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Abstract

Machine learning (ML), such as supervised learning and deep reinforce-
ment learning (DRL) techniques, has shown great potential in code-related
tasks such as predicting code optimisation options and detecting software
bugs. However, its practical use still faces multiple hurdles during the model
design and deployment phases. This thesis addresses some of these chal-
lenges through three core contributions, aiming at making ML more prac-
tical and reliable for program analysis and optimisation.

The first contribution tackles a fundamental challenge in applying ML
to code - how to represent programs. Our approach enables ML to combine
static code information with dynamic symbolic execution traces to capture
rich program semantics while using a learning-based approach to reduce the
overhead of symbolic execution. This improved representation enabled the
development of an effective ML-based bug detection tool that uncovered
55 unique code vulnerabilities from 20 real-world projects, leading to the
assignment of 37 new Common Vulnerabilities and Exposures (CVEs).

The second contribution aims to lower the barrier to integrating ML into
compiler development. We introduce a framework with a simple Application
Programming Interface (API) that helps developers construct DRL systems
for compiler optimisation. The framework adopts a meta-learning strategy
combining DRL with multi-task learning to search ML architectures. We
show that the ML solutions automatically assembled by our framework
outperform those developed manually by independent experts across four
code optimisation tasks.

The third contribution addresses the reliability issues of using trained
ML models during deployment in the end-user environment. Our approach
leverages statistical assessments to identify when an ML model will likely
make incorrect predictions, enabling fallback strategies to maintain its ro-
bustness. We integrate our approach with 13 representative ML models
across five code analysis and optimisation tasks, showing that our tech-
niques can correctly identify an average of 97% of mispredictions.

The work presented in this thesis has resulted in three open-source tools,
which we hope will support wider adoption of ML in software engineering
tasks like code optimisation and bug detection.
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Chapter 1

Introduction

Over the past two decades, ML has emerged as a powerful method for a wide range
of code-related tasks, including performance optimisation [4–8] and code analysis [1, 9,
10]. A growing body of research has shown that ML-based methods often outperform
traditional approaches that rely on hand-crafted heuristics [11, 12].

ML has transformed how we approach code optimisation and analysis by automat-
ing decisions that required extensive manual effort. For example, ML-based vulner-
ability detectors can identify security bugs and vulnerabilities in minutes, tasks that
previously took expert teams days or even weeks [13]. Similarly, ML models can recom-
mend code transformations that improve performance, reducing the requirements for
time-consuming trial-and-error tuning by developers [12]. These capabilities have led to
growing interest in applying ML techniques to software engineering problems [14, 15].

Most ML-based solutions for program problems follow a two-phase process: design
and deployment. In the design phase, developers use domain-specific datasets to find a
suitable representation method and then construct an appropriate ML architecture to
train the model for their specific tasks. In the deployment phase, the trained model is
integrated into production systems to make predictions on those new, unseen programs.
Each of these stages presents its own challenges in practice.

This thesis addresses some of the key challenges for ML-based program analysis and
optimisation during design and deployment phases, through three core contributions.
First, it demonstrates, for the first time, that combining static source code features
with dynamic symbolic execution traces can improve learned program representations.
Second, it introduces an automated framework to help compiler developers select ap-
propriate reinforcement learning (RL) architectures for compiler tasks. Third, it shows
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1.1 Challenges for Applying Machine Learning to Code

how statistical assessments can be employed to identify when a trained model is likely
to mispredict, thereby improving ML robustness during deployment. These contribu-
tions enhance model performance, reduce development effort, and lower the barrier to
adoption by automating ML architecture design for code-related tasks.

In the next section, we describe the challenges this thesis targets in more detail.

1.1 Challenges for Applying Machine Learning to Code

To successfully apply ML to code optimisation and analysis tasks, three key challenges
must be addressed, as described below.

1.1.1 Learning Program Representation

A key issue for applying ML to code-related tasks is how to best represent programs [16].
Early work in the area relied on hand-crafted features for program representation - for
instance, counting the frequency of instructions of different types [17] or the number
of function calls to routines like free and malloc. More recent approaches leverage the
power of DL [9, 18, 19] to automatically learn representations from plain-text source
code [20] or from static program structures such as control flow graphs (CFGs) and
data flow graphs (DFGs) [21].

While static code representations enable DL models to capture token relationships,
they often introduce ambiguity due to redundant code, complex structures, and long
execution paths. These issues can lead to high false-positive rates and reduced accuracy
in code analysis and optimisation. In addition, many existing methods rely solely on the
sequential order of code statements presented in the plain-text source code, overlooking
structured control and data flow information that is essential for capturing execution
dependencies and alternative execution paths, such as function calls and branches.
Expanding the input context can help models capture long-range dependencies [9, 22],
but this comes at the cost of significantly increased memory usage [9], limiting the
practicality of such approaches when applied to large-scale, real-world software projects.

To address these limitations, recent work [23, 24] has explored dynamic execution
traces, which augment static representations with runtime behaviour by tracking vari-
able changes through symbolic executions. While promising, these approaches use a
random sampling strategy, which incurs significant overhead due to the cost of collecting

2



1.1 Challenges for Applying Machine Learning to Code

dynamic execution traces.
To overcome these limitations, we propose a hybrid approach for learning program

representations that combines static and dynamic views. Our method leverages static
structural information, such as the Program Dependency Control Graph (PDCG), to
ensure having a global view of all possible execution paths, while selectively applying
symbolic execution to capture deeper program semantics and reduce ambiguity. To
mitigate the overhead typically associated with dynamic tracing, we introduce a path
selection module. For a given program, this module identifies the most relevant ex-
ecution paths from its PDCG to guide symbolic execution. The resulting symbolic
traces are then processed by a neural network to generate dynamic embeddings, which
are combined with static code embeddings as program representation for downstream
prediction tasks.

1.1.2 Expertise Barrier in Machine Learning

Introducing ML into domain-specific optimisation tasks presents new challenges for sys-
tems developers like compiler writers who may not have ML expertise. For example,
when working with DL architectures, systems developers need to choose an appropri-
ate neural network for the downstream tasks. This complexity increases further with
the emergence of DRL architectures. For example, in DRL-based code optimisation,
developers must choose and fine-tune several components: a discrete action space (e.g.,
compiler passes), a state representation (e.g., program features), and a reward function
to assess outcomes. Some RL methods also require a transition function, adding fur-
ther complexity, especially as these components must be tailored to different application
workloads.

Although tools like CompilerGym [15], RLlib [25], and others [5, 6, 11, 26–28] offer
reusable components, selecting the right configuration remains difficult. The optimal
setup depends heavily on the specific task, and manual design - akin to neural archi-
tecture search - is time-consuming and error-prone.

To address this, we introduce an open-source framework that automates RL archi-
tecture design and parameter tuning for code optimisation. To use our tool, users
provide a list of actions relevant to the optimisation problem and a measurement
interface to report performance metrics, such as code size or speedup. Our system
then automatically assembles an RL pipeline using modular components: pre-trained

3



1.1 Challenges for Applying Machine Learning to Code

state encoders (e.g., Word2Vec [29], CodeBERT [30]), built-in reward functions (e.g.,
RelativeMeasure, tanh), transition models (e.g., probability matrices, Long-Short-
Term Memory (LSTM) [31]), and RL algorithms (e.g., Proximal Policy Optimisation
(PPO) [32] and Monte Carlo Tree Search (MCTS) [33]).

To tune RL architectures, our system uses customisable algorithms such as PPO [32]
and MCTS [33], operating over user-defined reward, state, action, and transition com-
ponents. Its modular design enables a rich space of parameterised RL configurations,
allowing compiler developers to define customised setups with just a few lines of Python
via a simple API.

1.1.3 Robustness at Deployment Time

ML models can be fragile. Small changes in hardware or the environment can signific-
antly reduce decision accuracy and model robustness [34, 35]. This issue arises from
the fact that ML models are typically built on the assumption that the training data
accurately reflects the distribution of future test data. When the distributions of the
training and test data no longer align, model performance degrades - an issue referred
to as data drift.

Existing efforts to improve ML robustness for code-related tasks have primarily
focused on enhancing learning efficiency or improving model generalisation during the
design phase. These approaches include synthesising benchmarks to expand the training
dataset [6], developing better program representations [9, 27], and combining multiple
models to boost generalisation capabilities [9]. While these design-time methods are
valuable, they are unlikely to account for all potential changes that may arise during
deployment. Although some research has explored validating model assumptions [36]
in the context of runtime scheduling, existing solutions often assume a specific ML
architecture and therefore lack generalizability.

To further enhance the generalizability of ML models, it is essential to preserve
and improve their robustness during deployment. To this end, we propose a statist-
ical method to analyse the prediction probabilities given by underlying ML models
and detect data drift. By using the detected drifting data(e.g. fine-tuning the mod-
els), we improve their robustness during deployment to retain 95% of the performance
achieved during training. Building on this method, we introduce an open-source toolkit
specifically designed for code optimisation and analysis tasks. Rather than replacing

4



1.2 Contributions

design-time solutions, the toolkit offers a complementary approach aimed at improving
the robustness of ML systems after deployment. Its primary goal is to maintain the
reliability of already deployed models in the face of changing data conditions and to
support continuous improvements in real-world environments.

We adopt the prediction with rejections [37–40], which flags predictions that are
likely to be unreliable. This mechanism enables the system to trigger corrective actions
when data drift is detected. For example, an ML-based performance tuner can alert
users when a prediction, such as a set of compiler flags for optimising a program,
is unlikely to deliver good performance, prompting them to explore alternative search
strategies [2, 41, 42]. Similarly, a bug detection model can raise warnings for potentially
incorrect predictions, allowing human experts to verify and correct them.

By identifying and flagging likely mispredictions, the toolkit facilitates continu-
ous learning in production. These misclassified or uncertain examples can be used as
additional training data to iteratively refine the model, thereby enhancing long-term
performance and reliability. Also, the toolkit offers a user-friendly Python interface for
training and deploying supervised ML models, with built-in capabilities for detecting
data drift post-deployment. Developers can easily integrate the toolkit into existing
ML workflows by subclassing its abstract interface, typically requiring only a few dozen
lines of code.

1.2 Contributions
This thesis aims to make ML practical for code analysis and optimisation. Its key
contributions are:

• The first DL framework to combine structured code representations with symbolic
execution for code analysis tasks such as vulnerability prediction. It incorporates
an unsupervised active learning strategy to reduce symbolic execution overhead
through efficient path selection. This work also provides two open datasets to
support future research on integrating static and symbolic code information.

• A generic framework that automatically selects and tunes suitable ML models
(e.g., RL architectures) for code optimisation tasks. It uses DRL as a meta-
optimiser to simplify the integration of ML to code optimisation frameworks,
supported by a comprehensive evaluation across four optimisation tasks.
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• An open-source framework to enhance ML model reliability after deployment,
supporting both classification and regression in code optimisation and analysis.
It introduces a novel adaptive weighting and ensemble method for applying con-
formal prediction (CP) to detect data drift and mispredictions, validated through
a large-scale empirical study across ML architectures and code-related tasks.

1.3 Publications
This thesis is in part based on ideas and results that have been previously described
in publications. Our approach for combining static and dynamic information to learn
program presentation, presented in Chapter 4, was described in:

• Huanting Wang, Zhanyong Tang, Shin Hwei Tan, Jie Wang, Yuzhe Liu, Hejun
Fang, Chunwei Xia, and Zheng Wang. 2024. Combining Structured Static
Code Information and Dynamic Symbolic Traces for Software Vulner-
ability Prediction. In Proceedings of the IEEE/ACM 46th International Con-
ference on Software Engineering (ICSE 2024).

Chapter 5 describes a meta-optimiser-based approach to automating ML architec-
ture search, which was previously published in:

• Huanting Wang, Zhanyong Tang, Cheng Zhang, Jiaqi Zhao, Chris Cummins,
Hugh Leather, and Zheng Wang. 2022. Automating Reinforcement Learn-
ing Architecture Design for Code optimization. In Proceedings of the 31st
ACM SIGPLAN International Conference on Compiler Construction (CC 2022).

Our approach for improving robustness at deployment time, as proposed in Chapter 6,
was first published in:

• Huanting Wang, Patrick Lenihan, and Zheng Wang. 2025. Enhancing De-
ployment Time Predictive Model Robustness for Code Analysis and
Optimization. In Proceedings of the International Symposium on Code Gener-
ation and Optimization (CGO 2025).

The experimental results in this thesis are reproductions of those in the above
publications. What differentiates this work from prior publications is the addition of
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background material (Chapter 2) and a literature review (Chapter 3), which provide a
more comprehensive overview of the relevant fields. The thesis also references new works
published after the aforementioned papers, including those based on these publications.

1.4 Structure
The remainder of the thesis is organised as follows:

Chapter 2. provides the background. It defines key terminology and describes the
ML techniques for program modelling and evaluation methods used in this work.

Chapter 3. reviews the relevant literature, divided into three categories: precise ML,
automated ML, and robust ML.

Chapter 4. presents a new technique that combines static and dynamic information
to model programs, using vulnerability detection as a case study.

Chapter 5. introduces a framework that automatically selects and tunes an appropri-
ate DRL architecture for code optimisation tasks.

Chapter 6. presents techniques to improve the reliability of ML models at deployment
time. Our approach enables the identification of data drift in code-related tasks during
deployment.

Chapter 7. summarises the overall findings of the thesis, provides a critical review,
and outlines potential directions for future research.

1.5 Summary
ML techniques have shown great potential in code optimisation and analysis by improv-
ing application performance (e.g., speedups) and reducing the manual effort required to
develop optimisation heuristics. Realising these benefits, however, requires overcoming
three key challenges: having effective program representations, designing appropriate
model architectures, and ensuring model robustness after deployment. This thesis
tackles these challenges through three technical contributions, resulting in three open-
source frameworks. The next chapter introduces the technical background, and then
we review related works. Subsequent chapters present our technical contributions and
evaluation, concluding with a summary of the thesis’s main contributions.
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Chapter 2

Background

2.1 Introduction

This chapter provides an overview of the techniques and theories used in this thesis.
Sections 2.2 to 2.4 describe some related ML techniques used in this thesis. Section 2.5
shows the evaluation methodologies used in this thesis. Section 2.6 concludes.

2.2 Machine Learning

ML is a subfield of artificial intelligence (AI) that focuses on developing algorithms
and statistical models that enable computers to perform tasks. Instead of following
hard-crafted instructions, ML systems learn patterns and relationships from a training
dataset to make predictions, classifications, or decisions. The learning process typically
involves training a model on the training dataset, allowing it to generalise from the data
and perform well on unseen inputs. ML encompasses a range of techniques, including
DL - supervised learning (where models learn from labelled data), unsupervised learning
(which identifies hidden structures in unlabeled data), and RL (where agents learn
optimal behaviours through trial and error). These methods have been successfully
applied in diverse domains such as natural language processing, code analysis and code
optimisation tasks.

2.2.1 Deep Learning

DL, a subset of ML, focuses on using neural networks to enable models to learn repres-
entations from training samples. Its strength lies in its ability to automatically extract
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complex patterns and features from raw input data, eliminating the need for manual
feature engineering that is often required in traditional machine learning techniques.
One of the key advantages of DL is its capability to handle large-scale datasets, making
it highly effective for code optimisation [43–46] and analysis tasks [9, 27, 47–51].

2.2.2 Deep Reinforcement Learning

RL is an ML technique where an agent interacts with an environment to learn actions
that maximise cumulative rewards over time [52]. The environment represents the
problem to be solved, and the agent takes actions (e.g., selecting compiler options)
based on its observations. The agent’s goal is to improve its performance by refining
its policy, which maps states to actions in a way that maximises the expected reward.
Additionally, many RL algorithms use a value function to assess the quality of a given
state, guiding the agent’s decision-making process. While the policy tells the agent
“what to do next,” the value function answers “how good is this state?”

DRL combines RL with Deep Neural Networks (DNNs), enabling the agent to
operate in high-dimensional and complex environments [53]. This combination allows
DRL to approximate policies and value functions for tasks with large state and action
spaces, making it highly suitable for complex applications like compiler optimisation.
In these tasks, DRL can automate decisions such as selecting optimisation passes or
tuning parameters to improve metrics like execution speed or code size.

Markov Decision Process

In this work, we model our reinforcement learning strategy using a Markov Decision
Process (MDP) [54], a well-established framework for decision-making in environments
where outcomes are partly random and partly under the control of the agent. An
MDP is defined by a set of states, a set of actions, a transition function, and a reward
function. The transition function defines the probability distribution over the next
possible states, given the current state of the environment and the action taken by
the agent. This transition function captures the stochastic nature of the environment,
helping the agent predict the likelihood of moving to a particular state after taking a
specific action.

The reward function estimates the expected immediate reward that the agent will
receive when transitioning from one state to another, based on the action taken. This
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reward function serves as feedback, allowing the agent to learn which actions yield the
highest cumulative reward over time. The goal of the agent in an MDP is to learn a
policy, mapping from states to actions that maximises the expected cumulative reward,
also known as the return, over an extended sequence of actions.

A key challenge in defining an MDP for real-world tasks lies in accurately modelling
the transition and reward functions. These functions need to represent the complexity
of the environment while being computationally tractable. In our work, we address
this challenge by automatically selecting the most suitable candidate functions for both
transitions and rewards. We achieve this by framing the policy search problem as a
multi-armed bandit problem, where each “arm” represents a potential transition-reward
function pair. This formulation allows the agent to explore different candidate functions
systematically, balancing exploration and exploitation to find the most effective model
for the environment.

By modelling the transition dynamics and reward structure as an MDP, our ap-
proach enables more informed decision-making and efficient policy learning. The multi-
armed bandit approach to selecting these functions also ensures adaptability and ro-
bustness, reducing the need for manual intervention or hand-tuned functions. The
result is an RL agent that can effectively operate in complex, uncertain environments
by relying on a well-constructed MDP framework.

Multi-armed Bandit Problem

The effectiveness of an RL algorithm is highly dependent on selecting the appropriate
components, such as the policy architecture, value function estimator, and exploration
strategy. However, manually choosing these components is a non-trivial task [55]. The
Multi-Armed Bandit (MAB) [56] problem is a classical framework in sequential decision
making that models the trade-off between exploration and exploitation. It is inspired by
the scenario of a gambler facing multiple machines, each with an unknown probability
distribution of rewards. At each time step, the agent chooses one arm to pull and
observes a reward, aiming to maximise the cumulative reward over time.

Formally, an MAB problem consists of K arms, each associated with an unknown
reward distribution. The agent’s goal is to select arms over a sequence of trials to
minimise regret, defined as the difference between the reward of an optimal strategy
and the one actually followed.
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2.2.3 Algorithms of Machine Learning

K-Nearest Neighbour (KNN). KNN [57] is a simple, non-parametric classification
and regression algorithm. It classifies a data point by looking at the K nearest points
in the feature space and assigning the most common class label among them. The
distance between data points is commonly computed using Euclidean distance:

d(xi, xj) =

√√√√ n∑
k=1

(xik − xjk)2 (2.1)

The algorithm begins by selecting a value for the number of neighbours, K. Next,
it computes the distance between the new data point and all points in the training
set. After calculating the distances, the nearest K neighbours are identified by sorting
these distances. For classification tasks, the algorithm assigns the most frequent label
among the K neighbours. In the case of regression, it calculates the mean value of the
neighbours to make a prediction.

K-Means. K-Means [58] is an unsupervised clustering algorithm that aims to parti-
tion data into K clusters by minimising the within-cluster variance. The algorithm is
iterative, and the key steps and formulas are:

1. Initialize: Select K random centroids µ1, µ2, . . . , µK .
2. Assign: Assign each data point xi to the nearest cluster based on the Euclidean

distance:

Cluster(xi) = arg min
k

∥xi − µk∥ (2.2)

3. Update: Recompute the centroids for each cluster by calculating the mean of
the points in that cluster:

µk = 1
|Ck|

∑
xi∈Ck

xi (2.3)

4. Repeat: Repeat the assign and update steps until convergence, which occurs
when the cluster assignments no longer change or the centroids stabilise.

K-Means is efficient for clustering large datasets but requires the number of clusters
K to be pre-specified, which can be a limitation in some applications.

Transformer Network. Transformer [59] is a type of deep learning network designed
to process sequential data by leveraging the self-attention mechanism. This mechanism
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computes attention scores between each pair of elements in a sequence, allowing the
model to weigh the relative importance of different tokens. The key equations of the
self-attention mechanism are as follows:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V (2.4)

where Q is the query matrix, K is the key matrix, V is the value matrix, and dk is
the dimension of the keys.

The Transformer model processes input through several layers of attention mech-
anisms and feedforward networks, each incorporating residual connections and layer
normalisation. Initially, the input sequence is embedded into fixed-sized vectors, fol-
lowed by the addition of positional encodings to provide information about the order of
tokens. The model then applies multi-head attention, where the input passes through
multiple attention heads to capture various relationships within the data. Afterwards,
the output from the attention layer is processed by a fully connected feedforward net-
work. Finally, the transformed sequence is used to perform classification or regression,
depending on the task at hand.

2.3 Work Flow for Machine Learning based Program Mod-
elling

2.3.1 Deep Learning based Program Modelling

The workflow for DL in program modelling typically involves several key steps. The
first step is data collection and preparation. After gathering the data, preprocessing
is performed to clean it by removing noise, handling missing values, and ensuring
consistency. The dataset is then divided into training, validation, and test sets.

The next step is DL model selection. Choosing an appropriate deep learning archi-
tecture is crucial and depends on the specific task. For instance, convolutional neural
networks (CNNs) [60] are widely used for image classification, while Recurrent Neural
Networks (RNNs) [61], including LSTM [62] networks, are better suited for handling
sequential data such as time series or natural language. Transformer-based models are
frequently applied to language-related tasks and form the foundation of large language
models (LLMs).
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Once the architecture is selected, the model is constructed by specifying the num-
ber of layers, types of neurons, activation functions (e.g., ReLU, Sigmoid)[63], and
the loss functions, such as cross-entropy for classification or mean squared error for
regression[64]. The model’s parameters are optimised using algorithms such as Stochastic
Gradient Descent (SGD) or Adam [65], and regularisation techniques like dropout or
batch normalization [66] are employed to prevent overfitting.

The model is then trained by feeding the numerical vectors of the training data
into the network to minimise the loss, while optimising its parameters through back-
propagation with the help of optimisation algorithms. This process is iterative, with
hyperparameters such as the learning rate and batch size fine-tuned throughout. A
validation dataset is used during training to monitor performance and prevent overfit-
ting. After training, the model is evaluated on a separate test dataset using appropriate
performance metrics. For classification problems, metrics such as accuracy, precision,
recall, and F1-score are commonly used, whereas for regression tasks, metrics like mean
squared error are more relevant.

Finally, the trained model can be further tuned through model updating or the
application of explainability techniques to ensure its suitability for deployment in real-
world environments.

2.3.2 Deep Reinforcement Learning based Program Modelling

A typical DRL workflow begins with defining the environment, which encapsulates
the program modelling task. This includes specifying the state space (e.g., program
features, intermediate representations), action space (e.g., compiler optimisation passes
or transformation decisions), and the reward function, which quantifies the performance
improvement resulting from a particular action (e.g., execution speedup, reduced code
size). The environment must accurately reflect the underlying structure and dynamics
of the program optimisation or analysis problem.

Next, the DRL agent is configured. This includes selecting a neural network ar-
chitecture to approximate the policy and value functions, choosing a suitable DRL
algorithm (e.g., Deep Q-Networks (DQN) [67] or PPO [32] ), and setting hyperpara-
meters such as learning rate and discount factor. The agent’s goal is to learn a policy
that maps observed program states to actions that maximise cumulative rewards.
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2.4 Robust Machine Learning

2.4.1 Credibility Evaluation

To detect unreliable prediction outcomes, a straightforward approach is to analyse
the probability distribution given by an ML model. For instance, a high prediction
probability for a specific label might suggest high confidence in the prediction. However,
this alone does not fully capture the prediction’s reliability, as ML models can produce
skewed probabilities for rarely seen samples. Consider multi-class classification as an
example. An ML model predicts the likelihood, ri, that a given input belongs to
each class (c1 to cn). However, if the input’s pattern significantly differs from training
samples, the model might assign a low probability to some classes (e.g., r1 ≈ 0.0 for
class c1). This can disproportionately inflate the probabilities of other classes (r2 to rn)
as the sum of probabilities needs to equal 1.0 [68]. In this case, a high probability does
not equate to high prediction confidence. Therefore, assessing the model’s credibility
requires an approach that evaluates how well the input aligns with the training data.

2.4.2 Statistical Assessment

Statistical assessments are used to evaluate the credibility and confidence of predictions
in machine learning models. Unlike typical probabilistic evaluations, which assess the
likelihood of a test sample belonging to a certain class or value in isolation, statistical
assessments draw from historical data distributions. This broader approach helps an-
swer questions like: “How likely is the test sample to belong to a class compared to all
other possible classes?”

By framing the sample within the context of historical decisions and probabilistic
distributions, statistical assessments provide a more robust measure of prediction con-
fidence. For example, conformal prediction techniques quantify uncertainty by lever-
aging past data to make guarantees about the reliability of a prediction, rather than
returning raw probability scores alone [69].

These methods are particularly useful in applications where understanding the un-
certainty behind a prediction is critical, such as in healthcare [70], finance [71], or
autonomous systems [34, 72]. In such domains, the consequences of incorrect predic-
tions can be significant, and statistical assessments help to ensure a more trustworthy
evaluation of how reliable a model’s output is.
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2.4.3 Conformal Prediction

CP [69, 73] is a statistical framework that, given a model g and a specified significance
level, defines a prediction region that contains the true value with a certain probability.
The core idea behind CP is to construct this prediction region based on the distribution
of training data, taking into account noise and variability. Unlike point predictions that
estimate a single value, CP offers a range, ensuring with high confidence that the true
value lies within this region.

CP is designed to enhance prediction reliability by providing coverage guarantees-
ensuring that the prediction interval contains the true value with a predetermined
likelihood, based on the chosen significance level. By leveraging historical data and
model residuals, CP adjusts the prediction region dynamically to maintain the desired
confidence level, regardless of the complexity of the underlying model.

This method proves useful in applications where it is critical to quantify uncertainty,
offering more reliable insights into the model’s predictions. We utilise CP to evaluate
the reliability and confidence of our model predictions, ensuring that the model not
only performs well but also provides trustworthy prediction intervals.

2.4.4 P-value

The p-value [74], as derived through CP, plays a crucial role in evaluating the credibility
of predictions and the confidence in that credibility. Specifically, we use the p-value
to quantify the degree of evidence contradicting the null hypothesis. For example,
when assessing the confidence of a classifier’s prediction, the null hypothesis assumes
no significant difference between the predicted class and any other class, as inferred
from the model’s probability distribution. Similarly, in gauging the credibility of a
prediction, the null hypothesis posits that the prediction does not belong to a specified
prediction region defined by CP.

The p-value is typically computed as:

p = Number of conformal scores greater than or equal to the test score
Total number of conformal scores (2.5)

The conformal score measures how well a data point fits the underlying distribution
learned by the model. A high p-value indicates that the observed data is not likely
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under the null hypothesis, providing strong evidence against it. In contrast, a low p-
value suggests that the observed data are consistent with the null hypothesis, offering
weaker evidence against it. In simple terms, a high p-value points to a more reliable
prediction.

2.5 Evaluation Methodology

2.5.1 Cross-validation

In this work, we utilise K-Fold Cross-validation [75] as a robust strategy for evaluating
the performance of our models. K-Fold Cross-validation is a technique used to assess
the generalisation ability of a model by partitioning the dataset into K equal-sized
subsets, or “folds.” The model is trained on K − 1 of these folds and tested on the
remaining fold. This process is repeated K times, with each fold serving as the test set
exactly once.

The final performance metric is the average of the results obtained across all K iter-
ations. This method provides a more reliable estimate of model performance compared
to a simple train-test split, as it ensures that every data point is used for both training
and testing. Additionally, it mitigates the risk of overfitting and provides insights into
how well the model generalises to unseen data.

A key challenge in using K-Fold Cross-validation is the choice of K, which affects
the bias-variance tradeoff. A lower K value may lead to higher variance, while a higher
K value increases computational costs. In this work, we empirically determine the
optimal K based on our dataset and computational constraints.

2.6 Summary

This chapter provides background on the DL and DRL techniques used in this thesis
to develop precise, automated, and robust ML techniques for code optimisation and
analysis tasks, as well as the methodologies used to evaluate their effectiveness. The
following chapter surveys related work to our thesis.
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Chapter 3

Related Work

3.1 Introduction

This chapter surveys the literature in areas relevant to this thesis. Section 3.2 reviews
research on precise ML for program modelling. We take vulnerability detection as our
case study. Section 3.3 discusses the literature on automated ML for program modelling
on compiler and code optimisation. Section 3.4 surveys work related to ML robustness
at deployment time for code-related tasks. Finally, Section 3.6 concludes the chapter.

3.2 Precise Machine Learning for Program Modelling

Our work on improving precise program modelling for vulnerability detection builds on
foundations in DL, source code vulnerability analysis, and static symbolic execution.
Table 3.1 shows several related SOTA approaches and our position relative to them.

3.2.1 Deep learning-based Vulnerability Detection

Our research on program modelling is part of the recent efforts in DL-based software
vulnerability detection [47–51]. Prior studies primarily relied on static information like
Abstract Syntax Tree (AST) and PDCGs.

Graph-Based Feature Representations

Prior researchers have applied DNNs to various graph-based program representations,
such as ASTs [76, 77], CFGs, PDCGs [18, 50, 51], and Data Dependence Graphs
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Table 3.1: Summary of related work on precise ML for program modelling (vulnerability
detection).

Paper / Year Method Features / Input Dataset Task Limitations
AST-based models [76, 77] DNN Abstract Syntax Trees Source code corpora Vulnerability detection Limited semantic flow
CFG / PDG models [18, 50, 51] GNN Control/Data flow graphs Benchmarks Detecting control-flow issues High complexity
DDG-based models [9] GNN Data dependence graphs Code datasets Vulnerability detection Expensive to scale
Sequence-based models [1, 21] RNN / LSTM Function call sequences Program traces Detect vulnerabilities Poor structural context
ContraFlow [78] Transformer Static value-flow paths Vulnerability corpora Path-based vuln. detection Misses dynamic behaviour
Fuzzing + ML [79, 80] Hybrid Input mutation guided by ML Benchmarks Vulnerability discovery Expensive cost
VUDDY [81] DL Function clone features Large open-source repos Clone detection Misses dynamic information
This work Hybrid AST + dynamic traces CVE, SARD and repos Vulnerability detection -

(DDGs) [9]. These graph structures capture key structural and semantic relation-
ships in code, which are crucial for vulnerability detection. For instance, ASTs have
been used to represent the hierarchical structure of programs, revealing programming
patterns and code semantics that are vital for detecting vulnerabilities [77].

Recent works [82] have demonstrated the effectiveness of these representations in
identifying software vulnerabilities, such as SQL injection and cross-site scripting vul-
nerabilities, by analysing sanitisation patterns in web applications. These studies [83]
often utilise a combination of CFGs and DDGs to capture both control and data flow
information, enhancing the detection of security weaknesses. Additionally, there has
been increasing interest in leveraging more advanced models, such as Graph Neural
Networks (GNNs) and tree-structured LSTMs, to better preserve the hierarchical in-
formation contained in ASTs and other graph-based representations.

Moreover, combining different graph-based representations, such as ASTs with
CFGs and PDGs, has been shown to improve vulnerability detection accuracy by
providing a more comprehensive understanding of code behaviour [84]. This approach
has proven to be highly effective across a range of program analysis tasks.

Sequence-Based Feature Representations

Several studies [1, 21] have explored the use of sequential code entities to train DNNs
for vulnerability detection. These methods typically utilise features such as system
execution traces, function call sequences and sequences of statements representing data
flows to capture flow-based patterns in the code.

For instance, one approach [1, 9] leveraged both static and dynamic features from
call sequences and data flows to detect memory corruption vulnerabilities in operat-
ing system programs at the binary level. The authors extracted call sequences from
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disassembled binaries to generate static features and monitored program execution to
gather dynamic features, which were then fed into DNN models, improving detection
accuracy for vulnerable programs.

Moreover, RNNs [61] have been applied to learning the semantic meanings of vul-
nerabilities through sequential data. For example, Bi-LSTM [62] and gated recurrent
units have demonstrated effectiveness in capturing long-term dependencies crucial for
identifying vulnerabilities such as buffer overflows. These models analyse sequences
of code statements to detect contextual patterns and interdependencies indicative of
vulnerabilities.

Text-Based Feature Representations

Text-based feature representations have been widely explored in the context of software
vulnerability detection. These approaches generally treat code as raw text and apply
techniques such as tokenisation and embedding to convert source code into vector rep-
resentations. For instance, recent studies [85] converted Java source files into token lists
and used the N-gram model to generate token vectors. Feature selection techniques,
such as the Wilcoxon rank-sum test, were then employed to reduce dimensionality.
The authors of these studies demonstrated an average detection accuracy of 93%, with
precision and recall rates as high as 97.6% and 89.26%, respectively.

Another study [86] applied CNNs to detect vulnerabilities at the assembly level in C
programs. The researchers developed ”Instruction2vec” to map assembly instructions
to fixed-length dense vectors [87]. The generated vectors were used as input for CNNs,
showing promising results in detecting buffer overflows. These works highlight the
efficacy of using text-based representations in capturing vulnerable code patterns by
treating source code as sequential text.

Mixed Feature Representations

Mixed feature representations [88] combine different types of input-graph-based, sequence-
based, and text-based representations to enhance the performance of vulnerability de-
tection models. For example, a study on Android APK files combined token features
with semantic features extracted from ASTs, which were then used as input for a deep
fully connected network. This approach [89] outperformed several traditional machine
learning algorithms, achieving an AUC of 85.98%.
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Another approach [22] extended the concept of “code gadgets” by incorporating
both data and control dependencies to capture “global” code semantics and potential
vulnerabilities. Using two Bi-LSTM networks to learn different types of features at
different levels of granularity, this method was shown to effectively identify code vul-
nerabilities and even detect 0-day vulnerabilities. Combining different types of feature
representations provides a richer understanding of code behaviour, leading to improved
detection accuracy across various tasks.

Our approach incorporates symbolic traces with static code information to capture
deeper program semantics, enhancing vulnerability detection.

3.2.2 Symbolic Execution

Symbolic execution [90, 91] has become a widely used technique in program analysis, as
it sidesteps the need for hand-crafted rules by using symbolic values to represent inputs
and analysing their use over the execution tree of a program. This technique enables
the exploration of multiple program paths by evaluating the effects of symbolic inputs
across different execution states. Tools like KLEE [90] have demonstrated success in
automatically generating test cases for programs, particularly in detecting bugs and
vulnerabilities.

However, one of the primary challenges in symbolic execution is the state explosion
problem, where language constructs such as loops, branches, and recursion can signific-
antly increase the number of execution states to be analyzed [92]. This severely limits
the scalability of symbolic execution for large programs [93]. To mitigate this, various
approaches have been proposed. One notable method involves pruning the execution
tree by applying heuristics that prioritise certain execution paths [91, 94], which helps
to reduce the number of states that need to be explored.

Recent advances have also explored combining symbolic execution with other tech-
niques to enhance its scalability. For example, hybrid approaches that integrate sym-
bolic execution with fuzz testing have been shown to achieve better coverage by com-
bining the strengths of both methods [95]. Other research has proposed the use of
machine learning models to guide the symbolic execution process, leveraging learned
patterns to predict which paths are more likely to uncover vulnerabilities [96].

Despite these advancements, the limitations of symbolic execution in handling large-
scale software remain a key challenge, particularly for applications requiring extensive
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path coverage or deep program analysis. Ongoing research continues to explore ways to
address these limitations, including using distributed computing to parallelise symbolic
execution tasks [97].

3.2.3 Contrastive Learning

Contrastive learning has gained popularity for its ability to reduce the costs associated
with annotating large-scale datasets [98]. Originally developed in the context of com-
puter vision [99–101], this self-supervised learning technique has since been successfully
applied to other domains, including natural language processing [102, 103], where it
has proven effective in learning useful representations without the need for extensive
labeled data.

In our work, contrastive learning is employed to tackle the challenge of label scarcity
in Chapter 4 for the vulnerability detection case study. By leveraging this technique, we
can train models using unsupervised learning, which reduces the reliance on manually
labelled datasets. This is particularly beneficial in the context of code analysis tasks,
where acquiring labelled examples can be both costly and time-consuming.

Recent research in contrastive learning has shown that this approach excels at
learning meaningful representations by bringing similar samples closer together in the
feature space while pushing dissimilar samples apart [104]. In the field of vulnerability
detection, contrastive learning helps distinguish between vulnerable and non-vulnerable
code by learning invariant features across different code patterns.

By adopting contrastive learning, our method not only mitigates the need for ex-
tensive manual annotation but also achieves high-performance results in detecting vul-
nerabilities, as models are trained to focus on the inherent structure and semantics of
the code, even in the absence of labelled data. This ability to harness unsupervised
learning makes contrastive learning a powerful tool for enhancing the efficiency and
scalability of vulnerability detection systems.

3.2.4 Path Selection for Code Embedding

Several techniques utilise learning-based approaches for path selection in program ana-
lysis [78, 91]. Similar to ContraFlow [78], we employ unsupervised active learning
to train a path selection network. ContraFlow is specifically designed to identify
static value-flow paths that may trigger a vulnerability, relying exclusively on static
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code features to detect potential security risks.
In contrast, we extend beyond static analysis by integrating path selection with

symbolic execution, thus reducing the overhead typically associated with symbolic ex-
ecution. By incorporating both static and dynamic code features, we are able to gen-
erate more efficient and informative program representations. This hybrid approach
addresses the limitations of purely static methods like ContraFlow, which, while ef-
fective in certain contexts, may miss vulnerabilities that require deeper execution-level
analysis.

Our experimental results for precise program modelling in Sections 4.5.2 and 4.5.3
demonstrate that our approach not only reduces symbolic execution overhead but also
outperforms ContraFlow in terms of accuracy and efficiency. By leveraging dynamic
features alongside static analysis, our method offers a more robust solution for vulner-
ability detection, achieving higher performance across various datasets and scenarios.

3.2.5 Machine Learning for Software Engineering

Machine learning techniques have proven to be highly effective in various software devel-
opment tasks [2, 4, 7, 11, 27]. Existing approaches have been applied to a range of devel-
opment challenges, including fuzz testing [79, 80], code clone detection [19, 81, 105, 106],
enhancing static analysis for vulnerability detection [107, 108], program repair [109],
defect prediction [110, 111], attack detection [112], and processing vulnerability re-
ports [17, 113, 114].

Fuzz testing has been significantly enhanced by machine learning. Ye et al. [79]
proposed an automated fuzz testing approach that leverages machine learning to intel-
ligently mutate inputs for exposing vulnerabilities. Similarly, AFL++ [80] incorporates
machine learning techniques to guide the fuzzing process and improve coverage.

In the area of code clone detection, Kim et al. [81] introduced VUDDY, a scalable
method for detecting functionally similar code fragments using deep learning. Graph-
CodeBERT [106] further enhances code clone detection by utilising a graph-based learn-
ing approach to model the structural properties of code, thus improving semantic clone
detection accuracy.

Machine learning has also been applied to enhancing static analysis for vulnerab-
ility detection. MirChecker [107] leverages machine learning to detect vulnerabilities
missed by traditional static analysis tools, particularly in complex Android middleware.
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Tomassi et al. [108] proposed a machine learning-based approach to enhance static vul-
nerability analysis by learning from historical vulnerabilities to improve detection rates.

Program repair techniques have benefited from the integration of machine learning.
Shariffdeen et al. [109] introduced a concolic program repair approach that combines
symbolic execution and machine learning to automatically generate bug fixes by ana-
lysing potential repair actions.

Defect prediction is another area where machine learning has shown effectiveness.
Zeng et al. [110] developed Deep Just-In-Time Defect Prediction, which uses deep
learning to predict defects during software development. Li et al. [111] conducted
a systematic review of deep learning applications in defect prediction, highlighting
the ability of neural networks to model complex relationships within code to identify
potential defects.

In attack detection, Zhang et al. [112] provided a comprehensive survey on the
use of machine learning techniques for detecting cyber threats, highlighting anomaly
detection and pattern recognition methods as highly effective.

ML has been utilised to process and prioritise vulnerability reports. Perl et al. [17]
proposed VCCFinder, which uses machine learning to automatically categorise and
rank vulnerability reports based on severity. RecDroid [113] automates the processing
of Android vulnerability reports by recommending fixes using deep learning. Cooper
et al. [114] further explored machine learning methods to streamline the analysis of
vulnerability reports, reducing manual effort and improving report processing efficiency.

While our program modelling method builds on these past efforts, it differentiates
itself by offering a unique approach to program analysis and vulnerability detection.
Unlike many prior works that rely primarily on static analysis or supervised learn-
ing methods, we integrate symbolic execution with machine learning techniques to
reduce overhead and improve program representation. Furthermore, by employing act-
ive learning for path selection and combining both static and dynamic code features,
we address the limitations of traditional methods, offering improved accuracy and ef-
ficiency in vulnerability detection. This hybrid approach sets our method apart from
previous studies, providing a more robust and scalable solution for software security
tasks.

23



3.3 Automated Machine Learning

Table 3.2: Summary of related work on automated ML for code optimisation.

Paper Method Features Dataset Task Limitations
ATLAS / FFTW [115, 116] Auto-tuning Loop tile sizes, FFT params Kernels Performance tuning Manual design
Iterative compilation [117–123] Evol./Bayes search Compiler options Compiler benches Code optimisation High search cost
Predictive modelling [124–128] Regression/ML Program features Benchmarks Compiler tuning Needs feature eng.
Autophase [133] DRL Compiler phases LLVM benches Phase ordering Training cost
Haj-Ali et al. [134] RL Loop transformations Compiler workloads Loop optimisation Large training data
NeuroVectorizer [135] RL Scalar → vector code CPU workloads Vectorisation Domain-specific
Decima [136] DRL Task DAGs Pipelines Scheduling System-specific
Khadka et al. [137] DRL Memory patterns Hetero. systems Memory placement Limited generalisation
NAS [138–140] Neural Arch. Search NN configs ML workloads Model optimisation High compute cost
This work Automated RL search Modular RL Code tasks Code optimisation and analysis -

3.3 Automated Machine Learning

Auto-tuning techniques have been widely applied to reduce expert involvement in per-
formance optimisation tasks [4]. Early works such as ATLAS [115] and FFTW [116]
illustrate the potential of searching for domain-specific optimisation parameters, such
as loop tile size. In iterative compilation, evolutionary algorithms like genetic al-
gorithms [117, 118] and other search strategies based on Bayesian optimisation [119–
123], along with predictive modelling [124–128], have been successfully used to optimize
performance. Recent advances have extended these auto-tuning techniques to DNNs
for code generation [44, 129–131], image processing [43], and runtime tuning of oper-
ating system and processor parameters [132]. Our work builds on these foundations,
applying auto-tuning to code optimisation as shown in Table 3.2.

3.3.1 Reinforcement Learning for Code Optimisation

In recent years, RL, particularly deep RL, has demonstrated remarkable success in do-
mains such as game-playing [141, 142] and robotics [143]. Its application has extended
to performance optimisation tasks, including compiler phase ordering [133], loop optim-
isation [134], vectorization [135], task scheduling [136], and memory placement [137].
These efforts typically rely on hand-tuned policies or feature engineering to devise ef-
fective search strategies for a given application domain.

Silver et al. [141] demonstrated the power of deep reinforcement learning by training
AlphaGo, a deep RL-based agent that surpassed human performance in the complex
board game Go, relying on a combination of supervised learning and reinforcement
learning to refine its policy and value networks.

For performance optimisation in compilers, Autophase [133] applied deep RL to the
task of compiler phase ordering by training an RL agent to select the optimal sequence of
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compiler optimisations based on the characteristics of the program being compiled. This
approach replaced the manual design of heuristics with an automated policy learned
through reinforcement learning, achieving significant performance improvements across
different benchmarks.

In loop optimisation, Haj-Ali et al. [134] introduced an RL-based approach to op-
timise loop transformations. Their method employed deep reinforcement learning to
automatically explore different loop transformation strategies, learning which optim-
isations result in the best performance for a given program, thereby removing the need
for expert-tuned strategies.

NeuroVectorizer [135] extended RL techniques to the domain of vectorisation, where
the goal is to convert scalar operations into vectorised instructions for modern pro-
cessors. The authors used deep RL to predict effective vectorisation strategies based
on program features, achieving significant speedups over traditional vectorisation tech-
niques that rely heavily on manually crafted heuristics.

Task scheduling, a key component in high-performance computing, has also be-
nefited from reinforcement learning. Decima [136] employed deep RL to dynamically
schedule tasks in data processing pipelines, learning optimal scheduling policies that
adapt to system workloads and hardware characteristics, significantly improving system
throughput and reducing latencies.

Memory placement optimisation has similarly seen improvements through deep RL.
Khadka et al. [137] proposed a deep RL approach to optimise memory placement for
workloads running on heterogeneous memory systems. Their method learns optimal
memory allocation policies, taking into account the memory access patterns of ap-
plications, and thereby reducing memory access times and improving overall system
performance.

Given the vast diversity of workloads and the need for optimised solutions, auto-
mated RL architecture tuning has gained significant interest. Approaches like ours,
which automate the selection and tuning of RL architectures, are essential for address-
ing the complexity and variety of tasks across different domains. Unlike previous efforts
that manually tuned policies and features, we explore automated methods to optimise
RL architecture for performance tasks, improving both the search efficiency and the
accuracy of optimisation.

CompilerGym [15] is a machine learning platform for compiler optimisation, offer-
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ing an OpenAI Gym-like environment [144] for users to explore compiler optimisation
tasks. Our automated ML method utilises CompilerGym’s API to define problems and
complements the platform by automating the search and tuning of RL components. By
integrating with CompilerGym, we enhance the automation of RL architecture design,
addressing a critical gap in automating compiler optimisations. We also plan to in-
corporate this into future releases of CompilerGym, expanding the toolkit for compiler
optimisation research.

3.3.2 Neural Architecture Search

Neural architecture search (NAS) is a rapidly growing area of research aimed at auto-
mating the design of neural networks by optimising the architecture for specific tasks.
Notable works, such as those in [138–140], focus on reducing model size, improving exe-
cution time, or increasing accuracy. Inspired by NAS, our work extends this concept to
RL architecture search, aiming to find an efficient RL architecture that can be applied
to performance optimisation tasks, particularly in code optimisation. By drawing on
NAS techniques, we enhance RL’s ability to adapt to varying workloads and optimise
performance across different domains.

Our work builds on auto-tuning techniques and leverages advances in reinforcement
learning, neural architecture search, and machine learning platforms like CompilerGym.
By automating RL architecture tuning, we lower the barrier to entry for developers and
enable broader applications of RL in performance optimisation tasks. This automation
enhances the scalability and efficiency of optimisation processes, offering a promising
path forward in both compiler optimisation and other domains.

3.4 Robust Machine Learning

Supervised ML has proven to be a powerful tool for code analysis and optimisation [8,
9, 11, 21, 145–147]. However, supervised ML models typically rely on the assumption
that training data will closely resemble future test data [148]. This assumption is often
violated in deployment environments due to evolving hardware, changing workloads,
and new inputs, leading to compromised ML model robustness [149–151].
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Table 3.3: Summary of related work on robust ML for code-related tasks.

Paper Method Features Dataset Task Limitations
ProgramL [8] GNN Graph-based program rep. Benches Program modelling Design-time only
Wang et al. [9] GNN High-level graphs Code corpora Robust learning Static-only
Data augmentation [152] Code synthesis Synthetic code Benches Robust training Unrealistic code risk
Uncertainty [153] Confidence measures Pred. distributions Various Robust inference Heuristic thresholds
MC Dropout [154] Probabilistic approx. Stochastic forward passes Various Uncertainty estimation Extra inference cost
Deep ensembles [155] Model ensemble Multiple initialisations Various Uncertainty estimation Training/inference cost
Confidence heads [156] Aux. confidence nets Learned confidence output App-specific Robust deployment Arch.-coupled
CP [157, 158] Model-agnostic CP Nonconformity scores Various Reliable prediction Real-time complexity
This work CP + ML pipeline Static rep. Code tasks Deployment robustness –

3.4.1 Design-Time Robustness Techniques

To enhance ML robustness during the design phase, researchers have explored various
techniques such as data augmentation through code synthesis [152], learning robust
program representations [8, 9], and tuning ML model architectures for better general-
ization [2]. These methods contribute to the robustness of ML models by ensuring that
the training data reflects a broader range of potential scenarios, improving generalisa-
tion to unseen data.

Data augmentation through code synthesis [152] focuses on generating additional
training samples by synthetically creating new code examples. By artificially expanding
the dataset, this technique exposes ML models to a more diverse set of inputs, helping
them better generalise to edge cases and rare scenarios in real-world applications. The
synthesis of code examples, often done using program synthesis techniques, can cover
underrepresented programming constructs and patterns, thus increasing the resilience
of models to unusual or unseen code during deployment.

Learning robust program representations [8, 9] has also been a key focus for enhan-
cing robustness. Cummins et al. [8] introduced ProgramL, a machine learning frame-
work that encodes programs as graph-based representations, enabling models to learn
from program structures rather than purely from source code syntax. This shift from
text-based to graph-based representations captures semantic relationships between code
elements, allowing models to better understand and generalise across different coding
styles and paradigms. Similarly, Wang et al. [9] emphasized the importance of learning
more abstract, high-level representations of programs that are invariant to minor code
changes, such as variable renaming or formatting differences. This approach improves
model robustness by ensuring that small, irrelevant code changes do not significantly
impact predictions.
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Another important strategy for improving ML robustness is the tuning of model
architectures for better generalization [2]. Wang et al. [2] demonstrated how careful
tuning of neural network architectures-such as adjusting layers, activation functions,
and hyperparameters-can lead to better generalization across unseen data. Automated
architecture search techniques can also be employed to systematically explore a wide
range of model configurations, selecting the ones that perform best across different val-
idation datasets. This reduces the likelihood of overfitting and enhances the robustness
of models in varying operational environments.

Together, these design-time techniques-data augmentation through code synthesis,
learning robust representations, and architecture tuning-help ensure that ML models
can handle a diverse range of inputs and remain reliable even in the face of unexpected
scenarios.

While design-time approaches are essential for training robust models, they do not
fully address challenges that arise in real-world deployment. In deployment environ-
ments, unforeseen changes in data distribution can occur, resulting in performance
degradation despite robust training methods. Therefore, there is a need for approaches
that extend robustness into the deployment phase.

3.4.2 Deployment-Time Robustness Solutions

Our method complements design-time efforts by focusing on improving robustness at
deployment without altering the model architecture. Unlike traditional approaches that
rely on collecting representative data from the operational environment before deploy-
ment [159], our tool assesses prediction reliability in real-time. This eliminates the need
for extensive data collection, offering a scalable solution for dynamic environments.

Several recent works have proposed methods for quantifying prediction uncertainty
to improve robustness. Common techniques include the use of entropy and mutual
information to measure prediction confidence [153], or training DNNs to estimate con-
fidence for specific applications [156]. These approaches aim to provide insights into
the reliability of model predictions, allowing systems to act accordingly in uncertain
scenarios and improving overall robustness.

Entropy-based methods calculate uncertainty by examining the distribution of pre-
dicted probabilities across all possible classes. In this context, higher entropy indic-
ates greater uncertainty in the model’s predictions, suggesting lower confidence in the
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output. Mutual information, on the other hand, quantifies how much uncertainty is
reduced given additional information from the input data, effectively capturing the con-
fidence of the model in its predictions based on both the data and model output [153].
These methods are widely applied in domains such as autonomous driving and med-
ical diagnostics, where it is critical to know when the model is uncertain and could
potentially make incorrect predictions.

Other approaches involve training DNNs specifically to estimate prediction con-
fidence. For instance, researchers have designed network architectures that include
auxiliary outputs explicitly trained to predict confidence scores alongside the main pre-
diction task. These confidence scores are typically learned during training and help
flag predictions with low confidence that may require human intervention or additional
processing before being finalized [156]. Such methods have been deployed in safety-
critical applications, such as self-driving cars or robotic systems, where mispredictions
can lead to serious consequences if not caught early. These techniques, however, are
tightly coupled with the specific DNN architectures used, limiting their generalizability
to other model types.

To mitigate these limitations, recent advancements have explored model-agnostic
techniques for uncertainty estimation, which can be applied across different machine
learning models. One such technique is Monte Carlo dropout [154], where dropout is
used at inference time to approximate Bayesian inference by sampling from the network
multiple times. This results in an empirical estimation of uncertainty by observing the
variability in predictions across different samples. While effective, Monte Carlo dropout
is primarily tailored for neural networks and assumes the use of dropout layers during
training.

Another model-agnostic approach is deep ensembles [155], which involves training
multiple models with the same architecture but different initialisations and aggregating
their predictions to estimate uncertainty. The variability between the outputs of these
models gives a measure of the model’s uncertainty, with more divergent predictions
indicating greater uncertainty. This method can be applied to a variety of machine
learning models, making it more flexible than techniques tied to specific architectures.
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3.4.3 Conformal Prediction and Anomaly Detection

At its core, we integrate concepts from anomaly detection [39, 40, 160] and adversarial
attack analysis [161] to detect mispredictions resulting from changes in input character-
istics. By incorporating CP, our method ensures confident predictions while rejecting
unreliable ones before they affect the system. This approach provides real-time assur-
ance of prediction reliability, addressing the challenges posed by unpredictable data
shifts during deployment.

Our work builds on existing CP methods, such as MAPIE [157] and PUNCC [158],
but introduces key innovations. While traditional CP techniques use full calibration
datasets and single nonconformity measures, our tool employs adaptive weighting and
multiple nonconformity functions to enhance its ability to detect mispredictions. Ad-
ditionally, we extend CP beyond its typical application in classification to support
regression tasks, expanding its applicability across various problem domains.

By enhancing prediction reliability during deployment and extending CP to mul-
tiple use cases, our method offers a robust and scalable solution for improving ML
model performance in dynamic environments. Its model-agnostic design and real-time
reliability assessments make it an attractive option for addressing the inherent un-
predictability of deployment environments, setting it apart from existing robustness
techniques.

3.5 Position

Research on applying machine learning to software engineering and compiler optimisa-
tion has developed along several lines. Early efforts in bug detection focused on static or
dynamic program analysis, relying heavily on rule-based heuristics or execution-driven
testing. While effective in specific contexts, such approaches often lack adaptability to
unseen bugs. More recently, ML-based methods have been proposed, which leverage
program features to automatically learn patterns of faulty behaviour. However, many
of these approaches consider static or dynamic information in isolation, limiting their
generalisability.

In parallel, compiler optimisation has increasingly adopted machine learning, par-
ticularly reinforcement learning (RL) and deep reinforcement learning (DRL), to auto-
mate the search for optimisation strategies. Systems such as OpenTuner and AutoTVM
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demonstrate that RL agents can outperform traditional heuristic-based approaches.
Nevertheless, such systems often remain difficult for developers to adopt, due to their
complexity and lack of developer-oriented abstractions.

Finally, research into the reliability of ML models has emphasised uncertainty es-
timation, with methods such as Monte Carlo dropout, Bayesian neural networks, and
ensemble learning. These approaches have been widely applied in safety-critical set-
tings, but their computational overhead and limited adaptation to software engineering
tasks restrict their broader applicability.

Table 3.1, 3.2 and 3.3 summarise representative prior work across these three
research areas, contrasting them with the contributions of this thesis. The comparison
is based on the underlying approach, application domain, and limitations, thereby
positioning this research within the state of the art.

3.6 Summary

This chapter has surveyed the relevant literature in the field of practical ML for program
modelling, with a particular focus on code-related tasks.
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Chapter 4

Combining Structured Static Code Information
and Dynamic Symbolic Traces for Program
Modelling

This chapter presents a program modelling method designed to better represent pro-
grams, which is an important step toward improving ML performance. We use vulner-
ability detection as a case study to demonstrate the method’s effectiveness on code-
related tasks. The chapter is organised as follows. Section 4.2 highlights the limitations
of program modelling methods that rely solely on static information. Section 4.3 ex-
plains how our approach is formulated. Section 4.4 then describes the experimental
setup. Section 4.5 presents the experimental results, before Section 4.6 concludes the
chapter.

4.1 Introduction

One of the most important challenges in applying ML to code is how to represent
programs better. The success of a machine learning model is heavily dependent on
having a suitable representation of the problem domain that can encode the essential
information needed for the task at hand, such as vulnerability detection in our case [14].
In the context of DL-based code modelling, this requires constructing numerical vectors,
or embeddings, that capture the important characteristics of the program source code
or binary.

The vast majority of DL-based code modelling techniques rely on DNNs to learn
program representations from static code, such as source code texts [47–49], ASTs
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[76, 77], PDCGs [18, 50, 51], or a combination of these [9]. While static code inform-
ation can capture all possible program execution paths, it can suffer from complex
and ambiguous information due to redundant statements, complex data structures,
and extensive execution paths in the source code. Like classical compiler analysis, this
can lead to over-conservative decisions and a high false-positive rate1, and a low true
positive ratio [23] for automatic bug detection.

More recent approaches, like LIGER [24], attempted to use dynamic execution
traces to learn program representation. These approaches utilise execution statements
seen during profiling to represent static program information and track changes in
program variables to capture dynamic program behaviour. By considering dynamic
execution paths, symbolic traces provide precise information about dynamic program
behaviour and reduce false-positive rates in code analysis. While promising, prior
approaches have two limitations. Firstly, they solely rely on executed code statements
seen for static code representation. This can suffer from poor coverage and overlook
the structured data flow and dependence information available in the static program
graph. This comprehensive data and control flow information is crucial for vulnerability
detection, encompassing all possible execution paths. Secondly, they employ random
sampling for dynamic tracing, which presents challenges when applying dynamic tracing
methods to real-world software projects due to the expensive overhead of symbolic
executions [162].

In this chapter, we ask the question, “what if we could bring the best of static and
dynamic code information in a single DL framework for code vulnerability detection?”.
In response, we develop Concoction, a new DL system to combine static and dy-
namic code representation to detect software bugs and vulnerabilities at the source
code level. Specifically, static code information, such as PDCG, offers a high-level view
of all possible program behaviours and data flow information, which can mitigate the
coverage issue of symbolic execution. On the other hand, symbolic execution traces on
a small set of carefully selected execution paths can provide more precise information
and deeper program semantics to disambiguate static code information. By integrating
these two types of information, we avoid the computational overhead of running sym-
bolic executions on every possible execution path while still leveraging the benefits of

1False positive occurs when the code does not contain a bug or vulnerability, but the detection
model indicates otherwise. By contrast, a false negative occurs when the model fails to identify a true
bug or vulnerability.
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deep program semantics provided by dynamic executions.
Concoction utilises a Transformer-based DNN architecture [59] to leverage static

and dynamic code information. The model comprises a representation component and a
detection component. The representation component maps static and dynamic program
information into a joint embedding (or feature vector) for program representations. The
detection component takes the program representation as input and predicts whether
the input code contains a vulnerability. One of the key features of Concoction is its
ability to minimise the overhead of dynamic tracing. This is achieved by employing a
path selection component during deployment to determine which execution paths from
the PDCG should be chosen to collect symbolic execution traces. These traces are then
fed into the representation component to generate dynamic embeddings, which are com-
bined with the static embeddings and passed to the detection model for vulnerability
prediction.

To overcome the challenge of limited numbers of labelled code samples, Concoc-
tion combines supervised and unsupervised learning techniques. We first leverage
unsupervised contrastive learning to pretrain the representation network. For this pur-
pose, we employ the language masking method [163] and train the representation model
on a dataset of 100K unlabeled C functions sourced from GitHub and open datasets. To
generate additional training samples, we introduce a dropout-based contrastive learn-
ing component [164]. The contrastive loss function encourages the model to understand
code semantics better by mapping similar samples closely and pushing dissimilar ones
farther apart in the embedding space. Furthermore, we also extend unsupervised learn-
ing to train the path selection component using the same unlabeled training dataset.
Once the representation component is trained, we remove the contrastive learning net-
work and combine the representation layers with the detection component, creating
an end-to-end model. This model takes joint embeddings of static and dynamic in-
formation as input and predicts whether the input code contains a bug. To train the
end-to-end model, we use the learned weights of the representation model to initialize
the corresponding layers of the model and fine-tune the entire architecture on a data-
set of 14K labeled code samples obtained from public datasets, including the Software
Assurance Reference Dataset (SARD) [165] and CVE [166].

We have implemented a working prototype of Concoction1. Our implementa-
1Code and data are available at https://github.com/HuantWang/CONCOCTION.
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1 extern void foo(void);
2 static int a[] = {0 ,0};
3 static int b(int c)
4 { return a[1] % c; } // false positive
5

6 int test () {
7 static int *a_ptr , c;
8 a_ptr = &(a[1]);
9 if (* a_ptr ) { // unreachable branch

10 if (b(c)) {foo () ;}
11 }
12 return 0;}

Figure 4.1: This example contains a false “division-by-zero” issue at line 4 because the
branch at line 10 will not be taken.

tion utilises KLEE [90] to generate the symbolic execution traces. We demonstrate
the benefits of Concoction by applying it to C programs to detect function-level
vulnerabilities from source code. We further integrate Concoction with fuzzing test
techniques [167] to automatically generate bug-exposing test cases when a function is
predicted to have a code vulnerability, aiming to minimise the effort of manual exam-
ination.

We evaluate Concoction by applying it to 20 diverse, real-life open-source projects
that are not presented in our training dataset. We compare Concoction against 16
prior methods, including eleven state-of-the-art learning-based methods [9, 18, 24, 47,
49–51, 78, 106, 147, 168], two symbolic execution engines [90, 169], two static analysis
tools [170, 171] and a fuzzing tool [80] for identifying security flaws. Experimental
results show that Concoction consistently outperforms 16 competing methods across
evaluation settings by discovering more code vulnerabilities with a lower false-positive
rate. In less than 200 hours of automated concurrent testing runs, Concoction has
uncovered vulnerabilities in all tested projects and successfully identified 54 software
vulnerabilities, with 37 new CVE IDs assigned.

4.2 Motivation

Static code analysis techniques for bug detection can suffer from false positives
(incorrectly flagging a bug). For example, Figure 4.1 shows a function b() which will
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not be invoked during execution because the static array a is initialised to zero by
definition, and the condition at line 9 is evaluated to false.

However, in practice, this task is challenging even for modern compilers like GCC [172]
and LLVM [173]. The difficulty stems from pointer aliasing analysis. Compilers often
make conservative assumptions when they cannot definitively prove the value a pointer
holds. Consequently, they fail to eliminate this unreachable branch. Similarly, DL-
based bug detection approaches [9, 18, 47–51, 106] that rely on static code features
predict that this example contains a “division-by-zero” vulnerability at line 4, which is
a false positive.

Avoiding a false positive of Figure 4.1 would require capturing program semantics
between variables, function calls and structured data. An approach that uses only
static information may not accurately trace the data flow across function calls and
data structures. Meanwhile, DL-based solutions based on static code information, such
as AST or PDCG, suffer from the same issue.

Can we do better by combining static and dynamic information? This is the insight
shared in this chapter. For this example, we can infer from symbolic execution traces
that the function b() will not be executed due to the values in array a by inlining the
callee function b() to test(). The static PDCG further reveals that a is an invariant
in all possible execution paths. Combining static and dynamic information, we can
observe that this branch is never taken, making a “division-by-zero” error impossible.

A natural question is: “why not just rely on symbolic executions?”. In an ideal
world where computation resources and symbolic execution overhead are not an issue,
a symbolic execution engine will be able to identify the vulnerability of this example
through exhaustive executions. However, this is often infeasible because exhaustively
trying all possible execution paths is prohibitively expensive and potentially infinite.
This example highlights the need to leverage static and dynamic program information
for code vulnerability detection. Concoction is designed to offer this capability.

4.3 Concoction: A System for Precise ML for Program
Modelling

Concoction is a DL framework for detecting software vulnerabilities in source code.
In this work, we apply Concoction to identify bugs at the function level in C pro-
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Figure 4.3: The Concoction DNN architecture and its training workflow.

grams. Specifically, our work focuses on detecting bugs and security flaws defined in
the Common Weakness Enumeration (CWE) database [174]. In practice, Concoc-
tion can be integrated into an automated build system like Jenkins [175] to execute
the vulnerability detection process as a background process when a new merge request
is submitted. As these build systems often run overnight on a dedicated backend server,
they do not affect the standard development activities and the overhead of Concoc-
tion should be acceptable to many developers.

The key technical contributions of Concoction include: (1) combining structured
static code information and symbolic execution traces to learn program representation
(Sec. 4.3.2), and (2) a learnable path selection component to reduce symbolic execution
overhead (Sec. 4.3.4). Concoction builds upon prior foundations in enhanced AST,
Transformer-based neural architectures, and contrastive learning (Sec. 4.3.3).

4.3.1 Overview of Concoction

Figure 4.2 depicts the workflow of using Concoction to detect function-level code
vulnerabilities during deployment.

Pre-processing. Concoction uses a LLVM compiler plugin [173] to partition the
project code into individual functions by inlining callee functions, relevant data struc-
tures, and global variables.
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Prediction. Concoction extracts two types of information for each target function:
(1) AST and PDCG from static source code, and (2) the symbolic execution traces
of selected execution paths using a symbolic execution engine [90]. It employs a path
selection component (Sec. 4.3.4) to identify critical paths to collect dynamic symbolic
execution traces. The static and dynamic information produce static and dynamic
embeddings through dedicated representation networks, which are then concatenated
to create a joint representation to be used by the detection model for prediction.

Test case generation. When the model detects a potential vulnerability in the input
function, it invokes a fuzzing engine to identify and expose the weakness by generating
randomised test inputs for the function. As we only employ fuzzing for functions
suspected to contain vulnerabilities, the fuzzing overhead is manageable, taking less
than 12 hours for all fuzzed functions within a project.

4.3.2 The Concoction Architecture

Figure 4.3 shows the workflow of training the Concoction DL components for program
representations and vulnerability detection.

Program representation. Our representation component uses two Transformer-
based networks to map the input source code and symbolic execution traces into a
numerical embedding vector. Then, a dense layer concatenates the embeddings gener-
ated by the two networks to a joint vector as the output. We set the embedding length
of the static and dynamic embedding vectors to 100 dimensions, leading to a joint em-
bedding vector of 200 dimensions. As in prior work [176], using a larger dimension does
not yield better performance in our setting but may increase the training overhead.

Vulnerability detection. The detection component is a multi-layer perceptron (MLP)
network that takes a joint embedding to predict the vulnerability. The architecture
consists of a fully connected layer, a dropout layer with a rate of 0.1 using the default
settings, and a sigmoid layer. Our current implementation only predicts if a function
may contain a vulnerability and does not identify the type of vulnerability.

Extracting static code information

We use a parser built upon the Language Server Protocol (LSP) [177] to rewrite the
variable names with a consistent naming scheme. This step handles syntactic variations
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in the programs. Next, we construct an enhanced AST, using the LSP, which contains
the standard syntax nodes, i.e., nonterminals in the language grammar like an AST
node for an if statement or function declaration, and syntax tokens, i.e., terminals like
identifier names and constant values. Following [178], we also introduce eight additional
types of edges to the AST, including Child, Data and Control Flows, GuardedBy, Jump,
ComputedFrom, NextToken and LastUse and LastLexicalUse, shown in Figure 4.3.

Extracting dynamic information

We use KLEE [90] to obtain symbolic execution traces. To pre-train the representation
model (Sec. 4.3.3), we generate execution traces using a non-uniform random search
heuristic to explore different execution paths. During deployment, symbolic traces are
generated solely on the selected paths instead of a random search to minimise the
overhead of symbolic executions (Sec. 4.3.4). We terminate symbolic execution after
a configurable time limit (4 hours for collecting training data and 5 minutes when
using the trained model). Subsequently, we combine different symbolic inputs and
their corresponding reachable program paths as a sequence of execution traces to be
fed into the dynamic embedding network (Figure 4.3).

4.3.3 Contrastive Pre-training

We use a bidirectional Transformer network [106] to learn static and dynamic program
embeddings. We pre-train the static and dynamic embedding models separately on
the same unlabeled dataset. Our pre-training dataset contains 100K C code snippets
collected from GitHub and SARD, shown as Table 4.1. After training, we use the
output of the last hidden layer of the embedding networks as the static or dynamic
embedding vector. We employ contrastive learning to increase the dataset size and
enhance the model’s robustness.

Model inputs

We pair the source code text and flattened enhanced AST sequence, sending them
to the static embedding network. The AST sequence is generated by traversing the
AST in a breadth-first manner. During training, the static embedding model predicts
masked tokens from either the source code or AST’s data and control flow relations to
generate contextual representations. Likewise, the dynamic embedding network takes
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Figure 4.4: Contrastive learning for representation training.

symbolic execution traces and maps them to an embedding vector, capturing temporal
dependencies and runtime behaviour of the program.

Training methodology

To enhance the model’s robustness and generalisation ability, we employ dropout-based
contrastive learning [164]. Our approach includes dense, dropout, and pooling layers,
depicted in Figure 4.4. Specifically, we individually attach the contrastive learning
component to the static and dynamic representation networks. Then, we train each
combined network separately and remove them from the contrastive learning compon-
ent.

Contrastive learning increases the training dataset size by adding noise to the data.
Concoction randomly disables neurons in the representation network, generating
various dropouts as shown in Figure 4.4. Specifically, it passes the code sample inputs xi

through the representation network twice with different dropout probabilities, resulting
in two different embeddings as a “positive pair” for xi. Another sample is paired with
xi to create a “negative pair”. The contrastive learning component is then used to
predict positive samples from negatives in a training mini-batch and calculate the loss.
The training process aims to minimise the standard Noise Contrastive Estimate (NCE)
loss function [104] to maximise the agreement between semantically similar pairs.

Training the end-to-end detection model

After training the static and dynamic embedding networks, we attach them to a dense
layer to create joint embeddings for the detection network. This forms the final end-
to-end architecture shown in the right part of Figure 4.3. The joint representation
component serves as the encoder, and we initialise its weights using those obtained
during pre-training. We train the end-to-end network using labeled data samples, which

40



4.3 Concoction: A System for Precise ML for Program Modelling

All execution 

paths

E
n

c
o

d
e

r

D
e

c
o

d
e

r

. . .

L2 norm

Top-K 

Important 

paths

Ranking 

vectors
Selection 

block

. . .

1 2 4

1 5

1 3 4

. . .

1 2 4

1 3 4

1 5

<...>

Function 

source 

code

1

23

44
5

1

23

44
5

PDCG

P Q

P

Represen

tation

Q
H

Figure 4.5: Rank and select paths for symbolic execution.

consist of 13,768 C code snippets from the CVE and SARD datasets. Each sample has
a two-dimensional one-hot label indicating whether it contains a vulnerability. Vulner-
able code samples are collected from open-source projects using the assigned CVE or
SARD IDs, whereas benign samples are obtained from the patched version of the same
project. For each training sample, we generate an enhanced AST and randomly sample
symbolic traces (Sec. 4.3.2). We use the pre-trained representation component to gen-
erate the joint embedding as the program representation, which becomes the detection
model’s input. Our end-to-end model is trained to optimise the cross-entropy loss for
classifications.

4.3.4 Path Selection for Symbolic Execution

After training the end-to-end model, we use the path selection component to choose
significant paths for symbolic executions during deployment. This differs from execution
traces collected during training, where we use a random sampling scheme to improve
the training data size, as symbolic execution overhead is less of an issue for offline model
training.

Overview of path selection

Figure 4.5 shows the workflow of choosing k most important paths from all possible
execution paths of the target function. Like ContraFlow [78], we use unsupervised
active learning to identify most representative paths for encoding programs [179], such
that the number of paths for code embedding is reduced while important program
semantics are well-preserved. Unlike ContraFlow, our goal is to select paths to
collect symbolic execution traces. As we will show in Sec. 4.5.2 and 4.5.3, our approach
outperforms ContraFlow.

Our goal. Given n execution paths H = [h1, ..., hn] collected from the PDCG of
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the test sample, our goal is to choose a subset of important paths to collect symbolic
execution traces, where hi is an embedding vector generated by our static representation
model. The objective is to choose representative data points that can reconstruct most
of the input PDCG information and preserve the unique features of the sample. In this
work, we use the K-means clustering algorithm to model the path features by grouping
data points into clusters in the embedding space. The path selection component is
trained to find a sample subset that captures the input patterns and preserves the
cluster structure of the data.

Execution path representation

For each test sample (function), we extract static execution paths from the PDCG. For
each static execution path, we first eliminate irrelevant code (and AST nodes) and then
feed the code segmentation to the trained static representation model (fine-tuned when
training the end-to-end model) to generate embeddings for the code segments. This
process is repeated for each static path, resulting in a matrix, H, to serve as the input
of the path selection component, where each matrix element is an embedding vector
produced by our static representation model. Since path collection involves traversing
the PDCG without program execution, the overhead is negligible.

Network structure

As our path selection component uses unsupervised learning (we do not have labels to
tag if a path is important), using an encoder-decoder network to map the input into a
latent space for path selection is a natural choice. We add a selection block between the
encoder and decoder to select samples (or paths) from all input paths to be passed into
the decoder. As the selection block is differentiable, the selection network is trainable.

Selection block. The selection block comprises two branches, each consisting of a
single fully connected layer without bias and nonlinear activation functions. The first
branch aims to identify a subset of paths (H ′) that can effectively approximate all
paths from the input matrix (H). The second branch initially clusters the data in
the latent space and then selects a sample subset approximating the resulting cluster
centroids.
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Unsupervised active learning

For all input paths of a test sample, our approach constructs two coefficient matrices,
Q and P , where each matrix element is a d-dimensional embedding vector produced
by the encoder. The matrix Q is constructed by the first branch of the selection block
to approximate the input matrix (H), while the matrix P , constructed by the second
branch of the selection block, aims to preserve the cluster structure when applying
K-means to the latent space learned by the encoder.

Training objectives. Our active learning process refines the matrices to maximize
the distance between (1) H and matrix Q, (2) the cluster centroid matrix C obtained
using K-means clustering on H, and the reconstructed matrix P , and (3) H and the
decoder outputs.

Loss function. Our overall loss function is defined as Min ℓ = αℓa + βℓb + ℓc, where
α and β are tradeoff parameters [179]. The terms in the loss function are:

ℓa = ||ϕ(H) − ϕ(H)Q||2F + γ||Q||2 (4.1)

ℓb = ||C − ϕ(H)P ||2F + η||P ||2 (4.2)

ℓc = ||ϕ(H) − G||2F (4.3)

Eq. 4.1 , ℓa: Approximates input patterns by projecting latent features ϕ(H) with
Q, with regularisation on Q controlled by γ, corresponding to objective (1). The value
of ε represents either 2 (the ℓ2 norm) or F (the Frobenius norm) for the normalisation
function || · ||ε, which is used to measure the informativeness of each feature. ϕ(H) is a
nonlinear transformation that maps input paths H to a new latent representation, and
the tradeoff parameter γ controls the balance between the reconstruction loss and the
regularisation term.

Eq. 4.2 , ℓb: Represents the cluster reconstruction loss, aligning latent features
with centroids C, with regularisation on P controlled by η. This corresponds to ob-
jective (2), with the tradeoff parameter η.

Eq. 4.3 , ℓc: Denotes the decoder reconstruction loss, enforcing ϕ(H) to recon-
struct back to G. This corresponds to the reconstruction loss of the encoderâ€“decoder
model, which represents the third objective. G denotes the decoderâ€™s output for a
given input ϕ(H).

Training process. We iteratively train the selection component on the unlabeled
Concoction training data. Firstly, we pre-train the encoder and decoder without
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considering the selection block. After that, we perform K-means on the encoder output
and consider the obtained K cluster centroids as the centroid matrix C for subsequent
sample selection. The number of clusters (K) is determined automatically using the
Bayesian information criterion (BIC) [180]. Finally, we use the pre-trained parameters
to initialise the encoder and decoder, batch all data, and minimise the overall loss
function using the Adam optimiser with a 0.001 learning rate.

Path selection during deployment

Once the selection component is trained on the Concoction training data, we can ob-
tain two reconstruction coefficient matrices Q and P . To use the selection component,
we normalise the columns of Q and P using L2-norm and convert the values to [0, 1].
This produces two ranking vectors q̂, p̂ ∈ Rn, which we merge and sort in descending
order to identify K top-ranked paths. Parameter K can be flexibly set by the user.
In this work, we set K to be 30%, sufficient to cover important paths of vulnerable
functions in our training dataset. If the number of paths of the target code is less than
10, we consider all execution paths as the overhead of symbolic executions is small.

Symbolic execution for chosen paths

We extended KLEE [90] to cover the selected paths of the target function. To do so,
we use a compiler-based pass to insert a callback function into the target program to
guide KLEE to skip paths not selected by our path selection component. We also use
a script to record the addresses, sizes, and names of all variables of the target function
during symbolic execution. The script also generates a test driver program for KLEE
to facilitate the execution of KLEE.

By skipping unwanted execution traces early, we can manage the overhead of
symbolic execution effectively. We terminate symbolic execution after a configurable
threshold (5 minutes in this work) during evaluation. The symbolic inputs and corres-
ponding reachable code paths produce execution traces that we pass to the dynamic
representation model to generate dynamic embeddings. Note that our approach guar-
antees that there are always symbolic execution traces generated for the test function.
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Targeted fuzzing for test case generation

When our detection model identifies a potentially buggy function that symbolic exe-
cution fails to expose, we use AFL++ [80] (an AFL extension) for fuzzing functions
predicted to be vulnerable. The idea is to generate bug-exposing test cases to help
developers analyse and verify the identified vulnerabilities. In this work, we use the
AFL++ partial instrumentation mode to guide AFL++ towards targeting functions
predicted by Concoction to have vulnerabilities. To this end, we provide AFL++
with the project’s source code, build scripts, vulnerable functions identified by Con-
coction, and seed program inputs to be mutated using the default AFL++ configura-
tions. We then ask AFL++ to instrument the compiled assembly code and mutate the
seed test inputs to cover the target functions. Fuzzing is terminated if AFL++ detects
a program crash or exceeds a 12-hour runtime (which may involve fuzzing multiple
functions together). We then manually verified and reported the issue to developers
with information to reproduce the issue. If AFL++ does not trigger any crash, we
manually examine the predicted function to check for a vulnerability and file an issue
report for each confirmed bug.

4.4 Experimental Methodology

We implemented Concoction in 10+K lines of Python and 5K lines of C/C++ code.
Our DL model is implemented using PyTorch (ver. 1.13). We use Joern (ver. 1.1) [181]
to construct the AST for static code representation and KLEE (ver. 2.1) to collect the
symbolic execution traces. We train and test Concoction models and all baselines
on a multi-core server with two 32-core AMD EPYC 7532 CPUs at 2.40GHz and an
NVIDIA 2080Ti GPU. The server has 128GB of RAM and runs Ubuntu 18.04 with the
Linux kernel version. 5.4.

4.4.1 Workloads

Open-source projects. We applied Concoction to 20 open-source projects from
various domains. These projects, listed in Table 4.3, were chosen because they are
widely used, have been used in related work [182], or have active development teams.
We stress that none of these projects was used to train Concoction, and we tested the
latest version of each project at the time of testing. We also note that bugs discovered
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Table 4.1: Open datasets used in training and evaluation
Source #Projects Versions #Samples #Vulun. samples

SARD / / 30,954 5,477

CVE

Jasper v1.900.1-5, v2.0.12 24,330 663
Libtiff v4.0.3-9 4,896 558
Libzip v0.10, v1.2.0 5,618 49
Libyaml v0.1.4 27,773 41
SQLite v3.8.2 1,794 31
ok-file-fromats 203defd 1,014 25
libpng v1.2.7, v1.5.4, v1.6.0 954 12
libming v0.4.7-8 1,104 15
libexpat v2.0.1 1,051 13

Table 4.2: Open-source projects with known CVEs
No. Project Versions #Lines of code #vuln.

1 SQLite v3.30.1, v3.8.2 242K 13
2 Libtiff v4.0.9 140K 10
3 Libpng v1.2.7, v1.5.4 32K 12

by Concoction were previously unreported at the time of testing; hence, there were
no data leakage issues.

Open datasets. In Sec. 4.5.2 and 4.5.3, we compare Concoction with prior work
on three datasets used by the prior work for evaluation purposes. In Sec. 4.5.2, we use
samples from SARD [165] and CVE datasets (see Table 4.1). In Sec. 4.5.3, we evaluate
Concoction on three open-source projects that have known CVEs (see Table 4.2).
We use three-fold cross-validation to evaluate all approaches on the above datasets,
where samples are split at the project level, and samples of a test project are excluded
from the training dataset.

Data collection and workload characteristics. Our program representation model,
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Figure 4.6: Cumulative Distribution Function (CDF) for the (log-scale) number of lines
(a) and execution paths (b) of our test samples.
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Concoction, was trained and tested on a dataset of over 100K functions from SARD
and 9 large C-language open-source projects (Table 4.1). Four security researchers,
Jie Wang, Hejun Fang, Yuzhe Liu, and Rongze Xu, devoted approximately 600 man-
hours to manual labeling and cross-verification to collect these samples. Additionally,
we spent 200+ machine hours extracting dynamic and static information using KLEE.
Figure 4.6 shows the cumulative distribution functions (CDF) of the number of lines
and execution paths in the test samples in Tables 4.1 and 4.3. The SARD dataset
consists mainly of short functions, where over 50% have <40 lines of code and 4 paths,
leading to high detection accuracy with baseline methods. However, the functions from
the CVE dataset and open-source projects are much larger, with over 50% containing
≥ 400 lines of code (up to 10K) and 128 paths (up to 12K). This increased complexity
in the CVE dataset and open-source projects reduces the accuracy and recall for our
baselines compared to SARD.

4.4.2 Competing Baselines

We evaluate Concoction by comparing it with 16 prior methods. These include
(1) eleven state-of-the-art DL-based models, (2) two symbolic execution tools, (3) one
fuzzing tool that our approach relies on, and (4) two static analysis tools. Before
running the DL baselines on the same datasets, we ensure that our evaluation setup
achieves results comparable to those reported in their source publications for a fair
comparison.

DL models based on static information. We compared Concoction against el-
even DL models that use static code information. These include Vuldeepecker [47],
which utilises a BiLSTM architecture, as well as Funded [9], Devign [18], Re-
Veal [50], and ReGVD [51], which employ a variant of graph neural networks to learn
program representations. We also compared against LineVul [147], LineVD [168],
CodeXGLUE [49] and GraphcodeBERT [106], which use the Transformer architec-
ture, and ContraFlow [78] which utilises contrastive learning to represent the code,
followed by an LSTM architecture to identify vulnerabilities.

DL models based on dynamic information. LIGER [24] is a closely related work
that learns program representations from symbolic execution traces. However, unlike
our approach, LIGER uses a random sampling method for collecting symbolic traces
and does not utilise structured data flow and dependence information from static source
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code. Additionally, it employs a multi-tier RNN architecture, whereas Concoction
uses the Transformer architecture. For our evaluation, we used the open-source im-
plementation of LIGER, adapting it for vulnerability detection and training it on the
same datasets as Concoction.

Static tools. We compare Concoction with two representative static analysis tools:
CodeQL [170] and Infer [171], by using the default, recommended configurations of
the tools.

Symbolic execution engines. We also compare Concoction to two state-of-the-
art symbolic execution tools, including KLEE [90] and MoKLEE [169]. The latter is
designed to reduce the overhead of symbolic executions by allowing symbolic executions
to run on previous paths while continuing to explore new paths.

Fuzzing tool. As noted in Sec. 4.3.4, Concoction uses AFL++ to fuzz predicted
buggy functions and generate bug-exposing tests. We compare Concoction with the
native AFL++, which tests the entire program without Concoction’s guidance. For
a fair comparison, both AFL++ and Concoction use the same seed program inputs.

4.4.3 Evaluation Methodology

We applied Concoction to 20 open-source projects and 14K function-level source code
samples (vulnerable and benign). Our evaluation is designed to answer the following
research questions:

RQ1: Does combining static and dynamic information help detect code vulnerabilities
in real-life open-source projects (Sec 4.5.1)?

RQ2: How does Concoction compare with prior approaches in detecting function-
level vulnerabilities (Sec. 4.5.2 and 4.5.3)?

RQ3: How do individual components of Concoction contribute to its overall per-
formance (Sec. 4.5.4)?

Evaluation metrics. We consider four higher-is-better statistical metrics: accuracy,
precision, recall and the F1 score. Accuracy is computed as the ratio of correctly
labelled cases to the total test cases. Precision is the ratio of correctly predicted samples
to the total number of samples predicted to have the same label. It answers the question,
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“Out of all the samples predicted to contain a vulnerability, how many are correct?”
High precision indicates a low false-positive rate, meaning that a lower proportion
of the samples predicted to have bugs are bug-free. Recall is the ratio of correctly
predicted samples to the total number of test samples belonging to a class. It answers
questions like “Of all the vulnerable test samples, how many are actually predicted to be
vulnerable?”. High recall suggests a low false-negative rate. Finally, the F1 score is the
harmonic mean of Precision and Recall, calculated as 2 × Recall×P recision

Recall+P recision . It is useful
when the test data has an uneven label distribution.

4.5 Experimental Results

4.5.1 Detect Vulnerabilities in Large-scale Testing

This subsection quantifies Concoction’s ability to detect function-level code vulner-
abilities in the 20 projects listed in Table 4.3. For ethical considerations, we first
contacted the developers through a private email for vulnerabilities that are likely ex-
ploitable (including all those with a CVE ID assigned), and followed their advice.

Vulnerability count

Table 4.3 reports the distribution of our submitted vulnerability reports across the
tested projects. In total, we have submitted 54 reports, and 53 were confirmed by
developers. At the time of submission, 27 vulnerabilities have been fixed, with 37 new,
unique CVE IDs assigned and 17 CVE applications pending.

Vulnerability types

Table 4.4 categorises the vulnerabilities found by Concoction1. The top three security
flaw-related categories are presented here. The “other types” category includes six types
of vulnerabilities: ‘allocation-size-too-big’, ‘out-of-memory’, ‘use-after-free’, ‘memcpy-
param-overlap’, ‘illegal-memory-access’, and ‘DEADLYSIGNAL’. Of all the detected
vulnerabilities, 62.3% are buffer-overflow related, covering both heap and stack-buffer-
overflow. Concoction’s ability to detect buffer-overflow vulnerabilities comes from its

1A full list can be found at https://github.com/HuantWang/CONCOCTION/blob/main/vul_
info/README.md.
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Table 4.3: Vulnerability statistics for each tested project.
#Confirmed

Projects Versions
Release
date

#Stars
#Lines
of
code

#Sub-
mitted #Verified #Fixed

in verf.

Linux Ker-
nel

v6.1-rc5,
v6.1-rc4

Apr. 2023 160k 30M 2 2 0

assimp v5.1.4 Sep. 2023 9.7k 374k 6 6 (6 CVE) 0
Image-
Magick

v7.0.11-5 Jul. 2023 10.2k 42k 1 1 (1 CVE) 1

lepton v1.0-1.2.1 Feb. 2023 5k 80k 1 1 (1 CVE) 1
zydis 770c320 Apr. 2023 3.0k 80k 4 4 4
openEXR v2.2.0 Jul. 2023 1.5k 246k 1 1 (1 CVE) 1
openjpeg a44547d Apr. 2023 902 124k 1 1 (1 CVE) 1
Leanify b5f2efc Dec. 2022 801 61k 2 2 2
astc-
encoder

v3.2k Jun. 2023 885 148k 3 3 (2 CVEs) 3

AudioFile 004065d Apr. 2023 355 7k 1 1 (1 CVE) 1
xlsxio af485eb Nov. 2022 231 9k 1 1 1
mediancut-
posterizer

v2.1 Feb. 2023 203 1.8k 1 1 (1 CVE) 0

ELFLoader 34fd7ba May 2022 203 3k 4 4 0
pdftojson 94204bb Oct. 2017 138 148k 3 2 (2 CVEs) 0
epub2txt2 71dc41 Jun. 2022 153 10k 1 1 (1 CVE) 1
deark v1.6.2 Jul. 2023 136 154k 3 3 (1 CVE) 3
ok-file-
formats

203defd Sep. 2021 136 15k 7 7 (7 CVEs) 7

sqlcheck 391ae84 Mar. 2022 2.3k 4.5k 4 4 (4 CVEs) 0
packJPG v2.5k Apr. 2020 151 11k 7 7 (7 CVEs) 0
json2xml v3.14.0 Nov. 2023 88 2.9k 1 1 (1 CVE) 1
Total / / / / 54 53 (37

CVEs)
27

Table 4.4: Top-3 types of issues found by Concoction.
Category #Submitted #Confirmed #Fixed #Dyn-related

buffer-overflow 33 33 20 23
segmentation-violation 6 6 1 5
memory-leaks 4 3 1 3
other types 11 11 5 6
Total 54 53 27 37

capability to reason about input value change ranges by combining static code struc-
tures and carefully selected symbolic traces. During testing, Concoction discovered
six vulnerabilities (11.3%) related to SEGV (segmentation violation), which were later
confirmed by developers. Concoction identifies SEGV by inferring and verifying
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bounds on the variable value of array references. Additionally, Concoction submit-
ted four vulnerabilities (7.5%) related to memory-leaks. The combination of static
and dynamic code features enables Concoction to infer this type of vulnerability by
correlating the allocated and released memory buffer sizes within the test function.
Listing 4.1 shows an example of a heap-buffer-overflow vulnerability detected by Con-
coction, caused by an incomplete bounds-checking pattern. Meanwhile, Listing 4.2
presents a SEGV example uncovered by Concoction.

Concoction detected examples

We present several examples of Concoction-detected vulnerabilities, covering three
types of memory-related security flaws. As DL models generally work as a black box
[183], to understand Concoction’s workings and the vulnerability’s root cause, we
compare the original buggy code with the developer-generated patch after reporting
the issue.

Heap buffer overflow. Listing 4.1 shows CVE-2022-26181, a heap-buffer-overflow
vulnerability identified by Concoction. The vulnerability stems from the value of
the data variable. By making the data variable symbolic, Concoction allows the DL
model to infer that when data is not null, the execution trace consistently reaches line
6. The patch mitigates this by adding a crucial bounds-check assertion on line 5. This
assertion constrains the value read from data[-1] to a small, safe range (≤ 0x10), thus
preventing an attacker from using a large value to corrupt the data pointer and gain
control over memory deallocation. Concoction successfully identifies the incomplete
bounds checking, which may overlook certain non-compliant inputs.

1 void aligned_dealloc ( unsigned char *data) {
2 if (! data) return ;
3 // function always_assert ( condition ) is used to catch exception when

condition is ture
4 + always_assert ((( size_t )(data -0) & 0xf) == 0);
5 + always_assert (data [ -1] <= 0x10);
6 data -= data [ -1];
7 custom_free (data);}

Listing 4.1: Patch for CVE-2022-26181, a heap-buffer-overflow vulnerability in the
Lepton project.

Segmentation violation. Listing 4.2 shows a segmentation-violation vulnerability

51



4.5 Experimental Results

resulting from an out-of-bounds read. The issue arises when the value of dctx->dcmpri.len

exceeds dctx->dcmpri.f->len, causing a reference to a memory location beyond the
allocated buffer boundary. The patch resolves the issue by introducing a classic precon-
dition check. On lines 3-4, it “clamps” the requested length to the buffer’s maximum
size, ensuring the subsequent loop never reads out of bounds, regardless of the input.
Concoction could not discover this vulnerability without the symbolic trace input.

1 dctx -> dcmpri .f->len = sizeof (dctx -> dcmpri .f-> rcache );
2 buf = dctx -> dcmpri .f-> rcache ;
3 + if(dctx -> dcmpri .len > dctx -> dcmpri .f->len)
4 + { dctx -> dcmpri .len = dctx -> dcmpri .f->len; }
5 ... // pass variable dctx -> dcmpri .len to buf_len
6 for(i=0; i< buf_len ; i++) {...
7 b = buf[i];
8 ...}

Listing 4.2: Patch for a segmentation-violation vulnerability that reassigns
dctx->dcmpri.len to avoid memory overflow.

Memory leak. Listing 4.3 shows CVE-2021-3574, a memory leak vulnerability dis-
covered by Concoction. This issue can be detected by inspecting the execution trace
from the memory allocation size of samples per pixel to the memory-free size of
MaxPixelChannels. The patch fixes the vulnerability by adding an early check. If
the input size is invalid, it performs necessary cleanup (e.g., TIFFClose) and throws
an exception to exit before the vulnerable state is reached, thus preventing the leak.
Concoction detects this vulnerability by learning to compare the sizes of these two
variables because memory leaks are typically caused by allocating more memory than
required and subsequently freeing less.

1 malloc ( samples_per_pixel ) // malloc a buffer with size equal to
variable samples_per_pixel

2 ...
3 + if ( samples_per_pixel > MaxPixelChannels ) {
4 + TIFFClose (tiff);
5 + ThrowReaderException ( CorruptImageError ,
6 + " MaximumChannelsExceeded ") ;}
7 ... RelinquishMagickMemory ( MaxPixelChannels ) // free the buffer with size

equal to variable MaxPixelChannels

Listing 4.3: Patch of CVE-2021-3574 for fixing a memory leak vulnerability in the
ImageMagick project.
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Figure 4.7: Evaluation on standard vulnerability databases. Min-max bars show per-
formance across vulnerability types.

Importance of bugs found.

It is difficult to assess the importance of the bugs we found. Still, we found some
evidence to show their importance: (1) some of the bugs we found were also reported
by other application users later, indicating that the issues we identified are relevant
and have occurred in real-world use cases; (2) most of our newly reported issues were
confirmed and fixed by the developers demonstrates their importance; (3) developers
promptly welcomed and resolved 14 of our reported issues within 48 hours, showing
the importance of these issues.

4.5.2 Comparison on Open Datasets

SARD dataset

Figure 4.7 reports four “higher-is-better” metrics (Sec. 4.4.3) achieved by Concoction
and the baselines on the SARD dataset (Table 4.1). The min-max bar shows variances
across cross-validation runs. Concoction outperforms other methods in all metrics
and has the most reliable performance across cross-validation runs, with the narrowest
min-max bar. While LineVul and LineVD achieve high precision (low false-positive
rate) similar to Concoction, they have lower Recall and miss some vulnerable cases.
For example, LineVD only detects 70.3% of the CWE-126 vulnerability typed test
cases, whereas Concoction detects all. Other baselines show low detection accur-
acy. Concoction achieved 100% recall in detecting certain vulnerability types like
CWE-416 and CWE-789. Other methods, in contrast, failed to detect all of these vul-
nerabilities. Notably, Concoction is highly effective in detecting the use-after-free

vulnerability by leveraging dynamic traces and static code structures to infer the use

53



4.5 Experimental Results

Accuracy Precision Recall F1 Score
0.5
0.6
0.7
0.8
0.9

LineVul
VulDeepecker
Devign

GraphCodeBERT
REVEAL
LineVD

CodeXGLUE
Funded
ContraFlow

ReGVD
LIGER
Concoction

Figure 4.8: Evaluation on the CVE dataset.

of pointers.

CVE dataset

As explained in Sec. 4.4.1, test samples in the CVE dataset (Table 4.1) are more complex
than the SARD dataset. As such, it is more challenging to achieve good performance.
However, Concoction outperforms all other methods across all evaluation metrics,
shown as Figure 4.8. Thanks to the carefully selected execution traces, Concoction
can track changes in program states and variables (shown in examples in Sec. 5.1). This
information enhances precision by reducing the false positive rate and helps discover
more vulnerabilities with a higher true positive rate than static information alone,
resulting in a higher recall. Among the baseline methods, LIGER performs best, but
its F1 score is 10.4% lower than that of Concoction. This shows that Concoction
strikes a better balance between false and negative positives, leveraging the advantages
of structured static source code information.

4.5.3 Comparison on Known CVEs

We compare Concoction to the baselines on three open-source projects listed in
Table 4.2. These projects contain 35 CVEs reported by independent users, which were
also used by prior work [184, 185]. We apply all methods to functions associated with
a CVE and use the reported CVEs to compute evaluation metrics (Sec. 4.4.3). To
ensure a fair comparison, we train all methods, including Concoction, on the same
training dataset, but we exclude these projects from the training data. For the dynamic
methods listed in Sec. 4.4.2, we allocate 200 hours of machine time for each project.
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Table 4.5: The number of vulnerabilities found by different methods for the projects
in Table 4.2. The “#vuln.” column shows the total vulnerabilities across all tools for a
category.

Categories Approaches #vuln.

Static analysis tools Infer [171], CodeQL [170] 5
Symbolic execution engines KLEE [90], MoKLEE [169] 6
Fuzzing tool AFL++ [80] 8
DL based on static code information Vuldeepecker [47], Funded [9], Devign [18],

ReVeal [50], ReGVD [51], LineVul [147],
LineVD [168], CodeXGLUE [49], Graph-
codeBERT [106], ContraFlow [78]

22

DL based on dynamic information LIGER [24] 16
Concoction 31

Vulnerabilities identified

Table 4.5 demonstrates Concoction’s advantages over other methods in identifying
vulnerabilities across the three open-source projects evaluated. Concoction achieved
100% precision and 89% recall, correctly detecting 31 out of 35 confirmed CVEs. Addi-
tionally, Concoction identified all issues found by other methods and uncovered 9 ad-
ditional vulnerabilities that others missed. Among DL-based static methods, ReGVD
had the second-best and highest recall rates, detecting 21 vulnerabilities. However,
they struggled to identify 14 vulnerabilities caused by API parameter misuse.

Static tool baselines, CodeQL and Infer, can only detect five vulnerabilities at
their best (5 for CodeQL and 0 for Infer) because they rely on hand-crafted rules
with limited coverage. They missed all vulnerabilities related to “CWE-754: Improper
Check for Unusual or Exceptional Conditions” because it was not in their rule sets.
Dynamic methods using symbolic execution and fuzzing tools have a low recall of 0.26
in our evaluation due to limited path coverage within the testing time (12 hours).
MoKLEE found 2 more bugs than KLEE (which found 4) in this context. Without
Concoction’s DL component, native AFL++ detected 8 vulnerabilities in 12 hours,
while Concoction improved efficiency by finding 31 CVEs within the same test time
by guiding the fuzzing engine to focus on potentially buggy code paths.

Though highly effective, Concoction missed four vulnerabilities (one example in
Sec. 4.5.3) due to incomplete vulnerable execution traces during feature extraction. Ad-
dressing this limitation could involve extending symbolic execution time and improving
the path selection model or the number of paths selected.
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Case missed by baselines

Listing 4.4 shows CVE-2020-35523, an integer overflow vulnerability identified by
Concoction but missed by all baselines. The patch shown in the listing validates this
by implementing exactly that missing check, preventing the dangerous computation
entirely. Other methods missed this bug because they mainly rely on static information,
such as tokens typically associated with integer overflow (e.g., malloc), which is
insufficient in this case. Concoction detects this vulnerability by symbolising the tw

and w variables, allowing the DL model to infer the absence of a corresponding INT32

bounds check, which aligns with the pattern of integer overflow.

1 if (flip & FLIP_VERTICALLY ) {
2 + if (( tw + w) > INT_MAX ) {
3 + TIFFErrorExt (...) ;//
4 + return (0) ;}
5 y = h - 1;
6 toskew = -( int32 )(tw + w);

Listing 4.4: An integer overflow vulnerability in Libtiff.

Case missed by Concoction

List 4.5 shows CVE-2020-35523, a memory leak vulnerability missed by Concoction
and all other baselines. The issue is caused by the function directly returning without
closing the input file handle in, causing resource leakage. The patch, highlighted on line
6, rectifies this by inserting the necessary call to TIFFClose(in) immediately before the
return statement. This ensures that the acquired resource is properly released on all
execution paths, thereby fixing the leak. Concoction missed this because the memory
leakage is introduced within the file handle data structure, but Concoction does not
learn such patterns from the training dataset. This can be improved by expanding the
training dataset to encompass a broader range of patterns.

1 extern int optind ;
2 in = TIFFOpen (argv[ optind ], "r");
3 ...
4 if (...) {
5 fprintf (...) ;
6 + (void) TIFFClose (in);
7 return ( -1) ;}
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Figure 4.9: Concoction variants on CVE dataset.

Listing 4.5: A memory leak vulnerability in Libtiff that occurs because the file handle
in is not released.

4.5.4 Ablation Study

DL model implementation choices

We conduct an ablation study [186] on Concoction using the CVE dataset. The
study includes the following variants: Static (using enhanced AST, Sec 4.3.2), Dynamic
(utilizing randomly sampled symbolic traces with 30 minutes of symbolic execution
for each project, NonCL (without the contrastive learning module, Sec.4.3.3), NonSel
(omitting the path selection module by using randomly sampled symbolic execution
traces with static code information, Sec 4.3.4), and Conc (the complete Concoction
implementation).

The results are given in Figure 4.9. Using only static or dynamic representations is
insufficient for accurately modelling program structures, with F1 scores of 68.7% and
77.2% for each variant, respectively. In our approach, we employed dropout-based con-
trastive learning as data augmentation for training our representation model (Sec.4.3.3).
This helps extend our training set and mitigates overfitting [187]. Removing the con-
trastive learning component led to a 3.7% decrease in the F1 score, reaching 82.4%
compared to the full model. Additionally, removing the path selection method resulted
in an F1 score drop to 77.6% since random sampling may not capture crucial path
information within a given budget.

Sensitivity analysis

To test the sensitivity of Concoction on mislabeled training samples, we introduce
mislabeled samples that account for from 20% to 80% of the training samples into the
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Figure 4.10: Training overhead of different DL methods.

training dataset of Concoction, leading to a variant of Concoction-MisSam. Sim-
ilarly, we randomly remove some symbolic execution traces selected by Concoction
to simulate a scenario where some traces are missing. This led to another implement-
ation variant named Concoction-IT. The performance of Concoction-MisSam on
Figure 4.9 shows that mislabeled training samples can harm performance, where the F1
score of Concoction-MisSam drops from 78.0% to 64.3%. This is expected, as ma-
chine learning techniques can suffer from noisy and mislabeled training data [188, 189].
However, the impact of mislabeled samples can be mitigated by increasing the training
dataset and using data cleaning methods [190, 191], which are orthogonal to our ap-
proach. Similarly, missing execution traces can also negatively impact the performance,
where the F1 score of Concoction decreases from 86.1% to 77.1% in Concoction-
IT, which is still at least 2.1% higher than other DL baselines that rely on static code
information. Missing symbolic execution traces is likely to happen when testing ex-
ternal libraries where the tool has no access to the source code. This issue is beyond
the capability and scope of a source code-level detection tool. In the worst case, where
all symbolic traces are missing, our DNN model can still use static information to detect
bugs, albeit less efficiently.

Training and deployment overhead

Figure 4.10 compares training overhead for various DL-based methods. It includes one-
off time spent on feature extraction (e.g., AST and symbolic executions) on training
samples and iterative training time using labelled samples from Table 4.1. Training
terminates when the loss does not improve within 20 consecutive epochs or meets
the termination criteria specified in the baselines’ source publication. The experiment
was conducted on a multi-core server using a desktop-level NVIDIA 2080 Ti GPU.
Vuldeepecker, CodeXGLUE, and Lin et al. achieved the shortest training over-
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head, relying mainly on sequence neural networks like Bi-LSTM. However, they have
a low F1 score, indicating a limited ability to capture complex code structures. More
advanced models that use ASTs required longer feature extraction and training times
but showed higher accuracy during evaluation. Additionally, LIGER and Concoc-
tion incur a more expensive feature extraction time due to collecting dynamic runtime
information by symbolic execution. It is important to note that model training is
performed offline and is a one-off cost.

During deployment, Concoction can complete predictions within minutes, and
the fuzzing tool may take several hours to generate a vulnerability-exposing test case.
Since Concoction can be integrated with a parallelised overnight build system, the
deployment overhead should be acceptable for many software developers.

4.6 Summary

In this chapter, we have presented Concoction, a new DL system for detecting vul-
nerabilities at the source code level. It utilises structured static code features and
dynamic symbolic execution traces to learn program representations, enabling accurate
prediction of bugs. We train Concoction by combining unsupervised and super-
vised learning and minimising the overhead of symbolic executions by using a path
selection network. We apply Concoction to detect bugs and vulnerabilities for C
programs from 20 open-source projects. In 200 hours of automated concurrent test
runs, Concoction successfully detected vulnerabilities in all tested projects, discov-
ering 54 unique vulnerabilities and yielding 37 new, unique CVE IDs. Compared to 16
previous methods, Concoction finds more vulnerabilities with higher accuracy and a
lower false positive rate.
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Chapter 5

Automated Machine Learning for Program
Modelling

The previous chapter presents a method to better represent programs to improve pre-
cise program modelling. In this chapter, we present a framework for automated DRL
component design and implementation. We conduct a large-scale evaluation across four
code optimisation tasks to demonstrate how our approach lowers the barrier between
ML expertise and compiler programmers. The chapter is organised as follows. Sec-
tion 5.2 discusses the current challenges in applied ML caused by the expertise barrier.
Section 5.3 explains how our approach is formulated. Section 5.4 then describes the
experimental setup. Section 5.5 presents the experimental results, before Section 5.6
concludes the chapter.

5.1 Introduction

In recent years, we see a growing interest in the research community and industry [15,
192] in using RL and DRL to tackle a wide range of code optimisation problems [133–
135, 137, 193]. Developing a deep RL solution for code optimisation requires choosing
and parameterizing several components: (i) a discrete set of actions or transformations
that can be applied to a program, such as passes in a compiler; (ii) a state function that
can summarize the program after each action as a finite feature vector, and (iii) a reward
function that reports the quality of the actions taken so far. Some RL algorithms may
also allow the selection and further parameterisation of a transition function, which
governs the choice of actions to be applied in each state. Moreover, parameters of
individual RL components need to be tuned on benchmarks.
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Efforts have been made to provide RL algorithms and high-level APIs for action
definitions [15, 25], models for program state representation [5, 11, 26, 27], and tools
for training benchmark generation [6, 15, 28]. While these recent works have lowered
the barrier for integrating RL techniques into compilers, compiler engineers still face a
major hurdle. As the right combination of RL exploration algorithms and their state,
reward and transition functions and parameters highly depend on the optimisation task,
developers must carefully choose the RL architecture by finding the right RL compon-
ent composition and their parameters from a large pool of candidate RL algorithms,
machine-learning models and functions. This process currently requires testing and
manually analysing a large combination of RL components. Experience in the field of
neural architecture search shows that doing this by hand is an expensive and non-trivial
process [138].

This chapter presents Supersonic1, an open-source framework to automate the
RL architecture search and parameter tuning process to make it easier to integrate RL
into compilers. To use Supersonic, the compiler developer provides the action list
according to the problem being tackled and a measurement interface to report metrics
like code size or speedup. Supersonic then automatically assembles an RL architecture
for the targeting optimisation from an extensible set of built-in RL components. The
Supersonic RL components include pre-trained state functions, such as Word2Vec [29]
and CodeBert [30]. It provides candidate reward functions like RelativeMeasure and
tanh to compute the reward based on the metric given by the measurement interface.
The state-transition function can be selected from a further set of predefined transition
functions, such as a transition probability matrix or LSTM [31]. Finally, Supersonic
takes a customizable set of predefined RL algorithms, like PPO [32] and MCTS [33],
which may be driven by any of the chosen reward, state, actions and transition function.
This creates a large space of possible parameterised RL architectures, which can be
defined by the compiler developer with a few lines of Python using an easy-to-use API.

Armed with this space of RL architecture choices, Supersonic will automatically
and efficiently search it to find the one that gives the best results over a sample of
user-provided training benchmarks. The search is accomplished by a deep RL-based
meta-optimiser [194, 195] that is designed to be generalizable to any optimisation tasks.
Once the meta-optimiser has selected the client RL architecture and its parameters,

1Available at: https://github.com/HuantWang/SUPERSONIC
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the work of Supersonic is over. As an output, Supersonic stores the tuned client
RL as serialised objects. It provides an API for a compiler or performance tuner to
use the stored RL to drive the code transformation pass for new, unseen programs.
On an unseen program, the client RL may be used to search for the actions that yield
the best reward. Alternatively, it can be further generalised by training on additional
benchmarks so that actions for new programs can be chosen directly from the policy
without further search at the deployment time. Supersonic aims to automatically
make the client RL as good as possible for the compiler developer’s needs.

As this client RL search and tuning process is automated and requires little RL ex-
pertise, Supersonic further reduces the difficulties for integrating RL into compilers
by replacing compiler developer time with machine hours. This client RL search and
tuning process is a one-off cost performed offline. The compiler end-users (e.g., applic-
ation developers) will not experience this process - they will use the shipped RL like
any other feedback directed compiler passes [196].

We evaluate Supersonic by applying it to four optimisation tasks: Halide schedule
optimisation [43], neural network code generation [44], compiler phase ordering [45] for
code size reduction and superoptimisation [46]. Each of the tasks has a large number
of combined optimisation options, so it is non-trivial to design a good search strategy.
We compare Supersonic against eight tuning methods developed by independent re-
searchers, including search-based strategies specifically designed for the targeting prob-
lem [197–200], generic tuning frameworks like OpenTuner [201] and CompilerGym [15],
and hand-tuned RL solutions for the relevant task [202]. Our extensive evaluation
shows that Supersonic consistently gives better overall performance than alternative
methods across tasks during deployment. We show that the client RL given by Super-
sonic converges fast, and it can start producing better code than competing search
methods by using on average 1.75x less search time (up to 100x) for new programs
during deployment.

5.2 Problem Definitions

Supersonic automates RL component searching and parameter tuning. Within Su-
personic, a client RL consists of an exploration algorithm to choose actions (e.g.,
compiler options), a reward function for computing the expected cumulative reward
based on past observations of the environment (e.g., execution time after applying a
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Figure 5.1: Overview of Supersonic components. This framework enables developers
to express the optimisation space. It automatically searches for the optimal client RL
architecture to be used for inference during deployment.

transformation), a method for modelling the environment or program state (e.g., a
DNN or a linear function), and an action list provided by the user (e.g., legitimate
code transformation options). Depending on the exploration algorithm, this can also
include a state transition function to compute the probability of going from one state
to another. Each of the components can be chosen from a pool of Supersonic built-
in candidate methods, and the combination of these components can result in a large
policy search space. Supersonic is designed to automatically find and tune the right
combination of RL components and their hyperparameters. It complements existing RL
platforms like CompilerGym [15] and RLLib [25], by helping the compiler developers
to choose and optimise a suitable RL algorithm.

5.3 Supersonic: A System for Automated ML for Pro-
gram Modelling

5.3.1 Overview

Figure 5.1 gives an overview of Supersonic. At the core of Supersonic is a meta-
optimiser that builds upon MAB and deep RL techniques. Given a client RL search
space defined by the Supersonic Python API, the meta-optimiser searches for a suit-
able RL component configuration for an optimisation task. It then automatically tunes
a set of tunable hyperparameters of the chosen components. The tuned client RL can
then be used to optimise unseen programs through inference (including potential re-
training), which is outside the scope of Supersonic. The search space definition and
RL client architecture search and parameter tuning are a one-off offline process, which
is within the scope of Supersonic.
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Implementation. We implement Supersonic in Python and use gRPC for distrib-
uted communications. Supersonic builds upon CompilerGym [15] and RLlib (Ray)
[25] by utilising their APIs for task definitions and RL algorithm implementations.
Supersonic currently supports 23 RL algorithms from RLLib [25] and 10 pre-trained
DNNs and functions for representing the program state or computing the reward. Com-
piler developers may choose a subset, add their own, or include all (the default) sup-
ported RL algorithms and models for the meta-optimiser to search over.

Task definition. The compiler developer first defines the optimisation problem by
creating an RL policy interface (Figure 5.2). The definition includes a list of client RL
components for the meta-optimiser to search over.

Client RL search. Calling to policy search() invokes Supersonic meta-optimiser,
where the developer can also limit the number of trials spent on client RL searching.

Client RL parameter tuning and deployment. After choosing an RL architec-
ture, the meta-optimiser will fine-tune a set of model-specific hyper-parameters of the
selected client RL (see also Table 5.1). Hyperparameter tuning is performed on the
training benchmarks. The tuned client RL and its parameters are saved, which can be
shipped with a compiler to optimise unseen programs at deployment time.

Measurement engine. The measurement engine evaluates a code transformation
option using a user-supplied interface (line 24 in Figure 5.2). Measurements are used
during client RL search and tuning, as well as deployment phases, to obtain feedback
for a chosen optimisation action.

5.3.2 Task Definition

The user-defined client RL search space typically includes candidate functions (or mod-
els) for representing the environment state, objective functions for computing the re-
ward, and the set of possible actions that can be taken from a given state. This search
space definition can optionally include a chosen set of RL exploration algorithms and
transition functions to be used by a client RL algorithm. By default, Supersonic
automatically search over all supported RL algorithms where each algorithm has a de-
fault transition function. Furthermore, the compiler engineer also needs to provide a
run function, which provides the measurement of an action to compute the reward.
These are implemented in a small Python program to interface with the Supersonic
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1 import SuperSonic as ss
2 from SuperSonic . stateFunctions . models import *
3 ...
4 statefs = [ Word2Vec (...) ,Doc2Vec (...) ,CodeBert (...) ,ActionHistory (...) ]
5 tranfs = [DNN (...) ,CNN (...) ,LSTM (...) ]
6 rewards = [ RelativeMeasure (...) ,tanh (...) ]
7 rl_algs = [MCTS (...) ,PPO (...) ,DQN (...) ,QLearning (...) ]
8 actions = [Init (...) ]
9 ...

10

11 class SuperOptimizer (ss. PolicyInt ):
12 def __init__ (self , statefs , tranfs , actions , rewards , rl_algs ):
13 self. PolicySpace = {
14 " StatList ": statefs ,
15 " TranList ": tranfs ,
16 " ActList ": actions ,
17 " RewList ": rewards ,
18 " AlgList ": rl_algs ,
19 }
20 self. search_engine = SearchEngine (self. PolicySpace )
21

22 def run(self):
23 #user code for compilation and execution
24 ...
25 return Result (time= run_result [’time ’])
26

27 if __name__ == ’__main__ ’:
28 opt = SuperOptimizer (statefs , tranfs , actions , rewards , rl_algs )
29 policy = opt. policy_search ( training_benchmark_list , num_of_trials =100)

Figure 5.2: Simplified tasks definition for superoptimization.

API. The definition code is similar to the programming environment of mainstream
auto-tuners like OpenTuner and CompilerGym, allowing the developer to quickly port
their code to use the Supersonic search and tuning components.

Figure 5.2 gives a simplified example that defines the client RL search space for
superoptimizaton [46, 203]. This example specifies candidate methods for representing
the environment state, functions for computing rewards, the definition for action space,
and a chosen set of client RL algorithms. The run function implements the measure-
ment interface, including user code for compiling and executing the program for a given
code transformation action.
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Finally, the program invokes the policy search API by passing in a list of training
benchmarks and the number of search trials. We stress that the measurement interface
defines how to compile and execute a test program, but the target program can be of
any language.

5.3.3 Client RL Search

Given a client RL search space, the Supersonic meta-optimiser automatically finds
a suitable client RL architecture (i.e., <state function, transition function, reward
function, RL algorithm> and potentially a value function) from training benchmarks.
We formulate the client RL search problem as an MAB problem that is solved using a
parallel DRL algorithm. Deep RL can reuse knowledge from other tasks to speed up
the search. In contrast, evolutionary algorithms have to search from afresh. Our work
is the first to formulate client RL tuning for code optimisation as a MAB problem and
employs deep RL as a meta-solver.

Our meta-optimiser is a variant of the Asynchronous Advantage Actor Critic (A3C)
algorithm [204, 205]. A3C is a distributed algorithm, where multiple workers independ-
ently update a global value function - hence “asynchronous”. We chose this algorithm
because it has been shown to be effective in other RL application domains [205] and
permits us to develop a parallel policy search engine. Specifically, the meta-optimiser
consists of two RL models, an actor for computing an action based on observation and
a critic for estimating a reward value. In a nutshell, the actor is a policy RL that takes
as input the environment state and outputs the best action (a policy architecture in our
context). The actor essentially controls how the meta-optimiser chooses a candidate
client policy to try out. By contrast, the critic is value-based RL that evaluates the
action by adjusting its value function to estimate the maximum future reward based
on the historical observations obtained from training benchmarks. As time passes, the
actor is learning to produce better actions, and the critic is getting better at evaluating
those actions.

Like [205], we implement the actor and the critic using a stacked neural network
consisting of a ResNet CNN [206] that is followed by an LSTM RNN [31]. We use the
output of the LSTM to update the policy function of the actor and the value function
of the critic. Input to the actor model is a 1-dimensional history vector containing the
last 20 actions (policies) that the meta-optimiser has tested. Input to the critic model
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is a history vector plus a cumulative reward averaged across benchmarks, computed
using an Area under the Curve (AUC) function.

Client RL searching strategy. At each of the n trials, the meta-optimiser obtains
an action (i.e., a client policy architecture to test) from the actor model. The meta-
optimiser uses the user-provided measurement function to obtain the observation, which
is then used to compute the current reward. The current reward and the environment
state are passed to the critic model to update its value function. The value function
of the critic also estimates the future reward, which is given to the actor to update its
policy network. By default, the meta-optimiser runs each client RL for 50 exploration
steps during a trial to allow it to converge before taking the observation. We use
the 20 most recently chosen policy architectures as the state. We then measure the
area under the reward curve of the recently chosen 20 policies to compute the current
reward. After the meta-optimiser performs n trials on training benchmarks, we check
the latest 20 actions chosen by the actor. We then use the most frequently chosen policy
architecture as the outcome of the policy search. Our intuition is that the actor would
be more efficient in picking good policy architectures towards the end of the search
and would choose the optimal policy as the action more often. This search process
also implicitly models the learning time of a candidate client RL. A client RL is chosen
because it can learn quickly to give good results on training benchmarks within the
given time.

Failure during client RL search. In this work, we did not observe failure in com-
bining RL components in our case studies. When using a client RL, failures can happen
- the underlying compiler (driven by RL) may fail due to e.g., invalid combinations of
compiler flags or compiler bugs. These are automatically handled by RL which will
avoid trying these options in future iterations. Furthermore, while Supersonic could
miss an RL architecture that can be improved through fine-tuning, we have performed
a large-scale search on our case studies and did not observe this. This issue can also be
mitigated by performing RL-architecture search and parameter fine-tuning in a single
process.

Multi-task learning. If multiple optimisation tasks are defined, we then use multi-
task learning (MTL) to find an individual policy for each task given a total budget
of n trials. Supersonic provides a distributed, parallel meta-optimiser, building on
top of an open-source MTL framework [205]. For each optimisation task, it creates an
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Table 5.1: Example tunable parameters

Algorithms Parameters

Common param. Batch size for workers; Train batch size; Minibatch size; learning
rate

MCTS Dirichlet noise and epsilon; Puct coefficient; Simulation times;
Loss temperature

PPO Entropy coefficient; Adam optimiser step size; GAE estimator
parameter; Policy ratio clipping

DQN #atoms; Discrete supports; Adam epsilon; Clip gradients
Q-Learning Behavior Cloning Pretraining numbers; Q-Learning loss temper-

ature; Lagrangian threshold; Min Q weight multiplier

environment and assigns a meta-optimiser instance to the environment, so that client
RL search for different optimisation tasks can be performed in different, potentially
distributed environments. In our evaluation, we implement an execution environment
in a Docker container. Supersonic realises different environments and their associated
actors as parallel workers that can run on a single machine or multiple distributed
machines. An issue of using a standard MTL algorithm is that the learner is likely
to give more resources (e.g., #trials, time or machines) to tasks with higher rewards,
leading to unfair resource allocation among tasks. To address this issue, we use a
regularisation mechanism, similar to [207], by adding a normalisation layer to the actor
and the critic network.

5.3.4 Client RL Parameter Tuning

During the client RL search stage, Supersonic uses the default hyperparameter and
pre-trained models. After a client RL architecture is chosen, the Supersonic meta-
optimiser uses training benchmarks to fine-tune a set of common and algorithm-specific
hyperparameters. Each Supersonic built-in DNN model also has a standard training
API. Therefore, the meta-optimiser also uses the measurements and observations gen-
erated during parameter tuning to fine-tune the relevant DNN models, e.g. for state
representation. Table 5.1 gives some of the example hyperparameters supported by
Supersonic. We note that the user does not need to explicitly supply these para-
meters because they are known to Supersonic. Our parameter tuning method is a
parallel population-based training algorithm [208] from RLlib. Like client RL search,
the user can also specify how many trials can be spent on parameter tuning. Once
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the budget is used up, the best-found parameter setting is returned. Our evaluation
applies cross-validation to ensure the tuned RL is always tested on new, previously
unseen benchmarks.

5.3.5 Client RL Deployment

Finally, the tuned client RL is saved as serialised objects. The chosen hyperparameters
and action space are stored in JSON files. Supersonic provides APIs to load and reuse
the stored objects to optimise any new program. To apply a tuned RL, Supersonic
creates a session to apply a standard RL loop to optimise the input program by using
the chosen RL exploration algorithms to select an action for a given state. For example,
the state could be a vector recording the last n compiler options added into the compiler
flags or a DNN (see also Section 5.5.5).

5.3.6 Measurement Engine

For a given optimisation option, the measurement engine invokes the user-supplied run

function to compile and execute the program in the target environment. The user
function reports the result for each execution, which is stored in a result database im-
plemented using SQLLite. The database also holds information obtained during the
search, including the action history, reward, and execution outputs for each benchmark.
The client RL gathers the result of an action by querying the result database. Decoup-
ling the RL exploration and measurement allows the parallel execution of measurement
and the RL agent, possibly across different machines. Parallel execution can reduce
the measurement cost, which often dominates the auto-tuning process.

5.4 Experimental Methodology

We evaluate our approach by applying it to four code optimisation tasks and comparing
it against eight tuning methods, including hand-tuned RL solutions. Table 5.2 sum-
marises our evaluation setup, including the search space size and competing methods
for each case study. We note that the overhead of RL is dominated by gathering feed-
back from the environment through, e.g., compiling and executing the program. While
case studies 3 and 4 have a larger search space than case studies 1 and 2, obtaining
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Table 5.2: Case studies in our evaluation

Use cases #Bench. Competing Methods Search space

C1: Optimizating image
pipeline

10 Halide master [198], auto-
schedulers [199], HalideRL
[209], OpenTuner

73 ∗ 27 ∼ 73 ∗ 37

C2: Neural network code
optimisation

5 AutoTVM [200],
Chameleon[202], Open-
Tuner

5 ∗ 103 ∼ 20 ∗ 103

C3: Code size reduction 43 CompilerGym [15], Open-
Tuner

12360 ∼ 123150

C4: Superoptimisation 40 STOKE [197], OpenTuner
[201]

9100,000 ∼ 916,000,000

Table 5.3: Candidate state functions and reward functions

Case Studies: 1 2 3 4

Word2Vec [210]
Doc2vec [211] ✓ ✓

CodeBert [30]
Manual features (e.g. LLVM IR represent-
ation from [212])

✓

Action History
State func.

Hash of Action History ✓

Relative measure (e.g. speedup, code size
reduction ratio)

✓ ✓

Reward func.
function output (e.g. tanh()) ✓ ✓

feedback incurs lower overhead in case studies 3 and 4 compared to 1 and 2, leading to
an overall faster search time for case studies 3 and 4.

5.4.1 Case Study 1: Optimising Image Pipelines

The problem. This task aims to improve the optimisation heuristic of the Halide
compiler framework for image processing [43]. A Halide program separates the ex-
pression of the computation kernels and the application processing pipeline from the
pipeline’s schedule. Here, the schedule defines the order of execution and placement of
data on the hardware. The goal of this task is to automatically synthesise schedules to
minimise the execution time of the benchmark.

Methodology. This task builds upon Halide version 10. Our evaluation uses ten
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Halide applications that have been heavily tested on the Halide compiler. We measure
the execution time of each benchmark when processing three image datasets provided
by the Halide benchmark suite. The benchmarks are optimised to run on a multi-core
CPU.

Competing methods. We compare Supersonic against four prior methods designed
for optimising Halide schedules. These include two Halide built-in auto-scheduling
algorithms (Halide master [198] and auto-scheduler [199]), a hand-tuned RL method
(HalideRL) [209], and OpenTuner. We show speedups over Halide master.

Actions. Each Halide program comes with a scheduling template that defines an n

stages schedule. We can apply optimisations like loop tiling and vectorisation to each
stage. We apply four actions to construct a n-stage scheduling sequence. These include
adding or removing an optimisation to the stage and decreasing or increasing the value
(by one) of an enabled parameterised option.

5.4.2 Case Study 2: Neural Network Code Generation

The problem. This task targets DNN back-end code generation to find a good sched-
ule. e.g., instruction orders and data placement, to reduce execution time on a multi-
core CPU.

Methodology. This study is conducted within the TVM compiler v 0.8 [44]. We use 5
CNN kernels where their schedule optimisation space is defined by the TVM developer.

Competing methods. We compare our approach against four TVM built-in tun-
ing strategies, including random search, genetic algorithms, grid-based search and
XGBoost-based search. In addition to these, we also compare our approach to Open-
Tuner and Chameleon [202] - a recently proposed, hand-tuned RL method designed for
TVM. We show the improvement over the TVM compiler (TVMC) without schedule
optimisation.

Actions. Each TVM benchmark comes with a schedule template that defines a set
of tuning knobs like loop tiling parameters. We consider four actions in this task:
adding or removing a knob to the schedule sequence, and decreasing or increasing the
parameter value (by one) of a parameterized knob in the optimisation sequence. The
number of tuning configurations varies across benchmarks (Table 5.2).
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5.4.3 Case Study 3: Code Size Reduction

The problem. This task is concerned with determining the LLVM passes and their
order to minimise the code size.

Methodology. Following the setup of CompilerGym, we compute the code size reduc-
tion by measuring the ratio of LLVM IR instruction count reduction over the LLVM -Oz
code size optimisation option. This metric is platform-independent and deterministic.
Note that the IR instruction count strongly correlates to the binary size - fewer in-
structions typically lead to a smaller binary. In this evaluation, we use 43 benchmarks:
23 from the CBench suite [213] and 20 single-source benchmarks from the LLVM test
suite [214].

Competing methods. We compare our approach against OpenTuner and the Greedy
and Random search strategies for code size reduction implemented by CompilerGym.
The CompilerGym Greedy algorithm has a threshold, e, for controlling how often the
algorithm switches between random and greedy searches, with e = 0 for a solely greedy
strategy and e = 1 for a purely random algorithm. We set e to 0.1, which produces
comparable results as CompilerGym developers reported on their platforms.

Actions. We consider all the 123 semantics-preserving passes of LLVM. The RL agent
determines which pass to be added into or removed from the current compiler pass
sequence. Note that the length of the compiler pass sequence is unbounded. An LLVM
pass can appear multiple times in the pass sequence and be inserted before or after any
pass.

5.4.4 Case Study 4: Superoptimisation

The problem. This classical compiler optimisation task finds a valid code sequence to
maximise the performance of a loop-free sequence of instructions [46, 203]. Superoptim-
isation is an expensive optimisation technique as the number of possible configurations
grows exponentially as the instruction count to be optimised increases.

Methodology. In this task, we apply Supersonic to find a client RL for STOKE,
the state-of-the-art superoptimiser [197]. Given a set of test cases consisting of input-
output pairs and a subset of x86-64 instructions, STOKE synthesises a program (at
the assembly code level) that uses these instructions and agrees with the test cases.
We use all the 25 benchmarks from the STOKE Hacker dataset. Additionally, we also
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extract 15 loop-free and frequently-executed functions from SPEC CPU 2017 and the
LLVM test suite, 10 from SPEC and 5 from the LLVM test suite. The seed input to the
performance tuner is the assembly code generated by compiling the C code with the -O0
compiler option. We use STOKE’s mutation engine to modify the target instructions
and its equivalent testing method to verify if the transformed code satisfies the test
cases. We also manually verify the correctness of the best-performing version found by
each method.

Competing methods. We compare Supersonic to the Markov Chain Monte Carlo-
based STOKE search technique and OpenTuner. We test all schemes on LLVM and
GCC and use -O3 as the baseline. As noted in the STOKE document, the STOKE
implementation is not mature enough to improve -O3 code. However, as we will show
later, Supersonic can deliver noticeable improvement over -O3 on certain test cases,
demonstrating the potential of auto-tuning techniques.

Actions. We consider all the instruction-level transformations supported by STOKE.
These include replacing the opcode and operand of an instruction as well as inserting,
replacing and swapping instructions.

5.4.5 Client RL Architecture Search Space

We consider all the Supersonic-supported RL algorithms when searching the client
RL. Supersonic chooses to use PPO for code size reduction and MCTS for the other
three tasks. Table 5.3 lists the state and reward functions considered in each task, where
we highlight the Supersonic chosen function using a check mark. As can be seen from
the table, no RL algorithm dominates our case studies - the best algorithm depends on
the optimisation task. However, the Supersonic-chosen RL algorithm generalises well
to input test programs of an optimisation task.

5.4.6 Hardware and Software Platforms

For case studies 1, 2 and 4, we use two multi-core servers to evaluate the resulting
code. The first server has 2x 26-core Intel Xeon 8179M CPU running at 2.40GHz,
and the second server has 2x 32-core AMD EPYC 7532 CPU at 2.4GHz. Both servers
have 128GB of RAM and run Ubuntu 20.04 with Linux kernel v5.4. In our evaluation,
we run the Supersonic meta-optimiser on the AMD server and use the chosen client
RL to optimise the target task on both machines. We run the relevant deep learning
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models on an NVIDIA RTX 2080 Ti GPU. We use LLVM v10 as the backend compiler
to generate the executable binary in our evaluation. For superoptimization, we also
test our approach on GCC v11.2.

5.4.7 Performance Report

Cross-validation. We use 3-fold cross-validation to evaluate our approach. This
means we partition the benchmarks into three groups (folds). We perform client RL
search and tuning on two folds of the benchmarks and then test the tuned RL architec-
ture on the remaining benchmarks. We repeat this procedure three times to test each
of the three folds in turn. Unless stated otherwise, we exclude the time spent on client
RL search and tuning from the overhead of deployment-time performance optimisation,
because client RL search and tuning is a one-off cost performed offline. This cost is
incurred only once during training, and the tuned RL architecture can then be applied
to many new programs without repeating the tuning-search overhead. However, we
give the same amount of search time/iterations for all methods when optimising a test
program.

Runtime measurement. To measure the runtime of the resulting binary, we run
each benchmark at least 100 times on an unloaded machine. For each benchmark, we
also compute the 95% confidence interval bound and increase the number of profiling
runs if the interval is greater than 2%. We report the geometric mean across runs. We
also show the performance variances across benchmarks, compilers and cross-validation
settings as min-max bars on the diagram.

Client RL search. In our evaluation, we apply MTL to perform RL search for all
four optimisation tasks simultaneously on a single server, with a total search budget of
100 trials.

5.5 Experimental Results

In this section, we first present the case study results, finding that Supersonic out-
performs hand-crafted strategies in each task. We then provide an analysis of Super-
sonic’s working mechanisms, showing Supersonic can accelerate the deployment-time
search by 1.75x. Note that the tuning time is proportional to the number of tuning
iterations, but the tuning time per iteration can vary between evaluated methods. Spe-
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Figure 5.3: Performance to expert-tuned Halide schedules under different search time
(a) and iteration (b) constraints. Supersonic gives the overall best performance than
other auto-tuning methods.

cifically, the Supersonic-chosen client RL can perform, on average, 1, 3, 24 and 10
search iterations per second for case studies 1, 2, 3 and 4, respectively, on our evaluation
platforms.

5.5.1 Case Study 1: Optimizing Image Pipelines

Figure 5.3 reports speedup over the Halide master scheduler [198]. Supersonic gives
noticeable performance improvement on the AMD platform. It also manifests larger
advantages when the search time is limited. On certain benchmarks, Supersonic is
able to give over 11x speedup with a correctly optimised code. The tree-based auto-
scheduler gives a high speedup of over 10x for a single benchmark, but it has a lower
mean performance improvement across benchmarks compared to Supersonic. On
average, Supersonic delivers a 1.5x improvement over HalideRL, a manually tuned RL
strategy. Note that HalideRL uses PPO as the exploration algorithm and the sequence
of already applied schedules as the state function. By contrast, Supersonic determines
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Figure 5.4: Speedup for DNN code generation under different search time (a) and
iteration (b) constraints. The min-max bar shows the range across benchmarks. Su-
personic outperforms all competing methods on both platforms.

that for this task, using MCTS as the exploration algorithm and a hash function of
the applied schedules as the state function is better than HalideRL. MCTS compares
complete schedules through simulations and looks ahead before making intermediate
scheduling optimisations, leading to a better result. Overall, Supersonic outperforms
all alternative search techniques on all but two benchmarks on both platforms.

5.5.2 Case Study 2: Neural Network Code Generation

Figure 5.4 reports the performance improvement over the default schedules. RL-based
methods (Chameleon and Supersonic) can generate better code than TVM’s evolu-
tionary or predictive modelling-based search techniques. While random and grid-based
search can significantly improve one benchmark (the top point of their min-max), their
performance is not robust and can give poor performance for other benchmarks. By
contrast, Supersonic delivers more robust performance by giving no slowdown on the
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Figure 5.5: Code size reduction over LLVM -Oz under different search time (a) and
iteration (b) constraints. Supersonic outperforms alternative methods.

Table 5.4: Important compiler passes for code size reduction and how often a pass is
chosen by a search method.

Opentuner C.Gym.Greedy C.Gym.Random Supersonic

simplifycfg 0.84% 3.29% 1.23% 10.78%
early-cse-memssa 0.78% 0.18% 0.92% 6.80%
gvn 0.69% 1.83% 0.97% 5.98%
instcombine 0.75% 0.12% 1.17% 8.99%
newgvn 0.74% 2.90% 1.02% 7.66%
others 96.21% 91.67% 94.69% 59.79%

AMD platform and only a minor slowdown over XGBoost on two benchmarks on the
Intel platform. Supersonic improves Chameleon, the second-best-performing method,
by up to 1.22x, improving the default schedules by up to 1.74x.

5.5.3 Case Study 3: Code Size Reduction

Figure 5.5 reports the code size reduction conducted on the Intel platform using LLVM.
We note that an average code size reduction of 4% is considered to be significant [215–
217]. Supersonic improves -Oz for all but two test benchmarks. It delivers the best
reduction for 90% of the test benchmarks. For those benchmarks where Supersonic
does not deliver the best reduction, the difference between Supersonic and the best-
performing method is small, less than 1%. On average, Supersonic gives the highest
mean code size reduction, improving LLVM -Oz by up to 1.57x.
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Figure 5.6: Speedup over LLVM/GCC -O3 for superoptimisation under different search
time (a) and iterations (b).

Table 5.4 lists the top-5 most frequently-appeared LLVM passes in the compiler pass
list that give the best code size reduction. Because these passes are often included in a
compiler sequence that offers a high code size reduction, they are likely to be important
for reducing code size. The table also shows how often a search method chooses a pass as
an action when optimising a benchmark. Compared to other methods1, Supersonic
picks an important pass more often during the search, suggesting that it learns the
importance of optimisation passes.

5.5.4 Case Study 4: Superoptimisation

Figure 5.6 shows the superoptimisation results using LLVM and GCC. Supersonic
outperforms Stoke and OpenTuner on most of the test benchmarks with a higher mean
speedup. Increasing the tuning iterations (and the search time) during deployment can
improve the search performance because it allows the search algorithm to explore the
optimisation space better and uses feedback to improve its search strategy. Although
the STOKE developers note that their mutation engine is not mature enough to out-
perform LLVM/GCC -O3, we demonstrate that RL can deliver noticeable improvement
by better exploring the optimisation space (up to 1.34x).

Figure 5.7 shows a kernel from STOKE Hacker benchmark dataset, compiled by
LLVM -O3, and the best-performing version found by Supersonic. The Supersonic
code for the Z3p23i kernel is 18 lines shorter, 1.2x faster than -O3. This is one of the
many examples where the Supersonic-driven superoptimisation generates faster code

1In theory, with a sufficiently larger number of samples, each pass will have a 1/123 chance to be
chosen by C.Gym.Random in Table 5.4.
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1 . L_4004e0_LLVM_O3 : . L_4004e0_SuperSonic :
2 movl $0x60106f ,% eax movl $0x601191 ,% edi
3 movl $0x601191 ,% edi movq $0x400990 ,% rcx
4 movl $0x400700 ,% edi movl $0x400700 ,% edi
5 pushq %rax pushq %rax
6 nopl 0x0 (%rax ,%rax ,1) nopl 0x0 (%rax ,%rax ,1)
7 ... ...
8 callq 4008 f0 <_Z3p23i > callq 4008 f0 <_Z3p23i >
9

10 . _Z3p23i : . _Z3p23i :
11 movl %edi ,% eax popcntl %edi ,% ecx
12 shrl %eax movq %rcx ,% rax
13 andl $0x55555555 ,% eax retq
14 subl %eax ,% edi
15 movl %edi ,% eax
16 andl $0x33333333 ,% eax
17 shrl $0x2 ,% edi
18 andl $0x33333333 ,% edi
19 addl %eax ,% edi
20 movl %edi ,% eax
21 shrl $0x4 ,% eax
22 addl %edi ,% eax
23 andl $0xf0f0f0f ,% eax
24 movl %eax ,% ecx
25 shrl $0x8 ,% ecx
26 addl %eax ,% ecx
27 movl %ecx ,% eax
28 shrl $0x10 ,% eax
29 addl %ecx ,% eax
30 movzbl %al ,% eax
31 retq
32 nopl 0x0 (%rax ,%rax ,1)

Figure 5.7: Supersonic finds a better program (right) over LLVM -O3 (left) for a
STOKE Hacker kernel ( Z3p23i) that counts the number of bits, by using the popcntl

instruction.

over -O3.
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Figure 5.8: Comparing the performance of a client RL chosen by different search al-
gorithms during the client RL search stage. We vary the number of client RL combin-
ations by varying the number of candidate RL components. The Supersonic chosen
client RL gives the best overall performance during deployment.

5.5.5 Further Analysis

Compare to Other Client RL Search Strategies

This experiment compares Supersonic’s deep RL-based meta-optimiser against four
widely used parameter search techniques: grid search, simulated annealing, random
search, and genetic algorithms. We set the number of search iterations to 100 for
all search algorithms. We also vary the search space by adding more candidate RL
components, where the number of RL component combinations varies between 150 and
800. For a chosen RL client, we follow the same parameter fine-tuning process to fine-
tune the selected RL components (Section 5.3.4). Figure 5.8 compares the performance
of the client RL chosen by different search algorithms during the RL client search stage.
As can be seen from the diagram, all client RL give an average improvement over the
baseline. Supersonic finds a better client RL during the limited client RL search
budget, leading to overall better performance across search space sizes and case studies.
We note that the limited client RL search budget restricts the performance of finding
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Table 5.5: Search overhead required by Supersonic to exceed the performance given
the best-performing alternative

Use cases % of search time (& raw numbers) % of iterations (& raw numbers)

MIN GeoMean MAX MIN GeoMean MAX
Case study 1 3.6

(21 mins)
39.6
(4 hours)

72.1
(6 hours)

3.9
(1,425)

44.0
(15,821)

75.3
(27,141)

Case study 2 1.0
(1 min)

39.1
(24 mins)

74.1
(45 mins)

4.2
(885)

32.3
(3,885)

68.8
(8,256)

Case study 3 1.5
(3 sec)

31.0
(61 sec)

61.1
(2 mins)

2.1
(738)

29.7
(10,714)

83.5
(30,068)

Case study 4 1.1
(22 sec)

32.8
(11 mins)

42.3
(14 mins)

1.2
(1,478)

36.5
(43,745)

46.9
(56,387)

good client RL with a large search space (e.g., when the number of RL component
combinations is 800). Increasing the search budget will allow the meta-optimiser to
find a better client RL to improve the resulting performance.

Deployment-stage Search Time Relative to the Best-performing Alternative

Table 5.5 shows the relative search time and iteration count required by Supersonic-
tuned client RL to exceed the results given by the best-performing competitive scheme.
The table shows the minimum, average, and maximum search overhead across test
benchmarks. On average, the RL architecture found by Supersonic converges faster,
requires less than 39.6% of the search time was used by the best-performing alternative
search algorithm to deliver better results. This means the RL architecture chosen by
Supersonic can start delivering a better optimised code with, on average, 1.75x less
search time (up to 100x) compared to the best-performing alternative tuning algorithm
that runs longer. While search methods like genetic algorithms have no upfront training
cost, they must search each time afresh. Supersonic performs a one-off offline RL
search and tuning, but the tuned client RL significantly reduces the search cost for any
new programs after that.

Chosen RL Components

Table 5.3 shows that the client RL components chosen by Supersonic vary from
one task to another. We also observe that the optimal RL found by Supersonic
is consistent across cross-validation runs for a given task. This means the client RL
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architecture can generalise across inputs of a given task. We notice that using MCTS
with DNNs for state representation gives good performance for three out of the four
tasks, but it is less effective for code size optimisation compared to PPO. Using MCTS
for code reduction gives an average reduction of 0.6% instead of 6.5% delivered by PPO.
This is perhaps due to a large number of discrete actions (i.e., the compiler passes) in
the optimisation space, which requires more search time to learn a good value function
to efficiently guide the MCTS simulation.

5.6 Summary

In this chapter, we have presented Supersonic, a framework for building RL-based
performance tuners. Supersonic provides the capability to automate the process of
designing and tuning RL algorithm structures. We evaluate Supersonic by applying
it to four different optimisation tasks. Experimental results show that the RL architec-
ture found by Supersonic delivers better overall performance than alternative search
techniques, including hand-tuned RL strategies.

Supersonic supports mainstream and emerging RL programming environments
like RLlib and CompilerGym. It is designed to provide customizable interfaces to
allow developers to introduce new algorithms and methods to be used in the RL policy
architecture. As the community provides more models and methods, Supersonic will
be able to explore a more comprehensive policy search space. As a result, there will be
less of a need to create domain-specific methods for each project. In the long term, we
hope that Supersonic will work out-of-the-box for most performance developers once
they have defined their optimisation tasks.
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Chapter 6

Robust Machine Learning for Program Modelling

In the previous two chapters, we demonstrated how to make ML program modelling
more precise and how to lower the barrier to applied ML. In this chapter, we present
a framework that uses statistical analysis to detect drifting data and improve model
robustness during deployment. The chapter is organised as follows. Section 6.2 illus-
trates how data drift affects the performance of underlying models during deployment.
Sections 6.3 and 6.4 explain how our approach is formulated. Section 6.5 then de-
scribes the experimental setup. Section 6.6 presents the experimental results, followed
by Section 6.7, which concludes the chapter.

6.1 Introduction

During ML deployment time, small changes in hardware or application workloads can
reduce decision accuracy and model robustness [218]. This often arises from “data
drift” [219, 220], where the training and test data distributions no longer align. In code
optimisation, this can result from changes in workload patterns, runtime libraries, or
hardware micro-architectures. It is a particular challenge for ML-based performance
optimisations, where obtaining sufficient performance training data is difficult [221].

Existing efforts to enhance ML robustness for code optimisation have predomin-
antly focused on improving the learning efficiency or model generalisation during the
design time. These approaches include synthesising benchmarks to increase the train-
ing data size [7, 152, 222], finding better program representations [8, 9, 145, 223], and
combining multiple models to increase the model’s generalisation ability [9, 224, 225].
While important, these design-time methods are unlikely to account for all potential
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changes during deployment [149]. Although there has been limited exploration into the
validation of model assumptions [36] for runtime scheduling, existing solutions assume
a specific ML architecture and lack generalizability.

We introduce Prom, an open-source toolkit designed to address data drift during
deployment, specifically targeting code optimisation and analysis tasks. Prom is not
intended to replace design-time solutions but to offer a complementary approach to
improve ML robustness during deployment. Its primary objective is to ensure the
reliability of an already deployed system in the face of changes and support continuous
improvements in the end-user environment. To this end, Prom offers a Python interface
for training and deploying supervised ML models, focusing on detecting data drift
post-deployment. Model and application developers can integrate Prom into the ML
workflow by implementing its abstract class, usually requiring just a few dozen lines of
code.

Prom adopts the emerging paradigm of prediction with rejections [37–40], which
identifies instances where predictions may be inaccurate, allowing for corrective meas-
ures when data drift occurs. For instance, an ML-based performance tuner can notify
users when the model prediction, like the compiler flags to be used for a given pro-
gram, might not yield good performance, prompting them to use alternative search
processes [2, 41] to find better solutions [42]. Likewise, a bug detector can alert users
to potential false positives for expert inspection. Essentially, this capability allows us-
ing alternative metrics when predictive model performance deteriorates. By flagging
likely mispredictions, Prom supports continuous learning by using these mispredicted
instances as additional training samples to enhance model performance in a production
environment.

To evaluate whether a predictive model may mispredict a test input, Prom com-
putes the credibility and confidence scores of the prediction during deployment. Cred-
ibility measures the likelihood that a prediction aligns with the learned patterns. High
credibility means the test input is highly consistent with the training data, suggesting
the model’s prediction is likely to be reliable. Conversely, the confidence score estim-
ates the model’s certainty in its prediction. Prom uses the two scores to determine
whether the model’s outcome should be accepted or requires further investigation. Our
intuition is that a prediction is reliable only if the model shows high confidence in its
predictions and these predictions, along with the model’s confidence level, are credible.
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Prom employs CP theory [69] to assess the test input’s nonconformity to compute
the confidence and credibility scores of a prediction. Nonconformity is measured by
comparing the test input against samples from a calibration dataset held out from the
model training samples. The idea is to observe the ML model’s performance on the
calibration set and then evaluate the test input’s similarity (or “strangeness”) to the
calibration samples.

Prom draws inspiration from recent advances in applying CP to detect drifting
samples in malware prediction [37, 39] and wireless sensing [40]. While CP has shown
promise in these domains, its effectiveness for code optimisation tasks remains unclear.
This chapter presents the first application of CP to code optimisation tasks like loop
vectorisation and neural network code generation. Doing so requires addressing sev-
eral key limitations of existing approaches. One major drawback of prior methods is
that they rely on the entire calibration dataset to compute the nonconformity of test
samples, which is ill-suited for code with diverse patterns. For example, if we want
to estimate the model’s accuracy on a computation-intensive program, including many
calibration samples with different characteristics (e.g., memory-bound benchmarks) can
mislead and bias the credibility estimation. Furthermore, previous solutions employ a
monolithic nonconformity function that lacks robustness across different ML models
and tasks. They also do not support regression methods and usually require changing
the underlying ML model [40]. Prom is designed to overcome these pitfalls.

Unlike prior work [37, 39, 40], Prom adopts an adaptive scheme to measure a
test sample’s nonconformity. Instead of using the entire calibration dataset, Prom
dynamically selects a subset of calibration samples with similar characteristics to the
test sample in the feature space defined by the ML model. When computing the
nonconformity score, Prom assigns different weights to these selected samples based
on their distance from the test sample, giving higher weight to closer samples. This
scheme allows Prom to construct a calibration set that closely matches the test sample
distribution, thereby improving nonconformity estimation accuracy.

Prom improves conformity reliability by using multiple statistical functions to com-
pute nonconformity scores and applying a majority voting scheme to approve or reject
predictions. It is extensible, allowing easy addition of new nonconformity functions.
Prom also supports regression by combining CP with clustering algorithms. Unlike
[40], it uses a model-free approach instead of learning a probabilistic classifier for data
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drift detection.
As a potential mitigation of data drift, we showcase that Prom enables a learning-

based method to enhance its robustness and maintain reliable performance over time.
This is achieved by adopting incremental learning [226, 227] to retrain a deployed
model using drifting samples from the production environment. Depending on the
specific application, one can relabel a few test samples flagged by Prom and use the
relabelled data to retrain the model, by only seeking feedback and user intervention
on instances showing data drift. We stress that incremental learning is just one of the
possible remedies, but such mitigations hinge on accurately detecting drifted samples
- the main focus of this work.

We demonstrate the utility of Prom by applying it to 13 representative ML meth-
ods developed by independent researchers for code optimisation and analysis [8, 9, 11,
21, 49, 135, 145–147, 228–230]. Our case studies cover five problems, including hetero-
geneous device mapping [8, 11, 145, 229], GPU thread coarsening [11, 145, 228], loop
vectorisation [145, 230], neural network code generation [146] and source-code level
bug detection [9, 21, 49, 147]. Experimental results show that Prom can successfully
identify an average of 96% (up to 100%) of test inputs where the underlying ML model
mispredicts with a false-positive rate1 of less than 14%. By employing incremental
learning, Prom substantially enhances prediction performance in the operational en-
vironment, allowing the deployed model to match the performance achieved during its
design phase. Notably, this improvement is achieved with minimal user intervention
or profiling overhead. In our evaluation, Prom requires relabelling fewer than 5% of
the samples identified as drifted by Prom, which are then used to update the model
through retraining.

6.2 Motivation

As a motivating example, consider training an ML model to detect source code bugs.
This pilot study uses the state-of-the-art method Vuldeepecker [21], which employs
an LSTM network. Following the original setup, we train and test the models on
labelled samples from the CVE dataset, using open-source tools and ensure results
comparable to those in the source literature.

1This occurs when the ML model gives an accurate prediction, but Prom believes otherwise.
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(a) Data drift leads to deteriorating performance in vulnerabil-
ity detection.

1 static sftp_parse_attr_3 (...) {
2 ssh_string name = NULL;
3 ...
4 if (( name = buffer_get_ssh_string (buf))...)
5 {...}
6 ssh_string_free (name);
7 ...
8 ssh_string_free (name);}

(b) CVE-2012-4559: A “double-free” for name at lines 6 and 8.

1 # define NUMT 100
2

3 CURLcode curl_easy_cleanup (...) {
4 sts = ...;
5 if(sts) {...
6 hsts_free (sts);}}
7 ...
8 static void* pull_one_url (...) {
9 for (i = 0; i < NUMT; i++) {

10 CURL* curl = ...;
11 ...
12 curl_easy_cleanup (curl); }}
13

14 int main (...) {...
15 for (i = 0; i < NUMT; i++) {
16 pthread_create ( pull_one_url ,...) ;
17 ...}

(c) CVE-2023-27537: A potential “double-free” due to multiple concurrent threads can invoke
hsts free at line 6 at the same time.

Figure 6.1: Motivation example: impact of data drift on ML models for code vulner-
ability detection.

Figure 6.1(a) shows what happens if we train the models using CVE data collected
between 2012 and 2014 and then apply them to real-life code samples developed between
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Figure 6.2: Workflow of Prom during deployment.
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Figure 6.3: At design time, Prom splits the training data into training and calibration
sets. During deployment, it calculates credibility and confidence scores, using majority
voting to detect drifting samples. These samples can then be labelled for model updates
via offline incremental training.

2015 and 2023. This mimics a scenario where the code and bug patterns may evolve
after a trained model is deployed. The trained model achieves an F1 score of more
than 0.8 (ranging from 0 to 1, with higher being better) when the test and training
data are collected from the same time window. However, the F1 score drops to less
than 0.3 when tested on samples collected from future time windows. This shows that
data drift can severely impact model performance, which was also reported in prior
studies [9, 72].

As an example of code pattern changes, Figures 6.1(b) and 6.1(c) show two cases
of “double-free” vulnerabilities, one from 2012 and one from 2023. Earlier cases were
simpler, where the same memory was freed twice (e.g., the buffer name is freed on lines
6 and 8). A model trained on these samples is unlikely to detect the more complex later
case in Figure 6.1(c), where a “double-free” occurs due to concurrent threads calling
the same buffer-free routine. Because it is difficult to collect a training dataset which
covers all possible code patterns seen at deployment time, data drift can happen in the
real-life deployment of ML models for code-related tasks.
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1 from prom import ModelInterface
2

3 class ModelDefinition ( ModelInterface ):
4 def __init__ (self , model , cali_dataset ):
5 # Setting the underlying model
6 self. model = model
7 self. calibration_data = cali_dataset
8 super (). __init__ ()
9

10 def data_partitioning (self , dataset , calibration_ratio =0.1) :
11 # Splitting the training data into training and calibration sets
12 ...
13 return training_data , calibration_data
14

15 def predict (self , X, significant_level =0.1) :
16 ...
17 # Underlying model prediction function also returns a

probabilistic vector
18 pred , probability = self. model . predict (X)
19 #Call the expert committee
20 drifted = self. classifier ( probability , significant_level )
21 return pred , drifted
22

23 def feature_extraction (self , X):
24 # Convert the model input into a feature vector
25 ...
26 return self. model . feature_extraction (X)
27

28 if __name__ == ’__main__ ’:
29 model = ModelDefinition (mymodel , dataset )
30 pred , drifted = model . predict (sys.argv [1])

Figure 6.4: Simplified code template of Prom.

6.3 PROM: A Robust ML System for Program Modelling

Figure 6.2 illustrates how Prom can enhance learning-based methods during deploy-
ment. Users of Prom are ML model developers. Prom requires no change to a user
model’s structure and working mechanism. We refer to the user model as the “under-
lying model”.

User involvement. For a given input, the underlying model works as it would without
Prom during inference. Users of Prom need only provide the model training dataset
and the training interface to Prom.
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Added values of Prom. Prom serves as an open-source framework that provides: an
adaptive scheme for constructing the calibration set; a collection of conformal prediction
methods that take as input the intermediate results (e.g., probabilities of each class
label produced by the underlying model) to compute a credibility and confidence score,
which is used to suggest whether to accept the prediction outcome; and an ensemble
approach to detect mispredictions.

Scope. Prom goes beyond a standard CP library [157, 158] and is not limited to
compiler optimisation. The methodology applies more broadly to program analysis
and software engineering tasks where data scarcity or distributional shifts hinder robust
model training. Examples include vulnerability detection, automated program repair,
performance prediction, and software testing. It addresses a key challenge in ML for
insufficient-data tasks by offering an orthogonal approach to enhance model reliability
during deployment. This generality makes Prom a valuable tool not only for ML in
compilers but also for a wider range of program modeling scenarios.

6.3.1 Implementation

We implemented Prom as a Python package, offering an API for use during both
the ML model design and deployment phases. Prom provides interfaces to assess
framework setup (Sec. 6.4.2), automatically searches for hyperparameter settings on
the training and calibration datasets, and provides examples to showcase its utilities.
These include all the case studies and ML models used in this work (Sec. 6.5) and
simpler examples for beginners. Prom supports classification and regression methods
built upon classical ML methods (e.g., support vector machines) and more recent deep
neural networks. Figures 6.3 and 6.4 provide an overview of Prom’s role during the
model design and deployment phases, described as follows.

Model Design Phase

As depicted in Figure 6.4, using Prom requires overwriting a handful of methods in
Prom’s ModelDefinition class and exposing the underlying model’s internal outputs.

Training data partitioning. Prom is based on split CP [69, 73], which divides the
training data into a “training dataset” and a “calibration dataset”. Prom uses the
calibration dataset to detect drifting test samples during deployment. By default, it
randomly sets aside 10% of the training data (up to 1,000 samples) for calibration, a
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method shown to be effective in prior work [73, 231]. Prom also offers a way to assess
the suitability of the calibration dataset (Sec. 6.4.2), or users can provide their own
holdout calibration dataset.

Changes to user models. For classification tasks, the user model should implement
a prediction function (line 15) that returns both a prediction and a probability vector.
Most ML classifiers already associate probabilities with each class, which can be eas-
ily accessed. Popular frameworks like scikit-learn, PyTorch, and TensorFlow directly
provide probability distributions. For example, scikit-learn’s predict proba method
offers probabilistic values for 33 common ML models. In neural networks, probabilit-
ies can usually be extracted from the hidden layer before the output. For regression
models [73, 232], Prom applies a similar approach.

Feature extraction. The user needs to provide a feature extraction function to
convert the model input into a feature vector of numerical values. For example, this
could be a neural network to generate embeddings of the input [30, 233] or a function
to summarise the input programs into numerical values like the number of instructions
[2]. Since most ML models already require this function, this requirement should not
incur additional engineering effort.

Process calibration dataset. The user model is trained outside the Prom frame-
work using any method the user deems appropriate. The trained model is loaded and
passed as a Python object to Prom. With the calibration dataset and the trained
user model, Prom automatically preprocesses the calibration dataset offline before de-
ploying the ML model (Sec. 6.4). This is done by applying the learned model to each
calibration sample and using a nonconformity function described in Sec. 6.4.1 to cal-
culate a score. This score reflects how ‘strange’ or ‘non-conforming’ each calibration
example is compared to the learned model.

Significant level. The user can set a significant level, 1 − ϵ, to determine the severity
of data drifts. A smaller ϵ can reduce the probability of misprediction by Prom but
can lead to a higher false positive rate. By default, Prom sets ϵ to 0.1.

Overwrite the prediction function. As a final step, the model developer needs to
overwrite a prediction function (predict) to return the model’s prediction for a test
input. The original prediction function can be invoked as a subroutine, and the Prom
prediction function is used during deployment.
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Figure 6.5: Prom integrates multiple nonconformity functions that vote to reject or
approve the ML prediction.

Model Deployment Phase

During deployment, the user model functions as usual, taking a test sample and making
a prediction. The difference with Prom is that it also suggests whether to accept or
reject the prediction. The user can use this outcome to identify mispredictions and
provide ground truth, and Prom will use these relabelled drifting samples to update
the model.

6.4 Methodology

As shown in Figure 6.5, during deployment, Prom uses multiple (default: 4) noncon-
formity functions to independently compute the prediction’s credibility and confidence
scores. These scores are compared to a pre-defined significance level, 1 − ε (Sec. 6.3.1),
to decide whether to accept the prediction. If both scores fall below the threshold, the
test sample is flagged as drifting. The results are then aggregated using majority vot-
ing, where each nonconformity function (expert) decides whether the prediction should
be accepted, forming an ensemble “expert committee”.

6.4.1 Nonconformity Measures

Prom computes the p-value of a prediction using nonconformity functions, which are
then used to derive credibility and confidence scores. Previous work on using CP to
detect drifting samples [37, 39, 40] focuses primarily on classification tasks and does not
extend to regression. Prom is the first framework to support both classification and
regression for data drift detection. Additionally, prior methods only consider the pre-
dicted label, ignoring the probability distribution across labels, whereas Prom accounts
for probabilities across all labels in classification tasks.
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Figure 6.6: Prom dynamically selects a subset of the holdout calibration dataset to
assess the test input’s nonconformity. Each chosen sample is weighted based on its
Euclidean distance to the test sample in the feature space, and these weights are used
to adjust the nonconformity score of the chosen calibration samples.

Nonconformity functions

Prom integrates multiple ready-to-use nonconformity functions, and the choice of non-
conformity functions can be customised by passing a list to the relevant Prom interface.
By default, Prom uses 4 nonconformity functions: LAC [234], TopK [235], APS [236]
and RAPS [235]. Other nonconformity functions can be easily incorporated into Prom
by implementing an abstract class.

For regression tasks, our nonconformity functions compute the nonconformity score
using the residual error between the prediction and the ground truth. Since we do
not have the ground truth during deployment, we approximate it using the k-nearest
neighbour algorithm [237, 238]. This approximation is based on the null hypothesis
that the test sample is similar to those encountered during design time.

Specifically, Prom finds the k-nearest neighbors (we set k to be 3 in this work),
denoted as Nk(n + 1), of sn+1. The distance is measured by computing the Euclidean
distance [239] between the test sample sn+1 and calibration samples on the feature
space. We then approximate the true value of sn+1 by averaging the distance of k-
nearest neighbors, ysn+1 = 1

k

∑
i∈Nk(n+1) ysi . The estimated value is then passed to a

regression-based nonconformity function to compute the nonconformity score of the test
sample. Essentially, we approximate the ground truth by assuming the samples seen at
the design time are sufficient to generate an accurate prediction. If this assumption is
violated due to drifting test samples, it will likely result in a large residual error (and
a greater nonconformity score).
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Computing p-value

Prom uses a p-value to assess whether a test sample s fits within the prediction region
defined by the calibration dataset, which reflects the training data distribution. To
compute the p-value, a subset of calibration samples is selected, their nonconformity
scores are adjusted, and these scores are used to derive the p-value for the model’s
prediction.

Calibration nonconformity scores. As shown in Figure 6.6, Prom dynamically
selects a subset of calibration samples to adjust the nonconformity score. Specifically,
it computes the Euclidean distance between each calibration sample and the test input
based on their feature vectors, sorting the samples by distance. By default, the closest
50% of calibration samples are selected. If the dataset contains fewer than 200 samples,
all of them are selected; a threshold that can be configured via the Prom API. This
nearest subset of calibration samples is chosen to estimate the nonconformity of the
test data relative to the training data. These distances are also used as weights to
adjust nonconformity scores.

For a calibration dataset with n samples, (a1, a2, . . . , an), Prom computes noncon-
formity scores and feature vectors (v1, v2, . . . , vn) offline. For a new test sample sn+1,
it extracts the feature vector vn+1, calculates the distances to calibration samples, and
selects K samples. The weight wi for each selected sample i is given by:

wi = exp
(

−∥vi − vn+1∥2

τ

)
, i ∈ {1, ..., k} (6.1)

where ∥vi − vn+1∥2 is the l2-norm, and τ is a temperature hyperparameter (default
500). This weight is used to adjust the nonconformity score: ai = wi × ai.

P-value for classification. After selecting the calibration samples and adjusting
their nonconformity scores, Prom calculates the p-value for each test sample. First,
it determines the nonconformity score ayp

n+1 for the predicted outcome yp. Then, it
evaluates the similarity of the test sample to the chosen calibration samples to compute
the p-value, psi , as:

psi =
COUNT

{
i ∈ {1, ..., n} : yi = yp and ayp

i ≥ ayp

n+1

}
COUNT {i ∈ {1, ..., n} : yi = yp} (6.2)

This counts the proportion of calibration samples with the predicted label yp whose
nonconformity scores are ≥ than the test sample’s score. A low p-value (near 1/n)
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suggests high nonconformity, meaning the test sample is significantly different from the
training samples. A high p-value (close to 1) indicates strong conformity, showing the
test sample closely matches the calibration samples for label yp.

P-value for regression. We extend classification p-values to regression tasks by
generating labels in the calibration dataset using K-means clustering [240]. Specifically,
we partition the calibration set into K clusters, y1, y2, . . . , yK , based on the feature
vectors of each sample. The optimal number of clusters (K) is determined using the
Gap statistic method [241], which compares the within-cluster sum of squares from K-
means to that of random clustering over K values from 2 to 20. The Euclidean distance
between feature vectors is used as the clustering metric. A larger gap indicates better
clustering quality, and Prom selects the K with the highest gap. During deployment,
test sample labels are assigned based on the nearest neighbour in the feature space.
Prom then computes the p-value, as in classification, using Equation 6.2 during both
design and deployment.

6.4.2 Initialization Assessment

Prom provides a Python function to evaluate whether the framework is properly initial-
ised at design time after obtaining the calibration dataset (Sec. 6.3.1) and the trained
underlying model. This is achieved by computing the coverage rate by performing
cross-validation on the holdout calibration dataset. Specifically, Prom automatically
splits the calibration dataset R times (R = 3 by default) into two internal datasets
for calibration (80%) and validation (20%). It then applies the trained model to the
internal validation set and calculates the coverage as:

1
R

R∑
j=1

1
nval

nval∑
i=1

⊮
{

y
(val)
i ∈ C

(
x

(val)
i

)}
≈ 1 − ε (6.3)

where nval is the size of the validation set, y
(val)
i is the ground truth of the ith validation

example, and C(x(val)
i ) is the prediction region of the ith validation example computed

by Prom using the calibration data. The coverage ratio should be approximately
the pre-defined significant level, 1 − ε, with minor fluctuations in deviation [73]. A
large deviation indicates an ineffective initialisation, which usually stems from a poorly
trained or designed underlying model. In this case, Prom will alert the users when the
deviation is more than 0.1, enabling them to enhance the underlying model or adjust
the significance level during the design time.
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A parameter selection function with a grid search algorithm is provided to help
users set the optimal parameters automatically, such as the significant level and cluster
size (Sec. 6.4.1). After evaluating the candidate parameters on the validation dataset,
Prom will save the selected parameters and use them to predict the confidence in the
underlying model at deployment time.

6.4.3 Credibilty and Confidence Evaluation

Credibility score. For each nonconformity function, we use the p-value (Sec. 6.4.1)
computed for the predicted class as the credibility score. The higher the p-value is,
the more likely the test sample is similar to the training-time samples, hence a higher
credibility score.

Confidence score. Prom estimates the confidence score by evaluating the statistical

significance of the prediction using a Gaussian function, f(x) = e
− (x−1)2

2×c2 , where c (de-
fault 3) is a constant, and x is the prediction set size for the test sample. The prediction
set includes labels likely associated with the test sample, where the nonconformity score
exceeds the significance level, 1−ε. An empty set suggests the test sample is not linked
to any known class, while multiple labels indicate uncertainty, resulting in a low con-
fidence score. As with the credibility score, the prediction set is built from the p-value
(Sec. 6.4.1). Regression tasks apply the same approach, using the labels introduced by
clustering (Sec. 6.4.1). According to our prediction with rejections strategy, a sample
is flagged as drifting if both scores fall below the significance level.

6.4.4 Improve Deployment Time Performance

Prom can enhance the performance of deployed ML systems through incremental learn-
ing [226, 227]. For example, suppose a predicted compiler option is likely to be sub-
optimal. In that case, the compiler system can use auto-tuning to sample a larger set
of configurations to find the optimal one. The idea is to apply other (potentially more
expensive) measures to drifting samples. The ground truths can then be added back
to the training dataset of the underlying model in a feedback loop for offline retrain-
ing. Since model retraining occurs only during instances of data drift, it reduces the
overhead associated with the collection of training data.

As we will show later, updating a trained model with up to 5% of identified drifting
samples significantly enhances robustness post-deployment. The goal is not to reduce
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Table 6.1: Case studies and their setups

#Use cases #Test methods Models Tasks

Magni et al. [228] MLP
DeepTune [11] LSTMC1: Thread Coarsening
IR2Vec [242] GBC [243]

Class.

K.Stock et al. [230] SVM
DeepTune [11] LSTMC2: Loop vectorisation
Magni et al. MLP

Class.

DeepTune [11] LSTM
Programl [8] GNNC3: Heterogeneous Mapping
IR2Vec [242] GBC

Class.

Vuldeepecker [21] Bi-LSTM
CodeXGLUE [49]C4: Vulnerability Detection
LineVul [147]

Transformer
Class.

C5: DNN Code Generation Tlp [146] BERT [233] Reg.

training time but to provide a framework for assessing robustness. Without such a
system, frequent retraining or risking performance degradation is required. In code op-
timisation tasks, the main expense is labelling data, not training, and by focusing only
on mispredicted samples (e.g. for relabelling), our approach reduces labelling overhead
and shortens retraining time. By filtering out mispredictions, Prom detects ageing
models and supports implementing corrective methods. This, in turn, will improve
user experience and trust in ML systems.

6.5 Experimental Methodology

Evaluation methodology. As shown in Table 6.1, we apply Prom to detect drifting
samples across 5 case studies, covering 13 representative ML models for classification
and regression. We faithfully reproduced all methods following the methodologies in
their source publications and used available open-source code. We adhered to the
original training methods to ensure comparable design-time results.

Introduce data drift. We introduce changes by separating the training and testing
data. We try to mimic practical scenarios by testing the trained model on a benchmark
suite not used in the training data or code samples newer than the model training data
and the Prom calibration dataset. Note that our primary goal is to detect whether
Prom can successfully detect drifting samples, not to improve the design of the under-
lying model.
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Prior practices. Prior work often assumes an ideal scenario by splitting training and
test samples at the benchmark or method level, where both sets may share similar
characteristics [244]. In contrast, our evaluation introduces data drift to reflect real-
world scenarios where workload characteristics change during deployment. As a result,
baseline ML models perform worse on test samples than reported in their original
publications [229, 245].

6.5.1 Case Study 1: Thread Coarsening

This problem develops a model to determine the optimal OpenCL GPU thread coarsen-
ing factor for performance optimisation. Following [228], an ML model predicts a
coarsening factor (ranging from 1 to 32) for a test OpenCL kernel, where 1 indicates
no coarsening.

Underlying models. We consider three ML models designed for this problem: a
Multilayer Perceptron (MLP) used in [228], an LSTM used in DeepTune [11], and
a Gradient boosting classifier (GBC) used in IR2Vec [242]. Like these works, we
train and test the models using the labelled dataset from [228], comprising 17 OpenCL
kernels from three benchmark suites on four GPU platforms.

Methodology. As in [11, 145], we train the baseline model using leave-one-out cross-
validation, which involves training the baseline model on 16 OpenCL kernels and testing
on another one. We then repeat this process until all benchmark suites have been tested
once. To introduce data drift, we train the ML models on OpenCL benchmarks from
two suites and then test the trained model on another benchmark suite.

6.5.2 Case Study 2: Loop Vectorisation

This task constructs a predictive model to determine the optimal Vectorisation Factor
(VF) and Interleaving Factor (IF) for individual vectorizable loops in C programs [135,
246]. Following [135], we explore 35 combinations of VF (1, 2, 4, 8, 16, 32, 64) and
IF (1, 2, 4, 8, 16). We use LLVM version 17.0 as our compiler, configuring VF and IF
individually for each loop using Clang vectorisation directives.

Underlying models. We replicate three ML approaches: K.Stock et al. [230]
(using SVM), DeepTune [11], and Magni et al. [228], which use neural networks.
We use the 6,000 synthetic loops from [135], created by changing the names of the
parameters from 18 original benchmarks in the LLVM vectorisation test suite. We
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used the labelled data from [145], collected on a multi-core system with a 3.6 GHz Intel
Core i7 CPU and 64GB of RAM.

Methodology. Following [145], we initially allocate 80% (4,800) of loop programs to
train the model, reserving the remaining 20% (1,200) for testing its performance. To
introduce data drift, we use programs generated from 14 benchmarks for training and
evaluate the model on the programs from the remaining 4 benchmarks.

6.5.3 Case Study 3: Heterogeneous Mapping

This task develops a binary classifier to determine if the CPU or the GPU gives faster
performance for an OpenCL kernel.

Underlying models. We replicated three deep neural networks (DNNs) proposed for
this task: DeepTune [11],
Programl [8], and IR2Vec [242]. We use the DeepTune dataset, comprising 680
labelled instances collected by profiling 256 OpenCL kernels from 7 benchmark suites.

Methodology. Following [11], we train and evaluate the baseline model using 10-fold
cross-validation. This involves training a model on programs from all but one of the
subsets and then testing it on the programs from the remaining subset. To introduce
data drift, we train the models using 6 benchmark suites and then test the trained
models on the remaining suites. We repeat this process until all benchmark suites have
been tested at least once.

6.5.4 Case Study 4: Vulnerability Detection

This task develops an ML classifier to predict if a given C function contains a potential
code vulnerability. Following [9], we consider the top-8 types of bugs from the 2023
CWE [247].

Underlying models. We replicated four representative ML models designed for bug
detection: CodeXGLUE [49], LineVul [147], both based on Transformer networks,
and Vuldeepecker [21] which is based on a Bi-LSTM network. We evaluate this task
with a dataset comprising 4,000 vulnerable C program samples labelled with one of the
eight vulnerability types, each with around 500 samples. The vulnerable code samples
cover 2013 and 2023 and are collected from the National Vulnerability Database (NVD),
CVE, and open datasets from GitHub.

Methodology. As with prior approaches, we initially train the model on 80% of the
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randomly selected samples and evaluate its performance on the remaining 20% samples.
Then, we introduce data drift by training the model on data collected between 2013
and 2020 and testing the trained model on samples collected between 2021 and 2023.

6.5.5 Case Study 5: DNN Code Generation

This task builds a regression-based cost model to drive the schedule search process in
TVM [44] for DNN code generation on multi-core CPUs. The cost model estimates the
potential gain of a schedule (e.g., instruction orders and data placement) to guide the
search.

Underlying model. We apply Prom to Tlp [146], a cost model-based tensor pro-
gram tuning method integrated into the TVM compiler v0.8 [44]. We use 2, 308 × 4
samples collected from 4 Transformer-based BERT models of different sizes in the
TenSet dataset [248].

Methodology. For the baseline, we trained and tested the cost model on the BERT-
base dataset, where the model is trained on 80% (400K) randomly selected samples and
then tested on the remaining 20% (100K)samples. To introduce data drift, we tested
the trained model on the other three variants of the BERT model. We ran the TVM
search engine for around 8 hours (4,000 iterations) for each DNN on a 12-core 3.70GHz
AMD Ryzen9 5900X CPU server.

6.5.6 Performance Metrics

Performance to the oracle. For code optimisation tasks (case studies 1 to 3), we
compute the ratio of the predicted performance to the best performance obtained by
exhaustively trying all options. A ratio of 1.0 means the prediction leads to the best
performance given by an “oracle” method.

Misprediction threholds. For code optimisation, we consider a prediction to be a
misprediction if runtime performance is 20% or more below the Oracle performance
(case studies 1-3) or if predicted performance deviates by 20% or more from profiling
results (case study 5). For bug detection (case study 4), a misprediction happens when
the model misclassifies a test input.

Coverage deviation. This “smaller-is-better” metric measures the difference between
the confidence level and Prom’s true coverage rate on the model. A zero deviation
means the coverage rate matches the predefined significance level.
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Table 6.2: Summary of our main evaluation results

Perf. to the Oracle Prom performence
Training Deploy. Prom on deploy. Acc. Pre. Recall F1

0.836 0.544 0.807 86.8% 86.0% 96.2% 90.8%

Metrics for data drift detection. We consider the following “higher-is-better” met-
rics for detecting drifting samples:

Accuracy. The ratio of the number of correctly predicted samples to the total number
of testing samples.

Precision. The ratio of mispredicted samples that were correctly rejected to the
total number of mispredicted samples. This metric answers questions like “Of all the
rejected predictions, how many are actually mispredictions?”. High precision indicates
a low false-positive rate, meaning Prom rarely incorrectly rejects predictions.

Recall (or Sensitivity). The ratio of mispredicted samples that were correctly re-
jected to the total number of mispredicted samples. This metric answers questions like
“Of all the mispredicted test samples, how many are rejected by Prom?”. High recall
suggests a low false-negative rate, indicating Prom can identify most mispredictions.

F1 score. The harmonic mean of Precision and Recall, calculated as 2×Recall×P recision
Recall+P recision .

It is useful when the test data has an uneven distribution of drifting and normal samples.
The highest possible F1 score is 1.0, indicating perfect precision and recall.

6.6 Experimental Results

Highlights. Table 6.2 summarizes the main results of our evaluation. All the tested
models were impacted by changes in the application workloads (Sec. 6.6.1), where the
performance relative to the Oracle predictor drops significantly from training time to de-
ployment time. Prom can detect 96.2% of the drifting samples on average (Sec. 6.6.2).
When combined with incremental learning, Prom enhances the performance of de-
ployed models, improving prediction performance by up to 6.6x (Sec. 6.6.3). Prom
also outperforms existing CP-based methods and related work (Sec. 6.6.5).
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Figure 6.7: The resulting performance when using an ML model for decision making.
The performance of all learning-based models can suffer during the deployment phase
when the test samples significantly differ from the training data.

6.6.1 Impact of Drifting Data

This experiment assesses the impact of data drift by applying a trained model to
programs from an unseen benchmark suite or CVE dataset (Sec. 6.5). For code optim-
isation tasks (case studies 1-3 and 5), we report the performance ratio relative to the
oracle (Sec. 6.5.6). In case study 4, we report the accuracy of bug prediction.

Figure 6.7 shows the classifiers’ performance (case studies 1-4) during design and
deployment, while Table 6.3 presents the regression model’s performance (case study 5).
The violin diagrams in Figure 6.7 show the distribution of test sample performance,
with the violin’s width representing the number of samples in each range. The line
inside shows the median, and the top and bottom lines indicate the extremes. Outliers
are marked as circles. Ideally, a model’s violin would be wide at the top, reflecting
good performance for most samples.

Design time performance. For case studies 1-4, we assess design-time performance
by holding out 10% of the training samples as a validation set and applying the trained
model to it. In case study 5, the training data covers all DNN models, but the model
is tested on samples from unseen schedules. This process is repeated 10 times, and
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Figure 6.8: Prom’s performance for detecting drifting samples across case studies and
underlying models (higher is better).

the average performance is used as the design-time result. This ideal setting assumes
that validation and training samples come from the same project or benchmark, with
similar workload patterns, yielding comparable results to those reported in the original
model publications.

Deployment time performance. An ML model’s robustness can suffer during de-
ployment. From Figure 6.7, this can be observed from the bimodal distribution of the
violin shape or a lower prediction accuracy at the deployment stage. From the violin
diagrams, we observe a wider violin shape towards the bottom of the y-axis and a
lower median value compared to the design-time result. From Table 6.3, this also can
be seen from a lower deployment-time prediction accuracy than the design-time per-
formance. The impact of drifting samples is clearly shown in vulnerability detection of
Figure 6.7(d), where the prediction accuracy drops by an average of 62.5%. For DNN
code generation (Table 6.3), the accuracy of performance estimation can also drop from
84.5% to as low as 22.4%. The results highlight the impact of data drift.
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Figure 6.9: Prom enhances performance through incremental learning in different un-
derlying models.
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Figure 6.10: Geometric mean and variances across models of the F1 score in classifica-
tion tasks.

6.6.2 Detecting Drifting Samples

Figure 6.8 reports Prom’s performance in predicting drifting samples across case stud-
ies and underlying models. For all tasks, Prom achieves an average precision of 0.86
with an average accuracy of 0.87. This means it rarely filters out correct predictions.
For the binary classification task of heterogeneous mapping (Figure 6.8(c)), Prom
achieves an average F1 score of 0.74. In this case, Prom sometimes rejects correct pre-
dictions. This is because the probability distribution of binary classification is often less
informative for CP than in multiclass cases [157]. For the regression task of case study
5, Prom can detect most of the drifting samples with a recall of 0.95 and an average
precision of 1. Furthermore, the underlying model’s quality also limits the performance
of Prom. When the information given by the underlying model becomes noisy, Prom
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Table 6.3: C5: DNN code generation (performance to the oracle ratio) - trained on
BERT-base and tested on BERT variants.

Network BERT-
base

BERT-
tiny

BERT-
medium

BERT-
large

Native deployment 0.845 0.224 0.668 0.642
Prom assisted deployment / 0.794 0.871 0.843

can be less effective. Averaged across case studies, in detecting mispredictions, Prom
achieves a recall of 0.96, a false-positive rate of 0.14 and a false-negative rate of 0.04,
suggesting that Prom is highly accurate in detecting drifting samples.

6.6.3 Incremental Learning

In this experiment, we use Prom to identify drifting samples and update the underly-
ing models by retraining with a small set of Prom-identified samples. Prom preserves
the performance of the methods close to their original levels, as shown by improved
accuracy (Figure 6.9(d)), the performance-to-oracle ratio (Table 6.3), and violin plots
(Figures 6.9(a) to 6.9(c)), where test sample distributions shift towards higher per-
formance with a better median than native deployment without Prom. Overall, Prom
requires labelling at most 5% (sometimes just one) of drifting samples to update the
model. Without it, one would need to label random test samples, leading to higher
maintenance costs and unnecessary user confirmations for samples the model can pre-
dict correctly.

6.6.4 Individual Case Studies

We now examine case studies showing how Prom improves the underlying model with
incremental learning.

Case study 1: thread coarsening. In this experiment, we tested the trained model
on kernels from OpenCL benchmarks unseen at the model training stage. Figure 6.7(a)
and 6.9(a) show that the performance of all ML models drops as the test dataset
changes. By relabelling just one drifting sample using incremental learning, Prom
improves the performance to the oracle ratio from an average of 77.6% to 99.0% (21.4%
improvement) during deployment.

Case study 2: loop vectorisation. This experiment introduced changes by test-
ing the underlying model on loops extracted from unseen benchmarks. Figure 6.7(b)
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and 6.9(b) show that drifting data led to a performance reduction for all methods,
averaging 9%. Retraining the model using only 5% of the Prom-identified drifting
samples helps restore the underlying model’s initial performance, leaving only a 1.6%
gap to the design-time performance.

Case study 3: heterogeneous mapping. This experiment tests the underlying
models on OpenCL kernels from unseen benchmarks. Figures 6.7(c) and 6.9(c) show
that all ML models deliver low performance on unseen benchmarks. Prom also suc-
cessfully detects 100% of the drifting samples (recall) on average with an accuracy rate
of 58%. Further, by utilising incremental learning on 5% of the drifting samples, Prom
improved the performance to oracle ratio of all systems from 63.1% to 78.9% (15.8%
improvement) on average.

Case study 4: vulnerability detection. In this experiment, we tested a trained
model on a vulnerability dataset from a time period not covered by the training data.
Figures 6.7(d) and 6.9(d) show that all models initially had low prediction accuracy,
ranging from 12.5% to 15.6% when facing new code patterns. Prom correctly identified
all mispredictions with a recall of 1. By relabelling up to 5% of the Prom-identified
drifting samples and updating the model, we improved the accuracy from an average
of 13.5% to 72.5%, achieving 95.3% of the design-time performance.

Case study 5: DNN code generation. In this experiment, we apply the cost model
trained on the Bert-base dataset to three other variants of the BERT network. Once
again, from Table 6.3, we see the performance of the trained model experiences a
reduction from 84.5% to 53.2%. For BERT-tiny, the performance drops as much as
65.3%. Prom can detect 95.3% of drifting data and achieve a precision of 1. After
profiling just 5% of the Prom-identified drifting data and using them to retrain the
cost model online during the TVM code search process, the average performance of the
cost model improves to 80.4%, resulting in a 2.0x enhancement.

6.6.5 Comparison to CP Libraries and Methods

We compare Prom with Mapie [157] and Puncc [158], two CP libraries used for
outlier detection, as well as RISE [40] and TESSERACT [72], which use a single
nonconformity function. RISE also trains an SVM for misprediction detection, but,
like TESSERACT, supports only classical classifiers, so we evaluate them on cases 1
to 4. Figure 6.10 shows average results, with min-max bars indicating variation across
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Figure 6.11: Performance of individual nonconformity functions. Min-max bar shows
the performance across ML models.
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Figure 6.12: The average training and incremental learning overhead of individual case
studies.

models. Prom outperforms TESSERACT by 17.6%, achieving a higher F1 score due
to its improved nonconformity strategy. RISE struggles with uneven data or tasks
with many labels, while Prom’s model-free ensemble approach handles these cases
better. Naive CP yields the lowest F1 score, showing its limitations in detecting drift
in large-scale tasks.

6.6.6 Further Analysis

Nonconformity functions. Figure 6.11 shows the average performance of the four
default Prom functions in detecting drifting samples across case studies, with min-
max bars indicating variance across models. Prom’s ensemble strategy outperforms
individual functions in all metrics, demonstrating that no single function performs
well across all case studies. By combining multiple functions, Prom enhances the
generalisation of statistical assessments.
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Figure 6.13: Sensitivity analysis of Prom hyperparameters.

Sensitivity analysis. Figures 6.13(a) to 6.13(c) show how the significance threshold
and other parameters (e.g., cluster size and Gaussian scale) impact Prom’s perform-
ance for data drift detection. A larger significance threshold reduces false positives,
improving precision but potentially lowering recall. Prom automatically determines
the optimal cluster size using the Gap statistic method [241]. Deviations from the
optimal cluster size affect detection performance. For the Gaussian scale parameter,
prediction set sizes smaller or larger than 1 lead to reduced confidence by suggesting
too few or too many classes for a sample.

Coverage deviation. Figure 6.13(d) shows the coverage deviation across five cases.
The min-max bar represents the variance across the underlying models. The geomean
of deviation is 2.5%, which is a benign fluctuation and indicates a good fit for conformal
prediction on the underlying models. The thread coarsening task shows a 4.4% devi-
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ation due to the small calibration dataset, which could be mitigated by adding more
calibration samples.

Training overhead. Figure 6.12 reports the overhead of initial model training and
incremental learning. Initial training takes several hours to one day, while incremental
learning with fine-tuning takes less than one hour on a multi-core CPU or a desktop
GPU - a negligible overhead compared to the initial training time.

Runtime overhead. During deployment, the main runtime overhead in Prom comes
from computing nonconformity scores and detecting drifting samples. This overhead
is minimal: on a low-end laptop, computing confidence and credibility scores and per-
forming drift detection take less than 10 and 2 milliseconds, respectively.

6.7 Summary

In this chapter, we introduced Prom, an open-source Python library designed to en-
hance the robustness of learning-based models during deployment for code-related tasks.
Prom measures the credibility and confidence of predictions to detect likely mispredic-
tions. We evaluated Prom on 13 ML models across five code optimisation and analysis
tasks. Prom can effectively detect samples that an ML model can mispredict by suc-
cessfully identifying an average of 97% of mispredictions. It also improves deployed
model performance by updating the trained model with a few identified test samples.

There is growing interest in applying ML to systems research [4, 218], yet prior work
has primarily focused on model optimisations during the design phase. Prom addresses
post-deployment optimisation. We hope it will be a valuable tool for post-deployment
optimisation.
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Chapter 7

Conclusions

This thesis presents three novel techniques to address key challenges in practical ML
for program modelling in code-related tasks. These challenges include precise program
representation, the high barrier between programmers and the application of DRL, and
data drift during deployment, as outlined in Section 1.1.

Chapter 4 introduces a new program representation technique by combining static
and dynamic information to address the limitations of relying solely on static code
information (Sec. 1.1.1).

Chapter 5 addresses the expertise requirements in DRL (Sec. 1.1.2) by providing a
software framework to automate the search for the appropriate DRL architecture and
the optimal parameters for optimisation tasks.

Chapter 6 detects when a trained model is likely to mispredict during the model
deployment time (Sec. 1.1.3) by applying CP and statistical analysis to detect low-
confidence prediction samples.

This chapter is structured as follows: Section 7.1 summarises the main contributions
of this thesis, Section 7.2 presents a critical analysis of this work, Section 7.3 describes
future research directions, and finally, Section 7.6 provides the summary.

7.1 Contributions

In Section 1.1, several significant challenges are identified that hinder the application
of ML in code optimisation and analysis tasks. This section summarises the main
contributions of the thesis, showing how to make ML practical for code-based tasks.
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7.1.1 Combining Static and Dynamic Information for Precise Pro-
gram Modelling

A key challenge in ML-based approaches for program representation is that they often
affect the performance of ML models due to reliance solely on information from the
static source code. Previous approaches [18] have attempted to incorporate deeper
information, such as graph relationships in programs. However, they remain limited by
their reliance on static data.

Chapter 4 introduces a new DL system for code-related tasks, using source code-
level vulnerability detection as a case study. This is the first DL framework to effect-
ively combine structured code information with symbolic execution for vulnerability
prediction. The system utilises both structured static code features and dynamic sym-
bolic execution traces to learn program representations, thereby enabling accurate bug
prediction. The model is trained using a combination of unsupervised and supervised
learning while minimising the overhead of symbolic execution through the use of a path
selection network.

We applied this system to detect bugs and vulnerabilities in C programs from 20
open-source projects. In 200 hours of automated concurrent test runs, the system suc-
cessfully detected vulnerabilities in all tested projects, discovering 54 unique vulnerabil-
ities and resulting in 37 new, unique CVE IDs. Compared to 16 previous methods, this
approach detects more vulnerabilities with higher accuracy and a lower false positive
rate. This novel technique significantly improves ML performance by enabling models
to learn dynamic information, such as input and execution traces, thereby addressing
the challenge of precise ML program modelling as outlined in Section 1.1.1.

7.1.2 Automating the Design of Deep Reinforcement Learning Archi-
tectures

To integrate ML into downstream tasks, programmers often need extensive knowledge
of ML, particularly in designing effective architectures. This is especially challenging
for DRL, which requires a higher level of expertise.

Chapter 5 introduces a framework that lowers the barrier between programmers and
DRL expertise, enabling them to integrate DRL into their fields with just a few dozen
lines of code, regardless of their prior knowledge. This is the first generic framework that
automatically selects and tunes suitable RL architectures for code optimisation tasks.
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It automates the process of designing and tuning RL algorithm structures, simplifying
the integration of DRL into various optimisation problems. We evaluate our framework
by applying it to four different optimisation tasks.

Experimental results show that the RL architectures generated by our tool out-
perform alternative search techniques, including manually tuned RL strategies. The
framework supports mainstream and emerging RL environments, such as RLlib and
CompilerGym, and provides customizable interfaces for developers to introduce new
algorithms and methods into the RL policy architecture. As the community contributes
more models and methods, we will be able to explore a more extensive policy search
space, reducing the need for domain-specific methods for each project. In the long
term, we anticipate that our framework will work out-of-the-box for most performance
developers once they have defined their optimisation tasks. By enabling automated
architecture design and parameter tuning for various downstream optimisation tasks,
this work addresses the challenge of the ML barrier identified in Section 1.1.2.

7.1.3 Enhancing Predictive Model Robustness at Deployment Time
Using a Statistical Analysis Approach

A significant challenge during model deployment is data drift. Detecting drifting
samples is critical for maintaining model robustness. Chapter 6 presents a framework
designed to preserve robustness during deployment by leveraging conformal prediction
to identify low-confidence predictions and alert users to potentially unreliable results.
Importantly, this process integrates seamlessly with the original prediction workflow-
users do not need to modify their model architecture. Instead, they simply provide
intermediate outputs from their existing models through our API.

We evaluated the framework on 13 machine learning models across five code optim-
isation and analysis tasks, successfully detecting an average of 97% of mispredictions.
Additionally, Prom enhances the performance of deployed models by updating them
using a small subset of the identified test samples.

This method directly addresses the design-deployment gap discussed in Section 1.1.3
by enabling post-deployment optimisation. We believe it provides a practical and ef-
fective solution for improving model reliability in real-world applications.
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7.2 Critique

This section provides a critical analysis of the techniques presented in this thesis.

7.2.1 Runtime Overhead

Runtime overhead is always one of the most important concerns for both programmers
and researchers. For ML, the primary source of runtime overhead arises from the
training phase, which can range from several hours to several days. However, since
training is performed offline and typically occurs only once, this overhead does not
impact real-time performance. During inference, predictions are usually generated
within seconds, ensuring that the system remains responsive.

Another factor contributing to overhead is feature collection. For example, in the
case of Concoction, the collection of symbolic execution traces increases computa-
tional cost. To mitigate this, we employ a path selection component that reduces the
burden of symbolic execution. Additionally, techniques such as parallelising symbolic
test case generation can further accelerate the process, although these are orthogonal
to our core contribution.

7.2.2 Cross-Language Support and Integration

The primary focus of this thesis is on code-related tasks. We do not emphasise applic-
ation to a specific programming language; rather, we aim to develop a general method
that can be applied across multiple languages. For the backend ML interfaces used in
this thesis, Python is chosen due to its extensive ecosystem and strong support for ML
libraries. However, the proposed methods are designed to facilitate seamless integration
with non-Python environments. For example, in C/C++ settings, we use the pybind11
API to bridge probabilistic model predictions with the core system, enabling binary
output for prediction acceptance.

Although our evaluations may focus on the C and Python languages, the underlying
methods are extensible to other programming languages. This requires adapting source
code rewriting tools and integrating language-specific symbolic execution engines, such
as JDart for Java or PyExZ3 for Python. We provide a method supported by the
Language Server Protocol (LSP) to enable cross-language compatibility. However, this
extension process is still ongoing and requires further refinement.
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7.2.3 Overfitting

Overfitting remains a significant challenge for ML models, particularly during deploy-
ment. Expanding the training dataset to cover a wide range of scenarios improves
generalisation and reduces the risk of overfitting. For example, in Prom, we retrain
the models using both the original dataset and mispredictions identified during deploy-
ment, thereby enhancing the model’s adaptability to real-world data.

7.2.4 Reliability

ML solutions can become fragile over long-term deployment. To address this issue,
we apply a model-free approach in our drifting data detection framework to maintain
robustness during operation. Also, the calibration dataset is updated incrementally,
allowing the detection framework to evolve as the model undergoes retraining. This
continuous adaptation enables our approach to handle shifts in data distribution post-
deployment, ensuring sustained reliability and accuracy across diverse environments.

7.2.5 Scalability

Scalability is important for industry, particularly when dealing with large and complex
codebases. ML offers the advantage of transferring knowledge from one program to an-
other. For instance, it can learn that applying specific optimisation passes consistently
reduces code size across different programs. This transferability is a notable strength
of ML compared to evolutionary techniques.

7.2.6 Practical Applications

For Concoction, the system has been applied to 20 real-world projects. However,
it currently lacks support for complex code patterns such as recursive functions and
dynamic dispatch via function pointers. Addressing these limitations will require future
research into advanced code analysis techniques, including interprocedural data flow
tracking and pointer alias analysis, to enable the framework to scale to larger and more
intricate code regions.

For Supersonic, the system is capable of designing DRL architectures, incorpor-
ating 23 RL algorithms, and can easily be extended to design DL architectures and
incorporate user-defined algorithms. However, the performance of Supersonic in DL
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and traditional machine learning classifiers requires further evaluation to fully assess
its applicability and efficacy.

For Prom, handling rejected predictions requires balancing the trade-offs between
automatic adjustments and manual interventions. The system allows users to adjust
the significance level to manage these trade-offs effectively, detecting data drift and
model degradation during post-deployment. Although human verification may still be
necessary, Prom minimises this need by only requesting intervention when significant
drift is detected. Prom are primarily targeted at probability-based classifiers and are
broadly applicable across various ML algorithms. These techniques also optimise data
labelling efforts by evaluating the potential benefits of incorporating new data into
training, making them particularly valuable in reducing costs for code optimisation
tasks.

7.3 Future Work

This section outlines two promising avenues for future research enabled by this thesis.

7.3.1 Explainable Machine Learning for Program Modelling

DL has gained prominence across various domains, such as text, images, videos, and
graphs. However, despite its successes, it often functions as a black box, particularly
in areas like compiler optimisation, where model robustness is crucial. The black-box
nature of ML remains a significant barrier to its broader adoption in compilers. Mis-
trust often arises due to the lack of transparency in model-based results. Developers
frequently question how deep learning models make predictions, why certain features
are prioritised, and what adjustments are needed to enhance model performance. Un-
fortunately, efforts to answer these questions have only seen modest success. Without
detailed explanations, developers are left uncertain about where and how to further
investigate or improve the model.

The need for interpretability is paramount to uncover model vulnerabilities, enhance
robustness, and establish trust by providing clear explanations for model decisions.
While post-hoc interpretability techniques, applied after a model is trained, offer high
predictive performance without compromising interpretation, they still fall short in
terms of faithfulness to the original model. The potential inaccuracies inherent in these
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methods make it difficult to fully trust their outputs.
Current interpretability methods primarily focus on feature saliency analysis [249],

which identifies the most relevant input data attributes influencing a model’s predictions
or latent representations. However, a comprehensive framework for explainability in
program modelling remains unexplored.

To address this challenge, we propose the development of an open-source framework
specifically designed to enhance the interpretability of learning-based models in program
modelling. This framework would improve model accuracy and reliability by providing
detailed insights into the inner workings of these models.

We aim to design a model that leverages feature visualisation to allow programmers
to interact directly with machine learning models. In this context, features represent
the key data elements, such as code tokens, statements, binary code blocks, or abstract
syntax trees, that influence predictions. By understanding the importance of these
features, developers can better comprehend how the model arrives at its predictions.
This process will enable programmers to identify and address potential vulnerabilities,
thus enhancing the model’s accuracy and reliability during the program modelling
phase.

In the long term, we envision our framework fostering greater trust in model de-
cisions by generating localised explanations that clarify model outcomes. This will
help users assess the trustworthiness of the AI system by understanding which features
are most important in generating predictions, ultimately leading to more reliable and
transparent machine learning models in program modelling.

7.3.2 Extending Scalability to Novel Machine Learning Approaches

As new ML techniques, such as federated learning and others, continue to evolve, they
still face the challenges discussed earlier in this thesis (Sec. 1.1). Evaluating the scalab-
ility of our approach within these emerging deep learning architectures and addressing
the unique challenges they present is a promising direction for future research.

Furthermore, while this thesis has focused primarily on code analysis and optim-
isation tasks, there is significant potential to extend our methods to other domains.
Exploring the applicability of our framework across various fields will further demon-
strate its versatility and scalability, broadening the impact of our research beyond its
current scope.
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7.4 The Impact of Large Language Models

In recent years, the rise of LLMs has brought transformative changes to many areas of
computer science, including the downstream tasks we focus on: program analysis and
optimization. LLMs have shown remarkable capabilities in software engineering tasks
such as natural language processing, and their application is now expanding into more
specialized fields [250]. This section explores the potential impact of LLMs on program
analysis and optimization and discusses how the research contributions of this thesis
complement these emerging trends.

7.4.1 Applications of LLMs in Software Engineering

LLMs are demonstrating immense potential across the fields of program analysis and
optimization, promising to reshape traditional methodologies.

In the domain of optimization, which has historically required extensive domain
expertise and computational resources, LLMs are emerging as a revolutionary force.
Researchers have begun exploring their use to predict compiler options that maxim-
ize code performance directly. For instance, specialized LLMs for compilers, such as
LLM-Compiler [251], can learn the complex relationships between code structures and
optimization strategies by training on vast amounts of compiler IR and assembly code.

In parallel to their role in optimization, LLMs have also shown great potential
in program analysis [252], particularly in software vulnerability detection. While tra-
ditional static analysis tools rely on predefined rules and patterns, LLMs can learn
broader and more abstract patterns from massive code datasets. Research indicates
that, in some cases, the performance of LLMs in this area can surpass that of tradi-
tional static analyzers, enabling them to identify not only known vulnerability patterns
but also potentially discover new, unknown zero-day vulnerabilities.

7.4.2 The Value of This Thesis in the Age of LLMs

Although LLMs represent a novel technological wave, the core challenges addressed in
this thesis, precision, automation, and robustness, have not become obsolete. On the
contrary, they are more critical than ever in the era of LLMs.

Regarding precision, LLMs are inherently probabilistic, and their outputs may con-
tain factual errors or hallucinations. The methods proposed in this thesis, which com-
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bine static and dynamic analysis, can provide a factual grounding for LLM-based ana-
lysis, thereby improving its precision and reliability.

Concerning automation, LLMs are a major driver of automation in software en-
gineering. The automated ML framework developed in Chapter 5 can be viewed as a
“meta-tool” for designing and optimizing specialized, efficient machine learning models
(potentially including smaller, task-specific LLMs) tailored to different program optim-
ization tasks.

Finally, the challenge of robustness is a key practical concern, as discussed in
Chapter 6. The problem of data drift after a model is deployed is particularly signi-
ficant. Ensuring that LLM-based tools remain reliable in the face of evolving software
projects is a central issue, and the deployment-time robustness framework proposed in
this thesis offers an important solution.

In summary, LLMs are opening new frontiers for research in program analysis and
optimization. They do not replace the fundamental problems investigated in this thesis
but rather highlight their importance in a new light and provide powerful new tools for
addressing them. The contributions of this thesis, in enhancing the precision, automa-
tion, and robustness of machine learning models, lay a solid foundation for the future
integration of LLMs into program analysis and optimization tools in a safer and more
effective manner.

7.5 Vision

This thesis addresses three interrelated challenges in the application of ML to soft-
ware engineering and compiler optimisation. While each contribution provides value
independently, their collective integration points towards a broader vision: building
reliable, precise, and developer-friendly ML systems that can be deployed in real-world
software environments.

First, the development of an ML-based bug detection tool in Chapter 4 shows
how hybrid feature-driven methods can capture subtle program behaviours that escape
traditional rule-based analysis. The proposed method illustrates that combining static
and dynamic information enables the detection of more bugs and vulnerabilities in
real-world projects.

Second, the work on assisting developers in constructing DRL systems for com-
piler optimisation in Chapter 5 highlights the practical importance of bridging the
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gap between ML research and compiler engineering. The architecture proposed in this
chapter provides a framework in which DRL agents can explore optimisation strategies
while lowering the barrier for developers to design and train such agents effectively.
This contribution shows that compiler optimisation can benefit from ML approaches,
provided that developers are equipped with the appropriate methodological and archi-
tectural meta-optimiser tools.

Third, identifying when an ML model is likely to make incorrect predictions, as
discussed in Chapter 6, addresses the critical challenge of reliability. In data-scarce or
performance-sensitive domains, awareness of prediction uncertainty is essential. The
proposed architecture in this thesis advances the state of the art by combining pre-
dictive modelling with statistical analysis to estimate prediction confidence and detect
potential mispredictions, thereby enhancing robustness during deployment.

In summary, these three lines of research converge toward a unified vision: the
design of machine learning systems for software engineering that are not only accurate,
but also robust and developer-oriented. By connecting automated bug detection, com-
piler optimisation, and other program-modelling tasks, this thesis lays the groundwork
for an ecosystem of ML tools that can adapt to diverse developer needs while provid-
ing performance and reliability guarantees. The architectures introduced in this thesis
can be viewed as complementary components in this larger vision, each addressing a
fundamental dimension of the challenge: precision, automation, and reliability.

In the long term, we envision extending this integrated framework to support a com-
prehensive software development environment, where ML models continuously interact
with compilers, debuggers, and developers. Such an environment would enable not only
the detection of bugs and performance bottlenecks, but also the dynamic adaptation
of optimisation strategies and the reliable signalling of uncertainty, ultimately allow-
ing developers to focus on higher-level design tasks while relying on machine learning
systems for dependable automation.

7.6 Summary

This thesis explores how to make ML program modelling practical when integrating it
into code-related tasks. While ML has proven to be a promising and successful tech-
nique in many fields, its practical application to code-related tasks still faces significant
challenges, both in ML model design and at deployment time.
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This thesis first presents a novel program modelling approach that combines struc-
tured static code information with dynamic symbolic execution, demonstrating strong
performance in a vulnerability prediction case study. Then, it introduces a novel auto-
mated system that streamlines the selection and tuning of DRL architectures, specific-
ally focusing on RL for code optimisation tasks. This system lowers the barrier between
programmers and DRL, facilitating broader adoption of DRL in code optimisation.
Lastly, the research extends into the robustness of ML models during deployment by
proposing a novel framework that utilises CP to ensure and assess the reliability of
ML models across five code-related deployment tasks. Results show its effectiveness in
enhancing model robustness during deployment time.

These contributions address three key barriers to integrating ML into specific do-
mains, offering more precise, automated, and robust ML for program modelling. The
outcomes demonstrated in this thesis provide a strong foundation for future research
and practical applications of ML in code-related tasks.
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