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Abstract

The global transition toward decarbonized energy systems has intensified the need for accu-
rate, spatially resolved data on installed solar photovoltaic (PV) capacity. However, incon-
sistencies in reporting, limited geographic granularity, and varying measurement standards
pose challenges for planning and assessment. This thesis addresses these challenges by de-
veloping spatial models to estimate, benchmark, and forecast installed PV capacity across
global, regional, and subregional scales.

Structured as a thesis by publication, the work comprises three core studies. The first
develops a global model of installed PV capacity at the national level, identifying key ge-
ographic and socioeconomic drivers. The second estimates regional capacity across 36 Eu-
ropean countries, including those lacking official regional data. The third focuses on Great
Britain, modelling subregional capacity. Collectively, the models disaggregate national ca-
pacity, benchmark deployment, and forecast where future capacity is likely to be installed—
supporting efforts to monitor generation, reduce connection delays, plan grid expansion, and
address land-use conflicts by identifying areas where solar development may compete with
other uses, including agriculture.

The models exhibit strong performance across spatial scales. The Global Model estimates
annual capacity additions with a global error of 9.7%. The European Model estimates cu-
mulative capacity at the NUTS 2 level and achieves a national error of 19.5% when applied
across all countries. In countries with available regional data—including the UK, Italy, Spain,
Belgium, Germany, and France—the error falls to 2.5%. The GB Model achieves a national
MAPE of 5.4% at the NUTS 3 level.

Across spatial scales, a shift in deployment drivers emerges. National capacity is shaped
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by socioeconomic factors, while regional and subregional deployment is driven by land-use
characteristics, with artificial surfaces and agricultural areas as strong predictors. While
solar irradiation is often assumed critical, the models show that structural and socioeconomic

conditions are more influential, particularly in developed markets.
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Glossary

Actual installed solar PV capacity The total direct current (DC) capacity of solar pho-
tovoltaic (PV) systems that have been physically installed and connected to the grid.
This reflects the true system capacity, regardless of whether it is reported or accurately

measured. DC capacity is the sum of module capacity (not inverter capacity).

Reported solar PV capacity The PV capacity figures officially reported by governments,
regulators, or other institutions. Therefore, national capacity estimates are often com-
piled from multiple sources that may miss particular system types. These may be
incomplete due to under-reporting (e.g., small or off-grid systems not registered) or

inaccurate due to reporting errors, such as duplicated systems or outdated data.

Modelled solar PV capacity Estimates of installed solar PV capacity derived from pre-
dictive models. These aim to approximate actual capacity, especially in cases where
reported or measured data are missing or unreliable. Modelled capacity provides a

consistent basis for analysis and comparison.

Forecasting PV capacity The process of estimating future solar PV capacity, either in the
short or long term. Forecasts may be based on trends, policy scenarios, or predictive

models that incorporate geographic, economic, and technological factors.

Benchmarking PV capacity The comparison of reported vs modelled solar PV deploy-
ment levels across countries or regions. Benchmarking helps evaluate performance
relative to geographic, socioeconomic, and environmental conditions to identify under-

or over-performing areas.
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Disaggregation of PV capacity The process of breaking down national-level solar PV
capacity figures into estimates at finer geographic scales, such as regions or localities.

This enables more detailed analysis and localized planning.

Geographic factors Spatially varying characteristics that influence solar PV deployment,
including social (e.g., population density), economic (e.g., income levels), climatic (e.g.,
solar radiation), and land use (e.g., availability of artificial surfaces or agricultural land)

conditions.

Centralized PV capacity Centralized PV capacity refers to large-scale solar power instal-
lations, such as utility-scale solar farms, that are typically connected to the high-voltage
transmission or primary distribution grid. These systems are usually ground-mounted,
centrally monitored, and fully visible to the system operator, allowing for direct inte-

gration into grid management and planning.

Distributed PV capacity Distributed PV capacity refers to smaller, often rooftop-mounted
solar systems installed on residential, commercial, or public buildings and connected to
the low- or medium-voltage distribution network. These systems are generally located
close to the point of consumption and may not be fully visible to the system opera-
tor, especially in markets without comprehensive monitoring or registration systems,

making their impact on grid planning and operation more difficult to assess.
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Chapter 1

Introduction

1.1 The Evolution of Solar Photovoltaics: From Scientific Dis-

covery to Global Deployment

The photovoltaic effect, the physical principle underlying solar photovoltaic (PV) technology,
was first observed in 1839 by French physicist Alexandre-Edmond Becquerel. He discovered
that certain materials produced an electric current when exposed to light, marking the be-
ginning of a field that would later revolutionize energy systems [1, 2]. In the late 19th
century, further progress was made by Willoughby Smith and William Grylls Adams, who
demonstrated the photoelectric properties of selenium, confirming that light could generate
electricity without the need for moving parts [3, 4].

In 1883, Charles Fritts constructed the first true solar cell by coating selenium with a
thin layer of gold. Although its efficiency was below 1%, it represented the first practical
application of the photovoltaic effect [5]. This was followed by the development of a copper-
copper oxide solar cell in 1904 by Wilhelm Hallwachs [6].

A major theoretical breakthrough came in 1905, when Albert Einstein published his
explanation of the photoelectric effect, demonstrating how light could eject electrons from
certain materials [7]. This work laid the theoretical foundation for modern solar energy

conversion and earned him the Nobel Prize in Physics in 1921 [8].
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In the early 20th century, the search for alternative materials and methods of solar energy
conversion continued, although widespread application remained limited due to high costs and
low efficiencies. The decisive breakthrough for practical solar PV came in 1954, when Daryl
Chapin, Calvin Fuller, and Gerald Pearson at Bell Labs developed the first silicon-based solar
cell, achieving an efficiency of approximately 6% [9]. This milestone is widely regarded as
the beginning of the modern photovoltaic era.

Solar PV’s reliability and potential were soon demonstrated in space applications. In
1958, the Vanguard I satellite was launched with solar cells that powered its radio transmitter,
proving solar PV’s effectiveness in harsh and remote environments [10]. This success led to
widespread adoption of PV technology in space exploration.

The oil crises of the 1970s revived global interest in alternative energy sources, prompting
governments—particularly in the United States—to invest in solar research and development
[11]. These investments facilitated gradual improvements in solar cell efficiency and reduc-
tions in manufacturing costs. By the 1980s, innovations in manufacturing processes helped
raise its efficiency to approximately 10% [12, 13].

Between 1980 and 2010, technological innovation in solar PV accelerated significantly.
Patent data from this period show an average annual growth rate of 10.5%, with a marked
concentration in five countries: Japan, the United States, China, Germany, and South Korea.
Together, these nations accounted for over 92% of all solar PV-related patents, indicating a
high level of geographic concentration in technological innovation [14].

As a result of these advancements and strong policy support, global installed PV capacity
grew rapidly—from just over 1 GW in 2000 to nearly 40 GW by 2010 as shown in Figure 1.1
[15, 16]. Much of this growth was driven by feed-in tariff (FiT) policies in Europe, especially
in Germany, as well as incentive programs in Japan and the United States.

During the same period, the cost of solar PV modules declined significantly—from over
$20 per watt in the early 1980s to under $3 per watt by 2010 as shown in Figure 1.2.
This dramatic cost reduction was enabled by improvements in manufacturing, driven by

government subsidies, and the economies of scale, with the rise of China as a dominant
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Figure 1.1: Historical deployment of solar photovoltaic capacity for the top 10 countries by
installed capacity: China, USA, Japan, Germany, India, Brazil, Australia, Italy, Spain, and
the Netherlands. Global cumulative capacity is shown as a black dashed line. Data sourced
from TIRENA [17]. In the early 2000s, Japan, the United States, and Germany led global solar
PV deployment, with installed capacities significantly higher than China’s. Japan’s capacity
in 2000 was nearly ten times greater than China’s, while the United States and Germany
had fivefold and threefold higher capacities, respectively. However, by 2015, this pattern
had reversed: China overtook all three countries to become the world’s leading market for

cumulative installed solar PV capacity.
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Figure 1.2: Historical evolution of solar photovoltaic module prices (USD/W) against cumu-
lative global installed PV capacity from 1975 to 2023, demonstrating the consistent decrease
in module prices with increased deployment. Data sourced from IRENA [19].

player in the global solar supply chain [18].

Since 2010, solar PV has undergone unprecedented cost reductions and deployment growth,
solidifying its position as one of the most economically viable and scalable sources of elec-
tricity. Global cumulative installed PV capacity increased from 40 GW in 2010 to 1,412 GW
by the end of 2023, reflecting an exponential growth trajectory [20]. As shown in Figure 1.1,
global PV capacity has doubled approximately every three years. This rapid expansion has
been underpinned by a dramatic decline in technology costs, particularly the price of solar
panels.

According to the International Renewable Energy Agency (IRENA), the global weighted
average levelized cost of electricity (LCOE) for utility-scale solar PV projects fell by 90%
between 2010 and 2023—from USD 0.460 per kilowatt-hour (kWh) to just USD 0.044/kWh—
making solar PV one of the most cost-effective sources of electricity worldwide [20]. This

reduction has been driven primarily by a 96% drop in PV module prices, alongside significant
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decreases in balance-of-plant costs, operation and maintenance (O&M) expenses, and the cost
of capital. Further contributing factors include advances in module efficiency, economies of
scale, and greater vertical integration across the global supply chain [20].

As a result, by 2023, the global weighted average LCOE for utility-scale solar PV was
56% lower than the average cost of electricity from fossil fuels [20]. Additionally, the total
installed costs of utility-scale solar PV fell by 86% from 2010 to 2023, from USD 5,310/kW to
USD 758 /kW, reflecting advancements in both technology and installation processes. These
significant cost reductions, combined with increased efficiency and global market growth,
have established solar PV as one of the most affordable and scalable energy sources available
today [20].

A central factor behind these dramatic cost reductions is the phenomenon described by
Swanson’s Law, which posits that the price of solar PV modules declines by approximately
20% with each doubling of cumulative installed capacity [21]. This learning effect is illustrated
by the curve presented in Figure 1.2, which captures how sustained technological innovation,
increasing manufacturing scale, and efficiency improvements have driven long-term reductions
in PV module costs.

In the early 2000s, solar PV technologies remained prohibitively expensive and required
substantial government subsidies to stimulate market uptake. Japan, the United States,
and Germany played a crucial role in this early phase by introducing policy incentives that
supported deployment despite high upfront costs. These early investments catalysed global
growth by driving cost-reducing innovations throughout the PV supply chain. As illustrated
in Figure 1.1, Japan’s capacity in 2000 was nearly ten times greater than China’s, while the
United States and Germany had fivefold and threefold higher capacities, respectively.

Between 2010 and 2015, PV module prices declined to a critical threshold that enabled
solar PV to become economically competitive even in the absence of extensive subsidies.
This turning point stimulated exponential global growth in installed capacity, particularly
in China, where large-scale investments and aggressive industrial policies accelerated deploy-

ment at an unprecedented pace. As shown in Figure 1.1, China quickly overtook early market
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leaders such as Germany and the United States, becoming the dominant force in the global
solar PV landscape.

Several countries have been at the forefront of the global solar revolution, driving the
rapid increase in solar PV capacity. China remains the undisputed leader in global solar
capacity, with an installed capacity of 609,351 MW by 2023 [17], contributing more than 43%
of the total global installed PV capacity. This dominance is largely attributed to proactive
government policies [22, 23], including substantial investments, direct subsidies, feed-in tariffs,
and tax incentives across the entire PV supply chain - from polysilicon production to wafers,
cells, and modules. These measures have enabled Chinese companies to scale production
efficiently, driving down costs and securing more than 80% of the global market share [22,
23].

In the United States, solar PV capacity has also experienced remarkable growth, reaching
137,725 MW by the end of 2023 [17]. This expansion has been driven by a combination of
federal and state-level policies aimed at incentivizing renewable energy deployment. Chief
among the federal mechanisms is the Investment Tax Credit (ITC), which has been instru-
mental in promoting investment in solar projects. Since its introduction in 2006, the U.S.
solar market has expanded by more than 10,000%, underscoring the ITC’s pivotal role in
shaping market dynamics [24]. In addition to the ITC, the Modified Accelerated Cost Recov-
ery System (MACRS) allows businesses to recover 10-25% of their solar system cost through
tax deductions over a five-year period, further incentivizing capital investment in solar PV
infrastructure [24].

State-level policies have also been crucial in supporting deployment. As of 2020, 30 U.S.
states and the District of Columbia had adopted renewable or clean energy mandates, though
only 12 states and D.C. had committed to achieving 100% clean energy targets by 2050 or
earlier [25]. These mandates, in combination with state subsidies, net metering schemes, and
renewable portfolio standards, create a diverse and multi-layered policy landscape. Federal
initiatives such as the SunShot Initiative, launched by the U.S. Department of Energy in 2011,

have further accelerated cost reductions and innovation, aiming to make solar power cost-
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competitive with conventional energy sources [24]. Together, these policies have positioned
the United States as a global leader in solar PV deployment.

Germany has long been regarded as a pioneer in solar PV deployment, with a total
installed capacity of 82,000 MW as of 2023 [17]. The country’s leadership in solar energy can
be traced back to a series of progressive government initiatives beginning in the early 1990s.
The launch of the “1000 Rooftops Program” in 1990 marked one of the first large-scale public
investments in solar PV, aiming to demonstrate the viability of rooftop solar systems [26].
Its success led to the “100,000 Rooftops Program” in 1999, which further expanded market
awareness and infrastructure, laying the groundwork for widespread residential adoption [27,
28].

However, it was the introduction of the Renewable Energy Sources Act (Erneuerbare-
Energien-Gesetz, EEG) in 2000 that became the defining moment for Germany’s solar PV
sector. The EEG established one of the world’s earliest and most influential feed-in tariff
(FiT) systems, guaranteeing long-term, above-market prices for electricity generated from
solar PV and other renewable sources. This stable and investor-friendly framework catalysed
rapid deployment, transforming Germany into a global leader in solar adoption throughout
the 2000s and early 2010s [29]. Germany’s experience not only demonstrated the feasibility
of large-scale solar integration but also served as a model for similar FiT-based policies
worldwide [30].

The Netherlands has emerged as a significant player in solar PV deployment, with a total
installed capacity of 24,000 MW by the end of 2023 [17]. This growth has been driven by
a succession of feed-in premium and subsidy schemes aimed at stimulating both residential
and utility-scale PV adoption. One of the earliest incentives was the Energy Contribution
Regulation (EPR), introduced in 2001, which offered EUR 3.50 per watt-peak (Wp) and a
25% system cost discount for installations on existing homes. The abrupt termination of the
EPR in 2003 triggered a rush of applications from investors seeking to secure the subsidy
before its expiration [31, 32]. In the same year, the Environmental Quality of Electricity

Production (MEP) scheme was introduced [31], providing a fixed premium per kilowatt-hour
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(kWh) to renewable electricity producers feeding into the grid. PV received the highest level
of support—EUR 0.097/kWh on top of wholesale electricity prices—before the scheme was
discontinued in 2006 [33]. To maintain momentum, the government launched the Stimu-
lation of Sustainable Energy Production (SDE) in 2008, initially targeting small-scale PV
installations (0.6-3.5 kWp) with a feed-in premium of EUR 0.33/kWh for 15 years [34]. The
scheme was expanded in 2009 to support systems up to 100 kWp, with tiered subsidy rates
depending on system size [35]. By 2010, the total SDE budget for PV had reached EUR
94 million, supporting 25 MW of capacity [36]. However, the program was discontinued in
2011 to make way for the SDE+ scheme, which focused exclusively on systems larger than
15 kWp and adopted a more cost-competitive, technology-neutral allocation approach [36].
More recently, the Sustainable Energy Production and Climate Transition Incentive Scheme
(SDE++) has supported large-scale solar deployment, while the annual net metering policy
has played a critical role in stimulating residential PV adoption by allowing households to
offset electricity bills with self-generated solar power [37, 38]. These policy instruments—
together with decreasing technology costs and public enthusiasm—have collectively enabled
the Netherlands to become one of Europe’s fastest-growing solar PV markets.

Together, these countries contributed to a global solar energy revolution, where policies,
technological innovations, and economic factors drove substantial increases in installed ca-
pacity. As solar technology continues to evolve and costs continue to fall, it is expected
that even more nations will make significant strides in increasing their solar PV installations,

helping to mitigate climate change and promote a cleaner, more sustainable energy future.

1.2 Significance and Challenges of Tracking Solar PV Capac-
ity
1.2.1 Tracking National PV Capacity

Several key organizations and institutions provide national-level PV capacity data, each em-

ploying distinct methodologies, classification systems, and update frequencies. These data
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sources vary in their degree of openness, detail, and reliability, which can affect their suit-
ability for different analytical purposes.

The International Renewable Energy Agency (IRENA) is one of the most widely used
sources for global solar PV capacity data. IRENA publishes annual statistics on installed and
cumulative renewable energy capacity, disaggregated by technology type, for more than 180
countries through its Renewable Capacity Statistics reports [39]. These statistics primarily
reflect capacity that is installed and connected at the end of each calendar year, though
in some cases they may also include completed projects that are not yet grid-connected.
IRENA gathers data from a mix of sources, including national statistical offices, energy
ministries, regulators, industry associations, and its own questionnaire-based surveys. Figures
in IRENA’s datasets are annotated to indicate their provenance: “o” for official statistics, “u”
for unofficial sources such as industry reports and news media, and “e” for figures estimated by
IRENA from various sources [40]. While this multi-source approach enables broad coverage
and comparability, it also introduces variability in data quality, depending on the accuracy
and completeness of national submissions.

The International Energy Agency (IEA) also publishes solar PV capacity data through
its “Renewables 2024: Analysis and Forecast to 2030” report [41], and the World Energy
Outlook. The IEA dataset includes both historical trends and forward-looking deployment
scenarios, covering over 40 countries and regional aggregates such as the European Union
and G20 [42]. One of the key features of IEA’s data is the segmentation of PV systems into
detailed subcategories. These include residential PV systems (PVRES, <10 kW), commercial
and industrial systems (PVCOMM, 10 kW—-1 MW), utility-scale systems (PVUT, >1 MW),
and off-grid systems (PVOFF), which include solar home systems, mini-grids, and remote
commercial setups. Distributed PV systems (PVDIST) encompass all installations under
1 MW, including residential, commercial and industrial systems, and off-grid application
types. The IEA also tracks emerging categories such as PV systems dedicated to hydrogen
production (PVH2), reflecting the growing integration of solar energy into green hydrogen

strategies. Importantly, IEA distinguishes between grid-connected and off-grid systems in
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its methodology: grid-connected systems are counted at the time of connection, while off-
grid systems are included at installation. This consistent classification supports international
comparability across countries and system types [42]. BloombergNEF (BNEF) is a commer-
cial provider of solar market data, offering high-frequency updates on national PV capacity
and project pipelines, including insights into future developments. BNEF’s data is widely
used by financial analysts, policymakers, and researchers.

Taken together, these data sources offer varying levels of detail, access, and reliability.
While organizations like IRENA support open access and broad global comparability, their
data is limited by the quality of national reporting. The IEA and BNEF provide more gran-
ular and segmented data, including forecasts and market breakdowns, but their commercial
nature restricts accessibility. National statistical agencies remain essential for fine-grained
capacity tracking, although their methodologies and data structures differ.

Mao et al. [43] compared methods for estimating PV installation and mentioned the
advantages and disadvantages of each method. Several methods exist for estimating PV in-
stallations, each with distinct advantages and limitations. Official registers typically provide
comprehensive and reliable information for centralized PV systems—Ilarge-scale installations
connected to the high-voltage transmission or primary distribution grid—including detailed
data on area, capacity, and tilt angle. However, they often lack complete records for dis-
tributed PV systems, which are smaller, typically rooftop installations connected to the low-
or medium-voltage distribution network and often not visible to the system operator. In
addition, updates regarding decommissioned installations may be delayed. Crowdsourced
field surveys allow for flexible, small-area data collection and can capture a wide range of PV
system characteristics. Yet, the quality of volunteer-submitted data can vary significantly,
and maintaining or updating the dataset is labor-intensive and costly. Behind-the-meter
analysis offers the advantage of directly predicting the actual power output of PV systems,
which is valuable for grid management. Nonetheless, it suffers from high prediction errors
for distributed systems, limited access to meter-level data, and complications from battery

storage, making it unsuitable for estimating installation potential. Lastly, satellite and aerial
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imagery analysis enables broad, relatively low-cost coverage with high accuracy in identify-
ing location, area, and system orientation. It offers fast processing and easy updates, and it
can also support assessments of untapped PV potential when combined with building data.
However, this method requires significant computational resources and does not directly mea-
sure system capacity; rather, it captures panel surface area, from which capacity must be
inferred using empirical relationships or estimation models. Additionally, global access to

high-resolution imagery remains limited.

1.2.2 Tracking Regional and Subregional PV Capacity

Tracking regional and subregional solar PV capacity presents greater challenges than monitor-
ing national-level deployment. Data availability, resolution, and methodological consistency
vary significantly across countries and data providers. While some nations have developed
solutions to monitor solar capacity at fine geographic scales, others rely on national aggre-
gates with limited spatial granularity. Nonetheless, several countries in Europe—including
the United Kingdom, Italy, Spain, Belgium, Germany, and France—provide regional PV ca-
pacity data through a combination of government agencies, transmission system operators
(TSOs), and research institutions.

In the United Kingdom, high-resolution solar PV capacity data is made available through
Sheffield Solar, a research group based in the Department of Physics and Astronomy at the
University of Sheffield [44]. The group publishes estimates of installed solar capacity at the
Lower Layer Super Output Area (LSOA) level, updated quarterly with monthly temporal
resolution. These estimates are compiled from a combination of sources, including the Mi-
crogeneration Certification Scheme (MCS) for domestic and small commercial systems [45],
the Feed-in Tariff (FiT) register for systems that previously qualified for tariff payments
[46], and the Renewable Energy Planning Database (REPD) for utility-scale projects [47].
Additional data is sourced from Solar Media Ltd’s commercial dataset [48]. This integra-
tive approach ensures broad coverage of the UK’s solar fleet and enables robust spatial and

temporal analyses of PV deployment. However, there are still known gaps in the 50 kW
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to 1 MW range due to incomplete reports in the source data. Despite the extensive data
coverage, capacity estimates remain subject to several sources of uncertainty that affect both
domestic, commercial, and utility-scale PV systems [49]. One key issue is the presence of
unreported systems—installations that are operational but missing from official registers and
site lists. Conversely, some systems included in the datasets may have been decommissioned
yet still appear as active entries, leading to potential overestimations of installed capacity.
Transcription errors also contribute to uncertainty, as inaccuracies in reported capacity may
result from rounding or data entry mistakes. Additionally, revisions to system size following
installation introduce ambiguity, since such changes—such as upgrades or partial removals—
are not always captured. The operational status of systems adds further complexity: some
may be temporarily offline due to component failures, maintenance, or grid frequency issues,
reducing their contribution to generation despite being listed as installed. Finally, network
outages—whether planned or unplanned—can result in short-term disconnections that are
not reflected in static capacity records. These factors underscore the importance of inter-
preting PV capacity data with caution, particularly when conducting spatial or temporal
analyses.

In Italy, regional and provincial solar PV capacity data is published by Terna, the national
transmission grid operator [50]. These statistics are available from the year 2000 onwards
and are updated annually, with a temporal resolution of one year. The dataset includes
geographic detail down to the province level, making it useful for regional planning and
historical analysis.

Spain’s TSO, Red Eléctrica de Espana (REE), provides PV capacity data disaggregated
by region and available at both monthly and annual resolutions [51]. The dataset includes
capacity figures for multiple renewable technologies, including solar PV, and is updated
monthly, making it one of the more temporally detailed sources among European TSOs.

In Belgium, Elia, the national transmission system operator, publishes regional solar
PV capacity data at the provincial level, corresponding to NUTS 2 regions [52]. While

Elia provides highly granular generation and forecast data—updated every 15 minutes—the
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frequency with which capacity data is revised is not explicitly documented on its Open Data
Portal. This creates some uncertainty about the timeliness of installed capacity figures,
although the data remains useful for spatial analyses.

Germany offers one of the most detailed public datasets through its Marktstammdaten-
register (MaStR), maintained by the Federal Network Agency (Bundesnetzagentur, BNetzA)
[53]. The MaStR tracks all power and gas units across the country, including solar PV sys-
tems, and provides geographic data at multiple levels, including postal codes and, in some
cases, exact coordinates. However, full spatial precision is generally limited to large-scale
systems, while residential systems often lack coordinate-level information. The register is
updated daily, providing near-real-time access to newly registered systems and allowing con-
tinuous tracking of capacity changes. The reliability and completeness of this dataset were
evaluated by Kotthoff et al. [54], who conducted a comprehensive analysis of data quality
in the MaStR. Their study applied a series of validation tests covering structural consis-
tency, system sizing, and geolocation accuracy. Basic tests ensured that critical fields were
populated, unit IDs were unique, and net power did not exceed gross or inverter power.
In addition, they verified the validity of municipality IDs and postal codes using regular
expression formats, identifying only minor structural issues (e.g., 30 PV systems missing
location codes). System size validation involved checking correlations between installed ca-
pacity, inverter size, module count, and land area for ground-mounted systems. While most
records passed these checks, some inconsistencies were noted: 0.6% of systems (23,251 units)
showed extreme mismatches between module and inverter power, 1.12% had anomalous mod-
ule counts, and 21.3% of ground-mounted PV systems exhibited unrealistic land-to-capacity
ratios. Additional scrutiny of balcony PV systems revealed classification and capacity er-
rors affecting nearly 10,000 units. Geolocation accuracy was also assessed, though limited
to systems above 30 kWp, for which coordinate data are publicly available. Within this
subset—representing just 5% of all PV installations—2.9 GW of capacity was found to be
geospatially misaligned with its reported municipality. Technology-specific checks further

flagged 1,169 PV systems with implausible installation years (e.g., prior to 1980), which con-
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tradict regulatory expectations. Overall, while MaStR is an exceptionally rich and regularly
updated resource for tracking PV deployment in Germany, the analysis by Kotthoff et al.
[54] highlights targeted issues—particularly in system sizing and geolocation—that should be
considered when using the data for detailed spatial or capacity analyses.

In France, the Open Data Réseaux Energies (ODRE) platform serves as the central repos-
itory for electricity production and storage data, sourced from a range of national energy
operators [55]. Solar PV capacity is reported at the IRIS level—the highest statistical res-
olution available for installations under 36 kW. IRIS (Ilots Regroupés pour I'Information
Statistique) represents small-scale geographic units similar to census tracts [56]. While the
spatial resolution is high, the data is only updated annually, limiting its use for near-term
monitoring.

In the United States, the Energy Information Administration (EIA) provides detailed
data on solar PV capacity through two complementary datasets: EIA-860 and ETA-861M
[57, 58]. Form EIA-860 collects generator-level information for existing and planned elec-
tricity generators with a total nameplate capacity of 1 MW or greater. It includes technical
details such as generator size, fuel type, geographic location, and technology type (e.g., crys-
talline silicon). In contrast, EIA-861M focuses on distributed PV systems smaller than 1
MW, providing estimates of both installed capacity and generation from net-metered and
non-net-metered installations. These smaller systems are not covered by EIA-860. Their in-
clusion via EIA-861M ensures a more comprehensive accounting of solar generation across the
U.S. The EIA estimates the EIA-861M capacity using standardized formulas and adjustment
procedures detailed in its technical documentation [59].

In academic research, Stowell et al. [60] presents a high-coverage, open-access geographic
dataset of more than 260,000 solar PV installations across the UK, developed through a
large-scale crowdsourcing campaign. The dataset focuses especially on small-scale domestic
systems, which had previously been poorly documented in official sources. As of September
2020, the dataset explicitly maps 10.66 GW of installed capacity, and—after accounting for

missing capacity not directly observed—estimates the total UK capacity at 13.93 GW. This
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corresponds to approximately 86% of the national installed capacity at that time. Com-
pared to traditional administrative sources, the dataset provides improved spatial precision
and metadata, enhancing its value for energy planning, forecasting, and grid management.
Although the dataset is UK-specific, the methodology is globally applicable and designed to
support continual updating as solar deployment evolves.

These examples demonstrate the diversity in approaches to regional PV capacity tracking
across Europe and the US. They also highlight the importance of integrating multiple data
sources—ranging from official registries and T'SO statistics to crowdsourced and commercial
datasets—to achieve high-resolution, reliable, and up-to-date information. Although signifi-
cant progress has been made in certain countries, the availability and quality of subnational
solar PV data remain uneven, posing challenges for comparative research, infrastructure

planning, and policy evaluation at regional scales.

1.2.3 Significance of Tracking Solar PV Capacity

Accurate and timely tracking of solar PV capacity is essential for the effective operation of
electricity grids, reliable energy forecasting, informed policy design, and long-term infrastruc-
ture planning. As solar PV becomes an increasingly prominent share of electricity generation
across many countries, the availability of high-quality, spatially and temporally resolved data
on installed capacity has become critical. This section outlines key applications of capacity

data, progressing from real-time operational requirements to long-term strategic planning.

Real-Time Grid Operation and Balancing

The growing share of solar PV in electricity systems presents new challenges for real-time grid
operation. Unlike conventional power plants, solar PV is weather-dependent, distributed,
and often embedded in local distribution networks, making it less visible to transmission
system operators. Without accurate and geographically resolved capacity data, grid operators
struggle to estimate the power outturn of embedded generation, which appears as a reduction

in demand, thereby introducing significant uncertainty into power flow forecasts [61]. This
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complicates the task of maintaining grid stability and balancing [62, 49].

Solar PV monitoring services estimate generation at national or regional scales by multi-
plying yield by installed capacity [49]. Yield refers to the normalized output of PV systems
relative to the total nominal capacity of the fleet, typically expressed in megawatts (MW)
per megawatt-peak (MWp). A basic approach to determining yield involves collecting gener-
ation data from a sample of PV systems - referred to as reference systems - and statistically
scaling these outputs to estimate broader regional or national yields [63, 64, 65, 66]. More
sophisticated approaches integrate meteorological data with statistical or physical models to
derive yield estimates, which are subsequently upscaled in a similar manner [64, 67, 68, 69,
70, 71]. There are also alternative methods that bypass upscaling entirely [61, 72, 73], though
these are less widely used due to constraints such as the need for historical data from every
PV site or the requirement of detailed information on the orientation of PV modules.

Regardless of the methodology employed, accurate data on installed capacity is a fun-
damental requirement. However, many nations still lack reliable and comprehensive records
of regional PV installations, posing challenges for effective grid operation and policy de-
velopment. While countries such as the United Kingdom, France, Germany, Spain, Italy,
and Belgium do publish regional PV capacity data [44, 50, 51, 52, 53, 55], a notable share
of the total capacity often remains unattributed to specific geographic areas. Furthermore,
even where such data is available, inaccuracies in capacity records can significantly affect the

accuracy of estimated solar PV generation at the regional level [49].

Grid Connection and Infrastructure Planning

The ability to forecast where solar PV capacity will be deployed is critical for planning new
infrastructure and processing grid connection requests. In many countries, the rapid pace
of solar development has outstripped the expansion of electricity infrastructure, resulting in
widespread grid congestion and connection delays. For example, in Great Britain, a total
of 732 GW of projects were awaiting connection to the transmission network as of October

2024, with renewable energy projects comprising approximately 363 GW of the queue [74].
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This backlog is partly driven by speculative behaviour, whereby developers submit multiple
applications for similar projects across different locations to increase their chances of securing
a connection. Given the uncertainty around where and when approvals will be granted,
this strategy has become common practice. However, it artificially inflates the size of the
connection queue with projects that are unlikely to materialize, creating inefficiencies for
system operators. Grid operators must then allocate time and resources to assess a large
volume of non-viable applications, slowing the approval process for feasible projects [75].
These issues are further compounded by limited physical network infrastructure—such as
substations, transformers, and transmission lines—which constrains the grid’s capacity to
accommodate new connections [76, 77]. These challenges reflect the growing strain on Great
Britain’s electricity system as it undergoes rapid decarbonisation, a trend mirrored in many
other countries worldwide [78].

The Netherlands is facing similar issues, with significant grid connection delays that are
stalling the deployment of solar PV. This problem has been exacerbated by the rapid devel-
opment of utility-scale solar projects in the north-eastern provinces, where the availability
of inexpensive land has attracted concentrated investment. The resulting demand for grid
connections has exceeded the capacity of the existing infrastructure, leading to widespread
congestion. By late 2023, much of the Dutch electricity grid was unable to accommodate new
large-scale energy users, effectively halting further PV integration in several regions [37].
This situation was underscored by Minister of Climate and Energy Rob Jetten, who stated
in a letter to the Dutch Parliament that “the electricity grid in all provinces is largely full,
probably full or almost full” [79].

Grid connection constraints are not unique to the United Kingdom or the Netherlands.
Similar challenges have been reported in a wide range of countries, including Austria [80],
Bulgaria [80], Croatia [81], Chile [82], Finland [81], France [81], Germany [81], Greece [81,
80], Hungary [80], Ireland [81], Italy [81], Poland [81], Spain [81, 83], Sweden [81], Turkey
[81], and the United States [84].

Without accurate and geographically disaggregated PV capacity data, operators cannot
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prioritise infrastructure upgrades or identify areas where future constraints are likely to occur.
This increases costs, delays decarbonisation, and reduces investor confidence in renewable

energy markets.

Evaluating Renewable Energy Policies

Tracking capacity deployment over time and space is essential for evaluating the effectiveness
of renewable energy policies such as feed-in tariffs, tax incentives, net metering, and auctions.
Policy implementation without a clear understanding of the complex interactions between
geographic factors and PV deployment can lead to unintended consequences—such as over-
deployment in areas with limited grid capacity, or failure to meet deployment targets in areas
with high potential. Spain’s experience in 2008 offers a cautionary example: the introduction
of generous feed-in tariffs triggered a rapid expansion in solar PV installations, placing ex-
cessive strain on the electricity grid. In response, the Spanish government introduced abrupt
policy changes to curb escalating costs, which ultimately caused a market collapse in the
years that followed [85, 86].

A similar outcome was observed in Japan following the launch of its national Feed-in Tar-
iff (FiT) in July 2012. The policy led to a dramatic increase in solar PV capacity approvals,
reaching nearly 70 GW by late 2014. However, the pace of deployment quickly overwhelmed
the grid, particularly in regions such as Kyushu with high solar penetration. As a result,
Kyushu Electric Power Company suspended new grid connection contracts in September
2014, and six other utilities soon followed. These disruptions prompted Japan’s Ministry of
Economy, Trade and Industry (METI) to implement corrective measures, including curtail-
ment policies and evaluations of grid hosting capacity [87].

Greece implemented a generous Feed-in Tariff (FiT) scheme, aligned with European di-
rectives, alongside simplified licensing procedures to encourage PV deployment [88]. This
policy led to a rapid surge in PV installations between 2012 and 2013, during which installed
capacity nearly tripled—from 650 MWp to almost 2.4 GWp in just 14 months [89]. However,

the speed and scale of this expansion outpaced planning efforts, exposing weaknesses in grid
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infrastructure and the FiT financing mechanism. These issues created a significant deficit for
the market operator, prompting the government to impose additional taxation and ultimately
reduce FiT rates, including for existing contracts under the so-called “new deal” [89]. As a
result, PV deployment stagnated for approximately six years following March 2013 [39].

In contrast, India introduced a wide array of supportive policies—including feed-in tariffs,
renewable purchase obligations, and tax incentives—but still fell short of its 2022 target of
100 GW of installed solar capacity, achieving only 54 GW [90, 91]. This gap highlights
the importance not only of supportive policy design but also of effective implementation,
infrastructure readiness, and continuous capacity monitoring.

Comprehensive capacity data is essential for developing predictive models that can bench-
mark expected deployment levels based on a country’s geographic characteristics. Such mod-
els can aid in the early identification of over- or under-deployment by comparing actual
progress against projections derived from countries further along the deployment curve. This
benchmarking capability supports more adaptive and geographically informed policymaking,

reducing the risk of unintended outcomes.

Benchmarking Deployment and Identifying Gaps

Beyond individual policy evaluation, capacity data enables benchmarking—comparing actual
deployment against what would be expected based on a region’s solar potential, infrastructure
readiness, and socio-economic context. Currently, few tools offer this level of analysis.
Benchmarking supports more objective assessments of deployment performance. It helps
identify underperforming regions, diagnose policy gaps, and target interventions where the
solar potential remains underutilized. Setting realistic capacity targets also requires historical

data and contextual geographic factors.

Strategic Planning and Land-Use Management

Regional capacity data also informs long-term planning and land-use management. The rapid

expansion of utility-scale PV installations increasingly raises land-use concerns, particularly
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when agricultural land is repurposed for solar energy production. This can result in direct
competition between food and energy systems, potentially undermining both public support
and long-term sustainability goals [92, 93, 94, 95, 96, 97]. In the absence of clear and
proactive policy frameworks, such conflicts can escalate—slowing deployment and eroding
public trust. A notable example is Brandenburg, Germany, where weak land-use regulations
have enabled land grabbing by solar developers, triggering disputes with local farmers and
generating resistance to further utility-scale projects [96].

To address these challenges, forecasting models that incorporate regional PV capacity data
and geographic factors can be used to identify areas with high potential for land-use conflict.
These models can inform policy decisions by highlighting regions where future deployment is
likely to create tension or require additional planning safeguards. They can also support the
strategic rollout of alternative deployment approaches, such as agrivoltaics, which allow for
the simultaneous use of land for both food and energy production.

By combining spatial capacity forecasting with land-use and environmental data, pol-
icymakers can design more nuanced and geographically tailored solar strategies that align

energy objectives with food production, biodiversity protection, and local interests.

1.2.4 Challenges of Tracking Solar PV Capacity

Accurately tracking solar PV capacity is essential for effective planning, forecasting, and
policy evaluation in the context of the energy transition. However, a number of method-
ological and systemic challenges limit the reliability and consistency of PV capacity data.
Most countries rely on administrative sources—such as planning permission applications,
grid connection records, or registrations for subsidy schemes—to monitor solar installations.
Yet these data sources are often incomplete, particularly when it comes to small-scale and
residential systems. In the United Kingdom, for example, small PV systems can legally be
connected to the grid without formal registration, meaning they are frequently omitted from
official records [60]. This under-reporting poses a significant challenge given that small-scale

systems can collectively contribute a substantial share of total generation capacity.
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The quality and completeness of PV capacity data also vary widely across countries. The
International Renewable Energy Agency (IRENA) compiles global capacity statistics using
a combination of official government submissions, industry association reports, third-party
publications, and its own estimates. Data entries are tagged to indicate their source—whether
official, unofficial, or estimated—but the overall reliability of the dataset depends heavily on
the practices of national authorities and the availability of comprehensive reporting [39, 40].
Moreover, differences in national reporting standards, changes to policy incentives (such as
feed-in tariffs), and inconsistent registration procedures contribute to temporal and cross-
country inconsistencies. The relative immaturity of the renewable energy sector further
compounds these issues [60], as many countries are still in the process of developing robust
data collection and verification frameworks.

In addition to administrative and statistical challenges, many public data sources suffer
from spatial imprecision, missing metadata, and duplication errors. For example, the open
geographic dataset developed by Stowell et al. [60], which provides data on over 260,000 solar
PV installations across the UK, illustrates several of these issues. Within this dataset, dupli-
cation often arises due to multiple entries representing geographically separated components
of the same PV system. In some cases, these entries are manually tagged as related, but
more commonly, they are not explicitly linked, making it difficult to identify them as parts
of a single installation. Similar issues are present in the UK’s Renewable Energy Planning
Database (REPD), where it is common for a PV farm to appear in multiple entries—one
corresponding to the original planning proposal and another to a subsequent extension—
without clear indication that these records refer to the same site [60]. These inconsistencies
introduce noise and redundancy into the data, complicating efforts to generate accurate and
comprehensive capacity estimates.

In response to the limitations of traditional data sources, researchers have increasingly
turned to satellite and aerial imagery combined with machine learning techniques to detect
solar PV installations. Notable examples include models such as DeepSolar, which use com-

puter vision to identify solar panels from overhead imagery [98]. These approaches offer the
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potential to map PV deployment at scale and with greater geographic specificity. However,
they also present their own challenges. First, the PV capacity estimated by computer vision
models is typically calculated using an equation where capacity is proportional to the surface
area of the detected solar array [99]. However, the proportionality constant used in this cal-
culation is not universal and varies across studies. This variation arises because the constant
depends on several array-specific factors, including the manufacturer, age and maintenance
history, and the type of photovoltaic technology employed (e.g., thin-film, monocrystalline,
or polycrystalline). Consequently, different studies may adopt different values or assump-
tions for this constant, resulting in inconsistencies in capacity estimates even when based on
similar surface area measurements.

Furthermore, the accuracy of computer vision models is strongly influenced by the quality
of the ground truth data used for training and validation. These datasets often contain errors
or inconsistencies, including duplicate entries, mislabelled installations, or incomplete meta-
data. Evaluation metrics used to validate these models can also be misleading. As Hu et al.
[99] point out, conventional approaches for assessing the accuracy of automated solar PV
detection using satellite imagery may produce overly optimistic results due to common flaws
in the validation process. These include distribution shift, where the statistical characteris-
tics of the data differ between the model’s training or evaluation setting and its real-world
deployment, leading to discrepancies in performance. Additionally, the ground truth data
may be unreliable, introducing further uncertainty. The scale at which the analysis is con-
ducted also affects accuracy, as performance can vary significantly across different levels of
assessment—whether at the pixel, individual installation, or regional level—with evaluation
metrics and results differing across these scales.

Finally, the practical application of satellite-based detection methods faces several re-
source constraints. Open-access satellite imagery, such as that provided by Sentinel [100],
offers broad geographic coverage but typically lacks the resolution required to detect small-
scale residential systems. Higher-resolution imagery is better suited for this task but is often

costly or unavailable. Additionally, the computational resources required to run large-scale
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machine learning models over extensive image datasets can be substantial, limiting the ac-

cessibility of these methods for many research institutions and policymakers [60].

1.3 Capacity Definitions and Scope of Use

Understanding and clearly defining different types of solar PV capacity is essential for inter-
preting data, evaluating deployment trends, and developing robust models. In this thesis, I
distinguish between three key types of PV capacity: actual installed capacity, reported capac-
ity, and modelled capacity. Actual installed PV capacity refers to the true DC capacity of PV
systems that have been physically installed and connected to the grid. However, this value is
rarely directly observable. Instead, most available data correspond to reported capacity fig-
ures published by governments or institutions, which may be incomplete or inaccurate due to
under-reporting, duplication, or administrative inconsistencies. Reported capacity can also
vary in terms of the unit used: some data are reported in alternating current (AC) capacity,
which refers to the output rating of the inverter, while others are in direct current (DC)
capacity, which refers to the rated output of the PV modules themselves. In many cases,
the unit is not specified, leading to uncertainty about the true capacity. To overcome these
limitations, this thesis uses modelled capacity estimates generated from predictive models
as a consistent and scalable proxy for actual capacity. Since the actual installed capacity is
unknowable in practice, comparisons are made between modelled and reported capacities to
assess deployment patterns, validate model performance, and identify potential discrepancies

or gaps in the reported data.

1.4 Research Focus and Overview

This thesis focuses on the development of analytical tools and models to enhance the spatial
and temporal understanding of solar PV deployment. Specifically, it aims to estimate solar
PV capacity across different geographic scales and time periods, and to apply these models

to three key use cases: disaggregation, benchmarking, and forecasting.
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o Disaggregation: The process of allocating national or otherwise unlocated PV capac-
ity to specific subnational regions. This is essential in countries where official statistics
lack spatial resolution or omit detailed regional breakdowns. Regional PV capacity data
are often limited due to data privacy regulations—such as the General Data Protec-
tion Regulation (GDPR) in the UK—as well as restrictions on commercially held data.
These limitations hinder direct access to granular capacity records, making disaggre-
gation necessary to improve the spatial accuracy of generation estimates and to enable
regional monitoring and planning. This use case is addressed through the FEuropean

and Great Britain models presented in Chapters 4 and 5.

e Benchmarking: The comparison of reported PV deployment levels to modelled values
derived from geographic factors—spatially varying characteristics that influence solar
PV deployment, including social (e.g., population density), economic (e.g., income lev-
els), climatic (e.g., solar radiation), and land use (e.g., availability of artificial surfaces
or agricultural land) conditions. Benchmarking allows for the identification of regions
that are overperforming or underperforming relative to their potential, helping to evalu-
ate the effectiveness of past or ongoing policy interventions. It also informs the setting
of realistic capacity targets and the design of targeted incentives. This use case is
demonstrated across all three models developed in this thesis—the Global, European,

and Great Britain models presented in Chapters 3 to 5.

e Forecasting: Estimating future PV deployment patterns to inform long-term policy
planning, infrastructure development, and land-use management. The models devel-
oped in this thesis can be used to forecast the spatial distribution of PV capacity across
regions, offering critical insight into where deployment is likely to expand. Such fore-
casts are essential for strategic planning, including grid reinforcement, land allocation,
and the timely formulation of regulatory frameworks. In addition, forecasting helps an-
ticipate and address challenges related to land competition, permitting processes, and
public acceptance by enabling targeted policy interventions. Accordingly, the models

serve not only as tools for explaining historical deployment but also as instruments for
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guiding future energy transitions. This use case is addressed in the Global, European,

and Great Britain models presented in Chapters 3 to 5.

To support these use cases, this thesis investigates the relationship between installed
solar PV capacity and geographic factors through a series of modelling efforts. Each model
is developed for a distinct spatial scale and geographical context, contributing to a broader

aim of improving the accuracy and spatial resolution of PV capacity data.

Development of a Global Model for Estimating Solar PV Capacity at Country

Level

Presented in Chapter 3, this model estimates national solar PV capacity worldwide based
on geographical factors. It includes the creation of a Solar PV Deployment Index that
compares countries’ deployment levels relative to other countries with similar geographic
factors. The model supports global benchmarking, the setting of realistic and geographically
informed deployment targets, and the evaluation of policy effectiveness by comparing observed

deployment to expected values derived from each country’s geographical context.

Development of a European Model for Estimating Solar PV Capacity in European

Regions

Presented in Chapter 4, this model focuses on NUTS 2 regions across Europe to support
benchmarking and disaggregation at the subnational level. It provides estimates of regional
solar PV capacity, including the allocation of unlocated capacity to specific geographic areas.
As part of this, a Regional Solar PV Deployment Index is developed to compare deploy-
ment levels between regions with similar geographical characteristics—either across Europe

or within the same country.
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Development of a Great Britain Model for Estimating Solar PV Capacity in

Great Britain Regions

Presented in Chapter 5, this model applies the methodology to NUTS 3 regions in Great
Britain, addressing disaggregation and forecasting in a policy-relevant national context. It
includes the development of a Subregional Solar PV Deployment Index to compare deploy-
ment levels across geographically similar regions within Great Britain. The model supports
grid operators in generation monitoring and strategic network planning by identifying regions
where capacity is likely to concentrate. Ultimately, the model contributes to resolving grid

connection delays, guiding network investment, and addressing potential land-use conflicts.

Analysis of the Relationship Between Geographical Factors and Solar PV Capac-
ity

Presented in Chapter 6, this component identifies the key drivers of solar PV deployment
at multiple spatial resolutions by examining geographical factors—a term used here to en-
compass climatic, land-use, economic, and sociological variables. The aim is to analyse the
relationship between these factors and installed solar PV capacity across different spatial
scales—national, regional, and subregional—in three geographic contexts: globally, across
Europe, and within Great Britain. These contributions aim to improve solar PV data avail-
ability and support the strategic planning, evaluation, and management of the global energy

transition.



Chapter 2

Literature Review

This chapter provides an overview of the main factors shaping the deployment of solar PV
systems, the modelling techniques used to estimate installed capacity, and the policy tools
implemented worldwide to encourage solar adoption. It concludes by outlining the key knowl-

edge gaps that this thesis seeks to address.

2.1 Factors Associated With Solar PV Deployment

The adoption and diffusion of solar PV technologies are shaped by a wide range of factors
that operate across multiple geographic scales. These include climatic conditions, land-use
patterns, socioeconomic variables, and institutional or policy frameworks, influencing deploy-
ment at the subregional, regional, and national levels. This section categorises these drivers
into three spatially defined groups—household and subregional, regional, and national—and

reviews key empirical studies within each.

2.1.1 Household and Subregional Factors

Jan, Ullah, and Ashfaq [101] identified key factors influencing household solar PV adoption in
Northwest Pakistan, which include income, energy consumption costs, education level, infor-
mation about the solar PV market, and source of awareness about solar PV systems. These

factors accounted for 38% of the variation in adoption. This study draws on a survey con-
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ducted with 100 randomly selected households across three villages in Khyber Pakhtunkhwa,
Pakistan. Within the study area, 46% of households used solar PV systems. A binary logis-
tic regression model was employed to analyse the factors influencing the social acceptance of
solar PV technology.

Letchford, Kiran Lakkaraju, and Yevgeniy Vorobeychik [102] conducted sensitivity anal-
ysis using multiple methods to identify important predictors of household solar PV adoption
in the San Diego region in the USA. Key factors included property size, owner occupancy,
national unemployment rate, income, electricity costs, and peer effects, which explain 33%
of the variation in adoption. In rural India, Aklin, Cheng, and Urpelainen [103] investigated
solar PV adoption at the household level using logistic regression, and found that wealthier
households with access to banking services were more likely to adopt solar power.

Robinson and Rai [104] used a GIS-integrated agent-based model to study household
solar PV adoption in Austin, Texas, USA. They found that financial factors alone provided
an adequate model of PV adoption, but incorporating agents’ attitudes towards solar PV and
social interactions significantly improved model performance. Additionally, using household-
level insolation data enhanced the model’s accuracy.

Fuentes, Khalilpour, and Voinov [105] used regression analysis to explore the relationship
between solar PV adoption and various factors across postal areas in Australia. The findings
indicated that gender, the proportion of certain age groups, land area, and dwellings with a
vehicle did not correlate with solar PV adoption. In contrast, there was a positive correlation
between solar PV adoption and the share of the married population, unemployment rate,
population with non-school qualifications, the number of rented residential units, and the
number of bedrooms. Peer effects were also observed. Negative correlations were found with
the share of the population aged 25 to 40, weekly household income, population density,
dwelling density, and the number of occupants per dwelling.

Alderete Peralta, Balta-Ozkan, and Longhurst [106] used an integrated neural networks
and agent-based modelling approach to characterize the spatio-temporal adoption patterns of

domestic solar PVs at the postcode level in Birmingham, UK, identifying income, electricity



CHAPTER 2. LITERATURE REVIEW 29

usage, and average household size as the best predictors of solar PV adoption.

Collier et al. [107] investigated the determinants of domestic solar PV uptake at the
Lower Layer Super Output Area (LSOA) level in England and Wales. To account for spatial
and structural variation, the authors used a series of regression-based methods, including
Ordinary Least Squares (OLS) regression, fixed effects regression with local authority dummy
variables, multi-level modelling, and a spatial error model. Residential solar uptake was found
to be higher among older age groups and in detached houses, while higher housing density
negatively impacted uptake. Spatial effects on solar adoption were evident at both the LSOA
and Local Authority levels.

Graziano and Gillingham [108] analysed the impact of multiple factors on PV adoption
within census block groups in Connecticut, USA, using a linear fixed effects regression model.
Neighbour influence, the built environment (housing density and the proportion of renters),
and policy showed a stronger relationship with PV adoption compared to social, economic,
and political factors.

Laura Williams and Mita Kerai [109] examined the factors influencing PV deployment at
the LSOA level under a feed-in tariff scheme in England, UK, using a descriptive statistical
approach. The findings highlighted that electricity and gas consumption, gas coverage, age
demographics, the index of multiple deprivation and its domains, dwelling stock by tenure
and type, urban or rural classification, council tax band, and fuel poverty are all critical in
explaining solar PV deployment.

Yu et al. [98] used correlation analysis to identify key social and economic factors associ-
ated with solar deployment density at the census tract level in the USA. These included solar

radiation, population density, annual household income, Gini index, and education level.

2.1.2 Regional Factors

Westacott and Candelise [110] used a GIS framework to investigate the relationship between
solar PV deployment and multiple factors across regions in the UK, finding that PV deploy-

ment is strongly correlated with the level of policy support and with rural areas that have
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high levels of irradiation.

Thormeyer, Sasse, and Trutnevyte [111] investigated the spatial diffusion of solar PV
projects across 2,222 municipalities in Switzerland using two methods: spatial analysis of
hot and cold spots and stepwise regression. Their findings revealed that the urban—rural
divide and exploitable PV potential are the primary drivers of solar PV diffusion. Munic-
ipalities with a stronger focus on agriculture and forestry typically have more PV projects,
whereas urban municipalities tend to have fewer. Other factors, such as voting behaviour
and electricity prices, also influence adoption, but to a lesser extent.

Rigo et al. [112] analysed PV diffusion across 5,570 municipalities in Brazil using regression-
based machine learning algorithms, including Light Gradient Boosting Machine and Random
Forest algorithms. They identified electricity tariffs as the primary predictor of adoption,
followed by solar irradiation and municipal Gross Domestic Product (GDP). Other relevant
predictors included the number of companies, minimum wage, the education component of
the Human Development Index (HDI), demographic density, and the vehicle fleet.

McEachern and Hanson [113] used multivariate linear regression to study solar PV adop-
tion across 120 villages in Sri Lanka, showing that adoption is driven by expectations regard-
ing future grid connection by the government and by tolerance for non-conformist behaviour.
Similarly, Aklin, Cheng, and Urpelainen [103] used logistic regression with fixed effects to
investigate the factors influencing solar adoption at the village level in rural India. They
found that remote, large, and poor villages with high levels of solar radiation are more likely
to adopt solar technology as a substitute for grid electricity.

Mayer et al. [114] analysed socioeconomic factors correlating with PV system adoption
in 53 counties in North Rhine-Westphalia, Germany, and found a strong positive correlation
between agricultural gross value added and PV adoption (r = +0.75). In contrast, unemploy-
ment rate and population density showed moderate negative correlations with PV adoption
(r = —0.61 and r = —0.64, respectively).

Balta-Ozkan, Yildirim, and Connor [115] applied spatial econometric methods to study

PV uptake at the NUTS 3 level in the UK. The study found positive correlations between
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PV deployment and income per capita, education level, electricity sales, irradiation, and the
share of detached houses. Conversely, a higher share of owned houses, population density,

and the average number of households negatively correlated with solar PV deployment.

2.1.3 National Factors

Liu et al. [116] investigated the correlation between social and economic factors and the
installed capacity of solar PV in China using Grey Relation Analysis (GRA). The analysis
demonstrated that GDP, final consumer expenditure, industrial added value, solar energy
generation, and solar energy consumption are all strongly correlated with PV capacity.

Celik and Ozgiir [117] examined the relationship between solar PV capacity, GDP per
capita, and solar radiation in Turkey and five other European Union countries using descrip-
tive and comparative analysis. The study found no direct relationship between solar PV
capacity and either GDP or solar radiation.

Bunea et al. [118] applied innovation diffusion models to study the adoption of solar PVs
in the UK, and found that public incentives play a critical role in driving adoption.

Kruitwagen et al. [119] explored the relationship between land cover and solar PV de-
ployment for systems larger than 10 kW on a global scale. The findings indicated that most

solar PV systems are located on cropland, followed by arid lands and grasslands.

In summary, these studies demonstrate that geographical factors—including socioeconomic,
climatic, and land-use characteristics—play a significant role in shaping the adoption and
deployment of solar PV systems. However, the findings also reveal considerable variability
across studies, reflecting differences in methodological approaches, spatial scales, and geo-
graphic contexts. The relationship between solar PV deployment and its drivers is complex
and often context-specific, influenced by local policy environments, market maturity, and de-
mographic patterns. As such, developing generalisable models requires careful consideration

of the spatial and temporal characteristics of each study area, as well as the interactions
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between multiple factors. This complexity underscores the need for multi-scalar and data-
driven approaches to better understand and predict solar PV adoption patterns across diverse

settings.

2.2 Methods for Modelling Solar PV Capacity

2.2.1 Statistical Models

Several academic studies have proposed data-driven models for estimating solar PV capacity,
though most are designed for specific countries and rely on non-generalisable datasets.

Yu et al. [98] developed a two-stage machine learning model to estimate solar PV de-
ployment density in the United States using more than 90 socioeconomic and environmental
features. The first stage uses a random forest classifier to predict the presence of PV in a
census tract, and the second stage uses a regressor to estimate density. Census tracts are
small, relatively permanent statistical subdivisions of a county, typically designed to contain
between 1,200 and 8,000 people, with an optimum population size of around 4,000. The
model achieved a cross-validation R? of 0.72. While the model is highly accurate, its reliance
on extensive US-specific data makes it difficult to apply in other contexts. In addition, it
only takes into account residential PV systems.

Liu et al. [116] developed a bidirectional long short-term memory (BiLSTM) neural net-
work to forecast China’s annual installed solar PV capacity up to 2035. The model was
trained on historical data from 1996 to 2019. To extend predictions to 2035, the authors
used a support vector regression model to estimate future values of the input variables which
were then used as inputs to the BiLSTM model. The BiLSTM model achieved a mean ab-
solute percentage error (MAPE) of 6%, a mean absolute error (MAE) of 6.6 GW, and a
root mean squared error (RMSE) of 7.7 GW. To interpret the influence of input features,
the authors performed a mean impact value analysis. The results showed that solar power
generation and consumption were the most influential factors, contributing 26% and 27%

respectively, followed by gross domestic product (17%), final consumer expenditure (15%),
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and industrial added value (14%). While the model achieved high predictive accuracy using
a relatively small set of input variables, its reliance on solar generation and consumption data
limits its applicability in countries where such data are not consistently available.

Bunea et al. [118] modelled the diffusion of national solar PV capacity in the UK across
residential, commercial, and utility-scale sectors between 2010 and 2021 using a Generalized
Bass Model (GBM). While GBMs are effective for capturing adoption trends over time, their
reliance on time-series data makes them less useful in contexts with limited or incomplete
historical records. The study does not report standard error metrics such as R?, MAE, RMSE,
or MAPE. Instead, model performance is evaluated visually using plots that compare observed
and fitted values, without providing a quantitative assessment of predictive accuracy.

Li et al. [120] used logistic growth models to fit residential PV system counts across 2,670
Australian postcodes from 2005 to 2021. Principal component analysis (PCA) and cluster
analysis were then applied to identify three distinct diffusion patterns. This study estimated
the number of systems rather than their capacity.

Thormeyer, Sasse, and Trutnevyte [111] conducted a stepwise regression analysis on the
number of feed-in tariff PV systems per 1,000 inhabitants across 2,222 Swiss municipalities in
2016. The model incorporated variables such as exploitable solar PV potential, electricity de-
mand, socio-demographic factors, and other municipal characteristics. These factors account
for 43% of the variation in the number of PV projects per 1,000 inhabitants. Further anal-
yses were performed by disaggregating the data into German-speaking and French-speaking
municipalities, and by including cantons—26 larger administrative units with lower spatial
resolution than municipalities—as dummy variables. The respective models accounted for
45%, 49%, and 47% of the variation in the number of PV projects per 1,000 inhabitants.
Consequently, splitting the regions by language or incorporating cantons as dummy variables
enhances the model’s predictive capacity.

Davidson et al. [121] employed stepwise regression to model the logarithm of the number
of cumulative residential PV systems per census block group and ZIP code in California,

USA, from 2007 to 2013. Two models were developed for each spatial resolution: a best-fit
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model that included all variables using stepwise regression, and a parsimonious model that
used a branch-and-bound algorithm to select a subset of one to eight variables. The best-fit
model at the block group level had a lower predictive performance, with an adjusted R? of
0.48 and an MSE of 0.48 (in log(installations)?), compared to the ZIP code level model, which
achieved an adjusted R? of 0.58 and an MSE of 0.38 (in log(installations)?). The parsimonious
model at the block group level reached an adjusted R? of 0.46, while the ZIP code level
model achieved 0.49. The variables considered included population demographics, housing
characteristics, foreclosure rates, solar irradiance, vehicle ownership preferences, and other
relevant factors. Additionally, the study assessed the model’s applicability across California’s
three Investor Owned Utility regions by training the model on one region and testing it on the
other two. The results indicated that historical PV diffusion trends and population statistics
were sufficiently consistent across regions, enabling models trained in one area to generalize
well to other regions.

Miiller and Trutnevyte [122] employed linear and spatial regression models to estimate
installed solar PV capacity across 143 districts in Switzerland. They developed a multiple
linear regression (MLR) model, a simultaneous autoregressive (SAR) model, and a spatial er-
ror model (SEM), using a comprehensive dataset comprising 68,341 PV installations recorded
between 2010 and 2017. These models incorporated techno-economic and socio-demographic
predictor variables to generate spatial projections of PV capacity and were evaluated through
both in-sample and out-of-sample accuracy testing. The results for in-sample testing in 2017
showed high explanatory power, with R? values ranging from 0.88 to 0.89 and root mean
squared logarithmic error (RMSLE) values around 0.3. When tested in-sample across all
years from 2010 to 2017, RMSLE values ranged from approximately 0.3 to 0.8. For 1-year-
ahead out-of-sample projections, RMSLE increased to a range of 0.4 to 1.2 across the models.
Incorporating a time-lagged response variable (y;—1) as a predictor improved out-of-sample
projections, yielding RMSLE values ranging from approximately 0.1 to 1.2 for 1-year-ahead
forecasts. For longer-term projections (1- to 5-years-ahead), based on model fitting using

2012 data and including the lagged response variable, RMSLE values ranged from 0.3 to 0.7.
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Spatial regression models underscore the importance of accounting for spatial autocorrela-
tion in the data, revealing spatial spillover effects among neighbouring districts. In-sample
accuracy tests demonstrate that spatial regression models exhibit marginally superior perfor-
mance, supporting the inclusion of spatial terms in the formulation of spatial PV forecasts.
However, for out-of-sample projections spanning one to five years, the traditional multiple
linear regression model performs comparably to the spatial models, suggesting that simpler
approaches may be sufficient in some forecasting contexts, offering a potential reduction in
analytical complexity.

These studies use a variety of methods to model solar PV deployment, ranging from dif-
fusion of innovation models to machine learning approaches. However, these models often
differ in their target variables—some estimate installed capacity, others model the number
of installations, or even the logarithm of installations—making direct comparison of results
challenging. In addition, model performance is reported using different error metrics, and
in some cases, no quantitative error metrics are reported at all. Many of these models are
developed for specific locations and rely on proprietary or country-specific datasets, which are
not available for most other regions. This limits the transferability of the methods, particu-
larly in data-scarce contexts. Furthermore, some studies focus on specific market segments
(e.g., residential, commercial, or utility-scale systems), while others model aggregate national
capacity, further complicating cross-study comparisons. To overcome these limitations, this
thesis aims to develop a generic and transferable modelling framework based on open-access,
globally available datasets. Such a framework would support comparative assessments and

enable consistent application across regions with varying levels of data availability.

2.2.2 Vision-Based Models

Computer vision is increasingly used to detect solar PV installations in satellite and aerial
imagery, offering a scalable and efficient alternative to manual surveys. According to Mao
et al. [43], PV detection tasks can be grouped into three main types: image classification,

object detection, and semantic segmentation. Image classification simply determines whether
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or not a PV system is present in an image, classifying it as either positive or negative.
Object detection goes a step further by identifying where PV systems are located within the
image and estimating how many there are. Semantic segmentation offers the highest level
of detail by analysing every pixel in the image to determine whether it belongs to a PV
system, which allows for accurate estimation of the system’s area. To carry out these tasks,
researchers typically use either conventional machine learning techniques or deep learning
methods. Conventional approaches are further divided into two types: pixel-based image
analysis (PBIA), which looks at each pixel individually, and object-based image analysis
(OBIA), which groups pixels into meaningful objects before classifying them. Deep learning
methods, particularly convolutional neural networks (CNNs), have become popular due to
their ability to automatically learn features and handle complex image patterns with high
accuracy.

To evaluate the performance of these computer vision models, a range of error metrics
are employed depending on the nature of the task. In classification-based tasks, such as
image classification or object-level detection, precision, recall, and the F1 score are commonly
used. Precision measures the proportion of correctly identified instances among all predicted
positives, reflecting how accurate the model’s detections are. Recall assesses the proportion of
actual positives that were correctly identified, indicating the model’s ability to detect relevant
instances. These two metrics often trade off against each other, especially in imbalanced
datasets where one class dominates. The F1 score, defined as the harmonic mean of precision
and recall, provides a balanced summary metric that penalizes extreme values in either. A
high F1 score indicates that the model achieved a strong balance between detecting the
majority of PV installations and minimizing both false positives and false negatives. For
tasks involving spatial localization—such as object detection and semantic segmentation—
the Jaccard Index, also known as Intersection over Union (IoU), is widely used. IoU quantifies
how well the predicted region aligns with the ground truth by dividing the area of overlap
(intersection) by the area covered by both predicted and true regions (union). The resulting

value ranges from 0 to 1, where a score of 1 indicates perfect spatial alignment and 0 indicates
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no overlap. This metric is particularly relevant for PV mapping from imagery, as it allows
researchers to assess not only whether a PV system is detected, but also how accurately its
shape and location are captured. The Dice coefficient is another commonly used spatial metric
that quantifies the similarity between predicted and ground truth regions; it is calculated as

twice the area of intersection divided by the sum of the predicted and ground truth areas.

Pixel-Based Image Analysis (PBIA)

Several studies have applied pixel-based image analysis (PBIA) methods to detect rooftop PV
systems using high-resolution satellite imagery. Ji et al. [123] used 1.2 m resolution imagery
from Oldenburg, Germany, and applied a statistical classification approach, achieving overall
accuracy ranging from 92.8% to 99.3%. Karoui et al. [124] worked with 0.84-1.6 m resolution
images over a section of Toulouse, France, using multi-part nonnegative matrix factorization,
resulting in a Normalized Mean Square Error (NMSE) of 23.73% for PV detection. Malof et
al. [125] employed random forest classification on 0.3 m imagery from Fresno, USA, reporting

a precision of 60% and recall of 70%.

Object-Based Image Analysis (OBIA)

Several studies have utilized object-based image analysis (OBIA) methods to detect PV sys-
tems, focusing on both rooftop and large-scale centralized installations. Malof et al. [126]
used high-resolution (0.3 m) imagery from 100 building images in Lemoore, CA, USA to de-
tect rooftop PV systems, achieving a recall of 94% using a Support Vector Machine (SVM)
classifier. For centralized PV systems, Zhang et al. [127] employed random forest classifi-
cation on 30m resolution imagery in Ningxia Province, China, identifying PV areas larger
than 0.21 km? with a precision of 98.53% and recall of 92.19%. Similarly, Plakman, Rosier,
and Vliet [128] used 10-20 m imagery in the Netherlands and applied semantic segmentation
via random forest to detect centralized PV systems larger than 1034 m2, achieving a recall of
85.86%), precision of 92.39%, and a Jaccard Index (IoU) of 80.19%. In Denmark, Vasku [129]

evaluated multiple classifiers—including Classification and Regression Trees (CART), Ran-
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dom Forest, Support Vector Machine (SVM), and Naive Bayes—on 10 m resolution imagery
to detect large centralized PV fields (>12km?). The CART model achieved a precision of
70.73% and recall of 52.94%. Both Random Forest and SVM produced the same precision of
71.60%, while recall was 54.90% for Random Forest and 52.94% for SVM. The Naive Bayes
classifier performed worse, with a precision of 63.64% and recall of 37.25%. Finally, Wang
et al. [130] used ultra-high-resolution (0.05m) drone imagery and applied a region—line prim-
itive association and template matching approach for semantic segmentation of centralized

PV systems, reporting both precision and recall exceeding 99%.

Deep Learning

Semantic segmentation is a key approach in detecting solar PV installations, as it enables
pixel-level classification of imagery to accurately outline the boundaries of PV systems. This
detailed extraction allows for estimating both the area and, indirectly, the capacity of PV
installations by counting the number of pixels identified as PV. Semantic segmentation models
for PV detection using deep learning can be categorized according to their training methods
and network structures. Based on training strategies, models fall into three main types: fully
supervised, weakly supervised, and unsupervised learning. Fully supervised models require
large amounts of labelled training data and include various architectures such as models based
on candidate regions, fully convolutional networks (FCNs), and recurrent neural networks
(RNNs). FCN-based models themselves can be further divided into subtypes, including
those using symmetric network structures, convolutional extensions, and residual networks
with fusion features. In contrast, weakly supervised and unsupervised models aim to reduce
reliance on detailed annotations, making them promising for scaling PV detection across large
areas with limited labelled data [43].

The object detection approach based on candidate regions, initially developed for general
detection tasks, has evolved to support semantic and even instance segmentation. Beyond
these models, Mask-RCNN, which was originally designed specifically for instance segmenta-

tion, has also been applied to segment solar PV installations.
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Several studies have applied candidate region-based methods, particularly Mask R-CNN,
to segment solar PV installations across various contexts. Moradi Sizkouhi et al. [131] ap-
plied Mask R-CNN with a VGG16 backbone across 12 countries, focusing on centralized
PV systems, and achieved an impressive accuracy of 96.99%. In computer vision, a back-
bone refers to a pre-trained neural network architecture primarily used for feature extraction
from images [132]. Schulz, Boughattas, and Wendel [133] implemented Mask R-CNN with a
ResNet101 + Feature Pyramid Network (FPN) backbone in Bad Brambach and Chemnitz,
Germany, targeting all types of PV systems. Their model achieved strong results for rooftop
PV, with a precision of 81%, recall of 73%, F1 score of 97%, and IoU of 77%. For free-field
PV, the model reached a precision of 97%, recall of 72%, F1 score of 83%, and IoU of 86%.
Liang et al. [134] used high-resolution imagery (0.15m) in the United States to segment var-
ious scales of PV using a series of refined Mask R-CNN models with a ResNet50 + FPN
backbone. The basic Mask R-CNN achieved a precision of 95.5%, recall of 92.1%, and IoU
of 86.5%. When enhanced with an overlap-title mechanism, precision and recall improved
to 95.7% and 93.5%, respectively, with an ToU of 87.4%. Adding a right-angle polygon fit
algorithm further boosted performance, reaching a precision of 96.2%, recall of 95.5%, and
IoU of 88.8%.

A wide range of semantic segmentation studies have applied Fully Convolutional Networks
(FCNs) and FCN-based architectures to detect solar PV systems at varying resolutions,
locations, and PV scales. Ishii et al. [135] used 30 m resolution images in Japan to detect
centralized PV systems (>5MW) using an FCN model, achieving an IoU greater than 50%,
precision above 60%, and recall exceeding 75%. Edun et al. [136] focused on both centralized
and distributed PV arrays across 387 locations in the U.S., using images with a resolution of
0.596 m and an encoder—decoder architecture with VGG16, obtaining 98.66% accuracy and
a Dice coefficient of 81.74%. In the city of Fresno, Camilo et al. [137] tested rooftop PV
detection using both CNN and SegNet (both with VGG backbones); when recall was fixed at
80%, CNN yielded about 50% precision, while SegNet significantly improved that to about

90% precision.
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Pérez-Gonzélez, Jaramillo-Duque, and Cano-Quintero [138] applied both Fully Convo-
lutional Networks (FCN) and U-Net architectures across 12 countries to detect centralized
PV systems. Using FCN, they achieved a recall of 94.16%, an IoU of 87.47%, and a Dice
coefficient of 89.61%; with U-Net, performance improved slightly to a recall of 95.44%, IoU
of 90.42%, and Dice of 91.42%. The study used the Amir dataset [139], which was also used
by Moradi Sizkouhi et al. [131].

Kruitwagen et al. [119] applied a combined U-Net + ResNet50/RNN model to 1.5m and
10 m resolution images globally to detect centralized PV systems (>10kW). U-Net was used
for semantic segmentation, while ResNet and RNN served as image classifiers to filter false
positives. For installations with an area larger than 10,000 m?, the model achieved 90% recall,
90% IoU, and 98.6% precision.

Wu and Biljecki [140] built a model to detect rooftop solar PV across 17 global cities using
0.5m resolution images and a U-Net architecture in which the encoder layer was replaced
by a pre-trained ResNet50 model. The model achieved a count recall of 91.9% and an area
recall of 96.25%.

Castello et al. [141] developed a model to detect rooftop PV systems from 0.25 m resolution
images in Switzerland, using a U-Net architecture. The model achieved an IoU of 64%, an
accuracy of 94%, and an F1 score of 80%.

Zech and Ranalli [142] developed a model to detect rooftop solar PV systems from images
with a resolution of 0.2 m in Oldenburg, Germany. A U-Net architecture was used with various
backbones, including ResNet18, ResNet34, ResNet50, and ResNet101. The best results were
achieved using U-Net with a ResNet50 backbone, yielding an ToU of 69%, precision of 84%,
recall of 79%, and an F1 score of 81%.

Jie et al. [143] developed a model to detect rooftop PV systems using high-resolution
aerial imagery in two regions: Fresno, Stockton, and Modesto in California (0.3 m resolution),
and Songjiang and Pudong New districts in Shanghai, China (0.1 m resolution). The model
combines multi-layer features with a gated fusion module and an edge detection network. In

California, the model achieved an IoU of 73.60%, precision of 86.17%, recall of 83.45%, and
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an F1 score of 84.79%. In China, where the imagery resolution is higher, the model achieved
an IoU of 88.74%, precision of 93.88%, recall of 94.19%, and an F1 score of 94.03%. These
results highlight the significant impact of image resolution on model accuracy. However, high-
resolution imagery is not universally available, and when available, it is often not updated

frequently enough.

Estimation of PV Capacity

Computer vision models usually compute PV capacity using an equation in which the capacity
is proportional to the identified solar array’s surface area [99]. Yet, the proportionality
constant utilized in this computation is not standardized and differs among studies. This
difference stems from the fact that the constant is influenced by several factors specific to the
array, such as manufacturer, age and maintenance record, and the photovoltaic technology
type used (such as thin-film, monocrystalline, or polycrystalline). Therefore, studies might
apply varying values or assumptions for this constant, leading to discrepancies in capacity
estimates, even when surface area measurements are similar.

While computer vision models are effective for detecting existing solar PV installations
in aerial or satellite imagery, they are primarily designed for identification, not forecasting.
Although the surface area data generated by these models can support capacity estimation,
several limitations hinder their reliability. Typically, capacity is estimated using a fixed
ratio between the detected surface area and installed capacity [99]. However, this ratio is
not universal and varies across studies due to differences in PV technology, manufacturer
specifications, system age, and maintenance practices. As a result, even with accurate area
detection, capacity estimates can vary significantly depending on the assumptions used.

Beyond these methodological challenges, practical limitations also constrain the utility
of computer vision approaches for this study. These models require high-resolution imagery,
which is often costly, inconsistently available, and not captured on a regular basis. Their
accuracy depends heavily on the quality of training data and labelling, and they require

substantial computational resources for implementation at scale. Given these constraints,
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we chose not to adopt a computer vision-based approach in this research. Instead, we focus
on modelling techniques that use geographic, environmental, and socio-economic variables,
which are more widely available and better suited to estimating and forecasting PV capacity

over space and time.

While both computer vision and statistical models are employed to estimate solar PV
deployment, they differ in the types of accuracy they offer and the contexts in which they
perform best. Statistical models report a wide range of accuracy depending on the input data
and modelling approach. For example, spatial regression models have achieved in-sample R?
values up to 0.89 and RMSLE values as low as 0.3 for estimating installed capacity across
Swiss districts [122]. Machine learning models such as DeepSolar reported cross-validation
R? of 0.72 at the census tract level in the United States [98], while BILSTM models in China
reached a mean absolute percentage error (MAPE) of 6% [116]. These models benefit from
interpretable results and can be applied to forecasting, but their accuracy depends heavily
on the availability and quality of structured socioeconomic and energy data.

By contrast, computer vision models excel at identifying visible PV systems in satellite
or aerial imagery and are typically evaluated using image-based metrics such as precision,
recall, F1 score, and IoU. For example, U-Net models have achieved IoU values ranging from
64% to over 90%, with recall values between 69% and 96%, depending on image resolution
and geographic context [142, 138, 140]. Mask R-CNN models, especially those incorporating
advanced post-processing, have reported IoU values up to 88.8% and recall exceeding 95%
[134]. However, performance tends to decline when image resolution is lower or when training
labels are less detailed. For instance, some pixel-based and object-based image analysis
models report precision or recall as low as 50-70% [125, 129]. While effective at detecting the
presence and geometry of PV systems, these models estimate capacity indirectly via surface
area, which introduces uncertainty due to variation in technology type, panel tilt, system
age, and maintenance.

In summary, statistical models offer stronger performance for direct capacity estimation

and forecasting—especially when structured data is available—while computer vision models
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provide detailed spatial coverage and detection of visible systems, with accuracy sensitive to
image resolution and system characteristics. Their complementary strengths suggest potential

for integrated approaches that combine spatial detection with statistical inference.

2.3 Solar PV Policies

The expansion of solar PV technology has been driven not only by technological advances
and cost reductions but also by a range of supportive policy instruments. At both national
and regional levels, governments have played a pivotal role in shaping solar PV deployment
through targeted regulatory and financial interventions. This section examines the key policy
mechanisms that have influenced the growth of solar PV, focusing on feed-in tariffs, net
metering, renewable portfolio standards, and certificate-based schemes. These policies have
collectively underpinned the emergence of solar energy as a mainstream component of the

global electricity mix.

2.3.1 Feed-in Policies

Feed-in policies, encompassing feed-in tariffs (FiTs) and feed-in premiums (FiPs), have played
a pivotal role in the development of solar PV markets. These mechanisms are designed to
incentivise investment in renewable electricity generation by ensuring stable and predictable
revenue streams for producers.

FiTs guarantee a fixed payment rate for each unit of electricity generated from renew-
able sources, such as solar PV, over a specified contractual period. This financial certainty
mitigates investment risks and has historically spurred rapid deployment of PV systems.
FiTs have been the primary policy tool supporting renewable electricity across OECD coun-
tries [144], and remain the only mechanism proven to successfully drive the development of
large-scale gigawatt-level renewable energy markets [145].

FiPs serve as an alternative to feed-in tariffs by offering a supplementary payment in
addition to the electricity market price, rather than guaranteeing a fixed rate [146]. This

approach preserves market responsiveness while still providing financial support to renewable
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energy producers.

Recent empirical studies continue to demonstrate the impact of FiTs and FIPs on invest-
ment behaviour. Lin and Xie [147] examined the impact of FiT subsidies on investment in
the renewable energy sector, using data from 39 Chinese renewable energy generation com-
panies between 2014 and 2021. The findings reveal that FiT subsidies have a strong positive
influence on corporate investment, with each unit increase in subsidies being associated with
a 3.4-unit rise in investment. This relationship is mediated by improvements in cash flow,
increased profitability, and reduced financing constraints. The study also highlights the role
of external environmental factors: economic policy uncertainty diminishes the effectiveness
of FiT subsidies, while stronger environmental regulation amplifies their positive impact.
Additionally, the investment-enhancing effect of FiT subsidies is found to be more significant
in large, state-owned renewable energy enterprises.

In the European context, Alolo, Azevedo, and El Kalak [148] investigated the impact
of Feed-in-System (FIS) policies on renewable energy investments in the European Union
(EU) between 1992 and 2015 and provided valuable insights into the role of policy design
in influencing capacity development for wind and solar PV technologies. Drawing on panel
data from 27 EU countries and employing a fixed-effects model, the authors introduce a
novel subsidy performance indicator (PvRev) that distinguishes between FiTs and FiPs.
This indicator incorporates critical contractual and market factors, including tariff price,
contract duration, digression rates, electricity market prices, production costs, and interest
rates. The study finds that a 5% increase in PvRev is associated with a 28.9% increase
in solar PV capacity. These results suggest that the effectiveness of FIS policies is not
determined merely by their existence, but rather by the specific features of the contracts
and the prevailing market conditions. Poorly designed subsidy mechanisms are shown to
have limited impact on investment, highlighting the necessity for carefully calibrated policy
instruments that reflect local economic and energy market dynamics. Additionally, the study
underscores the importance of revenue certainty in influencing investment decisions, noting

that uncertainties arising from political, economic, and technological factors can significantly
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affect the attractiveness of renewable energy projects.

Dijkgraaf, Dorp, and Maasland [149] evaluated the effectiveness of FiT policies in promot-
ing PV solar energy development across 30 OECD countries between 1990 and 2011, using
panel data analysis. Unlike previous studies, which often focused on the average impact of
FiTs, this research placed specific emphasis on FiT design features—such as tariff level, con-
tract duration, the presence of capacity caps, and overall policy consistency—to assess their
influence on per capita annual additions of PV capacity. The findings confirmed that FiTs,
on average, contributed positively to PV capacity development, resulting in a 108% increase
in per capita PV capacity relative to the sample average when a FiT was in place. However,
the effectiveness of FiTs varied substantially depending on their design. A well-designed FiT,
combining a high tariff, long contract duration, and consistent application, was found to be
up to seven times more effective than the average FiT. In contrast, the study found that
effectiveness declined sharply when there was high variability—measured by the standard
deviation—in tariff levels and contract durations. In extreme cases, this inconsistency re-
sulted in a negative effect equivalent to approximately 588% below the sample average. The
presence of a capacity cap also significantly reduced effectiveness, lowering the impact of the
FiT by an average of 200% relative to the sample average. These results emphasized that
policy stability and clarity were critical to maximizing the impact of FiT schemes. Particu-
larly when tariffs were low, consistent implementation became essential to maintain investor
confidence and policy credibility. The study concluded that the effectiveness of FiTs was
highly dependent on their structure, and that many previous studies likely underestimated
the potential impact of FiTs by not accounting for these design and consistency factors.

The Italian Conto Energia feed-in tariff programme played a central role in promoting
PV deployment in Italy, resulting in an increase of approximately 17.6 GW in domestic PV
capacity between 2006 and 2018. While the programme was instrumental in accelerating the
growth of solar energy, its economic efficiency has been subject to critical scrutiny. Through-
out its implementation period, the capital-grant equivalent values of the feed-in tariffs consis-

tently exceeded the prevailing market prices of PV systems, indicating an overcompensation



CHAPTER 2. LITERATURE REVIEW 46

relative to actual investment costs. The total net subsidisation cost associated with Conto
FEnergia is estimated to have exceeded EUR 60 billion, raising concerns about the fiscal bur-
den imposed by the policy. Consequently, although effective in terms of capacity expansion,
the programme is considered not to have been a cost-effective instrument for promoting PV
deployment [150].

In practice, FiPs have gained popularity as they integrate renewable producers more
directly into the electricity market, promoting competition and efficiency. However, their
effectiveness depends on the structure of the premium and the level of exposure to market
risks. For instance, Marques, Fuinhas, and Macedo [146] investigated the effects of FiTs,
FiPs, and capacity payments on electricity generation by source in Spain, using monthly
data from January 2010 to February 2017 and applying an Autoregressive Distributed Lag
(ARDL) model. The findings show that FiTs did not have a statistically significant effect
on solar PV electricity generation, thereby calling into question the effectiveness of these
policy instruments within the Spanish context. This limited impact may be explained by
the structural characteristics of FiTs themselves: as price-based mechanisms, FiTs guarantee
producers a fixed payment regardless of actual output, weakening incentives to maximise
generation or invest in efficiency improvements. In addition, the challenge of setting optimal
tariff levels—due to information asymmetries between policymakers and producers [151]—
can result in prices that are either too low to stimulate investment or too high to be cost-
effective. As a result, while FiTs can drive capacity installation, they may not translate into
proportional increases in electricity generation.

In the United Kingdom, the introduction of the FiT scheme in April 2010 played a pivotal
role in accelerating solar PV deployment across all market segments [110]. A strong correla-
tion was observed between the level of policy support and the rate of PV deployment. Annual
installations rose sharply from just 30 MWp in 2010 to around 1 GWp in 2011, largely driven
by growth in the domestic and ground-mounted segments, while non-domestic installations
contributed to a lesser extent. However, policy revisions—such as the Fast-Track Review in

August 2011 and Comprehensive Review Phase 1 in February 2012—reduced FiT rates across
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all system sizes, leading to a significant drop in deployment in 2012. This decline continued
into 2013 for the domestic and non-domestic sectors, following further tariff cuts introduced
under Comprehensive Review Phase 2A. Despite these reductions, the ground-mount seg-
ment experienced a significant increase in capacity during 2013, reflecting a strategic shift
toward larger-scale installations and a growing reliance on the Renewables Obligation (RO)
scheme [110]. These trends underscore the importance of market-pull policies in stimulating
deployment.

As the cost of solar technology has declined, many governments have moved away from
FiTs in favour of market-based mechanisms [152] to control expenditure and enhance price
competitiveness. Instruments such as renewable energy auctions [153] have become increas-
ingly widespread. The International Renewable Energy Agency (IRENA) highlights a global
trend toward auctions, motivated by policymakers’ aims to procure renewable electricity at
the lowest possible cost while also advancing objectives related to energy security and socio-
economic development [153]. This shift has been particularly evident in European countries
such as Germany, Italy, and Switzerland, where the advent of grid parity was accompanied
by a reduction in FiTs. However, empirical evidence indicates that the withdrawal of FiTs
without the introduction of stable alternative incentives resulted in a decline in investment in
new capacity, raising concerns over the feasibility of achieving long-term low-carbon energy
targets [152].

While these studies consistently show that FiTs play a significant role in driving early-
stage solar PV deployment, it is important to recognise that their impact may change over
time as markets mature. Most empirical evaluations focus on the early years of policy im-
plementation, when solar markets were still emerging and cost barriers were high. In this
context, the presence or removal of FiTs had an outsized influence on deployment levels. How-
ever, once markets are more established—due to falling technology costs, increased investor
confidence, and accumulated industry experience—the removal of FiTs does not necessarily
lead to sustained declines in deployment. For example, in the United Kingdom, cumulative

solar PV capacity grew steadily to 13.35 GW by 2019—the year the FiT scheme was closed
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to new applicants. Although growth slowed slightly in 2020, reaching 13.55 GW, capacity
increased by more than 2.1 GW over the following three years, reaching 15.66 GW by 2023.
This trajectory demonstrates that, although FiTs were instrumental in catalysing early de-
ployment, the UK market continued to expand in their absence. This suggests that while
FiTs are essential for market formation, their influence diminishes as solar markets become

more competitive and self-sustaining.

2.3.2 Net Metering

Net metering policies enable PV system owners to export surplus electricity to the grid and
receive credit on their electricity bills. Under net metering, the exported electricity is credited
at the full retail rate, offering a strong economic incentive for investment in distributed PV
systems. By contrast, net billing provides compensation at a lower rate—often close to the
wholesale electricity price—meaning that system owners receive less value for electricity fed
into the grid [154]. As a result, while both policies promote distributed generation, net
metering is generally more favourable to consumers and has been more effective in driving
residential solar adoption.

Numerous studies have evaluated the effectiveness of net metering in promoting solar PV
deployment, particularly in the United States. Doris and Krasko [155] conducted a regression
analysis to examine the relationship between various policy measures and newly installed PV
capacity across all sectors in 2010. The variables analysed included interconnection standards,
net metering standards, renewable portfolio standards (RPS), and solar carve-outs. Their
findings indicated that all four policy measures were significantly linked to PV deployment,
with each one-point improvement in a state’s net metering score corresponding to a 4.6%
increase in PV installations.

A follow-up study by Steward et al. [156] supported these findings, showing that U.S.
states implementing both net metering and RPS experienced more substantial growth in solar
PV installations. However, not all findings were uniformly positive. Yin and Powers [157]

used regression analysis covering the years 1990 to 2006 to assess whether a state’s renewable
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portfolio standard (RPS), net metering standard, and interconnection standard influence the
annual share of non-hydro renewable energy capacity—such as wind, solar, geothermal, and
various forms of biomass. RPS requirements had a statistically significant effect on non-
hydro renewable energy capacity, while net metering and interconnection standards were
not statistically significant predictors in their model. This suggests that the influence of net
metering may be more pronounced in certain regulatory or economic contexts, and that other
complementary policies may be necessary to maximize its impact.

More recent studies have reinforced the importance of net metering, particularly for non-
utility and residential solar installations. Gilbert Michaud [158] studied the effectiveness
of state-level policies in encouraging non-utility solar PV installations in the US using hi-
erarchical regression analysis and cross-sectional data from 2012 to 2013. By comparing
policy impacts to other influencing factors—such as electricity prices, market deregulation,
per capita income, and solar resource availability—the study found that net energy metering
was the most influential policy in driving non-utility PV capacity growth.

In a panel analysis of rooftop solar adoption across 27 U.S. states from 2008 to 2018, Ros
and Sai [159] found that net metering significantly increased consumer demand for rooftop
PV, with adoption rising by at least twofold under supportive compensation schemes. Kim
et al. [160] also identified a statistically significant positive effect of net metering on so-
lar deployment in Colorado through a predictive model incorporating a range of social and
environmental variables. However, the model showed that other factors—particularly so-
cioeconomic characteristics and the average time required to obtain a permit (measured in
business days from initial submission to local approval)—played a more dominant role in
explaining deployment outcomes, suggesting that while net metering supports adoption, its

overall predictive importance was relatively limited.

2.3.3 Renewable Portfolio Standards and Certificate-Based Mechanisms

Utility quota obligations, commonly known as Renewable Portfolio Standards (RPS), are

regulatory mandates requiring utilities to procure a specified percentage of their electricity
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from renewable sources. These standards are designed to stimulate investment in renewable
energy technologies, lower greenhouse gas emissions, and diversify the energy mix to enhance
long-term energy security. Compliance can be achieved either through direct generation or
through the acquisition of Renewable Energy Certificates (RECs), which represent proof that
one megawatt-hour (MWh) of electricity was generated from a renewable source.

Several U.S. states have enacted RPS policies as a market-pull mechanism to accelerate
the transition toward renewable energy. While early studies on their effectiveness used cross-
sectional methods or overlooked the diversity in policy design, recent work by Yin and Powers
[157] introduces a refined measure of RPS stringency that accounts for design features such
as percentage requirements, eligible technologies, and compliance flexibility. Their panel
analysis from 1990 to 2006 finds that RPS policies have had a statistically significant and
positive impact on in-state renewable energy capacity. Specifically, a one-percentage-point
increase in the mandated renewable share led, on average, to a 0.56 percentage point rise
in non-hydro renewable capacity. However, the study also notes that allowing unrestricted
trading of RECs—referred to as "free trade”—can significantly weaken the effectiveness of an
RPS by decoupling renewable development from the state implementing the policy. These
findings suggest that not only the presence but also the design of RPS policies is critical to
their success.

RECs, and their UK equivalent Renewable Obligation Certificates (ROCs), are tradable
instruments awarded for every MWh of renewable electricity generated. These certificates
create a market-based mechanism for compliance, allowing utilities and obligated parties to
either generate renewable electricity themselves or purchase certificates from producers to
meet regulatory targets. ROCs specifically operate under the UK’s Renewable Obligation
(RO) scheme, wherein electricity suppliers must meet annual renewable energy targets. Both
systems are intended to enhance flexibility and cost-effectiveness in meeting renewable obli-
gations, and they play a key role in incentivizing the expansion of renewable generation
capacity. In the United Kingdom, the ROC scheme was closed to new generating capacity

in 2017 and subsequently replaced by Contracts for Difference (CfDs) as the primary sup-
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port mechanism for large-scale renewable energy projects [161]. However, the ROC scheme
continues to operate for existing accredited generators, who will receive support for up to 20
years from their accreditation date, with the final certificates expiring in 2037 [162]. CfDs
guarantee renewable electricity generators a fixed ’strike price’ for the electricity they pro-
duce, compensating them when market prices fall below this level and requiring repayment
when prices exceed it. This mechanism reduces revenue uncertainty and investment risk,
thereby encouraging continued investment in low-carbon technologies [163].

However, the effectiveness of these certificate-based systems varies depending on the mar-
ket segment and complementary policy environment. As observed by Westacott and Can-
delise [110], different solar PV market segments have responded unequally to market-pull
mechanisms such as FiTs and the RO. While the non-domestic rooftop segment saw limited
uptake, the ground mounted solar sector expanded rapidly—transitioning from FiTs to ROCs
as economies of scale made larger projects more financially viable.

In summary, RPS policies and certificate-based compliance mechanisms such as RECs
and ROCs have proven effective tools in expanding renewable energy capacity, particularly
when well designed. However, their impact is sensitive to policy design, market conditions,

and the specific structure of certificate trading.

2.3.4 Other Policies

In addition to regulatory measures such as feed-in tariffs, net metering, and renewable portfo-
lio standards, governments employ a range of financial incentives to support the development
and deployment of solar energy projects. These include tax reductions, investment or pro-
duction tax credits, public investment programmes, and direct financial incentives such as
rebates and grants. Among the most common tools are tax incentives designed to lower the
upfront cost burden for businesses and homeowners investing in solar technologies. Invest-
ment tax credits (ITCs) reduce the capital cost of solar projects by providing credits based
on the total investment, while production tax credits (PTCs) are based on the amount of

energy generated. These mechanisms reduce financial risk, enhance return on investment,
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and improve the economic viability of solar energy systems.

Beyond tax-based instruments, governments also support solar energy through public in-
vestment schemes, including low interest loans, grants, capital subsidies, and rebates. These
programmes are particularly valuable in addressing high initial capital costs, which often
present a significant barrier to entry. Public investment loans typically offer favourable repay-
ment terms, while grants and capital subsidies provide direct financial support for equipment
procurement and installation. Empirical evidence shows that such instruments are highly
effective: Crago and Chernyakhovskiy [164] found that each additional $1 per watt in rebate
funding is associated with a nearly 50% increase in annual residential PV installations in the
U.S., underscoring the powerful role of rebates in stimulating solar adoption.

Cash incentives have also been identified as a particularly effective mechanism in the
commercial solar market. Using panel data across 27 programmes in 16 U.S. states, Shrimali
and Jenner [165] showed that cash incentives significantly increased commercial PV adoption,
while interconnection standards were more influential in promoting residential deployment.
The study also highlighted property tax incentives as a promising policy tool for supporting
the uptake of commercial-scale systems.

In addition, competitive auctions or tenders are increasingly used as market-based mech-
anisms to drive down costs and promote efficient deployment of large-scale solar projects.
In these schemes, developers bid to supply electricity at the lowest possible price, with suc-
cessful bidders awarded contracts to construct and operate solar facilities. Auctions promote
transparency and cost-effectiveness, encouraging technological innovation and market com-
petitiveness.

As noted by Jacobs and Sovacool [145], while public spending on research and development
(R&D) can help establish early markets and demonstration projects, tax and investment
incentives remain essential to attracting private capital and creating commercially viable
niches for solar PV. Collectively, these financial and market-based mechanisms play a critical
role in accelerating the energy transition by lowering investment barriers, reducing levelized

costs, and de-risking early-stage projects, particularly in markets where solar technologies
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are still emerging.

2.3.5 Future Policies

As the deployment of solar PV systems continues to expand, future policy frameworks must
evolve to address emerging technical and regulatory challenges, particularly those related to
grid access, system integration, and infrastructure adequacy. One pressing issue is the growing
length of grid connection queues, where a significant number of proposed PV projects await
approval and interconnection. The increasing demand for grid access has resulted in delays
that hinder the timely deployment of renewable energy infrastructure. These constraints are
especially pronounced in regions with outdated or insufficient grid capacity, where utilities
may lack the technical and administrative means to process and integrate a large volume of
new connections efficiently.

Another challenge is the intermittent nature of solar power generation, which complicates
grid balancing and reliability. As solar PV penetration increases, variability in electricity
supply—caused by factors such as cloud cover and daily solar cycles—can create supply-
demand imbalances. Without adequate grid flexibility or energy storage solutions, high
levels of solar generation during peak sunlight hours may overwhelm local distribution net-
works, while periods of low generation may strain overall system adequacy. These dynamics
introduce new complexities in maintaining grid stability, especially in energy systems that
lack responsive demand side measures or dispatchable backup capacity.

In response to these challenges, future policies must prioritize streamlining interconnection
procedures and enhancing grid flexibility. This includes investment in smart grid technologies,
which enable dynamic monitoring and control of electricity flows, and facilitate the integration
of distributed energy resources. Policies should also promote the deployment of energy storage
systems, which can store surplus electricity generated during periods of high solar output and
release it when generation drops. Furthermore, a forward looking regulatory environment
should incentivise the development of flexible and modernized grid infrastructure, capable of

supporting high levels of distributed generation and ensuring equitable access for all energy
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producers.

By proactively addressing these technical and institutional challenges, policymakers can
support the continued scaling of solar PV in a manner that is both reliable and resilient.
Ensuring a smooth energy transition will require not only increasing solar capacity but also
transforming the underlying systems and rules that govern electricity generation, distribution,

and consumption.

2.4 Knowledge Gap

While significant progress has been made in tracking and modelling solar PV capacity, im-
portant gaps remain in the current literature and methodological landscape that limit the
ability to support coordinated and data-driven energy planning. First, there is no global
model that estimates national-level solar PV capacity based on geographical determinants.
Such a model is useful not only for understanding how geographic factors influence deploy-
ment patterns across countries, but also for benchmarking national progress and informing
national PV deployment targets. Existing global assessments typically focus on technical
potential or large-scale utility installations, without systematically modelling actual installed
capacity using comparable, location-specific predictors.

Second, within Europe, there is a lack of models that estimate regional PV capacity across
the full set of European regions using consistent geographic inputs. A model of this kind would
support the disaggregation of national capacity figures into regional estimates, which is critical
for real-time generation monitoring and the development of grid management tools. It would
also enhance the ability to forecast regional deployment trends for long-term infrastructure
and grid expansion planning. Additionally, such models could help inform land-use policy,
particularly in resolving conflicts between solar PV development and agricultural activity.
Although regional disparities in solar deployment are well recognized, there remains a need
for a consistent and spatially explicit framework to explain and predict these differences.

Third, there is no comprehensive national model that estimates PV capacity—across

residential, commercial, and utility scale systems—at fine geographical scales for an entire
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country. High-resolution capacity modelling is crucial for identifying under-deploying areas,
informing grid infrastructure investment, and improving the accuracy of generation mon-
itoring systems. While large-scale installations can sometimes be detected using satellite
or computer vision methods, these approaches are computationally intensive, often omit
small-scale systems, and provide only static snapshots of deployment. Their reliance on
high-resolution imagery, which is not consistently updated, makes them poorly suited for
real-time monitoring or forecasting of rapidly evolving PV deployment patterns.

Moreover, while geographical factors have been used to model specific PV market seg-
ments, there is currently no unified modelling framework that integrates both small- and
large-scale systems using a consistent set of predictors. This fragmentation limits cross-scale
comparability and undermines the development of cohesive energy strategies that span mul-
tiple administrative levels.

Another important limitation is that most existing studies are confined to countries or
regions where detailed subnational capacity data are already available. Consequently, large
parts of the world lack regionally disaggregated estimates, which are vital for informed energy
planning, grid integration, and performance benchmarking. There is a need for scalable,
generalisable models that can be applied even in data-scarce contexts, using open and globally
available datasets.

To address these challenges, this study develops a consistent and scalable modelling frame-
work to estimate solar PV capacity at multiple spatial levels: globally at the national level,
regionally across NUTS 2 regions in Europe, and subregionally within NUTS 3 units in
Great Britain. A key strength of the approach lies in its exclusive reliance on open-access,
frequently updated, and globally available data sources, which enhances the transferability,
reproducibility, and scalability of the methodology. This framework is designed to support
energy planning and policy development in both data-rich and data-scarce environments,
offering a practical solution for regionally resolved capacity estimation across diverse geo-

graphical contexts.



Chapter 3

Global Model

3.1 Abstract

Setting solar photovoltaic capacity targets and implementing supportive policies is a widespread
strategy among nations aiming to achieve decarbonisation goals. However, policy imple-
mentation without a thorough understanding of the intricate relationship between social,
economic, and land-use factors and solar photovoltaic deployment can lead to unintended
consequences, including over- or underdeployment and failure to reach targets. To address
this challenge, an investigation was conducted into the relationship between 36 factors and
solar photovoltaic deployment across 143 countries from 2001 to 2020 using correlation anal-
ysis and principal component analysis. From these factors, five key variables were identified
that collectively explain 79% of the year-to-year variation in photovoltaic capacity. Using
these variables, a neural network model was constructed, enabling the estimation of capac-
ity additions by country with an error of less than 10%. Additionally, a solar photovoltaic
deployment index was developed, serving as a benchmark for comparing a country’s actual
historical photovoltaic deployment to similar nations. Furthermore, the model’s utility in
evaluating the impact of solar photovoltaic policies was explored. Through three distinct use
cases—forecasting solar photovoltaic capacity additions, developing a solar photovoltaic de-

ployment index, and assessing the impact of solar photovoltaic policies—the model emerges
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as a potentially powerful tool for governments and policy makers to assess solar photovoltaic

deployment effectively and formulate strategies to promote sustainable solar energy growth.

3.2 Introduction

Solar photovoltaic (PV) electricity is now, on average, cheaper than fossil fuel
electricity [166], and one of the cheapest sources of power production [167]. Consequently,
solar PV contributes substantially to the decarbonisation strategies of many countries. For
example, China aims to increase the capacity of solar and wind to over 1200 GW by 2030 [168].
Japan targets 108 GW of installed solar capacity by 2030, equivalent to 15% of its total power
generation [169]. EU countries Italy, Germany, and Spain are aiming for 52 GW [170], 215
GW [171], and 37 GW [172] of solar capacity by 2030. The United Kingdom’s target is 7%
of electricity from solar PV by 2030 [173], and South Africa’s target is 8 GW of solar PV,
which would account for 11% of total installed capacity [174].

These capacity targets are often backed up by a range of policies to support investment
in solar power production. Historically and presently, these include feed-in tariffs, where
system owners are paid to export power to the grid (e.g., China, Japan, and Vietnam [173]);
net metering, which compensates system owners for surplus electricity fed into the grid [175]
(e.g., Botswana, Zimbabwe, Saudi Arabia, and Belgium [173, 166]); utility quota obligations
or renewable portfolio standards, which require a minimum percentage of generation to be
provided by renewable energy of which a portion is solar PV [166] (e.g., Australia, Swe-
den, and the United Kingdom [173]); and tradeable renewable energy certificates (RECs),
which are awarded per MWh and can be bought or sold separately from the electricity [144].
Other policy options include a reduction in tax associated with energy (e.g., Finland, France,
Germany, Italy, Spain, and Japan [173]), direct investment or production tax credits to en-
courage businesses to develop and operate solar energy projects (e.g., Germany, Greece, Italy,
Spain, and the United States [173]), and public investment loans, grants, capital subsidies or
rebates, and auctions or tenders.

Implementing these kinds of policies without prior understanding of the complex interac-
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tions of geographic factors (e.g., sociological, economic, land-use, climatic, and technological)
involved in PV deployment can lead to unintended consequences such as overdeployment or
failure to meet the targets. Spain’s experience in 2008 exemplifies this, where rapid growth
in solar PV deployment, driven by new feed-in tariffs, strained the electricity grid and neces-
sitated sudden policy adjustments to curb costs [85]. This eventually led to market collapse
in the following years. On the other hand, India, despite implementing various supportive
measures such as feed-in tariffs, obligation certificates, and tax reductions, fell short of its
ambitious 100 GW target by 2022, achieving only 54 GW [90, 91]. Furthermore, evaluating
a country’s progress in solar PV deployment based on its self-defined targets may not accu-
rately reflect the actual deployment compared to realistic expectations, as it fails to account
for the complex interplay between PV deployment and geographical factors.

The development of models that can explain the importance and interactions of the
different adoption factors could be very valuable in the refinement of policies to support solar
PV and its integration into the wider electricity system within a country. Such models could
be used to forecast solar PV capacity in order to support network planning, and they could
help with the early identification of over- or underdeployment by providing a benchmark in
terms of what might be expected in terms of a comparison with countries further ahead in
the deployment curve.

The aim of this study is to investigate the factors influencing country-level historical solar
PV deployment, culminating in the construction of a comprehensive global model capable
of estimating total PV capacity additions for any country. This model will serve multiple
purposes: Firstly, as a forecasting tool for PV capacity, facilitating effective planning and
generation monitoring. Secondly, as a benchmarking mechanism, allowing for comparisons
with similar countries. Lastly, as an evaluative instrument for policy assessment, by compar-

ing estimated outcomes against actual developments.
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3.3 Literature Review

To construct a comprehensive global model, it is imperative to examine the factors influenc-
ing deployment and integrate them into our framework. To the best of our knowledge, there
have not been any studies that investigate the relationship between geographic factors and
solar PV deployment on a global scale. However, there are studies that investigate the rela-
tionship between these factors on household, subregional (i.e., census areas of approximately
1000-8000 people depending on country [109, 176]), regional (i.e., state/county/village), and
country level.

On a household level, Jan, Ullah, and Ashfaq [101] identified key factors for explaining
solar PV adoption in northwest Pakistan, which are income, cost of energy consumption,
education level, information about the solar PV market, and source of awareness about solar
PV systems. They explain 38% of the variation in adoption. Letchford, Kiran Lakkaraju,
and Yevgeniy Vorobeychik [102] performed a sensitivity analysis using multiple methods to
determine which features were important predictors of solar PV adoption in the San Diego
region, US. Property size, whether the owner lived on the property, national unemployment
rate, income, cost of electricity, and peer effect are all key factors that explain 33% of the
variation in adoption. Aklin, Cheng, and Urpelainen [103] investigated solar PV adoption
at the household level in rural India and found that households that are wealthy and have
access to banking are more likely to use solar power.

Graziano and Gillingham [108] studied the influence of multiple factors on PV adoption
in Connecticut, US, and showed that the influence of neighbours, the built environment
(housing density and share of renters), and policy have a strong relationship with PV adoption
compared to social, economic, and political factors. Alderete Peralta, Balta-Ozkan, and
Longhurst [106] characterised the spatio-temporal adoption patterns of domestic solar PVs
in Birmingham, UK, and found that income, electricity usage, and average household size
are the best predictors of solar PV adoption.

Yu et al. [98] identified key social and economic factors correlating with solar deployment

density in the US, which are solar radiation, population density, annual household income,
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Gini index, and education level. Laura Williams and Mita Kerai [109] analysed factors that
play a role in the deployment of PVs under a feed-in tariff scheme in England, UK, and
found that electricity consumption, gas consumption, gas coverage, age of population, index
of multiple deprivation and its various domains, dwelling stock by tenure and type, urban
or rural classification, council tax band, and fuel poverty are all key in explaining solar PV
deployment.

McEachern and Hanson [113] studied the adoption of solar PVs across 120 villages in Sri
Lanka and found that solar PV adoption is driven by expectations of whether the govern-
ment will connect the villages to the electricity grid, as well as tolerance for nonconformist
behaviour. Aklin, Cheng, and Urpelainen [103] investigated factors that determine solar
adoption at the village level in rural India and showed that remote, large, and poor villages
with high levels of solar radiation adopt solar technology as a replacement for grid electricity.
Mayer et al. [114] analysed the socioeconomic factors correlating with PV system adoption
in 53 counties in the state of North Rhine Westphalia, Germany, and found that gross value
added by agriculture was highly correlated with PV adoption with a Pearson correlation
coefficient of +0.75, while unemployment rate and population density were moderately cor-
related with PV adoption at —0.61 and —0.64, respectively. Liu et al. [116] investigated the
correlation between social and economic factors and the installed capacity of solar PV in
China and showed that GDP, final consumer expenditure, industrial added value, and solar
energy generation and consumption are strongly correlated with PV capacity.

When considering quantitative models that can forecast PV capacity additions, there
are very few models. The World Energy Model (WEM) initially forecasts total capacity
additions, irrespective of technology, driven by demand. Subsequently, the share of solar PV
capacity additions is determined according to the regional value-adjusted levelised cost of
electricity [177]. However, this method of estimating the required capacity and subsequently
deriving the share of solar PV capacity introduces compounding errors. Historically, the
International Energy Agency, the US Energy Information Agency, Bloomberg New Energy

Finance, Photon, and Greenpeace all underestimated PV capacity additions [178].
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The International Renewable Energy Agency (IRENA) projects global solar PV capac-
ity additions based on current and planned policies and targets of countries, as well as the
trajectory of the global energy system aimed at limiting the rise in global temperatures to
well below 2 degrees Celsius above preindustrial levels [179]. However, these projections are
susceptible to errors due to several factors. Firstly, the capacity targets set by countries are
not always met, leading to discrepancies between projected and actual outcomes. Secondly,
the emphasis on global temperature objectives does not fully account for the diverse geo-
graphic factors within each country, which can significantly influence the deployment of solar
PV capacity.

In academia, Yu et al. [98] developed a machine learning model that uses socioeconomic
and environmental factors to accurately predict solar PV deployment density in US sub-
regions. The model is a two-stage model that uses a random forest classifier to determine
whether any solar PV systems exist in a census area and a random forest regressor to estimate
the solar deployment density. The model achieved a cross-validation R? of 0.72, but it uses
a large number of US-specific input features (>90), which makes it difficult to replicate in
another country. In addition, it only takes into account residential PV systems.

Liu et al. [116] built a bidirectional long short-term memory neural network model to
forecast China’s solar PV installed capacity and achieved a mean absolute percentage error
(MAPE) of 6%. A mean impact value analysis was performed to determine the contribution
of each factor in the model. Solar power generation, solar power consumption, gross domestic
product, final consumer expenditure, and industrial added value contributed 26%, 27%, 17%,
15%, and 14%, respectively. This model uses a small number of input features, but it relies
on solar generation and consumption data, which are not available for most countries.

Remote sensing-based methods have emerged as a promising solution for acquiring infor-
mation on PV installations. These techniques use overhead imagery and deep neural networks
to detect and map solar PV capacity using computer vision. For instance, Ravishankar et al.
[180] devised a deep learning framework to estimate the global capacity of solar farms from

high-resolution satellite imagery, achieving an average error rate of 4.5% when validated
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against publicly available data; while this method effectively detects large-scale solar instal-
lations, it can be computationally expensive. Detecting small-scale solar PV installations is
more complicated as it necessitates high-resolution imagery to maintain model performance
[99, 181]. Recent advancements, such as the development of electric-dipole gated photo-
transistors, offer high-performance imaging capabilities with reduced power consumption,
promising improved machine vision imaging models in the future [182].

These studies investigated factors associated with PV adoption, which were used as a
guide for selecting factors in the present study. The focus extends to total national capacity
additions, regardless of type (residential, commercial, utility scale). Existing global models
estimate capacity based on national targets, leading to inaccuracies. Furthermore, national
or subregional capacity models often rely on data unavailable in many countries, and while
remote sensing-based vision models offer a promising solution for acquiring information on
PV installations, their reliance on high-resolution imagery can be impractical in regions where
such data are scarce or expensive to obtain.

To overcome these difficulties and develop a common framework for analysis of national
PV capacity across many countries, an attempt is made to build a generic model that relies on
open source global databases. Fortunately, global databases of historical data are available.
Weather data are available as a record of meteorological variables and include irradiance [183],
the key determinant of solar PV production. The International Energy Agency (IEA) and
Euro-Mediterranean Center on Climate Change (CMCC) provide records of averaged weather
parameters specific to each country, such as temperature, daylight hours, snowfall, cloud
coverage, and precipitation [184]. The World Bank documents country-level demographics
such as population, average age, level of education, employment, and national economics
such as gross domestic product and gross national income [185]. The World Bank also
documents land use such as urban, rural, and agricultural. The International Renewable
Energy Agency (IRENA) reports country-level solar PV capacity additions on an annual basis
[186]. The Energy Information Administration (EIA) tracks annual electricity consumption

and generation by source such as nuclear, fossil fuels, and renewables [187], and the Renewable
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Energy Policy Network for the 21st Century (REN21) documents national and subnational
solar PV policies [166].

3.4 Methodology

3.4.1 Determining Key Features Associated with Global Solar PV Capac-
ity Additions

To build a global model, potential geographic features with global coverage needed to be
determined. Table 3.1 shows the investigation conducted into the relationship between 36
climatic, social, economic, and land-use features and solar PV capacity additions. The Pear-
son’s correlation coefficient was calculated for each factor in relation to solar PV capacity
additions. The coefficient of determination (R?) was determined by fitting linear regression
models between each feature and solar PV capacity additions. To evaluate similarity among
features, a variable clustering analysis was performed in JMP Pro using the VARCLUS algo-
rithm developed by SAS [188, 189]. The algorithm starts with all variables in a single cluster
and iteratively partitions them based on shared variance. Within each cluster, principal com-
ponents are computed, and if the second eigenvalue exceeds 1, the cluster with the largest
second eigenvalue is selected for splitting. Splitting is guided by an orthoblique rotation,
where variables are assigned to one of two new clusters depending on whether they show a
stronger squared correlation with the first or second rotated component. After each split,
variables are re-evaluated and reassigned to the cluster where they have the highest squared
correlation with the first principal component. This process continues until no further im-
provements can be made. For each final cluster, the proportion of variance explained by the
first principal component, as well as by individual variables, was calculated. The resulting
structure provided interpretable groupings of similar features to inform further analysis. The
data in Table 3.1 cover 143 countries around the world, span the years 2001 to 2020, and

have a temporal resolution of one year.



Table 3.1: Features considered for modelling solar photovoltaic capacity additions. The definition, category, and availability of the
data are shown. The correlation and coefficient of determination (R?) with solar photovoltaic capacity additions are calculated.
Principal component analysis (PCA) is performed, and similar features are clustered together. Finally, the literature that used the
same or similar features is linked.

Feature Definition Category Availability Pearson PCA Literature Source
Correlation/R*> Cluster/R?

THAONW TVHOTO "€ H4LdVHO

Temperature (°C) Annual mean temperature at 2 m.  Climate Global / —0.1/0.01 2/0.85 [98] [184]
complete

Average theoretical Annual mean theoretical global Climate Global / —0.08/0.007 2/0.77 (98, 103] [183]

potential GHI horizontal irradiance. complete

(kWh/m?/day)

Snowfall (mm/h) Annual mean snowfall. Climate Global / 0.04/0.002 2/0.61 [184]
complete

Daylight hours Annual mean daylight hours. Climate Global / 0.04/0.002 2/0.82 [184]

(minutes/day) complete

Precipitation Annual mean precipitation. Climate Global / —0.02/0.0006 5/0.87 [184]

(mm/h) complete

Cloud coverage (%) Annual mean cloud coverage. Climate Global / 0.007,/0.00006 5/0.87 [184]
complete
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Feature Definition Category Availability Pearson PCA Literature Source
Correlation/R?>  Cluster/R?

Tertiary education The number of population enrolled  Social Global / 0.8/0.6 4/0.87 [101, 106,  [190]
in tertiary education. This is incomplete 98] !
calculated by multiplying the
population by the tertiary gross
enrollment ratio.

Labour force The number of people aged 15 or Social Global / 0.5/0.3 4/0.96 [98] 2 (191,
older who supply labour for the complete 192]
production of goods and services.

Population Count of people in a country. Social Global / 0.5/0.2 4/0.96 [106, 98, [193]

complete 103] 3,
[116]

Primary education The number of population enrolled  Social Global / 0.5/0.2 4/0.96 (101, 106,  [190]

in primary education. This is incomplete 98] 1

calculated by multiplying the
population by the primary gross

enrollment ratio.
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Feature Definition Category Availability Pearson PCA Literature Source
Correlation/R?>  Cluster/R?

Total unemployment  The total number of unemployed Social Global / 0.5/0.2 4/0.95 [102, 108,  [192]
labour force that is without work complete 114]
but available and seeking
employment. Calculated by
multiplying the labour force with
unemployment percentage.

Secondary education ~ The number of population enrolled  Social Global / 0.4/0.1 4/0.99 [101, 106,  [190]
in secondary education. This is incomplete 98] 1
calculated by multiplying the
population by the secondary gross
enrollment ratio.

KOFGI The KOF Globalisation Index Social and ~ Global / 0.1 /0.01 6/0.85 (194,
measures the economic, social, and  economic complete 195]
political dimensions of
globalisation.

Duration of The number of years that children  Social Global / 0.03/0.001 7/0.58 [98] ® [190]

compulsory are legally obliged to attend complete

education (years)

school.
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Feature Definition Category Availability Pearson PCA Literature Source
Correlation/R?>  Cluster/R?

Last year’s PV The solar photovoltaic cumulative ~ Economic  Global / 0.8/0.7 1/0.43 [186]

cumulative capacity capacity of the previous year. complete

(MW)

Electricity net Annual total electricity generation. Economic  Global / 0.8/0.6 1/0.96 [116] [187]

generation (billion complete

KWh)

Electricity net Annual total electricity Economic  Global / 0.7/0.6 1/0.94 [116, 102,  [187]

consumption (billion  consumption. complete 106, 109]

kWh)

Fossil fuels Annual fossil fuel electricity Economic  Global / 0.7/0.6 1/0.90 [187]

electricity net generated by a country. complete

generation (billion

KWh)

Agriculture, forestry, Value added by agriculture, Economic  Global / 0.7/0.5 4/0.88 [114] [196,

and fishing, value forestry, and fishing sectors. complete 197]

added (current USD)

Manufacturing, Value added by the manufacturing  Economic  Global / 0.7/0.5 1/0.95 [198,

value added (current  sector. complete 197]

USD)
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Feature Definition Category Availability Pearson PCA Literature Source
Correlation/R?>  Cluster/R?

Industry (including Value added by the industrial Economic  Global / 0.7/0.5 1/0.97 [116] [199,

construction), value sector. complete 197]

added (current USD)

GDP (current USD)  Gross domestic product (GDP) Economic  Global / 0.6/0.3 1/0.93 [116], [200,
measures the gross value added by complete [102] ©, 201]
production of goods and services [114] 7
in a country on a yearly basis.

GNI (current USD) Gross national income (GNI) is Economic  Global / 0.5/0.3 1/0.92 [202,
defined as GDP plus net income complete 203]
from abroad.

Nuclear electricity Annual nuclear electricity Economic  Global / 0.3/0.1 1/0.31 [187]

net generation generated by a country. complete

(billion kWh)

Ease of doing Ease of doing business ranks Economic ~ Global / —0.2/0.05 2/0.57 [204]

business rank

economies of countries from best
to worst based on how the
regulatory environment is

conducive to business operation.

incomplete
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Feature Definition Category Availability Pearson PCA Literature Source

Correlation/R?>  Cluster/R?
Research and Percentage of GDP spent on Economic  Global / 0.2/0.03 6/0.57 [190]
development research and development. incomplete
expenditure (% of
GDP)
Public investments Annual public investment in solar Economic  Global / 0.1 /0.01 6/0.23 [205]
in solar energy (2019  energy. incomplete
million USD)
Solar PV module Global average price of solar Economic  Global / —0.09/0.008 7/0.58 [186,
cost (2019 USD per photovoltaic modules. complete 206]
W)
Access to electricity ~ Percentage of population with Economic  Global / 0.07/0.005 6/0.56 (101, 98, [207]
(% of population) access to electricity. complete 109, 113,

103] °

Investment in energy  Investment in energy generation, Economic  Global / 0.03/0.001 3/0.22 [208]
with private transmission, and distribution incomplete
participation projects with private participation.
(current USD)
Gini index (World Gini index is a measure of income  Economic  Global / —0.02/0.0004 2/0.57 [98] [209]
Bank estimate) inequality within a country. incomplete
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Feature Definition Category Availability Pearson PCA Literature Source
Correlation/R?>  Cluster/R?
Urban land area Urban land area which is based on  Land use ~ Global / 0.4/0.1 1/0.76 [109] *° [210]
(km?) population counts, settlement complete
points, and presence of nighttime
lights.
Agricultural land Total area of land used for Land use Global / 0.3/0.1 3/0.70 [211]
(km?) agriculture within a country. complete
Land area (km?) Total land area of a country Land use  Global / 0.2/0.06 3/0.97 [106, 98, [212]
excluding water bodies. complete 103] M
Rural land area Rural land area which is based on ~ Land use Global / 0.2/0.06 3/0.97 [109] *° [210]
(km?) population counts, settlement complete
points, and presence of nighttime
lights.
Forest area (km?) Total forest land area within a Land use ~ Global / 0.1/0.02 3/0.84 [213]
country. complete

1 Similar but not identical education measures. 2 Used employment rate rather than number of employed people. 3 Used population density rather than population

count. 4 Used unemployment rate instead of number of unemployed people. ® Used the number of years a person spent pursuing education. ¢ Used change in

GDP. 7 Used GDP per person. ® Only available for 2019. © These studies use features that directly or indirectly measure access to electricity. 1© Used urban and

rural classification instead of land area. ! Used population density rather than land area.
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PCA results in Table 3.1 show that the first cluster’s members are mostly economic
features. It explained 22.4% of the variation in the feature data and was highly correlated
with PV capacity additions. When fitting the cluster features in a linear model, it explained
76.9% of the variation in PV capacity, as shown in Appendix 3.7.2. The most important
features in the first cluster were last year’s PV cumulative capacity, electricity net generation,
and consumption.

The second cluster comprised mostly climate features and explained 11.6% of the variation
in the feature data. When the cluster features were fitted into a linear model, they accounted
for 21.1% of the variation in PV capacity, as shown in Appendix 3.7.2. However, the number
of data points for this cluster was less than 1% of the dataset, a limitation attributed to the
methodology of fitting multiple features simultaneously. Specifically, when fitting more than
one feature, rows with missing data points for any feature were excluded from the analysis. As
shown in Table 3.1, features from this cluster were not correlated with PV capacity additions
and did not explain the variation in PV capacity.

The third cluster consisted mainly of land area features and explained 10.3% of the
variation in the feature data. When the cluster features were fitted into a linear model, they
accounted for 22.2% of the variation in PV capacity, as shown in Appendix 3.7.2. The most
significant feature in this cluster was agricultural land area.

The fourth cluster consisted of social features and explained 18.2% of the variation in
the feature data. When the cluster features were fitted into a linear model, they accounted
for 46.3% of the variation in PV capacity, as shown in Appendix 3.7.2. The most significant
feature in this cluster was tertiary education. The remaining clusters explained less than 10%
of the variation in the feature data.

Economic factors played the largest role in explaining the variation in solar PV deploy-
ment, followed by social factors. Land use played an important role but was less significant
compared to economic and social factors. When it came to explaining the variation in the fea-
ture data, economic and social factors contributed equally, while land-use factors contributed

about half as much as social or economic factors.
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The Pearson’s correlation coefficient and the coefficient of determination (R?) in Table 3.1
show that climate features did not play a significant role in the additions of solar PV capacity
on a global scale. This was not the case on smaller scales such as regional, subregional, and
household levels, where solar irradiance was a key factor [98, 103].

Tertiary education was highly correlated with solar PV capacity additions (0.8) and ex-
plained 60% of the variation on a global scale, which was also the case on subregional [98]
and household levels [101]. It was the most significant social feature on a global scale. This
may have been because it acted as an indicator of the economy and population count in ad-
dition to education. Population count, primary and secondary education, labour force, and
total unemployment were moderately correlated with PV capacity additions and explained
between 10% and 30% of the variation.

The previous year’s cumulative PV capacity, economic value added by agriculture, forestry,
fishing, manufacturing, industry, electricity net consumption and generation, and fossil fuel
electricity net generation were highly correlated with added PV capacity and explained a
high percentage of the variation (between 50% and 80%). They played the largest role in
explaining solar PV deployment on a global scale. Gross domestic product (GDP) and gross
national income (GNI) were moderately correlated with added PV capacity. This was not
the case on the country or regional level, where GDP was highly correlated with solar PV
deployment on a country level [116] and weakly correlated on a regional level [114].

Solar PV module price was very weakly correlated with PV capacity additions. This may
have been because some countries implemented policies that supported the adoption of solar
PVs early on. The Gini index, which is a measure of income inequality, was very weakly
correlated with solar PV capacity on a global scale, although it was strongly correlated at
the subregional level [98]. Access to electricity was very weakly correlated with PV capacity
on a global scale but was significant on smaller scales such as regional and subregional [109,
113, 103]. Using available but incomplete data, investment in energy and public investment
in solar energy were weakly correlated with PV capacity additions.

Urban land area was moderately correlated with added PV capacity and explained 10% of
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the variation, while rural land area was weakly correlated and explained 6% of the variation.
This suggests that urban land area was a more important factor on a global scale compared
to rural land area, but this was not the case on a subregional level where rural areas were
associated with more PV installations [109]. This was explained by the high correlation
between urban land area and GDP (0.90). Agricultural land area had a higher correlation
and explained more of the variation in PV additions compared to total land area. This was
probably because agricultural land was suitable for large-scale solar farms. Forest land area

was not associated with PV installations on a global scale.

3.4.2 Feature Screening and Selection

The aim was to develop a globally applicable model, which required reducing the number
of features due to variations in data availability across different countries. Moreover, some
features displayed high correlation, which, when added to the model, increased complexity
without substantially enhancing performance or explanatory power. To reduce the number
of features, variables were grouped into clusters using the VARCLUS algorithm [188, 189].
Clusters explaining less than 5% of the variability in PV capacity or containing fewer than
500 data points were excluded (Appendix 3.7.2). The retained clusters were clusters one,
three, and four, which explained 22.4%, 10.3%, and 18.2% of feature variability, respectively.
Features were drawn from these clusters in proportion to their explanatory contribution: 40%
from clusters one and four each, and 20% from cluster three.

Within each cluster, features were prioritised using a composite score based on three crite-
ria: the Pearson correlation coefficient (Corr;) between feature i and PV capacity additions;
the number of valid observations for feature i (/N;); and the number of studies referencing
feature ¢ (L;). Each criterion was normalised within the feature’s cluster to account for
differences in scale. The normalised correlation was computed as shown in Equation (3.1),

the normalised data availability as shown in Equation (3.2), and the normalised literature
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frequency as shown in Equation (3.3):

Corr;
NormCorr; = _[Corr] (3.1)
max |Corry|
keC;

k3

N;

max N
keC;

L;

max L,
keC;

NormAvail; = (3.2)

NormlLit; =

(3.3)

Here, C; denotes the set of features in the same cluster as feature i.
The composite score was then calculated as shown in Equation (3.4) giving greatest weight

to correlation while still accounting for coverage and prior usage.

Score; = 0.6 - NormCorr; + 0.25 - NormAvail; + 0.15 - NormLit;, (3.4)

Features in the same cluster were ranked from highest to lowest composite score. Ranking

was restricted to features whose (Cluster, Category) pair was in Equation (3.5):

A = {(4,social), (1,economic), (3,land use)}. (3.5)

The optimal number of features was determined by incrementally fitting linear models
and evaluating R? and RMSE. Features were introduced according to the cluster weights
(40% from clusters 1 and 4 each, and 20% from cluster 3), using a repeating five-step cycle:

The repeating cycle of clusters was:

1,4,3,1,4,1,4,3, ...

Within each cluster position, features were added in descending order of their composite
score, ensuring that the highest-scoring features entered first.
Alternative feature selection approaches, including stepwise regression with both AICc

and BIC criteria, were also applied. Detailed results of the stepwise regression analysis are
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provided in Appendix 3.7.5.

3.4.3 Model Building

The models considered were a multiple linear regression (MLR) model, a second-order poly-
nomial regression (PR) model, a neural network model (NN), and finally, a combined model,
which is a neural network model that took the second-order polynomial features as input.
For all models, the dataset was partitioned into training (80%) and test (20%) sets using the
train_test_split function from Scikit-learn [214]. To ensure comparable distributions of
the target variable (annual PV capacity additions) in both sets, stratified sampling was ap-
plied. The target variable was first discretised into six bin labels using numpy.digitize with
bin edges defined by numpy.linspace between 0 MW and 1,843 MW. The six labels arose
from digitize behaviour, which assigns separate labels for values below the first bin edge
and above the last bin edge. These labels were then used as the stratification variable in the
split procedure. A fixed random seed (random_state=1) was set to ensure reproducibility.
For the linear models, Scikit-learn, a Python package encompassing various advanced
machine learning algorithms for medium-scale supervised and unsupervised tasks, was used
[214]. Two model types were considered: multiple linear regression (MLR) and second-order

polynomial regression (PR). The MLR model can be written as:

p
y=Po+ > Pirite (3.6)

=1

where y is the target variable, 5y is the intercept, (; are the model coefficients, z; are the
predictor variables for ¢ = 1,...,p, and € is the error term capturing the discrepancy between
the observed and predicted values.

The PR model extended this formulation by including all quadratic and pairwise inter-

action terms:

p p p
y=po+ Z Bizi + Zﬁumf + Z Bijrix; + € (3.7)

i=1 i=1 i<j

where y is the target variable, 5y is the intercept, 5; are the coefficients for the linear terms,
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Bii are the coefficients for the squared terms, 3;; are the coefficients for the interaction terms
between predictors x; and z;, and ¢ is the error term. The parameters of both MLR and PR
models were estimated using Ordinary Least Squares (OLS).

In the case of neural network models, JMP Pro 17 software was employed [215]. Multilayer
perceptron (MLP) neural networks, which are fully connected feed-forward artificial neural
networks, were used [216]. The neural network model contained a single hidden layer with
five nodes and a hyperbolic tangent (Tanh) activation function. For the combined model, two
hidden layers with five nodes each were used. These architectures were selected empirically by
testing a range of configurations with one or two hidden layers and up to five nodes per layer,
and then choosing the structures that provided the best balance between model performance
and complexity.

Polynomial features were passed to the neural network models. This was motivated by
the fact that interaction terms involving the previous year’s PV capacity help distinguish
between countries with no installed capacity and those with capacity. For countries with
zero previous capacity, these interaction terms reduce all related polynomial inputs to zero,
effectively encoding the absence of capacity in a way that improves the model’s ability to
separate such cases from those with existing capacity.

The JMP Neural platform applies a penalty on model parameters to prevent overfitting,
with the penalty values tuned using a validation set. Model parameters were optimised using
K-fold cross-validation (K = 5), which divided the data into five subsets (folds). Each fold
served as the validation set once, while the remaining folds formed the training set, resulting
in five fitted models. For linear models, the reported validation R? corresponds to the average
across all folds, whereas for neural networks, it corresponds to the fold achieving the best
validation performance.

Since this is the first attempt at creating a global model, there are no similar models avail-
able for benchmarking. The challenge is further complicated by instances where countries
experienced years with either no or minimal capacity additions, resulting in actual added

capacity being zero or near-zero in these cases. Mean absolute error (MAE), mean squared
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error (MSE), and root mean squared error (RMSE) were used to compare the models. Ad-
ditionally, new error metrics such as the global error, country error, and yearly error were
defined. The global error, calculated according to Equation (3.8), serves to evaluate the
overall performance of the model and facilitate comparison between the different models.
Country error, determined using Equation (3.9), allows for comparison of errors between

countries. The yearly error assesses the error for each year, based on Equation (3.10).

MAE

Global Error = - Global - (3-8)
mean cumulative capacitygiopal

MAE

Country Error = Lo (3.9)
mean cumulative CapaCIty yer country

MAE

Yearly Error = Der year (3.10)

mean cumulative capacitype, year

3.4.4 Model Application

After selecting the best model, it is used as a benchmark against which solar PV deployment
in different countries is evaluated. A solar PV deployment index (SPVDI) is developed
to assess solar PV deployment in a country relative to other countries with similar social,
economic, and land-use factors. The SPVDI is calculated based on Equation (3.11), where
tstart is the initial year and tenq is the final year for which the analysis is conducted. The index
sums the difference between actual and predicted capacity for country i over the specified
time range. The result is the quantity of capacity additions with a corresponding sign. A
positive sign indicates that the country has more capacity than expected, while a negative
sign indicates less capacity than expected. The SPVDI enables the comparison of countries’
performance across multiple years and time ranges. Additionally, it serves as a tool to rank

countries based on their performance in terms of PV deployment.
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tend

SPVDI,; = Z (Actual Capacity Additions; ; — Predicted Capacity Additionsz-7j) (3.11)

J=tstart

Another application is the use of the model to assess the effectiveness of implementing or
removing a policy. This evaluation of policy interventions involves comparing actual capacity
additions to the estimated capacity additions. When actual additions surpass expectations
following policy implementation, it indicates success, signifying that the policy effectively
increased capacity beyond initial projections. Conversely, if actual additions fall short of
expectations, it suggests a policy failure, as it did not achieve the anticipated increase in
capacity. To illustrate this use case, a specific set of countries is selected, and their policy

interventions are evaluated.

3.5 Results and Discussion

Based on the analysis of 36 geographic factors in Table 3.1, economic factors emerge as the
largest contributors to solar PV deployment, with the previous year’s PV capacity playing the
most important role. Social factors, especially education, also contribute significantly. Land-
use factors have a smaller yet measurable effect, while climatic factors are not significant.

Five key features are selected—last year’s cumulative PV capacity, population, agricul-
tural land area, tertiary education, and electricity net consumption—which collectively ac-
count for 79% of the variation in PV capacity, to be fed into the models. Illustrated in
Figure 3.1 is the relationship between the number of features, explained variation in PV
capacity additions, and root mean squared error (RMSE) of the linear model used for fea-
ture selection. The analysis reveals marginal gains beyond these five features, with less than
a 6% increase in explanatory power and no significant decrease in RMSE. Appendix 3.7.3
shows summary statistics for the selected features, and Appendix 3.7.4 shows the Pearson
correlations between the selected features.

A comparison of the results obtained from the developed models is presented in Table 3.2.
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Figure 3.1: Relationship between number of features and model performance metrics. (a)
Number of features versus coefficient of determination, and (b) number of features versus
root mean squared error after fitting a linear model. Features are numbered as follows: (1)
electricity net consumption, (2) tertiary education, (3) agricultural land area, (4) previous
year’s PV cumulative capacity, (5) population, (6) electricity net generation, (7) total un-
employment, (8) land area, (9) GDP, (10) primary education, (11) value added by industry
(including construction), (12) labour force, (13) rural land area, (14) value added by manu-
facturing.

Detailed equations describing these models can be found in Appendices 3.7.7 and 3.7.8. The
best results are achieved by the combined model, which has a global error value of 9.8%. The
neural network model comes in second place with a global error of 10.3%. The polynomial
PR model has a global error of 18.9% which is almost double the error of the more complex
NN and combined models. The MLR model has the highest global error of 36.1%, and its
validation R? score is —1.57, which shows that its predictions are worse than a constant
function that predicts the mean of PV capacity additions, deeming it unsuitable to model
capacity additions. Considering that the error in measuring national PV capacity is at least
5% [49], the combined model’s prediction error of 9.8% provides a reliable estimate of the
actual capacity.

In Table 3.2, the polynomial regression (PR) model reduces the mean absolute error
(MAE) relative to MLR, with values decreasing from 330 to 173. However, the root mean
squared error (RMSE) increases from 675 to 1393. This increase is almost entirely attributable
to a single outlier (China, 2018), which contributes 93.7% of the total squared error. When
this case is excluded, PR’s RMSE decreases substantially from 1393 to 349 and MAE from

173 to 103. Thus, although PR improves typical accuracy as reflected by MAE, its RMSE
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Table 3.2: Comparison between the results of the different models. MLR is the Multiple
Linear Regression model, PR is the Polynomial Regression model, NN is the Neural Network
model, and CM is the Combined Model. The training and test sets used in each model were
identical.

Model Train Val Test Train Train Train Test Test Test Test
R? R? R? MAE RMSE Global MAE MSE RMSE Global
(MW) (MW) Error (MW) (MW?) (MW) Error
(%) (%)

MLR 0.72 —1.57 0.92 342 946 44.8 330 456 x10° 675 36.1
PR 0.96 0.63 0.68 96 343 12.5 173 1.94x 10° 1393 18.9
NN 0.92 0.95 0.98 91 445 11.9 95 1.49x 10° 386 10.3
CM 0.97 0.94 0.98 70 292 9.2 90 1.28 x 10° 358 9.8

is dominated by the outlier, highlighting the disproportionate influence of squared errors on
large deviations.

Appendix 3.7.6 shows the importance of each feature in the combined model, the cor-
relation between the features and the PV capacity additions, and how much variation each
feature explains in the PV capacity additions. The interaction between the previous year’s
PV cumulative capacity and the other features increased the correlation and explained more
of the variation in the PV capacity additions compared to single features, which explains why
these terms are the most important in the model. This also explains why the MLR model
had the lowest training R? (0.72) compared to the other models, which had a much higher
training R? (>0.96).

Figure 3.2 shows the linear and logarithmic actual versus predicted capacity additions for
the combined model. The combined model is highly accurate for capacity additions greater
than 1 GW (global error = 4.5%), has a medium accuracy for capacities between 1 MW and
1 GW (global error = 19.1%), and has a low accuracy for capacities below 1 MW (global
error = 177%).
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Figure 3.2: Linear and logarithmic actual vs. predicted solar photovoltaic capacity additions
for the combined model. Blue points represent the training set and orange points represent
the test set.

Figure 3.3 shows the average cumulative PV capacity per year and the yearly error for
the combined model. The error is highest in earlier years when the average capacity was low,
but it drops significantly once the capacity starts to increase. This suggests that the model
works well once a capacity threshold has been surpassed. This threshold is probably related

to the state of the solar PV market.

3
.
.
.
.

S

.
Yearly Error (%)
3.

>
.
.

Average Cumulative Capacity (MW)
=)
.
3
.
.

2002 2004 2006 2008 2010 2012 2014 2016 2018 2002 2004 2006 2008 2010 2012 2014 2016 2018
Year Year

Figure 3.3: Average cumulative solar photovoltaic capacity and error per year for the com-
bined model. The yearly error was calculated from the entire dataset by dividing the mean
absolute error per year by the average cumulative capacity that year.

Figure 3.4 shows the country error for the combined model. The largest errors are for
countries with low to no PV capacity additions, as shown in Figure 3.5. These countries

increase the model’s global error to about 10%, but as shown in Figure 3.4, countries with
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high capacities have errors that are significantly smaller than 10%. For example, Germany,
the United Kingdom, China, Australia, Greece, and Japan have an error of less than 1%.
Portugal, India, Austria, Denmark, Bulgaria, Belgium, and Switzerland have an error of less
than 5%. The model works well as a forecasting tool in countries with a mature solar PV
market but performs less well in countries with emerging markets.

While the model may exhibit significant errors in certain countries, its appropriateness
depends on the specific application at hand. For instance, when forecasting solar PV capacity
for monitoring PV generation, an error of around 10% or less is typically acceptable. In the
context of ranking countries’ PV deployment based on geographic factors, the observed error
describes deviations from expected capacity additions compared to similar nations, offering
valuable comparative insight. Lastly, when evaluating policy effectiveness using the model,
discrepancies between actual and projected capacities can serve as indicators of policy impact,

given the model’s inherent exclusion of policy inputs.
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Figure 3.4: Country error of the combined model, determined by dividing the mean absolute
error per country by the respective mean cumulative photovoltaic capacity. Countries without
available data are represented in white.
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Figure 3.5: Mean cumulative photovoltaic capacity across various countries from 2001 to
2018. Countries without available data are represented in white.

Figure 3.6 shows the solar PV deployment index (SPVDI) for countries during the period
from 2010 to 2018. Notably, Italy installed more capacity than expected from similar countries
by 10 GW, the United Kingdom by 3.2 GW, Mexico by 2.4 GW, Chile by 1.3 GW, and
Hungary by 0.5 GW. On the other hand, Spain installed less than expected by 9.1 GW,
France by 5.1 GW, Canada by 2.8 GW, China by 1.7 GW, and India by 1.5 GW.
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Figure 3.6: Solar PV deployment index (SPVDI) for different countries during the period from
2010 to 2018. Countries are ranked based on their solar photovoltaic deployment compared to
other countries with similar social, economic, and land-use factors. A positive value indicates
that a country has more capacity than expected, while a negative value means less capacity
than expected from similar countries.
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The top 10 countries in terms of PV deployment based on the SPVDI are Italy, the
United Kingdom, Mexico, Chile, Hungary, Switzerland, Algeria, Argentina, Colombia, and
Morocco. In contrast, the bottom 10 countries are Spain, France, Canada, China, India, In-
donesia, Egypt, Belgium, Mongolia, and Poland. This does not necessarily imply that these
countries are over- or underdeploying solar PV, as the index does not consider each country’s
individual targets. Nonetheless, the SPVDI offers valuable insights into a country’s perfor-
mance relative to others with similar geographic characteristics. Improving the index could
involve integrating each nation’s capacity targets; however, such data are often lacking for
many countries and, when available, may not specifically pertain to solar PV but encompass
renewable energy overall.

Figure 3.7 shows the actual versus estimated PV capacity additions for Italy, the United
Kingdom, Mexico, and Spain from 2001 to 2018. Prior to 2008 in Italy, the actual capacity
additions consistently fell short of expectations despite the implementation of the “Photo-
voltaic Roofs” program, which ran between 2001 and 2003 [217]. This initiative, offering up
to 75% of installation costs for systems ranging from 1 kW to 20 kW connected to the distri-
bution network [218], led to a deficit of 0.9 GW of installed capacity compared to what was
expected. Feed-in tariff programs, “Conto Energia” (CE), were introduced in 2005, spanning
five phases. The first CE, which ran between 2005 and 2006, achieved its 0.5 GW target
[219]. Despite reaching the target, this phase led to a deficit of 0.7 GW compared to what
was expected. The second CE was planned to last between 2007 and 2010, but it was ex-
tended to include PV systems installed before 31 December 2010 and operating before 30
June 2011, which led to a surge of investment to benefit from the feed-in tariffs [219]. The
policy continued through the third CE, which entered into force in 2010 and was for PV
systems commissioned between 1 January 2011 and 31 May 2011 [219]. The second and third
CE programs were successful as they led to a surplus of 9.5 GW in installed capacity. The
fourth CE program witnessed a significant reduction in tariffs on a monthly basis and expired
in August 2012 [219]. The fourth CE was successful despite the significant reduction in rates

as capacity additions were higher than expected by 10.3 GW. The fifth CE was introduced
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Figure 3.7: Actual versus estimated solar photovoltaic capacity additions for Italy, the United
Kingdom, Mexico, and Spain for years between 2001 and 2018. Blue points represent actual
capacity, while orange points represent estimated capacity.

in 2012 and ended in 2013, during which capacity additions were higher than expected by
2.6 GW. Overall, the CE programs led to 11.3 GW of capacity additions above what was
expected. Following the conclusion of the CE scheme, a new tax credit system was imple-
mented in 2013 [219]. However, capacity additions in the subsequent years dropped below
expectations by 1.8 GW.

In the United Kingdom, there are two main policies when it comes to solar PV: renew-
able obligation certificates (ROCs) for systems above 50 kW of rated power and feed-in tariffs
(FIT) for systems below 5 MW of rated power [220, 221]. ROCs were introduced in 2002 for
England, Wales, and Scotland and in 2005 in Northern Ireland [162]. Despite the implemen-
tation of the scheme, capacity additions remained lower than expected until 2011, when the
government declared that it would extend the scheme in England and Wales from 2027 to
2037 and would change it from a live-traded scheme to a fixed price certificate (FPC)-based
scheme [162]. This increased capacity additions by 4.7 GW compared to the expected level
until 2017 when the closure of the scheme [161] led to fewer additions than expected by 1.1

GW in the following year. The FIT scheme was launched in 2010 and ended in 2019. How-
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ever, in 2016, a cap was applied to the number of new installations that could be accredited
[220]. This led to fewer installations than expected by 1.8 GW in the next two years. Prior to
this, the FIT scheme increased capacity additions by 5 GW compared to what was expected.
The actual additions are very close to the expected additions in Mexico up until the
year 2015, after which capacity additions increased. This coincides with the introduction of
long-term energy auctions. These auctions ran three times in 2015, 2016, and 2017. During
these auctions, retailers would announce their requirement of capacity, consumption, or clean
energy certificates, and generators would bid for them separately or in packages [222]. This
led to more capacity than expected by 0.5 GW between 2015 and 2017. In 2018, major power
consumers were required to buy 5% of electricity from power purchase agreements (PPAs)
with clean power suppliers or through purchasing clean energy certificates [223], and the 15%
customs duty on solar PV module imports which was introduced in 2015 was eliminated
[224]. This led to more capacity additions by 1.7 GW compared to what was expected.
Spain introduced FITs in 1997. Generators could choose between fixed FITs that were
adjusted annually or fixed premiums paid on top of the electricity market price. This was
amended in 2004 so that FITs were set as a percentage of the electricity price and revised every
4 years [85], and were guaranteed to be paid for the lifetime of the solar power plants [225].
These policies had no significant impact on deployment, as capacity remained less than
expected by 0.5 GW from 2001 to 2006. The FIT policy was revised again in 2007 so that
FIT rates were fixed and updated every 4 years starting in 2010, or once 85% of the capacity
target was reached, which ended up happening in the same year. This meant the government
was going to lower the FIT rate, which led to a surge of investment to take advantage of the
current FIT before the new tariff was implemented. During this period, capacity additions
blew up and were higher than expected by 2.8 GW. The government responded by introducing
policies that aimed to decrease deployment such as annual capacity quotas, the lifetime of
FIT payments was reduced to 25 years for new plants, and FIT rates were reduced for small-
and medium-sized solar PV. Further policies were introduced in 2010 such as limiting running

hours eligible for FIT payments, reducing the FIT lifetime to 25 years for all existing plants,
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and reducing FIT rates further. These measures were not enough, as the government had to
implement additional measures in 2012 such as introducing a moratorium on support for new
systems and revising FIT rates [85]. Finally, a sun tax was introduced in 2014 which aimed
to cover the cost of balancing the grid [226]. All of these measures reduced additions to less

than expected by 10.1 GW in the period between 2009 and 2018.

3.6 Conclusions

The previous year’s cumulative PV capacity, population, agricultural land area, tertiary
education, and electricity net consumption are identified as key features in explaining solar
PV deployment. Using these features, the model achieves a global error of less than 10%.
With country errors also below 10% in many cases, the model serves as a reliable forecasting
tool across various nations.

Furthermore, the solar PV deployment index provides governments and policy makers
with a benchmark for evaluating a country’s performance relative to others with similar
social, economic, and land-use characteristics. This index could aid in setting feasible solar
PV targets. Additionally, the model offers a means to assess the efficacy of solar PV policies
by comparing actual deployment against expected figures. Such analysis can inform policy
refinement and enhance the likelihood of achieving national targets.

Future research should concentrate on enhancing model accuracy for countries with low
capacity additions, extending its forecasting utility to these regions. Lastly, investigating the
correlation between geographic factors and solar PV capacity types (residential, commercial,

utility scale) presents an intriguing avenue for future exploration.

Data Availability

The dataset used for the analysis is publicly available and has been compiled from various
open-source data sources. The compiled dataset, along with the code used for analysis, is

accessible at: https://doi.org/10.5281/zenodo. 17143882
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3.7 Appendix

3.7.1 Data Availability for Correlation Analysis
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Table 3.3: Number of data points used in the analysis presented in Table 3.1 to examine the

correlation between each factor and solar PV capacity additions.

Feature N
Last year’s PV cumulative capacity (MW) 4320
Solar PV module cost (2019 USD per W) 4320
Land area (km?) 3948
Cloud coverage (%) 3948
Daylight hours (min/day) 3948
Precipitation (mm/h) 3948
Snowfall (mm/h) 3948
Temperature (°C) 3948
Population 3939
Forest area (km?) 3939
Average theoretical potential GHI (kWh/m?/day) 3864
GDP (current USD) 3857
GNI (current USD) 3765
KOFGI 3718
Agriculture, forestry, and fishing, value added (current USD) 3686
Labour force 3675
Total unemployment 3675
Access to electricity (% of population) 3655
Industry (including construction), value added (current USD) 3646
Manufacturing, value added (current USD) 3556
Agricultural land (km?) 3549
Nuclear electricity net generation (billion kWh) 3538
Duration of compulsory education (years) 3444
Electricity net generation (billion kWh) 3433
Fossil fuels electricity net generation (billion kWh) 3412
Electricity net consumption (billion kWh) 3400
Urban land area (km?) 3381
Rural land area (km?) 3381
Primary education 3028
Secondary education 2601
Tertiary education 2367
Research and development expenditure (% of GDP) 1603
Gini index (World Bank estimate) 1295
Public investments in solar energy (2019 million USD) 1001
Investment in energy with private participation (current USD) 754
Ease of doing business rank 178
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3.7.2 Summary of PCA Cluster Characteristics

Table 3.4: Summary of the characteristics of principal component analysis (PCA) clusters,
including the number of variables within each cluster, the coefficient of determination (R?)
obtained when fitting cluster variables into a linear model with PV capacity additions, and
the corresponding number of data points used in the fitting process.

Cluster Number of Features within Each Cluster R? N
1 10 0.769 2257
2 6 0.211 21
3 5 0.222 570
4 7 0.463 1763
5 2 0.002 3760
6 4 0.163 327
7 2 0.010 3125

3.7.3 Descriptive Statistics of Model Features

Table 3.5: Descriptive statistics of the features used in the models. This table shows the
count, mean, standard deviation, and distribution quartiles of the selected features.

Added PV Last Population Agricultural Tertiary Electricity
Capacity Year’s PV Land (km?) Education Net
(MW) Cumulative Consumption
Capacity (Billion
(MW) KkWh)
count 1.84 x 10® 1.84 x 10° 1.84 x 10° 1.84 x 10° 1.84 x 10° 1.84 x 10°
mean 1.81 x 102 6.12 x 102 4.90 x 107 2.76 x 10° 1.39 x 107 9.82 x 101
std 1.94 x 10® 4.88 x 10° 1.79 x 108 6.63 x 10° 4.94 x 107 4.08 x 102
min —5.60 x 10! 0 4.39 x 10* 6.60 x 10° 5.94 x 102 3.00 x 1072
25% 0 0 3.03 x 10° 1.51 x 10* 6.00 x 10° 2.85 x 10°
50% 1.97 x 107! 1.13 x 10° 9.79 x 10° 5.05 x 10% 2.40 x 108 1.29 x 10"
75% 4.47 x 10° 1.50 x 10! 2.86 x 107 2.63 x 10° 8.16 x 10° 6.17 x 101

max 5.30 x 10* 1.31 x 10° 1.40 x 10° 5.29 x 108 7.10 x 108 6.45 x 103
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3.7.4 Pearson Correlation Matrix of Model Input Features

Table 3.6: Pearson correlation coefficients among selected variables used as inputs for the
models.

Added Last Population Agricultural Tertiary Electricity
Capacity Year’s Land Education Net
(MW) Cumulative (km?) Consumption
Capacity (Billion
(MW) kWh)

Added 1.00 0.79 0.42 0.39 0.70 0.72
Capacity
(MW)
Last Year’s 0.79 1.00 0.30 0.27 0.54 0.58
Cumulative
Capacity
(MW)
Population 0.42 0.30 1.00 0.74 0.88 0.77
Agricultural 0.39 0.27 0.75 1.00 0.73 0.75
Land (km?)
Tertiary 0.70 0.54 0.88 0.73 1.00 0.92
Education
Electricity 0.72 0.58 0.77 0.75 0.92 1.00
Net
Consumption
(Billion
kWh)

3.7.5 Feature Selection: Stepwise Regression

Feature selection was performed using the stepwise regression in JMP Student Edition 18
software. Prior to analysis, predictors with fewer than 2000 non-missing observations were
excluded, leaving 32 candidate variables. Both forward selection and backward elimination
were applied, with model fit evaluated using the corrected Akaike Information Criterion
(AICc) and the Bayesian Information Criterion (BIC).

The corrected Akaike Information Criterion (AICc) was used instead of AIC because
the ratio of sample size to parameters was relatively modest (n/k ~ 33), where AICc is
recommended [227].

Backward elimination was emphasized because the sample size (n = 1056) was large
relative to the number of predictors, allowing the full model to be estimated reliably. AICc

was used to yield feature sets optimized for predictive performance, while BIC was used to
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return more parsimonious subsets emphasizing interpretability. Forward selection was also
tested to confirm whether results were robust to the choice of search direction.

The fit statistics for the models identified by each procedure are reported in Table 3.7.
The AICc-based models retained 21-22 predictors, achieved R? ~ 0.59, and produced RMSE
values of ~ 412 MW. The BIC-based models retained fewer predictors (13-18), consistent with
BIC’s stronger penalty on model complexity, but explained slightly less variance (R? = 0.57-
0.59) with marginally higher RMSE.

The predictors retained in each model are listed in Table 3.8. Several variables were
consistently selected across criteria and directions, including last year’s PV cumulative ca-
pacity, urban land area, forest area, GDP, GNI, primary and tertiary education, labor force,
industry value added, and fossil fuel electricity generation. However, the exact subsets varied
depending on the selection criterion and direction.

Overall, stepwise regression produced models with 13-22 predictors and R? ~ 0.57-0.59.
By comparison, the proposed feature selection method in Appendix 3.4.2 achieved higher

explanatory power (R? = 0.79) using only five predictors.

Table 3.7: Fit statistics for stepwise regression models under different criteria and directions.
SSE is the sum of squared errors, DFE is the error degrees of freedom, RMSE is the root
mean square error, R? is the coefficient of determination, Adj. R? is the adjusted coefficient
of determination, Cp is Mallows’ Cp statistic, p is the number of parameters (including the
intercept), AICc is the corrected Akaike’s Information Criterion, and BIC is the Bayesian
Information Criterion.

Criterion Direction SSE DFE RMSE R? Adj. Cp P AICc BIC
(MW?) (MW) R?

AICc Backward 175574460 1035 411.87  0.5908 0.5829 17.55 21  15736.3 15844.5

AlICc Forward 175387153 1034 411.85 0.5912 0.5829 18.45 22  15737.3 15850.3

BIC Backward 177159807 1038 413.13  0.5871 0.5803 20.86 18 15739.6 15833.1

BIC Forward 184047714 1042 420.27  0.5711 0.5657 53.33 13  15771.6 15845.5
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Table 3.8: Predictors selected by stepwise regression.

Criterion

Direction

Selected Features

AlICc

AICc

BIC

BIC

Backward

Forward

Backward

Forward

Year; Last year’s PV cumulative capacity (MW); Population; Urban land
area (km?); Agricultural land (km?); Forest area (km?); KOFGI; GDP
(current US$); GNI (current US$); Primary education; Secondary education;
Tertiary education; Labor force; Total unemployment; Agriculture, forestry,
and fishing, value added (current US$); Industry (including construction),
value added (current USS$); Electricity net generation (billion kWh); Fossil
fuels electricity net generation (billion kWh); Precipitation; Snowfall (mm/h)
Year; Last year’s PV cumulative capacity (MW); Population; Urban land
area (km?); Agricultural land (km?); Forest area (km?); KOFGI; GDP
(current US$); GNI (current USS$); Primary education; Secondary education;
Tertiary education; Labor force; Total unemployment; Agriculture, forestry,
and fishing, value added (current US$); Industry (including construction),
value added (current USS$); Electricity net generation (billion kWh); Nuclear
electricity net generation (billion kWh); Fossil fuels electricity net generation
(billion kWh); Precipitation; Snowfall (mm/h)

Last year’s PV cumulative capacity (MW); Population; Urban land area
(km?); Agricultural land (km?); Forest area (km?); KOFGI; GDP (current
USS$); GNI (current US$); Primary education; Secondary education; Tertiary
education; Labor force; Agriculture, forestry, and fishing, value added
(current USS$); Industry (including construction), value added (current US$);
Electricity net generation (billion kWh); Fossil fuels electricity net generation
(billion kWh); Snowfall (mm/h)

Last year’s PV cumulative capacity (MW); Urban land area (km?); Forest
area (km?); GDP (current US$); GNI (current US$); Primary education;
Tertiary education; Labor force; Total unemployment; Industry (including
construction), value added (current US$); Nuclear electricity net generation
(billion kWh); Fossil fuels electricity net generation (billion kWh);

Precipitation
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3.7.6 Feature Importance, Correlation, and Variance Explained by Com-
bined Model Features
Table 3.9: Feature importance, correlation, and variation explained by the combined model

features. The main effect measures the contribution of the feature alone, while the total effect
measures the contribution of the feature alone and in combination with other features.

Correlation
Feature Main Effect Total Effect with Capacity R?
Additions
Last year’s PV cumulative capacity (MW) * 0.13 0.72 0.95 0.90
agricultural land (km?)
Last year’s PV cumulative capacity (MW)?2 0.04 0.42 0.81 0.65
Last year’s PV cumulative capacity (MW) * 0.06 0.26 0.97 0.93
population
Last year’s PV cumulative capacity (MW) * 0.05 0.23 0.96 0.92
electricity net consumption (billion kWh)
Agricultural land (km?) * electricity net 0.10 0.21 0.65 0.42
consumption (billion kWh)
Last year’s PV cumulative capacity (MW) * 0.04 0.20 0.96 0.93
tertiary education
Electricity net consumption (billion KWh)? 0.03 0.18 0.77 0.60
Population * electricity net consumption 0.05 0.18 0.67 0.45
(billion kWh)
Agricultural land (km?)? 0.09 0.09 0.36 0.19
Population * agricultural land (km?) 0.06 0.08 0.46 0.22
Agricultural land (km?) * tertiary education 0.04 0.06 0.71 0.51
Electricity net consumption (billion kWh) 0.05 0.05 0.67 0.45
Population? 0.05 0.05 0.43 0.18
Population 0.05 0.05 0.40 0.16
Agricultural land (km?) 0.04 0.04 0.36 0.13
Tertiary education?® 0.04 0.04 0.85 0.71
Tertiary education * electricity net 0.02 0.02 0.83 0.69
consumption (billion kWh)
Population * tertiary education 0.02 0.02 0.69 0.47
Tertiary education 0.02 0.02 0.67 0.45

Last year’s PV cumulative capacity (MW) 0.02 0.02 0.70 0.48
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3.7.7 MLR Model

The multiple linear regression (MLR) model used to estimate solar PV capacity additions is
summarised in Table 3.10. The predictors include previous year’s cumulative PV capacity
(PV), population (POP), agricultural land area (AL), tertiary education (ED), and electricity
net consumption (EC).

Table 3.10: Parameter estimates for the MLR model.

Predictor Estimate Std. Error t-ratio p-value
Intercept -124.87 27.17 -4.60 < .0001
PV 0.145 0.0075 19.36 < .0001
POP -6.21x107° 3.63x10~7 -17.08 < .0001
AL -0.000279 0.000065 -4.27 < .0001
ED 3.86x107° 2.03x1076 19.02 < .0001
EC 0.659 0.179 3.69 0.0002
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3.7.8 Polynomial Model
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The polynomial model for estimating solar PV capacity additions is summarised in Table 3.11.

The predictors include previous year’s cumulative PV capacity (PV), population (POP),

agricultural land area (AL), tertiary education (ED), and electricity net consumption (EC).

Table 3.11: Parameter estimates for the polynomial model.

Predictor Estimate Std. Error t-ratio p-value
Intercept -4.465 12.09 -0.37 0.7120
PV 0.1318 0.0102 12.87 < .0001
POP 7.55%x10~7 4.67x10~7 1.62 0.1062
AL -0.000266 0.0000635 -4.19 < .0001
ED -2.25%1076 2.16x1076 -1.04 0.2984
EC 1.251 0.214 5.85 < .0001
pPVv? -5.44x10~6 3.39x10~7 -16.07 < .0001
PV x POP 4.81x10710 9.03x10~ 11 5.32 < .0001
PV x AL -8.92x108 1.21x108 -7.40 < .0001
PV x ED -1.10x107* 4.42x10710 -2.50 0.0125
PV x EC 0.000267 0.0000300 8.89 < .0001
POP? -1.10x10715 8.30x 10716 -1.33 0.1838
POP x AL -6.44x10713 2.39x1013 -2.70 0.0070
POP x ED -2.30x 10714 9.25x1071° -2.49 0.0131
POP x EC 9.05x1079 1.44x107? 6.29 < .0001
AL2 3.14x10~10 3.62x10~ 11 8.68 < .0001
AL x ED 7.83x10712 1.99x10712 3.94 < .0001
AL x EC -2.89% 1076 3.78x10~7 -7.63 < .0001
ED? 6.12x10714 2.82x10714 2.17 0.0298
ED x EC -2.22%x1078 4.43x107? -5.01 < .0001
EC? 0.00169 0.000260 6.52 < .0001




Chapter 4

European Model

4.1 Abstract

The rapid expansion of solar photovoltaic (PV) technology has established it as a leading
contributor to global renewable energy capacity. However, integrating solar PV into existing
power grids presents significant challenges, primarily due to the variable nature of solar
energy generation and the lack of accurate and complete data on installed PV capacity at the
regional level. This study addresses this critical gap in capacity measurement by analysing
the factors influencing regional solar PV deployment and developing models to estimate
installed PV capacity across 333 regions of 36 European countries. We employed Pearson
and Spearman correlation analyses to identify key geographic factors such as agricultural
land area, solar irradiance and population, related to solar PV deployment. This informed
the development of extreme gradient boosted parallel tree algorithm (XGBoost) models for
estimating regional PV capacity. The models achieve a root mean squared capacity error
(RMSE) of less than 272 MW, and explain more than 93% of the variation across 150 NUTS
2 EU regions. The models serve three primary purposes: disaggregating national PV capacity
into regional figures, benchmarking inter- and intra-regional capacities, and forecasting future
PV capacity distribution. The models presented in this study offer a comprehensive tool for

policymakers and grid operators, enabling the design of more effective policy interventions
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and enhanced solar PV monitoring services. This research contributes to more sustainable

and efficient energy planning in Europe.

4.2 Introduction

Solar photovoltaic (PV) technology has emerged as one of the most cost-effective sources
of electricity [41], leading to its widespread adoption globally. In 2023, solar PV continued
to be the leading force behind global renewable capacity expansion, contributing to 65% of
the growth [228]. Solar PV offers significant advantages in the energy transition: it is cost-
effective, scalable, widely available, and has a low environmental footprint. However, it also
presents operational challenges due to its strong seasonal dependence, day/night production
variability, and the difficulty of short-term forecasting. These characteristics make it essential
to incorporate PV into more granular and spatially resolved energy system models that can
account for its variability and location-dependent performance.

As solar PV capacity continues to expand, managing and balancing the power grid be-
comes increasingly challenging due to the variable and intermittent nature of solar energy
[62]. Historically, electricity system operators maintained grid stability by dispatching a lim-
ited number of large, controllable fossil fuel plants to meet predictable demand. However, the
integration of weather-dependent renewable energy sources, which are often embedded within
distribution networks and thus not directly visible to transmission system operators, compli-
cates this traditional model [49]. Such embedded generation often manifests as a reduction
in apparent demand, thereby introducing substantial uncertainties in power flow forecasts
[61], which necessitates the development of solar PV monitoring services.

Solar PV monitoring services estimate national or regional generation as the product of
yield and installed capacity [49]. Solar PV yield is defined as the output of PV systems
normalized to the total nominal capacity of the entire fleet, and is measured in units of
megawatts (MW) per megawatt peak (MWp). The simplest method for calculating yield
involves using PV generation data from a sample of PV systems, typically referred to as

reference systems, which are then statistically upscaled to estimate regional or national yield
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[63, 64, 65, 66]. More advanced methods incorporate meteorological data into statistical or
physical models to estimate yield, which is then similarly upscaled to provide regional or
national estimates [64, 67, 68, 69, 70, 71]. Other methods exist for estimating regional or
national PV generation that do not rely on upscaling [61, 72, 73]; however, these are less
commonly used due to limitations such as the need for historical measurement data from
every site, typically over a limited time period, to train the models, or the requirement of
module orientation angles for a large number of PV systems. Regardless of the method, all
approaches require knowledge of the installed capacity.

Despite the critical importance of regional capacity data, many European countries lack
accurate records, hindering efficient grid management and policy-making. In 2023, 56% of
Furopean regions lacked regional PV capacity data, as shown in Appendix 4.6.5, highlighting
the scale of this data availability problem. While countries such as the United Kingdom,
Italy, Spain, Belgium, Germany, and France maintain data on regional solar PV capacity
[44, 50, 51, 52, 53, 55|, a portion of the national capacity in these countries often remains
unallocated to specific geographic locations. Moreover, even where capacity data is available,
inaccuracies can lead to significant errors in estimating regional PV output [49].

Regional PV capacity data is not only vital for real-time grid operations but also for
long-term planning and policy-making. The expansion of large-scale PV projects can lead
to conflicts over land use, particularly where agricultural land is repurposed for energy pro-
duction, resulting in competition between farming activities and solar energy generation [92,
93, 94, 95, 96, 97]. The lack of comprehensive policies to address these conflicts can foster
distrust and hinder the deployment of solar PVs. For example, in Brandenburg, Germany,
the lack of a comprehensive legal framework to manage land use conflicts related to solar
energy installations has led to land grabbing by solar investors, resulting in serious disputes
with farmers and a lack of trust in large-scale PV projects [96].

The implementation of policies to support solar PV deployment targets without taking
into account the complex relationship between geographic factors (e.g., social, economic,

climatic, and land use) and PV deployment can result in unintended outcomes, such as
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over or under deployment, and potentially hinder the achievement of targets. Moreover,
assessing a region’s solar PV progress based on self-defined targets may not accurately reflect
its true deployment potential, as it overlooks the intricate interaction between deployment
and geographical factors.

The development of models that estimate regional PV capacity based on geographical
factors could significantly enhance solar PV monitoring services, help mitigate land use con-
flicts by anticipating potential hotspots, and enable more informed policy interventions. This
study addresses a critical and often overlooked problem: the lack of accurate, complete, and
spatially resolved data on installed solar PV capacity. We do not attempt to model peak gen-
eration or total energy production of the EU PV fleet. Instead, our focus is on the estimation
of installed capacity at the regional level, a foundational input for both real-time genera-
tion monitoring and long-term planning models. Accurately quantifying where capacity is
installed is essential for reliable yield modelling, power flow forecasting, and evidence-based
policy design. The objective of this study is to investigate the geographic factors that influ-
ence regional solar PV deployment and to develop predictive models that estimate installed
PV capacity across 36 European countries. The models are designed to serve three key pur-
poses: first, as a disaggregation tool for breaking down national PV capacity to improve
generation monitoring; second, as a benchmarking tool for comparing regions with similar
characteristics; and third, as a forecasting tool to support effective long-term planning and

policy-making for PV capacity.

4.3 Methodology

We previously reviewed and analysed the relationship between social, economic, climatic,
and land use factors and national solar PV deployment, concluding that these variables can
effectively model national PV capacity [229]. To identify factors associated with regional
solar PV deployment, we adopt a similar methodology, analysing the relationships between
these geographical factors and solar PV deployment at the regional level across 36 European

countries. Given the potential non-linear relationships between these factors and PV capacity,
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we analyse these relationships using both Pearson and Spearman correlation coefficients.
Additionally, we calculate the coefficient of determination (R?) by fitting linear regression

models between each feature and solar PV capacity.

4.3.1 Data and Data Processing

Data for our analysis were obtained from various publicly accessible sources. Climate vari-
ables such as global horizontal irradiance (GHI), wind speed, total precipitation, sea-level
pressure, and 2-meter air temperature were sourced from the Copernicus Climate Change
Service [230]. Land use data came from the CORINE Land Cover 2018 dataset [231]. So-
cioeconomic indicators, including population, gross domestic product (GDP), employment,
and age, were retrieved from Eurostat [232]. Solar PV capacity data were gathered from
grid operators, government agencies, research institutions, and the International Renewable
Energy Agency (IRENA) [233].

Our analysis is framed within the NUTS 2021 (Nomenclature of Territorial Units for
Statistics) classification, a hierarchical system used to divide the European Union’s territory
for statistical purposes. NUTS regions are classified into three levels, each defined by specific
population thresholds to ensure statistical consistency [234]. For this study, we focused on
NUTS 2 regions, with populations ranging between 800,000 and 3 million, as data at this
level are widely available across Europe. All data were processed according to the NUTS 2
regional classification and aggregated annually.

The CORINE land cover dataset provides a three-tier hierarchical classification system.
Level 3, with its 44 thematic classes, offers detailed analysis but has a thematic accuracy of
over 85% [235], potentially leading to some misclassification. Higher levels, such as Levels
1 and 2, have fewer categories, which generally increases thematic accuracy [236, 237, 238]
and reduces misclassification risk. However, these broader classifications provide less detail
on specific land use types, which is crucial for this study. To address this, we incorporate all
three levels into the analysis: Level 3 provides detailed insights into specific land cover types,

while Levels 1 and 2 offer a broader context to help mitigate misclassification risks.
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For regional PV capacity data, we focused on countries where capacity information was
available, such as the United Kingdom [44], Italy [50], Spain [51], Belgium [52], Germany
[53], and France [55]. In these countries, capacity data were processed at both the NUTS 2
(regional) and NUTS 0 (national) levels, with regional capacity at the NUTS 2 level illustrated
in Figure 4.1. For countries without regional data, national capacity figures were obtained
from IRENA [233].

We constructed two primary datasets: one containing absolute values and another where
values were normalized to either the national total or national average, depending on the
variable. The absolute dataset is used to model capacity in megawatts (MW), whereas the
normalized dataset is used to model the regional share of capacity (as a percentage of the
national total). This dual dataset approach facilitates a more detailed analysis by accounting
for both the absolute contributions of various factors and their relative importance at a
national level. The datasets cover 36 European countries, 333 regions, and span the years
2010 to 2023.

In the normalized dataset, climate data were normalized relative to national averages
to highlight significant regional climatic variations. Socioeconomic factors were normalized
based on the variable: disposable income per inhabitant and median age were normalized
using national means, while aggregate metrics—such as population, disposable income, em-
ployment, GDP, gross domestic expenditure on R&D (GERD), and unemployment—were
normalized by national totals. Finally, regional solar PV capacities were normalized relative

to the national total capacity.

4.3.2 Feature Selection

The feature selection process adhered to the DAMA data quality framework [239], which
considers key aspects such as accuracy, completeness, uniqueness, consistency, timeliness,
and validity. Features that were complete for the majority of countries and consistent over
time were prioritized over those that were only available for certain countries or specific

years. Selection was based on two main criteria: correlation with PV capacity and data
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Figure 4.1: Actual regional photovoltaic capacity for 150 NUTS 2 regions in 2023. The
capacity data is sourced from the United Kingdom, Italy, Spain, Belgium, Germany, and
France.



CHAPTER 4. EUROPEAN MODEL 104

availability. To account for both linear and non-linear associations, we calculated the aver-
age of Pearson and Spearman correlation coefficients. These two metrics capture different
types of relationships - linear in the case of Pearson, and monotonic for Spearman - and their
combined interpretation can uncover hidden relationships. It is recommended to calculate
both Pearson and Spearman correlations when the data includes multiple distributions [240].
Rovetta [240] also highlights a peculiar statistical phenomenon in which monotonic correla-
tions emerge only above certain thresholds. In such cases, Pearson’s coefficient may actually
outperform Spearman’s, despite the data being non-normally distributed. This is because
Pearson’s method gives more weight to extreme values, which may be especially informative
in identifying high capacity regions. Averaging the two coefficients thus provides a composite
measure that balances the magnitude sensitivity of Pearson with the distributional robustness
of Spearman, enhancing the overall reliability of the feature selection process. To determine
the optimal configuration, we tested a range of correlation thresholds from 0.2 to 0.5, with a

data availability threshold set at 90%.

4.3.3 Model Training

We selected extreme gradient boosted parallel tree algorithm (XGBoost) for our modelling
approach due to several key advantages. Firstly, decision tree-based models such as XGBoost
are nonparametric [241]. This is crucial for our study as our data is often not normally
distributed, making XGBoost a better fit compared to parametric models such as linear
regression. Secondly, XGBoost performs exceptionally well with tabular data [242], which
matches the structure of our dataset.

Two XGBoost models were developed: one using absolute data to predict regional capacity
(in MW) and another using normalized data to predict each region’s share of the national
total (in percentage terms). Data were grouped by country and year and modelled using three
distinct validation schemes. In the first approach (mixed hold-out), the data were grouped
by country and year and then partitioned, with 80% used for training and 20% for testing.

In the second approach (hold-out country), the data were grouped by country, and the model



CHAPTER 4. EUROPEAN MODEL 105

was trained on all countries except one, which was held out for testing. In the third approach
(hold-out year), the model was trained on data for the years 2010-2020 and tested on 2021—
2023. These approaches jointly assess both temporal and spatial generalisation performance.
The mixed hold-out configuration was subsequently used for model applications presented in
this study.

Data that are right-skewed, contain zeros, and are non-negative can be effectively modelled
using the Tweedie distribution [243, 244]. Since regional solar PV capacity exhibits these
characteristics, the Tweedie objective was adopted for the absolute XGBoost model. General
linear models (GLMSs) employing the Tweedie distribution have shown strong performance for
similar types of data, such as rainfall [245], health costs [244], and insurance claims [246]. To
further verify this choice, we compare the XGBoost model trained with the Tweedie objective
to a standard model using the Gaussian objective under the mixed hold-out configuration,
and present results demonstrating the improvement in performance.

As a benchmark, we also trained a multiple linear regression (MLR) model on the same
set of features used in XGBoost. The MLR was implemented in scikit-learn [214], which
provides a suite of algorithms for supervised and unsupervised learning. The model is for-

mulated as:

p
y=PF0+> Bimite, (4.1)

i=1
where y is the dependent variable, By the intercept, [; the estimated coefficients, z; the
predictors for ¢ = 1,...,p, and € the error term representing unexplained variation. Parame-
ters were estimated using Ordinary Least Squares (OLS). The MLR was implemented as an
unscaled model, meaning regional predictions were used directly without adjusting them to
match national totals. Scaling requires complete regional coverage for each year, which was
unavailable in this dataset, and therefore could not be applied.

We quantify feature importance using Shapley Additive Explanations (SHAP), a unified
framework for interpreting model predictions based on principles from cooperative game
theory. In this framework, each feature is treated as a “player” that contributes to the

model’s overall prediction. The Shapley value represents each feature’s average marginal
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contribution to the prediction when considered across all possible combinations of the other
features. This ensures that every feature’s influence is fairly assessed, regardless of the order
in which it is added to the model.

The SHAP value for a given feature and observation therefore measures how much that
feature increases or decreases the prediction relative to a baseline (the average model output).
By design, SHAP attributions are additive: the sum of all feature contributions equals the
difference between the prediction and the baseline [247, 248].

We compute SHAP values for each observation (local explanations) and summarise overall
feature importance as the mean absolute SHAP value across the dataset. For tree ensembles
(our XGBoost models), we use SHAP’s TreeExplainer (TreeSHAP), which provides addi-
tive, locally accurate attributions efficiently for tree-based models. Reported SHAP units
correspond to the model output: percentage points for the normalized model and megawatts
(MW) for the absolute model. To express each feature’s relative importance, we convert

mean absolute SHAP values into percentage contributions using Equation (4.2):

ISHAP;|

Contribution; = > [SHAP;|

% 100 (4.2)

where [SHAP;| is the mean absolute SHAP value for feature ¢, and n is the total number
of features.

To ensure the model’s predictions align with reality and are applicable to countries with
unknown regional capacity values, we scaled the predicted regional capacity so it sums to the
national capacity, and then compared the scaled values to actual values. This allows us to
confidently apply this methodology to countries where regional capacity is unknown.

To evaluate the model’s performance, we used several error metrics, including Root Mean
Squared Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE). We avoid using MAPE when evaluating regional capac-
ity percentage because it can yield large values due to data representation in percentages.

Instead, MAPE is only applied to evaluate national capacity.



CHAPTER 4. EUROPEAN MODEL 107

4.3.4 Model Applications

The models are applied in several ways: to disaggregate national capacity into regional
capacity, to allocate capacity with an unknown location to a geographical region, and to serve
as benchmarking tools. A Solar PV Deployment Index (SPVDI) was developed previously to
assess national capacity in a global context [229]. In this study, we adapt the same concept
to evaluate regional PV capacity within a European context.

The SPVDI serves as a benchmarking tool by comparing solar PV deployment in a region
relative to others with similar social, economic, climatic, and land use characteristics. It is
calculated as shown in Equation (4.3), where tstart and tenq denote the first and last years of
the analysis period, respectively. The index sums the difference between actual and predicted
capacity for region i over the specified time range. A positive SPVDI value indicates that a
region has deployed more capacity than expected, while a negative value reflects lower-than-
expected deployment.

The SPVDI allows for performance comparisons of regions over multiple years and time
periods and serves as a tool to rank regions based on their solar PV deployment. When
applied to the absolute model, the SPVDI compares solar PV deployment in a region relative
to other regions across Europe. In contrast, when applied to the normalized model, the
SPVDI evaluates solar PV deployment within a single country, highlighting regions that
either exceed or fall short of deployment expectations in a national context.

lend

SPVDI; = Z (Actual Capacity; ; — Predicted Capacityiyj) (4.3)

j:tstart
4.4 Results and Discussion

4.4.1 Feature Analysis and Selection

Table 4.1 and Table 4.2 present the top 15 features with the highest average correlation to
regional solar photovoltaic capacity in absolute and normalized terms, respectively. The full

analysis, including all features along with data availability and relevant literature, is provided
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in Appendix 4.6.1. In the absolute data, national PV capacity has the strongest correlation
with regional PV capacity. Regions characterized by extensive artificial surfaces, large areas of
arable land, coniferous forests, and a higher median age generally show higher PV capacity. In
the normalized data, regions with higher percentages of land area, agricultural areas, artificial
surfaces, population, disposable income, and employment—each calculated as a proportion
of the national total—tend to hold a larger share of national PV capacity.

The strong correlation of artificial surfaces with PV capacity could be explained by the
inclusion of energy production and distribution facilities, including solar installations, within
this category [231]. These facilities could serve as a proxy for grid connection points, which
are essential for installing grid-connected solar PV systems. Regions with greater access to
such infrastructure are more likely to support large-scale solar installations. Additionally,
the presence of large-scale or industrial agricultural facilities, also categorized under artificial
surfaces, may further contribute to the high correlation with PV capacity observed in the
results. The strong correlation between agricultural land and PV capacity is expected, as
commercial, industrial, and utility-scale solar PV installations are predominantly sited on

agricultural land, particularly arable land [249, 119].
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Table 4.1: Top 15 features with the highest correlation to regional solar photovoltaic capacity
in absolute terms. Displayed are the coefficient of determination (R?), Pearson correlation,
Spearman correlation, and the average of the two correlations. Land cover features are
preceded by their CORINE Land Cover (CLC) classification codes (e.g., 1.2.1 for industrial
or commercial units).

Feature R? Pearson Spearman Corr. Avg.
National solar PV capacity (MWp) 0.31  0.56%** 0.63*** 0.59
1.2.1 Industrial or commercial units 0.21  0.46%** 0.55%** 0.51
(1m?)

1.2 Industrial, commercial and trans- 0.18  0.43*** 0.52%** 0.47
port units (m?)

1 Artificial Surfaces (m?) 0.15  0.38%** 0.51%** 0.45
1.1 Urban fabric (m?) 0.13  0.37%** 0.52%** 0.45
2.1 Arable land (m?) 0.13  0.36%** 0.54%%* 0.45
2.1.1 Non-irrigated arable land (m?) 0.12  0.35%** 0.53%*** 0.44
3.1.2 Coniferous forest (m?) 0.17  0.41%%* 0.46%** 0.43
Median age (years) 0.15  0.38%** 0.46%** 0.42
1.1.2 Discontinuous urban fabric (m?)  0.11  0.33%** 0.50%** 0.42
2 Agricultural Areas (m?) 0.12  0.35%%* 0.47%%* 0.41
5 Water Bodies (m?) 0.14  0.38%** 0.41%%* 0.40
5.1.1 Water courses (m?) 0.13  0.36%** 0.43%** 0.40
5.1 Inland waters (m?) 0.15  0.38%** 0.41%%* 0.40
2.2 Permanent crops (m?) 0.08  0.28%** 0.51%%* 0.40

k3

*p<0.001," p<0.01," p<0.05
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Table 4.2: Top 15 normalized features with the highest correlation to the percentage of re-
gional solar photovoltaic capacity. Features are normalized relative to national values and
expressed as percentages. Displayed are the coefficient of determination (R?), Pearson corre-
lation, Spearman correlation, and the average of the two correlations. Land cover features are
preceded by their CORINE Land Cover (CLC) classification codes (e.g., 1.2.1 for industrial
or commercial units).

Feature R? Pearson Spearman Corr. Avg.
2 Agricultural Areas 0.49  0.70%** 0.67*** 0.69
Region area 0.38  0.61%** 0.63*** 0.62
2.1 Arable land 0.32  0.57*** 0.63*** 0.60
2.4 Heterogeneous agricultural areas 0.41  0.64%** 0.52%%* 0.58
2.1.1 Non-irrigated arable land 0.28  0.53%** 0.627%** 0.57
1.2 Industrial, commercial and trans- 0.31  0.56%** 0.52%** 0.54
port units

1.2.1 Industrial or commercial units 0.31  0.56%** 0.51%** 0.54
2.2 Permanent crops 0.29  0.54%** 0.52%** 0.53
Disposable income 0.22  0.47%F%* 0.56%+** 0.52
2.4.2 Complex cultivation patterns 0.27  0.52%** 0.52%** 0.52
Employment 0.24  0.49%** 0.53*** 0.51
Population 0.25  0.50%** 0.52%** 0.51
1 Artificial Surfaces 0.22  0.47%** 0.54%** 0.51
1.3 Mine, dump and construction sites 0.23  0.48%** 0.52%** 0.50
1.1 Urban fabric 0.20  0.45%** 0.55%** 0.50

k3

*p<0.001," p<0.01," p<0.05

It is surprising that coniferous forests rank among the top features in our analysis. It’s
possible that the 2018 CORINE land cover data used in this analysis does not reflect recent
deforestation that may have occurred to make way for PV systems. Previous research shows
that forests rank fourth in terms of PV generation potential [95], with approximately 9.14% of
solar PV farms located in forested areas [250]. This is typically observed in regions with high
densities of PV installations, where prime locations such as agricultural land are already
occupied, forcing PV installations into less ideal areas such as forests. We find a positive
correlation between demographics and PV capacity. This result aligns with some studies that
suggest a positive correlation between average age and PV installations [109, 251]. However,

other research indicates a negative relationship between age and PV adoption [252, 253].
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Table 4.3: Regional error metrics for the absolute XGBoost models trained with different
objectives and scaling approaches under the mixed hold-out configuration. Models were
trained using either a Gaussian (squared-error) or Tweedie objective, with results reported
both before and after national scaling. Metrics include the coefficient of determination (R?),
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error
(RMSE), reported separately for training and test sets in megawatts (MW).

Model Train Test Train Test Train  Test Train  Test
R? R? MAE MAE MSE MSE RMSE RMSE
Gaussian objective (unscaled) 1.00 0.92 12 142 297 90,149 17 300
Gaussian objective (scaled) 1.00 0.98 16 7 552 24,308 23 156
Tweedie objective (unscaled)  1.00 0.94 9 132 233 73,795 15 272
Tweedie objective (scaled) 1.00 0.99 12 53 422 10,501 21 102

The selected features for the models are shown in Appendix 4.6.2 and 4.6.3.

4.4.2 Model Performance Evaluation

Table 4.3 compares the absolute XGBoost models trained using Gaussian and Tweedie ob-
jectives under the mixed hold-out configuration. Across both scaled and unscaled variants,
the Tweedie objective achieves higher test R? and lower RMSE, confirming its suitability
for modelling skewed and zero-inflated capacity data. Therefore, the Tweedie objective was
adopted for training all absolute models throughout this study.

Table 4.4 summarises the performance of the benchmark multiple linear regression (MLR)
models trained on the full dataset without cross-validation. The normalized MLR model
achieves substantially higher explanatory power than the absolute model (R? = 0.86 versus
0.50). Compared with the XGBoost models in Table 4.5, the linear models exhibit lower
predictive accuracy. The MLR models yield R? values between 0.50 and 0.86, mean absolute
errors (MAE) between 206 and 380 MW, and root mean squared errors (RMSE) between
331 and 542 MW. In contrast, the XGBoost models achieve higher R? values (0.93-0.99)
and substantially lower errors, with MAE ranging from 53 to 132 MW and RMSE from
102 to 272 MW. These results confirm that XGBoost provides a more accurate and flexible
framework for modelling regional solar PV capacity. Furthermore, the MLR models cannot

accommodate scaling adjustments because they require complete regional coverage and do
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Table 4.4: Regional error metrics for the benchmark multiple linear regression (MLR) models.
The Absolute Model metrics are reported in megawatts (MW), while the Normalized Model
metrics are reported in both megawatts (MW) and percentage points (%). Metrics include
the coefficient of determination (R?), Mean Absolute Error (MAE), Mean Squared Error
(MSE), and Root Mean Squared Error (RMSE). The MLR models were trained using the
full dataset without cross-validation.

Model R? MAE MSE RMSE
Absolute Model (MW) 0.50 380 294,040 542
Normalized Model (MW) 0.85 206 109,444 331
Normalized Model (%) 0.86 1.08 2.26 1.50

not handle missing data, limiting their applicability. Even when trained on the full dataset,
the linear models perform worse than the XGBoost models evaluated on the test set under
the mixed hold-out configuration, highlighting the superior generalisation capability of the
latter.

Table 4.5 shows the regional error metrics for the absolute and normalized models under
the mixed hold-out configuration. The normalized model outperforms the absolute model in
estimating the regional capacity. However, this is not the case when scaling the results by the
national capacity as the absolute models error reduces. Scaling the results by the national
capacity reduces the error by more than 50% in the absolute model and doesn’t impact the
error in the normalized model. To further examine the robustness of these findings, we assess
how the models generalise across space and time.

Tables 4.6 and 4.7 present results from the hold-out country validation, which assesses
spatial generalisation by training the model on all but one country and testing on the excluded
country. The absolute model shows considerable variation in performance across countries,
with some negative test R? values, indicating limited transferability in predicting absolute
capacity magnitudes. Applying national scaling improves consistency, increasing mean test
R? from —0.28 to 0.15. In contrast, the normalized models achieve more stable results across
all countries, with mean test R? values of 0.2-0.4. These results suggest that modelling
regional capacity as a share of national totals reduces cross-country scale effects and improves

the model’s ability to generalise spatially.
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Table 4.5: Regional error metrics for the XGBoost models under the mixed hold-out configu-
ration, reported separately for training and test sets in both megawatts (MW) and percentage
points (%). For the scaled models, regional predictions were adjusted to ensure that their sum
matched the corresponding national total. Metrics include the coefficient of determination
(R?), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared
Error (RMSE).

Model Train Test Train Test Train Test Train Test
R? R? MAE MAE MSE MSE RMSE RMSE

Absolute Model (MW) 1.00 0.94 9 132 233 73,795 15 272
Scaled Absolute Model (MW) 1.00 0.99 12 53 422 10,501 21 102
Normalized Model (MW) 0.99 0.95 48 107 6,722 61,426 82 248
Scaled  Normalized  Model 0.99 0.95 48 108 6,918 57,152 83 239
(MW)

Normalized Model (%) 0.98 0.93 0.34 0.55 0.30 1.30 0.55 1.14
Scaled Normalized Model (%) 0.98 0.93 0.35 0.56 0.32 1.25 0.57 1.12

Model generalisation depends on the similarity between the test country and the coun-
tries included in training. Countries with land cover and climatic characteristics that differ
substantially from the training set tend to exhibit higher errors, whereas those with similar
feature distributions perform better. For this reason, the mixed hold-out configuration—
where all countries contribute to model training—was adopted for applications to unseen
regions, as it provides more robust and generalisable predictions.

Table 4.8 summarises the results of the hold-out year validation, which tests the models’
ability to generalise over time. All configurations show strong temporal predictive perfor-
mance, with test MAE values ranging from 136 MW to 266 MW and RMSE values from
276 MW to 431 MW. Scaling regional predictions to match national totals further im-
proved performance, particularly for the absolute model, where the test RMSE decreased
from 431 MW to 276 MW. These results indicate that the XGBoost models capture sta-
ble temporal relationships between predictors and installed capacity, maintaining robustness
when applied to future years.

Figure 4.2a compares the actual and predicted regional capacities for the absolute model
under the mixed hold-out configuration. The model systematically underestimates regions
with high installed capacity, suggesting limited extrapolation ability at the upper end of

the distribution. However, as shown in Figure 4.2b, applying national scaling substantially
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Table 4.6: Regional error metrics for the XGBoost absolute model (MW) under the hold-out
country configuration. For each iteration, the model was trained on all countries except one,
which was used for testing. Metrics are reported separately for training and test sets.

Country Train Test Train Test Train Test Train Test
R? R? MAE MAE MSE MSE RMSE RMSE
France (unscaled) 0.98 -1.07 59 532 11,644 454,794 108 674
Spain (unscaled) 0.86 0.06 179 658 87,323 1,413,287 296 1,189
Germany (unscaled) 0.96 -0.06 71 694 16,451 929,653 128 964
Italy (unscaled) 0.84 0.29 185 429 102,011 474,864 319 689
United Kingdom (unscaled) 1.00 0.03 0.33 187 0.33 83,912 0.57 290
Belgium (unscaled) 0.84 -0.95 190 400 111,172 281,340 333 530
Mean (unscaled) 0.91 -0.28 114 483 54,434 606,975 197 723
France (scaled) 0.99 -0.23 49 374 7,067 269,358 84 519
Spain (scaled) 0.90 0.01 158 741 61,615 1,488,481 248 1,220
Germany (scaled) 0.98 0.08 63 601 10,632 805,911 103 898
Italy (scaled) 0.88 0.54 169 414 77,305 306,712 278 554
United Kingdom (scaled) 1.00 0.05 5 179 148 82,327 12 287
Belgium (scaled) 0.88 0.47 172 222 81,142 76,477 285 277
Mean (scaled) 0.94 0.15 103 422 39,318 504,878 168 626

Table 4.7: Regional error metrics for the XGBoost normalized model (MW) under the hold-
out country configuration. For each iteration, the model was trained on all countries except
one, which was used for testing. Metrics are reported separately for training and test sets.

Country Train Test Train Test Train Test Train Test
R? R? MAE MAE MSE MSE RMSE RMSE
France (unscaled) 1.00 0.31 0.83 229 26 150,919 5 388
Spain (unscaled) 0.99 0.29 42 512 6,444 1,059,578 80 1,029
Germany (unscaled) 1.00 065 3 879 154 1,445,534 12 1,202
Italy (unscaled) 0.98 0.21 64 486 14,242 530,604 119 728
United Kingdom (unscaled) 0.97 0.20 82 161 22,032 69,695 148 264
Belgium (unscaled) 0.97 0.35 79 234 20,058 94,023 142 307
Mean (unscaled) 0.99 0.12 45 417 10,493 558,392 84 653
France (scaled) 1.00 0.33 7 243 172 147,314 13 384
Spain (scaled) 0.99 0.58 42 431 6,405 623,377 80 790
Germany (scaled) 1.00 -0.05 12 709 435 918,846 21 959
Italy (scaled) 0.98 0.62 65 400 15,652 251,759 125 502
United Kingdom (scaled) 0.97 0.14 82 151 22,393 74,360 150 273
Belgium (scaled) 0.97 0.43 79 223 20,027 82,889 142 288
Mean (scaled) 0.99 0.34 48 360 10,847 349,758 89 533
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Table 4.8: Regional error metrics for the XGBoost models under the hold-out year configura-
tion, reported separately for training and test sets in both megawatts (MW) and percentage
points (%). The models were trained on data from 2010-2020 and tested on 2021-2023.
Metrics include the coefficient of determination (R?), Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Root Mean Squared Error (RMSE).

Model Train Test Train Test Train Test Train Test
R? R? MAE MAE MSE MSE RMSE RMSE

Absolute Model (MW) 1.00 0.86 7 266 133 185,517 12 431
Scaled Absolute Model (MW) 1.00 0.94 10 136 269 76,297 16 276
Normalized Model (MW) 0.99 0.92 42 157 4,834 107,434 70 328
Scaled Normalized Model 0.99 0.92 41 157 4,824 104,709 69 324
(MW)

Normalized Model (%) 0.98 0.91 0.33 0.64 0.27 1.89 0.52 1.38
Scaled Normalized Model (%) 0.98 0.91 0.33 0.64 0.28 1.83 0.53 1.35

corrects this bias. Figure 4.2c¢ and Figure 4.2d show the corresponding results for the nor-
malized model before and after scaling. In this case, model performance is strong and largely
unaffected by scaling, indicating that the normalized representation is inherently more stable
across regions.

To evaluate model consistency at the national level, the mixed hold-out predictions are
aggregated and compared with the observed national totals. Table 4.9 presents the national-
level error metrics for both the absolute and normalized XGBoost models under the mixed
hold-out configuration. For the training countries, the normalized model achieves a MAPE
of 2.5%, while the absolute model performs slightly worse, with a MAPE of 6.4%. How-
ever, when the models are applied to all European countries, the error for the normalized
model increases to 19.5%, whereas the absolute model yields an unrealistically large value of
5.5 x 101%. This behaviour is a known artefact of the MAPE formula, which divides the
absolute error by the actual value. When the actual national PV capacity is zero or close
to zero, the denominator becomes very small. To prevent division by zero, scikit-learn
replaces zeros with machine epsilon (¢), the smallest positive number that can be added
to 1.0 such that the result is distinguishable from 1.0 in floating-point arithmetic (approxi-
mately 2.22 x 10716) [254]. As a result, even minor absolute errors can inflate into extremely

large percentage errors. Excluding countries with zero observed capacity reduces the MAPE
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Figure 4.2: Actual versus predicted regional photovoltaic capacity for 150 NUTS 2 regions
using the absolute and normalized XGBoost models under the mixed hold-out configuration
(2010-2023). Blue points represent training data and orange points represent test data. The
actual capacity data are sourced from the United Kingdom, Italy, Spain, Belgium, Germany,

and France.
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Table 4.9: National-level error metrics for the absolute and normalized XGBoost models
under the mixed hold-out configuration. Metrics compare the actual national capacity with
the estimated national capacity, obtained by summing predicted regional values. Results
are shown for both the training countries and the full European dataset. Training countries
include the United Kingdom, Italy, Spain, Belgium, Germany, and France. Scaling refers to
adjusting regional capacities so that their totals match the observed national capacity.

Model R? MAE MSE RMSE MAPE
(MW) (MW?) (MW) (%)
Absolute model (training) 0.97 964 1.04 x 107 3233 6.4
Absolute model (scaled, training) 1.00 0 0 0 0.0
Absolute model (entire dataset) 0.95 1359 1.09 x 107 3313 5.5 x 10'°
Absolute model (scaled, entire 1.00 0 0 0 0.0
dataset)
Normalized model (training) 1.00 335 2.10 x 10° 459 2.5
Normalized model (scaled, training) 1.00 0 0 0 0.0
Normalized model (entire dataset) 1.00 331 2.67 x 10° 517 19.5
Normalized model (scaled, entire 1.00 0 0 0 0.0
dataset)

for the absolute model to 58%. Given this sensitivity to small denominators, we conclude
that the absolute model does not generalise reliably beyond the training countries. There-
fore, the normalized model is used for disaggregating national capacity in countries lacking
regional data. Nonetheless, because the absolute model performs well within the training
set, it remains useful for allocating capacity that is not associated with a specific geographic

location.

4.4.3 Model Interpretation and Applications
Feature Importance

The feature importance analysis based on SHAP values for the mixed hold-out models high-
lights differences in how features contribute to the model predictions in the absolute and
normalized settings. In the absolute model, artificial surfaces have the most significant im-
pact, accounting for 55% of the total SHAP values. This is followed by agricultural land,
contributing 18%, national PV capacity at 17%, forests at 6%, and median age at 3%. In
the normalized model, agricultural land emerges as the most influential factor, representing

41% of the total SHAP values. Artificial surfaces contribute 19%, with water bodies at 15%,
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forests and seminatural areas at 11%, and GHI at 10%, with all other factors contributing less
than 5%. A full breakdown of SHAP values and their corresponding percentage contributions
for both models is provided in Appendix 4.6.4. Water bodies being the 3rd most important
feature in the normalized model is unexpected. While there has been a rapid rise in floating
solar PV installations, with Europe having 451 MW of grid-connected floating solar PVs as of
2022—280 MW in the Netherlands, 80 MW in France, 25 MW each in Austria and Germany,
10 MW in Spain, and 6.2 MW in Portugal [255]—this alone does not fully explain why water
bodies rank so high. A possible explanation lies in the strong Spearman correlations observed
between water bodies and agricultural areas (0.65), and between water bodies and artificial

surfaces (0.54), both of which are highly correlated with the percentage of solar PV capacity.

Regional Capacity Estimation and Disaggregation

Figure 4.1 illustrates the actual regional capacities for the regions used in training and testing
the models for 2023. Figure 4.3b presents the estimated regional capacities for countries
lacking regional data in 2023, generated using the scaled normalized model trained under the
mixed hold-out configuration. These estimates may support efforts to monitor and model PV
generation. However, estimating or forecasting electricity generation from solar PV is beyond
the scope of this study. Our focus is on modelling installed capacity using open, accessible,
and largely complete data sources. This provides a foundation for others to incorporate
additional factors such as weather variability and anthropogenic pollution when modelling
actual generation. In addition, the regional capacity estimates may serve as valuable inputs
to broader sustainability modelling efforts, including assessments of energy self-sufficiency,
land-use impacts, and infrastructure planning.

In some cases, the locations of installed PV systems are not recorded. In 2023, unlocated
systems accounted for 112 MW in Germany, 568 MW in Spain, 227 MW in France, 676 MW
in Italy, and 820 MW in the United Kingdom. The scaled absolute model trained under
the mixed hold-out configuration was used to spatially allocate these capacities, resulting in

updated regional capacity estimates, as shown in Figure 4.3a.
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(a) Scaled absolute model. (b) Scaled normalized model.

Figure 4.3: Predicted regional solar photovoltaic capacity for 36 European countries and 333
NUTS 2 regions in 2023 using the scaled XGBoost models trained under the mixed hold-out
configuration. The corresponding regional capacity values are provided in Appendix 4.6.5.
(a) The scaled absolute model is more effective for allocating unknown national capacity
to geographic locations in the training countries, which include the United Kingdom, Italy,
Spain, Belgium, Germany, and France. (b) The scaled normalized model is better suited
for estimating PV capacity in countries where regional data is unavailable. Although the
model predicts capacity as a percentage of the national total (i.e., normalized output), these
percentages are subsequently multiplied by national PV capacity to produce final capacity
estimates in megawatts.

Benchmarking Regional Deployment

Another application of the mixed hold-out models is as benchmarking tools. The absolute
model is used to assess and compare regional capacities within the countries where the model
was trained, as illustrated in Figure 4.4a. This approach allows for evaluating how different
regions perform relative to similar regions. For instance, regions in Germany and Spain often
exhibit higher PV capacity than expected when compared to regions in Italy, the United
Kingdom, France, and Belgium. In particular, Brandenburg (DE40) has 1,905 MW more
capacity than expected for comparable European regions, followed by Castilla-La Mancha
(ES42) with 1,612 MW, Oberbayern (DE21) with 1,282 MW, Niederbayern (DE22) with
1,107 MW, Mecklenburg-Vorpommern (DE80) with 993 MW, Stuttgart (DE11) with 933

7000
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Figure 4.4: The solar PV deployment index results for the year 2023 derived from the XG-
Boost models trained under the mixed hold-out configuration. Positive values indicate regions
where the actual capacity exceeds the expected capacity, while negative values indicate re-
gions where the actual capacity is less than expected. (a) The absolute model benchmarks
deployment compared to similar regions in Europe. (b) The normalized model benchmarks
deployment compared to similar regions within a country. The regions included are Bran-
denburg (DE40), Castilla-La Mancha (ES42), Oberbayern (DE21), Niederbayern (DE22),
Mecklenburg-Vorpommern (DES80), Stuttgart (DE11), Schleswig-Holstein (DEF0), Weser-
Ems (DE94), Oberpfalz (DE23), Extremadura (ES43), Murcia (ES62), East Flanders (BE23),
and Limburg (BE22).

MW, Schleswig-Holstein (DEF0) with 895 MW, Weser-Ems (DE94) with 882 MW, Oberpfalz
(DE23) with 862 MW, and Extremadura (ES43) with 855 MW.

Brandenburg’s agricultural landscape makes it appealing to solar PV investors seeking
large tracts of land for solar farms. The region’s vast areas of suitable land combined with
rising land prices have created competition between agricultural and energy sectors. The lack
of strict regulations limiting the size of solar farms exacerbates this issue, allowing large-scale
solar projects to dominate the landscape [96].

The normalized model is employed to benchmark capacity within individual countries,

comparing regional performance relative to other regions within the same country, as shown

10.0
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in Figure 4.4b. For example, in Spain in 2023, the Extremadura region (ES43) exceeded
expectations for similar regions by 2,747 MW (10.7%), while the Region of Murcia (ES62)
fell short by 866 MW (3.4%). The region of Extremadura has its own Integrated Energy
and Climate Plan (Plan Extremeno Integrado de Energia y Clima, PEIEC) for the 2021-2030
period. The plan aims for Extremadura to become 100% powered by renewable energy by
2030, with a target of 10.36 GW of renewable capacity, of which 8 GW is allocated to solar PV
[256]. Curtailment in Spain is unevenly distributed across regions, with higher curtailment
occurring in regions where renewable generation capacity exceeds local demand and where
transmission infrastructure is insufficient to transfer excess power to other regions. This
situation puts some generators at financial risk, as they are increasingly instructed to reduce
output without compensation [257]. Such curtailment could help explain the differences in
solar PV deployment between regions.

In Belgium, East Flanders (BE23) exhibits a PV capacity that is 196 MW (2.2%) higher
than expected, while Limburg (BE22) shows a deficit of 260 MW (3%) compared to expec-
tations. Both regions are in Flanders, where residential solar PV has gained popularity due
to generous support policies [258]. For instance, the Flemish social housing sector launched
Access to Sustainability for Tenants through Energy Effective Retrofit (ASTER), an ini-
tiative focused on improving the sustainability of energy and insulation in social housing.
ASTER supports this by purchasing solar panels and providing energy to benefit Flemish
social housing providers and their tenants [259, 260]. The notable difference in PV capacity
between these two regions could be due to several factors, including easier grid connections,
the presence of enthusiastic investors who own land, or the influence of individual large-scale

solar installations.

Forecasting Future Capacity

The scaled models also serve as valuable tools for forecasting future PV capacity distribution
across regions. By applying these models, one can predict where PV capacity is likely to

expand, which is crucial for strategic grid planning and policy development. As detailed in
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Appendix 4.6.6, the scaled normalized model demonstrates strong forecasting performance
when evaluated on historical data (2017-2023), providing confidence in its application for
forward projections. To demonstrate its practical use, we apply the scaled normalized model
trained under the mixed hold-out configuration to forecast the spatial distribution of solar
PV capacity in Germany for the year 2030, based on the national target of 215 GW [261].
Figure 4.5 shows how this capacity is likely to be allocated across regions, using 2018 CORINE
land cover data and assuming climatic conditions consistent with 2023. Brandenburg is
forecasted to have the highest share of installed capacity, reaching 15,725 MW by 2030.
This result is particularly relevant given the region’s recent socio-economic dynamics. In
Brandenburg, tensions between farmers and solar PV developers have been fuelled by a
sharp increase in land prices, particularly since 2007. Between 2010 and 2020, rental prices
for agricultural land surged by 62% [262]. This, coupled with enterprise groups controlling
52% of agricultural land [262], has made it more difficult for smaller farmers to compete
financially with large solar energy developers. The resulting land acquisition by solar investors
has contributed to a growing sense of distrust toward large-scale solar PV projects, which
may hinder future deployment in the absence of a proper legal and policy framework [96].
By forecasting where solar PV systems are likely to be installed, our model can inform policy
interventions aimed at mitigating land use conflicts. Such interventions may include the
promotion of agrivoltaics, which integrate solar energy generation with agricultural activity,

offering a more balanced approach to land use in agricultural areas.
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Figure 4.5: Forecasted regional solar PV capacity in Germany for 2030, based on the na-
tional target of 215 GW [261]. The distribution across regions is estimated using the scaled
normalized XGBoost model trained under the mixed hold-out configuration, which allocates
national capacity proportionally according to regional characteristics. The forecast is based
on 2018 CORINE land-cover data, with climatic variable values set to those observed in 2023.
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4.4.4 Limitations

This study makes several assumptions and is subject to a number of limitations and uncer-
tainties. First, the models assume that the geographic, socio-economic, and climatic factors
used as input features are both representative and sufficiently explanatory of regional solar
PV capacity. While these factors were selected based on empirical correlations and data
availability, their influence may vary across national contexts and over time. Second, the
accuracy of the model outputs depends on the reliability of the underlying data sources.
In particular, the CORINE land cover dataset, although widely used, has known thematic
accuracy limitations that could lead to misclassification of land use types. To mitigate this,
we incorporate multiple classification levels (Levels 1-3) to balance detail with robustness.
Third, the models were trained and validated using data from a subset of countries with rela-
tively complete regional capacity information. This introduces uncertainty when generalising

predictions to countries with missing or incomplete data, especially in the absolute model,
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which was shown to be sensitive to near-zero denominators in percentage error metrics. The
use of machine epsilon to handle division by zero may inflate model error in such cases. Fi-
nally, while the models are effective for disaggregation, benchmarking, and forecasting, they
do not account for dynamic policy changes, market conditions, or future shifts in deployment
strategies. As such, their predictive accuracy may diminish when applied far outside the

historical or geographic range of the training data.

4.5 Conclusion

This study provides a comprehensive analysis of regional solar photovoltaic (PV) capacity
across Europe, emphasising the critical role of geographical factors in determining deploy-
ment. The findings reveal that artificial surfaces and agricultural areas are key predictors
of regional solar PV deployment. Our models, designed to estimate regional PV capacity,
achieve a root mean squared error of less than 272 MW and explain over 93% of the varia-
tion across 150 NUTS 2 EU regions. These models are subsequently applied to estimate the
capacity of 333 NUTS EU regions for the years 2010 to 2023.

The models serve three main purposes. First, the disaggregation of national PV capacity,
where the scaled models (both absolute and normalized) are the most appropriate. Second,
benchmarking of regional capacities both within and across countries, where the absolute
model is used for comparisons across countries, while the normalized model is used for com-
paring regions within a country. Finally, for forecasting future PV capacity distribution, the
scaled models are again the most suitable.

The insights gained from this research are particularly valuable for informing policy-
making and grid management. By addressing the gaps in regional capacity data and offering
a robust method for estimating PV deployment, we can better anticipate land use conflicts,
especially in areas where competition between agricultural and energy sectors is intense.
Policymakers can use these models to craft targeted interventions that promote solar PV
expansion while balancing agricultural needs. Additionally, grid operators can use these

models to forecast potential areas of capacity expansion, aiding in effective planning for grid
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development and extension. These models also provide a foundation for developing enhanced
solar PV monitoring services, ensuring a more reliable integration of renewable energy into

the grid.

Data Availability

All datasets and source code used in this study are publicly available via Zenodo at the

following DOI: https://doi.org/10.5281/zenodo.15366956.
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4.6 Appendix

4.6.1 Full Feature Analysis Tables

Table 4.10: Absolute data analysis. Features considered for modelling regional solar photovoltaic capacity. The data availability,
coefficient of determination (R?), Pearson correlation, Spearman correlation, correlation average are shown. Relevant literature
that explores similar features is cited. Land cover features are preceded by their CORINE Land Cover (CLC) classification codes

(e.g., 1.2.1 for industrial or commercial units).

Feature Data R-squared Pearson Spearman Correlation  Relevant
Availabil- Correla- Correla- Average Literature
ity (%) tion tion

National solar PV capacity (MWp) 100 0.31 0.56*** 0.63*** 0.59

1.2.1 Industrial or commercial units (m?) 98 0.21 0.46*** 0.55%*** 0.51

1.2 Industrial, commercial and transport units (m?) 98 0.18 0.43*** 0.52%** 0.47

1 Artificial Surfaces (m?) 98 0.15 0.38%*** 0.51%*** 0.45

1.1 Urban fabric (m?) 98 0.13 0.37#+* 0.52%#* 0.45

2.1 Arable land (m?) 98 0.13 0.36%** 0.54%%* 0.45 [249, 119]

2.1.1 Non-irrigated arable land (m?) 98 0.12 0.35%** 0.53*** 0.44 [249, 119]

3.1.2 Coniferous forest (m?) 98 0.17 0.41%** 0.46*** 0.43

Median age (years) 92 0.15 0.38%%* 0.46%** 0.42 [109, 252,

253, 251]

1.1.2 Discontinuous urban fabric (m?) 98 0.11 0.33*** 0.5 0.42

2 Agricultural Areas (m?) 98 0.12 0.35%*** 0.47+** 0.41

5 Water Bodies (m?) 98 0.14 0.38%+* 0.41%%* 0.40 [255]
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availabil- Correla- Correla- Average Literature
ity (%) tion tion

5.1.1 Water courses (m?) 98 0.13 0.36%+* 0.43%+* 0.40

5.1 Inland waters (m?) 98 0.15 0.38%%* 0.41%%* 0.40

2.2 Permanent crops (m?) 98 0.08 0.28%%* 0.51%%* 0.40 [119]

3.1 Forests (m?) 98 0.11 0.32%5 0.47H* 0.40 [250]

Employment (thousand persons) 86 0.10 0.32%%* 0.45%%%* 0.39

1.3.1 Mineral extraction sites (m?) 98 0.15 0.39%*** 0.38%** 0.39

3.1.3 Mixed forest (m?) 98 0.08 0.29%** 0.49%** 0.39

1.3.2 Dump sites (m?) 98 0.11 0.33%* 0.43%%* 0.38

1.3 Mine, dump and construction sites (m?) 98 0.14 0.37#%* 0.38%#* 0.38

Disposable income (million euros) 64 0.09 0.29%** 0.47** 0.38

Region area (m?) 98 0.11 0.33%%* 0.43%%* 0.38

2.2.2 Fruit trees and berry plantations (m?) 98 0.02 0.16*** 0.58%** 0.37 [119]

Population 67 0.08 0.29%** 0.43%%* 0.36

5.1.2 Water bodies (m?) 98 0.12 0.35%*** 0.35%*** 0.35

1.1.1 Continuous urban fabric (m?) 98 0.07 0.27*** 0.38%** 0.33

GDP (million euros) 81 0.04 0.21%*** 0.45%*** 0.33

Wind speed (ms™!) 93 0.09 -0.3%H% -0.37HH* -0.33

GERD (million euros) 51 0.07 0.26%+* 0.38%#* 0.32

1.2.4 Airports (m?) 98 0.08 0.29%** 0.34% %% 0.32

3 Forest And Seminatural Areas (m?) 98 0.07 0.26%** 0.36%+* 0.31

GHI (Wm™2) 93 0.07 0.25%* 0.37+** 0.31
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availabil- Correla- Correla- Average Literature
ity (%) tion tion

Mean sea level pressure (hPa) 93 0.06 0.24%+* 0.33%4* 0.29

Year 100 0.08 0.29%** 0.29%** 0.29

2.2.1 Vineyards (m?) 98 0.05 0.23%** 0.34%** 0.29 [119]

Disposable income per inhabitant (euro) 64 0.07 0.26%** 0.32%%* 0.29

3.1.1 Broad-leaved forest (m?) 98 0.02 0.15%%* 0.41%%* 0.28

2.4 Heterogeneous agricultural areas (m?) 98 0.05 0.21%** 0.31%** 0.26

Electricity consumption (billion kW h) 75 0.06 0.25%*** 0.23%*** 0.24

2.1.3 Rice fields (m?) 98 0.05 0.23%%x 0.26%% 0.24 [119]

3.3.1 Beaches, dunes, sands (m?) 98 0.04 0.217%%* 0.26%+* 0.23

3.2.4 Transitional woodland-scrub (m?) 98 0.05 0.22%** 0.23%** 0.23

4.1.1 Inland marshes (m?) 98 0.04 0.2%** 0.25%** 0.23

2.4.3 Land principally occupied by agriculture, with significant 98 0.04 0.2%%* 0.26%** 0.23 [119]

areas of natural vegetation (m?)

2.4.2 Complex cultivation patterns (m?) 98 0.01 0.09%*** 0.37** 0.23 [119]

2.2.3 Olive groves (m?) 98 0.05 0.23%%* 0.22%%* 0.23 [119]

Air temperature (K) 93 0.04 0.21%** 0.23%*** 0.22

4.2.2 Salines (m?) 98 0.04 0.21%% 0.23%% 0.22

4.2.3 Intertidal flats (m?) 98 0.01 -0.12%** -0.3%** -0.21

2.4.4 Agro-forestry areas (m?) 98 0.04 0.217%%* 0.19%** 0.20

2.4.1 Annual crops associated with permanent crops (m?) 98 0.01 0.1%%* 0.25%%%* 0.17 [119]

3.2.3 Sclerophyllous vegetation (m?) 98 0.03 0.17*** 0.16%*** 0.17
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availabil- Correla- Correla- Average Literature
ity (%) tion tion

3.2.1 Natural grassland (m?) 98 0.02 0.16%** 0.17#%* 0.17

Unemployment (thousand persons) 85 0.02 0.14%*** 0.18%** 0.16 [253]

5.2.1 Coastal lagoons (m?) 98 0.02 0.15%** 0.15%%* 0.15

3.3.4 Burnt areas (m?) 98 0.02 0.16%** 0.14%%* 0.15

1.2.2 Road and rail networks and associated land (m?) 98 0.02 0.12%%* 0.19%** 0.15

3.3 Open spaces with little or no vegetation (m?) 98 0.03 0.17+** 0.1 0.14

2.1.2 Permanently irrigated land (m?) 98 0.03 0.16*** 0.11%** 0.14 [119]

3.2.2 Moors and heathland (m?) 98 0.02 -0.13%%* -0.14%H% -0.14

3.2 Scrub and/or herbaceous associations (m?) 98 0.02 0.14%%* 0.12%#* 0.13

Country area (m?) 100 0.00 0.02 0.24%** 0.13

5.2.2 Estuaries (m?) 98 0.00 0.04 -0.3%** -0.13

3.3.2 Bare rocks (m?) 98 0.02 0.14%%* 0.09%** 0.12

3.3.5 Glaciers and perpetual snow (m?) 98 0.00 0.04 0.2%%* 0.12

2.3.1 Pastures (m?) 98 0.00 0.06** 0.17%%* 0.12

2.3 Pastures (m?) 98 0.00 0.06%** 0.17%%* 0.12

4.1.2 Peat bogs (m?) 98 0.01 -0.09%** -0.14%H% -0.12

3.3.3 Sparsely vegetated areas (m?) 98 0.02 0.15%** 0.07** 0.11

1.3.3 Construction sites (m?) 98 0.02 0.13%** 0.06* 0.10

4 Wetlands (m?) 98 0.01 0,08 -0.06* -0.07

1.4.1 Green urban areas (m?) 98 0.01 -0.08%** -0.06** -0.07

4.2.1 Salt marshes (m?) 98 0.03 0.18%** -0.06** 0.06
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availabil- Correla- Correla- Average Literature
ity (%) tion tion

4.1 Inland wetlands (m?) 98 0.01 -0.09*** -0.03 -0.06

4.2 Marine wetlands (m?) 98 0.03 0.17%%* -0. 1% 0.04

5.2 Marine waters (m?) 98 0.02 0.13%%* -0.07** 0.03

Total precipitation (m) 98 0.00 0.06* 0.01 0.03

1.4.2. Sport and leisure facilities (m?) 98 0.00 0.04 0.02 0.03

R&D personnel and researchers (percentage) 47 0.00 -0.01 0.06 0.02

5.2.3 Sea and ocean (m?) 98 0.00 0.0 -0.04 -0.02

1.4 Artificial, non-agricultural vegetated areas (m?) 98 0.00 0.01 -0.03 -0.01

1.2.3 Port areas (m?) 98 0.00 -0.0 -0.0 -0.00

sk

" p<0.001," p<0.01, " p<0.05

Table 4.11: Normalized data analysis. Features considered for modelling the percentage of regional solar photovoltaic capacity.
All features presented are normalized relative to national values and expressed as percentages. The data availability, coefficient of
determination (R?), Pearson correlation, Spearman correlation, correlation average are shown. Relevant literature that explores
similar features is cited. Land cover features are preceded by their CORINE Land Cover (CLC) classification codes (e.g., 1.2.1 for

industrial or commercial units).

Feature Data R-squared Pearson Spearman Correlation  Relevant
Availabil- Correla- Correla- Average Literature
ity (%) tion tion

2 Agricultural Areas 98 0.49 0. 7#%* 0.67*%* 0.69
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availabil- Correla- Correla- Average Literature
ity (%) tion tion

Region area 98 0.38 0.617%** 0.63*** 0.62

2.1 Arable land 98 0.32 0.57%%* 0.63%** 0.60 [249]

2.4 Heterogeneous agricultural areas 98 0.41 0.64%** 0.52%%%* 0.58

2.1.1 Non-irrigated arable land 98 0.28 0.53%%* 0.62%** 0.57 [249]

1.2 Industrial, commercial and transport units 98 0.31 0.56%** 0.52%** 0.54

1.2.1 Industrial or commercial units 98 0.31 0.56%** 0.51%%* 0.54

2.2 Permanent crops 98 0.29 0.54%%* 0.52%4* 0.53 [119]

Disposable income 64 0.22 0.47%** 0.56%** 0.52

2.4.2 Complex cultivation patterns 98 0.27 0.52%+* 0.52%#* 0.52 [119]

Employment 86 0.24 0.49*** 0.53*** 0.51

Population 67 0.25 0.5%%* 0.52%%%* 0.51

1 Artificial Surfaces 98 0.22 0.47%%* 0.54%%%* 0.51

1.3 Mine, dump and construction sites 98 0.23 0.48*** 0.52%** 0.50

1.1 Urban fabric 98 0.20 0.45%%* 0.55%#* 0.50

2.4.3 Land principally occupied by agriculture, with significant 98 0.24 0.49%%* 0.49%#* 0.49 [119]

areas of natural vegetation

5.1.1 Water courses 98 0.32 0.57#%* 0.4%%% 0.48

1.1.2 Discontinuous urban fabric 98 0.18 0.43%+* 0.51%4* 0.47

1.2.4 Airports 98 0.21 0.45%%* 0.5%** 0.47

1.3.1 Mineral extraction sites 98 0.16 0.4%%%* 0.52%%%* 0.46

2.2.2 Fruit trees and berry plantations 98 0.12 0.34%*** 0.58%** 0.46 [119]
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availabil- Correla- Correla- Average Literature
ity (%) tion tion

2.2.1 Vineyards 98 0.27 0.52%** 0.38%** 0.45 [119]

GDP 81 0.12 0.35%*** 0.52%** 0.43

GHI 93 0.14 0.37*** 0.48*** 0.42

3.1 Forests 98 0.15 0.39%** 0.45%%* 0.42 [250]

Unemployment 85 0.17 0.41%%%* 0.42%%%* 0.41 [253]

5 Water Bodies 98 0.13 0.35%%* 0.47%%% 0.41 [255]

3 Forest And Seminatural Areas 98 0.18 0.42%%%* 0.38%4* 0.40

4.1.1 Inland marshes 98 0.11 0.33%%* 0.45%+* 0.39

3.1.3 Mixed forest 98 0.06 0.25%** 0.53%** 0.39

1.2.2 Road and rail networks and associated land 98 0.20 0.45%** 0.33%** 0.39

4.2.2 Salines 98 0.20 0.44%%* 0.33%%* 0.39

5.1 Inland waters 98 0.10 0.32%%* 0.43%%* 0.38

3.2.4 Transitional woodland-scrub 98 0.23 0.48%*** 0.28%** 0.38

3.1.1 Broad-leaved forest 98 0.11 0.32%%%* 0.44%%* 0.38

1.3.3 Construction sites 98 0.23 0.48%%* 0.27#%* 0.38

2.2.3 Olive groves 98 0.18 0.43%%* 0.317%%* 0.37 [119]

3.3.1 Beaches, dunes, sands 98 0.08 0.28*** 0.44%** 0.36

1.1.1 Continuous urban fabric 98 0.16 0.47%4* 0.3%#* 0.35

2.4.4 Agro-forestry areas 98 0.16 0.4%%%* 0.3%%* 0.35

1.3.2 Dump sites 98 0.14 0.37%%* 0.32%%%* 0.34

Air temperature 93 0.09 0.3%** 0.36%** 0.33

THAOW NVHJOHNH 'V HHLdVHO

¢l



Feature Data R-squared Pearson Spearman Correlation  Relevant
Availabil- Correla- Correla- Average Literature
ity (%) tion tion

5.1.2 Water bodies 98 0.06 0.25%** 0.4%** 0.33

2.1.3 Rice fields 98 0.08 0.27*** 0.38*** 0.33 [119]

3.2.3 Sclerophyllous vegetation 98 0.13 0.36%** 0.27%%* 0.32

3.3 Open spaces with little or no vegetation 98 0.08 0.28*** 0.31%** 0.30

3.2 Scrub and/or herbaceous associations 98 0.10 0.317%%* 0.3%%* 0.30

2.1.2 Permanently irrigated land 98 0.16 0.4%** 0. 2% 0.30 [119]

5.2.1 Coastal lagoons 98 0.11 0.33%%* 0.26%** 0.30

3.2.1 Natural grassland 98 0.11 0.33*** 0.27%** 0.30

3.1.2 Coniferous forest 98 0.08 0.29%+* 0.32%+* 0.30

3.3.2 Bare rocks 98 0.09 0.3%** 0.27%** 0.29

4.2.1 Salt marshes 98 0.17 0.41%%* 0.14%%%* 0.28

GERD 51 0.02 0.14%%* 0.36%** 0.25

4.2 Marine wetlands 98 0.15 0.39%** 0.11%%* 0.25

3.3.4 Burnt areas 98 0.07 0.26%** 0.23%4* 0.24

3.3.3 Sparsely vegetated areas 98 0.05 0.23*** 0.19%** 0.21

1.2.3 Port areas 98 0.11 0.33%%* 0.09%** 0.21

2.4.1 Annual crops associated with permanent crops 98 0.01 0.11%** 0.31%** 0.21 [119]

5.2 Marine waters 98 0.09 0.3%4* 0.09%+* 0.20

Mean sea level pressure 93 0.01 0.12%%* 0.24%%%* 0.18

1.4.2 Sport and leisure facilities 98 0.05 0.22%%%* 0.15%%* 0.18

3.3.5 Glaciers and perpetual snow 98 0.01 0.11%** 0.26%** 0.18
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availabil- Correla- Correla- Average Literature
ity (%) tion tion

1.4 Artificial, non-agricultural vegetated areas 98 0.04 0.19%** 0.1%%* 0.15

2.3.1 Pastures 98 0.00 0.05* 0.23*** 0.14

2.3 Pastures 98 0.00 0.05* 0.23%%* 0.14

4.1.2 Peat bogs 98 0.01 -0, 1%%* -0.17%** -0.14

Tertiary education 85 0.01 -0.1Hx* -0.16*** -0.13

Median age 92 0.01 0.11%** 0.1%** 0.11 [109, 252,

253, 251]

4.2.3 Intertidal flats 98 0.01 -0.08*** -0.13*** -0.11

5.2.3 Sea and ocean 98 0.00 0.02 0.13%4* 0.07

Wind speed percentage 93 0.00 -0.06** -0.07** -0.07

Disposable income per inhabitant 64 0.00 -0.01 0.1%%%* 0.05

R&D personnel and researchers 47 0.00 -0.07* -0.02 -0.05

5.2.2 Estuaries 98 0.05 0.23%%* -0.15%** 0.04

Total precipitation 97 0.00 -0.01 -0.07%* -0.04

4 Wetlands 98 0.01 -0.09*** 0.15%%* 0.03

4.1 Inland wetlands 98 0.01 -0.1%** 0.14%%* 0.02

3.2.2 Moors and heathland 98 0.01 -0.1%** 0.12%%* 0.01

1.4.1 Green urban areas 98 0.00 -0.0 -0.0 -0.00

*ok

" p<0.001," p<0.01," p<0.05

THAOW NVHJOHNH 'V HHLdVHO

298



CHAPTER 4. EUROPEAN MODEL 135

4.6.2 Input Features and Predicted Outputs of the Absolute Model

Model Inputs
1.1 Urban Fabric
1 Artificial Surfaces
National PV Capacity
2 Agricultural Areas
1.2.1 Industrial or Commercial Units
1.1.2 Discontinuous Urban Fabric
3.1.2 Coniferous Forest
2.1.1 Non-Irrigated Arable Land
1.2 Industrial, Commercial and Transport Units
2.1 Arable Land

Median Age

Y
Absolute Model
XGBoost Regressor
Objective: reg:tweedie
Tree method: exact

Hyperparameters tuned via grid search + 10-fold CV

¥
Output
Regional PV Capacity (MW)

Figure 4.6: Flow chart of the absolute XGBoost model trained under the mixed hold-out
configuration, showing all input features, model configuration, and predicted output.
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4.6.3 Input Features and Predicted Outputs of the Normalized Model

136

1.1.1 Continuous Urban Fabric

1.2.1 Industrial or Commercial Units
1.2.4 Airports

1.3.2 Dump Sites

2.1.1 Non-Irrigated Arable Land
2.2.1 Vineyards

2.2.3 Olive Groves

2.4.3 Agriculture with Natural Vegetation
3.1.1 Broad-Leaved Forest

3.1.3 Mixed Forest

3.2.4 Transitional Woodland-Scrub
4.1.1 Inland Marshes

5.1.1 Water Courses

1.1 Urban Fabric

1.3 Mine, Dump and Construction Sites
2.2 Permanent Crops

3.1 Forests

5.1 Inland Waters

2 Agricultural Areas

5 Water Bodies

GHI Percentage

Model Inputs

1.1.2 Discontinuous Urban Fabric

1.2.2 Road and Rail Networks

1.3.1 Mineral Extraction Sites

1.3.3 Construction Sites

2.1.3 Rice Fields

2.2.2 Fruit Trees and Berry Plantations
2.4.2 Complex Cultivation Patterns
2.4.4 Agro-Forestry Areas

3.1.2 Coniferous Forest

3.2.3 Sclerophyllous Vegetation

3.3.1 Beaches, Dunes, Sands

4.2.2 Salines

5.1.2 Water Bodies

1.2 Industrial, Commercial and Transport
2.1 Arable Land

2.4 Heterogeneous Agricultural Areas
3.2 Scrub and/or Herbaceous Associations
1 Artificial Surfaces

3 Forest and Seminatural Areas
Region Area Percentage

Air Temperature Percentage

A

Normalized Model
XGBoost Regressor
Objective: reg:squarederror
Tree method: exact

Hyperparameters tuned via grid search + 10-fold CV

A

Output

Predicted Regional PV Capacity
(as % of National, then converted to MW)

Figure 4.7: Flow chart of the normalized XGBoost model trained under the mixed hold-out
configuration, showing all input features, model configuration, and predicted output.
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4.6.4 Feature Importance Based on SHAP Values

Table 4.12: SHAP value contributions of features in the absolute XGBoost model trained
under the mixed hold-out configuration. The mean SHAP value represents the average ab-
solute SHAP value for each feature across all observations. The percentage contribution is
calculated by dividing the mean absolute SHAP value of each feature by the sum of mean ab-
solute SHAP values for all features, and then multiplying by 100 as shown in Equation (4.2).
Percentage contributions are rounded to one decimal place and may not sum to exactly 100%
due to rounding.

Feature Mean SHAP
SHAP Contribution
Value (%)

1.1 Urban Fabric (m?) 0.92 21.3

National PV Capacity (MWp) 0.75 17.2

1 Artificial Surfaces (m?) 0.71 16.4

2 Agricultural Areas (m?) 0.44 10.2

1.2.1 Industrial or Commercial Units (m?) 0.29 6.6

3.1.2 Coniferous Forest (m?) 0.28 6.5

1.1.2 Discontinuous Urban Fabric (m?) 0.27 6.3

2.1.1 Non-Trrigated Arable Land (m?) 0.23 5.3

1.2 Industrial, Commercial and Transport Units (m?) 0.17 3.9

Median Age (years) 0.14 3.3

2.1 Arable Land (m?) 0.12 2.9
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Table 4.13: SHAP value contributions of features in the normalized XGBoost model trained
under the mixed hold-out configuration. All features presented are normalized relative to
national values and expressed as percentages. The mean SHAP value represents the average
absolute SHAP value for each feature across all observations. The percentage contribution
is calculated by dividing the mean absolute SHAP value of each feature by the sum of mean
absolute SHAP values for all features, and then multiplying by 100 as shown in Equation (4.2).
Percentage contributions are rounded to one decimal place and may not sum to exactly 100%
due to rounding.

Feature Mean SHAP
SHAP Contribution
Value (%)
2.4 Heterogeneous agricultural areas 0.81 17.2
GHI 0.49 10.5
2 Agricultural Areas 0.47 10.0
5 Water Bodies 0.46 9.8
1 Artificial Surfaces 0.20 4.3
2.2.1 Vineyards 0.20 4.3
5.1.1 Water courses 0.19 4.1
3.1.3 Mixed forest 0.17 3.6
1.3.1 Mineral extraction sites 0.14 3.0
2.1.1 Non-irrigated arable land 0.14 2.9
1.1.1 Continuous urban fabric 0.13 2.7
Air temperature 0.12 2.6
3.1.1 Broad-leaved forest 0.11 2.4
2.1 Arable land 0.11 2.3
3.2 Scrub and/or herbaceous associations 0.10 2.2
1.3.2 Dump sites 0.10 2.2
1.1.2 Discontinuous urban fabric 0.07 1.5
1.2.1 Industrial or commercial units 0.07 14

1.3.3 Construction sites 0.06 1.3
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Feature Mean SHAP
SHAP Contribution
Value (%)

1.2.4 Airports 0.06 1.2
2.4.2 Complex cultivation patterns 0.05 1.1
3.1.2 Coniferous forest 0.05 1.1

3 Forest And Seminatural Areas 0.05 1.0
2.2.2 Fruit trees and berry plantations 0.04 0.9
3.2.4 Transitional woodland-scrub 0.04 0.8
2.1.3 Rice fields 0.03 0.7
1.2.2 Road and rail networks and associated land 0.03 0.7
2.4.3 Land principally occupied by agriculture with 0.03 0.6
natural vegetation

1.2 Industrial, commercial and transport units 0.02 0.5
Region area 0.02 0.5
2.4.4 Agro-forestry areas 0.02 0.4
4.1.1 Inland marshes 0.02 0.4

5.1 Inland waters 0.02 0.3
2.2.3 Olive groves 0.01 0.3
5.1.2 Water bodies 0.01 0.3

1.1 Urban fabric 0.01 0.3

2.2 Permanent crops 0.01 0.3

1.3 Mine, dump and construction sites 0.01 0.1

3.1 Forests 0.01 0.1
4.2.2 Salines 0.01 0.1
3.3.1 Beaches, dunes, sands 0.00 0.1
3.2.3 Sclerophyllous vegetation 0.00 0.0




4.6.5 Regional PV Capacity Predictions for 2023

Table 4.14: Actual and predicted regional solar PV capacity in 2023 using the XGBoost models trained under the mixed hold-out
configuration. Results are shown for both the absolute and normalized models. Percentages represent each region’s share of its
national total, while MW values denote capacity estimates in megawatts. “Scaled” values are adjusted to ensure that regional
totals match national capacity. Blank cells indicate regions with unavailable data, whereas 0.0 denotes regions with no installed
capacity within countries for which regional data exist.

NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
ALO1 Veri 10.31 28.77 16.8 46.9 3.9 72.2
AL02 Qender 11.96 33.38 19.5 54.4 34 63.5
ALO3 Jug 13.56 37.85 22.1 61.7 1.5 27.3
AT11 Burgenland 3.61 6.65 246.6 454.4 62.3 392.5
AT22 Steiermark 5.62 10.36 384.0 707.5 377.0 2374.3
AT33 Tirol 3.33 6.14 227.5 419.3 0.8 4.9
AT12 Niederosterreich 13.95 25.71 953.1 1756.1 188.1 1184.7
AT34 Vorarlberg 1.77 3.26 120.7 222.4 22.7 143.1
AT31 Oberésterreich 13.83 25.48 944.7 1740.7 408.2 2570.5
AT32 Salzburg 2.33 4.3 159.3 293.6 24 15.1
AT21 Kérnten 8.69 16.02 593.8 1094.1 1.2 7.5
AT13 Wien 1.14 2.1 77.9 143.6 22.1 139.2
BE24 Prov. Vlaams-Brabant 9.19 808.0 8.89 8.94 781.4 785.8 778.5 783.5

THAOW NVHJOHNH 'V HHLdVHO

vl



NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled

(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs

(%) (MW) (MW)

BE25 Prov. West-Vlaanderen 15.62 1373.1 15.88 15.96 1395.2 1403.0 1343.2 1351.7
BE22 Prov. Limburg (BE) 9.06 796.7 12.02 12.09 1056.5 1062.4 827.2 832.4

BE23 Prov. Oost-Vlaanderen 19.77 1737.2 17.54 17.64 1541.4 1550.0 1735.9 1746.9
BE10 Région de Bruxelles-Capitale/ Brussels 3.42 300.5 1.8 1.81 158.4 159.3 300.1 302.0

Hoofdste...

BE21 Prov. Antwerpen 19.72 1733.5 17.6 17.7 1547.1 1555.7 1669.9 1680.5
BE33 Prov. Liege 9.69 851.7 9.93 9.98 872.5 877.4 857.1 862.5
BE31 Prov. Brabant Wallon 1.82 159.5 2.55 2.56 224.2 225.4 158.6 159.6
BE32 Prov. Hainaut 6.83 600.4 7.02 7.06 617.0 620.4 626.8 630.8
BE34 Prov. Luxembourg (BE) 2.16 189.9 2.62 2.63 230.0 231.3 191.7 192.9
BE35 Prov. Namur 2.71 238.3 3.6 3.62 316.1 317.9 244.5 246.1
BG33 Severoiztochen 8.28 12.7 243.1 373.1 64.0 715.0

BG34 Yugoiztochen 11.45 17.58 336.4 516.3 145.6 1627.7
BG41 Yugozapaden 11.64 17.87 342.0 525.0 8.5 94.9
BG32 Severen tsentralen 9.52 14.62 279.8 429.4 15.9 177.6
BG42 Yuzhen tsentralen 12.23 18.76 359.1 551.2 15.0 167.2
BG31 Severozapaden 12.03 18.46 353.3 542.2 13.8 154.8

CHO5 Ostschweiz 11.19 20.2 653.4 1179.5 106.2 1078.6
CHO1 Région lémanique 14.9 26.89 869.9 1570.4 47.8 485.3
CHO7 Ticino 2.5 4.52 146.3 264.0 4.1 41.4
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
CHO06 Zentralschweiz 7.87 14.2 459.4 829.2 26.7 271.0
CHO02 Espace Mittelland 14.67 26.49 856.9 1546.9 242.6 2463.6
CHO03 Nordwestschweiz 2.06 3.72 120.4 217.3 73.7 748.6
CHO4 Zirich 2.21 3.98 128.8 232.5 74.0 751.5
CY00 Kypros 15.64 100.0 94.8 606.0 0.3 606.0
CZ02 St¥edni Cechy 10.44 16.0 260.9 399.9 2.1 107.1
CZ03 Jihozépad 9.85 15.1 246.2 377.3 7.2 372.6
CZ01 Praha 3.14 4.8 78.3 120.1 11.7 606.6
CZ06 Jihovychod 10.34 15.86 258.6 396.3 4.5 234.0
CZ05 Severovychod 9.18 14.08 229.6 351.9 5.8 300.0
CZ08 Moravskoslezsko 4.46 6.84 111.5 170.8 6.9 357.2
Cz04 Severozapad 10.6 16.24 264.9 406.0 0.1 2.7
Czo7 Stredni Morava 7.23 11.08 180.7 277.0 10.0 519.1
DEI12 Karlsruhe 2.43 2015.4 2.5 2.51 2073.7 2080.6 1457.0 2002.3
DE14 Tubingen 3.3 2741.7 3.75 3.76 3109.8 3120.1 2051.4 2819.2
DE13 Freiburg 2.69 2231.3 3.04 3.05 2518.5 2526.9 1752.6 2408.5
DE21 Oberbayern 5.73 4750.8 6.14 6.16 5090.7 5107.6 3469.0 4767.3
DEF0  Schleswig-Holstein 3.62 3003.8 3.89 3.9 3228.4 3239.1 2108.3 2897.4
DE30 Berlin 0.34 283.2 0.29 0.29 238.8 239.6 166.4 228.7
DEA1  Ddusseldorf 2.24 1861.0 1.96 1.97 1627.6 1633.0 1252.7 1721.5
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
DEGO  Thiiringen 2.97 2464.5 2.81 2.82 2332.0 2339.8 2012.5 2765.7
DEA2  Koln 2.33 1933.9 1.82 1.83 1513.0 1518.0 1087.4 1494.3
DE25 Mittelfranken 3.03 2515.4 2.82 2.82 2335.2 2342.9 1897.1 2607.0
DED2  Dresden 1.63 1350.7 1.85 1.85 1532.1 1537.2 1056.9 1452.5
DE50 Bremen 0.12 98.2 0.14 0.14 114.7 115.1 50.5 69.4
DE60 Hamburg 0.17 138.0 0.23 0.24 194.2 194.9 78.5 107.9
DECO  Saarland 1.05 869.6 0.87 0.87 719.2 721.6 663.1 911.3
DEA4  Detmold 2.28 1895.7 2.27 2.28 1883.8 1890.0 1409.6 1937.2
DE72 Gieflen 1.12 932.1 1.1 1.1 908.3 911.3 622.4 855.3
DEEO  Sachsen-Anhalt 4.98 4127.9 4.69 4.71 3892.6 3905.5 3416.7 4695.5
DED5  Leipzig 1.35 1122.2 1.36 1.36 1128.9 1132.7 801.2 1101.1
DED4  Chemnitz 1.28 1062.1 1.37 1.37 1135.1 1138.9 778.0 1069.2
DE22 Niederbayern 5.43 4504.6 6.14 6.16 5091.6 5108.5 3397.3 4668.7
DEB3  Rheinhessen-Pfalz 1.93 1604.5 24 241 1994.8 2001.5 1181.0 1623.0
DE11 Stuttgart 4.06 3366.4 4.26 4.28 3537.7 3549.5 2433.2 3343.8
DE40 Brandenburg 8.02 6652.6 7.29 7.31 6047.4 6067.5 4747.2 6523.9
DE26 Unterfranken 3.04 2523.6 2.76 2.77 2293.5 2301.1 1685.8 2316.8
DE93 Liineburg 1.59 1318.3 1.66 1.66 1374.5 1379.1 933.1 1282.3
DEY%4 Weser-Ems 4.17 3461.4 4.54 4.56 3766.7 3779.2 2579.0 3544.2
DEA5  Arnsberg 1.98 1643.3 1.82 1.82 1506.5 1511.5 1130.7 1553.9
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
DE24 Oberfranken 2.32 1927.9 2.08 2.08 1720.9 1726.6 1306.6 1795.6
DEB2  Trier 1.38 1142.1 1.08 1.08 897.4 900.3 719.8 989.1
DE91 Braunschweig 1.19 990.8 1.18 1.19 982.9 986.2 634.7 872.2
DES8O0 Mecklenburg-Vorpommern 4.56 3784.8 3.35 3.36 2778.3 2787.5 2791.6 3836.4
DE23 Oberpfalz 341 2829.4 3.08 3.09 2554.1 2562.6 1967.6 2704.0
DEA3  Miinster 3.09 2560.0 3.11 3.12 2580.2 2588.8 1884.9 2590.4
DE27 Schwaben 4.24 3521.1 5.19 5.2 4302.6 4316.9 2831.0 3890.6
DET71 Darmstadt 1.79 1483.3 1.72 1.73 1428.9 1433.7 991.6 1362.8
DE73 Kassel 1.64 1356.7 1.9 1.91 1578.1 1583.3 1078.7 1482.5
DE92 Hannover 1.65 1369.3 1.47 1.48 1222.0 1226.1 977.3 1343.1
DEB1  Koblenz 1.69 1405.4 1.74 1.75 1445.9 1450.7 961.0 1320.6
DKO01 Hovedstaden 10.13 15.93 357.4 562.1 63.7 381.4
DKO02 Sjeelland 13.07 20.56 461.2 725.5 3.2 19.4
DKO03 Syddanmark 15.14 23.81 534.1 840.2 323.5 1937.3
DKO04 Midtjylland 13.95 21.94 492.2 774.2 28.6 171.3
DKO05 Nordjylland 11.29 17.76 398.5 626.9 170.3 1019.7
EE00 Eesti 12.77 100.0 88.1 690.0 3.0 690.0
EL53 Dytiki Makedonia 6.27 6.52 440.8 458.0 20.6 225.7
EL64 Sterea Ellada 7.44 7.73 522.7 543.2 9.3 101.4
EL54 Ipeiros 8.22 8.54 577.7 600.4 1.0 11.2
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
EL43 Kriti 3.39 3.52 238.2 247.5 11.7 128.2
EL65 Peloponnisos 10.01 104 703.7 731.3 2.2 24.2
EL30 Attiki 3.82 3.97 268.3 278.8 22.5 246.1
EL51 Anatoliki Makedonia, Thraki 7.8 8.1 548.2 569.7 155.7 1705.2
EL41 Voreio Aigaio 6.46 6.72 454.3 472.1 46.5 509.6
EL62 Tonia Nisia 2.09 2.17 146.8 152.6 51.9 568.4
EL63 Dytiki Ellada 11.53 11.98 810.4 842.1 0.4 4.5
EL61 Thessalia 9.81 10.2 689.7 716.7 192.1 2103.7
EL52 Kentriki Makedonia 12.23 12.71 859.9 893.6 8.5 92.6
EL42 Notio Aigaio 7.17 7.45 504.3 524.0 119.5 1309.2
ES53 Illes Balears 1.03 1.1 265.6 281.1 113.6 132.2
ES61 Andalucia 21.17 5434.6 20.05 21.21 5146.0 5446.1 5091.5 5929.4
ES62 Regién de Murcia 6.12 1572.3 9.5 10.05 2438.6 2580.9 1732.9 2018.1
ES63 Ciudad de Ceuta 0.47 0.5 121.5 128.6 21.7 25.3
ES64 Ciudad de Melilla 0.4 0.42 101.5 107.4 23.6 27.5
ES11 Galicia 0.07 18.9 0.41 0.43 104.1 110.2 21.5 25.0
ES13 Cantabria 0.02 5.0 0.04 0.05 11.6 12.3 4.1 4.8
ES42 Castilla-La Mancha 23.89 6132.5 17.2 18.21 4416.2 4673.7 4520.9 5264.9
ES43 Extremadura 24.97 6410.0 14.27 15.1 3663.5 3877.1 5554.9 6469.1
ES41 Castilla y Leén 7.6 1950.3 9.4 9.95 2413.7 2554.5 1500.2 1747.1
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
ES22 Comunidad Foral de Navarra 0.67 171.6 1.67 1.77 428.8 453.8 174.4 203.1
ES12 Principado de Asturias 0.0 1.2 -0.02 -0.02 -4.6 -4.9 1.7 1.9
ES52 Comunitat Valenciana 1.76 452.6 4.78 5.06 1227.7 1299.3 521.3 607.1
ES21 Pais Vasco 0.21 53.5 0.48 0.51 123.6 130.8 63.9 74.5
ES24 Aragén 9.4 2411.9 6.32 6.69 1622.0 1716.6 2003.8 2333.5
ES30 Comunidad de Madrid 0.25 63.5 1.27 1.35 326.6 345.6 78.7 91.7
ES70 Canarias 2.43 2.58 624.5 660.9 153.5 178.8
ES51 Catalunia 1.26 324.1 3.66 3.88 940.5 995.4 357.6 416.5
ES23 La Rioja 0.4 102.2 1.11 1.18 285.8 302.5 104.3 121.5
FI1B Helsinki-Uusimaa 3.34 12.37 30.1 111.4 2.9 175.9
FI120 Aland 1.66 6.15 14.9 55.3 3.3 198.1
FI1C Eteld-Suomi 8.13 30.12 73.2 271.1 3.5 209.4
FI1D Pohjois- ja [t4-Suomi 6.91 25.58 62.2 230.3 3.5 211.9
FI19 Lénsi-Suomi 6.96 25.77 62.6 232.0 1.7 104.7
FR10 Ile-de-France 1.63 321.1 1.68 1.63 330.2 321.6 316.6 315.1
FRBO  Centre — Val de Loire 4.86 956.6 3.45 3.36 678.5 661.0 965.6 961.0
FRI2 Limousin 2.62 515.1 2.22 2.17 437.7 426.4 510.8 508.4
FRI3 Poitou-Charentes 5.77 1135.4 4.98 4.85 980.2 955.0 1113.8 1108.5
FRD2 Haute-Normandie 0.87 172.1 1.32 1.28 259.8 253.1 179.7 178.8
FRD1 Basse-Normandie 1.17 230.0 1.45 1.41 285.6 278.2 242.9 241.8
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
FRE2  Picardie 1.31 257.8 1.08 1.05 212.9 207.4 250.6 249.4
FRK2  Rhone-Alpes 7.14 1406.1 8.14 7.93 1602.2 1560.9 1415.6 1408.9
FRMO  Corse 1.17 230.4 1.42 1.38 279.0 271.8 228.2 227.1
FRF1 Alsace 2.13 418.8 2.03 1.98 400.2 389.9 379.9 378.1
FRE1 Nord-Pas de Calais 1.49 293.0 1.82 1.77 357.4 348.1 297.0 295.6
FRY4  La Réunion 1.22 241.0 1.11 1.08 218.2 212.6 243.5 242.3
FRY5 Mayotte 1.11 1.08 218.2 212.6 71.1 70.7
FRJ2 Midi-Pyrénées 9.75 1919.3 9.57 9.32 1883.3 1834.7 1959.2 1949.9
FRGO  Pays de la Loire 6.22 1224.8 6.06 5.91 1193.9 1163.1 1235.2 1229.3
FRY3 Guyane 1.11 1.08 218.2 212.6 67.1 66.8
FRF2 Champagne-Ardenne 2.12 417.3 1.72 1.68 339.5 330.7 409.2 407.2
FRLO Provence-Alpes-Céte d’Azur 11.56 2276.4 12.11 11.8 2384.7 2323.2 2231.8 2221.2
FRY1 Guadeloupe 1.11 1.08 218.2 212.6 100.6 100.1
FRY2 Martinique 1.11 1.08 218.2 212.6 88.8 88.4
FRI1 Aquitaine 14.58 2871.1 14.67 14.3 2888.7 2814.2 2858.3 2844.7
FRF3 Lorraine 3.11 611.8 2.68 2.61 528.2 514.6 638.6 635.6
FRC2  Franche-Comté 1.13 222.0 1.35 1.32 265.8 258.9 213.0 211.9
FRK1  Auvergne 4.29 845.0 4.01 3.91 789.9 769.6 868.4 864.3
FRC1 Bourgogne 3.01 592.4 2.51 2.45 494.8 482.0 579.4 576.6
FRJ1 Languedoc-Roussillon 8.93 1758.5 9.84 9.59 1937.3 1887.3 1789.5 1781.0
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
FRHO  Bretagne 2.76 543.8 2.98 2.91 587.6 572.4 527.0 524.5
HRO02 Panonska Hrvatska 13.2 34.25 60.8 157.8 2.0 206.9
HRO3 Jadranska Hrvatska 11.98 31.07 55.2 143.1 0.3 37.0
HRO6 Sjeverna Hrvatska 10.89 28.26 50.2 130.2 2.0 207.8
HRO5 Grad Zagreb 2.48 6.43 11.4 29.6 0.1 9.0
HU22 Nyugat-Dunéntl 8.57 12.38 500.4 722.1 105.5 442 .4
HU31 Eszak-Magyarorszig 9.13 13.17 532.5 768.6 215.7 904.4
HU23 Dél-Dunéantul 9.56 13.79 557.7 804.8 115.0 482.3
HU12 Pest 5.83 8.41 340.1 490.8 341.9 1433.7
HU11 Budapest 1.97 2.84 114.8 165.7 8.3 34.8
HU21 Kozép-Dunéntul 9.35 13.49 545.5 787.3 149.9 628.7
HU32 Eszak-Alféld 12.28 17.73 716.8 1034.6 279.0 1169.9
HU33 Dél-Alfold 12.6 18.18 735.2 1061.1 176.2 738.8
TE06 Eastern and Midland 12.85 32.92 94.8 243.0 0.5 506.5
1E04 Northern and Western 10.02 25.68 74.0 189.6 0.0 29.2
TIE05 Southern 16.16 41.4 119.2 305.5 0.2 202.4
1S00 Island 3.7 100.0 0.3 7.0 0.0 7.0
1TG2 Sardegna 4.42 1337.0 4.07 4.14 1232.5 1254.0 1339.8 1370.7
ITH1 Provincia Autonoma di Bolzano/Bozen 0.4 0.4 119.7 121.8 2.0 2.1
ITH4 Friuli-Venezia Giulia 2.89 873.8 2.5 2.55 757.9 771.1 873.0 893.1
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
ITI1 Toscana 4.04 1223.3 4.13 4.21 1251.7 1273.5 1189.0 1216.4
ITI2 Umbria 2.08 631.5 2.38 2.42 721.3 733.9 627.7 642.2
ITH5 Emilia-Romagna 10.0 3027.1 9.99 10.17 3026.6 3079.4 3020.1 3089.7
ITG1 Sicilia 7.15 2163.9 6.92 7.04 2095.3 2131.9 2172.5 2222.5
ITI4 Lazio 6.74 2041.4 6.63 6.75 2008.8 2043.9 2068.7 2116.3
ITH3 Veneto 10.45 3164.0 9.65 9.82 2921.3 2972.4 3138.7 3211.0
ITH2 Provincia Autonoma di Trento 0.8 0.82 2424 246.7 1.1 1.1
ITF5 Basilicata 1.66 501.5 1.9 1.94 576.1 586.2 510.7 522.5
ITF6 Calabria 2.41 730.8 2.6 2.65 787.7 801.4 752.6 769.9
ITC3 Liguria 0.62 187.3 0.55 0.56 167.8 170.7 188.6 192.9
ITC2 Valle d’Aosta/Vallée d’Aoste 0.12 34.9 0.19 0.19 57.5 58.5 34.6 35.4
ITF1 Abruzzo 3.21 972.9 3.47 3.53 1051.1 1069.5 955.8 977.8
ITF2 Molise 0.69 208.2 0.91 0.92 274.2 279.0 205.2 209.9
ITC4 Lombardia 13.39 4056.1 11.75 11.95 3557.1 3619.2 4024.3 4116.9
ITF3 Campania 4.05 1226.2 3.91 3.98 1185.4 1206.1 1203.5 1231.2
ITC1 Piemonte 8.44 2557.0 8.16 8.3 2471.0 2514.2 2577.4 2636.7
ITI3 Marche 4.5 1362.6 5.24 5.33 1585.7 1613.4 1367.0 1398.5
ITF4 Puglia 10.92 3306.1 12.12 12.33 3670.5 3734.6 3347.9 3425.0
LT02 Vidurio ir vakary Lietuvos regionas 12.48 50.46 145.4 587.9 6.2 1053.9
LTo1 Sostinés regionas 12.26 49.54 142.8 577.1 0.7 111.1

THAOW NVHJOHNH 'V HHLdVHO

6V1



NUTS Region Pred. Scaled Pred. Scaled Pred. Scaled
Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
LU00 Luxembourg 14.62 100.0 63.1 431.6 2.4 431.6
Lvoo Latvija 12.76 100.0 45.1 353.0 0.3 353.0
MEOQ0 Crna Gora 12.03 100.0 5.0 41.8 0.0 41.8
MEKOO  Severna Makedonija 12.9 100.0 69.0 534.6 0.1 534.6
MTO00  Malta 15.18 100.0 35.1 231.0 0.5 231.0
NL12 Friesland (NL) 5.8 5.83 1387.1 1394.5 186.0 2141.4
NL13 Drenthe 6.24 6.28 1492.6 1500.5 34.4 396.6
NL11 Groningen 6.34 6.37 1514.4 1522.5 92.1 1060.5
NL41 Noord-Brabant 12.44 12.5 2973.0 2988.9 499.2 5748.7
NL42 Limburg (NL) 11.75 11.81 2809.1 2824.1 344.3 3965.2
NL22 Gelderland 12.47 12.54 2981.3 2997.2 21.5 247.3
NL34 Zeeland 5.88 5.91 1405.7 1413.2 95.0 1094.3
NL23 Flevoland 4.44 4.46 1061.6 1067.2 49.1 564.9
NL31 Utrecht 5.46 5.49 1306.3 1313.3 91.0 1047.5
NL32 Noord-Holland 10.28 10.33 2457.1 2470.2 22.4 258.5
NL33 Zuid-Holland 7.18 7.21 1715.4 1724.6 384.1 4423.5
NL21 Overijssel 11.18 11.24 2673.7 2688.0 256.7 2955.6
NOO02 Innlandet 3.55 15.62 21.8 96.2 0.0 0.2
NOO06 Trgndelag 7.12 31.36 43.8 193.1 0.0 3.1
NOO07 Nord-Norge 4.28 18.84 26.3 116.0 0.0 4.4
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
NOO08 Oslo og Viken 1.84 8.11 11.3 50.0 1.2 232.9
NO09 Agder og Sgr-@stlandet 1.0 4.4 6.2 27.1 0.3 70.0
NOOA  Vestlandet 3.81 16.78 23.5 103.3 0.6 121.8
NOOB  Jan Mayen and Svalbard 1.11 4.88 6.8 30.1 0.9 183.3
PL22 Slaskie 5.43 6.06 858.2 958.9 666.2 1437.5
PL61 Kujawsko-pomorskie 3.29 3.68 520.4 581.5 735.3 1586.6
PL41 Wielkopolskie 5.69 6.35 899.0 1004.5 416.3 898.3
PL62 Warminsko-mazurskie 3.04 3.4 481.4 537.9 522.2 1126.8
PL42 Zachodniopomorskie 5.67 6.33 896.3 1001.4 344.7 743.9
PL51 Dolnoslaskie 5.36 5.99 847.6 947.0 948.8 2047.5
PL52 Opolskie 3.64 4.07 575.8 643.4 369.5 797.4
PL71 Lédzkie 6.09 6.8 962.4 1075.3 991.6 2139.9
PL63 Pomorskie 3.93 4.39 621.9 694.9 183.8 396.6
PL43 Lubuskie 3.29 3.67 519.8 580.8 602.1 1299.2
PL92 Mazowiecki regionalny 9.91 11.07 1566.6 1750.4 197.8 426.7
PL72 Swietokrzyskie 3.38 3.78 534.2 596.9 336.3 725.7
PL82 Podkarpackie 5.38 6.01 850.4 950.2 150.5 324.9
PL81 Lubelskie 8.55 9.55 1351.0 1509.6 228.9 493.9
PL21 Matopolskie 5.04 5.63 797.0 890.6 190.7 411.5
PL84 Podlaskie 7.49 8.36 1183.6 1322.5 8.7 18.8
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
PLI1 Warszawski stoteczny 4.32 4.83 683.4 763.6 432.9 934.2
PT17 Area Metropolitana de Lisboa 4.28 7.01 165.9 271.7 5.6 26.5
PT16 Centro (PT) 14.87 24.36 576.4 944.2 115.7 546.2
PT18 Alentejo 16.88 27.66 654.4 1072.0 10.2 48.2
PT15 Algarve 4.33 7.09 167.8 274.9 18.2 86.0
PT11 Norte 16.67 27.3 646.0 1058.2 626.5 2956.7
PT20 Regido Auténoma dos Acgores 2.32 3.8 89.8 147.1 39.8 187.7
PT30 Regido Auténoma da Madeira 1.7 2.79 66.0 108.1 5.3 25.0
RO21 Nord-Est 8.11 12.96 155.5 248.4 1.3 12.9
RO31 Sud-Muntenia 10.08 16.11 193.3 308.8 72.3 734.6
RO22 Sud-Est 10.64 17.0 204.0 325.9 43.1 438.5
RO12 Centru 7.99 12.77 153.2 244.8 5.2 52.8
RO11 Nord-Vest 7.43 11.87 142.4 227.5 4.2 42.8
RO32 Bucuresti-Ilfov 1.48 2.37 28.4 45.4 24.4 248.1
RO41 Sud-Vest Oltenia 9.11 14.55 174.5 278.8 31.7 322.3
RO42 Vest 7.75 12.38 148.5 237.2 6.4 65.1
RS21 Region Sumadije i Zapadne Srbije 10.69 25.86 14.6 35.4 0.5 11.5
RS12 Autonomous Province of Vojvodina 11.41 27.59 15.6 37.8 1.0 25.2
RS22 Region Juzne i Isto¢ne Srbije 10.87 26.3 14.9 36.0 3.3 79.5
RS11 City of Belgrade 8.37 20.25 11.5 27.7 0.8 20.7
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
SE11 Stockholm 2.33 7.49 81.3 261.2 27.9 183.4
SE12 Ostra Mellansverige 4.17 13.4 145.5 467.4 151.4 995.8
SE21 Smaland med 6arna 8.09 25.99 282.1 906.5 18.5 121.7
SE23 Véstsverige 4.51 14.48 157.2 505.2 107.6 707.2
SE33 Ovre Norrland 3.16 10.16 110.3 354.4 0.4 2.4
SE31 Norra Mellansverige 2.07 6.65 72.2 231.8 108.2 711.2
SE32 Mellersta Norrland 2.84 9.13 99.1 318.5 26.1 171.3
SE22 Sydsverige 3.95 12.7 137.9 442.9 90.5 595.0
S104 Zahodna Slovenija 12.35 48.0 127.7 496.4 1.0 578.6
S103 Vzhodna Slovenija 13.38 52.0 138.4 537.8 0.8 455.6
SKO03 Stredné Slovensko 10.95 24.94 69.1 157.4 5.1 50.3
SK04 Vychodné Slovensko 9.92 22.59 62.6 142.5 1.3 12.7
SK02 Zapadné Slovensko 14.82 33.76 93.5 213.0 48.0 471.8
SKO01 Bratislavsky kraj 8.22 18.72 51.9 118.1 9.8 96.3
TR82 Kastamonu, Cankiri, Sinop 1.58 1.7 177.9 191.9 4.4 46.8
TRC2 Sanliurfa, Diyarbakir 7.86 8.48 887.7 957.5 90.2 963.5
TRC3 Mardin, Batman, Sirnak, Siirt 2.67 2.88 301.9 325.7 12.3 131.2
TRS81 Zonguldak, Karabiik, Bartin 0.6 0.64 67.2 72.5 0.1 0.6
TRB2 Van, Mus, Bitlis, Hakkari 6.64 7.17 750.4 809.4 174 186.3
TRS&3 Samsun, Tokat, Corum, Amasya 2.24 2.42 253.0 272.9 70.0 747.5
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
TR90 Trabzon, Ordu, Giresun, Rize, Artvin, 1.36 1.47 154.2 166.3 0.3 3.6
Gumiigshane
TR71 Kirikkale, Aksaray, Nigde, Nevgehir, 3.52 3.8 397.7 429.0 176.3 1882.2
Kirsehir
TRC1 Gaziantep, Adiyaman, Kilis 2.37 2.56 267.4 288.5 7.8 83.8
TRA2  Agn, Kars, Igdir, Ardahan 1.6 1.73 181.0 195.3 5.8 62.4
TRB1 Malatya, Elazig, Bingdl, Tunceli 6.0 6.48 678.0 731.4 14 15.2
TRA1 Erzurum, Erzincan, Bayburt 2.38 2.57 268.6 289.8 6.3 67.3
TR63 Hatay, Kahramanmarag, Osmaniye 3.29 3.55 371.5 400.7 0.7 7.0
TR72 Kayseri, Sivas, Yozgat 2.74 2.95 309.2 333.5 78.2 835.3
TR61 Antalya, Isparta, Burdur 8.51 9.18 961.0 1036.6 0.0 0.5
TR62 Adana, Mersin 3.91 4.21 441.0 475.7 0.4 4.7
TR33 Manisa, Afyonkarahisar, Kutahya, Usak 10.39 11.2 1172.9 1265.1 205.5 2194.0
TRA41 Bursa, Eskisehir, Bilecik 7.97 8.6 899.7 970.5 0.5 4.9
TR21 Tekirdag, Edirne, Kirklareli 2.54 2.73 286.2 308.7 33.6 358.8
TRA42 Kocaeli, Sakarya, Diizce, Bolu, Yalova 0.98 1.06 111.0 119.8 1.2 13.1
TR22 Balikesir, Canakkale 0.66 0.71 74.2 80.0 26.4 282.1
TR31 [zmir 1.18 1.27 132.7 143.1 0.0 0.2
TR10 Istanbul 0.18 0.19 19.9 21.5 176.0 1880.0
TR32 Aydin, Denizli, Mugla 2.3 2.48 259.2 279.6 0.8 8.9
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
TR51 Ankara 2.53 2.73 286.0 308.5 9.8 105.0
TR52 Konya, Karaman 6.72 7.24 758.4 818.1 131.7 1406.7
UKG1  Herefordshire, Worcestershire and 3.14 517.2 2.58 2.77 423.4 455.0 503.6 528.3
Warwickshire
UKL2  East Wales 3.22 530.3 2.32 2.49 380.9 409.3 533.7 560.0
UKM5  North Eastern Scotland 0.0 0.0 0.18 0.2 30.4 32.6 0.0 0.0
UKM6  Highlands and Islands 0.0 0.0 -0.01 -0.01 -1.3 -1.4 0.0 0.0
UKF3  Lincolnshire 3.24 532.2 2.73 2.94 449.1 482.6 530.6 556.7
UKK3  Cornwall and Isles of Scilly 3.74 615.4 4.68 5.03 770.0 827.5 636.3 667.6
UKMS8  West Central Scotland 0.0 0.0 0.1 0.11 17.1 18.3 0.0 0.0
UKM9  Southern Scotland 0.0 0.0 0.06 0.06 9.0 9.7 0.0 0.0
UKJ1 Berkshire, Buckinghamshire and 5.1 839.4 4.93 5.3 811.5 872.1 812.6 852.6
Oxfordshire
UKM?7 Eastern Scotland 0.0 0.0 0.15 0.16 25.3 27.1 0.0 0.0
UKG2  Shropshire and Staffordshire 3.23 531.8 2.82 3.03 463.5 498.1 539.0 565.5
UKH3  Essex 2.94 483.4 2.6 2.79 426.9 458.8 460.7 483.4
UKL1 West Wales and The Valleys 5.74 943.5 4.82 5.18 792.8 852.0 935.8 981.9
UKNO  Northern Ireland 0.14 0.15 23.4 25.2 0.0 0.0
UKC1  Tees Valley and Durham 0.96 157.8 1.03 1.11 169.3 181.9 156.4 164.1
UKH2  Bedfordshire and Hertfordshire 2.3 377.5 2.06 2.22 338.9 364.2 368.4 386.5

THAOW NVHJOHNH 'V HHLdVHO

qqr



NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
UKE3  South Yorkshire 0.88 145.0 1.49 1.6 244.3 262.5 141.7 148.6
UKJ3 Hampshire and Isle of Wight 4.36 717.5 4.42 4.76 727.6 781.9 722.3 757.8
UKC2  Northumberland and Tyne and Wear 0.9 147.2 1.09 1.17 179.1 192.4 139.1 145.9
UKG3  West Midlands 0.85 140.0 1.02 1.09 167.1 179.6 136.2 142.9
UKD6  Cheshire 0.87 142.4 0.88 0.94 144.1 154.9 145.4 152.6
UKD7  Merseyside 0.56 92.9 0.68 0.72 111.0 119.3 87.8 92.1
UKH1  East Anglia 10.44 1716.2 9.75 10.48 1603.4 1723.1 1714.9 1799.4
UKI7 Outer London — West and North West 0.47 77.9 0.63 0.68 104.2 112.0 75.9 79.7
UKI3 Inner London — West 0.14 23.4 0.22 0.23 35.8 38.5 23.5 24.7
UKI4 Inner London — East 0.37 61.3 0.46 0.49 75.3 80.9 60.3 63.3
UKI5 Outer London — East and North East 0.46 76.2 0.51 0.55 83.7 89.9 76.5 80.2
UKD1  Cumbria 0.74 121.7 0.74 0.79 120.9 129.9 118.6 124.4
UKD3  Greater Manchester 1.23 201.8 1.38 1.48 226.5 243.5 200.0 209.8
UKD4  Lancashire 1.35 222.5 1.43 1.54 235.2 252.8 220.3 231.1
UKE4  West Yorkshire 1.07 176.7 1.41 1.51 231.1 248.4 168.1 176.4
UKE2  North Yorkshire 1.65 271.6 1.48 1.59 243.3 261.5 264.7 277.7
UKF1 Derbyshire and Nottinghamshire 4.2 691.2 4.11 4.42 676.1 726.6 716.8 752.1
UKJ4 Kent 3.08 507.0 2.89 3.11 475.9 511.5 520.9 546.5
UKI6 Outer London — South 0.37 60.6 0.48 0.51 78.3 84.2 62.1 65.2
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NUTS Region Actual Actual Pred. Scaled Pred. Scaled Pred. Scaled
(%) (MW) Norm Pred. Norm Pred. Abs Pred.
(%) Norm (MW) Norm (MW) Abs
(%) (MW) (MW)
UKF2 Leicestershire, Rutland and 3.98 654.8 3.36 3.61 552.2 593.4 667.7 700.6
Northamptonshire
UKK4 Devon 4.01 659.2 4.7 5.05 772.9 830.7 670.0 703.0
UKK1  Gloucestershire, Wiltshire and 8.57 1409.9 7.73 8.3 1270.9 1365.8 1474.6 1547.1
Bristol/Bath area
UKK2  Dorset and Somerset 5.67 931.7 5.66 6.09 931.4 1001.0 950.8 997.6
UKE1  East Yorkshire and Northern Lincolnshire  1.81 298.0 1.52 1.64 250.6 269.3 307.3 3224
UKJ2 Surrey, East and West Sussex 3.34 549.4 3.84 4.12 631.2 678.3 531.3 557.4
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4.6.6 Forecast Validation

To validate the forecasting framework used for the 2030 projection (shown in Figure 4.5),
we evaluate model performance over 2017-2023 by comparing two approaches: (i) a carry-
forward (naive) baseline that holds the 2016 regional distribution constant and scales it by
the national total of the target year, and (ii) a scaled normalized model trained on 2010-2016
data and evaluated on 2017-2023, which predicts regional shares using features observed
in 2016 (e.g., land cover, GHI, and temperature). Belgium (BE) is excluded from training
because regional capacity data were unavailable for 2010-2016.

For the naive approach, the regional share of national capacity is fixed at the base year:
PV = 59016, Nat™",

where s9016,; is the 2016 regional share of national capacity for region i, and Nati\/lw is the
national total capacity (MW) in year ¢. For share-based evaluation, the forecast share is
given by .§2§""’e = S2016,i, With Naut;%J = 1 representing the national total in fractional terms.

The scaled normalized model predicts regional shares 3; ; using features observed in 2016
and scales them by national totals to obtain MW forecasts:

Ag;:()del — gt,i Nat%\/[W

Table 4.15 reports regional error metrics for both approaches over the full 2017-2023
horizon and for 2023 only. When regional deployment patterns are stable, the naive carry-
forward baseline provides a strong reference and often achieves low errors. However, three

limitations are particularly relevant in this context:

1. In some cases, a share of the national PV capacity is not assigned to specific regions, so
the observed regional shares do not sum to one. The scaled normalized model ensures
that regional shares collectively equal the national total, redistributing this unlocated

capacity across regions. When model performance is evaluated only against the located
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subset, this redistribution can inflate apparent errors even if the underlying spatial

allocation is more accurate.

2. Where regional patterns evolve, the carry-forward assumption misallocates capacity,
whereas the scaled normalized model can adapt by reallocating capacity based on fea-

tures.

3. The carry-forward baseline cannot be applied in countries lacking baseline regional PV
capacity data, whereas the normalized model remains applicable wherever features are

available.

Overall, the naive baseline achieves strong accuracy over 2017-2023, reflecting persistence
in many settings. The scaled normalized model performs comparably overall but better
addresses the identified limitations. For the 2023-only evaluation, errors increase for both
methods, as expected, due to the longer forecast horizon. These results demonstrate that
the scaled normalized model provides a robust and transferable framework for forecasting

regional PV capacity, particularly where spatial distributions evolve over time.

Table 4.15: Regional error metrics for the naive carry-forward baseline and the scaled nor-
malized model. Models are evaluated over the full 20172023 horizon and for 2023 only.
Reported metrics are region-level R?, MAE, MSE, and RMSE, presented for both megawatts
(MW) and percentage shares (%).

Model Train Test Train Test Train Test Train Test
R? R? MAE MAE MSE MSE RMSE RMSE

2017-2023 horizon

naive benchmark (MW) N/A 0.94 N/A 83 N/A 56012 N/A 237
Scaled normalized model 0.99 0.92 36 130 3628 70475 60 265
(MW)

naive benchmark (%) N/A 0.91 N/A 0.38 N/A 1.36 N/A 1.16
Scaled normalized model 0.97 0.87 0.34 0.76 0.28 2.50 0.53 1.58
(%)

2023 only

naive benchmark (MW) N/A 091 N/A 193 N/A 183410 N/A 428
Scaled normalized model 0.99 0.89 36 240 3628 204618 60 452
(MW)

naive benchmark (%) N/A  0.86 N/A  0.65 N/A 2.53 N/A 1.59
Scaled normalized model 0.97 0.80 0.34 1.02 0.28 4.29 0.53 2.07

(%)
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Table 4.16: Country-level regional error metrics for 2023 comparing the naive carry-forward
baseline and the scaled normalized model across Germany (DE), Spain (ES), the United
Kingdom (UK), Belgium (BE), France (FR), and Italy (IT). Metrics are region-level R?,
MAE, MSE, RMSE, and MAPE (%). Belgium (BE) has missing naive values because regional
PV capacity data for 2010-2016 were unavailable.

\ R? MAE (MW) MSE (MW?) RMSE (MW) MAPE (%)
Country ‘ Naive Scaled ‘ Naive Scaled ‘ Naive Scaled ‘ Naive Scaled ‘ Naive Scaled
DE 0.96 0.92 181 262 71754 147471 268 384 10 13
ES 0.74 0.76 815 798 1347289 1282809 1161 1133 206 314
UK 0.98 0.94 38 66 3422 9528 58 98 11 1.36 x 10*¢
BE - 0.38 - 390 - 195617 - 442 - 89
FR 0.96 0.95 108 119 21223 24798 146 157 18 20
IT 0.95 0.92 165 189 72600 111582 269 334 11 15

Table 4.16 presents regional error metrics by country for the year 2023. In Germany,
France, and Italy, both approaches perform well, with MAPE values ranging between 10%
and 20% per region. In Spain, MAPE is high for both approaches because several regions have
very small 2023 capacities, making percentage errors highly sensitive to small denominators.
Moreover, regional data for Spain are only available from 2015, which may partly explain the
weaker performance relative to other countries. In the United Kingdom, MAPE for the scaled
model is inflated because several regions with zero observed 2023 capacity are predicted to
have small positive values; in contrast, the naive baseline predicts zero for those regions (2016
share = 0) and therefore yields finite percentage errors. Nevertheless, the remaining error
metrics indicate that forecast accuracy in the UK is very good overall. Belgium represents
a case where the model forecasts capacity in a country that was not included in training.
Although MAPE is higher (89%) than in countries within the training set, the other error

metrics remain reasonable given that the model was extrapolated to unseen data.



Chapter 5

Great Britain Model

5.1 Abstract

Great Britain aims to meet growing electricity demand and achieve a fully decarbonised grid
by 2035, targeting 70 GW of solar photovoltaic (PV) capacity. However, grid constraints and
connection delays hinder solar integration. To address these integration challenges, various
connection reform processes and policies are being developed [263]. This study supports the
connection reforms with a model that estimates regional PV capacity at the NUTS 3 level,
explaining 89% of the variation in capacity, with a mean absolute error of 20 MW and a na-
tional mean absolute percentage error of 5.4%. Artificial surfaces and agricultural areas are
identified as key factors in deployment. The model has three primary applications: disaggre-
gating national PV capacity into regional capacity, benchmarking regional PV deployment
between different regions, and forecasting future PV capacity distribution. These applications
support grid operators in generation monitoring and strategic grid planning by identifying
regions where capacity is likely to be concentrated. This can address grid connection delays,

plan network expansions, and resolve land-use conflicts.
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5.2 Introduction

The demand for electricity in Great Britain is projected to grow significantly, potentially
increasing by 65% by 2035. To address this rising demand, the UK government has set
ambitions goals including achieving a fully decarbonised electricity system [264] and installing
70 GW of solar power by 2035 [265].

Significant progress has already been made, with 2023 marking the first year that renew-
able energy generation surpassed fossil fuel generation in Britain. However, the electricity
grid faces mounting challenges as it nears its capacity limits. Investment in renewable gen-
eration has outpaced spending on transmission infrastructure over the past decade, creating
constraints that restrict the grid’s ability to transport electricity. Consequently, energy is
sometimes wasted when renewable sources are curtailed to prevent grid overloading [264].

A major obstacle to scaling up renewable energy, including solar PV, is grid connection
delays. As of October 2024, 732 GW of projects were queued to connect to Great Britain’s
transmission network, with renewables accounting for approximately 363 GW [74]. The queue
grows as investors hedge their bets on where grid connection approvals might be granted,
submitting multiple speculative applications for the same or similar projects in different
locations. This strategy is often employed to improve the likelihood of securing a connection
in a system where the timing and location of approvals are uncertain. However, this approach
leads to an artificially inflated connection queue, as many of these projects are unlikely to
materialize. It also creates inefficiencies for grid operators, who must process and manage a
large volume of speculative applications, slowing down the approval process for viable projects
[75]. These delays are further exacerbated by insufficient physical network infrastructure,
such as cables, transformers, and substations, which are critical for accommodating new
connections [76, 77]. This reflects the growing strain on Great Britain’s grid in the context of
a rapidly decarbonizing energy system, a challenge mirrored globally as countries transition
from fossil fuels to renewable energy sources [78].

To tackle these challenges, the UK has introduced the Connections Reform initiative

to improve the efficiency of the grid connection process [78, 75]. Historically, this process
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has been reactive, addressing individual connection requests with little consideration of the
broader network needs. The reform aims to streamline the process, prioritize projects nearing
completion, and enhance transparency for developers. However, these measures alone cannot
resolve the underlying need for a comprehensive, long-term strategy to align grid development
with future energy demand and renewable deployment [266, 267].

Strategic planning is especially important for solar PV deployment. Limited data on
installations, due to General Data Protection Regulation (GDPR) and commercial data re-
strictions, complicate efforts to plan and invest in grid infrastructure effectively [76], and
reduces the accuracy of PV generation estimates [77]. The lack of Distribution Network
Operator (DNO) targets for new PV grid connections is also a barrier to reaching the UK’s
target of 70 GW by 2035 [77]. Moreover, accurate regional capacity modelling is critical for
reducing errors in PV generation estimates. While the national capacity error is around 5%
[49], regional errors are likely higher given that aggregation reduces the error.

Developing a model to estimate regional PV capacity based on geographical factors (social,
economic, land use, and climatic) could address these challenges by proactively identifying
regions where grid development might be needed. The model could help with setting realistic
PV connection targets for DNOs and provide more accurate estimates of regional PV ca-
pacity, thereby improving generation monitoring. A regional PV capacity model could help
policymakers identify areas where deployment lags behind expectations, enabling targeted
interventions to support underserved regions.

While we focus on the GB system in this paper, the issues are shared amongst countries.
For example, grid connection constraints present significant challenges in various countries,
including Austria [80], Bulgaria [80], Croatia [81], Chile [82], Finland [81], France [81], Ger-
many [81], Greece [81, 80], Hungary [80], Ireland [81], Italy[81], Netherlands [37, 81], Poland
[81], Spain [81, 83|, Sweden [81], Turkey [81], and the United States [84].
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5.2.1 Literature Review

Addressing grid connection constraints requires a deeper understanding of the geographical
factors that influence solar PV deployment. Previous studies have highlighted a range of key
factors that impact deployment, including social, economic, climatic, and land use variables.
Population is positively correlated with solar PV deployment at the country level globally
[229]. This is expected, as countries with larger populations generally require more elec-
tricity, which drives higher solar PV installation rates. However, the relationship between
solar PV deployment and population becomes more complex when examined at regional and
subregional scales. For example, studies have found a negative correlation between solar PV
deployment and population at the regional level in both Germany [114] and the UK [115] and
at the subregional level in Australia [105]. In the United States, Yu et al. [98] observed that
residential solar PV deployment peaks at a population density of 1,000 people per square mile.
Areas with very high population densities tend to have lower levels of small-scale residential
solar PV deployment, as urban environments often lack suitable rooftops for installations.
Conversely, regions with medium population densities are more likely to have higher solar
PV capacities due to the prevalence of detached houses with rooftops that are ideal for solar
PV systems.

Education is positively correlated with solar PV deployment at the country level glob-
ally [229], at the regional level in the UK [115], and at the subregional level in Connecticut,
USA [98], and England [109]. Countries with higher education levels tend to have stronger
economies, which often translates into higher electricity consumption and greater investment
in solar PV installations. Furthermore, higher levels of education are associated with in-
creased environmental awareness and pro-environmental behaviour [268, 269, 270], which
can further drive solar PV adoption.

Average household size has a mixed impact on solar PV deployment. In the UK, it is
positively correlated with deployment at the subregional level [107]. This positive relationship
could be influenced by larger energy bills or increased daytime electricity usage. Conversely,

a negative relationship is observed at the regional and subregional levels in the UK and at the
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subregional level in Australia [115, 106, 105]. This negative relationship may be explained by
larger households having reduced cash flow or prioritizing aesthetics over cost savings from
solar PV systems [115].

Household size may also be linked to age demographics, which play a significant role in
solar PV adoption. Individuals above age 40 are more likely to have greater access to cash
for solar PV investments, while those aged 25-40 may face financial constraints that limit
their ability to install solar PV systems. In England, a higher share of the population above
age 40 is associated with greater PV installation at the subregional level [109]. Conversely, in
Australia, a higher share of the population aged 25—40 has a negative impact on PV adoption
at the subregional level [105].

Income shows a mixed relationship with solar PV deployment. In the UK, income is
positively correlated with PV adoption at the subregional and regional levels, and similarly,
a positive correlation is observed at the subregional level in the United States [106, 115, 98].
However, a negative correlation between income and solar PV adoption has been found at the
subregional level in Australia [105]. This mixed relationship may be explained by differences
in motivation. While individuals with higher incomes can afford to install solar PV systems,
they may choose not to if they are not concerned about cost savings or if they dislike the
aesthetics of solar panels.

GDP is strongly correlated with solar PV capacity at the country level globally and in
China [229, 116]. However, in other studies, GDP does not show a proportional relationship
to a country’s solar PV capacity [117]. At the regional level in Germany, GDP is negatively
correlated with PV deployment [114].

Industrial added value is positively correlated with solar PV deployment at the country
level [229, 116]. This relationship may reflect the fact that countries with higher industrial
output tend to have more resources and investments available for renewable energy technolo-
gies, including solar PV. Additionally, industrial sectors often benefit from renewable energy
adoption both through direct use in manufacturing processes and through the promotion of

green technologies, which may further drive solar PV deployment.
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Electricity consumption is positively correlated with solar PV deployment at the country
level globally [229]. This relationship extends to the regional and subregional levels in the
UK, where higher electricity consumption is also associated with greater PV deployment [106,
109, 115, 107].

Solar radiation has been found to have a positive correlation with solar PV deployment at
the regional and subregional levels [110, 98, 103, 115]. This is logical, as regions with abundant
sunlight provide more favourable conditions for solar power generation, making solar PV an
attractive energy option. However, other studies suggest that a country’s solar radiation
potential is not always proportional to solar PV deployment [117, 229]. This discrepancy may
be linked to the geography of a country or region. In countries with abundant agricultural
land receiving high levels of solar radiation, there is often more solar PV capacity, as large
open spaces are ideal for solar farms. In contrast, countries such as Austria, where two-thirds
of the land is covered by the Alpine mountains [271], and where solar radiation is concentrated
in urban areas, may face challenges in deploying solar PV, as urban environments typically
offer limited space for large-scale installations.

Rural areas are positively correlated with solar PV deployment [110, 109, 103]. This is
likely due to the availability of space for solar installations and the higher likelihood that
rural areas have houses with suitable rooftops for PV systems.

Solar PV is correlated with agricultural areas globally [119, 229, 249], as well as with
the gross value added by agriculture in Germany [114]. This is expected, as large-scale PV
installations are often sited on agricultural land.

These studies show that the relationship between solar PV deployment and geographical
factors is complex and varies depending on the geographical region and analysis resolution
(national, regional, subregional). These factors are crucial in determining where and how
solar PV systems are installed. By incorporating them into a comprehensive model, we can
better predict regional solar PV deployment patterns, identify areas with high potential for
future installations, and uncover barriers to deployment in underserved regions.

None of the existing studies comprehensively account for all types of solar PV capacity
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(residential, commercial, and utility-scale) installed in a country. A key challenge in modelling
regional and subregional PV capacity is the limited availability of relevant social, economic,
climatic, and land use data. This study introduces the first comprehensive regional PV
capacity model that disaggregates national capacity across 168 NUTS 3 regions. The model
will be used to allocate unknown capacity to specific geographic regions, as a benchmarking

tool for assessing regional performance, and to serve as a forecasting tool.

5.3 Methodology

We previously analysed the relationship between social, economic, climatic, and land use
factors and national solar PV deployment, showing these variables can effectively model na-
tional PV capacity [229]. To identify factors associated with regional solar PV deployment
in Great Britain, we apply a similar methodology at the NUTS 3 level, examining correla-
tions between geographical factors and PV capacity using Pearson and Spearman correlation
coefficients. We also assess linear relationships using the coefficient of determination (R?).
The top correlated features are then used to train an XGBoost model to estimate regional

capacity percentages for 168 GB regions from 2010 to 2023.

5.3.1 Data and Data Processing

Data for this analysis were obtained from publicly accessible sources. Climate variables were
sourced from the Copernicus Climate Change Service [230]. Land use data were derived from
the CORINE Land Cover 2018 dataset [231]. Economic indicators, such as regional gross
value added (GVA) by industry, were acquired from the UK’s Office for National Statistics
[272]. Renewables Obligation Certificates (ROCs) buy-out prices and obligation levels were
obtained from the Office of Gas and Electricity Markets (Ofgem) [273]. Solar PV capacity
data were provided by Sheffield Solar [274].

The analysis was conducted within the framework of the NUTS 2021 (Nomenclature of
Territorial Units for Statistics) classification, a hierarchical system used to delineate European

Union territories for statistical purposes [234]. The study focused on NUTS 3 regions, which
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accommodate populations ranging from 150,000 to 800,000, as this level offers optimal data
availability in Great Britain. All data were processed according to the NUTS 3 classification
and aggregated on an annual basis.

The CORINE land cover dataset uses a three-tier hierarchical classification system. Level
3 offers detailed analysis with 44 thematic classes and has a thematic accuracy of over 85%),
leading to potential misclassification [235]. Higher levels (Levels 1 and 2) have fewer cat-
egories, improving accuracy and reducing misclassification risk [236, 237, 238], but provide
less detail. To balance detail and accuracy, our analysis uses all three levels.

Capacity data were processed at both NUTS 3 and NUTS 0 levels, with the regional
capacity distribution presented in Figure 5.2a. GVA data were directly available at the
International Territorial Level (ITL), which corresponds to NUTS 3 regions [275]. Climate
data, originally available at the NUTS 2 level, were assumed to be uniform across all NUTS
3 regions within the same NUTS 2 area.

Data normalization was applied according to the variable type. Climate data were nor-
malized to national averages to emphasize significant regional climatic variations. Economic
indicators, such as GVA, were normalized to national totals. Regional solar PV capacities

were expressed as a proportion of the national total capacity.

5.3.2 Feature Selection

The feature selection followed the DAMA data quality framework [239], which focuses on
accuracy, completeness, uniqueness, consistency, timeliness, and validity. Priority was given
to features that were complete for most regions and consistent over time. Selection criteria
included correlation with PV capacity and data availability. To capture both linear and
non-linear associations, we averaged Spearman and Pearson correlations. Various correlation

thresholds (0.2 to 0.5) were tested, with a data availability threshold of 90%.
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5.3.3 Model Training

As a benchmark, we first implemented a multiple linear regression (MLR) model trained on
the same features as the XGBoost model, enabling a direct comparison between linear and
nonlinear approaches. The linear model was implemented using scikit-learn, a Python
library that provides a wide range of machine-learning algorithms for supervised and unsu-

pervised tasks [214]. The MLR model is expressed as shown in Equation (5.1).

p
y=P0+ > Bimite, (5.1)

=1

where y is the target variable, 5y is the intercept, (; are the model coefficients, z; are the
predictor variables for ¢ = 1,...,p, and ¢ is the error term capturing the discrepancy between
the observed and predicted values. Parameters were estimated using Ordinary Least Squares
(OLS). To ensure robustness, GroupKFold cross-validation was applied with grouping by year,
where each fold corresponded to leaving out one year from the training window (2010-2019).
The final model was then evaluated on an independent test set (2020-2022). The year 2023
was excluded due to missing data for some variables. The MLR is reported as an unscaled
model. In this context, an unscaled model refers to using the raw regional predictions directly,
without adjusting them so that their sum matches the corresponding national total. Scaling
requires complete regional coverage for every year, which was not available in this case, and
therefore could not be applied to the MLR.

We then selected the extreme gradient boosting (XGBoost) algorithm as our primary
modelling approach due to its advantages: it is nonparametric, making it well-suited for
non-normally distributed data [241], and it performs particularly well with tabular datasets
[242], which aligns with the structure of our data. Data were grouped by year, with 2010—
2020 used for training and 2021-2023 for testing. An XGBoost model was trained, with
hyperparameters fine-tuned using grid search and GroupKFold cross-validation, where each
fold corresponded to holding out one year of data for validation. The trained model predicts

the percentage of solar PV capacity within a NUTS 3 region and is referred to as the "unscaled
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model”. To ensure regional predictions sum to the national capacity, we scaled the regional
predictions so that their total matched the national value. This approach is referred to as
the 7scaled model”. A further advantage of XGBoost is its ability to handle missing data,
which is particularly important in this context, as scaling requires predictions for all regions
in each year.

For the XGBoost model, we used Shapley Additive Explanations (SHAP) values to mea-
sure feature importance. SHAP is a game-theoretic approach designed to explain the output
of any machine learning model, where the values are additive [247].

To evaluate similarity among the selected predictors, we applied the VARCLUS algorithm
in JMP Pro [188, 189] to identify clusters of related variables. Where clusters were detected,
we examined their composition and structure to provide additional context for interpreting
model performance.

Model performance was evaluated using Root Mean Squared Error (RMSE), Mean Squared
Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).
We avoid using MAPE when evaluating regional capacity percentage because it can yield
large values due to data representation in percentages. Instead, MAPE is specifically applied
to evaluate national capacity. Metrics are reported for both the benchmark MLR model
and the XGBoost models, enabling a clear assessment of the value added by the nonlinear

approach.

5.3.4 Model Applications

The models can be applied to disaggregate national capacity into regional capacity, to allocate
capacity with an unknown location to a geographical region, and to serve as a benchmarking
tool. A Solar PV Deployment Index (SPVDI) was developed previously to assess national
capacity in a global context [229]. In this study, we adapt the same concept to evaluate
regional PV capacity within GB.

The SPVDI serves as a benchmarking tool by comparing solar PV deployment in a region

relative to other regions with similar social, economic, climatic, and land use characteristics.
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It is calculated as shown in Equation (5.2), where tgayt represents the initial year and te,q the
final year of analysis. The index sums the difference between actual and predicted capacity
for region ¢ over the specified time range. The resulting index value indicates whether a
region’s capacity is above or below expectations, with a positive value indicating higher-
than-expected capacity and a negative value indicating lower-than-expected capacity. The
SPVDI allows for performance comparisons of regions over multiple years and time periods
and serves as a tool to rank regions based on their solar PV deployment.
lend

SPVDI; = Z (Actual Capacity; ; — Predicted Capacityi,j) (5.2)

j:tstart
5.4 Results and Discussion

Appendix 5.6.1 presents the analysis results for the normalized regional data, with features
ranked from highest to lowest based on their average correlation. GVA by veterinary activities
emerges as the most strongly correlated feature. Additionally, regions with higher percentages
of agricultural areas and artificial surfaces tend to have a greater share of PV capacity.

Interestingly, climatic factors such as GHI ranks 18, while air temperature ranks 24 in
terms of average correlation. The reason climatic factors rank lower than other factors may be
attributed to threshold effects. Regions need to meet certain levels of solar resource potential
to justify investments in PV systems. Once these thresholds are reached, other factors - such
as land availability or socioeconomic characteristics - become more critical in determining the
proportional share of PV deployment. Previous studies have identified a radiation threshold
of 4.5 kWh/m?/day above which deployment is triggered [98].

The strong correlation between artificial surfaces and solar PV capacity can be attributed
to the inclusion of energy production and distribution infrastructure within this category
[231]. These features could act as proxies for grid connection points, which are crucial for in-
tegrating grid-connected solar PV systems. Regions with more access to such infrastructure
are better positioned to support large-scale solar installations. Furthermore, the presence

of industrial agricultural facilities, which are also classified as artificial surfaces, likely con-
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tributes to the observed correlation with PV capacity. The correlation between agricultural
land and solar PV capacity is strong. This is expected since commercial, industrial, and
utility-scale solar PV projects are predominantly situated on agricultural land, particularly
arable land [249, 119].

GVA by veterinary activities is correlated with artificial surfaces and agricultural land,
which might explain why it ranks the highest in terms of correlation with PV capacity. This
could also be linked to the presence of farm animals, as veterinary activities are more likely
to be concentrated in regions with higher demand, such as areas with farms and extensive
agricultural land.

The same set of predictors was used for both the benchmark MLR and the XGBoost
models to enable a direct comparison. The selected features were: GVA by veterinary activ-
ities, arable land (21), non-irrigated arable land (211), urban fabric (11), artificial surfaces
(1), discontinuous urban fabric (112), agricultural Areas (2), sport and leisure facilities (142),
artificial, non-agricultural vegetated areas (14), and mine, dump and construction sites (13).

Table 5.1 shows the regional error metrics for the MLR and XGBoost unscaled and scaled
models. For the MLR model, performance was modest, with the model explaining around
67-68% of the variation in regional PV capacity and achieving a MAE of 44 MW and RMSE
of 68 MW on the test set. This highlights its value as a stable but relatively weak benchmark.
In contrast, the XGBoost models substantially improved predictive performance, explaining
about 89-91% of the variation, with a test MAE of about 20 MW and RMSE of 41 MW.
Scaling did not significantly alter the regional results in the XGBoost model, although it
is still applied in cases where national capacity is disaggregated to ensure consistency with
reported totals.

Figure 5.1 shows the actual vs. estimated regional capacity for the XGBoost unscaled and
scaled models. The unscaled model performs well, and scaling does not make any significant
changes to the regional estimates.

Table 5.2 shows the national error metrics for the XGBoost unscaled and scaled models.

The unscaled model has an error of 5.4% in estimating national capacity. Interestingly, this
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Table 5.1: Regional error metrics for the XGBoost and MLR models, reported separately
for training and test sets in both megawatts (MW) and percentages (%). For the Scaled
XGBoost model, regional predictions are adjusted to ensure they sum to the national capacity.
Metrics reported are the coefficient of determination (R?), Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).

Model Train Test Train Test Train Test Train Test
R? R? MAE MAE MSE MSE RMSE RMSE
MLR Unscaled (MW) 0.67 0.68 24.11  44.39 2208 4592 46.99 67.76
XGBoost Unscaled (MW) 0.99 0.89 5.60 20.27 93.68 1701 9.68 41.25
XGBoost Scaled (MW) 0.99 0.90 5.66 19.94 87.94 1610 9.38 40.13
MLR Unscaled (%) 0.60 0.68 0.33 0.31 0.29 0.31 0.54 0.48
XGBoost Unscaled (%) 0.98 0.90 0.09 0.13 0.02 0.07 0.13 0.26
XGBoost Scaled (%) 0.98 0.91 0.09 0.13 0.02 0.06 0.14 0.25
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Figure 5.1: Actual versus predicted regional photovoltaic capacity using the XGBoost model
for 168 NUTS 3 regions in Great Britain, covering the years 2010 to 2023. Blue points
represent training data, while orange points represent test data. Panel (a) shows the unscaled
model; panel (b) shows the scaled model, where predictions are adjusted to match national

totals.
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Table 5.2: National error metrics for the XGBoost unscaled and scaled models, evaluated over
the entire dataset. These metrics compare the actual national capacity with the estimated
national capacity, which is derived from summing the regional capacities. Scaling refers to
adjusting regional capacities so that their sum matches the actual national capacity.

Metric R? MAE MSE RMSE MAPE
(MW) (MW?) (MW) (%)

XGBoost Unscaled Model (entire dataset) — 0.99 441 322000 568 5.4

XGBoost Scaled Model (entire dataset) 1 0 0 0 0.0

is very similar to the 5% error reported by [49].

The feature importance analysis for the XGBoost model reveals that non-irrigated arable
land (211) accounts for 36% of the total SHAP values, followed by discontinuous urban fabric
(112) at 21%, artificial surfaces (1) at 12%, sport and leisure facilities (142) at 7%, agricultural
areas (2) at 7%, GVA by veterinary activities at 6%, urban fabric (11) at 5%, mine, dump,
and construction sites (13) at 4%, non-agricultural vegetated areas (14) at 2%, and arable
land (21) at 0%. Furthermore, the analysis highlights that artificial surfaces have the most
significant overall impact, accounting for 51% of the total SHAP values. This is followed by
agricultural land, which contributes 43%, and GVA by veterinary services, contributing 6%.

Clustering the selected features with the VARCLUS algorithm revealed two distinct
groups. The first cluster includes artificial surfaces (1), discontinuous urban fabric (112),
urban fabric (11), non-agricultural vegetated areas (14), sport and leisure facilities (142),
and GVA by veterinary services. The second cluster includes arable land (21), non-irrigated
arable land (211), agricultural areas (2), and mine, dump, and construction sites (13). The
most representative variable in the first cluster is artificial surfaces (1), which explains 96%
of the variation within the cluster. For the second cluster, the most representative variable
is arable land (21), which explains 92% of the variation in the cluster. These findings align
with the results above, which highlight artificial surfaces and agricultural land as the most

significant factors influencing PV deployment at the NUTS 3 level.
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5.4.1 Model Applications

Figure 5.2a illustrates the actual regional capacities for 2023. In some cases, solar PV system
locations are not recorded. Figure 5.3 shows the unallocated capacity per year from 2010 to
2023. Initially, this wasn’t an issue due to the low capacity, but as it grows, it becomes more
difficult to monitor generation accurately. As PV capacity increases, it becomes increasingly
important to know the geographical distribution of these capacities due to their impact on
grid stability. For example, in 2023, these unrecorded systems accounted for 829 MW in GB.
The scaled XGBoost model was used to allocate these capacities, leading to updated regional
capacity estimates, as depicted in Figure 5.2b. We provide a dataset of regional PV capacities
for 168 GB regions spanning from 2010 to 2023, enabling more accurate generation monitoring
at the regional level. Unlike simple allocation methods that distribute PV capacity based
on the percentage of deployment per region, our model accounts for the unique geographical
factors that affect capacity diffusion. This approach addresses systematic issues, such as
inconsistent reporting, under-reporting in less monitored regions, and challenges in capturing
small-scale installations.

The unscaled XGBoost model serves as a valuable benchmarking tool for regional so-
lar PV deployment. Figure 5.2¢ shows the solar PV deployment index from 2010 to 2023,
highlighting the top and bottom regions based on capacity differences. Cambridgeshire CC
(UKH12) stands out, exceeding expected capacity by 780 MW, while Barnsley, Doncaster,
and Rotherham (UKE31) have the largest deficit, falling short by -985 MW. These findings
align with those of Collier et al. [107], who modelled small-scale domestic solar PV deploy-
ment in England and Wales at the LSOA level, and observed that local authority districts
within Cambridgeshire CC (UKH12) exhibited higher than expected capacities.

Figure 5.4 shows the SHAP analysis of the average contribution of the features from
2010 to 2023 in Cambridgeshire, and Barnsley, Doncaster, and Rotherham . The unscaled
XGBoost model’s average prediction is 0.56% of national capacity, as determined by SHAP
analysis. In Cambridgeshire, the SHAP analysis of feature contributions from 2010 to 2023

reveals that non-irrigated arable land (211) is the largest contributor to the prediction, with
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Figure 5.2: (a) Actual regional solar photovoltaic capacity across 168 NUTS 3 regions in
Great Britain for the year 2023. (b) Predicted regional solar photovoltaic capacity across
168 NUTS 3 regions in Great Britain for the year 2023 using the scaled XGBoost model. (c)
Solar PV Deployment Index (SPVDI) calculated using the XGBoost model predictions for
the years 2010 to 2023. Positive values indicate regions where the actual capacity exceeds
the expected capacity, while negative values indicate regions where the actual capacity is
less than expected. The regions included are Barnsley, Doncaster and Rotherham (UKE31)
which under deployed by 985 MW and Cambridgeshire CC (UKH12) which over deployed
by 780 MW. Note: Map lines delineate study areas and do not necessarily depict accepted
national boundaries.
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Figure 5.3: Unallocated solar photovoltaic capacity for 168 NUTS 3 regions in Great Britain
from the year 2010 to 2023.
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Figure 5.4: SHAP analysis for the unscaled XGBoost model, showing the mean contribution
of factors to solar PV capacity percentage between 2010 and 2023 for (a) Cambridgeshire CC
(UKH12) and (b) Barnsley, Doncaster, and Rotherham (UKE31). In the SHAP framework,
E[f(z)] represents the model’s average prediction, while f(z) is the predicted value, calcu-
lated as the sum of the contributions of the features and the model’s average prediction.

a mean contribution of 1.39%. Other contributors include discontinuous urban fabric (112)
at 0.74%, sport and leisure facilities (142) at 0.44%, artificial surfaces (1) at 0.16%, GVA by
veterinary services at 0.11%, construction sites (13) at -0.06%, urban fabric (11) at 0.03%,
agricultural areas (2) at 0.02%, non-agricultural vegetated areas (14) at -0.01%, and arable
land (21) at 0%. This results in an average predicted capacity for Cambridgeshire of 3.39% of
the national total, equivalent to an average capacity of 341 MW between 2010 and 2023. The
high prediction for Cambridgeshire is primarily driven by non-irrigated arable land (211),
but other factors, such as access to grid connection points, could also explain why this
region has more capacity than expected. We hypothesize that the region’s southern location,
the prevalence of agricultural areas, and its proximity to transmission lines - where fewer
constraints exist compared to other regions - may play a significant role. Additionally, social
effects, such as peer influence, could help explain the higher than expected capacity in this
area.

Based on SHAP analysis of the mean contribution of features between 2010 and 2023 in
Barnsley, Doncaster, and Rotherham, the largest contributor is artificial surfaces (1) with
a contribution of 0.43%. This is followed by sport and leisure facilities (142) at 0.28%),
discontinuous urban fabric (112) at 0.25%, and non-irrigated arable land (211) at -0.24%.

Other contributors include GVA by veterinary services at 0.16%, urban fabric (11) at 0.06%,
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construction sites (13) at 0.01%, agricultural areas (2) at 0.01%, non-agricultural vegetated
areas (14) at 0%, and arable land (21) at 0%. This results in an average prediction for
Barnsley, Doncaster, and Rotherham of 1.53% of national capacity, equivalent to an average
capacity of 141 MW between 2010 and 2023.

The SHAP analysis indicates that the high prediction for the region is primarily driven
by artificial surfaces. The predominance of artificial surfaces in this region suggests that solar
PV systems are primarily residential and commercial. This observation aligns with findings
by Westacott and Candelise [110], which identify domestic installations as the dominant
source of capacity in the area. However, the region has 958 MW less capacity than expected,
suggesting that domestic systems alone cannot explain the shortfall. Since agricultural areas
are excluded based on SHAP analysis, the gap is likely attributable to commercial systems.

To explain the shortfall, there may be unique characteristics of artificial surfaces in this
region that differentiate it from others. For example, variations in business ownership or type
could play a role. Westacott and Candelise [110] highlights that the non-domestic rooftop
market is significantly underdeveloped compared to the domestic and ground-mounted mar-
kets in the UK. Additionally, grid connection constraints for commercial installations and
differences in the planning permission process may further influence deployment in this re-
gion.

Finally, Barnsley, Doncaster, and Rotherham’s gross disposable household income (GDHI)
per head, measured as indices where the UK equals 100, ranged from 79.6 to 81.3 between
2010 and 2022 [272]. This consistently lower GDHI compared to the national average may
help explain the lower than expected solar PV capacity, as reduced disposable income could
limit investment in domestic installations. GDHI is excluded from the model because the
data is typically published with a delay of about two years, meaning data for 2021 was only

made available in September 2023.

The XGBoost models serve three main purposes. First, they enable the disaggregation

of national PV capacity, with the scaled model being the most appropriate for this task.



CHAPTER 5. GREAT BRITAIN MODEL 179

This is particularly useful when there is a significant amount of unallocated capacity at
the national level. This can help with more accurate generation monitoring. Second, the
models facilitate the benchmarking of regional capacities within GB using the unscaled model.
This approach allows for ranking regions based on their PV deployment, helping to identify
areas that may require interventions, such as improving access to grid connection points or
policy adjustments. Finally, the scaled model can be used for forecasting capacity. This is
beneficial for strategic grid expansion planning and can help in addressing land use conflicts

by pinpointing regions where capacity is likely to be concentrated.

5.5 Conclusion

This study provides a comprehensive analysis of regional solar PV capacity in Great Britain,
identifying artificial surfaces and agricultural areas as the most significant factors influencing
deployment at the NUTS 3 regional level. To address the need for detailed capacity estimates,
we developed a model that explains 89% of the variation in PV capacity, with a mean absolute
error (MAE) of 20 MW and a national mean absolute percentage error (MAPE) of 5.4%.
Additionally, we provide a dataset of regional capacity estimates for NUTS 3 regions in
Great Britain, covering the years 2010 to 2023.

The XGBoost models serve three primary purposes: disaggregating national PV capacity
into regional capacity, benchmarking regional solar PV deployment, and forecasting future
solar PV deployment. They offer practical applications for grid operators by improving gener-
ation monitoring, which requires precise knowledge of the geographical distribution of capac-
ity. The models also support long-term grid network planning by identifying where capacity
is likely to be distributed and enabling targeted grid expansions in these areas. Furthermore,
they can help pinpoint regions where deployment falls short of expectations, offering insights
into where interventions, such as policy adjustments or infrastructure investments, may be
needed.

Future research could explore regions where solar PV capacity significantly exceeds or

falls below expectations. These case studies could provide valuable insights into barriers to
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deployment and identify historical incentives or policies that have successfully driven higher
deployment.

Overall, this study offers valuable tools and data to enhance operational and strategic
decision-making for Great Britain’s solar PV sector and lays a foundation for further research

into regional capacity estimation and renewable energy planning.

Data Availability

The supplementary code and data supporting this manuscript are available at https://do

i.org/10.5281/zenodo.17178404.
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5.6 Appendix
5.6.1 Normalized data analysis

Table 5.3: Normalized data analysis. Features considered for modelling the percentage of regional solar photovoltaic capacity. All
features presented are normalized relative to national values and expressed as percentages. The data availability, coefficient of
determination (R?), Pearson correlation, Spearman correlation, correlation average are shown. Relevant literature that explores
similar features is cited. Land cover features are preceded by their CORINE Land Cover (CLC) classification codes (e.g., 1.2.1 for
industrial or commercial units).

Feature Data R-squared Pearson Spearman Correlation  Relevant
Availability Correla- Correla- Average Literature
(%) tion tion

GVA by veterinary activities 93 0.41 0.64*** 0.63*** 0.64

2.1. Arable land 100 0.43 0.66%** 0.56%** 0.61 [249]

2.1.1. Non-irrigated arable land 100 0.43 0.66%** 0.56%** 0.61 [249]

1.1. Urban fabric 100 0.33 0.58%** 0.62%** 0.60 [229]

1. Artificial Surfaces 100 0.37 0.61%%* 0.59%** 0.60

1.1.2. Discontinuous urban fabric 100 0.34 0.58%#* 0.62%** 0.60

2. Agricultural Areas 100 0.44 0.66%** 0.53%** 0.59 [119, 229]

1.4.2. Sport and leisure facilities 100 0.31 0.55%** 0.55%** 0.55

1.4. Artificial, non-agricultural vegetated areas 100 0.27 0.52%** 0.55%*** 0.54

1.3. Mine, dump and construction sites 100 0.28 0.53%%* 0.48%** 0.51

GVA by Production sector 93 0.19 0.44%%%* 0.55%** 0.49

1.2.4. Airports 100 0.33 0.58%** 0.38%** 0.48
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availability Correla- Correla- Average Literature
(%) tion tion

3.1.1. Broad-leaved forest 100 0.21 0.45%+* 0.52%** 0.48

GVA by manufacturing 93 0.15 0.38%** 0.55%** 0.47 [229]

GVA by manufacture of electronic, optical and electrical 93 0.17 0.41%** 0.53*** 0.47

products

1.3.1. Mineral extraction sites 100 0.22 0.47%%* 0.43%%* 0.45

Mean sea level pressure 90 0.14 0.37*** 0.52%** 0.45

GHI 90 0.13 0.37#%* 0.51%%* 0.44 [110, 98,
103, 115,
117, 229]

GVA by agriculture, forestry and fishing; mining and quarrying 93 0.16 0.4%** 0.46*** 0.43 [114, 229]

3.1.3. Mixed forest 100 0.20 0.45%%%* 0.42%%%* 0.43

GVA by specialised construction activities 93 0.14 0.38*** 0.48*** 0.43

GVA by manufacture of wood and paper products and printing 93 0.14 0.38%** 0.49%** 0.43

1.2. Industrial, commercial and transport units 100 0.20 0.44%** 0.4%** 0.42

Air temperature 90 0.14 0.37#4* 0.47*%* 0.42 [98, 229]

2.3. Pastures 100 0.18 0.43%%* 0.41%%* 0.42

GVA by activities of households 93 0.17 0.41%** 0.43*** 0.42

GVA by residential care activities 93 0.15 0.38%** 0.47%%* 0.42

2.3.1. Pastures 100 0.18 0.43%%* 0.41%%* 0.42

1.3.3. Construction sites 100 0.10 0.32%%%* 0.44%%* 0.38

GVA by other personal service activities 93 0.11 0.33*** 0.43*** 0.38
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availability Correla- Correla- Average Literature
(%) tion tion

GVA by motor trades 93 0.05 0.22%** 0.53*** 0.38

GVA by other manufacturing, repair and installation 93 0.07 0.27%%* 0.47%%* 0.37

2.4. Heterogeneous agricultural areas 100 0.16 0.4%%* 0.32%%* 0.36

Region area 100 0.09 0.29%** 0.43%%* 0.36 (107, 105]

GVA by manufacture of machinery and transport equipment 93 0.04 0.19%** 0.51%** 0.35

GVA by owner-occupiers’ imputed rental 93 0.10 0.32%** 0.38*** 0.35

GVA by construction 93 0.09 0.3%%* 0.4%** 0.35

GVA by manufacture of petroleum, chemicals and other 93 0.04 0.21%** 0.5%** 0.35

minerals

GVA by manufacture of basic and fabricated metal products 93 0.04 0.19%** 0.49*** 0.34

2.4.3. Land principally occupied by agriculture, with 100 0.14 0.38%** 0.3%** 0.34

significant areas of natural vegetation

1.2.1. Industrial or commercial units 100 0.12 0.34%%* 0.34%%* 0.34

2.4.2. Complex cultivation patterns 100 0.09 0.3%** 0.33*** 0.32

GVA by wholesale and retail trade; repair of motor vehicles 93 0.04 0.21%** 0.4%** 0.30

GVA by manufacture of food, beverages and tobacco 93 0.10 0.31%** 0.29%** 0.30

GVA by accommodation 93 0.05 0.23%** 0.34%** 0.29

GVA by social work activities 93 0.05 0.23%** 0.34%%* 0.29

GVA by retail trade 93 0.04 0.2%** 0.38*** 0.29

Wind speed 90 0.09 0.3%%* 0.29%** 0.29 [98]

GVA by accommodation and food service activities 93 0.04 0.19*** 0.36*** 0.28
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availability Correla- Correla- Average Literature
(%) tion tion

4.1.1. Inland marshes 100 0.07 0.27#+* 0.28%#* 0.28

GVA by civil engineering 93 0.05 0.22%%%* 0.35%%* 0.28

GVA by real estate activities 93 0.05 0.22%** 0.35%*** 0.28

GVA by electricity, gas, water; sewerage and waste 93 0.06 0.24*** 0.31*** 0.28

management

GVA by other service activities 93 0.02 0.13%%* 0.4%** 0.27

GVA by education 93 0.06 0.24%** 0.3%** 0.27

GVA by wholesale trade 93 0.02 0.15%** 0.38*** 0.27

GVA by postal and courier activities 93 0.03 0.18%** 0.36*** 0.27

GVA by public administration and defence 93 0.06 0.23*** 0.29*** 0.26

GVA by human health and social work activities 93 0.05 0.22%** 0.28*** 0.25

GVA by construction of buildings 93 0.03 0.17*** 0.33*** 0.25

2.2.2. Fruit trees and berry plantations 100 0.01 0.08%** 0.4%*%* 0.24

GVA by food and beverage service activities 93 0.02 0.15%%* 0.33%%* 0.24

2.2. Permanent crops 100 0.01 0.08*** 0.4%** 0.24

1.3.2. Dump sites 100 0.06 0.25%** 0.21%** 0.23

GVA by all industries 93 0.01 0.11%*** 0.36%** 0.23 (229, 116]
GVA by architectural and engineering activities 93 0.02 0.14%** 0.31%%* 0.23

4.2.1. Salt marshes 100 0.05 0.23%%* 0.23%%* 0.23

3.1. Forests 100 0.00 0.06** 0.39%** 0.23

2.4.4. Agro-forestry areas 100 0.08 0.28%** 0.13%** 0.21
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availability Correla- Correla- Average Literature
(%) tion tion

GVA by other professional, scientific and technical activities 93 0.01 0.1%%* 0.3*** 0.20

GVA by services sector 93 0.00 0.06** 0.32%** 0.19

GVA by rental and leasing activities 93 0.01 0.08*** 0.28*** 0.18

GVA by human health activities 93 0.02 0.14%** 0.2%** 0.17

4.2. Marine wetlands 100 0.06 0.24%%%* 0.09%** 0.16

GVA by real estate activities, excluding imputed rental 93 0.00 0.04* 0.28%** 0.16

GVA by repair of computers, personal and household goods 93 0.00 0.06** 0.24*** 0.15

1.2.2. Road and rail networks and associated land 100 0.01 0. 1% 0.2%** 0.15

GVA by transportation and storage 93 0.01 0.07#** 0.24%%* 0.15

GVA by activities of membership organisations 93 0.00 -0.03 0.32%** 0.15

4.1.2. Peat bogs 100 0.01 -0, 1% -0.21%** -0.15

GVA by head offices and management consultancy 93 0.00 -0.01 0.3%** 0.14

GVA by services to buildings and landscape activities 93 0.01 0.08*** 0.21*** 0.14

GVA by professional, scientific and technical activities 93 0.00 -0.0 0.28*** 0.14

3.3.3. Sparsely vegetated areas 100 0.01 -0.11%** -0.16%*** -0.14

Total precipitation 100 0.00 -0.04* -0.23%%* -0.14 [229]
GVA by administrative and support service activities 93 0.00 0.02 0.24*** 0.13

GVA by warehousing and transport support activities 93 0.00 0.04 0.22%%* 0.13

GVA by gambling and betting; sports and recreation activities 93 0.00 0.04 0.2%** 0.12

4.2.3. Intertidal flats 100 0.03 0.18%** 0.07** 0.12

GVA by land, water and air transport 93 0.00 0.04* 0.2%** 0.12
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availability Correla- Correla- Average Literature
(%) tion tion

GVA by office administration and business support activities 93 0.00 -0.0 0.23%** 0.12
3.3.4. Burnt areas 100 0.01 -0.07*** -0.16%** -0.12
3. Forest And Seminatural Areas 100 0.00 -0.05* 0.26%** 0.11
GVA by creative, arts, entertainment and cultural activities 93 0.00 -0.03 0.25%** 0.11
5.2.1. Coastal lagoons 100 0.02 0.15%** 0.07*** 0.11
5. Water Bodies 100 0.00 -0.06** 0.29%** 0.11
GVA by research and development; advertising and market 93 0.00 0.02 0.18%** 0.10
research

3.3.1. Beaches, dunes, sands 100 0.00 0.06** 0.13%%* 0.10
GVA by legal and accounting activities 93 0.00 -0.06** 0.26*** 0.10
GVA by telecommunications; information technology 93 0.00 0.01 0.19*** 0.10
GVA by arts, entertainment and recreation 93 0.00 -0.0 0.2%** 0.10
GVA by manufacture of textiles, wearing apparel and leather 93 0.00 0.06** 0.15%** 0.10
3.1.2. Coniferous forest 100 0.01 -0.08*** 0.28%** 0.10
3.3.2. Bare rocks 100 0.01 -0.09*** -0. 1% -0.10
5.1.2. Water bodies 100 0.01 -0.07*** 0.25%** 0.09
GVA by employment activities; tourism and security services 93 0.00 -0.03 0.2%** 0.09
5.1. Inland waters 100 0.00 -0.07*** 0.25%** 0.09
5.2.2. Estuaries 100 0.03 0.17%%%* -0.01 0.08
GVA by information and communication 93 0.00 -0.02 0.18%** 0.08
GVA by financial service activities 93 0.01 -0.07*** 0.24%%* 0.08
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Feature Data R-squared Pearson Spearman Correlation  Relevant
Availability Correla- Correla- Average Literature
(%) tion tion

GVA by financial and insurance activities 93 0.00 -0.07** 0.24%%* 0.08

GVA by publishing; film and TV production and broadcasting 93 0.00 -0.07** 0.2%** 0.07

GVA by insurance, pension funding and auxiliary financial 93 0.00 -0.06** 0.21%%* 0.07

activities

3.3. Open spaces with little or no vegetation 100 0.01 -0, 10K -0.02 -0.06

4.1. Inland wetlands 100 0.01 -0.1%x* -0.02 -0.06

1.2.3. Port areas 100 0.00 -0.0 0.1%%* 0.05

4. Wetlands 100 0.01 -0.09%*** -0.01 -0.05

1.4.1. Green urban areas 100 0.01 -0.11%** 0.06** -0.03

3.2.4. Transitional woodland-scrub 100 0.01 -0.117%%* 0.15%** 0.02

3.2.2. Moors and heathland 100 0.01 -0.1%** 0.06** -0.02

5.1.1. Water courses 100 0.01 0.09%** -0.06** 0.01

3.2. Scrub and/or herbaceous associations 100 0.01 -0.09%** 0.11%** 0.01

1.1.1. Continuous urban fabric 100 0.00 -0.04 0.03 -0.01

3.2.1. Natural grassland 100 0.00 -0.06** 0.03 -0.01

5.2.3. Sea and ocean 100 0.00 -0.03 0.0 -0.01

5.2. Marine waters 100 0.00 -0.0 0.0 0.00

“p < 0.001, p < 0.01, "p < 0.05
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Chapter 6

Concluding Discussion

This thesis presents a comprehensive investigation into the factors influencing solar PV de-
ployment across multiple geographic scales. The development of three distinct models—the
Global Model (national scale), the European (EU) Model (regional/NUTS 2 scale), and the
Great Britain (GB) Model (subregional/NUTS 3 scale)— has enabled a nuanced understand-
ing of the spatial dynamics of solar PV deployment. Each model supports one or more critical
use cases: disaggregation, benchmarking, and forecasting.

In the global model, which examines national level solar PV deployment across countries,
the most important explanatory variables include the previous year’s cumulative PV capacity,
population, agricultural land area, tertiary education levels, and electricity net consumption.
Among the 36 features analysed, economic factors emerged as the most influential, followed
by social factors—particularly education. Land-use characteristics played a notable but less
dominant role, while climatic factors, such as solar radiation, were not found to be significant.

It is intuitive that economic factors rank highest in explaining national solar PV deploy-
ment. Countries with stronger economies are better positioned to invest in renewable energy
infrastructure and implement large-scale policies that support solar PV adoption. Histori-
cally, the high upfront costs of PV systems meant that only wealthier nations could afford
to support deployment through public investment or incentives. Liu et al. [116] identified

GDP, final consumer expenditure, and industrial added value as strong predictors of solar

188
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PV capacity, reinforcing this link between economic strength and deployment. However, the
relationship is not universal—Celik and Ozgiir [117] reported cases where GDP was not sig-
nificantly correlated with PV capacity, suggesting that institutional or policy contexts also
play a role.

Social factors, particularly the level of tertiary education, also contribute to explaining
PV deployment. Education may serve as a proxy for social awareness, administrative ca-
pacity, and the ability to manage complex regulatory and financial mechanisms associated
with renewable energy transitions. Land use also influences deployment, as agricultural land
is frequently used for siting PV installations [119]. Nonetheless, while solar radiation is of-
ten assumed to be a driver, Celik and Ozgiir [117] found that solar radiation itself is not a
predictor of national deployment—Iikely due to overriding economic and institutional con-
straints. Public incentives can drive adoption regardless of solar resource availability [118],
underscoring the central role of policy in shaping deployment outcomes.

In the European model, which investigates solar PV deployment at the regional level,
artificial surfaces and agricultural areas emerge as the most important predictors of installed
capacity. Unlike at the national scale, where economic and social factors dominate, land-use
characteristics play a more prominent role in shaping regional deployment patterns. Artificial
surfaces likely act as a proxy for access to grid infrastructure and urban development, and
are often associated with higher densities of rooftop solar PV, particularly in residential and
commercial zones. Agricultural land, by contrast, is typically associated with utility-scale
installations [119] due to its flat terrain, open space, and generally higher levels of solar
irradiation.

The relationship between land use and PV deployment is supported by multiple studies.
Westacott and Candelise [110] found that rural regions with high irradiation are more likely
to host PV installations. Similarly, Thormeyer, Sasse, and Trutnevyte [111] highlight the im-
portance of the urban—rural divide, showing that municipalities with a focus on agriculture
and forestry typically see higher levels of solar deployment, while more urbanised munici-

palities tend to lag. Mayer et al. [114] also reported a strong positive correlation between
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agricultural gross value added and PV adoption, suggesting that solar PV is often integrated
into regions with active agricultural economies.

Climatic factors, including solar irradiation, show slightly stronger correlations at the
regional level than they do nationally, but still remain weaker predictors overall. While re-
source availability is necessary, it is not sufficient to drive deployment without economic and
infrastructural support. For example, Rigo et al. [112] found that electricity tariffs were the
strongest predictor of municipal PV adoption, followed by solar irradiation and GDP. Addi-
tional regional predictors included education, company presence, demographic density, and
vehicle fleet size—highlighting the relevance of socioeconomic structures in shaping adop-
tion patterns. Moreover, McEachern and Hanson [113] showed that remote, economically
disadvantaged areas with strong solar resources often turn to PV as a substitute for grid
electricity.

These patterns collectively reinforce that regional deployment is driven by a complex
interplay of land availability, economic conditions, infrastructure access, and policy context,
with land-use variables taking a particularly central role in shaping spatial patterns across
Europe.

In the GB model, which explores solar PV deployment at the subregional level, artificial
surfaces and agricultural areas once again emerge as key spatial predictors. However, what
distinguishes the subregional context is the prominence of the gross value added (GVA) by
veterinary activities, which shows the strongest correlation with PV capacity. While this may
at first seem surprising, veterinary services are closely tied to the wider agricultural economy,
particularly in regions with significant livestock production. This suggests that it is not
simply the physical presence of agricultural land that matters for deployment, but rather the
strength of the broader agricultural economy and its associated services. Regions with a more
developed agricultural sector—signalled here by higher GVA in veterinary activities—may be
better positioned to invest in solar technologies or may attract more utility-scale PV projects
due to their stronger financial base and access to capital.

This interpretation is supported by the findings of Mayer et al. [114], who developed a
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deep learning framework to detect PV systems from aerial imagery in Germany and con-
ducted a socio-economic analysis of PV adoption. The study reported a strong positive cor-
relation (0.75) between agricultural gross value added and PV system frequency across the
53 counties of North-Rhine Westphalia, Germany’s most populous state. This relationship
suggests that areas with more economically productive agricultural sectors are more likely
to host solar PV systems, aligning with the observed importance of agriculture-related eco-
nomic indicators—including veterinary activities—in the GB subregional model. Similarly,
Balta-Ozkan, Yildirim, and Connor [115] found that PV adoption at the subregional level
was positively associated with income per capita, electricity sales, and the share of detached
houses—all indicators of economic and infrastructural capacity. These findings reinforce the
idea that land value and economic strength are more relevant drivers of deployment than
land cover alone.

Climatic variables in the GB model, such as solar irradiation, show a weak to moderate
correlation with deployment—stronger than at the national scale, but still less influential
than land-use and economic factors. While solar irradiance is a driver for deployment, high
irradiance is not sufficient on its own. As Balta-Ozkan, Yildirim, and Connor [115] also
found, solar irradiation positively correlates with PV capacity at the subregional level, but
its effect is conditional on the enabling economic and social context.

Altogether, the GB model highlights how subregional PV deployment is shaped by the
intersection of land-use suitability, economic productivity, and moderate climatic potential.
Artificial surfaces likely proxy for both grid accessibility and rooftop PV potential in resi-
dential or commercial areas, while economically productive agricultural regions offer space,
demand, and capital for utility-scale development. These results underscore the importance
of integrating land value and regional economic indicators into models aiming to forecast or
explain local renewable energy deployment.

Across all three models, a consistent spatial pattern emerges: broader economic and social
conditions are the dominant drivers of solar PV deployment at the national level, while land-

use characteristics and the economic productivity of land become increasingly important at
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regional and subregional scales. At the national level, deployment is primarily influenced
by economic strength and education levels, which reflect a country’s institutional capacity,
financial resources, and administrative ability to implement supportive policies.

In contrast, regional and subregional deployment is shaped more directly by the physi-
cal and economic attributes of space. Artificial surfaces and agricultural areas consistently
emerge as strong predictors of capacity, acting as proxies for grid access, rooftop suitabil-
ity, and available land for utility-scale installations. This shift in drivers illustrates how the
constraints and enablers of deployment vary by scale: while national trends are governed
by macroeconomic conditions and policy frameworks, local deployment depends on spatially
distributed infrastructure, land availability, and institutional readiness at finer geographic
levels.

Although climatic factors such as solar irradiation are often assumed to play a major role,
the models show they are generally outweighed by structural and socioeconomic conditions—
particularly in developed markets where solar technologies are already viable.

All three models demonstrated robust performance and effectively captured the dynamics
of solar PV capacity across multiple spatial scales. The Global Model, applied at the national
level to estimate annual capacity additions, achieved a global error of 9.7%. This error was
calculated as the mean absolute error (MAE) divided by the mean cumulative capacity across
countries. The European Model, which estimates cumulative capacity at the regional scale
(NUTS 2), was evaluated using the mean absolute percentage error (MAPE). When applied
across all European countries—including those without available regional PV data—the nor-
malized model reported a national error of 19.5%. The absolute model initially exhibited
a very high error in this same context. However, after applying scaling to align regional
estimates with national totals, the error was effectively reduced to zero. For countries where
regional capacity data are available—mamely the United Kingdom, Italy, Spain, Belgium,
Germany, and France—the absolute model achieved a MAPE of 6.4%, while the normalized
model demonstrated superior accuracy with a MAPE of 2.5%. The high MAPE values ob-

served when evaluating across all countries are primarily driven by countries with near-zero
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PV capacity, which inflates percentage-based error metrics. Finally, the GB Model, which
estimates cumulative capacity at the subregional (NUTS 3) level, achieved a national MAPE
of 5.4%. These results collectively affirm the accuracy and scalability of the modelling frame-
work for disaggregating, benchmarking, and forecasting solar PV deployment across spatial
hierarchies.

The disaggregation of national PV capacity is most effectively addressed using the scaled
EU models. In particular, the scaled absolute EU model accurately allocates unknown na-
tional capacities to specific geographic regions, ensuring alignment with national totals. The
scaled normalized EU model is especially valuable for estimating regional capacities in coun-
tries without official subnational data, offering internally consistent and geographically mean-
ingful estimates. At the subregional scale, the GB Model provides a robust framework for
disaggregating capacity within Great Britain, effectively capturing fine-grained spatial vari-
ation in deployment.

Three Solar PV Deployment Indices were developed to benchmark deployment perfor-
mance at the national, regional, and subregional levels. The Global Model provides a Solar
PV Deployment Index that enables benchmarking of national performance against compa-
rable countries. This index was used to assess policy impacts by comparing expected ver-
sus actual deployment in countries such as Italy, the United Kingdom, Spain, and Mexico.
Countries were also ranked based on their deployment performance, providing insights into
relative national progress. At the regional level, the absolute EU model facilitates cross-
country comparisons, while the normalized model supports within-country benchmarking,
identifying regions with higher or lower than expected deployment. The absolute model
highlighted Brandenburg (Germany) and Castilla-La Mancha (Spain) as the top perform-
ing regions, both exceeding expectations relative to their geographic peers. The normalized
model further revealed regional disparities in countries such as Belgium and Spain, identi-
fying areas that significantly over- or underperformed relative to national trends. At the
subregional level, the GB model was used to benchmark deployment across Great Britain.

Here, Cambridgeshire stood out, while Barnsley, Doncaster, and Rotherham exhibited the
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largest deficits relative to model predictions.

A key contribution of this thesis is the development of forecasting tools at national, re-
gional, and subregional scales through the Global, EU, and GB models. These models enable
spatially explicit forecasts of solar PV deployment, supporting more strategic and geograph-
ically informed planning. The Global Model can be used to project national capacity growth
in alignment with a country’s geographic and socioeconomic characteristics, offering a foun-
dation for setting realistic national targets and informing international comparisons. These
national forecasts can then be disaggregated using the EU and GB models, which provide de-
tailed projections of regional and subregional deployment. The scaled models, in particular,
are well-suited for this task as they maintain alignment with national totals while captur-
ing local variation. At the subregional level, the GB model offers high-resolution forecasts
that are particularly valuable for infrastructure planning and grid connection management
- critical issues in Great Britain, where a significant backlog of renewable energy projects is
awaiting connection. Importantly, these forecasting models also enable the identification of
regions where land-use conflicts are likely to emerge, especially in areas with intense compe-
tition between agricultural and energy sectors. By highlighting these potential conflict zones,
the models provide an evidence base for targeted interventions, such as the promotion of
agrivoltaic systems, which balance energy generation with agricultural productivity. In this
way, the models developed in this thesis offer a robust framework for guiding sustainable and

equitable solar PV expansion over the coming decades.

6.1 Future Research

This study provides a foundation for understanding and forecasting solar PV deployment
using spatially explicit models, but several avenues for future research remain. First, future
work could build on the geographical modelling approach developed here by incorporating
computer vision models—such as those using satellite or aerial imagery—to validate predicted
PV capacities at different time points. Vision-based methods can also serve to improve

the accuracy of geographical models by identifying previously undocumented installations,
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tracking temporal changes in deployment, and refining land-use classifications. Such hybrid
approaches, which fuse image recognition with socioeconomic and climatic predictors, could
provide a more comprehensive picture of deployment trends across multiple spatial scales.

Second, the models developed in this thesis could be used to evaluate the effectiveness of
specific policy interventions. By comparing observed deployment with model-predicted ca-
pacity, researchers can identify regions that over- or underperform relative to their geographic
and socioeconomic conditions. This can support causal investigations into which policy in-
struments are most effective under different spatial and institutional contexts. Moreover, it
can offer insight into how geographic factors—such as land availability, urban density, or in-
frastructure access—amplify or limit the impact of policies, ultimately contributing to more
targeted and spatially appropriate policy design. The integration of political and governance-
related indicators (e.g., local election results, public acceptance indices, or permitting frame-
works) could further contextualize why regions with similar technical and economic profiles
diverge in deployment outcomes.

Third, methodological extensions could strengthen the robustness and interpretability of
forecasts. Uncertainty quantification beyond single-value errors (e.g., MAE or RMSE) is
an important avenue: future work could explore prediction intervals, quantile regression, or
probabilistic forecasting frameworks that generate full predictive distributions rather than
point estimates. Such methods would allow decision-makers to assess not only the most
likely deployment pathway but also the range of plausible outcomes. Similarly, given the
hierarchical structure of the Global, EU, and GB models, forecast reconciliation methods
that enforce coherence across spatial levels—or compositional approaches such as Dirichlet
models that explicitly handle proportion data—could improve the internal consistency of pre-
dictions. Exploring alternative machine learning models, including probabilistic or generative
frameworks, may also yield performance gains while providing additional interpretability and
uncertainty metrics.

Finally, future studies could explore in greater depth the reasons why certain regions

deviate significantly from expected capacity levels. Investigating whether such deviations
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are driven by economic barriers (e.g., lack of investment), infrastructural constraints (e.g.,
grid limitations or permitting delays), or geographic factors (e.g., unsuitable terrain or land
use conflicts) will help clarify the persistent gaps between technical potential and realized
deployment. Combining model outputs with stakeholder interviews, policy timelines, or
infrastructure maps could enrich this line of research. Moreover, future work could also
explore the integration of additional data sources—such as high-resolution satellite surveys,
grid curtailment statistics, or political and governance indicators—directly into modelling
frameworks. Such fusion of diverse data streams would not only enhance predictive accuracy
but also provide a more comprehensive understanding of the multidimensional barriers and

enablers of solar PV expansion.
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