate eHMI display. While pedestrians may not feel at risk
from a distant vehicle, an early explicit signal could still be valuable for
establishing trust and better comprehension of the AV's plan. However, the
literature cautions that eHMI signals should not be | conflict with the
vehicle's kinematics to be effective and avoid undermining trust (Lau et al.,
2022).

5.6.3 Enhancing simulation and safety
Beyond informing the design of vehicle behaviours, the computational

framework developed in this thesis has practical applications as a tool for

improving how AV systems are tested and how road safety is analysed.

1) The development and testing of AV systems rely on simulation

environments (Zhao et al., 2024). Ob+Vb could contribute to creating more
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realistic virtual pedestrians (agents) for these simulations. Current
simulators like CARLA (CARLA, 2025) or SUMO (Rampf et al., 2023), and
co-simulations thereof (Gutiérrez-Moreno et al., 2022), often employ
descriptive or rule-based pedestrian models which are not offering the
interpretability and more in-depth explanations of the cognitive processes
underlying behaviour. Implementing agents whose belief states evolve
according to cognitive principles like those captured by Ob+Vb would allow
these agents to react to simulated AV behaviour in a more human-like
manner, providing a more valid and challenging testbed for AV algorithms
compared to agents reacting based on rules or predefined settings (Wang
et al., 2023). While implementing complex cognitive models in real-time,
large-scale simulations presents challenges (Moller et al., 2025), the
principles derived from Ob+Vb can guide the development of higher-
fidelity cognitive agents.

Understanding the root causes of pedestrian-vehicle incidents often
involves understanding misinterpretations of intent (Alambeigi et al., 2020;
Habibovic and Davidsson, 2012). The Ob+Vb model could be used
retrospectively to analyse accident scenarios or near-misses, identifying
specific kinematic patterns or interaction sequences that are prone to
misinterpretation by pedestrians due to conflicting perceived kinematic
cues and rational expectations. Ob+Vb provides a more psychologically
grounded basis for how pedestrian agents in microscopic traffic simulation
models estimate vehicle behaviour, thus it could offer more accurate
predictions of overall pedestrian behaviour, conflict likelihood and the
effectiveness of safety interventions within these simulations. This thesis,
by detailing how beliefs are formed and updated, could contribute to new
metrics for assessing the interpretability/predictability/effectiveness of
vehicle manoeuvres or eHMI designs from the pedestrian's cognitive
viewpoint. Eventually, these metrics could become part of safety
assessment protocols for new vehicle systems or infrastructure changes.
Another implication could involve infrastructure design (e.g., crosswalk or

traffic light placement) or targeted driver/pedestrian education programs.
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5.6.4 Experimental framework

Another significant practical implication of the current thesis is its contribution
to experimental methodology. The work details and validates a robust
experimental framework designed to investigate the behaviour estimation
mechanisms of pedestrians while they observe approaching vehicles. This
framework, validated across two extensive experiments, used an immersive
virtual reality environment to present pedestrians with a variety of controlled yet
realistic vehicle approach scenarios, including the systematic manipulation of
vehicle speed, TTA, and diverse driving manoeuvres. The experimental design,
adapted from cognitive science paradigms (Baker et al., 2009), successfully
captured the temporal evolution of pedestrian beliefs by presenting scenarios in
truncated segments. At each judgment point, a two-part response (behaviour
judgment and confidence rating) was employed to quantify the belief state and its
associated certainty. The success of this framework in generating nuanced data
capable of stringently testing computational models like the Ob+Vb, and its
proven utility in assessing model generalisability, establishes it as a robust and
replicable paradigm for future research into pedestrian perception, cognition, and

interaction with both human-driven and automated vehicles.

5.7 Limitations

The work provided in this thesis, while providing valuable insights into
pedestrian behaviour estimation, is subject to limitations that should be
considered when interpreting the findings and planning future work. These
limitations can be broadly categorized by their origin: (1) the experimental design,
(2) the model assumptions, and (3) the focus on only a cognitive subpart of the

whole road crossing task.

The experiments were conducted in an immersive VR environment. While this
offers significant advantages in terms of experimental control, safety, and the
ability to systematically manipulate complex scenarios, the specific experimental
design involving scenarios truncated into segments for belief rating cannot be
directly replicated in real-world field studies. Although the VR-based approach

allows for true interaction and is superior to simpler methods like video stimuli,
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potential limitations remain, including possible distortions in perceptual fidelity
(e.g., estimation of speed and distance) and an attenuated sense of risk, which
might lead to behavioural differences compared to real-world actions (Wynne et
al., 2019). The direct transferability of exact parameter values from VR to real-
world behaviour thus requires careful consideration, though the structural findings

regarding cognitive mechanisms are likely more robust.

Furthermore, the tested scenarios represent a limited subset of real-world
encounters. The experiments focused on interactions with a single approaching
vehicle on a straight single-lane road under clear daylight conditions, without the
complexities of multiple road users, varied environmental conditions (weather,
lighting), or diverse road layouts (curves, complex intersections). Notably, the
scenarios did not include explicit communication cues from the vehicle, such as
flashing headlights or eHMIs. Moreover, there was no visible driver figure (even
virtual) in the approaching vehicle, which might influence pedestrian expectations
and trust. The impact of these explicit communication cues and the social
presence of a driver on behaviour estimation remains to be explored within this

framework.

The participant sample for each experiment consisted of 30 adults. While
covering a range of ages, participants under 18 years old were not included, due
to ethical considerations. Moreover, participants over 50 years old constituted a
small minority of the sample, and in this older subgroup, all were men, limiting
representation of and generalisability to older female pedestrians. Some might
argue that 30 participants per experiment is a relatively small sample for
generalising cognitive models broadly. However, the studies based on which the
current experiments were developed (Ackermann et al., 2019; Baker et al., 2009;
Dey et al., 2019; Petzoldt et al., 2018), had a similar number of participants.
Another limitation relates to the data collection strategy for each participant. By
collecting only one belief rating, per segment, the design prioritised testing a wide
range of scenarios over assessing the consistency of the judgments for each
participant.

A second category of limitations relates to the simplifying assumptions made
by the computational models. The Ob component, for instance, relied on 7 as the
primary perceptual cue for deceleration. Pedestrians possibly integrate a richer

set of visual information not captured by the model, potentially including subtle
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changes in the vehicle's pitch during braking or minor trajectory deviations.
Similarly, Vb assumes a specific reward structure for the driver (e.g., balancing
progress, comfort, politeness). Real driver motivations are likely more complex
and context dependent. The combination weights of the two evidence sources
(Bo, By) in the Ob+Vb model were treated as static parameters. The relative
weight of observation versus value-based evidence might change based on
factors like cue reliability, distance, uncertainty, or cognitive load, a complexity

not fully realised in the current model.

The composite belief score, which transformed the binary choice and the
confidence rating into a single continuous variable, is susceptible to confidence-
based biases and could be considered a methodological limitation. This approach
risks misrepresenting the central tendency of the group's opinion, particularly in
ambiguous scenarios where the population's belief is near the 50% uncertainty
threshold. For instance, a small number of overconfident individual outliers (i.e.,
those assigning high confidence to a minority choice) could lead to a shift on the
aggregated average, effectively masking the agreement between the less
confident majority. While this effect may not entirely invalidate the model's overall
predicted rank correlation, it hinders the significance of the output as a true
representation of the average group beliefs. A more robust approach would be to
decouple the decision (choice) and the confidence (certainty). The model would
first capture the binary choices of the participants, which Tian et al. (2023)
showed that they follow similar patterns to the composite belief scores in the data
of the current thesis. The confidence could then be modelled as a separate metric
of uncertainty, mitigating the risk of a single participant skewing the overall
aggregated belief. Other ways of reducing that risk would involve increasing the
data density, either by expanding the dataset (more participants) or through
repeated measures to assess the consistency of individual confidence ratings,

and/or outlier treatment.

The current modelling approach focused on capturing the continuous
dynamics of pedestrian belief updating over time, as influenced by observed and
expected kinematics, rather than investigating the accuracy of the pedestrians’
judgments. An alternative approach, would be to assess the judgment accuracy,
classifying each trial by whether the reported belief correctly inferred the vehicle's
true behaviour. While informative, this approach was beyond the scope of this
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thesis. The challenge would be to classify beliefs that sit near the 50% uncertainty
threshold. Treating these near-50% beliefs as either 'correct' or 'wrong' would
impose an arbitrary binary classification on a continuous cognitive state,
potentially misrepresenting the pedestrians’ true uncertainty and could possibly
hide the behaviour estimation mechanisms that this thesis aimed to model. Thus,
the choice was made to model the mechanisms of inference across all states of
certainty, rather than focusing on a potentially simplified classification of judgment

accuracy.

While this thesis addresses noise in perception (i.e., Gaussian noise in
observations for the Ob model), more complex noise considerations, such as
value-transformed sensory noise, a term borrowed from Markkula et al. (2023),
or specific assumptions about where noise is injected, are not made. The models
consider a limited set of vehicle behaviours (stopping/not stopping) and
pedestrian responses (belief rating). Although, the Markkula et al. (2023)
computational framework outlines a more granular approach to action selection
based on motor primitives and accumulated action value estimates, it was
deemed to be a level of detail beyond the scope of the current belief estimation

models.

In addition to these assumptions, limitations also arise from the fitting and
validation of the models. Despite taking measures such as Bootstrap Cross-
Validation (BSCV) to assess generalisability and mitigate overfitting (as
discussed in Chapters 3 and 4), the complexity of Ob+Vb, with its number of
parameters, inherently carries a risk of fitting noise in the specific datasets used.
Continuous validation on diverse, unseen datasets is important. While per-
participant fitting was explored (Chapter 4), confirming the superiority of Ob+Vb
at the individual level, analyses prior to that relied on data averaged across
participants. Averaging can potentially mask significant individual variability in
how pedestrians interpret vehicle behaviour and may obscure the possibility that
different subgroups employ qualitatively different strategies, something which

should thus be considered not least in the interpretation of the Chapter 3 findings.

Finally, the third type of limitation has to do with the fact that the current
research concentrated on modelling the pedestrian's belief about the vehicle's
stopping behaviour (P;). As also discussed in Section 5.4, in the comprehensive

framework of Markkula et al. (2023), behaviour estimation is one component of a
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larger perception-action loop. The models of this thesis primarily address the
“Bayesian perception” and “Behaviour estimation" components leading to the
belief P, analogous to Py, in Markkula et al.'s (2023) terms. While this belief is
an important input, the subsequent stages of the road crossing task — such as
the explicit decision to cross (often modelled via evidence accumulation to a
decision threshold), motor planning, and the physical execution of the crossing
action (involving motor primitives) — are not explicitly modelled in the current
thesis. Factors like risk perception, urgency, specific gap acceptance thresholds,
and game-theoretic adaptations to the other agent's unfolding actions are part of
this latter stage. A complete model of road crossing would need to integrate the
proposed belief estimation models with these subsequent decision-making and

action components.

5.8 Future research directions

This thesis has provided valuable insights into the cognitive mechanisms
underlying pedestrian behaviour estimation when interacting with approaching
vehicles, resulting in the implementation and validation of the augmented Ob+Vb
model. However, the findings and methodologies presented herein also open
several promising avenues for future investigation to further refine the overall
understanding of behaviour estimation mechanisms in the pedestrian-vehicle

interaction context and enhance the practical applicability of this work.

A next step would possibly involve validating the Ob+Vb model and its
parameterisation in more naturalistic settings. This could include studies in
CAVE-based pedestrian simulators but extracting the driving manoeuvres (to be
later truncated into segments) either from high-fidelity driving simulators or real-
world driving, that would allow for even more realistic behaviour estimation
testing. An alternative method to increase realism would be to capture 3D videos
of real traffic encounters to be experienced within the CAVE environment,
potentially offering a higher degree of visual and contextual fidelity. Such studies
are important for confirming the model's real-world applicability and fine-tuning its
parameters. Such studies would help to investigate behaviour estimation in a
wider array of complex traffic scenarios. This includes exploring interactions at
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intersections, on curved roadways, in the presence of multiple road users (e.g.,
other vehicles, cyclists), and under diverse environmental conditions such as
varying weather and lighting. The influence of infrastructure, like marked

crosswalks or traffic signals, also warrants investigation.

Fitting Ob+Vb to video data, in contrast to the kinematic data extracted from
the controlled VR environment, would require overcoming the challenge of
kinematic extraction from visual input. The first step would be a Computer
Vision/Deep Learning model to reliably estimate the target vehicle's key kinematic
variables from the raw pixel data. The extracted kinematics would provide the
inputs to the component models. Finally, since real-time subjective beliefs cannot
be obtained from video data, a method to extract pedestrian beliefs, such as
asking third-person observer participants to provide continuous belief ratings
would be needed to calculate the target output (correlation and/or RMSE between

the model predictions and the extracted beliefs).

Further enhancement and integration of the current models represent another
important direction. The current models could be extended to incorporate a richer
set of observed cues. This might include vehicle trajectory information, changes
in vehicle orientation, or even non-kinematic cues such as turn signals or explicit
eHMI displays, if present. An interesting avenue for future work is the integration
of the validated Ob+Vb model with established road user interaction models to
create comprehensive models of the pedestrian behaviour (Markkula et al.,
2023). Such integration could happen with models such as Evidence
Accumulation Models (EAMs), where the Ob+Vb’s belief output P, could be used
to set the drift rate of an Evidence Accumulation Model, where a stronger belief
in the vehicle stopping would accelerate the accumulation of evidence toward
making a crossing decision. Furthermore, the Ob+Vb currently models the belief
of a vehicle’s behaviour from the pedestrian’s perspective. To integrate this into
a full pedestrian-vehicle framework, two adaptations would be needed. First, both
agents’ beliefs about each other would have to be modelled. Second, the
behaviour estimation output (belief about the other’s behaviour) would have to be
connected to an evidence accumulation step as described above, to complete
the decision loop (for both agents). Alternatively, Ob+Vb could be integrated with
the Perceptually Plausible Road Crossing Decision (PT-PRD) model as
presented in Chapter 6 of Tian (2023) to yield a more comprehensive pedestrian
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crossing decision model. The main idea would be to use the belief output from
Ob+Vb (P;) to inform the PT-PRD model's dynamic decision-making processes.
This would enhance the PT-PRD model by making it sensitive also to the
expectation-based factors that the current belief model captures, potentially

improving predictions of crossing initiation timing.

The validated Ob+Vb model provided a first thorough investigation of
behaviour estimation in single-vehicle, single-pedestrian interactions. However,
in real-worlds traffic scenarios multiple agents might be involved. Thus, an
interesting future direction would be to extend the suggested model in a
hierarchical manner so that it could integrate social influences and contextual
complexity. The presence of other pedestrians could introduce social influences
that affect both the perceived intent of the approaching vehicle and the
pedestrian’s own urgency. The model would need to account for pro-social cues,
such as the phenomenon of group size increasing the likelihood of yielding (Park
et al., 2024). This could be modelled within the Vb component by making the
politeness constant an adaptive parameter that increases with the observed
number of attentive pedestrians waiting to cross, thereby affecting the calculated
utility for the stopping behaviour. Furthermore, the model could address collective
decision-making, where a pedestrian's prior beliefs might be influenced by the
actions of nearby pedestrians, i.e., a form of social influence or herd behaviour
(Faria et al., 2010) that could impact the confidence of the initial estimation.
Conversely, the presence of other vehicles (e.g. non-conflicting traffic, traffic flow
behind the approaching vehicle) would introduce contextual ambiguity and
additional constraints for the driver/AV. In the Ob component, the visual presence
of surrounding traffic could increase cognitive load and visual clutter, which may
be modelled by increasing the perceptual noise and/or lowering the weight
assigned to the observation-based evidence. For the Vb component, calculating
the utility would also be more complex, since there would be the need to include
a cost term for traffic impedance, i.e., the penalty for unnecessary or unsafe

deceleration that disrupts the flow of following vehicles.

The potential for dynamic weighting of the observation-based and value-
based components within the Ob+Vb model should be explored. The weighting

of these mechanisms’ evidence might shift based on contextual factors like cue
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reliability, distance to the vehicle, perceived ambiguity, or the pedestrian's

cognitive state.

Investigating individual and group differences would also be interesting since
a uniform model fit would likely be insufficient for capturing all pedestrians’ beliefs.
Drivers and AVs should interact safely with a diverse population, including older
adults or children, whose beliefs of vehicle behaviour may differ from an
“average” adult. Therefore, larger-scale studies would be beneficial to
systematically explore how factors such as age, gender, risk tendency, cognitive
abilities, trust in automation, prior experiences, and cultural background influence
the parameters of Ob+Vb (particularly the prior bias M and the belief mapping B)
and the overall accuracy of its predictions. Correlating fitted model parameters
with validated psychometric measures could provide deeper insights and
potentially lead to personalized models or AV interaction strategies tailored to
different user groups. For instance, one could investigate if scores on a risk-taking
or a trust in automation scales (Blais and Weber, 2006; Kohn et al., 2021; Zhang
et al., 2019) correlate with the model's prior bias or belief mapping parameters.
This could lead to more personalised models or AV interaction strategies

associated to different road user groups.

The practical value of the Ob+Vb model lies in its potential application in AV
development, simulation, and broader road safety analysis. As discussed in
Section 5.6 future engineering research should focus on implementing these
insights into AV perception and planning systems. This includes designing AVs
that generate interpretable kinematics and potentially equipping AVs with an
inverse model based on Ob+Vb to anticipate pedestrian interpretations, leading
to safer and more comfortable interactions. Furthermore, the cognitive principles
captured by Ob+Vb can inform the development of more realistic virtual
pedestrian agents for AV testing in simulation environments like CARLA or
SUMO. Creating smart agents whose beliefs evolve according to these principles
would provide a more valid testbed for AV algorithms compared to current rule-
based agents.

Future work could also delve into the neurophysiological underpinnings of
behaviour estimation. Neurophysiological studies, perhaps employing EEG to
measure mu suppression (Fox et al., 2016; Proverbio and Zani, 2023) or fMRI

(Caspers et al., 2010; Molenberghs et al., 2012) to identify active regions during
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simulated behaviour estimation tasks similar to those used in this thesis, could
investigate the neural correlates of the belief updating processes modelled by
Ob+Vb. This could provide direct evidence for the engagement of MNS during
behaviour estimation in road traffic, offering a more holistic understanding and
link the computational mechanisms of behaviour estimation to their neural

implementation.

Finally, building on the concept of a long-term feedback loop discussed
previously (Section 5.6), another interesting research path is to explore how
pedestrian behaviour estimation and trust evolve over long-term exposure to AVs.
As a reminder, if AVs become more predictable, the cognitive load on pedestrians
might decrease, potentially shifting the dominant cognitive strategies they

employ.

By pursuing these future research directions, the understanding of pedestrian
cognitive mechanisms can be further advanced, contributing to the development
of safer road environments and more intuitive and socially adept interactions

between humans and AVs.

5.9 Concluding remarks

The work of this thesis presents a novel comprehension of how pedestrians
estimate the behaviour of approaching vehicles to eventually make road crossing
decisions. This research represents the first attempt to implement and validate
computational models of the specific cognitive mechanisms underlying this
process. The results demonstrate that pedestrian beliefs regarding the behaviour
of an approaching vehicle are not based solely on perceiving deceleration-related
cues or on rational, value-maximising expectations alone, but requires an
integrated framework combining both. The implementation and validation of a
successful behaviour estimation model has been demonstrated by adopting and
combining established cognitive science models, and by adapting cognitive
science simplified experimental laboratory paradigms to the pedestrian-vehicle
interaction setting. From this thesis’ findings, the augmented Ob+Vb model can
be suggested as a plausible psychological and successful computational

explanation for how pedestrians estimate vehicle behaviours. This integrated
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behaviour estimation mechanism could allow for the improvement of human-AV
interaction design and the development of more realistic cognitive agents for use
in traffic simulation. However, future work should investigate these mechanisms
across a wider range of scenarios and populations, to pave the way for the
development and deployment of socially capable automated vehicles whose

behaviour is intuitively and accurately understood by pedestrians.
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Appendix A

Table A.1 - 4-way factorial ANOVA

Mean Partial
Source Sum Sq. | d.f. Sq. F o] Eta-Sq.
PID 81674 29 2816 2.37 0.0094 0.211

Segment 45562 15187 | 24.54 | <0.0001 0.130

w

Initial Speed 132145 2 66073 | 132.68 | <0.0001 0.302

Initial TTA 57105 57105 | 98.67 | <0.0001 0.158

—

Manoeuvre 1093667 2 | 546833 | 589.59 | <0.0001 0.782

PID: Segment 53841 87 618 0.9 0.705 0.150

PID: Initial 28882 | 58 | 498 | 1.09 | 0375 | 0.086
Speed

PID: Initial TTA 16784 29 578 1.17 0.3166 0.052

PID: Manoeuvre 53793 58 927 1.31 0.1165 0.150

Segment: Initial 43430 6 7238 | 21.37 | <0.0001 0.125

Speed
Segm?’}g’”’t’a’ 17362 | 3 | 5787 | 1573 | <0.0001 | 0.054
Segment: 614618 | 6 | 102436 | 202.92 | <0.0001 | 0.668
Manoeuvre
Initial Speed:
el Shee 1864 2 | 932 | 328 | 00448 | 0.006
Initial Speed: 8852 4 | 2213 | 621 | 00001 | 0.028
Manoeuvre
Initial TTA: 5518 2 | 2759 | 755 | 0.0012 | 0.018
Manoeuvre
PID: Segment: | gag1a | 174 | 338 13 | 00084 | 0.162
Initial Speed

PID: Segment:

Initial TTA 32008 87 367 1.41 0.0093 0.095

PID: Segment:

87838 174 504 1.94 <0.0001 0.223
Manoeuvre

PID: Initial
Speed: Initial 16493 58 284 1.09 0.2997 0.051
TTA

PID: Initial
Speed: 41365 116 356 1.37 0.0078 0.119
Manoeuvre

PID: Initial TTA:

21191 58 365 14 0.0268 0.065
Manoeuvre

Segment: Initial
Speed: Initial 3509 6 584 2.25 0.0368 0.011
TTA

Segment: Initial
Speed: 12131 12 1010 3.88 <0.0001 0.038
Manoeuvre
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Segment: Initial
TTA: 3598 6 599 2.3 0.0324 0.012
Manoeuvre
Initial Speed:
Initial TTA: 2692 4 673 2.58 0.0356 0.009
Manoeuvre
Error 305222 | 1172 | 260
Total 2840104 | 2159
Table A.2 - Pairwise comparisons of progressive time segments in constant

speed manoeuvres

Group A Group B Lﬁmatr A-B LIJ_I:’:‘;" p

o9 | o092 | 0.992 6.736 12.480 | 0.005
o092 | 0093 | 13214 | 18958 | 24702 | <0.001
o093 | 5e9% | 16721 | 22465 | 28209 | <0.001

Table A.3 - Pairwise comparisons of progressive time segments in deceleration

manoeuvres
Group A Group B Lower A-B Upper p
Limit Limit
Segt, Seg2, | 44085 -8.541 22797 | <0.001
Deceleration | Deceleration
Seg2, Seg3. | 47653 | -11.909 6.165 | <0.001
Deceleration | Deceleration
Segs3, Seg4, | 44077 -8.333 2589 | <0.001
Deceleration | Deceleration
Table A.4 - Pairwise comparisons of progressive time segments in mixed
manoeuvres
Group A Group B Lower A-B Upper p
Limit Limit
Seg1, Mixed | Seg2, Mixed | -18.035 -12.291 -6.547 <0.001
Seg2, Mixed | Seg3, Mixed | -27.063 -21.319 -15.575 <0.001
Seg3, Mixed | Seg4, Mixed | -27.480 -21.736 -15.992 <0.001
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Table A.5 - Pairwise comparisons of driving manoeuvres at the same segment

levels
Group A Group B Lower A-B Upper p-value
Limit Limit
Segf, Segl, | 55327 | -19583 | -13.839 | <0.001
Constant Deceleration
Seg2, Se92, | 40605 | -34.861 | 29117 | <0.001
Constant Deceleration
Segs, Segd, | 74473 | 65729 | -59.985 | <0.001
Constant Deceleration
Seg4, Seg4, | 402271 | 96527 | -90.783 | <0.001
Constant Deceleration
Seg1, Seg1, Mixed |  3.839 9.583 15.327 | <0.001
Constant
S€92, | se0o Mixed| -15188 | -9.444 3700 | <0.001
Constant
Seg3, .
Seg3, Mixed | -55.466 -49.722 -43.978 <0.001
Constant
Seg4, .
Seg4, Mixed | -99.667 -93.923 -88.179 <0.001
Constant
Seg1, .
. Seg1, Mixed 23.422 29.166 34.910 <0.001
Deceleration
Seg?2, .
. Seg2, Mixed 19.672 25.416 31.160 <0.001
Deceleration
Seg3, .
. Seg3, Mixed 10.262 16.006 21.751 <0.001
Deceleration
5694, | seq4 Mixed | -3.139 2.604 8.348 1
Deceleration
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Table A.6 - Linear mixed-effects model analysis

Model information:

Number of observations 2400

Fixed effects coefficients 32
Random effects coefficients 30

Covariance parameters 2

Formula:

Linear Mixed Formula with 5 predictors

Model fit statistics:

Two-stage 26.79 5.07 | 5.28
deceleration

AlC BIC LogLikelihood Deviance
21352 21548 10642 21284
Fixed Effects Coefficients (95% Confidence Intervals):

Name Estimate | SE tStat DF p Lower | Upper
(Intercept) 78.52 7.92 | 990 | 2368 | <0.001 | 62.98 | 94.07
Segment 25 | 2.89 |-0.86| 2368 | 0.388 | -8.17 | 3.17

Speed 1.31 | 0.18 | -7.28 | 2368 0 | -1.66 | -0.96

TTA 5.11 1.67 | 3.06 | 2368 | 0.002 | 1.83 | 8.39
Constant | 5016 | 13.56 | -1.48 | 2368 | 0.137 | -46.76 | 6.44
speed
Deceleration | 28.62 | 13.56 | 211 | 2368 | 0.035 | 2.01 | 55.23
Two-stage | g5 19 | 13.88 | -3.97 | 2368 0 |-8242|-27.97
deceleration
S‘;gme”t' 024 | 0.06 | 3.64 | 2368 0 011 | 0.37
peed
Segment: TTA| -1.36 | 0.61 | -2.23 | 2368 | 0.025 | -2.56 | -0.17
Speed: TTA 0.03 | 0.03 | 0.87 | 2368 | 0.382 | -0.04 | 0.11
Segment:
Constant 13.07 | 4.95 | -2.63 | 2368 | 0.008 |-22.79 | -3.36
speed
Segment: 249 | 495 | 050 | 2368 | 0.615 | -7.22 | 12.21
Deceleration
Segment:

2368 0 16.85 | 36.73

Speed:
Constant 0.14 0.31 | 0.46
speed

2368 | 0.643

-0.46 | 0.76

Speed:

Deceleration -0.75 0.31 | -2.43

2368 | 0.015

-1.37 | -0.15

Speed: Two-
stage 0.38 0.31 1.22
deceleration

2368 | 0.222

-0.23 | 0.99

TTA: Constant

8.02 286 | 2.80
speed

2368 | 0.005

241 | 13.63

TTA:

Deceleration -8.07 2.86 | -2.82

2368 | 0.005 | -13.68 | -2.47

TTA: Two-
stage 4.74 292 | 1.62
deceleration

2368 | 0.105

-0.99 | 10.49

239




Segment:
Speed: TTA

-0.002 | 0.01

-0.17

2368

0.859

-0.03 | 0.02

Segment:
Speed:
Constant
speed

0.06 0.11

0.55

2368

0.578

-0.16 | 0.28

Segment:
Speed:
Deceleration

0.21 0.11

1.86

2368

0.062

-0.01 0.43

Segment:
Speed: Two-
stage
deceleration

-0.14 0.11

-1.27

2368

0.204

-0.36 | 0.08

Segment:
TTA: Constant
speed

-0.96 1.04

-0.91

2368

0.358

-3.00 | 1.08

Segment:
TTA:
Deceleration

1.68 1.04

1.60

2368

0.108

-0.36 | 3.72

Segment:
TTA: Two-
stage
deceleration

-1.89 1.06

-1.77

2368

0.077

-3.98 0.2

Speed: TTA:
Constant
speed

-0.08 | 0.066

-1.23

2368

0.219

-0.21 0.04

Speed: TTA:
Deceleration

0.16 0.066

2.5

2368

0.012

0.03 0.29

Speed: TTA:
Two-stage
deceleration

-0.11 0.066

-1.74

2368

0.081

-0.24 | 0.01

Segment:
Speed: TTA:
Constant
speed

-0.002 | 0.024

-0.07

2368

0.944

-0.04 | 0.04

Segment:
Speed: TTA:
Deceleration

-0.03 | 0.024

-1.42

2368

0.153

-0.08 | 0.01

Segment:
Speed: TTA:
Two-stage
deceleration

0.04 0.024

1.69

2368

0.091

-0.006

0.08

Random Effects Covariance Parameters (95% Confidence Intervals):

Group: PID (30 Levels)

Name1 Name2 Type Estimate Lower Upper
(Intercept) (Intercept) std NaN NaN
Group: Error
Name Estimate Lower Upper
Res Std 20.392 19.823 20.977
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Appendix B
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Figure B.1 - Comparison between model predictions and average pedestrian
beliefs for all 20 kinematic scenarios (parameter settings of Chapter 3)
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Figure B.2 - Comparison between model predictions and average pedestrian
beliefs for all 20 kinematic scenarios (refitted only parameter M)
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Figure B.3 - Comparison between model predictions and average pedestrian
beliefs for all 20 kinematic scenarios (refitted all parameters)
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Appendix C

Behaviour Estimation Task Post-Trial Questions:

1. Was the vehicle stopping for you or was it maintaining its speed

and passing you?

Stopping

Passing

2. How confident are you in your previous answer? Please rate
your confidence level on a scale from 1 to 9.

1 2 3 5 7 8 9
N.O t Somewhat Totally
confident X )
at all confident confident
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Appendix D
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Figure D.1 - Ob’s pairwise parameter scatterplot matrix. The histograms in the
diagonal illustrate the distribution of the respective parameter values with the
BSCV-obtained RMSEs. The scatterplots show the pairwise parameter
combination areas with obtained RMSEs
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Figure D.2 - Vb’s pairwise parameter scatterplot matrix. The histograms in the
diagonal illustrate the distribution of the respective parameter values with the
BSCV-obtained RMSEs. The scatterplots show the pairwise parameter
combination areas with obtained RMSEs
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Figure D.3 - Ob+Vb’s pairwise parameter scatterplot matrix. The histograms in the diagonal illustrate the distribution of the respective
parameter values with the BSCV-obtained RMSEs. The scatterplots show the pairwise parameter combination areas with obtained RMSEs
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Appendix E

Table E.1 - Models of pedestrian decision-making

size, Vehicle speed,
Number of vehicles
approaching,
Vehicle type,
Pedestrian on
marked crossing,
Driving direction,

Sex of pedestrian

Study Model Input Output
Kotseruba | Agent-based model: | Vehicle kinematics Pedestrian crossing
and Intend-Wait- (speed, position, decisions (e.g., Cross or
Rasouli Perceive-Cross acceleration), Wait), Waiting time,
(2023) Pedestrian Number of collisions,
characteristics, Head turns, Minimum
Perception TTC
parameters (field of
view - FoV),
Scanning strategy,
Time since last
observation
Sun et al. Binary Logit Model Gap size, waiting Probability of Gap
(2002) time, Pedestrian Acceptance (Binary
age, Pedestrian decision: accept or reject)
gender, Number of
pedestrians waiting
Zhao et al. | Binary Logit Model | Gap size, Crossing Probability of Gap
(2019) distance, Waiting Acceptance (Binary
time, Position of decision: accept or reject)
pedestrian in
relation to the kerb
Himanen Multinomial Logit Pedestrian distance | Probability of continuing
and (MNL) Model from kerb/refuge, (walks on) or reacting
Kulmala Locality (City size), | (stops, retreats, or needs
(1988) Pedestrian group to run)
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Tian et al. Psychophysics- PGA Model Input: Probability of Gap
(2022) based Gap 6, Looming Acceptance, Post-
Acceptance (PGA) | calculation inputs: encroachment time,
Model with mixed TTA, Vehicle Crossing duration, and
effects (Logit Model speed, Vehicle Percentage of unsafe
based on Visual length, Vehicle decisions and tight fits
Looming cue). width, Lateral
distance from car to
pedestrian,
Distance between
pedestrian and
vehicle
Raghuram Artificial Neural Gap size, Probability of Gap
Kadali et Network (ANN) Frequency of Acceptance (Binary
al. (2014) Model attempt, Rolling gap | decision: accept or reject)
(Yes/No), Speed
changes condition
(Yes/No), Vehicle
speed, Movement
of pedestrian,
Group size, Waiting
time, Near or far
lane gap, Type of
vehicle
Pawar and | Binary Logit Model Gap Time or Probability of Gap
Patil Distance, Speed of Acceptance (Binary
(2016) vehicle, Traffic decision: accept or reject)
volume
Tian et al. PT-PRD Model: Visual Perception | Binary Crossing Decision,
(2025) Hybrid Perception Cues: 4 and 1, Crossing Initiation Time,

Strategy and
Crossing Initiation
Model

Physical Kinematic
Inputs: Vehicle
distance, Vehicle
width, Vehicle
speed, Vehicle
deceleration, Time
gap, TTC

Cumulative Crossing
Probabilities
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Wang et Deep Q-Networks Position and Discrete decision (Go or
al. (2023) Learning, Velocity of vehicle | Not Go), Gap Acceptance
Constrained by and pedestrian, Rate, Crossing Initiation
Bayesian Position and Time
Perceptual Filtering Velocity
of Noisy Visual uncertainty, Visual
Input noise
Crosato et Deep Reward Function AV Decision-Making
al. (2023) Reinforcement Input: AV Policy (Driving Styles:
Learning performance Egoistic to Pro-Social),
Framework using parameters, AV Longitudinal
Social Value Pedestrian acceleration/deceleration,
Orientation intentions/comfort, Pedestrian Trajectory
Informed Reward | Pedestrian crossing
Function, Social speed, Motivation,
Force Model and Distance, Social
Gap Acceptance Value Orientation,
Model, Pedestrian Model
incorporating Inputs: AV velocity,
Situational Distance, Lane
Awareness width, AV
acceleration,
Pedestrian desired
walking speed
Markkula Integrated Noisy Position and Continuous Action
et al. Computational Speed of other Decisions
(2023) Psychological agent,

Model (Bayesian
perception, Theory
of mind/Behaviour

estimation,

Affordance-based

long-term value

estimation, and
Evidence
accumulation

decision-making)

Acceleration/Speed

adjustments
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Giles et al. Variable-Drift Apparent TTA (1) Crossing Initiation Time
(2019) Diffusion Model and TTA rate of
(VDDM) change (7)
Pekkanen Variable-Drift TTA (7), Distance, | Decision Timing, Crossing
etal. Diffusion Model TTA rate of change | Onset Time Distribution
(2022) (VDDM) (7), Presence of
eHMI (Yes/No),
Noise
Markkula Evidence Looming, TTA (1) Pedestrian
et al. Accumulation/DDM) and TTA rate of Crossing/Yielding
(2018) change (7), Decisions

Presence of explicit
signal (Yes/No),
Vehicle’s
Awareness of

pedestrian
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