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Abstract 
 

Understanding and modelling the interactions between pedestrians and 

automated vehicles (AVs) is important for facilitating widespread and safe AV 

deployment. During pedestrian-vehicle interactions, pedestrians form and update 

their beliefs regarding the vehicle’s behaviour as it approaches. The mechanisms 

determining how a pedestrian interprets the behaviour of an approaching vehicle 

remain unclear. Previous studies have proposed models of cognitive 

mechanisms, such as estimating the goals of other agents, but none has 

attempted to apply and model the behaviour estimation mechanism in the real 

and dynamic context of pedestrian-vehicle interaction. Drawing inspiration from 

cognitive science, a first vehicle behaviour estimation experiment was conducted, 

and existing Bayesian observer models of goal estimation were modified and 

applied to the pedestrian crossing setting. Thus, an observation-based model 

with two alternatives based on 1) direct deceleration perception and 2) a more 

plausible visual cue, the rate of change of the relative rate of optical expansion 𝜏̇, 

was proposed. The first experiment demonstrated that pedestrians do not solely 

rely on deceleration-related cues to judge whether an approaching vehicle is 

stopping, but that the vehicle’s kinematic conditions, specifically its speed, time-

to-arrival, and overall manoeuvre time history, also influence their beliefs. Even 

though the observation-based model achieved a relatively high correlation 

between model predictions and average pedestrian beliefs, it did not predict all 

the average pedestrian belief patterns in detail, being quite limited in predicting 

beliefs when the vehicle maintains constant speed. So, it was assumed that 

pedestrians may be utilising prior knowledge and situational expectations when 

the vehicle is far away, while deceleration observations become more crucial as 

the vehicle approaches. Thus, pedestrians likely infer the vehicle’s behaviour by 

both directly observing the vehicle’s actions and expecting the driver/AV to follow 

the most beneficial (value-maximising) behaviour. This rational, value-maximising 

reasoning mechanism was proposed as the value-based model. Both 

observation-based (Ob) and value-based (Vb) models were then integrated into 

an augmented model (Ob+Vb). All three models were evaluated for their ability to 

predict average pedestrian beliefs regarding the approaching vehicle’s behaviour. 

This evaluation illustrated that Ob struggled with constant speed scenarios due 
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to its reliance on deceleration cues, Vb captured most kinematic effects but had 

limitations when the approaching vehicle is close to stopping, and Ob+Vb 

leveraged the strengths of both previous models, accurately reflecting all 

kinematic effects and belief patterns, achieving near-perfect correlation and the 

lowest error. Finally, to validate the three behaviour estimation models and test 

their generalisability, a second vehicle behaviour estimation experiment was 

designed and conducted, and the models’ predictive capabilities were evaluated 

on the resulting dataset. Analyses on this dataset demonstrated the replication of 

previous findings in identical kinematic scenarios, validating the models, 

particularly Ob+Vb, which accurately predicted pedestrian beliefs, again. 

Furthermore, Ob+Vb successfully generalised to unseen scenarios with varied 

speeds and new manoeuvres, showing its ability to predict beliefs in novel 

situations. Additionally, Ob+Vb again exhibited superior performance, obtaining 

near-perfect correlation and the lowest error compared to the other models. 

Together, these studies demonstrate that: 1) while Bayesian observation of 

behaviour may suffice for simple laboratory tasks, it falls short in real traffic 

contexts, 2) pedestrians assess approaching vehicle behaviour by combining 

observations of vehicle actions with expectations of the driver's most rational, 

value-maximising future actions and 3) the proposed augmented model 

successfully predicts pedestrian beliefs, reproducing findings quantitatively and 

qualitatively, illustrating generalisability, and providing a likely explanation of the 

mechanisms with which a pedestrian interprets the behaviour of an approaching 

vehicle. Overall, investigating and modelling behaviour estimation in the 

pedestrian-vehicle interaction setting and its underlying mechanisms, present a 

significant challenge. However, this thesis demonstrates that it is possible to gain 

deeper insights into how a pedestrian interprets an approaching vehicle’s 

behaviour, by integrating different psychological theories. This thesis not only 

enhances the theoretical understanding but also offers practical implications for 

designing safer and more intuitive interactions between pedestrians and AVs.  
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1 
 

1 Introduction 
 

1.1 Background and motivation 

 

It was not until the 1970s that walking gained research interest as a mode 

of transport (Hitchcock and Mitchell, 1984) even though it has been the most 

widespread and originally the primary means of human locomotion. Currently, 

walking accounts for the second most popular mode of transport (in terms of the 

number of trips per year), after driving cars, in England, as per the Department of 

Transport’s National Travel Survey (Department for Transport, 2024). Its 

popularity stems not only from its convenience, minimal environmental impact, 

and health benefits, but also from its relative importance to access other modes 

of transport and foster social connections (Dytrt, 2023; Loukaitou-Sideris, 2020). 

However, in transport research, the term “walker” is rarely used, but rather the 

most common term is “pedestrian” (Wigan, 1995), borrowed from the Latin 

pedester which means “on foot”. Despite the etymology of the word, people with 

mobility impairments, sensory deficits or cognitive impairments, who use mobility 

aids to navigate, are also considered pedestrians (Federal Highway 

Administration, 2013). According to the Cambridge Dictionary the word 

“pedestrian” means “a person who is walking, especially in an area where 

vehicles go” (Cambridge Dictionary, 2024). The second part of that definition 

implies how important the interaction between pedestrians and vehicles is. 

While cars have remained the most popular mode of travel and the English 

households’ ownership, of at least one car, increased 5%, since 2002 

(Department for Transport, 2024), it is apparent that more interactions or even 

conflicts between pedestrians and cars will happen (Zhao et al., 2019). The facts 

that pedestrians do not have protective equipment available and are moving 

slower than vehicles, make them one of the most vulnerable road users (VRUs) 

(El Hamdani et al., 2020). This vulnerability translates to a significant number of 

fatalities and injuries sustained by pedestrians in road accidents annually (World 

Health Organization, 2023a). The overall annual global toll of road traffic 

accidents resulting in deaths is approximately 1.19 million people, out of which 

pedestrians account for the 21% of those fatalities (World Health Organization, 
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2023b). Even though the overall road traffic deaths have decreased by 5% over 

the last decade, the deaths amongst pedestrians and cyclists remained almost 

the same (World Health Organization, 2023b). In the UK, the past two decades 

the total number of pedestrian deaths and injuries has decreased from 

approximately 35000 to approximately 19000 (Department for Transport, 2023). 

Even though this reduction was substantial, the absolute number remained 

incredibly high. In the US, during the last decade, only the pedestrian deaths 

increased and reached their highest number (7522 people) in 41 years 

(Naumann, 2025). While vehicle speed, impairment due to alcohol consumption, 

suboptimal road infrastructure and inadequate visibility of pedestrians are the 

most common factors resulting in pedestrian deaths and injuries (World Health 

Organization, 2013), another cause of pedestrian crashes is misunderstandings 

and incorrect expectations during pedestrian-vehicle interactions (Habibovic and 

Davidsson, 2012). The criticality of this issue and consequently the need to 

increase road safety shows the importance of the research on such traffic 

interactions (Markkula et al., 2020). During interactions with approaching 

vehicles, pedestrians must correctly interpret the vehicle’s behaviour, to make 

their decisions regarding whether to cross the road or not and reach their own 

goal safely. So, investigating and modelling how pedestrians infer the behaviour 

of an approaching vehicle, from observing its movements, is important for the 

field of pedestrian safety. 

The focus on road traffic interaction research has been intensified due to 

the technological advancements in robotics, sensors and ever-growing 

computational capabilities (Department for Transport, 2015; Nissan Motor 

Corporation, 2013), the rise of advanced driver assistance systems and the 

potential for fully autonomous vehicles (SAE levels 4 and 5; SAE International, 

2021). While these autonomous vehicles (AVs) have promised significant societal 

and economic benefits (Centre for Connected and Autonomous Vehicles, 2022; 

Forrest and Konca, 2007; Reimer, 2014), ensuring safe and smooth interaction 

with pedestrians remains a key challenge (Rasouli and Tsotsos, 2020; Brown and 

Laurier, 2017; Millard-Ball, 2018). There are some concerns regarding these 

vehicles. Overly cautious AV behaviour could lead to frustration and delays on 

the roads (Brown and Laurier, 2017; Millard-Ball, 2018; Nordhoff et al., 2025). 

Conversely, unexpected actions or ambiguous communication signals by AVs 
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could cause accidents due to pedestrians’ confusion or misinterpretation 

(Alambeigi et al., 2020; Habibovic and Davidsson, 2012; Lee et al., 2024). These 

potential problems highlight the urgent need for a deeper understanding of how 

humans interact in traffic, encompassing both qualitative and quantitative 

research (Kalantari et al., 2023; Rasouli et al., 2017a; Camara et al., 2020b;  

Schneemann and Gohl, 2016; Kotseruba and Rasouli, 2023; Markkula et al., 

2023, 2018; Markkula and Dogar, 2022; Sadigh et al., 2018; Schwarting et al., 

2019; Yang et al., 2024). Interactions between pedestrians and manually driven 

vehicles have been researched widely during the past few decades and it has 

been clear that it is not an easy task to fully understand and model them (Rasouli 

et al., 2017b; Guéguen et al., 2015; Markkula and Dogar, 2022; Sun et al., 2002). 

In the case of AVs, the absence of a human driver makes the situation even more 

complicated as the pedestrian-AV interactions lack communication aspects which 

are available in the pedestrian-driver interactions, for example eye contact or 

hand gestures (Rasouli and Tsotsos, 2020; Dey and Terken, 2017; Markkula et 

al., 2020). However, communication in road traffic interactions involves being able 

to convey intentions through movement or “body-language” and explicit signalling 

(if needed), confirming that those were understood and understanding the 

intentions of other road users (Ackermann et al., 2018; Fuest et al., 2018; 

Schieben et al., 2019). 

So, without a doubt, increased road safety is still needed, especially for 

pedestrians, who are the most vulnerable in traffic interactions. The interaction 

between a pedestrian who is about to cross the road, and an approaching vehicle 

is very common and safety critical. For years, AVs were seen as a promising 

solution to keep pedestrians safe from accidents. However, researchers have 

realised that figuring out how these cars should interact with people is a big 

challenge (Schieben et al., 2019).  AVs need to know the safest way to behave 

around pedestrians, but pedestrians can be unpredictable, making it hard to 

understand how they will react and what these cars should do. Researching and 

more specifically modelling pedestrian crossing behaviour is important for making 

roads safer and developing safe and interaction-capable AVs. The work 

presented in this thesis revolves around modelling the mechanisms with which 

pedestrians form and update their beliefs regarding the behaviour of an 

approaching vehicle, which communicates its intent only by its movement (no 
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explicit signals) and hopes to shed light on the relation of those mechanisms with 

the overall road crossing decision making process in such interactions. 

In the upcoming sections a review of past literature is provided, including 

the key causation factors which lead to accidents in pedestrian-vehicle 

interactions, observations of pedestrian road crossing behaviour when they 

interact with approaching vehicles, how they communicate with such vehicles, 

models of the road crossing task, and observations and models of how humans 

infer the intentions of an approaching vehicle. 

 

1.2 Road accidents involving pedestrians 

 

As stated in the previous section, VRUs and particularly pedestrians are 

those most likely to be harmed in traffic accidents (Department for Transport, 

2024; National Highway Traffic Safety Administration, 2024). This primarily 

includes pedestrians and people on two wheels (like cyclists and motorcyclists) 

because they lack the outer protection of a vehicle (El Hamdani et al., 2020). 

Among this group, pedestrians and cyclists are less likely to cause harm to 

others, but on the other hand, heavier and faster vehicles, can pose a risk to 

them. Among vulnerable road users, some groups are at a higher risk of injury, 

including the elderly, people with disabilities, and children. 

As stated before, every year, approximately 1.19 million people are losing 

their lives in road traffic accidents around the world and VRUs accounted for more 

than half of those deaths (World Health Organization, 2023a). More specifically, 

in the EU, almost 20% of all road deaths involved pedestrians, which was a higher 

proportion in comparison to other VRU groups (European Road Safety 

Observatory, 2023). Similarly, in the US the percentage of pedestrian deaths is 

approximately 5% of all the road traffic deaths (National Highway Traffic Safety 

Administration, 2024). 

Several risk factors play an important role in the likelihood and severity of 

pedestrian vehicle collisions. A major risk factor that increases the likelihood of a 

fatal injury for a pedestrian when struck by a motor vehicle is impact speed 

(Pikūnas et al., 2004; Tefft, 2013). Alcohol consumption is also a major risk factor 

for pedestrian accidents as it impairs judgment, slows reactions, and reduces 
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vision, making it more likely for pedestrians to be involved in accidents, in which 

either the driver (Phillips and Brewer, 2011) or the pedestrian (Lasota et al., 2020) 

is intoxicated. Absent or poorly designed or maintained road infrastructure (such 

as sidewalks, crosswalks, traffic signals) can lead to serious accidents as well 

(Zegeer and Bushell, 2006). Pedestrians are more likely to be hit if they are hard 

to see, which can be caused by lack of streetlights or if they are not wearing 

reflective clothing in low-light conditions (World Health Organization, 2004). Other 

factors that could increase the risk of pedestrian accidents include inattentive and 

distracted pedestrians (Ropaka et al., 2020). For the abovementioned issues, the 

solutions that have been most often suggested regarding increasing pedestrians’ 

safety and preventing fatal collisions include interventions on the road design and 

infrastructure, the use of protective and alerting equipment and education around 

road safety (Yannis et al., 2020; Zegeer and Bushell, 2006). 

Although the causation factors which are listed above are more common, 

they could be mitigated through safety interventions and prevention measures, 

as stated above (World Health Organization, 2013). Conversely, there are other 

causation factors for which it is not as clear whether prevention measures would 

help. A study by Thomas et al. (2013), which was based on an in-depth analysis 

of investigated crashes, identified key human-related factors. For both 

pedestrians and drivers, temporary person related factors (inattention/distraction 

due to competing external or internal activities), were the most common causation 

factor (25% and 28% respectively). A close second causation factor was found to 

be interpretation errors (16% for car drivers and 21% for pedestrians), which 

occurred either when the road users’ expectations of what the other road users 

would do did not match with the reality or due to time/distance misjudgements. 

Most analyses/models regarding causation of crashes and near critical situations, 

in VRU/pedestrian-vehicle interactions, focus on the driver’s perspective. The 

most common causation patterns from the driver's perspective have been found 

to be: unawareness of the conflict pedestrian (obstructed line of sight or reduced 

visibility), distracted driving, unexpected pedestrian behaviour, improper 

estimation of the gap distance between the vehicle and the pedestrian and 

infrastructure issues for example lack of pedestrian crossing (Habibovic et al., 

2013; Sheykhfard and Haghighi, 2018; Yue et al., 2020). Habibovic and 

Davidsson (2012) have provided an exception to the driver-centric view, in their 
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analysis of accident causation in VRU-vehicle interactions, where they found that 

pedestrians’ misinterpretations of the driver’s intentions is a significant causation 

factor. They applied the SafetyNet Accident Causation System (SNACS) to a 995 

crashes dataset, to systematically classify the crash causation information and 

organise that information into causation patterns. SNACS is a standardised 

method for systematically classifying crash causation factors. The findings of that 

study highlighted that in 70% of 56 crashes which involved VRUs (20 pedestrians 

and 36 bicyclists), the VRU was aware of the approaching vehicle but 

misinterpreted the situation and/or made an avoidance planning error. For 

example, they incorrectly thought the driver had noticed them and would react, 

or they miscalculated when to cross. Similarly, Räsänen and Summala (1998) 

suggested two main mechanisms producing bicycle-vehicle collisions, one being 

the driver’s misdirected attention and the other one being the cyclist’s erroneous 

beliefs about the driver’s intentions. In the second case, those faulty assumptions 

were based either on law requirements or the preconception that the driver should 

be the one adjusting their behaviour to the behaviour of the more vulnerable road 

user, i.e. the cyclist. Thus, to make a step towards increasing pedestrian safety, 

there is a need of further research and especially modelling the cognitive 

mechanisms through which pedestrians infer the behaviour of an approaching 

conflict vehicle. To build such models, the first step would be to explore the overall 

pedestrian behaviour and the factors that influence their behaviour during 

interactions with approaching vehicles. 

 

1.3 Pedestrian behaviour during road crossing interactions 

 

Crossing the road while oncoming traffic is present is a basic and frequent 

task for all pedestrians. Unsurprisingly, most pedestrian crashes occur when 

people attempt to cross the road while there are vehicles approaching, or at 

crosswalks that are not very safe (Malenje et al., 2018; Sucha et al., 2017; 

Zhuang and Wu, 2011). Thus, studying pedestrian road crossing behaviour is 

important for improving road safety. Researchers have conducted extensive 

studies for years to gain insights into pedestrian crossing patterns and identify 

strategies for improving road safety. In addition to improving road safety 

researching pedestrian behaviour is also relevant to the development, 
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acceptance and eventually deployment of socially capable and safe AVs. 

Crossing the road is easy when there are no other road users, but it becomes a 

complicated task when there is oncoming traffic (usually vehicles). This more 

complicated situation can be regarded as an interaction between a pedestrian 

and an approaching vehicle and was chosen as the main traffic scenario in which 

this thesis was focused on. Markkula et al. (2020) defined road traffic interactions 

as “situations where the behaviour of at least two road users can be interpreted 

as being influenced by the possibility that they are both intending to occupy the 

same region of space at the same time in the near future”. 

Before modelling pedestrian road crossing behaviour during interactions 

with vehicles, it is important to review the key findings of past empirical studies 

on pedestrian behaviour. Firstly, the research area of pedestrian behaviour can 

be divided into macroscopic and microscopic (Papadimitriou et al., 2009). In the 

former case the pedestrian behaviour is approached in a more strategic level, for 

example overall planning of a journey, scheduling activities/goals and choosing 

departure times, whereas in the latter case the pedestrian behaviour is 

approached in an operational, local level, such as the road crossing task, 

interactions with other road users and obstacle avoidance. It has been argued 

that the macroscopic pedestrian behaviour research is lacking detail on the traffic 

interaction and is not that directly related to the safety aspect of such interactions 

(Papadimitriou et al., 2009). For these reasons the research done was only 

focused on the microscopic approach of pedestrian behaviour in this project and 

more specifically on the pedestrian road crossing behaviour. 

Some typical examples of pedestrian road crossing behaviour are 

presented. Pedestrians frequently employ signals or actions to convey their 

crossing intentions to approaching vehicles, such as advancing forward, stepping 

onto the roadway, leaning forward, placing a foot on the road, observing 

oncoming traffic, or utilising informal signals (Risto et al., 2017). Rasouli et al. 

(2017b) found that the two most frequent patterns of pedestrian crossing 

behaviour, “standing, looking, crossing” and “crossing, looking”, only account for 

half of their observed cases. Additionally, they highlighted that one-third of 

pedestrians in the non-crossing scenarios found to be waiting at the curb and 

looking at the traffic. These findings indicate high variability in the behaviours of 

pedestrians at the point of crossing/no-crossing. So, even though pedestrians 
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usually tend to stand on the sidewalk to signal their intention to cross, it is not 

apparently necessary that crossing the road is their goal (Crowley-Koch et al., 

2011). In some cases, despite pedestrians initiating their crossing, showing their 

intention or the presence of markings and traffic signs, drivers do not always slow 

down enough as they approach crosswalks (Risto et al., 2017; Várhelyi, 1998). 

Sucha et al. (2017) highlighted that drivers were not very willing to yield to 

pedestrians who were just waiting at the curb and looking at oncoming traffic, with 

no obvious intention to cross. However, the distance between the pedestrian and 

the curb is a significant factor in influencing driver behaviour and can be used to 

predict the likelihood of a driver yielding (Himanen and Kulmala, 1988; Schroeder, 

2008). Research has suggested that drivers are less likely to yield if a pedestrian 

is waiting more than half a meter from the curb (Sucha et al., 2017). Pedestrians 

cross the street in different ways based on factors like vehicle speed, available 

gaps and the number of lanes (Chandra et al., 2014; Lobjois and Cavallo, 2007; 

Pawar and Patil, 2015; Schmidt and Färber, 2009; Yannis et al., 2013). If the gap 

is not wide enough, pedestrians might step backwards or run to avoid being hit 

by a vehicle (Zhuang and Wu, 2011). However, in the cases where the 

approaching vehicle is yielding, most pedestrians wait until the vehicle comes to 

a complete stop before crossing, rather than relying on their own judgment of 

whether it is safe (Sucha et al., 2017). This has been further characterised by a 

bimodal distribution in pedestrians’ road crossing decisions (Giles et al., 2019; 

Lee et al., 2022; Pekkanen et al., 2022; Tian et al., 2025, 2023). According to this 

observation, a proportion of pedestrians might choose to cross shortly after they 

perceive the approaching vehicle given that it would be safe to cross, and the rest 

of the pedestrians would wait for the vehicle to stop or would initiate crossing 

before it stopped (and it was obvious that it was coming to a complete stop before 

them). 

It is important to understand in more detail when pedestrians feel safe to 

cross the street and what factors influence their decisions. There has been a large 

number of studies in the past that investigated the factors that affect the 

pedestrians’ road crossing behaviour (Rasouli and Tsotsos, 2020; Bazilinskyy et 

al., 2019; Ezzati Amini et al., 2019; Ishaque and Noland, 2008). The factors 

influencing pedestrian behaviour can be divided into internal (sociodemographic 

and psychology factors) and external (environmental and traffic-specific factors). 
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1.3.1 External factors influencing pedestrian road crossing behaviour 

Pedestrians’ crossing decisions are influenced by a variety of external 

factors, which are primarily related to the behaviour (e.g., speed) and 

characteristics of the approaching vehicle (e.g. size), and environmental 

characteristics (e.g., weather/lighting conditions, infrastructure, and ways of 

communication – the latter is described in detail in the next section), and their 

interactions. 

Road crossing decisions are based on how safe pedestrians feel (Brill et al., 

2024) to accept an available gap between them and an approaching vehicle. To 

that end, they must judge whether the time and distance between them and the 

vehicle is sufficient to cross safely (Beggiato et al., 2017; Brewer et al., 2006; 

Dipietro et al., 1970; Harrell and Bereska, 1992; Moore, 1953; Nuñez Velasco et 

al., 2019; Petzoldt, 2014; Palmeiro et al., 2018; Schmidt and Färber, 2009; Wang 

et al., 2010). Time gap is defined as the temporal separation between two 

consecutive vehicles approaching the position of the pedestrian. The pedestrian 

can either accept or reject that gap. The minimum gap that a pedestrian would 

accept, in order to cross the road is called “critical gap” and is influenced by the 

vehicles’ speed and distance, the crossing length, the pedestrians’ speed and 

crossing initiation time, the pedestrians’ characteristics and the road conditions 

(Department of Transport and Main Roads, 2006; Pawar and Patil, 2016). A 

recurring theme in the literature has been the relationship between the distance 

and time in pedestrian’s road crossing decisions. While the time-to-arrival (TTA) 

has been considered as the most direct measure of safety (Petzoldt, 2014; 

Pugliese et al., 2020), studies have suggested that the vehicle’s distance is what 

pedestrians might actually rely on in reality (Oxley et al., 2005; Schmidt and 

Färber, 2009; Yannis et al., 2020). This could lead to unsafe situations in which 

for faster moving vehicles, pedestrians accept shorter gaps, since for a given TTA 

the faster the vehicle, the further away it is from the pedestrian (Lobjois and 

Cavallo, 2007; Tian et al., 2022). Researchers have suggested that this could be 

explained by the human perception mechanisms. Specifically, Petzoldt (2014) 

showed that speed consistently affects the TTA estimates of  pedestrians, i.e., 

their estimations of TTA were lower for low speeds and higher for high speeds. 

Hence, at higher speeds, they made risky crossing decisions because of their 

overestimations of TTA rather than because they used an incorrect decision-
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making strategy. It was later found that faster vehicles produce weaker looming 

signals on the retinas of the pedestrians for the same TTA (Tian et al., 2022). 

Further support to that was the findings of Wang et al. (2025), who replicated 

such speed-dependent gap acceptance by assuming that road crossing 

decisions are boundedly optimal (noisy visual perception). Research has 

provided evidence about pedestrian’s consistently rejecting very short gaps. 

Studies found that all pedestrians rejected gaps of less than 3 s (Dipietro et al., 

1970; Schmidt and Färber, 2009). One of the earliest works in gap acceptance 

suggested that the minimum accepted gap would not be shorter than 2.5 s 

(Cohen et al., 1955). More recent studies highlighted that only a very small 

proportion of pedestrians accepted gaps shorter than 2 s (Lee et al., 2022; 

Pekkanen et al., 2022). The range of 3 to 6 s has been found to be the critical 

window, since the decisions within it are varied. Even though the gap acceptance 

for the 3 s is not as common, the rate is notable (Lee et al., 2022). As for the 4 

and 5 s, research has found that the proportion of accepted gaps is around 50% 

(Cohen et al., 1955; Lee et al., 2022; Pawar and Patil, 2015). For gaps that are 

longer than 6 s, almost all pedestrians accept them. The probability of crossing 

the road for such gaps has been found to be very close to, if not 100% (Schmidt 

and Färber, 2009; Yannis et al., 2013). Eventually, pedestrians who are slower 

and avoid to take risks usually take longer to accept a gap (possible explanations 

are provided in the next subsection), leading to longer waiting times to accept a 

gap (Sun et al., 2002). After waiting too long for the critical gap, such pedestrians 

may accept shorter and riskier gaps (Antić et al., 2016). 

The speed of a vehicle is one of the main factors that pedestrians consider 

when deciding whether to cross or not (Ackermann et al., 2018; Jiang et al., 2011; 

Pawar and Patil, 2015; Petzoldt, 2014; Sucha et al., 2017). As described before, 

the most frequent counter intuitive finding is the speed-induced unsafe crossing 

behaviour, where pedestrians tend to accept shorter time gaps when faced with 

faster vehicles. More specifically, in Petzoldt's (2014) study, the mean accepted 

time gap was found to be smaller for vehicles at 50 km/h (2.98 s) than at 30 km/h 

(3.57 s). Similarly, Tian et al. (2022) found that the gap acceptance percentage 

was higher for higher vehicle speeds and for a given time gap. This counter 

intuitive observation is illustrated in Figure 1.1 and is explained by the perceptual 

mechanisms discussed above. 
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Figure 1.1 - Percentage of gap acceptance versus time gap size for different 
vehicle speeds. Figure adapted from Tian et al. (2022) 

Vehicle speed also affects the behaviour of vehicles towards pedestrians 

and more importantly whether and how they would yield, with lower speeds 

leading to more yielding (Ackermann et al., 2018; Geruschat and Hassan, 2005; 

Himanen and Kulmala, 1988; Sucha et al., 2017; Turner et al., 2006). If drivers 

do not slow down as they approach a crosswalk, it can signal that they intend to 

maintain priority and not yield (Sucha et al., 2017). However, slowing down before 

reaching a crosswalk is important for pedestrian safety (Risser, 1985). Drivers 

need enough distance to react to pedestrians who suddenly appear (Várhelyi, 

1998). Drivers may also need to slow down or stop completely to avoid hitting 

pedestrians who are distracted, running, or crossing unexpectedly/illegally (Katz 

et al., 1975; Sucha et al., 2017). 

While spatiotemporal distance and vehicle speed are the primary external 

factors that affect the pedestrian road crossing behaviour, the (negative) rate of 

change of the vehicle’s speed – its deceleration – is also an important factor, 

which influences the pedestrians’ crossing decision. The deceleration has two 

key components: the timing (onset of braking) and the magnitude (deceleration 

rate). An early and gentle braking initiated at a distance from the pedestrian could 

be perceived as a clear indication that the vehicle is slowing and giving way, 

encouraging an earlier crossing (Dietrich et al., 2020; Risto et al., 2017; Tian et 

al., 2023). Conversely, late and harsh braking has the opposite effect and is 

perceived as ambiguous. Even though pedestrians can detect higher 
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deceleration rates faster, Ackermann et al. (2019) found that they detected 

decelerating behaviour faster at lower vehicle speeds. This could suggest that 

pedestrians might have the tendency to interpret lower speeds as indicative of 

the vehicle yielding even if it is not (Tian et al., 2023). Based on the different time 

gap durations, which were described above, it would be safe to assume that 

pedestrians expect to perceive vehicle yielding (deceleration) information 

between time gaps of 2 and 6 s. This assumption aligns with the observation from 

Schneemann and Gohl (2016) that drivers would start to initiate braking typically 

at 3 to 4 s from the position of the pedestrians, and the latest at 2.5 s. Beyond 

the vehicle kinematics related factors, other external factors affect pedestrians 

road crossing behaviour too. 

Road features like the width of the road, the number of lanes, and 

pedestrian crossing facilities can affect how pedestrians and drivers interact, in 

terms of expectations of other users’ behaviour and perceived safety (Brewer et 

al., 2006; Chandra et al., 2014; Ishaque and Noland, 2008; Lin et al., 2019; Pawar 

and Patil, 2015; Schroeder, 2008; Sucha et al., 2017; Turner et al., 2006; Zhao et 

al., 2019; Zhuang and Wu, 2011). A study found that the number of lanes a 

pedestrian needs to cross, can help predict whether drivers will yield (Turner et 

al., 2006). The type of pedestrian crossing facility can also affect the proportion 

of vehicles yielding. Studies have shown that drivers are more likely to yield at 

marked unsignalised crossings than at crossings with traffic management 

systems or engineering treatments (Schroeder, 2008; Turner et al., 2006). 

Pedestrians waiting on central refuge islands may accept shorter gaps than those 

waiting at the curb (Hamed, 2001), and they may also accept shorter gaps in 

narrow streets (Schmidt and Färber, 2009). The latter could be due to the fact 

that the oncoming vehicles are more reluctant to drive in such roads with high 

speeds and hence the yielding behaviour is supported (Fitzpatrick et al., 2007; 

Sucha et al., 2017; Zegeer and Bushell, 2006). Pedestrian refuge islands and 

clear markings can also improve driver compliance on roads with lower speed 

limits (Turner et al., 2006). However, Himanen and Kulmala (1988) found that 

road width and the presence of refuge islands did not significantly affect the 

driver’s nor pedestrian’s behaviour. 

A lot more external factors have been studied regarding their effects on the 

pedestrian crossing behaviour, such as the size of the vehicle (Ackermann et al., 
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2018; Hamed, 2001; Himanen and Kulmala, 1988; Tian et al., 2020; Pawar and 

Patil, 2015; Petzoldt, 2016; Sun et al., 2002), weather and lightning conditions 

(Ackermann et al., 2018; Harrell, 1991, 1993; Whetsel Borzendowski et al., 2013), 

vehicle deceleration patterns (Ackermann et al., 2018; Carlowitz et al., 2024; Dey 

et al., 2021; Lee et al., 2019b, 2024; Tian et al., 2023), pedestrian’s own walking 

speed (Federal Highway Administration, 2013; Lobjois and Cavallo, 2007; Willis 

et al., 2004), waiting and observation time (Tian et al., 2024; Lobjois et al., 2013; 

Schmidt and Färber, 2009), traffic density and different means of communication 

between the pedestrian and the approaching vehicle (Rasouli et al., 2017b; 

Rasouli and Tsotsos, 2020; Chandra et al., 2014; Ezzati Amini et al., 2019; Tian 

et al., 2024; Lobjois et al., 2013; Pawar and Patil, 2015; Risto et al., 2017; Sucha 

et al., 2017). 

1.3.2 Internal factors influencing pedestrian road crossing behaviour 

Demographics, such as age and gender have been heavily investigated in 

relation to pedestrian road crossing behaviour. Generally, age has been found to 

be the most important factor which influences the cautiousness of pedestrians 

waiting to cross, with older pedestrians being more risk averse and cautious than 

younger pedestrians (Beggiato et al., 2017; Chandrapp et al., 2016; Harrell, 

1991). This has been supported by Lobjois and Cavallo (2007), who examined 

the gap acceptance of older and younger individuals under different time 

constraints, finding that when there were no time constraints, older individuals 

accepted larger gaps therefore demonstrating less risky decision-making. Older 

pedestrians have also been found to wait on the curb for a longer time before 

accepting a gap in a similar display of more cautious crossing behaviour (Wang 

et al., 2010). Moreover, when it comes to estimating the vehicle’s time to arrival 

(TTA) – an important estimate used to make road crossing decisions (Beggiato 

et al., 2017; Petzoldt, 2014), young children (5-6 years) were found to estimate 

TTA based only on the distance from the vehicle, as compared to a) adults (18-

54 years), who were able to integrate both distance and speed for TTA 

estimations, and b) older children (7-10 years), who were found to gradually be 

developing that ability (Hoffmann, 1994). According to Piaget (1970), children’s 

ability to correctly estimate time, distance and speed of objects is under 

development approximately up until the age of 8. However, later research has 

shown that children’s poor judgments is not due to this inability, but due to the 
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problematic attention allocation on the presented task (Droit-Volet et al., 2006; 

Meir et al., 2013). So, the inadequate understanding of traffic rules, the lack of 

experience in the road crossing task, unpredictable behaviour, distraction and 

overly risky behaviour are common reasons behind child pedestrian accidents 

(Johansson et al., 2004; Leden et al., 2006; Rosenbloom et al., 2008). 

Conversely, Oxley et al. (2005), who studied pedestrian gap selection between 

30-45, 60-69 and 75+ years old adults, found that all age groups used vehicle 

distance rather than TTA to make their decisions, however, the oldest pedestrians 

seemed to need more time to reach a decision. They also indicated that despite 

the generally riskier road crossing decisions, younger adults made safer choices 

as opposed to older pedestrians. Oxley et al. (2005) suggested that these unsafe 

decisions were a result of the deterioration of the older pedestrians’ executive 

function (Staplin et al., 2001; Valos and Bennett, 2023), which includes features 

such as working memory, strategy application and cognitive flexibility (Gilbert and 

Burgess, 2008), rather than not being able to process the available perceptual 

cues. The greater risk aversion, possible misinterpretations of the situation and 

difficulties to make a decision could possibly be explained by the fact that older 

pedestrians (typically 60+) travel at lower speeds, 0.97 - 1.27 m/s, than younger 

adults, 1.32 – 1.57 m/s (Ishaque and Noland, 2008), and thus they generally 

select larger gaps to compensate for that lower walking speed. Observations by 

Bennett et al. (2002) regarding the lower crossing speeds of older (1.35 m/s) than 

other pedestrians (1.70 m/s) further support the previous findings. It is assumed 

that pedestrians that are most frequently present outside on the roads are young 

and middle-aged adults, as has been also indicated by the fact that these 

pedestrians have been comprising the majority or a large proportion of studies’ 

samples (Beggiato et al., 2017; Harrell, 1991; Hoffmann, 1994; Oxley et al., 

2005). Overall, middle-aged pedestrians have been found to not be as cautious 

as the elderly, and to accept smaller gaps (Beggiato et al., 2017; Harrell, 1991; 

Lobjois and Cavallo, 2007). Despite that, middle-aged pedestrians’ crossing 

decisions could be described overall as safer than the decisions of children 

(Hoffmann, 1994) and the elderly (Lobjois and Cavallo, 2007), primarily due to 

their better performing executive function and movement ability, which result in 

better judgments of the traffic situation, and faster reaction and crossing times.    

Based on those better judgment skills, it has been suggested that middle-aged 
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adults are more aware of their surroundings when crossing the street and they 

tend to look at oncoming traffic more often (Zhuang and Wu, 2011). 

Another important internal factor in the road crossing behaviour of 

pedestrians’ is their gender. A lot of researchers have suggested that female 

pedestrians generally exhibit more cautious behaviour and risk aversion than 

male pedestrians. For example, studies have consistently shown that women 

have the tendency to wait for longer times at the curb before they decide to cross 

(Hamed, 2001; Tiwari et al., 2007). According to Holland and Hill (2007) and 

Himanen and Kulmala (1988), women have also been found to perceive risky 

crossing decisions to have a greater likelihood of resulting in a harmful outcome 

than men. Overall, these translate to higher cautiousness levels when deciding 

to cross the road for female pedestrians when compared to male pedestrians 

(Harrell, 1991). On the other hand, male pedestrians not only show a higher 

propensity in risk-taking (O’Dowd and Pollet, 2018), but also generally decide and 

cross the road faster than women (Lobjois and Cavallo, 2007). This difference 

between the road crossing behaviours of men and women might be explained by 

physiological and personality characteristics. Gender has been indicated to be 

the controlling factor of the relationship between impulsivity, physiological 

responses (such as skin conductance), and risk-taking, while at the same time 

conscientiousness is highly associated with safer pedestrian behaviour. Schiff 

and Oldak (1990) found that women underestimated the time to arrival more than, 

which could be another reason behind their more cautious road crossing 

behaviour. However, there have been studies which did not observe such gender 

differences on crossing decision tasks, such as time gap selection or safety 

margin calculation (Kadali and Vedagiri, 2016; Lobjois and Cavallo, 2007). Kadali 

and Vedagiri (2016) suggested that behavioural characteristics common to a big 

proportion of pedestrians might be nullifying the effect of gender in specific road 

crossing scenarios. The relationship between self-reported and observed road 

crossing behaviour is even more complex, for which Papadimitriou et al. (2016) 

found that on main roads the difference between reported and actual behaviour 

was not influenced by the pedestrians’ gender but in minor residential roads 

women tended to overstate their risk-taking (reported crossing but were not), 

while men overstated theirs. The abovementioned findings suggest that the effect 
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of gender on road crossing behaviour is dependent also on the external factors 

as the ones mentioned in the previous subsection. 

The size of pedestrian groups waiting to cross the street have been found 

to influence both pedestrian behaviour and driver behaviour. Larger groups are 

more likely to make drivers yield (Katz et al., 1975; Sucha et al., 2017; Sun et al., 

2002). This can be safer for pedestrians as they would be more noticeable in 

groups (Zhuang and Wu, 2011). However, smaller groups can cause more traffic 

interruptions and delays due to frequent crossings (Jin et al., 2013; Malenje et 

al., 2018). Analysing illegal mid-block group crossings, researchers found that 

larger pedestrian groups require more time to cross. This can lead to drivers 

having to stop completely, potentially causing traffic waves. To avoid this, drivers 

may slow down in anticipation of pedestrians crossing, especially if there is a 

large group waiting (Malenje et al., 2018; Yi-Rong et al., 2015). Additionally, 

waiting times for pedestrians at zebra crossings can decrease as the group size 

increases (Hamed, 2001), possibly because a) drivers would often yield for a 

group of pedestrians about to cross the road in comparison to individual 

pedestrians (Katz et al., 1975), and b) pedestrians would utilise already 

established priority to pass by more pedestrians (Himanen and Kulmala, 1988). 

There is plethora of other internal factors that are related to culture (Faria et 

al., 2010; Lee et al., 2011; Mihet, 2013; Sueur et al., 2013; Uono and Hietanen, 

2015), familiarity of the place (Hamed, 2001; Sucha et al., 2017), social 

orientation (Evans and Norman, 1998; Harrell, 1993; Schwarting et al., 2019), 

psychological state (Berry and Schwebel, 2009; Cœugnet et al., 2019; Evans and 

Norman, 1998) and factors related to illegal behaviour (Jay et al., 2020; King et 

al., 2009; Pawar and Patil, 2015; Rosenbloom, 2009), which have been 

suggested to play a role in pedestrian road crossing behaviour. 

After the presentation of the external and internal factors that influence 

pedestrians’ road crossing behaviours, it can be acknowledged that there are 

several factors that affect the pedestrian road crossing behaviour. However, there 

are almost no empirical studies which focus on the question of how pedestrian 

understand the intentions of an approaching vehicle. 
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1.4 Communication between pedestrians and vehicles 

 

As stated in the previous sections, communication between a pedestrian 

and an approaching vehicle is an important aspect of safe interactions and 

understanding it better is important for creating safe AVs. Markkula et al. (2020) 

have divided pedestrian-vehicle communication into two categories: 

communication through explicit and implicit cues. That means that pedestrians 

and vehicles communicate, by providing information to each other intentionally or 

even unintentionally. Explicit signals are actions that give information to others 

without changing the person's own movement or perception, for example 

generally conveying information verbally or a driver indicating that they are 

yielding to a pedestrian waiting on the curb by smiling or nodding to them (Rasouli 

et al., 2017b; Fuest et al., 2018; Mahadevan et al., 2018; Sucha et al., 2017). 

Some other common signals that are regarded as explicit cues are eye contact, 

hand gestures, and flashing headlights (Färber, 2016; Fuest et al., 2018; Sucha 

et al., 2017). Eye contact is important for pedestrians to make sure drivers are 

aware of them and sometimes to request the right of way. Hand gestures and 

light signals are less common and are used as last resort to resolve ambiguous 

situations or conflicts, or as an expression of gratitude or discomfort after the 

interaction (Färber, 2016). 

Implicit signals are actions that change the person's own movement but at 

the same time these signals indicate the person’s intentions to others (Markkula 

et al., 2020). For example the body language of a pedestrian waiting at the 

sidewalk or a driver applying the vehicle’s brakes early or exaggerating their 

deceleration to show their intention to yield before a pedestrian (Fuest et al., 

2018; Risto et al., 2017). 

In the case of AVs, where a human driver is not necessarily present, 

pedestrian-driver communication is not possible. Past research has suggested 

that VRUs would find forms of explicit communication useful when interacting with 

AVs (Dey et al., 2021; Merat et al., 2018; Schieben et al., 2019). Examples include 

the acknowledgment that they have been detected by the AV or providing 

information about the AV’s status or intended behaviour (Carlowitz et al., 2023; 

Lee et al., 2019a). The main debate of most studies, regarding the behaviour of 

an AV, is whether external human-machine interfaces (eHMIs) are contributing to 
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the decision-making of the pedestrians or not. Some studies support eHMIs, as 

their findings suggest that they shorten the duration needed to recognise a 

yielding behaviour and increase the perceived safety and willingness to cross 

when it is needed (Böckle et al., 2017; Chang et al., 2017; de Clercq et al., 2019; 

Dey et al., 2021; Kooijman et al., 2019). Therefore, researchers and car 

manufacturers are exploring different designs for external interfaces that allow 

future autonomous vehicles to communicate effectively with pedestrians (Rasouli 

and Tsotsos, 2020; Bazilinskyy et al., 2019; Chang et al., 2017; Nissan Motor 

Corporation, 2015; Schieben et al., 2019). Researchers have developed different 

types of eHMIs for AVs to communicate with pedestrians. These interfaces often 

use light-bands, text messages, either on the vehicle or projected onto the road 

(Bazilinskyy et al., 2019; Lee et al., 2024; Tabone et al., 2021). Some also use 

auditory signals to convey the message (Deb et al., 2018; Lee et al., 2019a). 

However, different studies found different types of eHMIs more effective, and 

some have argued that already established ways of conveying a message like 

the flashing headlights are sufficient or even better than the current eHMI 

suggestions (Lee et al., 2022). Researchers have been studying how eHMIs 

affect pedestrian behaviour and feelings and the outcomes have been mixed. 

Some studies found that eHMIs can make pedestrians feel more comfortable and 

trusting of AVs, help make decisions more quickly when an AV had “eyes” on the 

pedestrian, reduce the time it took pedestrians to start crossing and can make 

pedestrians feel more positive about sharing the road with AVs (Chang et al., 

2017; Deb et al., 2018; Dey et al., 2020; Holländer et al., 2019). Additionally, Dey 

et al. (2021) found that pedestrians were more likely to cross when an AV used 

an eHMI to signal that it was yielding. However, studies have shown that different 

eHMIs were not conveying any different message than the usual no-eHMI design 

to pedestrians (de Clercq et al., 2019; Deb et al., 2018; Kooijman et al., 2019), or 

provided messages that could be interpreted in different ways / be contradictory 

(Carlowitz et al., 2023; Lee et al., 2019a). 

Additional evidence towards the importance of implicit cues is provided, as 

Domeyer et al. (2019) and Mahadevan et al. (2018) highlighted the importance 

of focusing on kinematics and not just the design of eHMIs. According to them, 

implicit communication or communication through actions is important and 

requires the ability to estimate the behaviour of others. Domeyer et al. (2022), 
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reported that in the case of non-intersection scenarios, the pedestrian acts 

accordingly to the vehicle’s implicit cues. Rothenbücher et al. (2016), Clamann et 

al. (2017) and Moore et al. (2019), have agreed that pedestrians’ decision 

making, when interacting with an AV, depends firstly on the vehicle kinematic cues 

and then on the eHMIs. For example, Schmidt and Färber (2009) suggested that 

distance is the cue affecting the pedestrian’s decision, while they also studied the 

parameters that humans use to predict pedestrians’ intentions. According to the 

abovementioned studies, implicit signals, alone, can impact how pedestrians 

make decisions when crossing the road, especially in situations where drivers do 

not have to yield to pedestrians at intersections. For instance, at uncontrolled 

intersections, pedestrians are more likely to cross the road if the distance and 

time to collision is shorter, and if the vehicle is traveling at a higher speed (Tian 

et al., 2022). The kinematic cues that have been found to have significant effect 

on the pedestrians’ reaction times in detecting the deceleration of an approaching 

vehicle, and their willingness to cross (or not), and also on their crossing 

decisions, were the vehicle’s deceleration rate and onset (Ackermann et al., 

2019; Dey and Terken, 2017; Lee et al., 2024, 2022, 2019b; Petzoldt et al., 2018; 

Sucha et al., 2017; Wang et al., 2010; Várhelyi, 1998), and speed (Schneemann 

and Gohl, 2016; Petzoldt, 2016; Sucha et al., 2017; Várhelyi, 1998). Specifically, 

Dey et al. (2021) found that pedestrian willingness to cross the road increases 

when vehicles slow down dramatically. They also highlighted that pedestrian 

crossing willingness was not affected by eHMIs, but rather by the vehicle's 

kinematics in situations where the vehicle brakes aggressively. When 

approaching vehicles slow down early and brake gently, pedestrians are able to 

detect the vehicle’s yielding intention more accurately and earlier and feel 

comfortable initiate crossing (Ackermann et al., 2019). However, if the braking is 

late and harsh, it leads to pedestrians’ confusion and mistrust (Dey et al., 2021; 

Risto et al., 2017). To summarise, the above studies and their findings suggest 

that pedestrians find implicit signals as more trustworthy and consistent indicators 

of a vehicle's intention or behaviour than explicit signals, and that different 

deceleration patterns can have different effects on pedestrians’ comprehension 

of the vehicle’s exhibited behaviour. 

Although a lot of research has been focused on the importance of overall 

communication in pedestrian-vehicle interactions and some of that on implicit 
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cues specifically, there is a lack of detailed empirical studies of how different 

vehicle manoeuvre patterns affect the mechanisms with which pedestrians 

estimate the intentions of approaching vehicles over the whole period of the 

pedestrian-vehicle interaction. 

 

1.5 Modelling the road crossing task 

 

It is valuable to complement empirical investigations with formal modelling, 

as it helps to build detailed theories, make more precise and focused inferences, 

explain and predict behaviours and improve the reproducibility of research 

findings (Guest and Martin, 2021), but also put the models to more direct use in 

applications. Computational models can help explain and reproduce the 

pedestrian road crossing behaviour and have real-world implications for traffic 

safety and infrastructure development (Markkula et al., 2023). The development 

of AVs has increased interest in this research area (Rasouli and Tsotsos, 2020; 

Camara et al., 2020a; Camara et al., 2021). AVs that do not understand 

pedestrian behaviour and interact appropriately will not improve traffic efficiency 

and safety (Markkula et al., 2020; Millard-Ball, 2018). Having appropriate and 

good models of pedestrian crossing behaviour will assist with the development of 

capable AVs, meaning that computational models of pedestrian behaviour are 

important for the wider deployment of AVs. Many models have been developed 

to account for different aspects of the overall pedestrian behaviour, but this thesis 

was focused on the road crossing decision-making. 

Pedestrian crossing behaviour requires the combination of different mental 

processes. Palmeiro et al. (2018), building on Endsley's (1995) model of situation 

awareness (SA), suggested that there may be three levels involved: perception, 

comprehension and projection, before a crossing decision is made and 

performed. As can be seen in Figure 1.2, the pedestrian receives the relevant 

environmental information and approaching vehicle’s signals through the 

perception system, then combines the perceptual cues with prior knowledge and 

expectations and projects the vehicle’s status and predicts the vehicle’s most 

likely actions in the near future, before eventually they finalise the crossing 

decision and follow the respective action. Based on the division mentioned above, 
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the following section will provide a summary of theories and models of pedestrian 

road crossing behaviour. In this project the focus remained on modelling the three 

levels of situation awareness, which correspond to what it is meant in this thesis 

by behaviour estimation, which is also known as action understanding/intent 

recognition in the literature. 

 

Figure 1.2 - Model of situation awareness (SA) in dynamic decision making, 
describing the interaction between a pedestrian and an AV – as illustrated by 
Palmeiro et al. (2018)1 and adapted from Endsley (1995) 

1.5.1 Perception theory for pedestrian road crossing modelling 

 It has been argued that, for pedestrians, comprehending the behaviour of 

approaching vehicle (yielding to the pedestrian or not) and updating their beliefs 

about such behaviour depend on mainly on implicit and sometimes on explicit 

cues as well (Ackermann et al., 2019; Lee et al., 2024; Petzoldt et al., 2018). As 

stated in Section 1.4, implicit signals play a significant role in pedestrian 

behaviour, but people do not seem to base their road crossing decisions on direct 

measurements of speed, time-to-arrival (TTA), distance, or deceleration rates 

(Lee et al., 2019b; Petzoldt et al., 2018). Instead, they rely on visual cues such 

as visual angle, the rate of change in visual angle, 𝜏, i.e., the ratio of visual angle 

to the change rate of visual angle (could specify the instantaneous TTA of an 

approaching vehicle), and 𝜏̇, i.e., the change rate of 𝜏 (DeLucia, 2015; Lee, 1976). 

When a vehicle approaches the pedestrians, the image of the vehicle on 

 
1 Reprinted from Transportation Research Part F: Traffic Psychology and Behaviour, Volume 58, 
Ana Rodríguez Palmeiro, Sander van der Kint, Luuk Vissers, Haneen Farah, Joost C.F. de Winter, 
Marjan Hagenzieker, “Interaction between pedestrians and automated vehicles: A Wizard of Oz 
experiment”, p. 1006, Copyright (2018), with permission from Elsevier. 
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pedestrians' retinas increases as the distance of the vehicle to the pedestrians 

decreases (Lee, 1976). DeLucia (2015) suggested that pedestrians might 

perceive oncoming collision events from a particular angle, known as the bearing 

angle, which is the angle between the vehicle and the pedestrian's direction of 

movement. The expansion rate of the image is referred to as looming, which is a 

critical visual cue pedestrian may apply to judge events with a potential collision 

risk (Ackermann et al., 2019; DeLucia, 2015; Giles et al., 2019; Markkula et al., 

2018; Tian et al., 2025). Generally, looming can be formulated as the change rate 

of the visual angle 𝜃 subtended by the vehicle, as follows: 𝜃̇ = 𝑑𝜃/𝑑𝑡. When the 

vehicle approaches the pedestrians at a constant speed, looming increases as 

the distance decreases. However, in the vehicle yielding scenario, looming starts 

to decrease as the vehicle's speed decreases. Therefore, the change rate of 

looming may provide the vehicle's decelerating information for pedestrians. In 

other words, when the vehicle slows down, the edges of the vehicles seem to 

stop moving away from each other. Except looming, it is indicated that humans 

might apply a 𝜏 strategy to judge the collision events (DeLucia, 2015; Lee, 1976). 

Borrowing from the theory of visual control of braking, the optical variable 𝜏 is 

calculated by the ratio of 𝜃 and 𝜃̇ (𝜏 = 𝜃/𝜃̇) and has been suggested to be an 

important visual cue, as it provides the time to collision information (Lee, 1976). 

It can be proven mathematically that the adequacy of the vehicle's deceleration 

to stop before a collision occurs is provided by the change rate of 𝜏 and 𝜏̇. The 

collision will occur when 𝜏̇ is less than -0.5, but not vice versa. The 𝜏̇ is defined 

as the following equation: 𝜏̇ = 𝑑𝜏/𝑑𝑡. In psychology, researchers have indicated 

that humans may apply several visual cues, e.g., distance, looming, 𝜏, to detect 

collision events (Lee, 1976; Wann et al., 2011). 

Pedestrian perception may depend on both visual cues and thinking 

strategies. Research has shown that pedestrians may estimate vehicle behaviour 

separately or as part of their decision-making process (Pekkanen et al., 2022; 

Tian et al., 2023). When there is a large gap in traffic, pedestrians may focus on 

the size of the gap rather than how the vehicle’s behaving (Tian et al., 2023). 

DeLucia (2015) found that when conflicts that can result to collisions are far away, 

people tend to use simple visual cues. However, the more imminent a collision 

event is, the more complex visual information are being used by the pedestrians. 

In the case of a road crossing interaction the perception level (Level 1 in Figure 
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1.2) could be characterised by the collision perception theory. So, collision 

perception theory is an important step to construct a pedestrian’s situational 

awareness model. 

1.5.2 Decision-making for pedestrian road crossing modelling 

As discussed in Section 1.3, empirical observations show that pedestrians 

decide whether to cross the road by evaluating the size of the gap between them 

and the approaching vehicle. This has led to a group of models based on this 

assumption, called gap acceptance models (GA). Raff and Hart (1950) estimated 

the critical gap which is considered to be the threshold for a pedestrian to decide 

to cross. Later models built on this assumption (fixed critical gap models), where 

the critical gap is formulated as a function of factors like pedestrian speed or 

distance to the curb (HCM2010, 2010). Additionally, several recent models have 

estimated the critical gap by including vehicle speed and distance. Kotseruba's 

and Rasouli's (2023) model suggested that the critical gap decreases as the 

waiting time increases. A key assumption of the critical gap models is that all 

pedestrians are homogeneous. To avoid such limitation researchers introduced 

the binary logit models, where the crossing decisions are treated as a “yes/no” 

choice (Himanen and Kulmala, 1988; Sun et al., 2002; Zhao et al., 2019). Tian et 

al. (2022) combined a gap acceptance with psychophysics (based on visual cues) 

being able to capture patterns from pedestrian gap acceptance during continuous 

traffic flow. These binary logit models have been used with machine learning 

algorithms such as artificial neural networks (ANN), linear regression (LR) and 

support vector machines (SVM) to predict the pedestrians’ crossing decisions 

based on individual and/or situational characteristics with great efficiency 

(Himanen and Kulmala, 1988; Pawar et al., 2016; Raghuram Kadali et al., 2014). 

However, these models lack interpretability (Srinivasan et al., 2023; Markkula and 

Dogar, 2022; Rudin, 2019), because they learn complex patterns to make 

accurate predictions, but their internal operation is not necessarily mapping to 

underlying processes that drive human behaviour. Other researchers have split 

the road crossing decision-making into strategies depending on the phase of the 

pedestrian-vehicle interaction (Tian et al., 2025). All the above models are based 

on observed behaviour patterns and are rather descriptive, except for Tian’s 

models, which combined descriptive methods with plausible visual information. 

On the other hand, there have been researchers who modelled the underlying 
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decision-making mechanisms based on psychology theories and that is beneficial 

because they are more explanatory and generalisable than the previous group of 

models. Thus, computational models that are based on psychological theories 

can expand to explain scenarios where the approaching vehicle is yielding or 

capture the time dependency of a road crossing. 

The development of cognitive models has benefited the somewhat “rigid” 

models that were mentioned before. Similarly, Wang et al. (2023), Crosato et al. 

(2023) and Markkula et al. (2023) combined models from cognitive science 

theories with machine learning approaches in order to explain patterns of 

pedestrian crossing behaviour. Another group of models which are based on 

psychological and cognitive theories, are the evidence accumulation models 

(Giles et al., 2019; Markkula et al., 2018; Pekkanen et al., 2022). These models 

have shown that they can overcome the limitations that the gap-based models 

are struggling with. Building on the well-established drift-diffusion process theory 

in psychology and cognitive neuroscience, these evidence accumulation models 

propose that pedestrian crossing decisions are the result of a process where 

visual cues and noisy evidence are accumulated (Ratcliff et al., 2016). When the 

accumulated evidence reaches a certain threshold, a decision is made. The 

resulting response time distribution provides insights into crossing decisions and 

their timing. These models offer a powerful tool for explaining pedestrian crossing 

decisions guided by perceptual cues from a human cognitive perspective. Other 

notable models that have been used to model the dynamic road crossing 

decisions are based on game theoretical approaches (Kalantari et al., 2023; 

Camara et al., 2021; Wu et al., 2019). An exensive table of details regarding the 

different models, their inputs and outputs presented in this subsection, can be 

found in Table E.1 of Appendix E . 

1.5.3 Action for pedestrian road crossing modelling 

As stated in the previous subsection, decision-making models of pedestrians 

can capture the time dependency of the road crossing task. Through them, the 

crossing initiation time (CIT) – the time it takes for a pedestrian to start crossing 

the road, can be calculated. CIT is affected by both internal and external factors 

(see section 1.3). For example, males’ and younger adults’ CIT is higher than that 

of females and older adults respectively (Lobjois et al., 2013; Lobjois and Cavallo, 

2009). Also, when a pedestrian is facing a faster vehicle their CIT increases (Tian 
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et al., 2022). Evidence accumulation models have been successful in capturing 

the bimodal distribution of road crossings in vehicle-yielding scenarios (Pekkanen 

et al., 2022). The distribution of late crossing initiation times is complex and 

cannot be described by standard response time distributions, while the 

distribution of the early crossing initiation times is similar to that in non-yielding 

scenarios, as pedestrians use similar decision-making strategies (Tian et al., 

2023). That leads to the suggestion that when the approaching vehicle is yielding, 

the pedestrian might have to employ a road crossing strategy based on a 

behaviour estimation mechanism (more details in Section 1.6). 

After pedestrians finalise their decision, they initiate crossing and walk across 

the road. Walking behaviour has been replicated in microsimulations of models 

like social forces model (SF), cellular automata models (CA) and learning-based 

models. SF models have been used to simulate pedestrian-vehicle interactions 

and large-scale pedestrian flows and are based on Newtonian physics (Helbing 

and Molnár, 1995; Moussaïd et al., 2010; Zeng et al., 2014). CA have been good 

models for simulating complex environments due to their discreet definition 

(Layegh et al., 2020; Lu et al., 2016). In contrast to the white-box models that 

were mentioned up until now, there are black-box models based on learning-

based approaches. These approaches, learn pedestrian walking behaviour from 

data. These models use techniques like artificial neural networks (ANN) (Song et 

al., 2018; Ma et al., 2016), Long Short-Term Memory networks (LSTM) (Kalatian 

and Farooq, 2022), reinforcement learning (RL), and inverse reinforcement 

learning (IRL) (Crosato et al., 2023; Martinez-Gil et al., 2014; Nasernejad et al., 

2023; Wang et al., 2023) to simulate and predict pedestrian movements. The 

input on these models can be either the outputs of other models, for example SF, 

or image/video datasets. 

Despite the variety of models regarding the road crossing task, there has been 

little focus and modelling efforts on the mechanisms with which pedestrians infer 

the intentions of approaching vehicles (comprehension and projection levels of 

SA – see Figure 1.2), which seems to be quite important especially in more 

complicated scenarios, like the ones that include changes in the speed of the 

vehicle, which in turn are very common in real life. 
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1.6 Modelling behaviour estimation mechanisms 

 

The previous sections highlighted that pedestrians rely primarily on the implicit 

kinematic cues of an approaching vehicle to communicate with it and to decide 

when to cross the road and provided an overview of models of the overall road 

crossing task. The current section presents information about how humans infer 

the intentions of others and more specifically how pedestrians’ beliefs regarding 

the behaviour of an approaching vehicle are formed and updated over time. Thie 

cognitive mechanisms of inferring the vehicle’s immediate behaviour (particularly 

whether it is stopping or not) is what was defined as “behaviour estimation” in this 

thesis. 

1.6.1 Human intent prediction models for AVs 

Several studies have concentrated on modelling the road crossing behaviour 

of pedestrians, as discussed in the previous section but also on developing 

systems that promise improved pedestrian safety on the streets. Predicting 

pedestrian actions on roads is a safety concern for AVs and has become 

increasingly important to the automotive industry. Estimating when pedestrians 

will cross streets has proven to be a difficult task, as they can move in various 

directions, change their movements unexpectedly, be obscured by obstacles, and 

become distracted while talking or using their phones (Ferguson et al., 2015). It 

is apparent that their decisions and overall behaviour can be affected by several 

factors, as detailed in previous sections. To develop AVs, a lot of effort has been 

spent on algorithms for pedestrian detection. The data that these detection 

algorithms use include images, 3D point clouds, or a combination of both 

(Ferguson et al., 2015; Gandhi and Trivedi, 2008; Schneider and Gavrila, 2013). 

Research on predicting pedestrian behaviour has been focused on both short-

term and long-term applications. Long-term prediction studies often have utilised 

static cameras to predict either the final destination or the trajectory to be followed 

by pedestrians (Deo and Trivedi, 2017; Karasev et al., 2016; Kitani et al., 2012). 

However, long-term predictions have been very challenging to obtain due to the 

easiness with which pedestrians can decide to alter their movements (Ferguson 

et al., 2015; Gandhi and Trivedi, 2008). On the other hand, despite the challenges 

posed by rapid changes in pedestrians’ movements, short-term approaches have 

been able predict pedestrian trajectories within horizons of a few seconds. 
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Rehder and Kloeden (2015) highlighted the relevance of head orientation and 

body movement for short-term predictions, while long-term predictions are more 

goal oriented. Researchers have used a pedestrian's posture, and body language 

to infer their intentions. The models that have been applied for this application 

are mostly data-driven, for example models based on neural networks (Hariyono 

and Jo, 2015), Gaussian Process (GP) models (Quintero et al., 2015; Quintero 

et al., 2014) and Support Vector Machine (SVM) models (Koehler, 2015; Koehler 

et al., 2012). Kalman Filters and Particle Filters have been used in many 

dynamics-based studies to predict the pedestrians’ positions or paths (Hariyono 

et al., 2015; Bertozzi et al., 2004, 2004). Information about head orientation has 

been used to improve pedestrian intention estimation. Several studies have 

combined pedestrian dynamics and situational awareness to predict pedestrian 

intentions (Schulz and Stiefelhagen, 2015a, 2015b; Hashimoto et al., 2015; 

Hashimoto et al., 2015). Some notable approaches that have incorporated head 

orientation information to the overall dynamics are the Multilayer Perceptron 

(MLP) network (Goldhammer et al., 2015) and Latent Dynamic Conditional 

Random Fields (LDCRF) system (Schulz and Stiefelhagen, 2015a, 2015b). 

However, relying solely on head orientation may not be sufficient, as it may not 

always indicate the pedestrian's current real attentiveness. The latest advances 

on the intention estimation of pedestrian research have been made by including 

the influence of the environment and/or the relations amongst all the involved 

interacting road users. To achieve that researchers have used various 

techniques, including Recurrent Neural Networks (Bock et al., 2024), Gaussian 

Processes (Ferguson et al., 2015; Quintero et al., 2015; Quintero et al., 2014), 

and Dynamic Bayesian Networks (Hashimoto et al., 2015; Hashimoto et al., 2015; 

Kooij et al., 2014). 

Research on VRUs’ intentions estimation has drawn a lot of attention (Ahmed 

et al., 2019; Chen et al., 2023; Kwak et al., 2017; Ranga et al., 2020; Saleh et al., 

2020, 2018a, 2018b, 2017a, 2017b, 2017c; Sharma et al., 2022) and it is a crucial 

component in the development of AVs. But since the behaviour of those humans 

will also depend on their understanding of how the AVs behave (Habibovic et al., 

2018; Jayaraman et al., 2019; Razmi Rad et al., 2020), it is interesting to consider 

how humans themselves estimate intent of other humans and especially road 

users – this is an understudied area, which is also of relevance in conventional 
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traffic safety, since it is known that many crashes occur because of road users 

misinterpreting each other’s intentions (Ljung Aust et al., 2012; Yue et al., 2020). 

1.6.2 Behaviour estimation in cognitive science 

Humans are quite good at inferring the goals, beliefs, and desires of others 

through observing their actions (Baker, 2012; Gergely et al., 1995; Woodward, 

1998) and this has been the focus of much research in the field of psychology 

and cognitive neuroscience. It has been suggested that when someone is 

observing someone else’s actions, the observer is able to infer the goals and 

intentions of the other, due to the so-called mirror neurons and the cortical regions 

of the action-observation network (Kilner, 2011). During interactions, humans 

tend to interpret the behaviours of others as goal-directed actions/intentions 

(Gergely et al., 1995; Gergely and Csibra, 2003). Human social interaction 

depends on the ability to estimate the psychological states that produce 

behaviour (Baker et al., 2009). Intent recognition/behaviour estimation has been 

well researched in terms of establishing models that could explain their 

mechanism in a general sense, though they are limited to tasks such as reach-

to-grasp an object (Amoruso and Urgesi, 2016; Iacoboni et al., 2005) and 

listening to a birdsong (Friston and Frith, 2015; Friston and Kiebel, 2009a, 2009b; 

Friston and Frith, 2015). Additionally, numerous other studies have applied 

models of goal/intent estimation, but they all shared the limitation of observing an 

agent navigating in a simple maze (Baker et al., 2011, 2005, 2017, 2009; Ramírez 

and Geffner, 2010). In these studies, the participants were shown stimuli of 

animated agents (and their trajectories) moving towards goals in simple two-

dimensional maze-like environments and were asked to report their beliefs about 

the agent’s goal at pre-fixed judgment points (i.e., points in the middle of the 

agent’s trajectory before a particular goal was achieved, where participants 

reported their subjective inferences regarding the agent’s goal), where the 

agent’s movement sequence was paused. The models proposed by the literature 

above have been incredibly successful at capturing the approximately rational 

inference mechanism in human goal inference. These models were based on the 

idea of the Theory of Mind (ToM) – humans’ ability to reason about other people's 

mental states – and were formalised as a Bayesian (BToM) inversion of a 

probabilistic state-estimation and expected-utility-maximising planning process, 

conditioned on observing others’ actions. This BToM framework followed the 
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principle of rationality – the expectation that others form an approximate optimal 

plan to achieve their goal and was formulated as a Markov decision process 

(MDP) model of goal-directed planning, where the posterior probability of a Goal 

(belief) was calculated, conditioned on observed Actions and the Environment, 

using Bayesian inference: 

                                                   𝑃(𝐺𝑜𝑎𝑙|𝐴𝑐𝑡𝑖𝑜𝑛𝑠, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡)

∝ 𝑃(𝐴𝑐𝑡𝑖𝑜𝑛𝑠|𝐺𝑜𝑎𝑙, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡)𝑃(𝐺𝑜𝑎𝑙|𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) 

Where, 𝑃(𝐴𝑐𝑡𝑖𝑜𝑛𝑠|𝐺𝑜𝑎𝑙, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) is the likelihood of the Goal given 

observed Actions and the Environment, defined above as probabilistic planning 

in an MDP, 𝑃(𝐺𝑜𝑎𝑙|𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) is the prior probability of the Goal given 

the Environment, which sets up a hypothesis space of goals that are realisable in 

the environment. 

 

Figure 1.3 - Examples of qualitative comparisons between participants’ goal 
inferences and the predictions of model M2 of Baker et al. (2009)2 

An important illustration of their findings and methods can be seen in Figure 

1.3. Panel (a) shows the experimental setup, where A, B and C represent the 

possible goals that the agent may pursue (with X being the starting point), and 

the numbered points indicate where the agent's movement trajectory was cut and 

a subjective judgment was given by the observer participant. Panels (b) and (c) 

compare the observed evolution of the average human beliefs with the 

predictions of the computational model, showing how the likelihood of each goal 

 
2 Reprinted from Cognition, Volume 113 /Issue 3, Chris L. Baker, Rebecca Saxe, Joshua B. 
Tenenbaum, “Action understanding as inverse planning”, p. 337, Copyright (2009), with 
permission from Elsevier. 



30 
 

changes as new movement evidence is obtained over time. The average 

subjective ratings showed several patterns of reasoning: participants initially were 

uncertain regarding the agent’s goal, but their beliefs became more certain as 

they accumulated more evidence from observing the agents’ trajectories. Their 

beliefs were updated over time, and changed, for instance when an agent took a 

late turn towards a new goal. 

Additionally, humans might be inferring others’ goals not only based on 

observing the other agents’ actions but also may be relying on their expectations 

about how a rational agent should behave (Jara-Ettinger et al., 2020; Markkula 

et al., 2023). This concept of rational, value-maximising reasoning aligns with 

affordance theory, which posits that perception is not just for interpreting the 

world, but for identifying potential actions and their value (Chemero, 2003; Lio et 

al., 2020). Therefore, a complete model of behaviour estimation may need to 

account for not only the observation of actions but also the expectations of the 

most rational or value-maximising actions. 

1.6.3 Behaviour estimation in the traffic setting 

Before a pedestrian decides to cross the road or wait for the upcoming vehicle 

to pass first, they might have to first perceive and estimate the intentions of the 

approaching vehicle, as was described in Figure 1.2. Pekkanen et al. (2022) and 

Tian et al. (2023) have provided quantitative proof and empirical findings, 

respectively, that support that pedestrian road crossing decisions involve a 

process of behaviour estimation, as described in the perception paragraph of 

Section 1.5. More specifically, Pekkanen et al. (2022) were able to account for 

the timing of late crossings by including the time derivative of TTA (i.e. 𝜏̇, in the 

case that TTA is approximated by 𝜏) as one of the accumulated decision sources 

of evidence, indicating that pedestrians may be using a process like deceleration 

estimation when deciding when to cross the road. In addition to the previous 

finding, Tian et al. (2023) found that when the time gap between the vehicle and 

the pedestrian is large, crossing decisions and pedestrians’ judgments about the 

behaviour of the vehicle are negatively correlated, but when the vehicle is close 

and yielding, crossing decisions and pedestrians’ judgments are positively 

correlated, indicating that pedestrians follow two different strategies to determine 

their crossing decisions: a) an early crossing decision based on a safe distance 

and TTA or b) a late crossing based on the speed and yielding behaviour of the 
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vehicle. Markkula et al. (2023) have combined a range of existing computational 

theories from different psychology subdisciplines into a joint model capable of 

capturing behavioural phenomena apparent in a variety of road traffic 

interactions. Part of those theories was also a theory of mind regarding others’ 

intentions. Even though this theory of mind was part of a successful model as a 

whole, it was not tested in a behaviour estimation task specifically. 

To sum up, much research has been done on machine learning (ML) models 

for estimating pedestrian intentions, but it seems that there is a lack of research 

on understanding and models of how pedestrians estimate the behaviour of an 

approaching vehicle. Also, there is a lack of investigation of the role of 

perceptually plausible visual cues in behaviour estimation. Finally, even though 

models of goal estimation have been successful in capturing humans’ inferences 

when observing simulated agents in cognitive science laboratory paradigms, 

there is a lack of translation of those models to significantly more complex 

contexts, and more specifically the road traffic setting in this case. 

 

1.7 Research gaps and objectives 

 

Despite extensive research on pedestrian crossing decision modelling, 

several important questions remain unanswered. This thesis sought to address 

some of these questions by examining pedestrian road crossing behaviour and 

integrating these observations into computational models. The following critical 

gaps have been identified. Overall, whilst studies investigating the factors that 

affect the pedestrian road crossing task are extensive (Rasouli and Tsotsos, 

2020; Ishaque and Noland, 2008), there are almost no empirical studies focusing 

specifically on how pedestrians estimate the behaviour of approaching vehicles. 

Concerning this gap, an in-depth and time-dynamic investigation of what are the 

factors affecting the underlying mechanisms of behaviour estimation from the 

pedestrians’ perspective remains unexplored. Previous studies on pedestrian 

crossing behaviour have often focused on simple traffic scenarios with 

approaching vehicles moving at constant speed (Dey et al., 2021; Tian et al., 

2024; Zhao et al., 2019). However, real-world traffic often involves vehicles with 

various acceleration patterns and changing behaviours, like a variety of yielding 
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manoeuvres (Ackermann et al., 2019; Lobjois et al., 2013; Risto et al., 2017). The 

underlying mechanisms with which pedestrians form and update their beliefs 

about the behaviour of an approaching vehicle in more complex traffic situations 

remain understudied. Misinterpreting a driver's intentions, such as incorrectly 

assuming a vehicle will yield or misjudging its approach, is a major causation 

factor in pedestrian accidents and can lead to fatal accidents for pedestrians. 

Additionally, for AVs to be safe and effective, their intended actions, as conveyed 

through their motion, must be unambiguously understood by pedestrians. While 

Bayesian Theory of Mind (e.g., Baker et al., 2009) and Value-Maximising 

Expectations (e.g., Markkula et al., 2023) offer possible theoretical explanations 

for how pedestrians form and update their beliefs, there has been insufficient 

experimental and modelling work exploring, in detail, the mechanisms of 

behaviour estimation from the pedestrian’s perspective in the road crossing 

context. Building on the previous two research gaps and on the motivations to 

improve pedestrian safety and make interaction-capable AVs, a third gap 

naturally emerges. There is a lack of validated and generalisable models which 

provide explanations of the underlying mechanisms of behaviour estimation or in 

other words on how pedestrians form and update their beliefs regarding the 

behaviour of an approaching vehicle, that could cause a conflict, over time. 

To address the research gaps mentioned above, this study had three 

objectives. It aimed to a) investigate the factors that affect the cognitive 

mechanisms by which pedestrians estimate vehicle behaviour, b) understand the 

underlying theories of such mechanisms, and c) create computational models of 

behaviour estimation in realistic road crossing situations. To achieve these 

objectives, this thesis implemented computational models derived from 

established psychological theories. Two experiments were designed to gather 

pedestrian belief data in a variety of traffic scenarios. The collected data were 

used to test three distinct models: 

1) An Observation-based behaviour estimation component model (inspired 

by Bayesian observer models) that formulated behaviour estimation as a 

mechanism of updating beliefs based on deceleration-related kinematic 

observations. 

2) A Value-based behaviour estimation component model that assumed 

pedestrians estimate behaviour by reasoning about the most rational, 
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value-maximising actions for the approaching vehicle's driver. While the 

simulated vehicle used in the experiments was a Level 5 AV with no visible 

driver, the model assumed that pedestrians interpret the AV’s behaviour 

using the same mechanism that they apply to a human driver. This 

assumption was based on the fact that the current research was focused 

on the vehicle’s implicit kinematic cues as the primary source of 

information. This could allow the Value-based component model to be 

applied to pedestrian interpretations of the behaviour of both AV and 

human-driven vehicles. 

3) An augmented model that integrated the two component models of 

behaviour estimation mechanisms. 

The structure of this research, outlining how these models were implemented 

and tested across the thesis, is depicted in Figure 1.4. 

 

 

Figure 1.4 - Overview of the structure of the research 
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1.8 Thesis structure 

 

This section outlines the structure of the thesis, briefly introducing each 

chapter to demonstrate how the research addressed the previously set objectives 

and contributed to filling the identified gaps in the literature. 

Chapter 2, “Behaviour estimation through Bayesian observer models”, 

presents the foundation of the current research by detailing the design of the first 

experiment and introducing the first behaviour estimation component model, 

inspired by Bayesian observer models. This model is tested against the 

experimental data to evaluate the strengths and limitations of a purely 

observation-based mechanism of behaviour estimation. 

It is important to note that the experiment described in this chapter was a 

collaborative effort with Dr Kai Tian, which formed the basis of a publication (Tian 

et al., 2023). As detailed in the “Intellectual Property and Publications” section, 

the candidate was responsible for the initial conceptualisation, experimental 

methodology, data collection and data curation alongside Dr Kai Tian. While the 

analysis in that publication and subsequently in Kai Tian's thesis (Tian, 2023) 

focused primarily on the empirical findings of a) the pedestrian crossing 

decisions, b) the pedestrian subjective judgments of the approaching vehicle’s 

behaviour and c) the combination of the two, this thesis uses the shared dataset 

for a different purpose, that is to implement, validate and generalise models of 

the underlying cognitive mechanisms of behaviour estimation. 

Chapter 3, “Behaviour estimation through observations and expectations”, 

addresses the limitations found in the previous chapter by introducing a second 

behaviour estimation component model based on value-maximisation of rational 

agents. It then develops an augmented model that integrates both the 

observation and value-based mechanisms. All three models are fitted to the 

dataset collected in the experiment of the previous chapter and compared with a 

model selection technique. 

Chapter 4, “Validating and generalising the behaviour estimation models”, 

tests the robustness of the behaviour estimation models, and more specifically 

the augmented one. A second, more comprehensive experiment with novel 

driving manoeuvres is used to validate the models against replicated scenarios 
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and investigate its ability to generalise to new situations. Again, all three models 

are fitted to the new dataset and compared with the same model selection 

technique as in the previous chapter. Finally, the augmented model is fitted on 

the per-participant level. 

Finally, Chapter 5, “General discussion” provides an overview of the key and 

contributions of the research of the current thesis. It discusses the empirical, 

methodological, theoretical and practical implications of the research for road 

safety and automated vehicle design, acknowledges the study's limitations, and 

outlines promising directions for future work. 
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2 Behaviour estimation through Bayesian 

observer models 
 

This chapter introduces an initial model of how pedestrians use visual 

observations to form and update their beliefs about an approaching vehicle's 

intent. The model focuses on scenarios where the vehicle communicates its 

intentions solely through its movement. As discussed in Section 1.6, numerous 

computational modelling attempts have used Bayesian observer approaches, in 

order to explain humans’ inferences regarding another agent’s goals, based on 

the latter’s actions. These models have been evaluated by experiments using 

simplified stimuli. These stimuli were animated representations of agents (small 

moving circles and traces of their trajectories trailed behind them) navigating 

maze-like environments (a discreet grid of squares with walls displayed as solid 

black barriers), presented from an overhead perspective. While successful in 

these abstract contexts, the applicability of such Bayesian frameworks to the 

distinct and dynamic interactions between pedestrians and approaching vehicles 

remains unexplored. Therefore, this research adapts the Bayesian observer 

approach to model belief formation and updating in this specific pedestrian-

vehicle setting. The proposed model is subsequently evaluated through an 

experiment. This experiment, while inspired by the paradigms used in earlier 

studies of goal estimation from observing the actions of another agent (Baker et 

al., 2009), is specifically designed to investigate how pedestrians' beliefs 

regarding vehicle intent evolve in scenarios that reflect key aspects of real-world 

road crossing situations. 

 

2.1 Experiment 

 

This section details the experimental methodology employed to investigate 

pedestrians' judgments regarding the behaviour of an approaching vehicle. An 

immersive virtual environment was used to present participants with various 

approaching vehicle scenarios involving different vehicle kinematics. Participants 

performed a road crossing task and a subsequent behaviour estimation task, 

where they judged whether an approaching vehicle was stopping or not. The data 
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collected from the behaviour estimation task were then used for statistical 

analysis (described in Section 2.2) and to develop and validate the computational 

model of belief updating (described in Section 2.3). 

2.1.1 Participants  

An experiment was conducted to investigate the research questions related 

to vehicle behaviour estimation. The study received ethical approval from the 

University of Leeds Ethics Committee (No. LTTRAN-145). 30 healthy adults, 

including 17 males and 13 females, aged between 20 and 67 (mean age = 30.73, 

standard deviation = 8.63) were recruited from the University of Leeds Virtuocity 

participant list. The participants were required to have no significant mobility 

issues or medical conditions such as epilepsy. They also needed to have either 

normal or corrected-to-normal vision and have lived in the UK within the last 12 

months as their experience with road traffic could influence their road crossing 

behaviour and judgments. They provided written informed consent before 

participating and were given £15 as a reward for their participation. 

2.1.2 Apparatus  

The experiment was conducted at the Highly Immersive Kinematic 

Experimental Research (HIKER) lab at the University of Leeds. The pedestrian 

simulator is a CAVE-based simulated environment that utilises three glass wall 

projections and a floor projection, as illustrated in Figure 2.1. Participants were 

able to move in the simulated environment with a 9 m × 4 m walking space. The 

eight 4K projectors behind the glass walls or above the floor projected the 

scenarios at 120 Hz. Eight computers controlled the projectors and tracking 

system, which was data logging the participant’s position through the tracking 

glasses they were wearing on their head, to adjust the projections in line with the 

participant’s perspective. The virtual environment was created using the Unity3D 

software, where it is possible to record the kinematics information of the vehicles 

and participants, such as speed, position and experiment state, on each time 

step. 
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Figure 2.1 - HIKER experimental environment (left) and not-to-scale schematic 
bird’s eye view of the experimental paradigm (right) 

2.1.3 Experimental design 

The design was adapted from Baker et al. (2009), where observers were 

shown animations and trajectories of simulated rational agents, that were 

navigating inside mazes. After observing the agent’s movements, the participants 

had to judge which goal (out of a set of possible goals), was the agent most likely 

pursuing. That experimental design was modified in accordance with the 

experiments from Pekkanen et al. (2022), Dey et al. (2019) and Ackermann et al. 

(2019). More specifically, Pekkanen et al. (2022) designed an experiment in 

which participants had to decide when it was safe to cross a road as a vehicle 

approached at either a constant speed or decelerated to a stop. Dey et al. (2019), 

for instance, measured the willingness of the participants to cross the road in front 

of an approaching vehicle at predetermined distances or segments. Ackermann 

et al. (2019), similarly, measured the reaction times of the participants in detecting 

the decelerating movement of an approaching vehicle. The concept of scenario 

segmentation was very relevant to the needs of the current work. Following the 

concepts of the experimental designs of the studies above, the successful 

cognitive laboratory experimental task by Baker et al. (2009) was expanded to a 

realistic traffic setting. 

The simulated traffic environment included a residential block with a one-lane 

road that was 4.2 meters wide and an intersection without traffic signals, during 

daylight hours. A blue sedan vehicle was being controlled by the simulation (its 

kinematics were predetermined) and was driving in the centre of the road. The 

vehicle was autonomous (absence of driver and passengers) and at the crossing 

point there were no markings of a zebra crossing. To focus the study purely on 

the interpretation of kinematic cues, participants were deliberately not explicitly 

told that the approaching vehicle was an AV. The purpose of these design choices 
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was to separate the effects of vehicle kinematics on pedestrian judgments from 

other factors that might have affected them, such as biases due to 

driver/passenger behaviour (e.g., making eye contact) or the legal expectations 

that come with a formal crossing. The aim of the experiment was to investigate 

how the vehicle’s movements would influence the behaviour and judgments of 

pedestrians, by considering various factors such as the vehicle’s driving 

manoeuvre, the time it takes for the vehicle to reach the pedestrian (initial TTA), 

and the initial speed of the vehicle. The vehicle approached the pedestrian at 

three different initial speeds (25 km/h, 40 km/h and 55 km/h) and with two different 

initial TTAs (3 s and 6 s). Three distinct types of driving manoeuvres were 

evaluated (illustrated in Figure 2.2): 
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Figure 2.2 - Vehicle kinematics of all 18 kinematic scenarios. The vehicle’s speed 
profile is denoted using the pink curves and the respective 𝜏̇ time history by the 
dark green curves 
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• Constant speed: The vehicle maintained a consistent speed throughout 

the simulation of the scenario. 

• Deceleration: The vehicle decreased its speed at a constant rate until it 

stopped approximately 2.5 m from the participant. 

• Mixed: The vehicle combined an initial phase of constant speed and then 

a deceleration phase, to explore the impact of the vehicle’s behaviour 

change, during the simulation, on the pedestrian’s belief updating. In this 

scenario, the vehicle kept a steady speed for a certain time (1.5 s for the 

3 s initial TTA condition and 3.4 s for the 6 s initial TTA condition) before 

slowing down and coming to a stop approximately 2.5 m from the 

participant. The mixed manoeuvre scenarios had a higher deceleration 

rate than the corresponding deceleration scenarios as the initial TTA and 

speed were kept the same. 

The initial TTAs and initial speeds were chosen based on existing traffic safety 

and perception literature (more details can be found in Subsection 1.3.1) to 

investigate pedestrian judgments of vehicle behaviour in conditions similar to 

studies that have tested pedestrian road crossing responses/decisions. More 

specifically, the TTA range of 3 to 6 s was recognised as the critical window for 

pedestrian gap acceptance, in which road crossing decisions could be 

significantly variable. The use of these TTA values allowed the investigation of 

behaviour estimation under time pressure (3 s) versus sufficient time for 

comfortable decision making (6 s). The initial speed values were chosen since 

they would represent a range of speeds commonly found in urban environments.  

The speed variation was necessary to investigate the influence of spatio-temporal 

distance on beliefs and to address the phenomenon where pedestrians' TTA 

estimations are influenced by speed. For a given TTA, a higher speed would 

mean that the vehicle is further away, allowing to test whether pedestrians rely 

on time, distance, or a combination of both when estimating the behaviour of an 

approaching vehicle. The deceleration rates in the pure deceleration scenarios 

ranged from approximately 0.61 m/s2 to 2.63 m/s2. These rates are comparable 

to those frequently observed when vehicles yield normally to pedestrians 

(Carlowitz et al., 2024; Yang et al., 2024). For the mixed manoeuvre scenarios, 

the deceleration rates during the braking phase were higher, ranging from 

approximately 1.58 m/s2 to 5.87 m/s2. Such rates can be observed when vehicles 
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slow down more urgently, for example, before intersections on roads with higher 

speed limits or in near-emergency situations (Bokare and Maurya, 2017; 

Kudarauskas, 2007). In summary, the experiment consisted of three types of 

manoeuvres, three initial speeds and two initial TTAs, resulting in a total of 18 

kinematic scenarios. The details of these scenarios can be seen in Table 2.1. 

Table 2.1 - Details of kinematic scenarios 

Manoeuvre 
Initial 

TTA (s) 

Initial 

speed 

(km/h) 

Initial 

distance 

to 

pedestrian 

(m) 

Deceleration 

rate (m/s2) 

Constant 

speed 

phase 

duration 

(s) 

Constant 

speed 

3 

25 20.83 - [0, 3] 

40 33.33 - [0, 3] 

55 45.83 - [0, 3] 

6 

25 41.67 - [0, 6] 

40 66.67 - [0, 6] 

55 91.67 - [0, 6] 

Deceleration 

3 

25 20.83 1.29 - 

40 33.33 1.98 - 

55 45.83 2.63 - 

6 

25 41.67 0.61 - 

40 66.67 0.97 - 

55 91.67 1.04 - 

Mixed 

3 

25 20.83 3.15 [0, 1.5] 

40 33.33 4.63 [0, 1.5] 

55 45.83 5.87 [0, 1.5] 

6 

25 41.67 1.58 [0, 3.4] 

40 66.67 2.42 [0, 3.4] 

55 91.67 3.18 [0, 3.4] 

 

2.1.4 Tasks and procedure 

The experiment was consisted of two main tasks which were performed 

sequentially: a road crossing task (two blocks) followed by a behaviour estimation 
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task (one block). The behaviour estimation task is the primary focus of the 

modelling efforts in this thesis. The road crossing task served two purposes: first, 

to allow participants to familiarise with the virtual environment and immerse them 

in a realistic road crossing mindset before they undertook the behaviour 

estimation task and second, to enable potential future comparisons between 

behaviour estimation judgments and actual crossing decisions, as presented in 

the work by Tian et al. (2023). 

The first block of the road crossing task was preceded by a practice session 

of 10 trials to familiarise participants with the VR environment and task 

requirements. For the road crossing task, participants were positioned at a floor 

marker 57 cm from the kerb.  At the start of each trial, their view of the road to the 

right (from which the vehicle would approach) was initially obscured by a grey 

virtual plane. A message “Look here. Keep looking” was displayed opposite of the 

participant (on the other side of the street). After the participants kept looking at 

the message for a very brief time, the message disappeared. The participants 

were instructed to turn their head to the right (after the message had 

disappeared), which caused the grey obstruction plane to become transparent, 

revealing the approaching vehicle scenario. The participants were then to decide 

whether to cross, if and when they felt safe. The specific instructions regarding 

movement were: “If you decide to cross, please walk naturally as you would in 

everyday life. If you decide not to cross, please remain standing at your initial 

position and wait until you feel safe to cross.”. The trial concluded once the vehicle 

had passed the crossing point. Participants then returned to the starting marker 

if they had crossed or remained there if they had waited. Both blocks of the road 

crossing task included the same 18 experimental scenarios (illustrated in Figure 

2.2), presented in a randomised order within each block. After completing the two 

road crossing blocks, a short break was provided, before the block of the 

behaviour estimation task began. 

The second task involved assessing a vehicle's behaviour by determining if it 

was stopping to allow the pedestrian cross or if it was maintaining its speed to 

pass first. In the behaviour estimation task, the same scenarios as in the road 

crossing task were reused, but in line with the paradigm in Baker et al. (2009), 

each of the 18 kinematic scenarios was truncated at 4 different points, creating 

four different segments of different durations. These segments are illustrated as 
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square markers on the speed profiles of the 18 kinematic scenarios in Figure 2.2, 

indicating the points where each scenario was truncated. The shortest of these 

segments showed just a short time at the start of the scenario in question, giving 

very limited information based on which the participant could judge the vehicle’s 

behaviour, while the longest segments showed the entire approach of the vehicle. 

In the deceleration and mixed scenarios, the first, shortest segment showed 

little to no stopping evidence, the second and third displayed increasing stopping 

evidence, and the fourth clearly indicated stopping behaviour. As can be seen in 

Figure 2.2, the visual cue for collision judgment, 𝜏̇, increases exponentially as the 

vehicle approaches the pedestrian’s position. Therefore, to achieve the intended 

progression of increasing deceleration cues in longer segments, a logarithmic 

distance division method was applied, given by: 

𝐷𝑖 = 𝑎
5−𝑖; 𝑎 = √𝐷𝑖𝑛𝑡

5  , 𝑖 = 1,2,3 𝑎𝑛𝑑 𝐷4 = 2.5 𝑚 (2.1) 

Where 𝐷𝑖 refers to the distance between the approaching vehicle and the 

pedestrian at the end of the 𝑖𝑡ℎ segment, 𝑎 is the logarithmic base based on the 

initial distance of the approaching vehicle, 𝐷𝑖𝑛𝑡 the distance at the end of the 4th 

segment of all traffic scenarios equals 2.5 m, i.e., the final stopping distance from 

pedestrians. 

For the constant speed scenarios, the segments were created by evenly 

dividing the vehicle's approach path into four temporal or spatial portions, as the 

visual cue for collision judgment, 𝜏̇, remains constant (𝜏̇ = −1). The divisions were 

calculated as follows: 

𝐷𝑖 = 𝐷𝑖𝑛𝑡 − 𝑏𝑖; 𝑏 =
𝐷𝑖𝑛𝑡 − 𝐷4

4
, 𝑖 = 1,2,3 𝑎𝑛𝑑 𝐷4 = 2.5 𝑚 (2.2) 

Where 𝐷𝑖 refers to the distance between the approaching vehicle and the 

pedestrian at the end of the 𝑖𝑡ℎ segment, 𝑏 is the linear base based on the initial 

distance of the approaching vehicle, 𝐷𝑖𝑛𝑡 the distance at the end of the 4th 

segment of all traffic scenarios equals 2.5 m, i.e., the final stopping distance from 

pedestrians. 

In instances where the calculated duration for the first segment was deemed 

too short (possibly providing very subtle stimuli or trials being incredibly short for 

the participant to comprehend), its duration was fixed at a minimum of 1 s. The 
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segmentation process described above resulted in 18 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 𝑥 4 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠/

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 72 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠. 

Similarly to the road crossing task, the behaviour estimation task was also 

preceded by a practice session of 10 trials using a subset of segments. The trial 

initiation procedure was identical to the road crossing task: the view to the right 

was initially obstructed, the “Look here. Keep looking” message was shown on 

the opposite side of the street, which participants had to look for a brief time, and 

then participants turned their head right to observe the presented vehicle 

segment. No road crossing was required, meaning that participants had to remain 

standing at the floor marker that was used as the starting position in the road 

crossing task. After each of the 72 segments/trials (presented in a randomised 

order, ensuring each participant viewed each segment once) was shown, the 

virtual environment was obscured. Participants were then presented with two 

questions on the display screen opposite of where they were standing (see 

Appendix C for question format): 

1) “Was the vehicle stopping for you or was it maintaining its speed and 

passing you?”. 

2) “How confident are you in your previous answer? Please rate your 

confidence level on a scale from 1 to 9.” – Likert scale from 1 to 9 (1 = not 

confident at all, 5 = somewhat confident, 9 = totally confident).  

Upon completion of all experimental tasks, participants were asked to fill out 

a post-experiment questionnaire. This questionnaire collected demographic 

information, including age, gender and driving experience. 

 

2.2 From participant judgement to belief probability 

 

To explore the influence of the kinematics variables that were controlled to 

create the 18 scenarios of the experiment on pedestrians’ beliefs, the participants’ 

judgements from the behaviour estimation task were analysed. Specifically, a 

pedestrian’s belief was derived from the combination of the binary choice 

between the ‘stopping’ or ‘passing’ vehicle behaviour and the confidence rating 

regarding the first answer. Some examples are provided for further clarification: 
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• If a participant answered that the vehicle was ‘stopping’ and rated their 

confidence as 9, that would be translated as 100% belief that the 

vehicle was stopping. 

• If a participant answered the vehicle was ‘passing’ and rated their 

confidence as 9, that would be translated as 0% belief that the vehicle 

was stopping (or equally as 100% belief that the vehicle was not 

stopping). 

• If a participant answered that the vehicle was ‘stopping’ and rated their 

confidence as 1, that would be translated as 50% belief that the vehicle 

was stopping. In this case only, an answer that the vehicle was 

‘passing’ and rated confidence 1, would provide the exact same belief 

(i.e., 50% belief that the vehicle was stopping, which also means 50% 

belief that the vehicle was not stopping, indicating maximum 

uncertainty). 

• If a participant answered that the vehicle was ‘stopping’ and rated their 

confidence as 5, that would be translated as 75% belief that the vehicle 

was stopping. 

After extracting all participants’ beliefs, a 4-way factorial ANOVA (Bao, n.d.) 

was conducted on these beliefs. The within-subject factors (main effects) 

investigated were: 

• The vehicle manoeuvre (3 levels – Constant speed, Deceleration, 

Mixed) 

• The initial speed (3 levels – 25 km/h, 40 km/h, 55 km/h) 

• The initial TTA (2 levels – 3 s, 6 s) 

• The segment (4 levels – Segment 1, Segment 2, Segment 3, Segment 

4, corresponding to the increasing duration of the vehicle’s approach 

presented) 

To account for between-individual differences, participant ID was included as 

a random effect in the model. The 4-way ANOVA described above was performed 

in MATLAB R2022b, utilising the “anovan” function (MATLAB, 2022). This allowed 

to identify significant main effects of the four factors mentioned above, as well as 

any significant interactions between them, on pedestrians’ beliefs.  
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2.3 Model definition 

 

Consider the scenario illustrated in Figure 2.3, where a pedestrian is at the 

pavement observing an approaching vehicle. An important cognitive task for the 

pedestrian is to infer the vehicle driver's or AV’s intention, specifically whether the 

vehicle will stop to allow crossing or continue without stopping. The computational 

models in this thesis were built on a distinction between an approaching vehicle's 

overarching goal and its immediate behaviour. In the experimental scenarios, the 

vehicle's goal was assumed to be known to the pedestrian: to continue driving 

along the road. The uncertainty for the pedestrian though lied in the behaviour 

that the vehicle would exhibit to achieve this goal. This thesis defined two 

mutually exclusive behaviours: stopping (i.e., decelerating with the intention to 

yield) and not stopping (i.e., maintaining speed with the intention to pass). The 

cognitive process by which a pedestrian infers which of these two behaviours the 

vehicle is exhibiting was termed behaviour estimation. 

 

Figure 2.3 - Fundamental scenario of a pedestrian at the pavement observing an 
approaching vehicle 

The computational model suggested in this chapter is an adaptation of the 

Bayesian inverse planning framework proposed by Baker et al. (2009), drawing 

specifically from their “Model 1”. This model assumes that an agent pursues a 

single, unchanging goal 𝑔 (or in the current context, behaviour 𝑏) throughout an 

observation sequence. Although this assumption might be limiting, as in reality a 

driver could change their mind, Baker et al. (2009) applied this model to 

experiments with both unchanging and changing goals during a trial. Similarly, in 

this thesis the adapted model was applied to scenarios of both unchanging 

vehicle behaviour (during constant speed and deceleration manoeuvres) and 

changing vehicle behaviour (during mixed manoeuvres). A set of two mutually 

exclusive behaviours that the approaching vehicle can exhibit, 𝐵 = {𝑏𝑠, 𝑏𝑛𝑠}, was 
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defined, representing the vehicle's possible behaviours of 'stopping' or 'not 

stopping', respectively. 

This chapter explores models where the pedestrian observes a kinematic 

state of the approaching vehicle at discrete time steps 𝑡. This observed state, 𝑠𝑡, 

can be either the vehicle's deceleration rate (𝑑, in m/s²) or the time derivative of 

the relative rate of optical expansion (𝜏̇, dimensionless). As mentioned in 

Subsection 1.5.1, 𝜏̇ essentially gives information of how quickly the time-to-arrival 

(TTA or 𝜏, in s; the time it takes for an object to reach a point) is changing and 

researchers have suggested that braking is controlled by it. The calculations of 

the deceleration rate of the vehicle and 𝜏̇ are presented below. To calculate the 

deceleration rate during a simulation time step, the following formula was used, 

assuming that the deceleration rate is constant between the two time points in 

question: 

𝑑 =
𝑣𝑓 − 𝑣𝑖

𝛥𝑡
 𝑜𝑟 𝑑 =

𝑣𝑖
2 − 𝑣𝑓

2

2𝑆
 (2.3) 

Where, 𝑣𝑓 and 𝑣𝑖 is the final and initial speed (m/s) of the simulation time step, 

respectively, 𝛥𝑡 is the total time of the time step (s) and 𝑆 is the total distance 

travelled during that time step (m). 

𝜏̇ =
𝑑𝑇𝑇𝐴

𝑑𝑡
 𝑎𝑛𝑑 𝑇𝑇𝐴(𝑡) =

𝐷(𝑡)

𝑣(𝑡)
 (2.4) 

Where, 𝑣(𝑡) is the current vehicle speed (m/s) and 𝐷(𝑡) is the current distance 

(m) between the pedestrian and the vehicle. While 𝜏 (tau) in ecological 

psychology is an optical variable defined by the ratio of visual angle to its rate of 

change (𝜏 = 𝜃 𝜃̇⁄ ) – a cue pedestrians use to estimate TTA without calculating 

distance or speed directly (Tian et al., 2020; Lee, 1976; Lobo et al., 2018) – this 

definition comes with the assumption that it can provide TTA estimations only for 

small visual angles and approaching objects that are travelling with constant 

speed. For computational simplicity and to avoid the previous assumption since 

the simulated vehicle also performed decelerating motion, the model's calculation 

of 𝜏 was set equal to the true, objectively calculated instantaneous TTA. This 

implementation kept the theoretical meaning of the variable as the current time 

remaining while avoiding the complex mechanisms of real-world visual angle 

perception. 
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The model’s aim is to estimate the posterior probability (belief) about the 

vehicle exhibiting a particular behaviour 𝑏 ∈ 𝐵, given a sequence of 𝑇 

observations, 𝑠1:𝑇 = (𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑇). This inference is achieved using Bayes' 

rule. While Baker et al. (2009) include an “Environment” term (𝑤) in their general 

formulation: 𝑃(𝑔|𝑠1:𝑇, 𝑤) ∝ 𝑃(𝑠1:𝑇|𝑔, 𝑤)𝑃(𝑔|𝑤) (Equation 5 in their Supplementary 

material), in this specific pedestrian-vehicle scenario, the broader environmental 

context is considered constant across the observation period relevant to a single 

crossing decision. Thus, this term is omitted in the current adapted formulation 

for clarity, without affecting the core inference process regarding the vehicle's 

behaviour. The derivation of the suggested model is presented below. The belief 

at time 𝑡 is the posterior probability of behaviour 𝑏 given all observations up to 

that point: 

𝑃(𝑏) = 𝑃(𝑏|𝑠1:𝑡) (2.5) 

The term 𝑠1:𝑡 represents the sequence of all observations up to time 𝑡. The 

current observation 𝑠𝑡 can be separated from the past observations 𝑠1:𝑡−1. 

Applying Bayes’ rule gives the following: 

                           𝑃(𝑏|𝑠1:𝑡) =
𝑃(𝑠𝑡|𝑏, 𝑠1:𝑡−1) 𝑃(𝑏, 𝑠1:𝑡−1)

𝑃(𝑠1:𝑡)

=
𝑃(𝑠𝑡|𝑏, 𝑠1:𝑡−1) 𝑃(𝑏|𝑠1:𝑡−1) 𝑃(𝑠1:𝑡−1)

𝑃(𝑠1:𝑡)
 

(2.6) 

Similarly to the numerator, the observations in the denominator can be 

separated to current and past ones, so that 𝑃(𝑠1:𝑡) = 𝑃(𝑠𝑡, 𝑠1:𝑡−1). The definition 

of conditional probability is applied on the denominator. 

𝑃(𝑏|𝑠1:𝑡) =
𝑃(𝑠𝑡|𝑏, 𝑠1:𝑡−1) 𝑃(𝑏|𝑠1:𝑡−1) 𝑃(𝑠1:𝑡−1)

𝑃(𝑠𝑡|𝑠1:𝑡−1) 𝑃(𝑠1:𝑡−1)
 (2.7) 

Assuming that 𝑃(𝑠1:𝑡−1) ≠ 0 (meaning the sequence of past observations has 

a non-zero probability of occurring), the term 𝑃(𝑠1:𝑡−1) can be cancelled. 

𝑃(𝑏|𝑠1:𝑡) =
𝑃(𝑠𝑡|𝑏, 𝑠1:𝑡−1) 𝑃(𝑏|𝑠1:𝑡−1)

𝑃(𝑠𝑡|𝑠1:𝑡−1)
 (2.8) 

The denominator 𝑃(𝑠𝑡|𝑠1:𝑡−1) is the marginal likelihood of observing 𝑠𝑡 given 

all the past observations 𝑠1:𝑡−1 and is a normalising constant (evidence) so that 

the posterior probabilities for the possible behaviours {𝑏𝑠, 𝑏𝑛𝑠} sum to 1 (discrete 

case of marginal likelihood): 
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𝑃(𝑠𝑡|𝑠1:𝑡−1) =∑𝑃(𝑠𝑡|𝑏
′, 𝑠1:𝑡−1) 𝑃(𝑏

′|𝑠1:𝑡−1)

𝑏′

 (2.9) 

The probability 𝑃(𝑠𝑡|𝑏, 𝑠1:𝑡−1) is usually referred to as the measurement 

model. A Markov assumption is made, according to which the past observations 

𝑠1:𝑡−1 do not provide additional information for predicting the probability of 

observing 𝑠𝑡 given that the vehicle exhibits behaviour 𝑏. Due to that assumption 

and since each of the two possible behaviours is linked with specific observation 

values, the measurement model can be simplified as shown below: 

𝑃(𝑠𝑡|𝑏, 𝑠1:𝑡−1) = 𝑃(𝑠𝑡|𝑏) (2.10) 

Finally, substituting (2.9) and (2.10) back to (2.8) provides the most common 

form of recursive Bayesian estimation, which is also the formulation of the 

suggested model. 

𝑃(𝑏|𝑠1:𝑡) =
𝑃(𝑠𝑡|𝑏) 𝑃(𝑏|𝑠1:𝑡−1)

∑ 𝑃(𝑠𝑡|𝑏
′) 𝑃(𝑏′|𝑠1:𝑡−1)𝑏′

 (2.11) 

Where, 𝑃(𝑏|𝑠1:𝑡) is the posterior probability (belief) that the vehicle currently 

exhibits behaviour 𝑏 given the observations until time 𝑡 (𝑠1:𝑡), 𝑃(𝑠𝑡|𝑏) is the 

likelihood of the current observation 𝑠𝑡, given the current vehicle behaviour 𝑏, 

𝑃(𝑏𝑡|𝑠1:𝑡−1) is the prior probability that the vehicle exhibited behaviour 𝑏 given the 

observations until time 𝑡 − 1 (𝑠1:𝑡−1) and ∑ 𝑃(𝑠𝑡|𝑏
′) 𝑃(𝑏′|𝑠1:𝑡−1)𝑏′  is the evidence 

or marginal likelihood. For the formulation of the model a classical Bayesian 

approach was adopted, where the initial prior probability for the two mutually 

exclusive behaviours is set to be uniform at 𝑡 = 0: 𝑃(𝑏s) = 𝑃(𝑏ns) = 0.5. This 

assumption means that before a pedestrian receives any sensory evidence from 

the vehicle's kinematics, they are in a state of maximum uncertainty. The 

implication of this choice is that any subsequent shift in the belief probability is 

driven only by the accumulation of new kinematic evidence. However, this 

assumption represents a simplification of real-world cognition. A pedestrian's 

belief is likely influenced by prior experience, both in the real world (e.g., learned 

traffic norms at an unmarked crossing) and possibly within the context of the 

experiment itself (e.g., exposure to previous scenarios). Such experience would 

establish a learned prior bias that moves the initial belief away from the neutral 

belief. This limitation is addressed in the next chapter by incorporating a prior bias 

parameter. 
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The likelihood term 𝑃(𝑠𝑡|𝑏) quantifies how well the observed kinematics match 

what is expected for a given behaviour. This probabilistic mapping from an 

underlying vehicle behaviour 𝑏 to an observed kinematic state 𝑠 arises from two 

main sources: 

1) Perceptual Noise: The pedestrian's estimation of the vehicle's deceleration 

rate 𝑑 or 𝜏̇ value may not be perfectly accurate. This was modelled as 

normally distributed noise with a mean of zero and standard deviation (or 

noise intensity) 𝑁𝑝 (one of the free parameters of the model).  

2) Behavioural Variability: Vehicles may not exhibit a given behaviour (e.g., 

stopping) with an identical kinematic profile every time. This differs from 

the primary source of probability in Baker et al.'s (2009) models, where 

environmental states are generally known, and agents probabilistically 

choose actions to achieve goals based on rational planning. In the 

proposed model, the underlying behaviour 𝑏 (analogous to Baker et al.'s 

(2009) goal 𝑔) is fixed for the sequence, and the observed 𝑠 states are 

noisy manifestations of this fixed behaviour. This type of uncertainty was 

assigned the standard deviation 𝛺𝑏. 

To capture this combined uncertainty, it was assumed that the likelihood of 

observing a particular kinematic state 𝑠 given a behaviour 𝑏, 𝑃(𝑠𝑡|𝑏), follows a 

normal (Gaussian) probability distribution, 𝒩(𝑠𝑡; 𝜇𝑏 , 𝜎𝑏
2). The mean 𝜇𝑏 represents 

the most typical kinematic value the pedestrian expects for a given behaviour 𝑏. 

Figure 2.4 illustrates examples of these likelihood distributions for deceleration 

rates and 𝜏̇, showing, for instance, that an observed deceleration rate of 0 m/s2 

or 𝜏̇ = −1 might be most probable under a 'not stopping' behaviour, while a 

deceleration of 4 m/s2 or 𝜏̇ = −0.5 might be most probable under a 'stopping' 

behaviour. Specifically, the explanations behind these 𝜏̇ values have been 

provided in Subsection 1.5.1. The standard deviation 𝜎𝑏 of this distribution 

represents the pedestrians’ overall uncertainty for a given behaviour 𝑏. The 

overall uncertainty is decomposed to the two sources described above as: 

𝜎𝑏 = √𝑁𝑝2 + 𝛺𝑏
2 

These mean and standard deviation parameters define what kinematic values 

are considered typical for 'stopping' versus 'not stopping' behaviour and how 

much variability is expected around these typical values. In this study, these 
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parameters (𝜇𝑏 and 𝜎𝑏 for both 'stopping' and 'not stopping' behaviours, and for 

both deceleration rate 𝑑 and 𝜏̇-based alternatives) were treated as free 

parameters. All the free parameters’ (𝜇𝑠, 𝜇𝑛𝑠, 𝜎𝑠, 𝜎𝑛𝑠 and 𝑁𝑝) values were 

estimated by fitting the overall model to the experimental data collected from the 

participants (details of the fitting procedure are described in the next section. 

  

Figure 2.4 - Examples of the  𝑃(𝑠|𝑏) probabilities of observing a certain 
acceleration rate or 𝜏̇ observation given that the vehicle is exhibiting behaviour 𝑏. 
The likelihood was assumed to be following a normal distribution for both possible 
behaviours 

In the framework by Baker et al. (2009), the observed agents select a 

sequence of actions (e.g., 'move North') probabilistically to achieve a goal state 

(e.g., 'reach location X'). Therefore, their model involves an inverse planning step 

by the observer to infer agent goals from observed actions. In the current 

pedestrian-vehicle context, the vehicle behaviours ('stopping' or 'not stopping') 

are analogous to these underlying goals. The observable kinematic states (𝑠), are 

direct, albeit noisy, manifestations of these behaviours. Thus, the model focuses 

on inferring the behaviour directly from these observed kinematic states, without 

an equivalent intermediate layer of planning discrete actions as seen in Baker et 

al.'s (2009) original context. 

 

2.4 Model fitting 

 

To determine the optimal values for the free parameters of the behaviour 

estimation model, which is based on recursive Bayesian estimation, the 

experimental data that were gathered from the designed experiment, were used. 

The model alternatives have multiple parameters. As outlined in the previous 
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section, the model incorporates several free parameters: the means of the 

likelihood distributions for the ‘stopping’ and ‘not stopping’ vehicle behaviours (𝜇𝑠 

and 𝜇𝑛𝑠 respectively), the standard deviations reflecting the process variability for 

these behaviours (𝜎𝑠 and 𝜎𝑛𝑠) and a factor for the observation noise (𝑁𝑝). 

It is noteworthy that 𝜇𝑛𝑠 could be fixed on specific values based on physical 

assumptions for both model alternatives, however in the current fitting procedure, 

all five listed parameters were treated as free, allowing more flexibility. 

1) 𝜇𝑛𝑠 = 0 for the 𝑑-based alternative since 𝑑 = 0 𝑚/𝑠2 if the vehicle is 

travelling with constant speed 

2) 𝜇𝑛𝑠 = −1 for the 𝜏̇-based alternative (as also illustrated in Figure 2.2). 

For simplicity, the experimental data (participants’ ratings regarding the 

approaching vehicle’s behaviour) were averaged across all subjects, as done by 

Baker et al. (2009), and the fit that described the averaged data best, would be 

selected as the best-fitting parameter combination. However, with averaging the 

data across all participants, it was assumed that all participants are the same, 

i.e., can be described by a single model parameterisation. The model output is 

the estimated posterior belief (belief probabilities of the most-likely current 

behaviour of the vehicle). Since the behaviour estimation model has more than 

one free parameter, the multi-parameter model fitting procedure was adopted. A 

grid search was performed, i.e., all combinations of the ranges of values for each 

parameter, as shown in Table 2.2, were tested. Since the inspiration was drawn 

from Baker et al. (2009) in designing the experiment and formulating the model, 

the model fitting approach was also adopted directly from the methodology used 

in their cognitive science study. More specifically they compared their models 

using a bootstrap cross-validated (BSCV) correlational analysis, a non-

parametric technique that fit models on random training subsets and tested them 

on the complementary data. That analysis included a grid search that tested a 

number of parameter values, ultimately calculating the average correlation 

between the participants’ data with the testing datasets to assess goodness-of-fit 

of the models. Additionally, since the suggested model was quite simple, including 

only five free parameters, a grid model fitting approach allowed an exhaustive 

search of the parameter ranges. 
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Table 2.2 - Model’s parameter ranges 

Parameters 𝑑-based alternative 𝝉̇-based alternative 

𝜇𝑠 {-6, -5.5, -5, …, 0} {-1, -0.75, -0.5, …, 1} 

𝜇𝑛𝑠 {-6, -5.5, -5, …, 0} {-1, -0.75, -0.5, …, 1} 

𝜎𝑠 {0.1, 0.4, 0.7, …, 1.3} {0.1, 0.4, 0.7, …, 1.3} 

𝜎𝑛𝑠 {0.1, 0.4, 0.7, …, 1.3} {0.1, 0.4, 0.7, …, 1.3} 

𝑁𝑝 {0, 0.5, 1, …, 5} {0, 0.5, 1, …, 5} 

 

To express participants' ratings, which were originally on a 1 to 9 Likert scale, 

as probability beliefs, a linear transformation was applied to convert these ratings 

to a 0-100% scale. To quantify the goodness of fit for each parameter 

combination, the average correlation coefficient (Spearman’s rho) between the 

model’s predictions and the average beliefs of the participants across all 18 

kinematic scenarios, was calculated. The Spearman's rank correlation, 

represented by 𝜌𝑆, shows the relationship between two sets of data. Unlike 

Pearson’s correlation that uses the original data values, 𝜌𝑆 is determined by the 

ranked order of the data. In the current case, for a dataset 𝑋, which represents 

beliefs predicted by a model, and a dataset 𝑌, which represents the average 

beliefs of participants, the values in 𝑋 and 𝑌 are converted into their respective 

ranks, denoted as 𝑅𝑋 and 𝑅𝑌. The Spearman's correlation (𝜌𝑆) is then calculated 

using these ranks. 

𝜌𝑆 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2 − 1)
 (2.12) 

Where 𝑑𝑖 = 𝑅𝑋𝑖 − 𝑅𝑌𝑖 is the difference between the ranks of corresponding 

data points, and 𝑛 is the number of data points. 

The choice of Spearman’s correlation instead of Pearson’s was made, as the 

former assesses the monotonic relationship between two variables, making it 

robust even if their connection is not strictly linear and less sensitive to outliers 

than the latter. This was deemed appropriate as subjective rating scales may not 

perfectly map to linear changes in model probability outputs. Spearman’s 

correlation captures the following relationship: if a model probability increases, 

subjective rating also tends to increase (or decrease, if negatively correlated), 

without assuming a linear transformation. Finally, the parameter combination 
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yielding the maximum average correlation was selected as the best-fitting 

parameter combination. 

 

2.5 Results 

 

This section presents the key findings from the experiment, performing a 

statistical analysis of participants' beliefs across the different experimental 

conditions. Following, the performance of the proposed computational model 

alternatives in predicting these subjective ratings is evaluated. 

2.5.1 Pedestrian beliefs regarding the vehicle’s behaviour 

2.5.1.1 Segments and driving manoeuvres 

Figure 2.5 illustrates participants’ beliefs (Ps, indicating the belief that the 

vehicle is stopping) as a function of the presented segment and the vehicle’s 

driving manoeuvre. A 4-way factorial ANOVA was conducted as described in 

Section 2.2, to analyse those beliefs. The full table of this analysis is provided in 

Appendix A . The analysis revealed a significant main effect of segment on 

pedestrians’ beliefs (𝐹(3,1172) = 24.54, 𝑝 <  .001, 𝜂𝑝
2 = 0.130), suggesting that 

as more time passed and the participants observed a vehicle’s approach for 

longer, the more certain (beliefs closer to 100% or 0%) they were of whether the 

vehicle was stopping or not. Pedestrians’ beliefs seemed to be affected by 

different vehicle driving manoeuvres, indicated by a significant main effect 

(𝐹(2,1172) = 589.59, 𝑝 <  .001, 𝜂𝑝
2 = 0.782) of driving manoeuvre. Notably, 

pedestrians generally believed that the vehicle was stopping, with higher 

certainty, during Deceleration manoeuvres than during Constant speed or Mixed 

manoeuvres. At the same time pedestrians generally believed that the vehicle 

was not stopping, with higher certainty, during Constant speed manoeuvres than 

during Deceleration or Mixed manoeuvres. 
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Figure 2.5 - Pedestrians’ beliefs (𝑃𝑠) regarding that the vehicle is stopping as a 
function of segment and the presented driving manoeuvre. Means are 
represented by black dots and dashed lines indicate the trends of the average 
beliefs 

For the Constant speed manoeuvres (green violins and mean trendline in 

Figure 2.5) participants’ belief that the vehicle is not stopping strengthened as 

more of the scenario was revealed over time. Initially (Segment 1), the average 

belief was around 50%, indicating uncertainty, with considerable variability in 

participant responses. This variability can be explained by the fact that all different 

initial speed and initial TTA levels are grouped under the umbrella of a specific 

driving manoeuvre, in this case the Constant speed one. As the vehicle continued 

at a constant speed through subsequent segments, this belief shifted even more 

decisively towards the vehicle not stopping (closer to 𝑃𝑠 = 0 %) and the variability 

was decreased, as it was more obvious that the vehicle was not stopping in later 

segments, for all different initial speeds and TTAs. Targeted post-hoc pairwise 

comparisons were conducted to examine differences between successive time 

segments (Segment 1 vs. 2, Segment 2 vs. 3, and Segment 3 vs. 4) within the 

constant speed manoeuvres (Appendix A ). The results showed that the average 
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beliefs of the pedestrians had statistically significant differences for these 

sequential time segment comparisons. 

Conversely, when the vehicle was observed to be decelerating from the start 

of perceived approach (orange violins and mean trendline in Figure 2.5), 

pedestrians generally identified the stopping behaviour, and their belief in this (Ps) 

increased (became more certain) over longer segments. Even in segment 1, the 

mean belief was already leaning towards the stopping behaviour and the trend 

continued towards high certainty by segment 4. The higher to lower variability 

trend can be explained in a similar manner as in the Constant speed manoeuvres. 

As in the Constant speed manoeuvres, targeted post-hoc analysis showed that 

the average beliefs of the pedestrians had statistically significant differences for 

sequential time segment comparisons in the Deceleration manoeuvres (Appendix 

A ), as well. 

As shown in Figure 2.5, in Mixed scenarios (blue violins and mean trendline), 

where the vehicle initially (segment 1) maintained constant speed and then (rest 

of the segments) decelerated, pedestrians’ beliefs evolved in a different way than 

in the other two driving manoeuvres. In early segments, pedestrians seemed to 

be, on average, uncertain or were slightly leaning towards the non-stopping 

behaviour (consistent with the vehicle’s initial constant speed phase). As the 

vehicle began to decelerate in later segments, pedestrians’ beliefs shifted 

towards the vehicle stopping behaviour. However, pedestrians’ beliefs in Mixed 

manoeuvres often were not reaching the same level of certainty seen in the 

Deceleration manoeuvres before the equivalent final segment. Targeted post-hoc 

analysis on the Mixed manoeuvres confirmed once again statistically significant 

differences in average beliefs between the successive segments (Appendix A ). 

Finally, a significant interaction effect involving the segment and the driving 

manoeuvre on pedestrians’ beliefs regarding the vehicle’s behaviour 

(𝐹(6,1172) = 202.92, 𝑝 <  .001, 𝜂𝑝
2 = 0.668), was found. A targeted post-hoc 

analysis was conducted to compare the average pedestrian beliefs between 

different driving manoeuvres at each of the four segment levels (Appendix A ). 

This analysis showed that the average beliefs of the pedestrians had statistically 

significant differences between different driving manoeuvres, at the same 

segment levels, except in the case of the comparison between the 4th segments 
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of the Deceleration and the Mixed manoeuvres, since at the end of both of these 

manoeuvres it was quite evident that the vehicle was stopping. 

2.5.1.2 Initial TTAs and initial speeds 

Figure 2.6 illustrates how pedestrians’ beliefs regarding the approaching 

vehicle’s behaviour was influenced by the vehicle’s initial TTA (left column panels) 

and the vehicle’s initial speed (right column panels). The 4-way ANOVA (results 

for all factors and interactions detailed in Appendix A ) revealed significant main 

effects of initial TTA (𝐹(1,1172) = 98.67, 𝑝 <  .001, 𝜂𝑝
2 = 0.158) and initial speed 

(𝐹(2,1172) = 132.68, 𝑝 <  .001, 𝜂𝑝
2 = 0.302). In regard to the initial TTA, as also 

seen in Figure 2.6, longer initial TTAs generally led pedestrians’ beliefs to lean 

more towards the vehicle engaging in stopping behaviour. Conversely to TTA, 

higher initial speeds, generally led pedestrians to believe more strongly that the 

vehicle was not stopping. The initial TTA had a positive effect on the average 

belief of the pedestrians, regarding the decelerating behaviour of the vehicle. 

These patterns are consistent for all three driving manoeuvres, as shown in the 

Figure 2.6. The 4-way ANOVA also identified a significant interaction between the 

initial TTA and initial speed (𝐹(2,1172) = 3.28, 𝑝 =  .0448, 𝜂𝑝
2 = 0.006), 

suggesting their combined influence on the average pedestrian beliefs. 

More significant interaction effects involving initial TTA, initial speed, segment 

and driving manoeuvre were found by the 4-way ANOVA, indicating that the way 

pedestrians’ beliefs were influenced by a single factor also depended on the 

specifics of the other factors. While Figure 2.5 and Figure 2.6 primarily highlight 

the overall trends of the pedestrians’ beliefs for the four factors mentioned above, 

these more complex interactions, even though they are not easily visualised and 

comprehended, are statistically supported by the full ANOVA (Appendix A ). 
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Figure 2.6 - Pedestrians’ beliefs regarding the approaching vehicle’s behaviour 
as a function of judgment point, initial TTA (left) and initial speed (right) of the 
vehicle 

2.5.2 Model predictions vs subjective ratings 

Spearman’s rank correlation (𝜌𝑆) was used to quantify the relationship 

between model predictions and the average pedestrian beliefs (participants’ 

subjective ratings). With 𝜌𝑆, the goal was to assess the strength and direction 

(positive or negative) of the relationship between the two variables in question 
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(model predictions and average pedestrian beliefs), or in other words if the model 

predictions can capture the trends of the average pedestrian beliefs. A 𝜌𝑆 = 1 

would indicate that the model makes belief predictions which rank exactly as the 

participants’ beliefs, across all 72 segments. On the contrary, a 𝜌𝑆 = 0 would 

indicate that the ranks of model predicted beliefs do not covary with the ranks of 

the participants’ beliefs, i.e., there is no monotonic relationship between the two 

(for example, a rank increase of participant’s beliefs would not be followed by a 

consistent rank increase of model predictions). The model predictions that are 

presented in this subsection have been obtained by the parameter combinations 

which yielded the highest Spearman’s correlation between the model predictions 

and the average pedestrian beliefs. More specifically, the best-fitting parameter 

settings for both model alternatives are presented in Table 2.3. 

Table 2.3 - Best-fitting parameter settings 

 𝒅-based alternative 𝝉̇-based alternative 

𝜇𝑠 -1 m/s2 -0.5 

𝜇𝑛𝑠 0 m/s2 -1 

𝜎𝑠 1 m/s2 1 

𝜎𝑛𝑠 1 m/s2 1 

𝑁𝑝 1 0 

 

Figure 2.7 shows the performance of the two model alternatives (using the 

best-fitting parameter values as stated above), by displaying scatter plots of the 

model predicted beliefs compared to participants’ average ratings (translated in 

belief probabilities). As can be seen from the two scatter plots, even though both 

model alternatives provided Spearman’s correlations (performance metric), 

which are closer to 1 (i.e., perfect rank order relationship, not necessarily linear 

as indicated by the identity line and Pearson’s correlation) than 0 (i.e., no rank 

order relationship), between their belief predictions and the participants’ 

subjective ratings, the 𝜏̇-based model alternative achieved a higher rank 

correlation. That means that both model alternatives were able to at least capture 

the overall trends of the beliefs of the pedestrians, regarding the approaching 

vehicle’s behaviour, with the 𝜏̇-based model alternative performing better in that 

aspect. Moreover, 𝜏̇-based model alternative’s better prediction performance is 



61 
 

reflected by a smaller root mean square error (RMSE) between its predictions 

and the average pedestrian beliefs. Qualitatively, the 𝑑-based alternative exhibits 

a lot more poorly predicted datapoints than the 𝜏̇-based alternative. Additionally, 

the latter’s scatter points are more closely gathered to the identity line, suggesting 

that its predictions are better estimates than the respective ones of the 𝑑-based 

alternative. 

𝒅-based alternative 𝝉̇-based alternative 

  

𝜌𝑆 = 0.70 𝑎𝑛𝑑 𝑅𝑀𝑆𝐸 = 32.57 𝜌𝑆 = 0.88 𝑎𝑛𝑑 𝑅𝑀𝑆𝐸 = 20.04 

Figure 2.7 - Scatter plots of model predictions using best-fitting parameter 
settings (y-axes) versus pedestrians’ average beliefs (x-axes) for all 18 kinematic 
scenarios of the approaching vehicle 

Following, a qualitative analysis which compares the model alternatives 

predicted beliefs and the average pedestrians’ beliefs, is presented. Through this 

analysis, the predictive performance of both model alternatives was assessed on 

each specific kinematic scenario (Figure 2.2 illustrates the kinematics of all 18 

scenarios), with each one having a different combination of conditions (driving 

manoeuvre, initial speed, initial TTA). The presentation below is divided into the 

scenarios under the three driving manoeuvres (Constant speed – Figure 2.8, 

Deceleration – Figure 2.9 and Mixed – Figure 2.10). Similarly to Figure 2.7, the 

𝑑-based and 𝜏̇-based alternative’s predictions are shown in yellow and blue 

coloured curves, respectively. The average pedestrian beliefs are illustrated as 

standard black standard error of the mean bars at the corresponding segment 

timings (as described in Subsection 2.1.4). 
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Figure 2.8 - Comparison between model alternatives’ predictions and 
pedestrians’ beliefs for the constant speed manoeuvres 

As seen in Figure 2.8, in the constant speed manoeuvres, both model 

alternatives struggled to fully capture the patterns of the average pedestrian 

beliefs regarding the behaviour of the approaching vehicle. Notably, each model 

alternative produced a single specific belief curve that is repeated across all six 

constant speed scenarios. This occurs because the observation state input for 

both model alternatives is constant in these scenarios (𝑑 = 0 𝑚/𝑠2 and 𝜏̇ = −1). 

Consequently, the models’ 𝑃(𝑠|𝑏) probabilities remain constant throughout these 

scenarios, leading to the same belief curve (𝑃𝑠), regardless of the different 

kinematic conditions. In contrast, as discussed in Subsection 2.5.1, participants’ 

early judgements in these scenarios were affected by initial speed and TTA. For 
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instance, with lower initial speeds or longer initial TTAs, participants initially 

leaned more toward believing the vehicle was stopping. The models' difficulty in 

capturing these patterns highlights that their current inputs are insufficient for 

these conditions where these cues are not differentiated. This suggests that 

pedestrians utilise other information, such as speed and/or spatiotemporal 

distance, particularly in early segments when 𝑑 or 𝜏̇ cues are not yet informative. 

While both alternatives have limitations here, the 𝜏̇-based alternative generally 

aligns better with the average pedestrian beliefs. 

 TTA 3 s TTA 6 s 

25 

km/h 

  

40 

km/h 

  

55 

km/h 

  

Figure 2.9 - Comparison between model alternatives’ predictions and 
pedestrians’ beliefs for the deceleration manoeuvres 

In the deceleration manoeuvres, as illustrated in Figure 2.9 and discussed in 

Subsection 2.5.1, participants’ early judgments were, as with the constant speed 
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scenarios, influenced by the initial speed and TTA. Both model alternatives 

demonstrated a better ability to capture the overall pattern of increasing belief in 

the vehicle stopping compared to the constant speed scenarios. As deceleration 

cues became available, the models captured the human belief patterns more 

effectively. A tendency for the 𝑑-based alternative, to saturate belief at 0% or 

100% very quickly was observed; 1) the higher the deceleration amplitude, the 

faster the belief saturation and 2) this might reflect the sensitivity of the chosen 

standard deviation parameters of the 𝑃(𝑠|𝑏). Later, during the model fitting 

process it was confirmed (as presented in Figure 2.11) that the optimal values for 

the 𝜎 parameters were found within the defined search ranges (Table 2.2) and 

were not at the boundaries of these ranges. This suggests that model predictions, 

with rapid saturation behaviour, is a characteristic of the current model 

formulation with its best-fitting parameters, rather than a result of a small grid 

search. The 𝜏̇-based alternative, again, generally showed a better agreement to 

the average pedestrian beliefs across the different scenarios within this 

manoeuvre type. 

For the mixed manoeuvres (Figure 2.10), where vehicles initially travelled at 

a constant speed before decelerating, both model alternatives captured the 

general trends of average pedestrian beliefs, even with this distinct change in 

vehicle behaviour happening mid-scenario. The 𝜏̇-based alternative once again 

showed a better performance in capturing the patterns of the average pedestrian 

beliefs. Notably, the patterns observed in pedestrian beliefs and model 

predictions during these mixed manoeuvres mirrored those seen in the other two, 

single-behaviour manoeuvres. Specifically, during the initial constant speed 

phase of the mixed manoeuvres, the same early belief characteristics and model 

limitations observed in the Constant speed scenarios were apparent. However, 

once the vehicle began to decelerate in the later segments of the mixed 

manoeuvre, the predicted beliefs resembled more to those observed in the pure 

Deceleration scenarios, with beliefs shifting towards the vehicle stopping. One 

challenging scenario for both model alternatives was the low initial speed and 

long initial TTA scenario (25 km/h and 6 s TTA), where average pedestrian beliefs 

suggest that they believed that the vehicle was stopping, possibly due to its low 

speed and big distance from them, when it was actually exhibiting a non-stopping 

behaviour (maintaining constant speed). Both model alternatives, having 
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knowledge of the deceleration-related kinematics of the vehicle, predicted that 

pedestrians were extremely accurate at inferring the true behaviour of the vehicle, 

when in fact they were not, and they were basing their beliefs on other 

information/expectations; a nuance that both alternatives were not able to 

capture. 

 TTA 3 s TTA 6 s 

25 

km/h 

  

40 
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55 
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Figure 2.10 - Comparison between model alternatives’ predictions and 
pedestrians’ beliefs for the mixed manoeuvres 

 

2.5.3 Parameter analysis 

Having established the predictive performance of the model alternatives, this 

section delves into an investigation of their fitted parameters. The goals of this 

analysis are threefold: to understand the best-fitting parameter settings 
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(presented in Table 2.3), to investigate how model fits are affected by variations 

of parameter settings and to identify potential correlations between parameters, 

which could indicate issues like parameter redundancy. This analysis is illustrated 

by pairwise parameter scatterplot matrices for the 𝑑-based alternative (Figure 

2.11) and the 𝜏̇-based alternative (Figure 2.12). 

For the deceleration-rate-based model, the best-fitting parameters were 𝜇𝑠 =

−1 𝑚/𝑠2, 𝜇𝑛𝑠 = 0 𝑚/𝑠
2, 𝜎𝑠 = 1 𝑚/𝑠

2, 𝜎𝑛𝑠 = 1 𝑚/𝑠
2 and 𝑁𝑝 = 1 𝑚/𝑠

2. The mean 

for the non-stopping behaviour is physically intuitive, directly representing a 

vehicle maintaining constant speed (i.e., zero acceleration/deceleration). The 

mean for stopping behaviour reflects a typical, constant deceleration rate, that is 

within the range of deceleration rates observed in the designed scenarios of the 

experiment. The equal spread of the likelihood probabilities 𝑃(𝑠|𝑏𝑠) and 𝑃(𝑠|𝑏𝑛𝑠) 

is presented in the left panel of Figure 2.13. 

 
Figure 2.11 - 𝑑-based model alternative’s pairwise parameter scatterplot matrix. 
The histograms in the diagonal illustrate the one-dimensional marginal 
distributions for each parameter, which achieved the highest correlations (above 
a threshold of 0.65). The scatterplots show the respective two-dimensional 
marginal distributions for each combination of two parameters, which are 
represented by black dots (with minor jitter added to improve visibility). The red 
circles and lines indicate the best-fitting parameter values (the highest achieved 
correlation was equal to 0.70). The x and y ranges of the scatterplots indicate the 
full search ranges of the respective parameters 
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Figure 2.12 - 𝜏̇-based model alternative’s pairwise parameter scatterplot matrix. 
The histograms in the diagonal illustrate the one-dimensional marginal 
distributions for each parameter, which achieved the highest correlations (above 
a threshold of 0.8). The scatterplots show the respective two-dimensional 
marginal distributions for each combination of two parameters, which are 
represented by black dots (with minor jitter added to improve visibility). The red 
circles and lines indicate the best-fitting parameter values (the highest achieved 
correlation was equal to 0.88). The x and y ranges of the scatterplots indicate the 
full search ranges of the respective parameters 

  

Figure 2.13 - 𝑃(𝑠|𝑏) probabilities of observing a certain acceleration rate or 𝜏̇ 
given that the vehicle is exhibiting behaviour 𝑏. The blue (𝑏𝑠) and orange (𝑏𝑛𝑠) 
curves refer to the stopping and non-stopping vehicle behaviours, respectively 

For instance, with the fitted parameters for the 𝑑-based model alternative, the 

two likelihood distributions intersect at -0.5 m/s2. This means that any observed 

acceleration rate lower than this value makes the 'stopping' behaviour more 

probable than the 'non-stopping' behaviour (𝑃(𝑠|𝑏𝑠) > 𝑃(𝑠|𝑏𝑛𝑠)), which directs the 

belief towards the vehicle stopping. Similarly, for the 𝜏̇-based alternative, the 

cutoff value where the one behaviour becomes more probable than the other is 

equal to -0.75. Essentially, the 𝜇 parameters control the distance between 𝑃(𝑠|𝑏𝑠) 
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and 𝑃(𝑠|𝑏𝑛𝑠) and the 𝜎 parameters control how wide or narrow 𝑃(𝑠|𝑏𝑠) and 

𝑃(𝑠|𝑏𝑛𝑠) are, around their respective means. The combination of all of these 

indicates a parameter interplay that dictates the model’s eventual output. A larger 

separation between means and smaller standard deviations lead to more certain 

belief updates, as linking observations to the two possible behaviours is less 

ambiguous. Conversely, greater overlap between the likelihood distributions 

results in more uncertainty and slower changes in belief. 

To understand the model's sensitivity to its parameters and to identify potential 

relationships between them, the parameter space was investigated. As illustrated 

in Figure 2.11, the regions of parameter values with the best fits (highest achieved 

Spearman’s rank correlations) for the 𝑑-based alternative, were found around 

𝜇𝑠 = −1 𝑚/𝑠
2 and 𝜇𝑛𝑠 = 0 𝑚/𝑠

2 (where the best fit also resided). As for the 

standard deviations of the likelihood probabilities there is no clear relationship 

that can be reported. Finally, no conclusive observations can be made for 𝑁𝑝 

either, apart from the fact that there was a tendency for lower perceptual noise 

intensities that yielded higher correlations.  

The 𝜏̇-based alternative, which demonstrated better overall performance, 

yielded the following best-fitting parameters, were 𝜇𝑠 = −0.5 𝑚/𝑠
2, 𝜇𝑛𝑠 =

−1 𝑚/𝑠2, 𝜎𝑠 = 1 𝑚/𝑠
2, 𝜎𝑛𝑠 = 1 𝑚/𝑠

2 and 𝑁𝑝 = 0 𝑚/𝑠
2. Notably, these optimal 

mean values and the respective high correlation-yielding areas for the likelihood 

distributions are consistent with established concepts in collision avoidance 

theory (Lee, 1976) and validate modelling choices of previous pedestrian 

behaviour modelling studies that have utilised similar 𝜏̇ critical values for 

modelling pedestrians’ crossing decisions (Giles et al., 2019; Markkula et al., 

2018; Pekkanen et al., 2022). As mentioned in Subsection 1.5.1, a 𝜏̇ value of -1 

signifies no change in the rate of approach, consistent with non-stopping 

behaviour, while 𝜏̇ values around -0.5 (or more positive) could be interpreted as 

indicative of significant braking or an intention to yield, as they represent an 

adequate braking effort from the driver’s perspective to stop the vehicle before a 

pedestrian. Furthermore, an important characteristic of the 𝜏̇ cue is its situation-

adaptive nature: during any vehicle yielding manoeuvre with adequate braking, 

the value of 𝜏̇ is the same (equal to -0.5), providing the same general vehicle 

behaviour information, regardless of the distance and speed of the vehicle. This 

contrasts with the deceleration rate, where different distances and speeds would 
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require different deceleration rate values to stop before the pedestrian’s position. 

Another possible advantage of 𝜏̇ over the deceleration rate could be the fact that 

when the car is stopping and is in a close proximity to pedestrian, 𝜏̇ increases 

towards infinity (as shown in Figure 2.2), whereas the deceleration rate is kept 

constant up until the vehicle completely stops. The abovementioned 

characteristics of 𝜏̇, offer it an advantage against 𝑑 as a perceptual cue for 

inferring vehicle stopping intentions. So, the fact that theoretically grounded mean 

parameter values were obtained from the model fitting procedure, supports the 

psychological validity of the 𝜏̇-based alternative. 

An examination of the pairwise scatterplots in Figure 2.12 helps to identify 

potential parameter redundancies. This occurs when different combinations of 

parameter values can produce very similar model performance, making it difficult 

to uniquely identify the contribution of each individual parameter. More 

specifically, the best fits (highest achieved Spearman’s rank correlations) were 

found in the parameter regions of 𝜇𝑠 ≥ −0.5 and 𝜇𝑛𝑠 = −1, values which are 

theoretically grounded as stated before. As for the 𝜎 parameters, there seems to 

be a relationship between them; high correlations can be obtained by 

combinations of lower 𝜎𝑠 and higher 𝜎𝑛𝑠 (or vice versa), which indicates a likely 

redundancy in the parametrisation (for example only one 𝜎 parameter for both 

behaviours being sufficient). The fact that in the 𝜏̇-based alternative the best-fitted 

noise intensity parameter is equal to zero (𝑁𝑝 = 0), might suggest this model 

alternative can account for the uncertainty in the participants' judgements using 

only the behavioural variability component of the likelihood function, in 

comparison to the 𝑑-based alternative (𝑁𝑝 = 1), which seemed to require the 

uncertainty of perceptual noise to explain the data a bit better. 

 

2.6 Discussion 

 

The work presented in this chapter aimed to investigate how different initial 

vehicle speeds, initial Times-To-Arrival (TTAs) and distinct driving manoeuvres 

influence pedestrians' beliefs regarding an approaching vehicle's behaviour. 

Then, the ability of a Bayesian observer model, adapted from Baker et al. (2009), 

to capture the belief updating exhibited by humans in these vehicle approach 
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scenarios, was explored. This discussion will begin by interpreting the key 

behavioural observations regarding pedestrian beliefs, particularly the impact of 

kinematic variables and the temporal dynamics of belief updating. It will then 

evaluate the performance of the computational model (with two proposed 

alternatives), addressing both their successes in capturing pedestrians’ beliefs 

and their limitations. 

2.6.1 Behavioural observations 

A key contribution of the work presented in this chapter is the detailed 

temporal analysis of pedestrian belief updating regarding vehicle behaviour. By 

adapting the segmented stimulus presentation approach, inspired by Baker et al. 

(2009), to a road crossing context, it was possible to investigate how beliefs 

evolved as more kinematic information became available. This contrasts with past 

research that, while addressing related topics like gap acceptance or crossing 

decisions, e.g., Beggiato et al. (2017); Dey et al. (2019); Dietrich et al. (2020), did 

not focus on the continuous belief updating process (behaviour estimation), or 

when it focused on behaviour (deceleration) detection (Ackermann et al., 2019) 

it just relied on a single reaction/detection/identification time point rather than the 

whole temporal spectrum of an approaching vehicle’s scenario. The segmented 

approach employed in the experiment which was presented in this chapter, 

appears to have been effective in extracting and measuring these evolving 

beliefs, as evidenced by the systematic changes and consistent patterns of 

participants’ judgements across segments and a variety of kinematic scenarios 

(Figure 2.8, Figure 2.9, Figure 2.10). However, a limitation of the experiment was 

that it was unable to provide any insight on the initial beliefs, i.e., during the time 

before any of the first segments (first judgement point of each of the 18 

scenarios). 

It was found that pedestrians were generally able to detect and distinguish the 

behaviour (maintaining constant speed with no intention to stop or decelerate with 

the intention to stop) of the approaching vehicle. Different driving manoeuvres 

and segments (i.e., amount of observation time) were found to influence 

pedestrians’ beliefs (Figure 2.5). This was expected because with more evidence 

over time and with clearer kinematic distinctions between manoeuvres, 

pedestrians would become more certain and accurate in judging the approaching 

vehicle’s behaviour. More specifically, the later the pedestrian’s belief was 
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reported, the more certain the reported ratings were towards the correct vehicle 

behaviour, as also indicated by the statistical analysis. This process could be 

understood as a form of evidence accumulation, where the input sensory cues 

(vehicle kinematics) are integrated, over time, to update an internal belief state 

about the most likely vehicle intention/behaviour (stopping or not stopping). Early 

on, there was a divergence between the pedestrians’ beliefs between 

deceleration manoeuvre scenarios and the other two manoeuvre scenarios. This 

divergence is in line with the vehicle kinematics at that stage, i.e., in the first 

segments of deceleration scenarios, pedestrians were observing kinematic cues 

indicative of the stopping behaviour, while in the first segments of constant speed 

and mixed scenarios, those cues were absent. The slight differences between 

the pedestrians’ beliefs in the first segments of the respective constant speed and 

mixed scenarios could be attributed to the temporal structure of the presented 

stimuli. The first segments of the mixed scenarios (presenting a constant speed 

phase) were comparable to later segments of the constant speed scenarios. As 

a result, the beliefs of these later constant speed manoeuvre segments were 

similar to the beliefs of the first mixed manoeuvre segments. As segments 

progressed and the kinematics were separated between mixed and constant 

speed scenarios, beliefs also diverged. On the other hand, the beliefs observed 

in later segments of mixed scenarios converged towards the beliefs observed in 

the later segments of deceleration scenarios. Overall, the pedestrians’ beliefs 

regarding the approaching vehicle’s behaviour followed the actual kinematics of 

the vehicle in a way that one might expect, which provides reassurance that the 

segment-based experiment design was efficient. 

Two interesting findings are related to the mixed manoeuvres, which could be 

considered as later braking onsets than the respective deceleration manoeuvres 

(Figure 2.5). First, the average belief’s change of direction, from the non-stopping 

behaviour to the stopping behaviour, was evident and seemed to be happening 

almost as soon as the vehicle’s behaviour changed. Second, after the first time 

segment the rate with which the average belief of the mixed manoeuvres was 

increasing towards the stopping behaviour was larger than the rate with which 

the average belief of the deceleration manoeuvres was increasing towards the 

stopping behaviour, which aligns with the beliefs-vehicle kinematics relationship 

that was discussed before. In the later segments of the mixed scenarios the 
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deceleration rate magnitude was larger than the deceleration rate of the 

deceleration scenarios and thus the evidence related to the stopping behaviour 

is stronger in the former case. This observation could validate the finding by 

Ackermann et al. (2019), that the harder the braking (larger deceleration rate), 

the faster the identification of the stopping (decelerating) behaviour. However,  

Ackermann et al. (2019) found no significant influence of the onset of deceleration 

to the identification of vehicle behaviour, which contrasts with the finding of the 

current work, where pedestrians were overall more certain that the vehicle was 

stopping during deceleration manoeuvres than during mixed manoeuvres, 

despite the lower deceleration rates observed in the former scenarios. This 

suggests that earlier braking onset, even with a lower deceleration rate, could 

lead to faster and more accurate beliefs that the vehicle is stopping, possibly due 

to the longer duration of integrating decelerating cues. 

In the cases of larger spatiotemporal distance between the pedestrian and the 

vehicle, the pedestrians’ belief certainty and accuracy were lower (Figure 2.6). 

The segments, where the discrepancy between the believed vehicle behaviour 

and the actual vehicle behaviour was largest, were mostly earlier segments with 

lower vehicle speeds and/or larger TTA, i.e., larger spatiotemporal distances. This 

observation contrasts with the previous beliefs-vehicle kinematics relationship 

and suggests that also other factors might influence pedestrians’ beliefs, 

especially when direct perceptual information of deceleration might be less 

salient. Specifically, the effects of initial speeds and initial TTAs on pedestrians’ 

beliefs remained consistent across all the kinematic scenarios (Figure 2.6). 

Generally, pedestrians tended to believe more towards the vehicle's stopping 

behaviour when the initial TTA was longer. Conversely, higher initial speeds led 

pedestrians to believe that the vehicle was not stopping, which is in line with the 

findings by Ackermann et al. (2019). 

During the experiment there was no auditory feedback (sound cues) related 

to the approaching vehicle, for example engine and/or tyre noise, braking sounds, 

etc. That meant that the pedestrian beliefs were based solely on the visual 

perception of the vehicle’s motion. The omission of sound cues was intentional to 

focus on the interpretation of implicit visual kinematic cues, which aligned with 

the core mechanism of the suggested model and its reliance on a visual variable. 

That omission represents a limitation, as sound could influence a pedestrian’s 
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perception of an approaching vehicle and their road crossing behaviour. While 

some studies have suggested that the addition of vehicle sound did not 

significantly affect pedestrians’ crossing decisions, which were primarily driven by 

visual cues of speed and distance (Soares et al., 2021), other research has 

indicated that sound can be important for accurate perception (Wessels et al., 

2023). So, it is possible that including realistic sound cues would have influenced 

the speed and certainty with which the participants updated their beliefs, by 

providing earlier or more redundant evidence of vehicle deceleration. However, 

due to the challenges in simulating high-fidelity, context-specific auditory stimuli 

and the initial focus on visual cues, this influence remains an important area for 

future investigation. 

2.6.2 Computational modelling of pedestrian behaviour estimation 

Another contribution of the work presented in this chapter is the development 

and evaluation of a behaviour estimation model. This model aimed to adapt a 

Bayesian observer model (Baker et al., 2009), which has previously been 

successful in capturing humans inferences of others’ goals in simplified laboratory 

tasks, to the road crossing context. To do this, kinematic cues, that researchers 

have previously proposed are used by humans as interpretation of stopping 

behaviour, were used. Specifically, the utilised kinematic cues were the 

deceleration rate (𝑑) of a vehicle and the rate of change of the relative rate of 

optical expansion (𝜏̇). 

Both behaviour estimation model alternatives suggested (𝑑-based and 𝜏̇-

based), were able to provide belief predictions which captured the general trends 

of average pedestrian beliefs regarding the behaviour of an approaching vehicle. 

The relatively high Spearman’s rank correlations that they achieved, indicate a 

strong monotonic relationship between their predictions and the average 

pedestrian beliefs and further suggests their ability to follow the overall patterns 

of the subjective beliefs. One reason for this relative success could be that 

humans, like the model, put a lot of emphasis on deceleration cues when inferring 

whether an approaching vehicle is stopping or not. The proposed model 

formulates how these cues are processed over time, following an inference 

process, in which, sensory information input is updating an internal belief state 

and replicates the beliefs-vehicle kinematics relationship discussed in the 

previous subsection. 



74 
 

Another key finding of the modelling work presented is the better performance 

of the 𝜏̇-based alternative in comparison to the 𝑑-based one (Figure 2.7). This 

better belief prediction was expressed both in quantitative (higher Spearman’s 

correlation and lower RMSE between their predictions and the average 

pedestrian beliefs) and qualitative (fewer poorly predicted datapoints and 

predicted belief curves closer to the actual average subjective ratings) terms. This 

provides support for the hypothesis that 𝜏̇ is perceptually available and more 

useful to pedestrians, rather than observations of the deceleration rate of a 

stopping vehicle. Another possible reason why the 𝜏̇-based alternative performs 

better than the 𝑑-based alternative is based on the fact that it is situation-adaptive 

whereas the latter is not. When a vehicle is braking, the value of 𝜏̇ is the same 

regardless of the specific kinematics of the vehicle, providing a ‘universal’ value 

which is indicative of vehicle stopping behaviour. In contrast the deceleration rate 

𝑑 is different for different of stopping manoeuvres. The optimal values for the 𝜇 

parameters of the likelihood distributions, for the 𝜏̇-based alternative, were found 

to be -0.5 for the stopping behaviour and -1 for the non-stopping behaviour; in 

line with the collision avoidance theory (Lee, 1976).  

Although, the Bayesian observer model has been very successful in capturing 

the beliefs of humans in simplified laboratory tasks, the current work suggests 

that it is somewhat less successful in the traffic setting. Despite achieving high 

positive correlations, a qualitative comparison revealed the model's inability to 

capture all observed patterns in human judgments. This failure was most 

apparent in cases of larger spatiotemporal distance between the pedestrian and 

the vehicle. An obvious limitation which may be contributing to the model’s 

difficulty to replicate the average pedestrian beliefs, is its reliance on a single 

deceleration related cue. The empirical observations discussed before, more 

specifically the influence of initial speed and TTA on beliefs in early segments, 

suggest that pedestrians, in addition to deceleration related cues, use also other 

sources of information that affect their behaviour estimation mechanism. 

Incorporating these sources of information in the modelling of the behaviour 

estimation mechanisms could possibly provide belief predictions that capture the 

patterns and nuances of the average pedestrian beliefs better. 

A further limitation of the modelling work in this chapter is its exclusive focus 

on aggregate data. The simplifying assumption of fitting the model to average 
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participant data to capture general trends in belief updating was adopted. 

However, this approach does not consider the variability between individuals. A 

closer inspection of individual participant ratings showed that individuals’ belief 

curves tended to follow the overall patterns of the average subjective ratings. 

Hence, it could be argued that the model would be limited in fitting the data, 

exactly, on the per-participant level. Therefore, it seems like the same basic 

mechanisms indeed may be at play for all participants, such that a model that fits 

the average data could also probably be fitted to individual participants. 

Finally, the values of the behaviour likelihood distribution means (𝜇𝑠 and 𝜇𝑛𝑠) 

and their standard deviations (𝜎𝑠 and 𝜎𝑛𝑠) are not uniquely identifiable because 

the belief calculation seemed to be depending on the evidence difference of the 

two possible behaviours. It is likely that if both 𝜇𝑠 and 𝜇𝑛𝑠 were shifted equally by 

a constant value, the resulting belief and correlation would remain the same. An 

action to correct this non-identifiability would be to fix the values of some of the 

parameters that seem to have a clear relationship with other parameters. 

2.6.3 Summary 

This chapter detailed how pedestrian beliefs regarding an approaching 

vehicle's behaviour (stopping or not) change over time. Different segments 

(duration of observing the approaching vehicle), driving manoeuvres, vehicle 

initial speeds and TTAs influenced the pedestrians’ beliefs regarding the 

behaviour of the vehicle. The proposed model, and specifically the 𝜏̇-based 

alternative, was successful in capturing the general trends of the pedestrians’ 

beliefs, suggesting a basis of modelling of the behaviour estimation mechanism. 

However, the model did not succeed at capturing all the details and patterns 

observed in the participants’ ratings, especially in scenarios with greater 

spatiotemporal distances, highlighting areas for model improvement. In those 

cases, a possible explanation of the nuanced patterns observed in the average 

pedestrian beliefs might be that these beliefs are based the pedestrians’ prior 

knowledge and expectations. 
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3 Behaviour estimation through observations 

and expectations 
 

In this chapter the aim is to propose a more comprehensive behaviour 

estimation model than the proposed model in Chapter 2, which would also be 

more successful at predicting the beliefs of pedestrians regarding an approaching 

vehicle’s behaviour. As discussed in Section 2.6, relying solely on observations 

of a deceleration-related metric is not enough to capture how pedestrians form 

and update these beliefs. While the vehicle’s deceleration rate is important for 

recognising the driver’s/AV’s intentions, it does not seem to be the only relevant 

cue used by pedestrians in estimating the behaviour of the approaching vehicle 

(Ackermann et al., 2019; Petzoldt et al., 2018). Chapter 2 concluded that when a 

vehicle is far away (i.e., larger TTA), pedestrians might rely on their prior 

knowledge and expectations of the current situation they are facing, while on the 

other hand, it seems that an observation-based behaviour estimation would be 

more relevant when the vehicle is closer to the pedestrian. As presented in 

Section 1.6 humans possess self-awareness and also a “theory of mind” 

regarding other agents with whom they interact. There are distinct psychological 

theories that elucidate how humans infer the intentions of others by either directly 

observing their actions (Baker et al., 2009; Pezzulo et al., 2013) or deducing the 

other agent’s behaviour through rational reasoning, or in simpler words expecting 

the other agent to follow the behaviour that is the most beneficial (value-

maximising) to them (Markkula et al., 2023; Jara-Ettinger et al., 2020).  

Therefore, in Chapter 3, the more detailed behaviour estimation model that is 

suggested, is based on the two psychological theories of human intention 

inference mentioned above. The first will be referred to as observation-based 

behaviour estimation (Ob) and it is the same type of estimation as in the already 

proposed model of Chapter 2. The second is based on pedestrians’ expectations 

of what behaviour would be rational or value-maximising for the driver/AV and it 

will be referred to as value-based behaviour estimation (Vb). Then, a model 

combining both mechanisms for behaviour estimation will be introduced, referred 

to here as augmented behaviour estimation model (Ob+Vb). These three models 

are then evaluated on the same dataset which was collected in the experiment 

presented in the previous chapter (Section 2.1). To assess the performance of 
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the Ob, Vb, and Ob+Vb models, and to address the critical issue of model 

complexity, a Bootstrap Cross-Validation (BSCV) technique (Baker et al. (2009) - 

where Ob and the experimental design were also inspired from), was employed. 

Specifically, Ob contained 7 parameters, Vb contained 5, and Ob+Vb contained 

12 parameters, making it quite a complex model. This model selection technique 

was key for mitigating the risk of overfitting, a phenomenon where models fit the 

training data too closely and fail to generalise to new data. Overfitting is often 

caused by limited data representation or excessive model complexity, as 

evidenced by the increasing parameter count. Therefore, BSCV was used to 

compare the performance and check the generalisability of the models, by 

artificially expanding the data sample and controlling model complexity. 

 

3.1 Model definition 

 

Building on the computational framework of Markkula et al. (2023), this 

chapter will progress the modelling of pedestrian beliefs regarding an 

approaching vehicle's intentions, with the main focus specifically on the 

mechanisms of behaviour estimation. While Markkula et al. (2023) developed a 

holistic model of pedestrian crossing behaviour, this work will focus only on and 

model the pedestrians’ belief updating regarding the vehicle’s behaviour, allowing 

for a more detailed investigation of behaviour estimation, which has previously 

been not addressed in this manner. Specifically, in the current work the Markkula 

et al. (2023) framework was combined with the Baker et al. (2009) Bayesian 

observer models of goal estimation. The overall aim remains the same as in 

Chapter 2, that is to implement models that predict pedestrians’ beliefs about the 

behaviour of an approaching vehicle, mainly expressed as the probability (belief) 

that the driver/vehicle will decelerate/yield/stop (𝑃𝑠). 

3.1.1 Observation-based evidence 

In Section 2.3 a formulation for the observation-based mechanism based on 

Recursive Bayesian Estimation was introduced. This method involved directly 

calculating the posterior belief 𝑃𝑏, through a straightforward iterative application 

of Bayes' theorem, by multiplying the prior belief to the likelihood and then 

normalising over the sum of the products of the two possible behaviours 
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(Equation (2.11)). However, this process can be equivalently represented using a 

normalised exponential (softmax), such that the Bayes update can be seen as 

just iterative additions to a sum of accumulated evidence. 

Specifically, the posterior belief 𝑃𝑏 that the vehicle will exhibit behaviour 𝑏 can 

be expressed as a normalised exponential, or softmax function of the 

accumulated observation-based evidence 𝐴𝑂,𝑏 over the sum of the observation-

based evidence for all behaviours 𝑏′, using the evidence of the previous time step 

𝑡 − 1: 

𝑃𝑏(𝑡) =  
𝑒𝐴𝑂,𝑏(𝑡−1)

∑ 𝑒𝐴𝑂,𝑏′(𝑡−1)𝑏′

 (3.1) 

The following observation-based evidence update is also assumed: 

𝐴𝑂,𝑏(𝑡) = (1 −
𝛥𝑡

𝑇𝑓
)𝐴𝑂,𝑏(𝑡 − 1) +

𝛥𝑡

𝑇𝑢
𝑙𝑛𝑃[𝜏̇(𝑡)|𝜏̇(𝑡 − 1), 𝑏] (3.2) 

Where 𝑇𝑓 is a time constant which represents how quickly someone forgets 

older evidence, 𝑇𝑢 is a time constant which represents the duration of the 

evidence updating time step and 𝑃[𝜏̇(𝑡)|𝜏̇(𝑡 − 1), 𝑏] is the probability of the 

currently observed 𝜏̇ given that the vehicle’s current behaviour is 𝑏. These 

probabilities were modelled as normal distributions for the observed 𝜏̇, with mean 

𝜏̇ associated to behaviour 𝑏 and standard deviation 𝜎𝑏. If it is further assumed 

that the pedestrian does not forget the observation-based evidence (𝑇𝑓 → ∞) and 

the duration of the evidence updating time step is set to be equal to the model 

time step (𝑇𝑢 = 𝛥𝑡), then the Recursive Bayes Estimation formulation (Equation 

(2.11)) can be derived: 

𝑃𝑏(𝑡) =  
𝑒𝐴𝑂,𝑏(𝑡−1)

∑ 𝑒𝐴𝑂,𝑏′(𝑡−1)𝑏′

(3.2)
⇒   

                𝑃𝑏(𝑡) =
𝑒𝐴𝑂,𝑏(𝑡−1)𝑃[𝜏̇(𝑡)|𝜏̇(𝑡 − 1), 𝑏]

∑ 𝑒𝐴𝑂,𝑏′(𝑡−1)𝑃[𝜏̇(𝑡)|𝜏̇(𝑡 − 1), 𝑏′]𝑏′

=

𝑒𝐴𝑂,𝑏(𝑡−1)

∑ 𝑒𝐴𝑂,𝑏′′(𝑡−1)𝑏′′
𝑃[𝜏̇(𝑡)|𝜏̇(𝑡 − 1), 𝑏]

∑
𝑒𝐴𝑂,𝑏′(𝑡−1)

∑ 𝑒𝐴𝑂,𝑏′′(𝑡−1)𝑏′′
𝑃[𝜏̇(𝑡)|𝜏̇(𝑡 − 1), 𝑏′]𝑏′

=
𝑃𝑏(𝑡 − 1)𝑃[𝜏̇(𝑡)|𝜏̇(𝑡 − 1), 𝑏]

∑ 𝑃𝑏′(𝑡 − 1)𝑃[𝜏̇(𝑡)|𝜏̇(𝑡 − 1), 𝑏
′]𝑏′
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The derivation above provides the special case of pure Bayesian observation-

based behaviour estimation. Initially, the pedestrian does not have any prior 𝜏̇ 

observations available. Thus, all 𝐴𝑂,𝑏 are equal to zero and the beliefs regarding 

the two possible vehicle behaviours (decelerating/stopping and maintaining 

constant speed/not stopping) are equal: 

𝑃𝑠(𝑡 = 0) =
𝑒𝐴𝑂,𝑠(𝑡−1)

𝑒𝐴𝑂,𝑠(𝑡−1) + 𝑒𝐴𝑂,𝑛𝑠(𝑡−1)
=

𝑒0

𝑒0 + 𝑒0
= 0.5 

𝑃𝑛𝑠(𝑡 = 0) =
𝑒𝐴𝑂,𝑛𝑠(𝑡−1)

𝑒𝐴𝑂,𝑛𝑠(𝑡−1) + 𝑒𝐴𝑂,𝑠(𝑡−1)
=

𝑒0

𝑒0 + 𝑒0
= 0.5 

3.1.2 Value-based evidence 

As mentioned in the introduction of Section 3.1, a pedestrian might form their 

beliefs regarding the approaching vehicle’s behaviour based on what behaviour 

they would expect to be the most rational or value-maximising for the AV or the 

driver of the vehicle. Affordance theory posits that perception is not only the 

interpretation of someone’s surroundings but is also used to identify potential 

interactions and enable the pursuit of effective courses of action (Chemero, 2003; 

Lio et al., 2020). Building upon the affordance theory statement above and the 

principles of reward-driven behaviour, a reward function was adopted, which 

models how a driver could maximise the value of their behaviour over a prediction 

horizon, as has been presented in Markkula et al. (2023) and based on models 

of optimal human motor and locomotor control (Gawthrop et al., 2011; 

Hoogendoorn and Bovy, 2003; Wang et al., 2015). 

 

Figure 3.1 - Example of future rewards of the two possible behaviours that the 
vehicle can exhibit 



81 
 

It was assumed that pedestrians believe that the driver’s behaviour and 

actions are guided by a core reward function, designed to balance the desire for 

efficient progress towards their goal with the discomfort of braking and the 

collaborative consideration of yielding. This function is defined as: 

𝑅(𝑡) = 𝑘𝑔𝑣(𝑡) − 𝑘𝑑𝑎𝑎
2(𝑡) + 𝑐𝑝𝑜𝑙 (3.3) 

Here, 𝑅(𝑡) represents the reward at time 𝑡, quantifying the desirability of a 

certain behaviour. 𝑘𝑔 is a reward parameter associated with speed, 𝑣(𝑡) is the 

vehicle's current speed, 𝑘𝑑𝑎 is a cost parameter associated with deceleration, 

𝛼(𝑡) is the vehicle's current acceleration, and 𝑐𝑝𝑜𝑙 is a constant representing a 

politeness reward. Equation (3.3) effectively captures the driver's trade-offs: 

• The positive term 𝑘𝑔𝑣(𝑡) encourages driving at higher speeds, reflecting 

the desire to reach the destination as fast as possible. 

• The negative term −𝑘𝑑𝑎𝑎
2(𝑡) penalises acceleration/deceleration, 

representing the discomfort of accelerating/braking, especially in cases 

where the vehicle changes its speed abruptly. 

• The positive term 𝑐𝑝𝑜𝑙 introduces a reward for yielding in the presence of 

pedestrians at the curb, reflecting the driver's anticipation of how their 

behaviour might be perceived by a naive observer, which can be either 

cooperative (higher reward) or non-cooperative (no reward). The use of 

“politeness” and “pro-social behaviour” definitions in this thesis require 

further clarification, as the approaching vehicle in the experiment was an 

AV without a visible human driver. The application of these terms was 

intentional, serving to model the expectations of the human pedestrian 

based on the following assumption. Pedestrians possess a Theory of Mind 

of how road users interact, which is based on their lifelong experience with 

manually driven vehicles. In interactions with manually driven vehicles the 

act of yielding is considered pro-social behaviour which indicates 

cooperation, prioritising pedestrians’ safety and convenience. When 

interacting with an AV, pedestrians try to infer the vehicle’s intent by 

projecting the politeness social value onto its behaviour (Lanzer et al., 

2020; Ribino, 2023; Tsui et al., 2010). The politeness term formalises the 

pedestrians’ expectation that a rationally operating vehicle will derive a 

positive social reward from acting cooperatively (i.e., yielding). 
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This unified reward function can be applied to analyse the two possible 

behaviour horizons: maintaining constant speed with no intention to stop and 

decelerating with the intention to stop. 

In the non-stopping behaviour horizon, which is illustrated as the blue curve 

in Figure 3.1, the driver maintains a steady velocity, resulting in zero acceleration 

(𝛼(𝑡) = 0). Additionally, in this case, it is assumed that the politeness reward is 

inactive, therefore cpol = 0. Substituting these values into Equation (3.3), the 

simplified reward function for maintaining constant speed/not stopping is 

obtained: 

𝑅𝑛𝑠(𝑡) = 𝑘𝑔𝑣(𝑡) (3.4) 

Conversely, in the stopping behaviour horizon, which is illustrated as the red 

curve in Figure 3.1, the driver reduces speed to stop before the pedestrian’s 

position, leading to a non-zero deceleration rate, specifically 𝛼(𝑡) = 𝑎𝑟𝑒𝑞
2(𝑡), 

where 𝑎𝑟𝑒𝑞 represents the required deceleration rate to come to a complete stop 

at a safe distance from the pedestrian. In this case, the politeness term 𝑐𝑝𝑜𝑙 

remains active. Substituting these into Equation (3.3), the reward function for 

stopping is obtained: 

𝑅𝑠(𝑡) = 𝑘𝑔𝑣(𝑡) − 𝑘𝑑𝑎𝑎𝑟𝑒𝑞
2(𝑡) + 𝑐𝑝𝑜𝑙 (3.5) 

Notably, the politeness constant reward could instead be formulated as a 

selfishness constant cost in Equation (3.4). The required deceleration rate was 

calculated using the deceleration formulae: 

𝑎𝑟𝑒𝑞(𝑡) =
𝑣(𝑡)

𝑡𝑠𝑡𝑜𝑝
 (3.6) 

𝑆 =  
1

2
𝑎𝑟𝑒𝑞(𝑡) 𝑡𝑠𝑡𝑜𝑝

2  (3.7) 

Here, 𝑣(𝑡) is the current vehicle speed, 𝑡𝑠𝑡𝑜𝑝 is the time needed for the vehicle 

to come to a stop and 𝑆 is the distance that the vehicle will travel during the 

deceleration manoeuvre and is equal to 𝐷(𝑡) − 𝐷𝑠𝑡𝑜𝑝, 𝐷(𝑡) being the current 

distance between the vehicle and the pedestrian and 𝐷𝑠𝑡𝑜𝑝 being the distance 

between the vehicle and the pedestrian when the vehicle has fully stopped. In 

accordance with the “The Highway Code” (2023), 𝐷𝑠𝑡𝑜𝑝 was chosen to be 

approximately 2 to 2.5 m. 



83 
 

To calculate the value-based evidence 𝐴𝑉,𝑏 of behaviour 𝑏: 

𝐴𝑉,𝑏(𝑡) = ∫ 𝑅𝑏[𝑥(𝑡)]𝑑𝑡′
𝑡+𝑇ℎ

𝑡

 (3.8) 

Here 𝑡 is the current time, 𝑇ℎ = 3 s is the time horizon that was chosen, as it 

was equal to the smallest initial TTA and scenario duration of the experiment 

described in Chapter 2 and 𝑅𝑏[𝑥] is the reward value for behaviour 𝑏 and current 

kinematic state of the vehicle 𝑥. Essentially, 𝐴𝑉,𝑏(𝑡) can be found by calculating 

the area underneath the 𝑅𝑏 curves in Figure 3.1. 

3.1.3 Pedestrian beliefs of the vehicle’s behaviour 

The distinction between the inputs for the Ob and Vb models is based in the 

level of cognitive processing assumed, and not on whether the kinematic variable 

is physically observable. All kinematic cues (speed, distance, acceleration) are 

technically observed variables. However, the Ob component was focused 

exclusively on the perceptually salient cue for predicting the behaviour of the 

approaching vehicle, in this case the 𝜏̇. This represented a perceptual processing 

mechanism that updates beliefs based on immediate sensory evidence. 

Conversely, the Vb component used observed variables like speed and distance 

as inputs to a utility calculation (i.e., expected reward). This process models the 

pedestrian's rational expectation that the perceived driver/AV acts to maximize its 

reward by balancing objectives like minimising braking cost and maximising 

maintaining speed towards a goal. Thus, Ob used direct evidence of motion 

change, while Vb used observable kinematic cues to form reward expectations 

of rational behaviour. Finally, the pedestrians’ overall goal (e.g., to cross safely) 

is necessary information for the road crossing decision but is not required as an 

input for the intermediate task of behaviour estimation modelled here. 

If the observation and value-based behaviour estimation mechanisms are 

combined, then the overall evidence that the vehicle is exhibiting behaviour 𝑏, 

could be modelled as the weighted sum of the estimated observation-based 

evidence 𝐴𝑂,𝑏 and value-based evidence 𝐴𝑉,𝑏. 

𝐴𝑏(𝑡) =  𝛽𝑂𝐴𝑂,𝑏(𝑡) + 𝛽𝑉𝐴𝑉,𝑏(𝑡) (3.9) 

𝑃𝑏(𝑡) =  
𝑒𝐴𝑏(𝑡−1)

∑ 𝑒𝐴𝑏′(𝑡−1)𝑏′

 (3.10) 

Where 𝛽𝑂 and 𝛽𝑉 are the weights of the respective evidence type.  
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As stated in Subsection 3.1.1, the model that was suggested in Chapter 2, 

was reformulated to operate on evidence rather than probabilities and its belief 

predictions were successfully replicated by the evidence accumulation 

formulation. However, it is important to first consider the theoretical motivation for 

the use of the softmax application in the model. As detailed in Markkula et al. 

(2023), the softmax function was used for 3 important reasons: (1) it allowed for 

the representation of Bayesian belief update as additive evidence accumulation, 

(2) it has been commonly used to model decision probabilities as a function of 

rewards, particularly in behavioural game theory (Wright and Leyton-Brown, 

2017) and (3) it provided a straightforward framework for integrating observation-

based and value-based mechanisms within a single model. In addition, the 

correlational analysis in Chapter 2 (Figure 2.7) showed that the relationship 

between the model predictions and the average subjective ratings is not linear, 

but rather it seemed that an S-shaped correlation could describe the relationship 

better. Many natural processes, like the learning curves of complex systems, start 

slowly, accelerate, and then level off; this seems to be resembling the overall data 

trend in Figure 2.7. In cases where a precise mathematical representation is 

unavailable, an S-shaped function has often been applied to approximate this 

pattern (Gibbs and MacKay, 2000). More specifically, borrowing from deep 

learning (Goodfellow et al., 2016) and pattern recognition (Bishop, 2006), the 

softmax function has also been frequently used to map a vector of feature 

variables to a posterior probability distribution. 

Despite these theoretical advantages, early tests of the model presented in 

this chapter suggested that the standard softmax function was not capable of fully 

capturing the precise shape of the relationship between model predictions and 

the average subjective ratings reported by human observers in the experiment. 

To better align the model predictions with the observed subjective ratings, a 

modified version of the softmax transformation function was required. Drawing 

inspiration from the Richards’ family of growth-models (Richards, 1959; Tjørve 

and Tjørve, 2010), modifications were introduced to Equation (3.10). It is 

important to clarify the relationship between the behaviour probabilities generated 

by the model, 𝑃𝑏(𝑡), and the judgments provided by the participants during the 

experiment, as described in Subsection 2.1.4. While the output of the models is 

probabilities representing the pedestrians’ beliefs regarding the behaviour of an 
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approaching vehicle, participants provided subjective ratings. These ratings were 

subsequently transformed into belief scores to facilitate comparison with the 

model's probabilistic output. The introduction of parameters 𝐵 and 𝑀 (see 

Equations (3.11) and (3.12)) addresses the potential discrepancy between the 

model's probabilistic output and the subjective ratings provided by participants. 

Although the softmax function transforms evidence to probabilities, the 

relationship between belief probabilities and human confidence ratings is not 

necessarily linear. This modification achieved a linear relationship between the 

model predicted beliefs and the average subjective ratings, addressing the 

observed non-linearity between the two, as will be seen in Section 3.4. 

𝑃𝑠(𝑡) =
𝑒𝐵(𝐴𝑠(𝑡−1)+𝑀)

∑𝑒𝐵(𝐴𝑛𝑠(𝑡−1)) + 𝑒𝐵(𝐴𝑠(𝑡−1)+𝑀)
 (3.11) 

𝑃𝑛𝑠(𝑡) =
𝑒𝐵(𝐴𝑛𝑠(𝑡−1))

∑𝑒𝐵(𝐴𝑛𝑠(𝑡−1)) + 𝑒𝐵(𝐴𝑠(𝑡−1)+𝑀)
 (3.12) 

Where 𝑃𝑠 and 𝑃𝑛𝑠 are the predicted beliefs for the decelerating and constant 

speed behaviour respectively, 𝐴𝑠 and 𝐴𝑛𝑠 are the evidence of the decelerating 

and constant speed behaviour, respectively. 𝐵 is an evidence scaling factor which 

adjusts the sensitivity of the softmax function to changes in accumulated 

evidence, thereby enabling the model to better capture the observed variability in 

subjective belief ratings across different scenarios and 𝑀 is an added offset 

constant applied exclusively to the decelerating behaviour evidence, 𝐴𝑠, 

accounting for potential biases or baseline differences in participants' perception 

of the decelerating behaviour. Overall, this transformation facilitates a more 

accurate representation of how participants translate internal beliefs into 

subjective ratings. 

The parameter 𝐵, which is referred to as the inverse temperature constant in 

literature, is a growth-rate constant that controls the slope at the inflection point 

and thus the overall shape of the S-shaped transformation function. Referring 

back to Equation (3.4) and reiterating the assumptions of 𝑇𝑓 → ∞ and 𝑇𝑢 = 𝛥𝑡, it 

becomes evident that 𝐵 has the reverse effect of 𝑇𝑢. Consequently, lower values 

of 𝐵, correspond to longer duration of evidence-updating. Through the lens of 

reinforcement learning, for values of 𝐵 → 0, both behaviours would have nearly 

the same probability. Conversely, as 𝐵 increases, the influence of accumulated 

evidence values on the resultant probability also increases. The impact of the 
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scaling parameter 𝐵 on the predicted beliefs is visualised in Figure 3.2. This figure 

illustrates the mapping from behaviour evidence to the belief that the approaching 

vehicle is stopping (𝑃𝑠) or not (𝑃𝑛𝑠) for the participants with examples of a low and 

a high 𝐵 value. As shown, a lower 𝐵 value (blue curve) results in a more gradual 

shift in belief as the evidence changes, indicating a lower sensitivity to the 

accumulating evidence. Conversely, a higher 𝐵 value (orange curve) leads to a 

much steeper transition, suggesting that individuals with a high 𝐵 are more 

decisive and their beliefs change more rapidly with even small changes in the 

perceived evidence. 

 

Figure 3.2 - Effect of scaling parameter 𝐵 on pedestrians’ beliefs 

The parameter 𝑀, which is referred to as soft margin in the literature, is an 

added constant that has been used in classification tasks to reduce intra-class 

and increase inter-class separation, by introducing a distance margin into the 

logits. In the current application, this distance margin could be translated as 

added evidence to (or bias towards) only one of the two possible behaviours: in 

this case the decelerating behaviour. Thus, 𝑀 is affecting the vertical position of 

the predicted beliefs and acts like an additional prior belief in the modified softmax 

transformation function. So, the lower the value of 𝑀, the lesser the bias towards 

the decelerating behaviour. The model lacks any other parameter that explicitly 

represents this form of prior belief. Consequently, the incorporation of 𝑀 does not 

only serve to align the beliefs predicted by the model with empirical data. Rather, 
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it is underpinned by the theoretical concept of equiprobable prior beliefs – how 

people perceive and assign probabilities to events, especially when faced with 

uncertainty. The cognitive bias called equiprobability bias is the tendency for 

people to assume that random events are equally likely, even when there is no 

logical basis for that assumption (Gauvrit and Morsanyi, 2014; Lecoutre, 1992). 

Essentially, people often think that everything has an equal chance. In ideal 

probabilistic reasoning, especially in Bayesian statistics, prior beliefs are initial 

assumptions about the likelihood of events. Some theoretical models use 

equiprobable priors as a neutral starting point (especially when there is genuine 

lack of information); as was also assumed in the purely observation-based 

behaviour estimation. However, in reality, people's prior beliefs are heavily 

influenced by experience, knowledge, personal biases and emotional factors 

(Kapons and Kelly, 2023). Whether or not people lean towards equiprobable 

beliefs depends heavily on the context. For example, in games of chance with 

known, fair systems (like a fair die), people might correctly assume 

equiprobability, but in real-world situations with complex, uncertain factors, 

people's beliefs are rarely equiprobable (Tversky and Kahneman, 1974). So, it is 

reasonable to assume that pedestrians do not possess equiprobable prior beliefs, 

and 𝑀 could represent this inherent bias. 

Notably, even though 𝐵 and 𝑀 affect the absolute values of the belief 

probabilities, they have no effect on the rank order of the predicted beliefs. This 

is because linear transformations like scaling and shifting do not affect rank 

correlations, which are based on the ordinal relationship between data points. 

3.1.4 Model parameters 

Table 3.1 lists the free parameters associated with purely Ob, purely Vb, and 

augmented Ob+Vb models. The search ranges presented in the table reflect the 

specific intervals of values within which the fitting algorithm, which will be 

described in detail in Section 3.2, is allowed to search for the optimal parameter 

values that best match the data. 
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Table 3.1 - Free parameters’ search ranges 

Parameters Range Ob Vb Ob+Vb 

𝑘𝑔 [0, 1]  + + 

𝑘𝑑𝑎 [0, 1]  + + 

𝑐𝑝𝑜𝑙 [0, 1]  + + 

𝜇𝑐 [-1, 0] +  + 

𝜇𝑑 [-1, 0] +  + 

𝜎𝑐 [0, 1] +  + 

𝜎𝑑 [0, 1] +  + 

𝛽𝑂 [0, 1]   + 

𝛽𝑉 [0, 1]   + 

𝑇𝑓 [0, 100] +  + 

𝐵 [0, 1] + + + 

𝑀 [0, 100] + + + 

 

3.2 Model fitting 

 

In order to fit the parameters of the three behaviour estimation models, the 

same data that were collected during the experiment, described in Section 2.1, 

were used. The free parameters of the three models, as well as their respective 

research ranges, are presented in the subsection above. In Chapter 2  a grid 

search fitting method was described, which was used in accordance with the 

Baker et al. (2009) approach. However, the total number of the parameters has 

increased, and fitting the augmented model could be computationally incredibly 

costly. Thus, there was a need to use a model fitting method which would be able 

to decrease the computational cost and running times significantly for a higher 

number of parameters. For that reason, CRADLE – a combined local and global 

derivative-free optimisation algorithm (Leonetti et al., 2012) was used3. This 

technique has found application in policy optimisation (Leonetti et al., 2013) and 

system identification (Karras et al., 2013). This optimisation algorithm, which is a 

modification of Price's optimisation method (Price, 1983), combines a stochastic 

 
3 The specific implementation of the optimisation algorithm (CRADLE), which was used in the 
current thesis for model fitting, was a MATLAB adaptation developed by the first author of the 
original paper (Leonetti et al., 2012), Dr Matteo Leonetti. 
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global search with a deterministic local search. Its global nature makes it 

particularly well-suited for dynamic decision-making problems which need to be 

solved on-line and where a priori knowledge of a good initial solution is 

unavailable. 

The following optimisation problem is considered: minimising a cost function 

𝐽(𝜃) over a convex domain 𝐷 in 𝑛-dimensional space. In the current case, 

following the Baker et al. (2009) approach also adopted in Chapter 2, this cost 

function is the Spearman’s rank correlation between the model’s belief 

predictions given a set of parameters 𝜃 and the participants’ average subjective 

ratings. However, since higher correlations indicate better model fit, the negative 

correlation as the cost function to be minimised was used. For this optimisation 

problem the set of parameters 𝜃 would include all parameters except 𝐵 and 𝑀, 

as they can be omitted due to the fact that they do not affect the overall rank 

correlation, as stated in Subsection 3.1.3. 

As a reminder from Chapter 2, the Spearman's rank correlation coefficient, 

denoted as 𝜌𝑆, is calculated based on the ranks of the data, not the raw values. 

Specifically, for two sets of data, 𝑋 (model predicted beliefs) and 𝑌 (participants’ 

average beliefs), and their respective ranks are 𝑅𝑋 and 𝑅𝑌 (𝑑𝑖 = 𝑅𝑋𝑖 − 𝑅𝑌𝑖): 

𝜌𝑆 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2 − 1)
 (3.13) 

From Equations (3.11) and (3.12), it can be seen that the parameter 𝑀 adds 

a constant to the evidence 𝐴𝑠 only in the numerator of the softmax function. Since 

the rank correlation is based on the order of the predicted beliefs, adding a 

constant to all values associated with the decelerating behaviour (𝑃𝑠) will shift 

these values up, but it will not alter their relative ranking. Therefore, 𝑀 does not 

affect the 𝑑𝑖 values in the rank correlation calculation, and consequently, it does 

not affect 𝜌𝑆. 

Similarly, the parameter 𝐵 multiplies the evidence 𝐴𝑏 in both the numerator 

and the denominator of the softmax function. While multiplying the evidence by a 

constant might affect the absolute values of the predicted beliefs, it will not 

change their relative ordering. Therefore, from a purely mathematical 

perspective, 𝐵 could also be omitted from the parameter set 𝜃, as its multiplication 

to the evidence is happening on both the numerator and the denominator of the 
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softmax fraction (Equations (3.11) and (3.12)), and similarly to 𝑀, the overall rank 

correlation is not affected. However, due to computational limitations, values of 

𝐵 ∙ 𝐴𝑏 extremely close to each other, i.e., having a difference lower than 

MATLAB’s numerical precision, led to those values being recognised as equal, 

eventually affecting the overall ranking. For that reason, the parameter 𝐵 was 

included in the set of parameters for the optimisation problems. 

As previously discussed, the model provides probability outputs (beliefs), 

while participants provided subjective ratings. While a Spearman’s rank 

correlation metric assesses the model’s ability to predict the order of participants’ 

beliefs, an RMSE would evaluate the model’s accuracy in predicting the 

magnitude of those beliefs. So, even though the Baker et al. (2009) fitting method 

used the correlation between the model’s predicted beliefs and the average 

subjective ratings of the participants, it was decided to consider another 

optimisation problem where the minimised cost function this time would be the 

root mean square error (RMSE) between the model predicted beliefs and the 

average subjective ratings. The RMSE was used to measure the average 

difference between them, with lower RMSE values indicating more accurate 

model predictions (an RMSE = 0 would mean that the model predicted beliefs 

match perfectly the average pedestrian beliefs). 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2
𝑛
𝑖=1

𝑛
 (3.14) 

Here, 𝑛 is the total number of observations (in this case the 72 segments), 𝑦𝑖 

is the average pedestrian belief value for the 𝑖𝑡ℎ observation and 𝑦̂𝑖 is the model 

predicted belief value for the 𝑖𝑡ℎ observation. 

Eventually, two fitting methods were tested: 

• The first method included two steps. The objective of the first step was 

to maximise the correlation between the model predictions and the 

average subjective ratings and obtain the parameter set that produced 

that correlation. For the second step, using the parameters obtained in 

the first step, the objective was to minimise the RMSE between the 

model’s predicted beliefs and the average subjective ratings, which 

would provide the best-fitted 𝑀 parameter value. 
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• The second method included only one step, and the objective was to 

minimise the RMSE between the model predictions and the average 

subjective ratings and obtain the whole parameter set, that produced 

that RMSE. 

After testing both fitting methods two main takeaways were drawn: a) the 

second method was more computationally intensive than the first one, b) the 

second method provided parameter sets that not only resulted in the lowest 

RMSE values but also produced the highest rank correlations. Conversely, the 

first method provided parameter sets that resulted in the highest rank correlations 

but not necessarily the lowest RMSE values. So, even though the first fitting 

method was faster, the second fitting method seemed more appropriate since it 

provided a better alignment in terms of both order and magnitude between the 

model predictions and the average pedestrian beliefs. 

 

3.3 Model selection 

 

To compare the predictive accuracy of the models fitted using the methods 

described earlier, a quantitative approach was employed. To assess the 

differences in predictive accuracy between the three models, bootstrap cross-

validation (BSCV; Baker et al., 2009) was utilised. BSCV is a non-parametric 

robust technique for model selection that assesses the goodness-of-fit, while 

mitigating overfitting and accounting for model complexity by evaluating model fit 

on multiple resampled datasets. 

As illustrated schematically in Figure 3.3, the BSCV analysis involves a large 

number of iterations, where random subsets of participants’ data are selected to 

train models (sampled uniformly with replacement). For each iteration, the model 

parameters are optimised to maximise goodness of fit (in this case to maximise 

correlation or minimise the RMSE) using the sampled training data, and the 

resulting fitted model is then evaluated on a complementary testing dataset, 

consisting of the data that was not sampled into the training subset. The ranges 

of goodness-of-fit values (correlation or RMSE) achieved by each model across 

the 1000 iterations are presented as distributions of model goodness-of-fit which 

were obtained from these repeated model optimisations. These distributions were 
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tested to compare predictive performance of the three models. Better predictive 

performance is indicated by distributions leaning towards higher correlation or 

lower RMSE values. While minimally or non-overlapping distributions indicate 

more substantial differences, overlapping distributions suggest that differences in 

model performance may not be statistically significant. The width of the 

distributions represents the variability of the performance of each model across 

the different BSCV data subsets, with wider distributions indicating greater 

sensitivity to training data. In this case, each BSCV analysis (one for each model) 

utilised 1000 iterations, sampling 10 participants (from the total of 30) for each 

training subset. 
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Figure 3.3 - Bootstrap cross-validation (BSCV) technique for model selection
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3.4 Results 

 

In this section results from several analyses are presented, to show how 

accurately the suggested models (Observation based – Ob, Value based – Vb 

and Observation and Value based – Ob+Vb) predicted pedestrians’ beliefs 

regarding the approaching vehicle’s behaviour, which were collected as 

subjective judgements in the experiment described in Section 2.1. 

3.4.1 Model predictions vs subjective ratings 

Firstly, the analyses focused on how accurately the three different models 

predicted pedestrians’ average subjective beliefs by using both measures of 

correlation (Spearman’s rank correlation) and error (RMSE). The model 

predictions presented in this subsection have been obtained by using the second 

model fitting process (minimisation of RMSE between the model predictions and 

the average subjective beliefs of the pedestrians), out of the two that were 

described in Section 3.2, for the full sets of parameters. The best-fitting parameter 

settings are presented in Table 3.2. 

Table 3.2 - Best-fitting parameter settings 

 Ob Vb Ob+Vb 

𝑘𝑔  0.88 0.57 

𝑘𝑑𝑎  0.36 0.51 

𝑐𝑝𝑜𝑙  0.83 1 

𝜇𝑛𝑠 -1  -1 

𝜇𝑠 -0.47  -0.75 

𝜎𝑛𝑠 0.55  0.56 

𝜎𝑠 0.57  0.58 

𝛽𝑂   0.32 

𝛽𝑉   0.53 

𝑇𝑓 4.56  100 

𝐵 0.17 0.14 0.20 

𝑀 0 16.13 6.26 

 

To visually represent the performance of these models with the best-fitting 

parameters listed in Table 3.2, Figure 3.4 displays scatter plots of the model 

predicted beliefs compared to participants' average ratings. As shown in Figure 

3.4, Vb and Ob+Vb exhibit the fewest poorly predicted datapoints, while Ob has 

the most. Similarly, in terms of correlation, Vb and Ob+Vb were able to produce 

values of Spearman’s rank correlation almost equal to 1, showing an almost 
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perfect positive monotonic rank association between pedestrians’ average beliefs 

and model predictions, while Ob showed a weaker correlation. The fact that Vb’s 

and Ob+Vb’s scatter points are so closely gathered to the identity line (Pearson’s 

rho equal to 1, in terms of correlation), means that Vb’s and Ob+Vb’s predictions 

are almost identical to the pedestrians’ average beliefs (almost perfect positive 

linear relationship). Lastly, RMSE is the error metric that shows how close the 

scatter points are to the identity line, so the lower the RMSE, the better the model 

predictions. From Figure 3.4, Ob+Vb had a lower RMSE than Vb, while Ob was 

the worst performing model in terms of error. 

O
b
 

 

𝜌𝑆 = 0.89 & 𝑅𝑀𝑆𝐸 = 15.25 

V
b
 

 

𝜌𝑆 = 0.98 & 𝑅𝑀𝑆𝐸 = 6.80 

O
b

+
V

b
 

 

𝜌𝑆 = 0.98 & 𝑅𝑀𝑆𝐸 = 5.12 

Figure 3.4 - Scatter plots of model predictions using best-fitting parameter 
settings (y-axes) versus pedestrians’ average beliefs (x-axes) for all 18 kinematic 
scenarios of the approaching vehicle 
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The following analysis compares the average pedestrian beliefs and the 

model predictions for all 18 kinematic scenarios (as a reminder the details of 

these kinematic scenarios are illustrated in Figure 2.2). This analysis shows how 

different vehicle kinematic conditions affect the pedestrians’ belief-updating 

process regarding the approaching vehicle’s behaviour and shows how closely 

the suggested models captured the average of pedestrians’ beliefs. 

The different vehicle manoeuvres are highlighted in the following three figures: 

Figure 3.5 (constant speed), Figure 3.6 (deceleration) and Figure 3.7 (mixed). 

Each is divided into the three different initial vehicle speeds (rows) and the two 

different initial TTAs (columns), resulting in 6 different kinematic scenarios per 

vehicle manoeuvre. All 18 plots illustrate several general patterns of pedestrians’ 

beliefs predicted by the three different models. In Figure 3.5, Figure 3.6 and 

Figure 3.7 the predictions of Ob, Vb and Ob+Vb are presented by the blue, green 

and red curves, respectively, while the average pedestrians’ beliefs are illustrated 

as black standard error of the mean bars at the predetermined judgment timings 

(as described in Section 2.1). 

In the constant speed manoeuvres (Figure 3.5), Vb and Ob+Vb are 

performing better than Ob in capturing the patterns of the pedestrians’ beliefs. At 

the beginning of each scenario, Ob always predicts that pedestrians are 

completely uncertain between the two possible vehicle behaviours (50% belief). 

As can be seen in Table 3.2, Ob had its 𝑀 parameter fitted to zero, meaning that 

the optimisation algorithm found that no prior shift was optimal for this model, 

which contributed to this consistent 50% initial belief. Conversely, Vb and Ob+Vb 

were able to predict that early beliefs would not be 50-50% but would likely be 

affected by the speed and TTA of the vehicle. Another limitation of the Ob model 

is that it is incapable of providing different beliefs between the six different 

constant speed scenarios, since there is no difference in the observed tau-dot 

(always equal to -1). That limitation is addressed in Vb and Ob+Vb, which make 

use of other sources of information beyond tau-dot observations. The greater the 

vehicle’s current speed, the more Vb’s and Ob+Vb’s predicted beliefs lean 

towards the non-stopping behaviour (i.e., towards 𝑃𝑠 = 0%), in line with the beliefs 

of human participants. Then, the larger the vehicle’s TTA, the lower the required 

deceleration, and eventually, the less Vb’s and Ob+Vb’s predicted beliefs lean 

towards the non-stopping behaviour. The patterns described above can be further 
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understood by examining the different sources of evidence (more details in 

Subsection 3.4.2). 

 TTA 3 s TTA 6 s 
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km/h 
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Figure 3.5 - Comparison between model predictions and pedestrians’ beliefs for 
the constant speed manoeuvres 

In the deceleration manoeuvres (Figure 3.6), Ob+Vb is performing better than 

Ob and Vb in capturing the patterns of the pedestrians’ beliefs. Ob’s initial 

predictions are unable to capture the effects of the different vehicle speeds and 

TTAs on the pedestrians’ beliefs. However, as time passes and 𝜏̇ values change, 

Ob’s later predictions are more accurate. Vb’s initial predictions are capturing the 

speed and TTA effects on the pedestrians’ beliefs, but its final segments’ 

predictions are not that accurate. Thε Vb’s limitation happens because the 

evidence of the two possible behaviours are equal in the end of each deceleration 
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manoeuvre (more details in Subsection 3.4.2). Ob+Vb’s predictions are 

benefitted by Vb early and by Ob later. 

 TTA 3 s TTA 6 s 

25 

km/h 

  

40 

km/h 

  

55 

km/h 

  

Figure 3.6 - Comparison between model predictions and pedestrians’ beliefs for 
the deceleration manoeuvres 

In the mixed manoeuvre scenarios (Figure 3.7), it can be seen that Ob+Vb is 

again performing better than both Ob and Vb. The Ob+Vb model effectively 

overcomes Ob’s early and Vb’s later limitations, in a manner similar to how the 

limitations observed in the constant speed and deceleration manoeuvers were 

addressed. 
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Figure 3.7 - Comparison between model predictions and pedestrians’ beliefs for 
the mixed manoeuvres 

Overall, the Ob+Vb model provided the highest Spearman’s rank correlation 

(along with Vb), the lowest RMSE and, based on qualitative assessment 

supported by quantitative error values, appeared to be the most accurate in 

predicting the pedestrians’ beliefs across all 18 kinematic scenarios. Even though 

there are strong indications that Ob+Vb is the best model (out of the three 

suggested ones), it is not possible to select it, before a deeper investigation 

(Subsection 3.4.2) and a model selection technique that prevents overfitting 

(Subsection 3.4.3) are presented. Overfitting occurs when a model fits the training 

data too closely, capturing noise and random fluctuations rather than the 

underlying patterns. This often happens when a model has too many free 
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parameters relative to the amount of data. In this case, Ob has 7 parameters, Vb 

has 5, and Ob+Vb has 12. The Ob+Vb model, with its significantly higher 

parameter count, carries a greater risk of overfitting compared to the simpler Ob 

and Vb models. Therefore, a model selection technique that penalises model 

complexity and assesses performance is necessary to ensure the selected model 

accurately reflects the underlying cognitive processes rather than being a mere 

reflection of the specific dataset. This will help us determine if the improved fit of 

the Ob+Vb model is due to genuine cognitive mechanisms or an artifact of its 

increased flexibility. 

3.4.2 Breaking down the evidence     

To better understand how the models are providing their predictions, this 

subsection delves deeper into the importance of the approaching vehicle’s 

behaviour evidence. As a reminder, 𝐴𝑛𝑠 refers to non-stopping behaviour 

evidence, 𝐴𝑠 refers to stopping behaviour evidence, 𝐴𝑂𝑏 refers to behaviour 

evidence through the observation-based (Ob) approach and 𝐴𝑉𝑏 refers to 

behaviour evidence through the value-based (Vb) approach (as an example 𝐴𝑉𝑏𝑠 

refers to the value-based decelerating behaviour evidence). The following 

equations are provided for further clarity: 

𝐴𝑛𝑠 = 𝐴𝑂𝑏𝑛𝑠 + 𝐴𝑉𝑏𝑛𝑠 (3.15) 

𝐴𝑠 = 𝐴𝑂𝑏𝑠 + 𝐴𝑉𝑏𝑠 +𝑀 (3.16) 

Figure 3.8 presents the effects of different initial speeds and different vehicle 

manoeuvres on the vehicle behaviour evidence, for all scenarios with an initial 

TTA of 3 s. In scenarios with the same initial speed, the initial values of 𝐴𝑠, 𝐴𝑛𝑠 

and 𝐴𝑠 − 𝐴𝑛𝑠 are the same. This is because: a) 𝐴𝑂𝑏𝑛𝑠 = 𝐴𝑂𝑏𝑠 = 0 since there are 

no prior observations leading towards any of the two behaviours, b) 𝑀 is constant 

and c) because the initial speed, the required deceleration rate to stop before the 

pedestrian and the politeness constant are the same in all these cases, meaning 

that 𝐴𝑉𝑏𝑛𝑠 and 𝐴𝑉𝑏𝑠 also remain the same across these cases.  
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Figure 3.8 - Evidence of the two possible behaviours. The initial TTA is 3 s for all 
panels 

Looking across scenarios with different initial speeds, the effect that has been 

discussed previously can be seen: When the initial vehicle speed is higher, there 

is a shift towards initially believing that the vehicle will maintain its speed rather 

than stop. This is visible in Figure 3.8 as 𝐴𝑠 − 𝐴𝑛𝑠 is initially more negative for 

higher initial speeds. This happens in the model because higher speeds imply a 

greater reward for the driver/vehicle if the vehicle maintains its speed, leading to 

a stronger initial bias towards non-yielding behaviour. 

 

 



102 
 

In a similar manner, Figure 3.9 illustrates the effects of different initial TTAs 

and different vehicle manoeuvres on the vehicle behaviour evidence, for all 

presented scenarios having an initial vehicle speed of 40 km/h. In scenarios with 

the same initial TTA, the initial values of 𝐴𝑛𝑠, 𝐴𝑠 and 𝐴𝑠 − 𝐴𝑛𝑠 are the same, for 

the same exact reasons as described above, regarding scenarios of the same 

initial speeds in Figure 3.8. 

Looking across scenarios with different initial TTAs, another effect that has 

been discussed previously can be seen: When the vehicle is initially further away 

(longer initial TTA), there is a shift toward initially believing that the vehicle will 

stop rather than maintain a constant speed and not stop. This is visible in Figure 

3.9 as 𝐴𝑠 − 𝐴𝑛𝑠 is initially less negative for longer initial TTAs. This happens in the 

model because larger initial TTAs, mean larger distance between the vehicle and 

the pedestrian, which means that the required deceleration rate for the vehicle to 

stop before the pedestrian’s position is lower, thus the overall reward for the 

decelerating behaviour is larger, leading to a stronger initial bias towards the 

stopping behaviour. 

However, the main takeaway from these two figures is that the 𝐴𝑠 − 𝐴𝑛𝑠 

evidence difference is what dictates the shape of Ob+Vb’s predicted beliefs (red 

curves in Figure 3.5, Figure 3.6 and Figure 3.7) regarding the approaching 

vehicle’s stopping behaviour (𝑃𝑠). The quantity 𝐴𝑠 − 𝐴𝑛𝑠, correlates directly with 

the behaviour probabilities predicted by the model. If 𝐴𝑠 − 𝐴𝑛𝑠 > 0, then 𝑃𝑠 > 𝑃𝑛𝑠 

and vice versa, meaning that the sign and magnitude of this difference indicate 

the relative belief towards the stopping versus the non-stopping behaviour. 
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Figure 3.9 - Evidence of the two possible behaviours. The initial speed is 40 km/h 
for all panels 

Building upon the analysis of vehicle behaviour evidence in the two previous 

figures, the individual contributions of the observation-based and value-based 

mechanisms are further explored in Figure 3.10 and Figure 3.11. To avoid any 

confusion the added soft-margin 𝑀 has been omitted in Figure 3.10 and Figure 

3.11. 
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Figure 3.10 - Evidence of the two possible behaviours, divided by behaviour 
estimation mechanism. The initial TTA is 3 s for all panels 

Specifically, Figure 3.10, which presents the same scenarios as Figure 3.8, 

illustrates the effects of different initial speeds and vehicle manoeuvers on the 

evidence calculated separately by the observation-based (𝐴𝑂𝑏𝑠 and 𝐴𝑂𝑏𝑛𝑠) and 

value-based (𝐴𝑉𝑏𝑠 and 𝐴𝑉𝑏𝑛𝑠) behaviour estimation approaches. Similarly, Figure 

3.11, which mirrors the TTA variations seen in Figure 3.9, shows the effects of 

different initial TTAs and vehicle manoeuvers on the same evidence components. 
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Figure 3.11 - Evidence of the two possible behaviours, divided by behaviour 
estimation mechanism. The initial speed is 40 km/h for all panels 

Some key points can be drawn from Figure 3.10 and Figure 3.11. In the 

beginning of all scenarios, 𝐴𝑂𝑏𝑠 and 𝐴𝑂𝑏𝑛𝑠 both have zero evidence values since 

there is no available 𝜏̇ observation, but 𝐴𝑉𝑏𝑠 and 𝐴𝑉𝑏𝑛𝑠 have non-zero evidence 

values. More specifically, 𝐴𝑉𝑏𝑠(𝑡 = 0) > 𝐴𝑉𝑏𝑛𝑠(𝑡 = 0), which is understandable 

when considering Equations (3.4) and (3.5), as 𝑅𝑠(𝑡) = 𝑅𝑛𝑠(𝑡) − 𝑘𝑑𝑎𝑎𝑟𝑒𝑞(𝑡)
2 +

𝑐𝑝𝑜𝑙 (with 𝑐𝑝𝑜𝑙 not being substantial enough to compensate for the deceleration 

discomfort cost). This means that the estimated value for the car of keeping a 

constant speed is always initially greater than the estimated value of yielding. 

Since Ob’s performance is based on  𝐴𝑂𝑏𝑠 and 𝐴𝑂𝑏𝑛𝑠, it is apparent how this 

mechanism is limited in accurately capturing the initial beliefs of the pedestrians. 
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Conversely, Vb’s performance is based on 𝐴𝑉𝑏𝑠 and 𝐴𝑉𝑏𝑛𝑠, and has been seen 

that the effects of different speeds and TTAs on the initial average pedestrian 

beliefs are captured. 

In the constant speed manoeuvres and the constant speed phase of the mixed 

scenarios (Figure 3.10 and Figure 3.11), 𝐴𝑉𝑏𝑛𝑠 remains constant since the 

vehicle’s speed is constant, 𝐴𝑉𝑏𝑠 decreases towards −∞ since the required 

deceleration to stop before the pedestrian increases towards +∞ as the vehicle 

gets closer to the pedestrian’s position. During the same periods of time, the 

observation-based evidence difference is 𝐴𝑂𝑏𝑛𝑠 − 𝐴𝑂𝑏𝑠 > 0 and increasing, as 𝜏̇ 

observations keep being in line with the true vehicle behaviour (constant speed). 

In the deceleration manoeuvres and the decelerating phase of the mixed 

scenarios (Figure 3.10 and Figure 3.11), 𝐴𝑉𝑏𝑛𝑠 decreases linearly towards 0 since 

the vehicle’s speed decreases linearly towards zero. 𝐴𝑉𝑏𝑠 decreases towards the 

value of 𝑐𝑝𝑜𝑙 since the vehicle’s speed and required deceleration decrease 

towards 0 (so in the end 𝐴𝑉𝑏𝑛𝑠 − 𝐴𝑉𝑏𝑠 ⪆ 0). During the same periods of time, the 

observation-based evidence difference is 𝐴𝑂𝑏𝑠 − 𝐴𝑂𝑏𝑛𝑠 > 0 and increasing (with 

very large values in the end), as 𝜏̇ observations keep being in line with the true 

vehicle behaviour (stopping). 

Looking at the evidence values in Figure 3.10 and Figure 3.11, it is possible 

to understand why Vb's performance is limited at the end of deceleration and 

mixed scenarios and why Ob performs better. Regarding Vb, as the vehicle 

decelerates, 𝐴𝑉𝑏𝑠 and 𝐴𝑉𝑏𝑛𝑠 converge, meaning that 𝐴𝑉𝑏𝑠 ≅ 𝐴𝑉𝑏𝑛𝑠, reducing the 

model's ability to capture the average pedestrian beliefs. In contrast, Ob's 

evidence values (𝐴𝑂𝑏𝑠 and 𝐴𝑂𝑏𝑛𝑠) continue to diverge, allowing it to accurately 

predict the final-stage beliefs, in the cases when the vehicle eventually stops 

before the pedestrian’s position. 

Therefore, this subsection confirms the benefit of combining Ob and Vb into 

Ob+Vb. The analysis has demonstrated that this combination is necessary by 

showing the importance of different sources of evidence and the distinct benefits 

of each behaviour estimation mechanism. 

3.4.3 BSCV model selection 

In order to select which model (amongst Ob, Vb, and Ob+Vb) had the best 

predictive performance, a Bootstrap Cross-Validation (BSCV) analysis was 
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performed, as described in Section 3.3. This analysis was deemed appropriate 

as it provides the ability to measure the goodness-of-fit of the models to data 

while it mitigates overfitting and controls model complexity – issues that are 

particularly relevant for the Ob+Vb model, which has a significantly larger number 

of parameters. 

As mentioned in Section 3.3, the first BSCV analysis targeted Spearman 

correlations, fully in line with the Baker et al. (2009) approach. Figure 3.12 

illustrates the distributions of the BSCV correlations for the three suggested 

models. From Figure 3.12, it is evident that Ob is the worst performing model. 

However, the distributions of Vb and Ob+Vb exhibit substantial overlap, making 

it impossible to definitively conclude which of the two correlates more strongly 

with the pedestrians’ beliefs. For that reason, it was deemed necessary to perform 

a second BSCV analysis, but this time using RMSE as the goodness-of-fit 

measure (see Section 3.3). 

 
Figure 3.12 - Histograms of the BSCV correlations of Ob, Vb and Ob+Vb. The 
solid lines are the histograms’ fitted distributions, which were obtained by 
MATLAB’s Kernel smoothing function 

In Figure 3.13, the distributions of the BSCV RMSEs for the three suggested 

models are presented. Once more, Ob is the worst of the three models, exhibiting 

the highest RMSE. When comparing Vb’s and Ob+Vb’s BSCV RMSEs, the 

picture becomes clearer in comparison to the BSCV Spearman correlations 

(Figure 3.12), with the Ob+Vb model showing a distribution shifted towards lower 

error values. This BSCV analysis aimed to assess the generalisation 

performance of the models by evaluating their goodness-of-fit on multiple 
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resampled datasets. To draw definitive conclusions about which model performs 

best, the distributions of the goodness-of-fit measures (in this case, RMSE) 

should ideally exhibit minimal or no overlap. Still, Figure 3.13 shows a noticeable 

overlap between the Vb and Ob+Vb distributions. Although the Ob+Vb 

distribution tends towards lower RMSE values, the overlap between the two 

distributions implies that the differences in model performance (minimisation of 

RMSE between predicted beliefs and average subjective ratings) between Vb 

and Ob+Vb might not be substantial or statistically significant. 

  
Figure 3.13 - Histograms (and their kernel-smoothed distributions) of the BSCV 
RMSEs of Ob, Vb and Ob+Vb 

Therefore, based on the BSCV RMSE analysis, Ob is clearly the worst 

performing model, while Ob+Vb appears to provide a slightly better fit to unseen 

data compared to Vb, as it tends to produce lower prediction errors on average. 

The results are not fully conclusive because of the noted overlap between the Vb 

and Ob+Vb distributions. Additional tests would be needed to evaluate the 

significance of the observed differences and determine whether the better 

performance of the Ob+Vb model is meaningful and not due to overfitting.  

3.4.4 Parameter investigation 

To further validate the models and gain a deeper understanding of their 

behaviour, an in-depth parameter investigation was performed. This analysis 

examined the range of parameter values that yielded good model fits during the 

Bootstrap Cross-Validation (BSCV) process. Unlike the grid search method that 

was applied in Subsection 2.5.3, through which an extensive range of parameter 

settings was investigated, the current analysis was based on the parameter 

values obtained directly from the BSCV analysis. 

Testing Subset Training Subset 
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As explained in Section 3.3, the BSCV technique fitted the suggested models 

to resampled datasets. Applying the BSCV model selection, generated a 

distribution of values for every parameter of the tested model. That distribution 

represented the range of parameter values under which the model performed 

best in fitting on the resampled data. These distributions, which are bootstrap 

estimates, indicate the likely values of the parameters that would generalise well 

to unseen data. By examining these parameter distributions, the robustness of 

the models' parameters can be assessed and the sensitivity of the model 

predictions to variations in parameter values can be further investigated. 

   

   

   

   

Figure 3.14 - Histograms (and their kernel-smoothed distributions) of the BSCV-
obtained parameters of Ob, Vb and Ob+Vb 
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Figure 3.14 shows the wide range of parameter values, close to the best-fitting 

values, which yielded the lowest possible BSCV RMSEs for each model. Ob best 

captured pedestrians’ beliefs at low values of 𝜇𝑛𝑠 (𝜏̇ = −1 indicates constant 

speed), intermediate values of 𝜇𝑠 (𝜏̇ = −0.5 indicates adequate deceleration rate 

to stop the vehicle safely before a pedestrian, avoiding a collision), low values of 

𝜎𝑛𝑠 (narrow constant speed behaviour distribution), intermediate values of 𝜎𝑠 

(wider decelerating behaviour distribution), all values of 𝑇𝑓 (with denser area in 

lower values – not forgetting past observed evidence quickly), low values of 𝐵 

(softer softmax evidence transformation, meaning less sensitivity to differences 

in behaviour evidence) and low values of 𝑀 (almost no prior belief towards the 

decelerating behaviour). It is worth noting that 𝑀 for Ob was fitted across both 

positive and negative values. However, the optimisation algorithm consistently 

found that, in both cases, 𝑀 values close to 0 yielded the best Ob fits. This 

strongly suggests that the Ob model, as parameterised, does not incorporate any 

prior belief shift towards either decelerating or constant speed behaviour. The 

algorithm's consistent selection of 𝑀 ≅ 0 reinforces the idea that, within Ob, the 

initial beliefs are purely driven by the observational 𝜏̇ information, not by any 

inherent bias towards one behaviour over the other. 

Vb captured pedestrians’ beliefs best at parameter values that highlight the 

relative importance of the following factors: the approaching vehicle’s speed (𝑘𝑔), 

the required deceleration for the vehicle to stop before the pedestrian (𝑘𝑑𝑎), and 

the vehicle exhibiting pro-social behaviour (𝑐𝑝𝑜𝑙). The model also favoured a 

relatively softer softmax evidence transformation (𝐵) and a substantial prior belief 

towards decelerating behaviour (𝑀). 

Ob+Vb captured pedestrians’ beliefs best at parameter values that revealed 

a nuanced integration of observational and value-based information. Comparing 

these values to those of Vb and Ob offers some key insights. Firstly, Ob+Vb 

exhibited a slightly higher importance of the approaching vehicle's speed (𝑘𝑔) and 

a slightly lower importance of the required deceleration (𝑘𝑑𝑎) compared to Vb. 

This suggests that when both observation and value-based information are 

available, the model places a greater emphasis on the immediate speed of the 

vehicle as a predictor of its behaviour, potentially because speed provides a more 

immediate and salient cue. Secondly, Ob+Vb, like Ob, favoured lower values of 
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𝜇𝑛𝑠 and intermediate values of 𝜇𝑠, aligning with the theoretical expectations of the 

observation information (𝜏̇). Thirdly, Ob+Vb showed the same rate of forgetting 

past observed evidence as Ob (𝑇𝑓), indicating a similar reliance on recent 

observations between these two models. The parameters 𝛽𝑂 (equal to 0 would 

mean purely value-based behaviour estimation) and 𝛽𝑉 (equal to 0 would mean 

purely observation-based behaviour estimation) act as weights, balancing the 

contributions of the value-based and observation-based evidence. Due to their 

role as relative scaling factors, one of these two parameters could be fixed without 

altering the model's fundamental behaviour. For instance, fixing 𝛽𝑂 to 1 would 

allow 𝛽𝑉 to represent the relative weight of the value-based evidence compared 

to the observation-based evidence. This approach would simplify the model by 

reducing the number of free parameters and potentially improve the 

interpretability of the remaining parameters. However, it's important to 

acknowledge that fixing a beta parameter would likely affect the optimal values 

of the other parameters. In this analysis, none of the beta parameters were fixed. 

Finally, Ob+Vb favoured a slightly harsher softmax evidence transformation (𝐵) 

than both Ob and Vb. This implies that Ob+Vb is more sensitive to small 

differences in evidence, leading to sharper transitions in beliefs. This is consistent 

with the model's integration of both observation and value-based information, 

which might lead to more confident and decisive belief updates. 

Figure 3.15, Figure 3.16 and Figure 3.17 illustrate the relationships between 

all the pairs of parameters and how they affect the overall fit of the model. Based 

on the Bootstrap Cross-Validation (BSCV) analysis, these figures show how 

similar model fits (measured by RMSE) can be obtained by a wide range of BSCV 

parameter combinations for each of the three models (Ob, Vb, and Ob+Vb). 

Specifically, these figures display the same information as the single-parameter 

distributions shown in Figure 3.14, but now across two parameter dimensions at 

a time. The diagonal panels of Figure 3.15, Figure 3.16 and Figure 3.17 illustrate 

the single-parameter distributions, which are identical to those seen in Figure 

3.14. The pairwise scatterplots (off-diagonal panels) present the relationships 

between the respective pairs of parameters. 
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Figure 3.15 - Ob’s pairwise parameter scatterplot matrix. The histograms in the 
diagonal illustrate the distribution of the respective parameter values with the 
BSCV-obtained RMSEs. The scatterplots show the pairwise parameter 
combination areas with obtained RMSEs 

 

 
Figure 3.16 - Vb’s pairwise parameter scatterplot matrix. The histograms in the 
diagonal illustrate the distribution of the respective parameter values with the 
BSCV-obtained RMSEs. The scatterplots show the pairwise parameter 
combination areas with obtained RMSEs
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Figure 3.17 - Ob+Vb’s pairwise parameter scatterplot matrix. The histograms in the diagonal illustrate the distribution of the respective 
parameter values with the BSCV-obtained RMSEs. The scatterplots show the pairwise parameter combination areas with obtained RMSEs
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The fact that multiple parameter combinations yield roughly equivalent model 

fits indicates that the parameterisation is likely redundant. This means that the 

model's performance is not highly sensitive to the precise values of individual 

parameters, but rather to the overall balance between them. In other words, 

several sets of parameter values can produce similar predictions. This 

redundancy limits the interpretability of the frequency distributions (the single-

parameter distributions along the diagonal) and the pairwise scatter plots (the off-

diagonal panels). Because of the observed parameter correlations, interpreting 

single-parameter distributions in isolation can be misleading. For instance, if two 

parameters are highly correlated, a change in one parameter might necessitate 

a corresponding change in the other to maintain optimal model fit. Figure 3.15, 

Figure 3.16 and Figure 3.17 indicate correlations between some parameters. 

Understanding the behaviour of the models depends much on the different 

levels of redundancy found by the parameter analysis among Ob, Vb, and 

Ob+Vb. 

In the Ob model, a positive correlation was observed between 𝜎𝑠 and 𝜎𝑛𝑠, 

indicating that the model can achieve similar fits with proportional adjustments to 

these parameters. Additionally, a negative correlation between 𝑇𝑓 and 𝐵 could 

possibly suggest that the duration of forgetting observation-based evidence and 

the internal translation of behaviour evidence into beliefs might be changed in a 

compensatory way. The wide distributions of these parameters reinforced the 

idea that the model's performance is not highly sensitive to their precise values. 

The Vb model displayed a different pattern of redundancy. 𝐵 and 𝑀 showed 

a negative correlation between them, indicating that Vb may balance the internal 

translation of behaviour evidence into beliefs and the prior bias towards the 

stopping behaviour. Vb also demonstrated flexibility in the weights assigned to 

maintaining constant speed to reach a goal and the deceleration discomfort. 

However, the rather weak correlations between the other parameters, suggest 

that the performance of the model might be more sensitive to individual parameter 

values in these cases. 

The Ob+Vb model displayed the highest degree of parameter redundancy, 

with numerous correlations observed between various parameter pairs. Similar 

to the Ob model, a strong positive correlation between 𝜎𝑠 and 𝜎𝑛𝑠 was observed, 



115 
 

along with a potential negative correlation between 𝑇𝑓 and 𝐵. However, the 

Ob+Vb model also exhibited correlations between 𝛽𝑂, 𝛽𝑉 and other parameters, 

particularly with 𝑇𝑓, 𝐵 and 𝑀. This suggests that the weighing of observation-

based and value-based evidence is intricately linked with the evidence forgetting 

window, the internal translation of behaviour evidence into beliefs and prior 

beliefs. It is acknowledged that the model may be overspecified with respect to 

the evidence weight parameters. While reducing the parameter space by fixing 

one of them (e.g., 𝛽𝑉 = 0.5) would ensure better identifiability, this approach was 

avoided in favour of the full theoretical expressiveness of their respective roles in 

the evidence summation function. Furthermore, while correlation between other 

parameter pairs was observed, Figure 3.17 did not show any clear correlation 

between 𝛽𝑂 and 𝛽𝑉. Therefore, both evidence weights were retained. 

The wide parameter ranges observed for most parameters in all three models 

indicate that the models’ performance can remain unaffected by a variety of 

different parameter values. However, the complexity of compensatory 

adjustments varies across models. The Ob and Vb models exhibit relatively 

simpler forms of redundancy, primarily involving two parameters at a time. In 

contrast, the Ob+Vb model displays a more intricate network of correlations, 

suggesting that the model's behaviour is driven by the overall balance between 

multiple parameters. 

The high degree of redundancy in the Ob+Vb model poses a significant 

challenge for interpreting individual parameters. The model's flexibility and 

complexity make it important to focus on the overall patterns and relationships 

between parameters rather than individual values. For that reason, emphasis 

must be put on the interplay between different sources of information and 

cognitive factors when interpreting the model's predictions. 

In summary, while all three models exhibit parameter redundancy, the Ob+Vb 

model stands out for its complex connection of correlations and flexibility, 

reflecting its simultaneous integration of both observation and value-based 

evidence. This increased complexity necessitates a cautious approach to 

parameter interpretation, emphasising the importance of considering the model's 

overall behaviour while also requiring further investigation of its ability to 

generalise to previously unseen data and scenarios. 
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3.5 Discussion 

 

The work presented in this chapter showed that the combination of 

observation-based and value-based behaviour estimations can predict the 

average pedestrian beliefs quite accurately, across all 18 tested kinematic 

scenarios. Firstly, a Bayesian observer model, formulated and tested by Baker et 

al. (2009), was adapted to the traffic scenario presented in Chapter 2. In Chapter 

3, that model was modified in order to calculate observation-based evidence for 

the two possible vehicle behaviours (decelerating to stop and maintaining 

constant speed with no intention to stop). In the current chapter a value-based 

behaviour estimation mechanism was implemented, based on the pedestrians’ 

expectations that the driver of the approaching vehicle (or AV) would try to 

maximise the value/reward of their own behaviour, originally proposed by 

Markkula et al. (2023). Lastly, the two behaviour estimation mechanisms were 

combined into a more complex model. Since the number of parameters increased 

substantially, new model fitting and validation methods were needed. To address 

these two needs, a global controlled random search + local line search 

optimisation algorithm and the BSCV technique were adopted and applied. 

The results in this chapter have shown that, qualitatively speaking, all three 

models were able to capture the majority of the patterns of the pedestrians’ 

beliefs. More specifically, Ob had the worst predictive performance out of the 

three, which may be because it cannot account for any kinematics-related effects 

other than deceleration (𝜏̇ in this particular case). Since this behaviour estimation 

model has no access to speed and TTA, its predictions can only change when 𝜏̇ 

is changing, which is not true for the human data. This means that Ob provided 

poor predictions (the same predicted belief curve) in the constant speed 

scenarios and constant speed phases of the mixed scenarios. On the other hand, 

Vb was able to accommodate for what Ob was missing. With the use of rewards 

related to speed (vehicle’s progress towards the goal), TTA/distance and 

deceleration (deceleration discomfort) and pro-social behaviour (yielding 

politeness), the majority of kinematic conditions’ effects and belief patterns were 

captured by Vb. However, Vb seemed to be limited in predicting the pedestrians’ 

beliefs at the end of vehicle approaches, when the vehicle was coming to a full 

stop. It was shown that the Vb model struggled at predicting pedestrians’ beliefs 
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when the vehicle was travelling with relatively low speed because in that type of 

situation, the value-based evidence for the stopping and non-stopping behaviours 

are approximately equal, as the difference between these sources of evidence is 

almost equal to zero. Looking back at the importance of behaviour evidence 

(Subsection 3.4.2) for forming and updating the pedestrian beliefs, 𝐴𝑠 − 𝐴𝑛𝑠 = 0 

creates an uncertainty for the model, when in reality the stopping behaviour of 

the vehicle is quite apparent. Ob+Vb capitalised on the strengths of the two 

behaviour estimation mechanisms mentioned above. It was able to capture all 

the kinematic conditions’ effects and belief patterns which were present in the 

current dataset. 

Quantitatively, Ob+Vb and Vb achieved nearly perfect positive Spearman’s 

rank correlations, while Ob’s correlation was lower but still relatively high.  In 

terms of prediction accuracy, Ob+Vb achieved the lowest RMSE, followed by Vb 

and then Ob. These findings were somewhat supported by the BSCV analysis, 

which again showed that Ob+Vb and Vb obtained the highest BSCV correlations 

and overall lower levels of RMSEs. However, the picture of the BSCV RMSEs 

was not very clear in order to decide whether Vb’s or Ob+Vb’s predictive 

performance was better, since their BSCV RMSE distributions overlapped, 

despite Ob+Vb tending to illustrate lower BSCV RMSEs than Vb on average. 

These findings suggest a need for further model comparison to be able to select 

the model with the best predictive performance. 

However, Ob+Vb’s possible high complexity, also indicated by its observed 

parameter redundancy, warrants further discussion. The pairwise correlations 

between its parameters suggest that the model's parametrisation is likely 

redundant and its performance likely relies on an overall balance between the 

values of the multiple interacting parameters, making individual parameter 

interpretation challenging. Although the model's complexity yields higher 

predictive accuracy, it demands a thorough analytical approach, as parameter 

redundancy could hinder its generalisability. To address this uncertainty, in the 

next chapter, a new experiment with new untested scenarios was designed, to 

validate the findings of Chapters 2 and 3, and test the models (most importantly 

Ob+Vb’s) ability to generalise to unseen data. 
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4 Validating and generalising the behaviour 

estimation models 
 

Building upon the model formulations and analyses presented in Chapter 3, 

this chapter focuses on validation and extrapolation of the developed behaviour 

estimation models. While in Chapter 3 the theoretical framework was established, 

the evaluation and the initial comparison of the observation-based (Ob), value-

based (Vb), and augmented (Ob+Vb) models, in Chapter 4  the models’ predictive 

capabilities were rigorously tested on a novel dataset, thereby assessing their 

generalisability. 

To this end, a new experiment was designed, drawing upon the 

methodological principles established in Chapter 2, but incorporating key 

modifications to explore the models' performance under varied conditions. These 

varied conditions included scenarios directly comparable to those used in the 

experiment described in Chapter 2, allowing for the validation of the previous 

findings, as well as entirely new scenarios intended to test the models' predictive 

capabilities and assess their ability to extrapolate to other situations. This two-

pronged approach intended to enable both a confirmation of previous results and 

an exploration of the models' behaviour in new untested scenarios. The data 

acquired from this experiment, in a similar manner to the previous experiment 

and analysis of Chapter 3, served as the basis for evaluating the predictive 

accuracy and robustness of Ob, Vb, and Ob+Vb. Consistent with the approach 

taken in Chapter 3, Bootstrap Cross-Validation (Baker et al., 2009) was employed 

to assess the goodness-of-fit of each model to the new dataset. This chapter 

details the design and implementation of the new experiment, presents the results 

of the model evaluations on the collected dataset, and discusses the implications 

of these findings for understanding and predicting pedestrian beliefs about 

approaching vehicle behaviour, ultimately validating and extending the findings 

presented in the previous chapters. 
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4.1 Experiment 

 

As discussed in Chapter 2, the initial experiment was based on artificial 

kinematics that were focused on the idea: the vehicle is stopping or not stopping. 

Building upon this foundation and aiming to explore a wider range of realistic 

driver behaviours, this chapter introduces four manoeuvres grounded in both 

empirical observations, theoretical considerations and informal static driving 

simulator tests. This shift towards more varied and realistic manoeuvres allowed 

for a more nuanced understanding of pedestrian belief formation and updating. 

More details regarding the participants, the apparatus, the design and the 

procedure of the experiment are presented in the following subsections. 

4.1.1 Participants  

The study received ethical approval from the University of Leeds Ethics 

Committee (via an amendment request to the previous ethical approval, with 

reference LTTRAN-145). 30 healthy adults, including 14 males and 16 females, 

aged between 22 and 65 (mean age = 36.56, standard deviation = 10.68) were 

recruited from the University of Leeds Virtuocity participant list and Microsoft 

Teams channels. While the average age was slightly higher in this experiment 

than in the previous one, the participant selection criteria established in the 

experiment described in Chapter 2, this study maintained all the key requirements 

to ensure consistency; participants were required to have no significant mobility 

issues or medical conditions such as epilepsy, to have either normal or corrected-

to-normal vision and have lived in the UK within the last 12 months, as their 

experience with road traffic could influence their road crossing behaviour and 

judgments. they provided written informed consent before participating and were 

given £15 as a reward for their participation, as in the first experiment. 
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4.1.2 Apparatus  

The experimental apparatus, including the projection and tracking equipment, 

and virtual environment development software were identical to those described 

in Chapter 2, employing the HIKER lab's immersive, multi-projection virtual reality 

setup. Participants experienced the new simulated pedestrian scenarios within 

this environment. 

4.1.3 Experimental design 

The experimental design maintained the core principle of presenting 

participants with simulated vehicle approaches and requiring them to infer the 

vehicle's behaviour (stopping or not stopping) which was an adaptation of the 

Baker et al. (2009) original experiment in the pedestrian-vehicle interaction 

setting, by once again incorporating elements from the experiments of Pekkanen 

et al. (2022) and Dey et al. (2021), in a similar manner to Chapter 2. As stated in 

the introduction of this section, the main difference between the new experiment 

and the previous one, was that in the new experiment the tested driving 

manoeuvres were more varied and could be described as more realistic. 

The simulated traffic environment, consistent with the previous experiment, 

featured a residential block with a 4.2 m wide, one-lane road and an unsignalised 

intersection during daylight hours. An autonomous blue sedan vehicle, travelled 

in the centre of the road, simulating the kinematics of the experimental design. 

The new experiment had the same independent variables categories as in the 

previous experiment: vehicle driving manoeuvres, initial Time-To-Arrival (TTA), 

and initial vehicle speed. 

However, this experiment differed from the one described in Chapter 2 in the 

specific values used for initial vehicle speeds and types of driving manoeuvres. 

Specifically, the vehicle approached the pedestrian at initial speeds of 20 km/h, 

40 km/h, and 60 km/h, instead of the 25 km/h, 40 km/h, and 55 km/h used 

previously. This adjustment was made for two reasons. One was to test the 

generalisability of the models and so it was decided to explore a broader range 

of speeds, by extrapolating on the low and high speeds, having in mind that these 

speeds can also be observed in real life interactions. The second was to validate 

the models and so it was decided to keep the intermediate (and quite frequent in 

real world interactions) speed the same as in the previous experiment. The initial 

TTAs were exactly the same as in the previous experiment (3 and 6 s). The 
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decision to retain TTA values of 3 and 6 s in the second experiment was based 

on their significance in pedestrian road crossing decision-making literature and 

the methodological constraints of the experimental paradigm. As stated before, 

this TTA range is recognised as a critical window in pedestrian gap acceptance. 

Also, using TTA values which are shorter than 3 s would have been problematic 

for the segmentation method. The process of truncating the scenario into four 

segments would lead to initial segments that are too short in duration to allow the 

participant to perceive the visual stimulus or for the segment kinematics to be 

meaningfully differentiated. Lastly, TTAs longer than 6 s were not of interest as 

pedestrians would almost always cross the road immediately without probably 

needing to interpret the vehicle’s behaviour. 

Furthermore, the vehicle's driving manoeuvres were also expanded. The first 

two of these manoeuvres were repeated from the first experiment in the light of 

validating the previous experiment and findings, while the second two 

manoeuvres were designed to test the models’ generalisability to more complex 

and realistic driving situations. The design of the second two manoeuvres was 

influenced by the informal static driving simulator tests. These informal tests 

involved driving in a simulated urban environment. Drivers were reaching and 

maintaining a target speed (20, 40, or 60 km/h) and as soon as they were at a 

predetermined TTA (3s or 6s) to static virtual pedestrian (waiting at a bus stop), 

a beep informed them to perform specific braking manoeuvres. The obtained 

qualitative speed profiles (averaging repeated trials with the same kinematic 

conditions) helped define the kinematic details of these two manoeuvres, for 

which there is a lack of information in the literature. The four driving manoeuvres 

of this experiment are listed below and are illustrated in Figure 4.1. 

• Asserting priority: Constant Speed Manoeuvre 

This manoeuvre reflects a driver's tendency to prioritise their own progress, 

even when a pedestrian is present. Research indicates that a significant 

proportion of drivers maintain or even increase their speed when approaching a 

crossing with a competing pedestrian (Várhelyi, 1998). This behaviour can force 

pedestrians to yield, potentially leading to dangerous situations (Rasouli et al., 

2018). This assertive approach contrasts sharply with yielding behaviours and 

highlights the potential conflict between driver expediency and pedestrian safety. 

This manoeuvre will be referred to as Constant Speed and is similar to the 
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constant speed scenarios from Chapter 2. In the constant speed scenarios, the 

vehicle maintained a consistent speed throughout the simulation. 

• Yielding acceptance based on 1-stage braking: Constant Deceleration 

Manoeuvre (AV-like) 

This manoeuvre, inspired by AV behaviour, emphasises predictability and 

smooth deceleration. It aligns with the concept of a "coordination smoother," 

where the vehicle's actions are designed to minimise variability and enhance 

predictability (Domeyer et al., 2020). This could be achieved through a consistent, 

linear deceleration towards a stop, signalling a clear intention to yield. 

Researchers have indicated that a vehicle’s yielding behaviour (and thus its 

intention to stop) is recognised earlier when cues like lower speeds and higher 

deceleration rates are observed (Ackermann et al., 2019; Tian et al., 2023). So, 

with the constant deceleration manoeuvre the aim was to provide a clear and 

unambiguous signal to pedestrians. This manoeuvre will be referred to as 

Deceleration and is similar to the deceleration scenarios from Chapter 2. In the 

deceleration scenarios, the car decreased its speed at a constant rate until it 

stopped 2 to 2.5 meters from the participant. 

• Yielding acceptance based on 2-stage braking: Mixed Deceleration 

Manoeuvre (Human-like) 

This manoeuvre mimics human driver behaviour characterised by a two-stage 

deceleration process. Informal tests in a static driving simulator, along with 

previous findings (Lee et al., in prep), suggest that drivers often initially reduce 

speed by lifting off the gas pedal or applying a light deceleration, followed by a 

firmer deceleration to yield before reaching the pedestrian’s position. This mixed 

approach reflects the complex sensorimotor communication between driver and 

pedestrian (Domeyer et al., 2020), potentially conveying a more nuanced 

intention to yield. This manoeuvre was informed by the informal static driving 

simulator tests and will be referred to as ‘Two-stage Deceleration’ and even 

though its kinematic details are different from the mixed scenarios of the previous 

experiment (Chapter 2), their general concept is similar. In the two-stage 

deceleration manoeuvre scenarios, the vehicle combined an initial phase of very 

subtle deceleration (almost constant speed, which was different from the purely 

constant speed phase of the mixed manoeuvres of the previous experiment by a 
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slight, controlled speed reduction) and then a second deceleration phase (with 

higher deceleration rates), to explore the impact of the vehicle’s behaviour 

change, during the simulation, on the pedestrian’s belief updating. In this 

scenario, the vehicle applied the subtle deceleration for a certain time (1.2 s for 

the 3 s initial TTA condition and 3.4 s for the 6 s initial TTA condition) before 

decelerating more to come to a stop 2 to 2.5 meters from the participant. These 

brake onset timings were designed based on the previous experiment's mixed 

manoeuvres, ensuring 1) that the deceleration rates of the 2-stage deceleration 

scenarios were greater than the deceleration rates of the corresponding 1-stage 

deceleration scenarios and 2) the 𝜏̇-level similarity of corresponding segments. 

The brake onset timings design was finalised by qualitatively matching the 

previous with the patterns observed in the speed profiles from the informal static 

driving simulator tests. 

• Slowing Early and Approaching: Early Deceleration and Continuation 

without Stopping Manoeuvre 

This manoeuvre involves an early reduction in speed, maintained as the 

vehicle approaches the pedestrian, without a complete stop. This behaviour can 

signal to pedestrians that they are acknowledged and can safely cross (Risto et 

al., 2017). The strength of this signal, however, is likely linked to the deceleration 

rate and the distance from the crossing (Domeyer et al., 2019). This short 

stopping or early slowing strategy represents a subtle form of yielding, potentially 

balancing driver convenience with pedestrian safety. This manoeuvre design was 

based on the qualitative speed profiles obtained by the informal static driving 

simulator tests, since it was not tested in the previous experiment and there were 

no data available in the literature and will be referred to as Short Slowing. In the 

short slowing manoeuvre scenarios, the vehicle combined an initial phase of 

sharper deceleration and then a second phase where it maintained constant 

speed (lower than the initial speed), to, again, explore the impact of the vehicle’s 

behaviour change, during the simulation, on the pedestrian’s belief updating 

Initially, it was decided to use the same timings as the brake onsets of the Two-

stage deceleration manoeuvres. However, an informal static driving simulator test 

and early experimental design tests in HIKER revealed that these timings were 

quite short in this case, leading to high and unrealistic deceleration rates. For that 

reason, it was deemed necessary to prolong the decelerating phases’ durations, 
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leading to 1.8 s for the 3 s initial TTA condition and 3.6 s for the 6 s initial TTA 

condition, which could be still described as exaggerated but within realistic levels. 

It is worth noting that that not all 3 different initial speeds were used for all the 

vehicle manoeuvres. All initial speeds (20, 40 and 60 km/h) were used for the 

’validation’ manoeuvres (Constant speed and Deceleration), while only the 

extrapolated initial speeds (20 and 60 km/h) were used for the ‘generalising’ 

manoeuvres (Two-stage deceleration and Short slowing). The decision to not 

include the 40 km/h initial speed in the 'Two-stage Deceleration' and 'Short 

Slowing' manoeuvres was made to manage the overall duration of the experiment 

(including all possible combinations of the independent variables would have led 

to extremely long experimental sessions for the participants). 

In the designed scenarios, the deceleration rates were between 0.12 ~ 4.83 

m/s2. The lower deceleration rates that were used in the experiment are 

frequently observed when vehicles normally yield to pedestrians (Carlowitz et al., 

2024; Yang et al., 2024), while some of the greater deceleration rates are 

observed when vehicles slow down before intersections on roads with higher 

speed limits or in emergency situations, for example a pedestrian abruptly 

stepping on the road (Bokare and Maurya, 2017; Kudarauskas, 2007). The 

deceleration rates range of the ‘Deceleration’ scenarios was wider in this 

experiment than the respective range in the previous experiment. Similarly, the 

deceleration rates range of the ‘Two-stage Deceleration’ scenarios was also 

wider in this experiment than the respective range of the ‘Mixed’ scenarios of the 

previous experiment. Including this wide range of deceleration rates in the 

experimental design, allowed testing the models' ability to predict pedestrian 

beliefs under both common and more extreme, potentially more ambiguous, 

conditions, when driver behaviours are less typical and/or more urgent. Table 4.1 

shows the kinematic parameters of the designed traffic scenarios of the 

approaching vehicle. In summary, the experiment consisted of 4 types of 

manoeuvres, 3 initial speeds, and 2 initial TTAs, resulting in a total of 20 

conditions. 
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Figure 4.1 - Vehicle kinematics of all 20 scenarios. The vehicle’s speed profile is 
denoted using the pink curves and the respective 𝜏̇ time history by the dark green. 
The red vertical lines in the Two-stage deceleration and Short slowing 
manoeuvres indicate the timings of the harsher brake onset and the brake release 
respectively 
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Table 4.1 - Parameters for traffic scenarios 

Manoeuvre 
Initial 

TTA (s) 

Initial 

speed 

(km/h) 

Initial 

distance 

to 

pedestrian 

(m) 

Deceleration 

rates (m/s2) 

Constant 

speed 

phase 

duration 

(s) 

Constant 

speed 

3 

20 16.67 - [0, 3] 

40 33.33 - [0, 3] 

60 50 - [0, 3] 

6 

20 33.33 - [0, 6] 

40 66.67 - [0, 6] 

60 100 - [0, 6] 

Deceleration 

3 

20 16.67 1.11 - 

40 33.33 1.98 - 

60 50 2.98 - 

6 

20 33.33 0.51 - 

40 66.67 0.97 - 

60 100 1.44 - 

Two-stage 

deceleration 

3 

20 16.67 0.13 & 1.93 - 

60 50 0.20 & 4.83 - 

6 

20 33.33 0.12 & 1.03 - 

60 100 0.19 & 3.08 - 

Short 

slowing 

3 

20 16.67 1.54 (1.8, 4.8] 

60 50 4.63 (1.8, 4.8] 

6 

20 33.33 0.77 (3.6, 10] 

60 100 2.31 (3.6, 10] 
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4.1.4 Tasks and procedure 

In essence, the core tasks and procedure were maintained from Chapter 2, 

with minor adjustments to the order of the tasks and the segments calculations in 

order to accommodate the kinematics of the new experimental design and the 

expanded scenario set and maintain participant engagement. In the previous 

experiment, the participants first completed the two road crossing blocks and then 

they completed the two behaviour estimation blocks. In the new experiment, even 

though there were again four main experimental blocks (two road crossing and 

two behaviour estimation), they were alternated according to the following 

sequence: Road crossing (Block 1) → Behaviour estimation (Block 2) → Road 

crossing (Block 3) → Behaviour estimation (Block 4), as seen in Figure 4.2, to 

better balance participant fatigue throughout the experiment, given the increased 

number of scenarios and segments in this study, as the road crossing blocks 

included a more active task in comparison to the monotonous behaviour 

estimation task. 

The road crossing task, consistent with Chapter 2, required participants to 

cross the road if and when they felt safe to do so, while interacting with an 

approaching (virtual) vehicle. The instructions given to the participants were the 

same as the ones described in the previous experiment. Block 1 was preceded 

by a practice session with 10 trials for the participants to familiarise themselves 

with the task and the environment. The road crossing blocks (1 and 3) included 

the same 20 experimental conditions, that were randomised within each of these 

two blocks. The initiation and procedure of the trials of the road crossing task 

were exactly the same to the previous experiment, as described in detail in 

Subsection 2.1.4.  After completing each of the road crossing blocks, a short 

break was taken, before the respective following behaviour estimation block 

began. 

The behaviour estimation task, also consistent with Chapter 2, required 

participants to judge whether the vehicle was stopping or not stopping. As in 

Chapter 2, each of the scenarios was truncated into four segments of varying 

lengths, following the paradigm of Baker et al. (2009). The segmentation aimed 

to provide increasing visual cues and overall behaviour evidence, in sequence, 

during a scenario. 
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Figure 4.2 - Procedure of the experiment 

However, the calculation of these segment divisions differed slightly from 

Chapter 2 due to the overall experimental design changes and more so due to 

the inclusion of the 'Short Slowing' manoeuvre. Specifically, the 'Constant Speed' 

and 'Short Slowing' scenarios were divided using the linear division method, as 

the visual cue for collision judgment remains mostly constant in these scenarios, 

as was illustrated in Figure 4.1. The 'Deceleration' and 'Two-stage Deceleration' 

scenarios were divided using the logarithmic division method. The exact 

equations for calculating the division were similar to the equations in Subsection 

2.1.4, with the linear division equation now applied also to the short slowing 

scenarios. Similarly to the previous experiment, there were cases where the 

duration of the 1st segment as calculated by this method was too short, so in 

order to avoid these very subtle stimuli, their duration was fixed at 1 s. According 

to the above division methods, the traffic scenarios of 20 experimental conditions 

were divided into 80 segments in total (indicated as pink square markers on the 

speed profiles in Figure 4.1). 

The initiation procedure of the behaviour estimation trials replicated the 

initiation procedure of the respective task of the previous experiment. After each 

segment presentation, the environment was obscured, and the same questions 

that were described in Chapter 2, regarding the vehicle's behaviour and the 

participant's confidence, followed. So, the participants only had to observe the 

traffic scenarios and answer the questions, while no road crossing was required. 

The first behaviour estimation block (Block 2 in the experiment; see Figure 4.2) 

was preceded by a practice session with 10 trials. The formal behaviour 

estimation blocks had a total of 80 segments (40 in Block 2 and 40 in Block 4), 
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which were presented in an order that was randomised per participant, meaning 

that each participant experienced each segment of each scenario once. 

 

4.2 Model definitions 

 

As a reminder, the models being evaluated in this chapter are the same as in 

the previous chapter: the observation-based model (Ob), the value-based model 

(Vb), and the combined observation and value-based model (Ob+Vb). Ob 

predicts pedestrian beliefs solely based on observed vehicle behaviour, more 

specifically 𝜏̇ values, (same model that was presented in Chapter 2 and 3). Vb, 

which was introduced in Chapter 3, on the other hand, predicts pedestrian beliefs 

based on the assumption that pedestrians infer vehicle intentions by considering 

what actions would be most rational or value-maximising for the driver. Finally, 

Ob+Vb integrates both observation-based cues and value-based reasoning. 

It is important to clarify that while the new experiment included four distinct 

vehicle manoeuvres, the models aimed to capture the pedestrian's subjective 

beliefs regarding two mutually exclusive perceived vehicle behaviours, i.e., the 

vehicle decelerating with the intention to stop for them (𝑃𝑠) or the vehicle 

maintaining constant speed with no intention to stop for them (𝑃𝑛𝑠). 

 

4.3 Model fitting 

 

This section describes the model fitting approaches of the previously 

developed behaviour estimation models to the new dataset acquired collected as 

described above. The model fitting followed the same methodology as described 

in Chapter 3, employing a global derivative-free optimisation algorithm (Section 

3.2) to optimise model parameters. The following three model fitting approaches 

were used: 

First, to provide a baseline for comparison and assess the generalisability of 

the models, model predictions generated using the optimal parameter 

combination identified in Chapter 3 were compared against the Chapter 4 data. 
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This allowed for an initial evaluation of how well the models, trained on the 

previous dataset, generalised to the new experimental scenarios. 

Second, a focused model fitting exercise was performed, specifically adjusting 

the added margin parameter denoted as 𝑀. This parameter represents the 

strength of the prior belief towards decelerating behaviour, influencing the value-

based component (Vb) and, consequently, the augmented model (Ob+Vb). The 

rationale behind this targeted adjustment stemmed from the observation that the 

new experimental scenarios in Chapter 4 might elicit different prior beliefs in 

participants compared to those predicted in Chapter 3. For instance, the inclusion 

of 'Short Slowing' manoeuvres and the differences between ‘Two-stage 

Deceleration' and ‘Mixed’ manoeuvres could alter participants' expectations of 

vehicle behaviour. Therefore, the value of 𝑀 was adjusted from the optimal value 

found in Chapter 3 to a new value, while keeping the rest of the parameter 

settings constant. This allowed us to explore the sensitivity of the models to this 

parameter within the context of the new dataset, and to determine whether the 

prior belief strength needed to be recalibrated to better reflect the participants’ 

inferences in these new experimental conditions. 

Finally, a complete model fitting procedure was undertaken. All model 

parameters were optimised on the Chapter 4 dataset, again using the 

methodology described in Chapter 3. This comprehensive fitting process aimed 

to maximise the predictive accuracy of each model on the new data, providing a 

benchmark of their performance under optimal conditions for the current 

experimental setup. The results of these fitting procedures, including the 

optimised parameter values and the resulting model fit metrics, are presented 

and discussed in the subsequent sections of this chapter. 

 

4.4 Model selection 

 

The model selection procedure was the same as the one described in Chapter 

3. A quantitative approach was employed to assess the predictive accuracy of the 

observation-based, value-based, and augmented models on the Chapter 4 

dataset. Specifically, Root Mean Squared Errors (RMSEs) were calculated 

between model predictions and participant ratings. To compare the predictive 
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accuracy of the three models, Bootstrap Cross-Validation (BSCV; Baker et al., 

2009; Cohen et al., 1955), a robust, non-parametric technique for model 

selection, was utilised.  

 

4.5 Results 

 

This section presents empirical observations, accompanied with statistical 

analysis, from the experiment and then several analyses testing the predictive 

accuracy of the proposed models – Observation-based (Ob), Value-based (Vb), 

and the combined Observation and Value-based model (Ob+Vb) – in capturing 

pedestrians' inferences about an approaching vehicle's behaviour, based on the 

data collected in the experiment described in Section 4.1. 

4.5.1 Pedestrian beliefs regarding the vehicle’s behaviour 

In this subsection the overall trends of the of the participant’s judgements are 

presented. As described in Sections 2.1 and 4.1, the participants gave two 

answers during the behaviour estimation tasks of the experiments, regarding 

which behaviour they believed the vehicle was exhibiting (binary choice between 

stopping and maintaining speed) and how certain they were about that (subjective 

rating on a 1-9 Likert scale). These two answers were transformed linearly into a 

probability 𝑃𝑠 denoting the pedestrian belief that the approaching vehicle was 

exhibiting the stopping (decelerating to stop) behaviour. Notably, 𝑃𝑠 = 0 would 

mean that the pedestrian fully believes that the vehicle was exhibiting the other 

possible behaviour, maintaining constant speed with no intention to stop, 𝑃𝑛𝑠 = 1, 

since the two behaviours are mutually exclusive and exhaustive (in both 

presented experiments), 𝑃𝑠 + 𝑃𝑛𝑠 = 1. 

The pedestrian beliefs regarding the approaching vehicle’s behaviour were 

analysed using a mixed-effects linear regression model, instead of a 4-way 

ANOVA, as presented in Chapter 2, due to the unbalanced design of the new 

experiment (i.e., not all initial speeds were tested for all four manoeuvres). The 

pedestrians’ belief that the vehicle exhibited the stopping behaviour was the 

dependent variable. The segment, the vehicle’s initial speed, the initial TTA and 

the driving manoeuvre were considered to be the fixed effects. Lastly, the 

participants’ individual differences were modelled as a random intercept. A model 
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incorporating both a random intercept and random slopes (for all main fixed 

effects) was also evaluated. While the maximal random effects model yielded a 

lower Akaike Information Criterion (AIC) value compared to the random intercept-

only model, the Bayesian Information Criterion (BIC) value it yielded was higher. 

The latter indicates that the substantial increase in model complexity from adding 

random slopes for all main predictors, on top of the random intercept, was not 

justified by a sufficient improvement in fit for this dataset. Therefore, the more 

parsimonious random intercept-only model, which effectively accounts for 

baseline inter-participant variability, was used for the final analysis. 

The analysed mixed-effects linear regression model is presented below, using 

the Wilkinson notation (Wilkinson and Rogers, 1973). Equation (4.1) indicates 

that the Belief could be predicted by Segment, Manoeuvre, Speed and TTA, along 

with their interactions. Then, the last term represents the random intercept 

accounting for the inter-individual variability in participants’ (PID) average level of 

Belief, meaning that they might be more cautious or more trusting than other 

individuals when judging if an approaching vehicle is stopping or not. 

𝐵𝑒𝑙𝑖𝑒𝑓 ~ 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 ∗  𝑀𝑎𝑛𝑜𝑒𝑢𝑣𝑟𝑒 ∗  𝑆𝑝𝑒𝑒𝑑 ∗  𝑇𝑇𝐴 + (1|𝑃𝐼𝐷) (4.1) 
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Figure 4.3 - Pedestrians’ beliefs regarding the approaching vehicle’s behaviour 
as a function of segment, initial TTA (left column) and initial speed of the vehicle 
(right column) 
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The full results of the mixed-effects linear regression model can be found in 

Appendix A . The fixed effects coefficients reveal several statistically significant 

predictors of pedestrian beliefs. Notably, 'Speed' exhibited a significant negative 

effect (Estimate = -1.169, p < 0.001), indicating that as the initial speed of the 

vehicle increased the likelihood of pedestrians believing the vehicle would yield 

decreased. This effect can be clearly seen in the panels of the right column of 

Figure 4.3. Conversely, 'TTA' showed a significant positive effect (Estimate = 

13.137, p < 0.001), suggesting that longer initial TTA was associated with a higher 

probability of pedestrians believing the vehicle would stop. This effect can be 

clearly seen in the panels of the left column of Figure 4.3. The two findings 

described above were consistent with the results of the 4-way ANOVA 

(Subsection 2.5.1.2), which was performed on the data collected from the first 

experiment. 

The vehicle's ‘Manoeuvre’ also played a significant role in shaping pedestrian 

beliefs. The 'Short slowing' manoeuvre was selected as the reference category 

for these comparisons, given that it was the newest and most distinct driving 

manoeuvre relative to those tested in the previous experiment. ‘Constant speed’ 

manoeuvres had a significant negative effect (Estimate = -52.852, p < 0.001), 

indicating that pedestrians were significantly less likely to believe the vehicle 

would stop during a ‘Constant speed’ manoeuvre compared to a vehicle 

performing a ‘Short slowing’ manoeuvre (reference category). This could be 

because in the beginning of the ‘Short slowing’ manoeuvres the vehicle was 

actually stopping, thus shifting the pedestrians’ beliefs more towards the stopping 

behaviour than in the beginning of ‘Constant speed’ manoeuvres – for 

comparison see the red and purple trends in Figure 4.4. Conversely, 

‘Deceleration’ manoeuvres had a significant positive effect (Estimate = 34.857, p 

< 0.001), suggesting that pedestrians were significantly more likely to believe the 

vehicle would stop during a ‘Deceleration manoeuvre’ compared to a vehicle 

performing a ‘Short slowing’ manoeuvre (blue and purple trends in Figure 4.4). 

Similarly to ‘Deceleration manoeuvres’, in ‘Two-stage deceleration’ manoeuvres, 

pedestrians tended to believe that the vehicle was stopping more, in comparison 

to their beliefs during a ‘Short slowing’ manoeuvre (green and purple trends in 

Figure 4.4), supported by a significant positive effect (Estimate = 11.784, p < 

0.05). Finally, the model was rerun using the ‘Two-stage deceleration’ manoeuvre 
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as the reference category allowing the comparison between the ‘Two-stage 

deceleration’ and ‘Deceleration’ manoeuvre categories. ‘Deceleration’ 

manoeuvres had a significant positive effect (Estimate = 73.299, p < 0.001), 

suggesting that pedestrians’ beliefs were significantly more likely to lean towards 

the vehicle stopping during ‘Deceleration’ manoeuvres compared to a vehicle 

performing a ‘Two-stage deceleration’ manoeuvre (blue and green trends in 

Figure 4.4). 

Several significant interaction effects were also observed, indicating that the 

influence of one predictor on pedestrian belief depended on the level of another. 

For instance, the significant negative interaction for Segment 1 and ‘Speed’ 

(Estimate = -0.283, p < 0.05) suggests that the negative impact of speed on 

believing that the vehicle was yielding was stronger in Segment 1 compared to 

the reference segment (Segment 4). The significant positive interaction between 

Speed and TTA (Estimate = 0.027, p < 0.05) suggests a complex relationship 

where the effect of TTA on belief might be moderated by the vehicle's speed 

(Figure 4.3). Furthermore, the significant interaction effects underscore that these 

main effects might not be independent but rather contingent on the specific 

context defined by the vehicle's segment of approach, speed, and time-to-arrival. 

Finally, the random intercept for the inter-participant differences had a standard 

deviation of 3.896, indicating significant variability in baseline beliefs across 

individuals. 

 
Figure 4.4 - Pedestrians’ beliefs regarding the approaching vehicle’s behaviour 
as a function of judgement point and the vehicle’s driving manoeuvre. Means are 
represented by black dots and dashed lines indicate the trends of the average 
beliefs 
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Due to the differences in the pedestrians’ beliefs across the different 

manoeuvres (Figure 4.4), as explained above, it was deemed necessary to divide 

the data per driving manoeuvre and analyse them separately with the following 

mixed-effects linear regression model (Equation (4.2)). 

𝐵𝑒𝑙𝑖𝑒𝑓 ~ 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 ∗  𝑆𝑝𝑒𝑒𝑑 ∗  𝑇𝑇𝐴 + (1|𝑃𝐼𝐷) (4.2) 

In the ‘Constant speed’ manoeuvres, pedestrians were more likely to believe 

that the vehicle was stopping when the vehicle had a lower initial speed and the 

initial TTA was larger (Estimate = -1.169, p < 0.001 and Estimate = 13.137, p < 

0.001) – both effects are apparent in the “red” row panels of Figure 4.3. 

Additionally, as time was passing and the vehicle got closer to them, pedestrians 

were less likely to believe that the vehicle was stopping, indicated by the 

segments having a significant negative effect (Estimate = -15.576, p < 0.01). 

In the ‘Deceleration’ manoeuvres, pedestrians were more likely to believe that 

the vehicle was stopping only when the vehicle had a lower initial speed (Estimate 

= -2.072, p < 0.001). On the other hand, the main effects of initial TTA and 

segments were not statistically significant, and especially the latter is clear in the 

left “blue” panel of Figure 4.3. 

In the ‘Two-stage deceleration’ manoeuvres, pedestrians were more likely to 

believe that the vehicle was stopping when the vehicle had a lower initial speed 

(Estimate = -0.932, p = 0.01). As more time passed, and the vehicle got closer, 

pedestrians were more likely to believe that the vehicle was stopping (Estimate = 

24.292, p < 0.001). On the other hand, the main effect of initial TTA was not 

statistically significant and can be seen in the left “green” panel of Figure 4.3. 

In the ‘Short slowing’ manoeuvres, pedestrians were more likely to believe 

that the vehicle was stopping when the vehicle had a lower initial speed (Estimate 

= -1.081, p < 0.05). As more time passed, and the vehicle got closer, pedestrians 

were more likely to believe that the vehicle was not stopping (Estimate = -18.708, 

p < 0.05). On the other hand, the main effect of initial TTA was not statistically 

significant and can be seen in the left “purple” panel of Figure 4.3. 
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Besides the specific statistical effects within each manoeuvre type, visual 

inspection of the average pedestrian belief trends suggested further nuanced 

patterns. The average beliefs of the ‘Two-stage manoeuvres’ seemed to be a 

combination of the average beliefs from the first segment of the ‘Constant speed’ 

manoeuvres and of the later segments of the ‘Deceleration’ manoeuvres. In a 

similar manner, the average beliefs of the ‘Short slowing’ manoeuvres seemed to 

be a combination of the average beliefs of the first segment of the ‘Deceleration’ 

manoeuvres and of the later segments of the ‘Constant speed’ manoeuvres. To 

assess these qualitative observations, separate mixed-effects linear regression 

models were applied. These separate analyses supported the above 

observations by not finding any significant differences when comparing the 

pedestrian beliefs of the first and later segments between 1) Constant speed and 

Two-stage deceleration manoeuvres and 2) Deceleration and Short slowing. 

4.5.2 Model predictions vs subjective ratings 

The analysis investigated the predictive accuracy of the three distinct models 

in estimating pedestrian's average subjective beliefs. This was accomplished by 

assessing both correlational (Spearman's rank correlation) and error-based 

(RMSE) metrics. The predictive outputs of the models presented in this 

subsection were derived using the three model fitting approaches described in 

Section 4.3: 

1) Using the optimal parameter settings found in the analysis of Chapter 3. 

2) Using the optimal parameter settings found in the analysis of Chapter 3 

but fitting only the added margin 𝑀 parameter to the new dataset. 

3) Fitting all model parameters to the new dataset. 

 

 

 

 

 

 

 



139 
 

 

Ob Vb Ob+Vb 

   

𝜌𝑆 = 0.86 𝜌𝑆 = 0.98  𝜌𝑆 = 0.98  

𝑅𝑀𝑆𝐸 = 18.99 𝑅𝑀𝑆𝐸 = 10.61 𝑅𝑀𝑆𝐸 = 8.73 

   

𝜌𝑆 = 0.86 𝜌𝑆 = 0.98  𝜌𝑆 = 0.98  

𝑅𝑀𝑆𝐸 = 18.99 𝑅𝑀𝑆𝐸 = 9.19 𝑅𝑀𝑆𝐸 = 6.67 

   

𝜌𝑆 = 0.86 𝜌𝑆 = 0.98  𝜌𝑆 = 0.98  

𝑅𝑀𝑆𝐸 = 16.84 𝑅𝑀𝑆𝐸 = 8.41 𝑅𝑀𝑆𝐸 = 6.00 

Figure 4.5 - Scatter plots of model predictions using best-fitting parameter 
settings (y-axes) versus pedestrians’ average beliefs (x-axes) for all 20 kinematic 
scenarios of the approaching vehicle. The three columns indicate the tested 
model (Ob, Vb and Ob+Vb). The three rows indicate the model fitting approach 
that was used (can be found in the enumeration of the previous page) 

Figure 4.5 presents scatter plots comparing participant judgments with 

predictions from the Ob, Vb, and Ob+Vb models – which are represented by blue, 

green and red colours respectively, similarly to the previous chapter, illustrating 

their respective accuracies. In the first-row panels, the models were 

parameterised according to the best-fitting values found in the analysis of Chapter 
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3 (as detailed in Table 3.2). Consistent with the findings from Chapter 3, visual 

inspection of Figure 4.5 reveals that Vb and Ob+Vb again exhibited fewer poorly 

predicted datapoints compared to Ob. This observation is further supported by 

the obtained correlation and RMSE values. Notably, Vb and Ob+Vb demonstrate 

the same near-perfect positive monotonic rank association (Spearman's rank 

correlation ≈ 1) between pedestrian average beliefs and model predictions as 

was observed in the analysis of Chapter 3. In contrast, Ob shows a lower 

Spearman's rank correlation on this new dataset than Vb and Ob+Vb, a pattern 

which was observed also in the previous chapter. Furthermore, the scatter points 

for Vb and Ob+Vb cluster closely along the identity line (Pearson's rho ≈ 1), again 

mirroring the near-perfect positive linear relationship found previously and 

suggesting that their predictions closely approximate mean pedestrian beliefs. 

Finally, considering the Root Mean Squared Error (RMSE), a measure of 

proximity to the identity line where lower values indicate better predictive 

performance, Ob+Vb demonstrates a lower RMSE than Vb, while Ob exhibits the 

highest error, consistent with the findings of Chapter 3. 

Importantly, while the Spearman's rank correlations remained identical to 

those found in Chapter 3, except for Ob’s (Ob: 0.89→0.86, Vb: 0.98→0.98 and 

Ob+Vb: 0.98→0.98), the RMSE values for all three models are slightly higher on 

this new dataset. The decrease of Ob’s rank correlation could be due to the 

addition of more segments during which the approaching vehicle maintained 

constant speed (i.e., the later segments of ‘Short slowing’ manoeuvres), and 

since Ob’s predictions were poor in such cases. The RMSE increase for all three 

models could be due to testing the models on this new dataset, which was an 

extrapolated version of the previous dataset, in terms of initial speeds and driving 

manoeuvres. Partial and/or full refitting slightly improved the predictive 

performance of the models, bringing their RMSE values very close to the RMSE 

values obtained in Chapter 3.  

Considering that the models were applied to a completely new set of 

pedestrian participants experiencing the new experimental design (with new 

untested kinematic scenarios), the level of performance achieved, particularly by 

Ob+Vb, could be argued to show a reasonably good degree of generalisation. 

The models were able to maintain a strong relationship with the pedestrian's 

subjective beliefs even when presented with novel data. 
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Following this general analysis of the models’ predictive performance, more 

detailed analyses of the models’ behaviour are presented in Subsections 4.5.2.1, 

4.5.2.2 and 4.5.2.3. In each one of these subsections, the parameter settings of 

the models were obtained by the three model fitting approaches described in 

Section 4.3. 

4.5.2.1 Parameter settings of Chapter 3 

An analysis comparing pedestrian data and model predictions across the new 

kinematic scenarios elucidates the influence of varying vehicle kinematic 

conditions on pedestrian belief updating regarding the approaching vehicle’s 

behaviour and assesses the fidelity with which the proposed models capture the 

average pedestrian beliefs. 

Specifically, vehicle manoeuvres are categorised and presented in the 

following figures: Figure 4.6, Figure 4.7, Figure 4.8 , and Figure 4.9. Figures 4.5 

and 4.6 are including the scenarios with 40 km/h initial vehicle speed for both 

initial TTAs (3 and 6 s). The average pedestrian beliefs of the last experiment are 

shown in these four specific scenarios. These exact kinematic scenarios were 

tested in the previous experiment as well, so they could serve as scenarios 

through which model and experiment validation were tested. The rest of the 

kinematic scenarios were illustrated in the abovementioned figures, aiming to 

present all the new scenarios of the new experiment, so they could serve as 

scenarios through which model generalisability was tested. 

These 20 plots (one for each kinematic scenario) illustrate general patterns in 

pedestrian beliefs as predicted by the three models. Within Figure 4.6, Figure 4.7, 

Figure 4.8 and Figure 4.9 (and all the rest figures of this chapter), the predictions 

of the Ob, Vb, and Ob+Vb models are represented by blue, green, and red 

curves, respectively, as was also the case in Chapter 3. The average pedestrian 

beliefs are depicted as standard error of the mean bars of the pedestrians’ beliefs 

(the black ones indicate the average beliefs from the new dataset, while the grey 

ones indicate the average beliefs from the previous dataset) at the pre-defined 

judgment timings (as detailed by the pink square marks in Figure 4.1). For 

clarification, the model prediction curves in Figure 4.6, Figure 4.7, Figure 4.8 and 

Figure 4.9 are exactly the same as the ones produced in Chapter 3. With a quick 

visual inspection of the 40 km/h scenarios in Figure 4.6 and Figure 4.7 (second 

row panels) it can be seen that the average pedestrian beliefs of the new 
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experiment are consistent and quite close to the ones of the previous experiment, 

with a slight tendency of the average beliefs of the new experiment to be leaning 

a bit more towards the non-stopping behaviour (lower 𝑃𝑠 or equally higher 𝑃𝑛𝑠). 

 TTA 3 s TTA 6 s 

20 

km/h 

  

40 

km/h 

  

60 

km/h 

  

Figure 4.6 - Comparison between model predictions and average pedestrian 
beliefs for the constant speed manoeuvres. The RMSEs are regarding the new 
dataset only (i.e., Average Subjective Ratings 2) 

In the constant speed scenarios (Figure 4.6), similarly to Chapter 3, Vb and 

Ob+Vb outperformed Ob in capturing the pedestrian belief patterns. Ob 

consistently predicted initial 50/50 belief uncertainty, while Vb and Ob+Vb 

reflected the influence of speed and TTA. Ob's reliance on 𝜏̇ limited its ability to 

differentiate beliefs across scenarios, a limitation addressed by Vb’s and Ob+Vb's 

incorporation of additional information. Higher vehicle speeds correlated with 
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stronger predicted beliefs in non-stopping behaviour, while larger TTAs correlated 

with weaker such beliefs. These patterns can be further explained by examining 

the models' evidence sources (Subsections 3.4.2 and 4.5.3). Ob+Vb’s predictions 

in the 40km/h scenarios support the successful validation of the suggested 

behaviour estimation mechanisms and the experimental paradigm. In addition, 

Vb and Ob+Vb seemed to be able to generalise quite well (especially for the 

higher speeds) to the new initial vehicle speeds. 
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Figure 4.7 - Comparison between model predictions and average pedestrian 
beliefs for the deceleration manoeuvres. The RMSEs are regarding the new 
dataset only (i.e., Average Subjective Ratings 2) 

In the deceleration scenarios (Figure 4.7), Vb and Ob+Vb generally 

demonstrated better performance compared to Ob in replicating pedestrian belief 
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patterns. While Ob's initial predictions failed to capture the influence of varying 

vehicle speeds and TTAs, its later predictions improved in accuracy as 𝜏̇ values 

changed over time.  Vb's initial predictions reflected the effects of speed and TTA, 

but its final predictions were less accurate due to the equalisation of the evidence 

of the two possible behaviours towards the end of each deceleration manoeuvres 

(Subsections 3.4.2 and 4.5.3). Ob+Vb's predictions effectively leveraged the early 

predictive strengths of Vb and the later strengths of Ob. Similarly to the constant 

speed scenarios (Figure 4.6), Ob+Vb’s predictions in the 40km/h scenarios of 

Figure 4.7 support the validation of the suggested behaviour estimation 

mechanisms and the experimental paradigm, while Ob+Vb’s predictions in the 20 

and 60 km/h scenarios support its generalisability (especially for the lower 

speeds, in contrast to the constant speed scenarios). 
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Figure 4.8 - Comparison between model predictions and average pedestrian 
beliefs for the two-stage deceleration manoeuvres 

As can be seen in Figure 4.8, the two-stage deceleration scenarios were very 

similar to the mixed scenarios of the previous experiment. Even though kinematic 

details of the two-stage deceleration scenarios differed from the ones of the 

mixed scenarios, both the model predictions and the average pedestrians’ beliefs 

followed similar patterns. In these scenarios Ob+Vb generally exhibited better 
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performance compared to Ob and Vb. The previously identified limitations of Ob's 

early predictions and Vb's later predictions, observed in the constant speed and 

deceleration scenarios respectively, were mitigated in the combined Ob+Vb 

model. The similarity in patterns between the two-stage deceleration scenarios 

and the mixed scenarios of the previous experiment provided a degree of 

validation for the models, particularly the Ob+Vb model. The fact that the model 

predictions, and especially the better performance of Ob+Vb, hold even when 

presented with slightly different kinematic profiles suggested a certain robustness 

and generalisability of the underlying model structures and the relationships they 

capture. This indicated that the models were not simply overfitting to the specific 

details of the original training data but were capturing more fundamental aspects 

of how pedestrians form and update their beliefs about the behaviour of 

approaching vehicles. The consistent mitigation of Ob's early and Vb's later 

prediction limitations in these new, two-stage deceleration scenarios further 

supported the validation and generalisability of the combined Ob+Vb model as a 

more comprehensive predictor of pedestrian beliefs across a range of dynamic 

situations. 
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Figure 4.9 - Comparison between model predictions and average pedestrian 
beliefs for the short slowing manoeuvres 
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In the context of short slowing manoeuvres (Figure 4.9), Vb seemed to 

generally perform better than both Ob and Ob+Vb in predicting the average 

pedestrian beliefs regarding the approaching vehicles behaviour. The previously 

noted weakness of Ob when the vehicle speed is constant was again observed. 

This limitation was propagated to Ob+Vb due to its incorporation of observation-

based evidence, leading to a slight overestimation of pedestrian beliefs that the 

vehicle was stopping (especially at higher vehicle speeds). Vb, conversely, 

exhibited the strongest agreement with average pedestrian beliefs during the 

short slowing manoeuvres. Importantly, the overall belief curve shape for these 

new short-slowing manoeuvres – an initial increase in belief of the vehicle 

stopping, followed by a decrease in that belief – is substantially different from 

belief curve shapes obtained in the previous experiment. The fact that Vb and 

Ob+Vb capture this general curve pattern reasonably well without any parameter 

refitting strongly suggests their ability to generalise to new scenarios and provides 

evidence that Ob+Vb was not overfitted to the previous dataset. 

Across the majority of these 20 kinematic scenarios, when using the 

parameter settings that were obtained in Chapter 3, the Ob+Vb model provided 

the highest Spearman’s rank correlation (along with Vb), the lowest overall RMSE 

and appeared (at least qualitatively) to be the most accurate in predicting the 

pedestrians’ beliefs. These are strong indications that Ob+Vb was the best model 

(out of the three suggested ones) for capturing the average pedestrian beliefs 

regarding an approaching vehicle’s behaviour. Furthermore, the consistent 

performance of Ob+Vb, even when applied to the new dataset and including 

novel scenarios (as discussed in relation to Figure 4.8 and Figure 4.9), suggested 

that the model possessed a notable ability to generalise and extrapolate to non-

tested kinematic conditions of approaching vehicles. So, a key takeaway from the 

analysis so far is that the models fitted to the previous experiment demonstrated 

a considerable ability to predict pedestrian beliefs in this new dataset, which 

includes new scenarios. This supports the robustness of the underlying model 

structures and their ability to capture fundamental aspects of behaviour 

estimation. 

The question of overfitting for a model as complex as Ob+Vb was a key 

consideration from Chapter 3. The results presented in this subsection, offered 

valuable insights into this question. The fact that Ob+Vb maintained its superior 
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performance (or at least remained among the top performers) on this new 

dataset, without being refitted, suggests that it was likely not substantially 

overfitted to the original dataset; overfitting would typically result in a more 

significant drop in its predictive accuracy when applied to new, unseen data. 

The observation of a slight tendency of the average beliefs of the new 

experiment to be leaning a bit more towards the non-stopping behaviour in the 

four kinematic scenarios which were exactly the same in both experiments, 

indicated a difference in the pedestrians’ prior beliefs between the two 

experiments. Hence, to further investigate the influence of prior beliefs within the 

model predictions in this new experimental context and to explore the potential 

for fine-tuning the model for this specific dataset, the next subsection focused on 

the refitting of the added margin parameter 𝑀. This would provide additional 

insights into the model's sensitivity and the extent to which its performance can 

be further optimised for the characteristics of the new experimental context. 

4.5.2.2 Partial refitting (only parameter 𝑀) 

This subsection explores the impact of refitting the added margin parameter 

(represented by 𝑀) on the predictive performance of the three models, for the 

new dataset. It is worth noting that fixing the values of the rest of the parameters 

to the best-fitted ones obtained in Chapter 3 and refitting only 𝑀, was a 

significantly less computationally expensive approach than fully refitting the 

models. Table 4.2 shows the best-fitting 𝑀 values from Chapter 3 and the new 

optimal 𝑀 values after refitting. 

Table 4.2 - Parameter 𝑀 values before and after refitting 

 Old 𝑴 Refitted 𝑴 

Ob 0 0 

Vb 16.13 13.79 

Ob+Vb 6.26 4.61 

 

A quick comparison of the refitted and the previous 𝑀 values (Table 4.2), 

shows that while 𝑀 remained at 0 for Ob (consistent with findings in Chapter 3 

where this value was optimal even when negative ranges were explored, 

indicating that there was not a model-driven bias towards the stopping behaviour 

when using the original search range, [0,100]), it was reduced for both Vb and 
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Ob+Vb. By comparing the first and second rows from Figure 4.5 it can be 

observed that the vertical displacement of the scatter points are consistent with 

the 𝑀 value differences presented in Table 4.2. After refitting 𝑀, Vb and 

particularly Ob+Vb, once again offered better predictions of the pedestrian beliefs 

compared to Ob (Figure 4.5). The data points of Vb and Ob+Vb were translated 

downwards (only on the y-axis) – as a result of their reduced 𝑀 values – while 

Ob’s data points remained fixed since 𝑀 remained constant and equal to zero. It 

is noteworthy that the reduction of the bias towards the stopping behaviour 

provided lower RMSEs for Vb and Ob+Vb, bringing them closer to the RMSE 

values obtained by the dataset of the previous experiment. 
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Figure 4.10 - Comparison between model predictions and average pedestrian 
beliefs for examples of constant speed and deceleration scenarios. The dashed 
curves illustrate the model predictions using the parameter settings of Chapter 3 
and the solid curves the model predictions using the same parameter settings but 
with the refitted 𝑀. The RMSEs are regarding the model predictions using the 

refitted 𝑀 only 

Figure 4.10 illustrates the model predictions, after with and without refitting 

the parameter 𝑀, against the average pedestrian beliefs, in some of the constant 

speed and deceleration scenarios. Essentially, Vb’s and Ob+Vb’s prediction 

curves were translated downwards, while Ob’s remained as before. This 

downward translation led to Vb and Ob+Vb capture the average pedestrian 
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beliefs even better (decreased the overall RMSE and maintained high rank 

correlation) than in Subsection 4.5.2.1, where the parameters settings of Chapter 

3 were used. 
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Figure 4.11 - Comparison between model predictions and average pedestrian 
beliefs for examples of two-stage deceleration and short slowing scenarios. The 
dashed curves illustrate the model predictions using the parameter settings of 
Chapter 3 and the solid curves the model predictions using the same parameter 
settings but with the refitted 𝑀. The RMSEs are regarding the model predictions 

using the refitted 𝑀 only 

Figure 4.11 demonstrates another example of the improved accuracy of Vb 

and Ob+Vb due to the downward translation caused by the smaller prior bias 𝑀. 

In the case of two-stage deceleration scenarios that shift seemed necessary 

especially for the first segments’ judgements where the approaching vehicle was 

exhibiting almost-constant speed behaviour and the true 𝑃𝑠 (participants’ belief 

that the vehicle was stopping) was low. Regarding the short slowing scenarios, it 

can be seen that the belief overestimation of Ob+Vb observed in the previous 

subsection has been diminished due to the reduced bias towards the stopping 

behaviour of the vehicle. Thus, Ob+Vb seemed to be performing equally well with 

Vb now, in the short slowing manoeuvres. 
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In summary, the results of this subsection were obtained by maintaining the 

best-fitting parameter settings (all but 𝑀) of the previous chapter and then fitting 

the models to minimise the RMSE between the model predictions and the 

average pedestrian beliefs, through refitting the 𝑀 parameter. Ob’s predictions 

remained the same because the adjusted 𝑀 value was the same as in the 

previous subsection, while Vb’s and Ob+Vb’s belief predictions were subtly 

translated downwards (closer to certain non-stopping behaviour belief or 𝑃𝑠 = 0). 

Once more, Ob+Vb seemed to be performing better than Ob and Vb, based on 

both quantitative and qualitative comparisons. 

4.5.2.3 Full refitting (all parameters) 

Lastly, a rigorous full-model fitting sought to optimise the predictions of each 

model with respect to the new dataset. The panels in the third row of Figure 4.5 

corroborate the resulting predictive accuracies of the three models after fitting 

their whole parameter settings on the new dataset. In consistence with both 

previous analyses based on different model fitting approaches (4.5.2.1 and 

4.5.2.2), Ob+Vb demonstrated better predictive performance regarding 

pedestrian beliefs compared to Ob and Vb.  The arguments behind this recurring 

theme are once again the decreased incidence of poorly predicted datapoints, 

high rank correlation and lower RMSE value. 

A comparison of the new and the previous best-fitting parameter settings 

(Table 4.3), shows that: 

For Ob, the best-fitting parameters remained similar, with the exception of 𝜇𝑠, 

which was optimised at a higher value than before, meaning that there is a larger 

gap between the distributions of 𝑃(𝜏̇|𝑏𝑠) and 𝑃(𝜏̇|𝑏𝑛𝑠). The rest of the parameters 

were fitted to values of a similar level to the previous, indicating that Ob’s best 

predictions are achieved by a specific parameter set, probably close to the refitted 

one.  

For Vb, the full refitting resulted in more substantial changes in its optimal 

parameter values than Ob. The decrease in 𝑘𝑔  suggested a reduced sensitivity 

to the evidence related to the driver reaching their goal, while the increase in 𝑘𝑑𝑎 

indicated a greater weight placed on the discomfort associated with deceleration. 

The substantial decrease in 𝑐𝑝𝑜𝑙 implied a diminished influence of the evidence 

related to the vehicle’s pro-social behaviour. These changes collectively indicate 
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that the value-based considerations influencing pedestrian beliefs may have 

been recalibrated in the new experiment, with a greater emphasis on the 

immediate dynamics of vehicle deceleration and less on expected driver 

intentions. Furthermore, the reduction in 𝑀 indicated a lower overall bias towards 

the belief that the vehicle would stop, in this new dataset, in line with the findings 

from the partial refitting in the previous subsection. Moreover, it is noteworthy that 

the product of 𝐵 ∙ 𝑀 had a lower value after (~2.01) than before (~2.26) refitting, 

suggesting that the fixed bias towards the stopping behaviour (in absolute 

evidence terms) seemed to be lower in the new experiment compared to the 

respective bias of the previous experiment. 

Ob+Vb also exhibited notable parameter adjustments upon the full parameter 

set refitting. Similar to the Vb model, 𝑘𝑔 and 𝑐𝑝𝑜𝑙 decreased, suggesting a reduced 

influence of goal-related and pro-social evidence. Conversely to Vb though, 𝑘𝑑𝑎 

also decreased. As for the Ob part of the model 𝜇𝑛𝑠, 𝜇𝑠, 𝜎𝑛𝑠, 𝜎𝑠 remained similar, 

suggesting that the stability shown in the refitting by the pure Ob model might 

have been transferred to Ob+Vb as well. Interestingly, the weighting parameter 

for the observation-based evidence 𝛽𝑂, increased, indicating a potentially 

stronger influence of perceptual cues derived from the vehicle's motion. 

Conversely, the weighting parameter for the value-based evidence 𝛽𝑉 decreased, 

suggesting a relatively reduced contribution of inferred driver rewards and costs 

in the belief formation process for this new dataset. The time constant for 

forgetting past evidence 𝑇𝑓 decreased substantially, suggesting a greater reliance 

on more recent observations, with the new value being closer to the 𝑇𝑓 level of 

Ob. 𝑀 decreased, mirroring the trend observed in the Vb model and indicating a 

reduced bias towards the stopping behaviour of the vehicle, once again 

consistent with the findings from the partial refitting in the previous subsection. 

Similarly to Vb, the product of 𝐵 ∙ 𝑀 had a slightly lower value after (~1.17) than 

before (~1.25) refitting, suggesting that the fixed bias towards the stopping 

behaviour (in absolute evidence terms) seemed to be lower in the new 

experiment compared to the respective bias of the previous experiment. These 

changes in Ob+Vb suggested a recalibration of the integration process between 

observation and value-based evidence, with a slightly greater emphasis on 

immediate perceptual information, slightly less emphasis on the expected values 
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than in the previous experiment and a slightly smaller bias towards the stopping 

behaviour.  

Table 4.3 - Best-fitting parameter settings 

 
Ob Vb Ob+Vb 

Old New Old New Old New 

𝑘𝑔 

- 

0.88 0.57 0.57 0.38 

𝑘𝑑𝑎 0.36 0.55 0.51 0.43 

𝑐𝑝𝑜𝑙 0.83 0 1 0.49 

𝜇𝑛𝑠 -1 -1 

- 

-1 -0.90 

𝜇𝑠 -0.47 -0.21 -0.75 -0.74 

𝜎𝑛𝑠 0.55 0.59 0.56 0.68 

𝜎𝑠 0.57 0.54 0.58 0.68 

𝑇𝑓 4.56 5.41 100 1.97 

𝛽𝑂 
- 

0.32 0.60 

𝛽𝑉 0.53 0.37 

𝐵 0.17 0.12 0.14 0.17 0.20 0.45 

𝑀 0 0 16.13 11.82 6.26 2.60 

 

Examples of the resulting model predictions due to the full refitting can be 

seen in Figure 4.12. Figures with model predictions, using the parameter settings 

obtained by the full refitting, for all 20 kinematic scenarios can be found in the 

Appendix B . 

Figure 4.12 illustrates four examples (one for each driving manoeuvre) of 

model predictions versus average pedestrian beliefs comparisons. The initial TTA 

and initial speed of the vehicle is the same for all these four examples. The solid 

lines represent the model predictions obtained by using the fully refitted 

parameter settings, while the dashed lines represent the model predictions 

obtained by using the partially refitted parameter settings (only 𝑀) of the previous 

subsection. The patterns observed in the examples of Figure 4.12 were 

consistent with the patterns of the rest of the kinematic scenarios. 



153 
 

Regarding the constant speed scenarios, as can be seen in Figure 4.12, Ob’s 

predictions decrease rate was larger because of the adjustment of 𝜇𝑠 to a higher 

value than before, meaning that the model introduced a bigger and clearer 

perceptual discrepancy between the two possible behaviours. That could 

possibly be explained by the fact that the new experiment had a bigger number 

of non-stopping behaviour segments than the previous experiment. Vb’s 

predictions shifted upwards due to the slight increase of the product 𝐵 ∙ 𝑀 

(1.93→2.01). Lastly, Ob+Vb appeared to be averaging the adjustments of the two 

behaviour estimation mechanisms, making it have the best prediction accuracy 

of the average pedestrian beliefs. 

TTA 6 s and 20 km/h 

Constant speed Deceleration 

  

 

Two-stage deceleration Short slowing 

  

Figure 4.12 - Comparison between model predictions and average pedestrian 
beliefs for examples of all four driving manoeuvres. The dashed curves illustrate 
the model predictions using the parameter settings of Chapter 3 with the refitted 
𝑀 and the solid curves the model predictions using the fully refitted parameter 
settings. The RMSEs are regarding the model predictions using the fully refitted 
parameter settings only 

RMSE = 36.20 

RMSE = 11.92 

RMSE = 9.65 

 

RMSE = 6.24 

RMSE = 6.16 

RMSE = 1.74 

 

RMSE = 27.04 

RMSE = 8.49 

RMSE = 4.56 

 

RMSE = 12.88 

RMSE = 3.05 

RMSE = 5.78 
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Figure 4.12 demonstrates similar consistency with previously reported 

findings regarding the strengths and weaknesses of the models in the 

deceleration scenarios. As in the constant speed manoeuvres Ob’s predictions 

rate was affected by the adjustment of 𝜇𝑠. However, since the true vehicle 

behaviour in this case was the stopping behaviour, this adjustment of 𝜇𝑠 meant 

that Ob’s predicted belief in the stopping behaviour now increased at a lower rate. 

Vb’s predictions were once again shifted downwards due to the same reason as 

explained in the constant speed scenario of Figure 4.12. Ob+Vb averaged the 

abovementioned effects, achieving the best predictive accuracy.  

The results for two-stage deceleration scenario presented in Figure 4.12, are 

again consistent with those previously reported when compared to the ones 

obtained from the different model fitting approaches of this chapter, but also when 

compared to the somewhat similar mixed scenarios of the previous experiment. 

From Figure 4.12, in the two-stage deceleration scenarios, Ob’s predictions rate 

was affected depending on what was the true vehicle behaviour. More 

specifically, in the beginning of these scenarios when the vehicle was almost 

maintaining constant speed, Ob’s predicted belief in the stopping behaviour 

decreased at a higher rate (consistent with what was observed in the constant 

speed scenarios), while in the later stages where the vehicle was decelerating, 

Ob’s predicted belief in the stopping behaviour increased at a lower rate 

(consistent with what was observed in the deceleration scenarios). Vb’s belief 

predictions were shifted downwards, as described before (this downwards shift 

was the same for all scenarios). The effect-averaging behaviour of Ob+Vb was 

once again apparent. 

From Figure 4.12 and conversely to the two-stage deceleration scenario, early 

in the short slowing scenario, when the vehicle was decelerating, Ob's predictions 

regarding the stopping behaviour increased more slowly (mirroring the 

deceleration scenarios), whereas later, during the constant speed phase, its 

predicted belief in the stopping behaviour was decreased more rapidly 

(consistent with constant speed scenarios). Vb and Ob+Vb were affected the 

same way as explained before for all the other driving manoeuvre scenarios, after 

fitting their whole parameter settings to the new dataset. 

Even though the last obtained parameter settings (refitting all parameters) 

obtained the lowest RMSE between model predictions and average pedestrian 
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beliefs, for all three models, the parameter settings with the refitted 𝑀 was 

considered to be the most appropriate in balancing predictive accuracy with 

simplicity and generalisability to unseen data, possibly ensuring a candidate 

model that would perform well in real-world applications. That consideration was 

based on three key reasons. First, models with the refitted 𝑀 parameter settings 

obtained RMSE values which were very close to RMSEs obtained by models with 

the fully refitted parameter settings. Second, it allowed a more direct and 

meaningful comparison of the models and their parameters across two 

experiments, rather than a completely new set of parameters. The examination 

of how the new dataset specifically influences the bias towards the stopping 

behaviour was facilitated, since all parameters except one remain fixed to their 

previously established optimal values. Lastly, the computational cost associated 

with refitting only a single parameter (𝑀) is significantly lower than that of refitting 

a large number of parameters (7 for Ob, 5 for Vb and 12 for Ob+Vb). 

Across all three parameter-fitting settings presented in the three previous 

subsections and across all 20 kinematic scenarios, the augmented model 

(Ob+Vb), consistently exhibited the highest Spearman's rank correlation, the 

lowest RMSE and appeared to provide the most accurate predictions of 

pedestrian beliefs both qualitatively and quantitatively. These consistent metrics 

strongly suggest that Ob+Vb's predictive performance is the best among the three 

proposed models. While this provides compelling evidence for Ob+Vb's 

effectiveness and suggests it is not overly complex or overfitted (given its strong 

performance on a new dataset with parameters fully or largely derived from a 

previous one), further investigation into the underlying behaviour evidence 

integration (Subsection 4.5.3) and a per-participant analysis (Subsection 4.5.5) 

will provide a more comprehensive understanding of the model's strengths and 

limitations. To complete this investigation and further understand these aspects, 

the Bootstrap Cross-Validation (BSCV) model selection technique (Subsection 

4.5.4) was applied. BSCV offered a robust method for comparing model 

performance and generalisability on unseen data, accounting for overfitting, 

especially for the more complex Ob+Vb. Additionally, it allowed a more structured 

analysis of the obtained model parameters values. 
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4.5.3 Breaking down the evidence 

This subsection provides a more in-depth analysis of the significance of 

evidence related to the approaching vehicle's behaviour. To reiterate, 𝐴𝑛𝑠 

represents evidence of non-stopping behaviour, 𝐴𝑠 represents evidence of 

stopping behaviour, 𝐴𝑂𝑏 represents evidence derived from the observation-based 

(Ob) behaviour estimation mechanism and 𝐴𝑉𝑏 represents evidence derived from 

the value-based (Vb) behaviour estimation mechanism (refer to Equations (3.15) 

and (3.16) for clarity). Essentially, this analysis provides insights of how the 

proposed models produce their predictions. However, since the constant speed, 

deceleration and two-stage deceleration scenarios of the new experiment are 

similar to the constant speed, deceleration and mixed scenarios, respectively, of 

the previous experiment, and the fact that another comprehensive analysis of 

evidence break down was presented in Chapter 3, this subsections’ analysis will 

only address the short slowing scenarios. 

Figure 4.13 illustrates the influence of varying initial speeds on the derived 

vehicle behaviour evidence. In short slowing scenarios with the same initial TTA, 

higher initial speed correlated with a shift toward initially believing that the vehicle 

will maintain speed rather than stopping. This is visible in Figure 4.13 as 𝐴𝑠 − 𝐴𝑛𝑠 

being initially more negative for higher initial speeds. This happens in the model 

because higher speeds imply a greater reward for the driver/AV if the vehicle 

maintains its speed, leading to a stronger initial bias towards the non-stopping 

behaviour. This effect, which was apparent in Subsection 3.4.2 for all the other 

types of driving manoeuvres, has here been successfully propagated to short 

slowing scenarios as well. 
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20 km/h 60 km/h 

  

Figure 4.13 - Evidence of the two possible behaviours during short slowing 
manoeuvres. The initial TTA is 3 s in both panels 

Figure 4.14, using a similar format, demonstrates the impact of different initial 

TTAs on vehicle behaviour evidence during short slowing scenarios. When the 

vehicle is initially further away (longer initial TTA), there is a shift in evidence 

towards the stopping behaviour rather than the non-stopping behaviour. This is 

visible in Figure 4.14 as 𝐴𝑠 − 𝐴𝑛𝑠 being initially larger for longer initial TTAs. The 

underlying logic in the model is that a larger initial distance translates to a lower 

necessary deceleration rate for the vehicle to stop comfortably and safely before 

the position of the pedestrian. This makes the act of decelerating more 

advantageous, resulting in a stronger initial tendency to predict the stopping 

behaviour. Importantly, the key observation from Figure 4.13 and Figure 4.14 is 

that the evidence difference 𝐴𝑠 − 𝐴𝑛𝑠 is the primary determinant of the shape of 

the Ob+Vb model's predicted beliefs, as observed also in Subsection 3.4.2 for 

the scenarios studied in the first experiment. 

TTA 3 s TTA 6 s 

  

Figure 4.14 - Evidence of the two possible behaviours during short slowing 
manoeuvres. The initial speed is 60 km/h for both panels 
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Then the behaviour evidence are broken 𝐴𝑛𝑠 and 𝐴𝑠 further down to the 

observation and value-based behaviour estimation components, as shown in 

Equations (3.15) and (3.16). To avoid any confusion the added soft-margin 𝑀 has 

been omitted in Figure 4.15 and Figure 4.16, since it is a constant value and 

would be illustrated by the same horizontal line in all the following plots. 

20 km/h 60 km/h 

  

Figure 4.15 - Evidence of the two possible behaviours during short slowing 
manoeuvres, divided by behaviour estimation mechanism. The initial TTA is 3 s 
for all panels 

Figure 4.15 depicts the influence of varying initial speeds during short slowing 

manoeuvres on the evidence computed by both the observation-based and 

value-based behaviour estimation components of the Ob+Vb model. 

Correspondingly, Figure 4.16 illustrates the effects of different initial TTAs during 

short slowing manoeuvres on the evidence derived from these same 

components. 

TTA 3 s TTA 6 s 

  

Figure 4.16 - Evidence of the two possible behaviours during short slowing 
manoeuvres, divided by behaviour estimation mechanism. The initial speed is 60 
km/h for all panels 
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Figure 4.15 and Figure 4.16 reveal that initially, both 𝐴𝑂𝑏𝑛𝑠 and 𝐴𝑂𝑏𝑠 exhibit 

zero evidence values during short slowing, due to the lack of early 𝜏̇ data, while 

𝐴𝑉𝑏𝑛𝑠 and 𝐴𝑉𝑏𝑠 possess non-zero initial values. Specifically, 𝐴𝑉𝑏𝑛𝑠(𝑡 = 0) >

𝐴𝑉𝑏𝑛𝑠(𝑡 = 0), which is consistent with Equations (3.4) and (3.5), given that 

𝑅𝑑(𝑡) = 𝑅𝑐(𝑡) − 𝑘𝑑𝑎𝑎𝑟𝑒𝑞(𝑡)
2 + 𝑐𝑝𝑜𝑙 (with 𝑐𝑝𝑜𝑙 insufficient to offset the deceleration 

discomfort cost). This confirms, once again, observations from the previous 

chapter, explaining why the observation-based approach struggles with early 

predictions while the value-based approach shows stronger predictive capability 

in the initial stages. 

During the constant speed phase of short slowing scenarios (also during 

constant speed manoeuvres and the near-constant speed phase of two-stage 

deceleration scenarios), 𝐴𝑉𝑏𝑛𝑠 remains constant since the vehicle’s speed is 

constant. Conversely, 𝐴𝑉𝑏𝑠 decreases towards −∞ as the required deceleration 

to stop before the pedestrian increases with decreasing vehicle-pedestrian 

distance. Simultaneously, the evidence difference 𝐴𝑂𝑏𝑠 − 𝐴𝑂𝑏𝑛𝑠 increases, as 𝜏̇ 

observations continue to align with the actual vehicle behaviour (constant speed). 

During the deceleration phase of the short slowing scenarios (also during 

deceleration manoeuvres and the decelerating phases of two-stage deceleration) 

𝐴𝑉𝑏𝑛𝑠 decreases linearly towards 0, mirroring the vehicle's linear speed reduction. 

Similarly, 𝐴𝑉𝑏𝑠 decreases towards 𝑐𝑝𝑜𝑙 as both vehicle speed and required 

deceleration approach zero (ultimately converging at 𝐴𝑉𝑏𝑠 − 𝐴𝑂𝑏𝑛𝑠 ⪆ 0). 

Concurrently, the evidence difference 𝐴𝑂𝑏𝑠 − 𝐴𝑂𝑏𝑛𝑠 increases (reaching 

substantial values near the end) as 𝜏̇ observations continue to reflect the actual 

vehicle behaviour, i.e., decelerating to stop. This dynamic explains the reduced 

accuracy of Vb's final-stage predictions compared to Ob's performance in 

predicting pedestrian beliefs at the conclusion of deceleration and two-stage 

deceleration scenarios. 

This subsection has thus, once again, validated the combination of Ob and 

Vb in the Ob+Vb model by demonstrating the importance of the integration of 

different sources of behaviour evidence and highlighting the advantages offered 

by the two distinct behaviour estimation mechanisms, even in the context of a 

new approaching vehicle kinematic condition. 
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4.5.4 BSCV model selection 

Besides testing the models on a new dataset, to ensure more robust model 

selection and generalisation, a bootstrap cross-validation (BSCV) analysis, as 

detailed in Sections 3.3 and 4.3, was implemented.  

  

Figure 4.17 - Histograms (and their kernel-smoothed distributions) of the BSCV 
RMSEs of Ob, Vb and Ob+Vb 

Figure 4.17 illustrates the distribution of the BSCV targeted metric, in this case 

the RMSEs, for the three proposed models. Consistent with previous 

observations, the Ob model exhibited the highest BSCV RMSEs, indicating 

inferior performance.  A key finding from this analysis is that the BSCV results for 

the new experiment provide a clearer separation between the Vb and Ob+Vb 

models compared to the BSCV analysis presented in Subsection 3.4.3. As shown 

by their respective RMSE distributions in Figure 4.17, while there is still a slight 

overlap, Ob+Vb (red distribution) is more clearly shifted towards lower RMSE 

values than Vb (green distribution) and its peak is significantly lower. This 

suggests that Ob+Vb was the best-performing model. This clearer separation 

between the BSCV RMSE distributions of Vb and Ob+Vb in the new experiment 

might be due to the inclusion of more complex and varied kinematic scenarios 

(i.e., the 'Short Slowing' and 'Two-stage Deceleration' manoeuvres and a wider 

speed range), which possibly led to a more comprehensive evaluation of the 

models, allowing the integrating behaviour estimation mechanisms nature of 

Ob+Vb to demonstrate its better predictive performance, more clearly, on unseen 

data. Overall, these BSCV results are consistent with those from Chapter 3 

regarding model selection but offer stronger evidence for Ob+Vb's better 

performance in this new and more comprehensive dataset. 

Testing Subset Training Subset 
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Another detailed parameter investigation was conducted, in a similar manner 

to that in Subsection 3.4.4. Rather than employing an exhaustive grid search 

across a broad range of parameter values (as in Subsections 2.5.3), this analysis 

focused specifically on the parameter values derived from the bootstrap cross-

validation (BSCV) procedure. 

   

   

   

   

Figure 4.18 - Histograms (and their kernel-smoothed distributions) of the BSCV-
obtained parameters of Ob, Vb and Ob+Vb 

Figure 4.18 presents the histograms of these BSCV-obtained parameter 

values for each model, reflecting the range of values that yielded the best model 

fits across the BSCV resampled datasets. This BSCV parameter investigation 

conducted on the dataset obtained by the new experiment, produced parameter 



162 
 

distributions for the Ob, Vb, and Ob+Vb models that were remarkably consistent 

with those detailed in Chapter 3 (Figure 3.14). This replication across the two 

datasets obtained in the two experiments further reinforces the robustness and 

stability of the identified optimal parameter ranges for each model. The BSCV-

obtained parameter settings and the indications of potential parameter 

redundancy, as illustrated in Figure 3.15, Figure 3.16 and Figure 3.17 in Chapter 

3, which were mirrored in the current analysis (can be seen in the pairwise 

scatterplots in the Appendix D ), appeared to not be specific to a particular 

dataset, possibly suggesting fundamental characteristics of how each model best 

captured pedestrians’ beliefs. This consistency strengthens the confidence in the 

underlying mechanisms assumed by the models and the obtained optimal 

parameter values. 

4.5.5 Per-participant model fitting 

This subsection presents an analysis on the per-participant level, fitting the 

models to each participant’s data from the second experiment. This analysis was 

motivated by important concerns regarding the simplifying assumption of using a 

single 'average pedestrian' parameterisation, as was done in all previous 

analyses. 

The participants and humans in general are not identical. They vary in their 

cognitive processes, decision-making strategies, prior knowledge and many 

other factors. A single model fit to the aggregate data might hide these individual 

variations, essentially averaging them out and potentially misrepresenting the 

underlying processes for many participants (Ashby et al., 1994; Estes, 1956; 

Heathcote et al., 2000). Fitting models per participant allows capturing this 

heterogeneity and understanding how the model parameters vary across 

individuals, potentially leading to a personalised model that accounts for the 

specific characteristics and biases of each participant (Farrell and Lewandowsky, 

2018). 

Sometimes, even within a population, there might be distinct subgroups with 

different underlying processes (Lee and Newell, 2011; Unsworth et al., 2011; 

Vandekerckhove et al., 2008; Zhang and Luck, 2008). Fitting the model per 

participant could help identifying these subgroups by clustering individuals based 

on demographics and experience. This could reveal hidden patterns in the data 

that might have been missed by the previous whole-group-level analysis. Also, 
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fitting the model per participant could work as a check to whether the model 

assumptions hold for each individual or the majority of them. If the model does 

not fit well for some participants, it might be an indication that the 

framework/model is not specified correctly or that those individuals are using 

different strategies. In that case refinement of the model or considering alternative 

explanations could be motivated. 

To explore the heterogeneity in how individual pedestrians' beliefs align with 

the models, a per-participant fitting procedure was performed. Specifically, for 

each of the 30 participants, the parameters 𝐵 and 𝑀 of all three models were 

individually optimised to minimise the RMSE between the model predictions and 

the participant's subjective beliefs across all 20 kinematic scenarios. These two 

parameters were chosen for the per-participant model fitting as they were directly 

related with the subjective judgments of vehicle behaviour in the experiment and 

hence were assumed to be capturing the most significant sources of inter-

participant variability. Parameter 𝐵, the evidence scaling factor, might be 

reflecting the individual differences in response style; how a participant translated 

the available behaviour evidence into subjective ratings. Parameter 𝑀, the prior 

belief bias towards a certain vehicle behaviour, could possibly represent the 

individual tendency of each participant to believe that a vehicle will stop, likely 

influenced by personal experiences, risk tolerance and expectations. The 

remaining model parameters (i.e., those that control the calculation of the 

observation and value based evidence) were fixed to their respective best-fitting 

values obtained in the analysis of Chapter 3, as they were assumed to represent 

the more basic mechanics of the behaviour estimation cognitive process and to 

be more consistent across the population. 

Figure 4.19 presents the distributions of the resulting RMSEs for each model 

across all participants. From the figure can be seen that Ob+Vb yielded the lowest 

overall prediction errors when fitted to individual participants, as evidenced by its 

RMSE distribution being concentrated at lower values compared to both the Ob 

and Vb models. This finding suggests that while model complexity could increase 

the risk of overfitting, the integration of both observation and value-based 

behaviour estimation mechanisms in the Ob+Vb model is important for accurately 

capturing the nuances of individual pedestrian beliefs regarding the behaviour of 

the approaching vehicle. The superior performance of Ob+Vb at the individual 
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level further strengthened its position as the most promising model among the 

three proposed. 

 

Figure 4.19 - Histograms (and their kernel-smoothed distributions) of the per-
participant RMSEs of the three models 

Notably, when comparing Ob+Vb’s individual RMSE distribution (Figure 4.19) 

to the RMSE values of Ob+Vb obtained from fitting the model on the “average” 

pedestrian data (Figure 4.5), it appears that the RMSE values obtained from 

fitting the model to individual participants were larger than those obtained through 

the analysis on the aggregated data. This suggests that the predictions of Ob+Vb, 

even when its assumed individual-related parameters (𝐵 and 𝑀) are individually 

fitted, exhibit a greater average error when attempting to capture the nuances of 

individual pedestrian judgments compared to fitting the model to the averaged 

beliefs of a hypothetical “average” pedestrian. 

This observation suggests that real human beliefs are likely affected by 

different individual factors and inherent variability in judgment, which are 

smoothed out when the models are analysed using the aggregated pedestrian 

beliefs. The RMSE values at the per-participant level generally seemed to be 

higher and more spread out than at the average level. This means that even 

though the model was successful at replicating the average pedestrian belief 

patterns, it was less accurate in predicting the beliefs of individual pedestrians. 

This could be due to variations in attention, risk perception, mechanical skills of 

their visual system, interpretation of cues, or even noise in their responses. The 

smoother RMSE distributions observed in BSCV analyses, which operated on 

averaged data, likely reflected the cancellation of some of this individual 
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variability, leading to a seemingly more accurate “average” prediction. To further 

investigate potential sources of individual variability and explore whether specific 

demographic or experiential factors were associated with differences in how well 

the Ob+Vb model captures pedestrian beliefs and the fitted model parameters, 

the 30 participants were grouped based on age: ≤50 vs. >50 years old, gender: 

Female vs. Male, and driving experience: Experienced (≥5 years of active driving 

experience)  vs. Non/Novice (<5 years of active driving experience). 

Figure 4.20 presents the grouped distributions of the Spearman's rank 

correlation (𝜌
𝑆
) between the Ob+Vb model's predictions and each participant's 

beliefs for the abovementioned clusters. A comparison of these distributions 

across younger and older participants, female and male participants, and 

experienced drivers and non-drivers/novice drivers revealed no clear differences. 

This suggests that the degree of model's predicted beliefs rank ordering and 

individual participants’ subjective beliefs rank ordering alignment was not 

associated with age, gender, or prior driving experience. 

   

Figure 4.20 - Grouped distributions of Spearman's rank correlation between 
Ob+Vb predictions and individual pedestrian beliefs, by age, gender, and driving 
experience 

Figure 4.21 displays the grouped distributions of the RMSE, providing a 

measure of the magnitude of the difference between the model's predictions and 

individual beliefs. A comparison of these distributions showed no difference in the 

model’s achieved RMSEs between female and male participants, nor between 

experienced drivers and non-drivers/novice drivers. This suggests that the 

model's predictive accuracy was not influenced by gender or prior driving 

experience. In contrast, age appeared to have a minor influence; the model’s 

achieved RMSEs of younger participants tended to be lower than those of older 

participants, suggesting that the absolute accuracy of the model was somewhat 

better for younger participants. In other words, younger participants’ beliefs were 

probably closer to the “average” pedestrian beliefs predicted by the model, 
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compared to older participants’ beliefs – hence the slightly better predictive 

accuracy of the model for younger participants. 

   

Figure 4.21 - Grouped distributions of RMSE between Ob+Vb predictions and 
individual pedestrian beliefs, by age, gender, and driving experience 

Figure 4.22 presents the grouped distributions of the best-fitted 𝐵 parameter. 

As a reminder, this parameter controlled the mapping from the model’s calculated 

behaviour evidence (essentially the difference between the evidence for the 

vehicle stopping, 𝐴𝑠, and not stopping 𝐴𝑛𝑠) to a subjective belief rating (essentially 

the subjective ratings provided by the participants in the experiment). More 

specifically, a higher 𝐵 value implied a steeper translation of the predicted belief 

probability to the ratings provided through the questions of the behaviour 

estimation task (Appendix C ). A comparison between the subgroup distributions 

of 𝐵 revealed a noticeable difference due to age; 𝐵 was greater for older 

participants than younger participants. However, this finding was likely affected 

by gender. Comparing 𝐵 distributions for female and male participants revealed 

that there was a small subgroup of males for which the 𝐵 parameter was fitted to 

its highest observed values; further inspection showed these were all male 

participants over 50. Therefore, the age effect that was suggested previously 

might have been an interaction between age and gender, though this is 

inconclusive due to the sample imbalance. The distributions of the 𝐵 parameter 

for experienced drivers and non-drivers/novice drivers showed no noticeable 

difference in 𝐵, however non-drivers and novice drivers showed a slight tendency 

towards lower values of 𝐵. This suggests that prior experience with driving might 

have affected how confidently individuals translated the observed behaviour 

evidence into subjective beliefs about the vehicle's behaviour, with less 

experience in driving probably being associated with more conservative 

translation from behaviour evidence to subjective belief. 



167 
 

   

Figure 4.22 - Grouped distributions of the best-fitted translating factor (𝐵) from 
behaviour evidence to belief probabilities for individual pedestrians, by age, 
gender, and driving experience 

This variability in 𝐵 across participants, as highlighted in Figure 4.22, 

underscores individual differences in how behaviour evidence is translated into 

subjective beliefs about the vehicle's behaviour. As illustrated in Figure 4.23, it is 

worth noting that for small absolute values of behaviour evidence, there is a 

substantial difference in the predicted beliefs of individuals with different 𝐵 

parameter values (red opening brace), while for big absolute values of behaviour 

evidence that difference is practically zero (red circle). 

 

Figure 4.23 - Effect of the lowest and highest obtained scaling parameter 𝐵 on 
the respective individuals' beliefs 

Figure 4.24 illustrates the grouped distributions of the best-fitted 𝑀 parameter, 

which represented the prior bias towards believing the approaching vehicle was 

stopping. A comparison of these distributions revealed that 𝑀 was not affected by 

participants’ gender or prior driving experience, as both showed no differences 

between their respective subgroups. On the contrary, a subtle tendency was 

observed for age; younger and older participants showed overall a similar 

achieved 𝑀, but with older participants’ 𝑀 values being clustered on the lower 

levels of prior bias. This indicated that older participants consistently held a 

smaller prior bias towards believing that the vehicle would stop. 
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Figure 4.24 - Grouped distributions of the best-fitted prior bias towards yielding 
behaviour (𝑀) for individual pedestrians, by age, gender, and driving experience 

Figure 4.25 displays example scatterplots of Ob+Vb predictions versus 

observed subjective beliefs of four selected individual participants. These four 

selected participants were part of different demographic subgroups, i.e., a 

younger female, an older female, a younger male, and an older male. As 

discussed above, the obtained RMSEs of Ob+Vb at the individual level (Figure 

4.19), were generally higher than when fitted to aggregated data. Figure 4.25 

provides a visual illustration of this finding, showing higher prediction errors for 

individuals than the prediction error for the “average” pedestrian (Figure 4.5). 
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Figure 4.25 - Scatter plots of Ob+Vb predictions (y-axes) versus individual 
participants’ beliefs (x-axes) for all 20 kinematic scenarios of the approaching 
vehicle. The panels provide illustrative examples of the model's fit for individual 
participants from different demographic subgroups, highlighting the variability in 
individual data and prediction error (RMSE) 
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Figure 4.25 offered a more granular view of the group-level results, within the 

age and gender groups, visually demonstrating the model's fits for four selected 

participants. These examples illustrate the kinds of individual variability that 

contribute to the per-participant RMSE distributions (Figure 4.19). For instance, 

the scatterplots for the two older participants (right column) exhibit more poorly 

predicted datapoints compared to the scatterplots for the two younger 

participants (left column). This is consistent with the trend noted earlier where the 

model’s prediction error was slightly higher for older participants (Figure 4.21). 

Conversely, the model’s accuracy did not seem to be affected by gender 

(comparison between rows). Lastly, as shown in Figure 4.25 by the individual 𝐵 

values, the pattern of the data points seemed to be influenced by 𝐵. In this 

instance, both the older example participants had a higher 𝐵 value compared to 

the younger example participants, indicating a steeper relationship (as seen in 

Figure 4.23) between their ratings based on the presented evidence and the 

model's predictions across the different scenarios. This is evident from the fact 

that the data of both older participants were gathered close to the edges of the 

individual beliefs, while the data of both younger participants were spread across 

the whole belief scale, i.e., the older participants seemed to be more certain than 

the younger participants. However, that certainty did not necessarily mean that 

their beliefs were more accurate regarding the actual vehicle’s behaviour. 

 

4.6 Discussion 

 

In the work presented in this chapter, the previously developed and suggested 

behaviour estimation models (Ob, Vb and Ob+Vb) were fitted to a newly acquired 

dataset. This new dataset was more comprehensive than the one from the 

previous experiment, as it had more tested kinematic scenarios (20 versus 18), 

a wider range of vehicle speeds (20-60 km/h versus 25-55 km/h), and included 

two new, more complex driving manoeuvres (Two-stage deceleration was a more 

realistic and better-designed version of Mixed manoeuvres, and Short slowing 

was not present in the first experiment at all). The reasoning behind designing 

another behaviour estimation experiment was to obtain a dataset through which 

the validation and generalisation of the suggested models would be enabled. 
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With the new experiment, empirical observations replicated patterns and 

trends that were observed in Chapter 2, validating the overall experimental design 

and empirical findings. The statistical analysis of pedestrian beliefs using a 

mixed-effects linear regression revealed significant main effects of initial vehicle 

speed (negative correlation with belief in stopping) and initial TTA (positive 

correlation), mirroring findings from the previous experiment. Furthermore, the 

manoeuvre type significantly influenced pedestrian beliefs, with constant speed 

leading to lower beliefs in stopping and deceleration to higher beliefs, relative to 

short slowing. 

Model validation was achieved by replicating specific kinematic scenarios 

from the first experiment, namely, the constant speed and deceleration 

manoeuvres at 40 km/h initial speed (for both 3 and 6 s initial TTA). In these 

scenarios, Ob+Vb successfully predicted the average pedestrian beliefs with high 

Spearman's rank correlation and low RMSE, confirming the findings from Chapter 

3. The overall belief patterns, such as the significant negative effect of vehicle 

speed and the positive effect of TTA, were also replicated, further validating the 

model's predicting behaviour. Another positive outcome was the consistency 

between the mixed scenarios of the original experiment and the two-stage 

deceleration scenarios of the new experiment, where Ob+Vb was able to capture 

the overall similarity and confirm the importance of behaviour-changing scenarios 

in the analysis of behaviour estimation. 

 Beyond validation through replication, the current chapter’s work also sought 

to investigate the generalisation capabilities of the models, particularly Ob+Vb.  

Generalisation refers to the model's ability to accurately predict pedestrian beliefs 

in novel situations not encountered during training, i.e., not tested previously (Bay 

and Yearick, 2024; Shepard, 1987). This was assessed by examining the model 

performance across a wider range of kinematic scenarios than those used in the 

original experiment. Specifically, the new dataset included extrapolated variations 

of initial vehicle speeds and new overall manoeuvres, not present in the earlier 

experiment. Perhaps the strongest evidence for the model's generalisability was 

indicated by its performance before any parameter refitting. Using the parameter 

settings derived from the first experiment, Ob+Vb still achieved a near-perfect 

Spearman's rank correlation and low RMSE when tested against the new dataset. 

The model's predictions for the new initial speeds (20 and 60 km/h) aligned well 
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with the trends observed for similar speeds in the first experiment (25 and 55 

km/h), showing it could successfully extrapolate. The successful prediction of 

pedestrian beliefs in the new manoeuvres (two-stage deceleration and short 

slowing) provided more evidence for the model's ability to generalise beyond the 

specific conditions of the original training data, which could be considered a key 

step towards deploying such models in real-world applications. Furthermore, the 

inclusion of the more complex two-stage deceleration and short-slowing 

manoeuvres in the new dataset offered a more realistic test of the model's ability 

to capture pedestrian beliefs in more dynamic and potentially unpredictable traffic 

situations. 

Analyses, mirroring the ones performed in Chapter 3, showed that all three 

models captured the general trends in pedestrian beliefs, though with varying 

degrees of accuracy. Similarly to Chapter 3, Ob exhibited the poorest predictive 

performance, when tested on the new dataset, primarily due to its inability to 

account for kinematic effects beyond deceleration (𝜏̇). Lacking access to speed 

and time-to-arrival (TTA), or equivalently, distance, Ob's predictive capacity was 

limited to scenarios involving a change in tau-dot. Consequently, it struggled to 

accurately predict beliefs in constant speed scenarios and during constant speed 

phases of two-stage deceleration and short slowing scenarios, producing similar 

predicted belief curves regardless of the specific conditions. In contrast, Vb 

addressed these shortcomings by incorporating reward functions related to 

speed (vehicle progress), TTA/distance, deceleration (deceleration discomfort), 

and pro-social behaviour (yielding politeness), as it did in Chapter 3. Thus, Vb 

captured the influence of a wider range of kinematic conditions on the 

pedestrians’ beliefs. However, Vb's performance, when tested on the new 

dataset, once again appeared limited towards the end of vehicle approaches, 

particularly as the vehicle comes to a stop. This limitation arises from the near-

equal evidence for both decelerating and constant speed behaviours in these 

situations. Given the importance of the difference in behaviour evidence (as 

discussed in Subsection 4.5.3), this near equality creates uncertainty for the 

model, even though the vehicle's stopping behaviour is often readily apparent to 

human observers. Ob+Vb ultimately combined the strengths of both Ob and Vb, 

successfully capturing the effects of all kinematic conditions and belief patterns 

present in the new dataset. 



172 
 

Quantitatively, Ob+Vb and Vb demonstrated near-perfect positive 

Spearman's rank correlations, while the Ob model exhibited a lower, though still 

relatively high, correlation. In terms of RMSE, Ob+Vb achieved the lowest value, 

followed by Vb and then Ob. These results were consistently obtained through all 

different parameter settings that were used (Subsection 4.5.2). The BSCV 

analysis further supported these findings, revealing that Ob+Vb consistently 

yielded the lowest bootstrapped RMSE values, indicating its superior predictive 

accuracy and robustness against overfitting. This result was more conclusive 

than the BSCV analysis in Chapter 3, where the BSCV RMSE distributions for Vb 

and Ob+Vb had a more significant overlap. The clearer discrimination in the 

BSCV analysis of the current chapter suggests that the design of the second 

experiment was more effective for model selection, allowing Ob+Vb’s better 

performance to be more apparent. Furthermore, the parameter investigation 

using BSCV-obtained parameter ranges showed consistency with the findings of 

Chapter 3, indicating overall stability of the optimal parameterisations across 

different datasets on the average level. 

The per-participant model fitting revealed that while Ob+Vb consistently 

showed the lowest prediction errors at the individual level, the RMSE values were 

generally higher than when fitted to the aggregated data, highlighting the inherent 

variability in individual pedestrian judgments. Analysis of individual differences 

based on age, gender, and driving experience showed some trends, particularly 

with older male participants exhibiting slightly higher RMSE and tendency to have 

a different mapping from behaviour evidence to subjective beliefs (higher 𝐵 

values) and a lower prior bias towards the stopping behaviour (lower 𝑀 values). 

Based on the consistent quantitative and qualitative superiority of Ob+Vb 

across both aggregated and individual levels, and supported by the model 

selection through BSCV, it seems appropriate to select Ob+Vb as the best of the 

suggested models and to recommend the parameter settings with the only refitted 

parameter being the prior bias (𝑀) for use in subsequent studies or real-world 

applications, based on three key reasons. First, this approach is very efficient, as 

the computational cost of optimising only one parameter (𝑀) is substantially lower 

than optimising multiple parameters (twelve in total for Ob+Vb) during model 

fitting. Second, its obtained RMSE value was very close to that of the full refitting. 

Third, this choice facilitated a more direct comparison of the models and their 
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parameters across the two experiments, rather than introducing a completely 

novel parameter configuration. More specifically, regarding 𝑀 itself, the adjusted 

value was found to be lower than in the previous chapter. That could be explained 

by the design of the experiments. The original experiment included 72 segments, 

out of which the 30 were segments in which the vehicle maintained constant 

speed and 42 (56% of the total segments) in which the vehicle was decelerating. 

The new experiment included 80 segments, out of which 40 were segments in 

which the vehicle maintained constant speed and 40 (50% of the total segments) 

where it was decelerating. Therefore, the participants of the original experiment 

may have developed a small bias towards the yielding behaviour of the vehicle 

since they were experiencing it slightly more, and that could be detected as a 

larger 𝑀 value. 
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5 General discussion 
 

For safe and efficient road traffic interactions, pedestrians must process 

perceptual signals from approaching vehicles to interpret their behaviour and 

intentions. This behaviour interpretation challenge has become increasingly 

important with the emergence of automated vehicles (AVs). It might seem intuitive 

that pedestrians base their crossing decisions directly on perceived kinematic 

cues, such as the vehicle's current speed or distance. Yet, research suggests that 

behaviour estimations and road crossing decisions in traffic scenarios often rely 

on integrating information over time and expectations about the behaviour of 

other road users (Markkula et al., 2023; Tian, 2023). This thesis primarily 

investigated the cognitive mechanisms underlying how pedestrians estimate the 

behaviour (specifically, the intention to stop or not stop) of an approaching 

vehicle, specifically in the context of interactions with AVs. Understanding these 

mechanisms is important for improving road safety and designing AVs that can 

interact with pedestrians in a safe and intuitive manner. The current research 

addressed identified gaps in the literature, such as the lack of detailed empirical 

investigation into behaviour estimation from the pedestrians’ perspective, the 

limited focus on vehicle manoeuvres that are observed in real-world beyond just 

traffic gaps between vehicles that travel with constant speed, and the absence of 

validated, generalisable computational models which explain the underlying 

behaviour estimation mechanisms. 

The work presented in this thesis involved integrating principles from cognitive 

science, specifically Bayesian inference based on action observations and 

rational, value-maximising reasoning, into computational models. Two 

experiments using a CAVE-based pedestrian simulation environment were 

conducted to collect data on pedestrian beliefs under various kinematic 

conditions, including different vehicle speeds, Time-To-Arrival (TTA), and 

manoeuvre types (constant speed, constant deceleration, mixed/ two-stage 

deceleration, short slowing). Three main computational models were developed 

and evaluated: an Observation-based model (Ob) relying on perceived 

deceleration cues (specifically 𝜏̇), a Value-based model (Vb) assuming 

pedestrians expect rational, value-maximising behaviour from the driver/AV, and 

an augmented model (Ob+Vb) combining both mechanisms. 
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This chapter presents the contributions of this thesis in detail. First, the key 

findings from the empirical and modelling work are summarised. Following, the 

theoretical and practical significance of these findings are explored, by 

contextualising the results in relation to the primacy of implicit kinematic cues and 

the specific cognitive mechanisms of behaviour estimation. Then, these 

mechanisms are discussed along with cognitive frameworks, pedestrian road 

crossing, and possible neurophysiological underpinnings. The final discussion 

sections are regarding the practical implications for AV design and road safety, 

the limitations of the current work and potential directions for future research. 

 

5.1 Summary of key findings 

 

The research yielded several novel findings regarding pedestrian belief 

updating. First, observation models based purely on low-level kinematic features 

like deceleration proved insufficient. The initial study (Chapter 2) demonstrated 

that while a Bayesian observer model (Ob) using 𝜏̇ captured some of the 

pedestrians’ belief updating, it failed in scenarios lacking clear deceleration, such 

as constant speed approaches where initial speed and TTA clearly influenced 

beliefs. This highlighted the limitations of relying solely on perceptual processing 

in realistic traffic interactions. 

Second, the accuracy of pedestrian belief predictions was improved by 

incorporating expectations through value-based reasoning. The value-based 

model (Vb) introduced in Chapter 3, which modelled driver rewards and costs 

(speed, comfort, politeness), was able to capture the influence of initial speed 

and TTA, addressing a major limitation of Ob. However, Vb was less accurate in 

predicting pedestrians’ beliefs when the vehicle was very close to coming to a 

stop, where the calculated utilities for the stopping behaviour versus the non-

stopping behaviour became less distinct. 

Third, the augmented model combining both mechanisms (Ob+Vb) 

consistently provided the most accurate predictions of pedestrian beliefs across 

both experiments (Chapters 3 and 4). It integrated the strengths of Ob (i.e., 

accuracy with clear deceleration cues, especially later in the vehicle’s approach) 

and Vb (i.e., capturing initial expectations based on speed/TTA). This combined 
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model achieved near-perfect correlations and the lowest prediction errors 

(RMSE) against average pedestrian belief data. 

Fourth, Ob+Vb demonstrated robustness and generalisability (Chapter 4). It 

replicated Chapter 3's findings when tested on a new participant group and 

successfully predicted beliefs in novel scenarios involving different speeds and 

new manoeuvre types (‘Two-stage deceleration', 'Short slowing'). This suggests 

that Ob+Vb captured underlying cognitive mechanisms rather than just fitting 

specific data patterns. 

Fifth, both experiments confirmed that pedestrian beliefs are significantly 

influenced by initial vehicle speed (higher speed correlating with lower belief in 

stopping), initial TTA (longer TTA correlating with higher belief in stopping), and 

the specific driving manoeuvre and its history. Early and clear deceleration was 

particularly effective in signalling yielding intent. 

Finally, while models were primarily fitted to average data, per-participant 

fitting (Chapter 4) confirmed Ob+Vb's better prediction performance at the 

individual level, albeit with higher prediction errors than when fitted to data 

averaged across participants. The results also suggested potential links between 

age and model parameters governing belief translation (𝐵) and prior bias (𝑀), 

indicating individual heterogeneity in belief interpretation and reporting. 

 

5.2 The primacy of implicit kinematic cues 

 

A main theme of this thesis was the fundamental role of implicit 

communication through vehicle motion. As stated in Chapter 1, researchers have 

suggested that such kinematic cues are important for pedestrians when they are 

deciding to cross or not the road (Dey and Terken, 2017; Lee et al., 2021; Rasouli 

et al., 2018). The work presented in this thesis indicated that these kinematic 

cues are important for the mechanisms with which pedestrians estimate an 

approaching vehicle’s behaviour, as well. This emphasis on kinematic 

interpretation can be found in several key studies. For instance, the work of Tian 

et al. (2023), reporting on the same experiment as presented in Chapter 2 of this 

thesis, documented how parameters like vehicle speed, TTA, manoeuvre type 

influence both pedestrian crossing decisions and their subjective estimations of 



178 
 

vehicle behaviour. More specifically, this thesis and the abovementioned work 

indicated that the visual cue 𝜏̇ is a valuable indicator for the stopping behaviour 

of a vehicle and that there could possibly be a relationship between crossing 

decisions and pedestrians’ judgements, suggesting the use of behaviour 

estimation mechanisms during road crossing decisions by pedestrians. While 

these findings are shared between the two works, this thesis’ proposed model 

(Ob+Vb) extends them by offering a detailed mechanistic explanation of how 

different sources of related information are processed and dynamically integrated 

into beliefs. Ackermann et al. (2019) highlighted vehicle deceleration as a key 

communication signal. They also found that higher deceleration rates and lower 

speeds facilitate quicker detection of vehicle deceleration by pedestrians, which 

aligns with the findings of this thesis, as higher deceleration rates and lower 

speeds led to earlier pedestrian beliefs that the vehicle was stopping. The 

detailed investigation of different deceleration profiles in this thesis extended the 

findings of Ackermann et al. (2019) by showing how not only the rate but also the 

timing and consistency of deceleration influence beliefs dynamically over the 

entire vehicle approach. The current thesis moved beyond mere deceleration 

detection also by modelling the continuous belief-updating process and 

incorporating not only visual cues like 𝜏̇, a concept also discussed by Tian et al. 

(2023) and Ackermann et al. (2019) in relation to the “Tau-Hypothesis”, but also 

speed and TTA-related cues (required deceleration to come to a stop). 

The prioritisation of vehicle kinematics by the pedestrians has been supported 

in the literature. Studies have shown that when explicit eHMI messages are not 

aligned with the vehicle's actual movement, pedestrians default to relying on the 

vehicle kinematics (Dey et al., 2021; Rezwana and Lownes, 2024) and that 

vehicle behaviour (yielding versus non-yielding) was the primary determinant of 

crossing willingness, regardless of the pedestrian's knowledge of the vehicle's 

automation status or its external appearance (Dey et al., 2019). Moreover, this 

continuous processing of the vehicle’s kinematic cues in pedestrians’ crossing 

decisions, has been supported by studies using multimodal data (e.g., including 

eye-tracking; Lyu et al., 2024) and also from the driver’s perspective, where 

pedestrians’ decisions were affected by different braking strategies (Yang et al., 

2024). These findings align with this thesis' argument that kinematic interpretation 
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is the basis of the pedestrians’ road crossing decisions and consequently of their 

understanding of the traffic interaction. 

While this thesis focused exclusively on implicit kinematic cues, it is interesting 

to consider these findings also in the context of explicit communication, 

particularly eHMIs. Researchers who have compared implicit and explicit 

communication, have suggested a complex relationship between the two. eHMIs 

could enhance perceived safety, trust, and willingness to cross (Dey et al., 2019), 

but their effectiveness is context-dependent and requires learning and familiarity 

(Lee et al., 2022). Based on the argument stated before that kinematic 

interpretation forms the baseline for pedestrians’ understanding, explicit eHMIs 

could act as a supplementary layer, which would be useful for resolving ambiguity 

in situations when kinematic cues are inherently weak, e.g., for low speeds, short 

distances, unclear priority (Lau et al., 2022). Thus, this supplementary role for 

explicit signals, specifically eHMIs, indicates the primary importance of the 

vehicle’s kinematic cues in pedestrians’ understanding of the vehicle’s intentions 

(Clamann et al., 2017; Lee et al., 2021). This further validates this thesis' main 

focus on modelling the interpretation of implicit kinematic cues. 

Past research on implicit communication has often focused primarily on the 

role of deceleration on both pedestrians’ road crossing decisions and  

pedestrians’ inferences about the vehicle’s intent (Ackermann et al., 2019; 

Dietrich et al., 2020; Lee et al., 2022; Petzoldt et al., 2018; Tian et al., 2023). The 

present research built on the importance of deceleration on the pedestrian beliefs 

regarding the vehicle’s behaviour. However, the findings indicated that 

pedestrians possibly integrate and process other kinematic information besides 

its deceleration, as well (e.g., vehicle speed, distance, TTA). A contribution of the 

current thesis was not only to confirm the importance of kinematic cues but to 

also offer and validate a computational model (Ob+Vb) that could explain the 

cognitive mechanisms with which pedestrians possibly integrate these implicit 

signals with their internal expectations to form and update their beliefs about the 

behaviour (stopping or not) of an approaching vehicle. 
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5.3 Understanding the behaviour estimation mechanisms 

 

5.3.1 Behaviour estimation mechanisms and their integration 

The work of this thesis provided significant support to the hypothesis that 

human pedestrians employ an integration of perceptual processing and 

expectation-based reasoning when interpreting the behaviour of approaching 

vehicles. The limitations of the purely observation-based model (Ob) and the 

purely value-based model (Vb), contrasted with the success of the combined 

Ob+Vb model, suggested that neither mechanism alone is sufficient to fully 

capture pedestrians’ beliefs, and the underlying cognitive process of behaviour 

estimation involved. 

This integration aligned with broader theories in cognitive science that 

suggest interaction between perception and cognition in action understanding, 

situation awareness, and decision-making under uncertainty (Markkula et al., 

2023). In particular, this integration was formalised by combining the likelihood of 

sensory evidence given a hypothesis – similar to the Ob's processing of observed 

kinematic cues (Baker et al., 2009; Dindo et al., 2011; Pezzulo et al., 2013; Vilares 

and Kording, 2011) with the prior beliefs or expectations about the hypothesis – 

similar to Vb’s assumptions about agent rationality (Jara-Ettinger et al., 2020; 

Lucas et al., 2014; Markkula et al., 2023; Wright and Leyton-Brown, 2017). The 

human mind continuously goes beyond the raw data of experience, making 

inductive inferences in uncertain environments, a process well-described by 

Bayesian principles (Griffiths et al., 2008; Vilares and Kording, 2011). The 

dynamic and complex nature of road crossing interactions, which are 

characterised by uncertainty and the need to anticipate others' actions, requires 

such an integration; static perceptual cues or fixed expectations are inadequate 

given the dynamic situation (Markkula et al., 2023; Wang et al., 2025). The 

success of Ob+Vb demonstrated the applicability of these cognitive principles, 

often explored in controlled laboratory settings (Baker et al., 2005, 2017, 2009; 

Dindo et al., 2011; Jara-Ettinger et al., 2020; Pezzulo et al., 2013; Zhi-Xuan et al., 

2020), to the challenging, applied domain of pedestrian-vehicle interactions. 

While each of the two cognitive mechanisms described above, have been 

successful on their own, modelling complex behaviour estimation requires 
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considering both the likelihood of observations given intentions and reasoning 

about the other agent's goals and expected rationality. 

The necessity of both the Ob and Vb components for optimal model 

performance implied that pedestrian behaviour estimation likely involves more 

than a simple summation of perceptual evidence and prior expectations. While 

the Ob+Vb formalised this integration with static weights, its success across such 

varied conditions suggested that the underlying cognitive process likely involves 

a dynamic relationship between these sources of evidence. This relationship was 

supported by the complementary performance of the two component models, 

where each was effective in areas where the other was limited. Pedestrians might 

rely more on their expectations about rational driver behaviour (the Vb 

component) when perceptual cues of deceleration are weak or ambiguous, such 

as when the vehicle is distant or maintaining a constant speed. Conversely, as 

clear kinematic evidence emerges (e.g., noticeable deceleration), the behaviour 

evidence might shift towards the observation-based component (Ob). This 

dynamic adjustment would explain why the combined model succeeds across a 

wider range of scenarios than either component alone. Such dynamic integration 

is characteristic of adaptive behaviour in complex systems (Markkula et al., 2023; 

Wang et al., 2025). 

The value-based component (Vb) could be interpreted through the lens of 

computational rationality, affordance theory, and optimal control principles 

(Gawthrop et al., 2011; Hoogendoorn and Bovy, 2003; Jara-Ettinger et al., 2020; 

Lio et al., 2020; Markkula et al., 2023; Wang et al., 2015). Pedestrians appear to 

implicitly model the driver's 'reward function' or utility, predicting behaviour based 

on what action would likely maximise the driver's goals (e.g., balancing progress 

towards a destination with the costs of braking, potential collision risk, and social 

considerations like politeness or adherence to norms). The successful 

performance of this component model suggested that pedestrians may be 

possessing an intuitive understanding of vehicle dynamics and an intuitive 

understanding of driver goals and rationality relevant to traffic interactions. This 

aligns with Theory of Mind (ToM) frameworks where observers infer agents' 

hidden mental states (goals, beliefs) by inverting a generative model that 

assumes rational action (Baker et al., 2009; Dindo et al., 2011; Pezzulo et al., 

2013; Whiten, 1991). Value-maximisation approaches have been increasingly 
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applied in human-robot and human-AV interaction research (Kollmitz et al., 2020; 

Lin et al., 2022; Lio et al., 2020; Markkula et al., 2023; Wang et al., 2015, 2025). 

These models often incorporate similar factors to the Vb model, such as 

efficiency, safety, comfort, and social preferences (e.g., inferring selfishness or 

altruism; Bansal et al., 2020), risk attitudes (Kwon et al., 2020), or proxemic utility 

(Camara and Fox, 2022). A key distinction, however, is that much of the human-

robot interaction literature has been focused on modelling the human from the 

robot's perspective to inform robot planning (Camara et al., 2021). This thesis 

offered the complementary inverse perspective by developing and validating a 

cognitive model of how the pedestrian interprets the vehicle's actions. This 

perspective has not been commonly modelled but is equally important for 

designing AVs whose behaviour is interpretable and trustworthy from the human 

perspective, a point in the section on practical implications further below. 

The finding that tau-dot (𝜏̇) served as a better observational cue within the Ob 

model than raw deceleration rate supports research highlighting the importance 

of optical variables in collision perception, time-to-arrival judgments, and 

understanding motion (Tian et al., 2023; Wang et al., 2025). Some research has 

emphasised that visual looming cues, such as the rate of change of the vehicle's 

optical size (𝜃̇), as critical inputs affecting gap acceptance, potentially via inducing 

a sense of collision threat (Tian, 2023). The model success based on the visual 

cue 𝜏̇, in this thesis, suggested that pedestrians are sensitive not only to the 

presence or magnitude of the deceleration, but more importantly to the rate of 

change of the current time-to-arrival. At the same time, this implied an adaptation 

to the dynamics of the braking manoeuvre. Such sensitivity explains why different 

deceleration profiles (e.g., constant vs. mixed/two-stage deceleration vs. short 

slowing) resulted in distinct belief patterns in the experiments (and model 

predictions), even when leading to the same outcome of the vehicle stopping for 

the pedestrian. Early and consistent deceleration, which would generate a more 

stable and informative 𝜏̇ signal, appeared to communicate the vehicle’s stopping 

intent more effectively than later and abrupt braking, aligning with findings on the 

importance of deceleration timing and consistency (Ackermann et al., 2019) and 

supported the practical importance of clear kinematic cues. The augmented 

model's success demonstrated how this plausible perceptual cue could be 
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integrated with higher-level expectations over time to form and update beliefs 

about vehicle behaviour. 

A significant contribution of this research lied in its detailed, time-resolved 

investigation of the change of pedestrian beliefs regarding vehicle intentions 

(e.g., the perceived probability of the vehicle yielding). The approach of the 

current work differed from the single static outcome measures, such as the final 

decision to cross the road, reaction-detection times, or ratings of willingness to 

cross the road, often reported in previous studies (Ackermann et al., 2019; Dey 

et al., 2019; Giles et al., 2019; Markkula et al., 2018; Pekkanen et al., 2022; Tian 

et al., 2023). The evolving beliefs measured here were able to capture the 

dynamic nature of belief formation and updating throughout the duration of a 

vehicle’s approach. The findings indicated that pedestrians do not form 

instantaneous beliefs; rather, their beliefs are formed and updated over time 

through a continuous process of behaviour evidence integration. The evolution of 

beliefs over time, that was observed, aligned with the main idea of the Evidence 

Accumulation Models (EAMs; Giles et al., 2019; Markkula et al., 2018; Pekkanen 

et al., 2022; Zgonnikov et al., 2024). EAMs formulate binary decision-making – 

similar to deciding whether an approaching vehicle will stop or not – as a process 

during which noisy sensory evidence is accumulated over time towards one of 

the two possible outcome thresholds, e.g., stopping vs not stopping (Myers et al., 

2022; Ratcliff et al., 2016). The evidence driving this accumulation process was 

derived from the perceived kinematic cues discussed previously (speed, 

deceleration, distance, etc.). The pedestrians’ belief curves could possibly be 

interpreted as an indication of the drift rate of such an underlying evidence 

accumulator. For example, as more evidence leaning towards the belief of the 

stopping behaviour is obtained, the belief probability (𝑃𝑠) increases, similar to an 

accumulator drifting towards the stopping boundary (Ma et al., 2025; Myers et al., 

2022; Ratcliff et al., 2016). The current research could thus provide empirical 

grounding for applying EAMs to pedestrian-AV interactions, potentially informing 

the specific inputs (integrated kinematic cues) and the dynamic output (belief 

trajectory) required for such models. The novelty of using segmented scenarios 

to measure and model the continuous change of the pedestrian beliefs lied in 

capturing this belief evolution within the specific, complex context of pedestrian-

vehicle interactions. The output of this integration process could be described as 
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an evolving internal state – a belief, a level of accumulated evidence, or 

subjective probability – regarding the vehicle's behaviour. Likely, this evolving 

internal state is what drives the decision-making process, triggering a road 

crossing action when the belief in the stopping behaviour surpasses a certain 

threshold, rather than a single outcome measure. Therefore, studying the 

temporal dynamics of pedestrian beliefs offered a new perspective into the 

cognitive mechanisms that possibly translate dynamic perception into observable 

action, subsequently providing a better understanding of the overall road crossing 

decision process. 

The theoretical framework and empirical findings presented in this thesis 

aligned significantly with the need for, and demonstration of, large-scale 

integration of computational psychological theories to explain complex human 

road user interactions, as advocated by (Markkula et al., 2023). In their work it 

was argued that understanding behaviours in realistic traffic scenarios demands 

the development and implementation of integrated models that combine 

elements such as Bayesian perception, Theory of Mind, and value-based 

decision-making, which moves beyond using beyond isolated cognitive 

mechanisms. This thesis supported such approach by combining models of two 

different behaviour estimation mechanisms. The successful application and 

adaptation of Bayesian observer models from cognitive science (Baker et al., 

2009), and the adoption of components from the computational framework 

developed by Markkula et al. (2023) to specifically model pedestrian beliefs about 

vehicle stopping intention represented another novel contribution. In particular, 

the proposed Ob+Vb model implemented in the current research was built directly 

upon the principles of “Short-term payoff values”, “Behaviour probabilities given 

actions”, “Behaviour evidence from estimated behaviour value given actions” and 

“Behaviour evidence from observation of the other agent” presented in Markkula 

et al. (2023), and in conjunction with an adaptation of Model 1 from Baker et al. 

(2009). The specific formulation in this thesis integrated the abovementioned 

components, to predict pedestrians’ beliefs about an approaching vehicle’s 

behaviour. A key contribution of this research is the validation of the suggested 

model against empirical pedestrian belief data from two novel experiments, which 

were specifically designed to capture the temporal dynamics of pedestrian beliefs 

across a range of vehicle manoeuvres. Therefore, this thesis not only supported 
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the need for combined theory-building in psychology using real-world situations 

like pedestrian-vehicle interaction but also offered a validated task-specific 

model. To summarise, the proposed model’s contribution could be explained by 

the efficacy it demonstrated when integrating behaviour estimation through 

observations and reasoned expectations to capture pedestrian beliefs. 

While general mechanistic models are valuable, pedestrian behaviour exhibits 

significant variability both between individuals and across different situations. The 

theoretical framework employed in this research allowed for exploring several key 

factors contributing to this variability: inherent prior beliefs, the mapping of 

behaviour evidence onto belief probability, and the adaptive use of information 

processing strategies. These topics are visited in the following subsections. 

5.3.2 From behaviour evidence to belief probabilities 

In addition to the integrated cognitive framework, this thesis also introduced a 

methodological refinement in the form of an alternative softmax transformation 

function to map accumulated evidence to belief probabilities. Standard softmax 

functions have been commonly used in computational models to represent choice 

probabilities (Markkula et al., 2023; Wright and Leyton-Brown, 2017). However, 

early model testing in this research indicated that a standard softmax did not fully 

capture the nuanced relationship between the model's evidence calculations and 

the empirically observed subjective belief ratings from participants. To address 

this, a modified softmax function was developed, incorporating parameters 𝐵 

(evidence scaling factor, akin to an inverse temperature term) and 𝑀 (offset 

constant or bias, specifically towards the stopping behaviour). The inclusion of 

these parameters, inspired by Richards' family of growth models and concepts 

from machine learning, provided greater flexibility. This adapted formulation 

proved important in achieving a better alignment between the model's predicted 

beliefs and the actual patterns of human subjective ratings, representing a novel 

methodological contribution to the modelling of ranked belief states in dynamic 

interaction scenarios. 

The consistent finding that the model parameter 𝑀 often differed significantly 

from zero (i.e., a 50/50 probability of stopping or not stopping behaviour) provided 

support for the existence of prior beliefs or expectations in pedestrians (Vilares 

and Kording, 2011). Pedestrians do not approach interactions free of biases; 

instead, they bring prior expectations and knowledge regarding the likely 
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behaviour of approaching vehicles, particularly about stopping behaviour. This 

aligned with Bayesian models of cognition, where prior probabilities representing 

existing knowledge or beliefs are combined with incoming sensory evidence to 

form updated posterior beliefs (Baker et al., 2005, 2009; Dindo et al., 2011). 

The formation of these prior beliefs is likely a process influenced by a variety 

of factors. Through countless interactions with conventional traffic, pedestrians 

learn typical driver behaviours associated with specific contexts (e.g., 

deceleration rate, speed and stopping distance at marked vs. unmarked 

crosswalks, behaviour near schools; Bella and Silvestri, 2015; Fuller, 1984; 

Sucha et al., 2017). This learning could also be extended to novel systems, where 

repeated exposure to AVs or specific eHMIs would shape future expectations 

(Lee et al., 2022). Additionally, formal knowledge, such as traffic laws dictating 

right-of-way, contributes to priors (e.g., expecting vehicles to yield at a zebra 

crossing; Habibovic et al., 2018; Sucha et al., 2017), while explicit instructions, 

like pre-briefings on how an AV or its eHMI functions, could directly shape priors 

for subsequent interactions (Liu and Hirayama, 2025). Furthermore, a 

pedestrian's overall trust in technology, and AVs specifically, acts as a powerful 

prior (Jayaraman et al., 2019). This trust is malleable, influenced by media 

portrayals, perceived system reliability and competence, and assessments of 

safety and risk, while novelty and unpredictability associated with AVs can initially 

lower trust and create more cautious priors (Rezwana et al., 2025). Cultural 

norms also play a role, as social and cultural expectations regarding road user 

etiquette and assertiveness can significantly shape prior beliefs about vehicle 

stopping behaviour beliefs. So, while the formation of these priors is a varied 

process, the results of this thesis provided support into how they were shaped in 

different contexts. An indication of that was the difference in the best fitted value 

of 𝑀 between the two experiments. In the second experiment, which included a 

higher proportion of non-stopping segments compared to the first experiment, the 

best fitted value for 𝑀 was lower. This suggested that participants in the second 

experiment did not have the same prior bias as the participants of the first 

experiment, but their expectations were based on the specific situation they were 

in, essentially having a reduced prior bias towards the stopping behaviour due to 

their current experience. 
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Moreover, studies comparing pedestrian behaviour across nationalities 

suggest cultural differences in willingness to cross and potentially different 

baseline expectations of driver behaviour (Feng et al., 2024). Individual 

differences further modulate prior beliefs, including demographic factors (age, 

gender), personality traits (e.g., extraversion, conscientiousness, risk aversion), 

and individual risk perception modulate prior beliefs (Li et al., 2025). For instance, 

younger individuals or those with higher education levels often report higher 

expectations and potentially more optimistic priors regarding AVs (Rezwana et 

al., 2025). Finally, priors are not static but are likely modulated by the immediate 

situation, such as the type of crossing (signalized vs unsignalized) (Jayaraman 

et al., 2019), traffic density, or the behaviour of surrounding pedestrians (social 

influence; Tump et al., 2020). The implication of these priors is significant: they 

bias the interpretation of the perceived kinematic cues, especially when those 

cues are ambiguous or under noisy conditions. A strong prior belief (e.g., “cars 

rarely stop here”) may require substantial and clear kinematic evidence to the 

contrary (e.g., significant deceleration) before the pedestrian's belief shifts 

sufficiently towards the vehicle’s stopping behaviour. The per-participant analysis 

in Chapter 4 showed that these priors were not uniform across individuals. 

Specifically, the results indicated a tendency for older participants to have a lower 

prior bias towards the vehicle’s stopping behaviour. This aligned with the 

abovementioned literature suggesting that factors like age and experience affect 

expectations in traffic. These findings demonstrated that 𝑀 was not only an 

adjustment to improve the model’s accuracy but also a quantifiable reflection of 

these prior beliefs. 

Beyond prior beliefs, the research identifies another source of variability 

captured by the model parameter 𝐵. The consistent estimation of an average 

value for 𝐵 across individuals or conditions suggests a stable mapping function 

that translates behaviour evidence into the belief probability. Parameter 𝐵 

essentially quantifies the sensitivity of the output (belief probability) to changes in 

the underlying subjective rating. This finding is possibly connected to the 

cognitive concept of metacognition, which refers to the human capacity to 

monitor, evaluate, and regulate one's own cognitive processes and states, 

including the feeling of confidence or certainty associated with a judgment or 

decision (Lee and Hare, 2023). Parameter 𝐵 can be seen as reflecting an aspect 
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of this metacognitive process: how an individual's internal assessment of their 

certainty about the vehicle's stopping behaviour is transformed into an 

externalisable probability or behavioural propensity. Stronger, clearer, and more 

consistent behaviour evidence supporting one interpretation (e.g., stopping 

behaviour) over the alternative should lead to a higher degree of internal certainty 

(Schooler et al., 2024). Conversely, ambiguous cues, conflicting information, or 

high perceptual noise (e.g., at greater distances) would likely result in lower 

subjective certainty (Scheller et al., 2025). Importantly, individuals differ in how 

they report their internal certainty levels (Lee and Hare, 2023). Some individuals 

might exhibit a conservative translation (high 𝐵 value), requiring a very high level 

of internal certainty before reporting a high certainty of believing in a vehicle 

behaviour. Others might have a more liberal translation (low 𝐵 value), expressing 

their belief with high certainty even with moderate or even little available 

behaviour evidence. These individual differences in the translation from 

behaviour evidence to belief probabilities could stem from personality factors 

(e.g., general cautiousness, optimism), cognitive style, or learned response 

biases; Pallier et al., 2002; Šrol and De Neys, 2021). The theoretical implication 

was that the reported subjective ratings of vehicle behaviour provided by the 

participants were not a direct reflection of the behaviour evidence but needed to 

be transformed. Two pedestrians might perceive the same cues and obtain the 

same behaviour evidence yet report different subjective ratings due to individual 

differences. This highlighted an important source of variability that seemed to be 

separate of prior beliefs. The current research did not distinguish whether this 

mapping was only in play when providing verbal reports about beliefs or if it is in 

play also when deciding on crossing. For the purposes of the current work, 

however, modelling this mapping proved important to accurately predict 

pedestrians’ reported beliefs. 

5.3.3 Adaptive cue processing 

The findings hinting at a potential shift in the cues pedestrians prioritise, when 

they update their beliefs regarding the approaching vehicle’s behaviour, based 

on the spatiotemporal distance to the vehicle suggested an adaptive information 

processing strategy, similar to the one proposed by Tian (2023) regarding road 

crossing decisions. Specifically, the observation that pedestrians might rely more 

on heuristics or prior expectations at larger distances, while potentially integrating 
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more detailed kinematic information like deceleration profiles when the vehicle is 

closer, points towards dynamic adjustments in how information is utilised 

(DeLucia, 2015; Tian, 2023; Wang et al., 2025). This observation is tied with 

established principles about optimal cue integration and dynamic cue weighting 

in perceptual science (Scheller et al., 2025). Cognitive systems are known to 

dynamically adjust the influence assigned to different sensory cues based on their 

perceived reliability or certainty in a given context (Fetsch et al., 2009). In the 

context of road crossing, visual estimates of vehicle kinematics, particularly 

acceleration or deceleration, are inherently noisier and less reliable at greater 

distances (Schmidt et al., 2019; Sripada et al., 2021). A computationally rational 

system, therefore, should be less influenced by these less reliable cues under 

such conditions (Fetsch et al., 2009). This might lead pedestrians to rely more 

heavily on simpler, potentially more stable cues like perceived distance or 

average speed, or to fall back on pre-existing prior beliefs or learned heuristics 

(DeLucia, 2015; Tian, 2023). As the vehicle approaches the pedestrian, the 

reliability of detailed kinematic cues (like deceleration pattern and rate) increases, 

justifying an increase in their influence in the estimation of the vehicle’s behaviour 

and overall decision process (Wang et al., 2025). The potential reliance on 

heuristics at larger distances is also noteworthy. Heuristics are cognitive shortcuts 

or rules-of-thumb that allow for faster, less effortful decision-making, especially 

under conditions of uncertainty or time pressure (Moussaïd et al., 2011). 

Examples relevant to pedestrian belief updating might include using a simple 

distance threshold (e.g., “believe that the vehicle is not stopping if it is within X 

meters and travels with Y speed”) or relying on a default prior assumption (e.g., 

“vehicles travelling at highway speed rarely stop unexpectedly”). Employing such 

heuristics when detailed kinematic information is unreliable (i.e., at distance) 

could be an efficient cognitive strategy (DeLucia, 2015; Tian, 2023; Wang et al., 

2025). The formulation and performance of Ob+Vb implemented in this thesis 

provided a computational representation of this adaptive process. In situations 

where the deceleration-related cues were unreliable, such as at larger distances 

or during constant speed approaches where the observation evidence were weak 

Ob underperformed. In these cases, Ob+Vb was driven mainly by the Vb 

component, which was the source of expectations or heuristics about rational 

driver behaviour. This was the reason why Vb and Ob+Vb captured the 

pedestrian belief patterns where Ob failed. Conversely, in cases where the 
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vehicle was close to the pedestrian and initiating a clear deceleration, the 

observation-based evidence for the stopping behaviour were strong and less 

ambiguous.  On the other hand, Vb’s evidence regarding the two possible 

behaviours were not discriminable. In these cases, Ob and Ob+Vb performed 

better than Vb. The better performance of Ob+Vb, which combined the two 

behaviour estimation component models, indicated that pedestrians do not rely 

on a single strategy, but adapt their information processing to the quality and 

nature of the available cues. 

Furthermore, the concepts of prior beliefs, subjective certainty, and dynamic 

cue weighting are likely interrelated. Prior beliefs (𝑀) establish the baseline 

expectation. Its influence was strongest at the beginning of a vehicle approach, 

where it affected the initial belief predictions of Vb before stronger observation-

based evidence was accumulated. As the vehicle approach unfolded, the 

reliability of the perceived cues determined how much the belief was updated 

away from the prior. Lower cue reliability or in other words behaviour evidence 

conflict (𝐴𝑠 − 𝐴𝑛𝑠 ≅ 0) leads to lower overall certainty. Consequently, a greater 

relative influence of the prior belief on the reported belief, mediated by the 

individual's specific evidence-to-belief mapping (𝐵) (Lee and Coricelli, 2020). The 

observations presented in this subsection could provide a plausible cognitive 

mechanism underpinning the observed shift towards reliance on priors or 

heuristics when estimating the behaviour of more distant vehicles. 

 

5.4 Integrating behaviour estimation within the road crossing 

task and cognitive frameworks 

 

The behaviour estimation mechanisms modelled in this thesis, particularly the 

augmented model (Ob+Vb), represented a plausible precursor to the broader 

pedestrian road crossing task. In cognitive science it has been suggested that 

internal beliefs and intentions guide overt behaviour (Ajzen, 1991). In the current 

thesis, this principle was investigated in the context of pedestrian-vehicle 

interactions. For instance, Pekkanen et al. (2022) provided model-based 

evidence that pedestrians engage in a process akin to intent recognition showing 

that the inclusion of deceleration-related cues (𝜏̇) was necessary to explain the 
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timing of crossing decisions. The current research built upon this, providing a 

detailed model that explained how this intent recognition, or in this thesis’ terms 

behaviour estimation, occurs through the integration of deceleration-related cues 

perception (Ob) and rational expectations of the other agent’s behaviour (Vb). 

This estimation of vehicle behaviour was assumed to be an input for subsequent 

phases of the road crossing task, informing the decision making, action selection 

and eventually execution, as indicated by the computational framework of 

Markkula et al. (2023). 

Behaviour estimation could also be mapped within established cognitive 

frameworks, such as Situation Awareness (SA; Endsley, 1995) and Human 

Information Processing (HIP; Lee et al., 2017). The initial sensory processing 

stages of the models, where pedestrians receive perceptual cues like 𝜏̇, speed, 

and distance, correspond to Level 1 SA and the Perceptual Stage of HIP. The 

computations of Ob+Vb, where these cues are integrated resulting into behaviour 

evidence which are translated into probabilities regarding the current behaviour 

of the vehicle, represent Level 2 SA (Comprehension) and the Cognitive Stage of 

HIP (which includes working memory, decision and response selection). These 

beliefs, 𝑃𝑠, represent the projection of the vehicle's future state answering to the 

question “Is the vehicle stopping or not?”, aligning with Level 3 SA, and is possibly 

the precursor to the Action Stage in the HIP model, as described in the paragraph 

above. So, a confident and early belief that the vehicle is stopping, for example, 

would potentially lead to a smoother, less pressured crossing. Conversely, 

uncertainty or a late-forming belief regarding the vehicle’s behaviour might lead 

to hesitation or no action. As stated before, a main contribution of this thesis was 

providing a validated model (Ob+Vb) that explained how these beliefs are formed 

and updated, and in this section its cognitive mechanisms’ plausibility was briefly 

discussed. 

 

5.5 Potential neurophysiological underpinning of behaviour 

estimation 

 

The behaviour estimation mechanisms proposed in this thesis, particularly the 

augmented model (Ob+Vb), exhibited significant similarities and potential 
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neurophysiological underpinnings in the operation of the Mirror Neuron System 

(MNS). The MNS is consisted of neurons that discharge when an individual 

performs a specific action and but importantly also when they observe another 

individual performing a similar action (Jeon and Lee, 2018; Kilner et al., 2007a, 

2007b; Oberman et al., 2007; Proverbio and Zani, 2023; Rizzolatti and Craighero, 

2004). This system was first discovered in the premotor cortex (F5) of macaque 

monkeys (di Pellegrino et al., 1992; Rizzolatti et al., 2001), while Molenberghs et 

al. (2012) and Rizzolatti and Sinigaglia (2016) findings suggested that MNS 

properties are also present in the human brain. This unique characteristic has led 

researchers to posit the MNS as a fundamental neural underpinning for 

understanding the actions and intentions of others (Zhao et al., 2024), an 

outcome equivalent to what the behaviour estimation mechanisms, investigated 

in this thesis, have been described to do. 

The ability of humans to infer the intentions of others through the observation 

of their actions is basic for social cognition and the MNS is considered a plausible 

candidate for mediating this 'mind-reading' ability (Kilner et al., 2007b). However, 

the precise mechanism by which intentions are inferred from observed 

movements is complex, especially given that similar movements can arise from 

different underlying goals or intentions (Kilner et al., 2007a). This is analogous to 

the challenges faced by pedestrians in interpreting an approaching vehicle's 

behaviour, where similar kinematic cues might precede either a stopping or non-

stopping behaviour. 

Kilner et al. (2007b) proposed that the MNS solves this ill-posed problem 

through a predictive coding framework based on empirical Bayesian inference. 

Within this framework, the most likely cause of an observed movement (i.e., the 

underlying intention or goal) is inferred by minimising prediction error across all 

relevant cortical levels. This is similar to how Ob+Vb works, where pedestrian 

beliefs about vehicle behaviour are updated by integrating direct observations 

(akin to sensory input in the MNS) with value-based expectations (akin to prior 

predictions or generative models of rational driver behaviour). The MNS, 

therefore, is not simply a passive reflection of observed actions but an active 

inferential system that predicts the sensory consequences of an observed agent's 

motor commands based on an expectation of their goal and then uses prediction 

error to update these inferences. Therefore, the main finding of this thesis, that 
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an integrated model (Ob+Vb) is required to accurately predict pedestrian beliefs, 

provides computational and behavioural support to the idea that action 

understanding in this context is an active, inferential process, rather than a 

passive representation of vehicle motion. 

Furthermore, the MNS is not solely driven by visual input; it also activates 

when the sight of a movement is partly occluded, suggesting it predicts the most 

likely kinematics regardless of full visibility (Kilner et al., 2007b). Research has 

shown that the human MNS is sensitive not only to the physical aspects of an 

action but also to the underlying intentions and the social context (Oberman et 

al., 2007). For instance, activity in the inferior frontal gyrus (IFG), a key area of 

the human MNS, is modulated by the inferred purpose of an observed action 

(Oberman et al., 2007). The MNS’ involvement in social cognition is further 

highlighted by its proposed role in empathy and theory of mind. Studies using 

Electroencephalography (EEG) mu wave suppression as an index of MNS 

activity (Fox et al., 2016; Proverbio and Zani, 2023) have shown that mu 

suppression is controlled by the degree of social interaction observed, with more 

interactive, and socially and contextually relevant stimuli resulting in greater MNS 

activity (Oberman et al., 2007; Proverbio and Zani, 2023). This suggests a 

specialisation of the human MNS for processing socially relevant stimuli (other 

agents’ actions), which is relevant to pedestrian-vehicle interactions as 

pedestrians are essentially interpreting the social affordances (Orban et al., 2021) 

offered by the approaching vehicle's behaviour. 

In essence, just as the MNS allows an observer to transform visual information 

about another's actions into knowledge about their internal state (e.g., intentions), 

the behaviour estimation mechanisms modelled in this thesis allow a pedestrian 

to transform kinematic information from an approaching vehicle into a belief about 

its future behaviour. The proposed Ob+Vb model, therefore, can be viewed as a 

computational-level description (Marr, 1982) of the processes that might be 

implemented at the neuronal level by the MNS and associated brain regions 

during the pedestrians’ estimation of the approaching vehicle’s behaviour. 

Moreover, as advocated by Marr (1982) and echoed more recently by Niv (2021), 

an important objective of computational cognitive science is to successfully 

develop computational models that explain behaviour. The validation of such a 

behavioural model does not require a direct mapping to its neurophysiological 
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underpinning, even though achieving that mapping would be an extra step 

towards gaining a better understanding of the cognitive mechanisms involved. 

Thus, the aim of the work presented in this thesis was primarily to establish a 

computationally sound and behaviourally validated model of behaviour 

estimation, rather than to investigate the underlying neurobiological structure per 

se. 

 

5.6 Practical implications 

 

The findings and the developed Ob+Vb model have several practical 

implications for the design and deployment of automated vehicles, the 

development of driver assistance systems and the enhancement of road safety. 

5.6.1 Designing interpretable AV behaviours 

A key practical implication of these findings is the need to design AVs to 

generate behaviours that are not just safe but also easily and accurately 

interpretable by pedestrians. Simply avoiding collisions is insufficient; AV 

behaviour must align with human cognitive processes and expectations to foster 

trust and efficient interactions (Rezwana and Lownes, 2024). The better 

performance of Ob+Vb emphasised that pedestrians interpret vehicle actions 

through a combination of observed motion and assumptions about rational 

behaviour. AVs should therefore be designed with this combined mechanism in 

mind. Based on the findings of this thesis, the following recommendations for AV 

kinematic behaviour can be made. 

1) AVs should utilise clear, consistent, and timely kinematic cues. The 

experiments demonstrated that early and noticeable deceleration is more 

effective in signalling stopping intent than late, harsh braking, even if the 

latter involves higher peak deceleration rates. This aligns with findings 

suggesting defensive deceleration profiles are preferred and lead to earlier 

crossing initiation (Ackermann et al., 2019; Dietrich et al., 2020). Constant 

speed approach phases should be unambiguous, and unpredictable or 

overly subtle changes in speed should be avoided, especially when 

nearing pedestrians, as these create uncertainty that hinders accurate 
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belief formation. Designing AV motion planners to explicitly generate such 

interpretable kinematic profiles is therefore important (Moller et al., 2025). 

2) AVs require sophisticated algorithms to predict pedestrian behaviour for 

safe planning (Camara et al., 2020b). This thesis provides the inverse 

perspective: a model of how pedestrians predict vehicle behaviour. This 

understanding is also important for AVs. If an AV can use a model 

analogous to Ob+Vb to simulate a pedestrian's beliefs in real-time, it could 

predict whether its planned manoeuvre is likely to be perceived as clear, 

ambiguous, or even misleading, and adapt its plan accordingly 

(Prédhumeau et al., 2022). For instance, if the model predicts that a 

planned deceleration is too subtle to be interpreted as a clear intention to 

yield, the AV could proactively adjust its trajectory to be clearer, perhaps 

by decelerating slightly earlier or more distinctly. This would possibly allow 

for more proactive and cooperative interactions. 

3) The partial success of the value-based component (Vb) suggests that 

designing AVs to behave in ways that align with pedestrians' expectations 

of rational, goal-directed, and socially considerate behaviour (e.g., 

showing appropriate politeness or caution based on context) could 

enhance interpretability and trust (Camara and Fox, 2022). This involves 

programming AVs with behaviours that reflect an understanding of implicit 

road rules and are in accordance with the appropriate social norms. 

4) A further consideration arising from these implications involves a potential 

long-term feedback loop. If cognitive models like Ob+Vb are successfully 

used to design AVs that exhibit highly interpretable and predictable 

behaviour, the task of interpreting these AVs may become cognitively 

simpler for pedestrians over time. As pedestrians learn the consistent 

behavioural patterns of AVs, their reliance on complex inferential 

processes might decrease. In such a future, simpler cognitive models – 

perhaps closer to the Ob or Vb components alone, with strong, learned 

priors reflecting established AV norms – might become sufficient to 

accurately predict AV intentions. This suggests a potential co-evolution 

where human-centred AV design, informed by current cognitive models, 

could eventually lead to reduced cognitive load for pedestrians and 

potentially shift the dominant cognitive strategies employed in these 

interactions. 
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5.6.2 Informing driver assistance systems and eHMI design 

While the primary focus is on AVs, these principles are also relevant for 

advanced driver assistance systems (ADAS) in human-driven vehicles. ADAS 

that influence vehicle kinematics should do so in a manner that is clearly 

interpretable to nearby pedestrians. 

1) For systems like Adaptive Cruise Control (ACC) that may react to 

pedestrians, the findings on effective kinematic cues (e.g., early, 

consistent deceleration) are directly applicable. An ACC that decelerates 

smoothly and noticeably for a pedestrian far in distance communicates its 

intent better than braking later and more sharply. 

2) Furthermore, the Ob+Vb model could be used to evaluate the legibility of 

ADAS-controlled vehicle behaviours for pedestrians, ensuring that 

automated assistance enhances rather than complicates pedestrian-

vehicle interactions. 

3) Although this thesis focused on implicit communication via vehicle 

kinematics, the findings could inform eHMI design. The proposed model 

highlights scenarios where pedestrian belief uncertainty is high, typically 

when implicit kinematic cues are weak or ambiguous (e.g., a distant 

vehicle or one moving at a slow, constant speed). These are scenarios 

where an explicit signal from an eHMI could be most beneficial to resolve 

ambiguity and clarify intent (Lau et al., 2022). The Ob+Vb model could 

potentially be used to identify these ambiguous cases in real-time and 

trigger an appropriate eHMI display. While pedestrians may not feel at risk 

from a distant vehicle, an early explicit signal could still be valuable for 

establishing trust and better comprehension of the AV's plan. However, the 

literature cautions that eHMI signals should not be I conflict with the 

vehicle's kinematics to be effective and avoid undermining trust (Lau et al., 

2022). 

5.6.3 Enhancing simulation and safety 

Beyond informing the design of vehicle behaviours, the computational 

framework developed in this thesis has practical applications as a tool for 

improving how AV systems are tested and how road safety is analysed. 

1) The development and testing of AV systems rely on simulation 

environments (Zhao et al., 2024). Ob+Vb could contribute to creating more 
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realistic virtual pedestrians (agents) for these simulations. Current 

simulators like CARLA (CARLA, 2025) or SUMO (Rampf et al., 2023), and 

co-simulations thereof (Gutiérrez-Moreno et al., 2022), often employ 

descriptive or rule-based pedestrian models which are not offering the 

interpretability and more in-depth explanations of the cognitive processes 

underlying behaviour. Implementing agents whose belief states evolve 

according to cognitive principles like those captured by Ob+Vb would allow 

these agents to react to simulated AV behaviour in a more human-like 

manner, providing a more valid and challenging testbed for AV algorithms 

compared to agents reacting based on rules or predefined settings (Wang 

et al., 2023). While implementing complex cognitive models in real-time, 

large-scale simulations presents challenges (Moller et al., 2025), the 

principles derived from Ob+Vb can guide the development of higher-

fidelity cognitive agents. 

2) Understanding the root causes of pedestrian-vehicle incidents often 

involves understanding misinterpretations of intent (Alambeigi et al., 2020; 

Habibovic and Davidsson, 2012). The Ob+Vb model could be used 

retrospectively to analyse accident scenarios or near-misses, identifying 

specific kinematic patterns or interaction sequences that are prone to 

misinterpretation by pedestrians due to conflicting perceived kinematic 

cues and rational expectations. Ob+Vb provides a more psychologically 

grounded basis for how pedestrian agents in microscopic traffic simulation 

models estimate vehicle behaviour, thus it could offer more accurate 

predictions of overall pedestrian behaviour, conflict likelihood and the 

effectiveness of safety interventions within these simulations. This thesis, 

by detailing how beliefs are formed and updated, could contribute to new 

metrics for assessing the interpretability/predictability/effectiveness of 

vehicle manoeuvres or eHMI designs from the pedestrian's cognitive 

viewpoint. Eventually, these metrics could become part of safety 

assessment protocols for new vehicle systems or infrastructure changes. 

Another implication could involve infrastructure design (e.g., crosswalk or 

traffic light placement) or targeted driver/pedestrian education programs. 
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5.6.4 Experimental framework 

Another significant practical implication of the current thesis is its contribution 

to experimental methodology. The work details and validates a robust 

experimental framework designed to investigate the behaviour estimation 

mechanisms of pedestrians while they observe approaching vehicles. This 

framework, validated across two extensive experiments, used an immersive 

virtual reality environment to present pedestrians with a variety of controlled yet 

realistic vehicle approach scenarios, including the systematic manipulation of 

vehicle speed, TTA, and diverse driving manoeuvres. The experimental design, 

adapted from cognitive science paradigms (Baker et al., 2009), successfully 

captured the temporal evolution of pedestrian beliefs by presenting scenarios in 

truncated segments. At each judgment point, a two-part response (behaviour 

judgment and confidence rating) was employed to quantify the belief state and its 

associated certainty. The success of this framework in generating nuanced data 

capable of stringently testing computational models like the Ob+Vb, and its 

proven utility in assessing model generalisability, establishes it as a robust and 

replicable paradigm for future research into pedestrian perception, cognition, and 

interaction with both human-driven and automated vehicles. 

 

5.7 Limitations 

 

The work provided in this thesis, while providing valuable insights into 

pedestrian behaviour estimation, is subject to limitations that should be 

considered when interpreting the findings and planning future work. These 

limitations can be broadly categorized by their origin: (1) the experimental design, 

(2) the model assumptions, and (3) the focus on only a cognitive subpart of the 

whole road crossing task. 

The experiments were conducted in an immersive VR environment. While this 

offers significant advantages in terms of experimental control, safety, and the 

ability to systematically manipulate complex scenarios, the specific experimental 

design involving scenarios truncated into segments for belief rating cannot be 

directly replicated in real-world field studies. Although the VR-based approach 

allows for true interaction and is superior to simpler methods like video stimuli, 
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potential limitations remain, including possible distortions in perceptual fidelity 

(e.g., estimation of speed and distance) and an attenuated sense of risk, which 

might lead to behavioural differences compared to real-world actions (Wynne et 

al., 2019). The direct transferability of exact parameter values from VR to real-

world behaviour thus requires careful consideration, though the structural findings 

regarding cognitive mechanisms are likely more robust. 

Furthermore, the tested scenarios represent a limited subset of real-world 

encounters. The experiments focused on interactions with a single approaching 

vehicle on a straight single-lane road under clear daylight conditions, without the 

complexities of multiple road users, varied environmental conditions (weather, 

lighting), or diverse road layouts (curves, complex intersections). Notably, the 

scenarios did not include explicit communication cues from the vehicle, such as 

flashing headlights or eHMIs. Moreover, there was no visible driver figure (even 

virtual) in the approaching vehicle, which might influence pedestrian expectations 

and trust. The impact of these explicit communication cues and the social 

presence of a driver on behaviour estimation remains to be explored within this 

framework. 

The participant sample for each experiment consisted of 30 adults. While 

covering a range of ages, participants under 18 years old were not included, due 

to ethical considerations. Moreover, participants over 50 years old constituted a 

small minority of the sample, and in this older subgroup, all were men, limiting 

representation of and generalisability to older female pedestrians. Some might 

argue that 30 participants per experiment is a relatively small sample for 

generalising cognitive models broadly. However, the studies based on which the 

current experiments were developed (Ackermann et al., 2019; Baker et al., 2009; 

Dey et al., 2019; Petzoldt et al., 2018), had a similar number of participants. 

Another limitation relates to the data collection strategy for each participant. By 

collecting only one belief rating, per segment, the design prioritised testing a wide 

range of scenarios over assessing the consistency of the judgments for each 

participant. 

A second category of limitations relates to the simplifying assumptions made 

by the computational models. The Ob component, for instance, relied on 𝜏̇ as the 

primary perceptual cue for deceleration. Pedestrians possibly integrate a richer 

set of visual information not captured by the model, potentially including subtle 
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changes in the vehicle's pitch during braking or minor trajectory deviations. 

Similarly, Vb assumes a specific reward structure for the driver (e.g., balancing 

progress, comfort, politeness). Real driver motivations are likely more complex 

and context dependent. The combination weights of the two evidence sources 

(𝛽𝑂, 𝛽𝑉) in the Ob+Vb model were treated as static parameters. The relative 

weight of observation versus value-based evidence might change based on 

factors like cue reliability, distance, uncertainty, or cognitive load, a complexity 

not fully realised in the current model. 

The composite belief score, which transformed the binary choice and the 

confidence rating into a single continuous variable, is susceptible to confidence-

based biases and could be considered a methodological limitation. This approach 

risks misrepresenting the central tendency of the group's opinion, particularly in 

ambiguous scenarios where the population's belief is near the 50% uncertainty 

threshold. For instance, a small number of overconfident individual outliers (i.e., 

those assigning high confidence to a minority choice) could lead to a shift on the 

aggregated average, effectively masking the agreement between the less 

confident majority. While this effect may not entirely invalidate the model's overall 

predicted rank correlation, it hinders the significance of the output as a true 

representation of the average group beliefs. A more robust approach would be to 

decouple the decision (choice) and the confidence (certainty). The model would 

first capture the binary choices of the participants, which Tian et al. (2023) 

showed that they follow similar patterns to the composite belief scores in the data 

of the current thesis. The confidence could then be modelled as a separate metric 

of uncertainty, mitigating the risk of a single participant skewing the overall 

aggregated belief. Other ways of reducing that risk would involve increasing the 

data density, either by expanding the dataset (more participants) or through 

repeated measures to assess the consistency of individual confidence ratings, 

and/or outlier treatment. 

The current modelling approach focused on capturing the continuous 

dynamics of pedestrian belief updating over time, as influenced by observed and 

expected kinematics, rather than investigating the accuracy of the pedestrians’ 

judgments. An alternative approach, would be to assess the judgment accuracy, 

classifying each trial by whether the reported belief correctly inferred the vehicle's 

true behaviour. While informative, this approach was beyond the scope of this 
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thesis. The challenge would be to classify beliefs that sit near the 50% uncertainty 

threshold. Treating these near-50% beliefs as either 'correct' or 'wrong' would 

impose an arbitrary binary classification on a continuous cognitive state, 

potentially misrepresenting the pedestrians’ true uncertainty and could possibly 

hide the behaviour estimation mechanisms that this thesis aimed to model. Thus, 

the choice was made to model the mechanisms of inference across all states of 

certainty, rather than focusing on a potentially simplified classification of judgment 

accuracy. 

While this thesis addresses noise in perception (i.e., Gaussian noise in 

observations for the Ob model), more complex noise considerations, such as 

value-transformed sensory noise, a term borrowed from Markkula et al. (2023), 

or specific assumptions about where noise is injected, are not made. The models 

consider a limited set of vehicle behaviours (stopping/not stopping) and 

pedestrian responses (belief rating). Although, the Markkula et al. (2023) 

computational framework outlines a more granular approach to action selection 

based on motor primitives and accumulated action value estimates, it was 

deemed to be a level of detail beyond the scope of the current belief estimation 

models. 

In addition to these assumptions, limitations also arise from the fitting and 

validation of the models. Despite taking measures such as Bootstrap Cross-

Validation (BSCV) to assess generalisability and mitigate overfitting (as 

discussed in Chapters 3 and 4), the complexity of Ob+Vb, with its number of 

parameters, inherently carries a risk of fitting noise in the specific datasets used. 

Continuous validation on diverse, unseen datasets is important. While per-

participant fitting was explored (Chapter 4), confirming the superiority of Ob+Vb 

at the individual level, analyses prior to that relied on data averaged across 

participants. Averaging can potentially mask significant individual variability in 

how pedestrians interpret vehicle behaviour and may obscure the possibility that 

different subgroups employ qualitatively different strategies, something which 

should thus be considered not least in the interpretation of the Chapter 3 findings. 

Finally, the third type of limitation has to do with the fact that the current 

research concentrated on modelling the pedestrian's belief about the vehicle's 

stopping behaviour (𝑃𝑠). As also discussed in Section 5.4, in the comprehensive 

framework of Markkula et al. (2023), behaviour estimation is one component of a 
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larger perception-action loop. The models of this thesis primarily address the 

“Bayesian perception” and “Behaviour estimation" components leading to the 

belief 𝑃𝑠, analogous to 𝑃𝑏|𝑎, in Markkula et al.'s (2023) terms. While this belief is 

an important input, the subsequent stages of the road crossing task – such as 

the explicit decision to cross (often modelled via evidence accumulation to a 

decision threshold), motor planning, and the physical execution of the crossing 

action (involving motor primitives) – are not explicitly modelled in the current 

thesis. Factors like risk perception, urgency, specific gap acceptance thresholds, 

and game-theoretic adaptations to the other agent's unfolding actions are part of 

this latter stage. A complete model of road crossing would need to integrate the 

proposed belief estimation models with these subsequent decision-making and 

action components. 

 

5.8 Future research directions 

 

This thesis has provided valuable insights into the cognitive mechanisms 

underlying pedestrian behaviour estimation when interacting with approaching 

vehicles, resulting in the implementation and validation of the augmented Ob+Vb 

model. However, the findings and methodologies presented herein also open 

several promising avenues for future investigation to further refine the overall 

understanding of behaviour estimation mechanisms in the pedestrian-vehicle 

interaction context and enhance the practical applicability of this work. 

A next step would possibly involve validating the Ob+Vb model and its 

parameterisation in more naturalistic settings. This could include studies in 

CAVE-based pedestrian simulators but extracting the driving manoeuvres (to be 

later truncated into segments) either from high-fidelity driving simulators or real-

world driving, that would allow for even more realistic behaviour estimation 

testing. An alternative method to increase realism would be to capture 3D videos 

of real traffic encounters to be experienced within the CAVE environment, 

potentially offering a higher degree of visual and contextual fidelity. Such studies 

are important for confirming the model's real-world applicability and fine-tuning its 

parameters. Such studies would help to investigate behaviour estimation in a 

wider array of complex traffic scenarios. This includes exploring interactions at 
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intersections, on curved roadways, in the presence of multiple road users (e.g., 

other vehicles, cyclists), and under diverse environmental conditions such as 

varying weather and lighting. The influence of infrastructure, like marked 

crosswalks or traffic signals, also warrants investigation. 

Fitting Ob+Vb to video data, in contrast to the kinematic data extracted from 

the controlled VR environment, would require overcoming the challenge of 

kinematic extraction from visual input. The first step would be a Computer 

Vision/Deep Learning model to reliably estimate the target vehicle's key kinematic 

variables from the raw pixel data. The extracted kinematics would provide the 

inputs to the component models. Finally, since real-time subjective beliefs cannot 

be obtained from video data, a method to extract pedestrian beliefs, such as 

asking third-person observer participants to provide continuous belief ratings 

would be needed to calculate the target output (correlation and/or RMSE between 

the model predictions and the extracted beliefs). 

Further enhancement and integration of the current models represent another 

important direction. The current models could be extended to incorporate a richer 

set of observed cues. This might include vehicle trajectory information, changes 

in vehicle orientation, or even non-kinematic cues such as turn signals or explicit 

eHMI displays, if present. An interesting avenue for future work is the integration 

of the validated Ob+Vb model with established road user interaction models to 

create comprehensive models of the pedestrian behaviour (Markkula et al., 

2023). Such integration could happen with models such as Evidence 

Accumulation Models (EAMs), where the Ob+Vb’s belief output 𝑃𝑠 could be used 

to set the drift rate of an Evidence Accumulation Model, where a stronger belief 

in the vehicle stopping would accelerate the accumulation of evidence toward 

making a crossing decision. Furthermore, the Ob+Vb currently models the belief 

of a vehicle’s behaviour from the pedestrian’s perspective. To integrate this into 

a full pedestrian-vehicle framework, two adaptations would be needed. First, both 

agents’ beliefs about each other would have to be modelled. Second, the 

behaviour estimation output (belief about the other’s behaviour) would have to be 

connected to an evidence accumulation step as described above, to complete 

the decision loop (for both agents). Alternatively, Ob+Vb could be integrated with 

the Perceptually Plausible Road Crossing Decision (PT-PRD) model as 

presented in Chapter 6 of Tian (2023) to yield a more comprehensive pedestrian 
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crossing decision model. The main idea would be to use the belief output from 

Ob+Vb (𝑃𝑠) to inform the PT-PRD model's dynamic decision-making processes. 

This would enhance the PT-PRD model by making it sensitive also to the 

expectation-based factors that the current belief model captures, potentially 

improving predictions of crossing initiation timing. 

The validated Ob+Vb model provided a first thorough investigation of 

behaviour estimation in single-vehicle, single-pedestrian interactions. However, 

in real-worlds traffic scenarios multiple agents might be involved. Thus, an 

interesting future direction would be to extend the suggested model in a 

hierarchical manner so that it could integrate social influences and contextual 

complexity. The presence of other pedestrians could introduce social influences 

that affect both the perceived intent of the approaching vehicle and the 

pedestrian’s own urgency. The model would need to account for pro-social cues, 

such as the phenomenon of group size increasing the likelihood of yielding (Park 

et al., 2024). This could be modelled within the Vb component by making the 

politeness constant an adaptive parameter that increases with the observed 

number of attentive pedestrians waiting to cross, thereby affecting the calculated 

utility for the stopping behaviour. Furthermore, the model could address collective 

decision-making, where a pedestrian's prior beliefs might be influenced by the 

actions of nearby pedestrians, i.e., a form of social influence or herd behaviour 

(Faria et al., 2010) that could impact the confidence of the initial estimation. 

Conversely, the presence of other vehicles (e.g. non-conflicting traffic, traffic flow 

behind the approaching vehicle) would introduce contextual ambiguity and 

additional constraints for the driver/AV. In the Ob component, the visual presence 

of surrounding traffic could increase cognitive load and visual clutter, which may 

be modelled by increasing the perceptual noise and/or lowering the weight 

assigned to the observation-based evidence. For the Vb component, calculating 

the utility would also be more complex, since there would be the need to include 

a cost term for traffic impedance, i.e., the penalty for unnecessary or unsafe 

deceleration that disrupts the flow of following vehicles. 

The potential for dynamic weighting of the observation-based and value-

based components within the Ob+Vb model should be explored. The weighting 

of these mechanisms’ evidence might shift based on contextual factors like cue 
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reliability, distance to the vehicle, perceived ambiguity, or the pedestrian's 

cognitive state. 

Investigating individual and group differences would also be interesting since 

a uniform model fit would likely be insufficient for capturing all pedestrians’ beliefs. 

Drivers and AVs should interact safely with a diverse population, including older 

adults or children, whose beliefs of vehicle behaviour may differ from an 

“average” adult. Therefore, larger-scale studies would be beneficial to 

systematically explore how factors such as age, gender, risk tendency, cognitive 

abilities, trust in automation, prior experiences, and cultural background influence 

the parameters of Ob+Vb (particularly the prior bias 𝑀 and the belief mapping 𝐵) 

and the overall accuracy of its predictions. Correlating fitted model parameters 

with validated psychometric measures could provide deeper insights and 

potentially lead to personalized models or AV interaction strategies tailored to 

different user groups. For instance, one could investigate if scores on a risk-taking 

or a trust in automation scales (Blais and Weber, 2006; Kohn et al., 2021; Zhang 

et al., 2019) correlate with the model's prior bias or belief mapping parameters. 

This could lead to more personalised models or AV interaction strategies 

associated to different road user groups. 

The practical value of the Ob+Vb model lies in its potential application in AV 

development, simulation, and broader road safety analysis. As discussed in 

Section 5.6 future engineering research should focus on implementing these 

insights into AV perception and planning systems. This includes designing AVs 

that generate interpretable kinematics and potentially equipping AVs with an 

inverse model based on Ob+Vb to anticipate pedestrian interpretations, leading 

to safer and more comfortable interactions. Furthermore, the cognitive principles 

captured by Ob+Vb can inform the development of more realistic virtual 

pedestrian agents for AV testing in simulation environments like CARLA or 

SUMO. Creating smart agents whose beliefs evolve according to these principles 

would provide a more valid testbed for AV algorithms compared to current rule-

based agents. 

Future work could also delve into the neurophysiological underpinnings of 

behaviour estimation. Neurophysiological studies, perhaps employing EEG to 

measure mu suppression (Fox et al., 2016; Proverbio and Zani, 2023) or fMRI 

(Caspers et al., 2010; Molenberghs et al., 2012) to identify active regions  during 
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simulated behaviour estimation tasks similar to those used in this thesis, could 

investigate the neural correlates of the belief updating processes modelled by 

Ob+Vb. This could provide direct evidence for the engagement of MNS during 

behaviour estimation in road traffic, offering a more holistic understanding and 

link the computational mechanisms of behaviour estimation to their neural 

implementation. 

Finally, building on the concept of a long-term feedback loop discussed 

previously (Section 5.6), another interesting research path is to explore how 

pedestrian behaviour estimation and trust evolve over long-term exposure to AVs. 

As a reminder, if AVs become more predictable, the cognitive load on pedestrians 

might decrease, potentially shifting the dominant cognitive strategies they 

employ. 

By pursuing these future research directions, the understanding of pedestrian 

cognitive mechanisms can be further advanced, contributing to the development 

of safer road environments and more intuitive and socially adept interactions 

between humans and AVs. 

 

5.9 Concluding remarks 

 

The work of this thesis presents a novel comprehension of how pedestrians 

estimate the behaviour of approaching vehicles to eventually make road crossing 

decisions. This research represents the first attempt to implement and validate 

computational models of the specific cognitive mechanisms underlying this 

process. The results demonstrate that pedestrian beliefs regarding the behaviour 

of an approaching vehicle are not based solely on perceiving deceleration-related 

cues or on rational, value-maximising expectations alone, but requires an 

integrated framework combining both. The implementation and validation of a 

successful behaviour estimation model has been demonstrated by adopting and 

combining established cognitive science models, and by adapting cognitive 

science simplified experimental laboratory paradigms to the pedestrian-vehicle 

interaction setting. From this thesis’ findings, the augmented Ob+Vb model can 

be suggested as a plausible psychological and successful computational 

explanation for how pedestrians estimate vehicle behaviours. This integrated 
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behaviour estimation mechanism could allow for the improvement of human-AV 

interaction design and the development of more realistic cognitive agents for use 

in traffic simulation. However, future work should investigate these mechanisms 

across a wider range of scenarios and populations, to pave the way for the 

development and deployment of socially capable automated vehicles whose 

behaviour is intuitively and accurately understood by pedestrians.
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Appendix A   
 

Table A.1 - 4-way factorial ANOVA 

Source Sum Sq. d.f. 
Mean 
Sq. 

F p 
Partial 
Eta-Sq. 

PID 81674 29 2816 2.37 0.0094 0.211 

Segment 45562 3 15187 24.54 <0.0001 0.130 

Initial Speed 132145 2 66073 132.68 <0.0001 0.302 

Initial TTA 57105 1 57105 98.67 <0.0001 0.158 

Manoeuvre 1093667 2 546833 589.59 <0.0001 0.782 

PID: Segment 53841 87 618 0.9 0.705 0.150 

PID: Initial 
Speed 

28882 58 498 1.09 0.375 0.086 

PID: Initial TTA 16784 29 578 1.17 0.3166 0.052 

PID: Manoeuvre 53793 58 927 1.31 0.1165 0.150 

Segment: Initial 
Speed 

43430 6 7238 21.37 <0.0001 0.125 

Segment: Initial 
TTA 

17362 3 5787 15.73 <0.0001 0.054 

Segment: 
Manoeuvre 

614618 6 102436 202.92 <0.0001 0.668 

Initial Speed: 
Initial TTA 

1864 2 932 3.28 0.0448 0.006 

Initial Speed: 
Manoeuvre 

8852 4 2213 6.21 0.0001 0.028 

Initial TTA: 
Manoeuvre 

5518 2 2759 7.55 0.0012 0.018 

PID: Segment: 
Initial Speed 

58948 174 338 1.3 0.0084 0.162 

PID: Segment: 
Initial TTA 

32008 87 367 1.41 0.0093 0.095 

PID: Segment: 
Manoeuvre 

87838 174 504 1.94 <0.0001 0.223 

PID: Initial 
Speed: Initial 

TTA 
16493 58 284 1.09 0.2997 0.051 

PID: Initial 
Speed: 

Manoeuvre 
41365 116 356 1.37 0.0078 0.119 

PID: Initial TTA: 
Manoeuvre 

21191 58 365 1.4 0.0268 0.065 

Segment: Initial 
Speed: Initial 

TTA 
3509 6 584 2.25 0.0368 0.011 

Segment: Initial 
Speed: 

Manoeuvre 
12131 12 1010 3.88 <0.0001 0.038 



237 
 

Segment: Initial 
TTA: 

Manoeuvre 
3598 6 599 2.3 0.0324 0.012 

Initial Speed: 
Initial TTA: 
Manoeuvre 

2692 4 673 2.58 0.0356 0.009 

Error 305222 1172 260    

Total 2840104 2159     

 

Table A.2 - Pairwise comparisons of progressive time segments in constant 
speed manoeuvres 

Group A Group B 
Lower 
Limit 

A-B 
Upper 
Limit 

p 

Seg1, 
Constant 

Seg2, 
Constant 

0.992 6.736 12.480 0.005 

Seg2, 
Constant 

Seg3, 
Constant 

13.214 18.958 24.702 <0.001 

Seg3, 
Constant 

Seg4, 
Constant 

16.721 22.465 28.209 <0.001 

 

Table A.3 - Pairwise comparisons of progressive time segments in deceleration 
manoeuvres 

Group A Group B 
Lower 
Limit 

A-B 
Upper 
Limit 

p 

Seg1, 
Deceleration 

Seg2, 
Deceleration 

-14.285 -8.541 -2.797 <0.001 

Seg2, 
Deceleration 

Seg3, 
Deceleration 

-17.653 -11.909 -6.165 <0.001 

Seg3, 
Deceleration 

Seg4, 
Deceleration 

-14.077 -8.333 -2.589 <0.001 

 

Table A.4 - Pairwise comparisons of progressive time segments in mixed 
manoeuvres 

Group A Group B 
Lower 
Limit 

A-B 
Upper 
Limit 

p 

Seg1, Mixed Seg2, Mixed -18.035 -12.291 -6.547 <0.001 

Seg2, Mixed Seg3, Mixed -27.063 -21.319 -15.575 <0.001 

Seg3, Mixed Seg4, Mixed -27.480 -21.736 -15.992 <0.001 
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Table A.5 - Pairwise comparisons of driving manoeuvres at the same segment 
levels 

Group A Group B 
Lower 
Limit 

A-B 
Upper 
Limit 

p-value 

Seg1, 
Constant 

Seg1, 
Deceleration 

-25.327 -19.583 -13.839 <0.001 

Seg2, 
Constant 

Seg2, 
Deceleration 

-40.605 -34.861 -29.117 <0.001 

Seg3, 
Constant 

Seg3, 
Deceleration 

-71.473 -65.729 -59.985 <0.001 

Seg4, 
Constant 

Seg4, 
Deceleration 

-102.271 -96.527 -90.783 <0.001 

Seg1, 
Constant 

Seg1, Mixed 3.839 9.583 15.327 <0.001 

Seg2, 
Constant 

Seg2, Mixed -15.188 -9.444 -3.700 <0.001 

Seg3, 
Constant 

Seg3, Mixed -55.466 -49.722 -43.978 <0.001 

Seg4, 
Constant 

Seg4, Mixed -99.667 -93.923 -88.179 <0.001 

Seg1, 
Deceleration 

Seg1, Mixed 23.422 29.166 34.910 <0.001 

Seg2, 
Deceleration 

Seg2, Mixed 19.672 25.416 31.160 <0.001 

Seg3, 
Deceleration 

Seg3, Mixed 10.262 16.006 21.751 <0.001 

Seg4, 
Deceleration 

Seg4, Mixed -3.139 2.604 8.348 1 
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Table A.6 - Linear mixed-effects model analysis 

Model information: 

Number of observations 2400 

Fixed effects coefficients 32 

Random effects coefficients 30 

Covariance parameters 2 

Formula: 

Linear Mixed Formula with 5 predictors 

Model fit statistics: 

AIC BIC LogLikelihood Deviance 

21352 21548 -10642 21284 

Fixed Effects Coefficients (95% Confidence Intervals): 

Name Estimate SE tStat DF p Lower Upper 

(Intercept) 78.52 7.92 9.90 2368 <0.001 62.98 94.07 

Segment -2.5 2.89 -0.86 2368 0.388 -8.17 3.17 

Speed -1.31 0.18 -7.28 2368 0 -1.66 -0.96 

TTA 5.11 1.67 3.06 2368 0.002 1.83 8.39 

Constant 
speed 

-20.16 13.56 -1.48 2368 0.137 -46.76 6.44 

Deceleration 28.62 13.56 2.11 2368 0.035 2.01 55.23 

Two-stage 
deceleration 

-55.19 13.88 -3.97 2368 0 -82.42 -27.97 

Segment: 
Speed 

0.24 0.06 3.64 2368 0 0.11 0.37 

Segment: TTA -1.36 0.61 -2.23 2368 0.025 -2.56 -0.17 

Speed: TTA 0.03 0.03 0.87 2368 0.382 -0.04 0.11 

Segment: 
Constant 

speed 
-13.07 4.95 -2.63 2368 0.008 -22.79 -3.36 

Segment: 
Deceleration 

2.49 4.95 0.50 2368 0.615 -7.22 12.21 

Segment: 
Two-stage 

deceleration 
26.79 5.07 5.28 2368 0 16.85 36.73 

Speed: 
Constant 

speed 
0.14 0.31 0.46 2368 0.643 -0.46 0.76 

Speed: 
Deceleration 

-0.75 0.31 -2.43 2368 0.015 -1.37 -0.15 

Speed: Two-
stage 

deceleration 
0.38 0.31 1.22 2368 0.222 -0.23 0.99 

TTA: Constant 
speed 

8.02 2.86 2.80 2368 0.005 2.41 13.63 

TTA: 
Deceleration 

-8.07 2.86 -2.82 2368 0.005 -13.68 -2.47 

TTA: Two-
stage 

deceleration 
4.74 2.92 1.62 2368 0.105 -0.99 10.49 
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Segment: 
Speed: TTA 

-0.002 0.01 -0.17 2368 0.859 -0.03 0.02 

Segment: 
Speed: 

Constant 
speed 

0.06 0.11 0.55 2368 0.578 -0.16 0.28 

Segment: 
Speed: 

Deceleration 
0.21 0.11 1.86 2368 0.062 -0.01 0.43 

Segment: 
Speed: Two-

stage 
deceleration 

-0.14 0.11 -1.27 2368 0.204 -0.36 0.08 

Segment: 
TTA: Constant 

speed 
-0.96 1.04 -0.91 2368 0.358 -3.00 1.08 

Segment: 
TTA: 

Deceleration 
1.68 1.04 1.60 2368 0.108 -0.36 3.72 

Segment: 
TTA: Two-

stage 
deceleration 

-1.89 1.06 -1.77 2368 0.077 -3.98 0.2 

Speed: TTA: 
Constant 

speed 
-0.08 0.066 -1.23 2368 0.219 -0.21 0.04 

Speed: TTA: 
Deceleration 

0.16 0.066 2.5 2368 0.012 0.03 0.29 

Speed: TTA: 
Two-stage 

deceleration 
-0.11 0.066 -1.74 2368 0.081 -0.24 0.01 

Segment: 
Speed: TTA: 

Constant 
speed 

-0.002 0.024 -0.07 2368 0.944 -0.04 0.04 

Segment: 
Speed: TTA: 
Deceleration 

-0.03 0.024 -1.42 2368 0.153 -0.08 0.01 

Segment: 
Speed: TTA: 
Two-stage 

deceleration 

0.04 0.024 1.69 2368 0.091 -0.006 0.08 

Random Effects Covariance Parameters (95% Confidence Intervals): 

Group: PID (30 Levels) 

Name1 Name2 Type Estimate Lower Upper 

(Intercept) (Intercept) std  NaN NaN 

Group: Error 

Name Estimate Lower Upper 

Res Std 20.392 19.823 20.977 
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Figure B.1 - Comparison between model predictions and average pedestrian 
beliefs for all 20 kinematic scenarios (parameter settings of Chapter 3) 
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Figure B.2 - Comparison between model predictions and average pedestrian 
beliefs for all 20 kinematic scenarios (refitted only parameter 𝑀) 
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Figure B.3 - Comparison between model predictions and average pedestrian 
beliefs for all 20 kinematic scenarios (refitted all parameters) 
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Appendix C   
 

Behaviour Estimation Task Post-Trial Questions: 

 

1. Was the vehicle stopping for you or was it maintaining its speed 

and passing you? 

 

Stopping Passing 

 

 

 

2. How confident are you in your previous answer? Please rate 

your confidence level on a scale from 1 to 9. 

 

1 2 3 4 5 6 7 8 9 

Not 
confident 

at all 
   

Somewhat 
confident 

   
Totally 

confident 
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Appendix D   
 

 
Figure D.1 - Ob’s pairwise parameter scatterplot matrix. The histograms in the 
diagonal illustrate the distribution of the respective parameter values with the 
BSCV-obtained RMSEs. The scatterplots show the pairwise parameter 
combination areas with obtained RMSEs 

 

 

 

Figure D.2 - Vb’s pairwise parameter scatterplot matrix. The histograms in the 
diagonal illustrate the distribution of the respective parameter values with the 
BSCV-obtained RMSEs. The scatterplots show the pairwise parameter 
combination areas with obtained RMSEs
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Figure D.3 - Ob+Vb’s pairwise parameter scatterplot matrix. The histograms in the diagonal illustrate the distribution of the respective 
parameter values with the BSCV-obtained RMSEs. The scatterplots show the pairwise parameter combination areas with obtained RMSEs
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Appendix E   
 

Table E.1 - Models of pedestrian decision-making 

Study Model Input Output 

Kotseruba 

and 

Rasouli 

(2023) 

Agent-based model: 

Intend-Wait-

Perceive-Cross 

Vehicle kinematics 

(speed, position, 

acceleration), 

Pedestrian 

characteristics, 

Perception 

parameters (field of 

view - FoV), 

Scanning strategy, 

Time since last 

observation 

Pedestrian crossing 

decisions (e.g., Cross or 

Wait), Waiting time, 

Number of collisions, 

Head turns, Minimum 

TTC 

Sun et al. 

(2002) 

Binary Logit Model Gap size, waiting 

time, Pedestrian 

age, Pedestrian 

gender, Number of 

pedestrians waiting 

Probability of Gap 

Acceptance (Binary 

decision: accept or reject) 

Zhao et al. 

(2019) 

Binary Logit Model Gap size, Crossing 

distance, Waiting 

time, Position of 

pedestrian in 

relation to the kerb 

Probability of Gap 

Acceptance (Binary 

decision: accept or reject) 

Himanen 

and 

Kulmala 

(1988) 

Multinomial Logit 

(MNL) Model 

Pedestrian distance 

from kerb/refuge, 

Locality (City size), 

Pedestrian group 

size, Vehicle speed, 

Number of vehicles 

approaching, 

Vehicle type, 

Pedestrian on 

marked crossing, 

Driving direction, 

Sex of pedestrian 

Probability of continuing 

(walks on) or reacting 

(stops, retreats, or needs 

to run) 
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Tian et al. 

(2022) 

Psychophysics-

based Gap 

Acceptance (PGA) 

Model with mixed 

effects (Logit Model 

based on Visual 

Looming cue). 

PGA Model Input: 

𝜃̇, Looming 

calculation inputs: 

TTA, Vehicle 

speed, Vehicle 

length, Vehicle 

width, Lateral 

distance from car to 

pedestrian, 

Distance between 

pedestrian and 

vehicle 

Probability of Gap 

Acceptance, Post-

encroachment time, 

Crossing duration, and 

Percentage of unsafe 

decisions and tight fits 

Raghuram 

Kadali et 

al. (2014) 

Artificial Neural 

Network (ANN) 

Model 

Gap size, 

Frequency of 

attempt, Rolling gap 

(Yes/No), Speed 

changes condition 

(Yes/No), Vehicle 

speed, Movement 

of pedestrian, 

Group size, Waiting 

time, Near or far 

lane gap, Type of 

vehicle 

Probability of Gap 

Acceptance (Binary 

decision: accept or reject) 

 

 

Pawar and 

Patil 

(2016) 

Binary Logit Model Gap Time or 

Distance, Speed of 

vehicle, Traffic 

volume 

Probability of Gap 

Acceptance (Binary 

decision: accept or reject) 

Tian et al. 

(2025) 

PT-PRD Model: 

Hybrid Perception 

Strategy and 

Crossing Initiation 

Model 

Visual Perception 

Cues: 𝜃̇ and 𝜏̇, 

Physical Kinematic 

Inputs: Vehicle 

distance, Vehicle 

width, Vehicle 

speed, Vehicle 

deceleration, Time 

gap, TTC 

Binary Crossing Decision, 

Crossing Initiation Time, 

Cumulative Crossing 

Probabilities 
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Wang et 

al. (2023) 

Deep Q-Networks 

Learning, 

Constrained by 

Bayesian 

Perceptual Filtering 

of Noisy Visual 

Input 

Position and 

Velocity of vehicle 

and pedestrian, 

Position and 

Velocity 

uncertainty, Visual 

noise 

Discrete decision (Go or 

Not Go), Gap Acceptance 

Rate, Crossing Initiation 

Time 

Crosato et 

al. (2023) 

Deep 

Reinforcement 

Learning 

Framework using 

Social Value 

Orientation 

Informed Reward 

Function, Social 

Force Model and 

Gap Acceptance 

Model, 

incorporating 

Situational 

Awareness 

Reward Function 

Input: AV 

performance 

parameters, 

Pedestrian 

intentions/comfort, 

Pedestrian crossing 

speed, Motivation, 

Distance, Social 

Value Orientation, 

Pedestrian Model 

Inputs: AV velocity, 

Distance, Lane 

width, AV 

acceleration, 

Pedestrian desired 

walking speed 

AV Decision-Making 

Policy (Driving Styles: 

Egoistic to Pro-Social), 

AV Longitudinal 

acceleration/deceleration, 

Pedestrian Trajectory 

Markkula 

et al. 

(2023) 

Integrated 

Computational 

Psychological 

Model (Bayesian 

perception, Theory 

of mind/Behaviour 

estimation, 

Affordance-based 

long-term value 

estimation, and 

Evidence 

accumulation 

decision-making) 

Noisy Position and 

Speed of other 

agent, 

Acceleration/Speed 

adjustments 

Continuous Action 

Decisions 
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Giles et al. 

(2019) 

Variable-Drift 

Diffusion Model 

(VDDM) 

Apparent TTA (𝜏) 

and TTA rate of 

change (𝜏̇) 

Crossing Initiation Time 

Pekkanen 

et al. 

(2022) 

Variable-Drift 

Diffusion Model 

(VDDM) 

TTA (𝜏), Distance, 

TTA rate of change 

(𝜏̇), Presence of 

eHMI (Yes/No), 

Noise 

Decision Timing, Crossing 

Onset Time Distribution 

Markkula 

et al. 

(2018) 

Evidence 

Accumulation/DDM) 

Looming, TTA (𝜏) 

and TTA rate of 

change (𝜏̇), 

Presence of explicit 

signal (Yes/No), 

Vehicle’s 

Awareness of 

pedestrian 

Pedestrian 

Crossing/Yielding 

Decisions 

 


