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Abstract

Sleep apnoea is a disease that affects children and adults and can lead to car-

diovascular disease, diabetes, and cognitive impairment in severe cases. The

Polysomnography is recognised as the golden diagnostic method, but it is expen-

sive and time-consuming, making it impossible to conduct widespread screening.

This thesis first introduces the background of automatic sleep apnoea detec-

tion and commonly used change detection algorithms. Chapter 3 introduces an

anomaly detection method that uses an adaptive Cumulative Sum (CUSUM)

change point detection algorithm to monitor outliers in the signal. The test

results of the adaptive CUSUM are compared with those of the classic CUSUM.

Chapter 4 proposes a novel framework for extracting features from sleep signals

using wavelet transforms and uses the RUSBoost algorithm to address the data

imbalance problem in sleep apnoea detection. This chapter evaluates classic

machine learning methods, such as support vector machines (SVM), k-nearest

neighbours, Dirichlet process Gaussian mixture model, and the ensemble method

Random Undersampling Boosting (RUSBoost), which aim to address the data

imbalance problem. In addition, this chapter utilises feature fusion techniques to

evaluate the performance of single-signal detection and multi-signal detection.

Chapter 5 presents and compares deep learning approaches, specifically Convolu-

tional Neural Network (CNN), CNN with SVM and Recurrent Neural Network

architectures. The signal-level fusion strategy enhances detection sensitivity

significantly.

All proposed approaches are tested on public datasets in different envi-

ronments, including the Apnoea-ECG database [1], the Childhood Adenoton-

sillectomy Trial database [2], and St Vincent hospital [3], demonstrating the
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effectiveness of the proposed methods in identifying apnoea events in different

situations.
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Chapter 1

Introduction

1.1 Background and Motivation

Humans spend about a third of their lives sleeping. Sleep disorders, such as

insomnia and obstructive sleep apnoea, severely impact the quality of life of

patients. Without restrictive criteria, the prevalence of insomnia is approximately

33% in the general population [5]. Patients with sleep apnoea experience periods

of no or shallow breathing while sleeping. The former situation, in which breathing

temporarily stops, is referred to as apnoea, whereas the latter, in which breathing

is shallow or airflow is restricted, is referred to as hypopnoea. Both diseases can

result in clinical comorbidities and thus harm human health [6].

The physiological manifestations of sleep apnoea include nocturnal snoring,

episodic gasping, xerostomia upon awakening, and overall diminished sleep quality.

These diseases commonly cause impaired cognitive focus, worsening of insomnia,

cognitive decline, increased risk of accidents, memory impairment, and depression.

Furthermore, sleep apnoea may result in several serious health issues, such as

diabetes, cardiovascular complications, high blood pressure, neurological issues,

and liver problems [7]. These complications significantly impair life quality due

to chronic fatigue and insufficient sleep [8]. Sleep apnoea affects approximately

1% to 6% of adults and 1.2% to 5.7% of children [9]. Given its widespread
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occurrence worldwide and its lasting impact on sleep, it is necessary to detect

and treat sleep apnoea [10].

There are three types of sleep apnoea [11]:

1) Obstructive sleep apnoea (OSA) is the more frequent pattern, characterized

by the presence of thoracic effort for continuing breathing while air flow

completely stops. When the hard palate muscles at the back of the throat

that support the soft palate relax, the soft palate blocks air from entering

the respiratory system. This causes short-term cessation of breathing.

2) Central sleep apnoea (CSA) occurs when the brain fails to generate or

transmit the signals that control the muscles of breathing. It is characterized

by a complete cessation of respiratory movement and airflow for at least 10

seconds.

3) Mixed sleep apnoea (MSA): Complex sleep apnoea syndrome is charac-

terized by persistent central apnoea even after obstructive events have

resolved after Positive Airway Pressure (PAP) therapy. This pattern is a

combination of the first two patterns, defined as central apnoea followed

by obstructive ventilatory efforts in relatively short time intervals.

Polysomnography (PSG) is a gold-standard diagnostic test used to study

sleep and diagnose various sleep disorders. Some people refer to PSG as a sleep

study. Sleep technologists perform tests that are usually performed in hospitals,

independent facilities, or specialized sleep clinics [12]. Sleep monitoring is a

complex process and requires a unique set of skills, including detailed knowledge of

Electroencephalography (EEG), respiration monitoring, and Electrocardiography

(ECG) [13]. Sleep monitoring[13] was traditionally accomplished by recording

polygraphs using ink pens that produced tracings on paper. An ordinary paper

speed for sleep recording is 10 mm/s, with a 30 cm page corresponding to 30

seconds. Each period represented by a page is called an epoch. Most sleep

recordings are digital these days, but the convention of scoring sleep in 30-second

epochs or windows is still the standard. PSG is a recognized technique for
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patients’ sleep analysis. However, it requires patients to go to hospitals or special

wards because they need to wear relevant sensors to record signals, increasing

medical expenses.

In response to this challenge, there has been a marked increase in research

focused on the development of automated systems for detecting sleep disorder

breathing (SDB). Research in this area has predominantly concentrated on

enhancing detection capabilities through fewer signal channels or the choice of

portable devices. Specifically, methods that utilize peripheral haemoglobin oxygen

saturation (SPO2), ECG, and acoustic signals have been extensively explored [14].

Moreover, these detection techniques have been shown to have higher accuracy

than those relying on acoustic signals. Given that SPO2 signal measurements

can be readily obtained through nighttime pulse oximeters, frameworks that

leverage these metrics are particularly advantageous for facilitating sleep health

monitoring at home [15]. In addition, it is also considered that combining multiple

signals for detection may obtain better detection results. Given the capability of

pulse oximeters to concurrently measure multiple parameters, including pulse

and blood oxygen levels, combining these data from the same sensor sources to

detect sleep apnoea is feasible. Figure 1.1 compares the sleep apnoea diagnostic

framework proposed in this study and the conventional diagnostic model. In

traditional practice, clinicians manually identify pathological signals from PSG

data. However, this process can be streamlined by employing machine learning

techniques for direct diagnosis. In addition, more advanced technologies (such as

the Apple Band) are used to monitor the heartbeat. This means that patients

can collect data at home and the collection method is more convenient.

In sleep apnoea diagnosis, the Apnoea-Hypopnoea Index (AHI) quantifies the

severity of the condition. The AHI represents the average number of apnoea and

hypopnoea occurring per hour of sleep [16]. According to the guidelines of the

American Academy of Sleep Medicine (AASM) [17], sleep apnoea is considered

mild if 5≤AHI<15, moderate if 15≤AHI≤30, and severe if AHI≥30 [18]. While

AHI remains the gold standard, other indices such as the Oxygen Desaturation
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(a) Conventional diagnosis method: polysomnography based apnoea-hypopnoea detec-
tion diagram.

(b) Future frameworks: automatic sleep apnoea-hypopnoea event detection diagram

Fig. 1.1 Comparison of conventional and future frameworks for detecting sleep
apnoea-hypopnoea

Index (ODI) [19], arousal index, and measures of sleep fragmentation have also

been investigated as complementary markers of disease severity [20]. In this study,

data from adults with AHI≥5 are considered as “apnoea”, otherwise, they are

defined as “normal”. For children, however, the primary manifestation of apnoea

is behavioural characteristics [9], so the threshold of AHI should be adjusted

to a value appropriate for observing children. In Master Manual of Procedures

from Childhood Adenotonsillectomy Trial (CHAT) [2], they used AHI>2 as an

indicator of apnoea. The technology for automatically detecting sleep apnoea

based on biological signals is developing rapidly, but there are still challenges

in the task of automatic real-time detection. First, medical signal data is often

highly unbalanced, which means the number of diseased segments is significantly

less than the number of normal segments. This phenomenon will continue to be

amplified in paediatric patients. This imbalance may cause the training results
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(a) Raw pulse signal which has apnoea (b) Raw oxygen signal which has apnoea

Fig. 1.2 Examples of apnoea and normal signal

to be biased towards normal segments, thereby reducing the model’s sensitivity

to diseased states. Second, PSG recording is time-consuming and laborious, and

patients’ sleeping environment can also cause errors in their test results. Third,

there are endless devices for recording human biological signals, and researchers

hope to use simple equipment to achieve more accurate detection.

For sleep apnoea detection, most detection rules are based on the AASM

manual [17]. This manual provides several ways to evaluate sleep signals, espe-

cially sleep stage classification and sleep apnoea analysis. Most sleep research

revolves around the detection of a single signal.

This research mainly focuses on oxygen saturation data and pulse data. Some

differences between normal and abnormal sleep signals could be found through

data visualisation and comparison with normal sleep signals. Figure 1.2 shows

the differences in oxygen and pulse data when sleep apnoea happened. From

Figure 1.2, the red box circles the moment when the apnoea occurs. It can be

seen that both the pulse and oxygen data fluctuate violently, which shows that

the variance of the signal is constantly changing. This is also the main signal

feature, mean and variance, extracted in this experiment.

1.2 Aims and Objectives

The primary aim of this thesis is to develop a practical approach for automatically

detecting sleep apnoea using pulse and oximetry data. This study applies

advanced machine learning algorithms and feature extraction approaches to
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enhance the detection accuracy. In addition, this framework ensures the feasibility

of home monitoring because pulse and blood oxygen signals can be obtained

using an oximeter. The specific objectives of this research include:

• Develop a home monitoring system that minimises dependence on clinical

sleep analysis. Based on the blood oxygen saturation and pulse data,

this system uses a machine learning framework to detect sleep apnoea,

enhancing its accessibility and cost-effectiveness.

• Design, implement and evaluate an adaptive CUSUM algorithm for detect-

ing anomalies in pulse and blood oximetry data and refine the detection

threshold to enhance accuracy.

• Explore a wavelet transform-based feature extraction to detect sleep apnoea.

• Apply a RUSBoost algorithm to enhance the classification performance in

imbalanced datasets, especially in paediatric sleep apnoea cases.

• Evaluate the performance of different machine learning algorithms, includ-

ing Support Vector Machines (SVM), k-nearest neighbour (KNN) approach,

Dirichlet process mixture model (DPMM), RUSBoost and neural networks,

on balanced and unbalanced datasets to identify the most effective classifi-

cation model.

• Test the proposed approaches on real-world datasets to ensure their robust-

ness and generalizability.

1.3 Contributions and Outline of Thesis

The dissertation comprises six chapters. A brief overview of the content in each

chapter is presented below.

Chapter 2 is an overview of the concepts and algorithms related to the

classification of sleep apnoea. It explores current research on methods for

detecting sleep apnoea, covering both traditional approaches using PSG and
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automated techniques which use physiological signals. This work addresses

signal processing techniques, such as wavelet transforms and changing detection

methods, while further exploring various machine learning and deep learning

algorithms for classification purposes. This chapter presents the background

of algorithmic knowledge and detection related to the proposed work in this

thesis. The introduction of sleep apnoea detection algorithms can be categorised

into two main types: (i) methods using traditional machine learning and feature

engineering and (ii) methods using processed raw signals and deep learning

algorithms. The approaches of both sets are reviewed and discussed, with

detailed introductions to several widely used schemes.

Chapter 3 evaluates and compares CUSUM and adaptive CUSUM. It ex-

plained the classical CUSUM method and its limitations. Furthermore, it in-

troduces the use of log-likelihood ratios to improve detection sensitivity for

non-stationary time series. It details the implementation process and experimen-

tal setup and compares the results of adaptive CUSUM and traditional CUSUM

for apnoea detection. The main contributions of this work are as follows.

• An adaptive CUSUM algorithm for detecting apnoea events is introduced.

• A reasonable subgroup process is proposed for threshold adjustment to

improve detection accuracy.

• Adaptive CUSUM is confirmed to be more effective than the traditional

CUSUM method on NSRR data [21]. Combining the two data results has

higher accuracy.

Chapter 4 explores machine learning techniques for sleep apnoea classification,

including the Dirichlet Process Gaussian Mixture Model (DPGMM) and the

Rusboost algorithm based on imbalanced datasets. It explains the preprocessing

steps, feature extraction, and classification methods used. A comparative evalua-

tion of different machine learning models, including SVM and KNN, is performed

on the ECG-Apnoea [1], CHAT [2] and StVincent [3] data. The results of feature
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fusion are also compared in this chapter. The main contributions of this work

are as follows:

• A low-cost approach using blood oxygen and pulse data to detect sleep

apnoea is introduced, allowing patients to monitor sleep signals at home

conveniently.

• A classification framework is implemented using Dirichlet Process Gaussian

Mixture Model (DPGMM).

• The RUSBoost algorithm is introduced to improve the prediction bias

problem caused by imbalanced datasets in sleep apnoea detection.

• Compared different machine learning methods for apnoea detection, includ-

ing SVM, KNN, etc.

Chapter 5 centres on deep learning models for sleep apnoea detection, par-

ticularly Convolutional Neural Networks (CNNs). It explores the design and

implementation of CNN-based classifiers and their integration with SVM and

RNN models. The main contributions of this chapter are as follows:

• A deep learning approach is proposed for detecting sleep apnoea using

pulse and SPO2 signals. Three deep learning methods are adopted and

compared: CNN, a CNN-SVM model, and a CNN-RNN model. The RNN

block includes GRU and BiGRU structures.

• The effects of different signal fusion strategies, dropout probability set-

tings, and window overlap lengths on detection performance are evaluated.

Specifically, two fusion strategies are compared: signal stage fusion and

feature stage fusion.

• The performance of the proposed approach is evaluated on a public dataset,

St.Vincent University Hospital. The validation results show that combining

the pulse and SPO2 signals using the proposed CNN-GRU architecture

outperforms the single signal model, yielding satisfactory performance.
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Chapter 6 summarises the key findings and contributions of the research.

It discusses the implications of the proposed framework for home-based and

clinical sleep apnoea detection. Finally, it outlines potential future research

directions, including real-time implementation, further dataset validation, and

the integration of wearable devices for continuous monitoring.

1.4 Associated Publications

The main results from this research are disseminated in one journal paper and

two conference papers:

[J1] D. Yang, J. Zhang, H. Elphick, E. Bhargava, L. Mihaylovaa, Machine

Learning Methods for Sleep Apnoea Detection Based on Imbalanced Pulse and

Oximetry Data, Journal of Machine Learning in Fundamental Sciences, 2025(1).

[C1] D. Yang, E. Bhargava, H. Elphick and L. S. Mihaylova, "An Adaptive

CUSUM Approach for Automating Sleep Apnoea Analysis Based on Pulse and

Oximetry Data," In Proceedings of the 2023 IEEE International Conference on

Mechatronics and Automation (ICMA), Harbin, Heilongjiang, China, 2023, pp.

557-562

[C2] D. Yang, J. Zhang, H. Elphik, E. Bhargava, S. Dogramadzi, L. Mihaylova,

Deep Learning Methods for Apnoea Detection Based on Pulse and Oximetry

Data, In “Proceedings of the 11th IEEE International Conference on Data Science

and Systems, Exeter, UK, 2025, Institute of Electrical and Electronics Engineers

(IEEE), 2025.





Chapter 2

Literature Review

2.1 Evaluation Metrics

In binary classification, the confusion matrix categorizes outcomes into four

types [22]: true positives (TP), which are instances accurately identified as

positive; false positives (FP), which denote negative instances mistakenly labelled

as positive; true negatives (TN), which represent negative instances correctly

classified as such; and false negatives (FN), which pertain to positive instances

incorrectly classified as negative.

In the comparative analysis, accuracy (ACC), sensitivity (SEN), specificity

(SPE), F1 score, and Cohen’s kappa were utilized. The area under the Receiver

Operating Characteristic (ROC) curve, which is the area under curve (AUC), is

also used. These evaluation indicators are defined as follows:

ACC =
TP + TN

TP + FN + TN + FP
, (2.1)

SEN =
TP

TP + FN
, (2.2)

SPE =
TN

TN + FP
, (2.3)

Equation (2.1)-(2.3) calculates accuracy, sensitivity, and specificity, which are

critical metrics for assessing classifier performance. However, these metrics can

be misleading in cases where there are significant class imbalances.
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The F1 score [23], a more robust metric, is defined as a weighted average of

precision and recall, shown in equation (2.4).

F1 = 2 · precision · recall
precision+ recall

, (2.4)

precision =
TP

TP + FP
(2.5)

Because sensitivity and recall are mathematically equivalent, the F1 score in

this paper utilizes the term “recall” to discuss the classifier’s ability to correctly

identify actual positive cases, which is apnoea, as well as actual negative cases,

which is normal. This distinction is crucial for the F1 score calculations that

follow, where recall for “apnoea” equates to sensitivity, and recall for “normal”

assesses the correct identification of non-apnoea cases.

Cohen’s kappa [24] is a statistical coefficient designed to quantify the level of

agreement between observers. It represents the observed agreement adjusted for

the agreement that would be expected by chance:

Kappa =
po − pe
1− pe

, (2.6)

po = ACC, (2.7)

pe =
∑
i

pi+ ∗ p+i, (2.8)

where pi+ and p+i represent the ith row probabilities and ith column probabilities.

AUC, or Area under the curve [22], is ideal for assessing binary classification

models on imbalanced datasets. It measures the area beneath the ROC curve,

which plots the true positive rate against the false positive rate at various

thresholds. AUC evaluates performance without bias from class distribution,

making it crucial for datasets where one class predominates.
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2.2 Medical Relevance of SPO2 and Pulse Signals

in Sleep Apnoea Detection

Sleep apnoea is a common breathing disorder characterised by repeated inter-

ruptions of breathing during sleep. These events can cause a significant drop in

blood oxygen saturation (SPO2) and changes in heart rate, making SPO2 and

pulse signals clinically important indicators for its detection. These physiological

signals are typically obtained through pulse oximetry, and their non-invasive

nature makes them a crucial component of clinical polysomnography and home

monitoring systems. The pulse oximeter is widely recognised as an effective and

clinically validated instrument for measuring peripheral SPO2 and pulse rate. In

the context of sleep apnoea, recurrent apnoea and hypopnea episodes result in

periodic hypoxaemia, which can be easily observed in the SPO2 signal. Both

diagnostic and screening contexts have employed these desaturation episodes,

which correlate with the severity of apnoea [25]. Photoplethysmography (PPG)

[26], the primary method used for sensing, also detects changes in pulse shape

and heart rate, which are affected by the sympathetic nervous system’s response

during apnoea events.

Although both SPO2 and pulse can be used independently for apnoea de-

tection, they have disadvantages. For example, single SPO2 signal may not

adequately capture the autonomic effects 1 of apnoea [27], especially in events

where desaturation are limited or delayed. In addition, unrelated physiological

factors, such as changes in sleep stage or motion artifacts, may impact pulse-

derived parameters such as heart rate variability (HRV) [28]. Therefore, the

models based on a single signal may have poor diagnostic accuracy.

Combining these two signals provides a multifaceted view of the physiological

effects of sleep apnoea. PPG pulse measurements provide information about car-

diovascular and autonomic disorders, while SPO2 indicates impaired respiratory

function through decreased oxygen saturation. By integrating multiple signals,
1Autonomic effects of apnoea include sympathetic activation and cardiovascular responses,

which may occur even without obvious desaturation
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machine learning algorithms can detect patterns across multiple data sets that

may not be clear or adequately expressed in a single signal. In wearable and

home monitoring settings, this combination is very beneficial when diagnostic

resources are limited, but physiological complexity is still considerable [29].

Recent studies have investigated combining ECG [30], airflow [31], and respi-

ratory effort [32] to improve automated apnoea detection systems. While some

of these approaches require multiple sensors and clinical settings, the combi-

nation of SPO2 and pulse signals offers a balance between diagnostic richness

and hardware simplicity. In this study, SPO2 and pulse signals were not only

analysed as separate input streams but were also concatenated into a joint feature

representation. This design aims to use the extra information from both types of

signals and to see if combining them helps better identify sleep apnoea.

This design is consistent with the observation that sleep apnoea impacts more

than one bodily system, especially the respiratory and cardiovascular systems.

It also reflects a growing trend in clinical research, where combining signals

is used to make models more reliable and easier to apply to different types of

data. However, effective pre-processing is important to the success of this type of

signal fusion. The model will learn false patterns or underperform if the signals

do not match correctly in time or there is too much noise. Using real-world

data collected outside of controlled settings makes these challenges much more

important. This study compared the fusion of signals under varying overlap

conditions.

Combining SPO2 and pulse signals provides a reliable and useful way for

detecting sleep apnoea. It advances the primary objective of this study, which is

to provide an affordable, non-invasive, and expandable method for early screening.

2.3 Related Work on Sleep Apnoea Detection

In the long history of sleep research, detecting sleep apnoea has remained an

ongoing challenge. Fabio Mendonca and his colleagues published a review on
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sleep apnoea detection [14], evaluating the performance of different algorithms

and methods using various sensors, such as pulse oximeters, ECG, respiratory

signals, sound, and combined approaches. This work also reviews existing

algorithms whose performance has been validated experimentally, even if they

have not yet been implemented in hardware, to predict trends in obstructive

sleep apnoea detection. The authors provide valuable insights for researchers

interested in hardware implementations of signal-processing algorithms. The

paper also discusses using acoustic signals to detect apnoea events, enhancing

the understanding of software implementations. However, a limitation of this

study is that it predominantly focuses on single-signal detection methods. As

the field evolves, there is a growing trend toward combining multiple signals for

more accurate and robust apnoea detection.

The following section presents some studies on sleep apnoea detection based

on the work of Mendonca et al. [14] and is divided into two parts according to

the type of signal used.

2.3.1 Detection Based on ECG and EEG signal

Since brain activity is highly correlated with sleep apnoea, EEG and ECG

are always considered signals for investigation, even though their acquisition is

complex. In 2017, Gokhan Memis and Mustafa Sert presented a multimodal

approach for the OSA classification task [33]. They extracted features from

ECG and SPO2 signals, combined them with appropriate fusion methods, and

fed them to learners. The researchers use Support Vector Machine (SVM)

and k-nearest neighbours (kNN) classifiers to demonstrate the effectiveness of

their proposed method by considering different test scenarios. Moreover, in

all scenarios, the average accuracy of the SVM method is 96.64%, which is

the best classification method among the proposed multimodal methods with

feature-level fusion. Although the author provides good training ideas, he does

not describe the details of the selected features. Therefore, despite the impressive

performance, it remains possible that the results are attributable to the selected
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features being particularly well-suited to the specific dataset. In addition, they

did not discuss the sensitivity of their model, which means that the robustness

and generalizability of the proposed approach cannot be fully assessed. Therefore,

we adopted their idea of feature fusion, but added more evaluation criteria to test

the robustness of the model. Zhao et al. [34] introduced a method for classifying

OSA and CSA by analyzing the properties of sample entropy and variance within

two sub-bands of electroencephalogram (EEG) signals. The classification was

performed using several machine learning techniques, including SVM, random

forests (RF), and kNN, and reached high accuracy, which is impressive.

Different from the articles introduced above, the classification of EEG signals,

published in 2019 [35], uses different frequencies to classify. Using frequency

to study the signal can extract features more intuitively, which is very helpful

for classifying sleep stages. This work employs energy, entropy, and variance

computed for each frequency band obtained from the decomposed EEG signal.

Like this author, Wu Huang [36] proposed using frequency as a classification

method. However, instead of extracting statistical measures from decomposed

bands, Huang treated frequency analysis as a pre-processing step by applying

multi-channel signal superposition in the frequency domain and derived 12 rele-

vant features. These features were subsequently used to train an SVM classifier,

achieving a classification accuracy of 98.28%. In 2011, Varun Chandola published

an article introducing a Gaussian Process Based Online Change Detection Algo-

rithm [37]. He gave a detailed algorithm of Gaussian processing (GP) and added

further calculations of Gaussian parameters. The new algorithm, called Toeplitz-

SolveInc, is more efficient, computationally faster, and can have more cloud

memory than the old one. To prove that his algorithm is more efficient, he also

gave a table [37] (Table 2.1) to show other time series algorithms performance,

such as Seasonal Autoregressive and Integrated Moving Average (SARIMA),

Recursive Merging (RM), Cumulative Sum method (CUSUM), Log-likelihood

Ratio Test (LRT) and Bayesian Online Change Detection (BOCD). In this table,

Synthetic (SYNC1, SYNC2, SYNC3) datasets is an artificially constructed time
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series used to test the performance of the algorithm at known change points.

Normalized Difference Vegetation Index (NDVI1, NDVI12,NDVI13) time series

is satellite remote sensing data used to monitor vegetation changes.

Table 2.1 Relative Performance of Different Change Detection Algorithms.

GPC SARM RM CSUM LRT BOCD
SYNC1

√ √ √
×

√
×

SYNC2
√

×
√

×
√

×
SYNC3

√ √ √
× × ×

ECG1
√

N A
√ √

×
√

ECG2
√

N A
√ √

×
√

NVDI1
√

× × × × ×
NVDI2

√ √ √
×

√
×

NVDI3
√ √ √

× × ×
NVDI4

√ √ √ √ √
×

Table 2.1 gives references on which method is suitable for ECG signal. Com-

pared with the automatic calculation of parameters above, the article [38] pub-

lished in 2016 gives a new application idea of Gaussian parameters. This paper

presents the recently proposed modelling of normal inverse Gaussian (NIG)

probability density function (pdf) modelling in the adjustable tunable-Q factor

wavelet transform (TQWT) domain for computer-aided sleep apnoea diagnosis

from single-lead ECG signals. The researchers calculated the corresponding NIG

parameters based on the subbands of each ECG signal segment decomposed by

TQWT, which are used as features in the proposed apnoea detection algorithm.

The advantage of this algorithm is that the characteristic parameters are intu-

itively given. However, as Varun said, the calculation and parameter selection

increase the workload. Despite this, the performance of this algorithm is also

superior after all the parameters are explicit.

2.3.2 Detection Based on Oximetry and Pulse Signal

Although the ECG and EEG signals are suitable for detection, collecting EEG

and ECG data is quite complicated. In comparison, the blood oxygen and pulse
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signals selected in this experiment are relatively more straightforward to obtain,

which is the same as what Chutinan et al. [39] used. He employed sleep sounds,

SPO2, and pulse rate to detect sleep apnoea. A notable innovation introduced in

their methodology was the fusion of SPO2 and pulse rate data into a singular

signal for the training phase, which resulted in an accuracy of 79%. While this

accuracy is lower in comparison to previous studies on apnoea detection, it is

important to note that the dataset utilized was characterized by an imbalance,

with only 10% positive cases. This imbalance significantly influenced the training

process, skewing the results towards negative predictions. The studies mentioned

earlier all focused on analyzing the characteristics of signals based on time

information. However, information about frequency, as recommended by the

AASM [17], is very useful for detection. Using this frequency information well can

help improve the model. Verónica [29] uses the wavelet transform to analyze an

overnight airflow signal and get 90.99% accuracy on OSA detection. He suggested

using the order of the appropriate frequency band for feature selection, which is

a good way to reduce information loss. In addition, he compared the accuracy

of different classification models and found that AdaBoost.M2 performed best

among other classifiers, which inspired this article.

Li et al. [40] proposes a new framework based on a clustering method, the

DPGMM, which is introduced in this paper. She used the wavelet transform

to generate features from SPO2 in the frequency domain. In her research, two

datasets are used and compared. One dataset achieves an accuracy of 97.01%,

making it a very effective classifier. However, the performance with the other

dataset is slightly inferior under this model. The difference between the two

datasets stems from the balance of the data, which is a common issue in medical

testing. This is also the issue that is discussed in this experiment. Regarding

training with imbalanced data, Ahnaf [41] gives a RUSBoost application on sleep

apnoea identification that is similar to this paper. He uses ECG data and its

spectral data to take features. The accuracy of his experiments is 85.37%, which

is the highest in his experiment. In his further research [30], he added the TQWT
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technology, which is very useful in decomposing ECG signals and increased the

accuracy to 88.75%.

In a recent publication, Manish Sharma [32] and colleagues explored multi-

signal detection of sleep apnoea, comparing the effects of balanced and unbalanced

data using the RUSboost algorithm. They achieved an accuracy of 89.39% in

the optimal data combination and reported an area of curve (AUC) of 0.905.

However, the study did not compare the performance across different algorithms

with the same dataset, limiting a deeper understanding of how data imbalance

affects detection efficacy. Additionally, while the researchers balanced the data

in their experiments, they did not specify the method used. If the data were

merely down-sampled, this could result in the loss of critical information from

the balanced data, potentially skewing the accuracy of the results. Daniel [42]

lists several simple feature fusion methods for the multi-signal feature fusion

technique. And how to use it is also listed in detail. This is very helpful for the

feature fusion part later in this article.

2.4 Change Detection within Non-Stationary Time

Series

Sleep apnoea can also be regarded as an abnormal signal or change point de-

tection to determine whether a disease exists. Therefore, in addition to using

different signal features, an endless stream of research focuses on the time series

signal itself. Change point detection (CPD) is helpful in time series modelling

and forecasting [43] and in applications such as medical condition monitoring,

climatic change detection, voice and image analysis, and human activity analysis.

Many of the proposed approaches for identifying change points in time series are

enumerated, classified, and compared by Aminikhanghahi and Cook [43]. Ac-

cording to this survey, the window size influences practically all change detection

techniques. Combining various window widths can be an effective way to use the

best window length for each subsequence.
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The sleep signal is instantaneously observed, and real-time change detection

can be a future development trend. Thomas [44] proposed a more suitable

method for changing detection: CUSUM and kernel-based methods for online

detection. Although this algorithm is widely used, it primarily involves com-

paring detection change scores with a threshold to determine if a change has

occurred, making selecting an optimal threshold challenging. Furthermore, these

methods are typically designed for stationary sequences, whereas sleep signals

are predominantly non-stationary. One of the ongoing challenges in CPD is

effectively handling non-stationary time series. This section primarily introduces

various applications for CPD and discusses the CUSUM algorithm, including its

role in sleep apnoea detection.

2.4.1 Related work

The CPD issues consist of spotting abrupt changes in data when a feature of

the time series changes [45]. Sometimes used interchangeably are similar ideas:

segmentation, edge detection, event detection, anomaly detection, and changing

point detection. CPD is closely related to the currently accepted problem of

change point estimate [46]. Change point estimations, however, mostly define

the kind and extent of the found change. Data mining, statistics, and computer

science have all seen CPD investigated during the past few decades. Based on

their 2017 survey, Aminikhanghahi and Cook [43] classified several main uses for

CPD shown below. The methods involved in these purposes are also frequently

used in apnoea.

The first is medical condition monitoring. The identification of patterns

in physiological indicators like heart rate, electroencephalogram (EEG), and

electrocardiogram (ECG) makes automated, real-time monitoring of patient

health possible.

For lesion changes in multiple sclerosis (MS) patients, Bosc et al. [47]

developed an automated multimodal serial MRI method. They combine brain

extraction, picture registration, intensity normalisation, and hypothesis testing



2.4 Change Detection within Non-Stationary Time Series 21

using the generalised likelihood ratio test (GLRT). The approach discovers little

variations in a large population with relapsing-remitting multiple sclerosis better

than by hand identification. Automated medical imaging technologies such as

this accelerate diagnosis by processing large volumes of data far more rapidly than

human assessment, while maintaining consistent accuracy and reducing inter-

observer variability [48][49]. These properties illustrate the speed and precision

with which automation can support clinical decision-making in neuroimaging.

Apart from medical visuals, time series is another approach that is often

utilised to convey medical information. Especially for ECG recordings, Bayesian

change point detection has helped improve time-series data processing, especially

for ECG recordings. Conventional methods, which rely on statistical tests or

predefined thresholds, are computationally expensive and find it difficult to detect

minute changes in brain activity. Malladi et al. [50] show that Bayesian models

and linear complexity techniques are fit for real-time segmenting of epileptic

activity. Furthermore, their method can generate approximations, which reduces

the quadratic complexity of these methods and raises their efficiency.

Furthermore, CPD is needed in sleep analysis. Progressive Detrended Fluctu-

ation Analysis (PDFA) was introduced by Staudacher and associates for online

HRV altering point identification during sleep [51]. The method follows real-time

HRV transitions, sympathetic activity, and brief moments of wake during sleep

phase changes. Since PDFA can be separated between rapid eye movement

(REM) and non-rapid eye movement (NREM) sleep periods, it is a possible

technique for examining sleep patterns. It can manage PSG data for the whole

night, making it suitable for clinical and research sleep monitoring. Developing a

real-time system to identify significant heart rate fluctuations in anaesthetised

youngsters, Ansermino et al. [52] Using an adaptive Kalman filter, the method

models heart rate signals and aggregates Exponential Weighted Moving Aver-

age (EWMA) predictions with CUSUM testing to identify clinically significant

changes. This technique enables doctors of anaesthesia to track and react to

physiological changes during paediatric surgeries. Furthermore, the implementa-
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tion of CUSUM reveals that it may be used for change point detection, which

offers concepts for the later usage of CUSUM for binary classification.

The second area for CPD is speech recognition. Speech recognition is the

technique of converting spoken words or phrases into written form. However,

in apnoea detection, speech recognition is obviously related to audio detection.

Change point detection methods help to segment audio and separate noise from

words, phrases, sentences, and silence. Compared with apnoea detection, the

CPD method helps to distinguish snoring from normal breathing. In addition, in

sleep classification, it is also particularly important to separate the noise pattern

in the sleep signal.

Le et al. [53] used an audio dataset to detect sleep apnoea based on breathing

sounds. They split the data into two (no apnoea, apnoea/hypopnoea) or three

categories (no apnoea, hypopnoea, apnoea) using 1 minute per epoch. They

applied weights to the deep learning network model to handle the data imbalance

to achieve the best classification. The binary classification result achieved an

accuracy of 88.8%. The best weights for no apnoea, apnoea, and hypopnoea were

1.0, 1.3, and 2.1, respectively. Although the results far surpassed the relevant

studies at that time, the weighting was too dependent on the data. Changes

in the source of the data set will affect the choice of weights. Although the

results far surpassed the relevant research at that time, the weighting was too

dependent on the data. Changes in the source of the data set will affect the

choice of weights. However, this study still provides a strong basis for detecting

apnoea in audio data.

In audio recognition, the audio spectrum is commonly used. Serrano et

al. [54] proposed an audio-based technique for detecting and classifying OSA

syndrome, depending on Mel-spectrograms 2 generated from ambiently recorded

sleep noises. Apnoea detection and AHI estimation are performed using their

method, combining a pre-trained VGGish convolutional neural network with

a Bidirectional LSTM (biLSTM) network. The model demonstrated great ac-
2A mel-spectrogram is a sound representation that shows how energy is distributed over

time and frequency, with the frequency axis adjusted to match human hearing sensitivity.
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curacy, recall, and F1-scores based on five-fold cross-validation on a dataset of

192 patients. Particularly, low-cost, non-invasive equipment like smartphone

microphones suggests the potential for at-home applications. The capacity to

generalise to various populations and real-world noise conditions, however, like

with other deep learning models, stays to be verified. Especially in environments

where traditional polysomnography is difficult or unavailable, the study con-

tributes to the expanding field of work regarding audio-based replacements to

classic sleep study methods.

Two other similar areas of change detection are based on medical image

analysis and video analysis. Images find use in many fields, from remote sensing

to surveillance to medical diagnosis and treatment to civil infrastructure to

underwater sensing [55]. Finding diverse points of view in several photos of the

same scene taken at different times has drawn a lot of interest. Acknowledging

unanticipated events like abnormal sleep imaging could be seen as a change point

problem.

Jagadeesh P. et al. [56] presents a detection method for sleep apnoea syndrome,

termed the Sleep Apnoea Analysing Strategy (SAAS), which integrates image

preprocessing, feature extraction, and neural network classification to enhance

diagnostic accuracy and efficiency. In comparison to the conventional image

analysis model, SAAS has demonstrated a superior prediction accuracy of 96.84%

during numerous training cycles, significantly reducing both the false positive

rate and the false negative rate. This method relies on recognising essential

anatomical features in medical imaging techniques like X-rays, CT scans, or

MRIs, which provide an early identification and classification of sleep apnoea

without an expensive and complex PSG. This study represents a more pragmatic

and proactive way to enhance intelligent medical systems.

Chiu et al. [57] presented a video-based, contactless approach for detecting

sleep apnoea that uses a single RGB camera to capture respiratory movements

and physiological signs throughout nocturnal sleep. Their methodology includes

optical flow from the nose and throat areas to evaluate respiratory effort and
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incorporates remote photoplethysmography (rPPG) to extract HRV features.

Two deep learning models are employed: one for segment-level classification of

apnoea events and another for estimating AHI severity. The system achieved

an accuracy of 78.45% in per-segment detection and 76.47% in per-recording

AHI classification, based on a dataset of 61 participants annotated via standard

PSG protocols. In comparison to contact-based ECG devices, the results are

approximately equivalent. However, the approach is significantly more user-

friendly as it is non-invasive and inconspicuous. The limited dataset and its

reliance on infrared lighting conditions could affect its applicability to other

situations. This study demonstrates the increasing use of camera-based health

monitoring and the application of deep learning to extract diagnostically valuable

information through non-contact approaches.

Video analysis is normally related to human activity analysis. By means of

aspects of observed sensor data from mobile devices or smart homes, changing

point identification here detects activity breakpoints or transitions [43]. These

change points will help activity-aware services, segmenting activities, interact with

individuals with minimum disturbance, and spot behavioural changes exposing

information on health issues.

Using data from sensors in wearable devices and cellphones, human activity

recognition [58] groups daily activities, therefore enabling applications including

elder care, rehabilitation, and wellness management. Conventional Machine

Learning approaches depend on human-generated traits, so they often find

challenges in complex activity detection. By automating feature extraction,

improving accuracy, and controlling temporal dynamics in data, Deep Learning

methods [59] solve these restrictions.

2.4.2 Applications of CUSUM Algorithm

The CUSUM control chart is a widely used statistical process control tool for

detecting small, sustained changes in process parameters, initially developed for

quality control in industrial contexts. Recent advances have seen the application
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of CUSUM methods in various domains, including public health surveillance,

signal change detection, and ecological monitoring. This subsection summarizes

the key developments in CUSUM, particularly adaptive versions.

CUSUM method on real-time detection

Mesnil and Petitgas [60] illustrated using the CUSUM method to monitor aquatic

ecosystems, specifically to detect persistent changes in fish stock indicators. This

study demonstrated the flexibility of the CUSUM chart for ecological monitoring,

allowing for the detection of shifts in environmental indicators based on real-time

survey data. This also provides the basis for real-time detection of sleep apnoea

using the CUSUM method. In addition, the authors emphasized the importance

of tuning CUSUM parameters, such as the reference value (k) and decision

interval (h), to balance the prompt detection of significant changes and minimise

false alarms. In our case, the reference value k is set to the mean of the sample

data, representing the expected baseline under normal conditions. The decision

interval h is defined as the window size, which determines the temporal resolution

of detection. A larger window improves robustness to noise, while a smaller one

increases sensitivity but may raise false alarms. This setting ensures that the

CUSUM test is aligned with the time scale of the analysed respiratory segments.

Furthermore, Mesnil and Petitgas’ work highlighted the challenges of setting

appropriate thresholds for CUSUM charts in natural resource monitoring, where

data variability can often confound change detection efforts. The threshold

selection of CPD has always been an issue worthy of study, but the error it brings

can be reduced by replacing CUSUM with Adaptive CUSUM.

Adaptive CUSUM for detecting changes in various signals

Alippi and Roveri [61] presented an adaptive CUSUM-based test for detecting

changes in the behaviour of various signals, focusing on applications such as fault

detection and climatic phenomena. Unlike traditional CUSUM, which requires

fixed parameters defined at design time, the adaptive approach introduced by
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Alippi and Roveri allows the test parameters to be automatically adjusted based

on the evolving data characteristics. This adaptability makes the method suitable

for scenarios where the parameters of the underlying signal are not known a

priori, or when they evolve, such as a sleep signal. The authors showed that this

adaptive mechanism enhances both the timeliness and effectiveness of change

detection compared to traditional methods, especially in cases where abrupt

changes are mixed with smoother, long-term drifts.

Adaptive CUSUM for time series data

Vanli and Giroux [62] proposed an adaptive CUSUM method to monitor integer-

valued time-series data, which is especially useful for applications like public

health surveillance where count data often exhibit seasonality and autocorrelation.

Traditional CUSUM methods are limited in requiring the specification of a

particular mean shift size, which can lead to suboptimal detection when the

actual shift differs from this design value. The adaptive CUSUM introduced

by Vanli and Giroux addresses this issue by using an EWMA to estimate both

level and trend changes, allowing the detection mechanism to adapt to varying

shift magnitudes. Their work also incorporated an Integer-valued Generalized

Autoregressive Conditional Heteroskedasticity (INGARCH) model to account for

autocorrelation and seasonality, making it particularly suitable for count data

like infectious disease occurrences, which often show temporal correlations

2.5 Wavelet Transform on Feature Extraction

2.5.1 Wavelet Transform

Wavelet transform (WT) has become a widely used mathematical tool for the

multi-resolution decomposition of time series signals and has potential appli-

cations in the field of computer vision [63]. The pulse and oxygen signals are

non-stationary and originate from a nonlinear system, and WT can identify

subtle morphological changes in non-stationary signals [64]. The WT is divided
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into discrete wavelet transforms and continuous wavelet transforms. Compared

to the continuous wavelet transform (CWT), the discrete wavelet transform

(DWT) can reduce computational complexity and capture frequency and time

location information more effectively than the discrete Fourier transform (DFT).

Figure 2.1 illustrates the computation of the DWT. x[n] here is the pulse

Fig. 2.1 Decomposition process of a signal using DWT

and SPO2 signal segment. It gives a filter bank tree. Each level has a high-pass

filter g[n], which is the mother wavelet, and a low-pass filter h[n], which is the

mirror version of the mother wavelet. The relationship between h[n] and g[n] be

described as equation (2.9). It is taken from Rioul and Vetterli [65]

g[L− 1− n] = (−1)n · h[n]. (2.9)

The coefficients from the high-pass filter are called detail coefficients, which are

used to compute features. The coefficients from the low-pass filter are called

approximate coefficients. These approximate coefficients will be downsampled

by a factor of two and further decomposed into another set of approximate and

detailed coefficients. This process will continue for N = log2(M) times, where

M is the length of segment x[n] [66]. The approximation coefficients ai and the

detail coefficients di can be calculated as follows

ai[k] = σnan−1[n] · h[2k − n],

di[k] = σnan−1[n] · g[2k − n]
(2.10)
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where a0 is the raw signal segment value x[n], and i is the level. Since the

invention of the wavelet transform, many experts have created many different

types of wavelets. This experiment mainly compares Daubechies series wavelets

(db) 1 to 4, among which db1 is the well-known Haar wavelet. Figure 2.2 shows

the wavelet used in this research. Different wavelets apply to different signals

due to their different shapes, which will be confirmed later in the performance of

each chapter.

Fig. 2.2 Different wavelet plot

2.5.2 Wavelet Based Features

In this study, the signal was divided into multiple 1-minute windows. Since the

sampling frequency of each signal is different, the number of values used for

calculation is also different. Additionally, typical hyperpnoea (also referred to

as apnoea in this study) following apnoea episodes occurs between 0.784–0.890

Hz events, which increase the respiratory rate. Children who tested positive

for apnoea exhibited greater variability in the Power Spectral Density (PSD)
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range of 0.35–0.43 Hz [31]. Therefore, experiments will select levels that contain

frequencies within this range. For instance, Figure 2.3 shows an example of

SPO2 signal whose sample rate is 10 Hz and whose level 4 and 5 coefficients are

used. After obtaining the required detail coefficients, the following features are

Fig. 2.3 Decomposition process of a signal using DWT

extracted to measure the information they contain:

• Mean Energy: The average energy found in the wavelet detail coefficients

varies between “apnoea” and ‘normal’ segments, making it a useful feature

for differentiation. The average energy E of a fragment is calculated as

follows:

E =
1

N
ΣN

i d(i)
2

, where d(i) represents the i-th element of the wavelet coefficients for a

segment and N denotes the total number of coefficients.

• Statistical features are computed, including range, variance, and maximum

value.
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• Number of the large coefficients [40]: The count of points exceeding the

threshold can serve as a feature to differentiate the "apnoea" segment from

the "normal" segment in signal measurements. However, this feature is

uncertain. The original work utilized this feature to achieve high accuracy,

but the threshold selection is subjective. Additionally, if this feature is

used, the signal needs to be resampled. To avoid this, the CUSUM [61]

method is used to judge different thresholds.

2.5.3 Statistical Features Introduction

Feature extraction mainly targets signal and wavelet transform detail coefficients,

which are introduced in Section 2.5.1. The specific features for signal values are

as follows:

• Variance: Since the variance of apnoea subsequences is usually higher than

the variance presented in normal subsequences [67], variance can be used

as a classification feature for the classifier.

• Range: The range is determined by the difference between the highest and

lowest signal values within a segment. Typically, SPO2 values decrease after

apnoea events and remain relatively stable during normal subsequences. In

addition, pulse values usually oscillate more during apnoea and less during

normal subsequences. Therefore, the range can be selected as a feature to

detect apnoea.

• Average: SPO2 values usually drop after an apnoea event. The average

value of the SPO2 segment may change after an apnoea. By observing

the changes in the pulse signal, it can be found that the pulse signal has

evident oscillations during the apnoea event. If it occurs for a short period,

it appears as a falling signal with a very high slope.

• Minimum: SPO2 values typically decrease significantly following apnoea

events, as previously mentioned, which is not a prevalent occurrence in
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normal sleep. Consequently, evaluating the minimal SPO2 value within

a segment is advantageous. Similarly, the minimum pulse value typically

decreases substantially within the apnoea event segment due to the large

oscillations.

• Kurtosis [68]: The peakedness of a signal can be ascertained using kurtosis.

A dataset with a kurtosis more significant than zero is characterised by

a higher peakedness and more extreme values. A flatter distribution is

indicated by a kurtosis that is less than 0. The stability of both SPO2

and pulse signals is altered following an apnoea event. Compared to the

’normal’ segment, the kurtosis value of the abnormal segment increases.

• Shannon Entropy [69]: Shannon entropy is a metric that quantifies the

amount of information in a system using the probabilities of various scenar-

ios. It quantifies the changes in energy distribution during the decomposi-

tion process, illuminating the fundamental dynamic behaviour and signal

irregularities. The Shannon entropy escalates with a rise in uncertainty of

an event or entity and diminishes with a drop in uncertainty.

2.5.4 Related work

Feature extraction and classification techniques are critical in signal processing

for cognitive task recognition. This subsection will introduce recognition and

classification applications based on wavelet transform and feature selection.

The most common application is combined with human biological signals.

For example, when analyzing EEG signals, artefacts are disturbances that may

occur during signal acquisition, which affect the signal analysis. Kousarrizi [70]

and his colleague uses the wavelet transform alongside various learning methods

to identify trials that contain artefacts. Wavelet transform techniques efficiently

extract pertinent information from EEG data, tackling noise and signal artefacts.

This study shows the viability of employing wavelet transform with classification

methods utilising machine learning or deep learning techniques.
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As comprehension of wavelet transform advances, individuals analyse the

correlation between wavelet coefficients and classification tasks. Amin et al. [71]

applied the DWT to sleep apnoea detection, demonstrating its effectiveness in

computing relative wavelet energy from approximation and detail coefficients

across multiple decomposition levels. The features were categorised using machine

learning approaches, such as SVM, multi-layer perceptrons (MLP), and kNN.

The method attained above 98% classification accuracy. This highlights the

capability of DWT for accurate and effective EEG signal classification.

Due to the wide variety of wavelets, scientists have also begun to try to

use targeted wavelets to transform signals to obtain better features. A TQWT

and a statistical approach are proposed to analyse various EEG records and

classification of epileptic seizures [72]. The research utilises TQWT to decompose

EEG signals into subbands, facilitating the extraction of statistical features for

classification through machine learning techniques. The approach effectively

distinguishes brain signals, showing its promise for various EEG classification

applications.

In addition to biological signals, wavelet transform has achieved significant

advances in engineering. Syed and Muralidharan [73] use the DWT to diagnose

issues in planetary gearboxes. DWT collects statistical information by decom-

posing the vibration signal into frequency bands. The information can then be

gathered using machine learning methods. This study proves that DWT outper-

forms alternative fault classification methods, demonstrating its dependability

for equipment condition monitoring and fault detection.

2.6 Machine Learning and Deep Learning

The introduction of artificial intelligence (AI) into the medical field has always

been a typical application, and sleep apnoea applications are no exception.

Artificial intelligence algorithms can generally be classified into machine learning

and deep learning. This section mainly introduces the relevant machine learning
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algorithms and deep learning algorithms used in this study. Applications in the

past decade are also introduced at the end.

2.6.1 Imbalanced Data

Imbalanced datasets frequently occur in practical applications and may signifi-

cantly affect the classification accuracy of machine learning systems. This issue

occurs when the number of instances in one class significantly differs from that

of other classes, leading traditional classifiers to preferentially select the majority

class while frequently ignoring the minority class [74]. This problem is common

in practical applications such as fraud detection, medical diagnosis, and other

applications where minority groups are less frequent but often more important.

Many approaches have been tried to solve the classification problem of imbal-

anced datasets. Ganganwar [75] presents an extensive review of the challenges

and solutions of handling imbalanced datasets for classification tasks. A common

approach to dealing with imbalanced data problems is to rebalance the data

through oversampling or undersampling artificially. The representative algorithm

for oversampling is Synthetic Minority Over-sampling Technique (SMOTE), and

the representative algorithm for undersampling is Random under-sampling (RUS).

When the data is extremely unbalanced (usually 100:1 or higher), oversampling

and undersampling can be combined to achieve a better balance. In addition, the

article emphasizes that effectively solving the problem of class imbalance usually

requires combining data and algorithm-level techniques to optimize classification

performance, such as combining RUS with Boosting. In addition, he emphasizes

the importance of hybrid methods and specific environmental solutions.

2.6.2 Machine Learning Method

Machine learning is a broad field that spans information technology, statistics,

probability, artificial intelligence, psychology, neurobiology, and various other dis-

ciplines [76]. Several machine learning algorithms have been developed, improved,
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and refined. Machine learning algorithms are categorised into the following groups

according to the intended result of the algorithm:

1) Supervised learning [77] is a type of machine learning where a model is

trained on labelled data, using input-output pairs to learn a mapping

function that predicts outcomes for unobserved inputs.

2) Unsupervised learning [78] is a type of machine learning where a model

identifies patterns or structures in unlabelled data, often used for clustering

or dimensionality reduction.

3) Semi-supervised learning [79] integrates labelled and unlabelled instances

to produce an appropriate function or classifier.

4) Reinforcement learning [80] is the algorithm that develops a policy for action

based on its observations of the environment. Every action influences the

environment, offering input to inform the learning process.

This study uses supervised machine learning. This section briefly describes

the content of supervised machine learning and introduces several related basic

algorithms used.

Supervised learning involves generating models that predict outcomes based

on input features. Typically, the process is divided into two parts: training

and testing. During the training, algorithms discover patterns from labelled

datasets, which are subsequently tested on previously unobserved test data to

ensure the prediction accuracy. Supervised learning tasks are often classified

as either classification (discrete outcomes) or regression (continuous outcomes)

[81]. Here, we mainly discuss binary classification algorithms. Figure 2.4 gives a

general supervised classification architecture.

Decision trees

The decision tree algorithm is a supervised learning technique for classification

tasks. It recursively divides the dataset into subsets according to feature values,
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Fig. 2.4 Supervised classification architecture

forming a tree-like structure comprising decision and leaf nodes (see Figure

2.5(a)). The flow chart of the decision tree is shown in Figure 2.5(b). It can be

seen from the flowchart that Selecting the best Splitting measure is the focus of

the decision tree process. Below is an overview of the Splitting measures [82].

(a) Decision tree architecture (b) Decision tree flow chart

Fig. 2.5 Decision tree architecture and flow chart

First, Assume the decision tree training sample set is D. Each sample in D

belongs to one of m classes. Then, the Information entropy of D before and after

splitting are:

H(D) = −Σm
i=1pilogpi, (2.11)
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where m is number of classes (labels) and m = 2 here because this is a binary

classification. pi is the proportion of samples in D belonging to class i. Suppose

we split D based on an feature A. Let A have v possible values, which partition

D into subsets {D1, D2, ...Dv}. Then, the conditional entropy after splitting is:

H(D|A) = Σv
j=1

|Dj|
|D|

H(Dj) (2.12)

where |Dj| is the number of samples in Dj. Then, the information gain is

Gain(D,A) = H(D)−H(D|A) (2.13)

If A is the feature that maximizes the goodness measure, the gain ratio can be

computed:

GainRatio(D,A) =
Gain(D,A)

IV (A)
, (2.14)

IV (A) = −Σv
i=1

|Dj|
|D|

log2
|Dj|
|D|

, (2.15)

Another Splitting measure rule is Gini value:

Gini(p) = Σn
i=1pn(1− pn),

= 1− Σn
i=1p

2
n, = 2p(1− p),

(2.16)

where pn is the probability that the sample point belongs to n.

Linear SVM

Linear SVM aims to identify the optimal hyperplane that distinguishes data

points of varying classes in a feature space while maximising the margin between

the classes. Given a training dataset of n points of the form [(x1, y1), ..., (xn, yn)],

where xi is the data and yi is the label of xi. Normally, the yi are either 1 or -1,

which explains why the SVM can do a binary classification. For these data, the

purpose of SVM is to find the ’maximum margin hyperplane’ [83] that divides
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Fig. 2.6 SVM classifier: hard margin hyperplane [4]

point groups xi, one of which is divided by y = 1, and the other is y = −1. This

hyperplane maximises the distance between the hyperplane and the closest point

xi to any set. The hyperplane can be written as

wTx− b = 0, (2.17)

where w denotes the (potentially unnormalized) normal vector of the hyperplane.

The hyperplane’s offset from the origin along the normal vector w is defined by

the parameter b
∥w∥ . This equation allows for two types of margins: hard and soft.

If the training data is linearly separable and devoid of errors, including outliers

and noise, a hard margin is employed [83]. With a normalized or standardized

dataset, these hyperplanes can be described by these equations [84]

wTxi − b ≥ 1, if yi = 1,

wTxi − b ≤ −1, if yi = −1,

yi(w
Txi − b) ≥ 1, for all 1 ≤ i ≤ n.

(2.18)

Figure 2.6 shows the SVM classifier by hard margin hyperplane. Hard margins

are based on the assumption that the data is idealised. However, obtaining an
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independent line to split the data in space in reality is impossible. Even a curved

decision boundary or a hyperplane that can precisely separate the data won’t

finish the classification if there is noise in the data. Ignoring a few data points is

a better method of smoothing the boundaries than circling or looping around

outliers. This is what a soft margin’s existence means. Here, slack variables

are added to explain soft margin better. Assume a distance Sk on the incorrect

side of the hyperplane that is within the permitted range and does not defy the

constraints. This can be expressed as equation (2.19).

yi(w
Tx+ b) ≥ 1− Sk. (2.19)

In this case, Lagrangian variables can be introduced to penalize large slacks

min L =
1

2
wTw −

∑
λk(yk(w

Txk + b) + Sk − 1) + α
∑

Sk, (2.20)

where decreasing α allows more data to be on the wrong side of the hyperplane

and will be treated as outliers, providing a smoother decision boundary[84].

Naive Bayes

Bayesian classification [81] is a supervised learning method and a statistical

classification method. Assumes a foundational probabilistic model and facilitates

the principled representation of uncertainty regarding the model by ascertaining

the probability of the outcomes. The primary objective of Bayesian classification

is to address prediction challenges. This categorisation offers effective learning

methods and can integrate observed data. Bayesian categorisation offers valuable

insights for comprehending and assessing learning algorithms. It computes

explicit probabilities for hypotheses and enhances resilience against noise in input

data.
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Assume two random events, A and B, with the probabilities P (A) and P (B)

respectively. The Bayes Rule is:

P (A|B) =
P (B|A)P (A)

P (B)
(2.21)

Converted into a classification task, A and B can be considered features and

classification labels. The expression is

P (label|features) = P (features|label)P (label)

P (features)
(2.22)

For binary classification tasks, this algorithm takes out samples with label 0

and label 1, respectively, and builds two models, model0 and model1. When

predicting the category of a new sample, the sample features are brought into

model0 and model1, respectively. The sample belongs to the model that fits the

model better. The Bayesian formula becomes:

P (y|(X)) =
P (X|y = 1)P (y = 1)

P (X)
, (2.23)

P (X) = P (X|y = 1)P (y = 1) + P (X|y = 0)P (y = 0), (2.24)

(2.25)

where X = {x1, x2, ..., xn} is the features with different labels y = {0, 1}. If the

xi is independent, then

P (X|y = 1) =
n∏

i=1

P (xi|y = 1) (2.26)

K-nearest neighbour approaches

The kNN algorithm is a simple, non-parametric supervised learning technique.

It categorises a new data point according to the dominant labels or mean values

of its nearest neighbours [85].



40 Literature Review

KNN functions by calculating the distance between a specified query point and

every point in the training dataset, typically employing the Euclidean distance

formula:

d(x, y) =
√
Σi=1

n (xi − yi)2, (2.27)

where x and y are two points in an n-dimensional space. The algorithm calculates

the k closest points (nearest neighbours) to the query point based on the distances.

The parameter k has a significant impact on the performance. A lower k value

decreases the approximation error of the model, making the prediction outcomes

sensitive to adjacent instance locations. If the adjacent instance points are noisy,

the forecast will be erroneous. A smaller k value indicates that the model is

complicated and susceptible to over-fitting. An increased k value results in a

simpler overall model, which is susceptible to under-fitting.

KNN labels a new point in classification tasks using the most popular label

among its neighbours. As the dataset size increases, it has substantial computing

costs since it involves distance calculations between the query instance and each

instance in the training set. This trait frequently needs efficient data structures

such as KD-trees or ball trees to speed up neighbour searches, particularly in

massive datasets.

2.6.3 Deep Learning Methods

Before introducing deep learning methods, this dissertation introduces the concept

of artificial neural networks (ANNs) [86].

This computing processing system primarily draws inspiration from the

functioning of biological nervous systems, such as the human brain. ANNs

comprise many interconnected computational nodes, which are grouped and

learned from the input to improve the final output. As shown in Figure 2.7, the

hidden layer will then make decisions from the previous layer and weigh how

the random changes within it will damage or improve the final output. This

process is called the learning process. Stacking multiple hidden layers together is

usually called deep learning [87]. Like machine learning, deep learning can be
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Fig. 2.7 A basis structure of a common ANN architectures

divided into supervised learning and unsupervised learning based on how the

prediction results are made. More introductions of these are in Section 2.6.2.

CNNs differ from conventional ANNs in their application in pattern identification

inside images [87]. This enables us to incorporate image-specific characteristics

into the design, optimize the network for image-centric applications and lower

the necessary parameters to establish the model. However, this study uses time

series data. CNN also has its limitations for time series. It can extract spatial

features well but cannot preserve temporal features well. This will be discussed

in more detail in Chapter 5.

Convolutional Neural Network

A CNN model is a specialised deep learning model mainly designed for image

and video processing. Inspired by the human visual system, it is applied to

identify characteristics and patterns from unprocessed images automatically.

While building a CNN model, the choice of layer is important in the network.

The following is a list of every layer of an original CNN used in this work, and

the detailed setting of each layer will be explained in Chapter 5.

• Input Layer: The input layer is the entry point for data into the CNN.

For feature extraction, it can be the original processed signal data. For

classification tasks, features can be extracted in low dimensions. This layer

defines the shape and type of the input data, ensuring that the network

knows the dimensions and characteristics of the incoming data stream.
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• Convolutional Layer:The convolutional layer [88] is the core building

block of CNN. It applies a set of learnable filters (kernels) to the input.

Each kernel performs a sliding convolution on the data in all directions.

This process can extract feature maps from the data. The basic equation

of convolution operation is expressed in equation 2.28.

Feature map = input⊗ kernel

=
columns∑

y=0

(
rows∑
x=0

input(x− a, y − b)kernel(x, y)

)
,

(2.28)

where ⊗ denotes the convolution operation. a and b represent the offset

from the centre point of the kernel (or filter) to the location of the input

data being processed. x and y are the row and column indices used to

iterate over the kernel matrix.

• Batch Normalization Layer: A Batch Normalisation Layer [89] is used

to normalise feature maps. This layer ensures that the data fed into later

layers has a zero mean and unit variance, allowing faster learning rates and

more efficient training epochs.

• Activation Function: The activation Function Layer makes the model

nonlinear, which is essential for learning complicated patterns. A Rectified

Linear Unit (ReLU) activation function in this layer performs a threshold

process that chooses which feature maps are turned on. ReLU function

[90] denoted as equation (2.29).

ReLU(x) =

 0, for x < 0

x, for x ≥ 0
(2.29)

• Pooling Layer: The Pooling Layer [88] decreases the data dimension and

reduces the network’s computational burden and number of parameters.

This layer functions independently on each feature map to condense the

features found in the sub-regions of the map. In time series analysis, max
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pooling is a common way to get the most important features. This makes

it easier for the network to find patterns across different time scales by

choosing the highest value from each sub-region.

• Dropout Layer: The dropout layer [91] is a type of regularisation that

prevents overfitting in the network. At each update during training, this

layer randomly sets a certain number of input units to zero, helping to

eliminate random correlations in the data. Dropout is helpful in big

networks and a good way to improve generalisation in the final model.

• Fully Connective Layer: The fully connected layer [88] combines the

high-level features of the convolutional and pooling layers. Its output is a

vector, with each entry linked to all outputs from the layer before it. This

vector is used to make the final classification choice.

• Softmax Layer: The softmax layer [88] is generally employed as the final

output layer in classification work. The softmax activation function inspired

its name. This function can compress any real integer into a K-dimensional

real vector with each member in the range of [0,1] and a sum of 1. As a

result, the output of the softmax function may be considered a probability

distribution that can be used to express the predicted probability for

various categories. In our case, the segments with and without apnoea.

Mathematically, the softmax function [90] can be expressed as equation

(2.30)

Softmax(zi) =
ezi∑k
j=1 e

zj
, (2.30)

where z is a K-dimensional input vector, i is the ith element in the vector,

and K is the total number of categories.

Recurrent Neural Network

A recurrent neural network (RNN) is designed to process sequential data. Unlike

traditional feed-forward networks, RNNs feature loops in their architecture that
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enable them to maintain a form of internal memory [92]. This memory assists the

network in recalling previous inputs. Consequently, RNNs are excellent for tasks

where the order of data is crucial, such as speech recognition, language processing,

and time series forecasting. Figure 2.8 demonstrates the fundamental architecture

of a single hidden layer RNN. It contains a single set of input, hidden, and output

units, with the hidden units connected through feedback loops. An RNN can be

designed as many temporal iterations of the same network, with each iteration

transmitting a message to its subsequent part. The trainable parameters of an

RNN consist of the weights and biases that are uniformly applied across all time

steps [93]. Equations (2.31) to (2.35) express the computations at each time step

during the forward propagation of an RNN.

a<t> = Ψ1(Waxx
<t> +Waaa

<t−1> + ba) (2.31)

= Ψ1

[ Wax Waa ]

 x<t>

a<t−1>

+ ba

 (2.32)

≡ Ψ1(Wa[x<t>; a
<t−1>] + ba) (2.33)

ŷ<t> = Ψ2(Wyaa
<t> + by) (2.34)

≡ Ψ2(Ψ2(Wya
<t> + by)), (2.35)

where Wa is a single matrix concatenated by Wax and Waa. The variables ba

and by represent the biases linked to the calculation of the hidden state a<t>

and the predicted output ŷ<t>, respectively. Ψ1 and Ψ2 represent the activation

function. Normally, tanh() is chosen for Ψ1. The choice of Ψ2 depends on the

property of the output. The most common ones are sigmoid, softmax, relu.

These computational processes can be expressed by Figure 2.9. Figure 2.8 mainly

describe an RNN architecture designed for the situation when the lengths of the

input and output sequences are equal. In many sequence cases, things may be

different. Taking the topic discussed in this thesis as an example, sleep apnoea

detection is a binary classification problem. The input here is time series data,

and the output is a label of "apnoea" or "normal". The RNN model only uses the
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Fig. 2.9 Basic RNN unit cell

final hidden state to produce the final output ŷ [94]. Figure 2.10 demonstrates

this Many-to-one RNN structure to make it clear. The dotted box in the figure

represents an RNN cell.

Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) model [95] is an advanced recurrent

neural network designed to deal with the challenges of exploding and vanishing

gradients frequently occurring when learning long-term relationships, even with

extensive time lags [96]. The LSTM architecture contains a series of recurrently

linked sub-networks called memory blocks. The concept of the memory block

is to preserve its state across time and control the information flow through

non-linear gating techniques. Figure 2.11 shows the structure of a standard

LSTM block, including the gates, the input signal x(t), the output y(t), the

activation functions, and the peephole connections [97]. An LSTM unit cell
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Fig. 2.10 RNN Many-to-one architecture

Fig. 2.11 LSTM unit cell
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fundamentally comprises the internal state and the gates. The internal state c

functions as the memory of the LSTM, regulated by the input and the forget

gate, and produces a candidate internal state ĉ<t> [93]:

ĉ<t> = Ψ1(Wcx
<t> +Wca

<t−1> + bc), (2.36)

where Wz and bz are the weights and biases related to the input node. The

gates of an LSTM operate to manage the flow of information, hence regulating

the internal state and output of the memory cell [93]. The input gate controls

the new data from the current input to the cell state. Part of the prior cell

state data is discarded using the forget gate. The output gate regulates the

amount of cell state that is output. These gates are typically implemented using

a sigmoid activation function, which produces values between 0 and 1. Therefore,

these gates can be considered filters controlling the amount of information that

passes through. The calculations for each gate at time step t are provided by

the equations (2.37) to (2.39):

i<t> = σ(Wix
<t> +Wia

<t−1> + bi) (2.37)

f<t> = σ(Wfx
<t> +Wfa

<t−1> + bf ) (2.38)

o<t> = σ(Wox
<t> +Woa

<t−1> + bo), (2.39)

where Wi,Wf and Wo are the weights and bi,bf and bo are biases. The updated

internal state c<t> is then computed according to the following equation:

c<t> = ĉ<t> ⊙ i<t> + c<t−1> ⊙ f<t> (2.40)

The symbol ⊙ denotes multiplication. Finally, the predicted output ŷ<t> and

hidden state output a<t> as follows:

y<t> = Ψ2(Wya
<t> + by) (2.41)

a<t> = o<t> ⊙ tanh(ĉ<t>) (2.42)
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Gated Recurrent Unit

Cho et al. [98] and Chung et al. [99] provide an RNN architecture named Gated

Recurrent Unit (GRU), which is simpler and more computationally efficient than

the LSTM network. GRU simplifies the input gate and forget gate into one gate

called the update gate, and there is no separate memory unit in this structure.

Figure 2.12 shows the GRU cell and the variables are explained. The update gate

Fig. 2.12 GRU cell

decides how much past information to bring into the current hidden state. The

function of the reset gate is similar to that of the forget gate, which determines

how much past information should be reset. These two computations are shown

by equation (2.43) and equation (2.44).

r<t> = σ(Wrc
<t−1> +Wrx

<t> + br) (2.43)

u<t> = σ(Wuc
<t−1> +Wux

<t> + bu), (2.44)
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where br and bu is the biases. Then, based on these two gate outputs, the hidden

state output is calculated:

ĉ<t> = Ψ1(Wcx
<t> +Wcc

<t−1> + bc) (2.45)

Finally, the internal state c<t> and the output ŷ<t> are computed:

c<t> = c<t−1> ⊙ (1− u<t>) + u<t> ⊙ ĉ<t> (2.46)

ŷ<t> = Ψ2(Wyc
<t> + by) (2.47)

2.6.4 Related Work

Machine learning and deep learning have received much attention over the past

few years as methods to improve the accuracy, efficiency, and accessibility of

sleep testing. SVM, RF, and KNN are some of the most commonly used machine-

learning techniques for classifying sleep stages and detecting sleep disorders.

Machine learning is to train processed features extracted from physiological

signals, such as EEG, ECG, etc.. In contrast, deep learning models, especially

CNN and RNN, can learn complex patterns independently from raw data. This

means that feature engineering does not need to be done manually and the model

is more efficient overall.

Deep learning methods tend to be more accurate and generalise better when

working with large datasets; however, they require more data and are more

computationally complex. This makes machine learning-based methods more

useful when resources are limited. This subsection reviews past research using

machine learning and deep learning for sleep analysis and weighs the advantages

and disadvantages of each approach.

Machine Learning

Recent machine learning and AI developments have enabled more efficient, cost-

effective, and non-invasive diagnostic approaches [100]. The study examined 132
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research articles and proved how AI-based techniques could efficiently detect and

classify apnoea occurrences using electrocardiograms, pulse oximeters, and sound

signals. The study points out that while present research provides promising

outcomes, additional research in data integration, model correctness, and real-

world validation is required before widespread clinical application.

Deep Learning

With the development of AI and automation, deep learning has gradually been

proven to improve the accuracy of sleep analysis. By analysing research published

between 2008 and 2018, Mostafa et al. [101] provide insights into the effectiveness,

advantages, and potential future directions of deep learning for sleep apnoea

detection. Same as [100], although CNN, RNN, and hybrid models have shown

high performance, they believe that ongoing research needs to focus more on

overcoming data challenges and ensuring clinical implementation.

Most sleep analysis applications nowadays concentrate on feature extraction

and signal processing. Sillaparaya et al. proposed a deep-learning approach to

classify OSA using snoring sounds. They obtained an accuracy of 85.25% by using

Mel-frequency cepstral coefficients (MFCC) and a three-layer fully connected

network. However, there is still more work to be done, as demonstrated by the

difficulties presented by feature overlap, class imbalance, and small datasets.

Barnes and his colleagues [102], unlike Sillaparaya and his group, used a single-

channel EEG and created a CNN architecture with three convolutional layers to

detect sleep apnoea. Their framework is more understandable than others because

they train a CNN classifier using raw EEG data. This provides inspiration and

evidence for our direct use of signals.

In addition to determining whether or not sleep apnoea occurs, there are also

classification approaches for the severity of detected apnoea. The AHI quantifies

the severity of the condition [16], which is explained in Chapter 1. A new method

to estimate AHI was created by Werthen-Brabants et al. [103]. They named it

RSN-Count and based it on a Recursive Spiking Neural Network (RSNN). They
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use CNN to pull out features and RSN-Count to treat apnoea events as separate

units in time. This is different from the normal CNN classifier. CNN is a spatial

feature-focused algorithm. It is ideal for this study because the goal is to count

apnoea rather than time series positions.

Sleep stage classification is also a popular topic in sleep analysis. Jia et

al. [104] proposed SleepPrintNet, a deep learning model that integrates EEG,

Electrooculography (EOG), and Electromyography (EMG) signals for automatic

sleep staging. The 1D-CNN part of this deep learning model processes raw

signals to find time-domain patterns and temporal dependencies. In the 2D-CNN

part, spectral-spatial maps of EEG signals are used to find frequency and spatial

relationships in the signals. Finally, all the features are concatenated and filled

in the classification layer to get the result. This network emphasises the focus of

CNN in different dimensions to extract features, which is also the effect expected

to be achieved in this study.

Since this study uses two data types, a two-dimensional (2D) CNN is the

model basis. Jiménez-García et al. [105] published a 2D CNN model to detect

sleep apnoea in children using airflow and oximetry. They used a CNN model

with two convolutional blocks to classify the severity of apnoea in children. Due to

the extreme data imbalance, the classification results were not satisfactory. Later,

they improved the model by adding Bidirectional Gated Recurrent Units (BiGRU)

as a prediction model [106]. The authors of [106] pointed out that BiGRU is

used to analyse the temporal patterns of data in two directions. However, it was

not compared with the Gated Recurrent Units (GRU) model [107]. Our study

changes this model to a GRU model and found that the overall ability to predict

apnoea was better than BiGRU.

In addition to CNN-RNN, the CNN with a support vector machine (CNN-

SVM) hybrid model is a popular classification model nowadays. Baresary and

his colleague apply CNN-SVM to classify sleep apnoea by using PSG [108]. The

approach demonstrated strong performance. However, they did not give the

dataset conditions, and the details and parameters of the model are unknown.
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They simulated noise and added it to the raw data to get closer to reality.

The current trend in apnoea detection is to use less and less expensive signal

data to detect the disease. Although their research was highly accurate, it was

time-consuming and costly.

2.7 Feature Fusion

Given that this study encompasses two types of signals, it is essential to consider

integrating the signal features before inputting them into the classifier. Regarding

the sequence of fusion and prediction, feature fusion is categorized into early

fusion and late fusion [42]. Early fusion involves combining the features before

input into the classifier, while late fusion entails inputting the features into the

classifier independently and then fusing the prediction scores.

2.7.1 Fusion Scheme

Based on the processing level at which the fusion occurs, the conventional feature

fusion techniques usually fall into two categories: early and late fusion. Snoek

et al. [109] compares two approaches to combining information from different

modalities. Early fusion is fusing multiple feature layers first and then training

the classifier on the fused features (unified detection is performed only after

complete fusion). This type of method is also called skip connection. As shown

in Figure 2.13(a), Early fusion integrates features from different modalities into

a unified representation before applying machine learning. Only one training

session is enough to achieve classification results. However, the challenge involves

effectively integrating different features into a common representation.

Late fusion, on the contrary, improves detection performance by combining

classification results from different layers (see Figure 2.13(b)). Each classifier

is analysed separately, and different features are learned individually. Then,

the prediction scores from each classifier are fused. This approach shows the

advantages of different classifiers but needs multiple training processes, which
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(a) Decision tree architecture (b) Decision tree flow chart

Fig. 2.13 Feature fusion concept diagram

increases the computing cost. In addition, correlations between features may be

reduced.

2.7.2 Fusion Method

Michelsanti and his colleague [42] list various fusion methods. Figure 2.14 shows

the most popular fusion methods. Initially, all features are normalized to ensure

(a) Addition-Based fusion (b) Product-Based fusion (c) Concatenation-Based fu-
sion

Fig. 2.14 Simplified graphical example of the fundamental fusion methods.

uniformity. In Addition-based fusion, different features are summed algebraically,

including mean, pooling, and weighted sum. Similarly, different features are

multiplied in Product-based fusion to derive a new feature. In Concatenation-
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based fusion, different features will be connected in series to formulate a novel

integrated feature.

Since feature fusion is the fusion of features of multiple dimensions, this

technology is primarily used in deep learning networks. This study is mainly for

data analysis, so the selected features are of a single dimension. When fusion, one

feature a can be used as the real part and the other feature b as the imaginary

part to generate new features in the form of y = a+ bi. However, it increases

the computational complexity. The primary purpose of this study is to explore

feature fusion’s impact on sleep apnoea detection, so Concatenate-based fusion

is used.

In addition to these fundamental fusion methods, other advanced methods,

such as Attention-based fusion and Squeeze-Excitation fusion, have been used

to improve feature integration. Attention-based fusion [110] is a novel scheme

for combining features from different layers or branches in neural networks

using attention mechanisms. It assigns weights based on the importance of

the features to solve the problem of semantic and scale inconsistencies. This

function improves the quality of fused features in various scenarios, such as skip

connections and multi-scale layers. Squeeze-and-excitation fusion is a method

to enhance the most valuable features and suppress redundant features during

feature fusion [111]. The “squeeze” operation aggregates global information by

recalibrating channel-wise feature responses, while the “excitation” operation

emphasises interdependencies among features.

2.7.3 Related work

This section evaluates all these methods described in Subsection 2.7.2 and their

contributions to different applications.

Chen et al. [112] introduced a novel bottleneck attention fusion network

(BAFNet) to detect sleep apnoea. Bottleneck attention fusion enhances feature

fusion flexibility and reduces computational complexity. It also controls the

information flow between R-R intervals (RRI) and R-peak amplitudes (RPA)
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networks, ensuring the model focuses on key features for sleep apnoea detection.

Addition-based fusion is usually used in network features, especially in data

of different dimensions. Afouras et al. [113] apply 1D-ResNet separately on

enrolment Audio, occluded Video, and noisy audio to build an audio-visual

model for separating a single speaker from a mixture of sounds, such as other

speakers and background noise. They use Addition-based fusion to summarise

the 1D-ResNet features and get enhanced audio.

Since this study is about the temporal signal of sleep, directly adding or

multiplying the features obtained from sleep data will lose the required temporal

information. This is explained in the paper OSA detection using Feature Level

Fusion [33]. The author uses concatenation fusion at the feature level and gets

an accuracy of 96.52%. Although his features are different from ours, they still

inspire the feature fusion of this study.

In addition to basic fusion technology, some extended fusion methods have

been appropriately applied. Shu and his colleagues [114] proposed a novel

expansion-squeeze-excitation fusion network (ESE-FN) to effectively solve the

problem of activity recognition for the elderly. In human activity recognition,

the data from each sensor may provide unbalanced discriminative information.

Regarding this issue, Laitrakun [115] proposes the Merge-Squeeze-Excitation

(MSE) feature fusion, which emphasizes informative feature maps and suppresses

ambiguous feature maps during the fusion process.



Chapter 3

Sleep Apnoea Detection with an

Adaptive CUSUM Approach

As mentioned in section 2.4, sleep apnoea events can be regarded as abnormal

events in sleep breathing, which means that the detection of apnoea can be

regarded as change point detection. This Chapter introduced an anomaly de-

tection approach using the adaptive CUSUM change point detection algorithm

to monitor outliers in the signal. The study focused on two signals, the pulse

signal and the oximetry signal, intending to detect apnoea using a single signal.

In addition, the test results of the adaptive CUSUM will be compared with

the test results of the classical CUSUM. Additionally, the threshold selection

has been modified from a constant to a value related to the standard deviation

of the selected signal, based on a rational subgroup process. The results of

the comparison confirm that the adaptive CUSUM is better than the classical

CUSUM in the accuracy of automatic detection.

3.1 Classical CUSUM Approach

The CUSUM method is a sequential analysis algorithm developed by E. S.

Page of the University of Cambridge [116]. It is often used to monitor change

detection [117]. CUSUM has different methods to determine if the process is out
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of control. Rather than finding non-constant control limits for the CUSUM, it

is easier to transform the CUSUM to a score for which the control limits are

constant. This separate score is called the Mean adjusted CUSUM [118], which

is mainly introduced here.

Instead of examining the mean of each subgroup independently, the CUSUM

plot displays information accumulating current and previous samples. Therefore,

a CUSUM chart is generally better at detecting small changes in the process

mean than an X-bar chart. CUSUM plots rely on the specification of the target

value and the standard known or reliable estimated deviation. Therefore, after

establishing process control, it is best to use the CUSUM chart [119]. CUSUM

plots typically represent runaway process summations by accumulating upward

or downward drift until it crosses a boundary. Following the CUSUM procedure

presented by Koshti[120], the steps for creating a CUSUM control chart can be

summarized as follows.

Let us collect m samples, each of size n, and compute each sample’s mean µi.

A Gaussian (normal) distribution N (.) is considered in the analysis:

xi ∼ N (µi, σi
2), (3.1)

where µi is the mean and σi is the standard deviation of the samples. Then, the

CUSUM control chart is formed by plotting one of the following quantities [121]:

Cm =
m∑
i=1

(xi − µ̂i), (3.2)

against the sample number m, where µ̂i is the estimate of the in-control mean.

The Tabular CUSUM for Monitoring the Process Mean

In the last part of the introduction, when the process is under control, xi

has a normal distribution with mean µi and standard deviation σi (known or

estimable). The tabular CUSUM works by accumulating deviations from µi,

which are displayed as C+ and C−. C+ means one sided upper and C− means
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one sided lower. With the starting value C+
i = C−

i = 0, they are calculated as

equation (3.3) and equation (3.4) [116] .

C+
i = max[0, xi − (µi + k) + C+

i−1], (3.3)

C−
i = max[0, (µi − k)− xi + C+

i−1], (3.4)

where µi is the process mean at time step i. k is the "slack" allowed in the

process, and it is chosen halfway between the target µ0 and the mean shift of

interest µ1 to detect

k =
1

2
· |µ1 − µ0| (3.5)

Here, the µ0 denotes the in-control mean, representing the baseline expected

value of the process. mu1 denotes the out-of-control mean, which corresponds

to the shifted level that the test is designed to detect. In practice, the mean at

step i, µi, is equal to µ0 when the process remains stable. Once a shift occurs, it

moves toward µ1.

In the CUSUM method, the cumulative sums C+ and C− track positive and

negative deviations from a target value µ0, accumulating only deviations that

exceed a threshold k. In this case, with a chosen mean shift of 1, the value of k

is set at 0.5. The process is monitored against a decision interval H. If either

C+ or C− surpasses H, it indicates that the process is out of control [122]. The

H interval is determined as follows

H = h× σ, (3.6)

where h is a commonly used constant whose values are between 2 and 4 and

× denotes the multiplication operation. In the adaptive CUSUM algorithm

presented in the next section, the value of σ varies according to a decision-making

rule.
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3.2 Adaptive CUSUM Based on Log-likelihood

Ratio.

The adaptive CUSUM is presented to overcome the problem of unknown param-

eters changing over time. The combination of detecting changing processes and

estimating parameters is thought to improve performance [123]. The concept is

to guess the parameters in a continuous form, with the CUSUM test beginning

immediately regardless of the precision of the prediction. Because more sample

estimation may result in more accurate estimation, the estimation procedure

proceeds while detection is performed [124]. This section mainly introduced what

the adaptive CUSUM is and how it improves the classical CUSUM algorithm.

Let X = {x1, x2, ..., xn} be a random collection of data received consecutively.

For the sleep apnoea analysis, these are typically from PSG, such as SPO2 and

pulse data. We suppose that each value xi belongs to a known pdf p(xi, θ), in

this case, to a Gaussian distribution. These samples have a known mean µi and

variance σ2. These samples may have a change happened at time t̃c called apnoea

that is modeled by and instant modification to the value of θ, therefore, there

are two possible hypotheses: H0 for pre-change (with a parameter θ = θ0) and

H1 for post-change (with other parameters θ = θ1). These hypotheses can be

expressed as:

H0 : Xi ∼ N (µH0 , σ
2) (3.7)

H1 : Xi ∼ N (µH1 , σ
2) (3.8)

The parameter θ is in the form: {µ, σ}.

The likelihood function for a normal distribution N (µ, σ2) is given by:

p(xi|µ) =
1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
(3.9)

The instantaneous log-likelihood ratio test is used to decide between the two

hypotheses H0 and H1. The log-likelihood ratio is written based on a normal
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distribution as:

Si = ln

(
p(xi, θH1)

p(xi, θH0)

)
(3.10)

= ln

(
exp

(
−(xi − µH1)

2

2σ2
+

(xi − µH0)
2

2σ2

))
(3.11)

=
(xi − µH0)

2 − (xi − µH1)
2

2σ2
(3.12)

=
2xi(µH1 − µH0) + µ2

H0
− µ2

H1

2σ2
(3.13)

=
µH1 − µH0

σ2
(xi −

µH1 + µH0

2
) (3.14)

Then, the cumulative sum of Si from 0 to n is

Sn =
n∑

i=0

Si (3.15)

The decision function Gn and the changing time estimate t̃c are:

Gn = Sn − min
1≤tc≤n

Stc−1, (3.16)

t̃c = min
1≤tc≤n

Stc−1 (3.17)

When the difference Gn between the value of the cumulative sum Sn and its

present minimum value at time n is greater than a specified threshold value

h, CUSUM detects a change in sample xi [61]. The equation (3.15) to (3.17)

provides the direct formulations of the adaptive CUSUM algorithm. For purposes

of real-time change detection, the equations are reformulated in a recursive format

as follows:

Sn = Sn−1 + Sn, (3.18)

and the decision function Gn written in the same format as the CUSUM algorithm

as equation (3.3) is:

G+
n = max[0, Gn−1 + Sn] (3.19)
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This decision function will be compared with the threshold H, and the excess is

considered a change, which might be apnoea.

Threshold Selection Based on Rational Subgroup

The change detection process uses the expression of the decision interval H

from equation (3.6). However, different sample sizes affect the variance, which

means that the thresholds for each window are not defined under the same

conditions [125]. To solve this, the standard deviation σ should be replaced by

sampled deviation in rational subgroup [126] (of sizes n > 1):

σsample =
σ√
n

(3.20)

In the classical CUSUM algorithm, σ for threshold calculation is the deviation of

signal data value. Usually, the threshold of the adaptive CUSUM is a self-defined

constant within a specific range. In this test, according to the same threshold

calculation idea (using variance), the adaptive CUSUM uses the decision function

Gm to calculate σ and adds overlap to achieve an adaptive threshold.

3.3 Implementation and Analysis

3.3.1 Data Analysis and Pre-processing and Initialization

The data utilized in this study is sourced from the National Sleep Research

Resource (NSRR) [21], which provides a repository of 387 EDF files. Each

file contains diverse types of data, such as pulse and oxygen levels, which are

pertinent to this research. The initial step involves extracting data from each file

individually and converting it from EDF to MAT format to facilitate analysis.

Given the potential for erroneous data due to device movement while the subject is

asleep, any dataset containing more than half erroneous values must be discarded.

For example, a pulse data file may be considered unreliable and thus excluded if

over half of its values are erroneously read 300. This research aims to evaluate



3.3 Implementation and Analysis 63

both individual and combined detection methods. Consequently, if any data

file—be it oxygen or pulse data—exhibits an excessive rate of error, that patient’s

entire set of data will be considered compromised and excluded from further

analysis. Moreover, any erroneous readings identified within the selected datasets

will be replaced with the correct subsequent values available to ensure data

integrity. Finally, accurate recording of the sampling frequency is essential, as it

aids in setting the threshold for each analysis window, ensuring that the data

segmentation aligns correctly with physiological events observed during sleep.

(equation (3.20)).

Based on AASM, the window size of this experiment is 30 seconds. In order

to make the experiment more accurate, overlap is set when moving the window

so that each epoch can be compared before and after.

3.3.2 Detection Results for Oximetry and Pulse Data

In this detection, the window size (WL) for calculation is one epoch (30 seconds),

which means WL = 30 × fs(sample size). In order to get higher accuracy of

detection, an overlap was added in this algorithm, which is set to 10. In addition

to this, the mean shift is set to default 1. Furthermore, as Subsection 3.3.1

mentioned, after data processing, there are 367 data sets used in the test.

Figure 3.1 gives the sleep signal change detection results and a comparison

between the adaptive CUSUM and classical CUSUM algorithms. The first two

of each figure are the results of two algorithms. The blue line in the adaptive

CUSUM is the decision function (Gm) from equation 3.16 and the blue line in

CUSUM is the upper sum (C+) from equation 3.3. The red line is the threshold

in the different algorithms above, which the signal is out of control, considered

sleep apnoea. The black vertical line is the actual sleep apnoea occurrence time,

which is used to compare with the detection results. The third figure of each is

the original sleep signal. By comparing with the original signal, it can be seen

that both algorithms can detect signal changes to varying degrees. However,

compared with the actual time of apnoea occurrence time, the CUSUM algorithm



64 Sleep Apnoea Detection with an Adaptive CUSUM Approach

(a) (b)

Fig. 3.1 Comparison between Adaptive CUSUM Algorithm and classical CUSUM
on Oxygen Signal.

can detect the moment of signal change, while the adaptive CUSUM algorithm

can more effectively distinguish whether the apnoea occurs in an epoch.

Table 3.1 Average Performance of CUSUM.

acc sens spec F1-N F1-A kappa
Combine 89.0% 11.8% 90.9% 0.9398 0.0210 -0.002

SPO2 74.8% 11.9% 75.7% 0.8451 0.0330 0.002
Pulse 73.7% 6.1% 74.9% 0.8420 0.0326 -0.002

Table 3.2 Average Performance of ACUSUM.

acc sens spec F1-N F1-A kappa
Combine 91.8% 38.2% 93.9% 0.9536 0.045 0.017

SPO2 85.7% 26.3% 87.5% 0.9147 0.075 0.039
Pulse 79.6% 17.3% 81.1% 0.8742 0.042 0.003

Table 3.1 and Table 3.2 gives the average detection results of CUSUM

and ACUSUM. The adaptive CUSUM algorithm demonstrated superior overall

performance compared with the classical CUSUM. The combined detection

strategy, implemented through an AND operation across individual detections,

yielded higher accuracy than single detections, consistent with expectations.

Nevertheless, the sensitivity of both methods remained below 50%, which is
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unsatisfactory for medical applications. This limitation arises because CUSUM

primarily detects changes in time series, whereas variations in respiratory signals

may reflect other events, such as hypopnoea, rather than apnoea. Notably, both

CUSUM and ACUSUM achieved higher F1-scores (Apnoea) and Kappa values

with SPO2 data than with Pulse, indicating that SPO2 is more informative for

apnoea detection.

In terms of efficiency, adaptive CUSUM was considerably slower than classical

CUSUM, requiring approximately ten minutes compared with one second on

average, with computation time increasing further for larger sample sizes.

3.4 Summary

This chapter introduces an automatic sleep apnoea detection tool, the adaptive

CUSUM, which analyzes blood oxygen and pulse data to detect abnormalities.

The main goal is to reduce the reliance on traditional polysomnography (PSG),

reduce diagnostic costs, and improve detection results. This method is a more

effective and economical sleep apnoea detection method than PSG because

PSG requires doctors to manually process data and go to the hospital for night

monitoring, which is time-consuming and labour-intensive. To solve this problem,

this chapter proposes an improved CUSUM algorithm to improve detection

accuracy by adaptively adjusting the threshold. Compared with the traditional

CUSUM method, the adaptive CUSUM performs better in detecting abnormal

points in sleep signals, especially for non-stationary time series data, such as

physiological signal fluctuations during sleep. Experimental results show that

the adaptive CUSUM has a higher detection accuracy than the traditional

CUSUM method. The adaptive CUSUM has a detection accuracy of 79.57%

for pulse data and 85.74% for blood oxygen data. CUSUM has a pulse signal

recognition accuracy of 73.68% and an SPO2 detection accuracy of 74.85%. The

combination of pulse and blood oxygen data results shows that the adaptive

CUSUM has a detection accuracy of 91.78%, exceeding CUSUM 88.97%. In
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terms of accuracy, this algorithm demonstrates superior performance compared

to existing approaches. For reference, Jimenez-García et.al. [105] applied their

method to the CHAT dataset and reported an accuracy of 84.64% for apnoea

detection. However, the sensitivity of their method was 92.5%, which is much

higher than ours. The research indicated that the adaptive CUSUM had superior

anomaly detection capabilities and could more efficiently identify sleep apnoea

occurrences. Nonetheless, this approach has a considerable computational cost.

Analysing each data set requires 10 minutes, while conventional CUSUM requires

just 1 second.

Future works will concentrate on enhancing the computational efficiency of

the algorithm for real-time detection while also broadening the study’s scope

to differentiate various types of sleep apnoea (obstructive OSA, central CSA,

mixed MSA) and integrating machine learning techniques to augment the model’s

generalisation capability. Furthermore, other physiological data (such as electro-

cardiograms and breathing) can be added to enhance the precision and usefulness

of automated sleep monitoring. The results indicate that this approach may

serve as an alternative to PSG, enabling patients to do more convenient sleep

apnoea assessments at home and promoting the advancement of telemedicine.



Chapter 4

Machine Learning Methods for

Apnoea Detection

Sleep signals are time series signals that contain a lot of time and frequency

information. The change point detection method, Adaptive CUSUM, in Chapter

3 focuses on time information and ignores frequency changes. This Chapter

presents a novel framework that uses the wavelet transform to extract features

from sleep signals and the RUSBoost algorithm to address the challenge of

imbalanced data in detecting sleep apnoea, which enables home self-monitoring.

Patient data features short apnoea epochs and long periods of normal breathing,

creating imbalances that challenge classification algorithms. The framework was

tested on three public datasets with varying imbalance ratios. Significantly, the

CHAT dataset [21] with an ‘apnoea’ to ‘normal’ period ratio of 1:15 effectively

reflects actual sleep apnoea signals from children. The proposed framework with

the CHAT dataset achieved a maximum accuracy of 91.54%, a sensitivity of

72.06%, a specificity of 92.39%, and an AUC of 0.923, surpassing state-of-the-art

home screening models. This study compared several machine learning techniques

for the classification task, including SVM, KNN, and DPGMM algorithms. It

is found that the RUSBoost algorithm provides the most accurate results when

the ratio of the ‘apnoea’ to the ‘normal’ period reaches an imbalance of 1:3 or

greater.
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4.1 Classification Based on Dirichlet Process Gaus-

sian Mixture Model

4.1.1 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a parametric probability density func-

tion represented by a weighted sum of Gaussian component distributions [127].

GMMs are commonly applied as parametric models to represent the probability

distribution of continuous measurements or features in biometric systems, such

as the frequency characteristics of blood oxygen levels in sleep-related signals.

A GMM assumes that the observed data X is generated from a mixture of K

Gaussian distributions. The probability density function (PDF) of the mixture

model is given by:

p(X) =
K∑
k=1

πkN (X|µk,Σk), (4.1)

where K is the number of Gaussian components. πk denotes the mixing coef-

ficients, which are satisfied
∑K

k=1 πk = 1 and 0 ≤ πk ≤ 1. N (X|µk,Σk) is a

Gaussian distribution with mean µk and covariance matrix Σk. It is defined as:

N (X|µk,Σk) =
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(X − µk)

TΣ−1
k (X − µk)

)
, (4.2)

where d is the dimensionality of the data. T and −1 represent the transpose and

inverse of the matrix.

4.1.2 Dirichlet Process

A Dirichlet Process (DP) is a Bayesian non-parametric model providing a distri-

bution between distributions [128], therefore allowing an infinite range of possible

mixing components. The DP is usually used when the number of clusters is

unknown. For a random distribution G to follow a DP, its marginal distributions

must be a Dirichlet distribution. Mathematically, assume H as a distribution over

θ and α as a positive real-valued parameter. for any finite partition {A1, ..., AK}
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of the space, the probability mass assigned to these partitions follows a Dirichlet

distribution, which is written as G ∼ DP (α,H). The expansion equation is:

(G(A1), G(A2), ..., G(Ak)) ∼ D⟩∇(αH(A1), αH(A2), ..., αH(Ak)) (4.3)

The DPMM enhances Gaussian Mixture Models by enabling the number of

clusters to be inferred from the data instead of predetermined. This adaptability

renders the Dirichlet Process a potent instrument in Bayesian nonparametrics,

facilitating the automatic identification of latent patterns inside data.

4.1.3 Stick-breaking Process

The definition of the DP is challenging to apply directly because it is not

observable. Researchers use various methods for sampling from DPs to address

this issue. The stick-breaking process is a strong and straightforward way to

define DP by successively producing probability weights for an infinite number

of components. It involves sequentially drawing samples from marginal beta

distributions to construct a sample from a Dirichlet distribution. Figure 4.1 gives

an intuitive conceptual diagram of the stick-breaking process. From the figure,

Fig. 4.1 An overview of stick-breaking process

the weight of the component after each stick-breaking is π. v is based on the
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weight of the previous stick, and v follows the beta distribution.

vi ∼ Beta(1, α), i = 1, 2, ... (4.4)

where α is the concentration parameter that controls the number of effectively

used components. The weight of each component is computed as:

πi = vi

i−1∏
j=1

(1− vj), (4.5)

The stick-breaking process provides a straightforward method for sampling from

a DP and is commonly used in Bayesian nonparametrics, particularly in DPMM.

It facilitates adaptable and practical clustering by autonomously identifying the

number of clusters from the data, eliminating the need for prior specification.

4.1.4 Variational Dirichlet Process Gaussian Mixture Model

Blei and Jordan originally proposed a variational Dirichlet Process Gaussian

Mixture Model (DPGMM) [129] and subsequently optimized by Kurihara et

al. [130]. Building on these foundational methods, Li et al. [40] developed

a clustering-based classification framework specifically used for sleep apnoea

detection. The model in this framework uses the LLR for data classification.

The Dirichlet Process mixture model in the stick-breaking [131] represen-

tation involves an infinite number of components, where each component is

associated with a set of parameters drawn from a base distribution H. The

mixing proportions are determined via a stick-breaking process governed by a

parameter α. For more information, please see the first three subsections of this
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section. The specific process is as follows:

ηi ∼ H, (4.6)

vi ∼ Beta(1, α), (4.7)

πi = vi

i−1∏
j=1

(1− vj), (4.8)

where {πi}∞i=1 is the mixing weight. vi ∈ [0, 1] which is an infinite collection of

‘stick lengths’ V = {vi}∞i=1. In this research, features are extracted and combined

from each segment of the SPO2 and pulse signal, categorized as either ‘apnoea’

or ‘normal.’ It is posited that the distribution of features extracted from apnoea

and normal segments differs. Consequently, decisions can be made by comparing

the probabilities of each test segment under the ‘apnoea’ and ‘normal’ models.

Features from ‘apnoea’ and ‘normal’ segments can be represented using two

GMMs, as a GMM can accurately approximate any distribution when configured

with the appropriate number of components and parameter adjustments. The

likelihood for a data point x in a model is expressed as:

p(x|{πi, ηi}∞i=1) =
∞∑
i=1

πiN (x; ηi), (4.9)

where N (·) is the Gaussian distribution. Denote the training features X =

{xn}Nn=1, and Z = {zn}Nn=1 is the set of all labels. The main problem is to

compute the posterior p(zn|X, θ) over the labels and the predictive density

p(x|X, θ), which expression is:

p(x|X, θ) =

∫
H,V

p(x|H,V )

∫
Z

p(W |X, θ), (4.10)

where θ = {α, λ} is the hyperparameters from prior. W = {H, V, Z} is the set

of all latent variables of the DP mixture. Since p(W |X, θ) is difficult to compute

analytically, a parametric family of variational distribution q(W ;ϕ) is utilized to
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approximate the posterior [130].

q(W ;ϕ) =
L∏
i=1

[qvi(vi;ϕ
v
i )qηi(ηi;ϕ

η
i )]

L∏
i=1

qzn(zn), (4.11)

where qvi(vi;ϕ
v
i ) and qηi(ηi;ϕ

η
i ) are parametric models with parameters ϕv

i and

ϕη
i , which means one parameter per i. qzn(zn) are discrete distributions over the

component labels, n means one distribution per n. Blei and Jordan [129] establish

a specific truncation level L ≡ T for the variational mixture in equation (4.11)

by defining qvT (vT = 1) = 1 and with the assumption that data observations

allocate no responsibility to the components with index beyond the truncation

level T , which means qzn(zn > T ) = 0.

Kurihara et al. [130] proposed a variational model for q that facilitates the

nesting of families across T . In their theory, the truncation level L is infinity, but

the parameters of all models are tied after a specific level T (T ≪ L). In addition,

they impose extra conditions: qvi(vi;ϕ
v
i ) = pv(vi|α) and qηi(ηi;ϕ

η
i ) = pη(ηi|λ).

qzn(zn) are discrete distributions of the component labels.

The optimal qzn(zn) is [130]:

qzn(zn = i) =
exp(Sn,i)∑∞
j=1 exp(Sn,i)

, (4.12)

where

Sn,i = EqV [log pz(zn = i|V )] + Eqηi
[log px(xn|ηi)], (4.13)

In this case, the probabilities qzn(zn = i) computed using:

Eqvi
[log vi] = Ψ(ϕv

i,1)−Ψ(ϕv
i,1 + ϕv

i,2), (4.14)

Eqvi
[log(1− vj)] = Ψ(ϕv

i,2)−Ψ(ϕv
i,1 + ϕv

i,2), (4.15)

Eqηi
[log px(xn|ηi)] = Eqηi

[ηi]
Txn − Eqηi

[a(ηi)], (4.16)
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where Ψ(·) is the digamma function, and the parameter can be found to be

ϕv
i,1 = α1 +

N∑
n=1

qzn(zn = i) (4.17)

ϕη
i,1 = λ1 +

N∑
n=1

qzn(zn = i)xn (4.18)

ϕv
i,2 = α2 +

N∑
n=1

∞∑
j=i+1

qzn(zn = i) (4.19)

ϕη
i,2 = λ2 +

N∑
n=1

qzn(zn = i) (4.20)

The necessary posterior across data labels can be estimated by p(x|X, θ) ≈

qzn(zn), using the variational q(W ) as an approximation to the genuine posterior

p(W |X, θ). In practice, it is enough to apply the individual qzn(zn = i) for the

finite part i ≤ T and the cumulative qzn(zn > T ) for the infinite part, even though

qzn(zn) has infinite support. Lastly, applying the identity
∑∞

i=1 πi(V ) = 1 and

the parameter-tying assumption for i > T , the predictive probability p(x|X, θ)

can be be approximated by:

p(x|X, θ) =
∑
i=1

EqV [πi(V )]Eqηi
[px(x|ηi)] + [1−

∑
i=1

EqV [πi(V )]]Epη [px(x|η)]

(4.21)

4.1.5 Decision of Sleep Apnoea Application

This research example uses two Gaussian mixture models to model the feature

distributions of the ‘apnoea’ and ‘normal’ segments. Therefore, two sets of

features are given: X1 = {x1
i }N

1

i=1 as ‘apnoea’ and X0 = {x0
i }N

0

i=1 as ‘normal’. The

LLR is then computed for each segment by taking the difference between the

log-likelihoods of the data under the ‘apnoea’ model and the ‘normal’ model

based on the probability computation by equation (4.21). Then the decision [40]

will be equation (4.22).

log
p(x′|X1)

p(x′|X0)
≥ c, (4.22)
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where c is a threshold that affects how well sensitivity and specificity are balanced.

The whole framework is shown in figure 4.2.

Fig. 4.2 Framework for DPGMM to detect sleep apnoea

4.2 RUSBoost Algorithm for Imbalanced Data

Classification

The RUSBoost [132] classification algorithm combines two methods: RUS and

boosting techniques. This method mainly solves the class imbalance problem

in machine learning tasks. This happens when the data categories are unevenly

skewed or biased. For example, in this study, it is necessary to train the

classification of the "apnoea" category. However, this category is a minority

in the overall data, which may cause bias in the training model and negatively

affect its performance. This section mainly introduces the mathematical theory

of RUSBoost [132].
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First, assume all the features X = {xi} and its corresponding labels Y = {yi},

so the dataset can be express as S = (xi, yi), where yi ∈ {0, 1} and i = 1, 2, 3...,m.

In this study, 0 is defined as a ‘normal’ class, and 1 is a ‘apnoea’ class. ‘normal’ is

the category with a larger proportion. Set Dt as the weight of each weak learner

and D1(i) =
1
m

, which means that the weight of each instance is equal at the

beginning of the model training. t here is the iteration value and t = 1, 2, 3, ..., T .

In the RUSBoost framework, a weak learner is a simple classifier that performs

only slightly better than random guessing. In practice, decision stumps (shallow

decision trees of depth one) are most commonly used due to their efficiency and

suitability for boosting. Then, the ‘normal’ samples are randomly eliminated

to modify the class distribution in the training set until the dataset reaches

the necessary balance between classes, thus obtaining a temporary training

dataset S ′
t and new weight D′

t. This is the meaning of RUS. Next, the temporary

dataset S
′
t and its corresponding weights D

′
t are fed into a base learning model

(WeakLearn), which trains a weak hypothesis ht(xi) = {py=0(i), py=1(i)}. p is

the predicted probabilities of xi from weak learner. After this, the pseudo-loss ϵt

which measures the error of ht weighted by Dt can be calculated as:

ϵt =
∑

(i,y):yi ̸=y

Dt(i)(1− ht(xi, yi) + ht(xi, y)),

=
∑

(i,y):yi ̸=y

Dt(i)(1− py=0(i) + py=1(i))
(4.23)

This error can be used to compute the weight update factor αt =
ϵt

1−ϵt
, which

adjusts the influence of ht in the final model. Subsequently, weights Dt+1 are

updated.

Dt+1(i) = Dt(i)α
1
2
(1+py=0(i)+py=1(i))

t
(4.24)

Equation (4.24) shows that the weights assigned to misclassified instances increase,

while those assigned to correctly classified instances decrease. This adjustment

allows the model to focus on more challenging cases in future iterations. At the



76 Machine Learning Methods for Apnoea Detection

beginning of the next iteration, the weights Dt+1 will be normalized as

Dt+1(i) =
Dt+1(i)

Zt

, (4.25)

where Zt =
∑
i

Dt+1(i). After T iterations, the algorithm forms the final hypothe-

sis, denoted by H(x), which is constructed by combining the T weak hypotheses

through weighted voting. The weight of each vote corresponds to the accuracy

of the hypothesis, which is inversely proportional to αt. The expression of H(x)

is shown in equation (4.26).

H(x) = argmax
y∈Y

T∑
t=1

ht(x, y)log
1

αt

(4.26)

By repeatedly concentrating on fixing its prior errors, this approach ensures

that the machine learning algorithm gradually enhances its capacity to categorise

increasingly challenging, frequently minority, samples, efficiently managing the

imbalance in the dataset.

4.3 Experimental Results and Discussion

4.3.1 Initial Conditions of the Algorithms

The RUSBoost model training set has 100 weak learners, 1000 ensemble learning

cycles, and a learning rate of 0.1. All DPGMM settings are default. The three

publicly available databases are trained and tested independently with 10-fold

cross-validation. All training and testing programs are run on Matlab 2023b and

above.

4.3.2 Datasets

To enable near-real-time detection of SDB events, the SPO2 and pulse signal

are systematically partitioned into overlapping subsequences, each of which

is the same length. Multiple informative features are extracted from each
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subsequence for advanced analysis. The following subsections will clarify the

source of the experimental datasets and the specific methodologies applied for

their preprocessing. Moreover, the features used in the classification process,

which are defined within both the time and wavelet domains, will be explained.

4.3.3 Features Visualisation

To evaluate the classification ability of the 18 extracted features, we generated

18 normalised histograms (see Figure 4.3) and box plots (see Figure 4.4) for the

normal class and the apnoea class, respectively. Histograms show varying degrees

of classification ability regarding shape, central tendency, and skewness [133]. The

box plot further reveals the median, interquartile range (IQR) and outliers of the

features in different categories from a statistical perspective [134]. This section

takes SPO2 in the St. Vincent dataset as an example to show the distribution

of each feature in the two categories. Table 4.1 gives the specific meaning of

each feature name. The histograms from figure 4.3 show that several features

Table 4.1 Explanation of feature name

varad Variation of level 4 detail coefficients
varbd Variation of level 5 detail coefficients
rangead Range of level 4 detail coefficients
rangebd Range of level 5 detail coefficients
Powerad Mean Energy of level 4 detail coefficients
Powerbd Mean Energy of level 5 detail coefficients
maxad Maximum level 4 detail coefficients
maxbd Maximum level 5 detail coefficients
kursig Kurtosis of signal
meansig Mean of signal
varsig Variation of signal
rangesig Signal Range
CTM Central Tendency measure of signal
minsig Minimum signal
shannonEn Shannon entropy of signal
TsallisEn Tsallis entropy of signal
WavL2Num Number of the large coefficients (level 4 detail coefficients)
WavL3Num Number of the large coefficients (level 5 detail coefficients)
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Fig. 4.3 Features visualisation by histogram

exhibit highly asymmetric distributions, including varad, varbd, rangebd, and

Powerbd. There is a significant shift in the peak positions between the two classes.

For example, the normal samples exhibit a sharp peak close to zero, while the

apnoea samples exhibit a wider right-skewed distribution, indicating that the

variability and power-related measurements in the apnoea event are higher, which

means that the SPO2 signal fluctuates more violently in the apnoea state, and

abnormal oscillations or signal disturbances occur. Several features, including

CTM, minsig, maxad, and rangesig, exhibit a significantly skewed distribution

in the normal class with a single peak. In contrast, the distribution is wider

and has two peaks in the apnoea class. Besides, they are distributed on both

sides with less overlap, indicating that these features can effectively distinguish

between normal and apnoea. In addition to practical distinguishing features, some

features with similar distributions, such as ShannonEn, TsallisEn, WavL2Num,

and WavL3Num, have large overlapping areas, indicating insufficient classification

ability. However, the differences in the peak positions of the distributions allow

these features to serve as auxiliary features for classification.

The histogram illustrates the distribution of features, while the box plot

visually indicates the classification suitability of features. The blue box in Figure

4.4 is the IQR. Features such as Powerbd, rangebd, and rangesig show non-

overlapping IQR between classes, while the apnoea group consistently shows

higher medians and wider distributions. CTM and Meansig also show a significant
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Fig. 4.4 Features visualisation by boxplot

downward shift in the apnoea class, reflecting the loss of signal consistency during

apnoea episodes. Non-overlapping IQR mean that the feature has very strong

classification ability. In contrast, features such as WavL2Num and WavL3Num

have overlapping medians and IQR, which means limited classification power

when used alone. This is the same conclusion as the histogram.

As observed from Figure 4.3 and Figure 4.4, features rangebd, powerbd,

maxad, rangesig, CTM, and minsig demonstrate strong discriminative capability.

However, this does not imply that the remaining features are uninformative. Table

4.2 reports the classification performance obtained using either the whole feature

set or only the aforementioned six features. The fact that feature selection does

not improve classification accuracy suggests that the excluded features contribute

complementary information, enhancing overall model performance.

Table 4.2 Results of StVincent Database (SPO2) Based on Different Features
Selected

acc sens spec F1-N F1-A κ
After feature select 74.76% 47.91% 81.14% 0.839 0.422 0.263
All feature select 84.32% 72.07% 87.12% 0.90 0.67 0.57

4.3.4 Comparison of Different Database

This study compared the detection results of three different public datasets. The

first is the Childhood Adenotonsillectomy Trial (CHAT) [2] from the National

Sleep Research Resource (NSRR) [21], and the second is from St. Vincent’s
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University Hospital [3]. The third one is the Apnea-ECG Database [1]. The

whole dataset and the data used for the experiment are shown in table 4.3. In

the names on the left side of the table, ‘60’ refers to a 60-second segment, while

‘10,’ ‘20,’ and ‘30’ represent different overlaps.

Table 4.3 Comparison of two different datasets

CHAT StVincent ECG-Apnoea
label Count percentage label Count percentage label Count percentage

60_10_ovlp 0 255906 93.38% 0 9094 75.94% 0 2044 60.89%
1 18141 6.62% 1 2882 24.06% 1 1313 39.11%

60_20_ovlp 0 323690 94.50% 0 11674 78.02% 0 2036 60.99%
1 18824 5.50% 1 3289 21.98% 1 1302 39.01%

60_30_ovlp 0 437639 95.81% 0 16137 80.86% 0 2030 61.29%
1 19159 4.19% 1 3820 19.14% 1 1282 38.71%

In these datasets, the StVincent dataset samples at 8Hz and the Apnoea-ECG

at 100Hz, while the CHAT dataset has a variable sampling frequency. Figure 4.5

provides a statistical chart showing the number of files corresponding to each

sampling frequency.

Fig. 4.5 Histogram of sampling frequency of patient data from CHAT dataset
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4.3.5 Data Processing

Figure 4.5 illustrates the non-uniform sampling frequencies in the CHAT dataset,

with a high count of files at 1 Hz and 2 Hz. Low sampling rates can lead to data

being classified as noise, impacting further analyses, while very high rates may

result in redundant information. Consequently, we excluded files with low (1 Hz

and 2 Hz) and high (512 Hz) sampling frequencies from the CHAT dataset.

All data will be segmented into overlapping one-minute intervals for analysis

to detect sleep-disordered breathing (SDB) events. Segments containing SDB

events are classified as ‘apnoea’, while those without respiratory disturbances

are labelled ‘normal’. A nuanced classification is applied when an apnoea event

spans two consecutive segments. If respiratory disturbances occur but last less

than five seconds in any segment, it is labelled ‘normal’, as such brief fluctuations

are unlikely to cause clinically significant desaturation or arousal and do not

substantially alter the overall respiratory pattern. According to the AASM [17],

apnoea events are defined as lasting at least 10 seconds. Therefore, shorter

disturbances are unlikely to cause meaningful oxygen desaturation or arousal.

Setting the cut-off at five seconds helps avoid misclassifying minor signal noise

or brief irregularities as pathological events, while still maintaining sensitivity to

clinically relevant disturbances. Conversely, if disturbances exceed this duration

in any segment, it is marked as ‘apnoea’, indicating a significant disruption in

respiratory activity. This approach ensures precise categorization of each minute

based on the severity and duration of disruptions.

Poor contact with the pulse oximeter, often due to body movement at night,

can generate artefacts. SPO2 and pulse readings below 50 and pulse readings

above 300 are considered artefacts. Segments with these values are excluded

from training and testing to ensure the reliability of the data.

4.3.6 Results with Single Data

This experiment evaluated and contrasted multiple algorithms using different

training sets to examine the effects of data imbalance on training outcomes and to
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offer algorithmic recommendations for the medical field. Tables 4.4, 4.5, and 4.6

present the results of several machine learning techniques employing the identical

wavelet (db1), segment duration (30-second overlap), and features. In this context,

‘F1-N’ represents the F1 score for the normal category classification, while ‘F1-A’

signifies the F1 score for the apnoea category classification. RUSBoost performs

well on the StVincent dataset, attaining an acceptable F1-A score and high

sensitivity. The significant imbalance in the CHAT dataset leads to an F1-A

score of less than 0.5. The algorithms demonstrate exceptional performance on

the ECG dataset, with a maximum accuracy of 97%. In conclusion, if the ratio

of the ‘apnoea’ moments to the ‘normal’ moment is less than 1:3, the RUSBoost

algorithm is advisable. For ratios over 1:3, the performance of different algorithms

remains consistent, with SVM or Gaussian Naive Bayes being advisable.

Table 4.4 Results of ECG Database (SPO2) Based on Different Machine Learning
Methods with the Same Wavelet, Segment Length, and Features

db1_30_ovlp acc sens spec F1-N F1-A κ
Fine Tree 95.16% 95.86% 94.71% 0.960 0.939 0.899

Gaussian Naive Bayes 97.31% 96.55% 97.80% 0.978 0.966 0.943
Linear SVM 97.31% 95.17% 98.68% 0.978 0.965 0.943
Fine KNN 95.97% 93.79% 97.36% 0.967 0.948 0.915

Boosted Tree 96.77% 95.17% 97.80% 0.974 0.958 0.932
Bagged Tree 96.24% 93.79% 97.80% 0.969 0.951 0.920

Medium Neural Network 94.89% 91.72% 96.92% 0.959 0.933 0.892
RUSBoost 88.95% 75.47% 89.54% 0.94 0.36 0.32
DPGMM 94.20% 97.90% 91.78% 0.95 0.93 0.88

Table 4.5 Results of StVincent Database (SPO2) Based on Different Machine
Learning Methods with the Same Wavelet, Segment Length, and Features

db1_30_ovlp acc sens spec F1-N F1-A κ
Fine Tree 86.87% 58.38% 93.61% 0.920 0.630 0.551

Gaussian Naive Bayes 86.89% 52.62% 94.99% 0.921 0.605 0.529
Linear SVM 87.42% 46.07% 97.21% 0.926 0.584 0.516
Fine KNN 82.21% 54.97% 88.65% 0.890 0.542 0.432

Boosted Tree 87.77% 56.02% 95.29% 0.926 0.637 0.565
Bagged Tree 87.37% 56.02% 94.79% 0.924 0.629 0.555

Medium Neural Network 87.37% 56.02% 94.79% 0.924 0.629 0.555
RUSBoost 85.86% 80.37% 87.17% 0.91 0.69 0.60
DPGMM 84.51% 42.15% 94.54% 0.91 0.51 0.42
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Table 4.6 Results of CHAT Database (SPO2) Based on Different Machine Learning
Methods with the Same Wavelet, Segment Length, and Features

db1_30_ovlp acc sens spec F1-N F1-A κ
Fine Tree 95.90% 9.34% 99.69% 0.979 0.160 0.150

Gaussian Naive Bayes 92.30% 28.18% 95.10% 0.959 0.235 0.195
Linear SVM 95.81% 0.00% 100.00% 0.979 NaN 0.000
Fine KNN 93.78% 24.95 96.79 0.968 0.252 0.219

Boosted Tree 95.89% 8.09% 99.73% 0.979 0.142 0.133
Bagged Tree 95.90% 14.98% 99.44% 0.979 0.234 0.220

Medium Neural Network 95.96% 12.27% 99.62% 0.979 0.203 0.191
RUSBoost 88.95% 75.47% 89.54% 0.94 0.36 0.32
DPGMM 61.61% 85.42% 60.54% 0.75 0.16 0.09

Section 2.5.1 introduces an innovative feature termed ‘Number of Large

Coefficients’. This study aimed to validate the utility of this feature in model

training. Employing the pulse signal from the St. Vincent dataset as a case study,

models were systematically trained under various conditions: with and without

resampling and incorporating the new feature. The results presented in Table 4.7

confirm the initial hypothesis that models trained without resampling attained

greater accuracy. The accuracy of models trained without resampling was 2%

to 3% higher than that of models trained with resampling. Furthermore, the

accuracy of the model in disease identification was improved by approximately

2% as a result of the new feature’s integration, which also increased training

sensitivity.

Table 4.7 Results of St. Vincent’s University Hospital Sleep Apnoea Database
Based on Different Features in Same Wavelet and Segment Length

db4_30_ovlp acc sens spec F1-N F1-A κ
no sample 73.93% 62.83% 76.57% 0.83 0.48 0.32

sample 71.24% 47.38% 76.91% 0.81 0.39 0.21
no resample, add new feature 74.24% 64.92% 76.44% 0.83 0.49 0.33

resample, add new feature 71.19% 47.38% 76.85% 0.81 0.39 0.21

In addition to comparing algorithms and datasets, this experiment further

assesses the efficacy of different wavelet features in training models. The training

results, employing the CHAT dataset for illustration, are detailed in Tables 4.8

and 4.9. The left column of each table specifies the wavelet type and segment
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length; for example, ‘db1_10_ovlp’ denotes the use of wavelet db1 with a 10-

second overlap. According to the results, pulse data performs better with db3,

whereas SPO2 data is best handled among the four wavelets under investigation

with db1. These presentations emphasise the need to select specific wavelet

features for different types of data in order to improve the efficacy of the model.

Moreover, the best results are always obtained with a 30-second overlap when

using identical wavelet settings.

Table 4.8 Results of CHAT Database (Pulse) Based on Different Wavelet and
Segment Length.

acc sens spec F1-N F1-A κ
db1_10_ovlp 67.69% 69.15% 67.58% 0.80 0.22 0.12
db1_20_ovlp 69.64% 72.14% 69.50% 0.81 0.21 0.13
db1_30_ovlp 72.34% 73.50% 72.29% 0.83 0.18 0.12
db2_10_ovlp 68.18% 73.90% 67.78% 0.80 0.23 0.14
db2_20_ovlp 70.38% 72.29% 70.27% 0.82 0.21 0.13
db2_30_ovlp 72.19% 75.21% 72.05% 0.83 0.18 0.12
db3_10_ovlp 67.94% 72.84% 67.59% 0.80 0.23 0.13
db3_20_ovlp 70.58% 72.87% 70.45% 0.82 0.21 0.13

db3_30_ovlp 72.41% 74.36% 72.33% 0.83 0.18 0.12
db4_10_ovlp 67.94% 73.14% 67.57% 0.80 0.23 0.13
db4_20_ovlp 70.77% 72.43% 70.67% 0.82 0.21 0.13
db4_30_ovlp 72.49% 74.93% 72.38% 0.83 0.19 0.12

4.3.7 Results Based on Fusion Technique

In this experiment, three types of early feature fusion, as described in Section 2.7.1,

were employed. Using the CHAT database as an example for concatenation fusion,

the performance results of the RUSBoost algorithm are presented in Table 4.10.

From the table, wavelet db3 and 30-second overlap give the best performance

and employing a 30-second overlap in this experiment produces favourable

results. Among the assessed wavelets, db3 exhibited the best efficacy throughout

the investigation. Table 4.11 compares the training results obtained from the

StVincent and CHAT databases using the same feature processing method. The

CHAT database demonstrates superior overall accuracy, whereas the StVincent
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Table 4.9 Results of CHAT Database (SPO2) Based on Different Wavelet and
Segment Length.

acc sens spec F1-N F1-A κ
db1_10_ovlp 83.67% 65.65% 84.95% 0.91 0.35 0.28
db1_20_ovlp 84.93% 69.23% 85.85% 0.91 0.34 0.28

db1_30_ovlp 89.97% 74.79% 90.63% 0.95 0.38 0.34
db2_10_ovlp 83.98% 64.19% 85.37% 0.91 0.34 0.28
db2_20_ovlp 85.16% 66.13% 86.25% 0.92 0.33 0.27
db2_30_ovlp 89.82% 75.50% 90.44% 0.94 0.38 0.34
db3_10_ovlp 84.21% 64.19% 85.62% 0.91 0.35 0.28
db3_20_ovlp 85.17% 66.86% 86.23% 0.92 0.33 0.27
db3_30_ovlp 89.88% 75.07% 90.53% 0.94 0.38 0.34
db4_10_ovlp 84.04% 64.64% 85.40% 0.91 0.35 0.28
db4_20_ovlp 85.15% 66.86% 86.20% 0.92 0.33 0.27
db4_30_ovlp 89.89% 75.36% 90.53% 0.94 0.38 0.34

Table 4.10 Results of CHAT Database in Concatenation Features

acc sens spec F1-N F1-A κ
db1_10_ovlp 88.25% 58.51% 90.35% 0.93 0.40 0.34
db1_20_ovlp 86.64% 68.69% 87.69% 0.93 0.36 0.31
db1_30_ovlp 91.90% 69.91% 92.86% 0.96 0.42 0.38
db2_10_ovlp 87.72% 58.57% 89.77% 0.93 0.39 0.33
db2_20_ovlp 88.75% 60.12% 90.39% 0.94 0.37 0.32
db2_30_ovlp 91.78% 70.20% 92.72% 0.96 0.42 0.38
db3_10_ovlp 87.54% 57.36% 89.66% 0.93 0.38 0.32
db3_20_ovlp 88.82% 61.00% 90.42% 0.94 0.37 0.32

db3_30_ovlp 91.54% 72.06% 92.39% 0.95 0.42 0.38
db4_10_ovlp 87.62% 55.99% 89.84% 0.93 0.37 0.31
db4_20_ovlp 89.33% 60.56% 90.98% 0.94 0.38 0.33
db4_30_ovlp 91.39% 72.06% 92.23% 0.95 0.41 0.37

database exhibits elevated F1 scores and κ values. This is because the different

imbalance ratios of the two data sets can impact model fit significantly. Figure

4.6 illustrates the associated ROC curve, demonstrating an AUC value of 0.923.

The average performance indicators for each training dataset were calculated

to assess the impact of feature fusion relative to non-fused features. The CHAT

database exhibits an average accuracy of 86.3% for single signal classification,

whereas fusion classification demonstrates an enhancement of 89.3% accuracy.
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Table 4.11 Results of Different Database with the Processing Features

acc sens spec F1-N F1-A κ
CHAT 91.54% 72.06% 92.39% 0.95 0.42 0.38

StVincent 86.72% 74.87% 89.52% 0.92 0.68 0.60

Fig. 4.6 RUSBoost ROC curve of CHAT Database based on db3 and 30s overlap
and fusion technique

Table 4.12 Mean Performance Based on 157 Patients of Single Signal and Con-
catenation Feature Fusion

acc sens spec F1-N F1-A κ

CHAT
SPO2 86.32% 69.04% 87.33% 0.92 0.35 0.30
Pulse 70.21% 73.06% 70.04% 0.82 0.21 0.13
Fusion 89.27% 63.75% 90.78% 0.94 0.39 0.34

St Vincent
SPO2 84.32% 72.07% 87.12% 0.90 0.67 0.57
Pulse 72.79% 60.47% 76.27% 0.81 0.49 0.31
Fusion 85.80% 74.45% 89.61% 0.91 0.69 0.60

In the St. Vincent database, single signal detection achieves 84.3% accuracy,

while feature fusion classification enhances accuracy to 85.8%. This means that,

even in instances of mild data imbalance, specificity, the metric for accurately

identifying disease-free segments, is enhanced by 1.5%. In cases of substantial

data imbalance, RUSBoost accuracy with integrated features is enhanced by 3%

compared to single-signal features. Furthermore, data from Table 4.12 indicates
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that training data post-feature fusion fits more effectively with the model, as

demonstrated by elevated F1 scores and κ values.

4.4 Summary

This chapter discusses a framework to detect sleep apnoea using pulse and SpO2

data based on machine learning. This framework aims to provide an effective

alternative to expensive and time-consuming PSG. The suggested approach is

very reliable and can be used in many situations, which makes it perfect for

tracking sleep at home. Furthermore, unlike PSG, which requires multiple sensors

to be monitored all night, this approach only requires a simple pulse oximeter

for non-invasive detection, which makes the patient more comfortable and saves

money.

This study uses the wavelet transform to capture valuable information from

sleep signals and the RUSBoost algorithm to simplify classifying unbalanced data.

Three public datasets are used in this study: the apnoea-ECG, CHAT, and St

Vincent datasets. The CHAT dataset has a highly imbalanced apnoea-to-normal

ratio of 1:15, similar to the sleep apnoea situations in children. To evaluate this

framework, this study compared multiple machine learning methods, including

SVM, KNN, and DPGMM. The study found that RUSBoost performs best

when the ratio of apnoea events to normal events exceeds 1:3, which means that

RUSBoost becomes the most suitable choice for processing unbalanced sleep

apnoea data. In addition, the experiment also compared the effects of single

signal and feature fusion on binary classification. Feature fusion can improve

detection accuracy by about 3% compared to using either signal alone. This

highlights the advantages of feature fusion and enhances the model’s ability to

distinguish between normal and apnoea events. The study also investigated

the impact of different wavelet transform types, especially Daubechies wavelets

(db1–db4), to determine the most compelling feature extraction method. The

results indicated that the db3 wavelet was optimal for pulse signal processing,
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and the db1 wavelet was best suited for SpO2 data, highlighting the significance

of selecting the appropriate wavelet for various physiological signals.

Before the experiment, sleep data was divided into overlapping one-minute

segments to capture significant changes in sleep patterns in real time accurately.

The experiment used 10-fold cross-validation and evaluated the performance

through evaluation indicators such as accuracy, sensitivity, specificity, F1 value,

Cohen’s kappa, and AUC. It has an AUC of 0.923, a maximum accuracy of

91.54%, a sensitivity of 72.06% and a specificity of 92.39%. In addition, the

experiments found that one of the main challenges of automatic sleep apnoea

detection is the imbalance of the dataset. Because the frequency of apnoea

events is much lower than the normal breathing epoch, this will cause bias in

the machine learning model.

To the best of our knowledge, the most recent study on sleep apnoea detection

employed a CNN–LSTM model [135] and evaluated it on the ECG dataset, which

was also included in our experiments. Their reported accuracy, sensitivity, and

specificity were 91.50%, 94.37%, and 86.89%, respectively. In comparison, our

implementation of RUSBoost achieved 88.95%, 75.47%, and 89.54%. Although

the sensitivity is lower, RUSBoost is inherently more suitable for handling

imbalanced datasets. For instance, Zovko et.al. [136] also addressed imbalanced

data, however, their reported accuracy and sensitivity were only 79% and 68%,

whereas our method attained 88.95% and 75.47%. This further demonstrates

that RUSBOOST is very suitable for the classification of imbalanced data.

In conclusion, this study introduces an effective and practical machine-learning

framework for sleep apnoea detection using pulse and blood oxygen data, focusing

on overcoming the challenges of imbalanced datasets. The results confirm that

the RUSBoost is the most effective classification algorithm for highly imbalanced

sleep apnoea data. Feature fusion can improve detection accuracy. The proposed

framework achieves state-of-the-art performance in sleep apnoea classification

and enables widespread non-invasive home screening. Future studies could
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incorporate other physiological signals (such as ECG and respiratory effort) to

improve diagnostic accuracy.





Chapter 5

A Convolutional Neural Network

for Apnoea Detection

Machine learning requires manual feature extraction, which increases compu-

tational costs. Deep learning can make up for this. This Chapter proposes a

deep learning approach for contactless detection of sleep apnoea using pulse and

SPO2 data. Three convolutional neural network architectures are adopted for

apnoea classification purposes by fusing different features of the available time

series signals. A CNN model, a CNN-SVM model, and a CNN-RNN model are

compared. The RNN includes GRU and BiGRU. The CNN is utilised to extract

features, whilst the SVM and RNN are used for classification. In addition, we

compare two different fusion methods, signal-level and feature-level fusion. The

performance is validated and evaluated on a public dataset St. Vincent University

Hospital. The results show that the concatenation of SPO2 and pulse signal at

the signal level enhances the classification performance compared to using the

individual signal. In addition, the classification sensitivity with signal-level fusion

is higher than that with feature-level fusion. Overall, the proposed CNN-GRU

architecture gives the best performance with an accuracy of 85.4%, a sensitivity

of 61.5%, a specificity of 91.9%, an F1 score of 0.64, and a κ score of 0.551 with

a dropout rate of 0.5 and a 20-second overlap. The results demonstrate that
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the proposed deep learning approach offers a promising solution for non-invasive

detection of sleep apnoea using affordable physiological signals.

5.1 Advantages and Limitations of Deep Learning

Traditional machine learning methods refer to the classic algorithms for pattern

recognition, predictive modelling, and decision-making tasks. These methods

include supervised learning, unsupervised learning, and reinforcement learn-

ing methods. Although machine learning techniques have been successful in

many fields, they have significant limitations [137] when dealing with complex,

high-dimensional data. First, these methods rely heavily on structured data

and require a lot of feature engineering to achieve optimal performance. The

automatic learning ability of the model often depends on features manually

extracted by experts. In addition, traditional machine learning algorithms have

high computational costs when facing large-scale data. They cannot effectively

process unstructured data, such as images and text, resulting in limited model

performance.

Deep learning was developed to address these challenges. It minimises

reliance on manual feature engineering, effectively analyses image data, and

automatically learns features via a layered structure. Its emergence has increased

the accuracy and generalisation capability of computer vision tasks. Besides

automatically extracting characteristics and lowering human involvement, deep

learning techniques, such as long short-term memory networks (LSTM), may

efficiently represent long-term dependencies. Furthermore, time series data often

contains complex nonlinear relationships. Deep learning techniques, such as

convolutional neural network (CNN) and recurrent neural networks (RNN) can

perform well when handling highly nonlinear or complicated periodic time series

and automatically learn nonlinear relationships in the data.

Although deep learning has dramatically advanced in several areas, multiple

limitations remain. First, deep learning relies on massive quantities of labelled
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data and requires a lot of processing capacity. The intrinsic opacity of the

model limits interpretability. Furthermore, it is difficult to adjust to changes

in data distribution and is influenced by noisy data. The training duration

is too long, and hyperparameter tuning is complex, significantly increasing

deployment and optimisation costs. In addition to the above-mentioned concerns,

unbalanced data will also impact deep learning models. When the majority

class samples in the data set are far more than the minority class, the model

tends to learn the majority class features and ignore the minority class. This

will lead to a decrease in recall. It may seriously affect key applications such

as fraud detection and medical diagnosis. Although it can be optimised using

data augmentation, resampling, and loss function adjustment, removing the bias

caused by unbalanced data is still difficult. Hence, improving the robustness and

optimising its unbalanced data processing method remain significant problems

in deep learning applications.

5.2 Deep Learning Architecture

Deep learning architectures are structural designs of neural networks that allow

computers to learn intricate patterns and representations from input. Unlike

conventional machine learning models that depend on hand feature extraction,

deep learning uses several layers of artificial neurons to extract, manipulate, and

enhance characteristics automatically. Fields, including computer vision, natural

language processing, and autonomous systems, have been transformed by methods

including convolutional neural networks (CNNs) and recurrent neural networks

(RNNs). Especially useful in processing high-dimensional and unstructured data,

these structures describe complex nonlinear interactions using neurone layers

with activation functions. Deep learning research and practical applications

depend on the particular task, data characteristics, and computational resources

accessible, which determines the architectural decision and hence emphasises
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its relevance. This section mainly introduced three deep learning architectures

based on CNN.

5.2.1 Design of the CNN architecture

The CNN model was trained and validated with the extracted blood oxygen

signal (SpO2) and pulse signal segments to detect apnoea events. The CNN

architecture consists of N convolutional blocks that consecutively process the

input data [138], as shown in Figure 5.1. N can take any integer value. In the

experiments, values of N=2,3,4 and 5 were tested. However, the results showed

little improvement or even degradation as N increased. Therefore, N is chosen

2. Each convolutional block includes five sequential layers: convolution, batch

normalisation, activation, max pooling, and dropout. The convolutional layer

generates a 3D feature map using a 2D convolution operation [105], which is

expressed below:

xj
i [m,n] =

ksize∑
k=1

2∑
l=1

wj
i [k, l] · ai[m− k + 1, n− l + 1] + bji , (5.1)

where i = 1, ..., N and j = 1, ...,M . N is the number of convolutional blocks. M

is the number of filters. xj
i is the feature map generated in the convolutional

block i. wj
i denotes the weight of the filter. bji denotes bias. ai is the input to

the ith convolutional block. The convolutional layer comprises a set of M 2D

filters with a kernel. Since the experiment uses dual and single signals separately,

the kernel size will be set to a single column ksize× 1 to meet all task inputs.

The batch normalization layer normalised the previously generated feature maps

[89]. The rectified linear unit (ReLU) [90] activation function was then applied:

ReLU(xj
i ) = max(0, xj

i ), (5.2)

where xj
i is the value of each sample of the feature map. The ReLU activation

function is commonly employed in deep architectures to accelerate the training
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process of CNN without relying on pre-optimized weights[139]. The activation

layer is dimensionally reduced using a max pooling layer with a pool factor of

2× 1. This step reduces the length of the feature map while maintaining both

width and depth directions. The last layer of the convolutional block is a dropout

layer. The purpose of this layer is to reduce over-fitting. It removes a small part

of the activations randomly at each training interval. The drop probabilities

usually range from 0 to 0.5 [91].

5.2.2 CNN and SVM framework

A hybrid classification approach, CNN-SVM, combines CNN with SVM. This

method [140] uses CNN to extract feature representations from raw input data.

The extracted features are then used as input for the SVM classifier. CNN

enables the automated extraction of features in a hierarchical structure. As

discussed in Chapter 2, Section 2.6.2, the SVM method maximises the margins

between various classes to generate appropriate decision limits for classification

tasks. The CNN feature extraction combined with SVM classification could raise

the model’s general performance for different applications. This hybrid model

efficiently leverages the representational capabilities of CNNs in conjunction

with the robust generalisation properties of SVMs. The CNN-SVM architecture

has been successfully applied in several research fields, such as medical imaging,

facial recognition remote sensing, and object classification.

Figure 5.2 gives a basic architecture of CNN-SVM, which is also the archi-

tecture used in this experiment. Because 2D CNN is used, the processed signal

needs to be reshaped to meet the high-dimensional output requirements of CNN.

The detailed introduction of the CNN block is in the last section. The output of

the fully connected layer of the CNN block will be used as the input of the SVM

model. SVM can be changed to any other machine learning method.
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5.2.3 CNN and RNN framework

The RNN is a deep learning model that is trained to process and convert sequential

data inputs into specific sequential data outputs. Sequential data [141] refers to

ordered observations where each element is related to others through temporal or

structural dependencies. Examples of sequential data include words, sentences,

and time-series data.

A combination of CNN and RNN models is designed and trained using a

dataset of 1-minute segments of Pulse and SPO2 signals, labelled with whether

it is apnoea. Figure 5.3(a) is a deep learning framework for concatenation in

the signal stage and the overall CNN+RNN idea. Both signals are processed

similarly to Section 4.3.5 in Chapter 4. The data is divided into 1-minute

segments. Assuming the sampling frequency of the data is 8 Hz, the length of

a signal is 480. If the concatenation is performed at the signal stage, the input

size is 480 × 2. If concatenation is performed at the CNN feature stage, the

architecture should have two input sizes of 480 × 1 (see Figure 5.3(b)). The

CNN block is the same as the one introduced in the subsection 5.2.1). Unlike

CNN, the dropout layer is followed by a flattening layer, not a fully connected

layer. This is because the flattening layer is used to convert a multi-dimensional

tensor into a one-dimensional vector without doing any additional processing

[142]. This operation is a reshaping function with no learnable parameters. In the

CNN+RNN architecture, we usually want to convert the CNN-extracted features

straight into a sequence format suitable for RNN processing without further

mixing or transformation. The flattening layer translates the multi-dimensional

feature map into a one-dimensional vector free of parameters, preserving the

original feature information obtained by CNN. A fully connected layer, on the

other hand, will add more weights and biases and combine and change features

in linear and nonlinear ways. This makes it more difficult for RNN to get time

series information because it adds more model factors and computational work.

It may also change the original feature structure.
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(a) Signal-level fusion framework

(b) Feature-level fusion framework

Fig. 5.3 An overview of CNN+RNN framework

The RNN block contains an RNN layer, a fully connected layer and a softmax

layer. The last two layers are for classification. Since GRU has the same

performance as LSTM and lower computational cost [106], two layers related

to GRU are selected for the RNN layer: GRU layer and Bidirectional GRU
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(BiGRU) layer. The BiGRU layer integrates the capabilities of GRU with

bidirectional processing, enabling the model to learn past and future details

about the input sequence [143]. The BiGRU layer has two GRU layers(see figure

5.4), each of which concurrently processes the input sequence in both forward and

backwards directions. In the forward pass, the GRU layer captures information

Fig. 5.4 The BiGRU architecture

from previous time steps, while the backwards pass acquires information from

subsequent time steps. This bidirectional processing allows the model to capture

long-term dependencies in the input sequence precisely. Finally, the outputs

are concatenated and sent into a fully connected layer and a softmax layer for

classification.

5.3 Experimental Results and Discussion

5.3.1 Initial Conditions of the Algorithms

The experiments are performed with the MATLAB 2024 b version. The parameter

settings for the CNN model of each task are shown in Table 5.1. The Adaptive

Moment Estimation (Adam) optimiser was selected as it is widely used in

binary classification tasks and has demonstrated robust convergence properties

in related studies. The mini-batch size was set to 128, which represents a balance

between computational efficiency and training stability. The maximum number

of epochs was fixed at 500 to allow sufficient iterations for convergence while
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CNN

Conv2D_1
number 32

size [16,1]
stride [1,1]

Conv2D_2
number 64

size [16,1]
stride [1,1]

Maxpooling_1 size [2,1]
stride [1,1]

Maxpooling_2 size [2,1]
stride [1,1]

dropout probability 0.3

CNN+RNN

Conv2D_1
number 32

size [16,1]
stride [1,1]

Maxpooling_1 size [2,1]
stride [1,1]

dropout probability 0.2

CNN+SVM

Conv2D_1
number 32

size [16,1]
stride [1,1]

Conv2D_2
number 64

size [16,1]
stride [1,1]

Maxpooling_1 size [2,1]
stride [1,1]

dropout probability 0.2
Table 5.1 Parameters setting for the CNN model of each task

preventing excessive training time. The initial learning rate was set to 0.001,

a standard value recommended in the literature for Adam, and was found in

preliminary experiments to provide stable convergence without overshooting.

These parameter choices are thus informed by both established practice in deep

learning and empirical tuning based on the dataset characteristics.

5.3.2 Data Preparation

Considering the impact of data imbalance on training models and single-signal and

multi-signal on experimental results, the dataset from St. Vincent’s University

Hospital [3] are used in this experiment. St. Vincent dataset has 25 cases, and
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all the data are split into overlapping one-minute segments. SPO2 and pulse

readings below 50 and above 300 are considered artefacts, and this segment will

be removed. The segments containing apnoea events are classified as ‘apnoea’

while those without respiratory disturbances are labelled ‘normal’. When an

apnoea event spanned two consecutive segments, fine-scale classification was

applied. Respiratory disturbances lasting less than five seconds in any segment

are classified as ’normal,’ as such brief interruptions do not significantly affect the

overall respiratory pattern. If disturbances surpass this duration in any segment,

it is classified as ’apnoea’, signifying a substantial interruption in respiratory

function. This method guarantees accurate classification of each minute according

to the intensity and length of interruptions. The detail of the data in different

overlaps(ovlp) is shown in Table 5.2.

Table 5.2 Detail of the data in different overlaps(ovlp)

apnoea normal
0_ovlp 2569 7406
10_ovlp 2882 9094
20_ovlp 3289 11674
30_ovlp 3820 16137

The data is divided into a training set and a test set in a ratio of 8:2. Since the

convolutional layer used is a 2D convolutional layer, the data must be reshaped

into four-dimensional data to meet the model input requirements. The training

data is divided into 2000 segments and one segment has 480 samples. The input

data can be expressed as [480 2000]. In order to meet the input conditions of

CNN, the input matrix is reshaped in the order of [S C B T ] to become 4-D

data [480 1 1 2000]. These four numbers represent samples, channels, batches,

and time respectively.

5.3.3 Feature Map from CNN

Figure 5.5(a) shows the maximum activation values of the 32 convolution kernels

of the CNN model for the apnoea and normal classes. Each box plot shows
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(a) Max responses of all kernels/filters (apnoea vs no apnoea). The red line means median. The
blue box is the data range.

(b) Data around the strongest activation location in the input

Fig. 5.5 Feature map visualisation from CNN block

the statistical characteristics of the maximum response value of the convolution

kernel to the input sequence of the two classes. The central line in the boxplot

means the median, while the two edges of the box mean the interquartile range.

Distinct disparities exist in the activation distribution for some convolution kernels

between the two classes, which means that these kernels effectively capture the

temporal structural attributes associated with apnoea and significantly influence

the classification decision of the model.

Figure 5.5(b) shows how the kernel 21 captures the local structure of the

original input signal at its maximum response position. The figure shows the

signal pattern within a specific range before and after the response position. It

can be observed from the figure that in the apnoea sample, the kernel tends
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to detect local structures with downward trends in SPO2 and upward trend

patterns in pulse. These patterns may correspond to the sudden change in flow

before apnoea.

5.3.4 Results for Different Model

This section mainly gives the results of different models based on CNN. The left

side of the table represents different inputs, for example, ’SPO2_30_ovlp’ means

the input data is SPO2 signal in 30 seconds overlap. ’Feature’ here means feature

concatenation. ’SigConcate’ means signal concatenation. The difference between

these two is the location of the concatenation. Concatenate at the full-connection

layer is feature concatenation, while signal concatenation is concatenated at the

signal stage. ’F1-N’ and ’F1-A’ means the F1 score of the normal class and the

F1 score of the apnoea class. Since this experiment is a medical classification,

the sensitivity (sens) is mainly used to evaluate the model.

Results for CNN architecture

Table 5.3 Results for CNN model

acc sens spec F1-N F1-A κ
SPO2_0_ovlp 82.1% 53.7% 91.4% 0.88 0.60 0.48
SPO2_10_ovlp 82.3% 56.1% 90.2% 0.89 0.59 0.48
SPO2_20_ovlp 84.3% 57.9% 91.8% 0.90 0.61 0.51
SPO2_30_ovlp 85.6% 52.4% 93.3% 0.91 0.58 0.49
Pulse_0_ovlp 69.4% 30.7% 84.0% 0.80 0.36 0.16
Pulse_10_ovlp 71.8% 30.0% 85.0% 0.82 0.34 0.16
Pulse_20_ovlp 74.2% 28.3% 87.6% 0.84 0.33 0.18
Pulse_30_ovlp 78.2% 25.8% 91.8% 0.87 0.33 0.21
Featrue_0_ovlp 80.5% 60.2% 87.2% 0.87 0.61 0.48
Feature_10_ovlp 81.4% 56.2% 89.1% 0.88 0.59 0.47
Feature_20_ovlp 84.0% 55.7% 92.0% 0.90 0.61 0.51
Feature_30_ovlp 84.7% 53.5% 92.4% 0.91 0.58 0.49

SigConcate_0_ovlp 80.5% 56.7% 88.7% 0.87 0.60 0.47
SigConcate_10_ovlp 82.0% 58.3% 89.7% 0.88 0.61 0.50

SigConcate_20_ovlp 84.0% 60.1% 90.4% 0.90 0.61 0.51
SigConcate_30_ovlp 85.0% 53.4% 92.3% 0.91 0.57 0.48
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Table 5.3 shows the results of the CNN model. In this table, the signal

concatenation data with a 20-second overlap performs well. The feature con-

catenation with no overlap has 60.2% sensitivity, but theκvalue is not as good

as signal concatenation. Compared to the same 20-second overlap input, the

sensitivity of the connection is higher than that of the single signal result. How-

ever, there is still room for improvement in the overall performance, which can

be achieved by optimizing network parameters or enhancing data preprocessing.

Results for CNN+SVM

Table 5.4 Results for CNN-SVM model

acc sens spec F1-N F1-A κ
SPO2_0_ovlp 79.0% 45.1% 90.9% 0.87 0.53 0.40
SPO2_10_ovlp 83.4% 47.9% 94.3% 0.90 0.58 0.48
SPO2_20_ovlp 84.1% 45.6% 95.5% 0.90 0.57 0.48
SPO2_30_ovlp 85.0% 40.4% 96.2% 0.91 0.52 0.44
Pulse_0_ovlp 68.0% 28.0% 82.0% 0.79 0.31 0.11
Pulse_10_ovlp 74.8% 18.8% 92.3% 0.85 0.26 0.14
Pulse_20_ovlp 76.8% 16.2% 93.4% 0.86 0.23 0.12
Pulse_30_ovlp 79.0% 14.9% 95.0% 0.88 0.22 0.13

SigConcate_0_ovlp 81.4% 50.7% 92.2% 0.88 0.59 0.47
SigConcate_10_ovlp 83.8% 54.7% 92.9% 0.90 0.62 0.52
SigConcate_20_ovlp 83.5% 58.8% 90.2% 0.90 0.60 0.50
SigConcate_30_ovlp 84.7% 51.1% 93.1% 0.91 0.57 0.48

Table 5.4 shows the results of the CNN-SVM model. In this model, using a

single signal as input is unsatisfactory, but the fusion of two signals performs

relatively well. Based on previous studies, SPO2 has always performed well

in apnoea classification. This is because apnoea directly affects oxygen intake,

which means the oxygen content in the blood [6]. However, in this CNN-SVM

model, the classification sensitivity of the SPO2 signal is less than 50%, which is

not ideal. This may be related to the unbalanced signal and may also be due to

the parameter setting.
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Results for CNN+RNN

Based on different RNN models, this experiment designed two CNN-RNN models,

the CNN-GRU and the CNN-BiGRU models. Table 5.5 shows the results of

the CNN-GRU model. The results show that based on the CNN-GRU model,

Table 5.5 Results for CNN-GRU model

acc sens spec F1-N F1-A κ
SPO2_0_ovlp 81.1% 55.3% 90.2% 0.88 0.60 0.48
SPO2_10_ovlp 81.3% 56.0% 89.2% 0.88 0.59 0.47
SPO2_20_ovlp 83.4% 58.3% 91.5% 0.90 0.61 0.51
SPO2_30_ovlp 85.2% 51.6% 93.0% 0.91 0.57 0.48
Pulse_0_ovlp 70.5% 24.8% 86.1% 0.81 0.30 0.12
Pulse_10_ovlp 72.7% 20.5% 88.6% 0.83 0.26 0.11
Pulse_20_ovlp 73.5% 19.7% 88.6% 0.84 0.25 0.10
Pulse_30_ovlp 76.1% 20.0% 90.0% 0.86 0.25 0.12
Featrue_0_ovlp 81.3% 54.5% 90.6% 0.88 0.60 0.48
Feature_10_ovlp 82.3% 55.9% 90.7% 0.89 0.60 0.49
Feature_20_ovlp 85.4% 57.7% 92.9% 0.91 0.63 0.54
Feature_30_ovlp 83.7% 53.8% 91.0% 0.90 0.56 0.46

SigConcate_0_ovlp 80.2% 50.3% 90.7% 0.87 0.57 0.44
SigConcate_10_ovlp 82.9% 57.0% 91.0% 0.89 0.61 0.51

SigConcate_20_ovlp 83.6% 61.2% 89.7% 0.90 0.61 0.51
SigConcate_30_ovlp 85.2% 50.5% 93.0% 0.91 0.56 0.47

the comprehensive performance of the signal concatenation fusion input with

a 20-second overlap is better than that of other inputs. However, due to the

randomness of the experiment (such as the existence of the dropout layer), the

experimental parameters can be further optimized to obtain better performance.

Table 5.6 shows the results of the CNN-BiGRU model. The overall trend

of this result is similar to that of CNN-GRU. However, a 10-second overlap is

more suitable for this model. By comparing the detection results after fusion of

the two stages, the results of fusion in the signal stage are slightly higher than

others.

It can be seen from these four tables that the blood oxygen signal can directly

detect apnoea, while the pulse signal is slightly insufficient. This may be due to

the limitation of the pulse signal for apnoea classification. Although the pulse
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Table 5.6 Results for CNN-BiGRU model

acc sens spec F1-N F1-A κ
SPO2_0_ovlp 80.6% 51.0% 90.1% 0.88 0.56 0.44
SPO2_10_ovlp 81.6% 55.0% 90.6% 0.88 0.60 0.48
SPO2_20_ovlp 83.6% 56.6% 91.1% 0.90 0.60 0.50
SPO2_30_ovlp 84.6% 52.7% 92.2% 0.91 0.57 0.48
Pulse_0_ovlp 70.3% 26.8% 84.8% 0.81 0.31 0.13
Pulse_10_ovlp 71.2% 23.0% 86.4% 0.82 0.28 0.11
Pulse_20_ovlp 73.2% 27.5% 86.7% 0.83 0.32 0.16
Pulse_30_ovlp 76.4% 24.1% 88.5% 0.86 0.28 0.14
Featrue_0_ovlp 80.9% 56.7% 89.3% 0.87 0.61 0.48
Feature_10_ovlp 83.2% 56.1% 91.6% 0.89 0.61 0.51
Feature_20_ovlp 82.4% 54.9% 89.8% 0.89 0.57 0.46
Feature_30_ovlp 83.7% 55.5% 90.7% 0.90 0.58 0.48

SigConcate_0_ovlp 79.8% 54.3% 88.8% 0.87 0.58 0.45
SigConcate_10_ovlp 81.7% 58.4% 89.0% 0.88 0.60 0.49

SigConcate_20_ovlp 83.6% 56.2% 91.8% 0.90 0.61 0.51
SigConcate_30_ovlp 84.1% 57.4% 90.6% 0.90 0.58 0.49

signal also changes when apnoea occurs, the pulse signal still has limitations

in diagnosing apnoea. Sleep apnoea is mainly caused by airway obstruction or

central nervous system abnormalities. However, the pulse signal does not directly

indicate the occurrence of apnoea like the airflow sensor but is indirectly inferred

through the secondary effects of the cardiovascular system [144]. This means

that if some short or mild apnoea does not cause an obvious heart rate response,

the pulse signal may not have an apparent change, which may cause missed

events. But even so, the result after signal fusion is still better than that of a

single signal, which shows that pulse signal is still helpful in indirectly detecting

apnoea.

5.3.5 Comparison of Performance and Discussion

Table 5.7 gives the results of different models based on signal concatenation

with 20-second overlap. CNN-GRU shows the best performance among these

models. Given that the outcomes of the CNN model closely resemble those of

the CNN-GRU model, we choose to perform a more detailed evaluation based on
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Table 5.7 Results of different models based on signal concatenation with 20-second
overlap

acc sens spec F1-N F1-A κ
CNN 84.0% 60.1% 90.4% 0.90 0.61 0.51

CNN+SVM 83.5% 58.8% 90.2% 0.90 0.60 0.50
CNN+GRU 83.6% 61.2% 89.7% 0.90 0.61 0.51
CNN+BiGRU 83.6% 56.2% 91.8% 0.90 0.61 0.51

different dropout values. Table 5.8 and table 5.9 show the performance of the

Table 5.8 Performance of the CNN model for signal concatenation inputs with a
20-second overlap based on different dropout probabilities

Dropout probability acc sens spec F1-N F1-A κ
0.1 82.5% 58.7% 88.9% 0.89 0.59 0.4750
0.2 83.4% 57.9% 90.3% 0.90 0.60 0.4919
0.3 84.0% 60.1% 90.4% 0.90 0.61 0.5131
0.4 84.0% 57.9% 91.1% 0.90 0.61 0.5058
0.5 84.7% 57.3% 92.1% 0.90 0.61 0.5184

Table 5.9 Performance of the CNN-GRU model for signal concatenation inputs
with a 20-second overlap based on different dropout probabilities

Dropout probability acc sens spec F1-N F1-A κ
0.1 83.7% 54.1% 91.7% 0.90 0.59 0.4857
0.2 84.5% 56.5% 92.1% 0.90 0.61 0.5127
0.3 83.6% 61.2% 89.7% 0.90 0.61 0.5100
0.4 84.8% 58.8% 91.9% 0.90 0.62 0.5296
0.5 84.4% 62.4% 90.4% 0.90 0.63 0.5332

CNN and the CNN-GRU models based on different dropout probabilities, using

signal concatenation with a 20-second overlap as input. From these tables, both

models perform well when the probability is 0.5. CNN-GRU is the best among

them, which can be shown in figure 5.6. This figure shows theκvalues obtained

on the validation set for different dropout values using CNN and CNN-GRU.

The maximum performance on the validation set was kappa = 0.5332 with

dropout probability = 4 and the CNN-GRU model. The other configurations

performed slightly lower, so this best model was ultimately chosen to continue

evaluating the test data.
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Fig. 5.6 Diagnostic performance of convolutional and recurrent neural network
(CNN) and convolutional and recurrent neural network (CNN + RNN) architec-
tures for different numbers of dropout probabilities.

Table 5.10 Performance of the CNN-GRU model for signal concatenation inputs
with a 20-second overlap based on different numbers of neurons in the GRU layer
(NG).

NG acc sens spec F1-N F1-A κ
1 85.5% 53.4% 94.3% 0.91 0.61 0.5258
2 85.2% 56.3% 93.1% 0.91 0.62 0.5290
4 85.4% 61.5% 91.9% 0.91 0.64 0.5510
8 84.3% 60.2% 90.8% 0.90 0.62 0.5219
16 84.2% 56.6% 91.8% 0.90 0.61 0.5080
32 85.0% 60.7% 91.7% 0.91 0.63 0.5407
64 83.6% 61.2% 89.7% 0.90 0.61 0.5100

Figure 5.7 shows theκvalues obtained in the validation set using different

numbers of neurons in the GRU layer (NG) values for CNN and RNN. The

maximum performance in the validation set is kappa = 0.5510 with NG = 4.
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Fig. 5.7 Diagnostic performance of convolutional and recurrent neural network
(CNN + RNN) architectures for different numbers of neurons in the GRU layer
(NG).

It can be seen from table 5.10 that when NG=4, the model sensitivity reaches

61.5%, and the F1 score of the apnoea category is 0.64, which is the highest

value in all experiments.

5.4 Summary

This chapter thoroughly investigates deep learning techniques, with a particular

focus on CNN, aimed at detecting sleep apnoea using pulse and oximetry data.

Initially, the benefits of deep learning are examined, highlighting its capacity

to autonomously extract crucial features from raw signals. Furthermore, the

discussion includes its limitations, such as the requirement for extensive datasets

and considerable processing capabilities.
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The subsequent section presents the core architecture of CNN along with two

enhanced hybrid approaches. The hybrid model combines CNN and SVM, where

the CNN component extracts descriptive features from the data, and the SVM

acts as a high-level classifier to distinguish apnoea events from normal segments.

The second hybrid model, CNN-RNN, integrates convolutional layers that are

designed to identify specific signal features with recurrent models such as the

GRU or BiGRU, which are adept at capturing long-range temporal relationships

in time series data.

This chapter introduces data preparation, including splitting the signal into

overlapping windows and initialisation for model validation. Experiments are

validated not only with a single signal but also with a fusion of two signals. In

addition, each model’s architecture and hyperparameter configuration are listed,

giving the choice of layer arrangement, kernel dimension, activation function,

and dropout rate.

The experimental results show that while independent CNNs can show robust

performance, integrating SVM or RNN can further improve detection accuracy.

The integrated CNN-RNN method is good at detecting subtle patterns in the

signal because RNN can simulate long-term dynamics. In addition to comparing

the validation results of different inputs in the model, the experiment also

experimentally selected the optimal dropout rate and the number of GRU

neurons. Among them, when dropout = 0.5, NG=4, the classification effect is

the best, reaching 85.4% accuracy and 61.5% sensitivity. Theκvalue reached

0.5510, and the F1 score of apnoea was 0.64. These results show that deep

learning architectures, especially hybrid models, have great potential to improve

the accuracy and reliability of automatic sleep apnoea recognition. However, this

chapter indicates that these methods require careful parameter optimisation and

sufficient training data to achieve maximum effectiveness.

When compared to existing approaches in the literature, these results are

competitive and highlight the potential of hybrid architectures. For instance,

recent CNN-LSTM methods applied to the Apnea-ECG dataset achieved ac-
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curacies above 90%, with sensitivities exceeding 90% as well [135]. However,

those methods often rely on larger, more balanced datasets and are primarily

validated on ECG-based signals, which may not directly translate to pulse and

oximetry data. Other works employing ensemble methods such as RUSBoost

report accuracies around 88–89% but typically at the expense of sensitivity [145].

In contrast, the hybrid CNN-RNN approach developed in this study demonstrates

comparable overall accuracy while maintaining stronger adaptability to imbal-

anced physiological data. These findings therefore reinforce the view that deep

learning architectures, particularly when combined with recurrent mechanisms,

hold significant promise for improving the accuracy and clinical reliability of

automatic sleep apnoea recognition.



Chapter 6

Conclusions and Future Work

6.1 Summary and Contributions

This dissertation represents the importance of accurate identification of sleep

apnoea. The limitations of traditional clinical techniques underscore the necessity

for affordable, automated, home-based alternatives. Although conventional

techniques like the PSG have clinical accuracy, they still have challenges with high

costs, time-consuming processes and the requirement for specialised laboratory

conditions. In addition, manual interpretation of physiological data, such as those

obtained from electrocardiography, pulse oximetry, and electroencephalography,

is time-consuming and subject to inter-observer variability. The signals’ natural

non-stationarity exacerbates these issues. Furthermore, data imbalance always

poses a significant challenge to standard detection algorithms, which often rely on

fixed thresholds or limited classification boundaries. Based on these challenges,

the research presented in Chapters 3 to 5 offers a range of innovative solutions

to address these issues.

Chapter 3 reviews the limits of traditional change detection approaches, in-

cluding the standard CUSUM algorithm. Classical CUSUM is constrained by

its dependence on a set threshold, a limitation that is insufficient for address-

ing constantly fluctuating physiological inputs. The dissertation presents an

Adaptive CUSUM technique to address this issue. This innovative approach
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uses the log-likelihood ratio as a selection criterion, providing a more detailed

assessment of deviations from predicted signal behaviour. In addition, by inte-

grating a rational sub-grouping process, the algorithm can dynamically modify

the detection threshold in real-time. This demonstrates its ability to adapt to

the changing statistical properties of the input signal. This adaptive approach

improves the algorithm’s sensitivity, enabling it to detect subtle anomalies that

might go unnoticed while reducing the false positive rate. False positive rates are

crucial in healthcare environments as overdiagnosis may result in superfluous in-

terventions. The multi-signal fusion aspect of the ACUSUM algorithm integrates

pulse and blood oximetry data, marking a substantial shift from earlier research

that focused predominantly on single signal assessment. The extensive dataset,

such as the NSRR, substantiates improved detection accuracy and reliability.

Chapter 4 focuses on the use of advanced machine-learning methods to

detect sleep apnoea. This problem is particularly pronounced in sleep apnoea

detection because the number of normal events far exceeds the number of

apnoea occurrences. This chapter highlights two methods for overcoming the

significant problem of data imbalance. The first framework uses the DPGMM.

This clustering technique can autonomously identify the number of clusters in

the data. Compared to traditional supervised learning methods that require

manual tuning of hyperparameters, DPGMM can self-adjust based on the inherent

structure of the dataset, which has greater flexibility and robustness. Another

method introduced in Chapter 4 is the RUSBoost method, which complements

this probabilistic strategy by combining random undersampling and boosting

techniques to alleviate the problems caused by class imbalance effectively. This

dual strategy ensures that the minority class (usually representing significant

apnoea events) is appropriately recognised during classification, thereby improving

sensitivity and specificity. Experimental results from three datasets: ECG-

Apnoea, CHAT, and StVincent, demonstrate that the RUSBoost classification

framework outperforms traditional methods, such as support vector machines
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and k-nearest neighbours, while also confirming the feasibility of home sleep

apnoea monitoring using low-cost blood oxygen and pulse signals.

Chapter 5 explores the use of deep learning for sleep apnoea identification.

A hybrid model that combines the benefits of CNN and RNN is proposed to

classify sleep apnoea. CNN is to capture the spatial and temporal features of

sleep signals, and RNN is to detect apnoea. Since CNNs are good at extracting

spatial patterns from raw input data, they cannot detect temporal dependencies.

This study formulates a customised CNN architecture designed to process time

series data. Subsequently, this design is combined with a recurrent module

that utilises a GRU, which excels in modelling the sequential relationships

inherent in physiological signals during sleep. The resulting CNN+RNN hybrid

model is designed to autonomously extract and integrate spatial features from

individual signal frames and the temporal dependencies of these features. In

the experiment, the dropout probability and the number of neurons in GRU are

adjusted to find the best parameters to achieve the optimal classification. This

chapter also introduces a hybrid model of CNN+SVM. The hybrid model can

capture complex dynamic changes that are challenging for a single method, and

it represents a significant innovative contribution to the field of automatic sleep

apnoea recognition.

6.2 Future Work

To improve the detection and monitoring of sleep apnoea, several intriguing

directions for future research might be further explored based on the contributions

and findings of this thesis. One important way is the real-time implementation

of the suggested algorithms, especially the CNN+BiGRU framework and the

Adaptive CUSUM. These techniques’ practical usefulness would be confirmed

and continuous, inconspicuous monitoring of sleep problems in various settings

would be made possible by moving them from an offline experimental setup to a

real-time, embedded system appropriate for wearable or home-based monitoring.
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Another critical area for future work is extensive validation using larger, more

heterogeneous datasets. This study has shown strong performance across various

established datasets. However, the additional research can incorporate data from

various populations, including patients of different ages and those with sleep

apnoea severities. This research aims to refine the algorithm and augment its

generalisation capacity, enabling the model to accommodate individual variations

and signal conditions.

In addition, the integration of multimodal physiological signals inspires further

exploration. Although this paper combines pulse and blood oxygen saturation

data to improve detection accuracy, multiple results indicate that pulse signals are

unsuitable for detecting sleep apnoea. Future research can try to combine other

data sources, such as electrocardiogram, electroencephalogram, and even acoustic

signals. This multimodal fusion can capture a broader range of physiological

manifestations associated with sleep apnoea, thereby improving the robustness

and sensitivity of the detection system.

The introduction of the ACUSUM algorithm raised the issue of computational

efficiency. The proposed method can maximise the computational efficiency of

space. Although they require a lot of processing resources, the adaptive methods

and complex deep learning architectures demonstrated in this study are successful.

Future research should focus on algorithmic improvements, including model

compression or creating more efficient training paradigms, to help implement

these models in real-world settings with limited resources.

The above suggestions for future work focus on the surface of model archi-

tectures, such as changing data and optimising algorithm time. But in fact,

it is more important to explore advanced deep learning architectures, such as

those based on attention mechanisms or transformer models, which can provide

additional improvements for capturing long-range temporal dependencies and

complex signal dynamics. Compared with the traditional CNN and RNN combi-

nation, such architectures may have higher performance, especially when dealing

with the high-dimensional and noisy characteristics of physiological signals. And
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when training the model, the parameters can be more optimized to achieve better

prediction results.

In summary, future work inspired by this paper includes real-time deploy-

ment of the developed methods, extensive validation across different datasets,

multimodal data fusion, computational optimisation, and research on advanced

neural architectures. These research directions can advance the automatic sleep

apnoea detection field and help develop accessible, efficient, and reliable home

monitoring systems.
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