
Distributed Adaptive
Multi-Drone Coordination

At Scale

Chuhao Qin
University of Leeds

School of Computer Science

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

http://www.leeds.ac.uk
https://eps.leeds.ac.uk/computing

To Zhēn and Yù,
who have taught me that love’s truest name is Precious.

One gave me Life, the other made it Shine.
This thesis is my Treasure–Yours.

i

Intellectual Property Statement

The candidate confirms that the work submitted is his own and that ap-
propriate credit has been given where reference has been made to the work
of others.

This copy has been supplied on the understanding that it is copyright mater-
ial and that no quotation from the thesis may be published without proper
acknowledgment.

The right of Chuhao Qin to be identified as Author of this work has been
asserted by him in accordance with the Copyright, Designs and Patents Act
1988.

© 2025 The University of Leeds and Chuhao Qin.

iii

Acknowledgements

Pursuing a PhD demands patience. Indeed, bridging theory and practice
is a long and intricate journey, one where pleasure and pain intertwine.
Along this path, I overcame countless obstacles, striving to hear the music
of science. None of this would have been possible without the support of
several people. To them, I am sincerely grateful for this.

First and foremost, I would like to thank my supervisor, Evangelos
Pournaras, for bringing me to the University of Leeds and giving me care-
ful guidance. His source of knowledge, inspiration, and innovative thinking
have profoundly shaped my academic growth. During my PhD, Vangelis
and I went through countless discussions, each helping me to spark new
insights. His rigorous scholarship, relentless pursuit of answers, and metic-
ulous revisions pushed me to refine my research and writing, making this
thesis possible. I still remember his words, “Think as a scientist, not as
an engineer,” which will forever guide my future academic career. It is my
luck and honor to be his first PhD student at Leeds.

It has been my pleasure to have many great colleagues in DSS group
at University of Leeds. Though we came from distant corners of the world,
our differences only strengthened our bonds. Through weekly lunch meet-
ing, hiking, and countless conversations, we exchanged cultural traditions,
personal hobby, and intellectual perspectives with much enthusiasm. These
moments not only broadened my horizons but brought warmth and vitality
to my solitary pursuit of research. Specially, I want to thank to Srijoni,
an extraordinary Indian scholar whose brilliance is matched only by her
devotion as a mother. Her ability to balance heavy research workload with
family life inspired me, and our daily academic discussion have profoundly
shaped my work. I also extend my sincere appreciation to research fellows
from Leeds, Sheffield, EPFL, and LUT universities whose collective wisdom
has illuminated my PhD journey.

To Mingyu Ding, you are my love, my partner, and my soulmate. Our
paths crossed in London, and since that day, two years of shared journey
have unfolded. Your light always brighten my world, eliminating the fatigue
of long hours in research. Your keen mind and quick wit have guided me
through moments of doubt, offering clarity when I was lost and anxious.

v

You are the treasure I found in this foreign land. You complete me.
Last but not least, I wish to express my gratitude to my parents back in

China. You have been my most unwavering pillars of support throughout
this hard journey toward a PhD. Though half a world apart, no distance
could ever sever the invisible bond that connects us. I am forever grateful
for your sincere comfort and encouragement during moments of exhaustion,
reminding me that home will always be my ultimate sanctuary, and familial
love the most precious of all human connections. No words could ever fully
convey my appreciation, so let me borrow this line from my favorite film as
tribute: “You are the reason I am. You are all my reasons.”

Abstract

Designing and understanding the multi-drone operations is a grand chal-
lenge. This is particularly prominent in intelligent transportation systems
where swarms of cooperative drones are used for traffic monitoring and last-
mile delivery. Although significant technological breakthroughs have been
achieved in the control and communication of individual drones, coordin-
ating multiple drones for distributed task allocation remains an open re-
search problem. This involves determining which drones should visit which
points of interest on the map, and when, to execute tasks, such as collect-
ing sensing data and inspecting infrastructure, thereby maximizing mission
performance (e.g., high completion rate, accurate sensing). Figuring out the
best way to allocate these tasks is complex and falls into a class of problems
known as NP-hard combinatorial optimization.

Previous work addresses this problem by employing distributed task
allocation algorithms, from market-based methods to swarm intelligence.
However, such approach comes with three key limitations: (1) Poor scalab-
ility in large-scale operations: Existing approaches struggle with long-term,
large-scale planning due to high computational and communication costs.
(2) Poor adaptability to diverse real-world conditions: Current models often
overlook or over-simplify real-world factors, such as drone weight, payload
and recharging locations, making it difficult to estimate energy consumption
and adapt to environmental dynamics. (3) Costly, risky and oversimplified
prototyping: Even scalable and adaptive models need real-world testing
with low-cost, safe but not oversimplified prototyping to disentangle the
complexity of multi-drone coordination before real-world deployment.

To address these challenges, this thesis contributes to propose a distrib-
uted multi-agent coordination model where each agent/drone independently
determines navigation, tasking and recharging plans to choose from such
that system-wide requirements are met. The model optimizes the discrete
plan selection by integrating state-of-the-art reinforcement learning, col-
lective learning and exact algorithms, which enhances both scalability and
adaptability in evolving environments under critical hard constraints. As
a proof of concept, this work focuses on two scenarios: traffic monitoring
in urban sensing and last-mile delivery in logistics. Experimental results

vii

demonstrate that the proposed method achieves scalable, energy-efficient
and accurate task execution in large-scale spatio-temporal scenarios (e.g.,
coordinating 1,000 drone dispatches for full-day, city-sized missions), while
operating under limited drone and energy resources. These findings of-
fer valuable insights for policymakers, system operators, and technology
designers aiming to enhance intelligent transportation systems. Potential
benefits include reducing carbon emissions from heavy vehicles, alleviating
traffic congestion, improving the quality of urgent medical deliveries (e.g.,
pandemics), and informing the optimal placement of recharging stations or
depots.

Furthermore, the development of an indoor testbed ensures low-cost de-
ployment, operational safety, and the applicability of the proposed system.
These advantages are validated through hardware experiments, which con-
firm accurate energy consumption estimation and minimal collision risk.
The proposed testbed bridges the gap between complex algorithmic simula-
tions and practical but oversimplified multi-drone implementations before
outdoor testing. It provides a replicable and scalable prototyping, paving
the way for broader adoption of advanced multi-drone systems.

Contents

Acknowledgements v

Abstract vii

1 Introduction 1
1.1 Research Scope . 3
1.2 Research Objectives . 5

1.2.1 Coordination at scale . 5
1.2.2 Drone-based adaptability . 6
1.2.3 Testbed experimentation . 7

1.3 Research Approach . 8
1.3.1 Research Philosophy . 8
1.3.2 Research Strategy . 9

1.4 Contributions . 9
1.4.1 Distributed multi-agent coordination model 10
1.4.2 Coordination model for navigation and sensing 11
1.4.3 Coordination model for last-mile delivery 11
1.4.4 Indoor testbed prototype . 12

1.5 Thesis Outline . 12

2 Research Background and Literature Review 14
2.1 Task Allocation and Constraints . 14
2.2 Distributed Combinatorial Optimization 16

2.2.1 Distributed task allocation algorithms 17
2.2.2 Bio-inspired algorithms . 17

ix

CONTENTS

2.2.3 Other distributed heuristics . 18
2.3 Learning-based Dynamic Task Allocation 19

2.3.1 Multi-agent reinforcement learning 19
2.3.2 Scalability challenges . 20

2.4 Multi-drone Intelligent Transportation Systems 22
2.4.1 Urban sensing and traffic monitoring 23
2.4.2 Drone logistics and last-mile delivery 25

2.5 Conclusions . 28

3 Static vs. Evolving Multi-Agent Coordination 29
3.1 Problem Description . 31
3.2 Framework Overview . 34
3.3 Optimized Plan Selection . 35

3.3.1 Multi-agent collective learning 35
3.3.2 Hard constraint satisfaction . 38
3.3.3 Exact algorithms . 42

3.4 Hierarchical Learning-based Optimized Planning 42
3.4.1 Learning-based modeling . 44
3.4.2 High-level strategies . 44
3.4.3 Training and execution . 46

3.5 Experimental Evaluation . 48
3.5.1 Experimental settings . 49
3.5.2 Evaluation on basic synthetic scenario 52
3.5.3 Evaluation on complex synthetic scenario 54
3.5.4 Evaluation on hard constraint satisfaction 55

3.6 Comparison with Related Work . 57
3.7 Discussion and New Insights . 60
3.8 Operations of Multi-drone Task Allocation 61

3.8.1 Common models for drone-based task planning 61
3.8.2 Comparison of sensing and delivery tasks 62

3.9 Conclusions . 64

4 Coordinated Multi-Drone Navigation and Sensing 65
4.1 System Model . 67

x

CONTENTS

4.1.1 Definitions and assumptions . 67
4.1.2 System overview . 69

4.2 Problem Statement and Formulation . 71
4.3 Sensing Plan Generation Strategy . 73
4.4 Learning-based Approach for Sensing . 77

4.4.1 MARL modeling . 78
4.4.2 Plan generation and selection . 79
4.4.3 Periodic state update . 80

4.5 Experimental Evaluation . 81
4.5.1 Experimental settings . 81
4.5.2 Algorithm settings and baselines 85
4.5.3 Evaluation on static sensing scenarios 88
4.5.4 Vehicle observation using static transportation data 92
4.5.5 Evaluation on evolving transportation scenarios 95
4.5.6 Overall comparison . 101

4.6 Comparison with Related Work . 102
4.7 Discussion and Future Work . 105
4.8 Conclusions . 106

5 Coordinated Multi-Drone Last-mile Delivery 107
5.1 System model . 110

5.1.1 Definitions and assumptions . 110
5.1.2 Multi-parcel energy consumption model 112

5.2 Problem Statement and Formulation . 113
5.3 Methodology Overview . 115

5.3.1 Clustering for customer requests segmentation 116
5.3.2 Reinforcement learning for flight range selection 117
5.3.3 Algorithm of optimized plan selection 118

5.4 Experimental Evaluation . 120
5.4.1 Experimental settings . 121
5.4.2 Baselines and metrics . 123
5.4.3 Evaluation on basic delivery scenario 124
5.4.4 Evaluation on complex delivery scenario 126

5.5 Comparison with Related Work . 130

xi

CONTENTS

5.6 Discussion and Future Work . 132
5.7 Conclusions . 133

6 Multi-drone Testbed Prototyping 134
6.1 Testbed Design . 136

6.1.1 Elements description . 136
6.1.2 Architecture overview . 138

6.2 Testbed Prototyping . 139
6.2.1 Hardware drones for tasking . 140
6.2.2 Setting up an indoor tasking environment 142
6.2.3 Task allocation using collective learning 143
6.2.4 Collision avoidance using artificial potential field 143

6.3 Experimental Evaluation . 146
6.3.1 Experimental settings . 146
6.3.2 Evaluation on energy and sensing 147
6.3.3 Evaluation on collision avoidance 149

6.4 Comparison with Related Work . 151
6.5 Discussion and Future Work . 152
6.6 Conclusions . 152

7 Conclusions and Future Work 153
7.1 Meeting Research Objectives . 153

7.1.1 Significance of the work . 155
7.2 Implications for Theory, Practice and Ethics 156

7.2.1 Theoretical implications . 156
7.2.2 Practical implications . 157
7.2.3 Ethical implications . 158

7.3 Open Issues and Future work . 159

A Supplementary Material of Chapter 3 161
A.1 Additional Experimental Evaluation . 161
A.2 Evaluation with Smart Grids . 165

B Supplementary Material of Chapter 4 167
B.1 Effect of different parameters . 167

xii

CONTENTS

B.2 Mobility and Sensing Quality . 170

References 175

List of Figures 199

List of Tables 203

List of Code/Data/Videos 204

Abbreviations 205

Publications 206

xiii

Chapter 1

Introduction

The rapid advancement and adoption of autonomous aerial systems, particularly Un-
manned Aerial Vehicles (UAVs) commonly known as drones, have opened new oppor-
tunities for innovation in intelligent transportation systems [1, 2]. The integration of
drone technologies into various sectors has accelerated significantly in recent years,
driven by its potential to enhance operational efficiency and reduce environmental im-
pact. According to recent findings1 from the UK’s National Aeronautical Centre, 42%
of carriers in Europe are actively exploring the incorporation of drones into their op-
erations. This growing interest is expected to generate substantial economic impact,
with projections estimating the creation of approximately 100,000 jobs directly linked
to the drone industry in the near future.

However, compared to relying on a single high-performance drone, which is often
expensive and constrained by limited flight range due to the battery constraints, a
swarm of low-cost drones offers a more flexible and scalable solution [3]. This collective
capability assists drones to divide and perform tasks in parallel, enhancing system-
wide efficiency. The tasks encompass a variety of missions in transportation, including
sensing data collection (e.g., video, temperature and humidity) for traffic monitoring or
crop inspection, and target tracking for disaster response or last-mile delivery. Taking
an example of traffic monitoring, a drone swarm equipped with cameras can be deployed
to observe different sections of road network in a city simultaneously [4]. While one
drone captures traffic flow at a congested intersection, others monitor adjacent roads or
respond to sudden incidents such as accidents or roadblocks. This distributed coverage

1Nine Jobs in the Drone Industry (With Salaries and Primary Duties),
https://www.indeed.com/career-advice/finding-a-job/jobs-in-the-drone-industry

1

allows for faster detection of traffic anomalies and supports real-time data collection
for urban mobility management [4].

Therefore, the distributed coordination is required for drone swarms, which is a
process of organizing multiple agents/drones to collaboratively work together efficiently
toward a common goal of optimal task allocation while considering their own cost (e.g.,
energy consumption of a trip). The problem is formulated as a NP-hard multi-objective
combinatorial optimization problem, aiming to determine how to allocate tasks (e.g.,
sensing data collection, delivery) to individual drones, and how to plan their flight
paths [5]. Effective coordination minimizes redundant travel and low-priority cover-
age, leading to better drone resource utilization and lower energy consumption. This
enables more tasks to be completed with fewer drones, reducing operational costs and
enhancing mission performance, which makes this problem both critical and timely.
Nevertheless, solving the problem has various requirements determined by specific task
scenarios. For instance, every customer in a delivery mission must be delivered ex-
actly once, which restricts drone from repeatedly visiting or missing the same point of
interest. When the systems are evolving (e.g., the unpredictable traffic flow or deliv-
ery requests), drones must continuously interact with environment and improve their
behavior of navigation and tasking to maximize long-term mission performance, such
as accurate sensing and low delivery delay. To address these challenges, a variety of
task allocation algorithms have been developed. They range from exact algorithms [6],
which guarantee optimal solutions under hard constraints, to heuristic methods such
as swarm intelligence [3, 7] and multi-agent reinforcement learning (MARL) [8], which
encourage drones to individually explore optimal behaviors of navigation and tasking
in dynamic environments.

Despite significant advances in distributed multi-drone coordination, most existing
methods face the following three obstacles: (1) Poor scalability in large-scale opera-
tions: Assigning tasks to drones when they are working across wide areas and over a
long time span (e.g., an full-day span) leads to more possible decisions of navigation
and tasking for each drone. Searching the optimal solution requires high computation
and communication cost using traditional methods [9, 10]. (2) Poor adaptability to di-
verse real-world conditions: In real-world scenarios (e.g., traffic monitoring, delivery),
drones must operate under constantly changing conditions, including dynamic task re-
quirements, different payloads, different recharging locations, and heterogeneous drone

2

1.1 Research Scope

capabilities (e.g., size, weight). These factors significantly affect drone performance,
especially energy consumption, while most existing models assume static or idealized
conditions and fail to adapt to environmental dynamics. (3) Costly, risky and over-
simplified prototyping: A big gap remains between simulation results and practical
deployment. While simulations are useful for evaluating complex task allocation of
swarms in scalable and adaptive coordination, existing testbed prototypes typically
support only simple flight patterns due to hardware technical challenges such as high
cost and collision avoidance.

Therefore, a scalable and adaptive approach is needed, one that starts from the
systematic design of distributed multi-agent coordination models, to real-world proto-
typing, testing and validation through a versatile testbed experimentation. By bridging
theoretical modeling with physical implementation, this approach advances our under-
standing of how drone swarms can make adaptive, energy-aware decisions in evolving
environments, moving beyond idealized simulations toward solutions grounded in phys-
ical and operational constraints.

1.1 Research Scope

This thesis focuses on the high-level coordination of multi-drone systems, particularly
addressing the challenges of task allocation in real-world, civilian, transportation applic-
ations, including traffic management, disaster response, smart parking, and last-mile
delivery [4, 11–13]. It emphasizes strategic decision-making that assists drones to navig-
ate, execute tasks and recharge effectively in diverse, mission-critical environments [5].
The goal is to empower scalable and distributed coordination among a swarm of drones
operating over large spatio-temporal missions (e.g., data collection over a 2D city map
within a whole day). While drone-related technologies are widely used in edge/cloud-
assisted networks, UAV-to-Terrestrial/Satellite communication, and optimized landing
and takeoff [14], this work deliberately does not concentrate on low-level communication
or control theory.

The core problem targeted by this thesis lies in the distributed task allocation. The
problem seeks to find the most efficient set of routes and tasks for autonomous agents
(or drones) in a distributed manner, allowing each agent to make decisions independ-
ently. Thus, this problem is mathematically formulated as a NP-hard combinatorial
optimization problem [15], closely related to classical problems such as the traveling

3

1.1 Research Scope

salesman problem and 0-1 knapsack problem. To tackle the problem, this thesis tar-
gets on distributed optimization algorithms, such as consensus-based bundle algorithm,
as well as the distributed variants of traditional heuristic approaches (e.g., genetic al-
gorithm, particle swarm optimization) [9, 10, 16]. Notably, the multi-agent collective
learning [17, 18] has emerged as a promising approach for addressing this problem. It en-
ables self-organized, decentralized coordination among agents, offering high scalability
(supporting a large number of agents) and efficiency (with minimal communication and
computational overhead), while preserving individual agent autonomy to adapt their
decisions dynamically. Apart from these short-term algorithms, this thesis explores
the long-term benefits of learning algorithms (e.g., MARL), especially in dynamic or
uncertain environments [16, 19]. Here, the centralized training decentralized execution
mode allows agents to learn optimal policies efficiently during training, while operating
independently with only local observations during execution. To solve problems with
both soft and hard constraints, traditional exact algorithms (e.g., greedy algorithm,
branch-and-bound) [20] are considered in this thesis.

The scope further extends to real-world drone-based scenarios, where the abstract
models and techniques are instantiated into specific, high-impact applications. Two key
application domains within intelligent transportation systems are explored: (1) urban
sensing and (2) drone logistics. In urban sensing, drones are equipped with advanced
sensing modules such as LiDAR, cameras, or environmental sensors (e.g., for temper-
ature and humidity) to collect diverse types of data across a city [21]. These drones
must be intelligently self-assigned to points of interest to ensure energy-efficient and
accurate data collection, tailored to the specific sensing objectives. A typical example
is traffic monitoring, where camera-equipped drones observe and analyze vehicle flows,
detect accidents or congestion, and relay timely insights to traffic operators for timely
interventions [4, 22]. In drone logistics, drones deliver parcels to traffic-congested or
hard-to-reach areas, thereby reducing reliance on ground vehicles, alleviating conges-
tion, shortening delivery times, and reduce carbon emissions [13, 23]. Drones in this
context aim to minimize delivery delay and optimize energy usage, enhancing both
service quality and logistics efficiency. These two representative scenarios are selec-
ted because they contain a wide range of real-world complexities, including static and
evolving systems, scarce and sufficient drone resources, as well as both soft (e.g., user
preferences, task completion) and hard (e.g., battery limits) constraints. As a res-

4

1.2 Research Objectives

ult, they provide a robust testing ground to validate the generality, scalability, and
adaptability of the proposed research approach in this thesis.

Finally, to ensure realistic and practical validation of the multi-agent coordination
model, this thesis focuses on indoor experimentation using low-cost drone platforms.
Outdoor drone testing, especially with multiple drones, often faces challenges such as
high cost, regulatory restrictions, unpredictable weather, and safety risks, which can
hinder iterative development and experimentation [24]. In contrast, indoor environ-
ments offer controlled, repeatable, and scalable testing conditions, enabling efficient
evaluation of the proposed model under various constraints [25–27]. Moreover, operat-
ing in confined spaces brings collision avoidance to the forefront as a critical consider-
ation, making it an integral part of the system design.

1.2 Research Objectives

The research objectives of this thesis mainly address the following research question:
Overarching Research Question: How to design and prototype a distributed

multi-drone coordination system that supports scalable and adaptive task allocation
across diverse applications?

To answer the above research question, this thesis mainly designs a distributed
model that enables drones to autonomously generate energy-aware plans for navigation,
task execution, and recharging. Each plan consists of a sequence of tasks scheduled
within the maximum flight time of drones, which reduces the decision space for each
agent and improves scalability. By incorporating real-time task demands and estimated
energy consumption, the model allows drones to self-adapt their decisions to dynamic
and complex environments, enhancing both adaptability and efficiency. The superior
performance in both scalability and adaptability of the model is validated by extensive
experiments, e.g., varying the number of drones and task requirements. Furthermore,
three sub-objectives are summarized in the rest of this section, each corresponding to
a single one research question.

1.2.1 Coordination at scale

The first research question is formulated as:
Research Question 1: How can a distributed multi-drone coordination system

5

1.2 Research Objectives

be designed to scale effectively in large spatio-temporal environments while ensuring
long-term benefits and satisfying hard constraints?

Traditional approaches to multi-objective combinatorial optimization, such as multi-
agent collective learning, are relevant to large-scale systems due to their low compu-
tational and communication overhead. The system is efficient even scaling to high
number of agents that perform tasks across wide areas. Such a scale in task allocation
is essential for effective city-wide traffic and logistic management in advance. However,
these methods focus on short-term optimization and are often hand-crafted for specific,
static scenarios. When extended to long time spans (e.g., full-day sensing or delivery
task), they struggle to anticipate future consequences and adapt to changing condi-
tions. In contrast, MARL offers a framework for sequential decision-making, enabling
agents to learn policies that optimize long-term outcomes under dynamic conditions.
Nevertheless, as the number of agents increases, MARL faces critical challenges: ex-
ponential growth of the joint state-action space, increased communication cost, and
privacy concerns associated with centralized training. Furthermore, existing distrib-
uted optimization methods often lack robust mechanisms for enforcing both soft and
hard constraints, which are essential in real-world multi-drone deployments.

To bridge the conceptual gap, this thesis designs a generic distributed multi-agent
coordination model that integrates the strengths of short-term distributed optimization,
long-term learning and hard constraint satisfaction. The objective here is to minimize
both agent- and system-level costs while satisfying hard constraints on the system.
The architecture of this model, including its core components, their interactions and
inter-relations, are defined and studied in Chapter 3.

1.2.2 Drone-based adaptability

The second research question is formulated as:
Research Question 2: How can a distributed multi-drone coordination system be

designed to adapt to diverse and dynamic real-world conditions such as energy con-
straints?

Existing distributed multi-drone coordination models [28–30] for task allocation
typically focus on minimizing travel time or distance, often overlooking the critical
aspect of battery constraints and energy consumption. In reality, energy use depends
on a range of complex and interdependent factors, including drone capabilities (e.g.,

6

1.2 Research Objectives

weight, propeller and motor efficiency), environmental conditions (e.g., wind speed,
temperature), and task-specific requirements (e.g., payload weight during delivery).
Neglecting these factors leads to inaccurate estimates of energy needs and suboptimal
task performance. Moreover, energy-awareness is essential for safety and compliance.
UAV safety guidelines recommend that missions should be completed when battery
levels reach around 25%−30%, to avoid unexpected depletion and ensure safe landing.
However, most existing models [28–30] fail to incorporate dynamic energy constraints
or plan for periodic recharging, especially over full-day missions that span multiple
time intervals. This results in drones lacking a planned destination for recharging or
landing, which can limit their future task capacity and reduce the reliability of long-
term operations.

Therefore, this thesis designs two system models based on real multi-drone applic-
ations: The first model, detailed in Chapter 4, focuses on urban sensing. It tackles the
challenge of distributed coordination among heterogeneous drones for energy-efficient
and accurate data collection, such as vehicle observation across urban environments. It
accounts for numerous and heterogeneous drones performing different types of sensing
operations over a broad geographic area. The second model, presented in Chapter 5, ad-
dresses the time-sensitive last-mile delivery problem with energy-efficient, multi-parcel
route planning. It considers delivery deadlines and payload constraints, where energy
estimation becomes especially complex due to changing parcel weights and varying
delivery paths. Both models simulate full-day operations, where time is divided into
multiple periods constrained by battery life. At the end of each period, drones must
strategically select a recharging location to maintain long-term task performance across
the mission timeline. This approach allows for energy-aware, adaptive decision-making
in diverse real-world scenarios.

1.2.3 Testbed experimentation

The third research question is formulated as:
Research Question 3: How to prototype the distributed multi-drone coordination

system to be low costly, low risky, and easy to manage, reducing fragmentation of
simulation and real-world applications?

Most existing research on distributed multi-drone coordination relies heavily on
simulation, which, while useful for testing algorithms safely and at low cost, often fails

7

1.3 Research Approach

to capture critical real-world complexities such as noisy sensor data, non-ideal energy
consumption, and physical constraints (e.g., collisions and wind resistance). In addition,
current physical testbeds typically support only simple or small-scale flight scenarios,
lacking the scale and realism needed to evaluate complex, long-term, and energy-aware
coordination algorithms. This creates a gap between algorithmic performance in theory
and actual operational feasibility in practice.

To address this gap, Chapter 6 focuses on prototyping indoor testbed to emulate the
outdoor task environments with high realism, including dynamic targets and battery
constraints. The cheap, tiny and easily programmable hardware drones are adopted
to simplify the testbed design, testing and evaluation. Particular attention is given to
safety requirements, especially collision avoidance (i.e., low risk of collisions), which
becomes a critical issue when multiple drones operate in confined indoor spaces.

1.3 Research Approach

Achieving the research objectives of this thesis requires a comprehensive understanding
of inter-disciplinary domains, from computer science to robotics, including the design
of generic model for application-driven multi-drone task allocation (Section 1.2.1), co-
ordination models for urban sensing and drone logistics (Section 1.2.2), and experi-
mental validation through testbed prototype (Section 1.2.3). This section outlines the
research approach adopted to address the overarching research question.

1.3.1 Research Philosophy

This thesis primarily adopts the positivism, a research philosophy, which asserts that
scientific knowledge should be derived from objective, observable, and measurable real-
ity [31]. In line with this view, experimental data is collected systematically to establish
empirical evidence, and the research process emphasizes rigor reproducibility and trans-
parency. Positivism is particularly suitable for studies involving large, distributed, and
complex systems, such as the multi-drone coordination investigated in this thesis, where
rigorous experimentation and quantitative analysis are conducted.

In addition, this work incorporates elements of interpretivism as a secondary re-
search philosophy [31]. Interpretivism recognizes that knowledge is often shaped by
context and subjectivity, particularly in scenarios involving human or environmental

8

1.4 Contributions

interaction. It allows for the construction of multiple contextual realities (e.g., varied
experimental setups) to better understand phenomena. This perspective is reflected
in parts of the research where data is shaped by scenario-specific interpretations, such
as the traffic streams datasets in Chapter 4 and the data of delivery requests used in
Chapters 5.

1.3.2 Research Strategy

The research strategy adopted in this thesis is design science, guided by the seven
guidelines established by Hevner [32]. Design science aims to create purposeful and
innovative artifacts1 that address real-world problems. This thesis introduces four
key artifacts/models: (1) a multi-agent coordination model (Section 1.4.1), (2) an
energy-aware multi-drone sensing model (Section 1.4.2), (3) an energy- and delay-aware
multi-drone delivery model (Section 1.4.3), and (4) a tasking experimentation testbed
model (Section 1.4.4). Each model is rigorously evaluated using established methods
to demonstrate its effectiveness and relevance, offering contributions to the field of
distributed intelligent systems and their applications to swarms of drones.

Unlike behavioral science, which seeks to understand “what is true”, design science
focuses on developing “what is effective”. It generates knowledge through the construc-
tion and contextual evaluation of artifacts. While primarily artifact-driven, design
science also embraces behavioral aspects to assess an artifact’s feasibility and utility in
real-world settings. Finally, Chapter 7 reflects on the implications of this research for
future collaborative decision-making systems and sustainable smart societies.

1.4 Contributions

The main contribution of this thesis is the development of a novel, generic and highly
efficient distributed multi-agent coordination model in large spatio-temporal environ-
ments (Chapter 3, contribution 1 in Section 1.4.1). To demonstrate the effectiveness of
this model, two new and energy-aware multi-drone coordination models are presented:
one advancing traditional urban sensing (Chapter 4, contribution 2 in Section 1.4.2),
and the other addressing the challenges of last-mile delivery (Chapter 5, contribution 3

1Constructs, models, methods and instantiations are general examples of artifacts in design science
that refer to concepts, symbols, abstractions, representations, algorithms, prototypes, frameworks and
etc [32].

9

1.4 Contributions

in in Section 1.4.3). Additionally, this thesis contributes to a first working prototype of
the testbed model to study distributed multi-drone coordination algorithms (Chapter 6,
contribution 4 in in Section 1.4.4). All the material included in this thesis represents
first-author contributions, with each chapter based on one or two scholarly papers.
Three of these papers have been published in peer-reviewed international journals or
conferences1 [22, 26, 27], while the remaining works are under review [16, 23, 33].

1.4.1 Distributed multi-agent coordination model

To address the Research Question 1 in Section 1.2.1, this thesis presents a novel distrib-
uted multi-agent coordination model. It leverages a hierarchical framework to integrate
a MARL algorithm for long-term decision-making in evolving multi-agent systems, a
multi-agent collective learning algorithm for large-scale and privacy-preserving coordin-
ation of agents within static environments, as well as exact algorithms for adapting to
hard environmental constraints. The proposed solution combines the strengths of these
methods, ensuring scalability, decentralization, long-term effectiveness, and hard con-
straints satisfaction.

Chapter 3 also contributes: (1) Two novel high-level MARL-based strategies: (i)
grouping task plan categories to reduce action space and (ii) constraining the agent
behavior to enhance Pareto optimality. (2) Evaluation of how key factors influence
performance, including the number of agents, the number of plans generated by each
agent, and the complexity of target tasks, confirming the efficiency and scalability of the
proposed approaches. (3) Insights about the optimality sacrifice as moving from soft
to hard constraints and how this optimality loss is measured in terms of the required
behavioral shift to preserve performance, i.e. restoring altruism deficit. (4) An open-
source release of the code and algorithms2 as well as a software artifact implementation
of the hard constraint model3 in order to ease the future research in this field.

1Chapter 4 in Transportation Research Part C: Emerging Technologies (IF=7.6, December 2023),
and Chapter 6 in Advances in Computational Intelligence Systems (May 2024) and IEEE Conference
on Local Computer Networks (October 2024).

2https://github.com/TDI-Lab/HRCL
3https://github.com/epournaras/EPOS

10

1.4 Contributions

1.4.2 Coordination model for navigation and sensing

To address the Research Question 2 in Section 1.2.2, this thesis proposes a new energy-
aware coordination of multi-drone navigation and sensing model, which is built based on
the proposed distributed multi-agent coordination model. This is the the first study of
task allocation for large-scale, dynamic urban sensing by a swarm of drones, focusing on
optimizing the flight paths, data collection strategies, and recharging. The model aims
to find optimal full-day navigation and sensing operations of a swarm of drones such
that drones can efficiently and accurately collect required sensing data while minimizing
their energy consumption.

Chapter 4 also contributes: (1) A plan generation strategy with three policies based
on a power consumption model [34] to make the coordination model energy-aware
and achieve a highly efficient navigation and sensing of drones. (2) A comprehensive
empirical understanding of how a large spectrum of factors such as the number of
dispatched drones, the drone density, the spatial granularity of sensing, the number
of base stations, the number of time periods and the required amount of collected
data influence sensing performance. (3) A testbed for extensive experimentation with
realistic traffic patterns and real-world transport networks [4] under different vehicle
density to validate efficient and accurate vehicle observation of the proposed approaches
in both static and evolving systems. An open dataset [35] is generated containing all
plans of the studied scenario.

1.4.3 Coordination model for last-mile delivery

Similarly to Section 1.4.2, this thesis proposes a new energy-and-delay-aware coordina-
tion of multi-drone last-mile delivery model. This is the first study of the task allocation
for large spatio-temporal last-mile delivery by drone swarms accounting for both time-
sensitive customer requests and energy consumption of multi-parcel route planning.
The model aims to find optimal routes of a swarm of drones over all time windows such
that the customers with different expected delivery time receive parcels with minimum
time delay while reducing the energy consumption of drones.

Chapter 5 also contributes: (1) A decomposition approach to divide the whole
delivery problem into three sub-problems, including a delivery requests segmentation
problem, a flight range selection problem, and a optimized plan selection problem. (2)

11

1.5 Thesis Outline

A novel synthesis of algorithms1 to combine K-means clustering, reinforcement learning
and exact algorithms to strategically determine the flight range of drones for long-term
delivery efficiency, while offloading the optimized plan selection to the exact algorithms
and mixed integer programming solver [6]. (3) The validation of superior performance
of the proposed approach over baseline methods through extensive experimentation
using real-world delivery dataset, which provides new insights into a sustainable (low
energy consumption and carbon emission), timely (low delivery delays), and adaptive
(high operation speed) multi-drone delivery.

1.4.4 Indoor testbed prototype

To address the Research Question 3 in Section 1.2.3, this thesis propose a generic
testbed model, a first working prototype of the testbed model with a proof-of-concept
on accurate estimates of energy consumption and low risk of collisions in coordinated
navigation and tasking. The testbed model aims to study task allocation and collision
avoidance by a swarm of drones.

Furthermore, Chapter 6 contributes: (1) A new application domain of multi-agent
collective learning on drone distributed sensing, as well as artificial potential field [36]
for collision avoidance, using real traffic monitoring data [4]. (2) A rigorous evaluation
of the testbed prototype in an indoor lab environment using real data to demonstrate
its realism and highlight new insights into the low cost, safety and applicability of multi-
drone task allocation. (3) An open-source software platform2 and documentation3 as
a benchmark, providing detailed, reproducible coding examples and instructions for
M-SET to foster future development and collaboration within the broader community.

1.5 Thesis Outline

This thesis is outlined in the six chapters illustrated in Fig. 1.1:
Chapter 2 positions the research of this thesis within related work on multi-drone

task allocation.
Chapter 3 introduces the core system model, named Planning-based Multi-Agent Co-

ordination (PMAC). It involves two approaches, the Optimized Plan Selection (OPS)
1The open source is available at: https://github.com/TDI-Lab/MAR-OPS.
2https://github.com/TDI-Lab/M-SET
3https://github.com/TDI-Lab/M-SET-Documentation

12

1.5 Thesis Outline

Chapter 1
Introduction

Chapter 3
Short vs. Long-term Multi-agent Coordination

Chapter 6
Multi-drone Testbed Prototyping

M-TET: Multi-drone Tasking Experimentation Testbed

PMAC: Planning-based Multi-Agent Coordination
OPS: Optimized Plan Selection

HALOP: Hierarchical multi-Agent Learning-based Optimized Planning

Chapter 7
Conclusions and Future Work

Chapter 5
Coordinated Multi-Drone Last-mile Delivery

Energy-and-Delay-Aware Coordination of
Multi-Drone Last-mile Delivery

Chapter 4
Coordinated Multi-Drone Navigation and Sensing

Energy-Aware Coordination of
Mult-Drone Navigation and Sensing

Chapter 2
Research Background and Literature Review

Figure 1.1: Graphical outline of this thesis.

for large-scale optimization within static environments, and the Hierarchical multi-
Agent Learning-based Optimized Planning (HALOP) for strategic and long-term decision-
making in evolving multi-agent systems.

Chapter 4 studies the applicability of PMAC in the urban sensing domain. A
model is proposed to concentrate on optimizing the flight paths, data collection and
recharging.

Chapter 5 studies the applicability of PMAC in the last-mile delivery domain. A
model is proposed to account for both timely and multi-parcel route planning.

Chapter 6 illustrates the design, prototyping, testing and evaluation of the proposed
testbed, named as Multi-drone Tasking Experimentation Testbed (M-TET).

Finally, Chapter 7 provides a summary, conclusions, and discussions which also
highlights the possible future research directions.

13

Chapter 2

Research Background and Literature Review

This chapter presents a comprehensive review of the current research landscape, fo-
cusing on the problem, algorithms and application scenarios of distributed multi-drone
coordination for task allocation. It is organized as follows: Section 2.1 outlines the
fundamental nature of the multi-drone task allocation problem as well as hard en-
vironmental constraints. Section 2.2 explores distributed combinatorial optimization
approaches to solve the task allocation problem, including distributed task allocation
algorithms, bio-inspired algorithms, and other distributed heuristics. Section 2.3 fo-
cuses on dynamic, data-driven methods for task allocation in evolving environments
by introducing state-of-the-art multi-agent reinforcement learning approaches and re-
cent advances in solving scalability challenges. Finally, Section 2.4 contextualizes the
discussed methods within real-world applications in intelligent transportation systems,
particularly in urban sensing for traffic monitoring and last-mile delivery in logistics.
Fig. 2.1 illustrates the taxonomy of combinatorial optimization approaches from liter-
ature review in the thesis.

2.1 Task Allocation and Constraints

Task allocation for drone swarms has become a critical area of research as swarms
are increasingly deployed in missions such as environmental monitoring and target
tracking [5, 37, 38]. Central to this challenge is the task allocation problem, which is
commonly formulated as a multi-objective combinatorial optimization problem. This
is a large class of problems [39] in which agents autonomously determine a number of
finite options to choose from (operational flexibility). The agents may have their own

14

2.1 Task Allocation and Constraints

Figure 2.1: The mind map with a taxonomy of combinatorial optimization approaches.

preferences over these alternatives, expressed with an individual cost for each option.
However, such choices often turn out to be inter-dependent to minimize system-wide
cost (non-linear cost functions) for which the agents may have (explicitly or impli-
citly) interest as well. These choices require coordination and computing the optimal
combination of choices in an NP-hard problem [40].

In the context of multi-drone tasking, the goal is to assign tasks to multiple drones
in a way that maximizes mission benefits, e.g., successful task completion, while min-
imizing associated costs, including travel distance, waiting time, and energy consump-
tion [38]. Since these decisions are discrete and affect each other, the number of possible
combinations increases rapidly, making the problem harder to solve, especially as the
number of drones and tasks increases. This complexity highlights the need for effi-
cient coordination strategies that can yield feasible and near-optimal solutions under
real-world constraints [3].

The constraints on multi-drone task allocation typically include limited battery
life, strict time windows for completing tasks, fly-restricted areas, collision avoidance
requirements, and payload capacity restrictions [38]. These constraints are hard and
must be strictly satisfied at all times to ensure the drones can complete their mis-
sions safely, efficiently, and without failure. To address these challenges, previous work
often models the problem as a mixed-integer programming or mixed-integer linear pro-
gramming problem [37, 41]. These formulations allow the representation of discrete
decisions (such as task allocations and routing choices) alongside continuous variables
(such as timing and energy consumption), enabling the enforcement of strict feasib-
ility conditions through linear constraints. Solvers are then used to find optimal or
near-optimal solutions that strictly satisfy all hard constraints. Specifically, earlier
research [11, 42, 43] studies the impact of environmental obstacles and limited bat-

15

2.2 Distributed Combinatorial Optimization

tery capacity on drone collaboration, presenting obstacle-aware and energy-efficient
coordination models that aim to reduce mission completion time and improve task suc-
cess rates. Theile et al. [44, 45] study the drone coverage path planning that accounts
for varying power constraints, obstacle avoidance and no-fly zones.

Earlier research has employed exact algorithms to find globally optimal solutions
for drone task allocation problems while satisfying hard and even critical operational
constraints. Mailler et al. [46] introduce a constraint-based agent clustering approach,
where a central controller uses a branch-and-bound strategy to search for feasible al-
locations. Thi et al. [41] enhance scalability and robustness by combining the cross-
entropy method with a branch-and-bound algorithm to optimize drone-to-task alloca-
tions. Building on these efforts, recent studies have leveraged advanced optimization
solvers that integrate multiple exact algorithms to handle nonlinear and large-scale
problem instances more efficiently. For example, Pei et al. [6] propose a branch-and-
cut algorithm for autonomous aerial urban delivery and implemented it using the Gur-
obi optimizer1. Song et al. [47] address the scheduling of drones with job splitting
by formulating a mixed-integer programming model solved with CPLEX2, significantly
reducing computational complexity. Despite their accuracy, these centralized methods
face critical limitations, including vulnerability to single-point failures, computational
bottlenecks, and privacy risks when handling sensitive data such as location or health
information. More importantly, their scalability is constrained, with time complexity
growing rapidly as the number of drones and tasks increases.

2.2 Distributed Combinatorial Optimization

Distributed combinatorial optimization provides a framework for multiple agents or
drones to make autonomous decisions while coordinating tasks efficiently across the
system. By eliminating reliance on a centralized controller, distributed combinatorial
optimization enables faster, more scalable responses to dynamic environments. This
is particularly valuable in multi-drone task allocation problems, where drones must
allocate and execute tasks collaboratively while adapting to real-time constraints and
mission objectives. The rest of this section concludes common approaches to solve
distributed combinatorial optimization problems:

1Available at: https://www.gurobi.com/
2Available at: https://www.ibm.com/products/ilog-cplex-optimization-studio

16

2.2 Distributed Combinatorial Optimization

2.2.1 Distributed task allocation algorithms

Distributed task allocation algorithms mainly focus on market-based procedures, i.e.,
contract network algorithms and auction algorithms, including robust decentralized
task assignment and auction-based task assignment [48, 49]. These algorithms provide
a communication and negotiation mechanism through which agents or drones exchange
information and coordinate task allocations based on well-defined consensus or bidding
rules [50].

A notable example is the Consensus-Based Bundle Algorithm (CBBA), proposed
by [51], which operates in two phases: a task inclusion phase where each drone greedily
selects tasks to form a bundle, and a consensus phase, where conflicts among agents
are resolved to ensure a consistent global allocation. Building on this framework, Fu
et al. [52] extend CBBA by allowing drones with overlapping idle periods to negotiate
and insert new tasks without disrupting previously assigned ones, thereby reducing
overall path lengths. Wang et al. [53] further enhance CBBA with a two-tier bidding
mechanism to maximize the number of tasks performed and minimize task execution
time. More recently, Zhao et al. [54] propose the performance impact algorithm as an
extension of CBBA by considering both the assignment cost of a task and its impact on
the efficiency of already-allocated tasks. Qamar et al. [55] introduce the compromised
dynamic performance impact algorithm to maximize task allocations and improve task
prioritization in dynamic search-and-rescue scenarios. However, these approaches face
challenges of high communication overhead and slow convergence, thus limiting their
effectiveness in real-time scenarios.

2.2.2 Bio-inspired algorithms

Bio-inspired algorithms draw inspiration from the biological evolution and collective
behaviors observed in nature [7]. In these approaches, a population of candidate solu-
tions evolves or collaborates by sharing information to iteratively improve solution
quality. Distributed variants of traditional bio-inspired algorithms, such as genetic
algorithm [56], particle swarm optimization algorithm [57], ant colony optimization
algorithm [58], have been widely adopted for distributed multi-agent coordination.

For instance, Wu et al. [59] propose a hybrid task allocation method that integ-
rates a distributed genetic algorithm with an extended CBBA for time-critical tasks in
dynamic disaster relief scenarios. Cao et al. [60] addressed dynamic battlefield task al-

17

2.2 Distributed Combinatorial Optimization

location with a mixed allocation method that divides the problem into group-level and
member-level allocations, using enhanced particle swarm optimization and a distrib-
uted auction algorithm to reduce both time and communication complexity. Tang et
al. [61] present a cooperative task reallocation algorithm for drones by combining fuzzy
C-means clustering with ant colony optimization to maximize task completion rate and
minimize flight distance. While these algorithms provide high flexibility and perform-
ance in complex scenarios, they often demand significant computational resources.

2.2.3 Other distributed heuristics

Other earlier work introduces the concept of collective learning, where participating
agents autonomously select their local options, shaping their patterns of resource con-
sumption and production. In this framework, learning is fully decentralized and emerges
through the coordinated, remote interactions among agents. These interactions orches-
trate collective decision-making over a communication network that is self-organized
into a multi-level structure, typically forming a tree topology [17, 62].

In this highly challenging scope and problem setting, there is very limited work,
mainly the COHDA [63] and EPOS [64, 65], that address a large spectrum of NP-
hard combinatorial problems in the domains of Smart Grids and Smart Cities [64–67].
COHDA generalizes well in different communication structures among the agents that
have full view of the systems, while EPOS focuses on hierarchical acyclic graphs such
as self-organized trees to perform a cost-effective decision-making and aggregation of
choices. As COHDA shares full information between agents, it has higher communic-
ation cost. The computational cost is lower at global level for COHDA compared to
EPOS because of the agents’ brute force search to aggregate choices. Both COHDA
and EPOS focus on satisfying soft constraints, like minimizing cost functions that sat-
isfy balancing (minimum variance and standard deviation) or matching (minimum root
mean square error, residual sum of squares) objectives [65].

Furthermore, a recent study by Pournaras et al. [18] introduces the Iterative Eco-
nomic Planning and Optimization Selections (I-EPOS), a decentralized coordination
framework in which agents exchange information over a tree-structured communica-
tion topology. Each agent communicates only with its immediate parent and children,
significantly reducing communication overhead compared to COHDA (full information
exchange among agents) and lowering computational costs relative to the original EPOS

18

2.3 Learning-based Dynamic Task Allocation

(brute-force search over all local options) [18]. Follow-up research has demonstrated
that I-EPOS is resilient by avoiding single points of failure and preserves agent pri-
vacy [68, 69], making it a practical solution for a wide range of real-world applications,
including load balance of smart grids [65], electric vehicle charging [70], and house ap-
pliances electricity scheduling [71]. However, satisfying global hard constraints for these
approaches is challenging as agents need to additionally coordinate for choices, whose
potential violations are only confirmed at an aggregate level, which makes any rollback
of choices to avoid violations particularly complex. In addition, these approaches are
designed with fixed assumptions and limited foresight, making them suitable only for
narrowly defined, short-duration tasks.

2.3 Learning-based Dynamic Task Allocation

Effective coordination among drones in dynamic environments requires the integration
of real-time path planning and task allocation. To operate autonomously under uncer-
tainty and evolving constraints, each drone must make local, distributed decisions that
consider both immediate and future consequences. This calls for sequential decision-
making that optimizes long-term cumulative rewards, a capability that traditional dis-
tributed combinatorial optimization algorithms often lack. While such algorithms excel
at generating static or myopic solutions, they are generally not designed to learn or ad-
apt over time based on environmental feedback.

2.3.1 Multi-agent reinforcement learning

To address these limitations, multi-agent reinforcement learning (MARL) offers a prin-
cipled framework for enabling drones to make intelligent decisions through trial-and-
error interaction with their environment [72, 73]. In MARL, each drone (agent) learns
a policy, a mapping from observed states to actions, that aims to maximize cumu-
lative reward over time. This process is grounded in the Bellman equation, which
recursively defines the value function as the expected return from a given state, guid-
ing agents toward optimal behaviors [72]. To improve performance, MARL methods
balance exploration (trying new actions to discover better strategies) and exploitation
(leveraging known actions with high reward). Depending on the learning objective,
approaches may involve value-based methods (e.g., Q-learning), policy search meth-

19

2.3 Learning-based Dynamic Task Allocation

ods (e.g., policy gradients), or combinations of both. Advanced algorithms such as
actor-critic networks [74], deep deterministic policy gradient [75] and proximal policy
optimization [76] have been successfully applied in continuous and dynamic multi-agent
domains, allowing agents to learn in high-dimensional, partially observable environ-
ments with real-time adaptation capabilities.

These MARL methods are well-suited for drone coordination tasks where agents
must make distributed decisions that account for long-term performance under chan-
ging conditions [8]. Dai et al. [77] explore multi-drone task allocation for exploration
and destruction missions using three approaches: auction-based, vacancy chain, and
deep Q-learning, aiming to minimize travel costs and improve task distribution. Liu et
al. [78] introduce a multi-agent deep deterministic policy gradient algorithm for multi-
drone task allocation, which adeptly adjusts to varying operation scales by distinguish-
ing between local and global network inputs, effectively managing the complexities of
changing drone cluster sizes.

2.3.2 Scalability challenges

Applying MARL to large-scale multi-drone systems requires overcoming the curse of
dimensionality. In such settings, a large number of drones operate across wide areas,
interacting and learning concurrently, which significantly increases the communication
burden. In addition, when missions span long durations, drones must learn extended
sequences of operations. These factors lead to an exponential growth in the joint
state-action space, resulting in high computational and communication overheads, and
reducing exploration efficiency.

To address this challenge, many studies adopt the centralized training with decent-
ralized execution framework. It strikes a balance between two extremes: centralized
training, where each agent can access to the true state of the environment and in-
formation of other agents via simulation, and decentralized execution, where agents
chooses an action in accordance with locally partial information, helping to mitigate
dimensionality [73]. In centralized training with decentralized execution, agents can
share auxiliary information during training but act independently during execution,
preserving decentralization.

Recent research also combines MARL with transfer learning [79], mean-field meth-
ods [80], and curriculum learning [81] to improve learning efficiency in multi-drone

20

2.3 Learning-based Dynamic Task Allocation

coordination. Transfer learning helps drones adapt faster by reusing knowledge from
related tasks, as demonstrated by Venturini et al.[82], who reduce policy learning noise
by filtering out irrelevant task knowledge. Mean-field method transforms the complex
interaction within the population of agents into the simplified interaction between a
single agent and the average effect from the overall population. This is validated by
Chen et al.[83], who model energy-efficient coverage as a mean-field game and intro-
duce a trust region optimization technique that balances communication efficiency with
fairness and connectivity among drones. Xiao et al. [84] apply curriculum learning by
breaking down a complex collaborative target-search task with sparse reward into se-
quential subtasks, including obstacle avoidance, exploration, and team coordination,
and train agents in stages to gradually build up capabilities.

Another popular solution is Hierarchical Reinforcement Learning (HRL) [85], which
is an important computational method aiming at large-scale problems. It structures
decision-making into high- and low-level tasks, enabling agents to learn complex be-
haviors more efficiently by decomposing the problem. Unlike fixed abstractions, HRL
dynamically learns these hierarchies, allowing for greater flexibility in responding to
dynamic environments and achieving long-term goals [85]. In multi-agent systems,
multiple HRL agents learn to coordinate their primitive action policies by optimizing
a joint task objective and, occasionally, by sharing common information about their
states and actions [85].

Existing work mainly train high-level and low-level policies simultaneously. Jendoubi
et al. [86] leverage a high-level policy to plan the complex energy scheduling while us-
ing a low-level policy to handle the execution of specific actions associated with those
plans, and both policies were updated based on the rewards received from the en-
vironment. Xu et al. [87] employ a dual coordination mechanism that facilitates the
simultaneous learning of inter-level and inter-agent policies, addressing the instability
arising from concurrent policy optimization. To facilitate exploration and hierarchical
skill acquisition, an approach known as Hypothesis Proposal and Evaluation is created
by Chuck et al. [88] and implemented in the software. The sample efficiency of this
approach is derived from implicit presumptions of behavior in both the actual world
and simulation environments. Wang et al. [89] pre-train low-level policy to ensure that
a low-level policy learns effective primitive actions under macro action guidance. In the
areas of multi-drone tasking, Liu et al. [90] combine a hierarchical framework with a

21

2.4 Multi-drone Intelligent Transportation Systems

DJI Phantom DJI Mavic DJI FlyCart

Figure 2.2: Photos of DJI UAVs (rotary).

model-free RL algorithm named Data-regularized Q [91], to improve the performance
of drones in long-term autonomous navigation and obstacle avoidance. Nevertheless,
training low-level policies in HRL is inherently non-stationary, as it depends heavily on
the evolving outputs of high-level policies. Moreover, centralized training approaches
often require access to sensitive agent-specific information, such as internal states and
individual preferences, which may not always be desirable in decentralized systems.

2.4 Multi-drone Intelligent Transportation Systems

The modern transportation systems have integrated intelligent technologies and autonom-
ous robotics to address the growing complexity of urban mobility, aiming to significantly
enhance both the efficiency and safety of modern transportation systems [2]. Among
the many autonomous platforms contributing to this transformation, drones play a
pivotal role by elevating automation in two key ways: as aerial observers that offer a
real-time “eye in the sky” to support road traffic operations, and as autonomous agents
that carry out logistics or monitoring tasks independently [1, 92]. These capabilities po-
sition drone swarms revolutionize how transportation services are designed, delivered,
and managed.

To support such applications, drone hardware choices and energy modeling are
critical research concerns. This thesis mainly consider the multi-rotor drones, which
utilize multiple rotors and propellers to generate the thrust required for vertical lift-
off. These rotors produce upward forces that allow the drone to ascend, hover, and
maintain stable flight. Unlike fixed-wing aircraft, multi-rotor drones are capable of
vertical takeoff and landing and can hover in place with precision. These characterist-
ics make them particularly well-suited for tasks that require stationary positioning or

22

2.4 Multi-drone Intelligent Transportation Systems

low-speed maneuverability, such as data collection and deliver parcels in urban envir-
onments. Lightweight commercial drones such as the DJI Phantom1 and DJI Mavic2

series are widely used for aerial video capture due to their affordability, portability,
and high-resolution imaging. Meanwhile, larger platforms such as DJI FlyCart3 enable
heavy-payload logistics, making them suitable for long-range parcel delivery in a single
flight (see Fig. 2.2).

A key engineering challenge in both of these cases is accurately estimating power
consumption, which depends on physical factors including drone weight, airspeed, pro-
peller number and length, and powertrain efficiency [34, 93, 94]. Understanding these
characteristics is essential for mission planning, energy-aware coordination, and safe
operation in real-world scenarios. Considering the flexibility of operations required
in urban transportation scenarios, this thesis mainly considers the rotary-wing drones
rather than fixed-wings [95].

Building upon the foundational hardware and energy considerations, recent research
focuses on task allocation algorithms that enable drone swarms to perform complex
transport missions efficiently. This section conducts literature reviews that focus on
urban sensing (e.g., traffic monitoring) and drone logistics (e.g., last-mile delivery).

2.4.1 Urban sensing and traffic monitoring

Nowadays, swarms of drones emerge in Smart Cites for spatio-temporal urban sens-
ing [96–98]. Drones equipped with advanced sensors such as LiDAR and high-resolution
cameras can form drone-assisted single-hop vehicular networks that generate and pro-
cess time-sensitive data streams. For instance, swarms can capture images/videos of
traffic-related information on public roadways; measure air temperature and humidity
to support sustainable crop production; transmit real-time reports of natural disasters
such as fire and car accidents; or accurately deliver goods in densely populated areas.

Beyond conventional performance metrics, e.g., throughput and latency, Samir et
al. [101] introduce the concept of Age of Information and jointly optimize drone tra-
jectories and scheduling policies to maintain timely data. Similarly, Zhou et al. [102]
address joint route planning and task allocation in fixed-wing drone-aided mobile crowd
sensing, emphasizing energy efficiency as a primary constraint. To overcome the inher-

1https://www.dji.com/uk/products/phantom
2https://store.dji.com/uk/shop/mavic-series
3http://dji.com/uk/flycart-30

23

2.4 Multi-drone Intelligent Transportation Systems

(a) Aerial- and ground-based mobile crowd
sensing [99].

(b) Drone-based parking occu-
pancy detection [100].

(c) Vehicle observation in drone-based traffic monitoring [4].

Figure 2.3: Scenarios of multi-drone urban sensing in related work.

ent limitations of both human mobility and drone endurance, Ding et al. [99] propose a
hybrid sensing framework that integrates ground-based mobile crowd sensing (e.g., hu-
mans with mobile devices) with aerial drone sensing (see Fig. 2.3(a)). Zhao et al. [100]
introduce DroneSense, a smart scheduling algorithm that minimizes the number of
sensing tasks by selecting key points of interest for drones to visit and inferring the
state of unvisited locations, such as parking occupancy, while meeting overall sensing
quality requirements (see Fig. 2.3(b)).

Among these urban sensing applications, traffic monitoring remains one of the most
critical. Drone-based traffic sensing enables real-time vehicle detection, counting, track-
ing, speed estimation, and accident or congestion detection [103]. With their large field
of view, rapid mobility, and ease of deployment, drones offer significant advantages
over traditional static infrastructure in collecting traffic data, which further improves
road safety and reduce operational costs [104]. For example, drones can be used for an
accurate monitoring of traffic to detect traffic congestion at early stage. This allows

24

2.4 Multi-drone Intelligent Transportation Systems

traffic operators to apply mitigation actions that decrease the carbon footprint of a sec-
tor with one of the highest carbon emissions worldwide [4, 98]. Barmpounakis et al. [4]
utilize a swarm of 10 drones to monitor traffic flows over several days in Athens’ central
business district, generating a rich dataset for analyzing complex urban traffic patterns
(see Fig. 2.3(c)). Follow-up studies using this dataset have explored diverse phenomena,
including the stopping behaviors of freight vehicles [105] and the relationship between
lane-changing and lane choice [106].

Task allocation and path planning further enhance traffic data collection. For ex-
ample, Elloumi et al. [107] propose an adaptive drone-based system that adjusts drone
trajectories based on real-time vehicle information. While effective in improving data
acquisition, this method overlooks energy constraints and dynamic task requirements.
Accurate vehicle observation is also essential for early detection of traffic congestion,
enabling proactive interventions to reduce carbon emissions in one of the most polluting
sectors. For instance, Bakirci et al. [108] apply the YOLOv8 algorithm to aerial images
captured by custom drones, achieving high accuracy in vehicle detection. However,
many of these studies face limitations in scalability, addressing only a small number
of drones over short durations. Moreover, most lack validation on moving from simu-
lation to outdoor live deployment, raising concerns about real-world applicability and
robustness under practical deployment conditions.

2.4.2 Drone logistics and last-mile delivery

In the current landscape of logistics and supply chain management, profound techno-
logical advancements are notably marked by the distinguished use of drones [109]. In
the past decade, pioneering companies such as Amazon, Domino’s and Meituan have
emerged as trailblazers in the practical application of drones for product delivery. For
instance, the COVID-19 pandemic has highlighted the vulnerabilities of traditional
delivery methods, as deliverymen risk spreading the virus. This was particularly prob-
lematic in quarantine zones, where customers faced difficulties in accessing logistics
services [110, 111]. In contrast, drones offer a safer and more flexible alternative. Due
to their high mobility, carrying capacity, and accurate GPS navigation, drones are able
to deliver parcels directly to small places such as doorways and balconies, avoiding
undesirable human contact. Furthermore, drones help alleviate the workload of ground
vehicles, such as vans and trucks, thereby reducing road congestion. This shift from

25

2.4 Multi-drone Intelligent Transportation Systems

(a) Example of two drones flying
three different routes [113].

(b) The drone package pickup and delivery mode and system [114].

(a) Carried vehicle supporting drone delivery problem (b) Simultaneous delivery problem of trucks and drones

(c) Schematic diagrams of truck-drone logistics distribution problems: [30].

Figure 2.4: Scenarios of multi-drone last-mile delivery in related work.

ground-based to aerial operations contributes to lower fuel consumption and emissions,
supporting broader efforts toward achieving net zero targets [112].

Task allocation is vital to enhance the efficiency of drone swarms in completing de-
livery [113]. In coordinated delivery, effective task allocation guides swarms of drones to
reach customers in the shortest possible time or distance. Prior works model this rout-
ing problem, which is essentially a variant of the traveling salesman problem and vehicle
routing problem, as a mixed-integer programming problem and uses various heuristic
algorithms to solve the complex combinatorial optimization [13]. The manually crafted
heuristics approaches such as genetic algorithms, simulated annealing, and ant colony
optimization have been widely applied [114–117], but can be time-consuming due to
high searching space in environments. For example, when hundreds of customers need
to be served by multiple drones, the number of possible delivery task allocations can

26

2.4 Multi-drone Intelligent Transportation Systems

Table 2.1: Overall comparison in literature review.

Criteria Ref.: [41, 46, 47] [51–55] [59–61] [63–65] [99–102, 118, 119] [86–90]

Approaches Exact algorithms CBBA Bio-inspired Collective learning MARL HRL
Scalability ✗ ✓ ✓ ✓ ✗ ✓

Adaptability ✗ ✗ ✗ ✗ ✓ ✓

Decentralization ✗ ✓ ✓ ✓ ✗ ✗

Energy-awareness ✗ ✗ ✗ ✗ ✗ ✗

Hard constraints ✓ ✗ ✗ ✗ ✗ ✗

Prototyping ✗ ✗ ✗ ✗ ✗ ✗

grow exponentially, resulting in millions of combinations. This significantly increases
the computational complexity of finding an optimal allocation.

More recently, reinforcement learning has emerged as an effective approach for solv-
ing last-mile delivery problems by learning optimal routing strategies without relying
on manually crafted heuristics [118]. Tarhan et al.[119] extend reinforcement learning
to multi-agent delivery scenarios and address scalability issues by employing state de-
composition to reduce problem complexity, curriculum learning to guide exploration,
and genetic algorithms to efficiently search the combinatorial space for drone-parcel
assignments. Wu et al.[30] apply reinforcement learning combined with deep neural
networks to jointly optimize the routes of drones and trucks. In this hybrid model,
trucks act as mobile depots, transporting drones over long distances and deploying
them for final deliveries, thus overcoming limitations in flight range and payload capa-
city of drones [120–122] (see Fig. 2.4(c)). However, these methods primarily focus on
minimizing drone delivery time, without accounting for energy consumption. This is
a critical limitation, as minimizing delivery time does not necessarily minimize energy
use, especially given that drone power consumption is strongly influenced by payload
weight [34]. In addition, existing methods often overlook delivery delays since a limited
number of drones cannot serve many customers within a short time span. Strategically
prioritizing a customer request with high delay is crucial in time-sensitive scenarios,
such as medical supplies delivery during a pandemic [110, 123]. The gap between
complex simulation and outdoor experimentation is still a critical concern.

27

2.5 Conclusions

2.5 Conclusions

In conclusion, this chapter presents the research background of multi-drone task alloca-
tion problems under various hard constraints, along with a review of solution approaches
including exact algorithms, collective learning, reinforcement learning, and others, see
Table. 2.1. These methods are examined in the context of key application domains
such as urban sensing and logistics. The literature review highlights several important
research gaps: First, there is a complementary gap between collective learning, which
offers privacy preservation and efficiency for short-term task allocation, and multi-
agent reinforcement learning, which enables long-term adaptability but struggles to
scale to large problem instances and privacy issues. Second, energy-awareness remains
underexplored, limiting the ability to accurately evaluate task performance and oper-
ational feasibility under real-world conditions. Third, a persistent gap exists between
simulation-based validation and outdoor deployment, as many studies rely on over-
simplified settings and lack testbed prototyping, hindering practical application of co-
ordination strategies. Based on these findings, which align with the research questions
defined in Chapter 1, the rest chapters of this thesis addresses these limitations and
explore the proposed solutions in greater depth.

28

Chapter 3

Static vs. Evolving Multi-Agent Coordination

This chapter1 introduces PMAC, the Planning-based Multi-Agent Coordination model.
The PMAC is a generic and highly-efficient system model that can be used to solve the
multi-objective combinatorial optimization problem, particularly those classified as NP-
hard. The problem presents significant challenges in designing efficient algorithms for
real-world applications of multi-drone task allocation [40, 124]. When agents have a set
of self-determined options (or possible plans) to choose from, they dynamically adjust
their decision alternatives in a distributed manner and optimize collective outcomes
based on their behaviors for these plans. Each planned operation represents a sequence
of tasks scheduled over a specific time period for execution. This planning-based model
is particularly powerful because each plan encapsulates a full operation cycle, allowing
agents/drones to reason at a higher level of abstraction. First, by having a complete
overview of a potential trip, each drone can accurately estimate its energy consumption
in advance, enabling more reliable and energy-aware decision-making. Second, since
each discrete plan represents an extended operation, often lasting over 30 minutes,
drones avoid making decisions at every minute or second. This significantly reduces
the complexity of the decision space and allows the system to scale efficiently, even in
large and dynamic environments.

However, in real-world scenarios, systems are constantly evolving, requiring agents
to develop strategic foresight to achieve long-term optimization. Traditional algorithms
(exact, heuristic and metaheuristic) for solving the combinatorial optimization problem
are effective for immediate decision-making in the static environments, but often fail
to account for future uncertainties and changing conditions [63, 125, 126]. To address

1This chapter is based on a published paper [40] and a paper on submission [16].

29

this limitation, the problem should be transformed into sequential decision-making
problems, where agents may trade off short-term performance to maximize long-term
benefits. Reinforcement learning has emerged as a powerful framework for modeling
combinatorial optimization through dynamic programming [19, 127, 128]. By lever-
aging the Bellman equation, RL allows agents to evaluate the future impact of their
current actions, guiding them toward high-quality approximate solutions (i.e., collective
decisions) to NP-hard problems.

Furthermore, applying reinforcement learning techniques such as multi-agent re-
inforcement learning (MARL) to multi-objective combinatorial optimization problems
remains open and pressing challenges: (1) As systems scale to multiple agents, the joint
state-action space expands exponentially, making the training computationally expens-
ive [129]. As a result, training requires more episodes and computational resources to
explore and learn optimal policies; (2) The significant communication overhead forces
agents to rely on partial observations and learn local parameter values, often prior-
itizing individual gains over system-wide efficiency [130]; (3) The centralized training
paradigm in MARL requires access to all system-wide data, which may include per-
sonal and sensitive information, raising privacy concerns [131]. These long-standing
challenges of scalability, efficiency, and decentralization highlight the limitations of
MARL, while aligning with the core strengths of conventional algorithms to address
the multi-objective combinatorial optimization problems, such as collective learning.

To address these challenges, the PMAC model firstly classifies static and evolving
systems, and then introduces two combinatorial optimization approaches: the Optim-
ized Plan Selection (OPS) method and the Hierarchical multi-Agent Learning-based
Optimized Planning (HALOP) method:

Optimized Plan Selection. OPS targets at static environment by employing multi-
agent collective learning. It offers a promising solution to coordinate agents to autonom-
ously select a plan for task execution within a time period while preserving agents’
privacy and autonomy [18, 39, 68]. To overcome the drawbacks of collective learning
that address soft constraints only, a hard constraint satisfaction model is proposed.
In addition, to satisfy the extremely strict (critical) constraints, OPS is flexible to
choose another method for plan selection, such as exact algorithms (e.g., Branch-and-
bound) [6].

Hierarchical Learning-based Optimized Planning. HALOP presents a hier-

30

3.1 Problem Description

archical framework that integrates MARL and OPS across two layers, leveraging the
strengths of both approaches. At the high-level layer, agents use MARL to learn stra-
tegic decision-making, such as selecting groups of plans and determining preferences
or behaviors for plan selection. The specific plan selection is then delegated to OPS
in the low-level layer. Based on the outcomes of this plan selection process, HALOP
evaluates the long-term consequences of agents’ collective actions through cumulative
rewards, which are used to further update agents’ high-level policies.

This chapter is organized as follows: Section 3.1 defines and formulates the multi-
objective combinatorial optimization problem based on the task plans. Section 3.2 in-
troduces the designed PMAC to address the problem. Section 3.3 and Section 3.4 illus-
trate the proposed approaches of OPS and HALOP in PMAC respectively. Section 3.5
experimentally evaluates the proposed approaches in a synthetic scenario. Section 3.6
compares the proposed approaches with related work. Section 3.7 discusses the new
insights from the experimental results. Section 3.8 illustrates how the PMAC model
apply to real-scenarios of multi-drone task allocation. Finally, Section 3.9 concludes
this chapter.

3.1 Problem Description

The core problem is how to coordinate multiple agents to select their operations (i.e.,
decision-making) among alternatives (i.e., possible operational plans) such that they
complete system-wide tasks efficiently over a long time span (e.g., an full-day mission).

Assume a set of software agents U ≜ {1, 2, ..., U}, i.e. a personal digital assistant.
These agents perform complex tasks in a large-scale spatial model over a long time,
which is denoted as T ≜ {1, 2, ..., T}. Each agent u has a number of K options to
choose from at time t, ∀u ∈ U, ∀t ∈ T. Each option k is referred to as a possible plan,
which is a sequence of real values (i.e., a vector) formulated as follows:

pu
kt = (pu

ktd)D
d=1 ∈ P u

t = (pu
kt)K

k=1, (3.1)

where d denotes the position index of a value inside a plan with the size of D.
Each agent selects one and only one plan, and thus the selected plan (i.e. the agent’s

choice) is defined as pu
kt ·xu

kt, where xu
kt denotes the binary variable which takes 1 if the

agent u selects the plan with index of k at time t, and 0 otherwise. All agents’ choices
aggregate element-wise to the collective choice, i.e., the global plan gt of the multi-agent

31

3.1 Problem Description

Table 3.1: Mathematical notations used in Chapter 3.

Notation Explanation

u, U,U Index of an agent/drone; total number of agents; set of agents
k, K, s Index of a possible plan; total number of plans; index of selected plan
d, D Position index of a value inside a plan; the plan size
pu

k , P u The plan of agent u with index of k; the set of generated plans of u;
τ, g, Cu The target of the system; the global plan; the environmental constraints on u

D, fD Discomfort cost of the plan pu
k ; inefficiency cost function

fP, fI Plan generation function; inefficiency cost function
β The parameters to make trade-offs between discomfort and inefficiency costs
l, L Index of iterations in collective learning; total number of iterations
c, tc Index of a child of the agent; the branch response of child c

δc Decision regarding whether the agent’s child c should change its selected plan
UP,LP Upper and lower bounds of the aggregated choices
UD,LD Upper and lower bounds of the total discomfort cost of agents’ choices
t, T,T Index of a time period; total number of periods; set of periods
S, A, R Set of local states; actions; the reward function
σ1, σ2 Parameters to normalize discomfort and inefficiency cost in reward function
π, θπ The actor network, i.e., the policy function; the parameter of the actor network
Q, θQ The critic network, i.e., the value function; the parameter of the critic network
h, H Index of a sample in MARL buffer; total number of samples in a mini-batch from buffer
γ,E The discount factor in MARL loss function; Number of episodes
i, I, Gi Index of a constraint of plans; total number of constraints; total number of plans in

constraint i

W, Cdnn Number of nodes per layer in neutral network; computational complexity of deep neut-
ral networks

system, which is formulated as follows:

gt = (gtd)D
d=1 =

U∑
u=1

pkt · xu
kt. (3.2)

The plan of the agent u can be generated based on the current environment observed
by u, formulated as follows:

pu
kt = fP(τt, Cu

t), (3.3)

where τt indicates the target tasks required for agents to complete, e.g., the required
amount of data collected by drones; Cu

t denotes the environmental constraints on agent
u, e.g., the flight range of drones. In each time period, the environment evolves such
that the target tasks updates.

32

3.1 Problem Description

Agents’ choices are made based on different, often opposing criterion. Each agent
has its individual cost over the possible plans, measured by the discomfort cost function
fD(·): It indicates the discomfort cost Du

kt incurred by an agent executing a specific
plan pu

kt. It can be formulated as below:

fD(pu
kt, xu

kt) =
∑U

u=1
∑K

k=1 Du
kt · xu

kt

U
. (3.4)

Each agent can make independent choices to minimize their own discomfort cost. How-
ever, agents may also have interest to satisfy the general-purpose criterion: the ineffi-
ciency cost, which is formulated by the inefficiency cost function fI(·): Balancing (e.g.
min variance) and matching objectives (e.g. min residual of sum squares) are examples
for measuring inefficiency cost with a broad applicability in load-balancing application
scenarios of drones, e.g., rerouting vehicles to avoid traffic jams. Since this cost function
is non-linear, meaning the choices of the agents depend on each other, minimizing the
inefficiency cost is a NP-hard combinatorial optimization problem [18].

To satisfying all of these (opposing) objectives, the problem is modeled as a mixed-
integer programming problem, formulated as follows:

min
xu

kt

T∑
t=1

fD(pu
kt, xu

kt). (3.5)

min
xu

kt

T∑
t=1

fI(pu
kt, xu

kt). (3.6)

Subject to
K∑

k=1
xu

kt = 1,∀u ∈ U,∀t ∈ T. (3.7)

LP ≤
U∑

u=1

K∑
k=1

pu
kt · xu

kt ≤ UP, ∀t ∈ T. (3.8)

LD ≤
U∑

u=1

K∑
k=1

Du
kt · xu

kt ≤ UD,∀t ∈ T. (3.9)

The objective function (3.5) aims to minimize the mean discomfort cost, which denotes
the time-accumulated average discomfort cost of selected plans per agent over all time
periods. The objective function (3.6) aims to minimize the inefficiency cost of the
system. Constraint (3.7) ensures that each agent must select exactly one plan from its
generated options. Constraint (3.8) restricts the upper bound UP and lower bound LP

of the aggregated choices of agents, i.e., the global plan. Constraint (3.9) restricts the
upper bound UD and lower bound LD of the total discomfort cost of these choices.

33

3.2 Framework Overview

Multi-drone Task Allocation

Hierarchical multi-agent

learning-based optimized

planning

High-level Strategy

Low-level Plan Selection

Grouping plan constraints

Collective learning

Hard constraint satisfaction

Exact algorithms

Optimized plan

selection

Plan Generation

Plan Selection

Observation

Observation

E
n
v
ir

o
n
m

en
t

ExecutionExecution

Sensing Tasks Delivery Tasks

Collective learning

Hard constraint satisfaction

Exact algorithms

Reinforcement learning
(Static)

(Evolving)

Low-level Plan

Generation

Grouping behavior ranges

Figure 3.1: Framework overview of the designed PMAC model.

3.2 Framework Overview

To address the multi-objective combinatorial optimization problem, the Planning-based
Multi-Agent Coordination (PMAC) model is proposed, as shown in Fig. 3.1. PMAC is
a generic system model that contains two approaches: Optimized Plan Selection (OPS)
approach and Hierarchical multi-Agent Learning-based Optimized Planning (HALOP)
approach.

The OPS approach coordinates agents efficiently for task allocation in a distributed
way within a given time window, i.e., the static environments. Each agent autonom-
ously observes target tasks in the environment, generates plans, and make cooperative
decisions through decision-making and choice aggregation. Once the plan is chosen, the
agent will execute it and update the current environment. To assist agents select its
optimized plan, this approach leverages collective learning for distributed optimization
in a large-scale system. Moreover, a hard constraint satisfaction model is used to set
strict constraints on collective learning. It also can choose the exact algorithms for

34

3.3 Optimized Plan Selection

global optimality under the critically hard constraints.
The HALOP approach, which is the core contribution of PMAC, extends the OPS

approach to long-term optimization in the evolving systems. It leverages multi-agent re-
inforcement learning (MARL) to provide agents with strategic foresight in dynamic and
evolving environments. It enables agents to evaluate cumulative rewards and anticipate
the future consequences of their current actions, enhancing overall system efficiency and
adaptability. Nevertheless, applying MARL to the problem introduces significant dis-
tributed coordination challenges: Explore a wide range of options and adjust decisions
to effectively find an optimized one in the changing conditions, which increases the com-
plexity of decision-making, leading to an expansive action and state space that makes
training inefficient. Accordingly, the proposed model employs a hierarchical framework
that leverages MARL to determine high-level strategies while offloading much of task
selection burden to collective learning. Two types of high-level strategies are proposed,
i.e., grouping plan constraints to reduce action space, and grouping behavior ranges to
enhance Pareto optimality.

To apply the proposed approaches to the real scenarios of drones, PMAC defines
the operations of multi-drone task allocation. It builds the environment where a swarm
of intelligent and interactive drones perform various tasks, such as urban sensing data
collection and last-mile delivery. The model will adopt an appropriate approach and
an algorithm according to the specific conditions in these scenarios.

3.3 Optimized Plan Selection

This section introduces the key algorithm applied in the optimized plan selection (OPS)
approach, i.e., a multi-agent collective learning algorithm as well as a hard constraint
satisfaction model applied to the implementation of collective learning. In addition,
the exact algorithms are considered as an option of plan selection in OPS for critical
constraints.

3.3.1 Multi-agent collective learning

The OPS is implemented and integrated into multi-agent collective learning algorithm,
named the Iterative Economic Planning and Optimized Selections (I-EPOS)1 [18]. The

1Available at: https://github.com/epournaras/EPOS.

35

3.3 Optimized Plan Selection

Algorithm 1: Optimized Plan Selection.
1 Input: Agent u, target τt, algorithm type
2 Output: Selected plan pu

kt where xu
kt = 1

3 Generate plans (pu
kt)K

k=1 via Eq.(3.3)
4 if Algorithm type is collective learning then
5 for iteration := 1 to max-iteration-number do
6 Aggregate the plans of children and determine the decision δu

7 Select a plan pu
kt via Eq.(3.10)

8 Share the aggregated plans and selected plan to parent
9 Wait for the decision and the global plan gt from parent

10 Send δu and gt to children
11 end
12 end
13 if Algorithm type is exact algorithms then
14 Send the (pu

kt)K
k=1 to a third optimizer

15 Wait for the selected plan pu
kt from the optimizer

16 end

algorithm is selected because of its remarkable scalability (support a large number of
agents), efficiency (low communication and computational cost) and resilience [18, 39].
The collective learning solves a large class of optimization problems in a decentralized
manner, as formalized in the previous section. It is chosen due to its large spectrum
of applicability in Smart City scenarios [64] as well as its superior performance in
satisfying soft constraints [18].

Efficient coordinated choices are made using a self-organized [17] tree topology
within which agents organize their interactions, information exchange and decision-
making. Once agents have established their proximity-based relationship, e.g., Euc-
lidean distance, they are positioned starting from the leaves up to the root, each in-
teracting with its children and parent in a bottom-up and top-down [64, 132]. Fig. 3.2
illustrates an example of drones that self-organize into a tree communication structure
for information exchange. The short/long-range communication between drones could
rely on various methods, including WiFi, Bluetooth, cellular networks, and satellite
link [14]. During the bottom-up phase, drone 3 aggregates the plans of its children,
i.e., drone 1 and drone 2, and sends them to its parent agent with its own plan. During
the top-down phase, each parent agent sends the global plans to its children such that
all agents obtain the observed plan. As this distributed coordination among agents

36

3.3 Optimized Plan Selection

Drone 3

Drone 1 Drone 2

Bottom-up

Top-down

(1) Learning iteration

between the leaves and

their parents

(2) Progress to the next

level and continue learning

within tree branches

(3) Learning complete

over the whole tree

structure

* Example of

bottom-up and

top-down

Figure 3.2: Bottom-up and top-down via a tree topology.

using hierarchical organization reduces the need for every node to communicate with
every other node, the system is highly-efficient in collaboration and information ex-
change [18].

The whole iterative plan selection process is listed as follows (see algorithm 1):
During the bottom-up phase of the first iteration, each agent u (except for leaf

nodes) observes the plans of its children and selects its own plan pu
s . This selection

depends on its selfish vs. altruistic behavior, e.g. whether they accept a plan with a
bit higher discomfort cost to decrease inefficiency. Such multi-objective trade-offs are
modeled with the parameter βu such that:

pu
kt =

K
argmin

k=1
(1− βu

t) · fI(pu
kt, xu

kt) + βu
t · fD(pu

kt, xu
kt), (3.10)

where βu
t represents the behavior of the agent u to balance both discomfort and ineffi-

ciency cost, 0 ≤ βu
t ≤ 1. As the value of βu

t increases, the agent becomes increasingly
more selfish, prioritizing plans with low discomfort cost at the expense of higher in-
efficiency cost. After plan selection, the agent combines the selected plan with the
observed plans from its children into the branch response, and shares this combination
to its parent node (if it is not the root).

During the top-down phase, however, each agent (except leaf nodes) sends the global

37

3.3 Optimized Plan Selection

plan g to its children. After the first iteration, each agent makes a choice taking into
account the choices of all agents at a previous iteration, i.e., the global plan. During
top-down, except for the updated global plan, each agent sends its child a decision δc

regarding whether its child c should change its selected plan in the next iteration, which
takes 1 if the agent changes its plan and 0 otherwise. This decision is determined by
selecting a combination tc, i.e., the tree branch response of a child c, that maximally
improve the global plan. The tree branch grows as the learning progresses to the next
level during the top-down phase, as shown in Fig. 3.2. The decision determination can
be formulated as:

min
δc

f

[
gl +

∑
c

δc (tc,l − tc,l−1)
]

, (3.11)

f(g) = (1− βu
t) · fI(pu

kt, xu
kt) + βu

t · fD(pu
kt, xu

kt), (3.12)
where c denotes the index of a child for agent u, and l indicates the index of iterations
in the collective learning.

The optimization in collective learning addresses the satisfaction of soft constraints,
i.e., the objective function in Eq.(3.5) and Eq.(3.6), via various sequential information
exchange, information aggregation and communication schemes that coordinate agents’
choices. Furthermore, to consider the hard constraints on the aggregated choices and
their costs defined in Eq.(3.8) and Eq.(3.9) respectively, the hard constraint satisfaction
approach is required in the designed coordination model.

3.3.2 Hard constraint satisfaction

The collective learning for satisfying the hard constraints on aggregate choices and their
costs is illustrated in this section.

The hard constraint satisfaction model ensures that aggregate choices and costs
remain within defined upper and lower bounds while optimizing soft constraints [40].
Unlike traditional heuristics that focus on addressing soft constraints costs, which is the
best effort to minimize all involved costs, this model directly addresses the challenge
of hard constraint enforcement in multi-agent systems. To overcome the cold start
problem, agents initially make decisions based on the highest likelihood of satisfying
all hard constraints. Given the sensitivity of this process to self-organization, agents
continuously reorganize after constraint violations until a stopping criterion is met.
Once hard constraints are satisfied, agents transition to optimizing soft constraints
while maintaining feasibility with minimal overhead [40].

38

3.3 Optimized Plan Selection

Ta
bl

e
3.

2:
A

n
ex

am
pl

e
of

ap
pl

yi
ng

co
lle

ct
iv

e
le

ar
ni

ng
an

d
ha

rd
co

ns
tr

ai
nt

s
w

ith
th

re
e

ag
en

ts
,e

ac
h

w
ith

tw
o

pl
an

s.

C
o

n
st

ra
in

ts
A

g
en

t
A

A
g

en
t

B
A

g
en

t
C

A
ll

P
o

ss
ib

le
G

lo
b

al
R

es
p

o
n

se
s

A
ge

nt
s’

P
la

ns
(p

)
[3

,
5

]
[2

,
7

]
[1

,
3

]
[5

,
2

]
[6

,
2

]
[3

,5
]

[1
0

,1
0

]
[1

4
,9

]
[7

,1
3

]
[1

1
,1

2
]

[9
,1

2
]

[1
3

,1
1

]
[6

,1
5

]
[1

0
,1

4
]

1.
So

ft
C

on
st

ra
in

ts
(B

as
el

in
e)

M
in

im
iz

e
In

effi
ci

en
cy

C
o

st
—

3-
5—

=
2

—
2-

7—
=

5
—

1-
3—

=
2

—
5-

2—
=

3
—

6-
2—

=
4

—
3-

5—
=

2

S
el

ec
te

d
P

la
n

s
✓

✓
✓

S
el

ec
te

d
G

lo
b

al
P

la
n

✓

2.
H

ar
d

C
on

st
ra

in
ts

-
U

=
[9

,
]

M
ax

im
iz

e
E

x
p

ec
te

d
sa

ti
sf

ac
ti

o
n

(9
-3

)+
0=

6
(9

-2
)+

0=
7

(9
-2

)+
0=

7
(9

-5
)+

0=
4

(9
-6

)+
0=

3
(9

-3
)+

0=
6

S
el

ec
te

d
P

la
n

s
✓

✓
✓

S
el

ec
te

d
G

lo
b

al
P

la
n

✓

3.
H

ar
d

C
on

st
ra

in
ts

-
U

=
[,

9]
M

ax
im

iz
e

ex
p

ec
te

d
sa

ti
sf

ac
ti

o
n

0+
(9

-5
)=

4
0+

(9
-7

)=
2

0+
(9

-3
)=

6
0+

(9
-2

)=
7

0+
(9

-2
)=

7
0+

(9
-5

)=
4

S
el

ec
te

d
P

la
n

s
✓

✓
✓

S
el

ec
te

d
G

lo
b

al
P

la
n

✓

4.
H

ar
d

C
on

st
ra

in
ts

-
U

=
[1

0,
13

]
M

ax
im

iz
e

ex
p

ec
te

d
sa

ti
sf

ac
ti

o
n

(1
0

-
3)

+
(1

0
-

2)
+

(1
0

-
1)

+
(1

0
-

5)
+

(1
0

-
6)

+
(1

0
-

3)
+

(1
3

-
5)

=
15

(1
3

-
7)

=
14

(1
3

-
3)

=
19

(1
3

-
2)

=
17

(1
3

-2
)=

15
(1

3
-

5)
=

15

S
el

ec
te

d
P

la
n

s
✓

✓
✓

S
el

ec
te

d
G

lo
b

al
P

la
n

✓

5.
H

ar
d

C
on

st
ra

in
ts

-
U

=
[9

,9
]

M
ax

im
iz

e
ex

p
ec

te
d

sa
ti

sf
ac

ti
o

n
(9

-
3)

+
(9

-
2)

+
(9

-
1)

+
(9

-
5)

+
(9

-
6)

+
(9

-
3)

+

(9
-

5)
=

10
(9

-
7)

=
9

(9
-

3)
=

14
(9

-
2)

=
11

(9
-

2)
=

10
(9

-
5)

=
10

S
el

ec
te

d
P

la
n

s
✓

✓
✓

S
el

ec
te

d
G

lo
b

al
P

la
n

×

39

3.3 Optimized Plan Selection

Constraints on aggregated choices. For each element gd of a global plan g, a
hard constraint is defined by a range (envelope) of an upper UP = (UP

d)D
d=1 and lower

LP = (LP
d)D

d=1 bound, where UP, LP are also sequences of real values of equal size
|UP| = |LP| = |gt| = D. Each value d of the upper bound denotes that UP

d ≥ gtd,
whereas for the lower bound it holds that LP

td ≤ gd. The selected plan expected to
satisfy all hard constraints at the initialization phase, during which the global plan g

is not known, is estimated as follows:
pu

kt = argmax
pu

kt
∈P u

t

E(pu
kt, xu

kt,U
P,LP), (3.13)

where the expectation of satisfaction is given by:

E(pu
kt, xu

kt,U
P,LP) =

D∑
d=1

(UP
d − pu

ktd) +
D∑

d=1
(pu

ktd − LP
d). (3.14)

Constraints on aggregated costs. The modeling for the hard constraints on the
aggregate costs is exactly the same as the one of the aggregate choices, where the expec-
ted satisfaction for each of the costs of fD(pu

kt, xu
kt) and fI(

∑U
u=1 pu

kt · xu
kt) is calculated

for upper and lower bounds with |UD| = |LD| = 1.

Constraint satisfaction rate. The effectiveness of the hard constraint satisfaction
heuristic is measured by the satisfaction rate. This is the total number of satisfactions
achieved out of a total number of trials made. These trials are often existing parameters
of the optimization algorithms, for instance, random repetitions, or the order with which
agents aggregate choices made to coordinate and optimize their own choices.

Table 3.2 illustrates an example of applying the heuristic in practice with three
agents (U = 3), each with two plans (K = 2, D = 2). All combinations of possible plan
selections make 23 = 8 possible global plans. Hard constraints with an upper bound
on the aggregate choices (global plan g) are introduced with an expected satisfaction
of ∑D

d=1(UP
d − pu

k,d). (1) The baseline scenario is the soft constraints that minimize
the inefficiency cost fI(g) ≈ |pu

k,1 − pu
k,2|. The global plan [10, 10] is the one with the

inefficiency cost. (2) Agents choose plans that maximize the expected satisfaction.
This results in the global plan of [6, 15] that satisfies the hard constraint UP = [9,]. (3)
Similarly, the hard constraint UP = [9,] is satisfied with the global plan of [14, 9]. (4)
Both new hard constraints UP = [10, 13] are satisfied with the global plan [7, 13]. (5)
The second hard constraint UP = [9, 9] is violated by the selected global plan [7, 13].
√

indicates constraint satisfaction, and ×denotes constraint violation in pu
k and g.

The decentralized hard constraint satisfaction model is implemented by filtering out

40

3.3 Optimized Plan Selection

Figure 3.3: Implementation of decentralized hard constraints satisfaction in collective
learning.

the possible plans in Equation (3.10) that violate the given upper and lower bounds.
However, in the first learning iteration, it is not possible determine these plans that
violate the hard constraints with certainty because each agent only knows about the ag-
gregate choices of the agents underneath (and not the ones above). As a result, the root
agent may end up having no possible plan that does not violate the hard constraints.
To prevent the likelihood of these violations, the agents make more conservative choices
according to Equation (3.13) during the first iteration, aiming at maximizing the expec-
ted satisfaction of the hard constraints. Once the hard satisfactions are satisfied, the
agents switch back to plan selection according to Equation (3.10), while keep filtering
plans that violate the hard constraints. The agents cannot violate the hard constraints
in these subsequent learning iterations because they always have the option to roll
back to the choices made at the end of the first learning iteration during which hard
constraints are satisfied (via the top-down phase).

Figure 3.3 illustrates the implementation of the hard constraints model on the open-
source collective learning software artifact1. The implementation of the cost function
interfaces is extended to filter out plans that violate the hard constraints, as well as
the selection based on the expected satisfaction principle of Equation (3.13). The
hard constraints are controlled via the main input parameter file of collective learning
(Java Properties). Constraints on aggregate choices and costs can be activated and
deactivated. Two input .csv files are introduced, one for each type of hard constraints.

1Available at https://doi.org/10.5281/zenodo.7791326

41

3.4 Hierarchical Learning-based Optimized Planning

Both contain the upper/lower bounds and the coding of the operators.

3.3.3 Exact algorithms

Exact algorithms serve as an option for OPS to solve the combinatorial optimization
problem under critical constraints. They are based on a complete and clever enu-
meration of the solutions space, which will eventually find the optimal solution. The
well-designed exact algorithms can be used to obtain sub-optimal solutions by interrupt-
ing the search before its termination. This flexibility makes exact methods appealing
and practical, and as such they constitute the core of modern optimization solvers as
Gurobi, Cplex or Gecode. These optimizers efficiently solve the single-objective mixed-
integer programming problem under constraints by combining various exact techniques,
including branch-and-bound, cutting-plane, and etc. Therefore, the designed model is
implemented using one of optimizers by setting the objectives Eq.(3.5) under the con-
straint (3.8), or setting the objective Eq.(3.6) under the constraint (3.9).

While these algorithms employ centralized coordination that depends on a third
party to collect and process information, the decision-making itself remains distributed.
Each agent independently generates local plans and shares only the resulting plans (not
raw data) with a central entity. To facilitate this, similar to collective learning, agents
self-organize into a tree topology for plan sharing, where the root agent aggregates
the plans and sends them to a central server for computation. Therefore, the multi-
agent system operates in a distributed manner, relying on the central server solely for
computational support.

3.4 Hierarchical Learning-based Optimized Planning

The proposed method of HALOP is presented in this section. Compared to OPS,
this approach integrates a state-of-the-art MARL to help each agent make a strategic
decision-making for long-term optimization. It contains a two-stage hierarchical frame-
work, where high-level strategic decisions guide low-level operational decisions.

According to Eq.(3.10) in OPS, agents’ plan selection is determined by two factors:
their local plans and behavior. Therefore, HALOP determines high-level action choices
of the agents among (1) what alternatives they decide and (2) what behavior/preference
they use to decide. Two types of strategies are employed respectively: grouping plan

42

3.4 Hierarchical Learning-based Optimized Planning

②

①

③

④

High-level Layer:
Learning strategies for

group choices

High-level Layer:
Learning strategies for

group choices

Low-level Layer:
Plan generation

Low-level Layer:
Plan generation

Low-level Layer:
Plan selection

Low-level Layer:
Plan selection

End of

Periods?

Start

Stop

YES

NO

⑤

⑥

Agent 1 Agent 2

0 1

0.25 0.75

0.5

(+)

Behavior

Ranges

Altruistic Selfish

Grouping

Plan Constraints

Figure 3.4: The overall framework of the HALOP approach.

constraints and grouping behavior ranges. The strategy for grouping plan constraints
divides the constraints of plans into different groups based on a criterion, e.g., the range
of discomfort cost or the flight range of drones, and then chooses one of them. The
strategy for grouping behavior ranges groups behavior βu

t ranges and choose one to
balance discomfort and inefficiency costs.

Fig. 3.4 illustrates the overall framework of HALOP. First, at a time period t, all
agents construct into a tree topology where the root agent receives the target task
from the server and then sends it to other agents via top-down phase. Next, each
agent takes a high-level action, the results of choosing a plan constraint (grouping
plan constraints) and a behavior range (grouping behavior ranges). Then, in the low-
level layer, each agent generates plans via Eq.(3.3) based on the chosen constraint.
Next, each agent coordinates to select its optimal plan based on the chosen behavior
and obtains the global plan via collective learning or exact algorithms. Agents will
execute their selected plans, which changes the environmental state and updates the
target tasks in the next time period τt+1 ← τt. Furthermore, the global plan is used
for reward calculation calculation and state transition defined in Section 3.4.1. The

43

3.4 Hierarchical Learning-based Optimized Planning

state, action and reward of each agent are stored into a replay buffer in order to train
the parameters of deep neutral networks in agents’ policy, assisting them to explore
optimized actions. More details are illustrated in Section 3.4.3.

3.4.1 Learning-based modeling

At each time period t, each agent observes the current target tasks and makes a decision
on its plan, which further updates the target tasks in the next time period, influencing
its new decision. Additionally, the decision-making of agents is not related to the target
tasks before t, satisfying the Markov property [133]. Therefore, the above process is
modeled as a Markov decision process. The components are listed as follows:

State. The state Su
t includes the information observed by an agent u, such as the target

τt, the selected plan pu
st, the global plan gt, and the discomfort costs of all selected plans

fD(·).

Action. The action Au
t of agent u at t is denoted as Au

t = (au
imt)i≤I,m≤M , where the

agent u chooses a constraint index i from I constraints of plans, and a behavior range
index m from M ranges (see Section 3.4.2). In addition, the state of agent u transitions
from Su

t to Su
t+1 after executing the action Au

t and selecting a new plan pu
st.

Reward. The expected immediate reward of an agent should be determined by specific
task requirements (sensing or delivery). In this chapter, it is calculated based on
the combined cost, indicating the sum of the normalized mean discomfort cost and
inefficiency cost. According to the objective functions Eq.(3.5) and Eq.(3.6), the reward
function at each time period t is expressed as:

Ru
t = −σ1 ·

1
U
· fD(pu

st)− σ2 · fI(pu
st). (3.15)

where σ1 and σ2 are the parameters set by the system to normalize the discomfort and
inefficiency cost respectively, σ1, σ2 ∈ [0, 1].

3.4.2 High-level strategies

The high-level actions provide strategic guidance and constraints, shaping the discom-
fort cost of low-level actions to ensure that they align with overall objectives and effi-
ciently achieve the optimization goals. The action consists of two strategies for group
choices: the grouping plan constraints and the grouping behavior ranges.

Strategy for grouping plan constraints. The key idea of this strategy is to divide

44

3.4 Hierarchical Learning-based Optimized Planning

Decentralized Execution

…

Obs1 ObsUAct1 ActU

Critic

Actor 1 Actor U…

Centralized Training

Agent 1 Agent U

C
ritic N

etw
o
rk

A
cto

r N
e
tw

o
rk

Buffer

Input:

observation

Input: State

…

…

Figure 3.5: Centralized training and decentralized execution of HALOP.

the constraints of all possible plans into multiple groups based on a criterion, which
could be the discomfort cost of plans, or the flight range of drones that perform tasking.
By choosing one constraint, each agent generates the plans under the constraint and
selects a plan from them. Since agents only takes action to choose a group, i.e., a
constraint of plans, instead of selecting a plan from the entire set P u

t , each agent
significantly reduces the number of available action choices, thereby reducing the action
space and computational cost. The selection of the constraints of plans can be defined
as:

{pu
ijt, ∀j ≤ Gi} ← Au

t | Au
t = au

imt, (3.16)
where i denotes the index of a constraint within a total of I constraints, j implies
the index of a plan under the constraint i, and Gi is the total number of plans under
constraint i, Gi ≤ K.

Strategy for grouping behavior ranges. This strategy is designed to select from
a group of behavior range rather than choosing among all possible values. The entire
range [0, 1] splits into M non-overlapping ranges of equal length, each range with an
index of m. Then, each agent takes an action Au

t to choose a range, and sets the mean
value of the range as the agent’s behavior βu

t . This strategy is only feasible when the
plan selection chooses collective learning. It can be formulated as follows:

βu
t = m

M
− 1

2M
| Au

t = au
imt. (3.17)

45

3.4 Hierarchical Learning-based Optimized Planning

Algorithm 2: The training of HALOP.
1 Randomly initialize critic network Q(·), actor network π(·) with parameters θQ, θπ

2 for episode := 1 to max-episode-number do
3 Reset the target τt and the state of agents
4 for period t := 1 to max-episode-length do
5 for ∀u ∈ U do
6 Take action: Au

t = π(Su
t |θπ)

7 Grouping plan constraints and choose a constraint Cu
t via Eq.(3.16)

8 Grouping behavior ranges and choose a range via Eq.(3.17)
9 Generate plans based on τt and Cu

t via Eq.(3.3)
10 end
11 Coordinate agents to select plans through Algorithm 1
12 for ∀u ∈ U do
13 Obtain the next state and reward via Eq.(3.15)
14 Store transition sample (Su

t , Au
t , Ru

t , Su
t+1) into buffer

15 Sample a random mini-batch of H samples from buffer
16 end
17 end
18 Estimate advantage via Eq.(3.18)
19 Calculate the probability ratio via Eq.(3.19)
20 Update θπ by minimizing the loss via Eq.(3.20) (3.21)
21 Update θQ by minimizing the loss via Eq.(3.22)
22 end

3.4.3 Training and execution

The purpose of training of HALOP is to find the deep neutral network parameters of
agents’ policies that achieve stable and maximal reward during multiple episodes, each
representing a whole process of plan generation and selection over all time periods.
The well-trained policies are used as the execution of HALOP. As shown in Fig. 3.5,
HALOP follows a centralized training and decentralized execution learning pattern.
Agents can access the state, action and reward of other agents to train their policies
efficiently, while operating independently during execution to apply to real-world con-
ditions and ensuring decentralization. This is achieved by storing the experience trans-
ition (Su

t , Au
t , Ru

t , Su
t+1) of each agent into a central replay buffer. Every H episodes, a

number of H transitions are randomly sampled from the buffer for training the deep
neutral networks.

46

3.4 Hierarchical Learning-based Optimized Planning

Moreover, HALOP employs actor-critic networks to combine the strengths of value-
based methods (critic) and policy-based methods (actor) [134]. The actor learns a
policy directly using policy gradient, enabling smooth and efficient optimal actions
exploration, while the critic estimates value functions to guide and stabilize the updates
of actor. There are two deep neural networks for each agent: (1) a centralized critic
network Q(·), responsible for the quality (Q-value) of actions taken, and (2) multiple
actor networks π(·), which represent the policy function that determines actions for
agents. In addition, HALOP employs Proximal Policy Optimization (PPO) [135] to
prevent detrimental updates of actor-critic networks and improving the stability of the
learning process. The details of networks update are illustrated as follows:

The critic network estimates the reward associated with a transition using the
Bellman equation. Its parameter θQ is updated by minimizing a loss function based on
an advantage function Âu

h. The advantage function is expressed as follows:
Âu

h = Ru
h + γ ·Q(Su

h+1, Au
h+1)−Q(Su

h , Au
h), (3.18)

where γ is a discount factor 0 < γ < 1; Su
h and Au

h denote the state and the action of
agent u in the sample h in a mini-batch from buffer, h ≤ H.

Then, the critic network provides Âu
h to the actor network to increase the probability

of actions that have a positive impact and decrease the ones that have negative impact.
The actions are taken by drones as Au

t = π(Su
t |θπ). To update the parameter θπ of the

actor network, PPO utilizes a policy ratio prob(θπ, u), which is formulated as:
prob(θπ, u) = πθπ (Au

h|Su
h)

πold(Au
h|Su

h) , (3.19)

where πold denotes the older policy of the actor network in the previous iteration. This
policy ratio is used to calculate the clip surrogate objective Su

h :
Cu

h = min[prob(θπ, u) · Âu
h, clip(prob(θπ, u), 1− ϵ, 1 + ϵ) · Âu

h], (3.20)
where ϵ is a hyperparameter; clip(·) indicates the clipping method to restrict the range
of prob(θπ, u) in order to preventing incentives from exceeding the interval [1 − ϵ, 1 +
ϵ]. Finally, the parameters of both actor θπ and critic θQ networks are updated by
minimizing the loss functions Lcritic(θQ) and Lactor(θπ) respectively. They are expressed
as follows:

Lactor(θπ) = 1
U ·H

U∑
u=1

H∑
h=1

Cu
h , (3.21)

Lcritic(θQ) = 1
U ·H

U∑
u=1

H∑
h=1

(Âu
h)2, (3.22)

In summary, the training process primarily involves the following steps (see Al-

47

3.5 Experimental Evaluation

Algorithm 3: The execution of HALOP.
1 Input: Agent u, target τ0, policy π(·)
2 Output: Selected plans (pu

s1, ..., pu
sT),

3 for period t := 1 to max-episode-length do
4 Update the target τt and the state
5 Take action: Au

t = π(Su
t |θπ)

6 Grouping plan constraints and choose a constraint Cu
t via Eq.(3.16)

7 Grouping behavior ranges and choose a range via Eq.(3.17)
8 Generate plans based on τt and Cu

t via Eq.(3.3)
9 Select an optimized plan pu

st through algorithm 1
10 end

gorithm 2): It firstly performs the network initialization to set parameters in actor
and critic networks within [−0.1, 0.1] (Line 1). Next, in the exploration part (Lines
3-17) in each episode, each agent takes actions to choose a constraint of plans and a
range of behavior. After coordination in low-level plan generation and plan selection,
agents calculate their immediate rewards and transition to a new state. The buffer,
a data storage structure used for experience replay, stores all the transitions of each
agent (Line 14). For every H episodes, which equals to the batch size, H groups of
transitions are randomly sampled from the buffer (Line 15). Finally, the algorithm
updates the parameters in critic network θQ and actor network θπ (Lines 18-21).

Moreover, the decentralized execution process is illustrated in Algorithm 3. With
the input of initial target τ0, the policy function π(·) and the high-level strategy, each
agent runs the algorithm and outputs the selected plan pu

st at each time period. Finally,
each agent obtains its plans for all periods and execute them.

3.5 Experimental Evaluation

This section aims to validate the superior performance of the proposed approaches in
the evolving systems and hard constraints. It firstly defines the experimental settings,
including synthetic scenario, performance metrics, and baseline methods. Then, the
performance comparison of different methods in the synthetic scenario is assessed.

48

3.5 Experimental Evaluation

0 20 40 60 80 100
Dimension Values

-100

-50

0

50

100

Ta
rg

et
 fo

r R
es

po
ns

e

= 24
= 12
= 6

Figure 3.6: Synthetic target tasks for all agents of cosine waveforms by increasing the
frequency multipliers ω.

3.5.1 Experimental settings

Scenario settings. The synthetic scenario is built by extracting data from the syn-
thetic dataset [136]. It contains 1, 000 agents, each with 16 possible plans (i.e., vectors)
that consists of a sequence of 100 values sampled from a Normal distribution centered
at a mean of 0 with a variance of 1. The discomfort costs of plans for each agent are in-
creasing linearly within the range [0, 1]. The plans are grouped using the quantile-based
discretization function based on their discomfort cost. The goal of the optimization is to
bring the global plan close to a target signal (a cosine waveform) over 16 time periods,
while minimizing the discomfort cost of all agents. At each time period t, the update
of the target can be formulated as: τt+1 = τt− gt, where τ0 represents the target signal
of the cosine waveform. Note that agents predict the future shape of waveform they
construct (i.e., the global plan), which gradually approaches τ0, updates the target, and
thus the environment “seen” by each agent is evolving. Moreover, to increase the com-
plexity of targets, the frequency multiplier of the cosine waveforms increases, as shown
in Fig. 3.6. The cross-validation is applied: 80% plans of the datasets for training and
20% for testing. There are three types of scenarios for the experimental evaluation:

• Basic synthetic scenario. It is a benchmark with 40 agents, 16 time periods,
16 plans per agent and the target signal of ω = π/24, aiming to compare the
performance of different approaches.

• Complex synthetic scenarios. They are studied by varying the parameters to

49

3.5 Experimental Evaluation

validate the scalability of the proposed solution. There are three dimensions:
(1) the number of agents, (2) the number of plans (i.e., the plan volume owned
by each agent), and (3) the complexity of target tasks (i.e., different frequency
multipliers of cosine waveforms).

• Hard constraint scenarios. They are studied to test the hard constraint of the
proposed solution. Three types of hard constraints are set to the aggregate choices
(global plan gt). In the basic synthetic scenario, hard constraints based on upper
and lower bounds represent an envelope within which the global plan will not
exceed the range. The agents are assumed here altruistic, βu

t = 0.

Performance metrics. To evaluate the performance of both OPS and HALOP,
two metrics are introduced: (1) Mean discomfort cost, which denotes the average of
discomfort cost of all agents, defined in Eq.(3.5); (2) Inefficiency cost, which calculates
the root mean square error between the target and global plan, defined in Eq.(3.6); (3)
Combined cost, which measures the sum of the normalized mean discomfort cost and
inefficiency cost. In simple words, the mean discomfort cost measures the cost of agents
who execute the system tasks, while the inefficiency cost measures the overall quality
of the executed system tasks. The combined cost provides a comprehensive assessment
of the performance.

Baselines. A fair comparison of the proposed methods with related work is not
straightforward as there is a very limited number of relevant decentralized algorithms [29,
86, 125]. Similar algorithms, such as particle swarm optimization, cannot be directly ap-
plicable to the optimization problem defined in Section 3.1. Those relevant algorithms
(e.g., COHDA, CBBA) have higher computational and communication overhead than
the collective learning used in OPS and HALOP, which is illustrated in Section 3.5.2.
For this reason, this chapter focuses on ablation studies by testing standalone rein-
forcement learning, collective learning and exact algorithms. The baseline methods are
introduced as follows:

• MAPPO: The name is Multi-Agent Proximal Policy Optimization, a state-of-the-
art reinforcement learning technique [137]. It is adapted based on the designed
model that each agent takes an action to choose one plan from the set P u

t . Thus,
its action space equals to the total number of plans generated by each agent∑I

i=1 Gi. It employs the reward function of Eq.(3.15), the actor-critic networks

50

3.5 Experimental Evaluation

and Proximal Policy Optimization. There is no high-level strategies for group
choices but only address low-level plan selection.

• HRL: It is adapted based on the Hierarchical Reinforcement Learning [86] and
designed model that each agent takes an action for high-level choices of plan
constraints and then takes a second action to select a plan under the chosen
constraint (i.e., low-level plan selection). The policy networks of both types of
actions are trained independently by using two different actor networks.

• System-optimal: It is centralized method that aggregate the P u
t from all agents

and globally find optimally result of inefficiency cost through Gurobi optimizer [6].
As a type of algorithm in OPS, this method incorporates the plan generation and
target update, but does not support any long-term strategic decision on task
planning via learning methods. It only addresses low-level strategy without high-
level strategies.

Furthermore, two variants of the proposed HALOP are considered: (1) HALOP-P,
which uses the strategy for grouping plan constraints only and sets the agents’ behaviors
the same, and (2) HALOP-B, which uses the strategy for grouping behavior ranges only
where agents select plans from the whole set P u

t . As a comparison, HALOP takes both
strategies together.

Algorithm settings. In this experiment, both OPS and HALOP leverage collective
learning in the plan selection. The setting of algorithms contains both collective and
reinforcement learning parts:

• During the coordinated plan selection via I-EPOS1 in OPS, the communication
structure among agents is set as a balanced binary tree [17]. In the one execution
of I-EPOS, the agents perform 20 bottom-up and top-down learning iterations.

• For the reinforcement learning in HALOP, a total of H = 64 transitions are
sampled as a batch in a replay buffer with a discount factor of γ = 0.95 and a clip
interval hyperparameter of 0.2 for policy updating. The recurrent neural network
is used with W = 64 neurons in the two hidden layers in both critic and actor
networks. The activation function used for the networks is tanh. The models are
trained over E = 2000 episodes.

1I-EPOS is open-source and available at: https://github.com/epournaras/EPOS.

51

3.5 Experimental Evaluation

Figure 3.7: Cost comparison of all methods in the basic synthetic scenario (40 agents,
16 plans per agent and the target signal with ω = π/24). The vertical lines denote the
error.

In addition, several variants of OPS are also defined: (1) OPS-altruistic that agents
behave altruistically (βu = 0), (2) OPS-selfish that agents behave selfishly (βu = 1),
and (3) OPS-P that agents choose Pareto optimal point of behavior value. In terms of
HALOP, several parameters are empirically selected due to the optimal performance:
HALOP-P divides plans into 4 groups, each containing 4 plans; HALOP-B divides the
behavior range into 4 ranges; and HALOP groups both 4 plans and 4 behavior ranges.
The agent behavior is set as βu

t = 0.5 in both OPS and HALOP-P. The σ1 and σ2 in
Eq.(3.15) are set as 0.5 such that the reward is equivalent to the metric of combined
cost defined in Section 3.5.1. More insights of the effect of different parameters are
listed in Appendix A.1.

3.5.2 Evaluation on basic synthetic scenario

Fig. 3.7 illustrates the cost advantages of the proposed approach. HALOP-P achieves
a combined cost that is 23.69% lower than OPS-P, benefiting from the use of deep
neutral networks for function approximation. This assists HALOP-P to observe the
environment and strategically select plan groups that reduce discomfort cost over time,
while maintaining low inefficiency cost (The actions taken by agents per time are illus-
trated in Appendix A.1). Similarly, HALOP-B optimizes behavior ranges for agents by
recommending them to behave selfishly at the beginning and then altruistically, minim-
izing combined costs. It also achieves the lowest inefficiency cost among all strategies,

52

3.5 Experimental Evaluation

Table 3.3: Comparison of computational and communication costs.

Approaches: Computational Cost Communication Cost

System-optimal [6] O(T · KU) O(T · K · U)
MAPPO [137] O(E · T · U · Cdnn(K)) O(E · T · U2)
HRL [86] O(E · T · U · Cdnn(I + K

I
)) O(E · T · U2)

OPS O(T · K · L log U) O(T · L · log U)
HALOP-P O(E · T · (U · Cdnn(I) + K

I
· L · log U)) O(E · T · L · log U)

HALOP-B O(E · T · (U · Cdnn(M) + K · L · log U)) O(E · T · L · log U)
HALOP O(E · T · (U · Cdnn(I · M) + K

I
· L · log U)) O(E · T · L · log U)

only 0.49% higher than System-optimal that finds the optimality of inefficiency. How-
ever, HALOP-B tends to coordinate agents toward plans with higher discomfort cost,
leading to a combined cost that is 4.81% higher than HALOP-P. By integrating the
strengths of both high-level strategies, HALOP learns to optimize both plan groups
and agent behaviors, achieving the lowest combined cost.

Moreover, with the help of effective coordination through collective learning, HALOP
avoids unnecessary exploration, allowing it to more efficiently converge on the optim-
ized global plan. As a result, it achieves 35.53% lower discomfort cost and 27.05% lower
inefficiency cost compared to MAPPO. Note that the low-level policy on plan selection
of HRL heavily depends on its high-level policy on plan constraints. The changing
high-level policy leads to the plans selected by low-level policy are changing even tak-
ing the same action, which leading to non-stationary learning (see Appendix A.1) and
27.79% higher combined cost than MAPPO.

In addition, the complexity of all methods is compared. Given the number of
nodes per layer in the deep neutral networks W , the state space |S|, and the action
space |A|, the computational complexity of deep neutral networks is approximately
O(Cdnn(|A|)) = O(|A| ·W +W 2 + |S| ·W) [138]. The comparison of both computational
and communication cost is shown in Table 3.3, where L denotes the number of iterations
in OPS ; E is the number of episodes. The results illustrate that the proposed method
lowers computational cost by reducing the action space, especially dealing with a large
number of plans K, outperforming MAPPO [137], HRL [86] and System-optimal [6].
HALOP also has lower communication cost as the number of agents increases, due to
its efficient tree communication structure. More results of complexity comparison by
increasing the number of plans and agents are shown in Appendix A.1.

53

3.5 Experimental Evaluation

40 80 120 160 200
Number of Agents

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
D

is
co

m
fo

rt
C

os
t

40 80 120 160 200
Number of Agents

0.0

0.1

0.2

0.3

0.4

0.5

0.6

In
ef

fic
ie

nc
y

C
os

t

40 80 120 160 200
Number of Agents

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
om

bi
ne

d
C

os
t

OPS-P
MAPPO
HALOP-P

HALOP-B
HALOP

Figure 3.8: Changing the number of agents from 40 to 160 and fixing 16 plans per
agent, 16 time periods and target complexity.

16 48 80 112
Number of Plans

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
D

is
co

m
fo

rt
C

os
t

16 48 80 112
Number of Plans

0.0

0.1

0.2

0.3

0.4

0.5

In
ef

fic
ie

nc
y

C
os

t

16 48 80 112
Number of Plans

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
om

bi
ne

d
C

os
t

OPS-P
MAPPO
HALOP-P

HALOP-B
HALOP

Figure 3.9: Changing the number of plans per agent from 16 to 112 and fixing 40
agents, 16 time periods and target complexity.

= 24 = 12 = 6
Frequency multipliers

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
D

is
co

m
fo

rt
C

os
t

= 24 = 12 = 6
Frequency multipliers

0.0

0.1

0.2

0.3

0.4

0.5

In
ef

fic
ie

nc
y

C
os

t

= 24 = 12 = 6
Frequency multipliers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
om

bi
ne

d
C

os
t

OPS-P
MAPPO
HALOP-P

HALOP-B
HALOP

Figure 3.10: Changing the frequency multiple of cosine waves from π/24 to π/6 and
fixing 40 agents, 16 plans per agent, and 16 time periods.

3.5.3 Evaluation on complex synthetic scenario

Based on the performance in basic synthetic scenario, this section compares the pro-
posed approach with OPS-P and MAPPO in complex synthetic scenario by varying

54

3.5 Experimental Evaluation

number of agents, number of plans and complexity of target tasks.

Number of agents. As shown in Fig. 3.8, if the number of agents increases from 40 to
200, there are more agents available to effectively coordinate and reach the target tasks.
Therefore, the inefficiency cost of methods that use collective learning (HALOP-P,
HALOP-B and HALOP) drops significantly by around 75%. In contrast, MAPPO has
higher inefficiency cost with more agents due to the expanded state space, which hinders
training efficiency. Moreover, HALOP strategically coordinates agents to choose plans
with low discomfort cost, achieving approximately 24.34% lower combined cost than
OPS-P. The results illustrate that high number of agents significantly decreases the
inefficiency cost of methods using collective learning.

Number of plans. As shown in Fig. 3.9, if the number of plans per agent increases
from 16 to 112, each agent has more options to respond to the complex environments.
Thus, the combined costs of HALOP decreases by 55.91% as the number of plans in-
creases, while still being lower than OPS-P by 48.75%. Unlike MAPPO, where agents
must choose from a significantly larger action space, leading to increased training com-
plexity, the action space of HALOP remains constant, contributing to its lower mean
discomfort (45.94%) and inefficiency costs (64.26%). The results illustrate that high
number of plans decreases the discomfort and inefficiency cost of methods using collect-
ive learning.

Complexity of target tasks. As shown in Fig. 3.10, if the frequency multiplier
increases from π/24 to π/6 (see Fig. 3.6), agents struggle to achieve the collective goal.
This leads to a linear increase of both mean discomfort and inefficiency cost in OPS-P.
In contrast, MAPPO keeps the inefficiency cost relatively low and constant since it
learns to effectively explore and select plans close to the cosine waveform with high
frequency. Via reinforcement learning, the proposed HALOP achieves a combined cost
that is 33.44% lower than OPS-P. However, the combined cost of HALOP exceeds
HALOP-P at the complexity of π/6 as its exploration is restricted by the large action
space. The results illustrate that high complexity of target tasks increases the discomfort
and inefficiency cost of all methods, but more slightly for those using MARL.

3.5.4 Evaluation on hard constraint satisfaction

Fig. 3.11 shows that the aggregated plans for the soft constraint (OPS) along with three
shapes of hard constraints (upper/lower bounds). Light-grey shaded areas represent

55

3.5 Experimental Evaluation

Figure 3.11: Optimization under soft and three types of hard constraints in the syn-
thetic scenarios.

Table 3.4: Comparison of hard constraint satisfaction rate.

Synthetic scenario OPS OPS-hard System-optimal

Shape 1 0.165 0.65 1.0
Shape 2 0.0 0.535 1.0
Shape 3 0.0 0.81 1.0

0.00 0.25 0.50 0.75 1.00
 of soft constraints

1.50

1.75

2.00

2.25

2.50

2.75

in
ef

fic
ie

nc
y

co
st

inefficiency cost soft
inefficiency cost hard

0

2

4

6

8

di
sc

om
fo

rt
co

st

discomfort cost soft
discomfort cost hard

(a) β of soft constraints vs. inefficiency and
discomfort costs.

0.00 0.25 0.50 0.75 1.00
 of soft constraints

0.0

0.2

0.4

0.6

0.8

1.0

 o
f h

ar
d

co
ns

tra
in

ts

 of hard constraints

0.0

0.2

0.4

0.6

0.8

1.0

sa
tis

fa
ct

io
n

ra
te

satisfaction rate

(b) β of soft constraints vs. β hard con-
straints and satisfaction rate.

Figure 3.12: Required behavioral shift to mitigate the performance degrade of satisfying
hard constraints.

the range between upper bound and lower bound. Arrows point to violations of hard
constraints. Under soft constraints, the upper and lower bounds are violated, whereas
the proposed method using hard constraints satisfaction model, named as OPS-hard
prevent these violations. When the shape transforms from 1 to 2 and 3, constraints

56

3.6 Comparison with Related Work

become stricter and prevent more violations in OPS.
Table 3.4 compares the satisfaction rates of OPS, OPS-hard, and System-optimal,

based on 1000 simulation runs. The metric reflects how often each algorithm satisfies
the hard constraints. The results show that while OPS-hard significantly improves con-
straint satisfaction over OPS, it still occasionally violates the constraints. In contrast,
System-optimal consistently achieves full satisfaction of the hard constraints.

Satisfying hard constraints results in a degrade of the performance profile (lower
inefficiency cost) achieved under soft constraints. The recovery from this degrade is
measured here as the required social capital (behavioral shift) that agents need to offer
such that soft and hard constraints have equivalent performance. The raise of social
capital is measured by the reduction of the mean βu

t value in the population of agents
that makes them more altruistic, see Eq.(3.10). The following method is introduced
to measure the behavioral shift: (1) Perform parameter sweep on I-EPOS under soft
constraints for βu

t = 0, to βu
t = 1,∀iu ∈ U with a step of 0.025. (2) For each I-EPOS

execution in Step 1 with a βu
t value, a discomfort cost and an inefficiency cost, run I-

EPOS under a hard constraint on the mean discomfort cost with an upper bound value
equals to discomfort cost (the one of the I-EPOS execution under soft constraints). (3)
Derive the increased inefficiency cost under the hard constraint on the discomfort cost.
(4) Find the βu

t value from Step 1 that has the closest inefficiency cost with the one
derived in Step 3 under the hard constraint. (5) Compare the two βu

t values in Step
2 and 4. The difference represents the required mean behavioral shift to mitigate the
performance degrade of hard constraints.

Figure. 3.12(a) illustrates the inefficiency cost and discomfort cost as a function of
β under soft and hard constraints. It becomes apparent that hard constraints require a
minimum and significant level of altruism, otherwise, inefficiency cost rapidly increases.
Fig. 3.12(b) illustrates the required behavior shift to restore the performance loss as
a result of satisfying hard constraints. The average satisfaction rate is 56.3%. For
β ≤ 0.275, the satisfaction rate is 100% for the synthetic scenario.

3.6 Comparison with Related Work

Reinforcement learning has emerged as a promising solution for addressing combinator-
ial optimization problems by modeling it as a Markov decision process [139]. Previous
research has been focusing on applying reinforcement learning algorithms to approx-

57

3.6 Comparison with Related Work

imate the solution to the NP-hard combinatorial optimization problems, including the
traveling salesmen problem and knapsack problem [19, 127, 128]. However, to the best
of our knowledge, there are very few works that study the problem by leveraging appro-
priate reinforcement learning techniques, such as multi-agent reinforcement learning.
Therefore, this chapter compares the approaches of OPS and HALOP to related work
in three design choices: (1) choice of collective learning, (2) choice of global information
acquirement, and (3) choice of hierarchical framework.

Choice of collective learning. The choice of distributed optimization methods in the
plan selection part requires to provide a scalable and efficient solution to the combinat-
orial optimization problem. Several earlier algorithms have demonstrated their optimiz-
ation for multiple applications, for instance particle swarm optimization for vehicle path
planning [125], ant colony optimization for routing in wireless sensor networks [126],
and consensus-based bundle algorithm for risking task allocation [29]. However, these
algorithms rely on frequent updates for paths or repeated combinatorial evaluations
for tasks, which scales poorly with the number of agents and problem size. This is in
contrast to the earlier work of I-EPOS [18, 65] that efficiently coordinates thousands of
agents via a tree topology. Other highly efficient combinatorial optimization approaches
using communication structure, such as COHDA [63] and H-DPOP [140], shares full
information between agents, leading to higher communication cost than EPOS.

Choice of global information acquirement. It requires that every agent in rein-
forcement learning model can acquire the states and actions of all the other agents in
the network. This can be impractical in large-scale problems, where sharing the state
and action information may incur significant communication overhead. To address this
limitation, prior work [130, 141] has explored deep reinforcement learning with partial
observation, where agents rely on local estimates to approximate global rewards. Tilak
et al. [142] model a distributed combinatorial optimization problem as a payoff game
among agents and propose a partially decentralized reinforcement learning algorithm.
Agents learn locally optimal parameter values, minimizing communication overhead
while accelerating training convergence. Despite these improvements, partial observa-
tion limits an agent to acquire the full environment, making it struggling to plan ahead
effectively. As a result, the agent tends to focus on immediate or local rewards, which
may lead to decisions that are sub-optimal for the overall system performance in the
long run. In contrast, the collective learning used in OPS and HALOP obtains global

58

3.6 Comparison with Related Work

Table 3.5: Comparison with related work in Chapter 3.

Criteria Ref.: [125] [29] [18] [142] [86] OPS HALOP

Coordination for evolving systems ✗ ✗ ✗ ✓ ✓ ✗ ✓

Scalability with low complexity ✗ ✗ ✓ ✓ ✗ ✓ ✓

System-wide efficiency ✗ ✗ ✓ ✗ ✗ ✓ ✓

Autonomy and privacy-preserving ✗ ✗ ✓ ✗ ✗ ✓ ✓

Adaptability to diverse scenarios ✓ ✓ ✓ ✗ ✗ ✓ ✓

information for each agent with low communication cost.

Choice of hierarchical framework. The hierarchical framework is selected to di-
vide complex tasks into high- and low-level subtasks, reducing the state-action space for
each agent, inspired from hierarchical reinforcement learning (HRL) [85, 86]. Compared
to existing action abstraction approaches that rely on predefined and offline abstrac-
tions, such as temporal abstraction [143], masking [144] and sequentialization [145],
HRL provides flexibility in handling high- and low-level task structures and adapting
to complex environments, as illustrated in Section 2.3. Nevertheless, the centralized
training in HRL typically requires agents to coordinate and exchange personal inform-
ation, which can inadvertently reveal their sensitive details such as the plan generation
function and individual constraints. In contrast, the proposed approach respects the
agents’ autonomy to generate task plans, preserving their private information. Addi-
tionally, unlike HRL, the proposed approach allows greater flexibility in low-level plan
selection by avoiding overly restrictive high-level constraints, resulting in improved
overall system performance (see Section 3.5.2).

In summary, the research tackles the long-standing challenge of applying multi-
agent reinforcement learning to combinatorial optimization problems, specifically ad-
dressing the scalability limitations in large-scale systems, the need for autonomy and
privacy-preservation of agents, and the adaptability of solutions across diverse smart
city scenarios. Table 3.5 illustrates the comparison to related work across multiple
criteria (criteria covered ✓or not ✗). Here, coordination for evolving systems refers to
the ability of the method to coordinate agents in the evolving environments; scalability
with low complexity indicates the ability of the method to scale efficiently with low
computational and communication overheads; system-wide efficiency checks whether
the method has system-wide objective for all agents, whereas autonomy and privacy-

59

3.7 Discussion and New Insights

preserving checks the decentralization of the method that respect agent’s autonomy
and private information; and adaptive to diverse scenarios checks whether the method
is generic to multiple real-world scenarios, rather than tailored to a specific one.

3.7 Discussion and New Insights

The experimental results demonstrate the superior performance of the designed PMAC.
Several new scientific insights on the model are listed as follows:

Achieve a win-win synthesis of static and evolving optimization performance
improvement in multi-agent systems. Unlike algorithms in OPS that is effective
in static environment, HALOP in PMAC leverages deep neutral networks to effectively
adapt to evolving environments and tackle complex tasks, leading to 23.69% lower
system costs than OPS despite higher task complexity. Compared to traditional MARL
methods such as MAPPO, HALOP enables agents to efficiently observe and aggregate
information and maximize the system-wide performance by 31.29%.

Combine the strengths of both high-level strategies to improve scalability
and Pareto optimality. The grouping plan constraints strategy in HALOP effectively
reduces computational complexity by limiting the number of actions each agent must
consider, ensuring scalable learning, faster training convergence and improved cost
efficiency, even as the number of plans and agents increases. Meanwhile, the grouping
behavior ranges strategy allows each agent to autonomously adjust its behavior within
optimized ranges, significantly lowering both discomfort and inefficiency costs. This
strategy is particularly effective with fewer plans and agents. By integrating these two
complementary strategies, HALOP achieves a balance between scalability and solution
quality, leading to more Pareto-efficient outcomes across diverse multi-agent scenarios.
Moreover, it can switch to a single strategy in special cases, e.g., using HALOP-P for
high complexity of target tasks and HALOP-B for low plan volume.

Ensure the individual privacy-preserving and system-wide resilience. Both
OPS and HALOP in PMAC allow agents to self-determine their plan options without
leaking their private information, e.g., the plan generation function and individual
constraints. Each agent makes decisions locally, disclosing only minimal necessary
aggregated information for coordination. Additionally, the system can dynamically
reconfigure, repositioning drones within the tree in response to communication failures,

60

3.8 Operations of Multi-drone Task Allocation

ensuring that a single drone failure has minimal impact on information flow. The
resilience of this model has been previously demonstrated in [132] with large-scale
real-world datasets. Note that the critic network in HALOP is centralized but not
privacy-intrusive without accessing to agents’ private information.

Satisfy and mitigate hard constraints. The hard constraint satisfaction model
assists the PMAC model to prevent violations of hard constraints to a very high extent.
Even though for critical constraints, the PMAC model has flexibility to choose the exact
algorithms (System-optimal) and achieve 100% satisfaction rate. Additionally, Results
reveal the performance cost when hard constraints are introduced and how this cost
can be mitigated by a behavioral shift towards a more altruistic behavior that sacrifices
individual comfort for collective efficiency. These findings are invaluable for informing
policy makers and systems operators of the required social capital that they need to
raise to satisfy ambitious policies such as net-zero.

3.8 Operations of Multi-drone Task Allocation

This section defines the multi-objective combinatorial optimization problems for multi-
drone task allocation, where a swarm of intelligent and interactive drones performs
diverse mission operations. The primary objective is to complete sensing or delivery
tasks while minimizing energy consumption associated with navigation and execution.
Achieving this objective necessitates efficient task allocation and coordination. There-
fore, the PMAC model is tailored to address the multi-drone task allocation problem.

3.8.1 Common models for drone-based task planning

Each drone in the swarm, controlled by a software agent, can generate multiple task
plans via Eq.(3.3). A task plan represents a feasible route executed by a drone over
a time period. For example, a drone may depart from a base station, sequentially
visit several points of interest to perform missions (e.g., collect sensing data or deliver
parcels), and return to the base. These multiple plan options reflect the operational
flexibility and alternative choices available to each drone.

The energy consumed by a drone during task execution quantifies the discomfort
cost of each plan. This is calculated using a power consumption model [34] that con-
siders both flying and hovering power, based on physical parameters of the drone such

61

3.8 Operations of Multi-drone Task Allocation

Table 3.6: Parameter comparison of multi-drone urban sensing and drone logistics.

Parameters Synthetic
Urban sensing
(Traffic monitoring)

Drone logistics
(Last-mile delivery)

Plan type Normal distribution Navigation and hovering Navigation
Discomfort Plan index Energy consumption Energy consumption

System efficiency
Min inefficiency cost

Max mission efficiency
Max sensing accuracy

Min expected delivery delay

Plan constraints grouping Discomfort cost of plans Flight range of drones Flight range of drones
Spatial span Large Large Large
Temporal span Large Large Large
Environmental constraints Soft & Hard Soft & Hard Hard

as body weight, battery weight, propeller length, ground speed and power efficiency.
Note that the battery capacity imposes an upper bound on the total discomfort cost,
as formulated in Eq.(3.9). More details on this power consumption model are provided
in Section 4.3.

When the environments of multi-drone task allocation is evolving, drones should
continuously determine and execute task plans over extended time periods that ex-
ceed their maximum flight time due to battery limitations. This requires drones to
repeatedly cycle through navigation, task execution, and recharging by returning to
a base station and departing again for subsequent tasks. Such iterative behavior al-
lows the proposed learning methods in PMAC to operate effectively in large spatio-
temporal environments. Furthermore, the selection of recharging places constraints the
flight ranges of drones, which in turn affects their task performance. As a consequence,
drones may depart from different locations at different times, necessitating a high-level
strategy for grouping plan constraints. This grouping is based on navigation regions,
defined by the flight range of drones, e.g., north, east, south, or west, rather than
discomfort cost.

3.8.2 Comparison of sensing and delivery tasks

To demonstrate the applicability of PMAC, two practical scenarios of multi-drone task
allocation are considered: urban sensing and drone logistics. Table 3.6 shows the
parameter settings of these scenarios compared to the synthetic scenario.

Urban sensing and traffic monitoring. In this scenario, drones equipped with sens-
ing modules are deployed to collect data across a spatial domain within a given time

62

3.8 Operations of Multi-drone Task Allocation

window. For instance, a swarm equipped with downward-facing cameras can capture
real-time video for spatio-temporal traffic monitoring. In addition, drones may carry
environmental sensors to collect temperature and humidity data in disaster-prone re-
gions. A possible plan of a drone in this context defines which areas of interest it visits
and how much sensing data it collects. The plan dimension d indicates the spatio-
temporal reference (i.e., location and time), and the value pu

ktd denotes the amount
of data collected, equivalent to hovering time over the area of interest if the sensing
frequency is fixed. The aggregated global plan reflects the total sensing output of the
swarm, which must satisfy predefined data collection requirements, thereby maxim-
izing both mission efficiency and sensing accuracy (The definitions are illustrated in
Section 4.2).

Key aspects of this scenario include: (1) The deployment of a large number and
heterogeneous drones for different sensing missions across the map; (2) Drones may
belong to different entities or companies that prioritize privacy and are reluctant to
share sensitive information; (3) The hard constraints apply, such as no-fly zones. These
characteristics make collective learning an appropriate approach for plan selection, as
it supports large-scale, decentralized, and privacy-preserving decision-making. Further
details are elaborated in Chapter 4.

Drone logistics and last-mile delivery. In this scenario, drones equipped with
carrying compartments or payload system perform parcel delivery from warehouses
to customers. A possible plan of a drone specifies which customer locations it will
serve. The plan dimension d indexes customer destinations, and the value pu

ktd is a
binary variable denoting whether a delivery is made or not. The global plan, formed
by aggregating individual choices, defines the complete delivery schedule across all cus-
tomers. This overall delivery aims to meet the customer requests on expected delivery
time, i.e., minimizing the delivery delay. (The definitions are illustrated in Section 5.1)

Key considerations in this context include: (1) Logistics providers often aim to
minimize operational costs by recycling a limited number of homogeneous drones; (2)
Hard constraints are stringent, as each customer must be visited exactly once. These
factors make exact optimization tools, such as Gurobi [6], particularly suitable due to
their capability to handle problems with hard constraints efficiently. Further discussion
is provided in Chapter 5.

63

3.9 Conclusions

3.9 Conclusions

In conclusion, the PMAC model for multi-objective combinatorial optimization problem
is feasible by minimizing both individual agent costs and overall system-wide costs. Its
approach of Optimized Plan Selection (OPS) effectively handle with different levels of
constraints in the static environment by involving collective learning, hard constraint
satisfaction model and exact algorithms. In the evolving multi-agent systems, how-
ever, the approach of Hierarchical multi-Agent Learning-based Optimized Planning
(HALOP) integrates the decision-making of MARL with the coordination efficiency of
short-term optimized plan selection. This synthesis outperforms standalone MARL and
optimized plan selection method in terms of (1) discomfort and inefficiency cost min-
imization, and (2) low computational and communication overhead. The introduction
of two high-level strategies for grouping plan constraints and behavior ranges further
improves Pareto-optimal outcomes across varying scales of agent populations and plan
complexities. The discussion on multi-drone task allocation provides a proof-of-concept
for the broader applicability of PMAC.

The next two chapters introduce two complex scenarios of multi-drone task alloca-
tion whose design and implementation adopts the PMAC model.

64

Chapter 4

Coordinated Multi-Drone Navigation and Sensing

This chapter1 mainly studies how swarms of drones self-assign their tasks of sensor data
collection in areas of interest for spatio-temporal sensing. The sensing tasks includes
various Smart City applications such as traffic monitoring (see Section 2.4.1). To as-
sist swarms to complete sensing tasks efficiently, autonomous control of swarms and
allocation of sensing tasks become a niche. Coordinated sensing involves the allocation
of different sensing tasks to each drone while meeting the sensing requirements, drone
capabilities and constraints [5]. Earlier work is proposed to address the task alloca-
tion problem for efficient and large-scale spatio-temporal urban sensing by swarms of
drones [3, 146, 147]. Considering the heterogeneity and number of tasks, the prob-
lem is formulated as an NP-hard multi-objective combinatorial optimization problem
to find the optimal allocation of sensing tasks. Task allocation algorithms designed
to solve urban sensing problems range from market-based methods [52] to swarm in-
telligence [148]. To enhance robustness and minimize the effects of individual drone
failures, distributed optimization approaches have been introduced. These approaches
allow drones to autonomously self-organize and self-assign tasks in a decentralized man-
ner, preserving the autonomy of individual drones.

However, mainstream approaches for drone sensing task allocations do not achieve
scalability and long-term efficiency. This chapter discusses the two issues and corres-
ponding solutions that the PMAC model illustrated in Chapter 3 can provide:

Distributed coordination at scale. To coordinate a swarm of drones at scale for
distributed task allocation is a highly complex research endeavor. On the one hand,
coordinating the sensing tasks of drones is complex, i.e., large areas of interest, with

1This chapter is based on a published paper [22] and a paper on submission [33].

65

varying sensing requirements and time-constrained missions. Certain areas with traffic
jams or accidents may require for drones more fine-grained sensor measurements than
areas with more regular traffic patterns. On the other hand, the inherent limitations
in battery capacity influence spatio-temporal coverage. To tackle this complex task
self-assignment problem, a distributed model is introduced, namely Energy-Aware Co-
ordination of Multi-Drone Navigation and Sensing (EAC-MDNS) model. Using the
proposed OPS approach, autonomous drones share information and allocate tasks co-
operatively to meet complex sensing requirements while respecting battery constraints.

Slower is faster. Strategic foresight in navigation and sensing is crucial for optimizing
drone operations in dynamic environments, significantly influenced by flying directions
and future sensor data requirements. For example, drones aware of an expected increase
in traffic can proactively fly to those areas, improving tasks such as vehicle detection,
even if the short-term benefits are not evident. This “slower is faster” effect emphas-
izes the importance of long-term planning for overall effectiveness in drone sensing.
Therefore, the proposed approach of HALOP can be used to address long-term op-
timization. It leverages multi-agent reinforcement learning (MARL) to determine the
high-level strategies that select a group of navigation and sensing plans based on their
spatial information (e.g., flying direction), while leaving the short-term plan selection
to distributed optimization approaches. As a result, the high computation overhead
and exploration inefficiency due to exponential state-action space in traditional MARL
are overcome. This benefit becomes particularly significant when drones conduct urban
sensing over an entire day, where efficient coordination of navigation, sensing, and re-
charging is essential.

This chapter is outlined as follows: Section 4.1 defines the sensing scenario by a
swarm of drones and introduces the framework overview of EAC-MDNS model. Sec-
tion 4.2 formulates the task self-assignment problem in the evolving multi-drone sys-
tems. Section 4.3 proposes a strategy of sensing plan generation based on a power
consumption model[34] of drones, which will be used in the plan generation part of
PMAC. Section 4.4 illustrates how the proposed HALOP apply to EAC-MDNS model.
Section 4.5 evaluates the performance of both OPS and HALOP in short and long
time periods respectively. Section 4.6 compared the proposed approaches with related
methodologies that address urban sensing. Section 4.7 discusses the evaluation and
outlines future work. Finally, Section 4.8 concludes this chapter.

66

4.1 System Model

Table 4.1: Mathematical notations used in Chapter 4.

Notation Explanation

u, U,U Index of a drone; total number of drones; set of drones
m, M,M Index of a charging (base) station; total number of stations; set of stations
n, N,N Index of a grid cell; total number of grid cells; set of grid cells
s, S, S Index of a timeslot; total number of timeslots in a period; set of timeslots
t, T,T Index of a period; total number of periods; set of periods
au The action or flying direction taken by u

P u, P −u The plan of u; The observed plan of drones by u excluding P u

gns =
∑U

u=1 pu
ns The aggregated plans of all drones at cell n and timeslot s

Rn =
∑S

s=1 rns Required sensing value at cell n

V u
n =

∑S

s=1 vu
ns Collected sensing value by u at cell n

τ, τns The target; target value at cell n and timeslot s

k, K Index of a plan; total number of plans
P f(u), tf Flying power consumption of u; flying time
P h(u), th

u Hovering power consumption of u; hovering time
Cu, e Battery capacity of u; ; energy utilization ratio
Ku, Ju Cell indexes within the searching range of u; Number of visited cells within Ku

βu Behavior of u in planning optimization
σ1, σ2, σ3 Tradeoff parameters defined in the reward function
π, θπ The actor network, i.e., the policy function; the parameter of the actor network
Q, θQ The critic network, i.e., the value function; the parameter of the critic network

4.1 System Model

This section defines the key concepts of sensing scenarios. Then, the EAC-MDNS
model is introduced. Table 4.1 illustrates the list of mathematical notations used in
this chapter.

4.1.1 Definitions and assumptions

Sensing map. Consider a swarm of drones U ≜ {1, 2, ..., U} performing sensing mis-
sions, such as monitoring vehicles, over a grid that represents a 2D map. In this scenario,
a set of grid cells (or points of interest) N ≜ {1, 2, ..., N} are uniformly arranged to
cover the map. The primary goal of the drones is to coordinate their visits to these cells
to collect the required data. Furthermore, a set of base stations (or charging stations)
M ≜ {1, 2, ..., M}, from which the drones depart from and return to, are located at

67

4.1 System Model

fixed coordinates on the map.

Time periods and slots. A set of time periods is defined as T ≜ {1, 2, ..., T}.
Each time period can be divided into a set of equal-length scheduling timeslots S ≜

{1, 2, ..., S}. In each timeslot, a drone can be controlled to fly to a cell and hover to
collect sensor data.

Matrix of plans. To explain the short-term navigation and sensing of drones over
the cells and timeslots in a period t, t ∈ T, a possible plan of a drone u is introduced,
denoted by P u

k (t), where k denotes the index of a plan in the generated plan set,
k ≤ K. P u

k (t) represents the specific navigation and sensing details, including the
visited cells and corresponding energy consumption. The plan P u

k (t) is encoded by
a matrix of size N × S, with each element represented as pu

kns(t) ∈ {0, 1}. Here,
pu

kns(t) = 1 denotes that the drone u hovers and collects all required data at cell n at
timeslot s, whereas for pu

kns(t) = 0 the drone does not hover at that cell at that time.
Moreover, P −u(t) = {p−u

ns (t)|n∈N,s∈S} denotes the plans observed by drone u in time
period t, indicating that it incorporates and sums the selected plans of all other drones
excluding its own. Based on the binary variable xu

k(t), which is similar to Section 3.1,
the aggregated plans of all drones (i.e., the global plan) observed by u at cell n and
timeslot s is formulated as follows:

gns(t) = pu
kns(t) · xu

k(t) + p−u
ns (t). (4.1)

Matrix of required sensing values. In the context of a sensing task, each cell
at a timeslot has specific sensing requirements that determine the data acquisition
goal of drones. Such sensing requirements can be determined by city authorities as
a continuous kernel density estimation, for example, monitoring cycling risk based on
requirements calculated by past bike accident data and other information [149]. The
high risk level of a cell at a timeslot represents the high importance of sensing (e.g., the
crucial intersection of traffic flow), and thus a high number of required sensing values is
set. The matrix of required sensing values at cell n is denoted as Rn(t) = ∑S

s=1 rns(t),
where rns(t) denotes the required sensing value at cell n and timeslot s in the time
period t. Based on actual sensing performance of drones according to Eq.(4.1), the
sensing value collected by all drones observed by u at cell n is formulated as:

V u
n =

S∑
s=1

vu
ns =

S∑
s=1

pu
ns(t) · rns(t). (4.2)

Matrix of target. In a real-world scenario, drones lack prior knowledge of the amount

68

4.1 System Model

of required sensing values before they begin their sensing operations. Therefore, it
becomes essential to build a target on the fly that instructs the drones regarding when
and where they should or should not fly to given information from the environment.
The matrix of the target is defined as τ(t), which denotes the sensing requirements for
all drones at period t. The element of the target is denoted as τns(t) = {0, 1}, n ∈ N,
s ∈ S, where τns(t) = 1 requires only a drone to visit the cell n at timeslot s, and
τns(t) = 0 does not require sensor data collection by a drone.

Assumptions. Note that our model addresses task allocation problem for drone
swarms, i.e., determining what tasks to perform and where to sense, rather than focus-
ing solely on control and communication strategies that govern how tasks are executed
(e.g., collision avoidance or minimizing latency). Therefore, to simplify the scenario,
this paper makes the following assumptions: (1) Each drone is programmed to fly
at a distinct altitude during its movement between cells to prevent mid-air collisions
risks [150]. While previous work [151, 152] has explored a safe and cost-effective ap-
proach to a more realistic collision avoidance, this is not the primary focus of this
chapter. (2) Each time period concludes a flying period and a charging period: the
time that drones perform sensing, and the time for charging. All drones finish charging
before the next time period begins. This chapter assumes that each charging period is
of equal duration and provides sufficient time for the drones to be fully charged. (3)
Each charging station is adequately equipped with charging capacity, enabling multiple
drones to charge simultaneously without the need for queuing. This arrangement pre-
vents any delays in the charging process. (4) Drone computations are offloaded to a
remote edge-to-cloud infrastructure, where decisions are made based on data reliably
transmitted from the drones via stable communication links [153, 154].

4.1.2 System overview

As shown in Fig. 4.1, a swarm of drones that perform sensing over a grid-a 2D map
over the spatial illustrative model. A dispatch u is defined as a sensing task between
the departure and return of a drone. Drones are equally distributed over these base
stations, and have to return to the original base stations from which they depart.

Sensing map requirements. In the context of a sensing task, each cell n at a time
period t has specific sensing requirements that determine the hovering duration and
data acquisition of drones. For example, see Fig. 4.1. It is assumed that the cell A

69

4.1 System Model

A

B

EDC

A

B

EDC

Sensing Map Requirements:

Base

Station

Plan Generation:
Navigation and Sensing Options

Plan Selection:① ② ③ ④
EPOS Collective Learning

 300 240 360 240 360

A B C D E

 10 0 12 8 0

 20 16 0 0 0

 0 0 0 14 22

A B C D E

Point Coordinates and Target

Selected Plans Execution:

Tasks Completion and Evaluation

 10 0 12 8 0

 0 14 22 0 0

Sensing Target Generated Plans
Selected Plans

…

 300 228 372 222 378

Total Sensing Values

Energy

0.4

0.3

0.3D
ro

n
e

1
D

ro
n

e
2 0 0 0 14 22

 0 14 22 0 0

 0 0 18 0 18

0.3

0.4

0.3

…

Path 1

Path 2 Path 3

Required Number of Sensing Values Planned Number of Sensing Values

 300 240 360 240 360

 0 -12 12 -18 18

(+) (-)

Over-sensing
Under-sensing

Figure 4.1: Framework overview of the EAC-MDNS model.

requires the total sensing values of 300 at a time period. The sensing requirements
of cells at a time period are set as the targets encoded by a vector of size N , e.g.,
{300, 240, 360, 240, 360}.

Plan generation. To coordinate the allocation of sensing tasks, the drones use the
proposed OPS. Given the sensing map, each drone, controlled by a local software agent,
autonomously generates a finite number of discrete navigation and sensing alternatives,
which provide flexibility for the drones to choose in a coordinated way. Each altern-
ative has sensing details as well as an estimated energy consumption; the alternatives
are referred to as the possible plans and each comes with a (normalized) cost respect-
ively. For instance, a plan encoding that a drone travels and hovers over the cells A,
C and D to collect respectively 12, 10 and 10 sensing values over a time period is
encoded with: {12, 0, 10, 10, 0} with N = 5. The energy consumed by a drone that
carries out its planned tasks is calculated via a power consumption model [34] with
input the specification of the drone (weight, propeller, and battery parameters). This
model can estimate the cost of navigation and sensing plans, and emulates the outdoor
environments [26].

Plan selection and execution. To make coordinated plans selection, the agents of
the drones connect into a tree communication structure within which each interacts

70

4.2 Problem Statement and Formulation

with its children and parent in a bottom-up and top-down fashion to improve plan
selections iteratively [18]. The objective of this method is to select the optimal plan
for each agent such that all choices together add up to maximize the sensing quality:
the overall sensing data collected by all agents matches well the required data (target,
see Fig. 4.1). In contrast, the sensing accuracy is a result of over-sensing and under-
sensing. For instance, in Fig. 4.1, the sensing value of 372 for which drones hover
over the cell C exceeds the requirements of 360 (over-sensing), whereas drones hover
over the cell E to collect 222 sensor values that is lower than the requirements of 240
(under-sensing).

4.2 Problem Statement and Formulation

This chapter aims to solve the task self-assignment problem for urban sensing in the
evolving multi-drone systems. Based on the defined scenarios settings and assumptions,
the problem can be stated as: To find optimal navigation and sensing operations of a
swarm of drones U over all time periods T such that drones can efficiently and ac-
curately collect required sensing data while minimizing their energy consumption. The
navigation and sensing of a drone u at time t is denoted by the plan P u(t). The effi-
ciency and accuracy of sensing data collection as well as the energy consumption serve
as the performance metrics.

The scenario of a swarm of drones that perform sensing is modeled, which considers
the following performance metrics: (1) mission efficiency; (2) sensing accuracy; and (3)
energy cost.

Mission efficiency. It denotes the ratio of sensing values in all cells at all timeslots
collected by the drones during their mission over the total required values in all cells
at all timeslots during the period t. The purpose is to collect sensing data as much as
possible. It is formulated as:

Eff(t) =
∑U

u=1
∑N

n=1 V u
n (t)∑N

n=1 Rn(t)
. (4.3)

However, maximizing this metric leads to sensing imbalance and even blind areas.
Some cells may be covered for a long time while some other cells may be never covered,
i.e., the over-sensing and under-sensing [22]. Over-sensing causes excessive data that
needs further processing, waste of energy consumption, high storage and privacy cost,
while under-sensing fails to satisfy sensing requirements. As a consequence, the gen-

71

4.2 Problem Statement and Formulation

eration and selection of high-quality plans are required to eliminate over-sensing and
under-sensing. Thus, it is necessary to consider matching indicators such as the sensing
accuracy [22] to access such imbalances.

Sensing accuracy. It denotes the matching (correlation1) between the total sensing
values collected and the required ones. The metric is formulated as follows:

Acc(t) =
√

N · S∑N
n=1[∑U

u=1 V u
n (t)−Rn(t)]2

. (4.4)

Apart from improving the efficiency and accuracy of drone sensing, the energy
consumed by drones needs to be saved.

Energy cost. It is the battery usage of drones to perform urban sensing. A power
consumption model [93] is used to calculate the power consumption with input the
specification of drones (weight, propeller and power efficiency). This model estimates
the cost of navigation and sensing plans, and emulates the outdoor environments [26].
The energy cost of each drone u is formulated as:

Eu(t) = P f(u) · tf + P h(u) ·
∑N

n=1 V u
n

f
, (4.5)

where P f(u) and P h(u) denote the flying and hovering power consumption of u re-
spectively; tf is the total flying time of u without hovering, which is determined by the
sensing plan P u(t); f is the frequency with which drones collect sensor data as they
hover over a cell.

The goal of the proposed system is to find the optimal plan for each drone u ∈ U,
i.e., determining which cells a drone visits and how many sensor values it collects over
a time period. The problem is formulated as follows:

max
V u

n ,u∈U,n∈N

T∑
t=1

Eff(t), (4.6)

max
V u

n ,u∈U,n∈N

T∑
t=1

Acc(t), (4.7)

s.t.
∑
u∈U

∑
n∈N

V u
n ≤

∑
n∈N

Rn, (4.8)

Eu(t) ≤ Cu,∀t ∈ T. (4.9)
Objective (4.6) measures the accomplishment of sensing tasks. Objective (4.7) meas-

1Error and correlation metrics (e.g. root mean squared error, cross-correlation or residuals of
summed squares) estimate the matching, shown to be NP-hard multi-objective combinatorial optimiz-
ation problem in this context [18, 39].

72

4.3 Sensing Plan Generation Strategy

Algorithm 4: The local sensing plan generation strategy for each drone.
Input: Power consumption of drone u for flying P f

u and hovering P h
u , the battery capacity

Cu, the targets T = (T1, ..., TN) and their coordinates, the base station m for
departure/return and its travel range Ku, the total number of visited cells |Ju|, the
number of generated plans K.

1 Initialization: Initialize a set of plans P̂ = ∅
2 for each plan index k := 1, ..., K do
3 Path calculation: Find Ju via the K-nearest search within the range Ku

4 Find the shortest path among visited cells and base station m via the greedy algorithm
5 Energy calculation: Calculate the flying energy Ef(Ju) based upon the path;

Determine the energy utilization ratio e based on p via Eq.(4.15)
6 Calculate the maximum hovering energy Eh(Ju) via Eq.(4.16)
7 Calculate the total sensing values V (Ju) to collect via Eq.(4.17) and the total targets

T (Ju) via Eq.(4.19)
8 Sensing allocation: Allocate the sensing values V u

n proportionally to the visited cells
via Eq.(4.18)

9 Plan generation: Calculate the cost of the plan E(Ju) via Eq.(4.20)
10 Generate the plan P of size N × M , and add it to the set P̂ of sensing plans with E(Ju)
11 end

Output: Set of plans P̂ for drone u.

ures the over-sensing and under-sensing. Equation (4.8) limits the total sensor value
collected by drones to the required one at maximum. Constraint (4.9) models the
energy constraint of the drone u, where C(u) is the battery capacity of drone u.

4.3 Sensing Plan Generation Strategy

OPS optimizes sensing quality via a coordinated selection among alternative plans
generated locally by the drones (i.e., navigation and sensing options). However, plans
generation also results in a series of new problems, including how to select the cells,
how to determine collected sensing values, how to calculate the energy cost of a plan,
and how to prevent more than two drones to occupy the same cell at the same time.
Therefore, a novel plan generation strategy is proposed to solve these problems such
that drones coordinate efficiently to achieve high-quality sensing. Algorithm 4 outlines
the following steps of the proposed plan generation strategy for a swarm of drones.

Initialization. Given a drone u, the inputs of the algorithm are listed: The flying and
hovering power consumption are calculated based on the power consumption model [34].

73

4.3 Sensing Plan Generation Strategy

The parameters of drone u {mb, me, d, r, v, Fd, e} and environmental parameters such
as air density and air speed are determined (see Table 4.2 and Appendix A). Each
drone u also needs the information of the map including the coordinates and sensing
requirements of cells, as well as the base stations of departure and return.

Next, according to the objective functions of Eq.(4.7) and (4.6), the total number
of visited cells |Ju| is determined empirically using one of the three policies: (1) max
sensing accuracy, (2) max mission efficiency, and (3) balance. Max sensing accuracy
focuses on avoiding over-sensing and under-sensing, while max mission efficiency min-
imizes the uncollected sensing data. The policy for balance is a trade off between the
first two policies. The policy of max sensing accuracy has a larger number of visited
cells, while max mission efficiency has a lower one. The two theorems in Appendix B
provide the theoretical foundations behind the design of these policies. The algorithm
also initializes the set P̂ for the plans of drone u.

Path calculation. At the beginning of each round, the algorithm finds the set of
visited cells indices Ju via the K-nearest search. It selects the first cell randomly from
a range of cells Ku, which indicates the flight range of drone u. This range is calculated
based on the relative distance between base stations. Then, the algorithm searches the
nearest cell (within Ku) to the previous selected one until finding other |Ju| − 1 cells.
After this, the algorithm finds the shortest possible path among the cells of Ju and
the base station m via the greedy algorithm for traveling salesmen problem [155], and
calculates the traveling time τu excluding hovering. Note that the drone returns to m

at the end of period, and thus the path starts and ends at m. Taking an example in
Fig. 4.1, the first plan of Drone 1 has the set of visited cells {A, C, D}.

Power consumption model. Drones spend energy to surpass gravity force and
counter drag forces due to wind and forward motions [93]. A drone controls the speed
of each rotor to achieve the thrust T and pitch θ necessary to stay aloft and travel
forward at the desired velocity while balancing the weight and drag forces. For a drone
with mass mb and its battery with mass mc, the total required thrust is defined as
follows:

T = (mb + mc) · g + Fd, (4.10)
where g is the gravitational constant, and Fd is the drag force that depends on air
speed and air density. For steady flying, the drag force can be calculated by the pitch

74

4.3 Sensing Plan Generation Strategy

angle θ as:
Fd = (mb + mc) · g · tan(θ). (4.11)

Building on the model in [34], the power consumption with forward velocity and forward
pitch is given by:

P f = (v · sinθ + vi) ·
T

ϵ
, (4.12)

where v is the average ground speed; ϵ is the overall power efficiency of the drone; vi

is the induced velocity required for given T and can be found by solving the nonlinear
equation:

vi = 2 · T
π · d2 · r · ρ ·

√
(v · cosθ)2 + (v · sinθ + vi)2 , (4.13)

where d and r are the diameter and number of drone rotors; ρ is the density of air.
Moreover, the power consumption for hovering of a drone is calculated by:

P h = T3/2

ϵ ·
√

1
2π · d2 · n · ρ

. (4.14)

Energy calculation. The algorithm determines the maximum energy consumption
Emax

u of the drone before calculating the collected sensor values and the corresponding
energy cost. The algorithm uses the energy utilization ratio e to compute the maximum
energy constraint Cu · e. The ratio can be expressed as:

e = 1− k

δ ·K
, (4.15)

where δ is a constant to determine energy utilization. The ratio limits the energy
consumption of drones, and gives them flexibility to select plans with varying cost, i.e.
energy consumption. Next, the algorithm calculates the hovering energy consumption
Eh(Ju) using the flying power consumption P f

u:
Eh(Ju) = Cu · e− Ef(Ju),

= Cu · e− P f
u · τ(Ju).

(4.16)

The total sensor values to collect among Ju visited cells V (Ju) is then calculated as
follows:

V (Ju) =
∑
n∈N

V u
n = Eh(Ju)

P h
u

· f, (4.17)

where P h
u is the power consumption for hovering. Both P f

u and P h
u are computed by

the power consumption model [34] (see Appendix A).

Sensing allocation. To determine V u
n in each cell n, the algorithm allocates the

collected sensor values among Ju visited cells proportionally to the target; a higher
number of sensor values is collected from the cell with a higher target value. The

75

4.3 Sensing Plan Generation Strategy

D
ro

n
e

1
D

ro
n

e
2

Plans in selected

flying directions
Selected plans

O E

SE S

O N

NE E

Possible plans

E

NE

Start

Stop

End of Period?

YES

NO

① ② ③ ④

⑤

Aggregated plan

Path 2

Path 1 Path 1

Path 1

Path 2

Drone 1

Drone 2

Path 1

Path 2

(+)

Overall navigation

and sensing

Path 2Path 2

O
v
er

a
ll

 F
lo

w

⑥

Path 1 Path 1

Plan

selection

Plan

selection

N

E

S

W

NE

SE

NW

SW

O

M
u

lt
i-

a
g
en

t

re
in

fo
rc

em
en

t

le
a
rn

in
g

M
u

lt
i-

a
g
en

t

re
in

fo
rc

em
en

t

le
a
rn

in
g

DRL-based

scheduling

DRL-based

scheduling

Plan

generation

Plan

generation

P
er

io
d

ic
 s

ta
te

u
p

d
a
te

P
er

io
d

ic
 s

ta
te

u
p

d
a
te

Figure 4.2: System framework of HALOP used in coordination of multi-drone naviga-
tion and sensing.

equation is shown as follows:

V u
n =

 V (Ju) · Rn
T (Ju) , n ∈ Ju

0, otherwise
, (4.18)

where T (Ju) =
∑

n∈Ju

Rn. (4.19)

The proportional sensing allocation aims to improve the matching between the total
sensor values collected and the required ones. Its high performance is also proved by
comparing it to the equal allocation (mean) V u

n = V (Ju)
|Ju| .

Plan generation. With the energy consumption of hovering and flying, the algorithm
computes the cost of the plan E(Ju):

E(Ju) = Cu · e. (4.20)
Finally, the algorithm generates the plan and adds it with the corresponding energy
cost to the set P̂.

76

4.4 Learning-based Approach for Sensing

4.4 Learning-based Approach for Sensing

This section aims to leverage the proposed approach of HALOP to the EAC-MDNS
model. In this scenario, HALOP integrates distributed multi-drone coordination for
short-term navigation and sensing optimization with long-term scheduling of flying
directions. Fig. 4.2 illustrates the designed system framework of HALOP used in co-
ordination of multi-drone navigation and sensing, consisting of three main components:

MARL-based scheduling. This component is the core of the framework, which
leverages the MARL algorithm to enable drones to take the actions of overall flying
directions between departure and destination charging stations in each time period.
Thus, these actions are executed period-by-period, with each made only after the drone
completes its sensing missions in the current period. The component includes two
elements: a periodic state update, which updates the state of drones for MARL-based
scheduling in the next period, and a multi-agent reinforcement learning module, which
is built based on centralized training and decentralized execution.

Plan generation. This component generates the navigation and sensing options for
drones under the chosen flying direction from the MARL-based scheduling component.
Given the sensing map, each drone autonomously generates a finite number of discrete
plans to initialize the overall process. This provides flexibility for the drones at the
next stage to choose in a coordinated way.

Plan selection. This distributed component leverages multi-agent collective learning
to coordinate drones to locally select the optimal navigation and sensing options from
their generated plans within a period.

The HALOP process works as follows: Each drone initially generates a set of plans.
It then selects a flying direction and chooses a subset of plans aligned with that direc-
tion. Each drone autonomously picks a plan from this subset, shares it with the swarm,
and observes others’ choices. Based on its action and observations, the drone calculates
a reward function and updates its state (including location, battery level, and sensing
requirements), and stores these results in a multi-agent reinforcement learning buffer
to refine its flight strategies. This cycle of MARL-based scheduling and plan selection
repeats at each time period until the mission is complete. However, HALOP requires
frequent information sharing, which makes communication inefficient and vulnerable to
potential failure of individual drones. The training process of HALOP applied in the

77

4.4 Learning-based Approach for Sensing

Algorithm 5: The HALOP training for multi-drone navigation and sensing.
1 Randomly initialize critic network Q(·), actor network π(·) with parameters θQ, θπ

2 for episode := 1 to max-episode-number do
3 Reset the sensing requirements and the state of drones
4 for period t := 1 to max-episode-length do
5 for ∀u ∈ U do
6 Take action: Au

t = π(Su
t |θπ)

7 Find the flight range Ku under the flying direction Au
t

8 Generate plans through Algorithm 4
9 Select an optimized plan through collective learning [18]

10 Obtain the next state and reward via Eq.(4.21)
11 Store transition sample (Su

t , Au
t , Ru

t , Su
t+1) into buffer

12 Sample a random mini-batch of H samples from buffer
13 end
14 end
15 Estimate advantage via Eq.(3.18)
16 Calculate the probability ratio via Eq.(3.19)
17 Update θπ by minimizing the loss via Eq.(3.20) (3.21)
18 Update θQ by minimizing the loss via Eq.(3.22)
19 end

multi-drone navigation and sensing is illustrated in Algorithm 5. Here, the multi-agent
reinforcement learning used in HALOP is illustrated in Section 3.4.3.

4.4.1 MARL modeling

The core design of HALOP lies in applying MARL on the multi-drone sensing prob-
lem. Once drones take actions of flying directions, they execute plans and return to
charging stations, changing their current locations and battery levels while observing
the navigation and sensing of other drones. Therefore, the problem scenario can be
explained into a Markov decision process [156]. The problem is modeled using state,
action, and reward concepts:

(1) State: The state st at period t consists of four components (S1, S2, S3, S4), where
S1 is the current locations of drones. Since drones charge at charging stations before
taking actions, the location can serve as the index of the charging station. S2 is the
current battery levels of drones, which are calculated based on the energy cost. S3 =
{P u(t)|u∈U} is the selected plan of u. S4 = {P −u(t)|u∈U} is the aggregated plan of

78

4.4 Learning-based Approach for Sensing

So
ut
he
as
t

① Find searching
range (shadow)

② Choose visited
cells (circle)

③ Find the shortest
path (arrow)

④ Calculate energy
consumption 𝐸(𝑎!, 𝑡)

⑤ Generate a plan
𝑃!(𝑎!, 𝑡)

Figure 4.3: Process of path finding in plan generation.

other drones excluding u, which are shared via the structured communication model.
(2) Action: To explain the long-term navigation and sensing over all periods, the

period-by-period actions of each drone at = {a1
t , ..., aU

t } at period t are introduced,
where au = {0, 1, 2, ..., 8}, u ∈ U. It means to control u to move horizontally along
eight directions, which are 1 = north (N), 2 = east (E), 3 = south (S), 4 = west (W), 5
= northeast (NE), 6 = southeast (SE), 7 = southwest (SW), and 8 = northwest (NW),
or return to the origin (au = 0). Under each action, u executes a short-term navigation
and sensing. After completing its sensing tasks, u flies back to one of the charging
stations to recharge fully and resume work in the next period t + 1.

(3) Reward: Based on the objective functions of Eq.(4.6) and (4.7), the expected
immediate local reward of one drone at period t is defined as follows:

ru
t = σ1Eff(t) + σ2 ·Acc(t)− σ3Eu(t), (4.21)

where σ1, σ2 and σ3 denote the tradeoff parameters to normalize and balance the
mission efficiency, sensing accuracy and energy cost. Throughout the training process
or episodes, the overall reward fluctuates based on the actions taken by the drones.
This helps drones in prioritizing areas rich in sensor data by maximizing their reward,
i.e., the highest cumulative overall performance.

4.4.2 Plan generation and selection

The action enable each drone to generate the plans under the corresponding flying
direction. The plans generated by drone u during a period is defined as Gu(t) ∈ P̂,
where each plan has the same action, P u(t) ∈ Gu(t). Similar to the plan generation
strategy in Section 4.3, a single plan is generated based on searching (flight) range
Ku of drone u, number of visited cells within Ku, and the energy Eu(t) consumed by
u traveling over the visited cells, which is defined as P u(au, t) = {k, Ku, Ju, Eu(t)}.

79

4.4 Learning-based Approach for Sensing

The searching range Ku is determined by a certain width (equal to half of distance to
nearest charging station) along its flying direction, and then searches the cells within
this range, see Fig. 4.3.

Given the plans in selected flying directions within a period, drones can adapt
their task allocation by selecting appropriate plans in response to changes in task
targets, enhancing their adaptability in dynamic environments. In this process, the
agents of drones improve their plan selections via tree communication. Specifically,
each agent obtains the aggregated choices, i.e., the aggregated plan P −u(au, t), from
other agents, and chooses one of the plans P u(au, t, l) such that all choices together
P u(au, t) + P −u(au, t) add up to match a target τ(t). The target is used to steer each
drone to sense over a unique cell during a timeslot, thereby avoiding the simultaneous
sensing of multiple drones within the same cell, i.e., preventing over-sensing and under-
sensing.

After generating plans, each drone coordinates to select its optimized plan, indicat-
ing a specific path within a period (comprising multiple timeslots). The plan selection
utilizes multi-agent collective learning in the low-level layer. More details will be illus-
trated in the algorithm settings of Section 4.5.

4.4.3 Periodic state update

After choosing a plan, each drone changes its current state at the next period t + 1,
including its location, battery level, selected plan P u(t + 1) := P u(au, t), and observed
plan P −u(t+1) := P −u(au, t). However, due to dynamic changing environment, drones
have no knowledge about the required sensing value in the next period. They need to
predict and estimate the required sensing value to calculate reward function via Eq.(4.3)
and (4.4). Depending on the predicted distribution of sensor data, the target is required
to be updated.

Predicted sensing value. The predicted sensing value at period t, denoted as V̂ (t),
is updated in a time-reverse decay, formulated as follows:

V̂ns(t) =
t∑

t′=1
(T − t + t′) · ωns(t′) · v′

ns(au, t′) := Vns(t), (4.22)

where V ′
ns denotes the data values collected by drones once they execute their selected

plans; ωns(t′) is a prediction coefficient such that 0 < ωns(t′) < 1, t′ ≤ t. To achieve
accurate predictions, HALOP leverages the Ordinary Least Squares regression method

80

4.5 Experimental Evaluation

(OLS) to train these coefficients initially, and use the past experienced observations as
the target distribution for training.

Target. The target τ in the plan selection needs to be iteratively updated to steer the
coordination of drones to choose plans for areas and timeslots with abundant sensor
data. The percentile-based data filtering is used to eliminate the extreme low sens-
ing values collected by drones. This approach effectively removes the need for data
collection in regions with low sensing requirements (e.g., traffic exclusion zones). As
a consequence, it helps drones in prioritizing their operations in cells and time where
sensing values are significantly high. The target is initialized as τns(0) = 1 to encompass
all cells and timeslots, and update it as follows:

τns(t) =

 0, rns(au, t) < v ∧ gns(t) > 0
τns(t− 1), otherwise

, (4.23)

where the threshold v is set iteratively and calculated as the value at the 100(1−U/N)th
percentile among the predicted data values V̂ns(t).

At the end of state update in HALOP, the current collected data values V ′
ns, the

predicted values V̂ns and the target τ are shared with each agent via the top-down
interactions within the tree communication structure. This information will be stored
and later sampled for multi-agent reinforcement learning.

4.5 Experimental Evaluation

This section introduces the experimental settings including the sensing map, the drones
and the algorithms at first. The metrics and baselines used for the performance evalu-
ation are also introduced.

4.5.1 Experimental settings

Static sensing scenarios. This scenario assumes a static sensing environment over a
long time span in order to evaluate the OPS approach. In other words, the repeated
use of individual drones is not considered-only the total number of drones dispatched
is taken into account. Each drone can be deployed at any time during the day, and
there is no requirement to monitor temporal changes in the sensing environment. In
this scenario, a square area of size 1600 × 1600 meters split into a finite number of
cells is studied. Each cell is defined as a rectangular square that can be captured by

81

4.5 Experimental Evaluation

the cameras of drones (see Fig. 4.1). The target values, or the sensing requirements
of hovering time are distributed according to a Beta distribution. The base (charging)
stations are uniformly distributed in the map. There are three types of scenarios for
the experimental evaluation:

• Basic static sensing scenario. It has 4 base stations, 64 cells and the total target
values of 20000 to collect over 48 time periods, which correspond to one day. Each
period lasts 30 minutes and is divided into 12 time units, each of equal length.
This scenario dispatches 1000 drones over all periods, during which approximate
20 drones sense the area (camera recording) in parallel. The purpose to use this
map is to compare the performance of different plan generation policies in the
proposed method.

• Complex static sensing scenario. It varies the parameter settings such as the
number of dispatches, the number of base stations and cells as well as the total
target values. The goal is to assess the scalability of the proposed method in
different experimental conditions.

• Static transportation scenario. It originates from the central business district of
Athens, where a swarm of drones use cameras to record traffic flows. The goal
is to assess the accuracy and efficiency of the proposed method in the real-world
traffic monitoring. More details are given in Section 4.5.4.

For the validation of the proposed algorithm, a number of 200 sensing scenarios (in
basic and complex) are generated, each with a new distribution of cells and target
values.

Evolving transportation scenarios. This scenario aims to simulate a realistic and
evolving sensing environment. In order to evaluate the HALOP approach, a real-world
transportation scenario is modeled, where a swarm of drones perform the sensing tasks
of traffic monitoring. The number of vehicles serves as the required sensing value in
the model. The experimental scenario is based on a detailed traffic flow of Munich,
Germany. A realistic traffic distribution is generated using real-world traffic flow data1

representing actual vehicle journeys within the city [153], integrated with the SUMO
(Simulation of Urban Mobility) traffic simulator2. To model dynamic traffic behavior

1Munich IoT Benchmarking Dataset, available at: https://github.com/Znbne/MunichIoT.
2SUMO, available at: https://www.eclipse.org/sumo/.

82

4.5 Experimental Evaluation

Drone
Charging
station Vehicle Road

Drone
trajectory

200

200

Meter400 600 800 1000 1200 1400 1600

400

600

800

1000

1200

1400

1600
Meter

0

(a)

(b)

(c)

(d)

Figure 4.4: Multiple scenarios in central business district of Munich, Germany.

C

A B

D C

A B

D

High density of vehicles Low density of vehicles

Figure 4.5: The distribution of both charging stations and traffic vehicles in the maps
with high and low density of vehicles.

and improve the realism of vehicle routing, the duaIterate algorithm1 is employed to
iteratively refine the vehicle routes to optimize traffic flow and mitigate congestion [153,
154].

Fig. 4.4 illustrates a selected map of 1600 × 1600 meters in the city with the sim-
ulation time of 50 hours, which is 100 periods. It has a high density of vehicles,
approximately 2, 000 vehicles passing by per hour. The area split into a finite number
of cells, each is defined as a rectangular square with the size of 200× 200 meters that
can be captured by the cameras of drones. Fig. 4.5 shows the distribution of both char-

1Duarouter, available at: https://sumo.dlr.de/docs/duarouter.html.

83

4.5 Experimental Evaluation

Table 4.2: Notations for sensing drones.

Notation Value

Mass of drone body 1.07kg

Mass of battery 0.31kg

Diameter of propellers 0.35m

Number of propellers 4
Ground speed 6.94m/s

Power efficiency e = 0.8
Battery capacity Cu = 160kJ

Sensing frequency f = 60 seconds

ging stations and traffic vehicles in the map. There are 4 charging stations uniformly
distributed in the map with 64 = 8 × 8 cells lined up over the map. The blue arrows
symbolize the flow of vehicular traffic, with their length proportional to the volume of
vehicles over 8 periods. The charging stations are uniformly distributed in the map.
The cross-validation is employed: 80% simulation time of the datasets for training and
20% for testing. There are two scenarios for the experimental evaluation:

• Basic evolving transportation scenario. It has 64 cells, 4 charging stations and
8 time periods (set as 30min for each period). It has high density of vehicles,
around 2, 000 vehicles passing by per time period. 16 drones sense the area
(camera recording) in parallel.

• Complex evolving transportation scenario. It varies the parameter settings such
as the density of drones and vehicles, as well as the number of time periods,
cells and charging stations. Therefore, multiple scenarios are defined as shown
in Fig. 4.4: (a) Basic evolving transportation scenario with 64 cells, 4 charging
stations and high density of vehicles; (b) Increase the number of cells to 100; (c)
Increase the number of charging stations to 9; (d) Change to a new map with low
density of vehicles.

Drones. The drones used in the scenarios are of the same type (DJI Phantom 4
Pro), equipped with the same type of battery (6000 mAh LiPo 2S) and camera (4K)
to capture images/videos1, and thus they have the same power consumption [34] and

1https://www.dji.com/uk/phantom-4-pro/infospecs

84

4.5 Experimental Evaluation

battery capacity. To ensure the camera of a drone covers the whole area of a cell (see
Fig. 4.1), the minimum hovering height of drones is determined at which the field of
view of the camera and the cell overlap. Based on the distance between any two cells
D (approximately 200 meter in the basic static sensing scenario), the hovering height
H is computed using the pixels PX, focal length derived from the camera calibration
CC and ground sampling distance GSD, with the formula: H = GSD · CC/PX [157].
Thus, each drone is equipped with a 4K camera, sensing from a minimum height of
164.8 meter based on the pixels and field of view that a 4K camera has. The drone
parameters and their description are summarized in Table 4.2.

Performance metrics. To evaluate the sensing quality, i.e., the accomplishment of
sensing targets, three performance metrics are introduced:

• Energy cost. It denotes the total energy consumption of drones that execute
the sensing missions defined by their selected plans over all time periods. It is
formulated as Eq.(4.5).

• Sensing accuracy. It denotes the matching (correlation) between the total sensing
values collected and the target values. A high sensing accuracy prevents the cases
of over-sensing and under-sensing [26]. It is formulated as Eq.(4.4).

• Mission efficiency. It denotes the ratio of sensing values in all cells that are
collected by the drones during their mission over the total target values in all
cells. It is formulated as Eq.(4.3).

In simple words, the sensing accuracy measures the data sampling quality, while the
mission efficiency measures the completeness of the required collected data. Further-
more, to obtain a comprehensive assessment that considers all three metrics, an overall
performance evaluation is conducted using Eq.(4.21).

4.5.2 Algorithm settings and baselines

To ensure the decentralization and scalability, both OPS and HALOP used in sensing
scenarios leverage a multi-agent collective learning algorithm of I-EPOS [18, 39] in the
plan selection. Its purpose is to match the aggregated plans of all agents to the target
while minimizing the energy cost E(au, t) of the plan selected by the drone. The cost

85

4.5 Experimental Evaluation

Table 4.3: Parameters of the I-EPOS algorithm.

Parameters Value

Number of agents/drones 1000
Number of plans per agent 64
Network communication topology balanced binary tree
Number of repetitions 40
Number of iterations 40
Non-linear cost function Min RMSE
Energy utilization parameter δ = 8
Behavior of agent βu = 0
Number of tested maps 200

function for each agent is formulated using the root mean square error (RMSE):

min
au,u∈U

(1− βu) ·

√∑N
n=1

∑S
s=1[gns(t)− τns(t)]2

N · S
+ βu · E(au, t), (4.24)

where βu represents the behavior of a drone. As the value of βu increases, the drone
becomes increasingly selfish, prioritizing plans with lower energy costs at the expense
of higher root mean squared error. Each drone aims to minimize the system-wide cost
of sensing while considering its energy consumption.

The details of algorithm settings in both collective and reinforcement learning are
illustrated as follows:

Economic planning and optimized selection. During the coordinated plan selec-
tion via I-EPOS, agents, which are mapped to drones, self-organize into a balanced
binary tree as a way of structuring their learning interactions [18]. The algorithm re-
peats 40 times by changing the random position of the agents on the tree1. At each
repetition, the agents perform 40 bottom-up and top-down learning iterations during
which RMSE converges to the minimum optimized value. Table 4.3 summarizes the
optimization parameters of I-EPOS.

Neural network and learning algorithm. In the reward function, the tradeoff
parameters σ1, σ2 and σ3 are all set to a value of 1. The proximal policy optimization
is used in HALOP to improve the stability of learning process [135]. A total of 64 groups
of transitions are sampled as mini-batches in a replay buffer, with a discount factor of

1More information about the influence of the tree topology and agents’ positioning on the tree is
illustrated in earlier work [64, 158].

86

4.5 Experimental Evaluation

0.95 and a clip interval hyperparameter of 0.2 for policy updating. The algorithm uses
the recurrent neural network (RNN) with W = 64 neurons in the two hidden layers
of the RNN in both critic and actor networks. The activation function used for the
networks is tanh. The models are trained over 5000 episodes, each consisting of multiple
epochs (equal to the number of time periods).

A fair comparison of the proposed methods with related work is not straightforward
as there is a very limited number of relevant decentralized and learning algorithms.
These algorithms [29, 48] cannot be directly applied to this large-scale task alloca-
tion problem while respecting the energy constraints of drones. For this reason, four
state-of-the-art centralized sensing methods capable of performing multi-drone task op-
timization are used to compare with the proposed OPS : Greedy-sensing [159], Round-
robin [160], Min-energy [18], and MAPPO [137]:

• Greedy-sensing. It requires a drone to complete the required sensing tasks of
the cells one by one without violating the battery constraint. This method re-
duces the number of visited cells and traveling distance compared to the proposed
method; drones spend more energy on sensing than traveling. The method is im-
plemented on a centralized coordinator has a global view of the remaining sensor
values required such that over-sensing and under-sensing are prevented. Table 4.4
illustrates the higher performance of the method with a global view vs. a version
with a local view, i.e., no knowledge of the remaining sensor values required.

• Round-robin. It comes in sharp contrast to Greedy-sensing. Drones visit the
same number of cells and spend more energy on traveling than Greedy-sensing.
According to the results shown in Table 4.5, the number of visited cells is divided
equally into 8 for each drone as it has the minimum sensing accuracy.

• Min-energy. It minimizes the total energy consumption and does not sacrifice
energy for improving sensing quality. This method is implemented by changing
the behavior of agents to β = 1 such that the agents select the plans with the
lowest energy consumption cost. No coordination is performed in this case.

• MAPPO. It is a state-of-the-art MARL algorithm using PPO [99, 137], but does
not include distributed optimization compared to HALOP. Moreover, agents in
MAPPO learn the flying directions timeslot by timeslot, rather than period by
period as in HALOP. At each timeslot, a drone takes actions to horizontally move

87

4.5 Experimental Evaluation

Table 4.4: Performance of two implementations in Greed-sensing.

Implementation Global view Local view

Sensing Accuracy 0.36 0.31
Mission Efficiency (%) 80.20 73.89

Table 4.5: Results for the number of visited cells in Round-robin.

Number of Visited cells: 5 6 7 8 9 10

Sensing Accuracy 0.45 0.42 0.43 0.54 0.33 0.26
Mission Efficiency (%) 74.07 59.58 37.41 24.49 14.31 3.32

to an adjacent cell in eight directions or hover (similar to the actions in HALOP),
and returns to the nearest charging station at the end of every S timeslots (one
period). For fair comparison, this method employs the same reward function and
structured tree communication model to share the aggregated observation.

4.5.3 Evaluation on static sensing scenarios

The results of basic static sensing scenario using OPS is evaluated at first. As shown
in Fig. 4.6, the three optimization methods based on OPS coordinate drones to select
the plans with the minimum energy utilization ratio e and result in the lowest total
energy consumption except Min-energy (β = 1.0) and OPS-Pareto (β = 0.2). The
coordination of drones achieves the highest sensing accuracy compared to baselines.
Therein, OPS-balance (with a total energy consumption of 157, 944kJ and sensing
accuracy of 0.49) has the mission efficiency of 80.4% that is close to Greedy-sensing;
OPS-accuracy sacrifices mission efficiency to obtain a very high sensing accuracy among
three policies, and just 0.02 lower than Round-robin; OPS-efficiency has the highest
mission efficiency of 87.51% among all methods. In contrast, without coordination, the
Min-energy method lowers energy consumption to 135, 845kJ at a cost of lower sensing
accuracy (0.27) and mission efficiency (52.5%). Greedy-sensing and Round-robin also
come with lower sensing accuracy (0.36) and mission efficiency (14.49%) respectively. In
overall, the proposed method is superior to baseline methods especially when combining
all performance metrics.

In the complex static sensing scenario, there are four dimensions are studied here:

88

4.5 Experimental Evaluation

Figure 4.6: Performance comparison of the six methods on the basic static sensing
scenario: 4 base stations, 64 cells and 20000 total target values.

(1) the number of dispatched drones used in the sensing mission (from 200 to 1000), (2)
the total target values to collect (10000 and 20000), (3) the number of cells into which
the same map is split (64 and 128), and (4) the number of base stations (heatmap
triplets: up=4, down=16). Fig. 4.7 shows the performance comparison between OPS-
balance, Greedy-sensing and Round-robin methods.

Number of dispatches. Take an example of the complex static sensing scenario
(target=20000, cells=64, base stations=4). As the number of dispatches increases, the
total energy consumption of OPS-balance rises, while mission efficiency decreases pro-
portionally (from 157, 944kJ , 83% to 31, 574, 19% in Fig. 4.7). This shows that drones
take full advantage of energy resources to collect sensor values efficiently. Compared
to Round-robin, OPS-balance collects more data (below the average of 38.5%) with a
lower number of dispatches and energy. Furthermore, as the number of dispatches de-
creases, OPS-balance shows a lower decrease of sensing accuracy (decreased by 4.21%)
than Greedy-sensing (decreased by 26.17%). If some drones fail to be dispatched due to
attacks or other factors, OPS-balance is proved to effectively mitigate the penalties of
over-sensing and under-sensing, which validates the resilience of the proposed method.

Total target values. If the total target values to collect decrease from 20000 to

89

4.5 Experimental Evaluation

Sc
en

ar
io

En
er

gy
 C

os
t

(1) OPS-balance (2) Greedy-sensing (3) Round-robin

Sc
en

ar
io

Se
ns

in
g

A
cc

ur
ac

y

(1) OPS-balance (2) Greedy-sensing (3) Round-robin

Sc
en

ar
io

M
is

si
on

 E
ffi

ci
en

cy

(1) OPS-balance (2) Greedy-sensing (3) Round-robin

Figure 4.7: Performance comparison under varying parameters: total target values, the
number of cells, the number of base stations, and the number of drone dispatches.

90

4.5 Experimental Evaluation

10000, the mission efficiency of OPS-balance reduces to 0 and the energy consumption
keeps constant when the number of dispatches exceeds 500. This is because the total
target values represent the total hovering time of drones, and OPS-balance does not
waste energy resources when drones complete their sensing tasks. In Fig. 4.7, the
sensing accuracy of Greedy-sensing is highly sensitive to the change of target values. It
increases by 0.18, while OPS-balance increases only by 0.07.

Number of cells. If the number of cells increases from 64 to 128, the size of each cell
decreases, and the distance between any two cells decreases, which reduces the travel
distance of drones. As a consequence, drones spend more energy on collecting sensor
values according to Eq.(4.16) and Eq.(4.17), which enhances the mission efficiency. In
Fig. 4.7, OPS-balance shows a higher increase in mission efficiency (increased by 4%)
than Greedy-sensing (increased by 1%) as the number of cells increases. Furthermore,
OPS-balance collects higher quality data with a lower number of cells and drones as
shown in Fig. 4.7.

Number of base stations. If the number of base stations increases from 4 to 16,
the travel distances of drones reduce and the total sensor values collected rise. As a
result, accuracy and efficiency of OPS-balance increase. OPS-balance shows an overall
superior performance as targets and base stations vary.

In summary, OPS-balance has the highest sensing accuracy (close to Round-robin)
and mission efficiency (close to Greedy-sensing) as the variables in the environment
change. This confirms that OPS-balance has the highest performance in overall under
the same battery constraints and different sensing scenarios.

Hard constraint satisfaction of drone sensing. To test the hard constraint sat-
isfaction of drone sensing scenario, three incremental levels of hard constraints are set
to the aggregate choices (total sensing). These levels are quantiles chosen empirically
by observing the median global plan after several executions of I-EPOS based on soft
constraints. The agents are assumed here altruistic, such that: βu = 0,∀u ∈ {1, ..., U}.
In this scenario, an upper bound Ud of hard constraints may represent privacy-sensitive
areas or regulated no-fly zones for drones. In contrast, a lower bound Ld may represent
minimal information required to monitor effectively a phenomenon, e.g. a forest fire
or traffic jam. Fig. 4.8 shows the aggregated plans for the soft constraint (baseline)
along with three incremental and alternating levels of hard constraints (upper/lower
bounds). Light-grey shaded areas represent the upper bound and dark-grey shaded

91

4.5 Experimental Evaluation

(a) Upper bound = 800, lower bound = 2200,
satisfaction rate = 1, sensing accuracy = 0.1251.

(b) Upper bound = 600, lower bound = 2400,
satisfaction rate = 0.58, sensing accuracy =
0.1241.

(c) Upper bound = 400, lower bound = 2500, sat-
isfaction rate= 0.055, sensing accuracy = 0.1139.

Figure 4.8: Optimization under soft and three levels of hard constraints in the drone
swarm sensing scenario.

areas the lower bound. Arrows point to violations of hard constraints. Under soft
constraints, the upper and lower bounds are violated, whereas hard constraints prevent
these violations. Stricter hard constraints prevent more violations, however, the satis-
faction rate drops significantly, while the sensing accuracy decreases. This shows that
strict hard constraints are likely to oppose the soft constraints.

4.5.4 Vehicle observation using static transportation data

To further evaluate the OPS on drone sensing, this study uses the real-world data of
pNEUMA from vehicle trajectories collected by a swarm of drones in the congested
downtown area of Athens, Greece [4]. This application scenario envisions a large-scale
and long-term monitoring of traffic congestion using coordinated drones to measure

92

4.5 Experimental Evaluation

Figure 4.9: A swarm of 10 drones hovering over the central business district of Athens
over five days to record traffic flows.

and predict traffic patterns. As shown in Fig. 4.9, a swarm of 10 drones hover over 10
cells for 20 time periods to record traffic streams of 6 types of vehicles: car, taxi, bus,
medium vehicle, heavy vehicle and motorcycle. Each drone departs from and returns to
one of the two base stations and hovers up to 25 minutes at a single cell.

The application scenario of coordinated drones that perform traffic sensing is modeled.
To improve the sensing quality, the required sensing tasks (or targets) is calculated to
be proportional to the spatio-temporal normalized distribution of vehicles shown in
Fig. 4.10. The typical distributions can be derived from historical data1. The higher
the likelihood a vehicle type drives through a cell, the higher the target value is, and
Rn ≤ (25 × 20), n = 1, 2, ..., 10. Over 20 time periods (30 min), a certain number of
drones in each period is dispatched.

Fig. 4.10 illustrates the performance comparison between the proposed OPS-balance
and the baseline for varying numbers of dispatched drones used in traffic monitoring.
The results show that the accuracy of OPS-balance among six types of vehicles is sig-
nificantly higher and more stable than that of Greedy-sensing when the number of dis-
patches is lower than 200. This is because with the total of 200 drones’ dispatches under
Greedy-sensing, each cell within each period is monitored by exactly one drone. With
a lower number of drones’ dispatches (i.e., scarce resources), however, OPS-balance co-
ordinates drones to monitor all cells over all time periods, preventing over-sensing and

1https://open-traffic.epfl.ch/

93

4.5 Experimental Evaluation

O
P

S
-b

al
an

ce

O
P

S
-b

al
an

ce

Fi
gu

re
4.

10
:

T
he

co
m

pa
ris

on
re

su
lts

am
on

g
six

ty
pe

s
of

ve
hi

cl
es

in
a

do
w

nt
ow

n
ar

ea
of

A
th

en
s

ba
se

d
on

th
e

op
en

tr
affi

c
m

on
ito

rin
g

da
ta

co
lle

ct
ed

by
a

dr
on

e
sw

ar
m

.

94

4.5 Experimental Evaluation

under-sensing. Fig. 4.10 also illustrates that OPS-balance is relatively more efficient
than Greedy-sensing with no more than 160 dispatches. This is because OPS-balance
coordinates drones to collect sensor values that are proportional to the distributions of
vehicles, which increases the number of vehicles observed by drones. Note that there
is a strong linear relationship between the threshold for the number of dispatches and
the entropy of vehicles distribution, with a Pearson coefficient correlation of 0.93 and
corresponding p-value of 0.007.

In summary, for lower than 160 dispatches, OPS-balance is approxim-
ately 46.45% more accurate and 2.88% more efficient than Greedy-sensing
among six vehicle types monitored. This verifies the remarkable performance of
the proposed method under a scarce number of drone resources, requiring less than
80% of the drones to achieve equivalent or higher performance than Greedy-sensing.

4.5.5 Evaluation on evolving transportation scenarios

This section aims to validate the effectiveness of the proposed approach HALOP on
the designed multi-drone coordination model on urban sensing. To evaluate HALOP,
the transportation sensing map based on traffic flows in Munich is used. Except for
MAPPO, the proposed approach is compared with OPS that uses the strategy of bal-
ance.

There are six dimensions for the complex evolving transportation scenario are stud-
ied here: (1) the density of drones, (2) the number of periods, (3) the number of cells,
(4) the number of charging stations, (5) the density of vehicles, and (6) the number of
drones and cells while fixing the density of drones. Results are shown in Fig. 4.11-4.15,
where the shadow area around the lines represents the standard deviation error of the
results.

Density of drones. It denotes the ratio of the number of drones over the number
of cells, representing the coverage of a single drone over the map. In this case, the
number of cells is fixed as 64, and increase the number of drones from 8 to 64, that is,
the drones density increases from 0.125 to 1.0. Fig. 4.11 illustrates the performance of
HALOP and baseline methods when using different drones density to perform traffic
monitoring. As drones density increases, both mission efficiency and sensing accuracy
of HALOP increase linearly. These are approximately 23.0% and 15.8% higher than

95

4.5 Experimental Evaluation

0.25 0.50 0.75 1.00
The Drones Density

0.0

0.2

0.4

0.6

0.8

1.0

1.2
(a

) M
is

si
on

 e
ffi

ci
en

cy

0.25 0.50 0.75 1.00
The Drones Density

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(b
) S

en
si

ng
 a

cc
ur

ac
y

0.25 0.50 0.75 1.00
The Drones Density

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

(c
) E

ne
rg

y
co

st

0.25 0.50 0.75 1.00
The Drones Density

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(d
) O

ve
ra

ll
pe

rf
or

m
an

ce Greedy-sensing
OPS
MAPPO
HALOP

Figure 4.11: Changing the drones density by increasing the number of drones from 8
to 64 and fixing 8 periods, 64 cells, 4 charging stations and high density of vehicles.

OPS respectively, as shown in Fig. 4.11(a) and Fig. 4.11(b) 1. This is because HALOP
controls the traveling direction of drones based on the predicted sensor data, so that
drones cover the area with the maximum sensing value. MAPPO has high efficiency and
accuracy with a low density of drones (maximum p-value less than 0.001 using Mann-
Whitney U test), but its performance degrades when the drones density is higher than
0.375 due to the high computational complexity. In contrast, the plan selection in
HALOP reduces the action space and mitigates the learning difficulty, resulting in high
performance with a high number of drones. In Fig. 4.11(c), the energy cost of HALOP
is on average 1.7% lower than OPS and 7.9% lower than MAPPO. Greedy-sensing has
the minimum energy cost among all methods, only 7.89% lower than HALOP, but has
the lowest performance in efficiency and accuracy. HALOP sacrifices a little energy

1HALOP, OPS and MAPPO have similar overall performance when drones density is 1.0, with
maximum p-value of 0.04, because there are ample drone resources available to effectively coordinate
the coverage of the map.

96

4.5 Experimental Evaluation

4 8 12 16
Number of periods

0.0

0.1

0.2

0.3

0.4

0.5

0.6
(a

) M
is

si
on

 e
ffi

ci
en

cy

4 8 12 16
Number of periods

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b
) S

en
si

ng
 a

cc
ur

ac
y

4 8 12 16
Number of periods

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

(c
) E

ne
rg

y
co

st

4 8 12 16
Number of periods

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d
) O

ve
ra

ll
pe

rf
or

m
an

ce Greedy-sensing
OPS
MAPPO
HALOP

Figure 4.12: Changing the the number of periods from 4 to 16 and fixing 16 drones, 64
cells, 4 charging stations and high density of vehicles.

for sensing, but still gets lower cost than other methods. The results show that high
density of drones increases both mission efficiency and sensing accuracy of all methods,
especially for short-term optimization methods (HALOP and OPS).

Number of periods. As shown in Fig. 4.12, HALOP achieves superior perform-
ance compared to other methods, increasing linearly as the number of periods increase
(increased by 51.3% in quadruple time). Although it has statistically similar mission
efficiency to MAPPO when the number of periods is 4, this metric increases dramatic-
ally because drones update and obtain more accurate predicted sensor data with higher
number of periods. The timeslot-by-timeslot learning in MAPPO perplexes the actions
learned by drones compared to HALOP, since drones only take actions once per period
(30min) in HALOP but take actions per minute in MAPPO. This also results in higher
flying energy consumed by drones, and thus the energy cost of MAPPO is around 8.1%
higher than HALOP. The results show that high number of periods increases both mis-
sion efficiency and sensing accuracy of all methods, especially for long-term learning

97

4.5 Experimental Evaluation

cells=64

stations=4

cells=100

stations=4

cells=64

stations=9

cells=100

stations=9

High Low

Greedy
OPS MAPPO HALOP

High Low High Low High Low

Mission Efficiency

High Low

OPS MAPPO HALOP

High Low High Low High

Sensing Accuracy

Low

High Low

OPS MAPPO HALOP

High Low High Low High

Energy Cost

Low High Low

OPS MAPPO HALOP

High Low High Low High

Overall Performance

Low

cells=64

stations=4

cells=100

stations=4

cells=64

stations=9

cells=100

stations=9

-sensing
Greedy
-sensing

Greedy
-sensing

Greedy
-sensing

Figure 4.13: Performance comparison under varying parameters: the number of cells
(64 and 100), the number of charging stations (4 and 9), and the density of vehicles
(high and low).

methods (HALOP and MAPPO).
Fig. 4.13 illustrates the performance comparison between HALOP and baseline

methods, varying the number of cells, charging stations and the density of vehicles,
while keeping the number of drones fixed at 16 and periods at 8. The red palette on
the right represents the values of energy cost, while the blue one denotes the values of
mission efficiency, sensing accuracy and overall performance.

Number of cells. If the number of cells increases from 64 to 100, the density of drones
decreases. In Fig. 4.13, HALOP shows a lower decrease in mission efficiency (decreased
by 27.04%) than MAPPO (decreased by 44.50%) and OPS (decreased by 45.11%) as
the number of cells increases. Furthermore, HALOP keeps relatively constant both
sensing accuracy and energy cost as the number of cells varies.

Number of charging stations. If the number of charging stations increases from 4
to 9, the distance between the sensing areas and stations is reduced, cutting down the
energy cost of recharging. As a result, the overall performance of both HALOP and
OPS increase by 19.52% and 14.35% respectively.

98

4.5 Experimental Evaluation

0 1 2 3 4 5 6 7
Period Index

0.24

0.26

0.28

0.30

0.32

0.34
R

em
ai

ni
ng

 B
at

te
ry

 L
ev

el Greedy-sensing
OPS

MAPPO
HALOP

(a) High density of vehicles.

0 1 2 3 4 5 6 7
Period Index

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
em

ai
ni

ng
 B

at
te

ry
 L

ev
el Greedy-sensing

OPS
MAPPO
HALOP

(b) Low density of vehicles.

Figure 4.14: Performance comparison of the remaining battery level of four methods
on both high and low density of vehicles.

Density of vehicles. If a new map area that has low density of vehicles is chosen,
the distribution of sensor data changes (with different road distribution), as shown
in Fig. 4.5. In Fig. 4.13, both HALOP and MAPPO have higher mission efficiency
and sensing accuracy than the other two methods, with an average of 90.65% higher
efficiency and 76.85% higher accuracy. This is because the learning methods observe the
environment and control drones to collect data in cells and timeslots with the highest
number of vehicles. HALOP performs better than other methods under low vehicle
density even though the number of cells and charging stations increase.

In summary, the results by varying these three parameters illustrate that both low
number of cells and high number of charging stations increase the overall performance of
all methods. Long-term learning methods outperform short-term optimization methods
in observing traffic flow when vehicles are sparsely distributed across the map.

Apart from sensing performance, the battery consumption and charging of HALOP
in complex evolving transportation scenario are studied.

Remaining battery level. It denotes a percentage of battery level once drones have
completed their sensing tasks. The value is calculated as an average among all drones
within each time period. As shown in the Fig. 4.14(a) and 4.14(b), HALOP keeps
drones at a high remaining battery level on high and low density of vehicles, with
approximately 30.25% and only 1.05% lower than Greedy-sensing. This level follows
the drones’ safety regulations which suggest finishing the missions when battery life
is around 25% − 30%. However, MAPPO does not meet the regulations under low

99

4.5 Experimental Evaluation

Greedy EPOS CORL DO-RL
0

2500

5000

7500

10000

12500

15000

17500

20000
To

ta
l E

ne
rg

y
D

em
an

d
(k

J) Station A
Station B

Station C
Station D

(a) Drones Density=0.25, high vehicle
density.

Greedy EPOS CORL DO-RL
0

2500

5000

7500

10000

12500

15000

17500

20000

To
ta

l E
ne

rg
y

D
em

an
d

(k
J) Station A

Station B
Station C
Station D

(b) Drones Density=0.25, low vehicle dens-
ity.

0.25 0.50 0.75 1.00
The Drone Density

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

To
ta

l E
ne

rg
y

D
em

an
d

(k
J) Station A

Station B
Station C
Station D

(c) Different drones density, high vehicle
density.

0.25 0.50 0.75 1.00
The Drone Density

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

To
ta

l E
ne

rg
y

D
em

an
d

(k
J) Station A

Station B
Station C
Station D

(d) Different drones density, low vehicle
density.

Figure 4.15: Performance comparisons of the total energy demand of four methods
with 0.25 density of drones, see (a) and (b), and the HALOP with different density of
drones, see (c) and (d).

density of vehicles, and the minimum battery level can reach 12.55%. The results
illustrate that HALOP keeps drones at a safe remaining battery level before recharging,
improving drone longevity and sustainability.

Charging load. It is the total energy demand of drones on each charging station
over all time periods. This aims to study the placement of charging stations. As
shown in the Fig. 4.15(a) and 4.15(b), the total energy demand on charging stations
of HALOP over all periods is more imbalanced compared to other methods. This is
because with HALOP drones learn to travel to the areas with the high required sensing
data values. Since drones set the nearest charging stations as destinations, they rely on
a lower number of charging places. For example, as shown in Fig. 4.15(c) and 4.15(d),

100

4.5 Experimental Evaluation

when the density of drones is 0.125 under high density of vehicles, drones only depart
from and return to the charging station D since the vehicle distribution around D is
more dense than other charging stations. As the density of drones becomes 1, drones
gradually rely on the charging station m and D. Similarly, drones only need to fly
over the vehicle-dense areas around the charging station A and m under low density of
vehicles. These results provide insights to policy makers for providing higher amount
of energy on vehicle-dense areas to support drones’ charging. The results show that
HALOP relies on a lower number of charging places compared to other methods.

4.5.6 Overall comparison

Table 4.6 shows that the hybrid approach has 27.83% and 23.17% higher overall per-
formance than standalone OPS and MAPPO respectively in the scenario of 16 drones,
8 time periods and high vehicle density. Under scarce drone resources (the low drone
density), this approach is more energy-efficient and accurate by employing long-term
learning methods for optimizing sensing. In contrast, under abundant drone resources
(high drone density), short-term optimization methods alone suffice. Furthermore,
the learning methods can direct drones towards regions with more vehicles to achieve
highly efficient and accurate vehicle observation, especially in a low vehicle density area
within a long time span. HALOP effectively combines the strengths of both short-term
optimization and long-term learning methods to complement each other and improve
adaptability in complex environments.

Then, this chapter evaluates the drone trajectories of all methods over time (ME
is mission efficiency, SA is sensing accuracy, EC is energy cost, and MP is mean path
length). Fig. 4.16 shows a visual comparison of optimal drone trajectories in HALOP
compared to baseline methods. In this case of 16 drones fly to the grid cells and collect
the required sensing data over first 4 of 8 time periods (each drone trajectory repres-
ents a color in Fig. 4.16). OPS fails to adapt to the changing sensing requirements
and control drones to fly over the low-traffic areas, which results in higher remained
amount of sensor data after period 3. As a consequence, OPS has lower mission ef-
ficiency and sensing accuracy than HALOP. Although MAPPO effectively learns the
dynamic sensing environment through deep neutral networks, it takes a high number
of unnecessary actions to cover the cells with low sensing data, leading to higher path
length and higher traveling energy consumption than HALOP. In contrast, HALOP

101

4.6 Comparison with Related Work

Table 4.6: Overall performance comparison of approaches under different parameters.

Parameters
Approaches.:

Drone density
Low (=0.25)

Drone density
High (=1.0)

Time periods
Low (=4)

Time periods
High (=16)

Vehicle density
High

Vehicle density
Low

Greedy-sensing 0.14 0.62 0.16 0.16 0.15 0.16
OPS 0.22 1.78 0.20 0.28 0.23 0.23
MAPPO 0.23 1.73 0.23 0.33 0.24 0.55
HALOP 0.28 1.79 0.25 0.41 0.32 0.70

Period 1 Period 2 Period 3 Period 4

R
em

ai
ne

d
am

ou
nt

 o
f s

en
sin

g
da

ta

OPS

Original
Map

ME = 0.317
SA = 0.485
EC = 0.710

MP = 0.90km

MAPPO
ME = 0.335
SA = 0.508
EC = 0.757

MP = 1.33km

HALOP

ME = 0.366
SA = 0.530
EC = 0.701

MP = 0.89km

Figure 4.16: Comparison of optimal drone trajectories among all three approaches in
different periods.

overcomes the drawbacks of both OPS and MAPPO by finding the high sensing areas
energy-efficiently and accurately.

4.6 Comparison with Related Work

The allocation of sensing tasks within a swarm of intelligent and cooperative drones
includes applications of traffic monitoring, disaster response, smart farming, last-mile

102

4.6 Comparison with Related Work

delivery, etc. [5]. The UAV task allocation problem is earlier defined as a Traveling
Salesmen Problem for combinatorial optimization [9, 10, 28]. An optimal task alloca-
tion for drones is found at specified places, subject to constraints including task emer-
gency, time scheduling and flying costs. The digraph-based methods are introduced
to formulate the problem of reaching optimal sensing efficiency in terms of coverage,
inspection delay, events detection rate and the cost of flying trajectories. Nevertheless,
existing models do not address the energy impact of task allocation since small-scale
spatio-temporal scenarios do not drain the batteries of drones significantly. Although
earlier work focuses on solving the energy-aware task allocation problem for large-scale
and efficient sensing, it relies on a centralized system and does not consider the time
of sensor data collection [102, 161, 162]. The cost of plans calculated by the total
power consumption of flying and hovering [34] are modeled to optimize the distributed
coordination of swarms, while accounting for the battery constraint of each drone.

In the view of the optimization approaches, scholars introduce algorithms that re-
quire a centralized computation, such as particle swarm optimization [9], genetic pro-
gramming [10] and wolf pack search [28]. Chen et al. [28] introduce a deadlock-free
algorithm to prevent two or more drones from waiting for each other in a simultaneous
task, and leverage the classical interior point method and wolf pack search algorithm
to solve the uncertainty problem, including the uncertainty of the flying velocity, task
effectiveness and communication. Wu et al. [159] leverage a greedy approach by remov-
ing redundant target points from trajectories to maximize the weighted coverage while
respecting energy constraints (with 5 drones to cover 225 target points). However,
these centralized methods face the risk of single point of failure [163]. If the central
control station fails, the task allocation process cannot recover or mitigate such failure.

Distributed task allocation algorithms include the robust decentralized task assign-
ment [48] and the consensus-based bundle algorithm [29]. Both algorithms coordinate
autonomous drones, and can ensure scalability and flexibility of multi-UAV systems to
adapt to complex sensing scenarios. Nevertheless, they do not address the constraints
of energy consumption. Moreover, the resilience of the algorithms is not verified, in
contrast to earlier work on I-EPOS shown to preserve its learning capacity in dynamic
and unstable networked environments [64]. The proposed method overcomes scalabil-
ity and resilience barriers, while leaving drones with a significant level of autonomy to
make a flexible cooperative selection of tasks to execute. Furthermore, the prototyping

103

4.6 Comparison with Related Work

Table 4.7: Comparison with related work in Chapter 4.

Criteria Ref.: [159] [48] [29] [26] [99] [101] This work

Scalability to large-scale systems ✓ ✗ ✗ ✓ ✗ ✗ ✓

Adaptability to dynamic environments ✗ ✓ ✓ ✓ ✓ ✓ ✓

Sustainable long-term efficiency ✗ ✗ ✗ ✗ ✓ ✓ ✓

Energy-awareness ✓ ✗ ✗ ✓ ✓ ✗ ✓

Resilience ✗ ✗ ✗ ✗ ✗ ✗ ✓

problem of moving from simulation, to live deployment of decentralized socio-technical
systems, and ultimately to a robust operation of a high technology readiness level as
well as online iterative traffic optimization is addressed in earlier work, with I-EPOS
as a case study [68, 164].

The MARL algorithm proves to be effective for addressing sensing task allocation
with drones, managing complex optimization goals, energy constraints, and numerous
heterogeneous agents. The MARL used by Ding et al. [99] for crowd sensing lever-
ages local observation to extract the states of neighbor drones, generalized model to
avoid environment nonstationarity, and PPO to prevent the destructively large policy
updates. Omoniwa et al. [138] present a decentralized MARL approach that improves
drone energy efficiency in providing wireless connectivity by sharing information with
neighboring drones. Samir et al. [101] leverage deep deterministic policy gradient for
learning the trajectories of the deployed drones to efficiently minimize the expected
weighted sum age of information. However, these approaches lack autonomy for drones
in self-assignment tasks, reducing adaptability to the real-time environmental changes
and increasing vulnerability to agent failures [163]. Additionally, they are confined to
a small-scale task allocation problem due to the training complexity.

In summary, previous approaches have either neglected the long-term advantages of
strategic sensing, or failed to effectively adapt to failures and scale without encounter-
ing centralized bottlenecks. To overcome these shortcomings, the proposed approach
empowers drones to make informed and proactive decisions based on predicted traffic
flow, while enabling them to independently adjust to changing conditions and unex-
pected events, ensuring both scalability and resilience without relying on centralized
control.

The comparison of related work is summarized in Table 4.7 (criteria covered ✓or

104

4.7 Discussion and Future Work

not ✗). Here, scalability to large-scale systems refers to the ability of the method to
handle increasing drone density, time periods, and environmental complexity such as
the distribution of vehicles; adaptability to dynamic environments implies the respons-
iveness of the method to real-time and uncertain changes, such as the dynamic traffic
flow; sustainable long-term efficiency denotes the capacity of the method to optimize
energy resource usage over extended periods; energy-awareness checks if the energy
consumption is considered; and decentralization and resilience checks if the method is
decentralized and resilient.

4.7 Discussion and Future Work

In summary, several scientific insights on experimental results are listed as fol-
lows: (1) Under scarce drone resources, it is more efficient and accurate to employ
long-term learning methods for optimizing sensing. In contrast, under abundant drone
resources, short-term optimization methods alone suffice. (2) Long-term learning meth-
ods optimize drone resources usage for traffic management by directing drones towards
regions with high vehicle density and advising on infrastructure planning for charging.
(3) Short-term optimization aids long-term learning by simplifying agent coordination,
enhancing sensing quality, and preventing energy waste. This approach ensures that
drones operate efficiently while maintaining battery levels above safety thresholds, lead-
ing to more reliable and effective missions.

The proposed method can be further improved towards several research avenues,
which are: (1) Use of real-world datasets in other applications of Smart Cities, in-
cluding disaster response and smart farming. (2) Use of other learning method, such
as multi-agent reinforcement learning algorithm, to extend the study of coordinated
drones with charging capabilities and obstacle/collision avoidance. (3) Consideration
of more realistic factors such as obstacles and charging capability. (4) Test other types
of sensing data collection, including temperature and humidity, and study the sensor
fusion that combines data from multiple sensors to create a more accurate and compre-
hensive understanding of an environment. (5) Use of efficient wireless communication
technology and special hardware to implement the coordination capability on board
and online.

105

4.8 Conclusions

4.8 Conclusions

In conclusion, this chapter illustrates the Energy-Aware Coordination of Multi-Drone
Navigation and Sensing model to solve the task self-assignment problem for scalable
urban sensing by a swarm of drones. To ensure energy-aware and efficient coordination
of sensing, a novel plan generation strategy with three policies is introduced. Extens-
ive experiments demonstrate that the proposed approaches of OPS and HALOP are
adaptive to complex sensing scenarios and has better sensing performance than exist-
ing methods. The evaluation using realistic urban mobility provides valuable insights
for the broader community: The combination of short-term and long-term strategies
proves highly effective in overcoming their standalone limitations in drone-based traffic
monitoring. Short-term methods compensate the challenges of training complexity, en-
ergy consumption and recharging, while long-term approaches account for maximizing
accumulated rewards, enhancing the overall sensing performance. This collaborative
approach allows the system to dynamically adapt to changing environments, efficiently
managing varying drone resources and enabling extended operations.

106

Chapter 5

Coordinated Multi-Drone Last-mile Delivery

This chapter1 investigates the task allocation problem for multi-drone systems in the
context of last-mile delivery. In this scenario, drones are able to deliver parcels to
doorways and balconies, avoiding human contact during pandemic and alleviating traffic
congestion caused by the deliveries of heavy ground vehicles (see Section 2.4.2). Here,
route planning is vital to enhance the efficiency of drone swarms in completing delivery
tasks [113]. In coordinated delivery, effective route planning guides swarms of drones
to reach customers in the shortest possible time or distance. Prior works model this
routing problem, which is essentially a variant of the traveling salesman problem and
vehicle routing problem, as a mixed-integer programming problem and uses various
heuristic algorithms to solve the complex combinatorial optimization; approaches such
as genetic algorithms, simulated annealing, ant colony optimization, and reinforcement
learning have been widely applied [30, 114–116]. However, existing models for routing
planning of drone delivery still faces two technical challenges.

The first challenge is energy-aware planning. Each drone must ensure its battery
level remains above a minimum safety threshold (typically 25 − 30%) to maintain op-
erational longevity and avoid mission failures. Moreover, energy consumption dir-
ectly affects carbon emissions, which are increasingly important for achieving net zero
goals [112]. While modern drones are capable of multi-parcel deliveries, existing mod-
els that solely optimize delivery time are insufficient, since they fail to account for the
power consumption variation caused by parcel weight [34]. Heavier payloads lead to
significantly higher energy cost. Therefore, drones must be aware of their full delivery
route and select energy-optimal plans. Unlike traditional models, this chapter uses an

1This chapter is based on a paper on submission [23].

107

energy consumption model [34] that requires drones to have full knowledge of their
entire route within a specific time window, allowing them to carry all parcels initially
and calculate energy consumption accurately. This can be achieved by generating plans
of navigation based on the designed PMAC model.

The second challenge is delivery delay. Delivery delay becomes a key concern when
drone resources are limited and not all customer requests can be fulfilled within the
maximum flight time of drones. This is especially critical in time-sensitive scenarios,
such as delivering medical supplies during pandemics [110, 123]. While some existing
approaches address this by prioritizing requests with the highest delivery delay (i.e.,
the actual arrival time minus the expected deadline) [117], it remains challenging to
determine which requests to prioritize in real time. This is because customers’ priority
changes with time, there is a new set of customers who must be serviced at every time
step. Drones know the current distribution and delivery time of customers, but do
not know when and where the customers will appear in a subsequent time step. As
a result, drones have to adapt to an unexpected environment in terms of the number
and locations of customers and their demands. Motivated by this, the learning-based
approach (HALOP) in PMAC model is employed to assist drones to anticipate areas of
high future delay and proactively position themselves, even if that means temporarily
overlooking requests that are already delayed. This ‘slower is faster” strategy helps to
minimize overall delay across the entire delivery horizon.

By addressing both energy-efficient planning and delay-aware prioritization, this
chapter introduces the Energy-and-Delay-Aware Coordination of Multi-Drone Last-
mile Delivery (EDAC-MDLD) model. It models the task allocation problem of delivery
into mix-integer programming, which aims to minimize both delivery delay and en-
ergy consumption of drones while respecting their own battery and payload capacity.
It also divides the problem into three sub-problems, customer requests segmentation,
flight range selection, and optimized plan selection. First, the clustering algorithm is
employed to divide the map into “service areas” for the flight range selection [165].
Second, a Multi-Agent Reinforcement Learning (MARL) is leveraged to select flight
range of drones for long-term effectiveness. Third, the Optimized Plan Selection (OPS)
is adapted based on EDAC-MDLD to find the optimal routes using a mixed-integer pro-
gramming solver (e.g., Gurobi1). To validate the proposed algorithm, this chapter con-

1Available at: http://www.gurobi.com.

108

Table 5.1: Mathematical notations used in Chapter 5.

Notation Explanation

u, U,U Index of a drone; total number of drones; set of drones
n, N,N Index of a depot node; total number of depots; set of depots
V,C, c Set of nodes in the map; set of customer request nodes; index of a request
t, T,T Index of a time window; total number of time windows; set of time windows
k, K Index of a plan; total number of plans
ti The expected delivery time window demanded by request i

sc The delivery status of request i

fp, fu Function of delivery delay; function of energy consumption
mbody

u Body mass of drone u

mbattery
u Battery mass of drone u

mparcels
uij The weight of parcels carried by drone u from node j to node i

v, v̂ Ground speed of drone; the induced velocity
d, r Diameter of propellers; Number of propellers
θ, ϵu The pitch angle of drone; the power efficiency of drone
xuij Binary variable which takes 1 if u travels from node j to node i and 0 otherwise.
dij Traveling distance between node i and node j

Euij Energy consumption of u when it travels from node j to node i

Mu, Ru The maximum payload of u ; the maximum flight range of u

α The tradeoff parameter to balance delivery delay and energy consumption
π, θπ The actor network, i.e., the policy function; the parameter of the actor network
Q, θQ The critic network, i.e., the value function; the parameter of the critic network

ducts experiments of high realism with real-world data and emulated last-mile delivery
scenarios, comparing against state-of-the-art baseline methods.

This chapter is outlined as follows: Section 5.1 introduces the definitions and models
used in the EDAC-MDLD model. Section 5.2 states and formulates the task allocation
problem for multi-parcel delivery. Section 5.3 outlines the methodology by integrating
clustering algorithm and HALOP to solve the problem. Section 5.4 evaluates the per-
formance of HALOP under various experimental settings. Section 5.5 compared the
proposed approaches with related methodologies that address last-mile delivery. Sec-
tion 5.6 discusses the experimental results and outlines future work. Finally, Section 5.7
concludes this chapter.

109

5.1 System model

5.1 System model

This section defines the key concepts of scenarios and the main performance metrics in
the EDAC-MDLD model. Table 5.1 illustrates the list of mathematical notations.

5.1.1 Definitions and assumptions

Consider a swarm of drones U ≜ {1, 2, ..., U} taking parcels from depots and delivering
them to customer requests over a 2D map within a set of specified time windows
T ≜ {1, 2, ..., T}. The whole map is partitioned into a number of service areas, each
denoting a geographically bounded region, within which a drone can efficiently serve
customer requests. Then, a delivery center, i.e., the depot, is set up in the center of
each service area. Both depots and customer requests are the nodes distributed in the
map, denoted as V. At the time window t, the nodes can be defined as V(t) = N∪C(t),
where N denotes the set of depots, N ≜ {1, 2, ..., N}, and C(t) indicates the set of
customer nodes within time window t.

To represent the traveling information of drones, the model uses the binary variable
xuij , which takes 1 if drone u travels from node j to node i and 0 otherwise. At each
time window, drones execute the multi-parcel delivery, that is, each of them departs
from a depot, deliver parcels to multiple customer requests, and returns back to the
original depot or other depots that locate at the neighboring service areas. Therefore,
the node j comes from the set of depots j ∈ N, at the beginning of a trip, and becomes
the node of customer request j ∈ C(t) after that. In contrast, the node i is the depot
node i ∈ N at the end of a trip.

The set of customer requests is updated at every time window by excluding the
nodes of delivered requests and including new requests in the next time window. Thus,
the updating of customer requests nodes from t to t + 1 is formulated as follows:

C(t + 1) =
(
C(t)\{k ∈ C(t)|si = 0}

)
∪
(
k ∈ C(ti)|ti = t + 1

)
,

(5.1)

where C(t) indicates the set of customer nodes existed within time window t, t ∈ T;
k is the index of a customer request node; ti denotes the expected delivery time of
request i; and si indicates the delivery status of request i, which takes 0 if the request
is delivered by a drone and 1 otherwise. It can be expressed as follows:

si = 1−min(
T∑

t=1

∑
u∈U

∑
j∈V(t)

xuij(t), 1). (5.2)

110

5.1 System model

The delivery delay is also defined to measure the amount of time by which a drone
arrive later than the expected delivery time ti of a customer request, i.e., t > ti.
Meanwhile, if the request c is delivered (sc = 0), its delivery delay is set as 0 since
it is removed from the map. The model calculates the delivery delay fp(·), which is
formulated as follows:

fp(t, ti) =

 (t− ti) · si, ti ≤ t, ti ∈ T

0, otherwise
. (5.3)

The delivery delay prioritizes timely deliveries by penalizing late arrivals, ensuring more
urgent requests are met promptly. This can lead to higher customer satisfaction and
retention, ultimately enhancing long-term quality of service.

Therefore, as shown in Fig. 5.1, the overall operational flow is listed as follows (the
blue arrows represent the traveling route of the drone, the red values represent the
delivery delay of each request): In a time window t, each drone observes the delivery
delay of undelivered requests. The delay is set as 0 at t = 0 but increases if the current
time t is higher than the expected delivery time ti of request, c ∈ C(t). Once the drone
determines which requests it serves, it takes all required parcels initially and unloads
them to these customer requests one by one. Then, the drone returns to the nearest
depot where it swaps a new battery for charging and continues observing the status of
customer requests at t + 1. The delivered requests are removed from the map, whereas
the undelivered ones increase their delivery delay. After that, the drone pick-ups parcels
and continues delivering at the next time window.

Furthermore, several necessary and realistic assumptions are made as follows: (1)
Each drone flies at a constant ground speed and has a fixed battery capacity that
limits the flight range; (2) Each customer is visited only once and by only one drone;
(3) Customers who request parcels within the same time window have the same delivery
delay; (4) The time of swapping batteries of drones (i.e., recharging), taking-off/landing,
and loading parcels is not considered in this chapter. (5) A time window is assumed
to be longer than the maximum flight time of drones. Note that this general model is
also well-suited for supporting truck-drone operations: trucks act as “mobile depots”,
traveling to the centers of service areas while carrying parcels and batteries for drone
delivery. In addition, trucks can observe customer demand and adjust their routes by
moving to other service areas as needed.

111

5.1 System model

Service area 1

1.0

1.5

Service area 2

2.0

0.0

1.0

Drone

1kg 2kg
0.0

0.02.5

0.00.5

1.5

1kg 1kg

Depot
Delivery

request

Delayed

request
Parcel

Service area 4Service area 3

Service area 2

Service area 4Service area 3

1kg

2kg

1kg

1kg

1kg

1kg

Time Window

Total delay: 5.5
Time Window

Total delay: 4.5

Service area 1

0.0

0.0

0.0

Delivery

request

Delay Delay Delay Delay

Expected delivery time

Figure 5.1: The scenario of drone delivery over three service areas within two consec-
utive time windows.

5.1.2 Multi-parcel energy consumption model

Energy consumption evaluates the amount of energy consumed by a drone in a trip.
Drones spend energy to surpass gravity force and counter drag forces due to wind and
forward motions. A drone controls the speed of each rotor to achieve the thrust and
pitch necessary to hover and travel forward at the desired velocity while balancing the
weight and drag forces [34]. For a drone u with mass mbody

u and its battery with mass
mbattery

u , the total required thrust is formulated as follows:
Tuij = muij · g · (1 + tan(θ)), (5.4)

muij = mbody
u + mbattery

u + mparcels
uij , (5.5)

mparcels
uij = mparcels

ujk −mparcels
j , (5.6)

112

5.2 Problem Statement and Formulation

where g is the gravitational constant; θ is the pitch angle that depends on air speed and
air density; and mparcels

uij is the weight of parcels carried in drone u from node j to node
i, where i, j ∈ V(t). Eq.(5.6) implies that the drone u starts by carrying all assigned
parcels and uploads each one to the corresponding customer sequentially, k → j → i,
∀i, j, k ∈ V(t). Note that drones carry no parcel to depots, i.e., mparcels

j = 0. Given a
thrust Tuij , the induced velocity can be found by solving the nonlinear equation [34]:

v̂ = 2 · Tuij

π · d2 · r · ρ ·
√

(v · cosθ)2 + (v · sinθ + v̂)2 , (5.7)

where v is the average ground speed; d and r are the diameter and number of drone
rotors; ρ is the density of air. Therefore, given the overall power efficiency ϵu, the power
consumption with forward velocity and forward pitch is formulated as [34]:

Puij = (v · sinθ + v̂) · Tuij

ϵu
. (5.8)

The power consumption can be formulated as Puij = fu(mparcels
uij) to represent its re-

lationship with the weight of parcels carried by u. The energy consumption of u that
travels the distance dij from node j to node i is given by:

Euij = Puij · dij

v
= fu(mparcels

uij) · duij

v
. (5.9)

5.2 Problem Statement and Formulation

Based on the definitions and settings of the EDAC-MDLD model, the problem in this
chapter can be stated as: Find optimal routes of a swarm of drones U over all time
windows T such that the customer requests C with different expected delivery time receive
parcels with minimum delivery delay while reducing the energy consumption of drones.
Each route of drone u at time window t, which can be represented by xuij , i, j ∈ V,
starts and ends at depots, passing through several customers.

The problem can be formulated as follows:
min

∑
t∈T

∑
u∈U

∑
i∈V(t)

∑
j∈V(t)

Euij · xuij(t). (5.10)

min
∑
t∈T

∑
c∈C(t)

fp(t, ti), (5.11)

Subject to ∑
t∈T

∑
u∈U

∑
j∈V(t)

xuij(t) = 1,∀i ∈ C(t), (5.12)∑
i∈N

∑
j∈V(t)

xuij(t) ≤ 1,∀u ∈ U,∀t ∈ T, (5.13)

113

5.2 Problem Statement and Formulation

∑
j∈V(t)

xuij(t) =
∑

j∈V(t)
xuji(t), ∀i ∈ V(t), ∀u ∈ U,∀t ∈ T, (5.14)∑

i∈V(t)

∑
j∈V(t)

dij · xuij(t) ≤ Ru, (5.15)

mparcels
uij ≤Mu. (5.16)

The objective function (5.10) aims to minimize the total energy cost of drones. The
objective function (5.11) aims to minimize the delivery delay of customers. Constraint
(5.12) presents that every customer is visited exactly once. Constraint (5.13) ensures
that all routes must start and end at depots. Constraint (5.14) is a connectivity con-
straint to ensure that each drone leaves each customer after delivery. Constraint (5.15)
restricts that the maximum flight range of drone is within Ru, which covers the whole
map as default. Constraint (5.16) restricts the total weight of parcels carried in the
drone to be always within its maximum payload Mu.

Note that the proposed PMAC model is particularly well-suited to address this
problem for several reasons. First, each drone must have complete trip information in
advance, including the customer requests it must fulfill and the depot where it will land,
such that it can accurately estimate energy consumption for efficient task allocation.
This trip can be represented as a multi-parcel delivery route, where drones select a
discrete task plan. Additionally, the problem targets at two objectives of minimizing
both energy consumption and delivery delay. This forms a multi-agent combinatorial
optimization problem, which PMAC is designed to solve effectively.

Second, each service area in the map must be constrained to prevent it from selecting
routes with excessive energy consumption that could harm battery life. As a result,
drones are limited to serving requests within neighboring service areas during each
time window, as illustrated in Fig. 5.1. However, this introduces the challenge of
how drones should select the appropriate neighboring service area. Here, the learning-
based approach of PMAC (HALOP) enables drones to make strategic decisions about
service area selection (or flying direction), while delegating task plan optimization to the
OPS approach. The reinforcement learning reward function in HALOP is specifically
designed to balance two objectives: minimizing delivery delay and reducing total energy
consumption.

Moreover, the partitioning of service areas is critical, as it not only determines
the size of each area, impacting the maximum energy demand on drones, but also
defines the number and locations of depots. Ideally, depots should be situated in high

114

5.3 Methodology Overview

Depot Service area
boundary

Delivery
request Possible route

D
ro

n
e

1
D

ro
n

e
2

Depot 1

Depot 2

Depot 1

Plan 1

Plan 2

Plan 1

Plan 1

Plan 1

Customer Segmentation Flight Range Selection

Optimized Plan Selection

Plan
generation

Plan
selection

Multi-agent
reinforcement learningK-means clustering

End of time
window?

Start
Stop①

② ③

④

⑤ ⑥
YESNO

𝑡 = 𝑡 + 1

Figure 5.2: Overall framework of the methodology to solve multi-drone delivery prob-
lem.

customer-density areas to maximize service quality and operational efficiency [30].

5.3 Methodology Overview

The EDAC-MDLD model decomposes the problem into the following three sub-problems:
a customer requests segmentation problem, a flight range selection problem and a op-
timized plan selection problem of drones within the flight range. In this section, the
novel methodologies for each of these sub-problems are introduced.

Fig. 5.2 illustrates the overall framework of the methodology. Firstly, the K-means
clustering algorithm is used for customer requests segmentation, which partitions the
map into a number of service areas where the depots are located at their centers. Then,
the HALOP approach is introduced to select a flight range of drones via reinforcement
learning and solves the optimized plan selection problem of drones within the selected
flight range. In flight range selection, each drone determines a flying direction that
identifies the depots as the start and end points for the route (e.g., from Depot 1 to
Depot 2 for drone 1, and from Depot 1 to Depot 1 for drone 2). Along with depots,
their corresponding service areas must be covered by the flight range of the drone.

115

5.3 Methodology Overview

Algorithm 6: K-Means Clustering Algorithm.
1 Input: Customers dataset D, number of depots N

2 while depot locations do not change do
3 Randomly select N centers of service areas as depot locations
4 Calculate the Euclidean distances between depots and customers
5 Divide D into N clusters based on the distances
6 Adjust the coordinates of depots to be the centers of corresponding clusters
7 end
8 Set the boundaries between clusters
9 Output: Set of depot nodes N, service areas Na

Under the flight range, drones serve the customer requests and generate all possible
routes, i.e., the task plans. The MIP solver selects the optimized plans for execution.
Finally, drones reselect a new flight range based on their current locations and the state
of customer requests in the next time window.

5.3.1 Clustering for customer requests segmentation

Before determining the flight range, the service areas with centers (i.e., the locations of
depot nodes) and boundaries are obtained, which is executed before drones performing
delivery. The algorithm uses K-means clustering algorithm with a historical dataset
of customers that contains the information of index, X/Y coordinates, and customers’
demand time. This is because K-means clustering can group the historical customer
requests that are geographically close. The depots at cluster centroids are also posi-
tioned, ensuring they are centrally located relative to customer requests. This decreases
the travel distance from depot to customer requests, thereby reducing the energy con-
sumption. Additionally, K-means clustering is more computationally efficient and easy
to implement in the large delivery dataset compared to other clustering algorithms such
as DBSCAN and hierarchical clustering.

As shown in Algorithm 6, the proposed algorithm calculates and modifies the centers
of clusters according to the Euclidean distances between the centers and customer
until convergence, that is, until the centers do not change (Lines 3-6). Once the final
cluster centroids are determined (serving as depot nodes), linear decision boundaries are
constructed by drawing perpendicular bisectors between every pair of centroids. Each
perpendicular bisector represents a boundary where all points along it are equidistant to

116

5.3 Methodology Overview

the two corresponding depot nodes. As shown in Fig. 5.2, these boundaries–highlighted
as yellow grid lines–divide the service areas and are positioned between the depot nodes,
which are shown as red points.

5.3.2 Reinforcement learning for flight range selection

After finding the depot locations and the boundaries of service areas, drones begin to
plan their delivery tasks within the total given time windows. At the beginning of
planning, each drone u chooses a service area to determine its flight range Ru. As
shown in Fig. 5.2, a drone selects a neighboring service area or the depot at which it is
currently locating as the destination, and then determines the flight range that covers
the corresponding service areas. This decision on flight range should consider the state
of both the drone and customers, i.e., the current location of the drone and the delivery
delay. Once a drone takes actions to select service areas and executes the task plan by
delivering parcels to the requests, its current location is changed as it could land on
a different depot. In addition, the state of customer requests updates: the delivered
customer requests are removed whereas the delay time and delivery delay of undelivered
customer requests increase. Therefore, the problem scenario can be represented as a
Markov decision process. It can be modeled using state, action, and reward concepts:

1) State: The state s(t) at time window t consists of four components (S1, S2, S3, S4),
where S1 represents the current location of drone u, which is the index of a service area;
S2 reflects the current battery level of u, derived from the energy consumption model;
S3 captures the delivery delay within the service area where u is currently located; S4

records the delivery delay in neighboring service areas adjacent to the location of u.
2) Action: The action a(t) = {a1(t), ..., aU (t)} at time window t consists of the

indexes of depots that are closest to the current location of drones. Each drone can
choose one of the depots as its destination, which includes its departure depot. In other
words, it travels to one of the neighboring service areas or remains at the previous area.
Specifically, if the action has four values, then a(t) = 0 indicates that the drone returns
to the start depot after delivering, whereas a(t) = 1, 2, 3 represents that the drone
chooses one of three neighboring service areas.

3) Reward: The reward ru(t) evaluates the flight range selection of the drone. Based
on the objective function in Eq.(5.11) and (5.10), the expected immediate local reward
of one drone at time window t can be defined as the negative delivery delay and energy

117

5.3 Methodology Overview

consumption. Both two objective functions are normalized using Sigmoid. The function
is formulated as:

ru(t) = −(1− α)
∑

c∈C(t)
fp(t, ti)

− α
∑

i∈V(t)

∑
j∈V(t)

Euij · xuij(t),
(5.17)

where α is a weight that makes a trade-off between the total delay of observed customers
by u and the energy cost of u, 0 ≤ α ≤ 1. This is because these objectives often
conflict: minimizing delay may require more energy-intensive operations in long route,
while minimizing energy usage may neglect high-urgent customers. By adjusting the
weights between 0 and 1, the operators in transportation systems can tune the reward
function to prioritize or balance competing objectives based on the specific needs of
the application. For example, the system can prioritize minimizing delivery delays
by decreasing α to address urgent customer demands during a pandemic, or focus
on reducing energy consumption and carbon emissions to meet net zero targets by
increasing α.

Throughout the designed methodology, the actions of flight range selection play a
pivotal role in obtaining high reward, i.e., low delivery delay and energy consumption.
A “good” action balances the immediate efficiency of the flight range with the potential
to serve future customers effectively, ensuring minimal delay and optimal energy usage
over time. For instance, as shown in Fig. 5.1, a “good” action might direct a drone to fly
to Area 2 at t, where delays are currently high. This proactive choice positions the drone
to serve delayed customers more efficiently in Area 4 at t + 1, reducing future travel.
However, a “bad” action may suggest the drone remain in Area 1 to minimize immediate
energy use, but at the cost of greater delays later. Thus, the proposed approach HALOP
leverages multi-agent deep reinforcement learning to reinforce “good” actions and lower
the probability to choose “bad” actions (see Section 3.4.3). It learns an optimal policy
by exploring various choices of flight range, adapting to the dynamic environment and
evaluating their outcomes over time.

5.3.3 Algorithm of optimized plan selection

After selecting flight ranges Ru, u ∈ U, drones run the optimized plan selection al-
gorithm to generate and select optimized task plan for delivery. The depots and cus-
tomer locations within the designated service areas are modeled as a graph, where each

118

5.3 Methodology Overview

Algorithm 7: Optimized plan selection for multi-drone delivery.
Input: Parameters of drones u used in Section 5.1.2, the flight range Ru, the maximum

number of parcels M̂ , ∀u ∈ U.
1 Initialization: Initialize a set of plans P = ∅ and the sets of selected customer requests

Ĉu = ∅ for each drone
2 Find M̂ customer requests with highest delivery delay within Ru, and store them into Ĉu

3 Add all sets to Ĉ =
∑

u∈U
Ĉu

4 for ∀u ∈ U do
5 Find K combinations of customer requests from Ĉu under the constraint (5.16)
6 for each plan index k := 1, ..., K do
7 Find the shortest path among customer requests and departure/destination depots

via the greedy algorithm
8 Generate the plan puk that includes the indexes of selected customer requests
9 Calculate the energy consumption Euk based upon the path as the cost of the plan

10 Add the plan and cost to the set P̂ of delivery plans
11 end
12 end
13 Set the objective function: min

∑
u∈U

∑
k≤K

Euk · xuk

14 Set the constraint (1):
∑

k≤K
xuk = 1, ∀u ∈ U

15 Set the constraint (2):
∑

u∈U

∑
k≤K

1{c ∈ puk} · xuk = 1, ∀c ∈ Ĉ

16 Minimize the objective function using an optimizer tool under constraints and find the
optimal route for each drone pu := puk

Output: Optimal route pu for each drone.

node represents a possible stop for the drones. This algorithm contains two parts: the
plan generation and plan selection, see Algorithm 7.

The plan generation part of the algorithm (Line 2-12) aims to enable each drone
to generate task plans that cover the customer requests with the highest delivery delay
within its flight range. Firstly, for the flight range Ru of each drone u, ∀u ∈ U, the
algorithm searches for a number of customer requests with the highest delivery delay
within Ru and store them into a set Ĉu (Line 2). This number is determined by the
maximum number of parcels for each drone M̂ , which is empirically set according to
the average weight of parcels and the payload of drones. Next, each drone u finds all
combinations (equal to K) of customer requests from its corresponding Ĉu (Line 5). The
combination denotes a number of requests (≤ M̂) selected from Ĉu whereas their total
weight is no higher than the drone payload Mu. Then, each drone finds the shortest
path for each combination of customer requests, calculates the energy consumption

119

5.4 Experimental Evaluation

Euk, and generate the plan puk (Line 6-11). All plans and their corresponding cost
(i.e., energy consumption) are stored into the set P.

In the plan selection part (Line 13-16), the objective function is set to minimize the
total cost of plans selected by drones, where xuk denotes binary variable which takes
1 if drone u selects the plan l and 0 otherwise. Two constraints are then applied: (1)
each drone must select exactly one plan, and (2) each customer request must be visited
exactly once across all selected plans, where 1{c ∈ puk} is an indicator function which
takes 1 if c ∈ puk and 0 otherwise. Once the constraints are set, the optimal route
for each drone is then obtained, yielding the most cost-effective delivery plan. Finally,
the algorithm selects an optimal route for each drone using an optimizer tool such as
Gurobi [6].

The overall training process of the methodology primarily involves the following
steps (see Algorithm 8): At the beginning of each episode, the environment is reset
with the input of delivery data, which includes the coordinates and time of customer
requests. The state of drones are also initialized. Next, the algorithm runs the K-means
clustering in Algorithm 6 for customer requests segmentation. Then, each agent (or
drone) takes an action to select a service area based on its current state. These actions
also determine the departure and destination of drones, i.e., the start and end depots.
After generating and selecting a task plan for delivery through Algorithm 7, drones
calculate their immediate reward and transition to a new state. The buffer, a data
storage structure used for experience replay, stores all transitions of each drone. Several
groups of transitions are sampled randomly (H groups of transitions) for updating the
parameters of both the critic and actor networks. Finally, the algorithm updates the
parameters in critic network and actor network (see Section 3.4.3).

5.4 Experimental Evaluation

In this section, an overview of the simulation settings is presented. The delivery data-
set, specification of drones, and the used neural networks are introduced. Then, the
baselines and performance evaluation metrics are discussed. Finally, the results are
assessed across various scenarios.

120

5.4 Experimental Evaluation

Algorithm 8: The HALOP training for multi-drone delivery.
1 Randomly initialize critic network Q(·), actor network π(·) with parameters θQ, θπ

2 for episode := 1 to max-episode-number do
3 Reset the customer requests and the state of drones
4 Partition the map and set the locations of depots via Algorithm 6
5 for period t := 1 to max-episode-length do
6 for ∀u ∈ U do
7 Take action: Au

t = π(Su
t |θπ)

8 Find the destination depot and the flight range Ru

9 end
10 Generate task plans and find the optimal one for each drone via Algorithm 7
11 for ∀u ∈ U do
12 Compute reward and update state
13 Store transition sample into buffer
14 Sample a random mini-batch of H samples from buffer
15 end
16 end
17 Estimate advantage via Eq.(3.18)
18 Calculate the probability ratio via Eq.(3.19)
19 Update θπ by minimizing the loss via Eq.(3.20) (3.21)
20 Update θQ by minimizing the loss via Eq.(3.22)
21 end

5.4.1 Experimental settings

The experiment models a real-world delivery scenario in Shanghai City based on a last-
mile delivery dataset is modeled, named LaDe1. LaDe is a large-scale dataset consisting
of data, such as time and location, for 10,677,000 packages collected by 21,000 couriers
in 5 cities across 6 months. The dataset comprises data for both pickup and delivery
of packages for 30 regions in Shanghai City.

As shown in Fig. 5.3, this study selects an area of 10 × 10km in the city where a
number of customers request parcels at different times from 9 am to 5 pm. It illustrates
an example of the distribution of customer requests on August 20, 2022 (shown in
black points). The left picture shows the distribution of 16 depots (white crosses) and
the boundaries of service areas (white lines) with indexes (white number) determined
by K-means clustering based on LaDe dataset. The right one shows the depots and

1Available at: https://huggingface.co/datasets/Cainiao-AI/LaDe.

121

5.4 Experimental Evaluation

Segmentation: K-means clustering Segmentation: square grids

3

12

1 7

9

5

10
13

0

4 11

6

2 8

14

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

15

Figure 5.3: Customer requests segmentation of a city map with the area of 10× 10km

in Shanghai City.

Table 5.2: Notations for delivery drones.

Notation Value

Mass of drone body mb = 2kg

Mass of battery me = 1kg

Diameter of propellers d = 0.5m

Number of propellers r = 4
Ground speed v = 10m/s

Power efficiency ϵu = 0.8
Battery capacity Cu = 160kJ

boundaries determined by square grids, which will be used for baseline comparison in
Section 5.4.2. The total duration is divided into 12 time windows, each representing 30
min, when a drone executes a delivery mission and fly back to a depot. Except for X/Y
coordinates, each request has an actual delivery time in the dataset, which is assumed
to be the expected delivery time. The cross-validation is employed for 90 days of data:
80% for training and 20% for testing.

Furthermore, this study refers to the parameters of Meituan drone because of its
high flight range and payload [166]. Each drone has a maximum flight range of around
3 km and a maximum payload of around 2.5 kg. The other drone parameters used in
this chapter for the simulations are set as listed in the Table 5.2.

In the settings of neutral network and learning algorithm, a total of H = 64 groups
of transitions are sampled as mini-batches in a replay buffer, with a discount factor of

122

5.4 Experimental Evaluation

γ = 0.95 and a clip interval hyperparameter of 0.2 for policy updating by using proximal
policy optimization [135]. The algorithm uses the recurrent neural network with 64
neurons in the two hidden layers in both critic and actor networks. The activation
function used for the networks is tanh. The models are trained over E = 10, 000
episodes, each consisting of multiple epochs (equal to the number of time windows).

5.4.2 Baselines and metrics

A direct comparison between the proposed methods and existing work is challenging
due to the limited relevant work. Most existing approaches are not well-suited for
multi-objective combinatorial optimization problems that involve both time-sensitive
constraints and multi-parcel delivery requirements. For this reason, this chapter com-
pares the proposed method of Hierarchical Learning-based Plan Selection (HALOP)
with the following relevant methods:

• OPS-global: The flight range of each drone is set as the default, that is, every
drone searches the customer requests over the whole map within each time window
regardless of its flight range. It does not solve customer requests segmentation
and flight range selection.

• OPS-random: K-means clustering algorithm is leveraged to determine the service
areas; drones select their sub-ranges randomly. OPS-random does not support
any long-term strategic navigation between depots.

• MAPPO: It is a state-of-the-art MARL algorithm using proximal policy optim-
ization [135]. Different from HALOP that takes actions to select a flight range,
the action of this method is to choose a task plan from the set Ĉu without the
help of Gurobi optimizer.

• HALOP-square: It leverages MARL-based flight range selection and optimized
plan selection algorithms, but divides the map into square grids as service areas
for customer requests segmentation instead of K-means clustering.

All the algorithms are evaluated using the following two key metrics: (1)Mean
energy consumption, which denotes the mean energy consumption per drone that travels
within all time window based on the objective function (5.10); (2) Average delivery

123

5.4 Experimental Evaluation

Table 5.3: Performance comparison of five methods on the basic delivery scenario.

Metrics OPS-global OPS-random MAPPO HALOP-square HALOP

Mean energy
consumption (kJ)

1551 ± 106 662.0 ± 40.4 664.3 ± 33.2 1768 ± 126.7 669.1 ± 33.2

Average delivery
delay (hour)

0.67 ± 0.20 1.17 ± 0.16 1.46 ± 0.10 1.15 ± 0.11 0.88 ± 0.10

Combined cost 0.66 ± 0.09 0.57 ± 0.06 0.67 ± 0.04 0.87 ± 0.07 0.48 ± 0.04
Delay unfairness 0.21 ± 0.01 0.60 ± 0.02 0.34 ± 0.02 0.56 ± 0.08 0.41 ± 0.01
Average running
time (second)

6.23 ± 0.11 0.28 ± 0.04 0.38 ± 0.02 0.46 ± 0.02 0.46 ± 0.02

Average earlier
arrival time (hour)

0.03 ± 0.06 0.52 ± 0.17 1.03 ± 0.05 0.11 ± 0.04 0.17 ± 0.06

delay, which indicates the average delay time (hours) per customer request all time
windows based on the objective function (5.11);

Moreover, several other metrics can also be observed on these algorithms: (1) Com-
bined cost, which is the weighted sum (using trade-off weight α) of normalized mean
energy consumption and average delivery delay. (2) Delay unfairness, which measures
the delivery delay inequality among search areas. Specifically, the total delivery delay
of customer requests in each service area is calculated, and the unfairness value between
these total delivery delay values is calculated using Gini coefficient. (3) Average running
time, which calculates the average time (seconds) it takes these algorithms to run per
repetition. (4) Average early arrival time, which measures the average amount of time
(hours) by which drones arrive earlier than the expected delivery time (or deadline)
across all customer requests over all time windows. (5) Depot load, which quantifies
the total weight (kg) of the parcels picked up by the drones from each depot over all
time windows.

5.4.3 Evaluation on basic delivery scenario

The basic delivery scenario is evaluated at first. There are 16 service areas with 8
dispatched drones. The number of actions is 4, which indicates that each drone selects
one of the four nearest depots as the destination (including its departure depot). The
tradeoff parameter is set as 0.5 as default. The purpose is to compare the performance
of different approaches.

124

5.4 Experimental Evaluation

Time window 1 Time window 2 Time window 3 Time window 4

T
ot

al
 d

el
iv

er
y

de
la

y
of

 c
us

to
m

er
s

in
 t

h
e

ar
ea

HALOP

OPS-global

Squares

MEC = 55.76 kJ
ADE = 0.88 h

MEC = 129.29 kJ
ADE = 0.67 h

MEC = 147.35 kJ
ADE = 1.15 h

Figure 5.4: Comparison of optimal drone trajectories among all three approaches in
different time windows (MEC is mean energy consumption, ADE is average delivery
delay).

Table 5.3 shows the metric performance of all methods which run 40 times to obtain
average values and standard deviation errors. Among all methods, OPS-global has
the lowest average delivery delay and delay unfairness, but incurs the highest average
running time due to its extensive search range. When the search range is reduced,
HALOP can run approximately 93.73% faster than OPS-global, making it more suitable
to real-time application. OPS-global also has the higher mean energy consumption than
HALOP by 882.4kJ since drones are more likely to choose distant customers regardless
of their maximum flying time. The comparison of drone trajectories is illustrated in
Fig 5.4. Each drone takes around 80.80% of battery capacity on average, exceeding
its safe battery level. Based on the average carbon intensity in the United Kingdom
in 2024, which is 125g CO2 per kWh [167], HALOP can reduce approximately 245g
CO2 less than OPS-global. In overall, HALOP has 27.27% lower combined cost than
OPS-global, validating the energy-efficiency of the proposed approach.

Except for OPS-global, HALOP has lower delivery delay than other methods, by
controlling drones to strategically target high-delay areas while still maintaining low

125

5.4 Experimental Evaluation

energy consumption. While OPS-random minimizes the mean energy consumption, it
lacks a long-term strategy that guides drones to the customer requests with the highest
delivery delay. As a result, drones using OPS-random arrive earlier than those using
HALOP by an average of 0.35 hour, but they also experience longer delays, averaging
0.29 hour more. This random selection of flight range also leads to unequal serving
of customer requests, with 0.19 higher than HALOP. Even though MAPPO prevents
drones from choosing incorrect service areas, it performs the worst in terms of delivery
delay, with the highest average delivery delay and earlier arrival time. This is due to
inefficient exploration in training caused by high action space. In addition, HALOP
using K-means clustering significantly outperforms HALOP-square using square grids
with a 1099kJ reduction in mean energy consumption and 0.27 hour decrease in average
delivery delay. This is because the K-means clustering restrict drones to fly over high
request density areas, whereas square grids may result in that drones waste their energy
to choose a corner grid without any delivery requests, see Fig. 5.4.

5.4.4 Evaluation on complex delivery scenario

The complex delivery scenario is then studied by varying three parameters: (1) The
trade-off weight to balance the delivery delay and average energy cost defined in the
reward function; (2) the number of drones used in the delivery mission; and (3) the
flying coverage density to represent the ratio of the number of areas a drone chooses
to fly over the total number of service areas in the map. The goal is to assess the
scalability of the proposed approaches under different experimental conditions. Due
to the least performance of MAPPO and HALOP-square in basic delivery scenario,
the methods HALOP with OPS-global and OPS-random are compared in the complex
synthesis scenario.

Trade-off weight. Fig. 5.5(a) illustrates the influence of trade-off weight on the
balance between mean energy consumption and average delivery delay of HALOP. The
shadow represents the error (i.e., standard deviation) of metrics. As the value of trade-
off weight α increases, the energy consumption of each drone decreases linearly while the
delivery delay of customers increases significantly when α > 0.2. The heavier trade-off
weight on the energy cost restricts drones to travel less and gradually choose to stay at
the service areas (see Fig. 5.5(b)). As a result, drones fail to deliver distant customers
request with high delay. When α ≥ 0.6, drones only pick-up parcels from area 0, 5,

126

5.4 Experimental Evaluation

0.0 0.1 0.2 0.3 0.4 0.6 0.8 1.0
Values of Trade-off Weight

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

D
el

iv
er

y
D

el
ay

 (h
ou

r)

Delivery delay

400

600

800

M
ea

n
en

er
gy

 c
on

su
m

pt
io

n
(k

J)Mean energy consumption

(a) Trade-off weight vs. delivery delay & aver-
age energy cost.

0.0 0.1 0.2 0.3 0.4 0.6 0.8 1.0
Values of Trade-off Weight

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

In
de

x
of

 se
rv

ic
e

ar
ea

0

20

40

60

80

100

D
ep

ot
 L

oa
d

(k
g)

(b) Trade-off weight vs. depot load in each ser-
vice area.

Figure 5.5: Performance comparison of HALOP across different values of trade-off
weight.

13 and 15, see Fig. 5.3. HALOP only produces 80.04g CO2 at the cost of 1.45 hour
average delivery delay when α = 1. In contrast, lower α reduces the delivery delay
by controlling drones to fly across all areas and take parcels from their corresponding
depots. HALOP achieves a relatively equal average delivery delay with OPS-global
when α = 0, but 730.3kJ lower mean energy consumption. The results highlight that
HALOP can achieve either low mean energy consumption or low average delivery delay
by adjusting the tradeoff parameter. The high cost of energy consumption comes with
benefits on timely delivery and vice versa.

Number of drones. As shown in Fig. 5.6, if the number of drones increases, the aver-
age delivery delay of all methods decreases as drones can cover a wider area and deliver
to customer requests on time. This proves that sufficient drone resources can minimize
the arriving time of all customer deliveries and efficiently mitigate the customer delay.
The effect is significant in OPS-global which has has 0 delay with more than 16 drones
and the lowest delay unfairness, albeit with high energy consumption and running time.
When the number increases to 20, HALOP has the lower mean energy consumption by
approximately 850.0kJ and average running time by around 88.8 seconds compared to
OPS-global, leading to 21.95% lower combined cost. This demonstrates the applicability
of the proposed approach in energy-constrained real-time delivery scenarios. Moreover,

127

5.4 Experimental Evaluation

8 12 16 20 24
Number of drones

0
250
500
750

1000
1250
1500
1750
2000

M
ea

n
en

er
gy

 c
on

su
m

pt
io

n
(k

J)

8 12 16 20 24
Number of drones

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

D
el

iv
er

y
D

el
ay

 (h
ou

r)

8 12 16 20 24
Number of drones

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

C
om

bi
ne

d
co

st

8 12 16 20 24
Number of drones

0

25

50

75

100

125

150

175

Av
er

ag
e

R
un

ni
ng

 T
im

e
(s

ec
on

d)

OPS-global
OPS-random
HALOP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Index of service area

8

12

16

20

24N
um

be
r o

f d
ro

ne
s

0

25

50

75

100
D

ep
ot

 L
oa

d
(k

g)

Figure 5.6: Performance comparison of three methods in all five metrics across different
number of drones.

HALOP learns the flying strategy efficiently, decreasing the delivery delay by approx-
imately 24.25% compared to OPS-random. In terms of the depot load, drones are
gradually required to take parcels from all except the depots in service areas 3 and 11
(see Fig. 5.3), as the number of drones increases. This is because these low-load depots

128

5.4 Experimental Evaluation

HALOP OPS-random OPS-global

Figure 5.7: Performance comparison of three approaches across different flying coverage
density and number of service areas.

are located at the borders of the map and are hard to access. The results show that
high number of drones decreases average delivery delay of HALOP, while maintaining
a low mean energy consumption and a low running time.

Flying coverage density. When the flying coverage density increases from 0.25 to
1.0, the number of service areas a drone chooses to fly increases by fixing the total
number of service areas. Fig. 5.7 illustrates the performance of HALOP and baseline
methods when using varying flying coverage densities and numbers of service areas.
On the one hand, if the flying coverage density increases from 0.25 to 1.0, the flight
range of both HALOP and OPS-random extends, which helps drones to reach customer
requests with higher delivery delays, thereby reducing delivery delay of the system. As
the coverage density rises, the mean energy consumption increases due to a greater
likelihood to choose longer flight routes. Note that in the case of high flying coverage
densities, HALOP typically selects only a single flight range, rather than covering the
entire map. This narrower range can make it more challenging to find optimal routes
compared to OPS-global. On the other hand, if the number of service areas increases
from 16 to 32, while fixing flying coverage density, HALOP maintains mean energy

129

5.5 Comparison with Related Work

consumption with only an 8.96% variance but achieves a 12.52% reduction in average
delivery delay compared to OPS-random. It is important to note that too few coverage
options can hinder learning efficiency, as seen in the scenario with 8 service areas at
0.25 density. The results show that HALOP searches customers and reduces delivery
delay more energy-efficiently than OPS-random, which operates with a fixed and low
flying coverage density.

5.5 Comparison with Related Work

The proposed work differs from the existing literature in the following aspects. First, ex-
isting methods to overcome the limitations of the range and payload capacity of drones
have been to pair them with delivery trucks such that drones only perform deliver-
ies within small ranges (“last-mile deliveries”) [120–122, 168, 169]. Furthermore, the
use of multiple depots [169, 170] and recharging (in-flight or with distributed charging
stations) [171–173] has been proposed previously. However, synchronization between
drones and trucks is a critical and complex problem with significant costs due to idle
times [121]. These solutions are also not environmentally friendly; drones typically
have fewer CO2 emissions than delivery trucks, and life-cycle impacts are increased if
additional depots are required [174, 175]. Moreover, drone deliveries without trucks
become cost-competitive when more packages can be carried per tour [176]. Only
a few models have explored swarm-based multi-parcel drone delivery scenarios where
numerous drones operate together to make multiple deliveries directly from the de-
pot [120, 177, 178], or from a truck [179, 180]. This work differs from the dominant
truck–drone models by studying a more universal scenario where drones carry multiple
packages directly from a depot and deliver packages to customers based on the urgency
of their delivery.

Second, this chapter performs delay-aware drone deliveries in which a customer’s
delivery priority increases with the waiting time; in other words, it is more urgent to
deliver packages to customers who have had to wait longer for the deliveries. In contrast,
most of the literature so far has considered priority that remain constant through the
entire service period [37, 178, 181]. Wang et al. [181], for example, employs fuzzy theory
to deal with demand arrival rate under a priority queuing strategy, but their priority
queue remained constant throughout the operational period. Similarly, Narayanan et
al. [178] considers service delays by using a system of prioritization to compensate the

130

5.5 Comparison with Related Work

customers differently for late deliveries; however, they also used a fixed priority queue.
Third, most of the papers in the literature consider energy consumption as a fixed

limit on drone flight time or flight range [120, 182]. It is only recently that some
related research has considered the battery energy consumption rate [178, 183, 184].
The proposed approach in this chapter considers the battery energy consumption rate
with multiple package deliveries. When a package is delivered, the weight of the drone
decreases, thereby reducing the energy consumption rate and increasing the range.
Unlike most prior literature that consider a single package and use a direct relationship
between consumption and weight, this chapter explicitly accounts for this increase with
the number of packages. Furthermore, very few studies have considered both delay
awareness and energy consumption together. Some studies have examined the tradeoff
between energy consumption and delivery time (e.g., [185, 186]), but they consider
fixed delivery times, essentially applying the capacitated vehicle routing problem with
time windows to drone deliveries.

Finally, the proposed approach is different from most drone delivery systems that
typically consider static environments; for example, previous work [187] proposes Deep-
ETA, a spatial-temporal sequential neural network model for estimating travel (arrival)
time for parcel delivery, formulated with multiple destinations. However, this approach
relies on the availability of information regarding delivery routes. In Deng at al. [188],
the authors consider travel time uncertainty and the minimization of service delay risks
(with a truck-and-drone delivery system), but the drones had complete information. Re-
cent research that has employed reinforcement learning approaches, e.g., [119, 189, 190]
focuses on relearning flight paths and delivery strategies, assuming complete informa-
tion of all the customers and all possible routes. In contrast, the proposed approach is
adaptive to new customers and locations that change with increasing demand urgency
at different times. This is achieved by using MARL to improve optimization; MARL is
used to observe new delivery demand and take strategic policies to visit the customers
with the most urgent priority. This makes the proposed approach highly adaptive to
various operational scenarios and conditions.

Table 5.4 compares the most prominent recent literature (criteria covered ✓or not
✗). Similar to the comparison table in Section 4.6, scalability to large-scale systems
refers to the ability of the method to handle increasing numbers of customers, drones,
tasks, and environmental complexity; adaptability to dynamic environments refers to

131

5.6 Discussion and Future Work

Table 5.4: Comparison with related work in Chapter 5.

Criteria Ref.: [180] [181] [186] [188] [185] [184] [178] This work

Scalability to large-scale systems ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Adaptability to dynamic environments ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

Sustainable long-term efficiency ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓

Energy-awareness ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Delay-awareness ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Multi-parcel ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

No. of Customers 25–100 0–50 15–36 10–25 10–100 5–50 10–10000 400 − 600

the responsiveness of the method to real-time and uncertain changes, such as the dis-
tribution of customer requests; sustainable long-term efficiency refers to the capacity
of the method to optimize resource usage, such as energy and time, over extended peri-
ods; energy-awareness implies that energy consumption is considered; delay-awareness
checks if delivery delays have been considered; and multi-parcel refers to whether a
drone can carry multiple packages.

5.6 Discussion and Future Work

In summary, several new insights are obtained from experimental results that are sum-
marized as follows: (1) The proposed optimized plan selection (OPS) algorithm effect-
ively coordinates energy-aware drones to minimize delivery delays, while supporting
energy-efficient multi-parcel delivery. (2) Strategic selection of flight range using re-
inforcement learning and clustering algorithms in HALOP ensures low delivery delay
and effectively prevents drones from searching high distant customer requests. It not
only reduces energy consumption and carbon emissions of drones, but enhances op-
eration speed, making it highly adaptive to real-time delivery applications. (3) The
tradeoff between energy consumption of drones and delivery delay of customer requests
allows operators in transportation systems to make appropriate adjustments according
to their priorities, such as net zero sustainability and pandemic delivery. (4) Experi-
mental results on depot deployment optimization, addressing aspects such as the num-
ber, location, and parcel load distribution of depots, support service providers with
infrastructure planning, thereby enhancing overall logistics efficiency and adaptability
to dynamic customer requests.

In the future work, a large number heterogeneous drones with different batteries,

132

5.7 Conclusions

payloads, and power efficiencies will be considered. This will aim to support the large-
scale delivery that requires the decentralized combinatorial optimization approaches,
such as collective learning [18, 178]. Furthermore, this work needs to conduct ex-
periments on a real-time drone testbed to validate the applicability of the proposed
method.

5.7 Conclusions

In conclusion, this chapter illustrates the Energy-and-Delay-Aware Coordination of
Multi-Drone Last-mile Delivery model to solve the last-mile delivery problem by a
swarm of drones, which aims to minimize both energy consumption of drones and de-
livery delay of customer requests. Due to the constraints of flight range and parcel
weight, the problem is modeled by a multi-objective combinatorial optimization prob-
lem using a multi-parcel energy consumption model. This problem is then decomposed
into three sub-problems, which are addressed by three approaches respectively: (1)
The clustering algorithm for customer requests segmentation; (2) The reinforcement
learning approach for flight range selection; (3) The optimized plan selection algorithm
for delivery navigation. A synthesis of these approaches is proposed to improve the
long-term delivery efficiency by learning the policy on selecting an optimal flight range
using HALOP proposed in the designed PMAC model. Extensive experimentation
using a real-world delivery dataset from Shanghai city provides valuable insights for
sustainable, efficient drone delivery. The results demonstrate that HALOP not only
makes a tradeoff and minimizes both energy consumption (or carbon emissions) and
delivery delay, but shows rapid operational speed and recommends depot deployment,
making it adaptive for real-world logistics.

133

Chapter 6

Multi-drone Testbed Prototyping

This chapter1 aims to validate the applicability and realism of the PMAC model based
on the experimentation testbed using hardware drones. Designing, prototyping, de-
ploying, testing, and evaluating task allocation solutions (spatio-temporal sensing or
last-mile delivery) is a highly complex and interdisciplinary research endeavor. On the
one hand, simulation environments reduce the complexity and the number of influential
environmental variables, allowing in this way a more targeted study of task allocation
algorithms. One the other hand, experimenting with real drones in indoor and even
outdoor environments increases realism and external validity [191].

To bridge this gap, this chapter introduces a testbed to study multi-drone coordin-
ation for task allocation problems. The testbed consists of a 2D area of interest (a
map). For instance, consider image/video capturing. Such an area can be simply im-
plemented by one large or several smaller interconnected monitors lying on the floor in
an indoor lab environment, a projector or another visual medium. These means can
project images, videos and more sophisticated visual content of simulation models (e.g.
traffic flows [164]) to emulate the tasking environment. Low-cost drones can traverse
the map and hover to “scan” points of interest from a certain height, or carry payload
(equivalent to a parcel) and deliver it to the points, which are regarded as the ware-
houses or customers. As such, different points may have different task requirements
encoding in this way a large spectrum of missions and applications. In this simple and
generic context, the proposed testbed allows the study of high Technology Readiness
Level (TRL) solutions for a plethora of problems including: charging control of drones,
collision avoidance, sensor fusion, delivery, autonomous search and navigation, optimiz-

1This chapter is based on two published papers [26, 27].

134

ation, learning and task allocation algorithms (e.g., multi-agent collective learning and
reinforcement learning), among others.

However, the indoor testbed still lacks the realism of outdoor environments, par-
ticularly regarding in-flight safety issues such as obstacle-to-drone and drone-to-drone
collisions. Designing and prototyping a testbed that integrates collision avoidance in
task allocation for multi-drone coordination is a complex challenge. On the one hand,
task allocation enables autonomous and flexible coordination for efficient missions of
sensing and delivery, but increases the risk of unpredictable collisions, requiring highly
sophisticated algorithms for collision detection and avoidance, especially in small lab
spaces. On the other hand, incorporating collision avoidance introduces new hardware
testing challenges, as it alters the navigation and tasking outputs by task allocation,
impacting factors such as energy consumption and task accuracy.

To tackle these challenges, a Multi-drone Tasking Experimentation Testbed (M-
TET) is designed to improve the realism of multi-drone task allocation operations.
This testbed studies various task allocation problems in drones, including charging
control, navigation, and collision avoidance. As a proof-of-concept, an artificial po-
tential field algorithm [36] is applied to predict collision fields and determine optimal
drone flight paths, effectively detecting and mitigating potential collisions. This method
ensures collision-free navigation and tasking, which are further coordinated and optim-
ized using the proposed PMAC. Extensive experimentation with low-cost real drones,
an indoor tasking environment, and real-world traffic data from Athens [4] validates the
effectiveness of M-TET in traffic vehicle monitoring, demonstrating its capacity to move
complex task allocation and collision avoidance algorithms for drones to real-world.

The organization of this chapter is outlined as follows: Section 6.1 introduces the
design of indoor multi-drone testbed M-TET. Section 6.2 illustrates the prototyping
details of M-TET, including drones, tasking environments, task allocation and collision
avoidance. Section 6.3 evaluates the experimental results from the hardware tests.
Section 6.4 compares M-TET with related testbeds and experimentation. Section 6.5
discusses the new insights on experimental results of M-TET and outlines future work.
Finally, Section 6.6 concludes this chapter.

135

6.1 Testbed Design

6.1 Testbed Design

M-TET is the first prototype of an indoor drone testbed with the aim to support inter-
disciplinary research on multi-drone coordination, including: energy-aware learning
and optimization algorithms for task allocation, control and communication problems
of different drones as well as sensing/delivery scenarios for different applications of
Smart Cities. The proposed testbed relies on a model, which can be implemented in
different lab environments. At an abstract level, the testbed is modeled by the elements
presented in the rest of this section.

6.1.1 Elements description

Interactive drones. They communicate to interact with each other directly, or via
low-latency edge proxies, or through the cloud [154]. Each drone can run its task al-
location and collision avoidance software for sensing and delivery within the following
continuum [68]: (i) offline/online, remote, centralized computations (server deploy-
ment), (ii) offline/online, remote, distributed computations (edge-to-cloud deployment
scenario) [154], and (iii) online, locally on drones, distributed computations. For long-
term missions, each drones can support wireless charging and be fully charged before
starting the next missions [192].

Indoor tasking environment. It is the area that drones perform different types of
tasks, e.g., camera recording for spatio-temporal sensing, and weight carrying for last-
mile delivery. In the sensing scenario, drones sense at multiple resolutions determined
by the height of hovering or flight. At each resolution (height), the map is split into cells,
each defining the sensing area of interest. The higher the height, the larger the cell and
the lower the sensing quality are likely to be, e.g., image recognition, sound sensitivity,
etc. In the context of a sensing mission, each cell has specific sensing requirements that
determine the hovering duration and data acquisition of UAVs. For instance, areas with
high traffic may also have higher sensing requirements to accurately capture the traffic
flows with drones. In an indoor lab environment, a sensing map can be emulated with
one or more monitors or a projector illustrating images, videos and visual outputs of
simulations models, e.g. a traffic flow simulation with SUMO [164]. Furthermore, the
map can be divided into a number of square cells or set multiple target points, which
will be regarded as the warehouses for multi-drone delivery. Each drone with a weight

136

6.1 Testbed Design

Type 1
Cross

Collision

Type 2
Parallel

Collision

Type 3
Destination
Occupied
Collision

Figure 6.1: Three types of collisions and corresponding avoidance methods.

attached flies to a point of interest and lands, delivering to the required warehouse. In
this context, each cell/target has specific delivery requirements (i.e., a binary value)
that whether it needs to be delivered at each time period. In this way, task allocation
algorithms can be assessed at low-cost, with ease and safety in a wide range of what-if
scenarios.

Task allocation algorithm. It assists multiple drones to plan the navigation and
tasking in a coordinated way such that each selects one plan influenced by the selections
of others. Each position index of the plan denotes the area of interest in the map, such
as the cell. Therefore, the global plan, i.e., the aggregated plans selected by the swarm
matches well the task requirements of the environment. This matching represents the
relative approximation between the total actual values per cell and task requirements
per cell. Error and correlation metrics such as the root mean squared error, cross-
correlation or residuals of summed squares can estimate this matching [39]. To solve
the task allocation problem, the proposed approaches in PMAC are used in this chapter.

Collision detection and collision avoidance. It detects all possible in-flight and
static collisions, i.e., intersections of flight paths or walls in multi-drone missions, and
then minimizes the likelihood of collisions during the path planning. This requires an in-
telligent path planning algorithm, making task allocation cost-effective and safe within
various scenarios. The algorithm detects intersections of flight paths and obstacles, and
augments the navigation and tasking plans selected via task allocation to prevent the
potential collisions, minimizing in-flight risks, i.e., the traveling distance at high risk of
collisions. Fig 6.1 illustrates three typical types of collisions considered in this chapter

137

6.1 Testbed Design

Low-cost
drones

Indoor
sensing map

Software Hardware

Plan 1
Plan 2
Plan 3
Plan 4

1 2 3 4 5 6
Grid cell index

Plan Generation:
Navigation and

sensing alternatives

Optimized Plan
Selection:

I-EPOS collective learning

Plan Augmentation:
Potential field collision avoidance

Data collection:
(1) Energy consumption (Joules)
(2) Sensor data (videos)
(3) Collision risk distance

Plan Execution:
XYZ coordinates and

sensing time

PMAC

Figure 6.2: An overview of the prototyped M-TET architecture.

(cross, parallel, and destination-occupied). Cross collision denotes two drones fly across
each other; Parallel collision indicates two drones fly towards each other; Destination-
occupied collision means one drone performing sensing or delivery occupies another
drone’s destination.

6.1.2 Architecture overview

Fig. 6.2 illustrates an overview of M-TET architecture. The core of M-TET lies in
two software approaches. One is the designed PMAC model, which divides in plan
generation and plan selection parts. It generates for each agent a finite number of
discrete navigation and tasking options, each with an estimated power consumption:
the possible plans and their cost respectively. Plan generation is performed using the
drones specifications (weight, propeller and battery parameters), and the tasking en-
vironment (wind and grid cells). Then the agents run multi-agent collective learning of
I-EPOS [18] to make a selection such that all choices together add up to maximize the
task accuracy (matching). However, these selected plans have no information about
the potential collisions, and thus the path planning algorithm for collision avoidance is
required to augment selected plans. This testbed uses the artificial potential field al-
gorithm [36] to generate attractive forces towards the destinations and repulsive forces
between drones. These forces guide the drones to their target cells for tasking according

138

6.2 Testbed Prototyping

Power

Button

Detachable

Battery

Forward

Camera

Downward

Camera

(a) Drone specification. (b) Camera image cell.

Figure 6.3: The DJI Tello EDU drone that flies and hovers to capture images of cells
in the sensing map.

Positioning deck

Wireless
charging deck

(a) Crazyflie for testing positioning and
wireless charging.

AI deck with camera

Flow deck

(b) Crazyflie for navigation and camera re-
cording.

Figure 6.4: Assembly of Crazyflies for two types of functions.

to the selected plan, while also avoiding potential collisions. Finally, the algorithm pro-
duces the output plans containing the X/Y coordinates duration at each cell. They are
then executed by drones in hardware, which records the energy consumption, the col-
lected sensor data and collision risk distance during the mission. Therein, collision risk
distance implies the specific distance at which the risk of collisions becomes significant,
illustrated by the path length within the shaded area shown in Fig. 6.1.

6.2 Testbed Prototyping

This section introduces the prototyping details of M-TET architecture.

139

6.2 Testbed Prototyping

6.2.1 Hardware drones for tasking

M-TET uses two types of hardware drones for experiments: the DJI Tello EDU UAV
and the Crazyflie 2.1.

DJI Tello EDU UAV. The DJI Tello EDU UAV1 is used because of its size, weight,
and accessibility [193]. This drone can be programmed in Python, Swift or Scratch,
and multiple DJI Tello UAVs can fly for swarm applications. It has 7 min flight time
and precise hovering mode. The drone has 0.1kg weight, 7.26cm propeller length, a
battery capacity of 1100mA ·h and it is configured to fly with an average ground speed
of 0.1m/s. Based on this information, both the hovering and maneuvering power can be
estimated. DJI Tello UAV has a semi-open-source structure, i.e., the UAV cameras can
be accessed by sending commands code, but its internal structure cannot be changed.
This drone has 2 different cameras: forward and downward as shown in Fig. 6.3(a).
The forward camera can record RGB 5 mega-pixel and 1280× 720 videos, whereas the
downward camera, which is used to capture images, can only record gray-scale and
320× 240 video (see the cell in Fig. 6.3(b). Moreover, DJI Tello UAV can handle small
payloads up to approximately 80 grams, making it feasible to test delivery tasks.

Crazyflie 2.1. The Crazyflie 2.1 is used because of its size, weight and accessibility2.
The drone has 27g weight, 47mm propeller length, a battery capacity of 250mAh (LiPo
battery) and it is configured to fly with an average ground speed of 0.1m/s. Based
on this information, the power consumption can be estimated. Crazyflie can be pro-
grammed in Python with the support of API in Bitcraze3. This is further expanded by
the Crazyswarm API4, which provides additional functionality to control a swarm of
Crazyflies. The drone can be mounted by multiple hardware decks to support different
functions, such as positioning (with the support of lighthouse base stations), camera
recording, and wireless charging. Due to maximum weight limitation of Crazyflie, two
types of drones are assembled, one is for testing wireless charging, see Fig. 6.4(a), and
the other is for collecting sensor data, see Fig. 6.4(b). The data-collection drone with
an ultra low power 320× 320 grayscale camera is equipped with a tiny mirror to take
videos of ground.

1https://www.ryzerobotics.com/tello-edu
2https://www.bitcraze.io/products/crazyflie-2-1/
3https://github.com/bitcraze/crazyflie-lib-python
4https://github.com/USC-ACTLab/crazyswarm

140

6.2 Testbed Prototyping

(a) Test printout map. (b) Sensing requirements.

Figure 6.5: Test environment made by a printout for drone tasking.

The DJI Tello EDU UAV offers the advantage of easy integration for tasks (e.g.,
camera recording and parcel delivery) and supports multiple functions simultaneously.
However, it lacks a robust API for swarm navigation and coordination. In contrast,
Crazyflie 2.1 provides powerful tools for controlling drone swarms but faces challenges in
testing multiple functions at once, such as navigation, tasking, recharging, and collision
avoidance, due to its limited weight and battery life. To leverage the strengths of both
hardware drones, this testbed employs the DJI Tello EDU UAV to evaluate individual
drone navigation and tasking along predefined routes, while multiple Crazyflie drones
are used to study task allocation and collision avoidance behaviors.

Crazyflie 2

Crazyflie 3 Crazyflie 4

Wireless charger

Observed
traffic flow
of vehicles

Crazyflie 1

(a) A 75 inch screen to display the traffic flow
of vehicles.

Base stations for positioning

Required sensor
data values

(b) Grid cells in the video and sensing re-
quirements.

Figure 6.6: indoor tasking lab using a large screen, Crazyflies, wireless chargers, and
lighthouse base stations for positioning.

141

6.2 Testbed Prototyping

6.2.2 Setting up an indoor tasking environment

To investigate both short-term and long-term vehicle observation, two types of indoor
tasking environment are considered: (1) A printout map that consists of a number of
square cells as the areas/points of interests for sensing and delivery; and (2) A sensing
video to show the traffic flow of vehicles over a long time span.

Printout map. A printout map of size 168 × 118 centimeters is tested consisting of
4×4 = 16 cells as shown in Fig. 6.5(a). The map is made by A3 printouts (one per cell)
that when put together they show a 2D map of an area in Zurich (see Fig.4 in earlier
work [149]). The cell with index 0 is the departure/landing cell. For the delivery
tasks, the central point of each cell in the map (see Fig. 6.5(a)) is assumed to be a
warehouse from which customers can pick up the parcels. The delivery requirements
are simplified by setting each cell with a binary value, that is, the value is 1 if the
warehouse in the cell is required to deliver, and 0 otherwise. For the sensing tasks,
each cell can be sensed effectively from a height of 40cm based on the field of view
that the camera of the drone has. The map is augmented by another layer depicting a
continuous kernel density estimation of cycling risk calculated by past bike accident data
and other information [149]. This overlay map can determine the sensing requirements
(hovering time) as follows:

t(n) = fR(n)∑N−1
n=0 fR(n)

· T, (6.1)

where n (0 ≤ n ≤ N − 1) denotes the index of a cell on the map out of a total of
N cells, fR(n) is the kernel density estimate and T is the maximum total operating
time of all drones. This means that more data are collected from cells with higher
cycling risk, emulating in this way a cycling safety application scenario. For testing,
the sensing requirements are simplified by setting each cell with a value of 60 when it
contains cycling/road infrastructure, and with 0 when it is does not, see Fig. 6.5(b).

Sensing video. A 75 inch screen is set on the ground as an indoor environment to
emulate the outdoor sensing environments. As shown in Fig. 6.6(a) and Fig. 6.6(b), the
screen is divided into 2x3 square grid cells, each with an area of 55x47cm. Each cell can
be sensed effectively from an altitude of 50cm (i.e., the vehicles can be clearly observed).
Other accessory equipment is set, including lighthouse base stations and wireless char-
gers. To show the significant and broad impact of M-TET on a transportation scenario,
the screen displays the video of the traffic flow of vehicles recorded from satellites or

142

6.2 Testbed Prototyping

other simulators, e.g., Simulations of Urban Mobility (SUMO). Thus, drones fly to grid
cells and collect sensor data by recording the videos of traffic vehicles. In this scenario,
a higher sensing requirement in a cell represents a high urgency for traffic monitoring
over this area, which requires drones to hover a longer time to measure accurately.
M-TET uses a real-world dataset of vehicle trajectories named pNEUMA1 collected by
a swarm of drones in the congested downtown area of Athens, Greece [4].

6.2.3 Task allocation using collective learning

Due to the restricted flight time and the limited number of drones, M-TET faces dif-
ficulties in testing a long-term tasking. Thus, this chapter uses the Optimized Plan
Selection (OPS) approach in PMAC to address the task allocation problem.

A number of N agents, each corresponding to a drone, autonomously generate 16
plans, each comprising sequences of M real values representing sensing duration or
delivery assignment at cells. These plans, serving as random samples of alternative
routes with a random number of cells, respect battery constraints. They are assigned
costs based on the power consumption of flying and hovering [34].

The plan selection in OPS is made in a coordinated way using multi-agent collective
learning (I-EPOS) [18]. For this, agents connect into a balanced binary tree topology
within which they interact with their children and parent to improve iteratively their
plan selection. The goal of the agents is to minimize the root mean square error
(RMSE) between the following signals: values per cell summed up over all agents and
the task requirements per cell. The agents perform 40 bottom-up and top-down learning
iterations. For this testbed prototype, the optimization process is performed offline and
remotely, however deployments of I-EPOS for online optimization are already available
for future extensions [68].

6.2.4 Collision avoidance using artificial potential field

M-TET applies an artificial potential field algorithm [36] to path planning of drones,
which creates force to repel drones from obstacles and attract them towards their des-
tinations. As shown in Fig. 6.7, a Potential Fields Grid (PFG) in this implementation
is created for each drone (named as the target drone) per timestamp. It is a 2D-grid
of vectors, where each vector points in the direction that the target drone should fly

1https://open-traffic.epfl.ch/

143

6.2 Testbed Prototyping

(a) Layout of potential field grids to
the target drone.

Wait Turn

Drone 1

Drone 2

(b) An example of collision avoidance
with 2 drones.

Figure 6.7: An example of collision avoidance using artificial potential field.

at that position per timestamp [36]. In Fig. 6.7(a), the blue drone is the target drone
attracted by the destination, whereas the red drone is the obstacle drone repelling
the target drone. The vectors influenced by both attractive and repulsive forces point
towards the navigation of the target drone. In Fig. 6.7(b), since drone 2 has higher
priority and stronger repulsive force than drone 1, drone 1 is pushed out of the target
cell and “wait” until drone 2 passes by, and makes a “turn” when traveling to the next
cell.

There are two types of PFG: attractive PFG and repulsive PFG, which coexist to
balance the drone navigation. The attractive PFG generates forces that pull the drone
towards its target destination. The repulsive PFG creates forces that push the drone
away from obstacles (e.g., the other drones, walls and other static obstacles). These
repulsive forces are stronger when the target drone is closer to an obstacle. After
the summation of all types of forces, the drone navigates towards its destination while
avoiding obstacles. Thus, given I vectors, a vector with index of i at timestamp t, i ≥ 1,
t ≥ 1, consists of two components: attractive component V a and repulsive component
V r, formulated as follows:

Vi(t) =
∑
j∈O

V r
i,j(t) + V a

i (t), (6.2)

where the repulsive one is effected by the obstacle j, j ∈ O, where O defines the set of
obstacles in the map; the attractive component is influenced by the current destination
for the target drone n (this destination is changed once the drone reaches it). The

144

6.2 Testbed Prototyping

attractive component can be formulated as:
V a

i (t) = V a
i (t− 1). (6.3)

However, there is a the common problem with repulsive PFG: agents stand-off in
situations where they continuously repel each other without making progress, leading
to a deadlock scenario [36]. To mitigate the lock, the priorities of drones are assigned
randomly. Drones with higher priority exert stronger and more extensive repulsive
forces, pushing lower-priority drones out of their paths. As a result, drones can reach
their respective destinations in sequence without getting obstructed by obstacles. The
maximum radius of repulsion effect of a drone is defined as follows:

Rj = Dmin(1 + lnPj), (6.4)
where Pj denotes the priority index of the obstacle j. The higher value of Pj is, the
higher priority of an obstacle drone is (Pj is a constant if j is a static obstacle like
walls). Dmin denotes the minimum distance between a drone and an obstacle before
they collide. This chapter sets 25cm considering the wind force caused by the Crazyfly.
Thus, the update of a vector in repulsive PFG V r

i,j with index of i per timestamp t is
formulated as follows:

V r
i,j(t) =


V r

i,j(t−1)·S2
j

|V r
i,j(t−1)|·Di,j(t) , Di,j(t) ≤ Rj

0, otherwise
, (6.5)

Sj = δ|V a
i (t− 1)|+ lnPj , (6.6)

where Di,j indicates the distance between the vector i and an obstacle j; Sj denotes
the scaling factor for the strength of repulsion, higher than the strength (or magnitude)
of attractive component of the vector V a

i . This ensures that the repulsive force acting
on the target drone is stronger than attractive force, thus influencing the vector Vi

according to Eq.(6.2). The scaling value is set δ = 2.5 empirically to ensure that the
lowest priority drone is strong enough to repel the other drones under the attractive
forces. Therefore, the vectors in PFG prioritize maintaining a safe distance and prevent
potential collisions over reaching the destinations. For normalization, the magnitude
of both repulsive and attractive components is set as |V r

i (1)| = |V a
i (1)| = 1. Finally,

the target drone is forced by the summation of all vectors per timestamp, formulated
as ∑I

i=1 Vi(t) for I vectors.

145

6.3 Experimental Evaluation

6.3 Experimental Evaluation

To evaluate M-TET, this chapter focuses on the sensing missions of traffic monitor-
ing using camera-equipped drones for city road surveillance. The primary objective
is to manage the spatio-temporal flight behaviors of a drone swarm to accurately ob-
serve vehicles and traffic flow, aiding in the detection of congestion and accidents. In
this section, the baselines and performance evaluation metrics are illustrated at first.
Then, evaluation on energy, sensing and collision avoidance are made using the testbed
scenario and complex simulation scenarios.

6.3.1 Experimental settings

The approach used in M-TET is the collective learning of I-EPOS based on poten-
tial field collision avoidance, named as EPOS-PF. To assess the collision avoidance,
two baseline approaches are introduced: collective learning without collision avoid-
ance (EPOS) and collective learning with custom collision-based scheduler (EPOS-CA).
EPOS-CA considers three classical types of collisions during the in-flight missions of
drones as shown in Fig. 6.1. These collisions are detected after sensing plans are selected
and avoided by delaying drones with lower priority. Cross and destination-occupied col-
lisions are mitigated by controlling drones to wait until the path is collision-free while
parallel collision is removed by redirecting drones to a point away from its original
path before it resumes back to its target cell. To compare with EPOS that minim-
izes RMSE to improve task accuracy regardless of energy consumption, this chapter
introduces another baseline method that agents can make a choice that minimizes the
energy consumption of their drones while preventing collisions using artificial potential
field, named as Greedy-PF.

The evaluation of all approaches includes key metrics:

Energy consumption. It is the total energy consumed by all drones, calculated by
their hovering and traveling time.

Risk of collisions. It represents the ratio of the total travel distance where drones
are at risk of collision. It can be calculated by dr/d, where d denotes the total traveling
distance of drones, dr indicates the collision risk distance.

Sensing mismatch. It denotes the RMSE between the total sensing of drones (i.e.,
the number of observed vehicles) per cell and the sensing requirements (i.e., the number

146

6.3 Experimental Evaluation

Table 6.1: Results of optimizing sensing for each DJI Tello UAV.

UAV

Index

Battery

Level (%)
Visited Cells Indices Total

Time (s)

Actual

Power (w)

Hovering

Power (w)

Maneuvering

Power (w)
Start End Diff. 1st 2nd 3rd 4th 5th 6th

1 75 47 28 0 7 10 12 14 15 143.35 30.80 31.80 31.92

2 86 69 17 0 4 6 7 11 12 135.37 30.98 31.80 31.92

3 99 62 37 7 9 10 12 14 15 159.32 31.42 31.80 31.92

4 100 77 23 4 9 11 12 13 - 135.31 31.59 31.80 31.92

5 80 55 25 4 6 7 9 10 12 150.70 30.36 31.80 31.92

6 100 68 32 4 6 7 8 9 11 152.95 31.50 31.80 31.92

7 88 75 13 0 4 8 13 14 15 130.91 30.89 31.80 31.92

8 100 76 24 0 8 13 14 15 - 125.50 31.59 31.80 31.92

9 100 74 26 0 6 8 10 11 13 136.22 31.59 31.80 31.92

10 100 63 37 8 9 10 11 14 15 153.29 31.42 31.80 31.92

of vehicles acquired from pNEUMA [4]) per cell.

6.3.2 Evaluation on energy and sensing

The accuracy of energy consumption and the task accuracy are firstly evaluated using
DJI Tello UAVs and the printout map.

Table 6.1 shows the measurements made for the optimized navigation and tasking
of each DJI Tello UAV: Battery consumption level, visited cells extracted from the
selected plan, total traveling time (second), actual power consumption as well as the
estimated hovering and maneuvering power (watt). The visited cells (see Fig. 6.5(b))
are extracted from the selected plans (non-zero values). The actual power consumption
of the mission is influenced by the start and end battery level as voltage varies with
the LiPo battery capacity1 [194]. The hovering and maneuvering power consumption
are calculated based on the earlier power consumption model [34] and that is why it
remains constant across the drones with the same specification.

Fig. 6.8(a) illustrates a series of sensing maps depicting how drones meet the target
sensing requirements after each trip by minimizing the mismatch between the total ac-
tual collected data and the required ones. This strategy (β = 0) is the one implemented
in the indoor lab environment. To clearly show the effect of optimized sensing, a greedy
strategy (β = 1) is shown in Fig. 6.8(b) in which drones select the plan with the low-

1http://en.fullymax.com/

147

6.3 Experimental Evaluation

Drone = 1 Drone = 2 Drone = 3 Drone = 4 Drone = 5

Drone = 6 Drone = 7 Drone = 8 Drone = 9 Drone = 10

47476047

60476060

4760060

00047

47476034

47476060

3447047

00034

34346021

47344760

2147047

00034

3434478

34343460

2147034

00034

3434470

34212160

834021

00034

3434470

2121847

02108

00034

2121340

2121834

02100

00021

88210

2121821

02100

0008

8880

8888

0800

0000

0080

0000

0800

0000

(a) Coordinated optimized sensing with EPOS that minimizes sensing mismatch.

Drone = 1 Drone = 2 Drone = 3 Drone = 4 Drone = 5

Drone = 6 Drone = 7 Drone = 8 Drone = 9 Drone = 10

60606047

60604747

6060047

00047

60474747

60474734

6060034

00047

60343434

60474734

6047021

00047

47343434

47473421

604708

00047

47213434

47342121

603408

00047

47212121

4721821

603408

00034

4721218

4721013

603400

00021

4721218

47800

602100

00021

478218

47800

60800

00021

47088

47000

60000

00021

(b) Greedy sensing strategy that minimizes energy consumption.

Figure 6.8: Coordinated vs. greedy sensing by a swarm of drones.

est energy consumption without any coordination. With coordination, the total energy
consumption is 35.53kJ with a mismatch (RMSE) of 0.0057 and a mission inefficiency of
2.22%. The latter is defined by the ratio of required values in all cells that are not sensed
by the drones during their mission over the total required values in all cells. In contrast,
without coordination, the greedy strategy lowers energy consumption to 27.61kJ at a
cost of higher mismatch (0.265) and mission inefficiency (26.11%). As can be observed
in the series of sensing maps, coordination results in routing paths that expand further
away from the departure/landing cell, while avoiding over-sensing/under-sensing that
is likely to happen without coordination.

Fig. 6.9(a) compares, for each drone, the actual energy consumption with the model-

148

6.3 Experimental Evaluation

� � � � � � � 	
 ��
��	���
��

�

����

����

����

����

����

��
��
��

��
��

��
�
��

�
��
��
�

����
�
�����
���
�����
����������
����
����

(a) Comparison of energy con-
sumption of DJI Edu Tello.

(b) Actual voltage logging of
Crazyflies.

(c) Real vs. Estimated energy
consumption of Crazyflies.

Figure 6.9: Comparison between estimated and real energy consumption.

based estimated one calculated during the planning phase. The actual energy consump-
tion is initially found higher than the estimated one. This is because the drones spend
some additional flying time to calibrate between departure and landing. To account
for this additional energy consumption, the calibration time is recorded and added up
to the original estimated energy consumption, resulting is a highly accurate estimation
for all drones. A low error range from 37.41 to 255.52 Joule is attributed to the variable
power consumption of the battery.

6.3.3 Evaluation on collision avoidance

To validate the applicability and realism of M-TET, the energy consumption of drones
estimated in software is compared with the actual energy consumption in hardware.
Fig. 6.9(b) illustrates the actual voltage of Crazyflies within the logging system of
Crazyswarm where 4 Crazyflies only hover for 250 seconds. The voltage is recorded
per second and is used to calculate the actual energy consumption based on battery
capacity (250mAh) and expected flight time (7min). Fig. 6.9(c) compares, for each
drone, the actual energy consumption with model-based estimated the one calculated
during the planning phase of M-TET, with only approximately 120.4 joules error. This
is because Crazyflies spend some additional flying time to calibrate between departure
and landing.

Different methods are compared with 4 number of drones in total energy consump-
tion. Firstly, the software runs with 40 different areas of the city centre [4], and then
choose one of the results (the average of all results) for the execution in hardware.
Fig. 6.10(a) shows that the disparity of energy consumption with and without collision

149

6.3 Experimental Evaluation

1 2 3 4
Number of drones

0
200
400
600
800

1000
1200
1400
1600
1800

En
er

gy
 C

on
su

m
pt

io
n

(J
ou

le
s)

EPOS
EPOS-CA
EPOS-PF

(a) Total energy consumption of drones in
different approaches.

2 3 4
Number of drones

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
is

k
of

 C
ol

lis
io

ns

EPOS
EPOS-CA
EPOS-PF

(b) Risk of collisions.

(c) Count of different types of collisions.

1 2 3 4
Number of drones

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Se
ns

in
g

m
is

m
at

ch
EPOS
EPOS-CA
EPOS-PF

(d) Sensing mismatch.

Figure 6.10: Energy, sensing and collision performance comparison of drones.

avoidance rises as the number of drones increases, especially for artificial potential field.
This is because each drone needs to detect and avoid several collisions within a small
testbed, extending their traveling time. Noted that the points markers shown in figures
denote hardware results whereas the shadow represents the errors in software results.

Albeit a high energy consumption, EPOS-PF significantly reduces the risk of col-
lisions compared to other baseline methods, as shown in Fig. 6.10(b). It can detect
various types of collisions that EPOS-CA cannot (e.g., the case where three drones
collide). The low risk of collisions in EPOS-PF further proves the applicability of M-
TET. Besides, since the highest number of collisions belongs to destination-occupied
collisions, as shown in Fig. 6.10(c), drones with low priority in EPOS-CA continuously
wait and sense the same cell, resulting in over-sensing and under-sensing. This increases
the sensing mismatch of EPOS-CA compared to EPOS as shown in Fig. 6.10(d). In

150

6.4 Comparison with Related Work

contrast, EPOS-PF dynamically repels and attracts drones to different areas, thereby
mitigating over-sensing and under-sensing, and resulting in a sensing mismatch approx-
imately 21.93% lower than EPOS-CA. Greedy-PF chooses the navigation and tasking
with only one cell to minimize the energy consumption, mitigating the risk of collision,
but still confronts over-sensing and under-sensing.

6.4 Comparison with Related Work

To validate realism and external validity of the algorithms to solve drone-based task
allocation [3], previous work has built testbed for real-world implementation and assess-
ment. Khan et al. [195] tests the feasibility of mobile target tracking algorithms using
clustering and cover-set coverage methods with help of Parrot AR.Drone quadcopters.
The testbed in [196] demonstrates the performance of a dedicated Quality-of-Service
communication system using Paparazzi drones for cooperative sensing missions. How-
ever, these testbeds fail to emulate collisions with fixed or dynamic obstacles, leading
to inaccuracies in analysis of multi-drone operations in real-world scenarios.

Collision avoidance algorithms find applicability to task allocation with drones in
order to facilitate safe and reliable airspace access [197]. Computer vision and ma-
chine learning-based techniques that utilize a combination of sensors such as LiDAR,
Radar and Sonar propose onboard collision avoidance strategies [197, 198]. Artificial
potential fields is another widely known collision avoidance strategy, commonly used
in robotics [36]. Batinovic et al. [152] uses artificial potential field for obstacle avoid-
ance in 3D Environments by equipping drones with LiDAR sensors, and eliminated
the possibility of agents getting stuck in a local minima employing rotational compon-
ents of the repulsive force. Nevertheless, they only conduct experiments in simulation,
lacking the demonstration in applicability and realism. Sabikan et al. [24] addressed
this issue by developing a Time-to-Collision mathematical model using particle swarm
optimization to find collision-free paths for outdoor drone data recording, but their
work is limited to a platform with a single quadcopter. Schmittle et al. [25] establishes
an open-source, cloud-enabled testbed to study the navigation around obstacles and
drone swarm formation. However, it is limited to an exclusive software-based simula-
tion and does not analyze how collision avoidance impacts the task allocation to drones,
particularly regarding energy consumption and sensor data collection.

The designed testbed overcome these barriers by integrating potential field al-

151

6.5 Discussion and Future Work

gorithm for collision avoidance with our testbed [26, 151]. This enhanced testbed
can adapt to various application scenarios and contexts while ensuring safety dur-
ing navigation and tasking. By enhancing realism, it effectively emulate the outdoor
environments. Furthermore, it examines the impact of collision avoidance on energy
consumption and data collection, offering new insights into hardware testing for drones.

6.5 Discussion and Future Work

In summary, several new insights on experimental results are: (1) M-TET using
EPOS-PF improves task accuracy of traffic monitoring while avoiding collisions, mak-
ing it energy-efficient with a limited number of drones. (2) The accurate estimation of
energy consumption and low risk of collisions validate M-TET as a proof-of-concept,
proving its feasibility and safety in real-word applications. (3) The expenditure of
M-TET (each Crazyflie with necessary decks costs around $600) is significantly lower
than outdoor experimentation with larger drones with cameras (e.g., Phantom 4 Pro
at around $1600). (4) M-TET eliminates concerns about licensing, atmospheric condi-
tions, and privacy violations.

The testbed opens up several promising avenues for further improvements. They
are illustrated as follows: (1) Using advanced hardware (e.g., ultrasonic sensor) for real-
time collision avoidance. (2) Expanding the experimentation in the delivery scenario
using multiple drones. (3) Incorporating different drones with different sensors and
data collection capabilities. (4) Implementing and integrating HALOP for enhanced
online testbed operations in the evolving multi-agent systems.

6.6 Conclusions

In conclusion, this chapter introduces a novel testbed (M-TET) to integrate collision
avoidance method to task allocation with drones. Designed for indoor lab environ-
ments, M-TET simplifies complex outdoor task scenarios while enhancing the realism
of experimentation. As a proof-of-concept, this paper demonstrates the applicability of
a collective learning algorithm and an artificial potential field algorithm to coordinate
drones navigation and tasking for traffic monitoring. The results highlight the potential
of M-TET and provide valuable opportunities for the broader community to enhance
drone control in low-cost, safe and efficient task allocation scenarios for Smart Cities.

152

Chapter 7

Conclusions and Future Work

This thesis studies distributed multi-drone coordination for large-scale task allocation.
It spans the full pipeline from generic model development and complex simulations to
real-world adaptation under physical and operational constraints across diverse applic-
ations. The primary objective is to allocate tasks to swarms of drones, determining
which points of interest to visit and when, to ensure energy-efficient and accurate mis-
sion completion. This involves the constraints such as limited battery, data collection
requirements, delivery time window, payload capacities, recharging availability, colli-
sion avoidance in dynamic environments.

This chapter concludes the contributions and scientific findings of this thesis, and
is organized as follows: Section 7.1 illustrates how the proposed approach of the thesis
meets research objectives defined in Chapter 1. Section 7.2 presents theoretical, prac-
tical and ethical implications for broader research community and transportation ap-
plications. Finally, Section 7.3 discusses open issues and future work.

7.1 Meeting Research Objectives

Recall from Section 1.2 the main research question of this thesis:
Overarching Research Question: How to design and prototype a multi-drone

coordination system that supports scalable and adaptive task allocation across diverse
applications?

This thesis attempts to answer this question by meeting three sub-objectives defined
in Section 1.2, which requires the distributed multi-drone coordination system: (1)
To scale effectively in large spatio-temporal environments while ensuring long-term

153

7.1 Meeting Research Objectives

benefits, and satisfying hard constraints. (2) To adapt to diverse and dynamic real-
world conditions such as energy constraints. (3) To become low costly, low risky, and
easy to manage during hardware test, reducing fragmentation of simulation and real-
world applications.

To meet the first objective, Chapter 3 introduces a novel, generic and highly-efficient
distributed coordination model, named the Planning-based Multi-Agent Coordination
(PMAC). This model employs a hierarchical framework with two high-level strategies
(grouping plan constraints and grouping behavior ranges) to combine reinforcement
learning (MAPPO) with optimized plan selection (OPS). PMAC retains the long-term
foresight of MAPPO, allowing agents to anticipate future environmental changes and
maximize long-term rewards. Meanwhile, it reduces computational/communication
overhead by decreasing the joint action-state space, and preserves agent autonomy and
privacy through EPOS. Experimental results on a synthetic dataset show that this
hybrid approach (HALOP) significantly improves the system-wide performance com-
pared to standalone MAPPO and OPS by around 31.29% and 23.69% respectively.
PMAC also remains effective and scalable even when extended to hundreds of agents.
Moreover, the incorporation of a hard constraint satisfaction mechanism boosts the
system-wide constraint satisfaction rate by approximately 65%, demonstrating its ro-
bustness in constrained multi-agent environments.

To achieve the second objective, this thesis propose two application models extend
the PMAC model to realistic scenarios: (i) the energy-aware coordination of multi-drone
navigation and sensing model introduced in Chapter 4, and (ii) the energy-and-delay-
aware coordination of drone multi-parcel delivery model introduced in Chapter 5. Both
models incorporate a power consumption model [34], allowing each drone to estimate
the energy consumption of a trip based on its physical characteristics (e.g., weight, pro-
peller), environmental conditions (e.g., wind speed), and task-specific demands (e.g.,
payload weight). The long-term learning capability of PMAC further assists drones
to predict evolving task requirements, such as changing traffic flow and customer re-
quests, such that they can prioritize time-sensitive tasks and dynamically determine
their flight range and recharging locations. As a result, the proposed approach signi-
ficantly improves performance: in traffic monitoring, it achieves 23.17% and 27.83%
higher overall performance in vehicle observation than MAPPO and OPS respectively.
In the last-mile delivery scenario, it reduces delivery delays by approximately 0.44 hour

154

7.1 Meeting Research Objectives

over these baselines. Other experiments, including variations in the number of drones
and base stations or depots, demonstrate the scalability and adaptability of PMAC
across different real-world applications.

Lastly, to satisfy the third objective, Chapter 6 presents the Multi-drone Tasking
Experimentation Testbed (M-TET), a first working prototype that validates the applic-
ability and realism of PMAC. In the indoor lab setup, M-TET uses DJI and Crazyflie
drones that are cheap, tiny and easily programmable, using optimized plan selection
and artificial potential fields for task allocation and collision avoidance. As a proof-of-
concept, the testbed successfully demonstrates accurate energy estimation (with a low
error ranging from 0.74% to 5.1%) and low risk of navigation (nearly 100% of preventing
collisions). This testbed validates that the conceptual and algorithmic contributions of
PMAC are not limited to simulations but can operate effectively in controlled physical
environments. M-TET showcases the feasibility of collective decision-making, energy-
aware planning, and safe navigation among real drones, highlighting the practicality of
deploying PMAC in real-world intelligent transportation systems.

7.1.1 Significance of the work

This thesis makes a significant contribution at the intersection of fundamental computer
science and applied engineering, particularly in the fields of multi-agent systems, rein-
forcement learning, distributed optimization, and intelligent transportation. The core
research has led to 4 high-quality publications [22, 26, 27, 40], including one that re-
ceived a Best Paper Award at a leading international conference, as well as a registered
patent, collectively highlighting the novelty and impact of the proposed approaches
across both theory and application.

A comprehensive portfolio of experimental, empirical, and analytical evidence un-
derscores the validity of this work. Results are drawn from extensive simulations and
emulated environments (e.g., the developed indoor drone testbed), as well as from real-
world datasets (e.g., large-scale traffic flow data from a European city). This experi-
mental methodology ensures both robustness and realism in evaluating the performance
of the system.

Moreover, the contributions go beyond theoretical insights to include practical im-
plementations in both software and hardware. The work has produced 6 open-source
code and datasets, with documentation to encourage further research and adoption.

155

7.2 Implications for Theory, Practice and Ethics

A fully operational drone testbed and several demonstration videos have also been
developed to showcase real-world feasibility (see List of Code/Data/Videos).

The broader impact of this work is further demonstrated through academic outreach
and knowledge exchange. Research visits to institutions such as the University of
Sheffield, LUT, and UPB fostered international collaboration [23, 26]. The findings have
been successfully transferred into education by co-supervising a MEng Group Project
at the University of Leeds, leading to an award-winning outcome [27]. The research has
also been supported by multiple scholarships and funding schemes, including the EPS
International PhD Studentship, the Alan Turing Mobility Scheme, the Enfield Exchange
Scheme, and international travel grants, reflecting strong academic recognition and
support.

7.2 Implications for Theory, Practice and Ethics

This thesis offers significant implications for policymakers, system operators, and tech-
nology designers by advancing theoretical understandings, practical deployment and
ethical considerations of multi-drone coordination systems in transportation applica-
tions.

7.2.1 Theoretical implications

At the theoretical level, this work advances the field of multi-objective combinatorial
optimization in evolving multi-agent systems. It is achieved by demonstrating the ef-
fectiveness of hierarchical coordination, where learning-based methods guide high-level
decision-making, while static optimization techniques handle fine-grained task alloca-
tion. This synthetic solution proves more robust and efficient than either long-term
learning or short-term optimization methods used in isolation. It allows high-level
policies to dynamically adapt to changing environmental constraints, such as select-
ing navigation regions in a large urban area, while retaining the strengths of low-level
optimization methods. For instance, the integration of collective learning contributes
scalability (supporting a large number of agents), efficiency (through low computa-
tional/communication cost), and decentralization (preserving agent autonomy). Mean-
while, exact algorithms (e.g., greedy) ensure the satisfaction of hard or critical con-
straints that are otherwise difficult to guarantee using learning methods alone.

156

7.2 Implications for Theory, Practice and Ethics

The system design introduced in this thesis contributes a methodologically rigorous
approach to drone-based task allocation problem. It starts by classifying the tasks based
on their dynamics and constraint types, and abstracting them into a unified mathemat-
ical model. Suitable state-of-the-art algorithms are then selected or extended to solve
these problem classes effectively. The approach is then grounded in real-world applic-
ation domains, where additional scenario-specific constraints are modeled to increase
realism. This application-informed algorithmic design cycle, where practical require-
ments shape theoretical development and are in turn validated in realistic scenarios,
offers a valuable design approach for researchers. It bridges the gap between abstrac-
tion and deployment, guiding future work in high-level decision-making for drone-based
applications and other domains involving autonomous intelligent systems.

7.2.2 Practical implications

Practically, the scenarios studied in this thesis meet net zero targets in intelligent
transportation systems [112]. For instance, the proposed system enables drones to
efficiently monitor traffic conditions, allowing for early detection of congestion or acci-
dents. Proper mitigation actions taken by traffic operators can reduce carbon emissions.
In the last-mile delivery, the system fulfills delivery requests in a timely and energy-
efficient manner, which decreases the carbon footprint by alleviating the workload of
heavy ground vehicles, such as vans and trucks.

The demonstrated scalability and adaptability to complex environments of the sys-
tem, such as varying drone densities, diverse task requirements, and the presence of
multiple recharging stations and depots, support its robustness in real-world deploy-
ments. The analysis of drone density shows that learning-based approaches perform
better under scarce drone resources, helping drones learn environmental patterns and
prioritize critical tasks. This reduces the need for large fleets, lowering capital expendit-
ure on drones, particularly when executing large spatio-temporal missions. Particularly,
the proposed method exhibits good applicability in urgent medical deliveries in scen-
arios such as pandemic. It reduces the expected delivery delay of customers, leading
to higher customer satisfaction and retention, ultimately enhancing long-term quality
of service. Moreover, the methods with ability to direct drones toward task-dense or
high-priority areas offer insights for infrastructure planning, such as optimal placement
of recharging stations or depots.

157

7.2 Implications for Theory, Practice and Ethics

From an implementation perspective, the development of the indoor multi-drone
experimentation testbed (M-TET) provides a low-cost, safe, and privacy-preserving
alternative to outdoor experiments. It avoids environmental constraints including air-
space regulation, unpredictable weather and public surveillance concerns, while en-
abling realistic evaluation of drone coordination approaches. By using affordable hard-
ware (e.g., Crazyflie and DJI drones) in a controlled lab setting, this testbed lowers
the entry barrier for research and industrial experimentation, offering a replicable and
scalable prototype for broader adoption.

7.2.3 Ethical implications

As drone technologies rapidly evolve, from basic remote operations to more contro-
versial uses such as surveillance and military, it is the responsibility to consider the
humanitarian and ethical dimensions of autonomous drone deployment [199]. In partic-
ular, the proposed distributed multi-drone coordination system is designed with strong
consideration for civilian privacy, safety, and equality.

To protect citizens’ privacy, drones in the system are restricted to fly to the resid-
ential areas by setting the hard constraints. This not only prevent from giving citizens
the impression of surveillance, but controls drones to operate at low disturbance times.
Moreover, drones hover at around 164.8m when performing traffic monitoring (see
Chapter 4), adhere to regulations such as the guidelines of UK Civil Aviation Author-
ity: drones must remain “over or within 150m of any congested area” or “within 50 m
of any person”, avoiding direct interference with public spaces [200, 201].

Importantly, the drones employed in this system are small and explicitly designed
for civilian applications (e.g., traffic monitoring, last-mile delivery) in controlled, safe
environments. They are not intended for military use [202, 203]. For example, logistics
drones are limited to carrying parcels and performing infrastructure inspections. The
open distributed approach also significantly reduces the risk of centralized misuse or
coordinated attacks by malicious actors [202, 203].

In addition, the proposed approach is fully open-source and supported by a low-
cost, easily replicable testbed prototype, encouraging researchers and practitioners to
adopt and extend the system with minimal barriers. By making the platform accessible
to all, this thesis promotes inclusive innovation and helps prevent power imbalances in
the development and application of drone technologies.

158

7.3 Open Issues and Future work

7.3 Open Issues and Future work

While this thesis proposes a scalable and adaptive multi-drone coordination system,
several open issues remain that warrant further research, particularly in the areas of
algorithmic design and real-world applicability.

The PMAC model offers a structured approach to multi-drone task allocation.
However, it currently relies on centralized training for high-level planning strategies
(HALOP), which introduces potential vulnerabilities to adversarial attacks and limits
the resilience of the model. To mitigate this, future work should explore fully de-
centralized training paradigms [204], where agents learn and update strategies without
centralized control. A major challenge here is designing efficient and scalable inform-
ation exchange protocols among agents that preserve learning performance without
overloading communication networks. Similarly, the plan selection should reduce the
reliance on the centralized exact algorithms. This requires an improved hard con-
straint satisfaction approach for decentralized combinatorial optimization to address
critical constraints. Moreover, decentralized coordination still faces security and trust
challenges during inter-agent communication. Ensuring that drones share only essen-
tial and trustworthy information without exposing sensitive data is critical. Emerging
techniques such as blockchain-based consensus, federated learning, or zero-knowledge
proofs could help establish secure and verifiable cooperation among drones, promoting
both robustness and privacy [205–208].

Although the proposed PMAC model offers promising coordination strategies for
drone-based transportation applications such as urban sensing and last-mile delivery,
several practical aspects remain underexplored. Notably, the current task allocation
models assume ideal environmental conditions and do not account for real-world con-
straints such as obstacles (e.g., buildings), dynamic wind conditions, or no-fly zones.
While the M-TET testbed introduces collision avoidance using artificial potential fields,
this operates after the task allocation stage and may lead to plan violations. To ad-
dress this, future research should focus on integrating environmental constraints directly
into the task planning and selection process. Drones should be equipped with adapt-
ive planning capabilities that allow them to dynamically adjust flight paths, such as
altering altitude or rerouting, to avoid collisions and maintain mission objectives. Such
integration will ensure the generated plans remain executable and safe in real-world
conditions.

159

7.3 Open Issues and Future work

The experimental evaluations in this thesis offer valuable insights but remain limited
in scope. Future work should expand both the breadth and realism of experimenta-
tion. This includes: (1) Combine multiple types of sensors (e.g., cameras, LiDAR,
thermal) to enable multi-modal sensing for more comprehensive urban data collection,
such as temperature and humidity. Note that it is not time-consuming to develop a
new drone-based model using PMAC. The interfaces of the OPS or HALOP approach
are generalized while only involving a new dataset for experimental evaluation. (2)
Coordinate heterogeneous drones (e.g., different sizes, speeds, and capabilities) for de-
livery tasks with varied parcel sizes, delivery times, and energy constraints. (3) Extend
the testbed from offline to online by considering the drone-based task offloading of
edge-to-edge and edge-to-cloud. For example, each edge is customized to a drone by
running a software agent for communication, plan generation and selection, while a
cloud could store replay buffer for MARL training. (4) Using Large Language Model
(LLM) to tune heuristics (collective learning or exact algorithms) for users based on a
specific problem in real scenario and explain why a drone swarm made certain choices.
LLM can also convert high-level human instructions (e.g., survey the busiest roads and
deliver parcels to hospital first) into machine-readable task allocations for drones.

In conclusion, advancing from intelligent coordination algorithms to real-world
drone flight not only bridges the gap between theory and practice, but also paves the
way for social impact, enabling safer, greener, and more efficient urban transportation
services through autonomous aerial systems.

160

Appendix A

Supplementary Material of Chapter 3

A.1 Additional Experimental Evaluation

This appendix evaluates the performance of the proposed HALOP in the following
aspects: 1) computation and communication overhead, 2) performance crossover point,
and 3) training convergence.

Computation and communication overhead. Fig. A.1(a) illustrates that HALOP
significantly reduces computation cost during training compared to MAPPO and HRL.
As the number of plans increases, MAPPO exhibits a near-linear growth in computa-
tion, reaching nearly twice the cost of HALOP at 112 plans, highlighting the effect-
iveness of the proposed strategy for action space reduction. Fig. A.1(b) shows that
HALOP achieves lower communication overhead than MAPPO, which scales exponen-
tially with the number of agents. This underscores the advantage of decentralized
coordination in communication efficiency.

Training convergence. Fig. A.1(c) shows the training process of four MARL-based
methods. With the help of low-level multi-agent collective learning, HALOP achieves
faster exploration and converges around 600 episode, significantly earlier than MAPPO,
which converges after 2000 episode. Note that HRL converges the slowest due to its
non-stationary learning process.

Performance crossover point. Fig. A.2(a), A.2(b) and A.2(c) compare the cost
performance of different methods over time. The proposed HALOP shows consistent
improvement and eventually surpasses OPS-P. Specifically, by time period 4, HALOP
achieves a lower mean discomfort cost than OPS-P, and although its inefficiency cost
exceeds that of OPS-P at time period 13, its discomfort cost remains 66.31% lower,

161

A.1 Additional Experimental Evaluation

resulting in a lower combined cost. These findings highlight the long-term benefits of
high-level strategy learning in multi-agent collective learning, particularly over extended
time horizons.

16 48 80 112
Number of plans

0

25

50

75

100

125

150

175

200

C
om

pu
ta

tio
na

l C
os

t (
x1

e8
) OPS-P

MAPPO
HRL
HLPS

(a) Computation overhead vs.
number of plans.

40 80 120 160
Number of agents

0

2

4

6

8

C
om

m
un

ic
at

io
n

C
os

t (
x1

e8
) OPS-P

MAPPO
HRL
HLPS

(b) Communication overhead vs.
number of agents.

0 400 800 1200 1600 2000
Episode

(c) Training process.

Figure A.1: Computation overhead comparison of all methods.

0 5 10 15 20 25 30
Index of time period

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
D

is
co

m
fo

rt
C

os
t

0 5 10 15 20 25 30
Index of time period

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
ef

fic
ie

nc
y

C
os

t

0 5 10 15 20 25 30
Index of time period

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
om

bi
ne

d
C

os
t

OPS-P
MAPPO
HALOP

Figure A.2: The first three figures are the cost performance comparison of methods per
time period.

Furthermore, the impact of various parameters within the proposed HALOP is ana-
lyzed. The insights derived from this appendix can be used to make informed empirical
decisions regarding parameter selection for the evaluation scenarios, including the num-
ber of actions |A|, agent behavior,β and the weights σ1, σ2 in reward function. The cal-
culations presented herein can be automated for any scenario during hyper-parameter
optimization. Such optimization is not the focus of this paper. All experiments are
performed in the basic synthetic scenario (40 agents, 16 plans per agent and the target
signal with ω = π/24).

162

A.1 Additional Experimental Evaluation

Agent behavior. Fig. A.3 illustrates the effect of agent behavior by varying the
parameter βu

t defined in Eq.(4.24). As βu
t increases from 0 to 1, agents behave selfishly,

and thus reduce the mean discomfort cost while enhancing the inefficiency cost. To
minimize the combined cost, βu

t = 0.5 is selected in OPS and HALOP-P as it serves
as Pareto optimal point.

Weights in reward function. Fig. A.4 shows the effect of weight parameters by
varying the σ1 defined in Eq.(3.15), and σ2 = 1 − σ1. As σ1 increases from 0 to 1,
the weight on discomfort cost in the reward function increases, thereby reducing mean
discomfort cost while increasing inefficiency cost in MAPPO and HALOP. This paper
chooses σ1 = σ2 = 0.5 since HALOP achieves the minimum combined cost (Pareto
efficiency).

Number of actions. Fig. A.5 shows the cost comparison of the number of actions of
the proposed methods. In HALOP-P, when the number of plan groups increases, agents
can accurately find the plans with lower discomfort cost, as shown in Fig.A.5(b), but
maintain inefficiency cost. The average frequency denotes the total number of actions
taken by all agents over all time periods divided by the number of sub-ranges covered
by each group/behavior range. In HALOP-B, when the number of behavior ranges
increases, agents can sample from a narrow range of behaviors and precisely lock on an
optimal one (see Fig.A.5(d)). However, with more plan groups and behavior ranges, the
costs of these methods increase since high action space makes the training inefficient
(see the convergence of MAPPO in Fig. A.1(c)).

Pareto Optimal Point:
𝜷 = 𝟎. 𝟓

𝛽 𝛽 𝛽

Figure A.3: The Pareto optimality of OPS and HALOP-P.

163

A.1 Additional Experimental Evaluation

Figure A.4: Cost comparison of OPS, MAPPO and HALOP as the increase of weight.

2 4 8 16 EPOS-P MAPPO
Number of plan groups

0.0

0.1

0.2

0.3

0.4

0.5

C
os

t v
al

ue

Mean Discomfort Cost
Inefficiency Cost
Combined Cost

(a) Number of plan groups.

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0
Discomfort cost of plans

0

100

200

300

400
Av

er
ag

e
Fr

eq
ue

nc
y 16 Groups (size=1 plan)

8 Groups (size=2 plans)
4 Groups (size=4 plans)
2 Groups (size=8 plans)

(b) Average frequency vs. discomfort cost of groups.

2 4 8 16 EPOS-P MAPPO
Number of behavior ranges

0.0

0.1

0.2

0.3

0.4

0.5

C
os

t v
al

ue

Mean Discomfort Cost
Inefficiency Cost
Combined Cost

(c) Number of behavior ranges.

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0
Behavior range

0

50

100

150

200

250

300

Av
er

ag
e

Fr
eq

ue
nc

y 16 Ranges (interval=0.0625)
8 Ranges (interval=0.125)
4 Ranges (interval=0.25)
2 Ranges (interval=0.5)

(d) Average frequency vs. behavior range.

Figure A.5: Costs and average frequency of HALOP-P with different number of plan
groups and HALOP-B with different number of behavior ranges.

164

A.2 Evaluation with Smart Grids

A.2 Evaluation with Smart Grids

The PCMF framework is applicable in the broader context of large-scale and complex
multi-agent systems. This appendix shows the broad and significant impact of the
proposed generic algorithm in the context of smart grids and smart cities, i.e., energy
management.

The energy application scenario uses a dataset derived by energy disaggregation of
the simulated zonal power transmission in the Pacific Northwest Smart Grid Demon-
strations Project [65, 136, 209]. It contains consumers (agents) who participate equipped
with one or more controllable household appliances, e.g., refrigerators, water heaters,
heating/cooling systems, and so on [65]. The energy demand (kW) of consumers,
which is recorded every 5min in a 12h span of a day, is modeled as a plan. The plans of
each consumer represent different energy consumption patterns generated using a load-
shifting strategy for managing electricity use across peak and off-peak times, prompting
for grid load balance [65]. Specifically, the measured demand is the first plan; the other
9 plans are generated by shifting the positions of values in the first plan, i.e., shifting
the measured demand 75, 150 or 720 minutes. The discomfort cost of each plan is the
amount of minutes shifted compared to the original demand.

In this scenario, each consumer selects a plan of energy demand for 12h (i.e., a
time period from 10:00 to 22:00 in a day) and aggregate the plans selected by others.
The total energy demand is obtained by adding up the selected plans element-wise per
time period. The goal of system is to mitigate power peaks and reduce the risk of
blackouts [18] by minimizing the variance of the total energy demand at each time. For
example, if consumers notice that energy demand is higher in the morning before 12:00
compared to other times of the day, they may learn to select a plan with lower energy
demand during the morning hours on the following day. Meanwhile, consumers aim to
secure their energy needs on peak times and avoid disrupted (or shifted) plans, often
prioritizing comfort at the expense of system-wide efficiency and balance. Thus, their
objective is to decrease their amount of minutes shifted by choosing a plan with lower
discomfort cost.

Fig. A.6(a) shows that the proposed methods outperform MAPPO in terms of inef-
ficiency cost, achieving approximately 36.03% lower combined cost, particularly due to
the efficient coordination through multi-agent collective learning. Several other met-
rics are measured, including (a) the mean minutes shifted per agent, and (b) max and

165

A.2 Evaluation with Smart Grids

OPS-P MAPPO HLPS-P HLPS-B HLPS
0.00

0.25

0.50

0.75

1.00

1.25

C
os

t v
al

ue

16.1k min 16.0kk min 18.2 min 15.4k min 17.9k min

Mean Discomfort Cost
Inefficiency Cost

Combined Cost

(a) The cost comparison.

10:00 12:00 14:00 16:00 18:00 20:00 22:00
Time in a Day

3550

3560

3570

3580

3590

3600

Po
w

er
 C

on
su

m
pt

io
n

(k
W

)

3551.59 kW

3604.72 kW

3566.88 kW

3590.9 kW

Actual demand
OPS-P
HALOP

(b) Total energy demands at each time.

Figure A.6: Performance comparison of all methods in the energy management scenario
(160 consumers, 10 plans per consumer and 16 time periods, i.e., 16 days).

min power peak over all periods. Among all methods, HALOP-B achieves the lowest
discomfort and inefficient costs. Compared to HALOP-P, HALOP-B helps agents to
stay closer to their original energy demands, reducing total deviation time by over 2.8k
minutes across all time periods, significantly enhancing consumer satisfaction. Fur-
thermore, compared to OPS-P, HALOP-B reduces max power peaks by 13.82kW and
enhances min power peaks by 15.29kW, see Fig. A.6(b), thereby improving the power
grid stability. In this scenario, the grouping behavior ranges strategy outperforms group-
ing plans. These findings suggest that, in environments with a limited number of plans
per agent and where Pareto efficiency is the primary goal, it is more effective to group
behavior ranges rather than plans.

166

Appendix B

Supplementary Material of Chapter 4

B.1 Effect of different parameters

The purpose of the evaluation in this section is to understand how different parameters
influence the system performance. The results of this section are used to make an
empirical choice of these parameters for the rest of the evaluation scenarios. The
calculations presented here can be automated for any scenario within a hyper-parameter
optimization, which is though not the focus of this paper.

Mobility range in short-term. Three policies of plan generation are compared in
EPOS: balance, min sensing mismatch and min sensing inefficiency. A simple test is
implemented in the basic synthetic scenario to compare different numbers of visited
cells set in the input, see Algorithm 1. As shown in Fig. B.1(a), the higher the number
of cells a drone visits, the higher the flying energy is, and the lower the allocated
hovering/sensing energy is, which increases the mission inefficiency. To balance the
sensing mismatch and mission inefficiency, the policies of min sensing mismatch (|Ju| =
1|2, the strategy chooses 1 or 2 cells randomly), min mission inefficiency (|Ju| = 3|4),
and balance (|Ju| = 1|2|3|4) are empirically designed. Thus, three policy-based methods
for EPOS are proposed that are referred to as EPOS-mismatch, EPOS-inefficiency and
EPOS-balance respectively.

Mobility range in long-term. Fig. B.2(a) illustrates the effect of different numbers of
visited cells. The higher the number of cells a drone visits, the higher the flying energy
is, and the higher the energy cost is. The high number of visited cells perplexes the
spatio-temporal navigation and sensing of a drone, leading to over-sensing. Specifically,
multiple drones visit the same cell simultaneously and waste energy on collecting the

167

B.1 Effect of different parameters

(a) Mobility range.

2 4 8 16 32 64 96
Number of Plans

0.40

0.42

0.44

0.46

0.48

Se
ns

in
g

A
cc

ur
ac

y

Sensing
Accuracy

78

79

80
M

is
si

on
 E

ffi
ci

en
cy

 (%
)

Mission
Efficiency

(b) Number of plans.

Sensing Accuracy Mission Efficiency
0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

in
g

A
cc

ur
ac

y

0

20

40

60

80

100

M
is

si
on

 E
ffi

ci
en

cy
 (%

)Proportional Mean

(c) Sensing allocation schemes.

4 6 8 10 12 14 16 18 20
Energy Utilization Param

0.5

0.6

0.7

0.8

0.9

M
in

 E
ne

rg
y

U
til

iz
at

io
n

ra
tio

 e

e

0.40

0.45

0.50

0.55

0.60

O
ve

ra
ll

Pe
rf

or
m

an
ce

Overall Performance

(d) Energy Utilization.

𝜷 = 𝟎. 𝟎

𝜷 = 𝟎. 𝟐

𝜷 = 𝟎. 𝟒

𝜷 = 𝟎. 𝟔

𝜷 = 𝟎. 𝟖

𝜷 = 𝟏. 𝟎

(e) Agents’ behavior (β).

Figure B.1: Performance comparison for different parameters of the proposed method.

same data. In contrast, if drones visit only one cell, they are free from over-sensing,
but have a high probability to miss the area with a high required sensing data due to
its low mobility range. As a result, J(au) = 2 is empirically selected for each drone to
optimize the overall performance.

Number of plans. See Fig. B.1(b), as the number of generated plans increases, both
sensing mismatch and mission inefficiency decrease and converge to 64. Thus, 64 plans
for each agent are generated in EPOS.

168

B.1 Effect of different parameters

1 2 3 4 5
(a) Number of visited cells

0.0

0.2

0.4

0.6

0.8

1.0
M

et
ric

s
Mission Efficiency
Sensing Accuracy

Energy Cost
Overall Performance

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(b) Agent's behavior

0.0

0.2

0.4

0.6

0.8

1.0
Mission Efficiency
Sensing Accuracy

Energy Cost
Overall Performance

Figure B.2: Change the parameters of DO-RL in mobility range and agents’ behavior.

Sensing allocation: proportional vs. mean. Fig. B.1(c) illustrates the perform-
ance comparison between proportional and mean sensing allocation defined in Eq.(4.18).
The mean sensing allocation has higher inefficiency than proportional one. Using the
Mann-Whitney U test, the sensing mismatch distribution of the two methods comes
with p = 0.08, the one of mission inefficiency has p = 0.003. The results demonstrate
a statistically higher performance when sensor values collected are proportional, i.e. a
similar mission mismatch but a 1.56% higher mission efficiency.

Energy utilization. Fig. B.1(d) illustrates the changes of minimum energy utilization
ratio e (when p = P in Eq.(4.15)) and the overall performance as the parameter δ

increases. According to the results, a δ = 8 is selected for the experimental settings.

Agents’ behavior in short-term. Fig. B.1(e) illustrates the effect of agents’ behavior
by varying the parameter β [18]. As β increases from 0 to 1, agents reduce the energy
cost of their selected plans, while increasing the sensing mismatch. This is because
drones with higher β choose a plan with lower energy cost, i.e., the plan with lower
energy utilization ratio e, and the total sensing values collected is reduced according to
Eq. (4.16) and (4.17). To minimize the log10 RSS, the value of β = 0 is selected in the
proposed methods, while β = 0.2 is the calculated Pareto optimal point referred to as
EPOS-Pareto, minimizing the combined cost.

Agents’ behavior in long-term. Fig. B.2(b) illustrates the effect of agents’ behavior
by varying the parameter of β [18]. As β increases from 0 to 1, agents reduce the
energy cost of their selected plans, while decreasing both efficiency and accuracy. This
is because, according to Eq. 4.24, drones with higher β choose a plan with lower energy

169

B.2 Mobility and Sensing Quality

cost, which degrades the matching between the total sensing and the target. Since the
overall performance for β ∈ [0.1, 0.8] is statistically similar, using the Mann-Whitney U
test with average p-value of 0.0003, drones are allowed to choose their behaviors within
this range.

Hyperparameter in deep reinforcement learning. Table B.1 shows the training
performance of different hyperparameter in DRL, including the discount factor γ, batch
size H, clip interval ϵ, and deep neutral networks. The proposed approach takes the
parameters of γ = 0.95, H = 64, ϵ = 0.2, and RNN neutral network. It compares
the reward and the episode to converge by changing these parameters. The results
demonstrate a more stable (lower reward error and higher converged episode) but lower
average reward in training when decreasing γ, ϵ or increasing H. In contrast, a relatively
higher average reward leads to higher error and slower convergence. In addition, the
RNN used in the proposed HALOP performs better than the multilayer perceptron
(MLP), with 7.8% higher average reward. Considering these results, the parameters of
γ = 0.95, H = 64, ϵ = 0.2, and RNN neutral network are selected for HALOP.

Table B.1: Reward and convergence vs. hyperparameter.

Approaches
Attributes.:

Proposed γ = 0.90 γ = 0.99 H = 32 H = 128 ϵ = 0.1 ϵ = 0.3 MLP

Average reward 8.42 8.45 8.24 8.30 8.42 8.17 8.34 7.81
Error of reward 0.68 0.79 0.66 0.66 0.71 0.68 0.87 0.55
Converged episode 1899 2048 2451 1071 2589 1843 2116 1657

B.2 Mobility and Sensing Quality

Two theorems are introduced that link the performance metrics of mission inefficiency
and sensing mismatch with the mobility of the coordinated drones, in particular with
their flying coverage modelled by the number of visiting cells.

Theorem B.2.1. In a mission of a swarm of drones U, starting from their base sta-
tions, flying with a constant ground speed over an area consisting of N cells to collect
sensor data, and returning back consuming all energy of their battery, the mission in-

170

B.2 Mobility and Sensing Quality

efficiency is proportional to the number of random visited cells |Ju|:
α1 · |Ju| → f1(Ju) = 1−

∑
u∈U V (Ju)∑

n∈N Rn
, (B.1)

if the drones collect sensor values over the visited cells proportionally to required target
values, where α1 is a positive constant and f1(Ju) is the function of mission inefficiency
according to the optimization objective of Eq.(4.6).

Proof. Based on Eq. (4.16) and (4.17) and since each drone uses all its battery capacity
for flying and hovering, the number of collected sensor values over the cells Ju is:

V (Ju) =
∑
n∈N

Su,n = Cu · e− P f
u · τ(Ju)

P h
u

· f. (B.2)

Eq.(4.6) can be reformulated as:

1−
∑

u∈U

∑
n∈N V u

n∑
n∈N Rn

= 1−
∑

u∈U V (Ju)∑
n∈N Rn

:= f1(Ju), (B.3)

given that ∑u∈U

∑
n∈N V u

n = ∑
u∈U V (Ju). The total flying time τ(Ju) of a drone u can

be modelled as:

τ(Ju) ≈ (|Ju| − 1) · τ̃ + 2 · τ̃B, (B.4)
where τ̃ is the mean expected traveling time between any two random cells and τ̃B is
the mean expected traveling time between the base station of the drone and a random
cell. Assume the number of random visited cells increases from |Ju| to |J ′

u|, where
|Ju| < |J ′

u|. Then, the total flying time without hovering is also likely to increase as
τ(Ju) < τ(J ′

u) given that each drone u flies with a constant ground speed. The influence
f1(J ′

u)− f1(Ju) on the mission inefficiency based on Eq.(B.3) is calculated as follows:

f1(J ′
u)− f1(Ju) =

∑
u∈U(

Eq.(B.2)︷ ︸︸ ︷
V (Ju) −

Eq.(B.2)︷ ︸︸ ︷
V (J ′

u))∑
n∈N Rn

=
∑

u∈U
P f

u·f
P h

u∑
n∈N Rn

· (
Eq.(B.4)︷ ︸︸ ︷
τ(J ′

u) −
Eq.(B.4)︷ ︸︸ ︷
τ(Ju))

≈
∑

u∈U
P f

u·f
P h

u∑
n∈N Rn

· τ̃ · (|J ′
u| − |Ju|)

← α1 · (|J ′
u| − |Ju|).

(B.5)

Since all parameters in
∑

u∈U

P f
u·f

P h
u∑

n∈N
Rn
· τ̃ are positive, α1 > 0, and therefore the mission

171

B.2 Mobility and Sensing Quality

inefficiency is proportional to the number of random visited cells.

Figure B.3: The distribution of targets and total sensing values collected by drones.

Theorem B.2.2. In a mission of a swarm of drones U, starting from their base sta-
tions, flying with a constant ground speed over an area consisting of N cells to collect
sensor data, and returning back consuming all energy of their battery, the sensing mis-
match is inverse proportional to the number of random visited cells |Ju|:

α2 · |Ju| → f2(Ju) =
∑
n∈N

(Rn −
∑
u∈U

V u
n)2, (B.6)

if and only if |J ′
u| + |Ju| < N when increasing the number of visited cells from |Ju|

to |J ′
u| and if the drones collect sensor values over the visited cells proportionally to

required target values, where α2 is a negative constant and f2(Ju) is a function of
sensing mismatch according to the optimization objective of Eq. (4.7).

Proof. Figure B.3 assists this proof. Since sensor values over the different cells are
collected proportionally to the required target values Rn, the collected sensor values are
modelled by xn + vn = ∑

u∈U V u
n , ∀n ∈ {1, ..., N}, and xn ≤ Rn. Each xn corresponds

to the collected sensor values with an optimal matching to the required target values
(min RSS), while vn ∈ {+cn,−cn, 0} models mismatches such that ∑n∈N(xn + vn) ≈∑

n∈N xn, and thus ∑n∈N vn ≈ 0. Moreover, the mission inefficiency in the optimal
collected sensor data xn is given by γ such that γ := Rn − xn. The optimal matching
between Rn and xn denotes that γ ≥ 0 is constant ∀n ∈ {1, ..., N}. Therefore, it holds
that:

172

B.2 Mobility and Sensing Quality

∑
n∈N

(Rn −
∑
u∈U

V u
n) =

∑
n∈N

(Rn − (xn + vn))

≈
∑
n∈N

(Rn − xn)

≈ N · γ > 0

(B.7)

Eq.(B.7) can be squared to calculate the sensing mismatch f2(Ju) as follows:

f2(Ju) =
∑
n∈N

(Rn − (xn + vn))2

=
∑
n∈N

(γ − vn)2

= N · γ2 − 2γ ·
∑
n∈N

vn +
∑
n∈N

v2
n

= N · γ2 +
∑
n∈N

c2
n.

(B.8)

The higher the cn is, the higher the f2(Ju).
The distribution of the mission inefficiency values Rn − (xn + vn) among N cells is

determined by the selection of the cells by each drone. By assuming that each of the U

drones chooses the visiting cells randomly (with replacement), the distribution among
N cells can be explained by a Binomial distribution:

P (X = k, Ju) =
(

U

k

)
· p(Ju)k · (1− p(Ju))U−k, (B.9)

where p(Ju) is the probability that a drone u chooses |Ju| number of cells from the total
of N cells that do not contain the cell n. This results in mismatch at cell n that either
originates from (i) an under-sensing vn = −cn, if a drone u has a high probability p(Ju)
to miss cell n from Ju, or (ii) an over-sensing Rn− (xn +vn) = C +cn if this probability
is low (see Fig. B.3). The probability p(Ju) can be formulated as:

p(Ju) =
(

N − 1
|Ju|

)
/

(
N

|Ju|

)
= 1− |Ju|

N
, (B.10)

which expresses that the higher the number of visiting cells is, the lower the probability
of drone u to miss a cell n.

The mismatch cn at cell n for a drone visiting Ju points can be modeled by a
Binomial distribution:

cn(Ju) := kn(Ju) · Sn(Ju), (B.11)

173

B.2 Mobility and Sensing Quality

with the expected values of kn(Ju) denoting the average number of drones that miss
cell n and Sn(Ju) denoting the average number of collected values by each drone u.
The expressions of these values are formulated as follows:

kn(Ju) = U · p(Ju), (B.12)

Sn(Ju) =
∑
u∈U

V (Ju) · Rn

U ·
∑

n∈N Rn
. (B.13)

By increasing the number of sensing cells from |Ju| to |J ′
u|, the influence f2(J ′

u) −
f2(Ju) on the sensing mismatch can be formulated using Eq. (B.8) as follows:

f2(J ′
u)− f2(Ju) =

∑
n∈N

[

Eq.(B.11,B.12,B.13)︷ ︸︸ ︷
cn(J ′

u)2 −

Eq.(B.11,B.12,B.13)︷ ︸︸ ︷
cn(Ju)2]

=
∑
n∈N

Rn∑
n∈N Rn

·

Eq.(B.10)︷ ︸︸ ︷
p(J ′

u)2 ·

Eq.(B.5)︷ ︸︸ ︷∑
u∈U

V (J ′
u)2

−
∑
n∈N

Rn∑
n∈N Rn

·

Eq.(B.10)︷ ︸︸ ︷
p(Ju)2 ·

Eq.(B.5)︷ ︸︸ ︷∑
u∈U

V (Ju)2

←
∑
n∈N

Rn · [
α1
N
· |J ′

u|2 − α1 · |J ′
u|]−

∑
n∈N

Rn · [
α1
N
· |Ju|2 − α1 · |Ju|]

← [|J
′
u|+ |Ju|

N
− 1] · α1 ·

∑
n∈N

Rn · (|J ′
u| − |Ju|)

← α2 · (|J ′
u| − |Ju|)

(B.14)
Thus, it holds that α2 = [|J ′

u|+|Ju|
N − 1] ·α1 ·

∑
n∈N Rn < 0 if and only if |J ′

u|+ |Ju| < N ,
where in this case the sensing mismatch is proven to be reverse proportional to the
number of random visited cells Ju.

174

References

[1] Hamid Menouar, Ismail Guvenc, Kemal Akkaya, A Selcuk Uluagac, Abdullah
Kadri, and Adem Tuncer. UAV-enabled intelligent transportation systems for
the smart city: Applications and challenges. IEEE Communications Magazine,
55(3):22–28, 2017.

[2] Fei-Yue Wang, Yilun Lin, Petros A Ioannou, Ljubo Vlacic, Xiaoming Liu, Azim
Eskandarian, Yisheng Lv, Xiaoxiang Na, David Cebon, Jiaqi Ma, et al. Trans-
portation 5.0: The dao to safe, secure, and sustainable intelligent transporta-
tion systems. IEEE Transactions on Intelligent Transportation Systems, 24(10):
10262–10278, 2023.

[3] Yongkun Zhou, Bin Rao, and Wei Wang. UAV swarm intelligence: Recent ad-
vances and future trends. IEEE Access, 8:183856–183878, 2020.

[4] Emmanouil Barmpounakis and Nikolas Geroliminis. On the new era of urban
traffic monitoring with massive drone data: The pneuma large-scale field experi-
ment. Transportation research part C: emerging technologies, 111:50–71, 2020.

[5] Sabitri Poudel and Sangman Moh. Task assignment algorithms for unmanned
aerial vehicle networks: A comprehensive survey. Vehicular Communications,
page 100469, 2022.

[6] Zhi Pei, Tao Fang, Kebiao Weng, and Wenchao Yi. Urban on-demand deliv-
ery via autonomous aerial mobility: Formulation and exact algorithm. IEEE
Transactions on Automation Science and Engineering, 20(3):1675–1689, 2022.

[7] Jun Tang, Haibin Duan, and Songyang Lao. Swarm intelligence algorithms for

175

REFERENCES

multiple unmanned aerial vehicles collaboration: A comprehensive review. Arti-
ficial Intelligence Review, 56(5):4295–4327, 2023.

[8] Yu Bai, Hui Zhao, Xin Zhang, Zheng Chang, Riku Jäntti, and Kun Yang. Toward
autonomous multi-UAV wireless network: A survey of reinforcement learning-
based approaches. IEEE Communications Surveys & Tutorials, 25(4):3038–3067,
2023.

[9] Yang Gao, Yingzhou Zhang, Shurong Zhu, and Yi Sun. Multi-UAV task alloca-
tion based on improved algorithm of multi-objective particle swarm optimization.
In 2018 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), pages 443–4437. IEEE, 2018.

[10] Xueli Wu, Yanan Yin, Lei Xu, Xiaojing Wu, Fanhua Meng, and Ran Zhen.
Multi-UAV task allocation based on improved genetic algorithm. IEEE Access,
9:100369–100379, 2021.

[11] Chengyi Qu, Rounak Singh, Alicia Esquivel Morel, Francesco Betti Sorbelli,
Prasad Calyam, and Sajal K Das. Obstacle-aware and energy-efficient multi-
drone coordination and networking for disaster response. In 2021 17th Interna-
tional Conference on Network and Service Management (CNSM), pages 446–454.
IEEE, 2021.

[12] Sayani Sarkar, Michael W Totaro, and Khalid Elgazzar. Intelligent drone-based
surveillance: application to parking lot monitoring and detection. In Unmanned
Systems Technology XXI, volume 11021, pages 13–19. SPIE, 2019.

[13] Francesco Betti Sorbelli. Uav-based delivery systems: A systematic review, cur-
rent trends, and research challenges. Journal on Autonomous Transportation
Systems, 1(3):1–40, 2024.

[14] Shumaila Javaid, Nasir Saeed, Zakria Qadir, Hamza Fahim, Bin He, Houbing
Song, and Muhammad Bilal. Communication and control in collaborative UAVs:
Recent advances and future trends. IEEE Transactions on Intelligent Transport-
ation Systems, 24(6):5719–5739, 2023.

[15] Paolo Toth and Daniele Vigo. An overview of vehicle routing problems. The
vehicle routing problem, pages 1–26, 2002.

176

REFERENCES

[16] Chuhao Qin and Evangelos Pournaras. Strategic coordination for evolving multi-
agent systems: A hierarchical reinforcement and collective learning approach.
arXiv preprint arXiv:2509.18088, 2025.

[17] Evangelos Pournaras. Multi-level reconfigurable self-organization in overlay ser-
vices. 2013. Ph.D. Dissertation. TU Delft, Delft University of Technology.

[18] Evangelos Pournaras, Peter Pilgerstorfer, and Thomas Asikis. Decentralized
collective learning for self-managed sharing economies. ACM Transactions on
Autonomous and Adaptive Systems, 13(2):1–33, 2018.

[19] Yunhao Yang and Andrew Whinston. A survey on reinforcement learning for
combinatorial optimization. In 2023 IEEE World Conference on Applied Intelli-
gence and Computing (AIC), pages 131–136. IEEE, 2023.

[20] Roberto Roberti and Mario Ruthmair. Exact methods for the traveling salesman
problem with drone. Transportation Science, 55(2):315–335, 2021.

[21] Norzailawati Mohd Noor, Alias Abdullah, and Mazlan Hashim. Remote sensing
uav/drones and its applications for urban areas: A review. In IOP conference
series: Earth and environmental science, volume 169, page 012003. IOP Publish-
ing, 2018.

[22] Chuhao Qin and Evangelos Pournaras. Coordination of drones at scale: Decent-
ralized energy-aware swarm intelligence for spatio-temporal sensing. Transporta-
tion Research Part C: Emerging Technologies, 157:104387, 2023.

[23] Chuhao Qin, Arun Narayanan, and Evangelos Pournaras. Coordinated multi-
drone last-mile delivery: Learning strategies for energy-aware and timely opera-
tions. arXiv preprint arXiv:2509.15830, 2025.

[24] Sulaiman Bin Sabikan, Sophan Wahyudi Nawawi, and NAA Aziz. Modelling of
time-to collision for unmanned aerial vehicle using particles swarm optimization.
IAES International Journal of Artificial Intelligence, 9(3):488, 2020.

[25] Matt Schmittle, Anna Lukina, Lukas Vacek, Jnaneshwar Das, Christopher P
Buskirk, Stephen Rees, Janos Sztipanovits, Radu Grosu, and Vijay Kumar. Open-
UAV: A UAV testbed for the CPS and robotics community. In 2018 ACM/IEEE

177

REFERENCES

9th International Conference on Cyber-Physical Systems (ICCPS), pages 130–
139. IEEE, 2018.

[26] Chuhao Qin, Fethi Candan, Lyudmila Mihaylova, and Evangelos Pournaras. 3, 2,
1, Drones go! A testbed to take off UAV swarm intelligence for distributed sens-
ing. In UK Workshop on Computational Intelligence, pages 576–587. Springer,
2022.

[27] Chuhao Qin, Alexander Robins, Callum Lillywhite-Roake, Adam Pearce, Hritik
Mehta, Scott James, Tsz Ho Wong, and Evangelos Pournaras. M-SET: Multi-
drone swarm intelligence experimentation with collision avoidance realism. In
2024 IEEE 49th Conference on Local Computer Networks (LCN), pages 1–7.
IEEE, 2024.

[28] Yongbo Chen, Di Yang, and Jianqiao Yu. Multi-UAV task assignment with
parameter and time-sensitive uncertainties using modified two-part wolf pack
search algorithm. IEEE Transactions on Aerospace and Electronic Systems, 54
(6):2853–2872, 2018.

[29] Jie Chen, Xianguo Qing, Fang Ye, Kai Xiao, Kai You, and Qian Sun. Consensus-
based bundle algorithm with local replanning for heterogeneous multi-UAV sys-
tem in the time-sensitive and dynamic environment. The Journal of Supercom-
puting, 78(2):1712–1740, 2022.

[30] Guohua Wu, Mingfeng Fan, Jianmai Shi, and Yanghe Feng. Reinforcement learn-
ing based truck-and-drone coordinated delivery. IEEE Transactions on Artificial
Intelligence, 4(4):754–763, 2021.

[31] John W Creswell. Educational research: Planning, conducting, and evaluating
quantitative and qualitative research. pearson, 2015.

[32] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science
in information systems research. MIS quarterly, pages 75–105, 2004.

[33] Chuhao Qin and Evangelos Pournaras. Short vs. long-term coordination of drones:
When distributed optimization meets deep reinforcement learning. arXiv preprint
arXiv:2311.09852, 2023.

178

REFERENCES

[34] Joshuah K Stolaroff, Constantine Samaras, Emma R O’Neill, Alia Lubers, Alex-
andra S Mitchell, and Daniel Ceperley. Energy use and life cycle greenhouse gas
emissions of drones for commercial package delivery. Nature Communications, 9
(1):1–13, 2018.

[35] Chuhao Qin and Evangelos Pournaras. EPOS-based Plans for Drones. 12 2022.
doi: 10.6084/m9.figshare.21432804.v17. URL https://figshare.com/articles/

dataset/EPOS-based_Plans_for_Drones/21432804.

[36] Giuseppe Fedele, Luigi D’Alfonso, Francesco Chiaravalloti, and Gaetano
D’Aquila. Obstacles avoidance based on switching potential functions. Journal
of Intelligent & Robotic Systems, 90:387–405, 2018.

[37] Junayed Pasha, Zeinab Elmi, Sumit Purkayastha, Amir M Fathollahi-Fard, Ying-
En Ge, Yui-Yip Lau, and Maxim A Dulebenets. The drone scheduling problem:
A systematic state-of-the-art review. IEEE Transactions on Intelligent Trans-
portation Systems, 23(9):14224–14247, 2022.

[38] Shahad Alqefari and Mohamed El Bachir Menai. Multi-UAV task assignment in
dynamic environments: Current trends and future directions. Drones, 9(1):75,
2025.

[39] Evangelos Pournaras. Collective learning: A 10-year odyssey to human-centered
distributed intelligence. In 2020 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS), pages 205–214. IEEE, 2020.

[40] Srijoni Majumdar, Chuhao Qin, and Evangelos Pournaras. Discrete-choice multi-
agent optimization: Decentralized hard constraint satisfaction for smart cities. In
International Conference on Autonomous Agents and Multiagent Systems, pages
60–76. Springer, 2023.

[41] Hoai An Le Thi, Duc Manh Nguyen, and Tao Pham Dinh. Globally solving a
nonlinear UAV task assignment problem by stochastic and deterministic optim-
ization approaches. Optimization Letters, 6:315–329, 2012.

[42] Sahar Kouroshnezhad, Ali Peiravi, Mohammad Sayad Haghighi, and Alireza Jol-
faei. An energy-aware drone trajectory planning scheme for terrestrial sensors
localization. Computer Communications, 154:542–550, 2020.

179

https://figshare.com/articles/dataset/EPOS-based_Plans_for_Drones/21432804
https://figshare.com/articles/dataset/EPOS-based_Plans_for_Drones/21432804

REFERENCES

[43] Omar Bouhamed, Xiangpeng Wan, Hakim Ghazzai, and Yehia Massoud. A
DDPG-based approach for energy-aware UAV navigation in obstacle-constrained
environment. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT),
pages 1–6. IEEE, 2020.

[44] Mirco Theile, Harald Bayerlein, Richard Nai, David Gesbert, and Marco Cac-
camo. UAV coverage path planning under varying power constraints using deep
reinforcement learning. In 2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 1444–1449. IEEE, 2020.

[45] Mirco Theile, Harald Bayerlein, Richard Nai, David Gesbert, and Marco Cac-
camo. UAV path planning using global and local map information with deep
reinforcement learning. In 2021 20th International Conference on Advanced Ro-
botics (ICAR), pages 539–546. IEEE, 2021.

[46] Roger Mailler and Victor Lesser. Solving distributed constraint optimization
problems using cooperative mediation. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS
2004., pages 438–445. IEEE, 2004.

[47] Byung Duk Song, Jonghoe Kim, Jeongwoon Kim, Hyorin Park, James R Mor-
rison, and David Hyunchul Shim. Persistent UAV service: An improved schedul-
ing formulation and prototypes of system components. Journal of Intelligent &
Robotic Systems, 74(1):221–232, 2014.

[48] Mehdi Alighanbari and Jonathan How. Robust decentralized task assignment for
cooperative UAVs. In AIAA Guidance, Navigation, and Control Conference and
Exhibit, page 6454, 2006.

[49] Qiao Cheng, Dong Yin, Jian Yang, and Lincheng Shen. An auction-based multiple
constraints task allocation algorithm for multi-uav system. In 2016 International
Conference on Cybernetics, Robotics and Control (CRC), pages 1–5. IEEE, 2016.

[50] Lingzhi Luo, Nilanjan Chakraborty, and Katia Sycara. Distributed algorithms for
multirobot task assignment with task deadline constraints. IEEE Transactions
on Automation Science and Engineering, 12(3):876–888, 2015.

180

REFERENCES

[51] Han-Lim Choi, Luc Brunet, and Jonathan P How. Consensus-based decentralized
auctions for robust task allocation. IEEE transactions on robotics, 25(4):912–926,
2009.

[52] Xiaowei Fu, Peng Feng, and Xiaoguang Gao. Swarm UAVs task and resource
dynamic assignment algorithm based on task sequence mechanism. IEEE Access,
7:41090–41100, 2019.

[53] Wenfei Wang, Maolong Lv, Le Ru, Bo Lu, Shiguang Hu, and Xinlong Chang.
Multi-UAV unbalanced targets coordinated dynamic task allocation in phases.
Aerospace, 9(9):491, 2022.

[54] Wanqing Zhao, Qinggang Meng, and Paul WH Chung. A heuristic distributed
task allocation method for multivehicle multitask problems and its application
to search and rescue scenario. IEEE transactions on cybernetics, 46(4):902–915,
2015.

[55] Rahim Ali Qamar, Mubashar Sarfraz, Atta Rahman, and Sajjad A Ghauri. Multi-
criterion multi-UAV task allocation under dynamic conditions. Journal of King
Saud University-Computer and Information Sciences, 35(9):101734, 2023.

[56] Ruchir Patel, Eliot Rudnick-Cohen, Shapour Azarm, Michael Otte, Huan Xu,
and Jeffrey W Herrmann. Decentralized task allocation in multi-agent systems
using a decentralized genetic algorithm. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 3770–3776. IEEE, 2020.

[57] S Burak Akat and Veysel Gazi. Decentralized asynchronous particle swarm op-
timization. In 2008 IEEE Swarm Intelligence Symposium, pages 1–8. IEEE, 2008.

[58] Arushi Gupta and Smriti Srivastava. Comparative analysis of ant colony and
particle swarm optimization algorithms for distance optimization. Procedia Com-
puter Science, 173:245–253, 2020.

[59] Weinan Wu, Jie Xu, and Yiming Sun. Integrate assignment of multiple het-
erogeneous unmanned aerial vehicles performing dynamic disaster inspection and
validation task with dubins path. IEEE Transactions on Aerospace and Electronic
Systems, 59(4):4018–4032, 2023.

181

REFERENCES

[60] Lei Cao, He shun Tan, Hui Peng, and Ming cong Pan. Multiple UAVs hierarchical
dynamic task allocation based on PSO-FSA and decentralized auction. In 2014
IEEE International Conference on Robotics and Biomimetics (ROBIO 2014),
pages 2368–2373. IEEE, 2014.

[61] Jun Tang, Xi Chen, Xiaomin Zhu, and Feng Zhu. Dynamic reallocation model of
multiple unmanned aerial vehicle tasks in emergent adjustment scenarios. IEEE
Transactions on Aerospace and Electronic Systems, 59(2):1139–1155, 2022.

[62] Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foundations
and trends® in signal processing, 7(3–4):197–387, 2014.

[63] Christian Hinrichs, Sebastian Lehnhoff, and Michael Sonnenschein. Cohda: A
combinatorial optimization heuristic for distributed agents. In International Con-
ference on Agents and Artificial Intelligence, pages 23–39. Springer, 2013.

[64] Evangelos Pournaras, Srivatsan Yadhunathan, and Ada Diaconescu. Holarchic
structures for decentralized deep learning: A performance analysis. Cluster Com-
puting, 23(1):219–240, 2020.

[65] Evangelos Pournaras, Mark Yao, and Dirk Helbing. Self-regulating supply–
demand systems. Future Generation Computer Systems, 76:73–91, 2017.

[66] Astrid Nieße, Michael Sonnenschein, Christian Hinrichs, and Jörg Bremer. Local
soft constraints in distributed energy scheduling. In 2016 Federated Conference on
Computer Science and Information Systems (FedCSIS), pages 1517–1525. IEEE,
2016.

[67] Christian Hinrichs et al. A distributed combinatorial optimisation heuristic for the
scheduling of energy resources represented by self-interested agents. International
Journal of Bio-Inspired Computation, 10(2):69–78, 2017.

[68] Farzam Fanitabasi, Edward Gaere, and Evangelos Pournaras. A self-integration
testbed for decentralized socio-technical systems. Future Generation Computer
Systems, 113:541–555, 2020.

[69] Evangelos Pournaras, Mark Christopher Ballandies, Stefano Bennati, and Chien-
fei Chen. Collective privacy recovery: Data-sharing coordination via decentralized
artificial intelligence. PNAS nexus, 3(2):page 029, 2024.

182

REFERENCES

[70] Evangelos Pournaras, Seoho Jung, Srivatsan Yadhunathan, Huiting Zhang, and
Xingliang Fang. Socio-technical smart grid optimization via decentralized charge
control of electric vehicles. Applied soft computing, 82:105573, 2019.

[71] Farzam Fanitabasi and Evangelos Pournaras. Appliance-level flexible scheduling
for socio-technical smart grid optimization. IEEE Access, 8:119880–119898, 2020.

[72] Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele
Giardino, Marco Re, and Sergio Spanò. Multi-agent reinforcement learning: A
review of challenges and applications. Applied Sciences, 11(11):4948, 2021.

[73] Dingbang Liu, Fenghui Ren, Jun Yan, Guoxin Su, Wen Gu, and Shohei Kato.
Scaling up multi-agent reinforcement learning: An extensive survey on scalability
issues. IEEE Access, 2024.

[74] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A sur-
vey of actor-critic reinforcement learning: Standard and natural policy gradients.
IEEE Transactions on Systems, Man, and Cybernetics, part C (applications and
reviews), 42(6):1291–1307, 2012.

[75] Haining Tan. Reinforcement learning with deep deterministic policy gradient. In
2021 International conference on artificial intelligence, big data and algorithms
(CAIBDA), pages 82–85. IEEE, 2021.

[76] Zifan Wu, Chao Yu, Deheng Ye, Junge Zhang, Hankz Hankui Zhuo, et al. Co-
ordinated proximal policy optimization. Advances in Neural Information Pro-
cessing Systems, 34:26437–26448, 2021.

[77] Wei Dai, Huimin Lu, Junhao Xiao, Zhiwen Zeng, and Zhiqiang Zheng. Multi-
robot dynamic task allocation for exploration and destruction. Journal of Intel-
ligent & Robotic Systems, 98:455–479, 2020.

[78] Ziwei Liu, Changzhen Qiu, and Zhiyong Zhang. Sequence-to-sequence multi-agent
reinforcement learning for multi-UAV task planning in 3D dynamic environment.
Applied Sciences, 12(23):12181, 2022.

[79] Kun Shao, Yuanheng Zhu, and Dongbin Zhao. Starcraft micromanagement with
reinforcement learning and curriculum transfer learning. IEEE Transactions on
Emerging Topics in Computational Intelligence, 3(1):73–84, 2018.

183

REFERENCES

[80] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.
Mean field multi-agent reinforcement learning. In International conference on
machine learning, pages 5571–5580. PMLR, 2018.

[81] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor,
and Peter Stone. Curriculum learning for reinforcement learning domains: A
framework and survey. Journal of Machine Learning Research, 21(181):1–50,
2020.

[82] Federico Venturini, Federico Mason, Francesco Pase, Federico Chiariotti, Alberto
Testolin, Andrea Zanella, and Michele Zorzi. Distributed reinforcement learning
for flexible UAV swarm control with transfer learning capabilities. In Proceed-
ings of the 6th ACM workshop on micro aerial vehicle networks, systems, and
applications, pages 1–6, 2020.

[83] Dezhi Chen, Qi Qi, Zirui Zhuang, Jingyu Wang, Jianxin Liao, and Zhu Han.
Mean field deep reinforcement learning for fair and efficient UAV control. IEEE
Internet of Things Journal, 8(2):813–828, 2020.

[84] Jiaping Xiao, Phumrapee Pisutsin, and Mir Feroskhan. Collaborative target
search with a visual drone swarm: An adaptive curriculum embedded multistage
reinforcement learning approach. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

[85] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarch-
ical reinforcement learning: A comprehensive survey. ACM Computing Surveys
(CSUR), 54(5):1–35, 2021.

[86] Imen Jendoubi and François Bouffard. Multi-agent hierarchical reinforcement
learning for energy management. Applied Energy, 332:120500, 2023.

[87] Zhiwei Xu, Yunpeng Bai, Bin Zhang, Dapeng Li, and Guoliang Fan. Haven:
Hierarchical cooperative multi-agent reinforcement learning with dual coordina-
tion mechanism. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 11735–11743, 2023.

[88] Caleb Chuck, Supawit Chockchowwat, and Scott Niekum. Hypothesis-driven
skill discovery for hierarchical deep reinforcement learning. In 2020 IEEE/RSJ

184

REFERENCES

International Conference on Intelligent Robots and Systems (IROS), pages 5572–
5579. IEEE, 2020.

[89] Baolai Wang, Shengang Li, Xianzhong Gao, and Tao Xie. UAV swarm confront-
ation using hierarchical multiagent reinforcement learning. International Journal
of Aerospace Engineering, 2021(1):3360116, 2021.

[90] Zun Liu, Yuanqiang Cao, Jianyong Chen, and Jianqiang Li. A hierarchical rein-
forcement learning algorithm based on attention mechanism for UAV autonomous
navigation. IEEE Transactions on Intelligent Transportation Systems, 24(11):
13309–13320, 2022.

[91] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you
need: Regularizing deep reinforcement learning from pixels. In International
conference on learning representations, 2021.

[92] Marco Rinaldi, Sheng Wang, Renan Sanches Geronel, and Stefano Primatesta.
Application of task allocation algorithms in multi-UAV intelligent transportation
systems: A critical review. Big Data and Cognitive Computing, 8(12):177, 2024.

[93] Momena Monwar, Omid Semiari, and Walid Saad. Optimized path planning for
inspection by unmanned aerial vehicles swarm with energy constraints. In 2018
IEEE Global Communications Conference (GLOBECOM), pages 1–6. IEEE,
2018.

[94] Jingyu He, Yao Xiao, Corina Bogdan, Shahin Nazarian, and Paul Bogdan. A
design methodology for energy-aware processing in unmanned aerial vehicles.
ACM Transactions on Design Automation of Electronic Systems (TODAES), 27
(1):1–20, 2021.

[95] Sungjae Lee and Yosoon Choi. Comparison of topographic surveying results using
a fixed-wing and a popular rotary-wing unmanned aerial vehicle (drone). Tunnel
and Underground Space, 26(1):24–31, 2016.

[96] Di Wu, Dmitri I Arkhipov, Minyoung Kim, Carolyn L Talcott, Amelia C Regan,
Julie A McCann, and Nalini Venkatasubramanian. ADDSEN: Adaptive data pro-
cessing and dissemination for drone swarms in urban sensing. IEEE Transactions
On Computers, 66(2):183–198, 2016.

185

REFERENCES

[97] Yoshio Inoue. Satellite-and drone-based remote sensing of crops and soils for
smart farming–a review. Soil Science and Plant Nutrition, 66(6):798–810, 2020.

[98] Eugen Valentin Butilă and Răzvan Gabriel Boboc. Urban traffic monitoring and
analysis using unmanned aerial vehicles (UAVs): A systematic literature review.
Remote Sensing, 14(3):620, 2022.

[99] Lige Ding, Dong Zhao, Mingzhe Cao, and Huadong Ma. When crowdsourcing
meets unmanned vehicles: Toward cost-effective collaborative urban sensing via
deep reinforcement learning. IEEE Internet of Things Journal, 8(15):12150–
12162, 2021.

[100] Dong Zhao, Mingzhe Cao, Lige Ding, Qiaoyue Han, Yunhao Xing, and Huadong
Ma. Dronesense: Leveraging drones for sustainable urban-scale sensing of open
parking spaces. In IEEE INFOCOM - Conference on Computer Communications,
pages 1769–1778. IEEE, 2022.

[101] Moataz Samir, Chadi Assi, Sanaa Sharafeddine, Dariush Ebrahimi, and Ali
Ghrayeb. Age of information aware trajectory planning of UAVs in intelli-
gent transportation systems: A deep learning approach. IEEE Transactions on
Vehicular Technology, 69(11):12382–12395, 2020.

[102] Zhenyu Zhou, Junhao Feng, Bo Gu, Bo Ai, Shahid Mumtaz, Jonathan Rodriguez,
and Mohsen Guizani. When mobile crowd sensing meets UAV: Energy-efficient
task assignment and route planning. IEEE Transactions on Communications, 66
(11):5526–5538, 2018.

[103] Igor Bisio, Chiara Garibotto, Halar Haleem, Fabio Lavagetto, and Andrea Sciar-
rone. A systematic review of drone based road traffic monitoring system. IEEE
Access, 10:101537–101555, 2022.

[104] Fatma Outay, Hanan Abdullah Mengash, and Muhammad Adnan. Applications
of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastruc-
ture management: Recent advances and challenges. Transportation research part
A: policy and practice, 141:116–129, 2020.

[105] Allister Loder, Thomas Otte, and Klaus Bogenberger. Using large-scale drone

186

REFERENCES

data to monitor and assess the behavior of freight vehicles on urban level. Trans-
portation Research Record, 2676(11):496–507, 2022.

[106] Jasso Espadaler-Clapés, Emmanouil Barmpounakis, and Nikolas Geroliminis.
Empirical investigation of lane usage, lane changing and lane choice phenom-
ena in a multimodal urban arterial. Transportation research part A: policy and
practice, 172:103674, 2023.

[107] Mouna Elloumi, Riadh Dhaou, Benoit Escrig, Hanen Idoudi, and Leila Azouz
Saidane. Monitoring road traffic with a UAV-based system. In 2018 IEEE Wire-
less Communications and Networking Conference (WCNC), pages 1–6. IEEE,
2018.

[108] Murat Bakirci. Enhancing vehicle detection in intelligent transportation systems
via autonomous UAV platform and YOLOv8 integration. Applied Soft Comput-
ing, 164:112015, 2024.

[109] Hamed Jahani, Yunes Khosravi, Bahareh Kargar, Kok-Leong Ong, and Sobhan
Arisian. Exploring the role of drones and uavs in logistics and supply chain
management: A novel text-based literature review. International Journal of Pro-
duction Research, 63(5):1873–1897, 2025.

[110] Samantha K Brooks, Rebecca K Webster, Louise E Smith, Lisa Woodland, Simon
Wessely, Neil Greenberg, and Gideon James Rubin. The psychological impact of
quarantine and how to reduce it: rapid review of the evidence. The lancet, 395
(10227):912–920, 2020.

[111] Zeashan Hameed Khan, Afifa Siddique, and Chang Won Lee. Robotics utiliza-
tion for healthcare digitization in global COVID-19 management. International
journal of environmental research and public health, 17(11):3819, 2020.

[112] Janfizza Bukhari, Abhishek G Somanagoudar, Luyang Hou, Omar Herrera, and
Walter Mérida. Zero-emission delivery for logistics and transportation: Chal-
lenges, research issues, and opportunities. The Palgrave Handbook of Global Sus-
tainability, pages 1729–1749, 2023.

[113] Kevin Dorling, Jordan Heinrichs, Geoffrey G Messier, and Sebastian Magierowski.

187

REFERENCES

Vehicle routing problems for drone delivery. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 47(1):70–85, 2016.

[114] Fangyu Hong, Guohua Wu, Qizhang Luo, Huan Liu, Xiaoping Fang, and Wit-
old Pedrycz. Logistics in the sky: A two-phase optimization approach for the
drone package pickup and delivery system. IEEE Transactions on Intelligent
Transportation Systems, 24(9):9175–9190, 2023.

[115] Dyutimoy Nirupam Das, Rohan Sewani, Junwei Wang, and Manoj Kumar Tiwari.
Synchronized truck and drone routing in package delivery logistics. IEEE Trans-
actions on Intelligent Transportation Systems, 22(9):5772–5782, 2020.

[116] Shan-Huen Huang, Ying-Hua Huang, Carola A Blazquez, and Chia-Yi Chen.
Solving the vehicle routing problem with drone for delivery services using an ant
colony optimization algorithm. Advanced Engineering Informatics, 51:101536,
2022.

[117] Okan Dukkanci, Bahar Y Kara, and Tolga Bektaş. Minimizing energy and cost in
range-limited drone deliveries with speed optimization. Transportation Research
Part C: Emerging Technologies, 125:102985, 2021.

[118] Guillem Muñoz, Cristina Barrado, Ender Çetin, and Esther Salami. Deep rein-
forcement learning for drone delivery. Drones, 3(3):72, 2019.

[119] Farabi Ahmed Tarhan and Nazım Kemal Ure. Genetic-algorithm-aided deep
reinforcement learning for multi-agent drone delivery. Drones, 8(3):71, 2024.

[120] Sung Hoon Chung, Bhawesh Sah, and Jinkun Lee. Optimization for drone and
drone-truck combined operations: A review of the state of the art and future
directions. Computers & Operations Research, 123:105004, 2020.

[121] Júlia C Freitas, Puca Huachi V Penna, and Túlio AM Toffolo. Exact and heuristic
approaches to truck–drone delivery problems. EURO Journal on Transportation
and Logistics, 12:100094, 2023.

[122] Yaohan Shen, Bipan Zou, René De Koster, and TCE Cheng. Performance estim-
ation and operating policies in a truck-based autonomous mobile robot delivery
system. International Journal of Production Research, pages 1–23, 2024.

188

REFERENCES

[123] Monica Gentili, Pitu B Mirchandani, Alessandro Agnetis, and Zabih Ghelichi.
Locating platforms and scheduling a fleet of drones for emergency delivery of
perishable items. Computers & Industrial Engineering, 168:108057, 2022.

[124] Christian Hinrichs, Sebastian Lehnhoff, and Michael Sonnenschein. A decentral-
ized heuristic for multiple-choice combinatorial optimization problems. In Oper-
ations Research Proceedings 2012: Selected Papers of the International Annual
Conference of the German Operations Research Society (GOR), Leibniz Univer-
sity of Hannover, Germany, September 5-7, 2012, pages 297–302. Springer, 2013.

[125] Manh Duong Phung and Quang Phuc Ha. Safety-enhanced UAV path planning
with spherical vector-based particle swarm optimization. Applied Soft Computing,
107:107376, 2021.

[126] Anand Nayyar and Rajeshwar Singh. A comprehensive review of ant colony op-
timization (ACO) based energy-efficient routing protocols for wireless sensor net-
works. International Journal of Wireless Networks and Broadband Technologies
(IJWNBT), 3(3):33–55, 2014.

[127] Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. Explor-
atory combinatorial optimization with reinforcement learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 34, pages 3243–3250, 2020.

[128] Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-
Schwarz, and Andre A Cire. Combining reinforcement learning and constraint
programming for combinatorial optimization. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages 3677–3687, 2021.

[129] Sijia Xu, Hongyu Kuang, Zhuang Zhi, Renjie Hu, Yang Liu, and Huyang Sun.
Macro action selection with deep reinforcement learning in starcraft. In Proceed-
ings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 15, pages 94–99, 2019.

[130] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-
agent control using deep reinforcement learning. In Autonomous Agents and
Multiagent Systems: AAMAS 2017 Workshops, Best Papers, São Paulo, Brazil,
May 8-12, 2017, Revised Selected Papers 16, pages 66–83. Springer, 2017.

189

REFERENCES

[131] Maheed A Ahmed and Mahsa Ghasemi. Privacy-preserving decentralized actor-
critic for cooperative multi-agent reinforcement learning. In International Con-
ference on Artificial Intelligence and Statistics, pages 2755–2763. PMLR, 2024.

[132] Jovan Nikolic and Evangelos Pournaras. Structural self-adaptation for decent-
ralized pervasive intelligence. In 22nd Euromicro Conference on Digital System
Design (DSD), pages 562–571. IEEE, 2019.

[133] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The
complexity of decentralized control of Markov decision processes. Mathematics
of operations research, 27(4):819–840, 2002.

[134] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. Multi-agent actor-critic for mixed cooperative-competitive environ-
ments. Advances in neural information processing systems, 30, 2017.

[135] Bingqing Jiang, Jun Du, Chunxiao Jiang, Zhu Han, and Merouane Debbah. Un-
derwater searching and multi-round data collection via AUV swarms: An energy-
efficient AoI-aware MAPPO approach. IEEE Internet of Things Journal, 2023.

[136] Evangelos Pournaras. Agent-based Planning Portfolio. 4 2019.
doi: 10.6084/m9.figshare.7806548.v6. URL https://figshare.com/

articles/dataset/Agent-based_Planning_Portfolio/7806548. DOI: ht-
tps://doi.org/10.6084/m9.figshare.7806548.v6.

[137] Wenjie Yi, Rong Qu, Licheng Jiao, and Ben Niu. Automated design of meta-
heuristics using reinforcement learning within a novel general search framework.
IEEE Transactions on Evolutionary Computation, 27(4):1072–1084, 2022.

[138] Babatunji Omoniwa, Boris Galkin, and Ivana Dusparic. Communication-enabled
deep reinforcement learning to optimise energy-efficiency in UAV-assisted net-
works. Vehicular Communications, 43:100640, 2023.

[139] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Re-
inforcement learning for combinatorial optimization: A survey. Computers &
Operations Research, 134:105400, 2021.

[140] Akshat Kumar, Adrian Petcu, and Boi Faltings. H-DPOP: Using hard constraints
for search space pruning in DCOP. In AAAI, pages 325–330, 2008.

190

https://figshare.com/articles/dataset/Agent-based_Planning_Portfolio/7806548
https://figshare.com/articles/dataset/Agent-based_Planning_Portfolio/7806548

REFERENCES

[141] Qi Cai, Zhuoran Yang, and Zhaoran Wang. Reinforcement learning from partial
observation: Linear function approximation with provable sample efficiency. In
International Conference on Machine Learning, pages 2485–2522. PMLR, 2022.

[142] Omkar Tilak and Snehasis Mukhopadhyay. Decentralized and partially decentral-
ized reinforcement learning for distributed combinatorial optimization problems.
In 2010 Ninth International Conference on Machine Learning and Applications,
pages 389–394. IEEE, 2010.

[143] Marlos C Machado, Andre Barreto, Doina Precup, and Michael Bowling. Tem-
poral abstraction in reinforcement learning with the successor representation.
Journal of Machine Learning Research, 24(80):1–69, 2023.

[144] Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action space shaping
in deep reinforcement learning. In 2020 IEEE conference on games (CoG), pages
479–486. IEEE, 2020.

[145] Sultan J Majeed and Marcus Hutter. Exact reduction of huge action spaces
in general reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 8874–8883, 2021.

[146] Zhangjie Fu, Yuanhang Mao, Daojing He, Jingnan Yu, and Guowu Xie. Secure
multi-UAV collaborative task allocation. IEEE Access, 7:35579–35587, 2019.

[147] Evşen Yanmaz, Saeed Yahyanejad, Bernhard Rinner, Hermann Hellwagner, and
Christian Bettstetter. Drone networks: Communications, coordination, and sens-
ing. Ad Hoc Networks, 68:1–15, 2018.

[148] Thi Thoa Mac, Cosmin Copot, Robin De Keyser, and Clara M Ionescu. The
development of an autonomous navigation system with optimal control of an
UAV in partly unknown indoor environment. Mechatronics, 49:187–196, 2018.

[149] David Castells-Graells, Christopher Salahub, and Evangelos Pournaras. On cyc-
ling risk and discomfort: urban safety mapping and bike route recommendations.
Computing, 102(5):1259–1274, 2020.

[150] Jun Tang, Songyang Lao, and Yu Wan. Systematic review of collision-avoidance
approaches for unmanned aerial vehicles. IEEE Systems Journal, 16(3):4356–
4367, 2021.

191

REFERENCES

[151] Chuhao Qin, Alexander Robins, Callum Lillywhite-Roake, Adam Pearce, Hritik
Mehta, Scott James, Tsz Ho Wong, and Evangelos Pournaras. M-SET: Multi-
drone swarm intelligence experimentation with collision avoidance realism. In
2024 IEEE 49th Conference on Local Computer Networks (LCN), pages 1–7,
2024. doi: 10.1109/LCN60385.2024.10639825.

[152] Ana Batinovic, Jurica Goricanec, Lovro Markovic, and Stjepan Bogdan. Path
planning with potential field-based obstacle avoidance in a 3D environment by
an unmanned aerial vehicle. In 2022 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 394–401. IEEE, 2022.

[153] Zeinab Nezami, Emmanouil Chaniotakis, and Evangelos Pournaras. When com-
puting follows vehicles: Decentralized mobility-aware resource allocation for edge-
to-cloud continuum. IEEE Internet of Things Journal, 2025.

[154] Zeinab Nezami, Evangelos Pournaras, Amir Borzouie, and Jie Xu. Smotec: An
edge computing testbed for adaptive smart mobility experimentation. In 2023
IEEE International Conference on Autonomic Computing and Self-Organizing
Systems Companion (ACSOS-C), pages 1–7. IEEE, 2023.

[155] Gözde Kizilateş and Fidan Nuriyeva. On the nearest neighbor algorithms for the
traveling salesman problem. In Advances in Computational Science, Engineering
and Information Technology, pages 111–118. Springer, 2013.

[156] Jingjing Cui, Yuanwei Liu, and Arumugam Nallanathan. Multi-agent reinforce-
ment learning-based resource allocation for UAV networks. IEEE Transactions
on Wireless Communications, 19(2):729–743, 2019.

[157] Damian Wierzbicki. Multi-camera imaging system for UAV photogrammetry.
Sensors, 18(8):2433, 2018.

[158] Jovan Nikolic and Evangelos Pournaras. Structural self-adaptation for decentral-
ized pervasive intelligence. In 2019 22nd Euromicro Conference on Digital System
Design (DSD), pages 562–571. IEEE, 2019.

[159] Novella Bartolini, Andrea Coletta, and Gaia Maselli. On task assignment for
early target inspection in squads of aerial drones. In 2019 IEEE 39th International

192

REFERENCES

Conference on Distributed Computing Systems (ICDCS), pages 2123–2133. IEEE,
2019.

[160] Majed Alwateer and Seng W Loke. A two-layered task servicing model for drone
services: Overview and preliminary results. In 2019 IEEE International Confer-
ence on Pervasive Computing and Communications Workshops (PerCom Work-
shops), pages 387–390. IEEE, 2019.

[161] Naser Hossein Motlagh, Miloud Bagaa, and Tarik Taleb. Energy and delay
aware task assignment mechanism for UAV-based IoT platform. IEEE Internet
of Things Journal, 6(4):6523–6536, 2019.

[162] Novella Bartolini, Andrea Coletta, Gaia Maselli, et al. A multi-trip task assign-
ment for early target inspection in squads of aerial drones. IEEE Transactions
on Mobile Computing, 20(11):3099–3116, 2020.

[163] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi, Christopher Amato, Shih-
Yuan Liu, Jonathan P How, and John Vian. Decentralized control of multi-robot
partially observable Markov decision processes using belief space macro-actions.
The International Journal of Robotics Research, 36(2):231–258, 2017.

[164] Ilias Gerostathopoulos and Evangelos Pournaras. Trapped in traffic? A self-
adaptive framework for decentralized traffic optimization. In 2019 IEEE/ACM
14th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), pages 32–38. IEEE, 2019.

[165] Yong Sik Chang and Hyun Jung Lee. Optimal delivery routing with wider drone-
delivery areas along a shorter truck-route. Expert Systems with Applications, 104:
307–317, 2018.

[166] Meituan. Meituan drone launches the fourth generation of new models and ex-
hibits new urban low-altitude logistics solutions at 2023 waic, 2023. Available:
https://www.meituan.com/news/NN230706019014042.

[167] EdeSeven. Britain’s electricity generation - december 2024, 2025. Available:
https://www.edenseven.co.uk/.

193

REFERENCES

[168] Chase C Murray and Amanda G Chu. The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery. Transportation Research
Part C: Emerging Technologies, 54:86–109, 2015.

[169] Petr Stodola and Libor Kutěj. Multi-depot vehicle routing problem with drones:
Mathematical formulation, solution algorithm and experiments. Expert Systems
with Applications, 241:122483, 2024.

[170] Andy M Ham. Integrated scheduling of m-truck, m-drone, and m-depot con-
strained by time-window, drop-pickup, and m-visit using constraint program-
ming. Transportation Research Part C: Emerging Technologies, 91:1–14, 2018.

[171] Stefan Poikonen, Xingyin Wang, and Bruce Golden. The vehicle routing problem
with drones: Extended models and connections. Networks, 70(1):34–43, 2017.
ISSN 1097-0037. doi: 10.1002/net.21746.

[172] Byung Duk Song, Kyungsu Park, and Jonghoe Kim. Persistent uav delivery
logistics: MILP formulation and efficient heuristic. Computers & Industrial En-
gineering, 120:418–428, 2018.

[173] Bin Liu, Wei Ni, and Hongbo Zhu. Optimal charging scheduling and speed control
for delay-bounded drone delivery. IEEE Transactions on Vehicular Technology,
2024.

[174] Wen-Chyuan Chiang, Yuyu Li, Jennifer Shang, and Timothy L Urban. Impact
of drone delivery on sustainability and cost: Realizing the uav potential through
vehicle routing optimization. Applied energy, 242:1164–1175, 2019.

[175] Mohammad Sadra Rajabi, Pedram Beigi, and Sina Aghakhani. Drone delivery
systems and energy management: A review and future trends. Handbook of smart
energy systems, pages 1–19, 2023.

[176] Youngmin Choi and Paul M Schonfeld. A comparison of optimized deliveries by
drone and truck. Transportation Planning and Technology, 44(3):319–336, 2021.

[177] Batool Madani and Malick Ndiaye. Hybrid truck-drone delivery systems: A
systematic literature review. IEEE Access, 2022.

194

REFERENCES

[178] Arun Narayanan, Evangelos Pournaras, and Pedro HJ Nardelli. Large-scale pack-
age deliveries with unmanned aerial vehicles using collective learning. IEEE In-
telligent Systems, 2024.

[179] Stefan Poikonen and Bruce Golden. Multi-visit drone routing problem. Com-
puters & Operations Research, 113:104802, 2020.

[180] Zhihao Luo, Mark Poon, Zhenzhen Zhang, Zhong Liu, and Andrew Lim. The
multi-visit traveling salesman problem with multi-drones. Transportation Re-
search Part C: Emerging Technologies, 128:103172, 2021.

[181] Xin Wang, Jiemin Zhao, Chun Cheng, and Mingyao Qi. A multi-objective fuzzy
facility location problem with congestion and priority for drone-based emergency
deliveries. Computers & Industrial Engineering, 179:109167, 2023.

[182] Juan Zhang, James F. Campbell, Donald C. Sweeney II, and Andrea C. Hupman.
Energy consumption models for delivery drones: A comparison and assessment.
Transportation Research Part D: Transport and Environment, 90:102668, January
2021. ISSN 13619209. doi: 10.1016/j.trd.2020.102668.

[183] Luigi Di Puglia Pugliese, Francesca Guerriero, and Maria Grazia Scutellá. The
last-mile delivery process with trucks and drones under uncertain energy con-
sumption. Journal of Optimization Theory and Applications, 191(1):31–67, 2021.

[184] Xia Zhang and Shuang Zeng. The drone-assisted simultaneous pickup and deliv-
ery problem with time windows. Computers & Operations Research, page 106996,
2025.

[185] Yao Liu, Jianmai Shi, Zhihao Luo, Xingchen Hu, Witold Pedrycz, and Zhong
Liu. Cooperated truck-drone routing with drone energy consumption and time
windows. IEEE Transactions on Intelligent Transportation Systems, 2024.

[186] Zhiliang Bi, Xiwang Guo, Jiacun Wang, Shujin Qin, and Guanjun Liu. Truck-
drone delivery optimization based on multi-agent reinforcement learning. Drones,
8(1):27, 2024.

[187] Fan Wu and Lixia Wu. Deepeta: A spatial-temporal sequential neural network
model for estimating time of arrival in package delivery system. In Proceedings of
the AAAI conference on artificial intelligence, volume 33, pages 774–781, 2019.

195

REFERENCES

[188] Menghua Deng, Yuanbo Li, Jianpeng Ding, Yanlin Zhou, and Lianming Zhang.
Stochastic and robust truck-and-drone routing problems with deadlines: A bend-
ers decomposition approach. Transportation Research Part E: Logistics and
Transportation Review, 190:103709, 2024.

[189] Xiulan Shu, Anping Lin, and Xupeng Wen. Energy-saving multi-agent deep
reinforcement learning algorithm for drone routing problem. Sensors, 24(20):
6698, 2024.

[190] Pannee Suanpang and Pitchaya Jamjuntr. Optimizing last-mile delivery by deep
q-learning approach for autonomous drone routing in smart logistics. Operational
Research in Engineering Sciences: Theory and Applications, 7(2), 2024.

[191] Evangelos Pournaras, Atif Nabi Ghulam, Renato Kunz, and Regula Hänggli.
Crowd sensing and living lab outdoor experimentation made easy. IEEE Pervas-
ive Computing, 21(1):18–27, 2021.

[192] Prithvi Krishna Chittoor, Bharatiraja Chokkalingam, and Lucian Mihet-Popa.
A review on UAV wireless charging: Fundamentals, applications, charging tech-
niques and standards. IEEE Access, 9:69235–69266, 2021.

[193] Mark V Mamchenko. Analysis of control channel cybersecurity of the consumer-
grade UAV by the example of DJI Tello. In Journal of Physics: Conference
Series, volume 1864, page 012127. IOP Publishing, 2021.

[194] Huai Chuangfeng, Liu Pingan, and Jia Xueyan. Measurement and analysis for
lithium battery of high-rate discharge performance. Procedia Engineering, 15:
2619–2623, 2011.

[195] Mouhyemen Khan, Karel Heurtefeux, Amr Mohamed, Khaled A Harras, and
Mohammad Mehedi Hassan. Mobile target coverage and tracking on drone-be-
gone UAV cyber-physical testbed. IEEE Systems Journal, 12(4):3485–3496, 2017.

[196] Ouns Bouachir, Moayad Aloqaily, Fabien Garcia, Nicolas Larrieu, and Thierry
Gayraud. Testbed of qos ad-hoc network designed for cooperative multi-drone
tasks. In Proceedings of the 17th ACM International Symposium on Mobility
Management and Wireless Access, pages 89–95, 2019.

196

REFERENCES

[197] Mohammad Reza Rezaee, Nor Asilah Wati Abdul Hamid, Masnida Hussin, and
Zuriati Ahmad Zukarnain. Comprehensive review of drones collision avoidance
schemes: Challenges and open issues. IEEE Transactions on Intelligent Trans-
portation Systems, 2024.

[198] Alexandros Kouris and Christos-Savvas Bouganis. Learning to fly by myself:
A self-supervised CNN-based approach for autonomous navigation. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1–9. IEEE, 2018.

[199] Ning Wang, Markus Christen, and Matthew Hunt. Ethical considerations as-
sociated with “humanitarian drones”: A scoping literature review. Science and
engineering ethics, 27(4):51, 2021.

[200] Civil Aviation Authority. Unmanned aircraft and aircraft systems, 2025. Avail-
able: https://www.caa.co.uk/.

[201] Graeme Horsman. Unmanned aerial vehicles: A preliminary analysis of forensic
challenges. Digital Investigation, 16:1–11, 2016.

[202] Kay Wackwitz and Hendrick Boedecker. Safety risk assessment for uav operation.
Drone Industry Insights, Safe Airspace Integration Project, Part One, Hamburg,
Germany, pages 31–53, 2015.

[203] Wardatul Hayat Adnan and Mohd Fadly Khamis. Drone use in military and
civilian application: Risk to national security. Journal of Media and Information
Warfare (JMIW), 15(1):60–70, 2022.

[204] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and
John Vian. Deep decentralized multi-task multi-agent reinforcement learning
under partial observability. In International Conference on Machine Learning,
pages 2681–2690. PMLR, 2017.

[205] Maninderpal Singh, Gagangeet Singh Aujla, and Rasmeet Singh Bali. A deep
learning-based blockchain mechanism for secure internet of drones environment.
IEEE Transactions on Intelligent Transportation Systems, 22(7):4404–4413, 2020.

197

REFERENCES

[206] Chuhao Qin, Pan Li, Jun Liu, and Jianqi Liu. Blockchain-enabled charging
scheduling for unmanned vehicles in smart cities. Journal of Internet Technology,
22(2):327–337, 2021.

[207] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing federated
learning on non-iid data with reinforcement learning. In IEEE INFOCOM 2020-
IEEE Conference on computer communications, pages 1698–1707. IEEE, 2020.

[208] Min Hao, Chen Shang, Siming Wang, Wenchao Jiang, and Jiangtian Nie. UAV-
assisted zero knowledge model proof for generative AI: A multi-agent deep rein-
forcement learning approach. IEEE Internet of Things Journal, 2025.

[209] Evangelos Pournaras and Jose Espejo-Uribe. Self-repairable smart grids via online
coordination of smart transformers. IEEE Transactions on Industrial Informatics,
13(4):1783–1793, 2016.

198

List of Figures

1.1 Graphical outline of this thesis. 13

2.1 The mind map with a taxonomy of combinatorial optimization approaches. 15
2.2 Photos of DJI UAVs (rotary). 22
2.3 Scenarios of multi-drone urban sensing in related work. 24
2.4 Scenarios of multi-drone last-mile delivery in related work. 26

3.1 Framework overview of the designed PMAC model. 34
3.2 Bottom-up and top-down via a tree topology. 37
3.3 Implementation of decentralized hard constraints satisfaction in collect-

ive learning. 41
3.4 The overall framework of the HALOP approach. 43
3.5 Centralized training and decentralized execution of HALOP. 45
3.6 Synthetic target tasks for all agents of cosine waveforms by increasing

the frequency multipliers ω. 49
3.7 Cost comparison of all methods in the basic synthetic scenario (40 agents,

16 plans per agent and the target signal with ω = π/24). The vertical
lines denote the error. 52

3.8 Changing the number of agents from 40 to 160 and fixing 16 plans per
agent, 16 time periods and target complexity. 54

3.9 Changing the number of plans per agent from 16 to 112 and fixing 40
agents, 16 time periods and target complexity. 54

3.10 Changing the frequency multiple of cosine waves from π/24 to π/6 and
fixing 40 agents, 16 plans per agent, and 16 time periods. 54

199

LIST OF FIGURES

3.11 Optimization under soft and three types of hard constraints in the syn-
thetic scenarios. 56

3.12 Required behavioral shift to mitigate the performance degrade of satis-
fying hard constraints. 56

4.1 Framework overview of the EAC-MDNS model. 70
4.2 System framework of HALOP used in coordination of multi-drone nav-

igation and sensing. 76
4.3 Process of path finding in plan generation. 79
4.4 Multiple scenarios in central business district of Munich, Germany. . . . 83
4.5 The distribution of both charging stations and traffic vehicles in the

maps with high and low density of vehicles. 83
4.6 Performance comparison of the six methods on the basic static sensing

scenario: 4 base stations, 64 cells and 20000 total target values. 89
4.7 Performance comparison under varying parameters: total target values,

the number of cells, the number of base stations, and the number of
drone dispatches. 90

4.8 Optimization under soft and three levels of hard constraints in the drone
swarm sensing scenario. 92

4.9 A swarm of 10 drones hovering over the central business district of Athens
over five days to record traffic flows. 93

4.10 The comparison results among six types of vehicles in a downtown area
of Athens based on the open traffic monitoring data collected by a drone
swarm. 94

4.11 Changing the drones density by increasing the number of drones from 8
to 64 and fixing 8 periods, 64 cells, 4 charging stations and high density
of vehicles. 96

4.12 Changing the the number of periods from 4 to 16 and fixing 16 drones,
64 cells, 4 charging stations and high density of vehicles. 97

4.13 Performance comparison under varying parameters: the number of cells
(64 and 100), the number of charging stations (4 and 9), and the density
of vehicles (high and low). 98

4.14 Performance comparison of the remaining battery level of four methods
on both high and low density of vehicles. 99

200

LIST OF FIGURES

4.15 Performance comparisons of the total energy demand of four methods
with 0.25 density of drones, see (a) and (b), and the HALOP with dif-
ferent density of drones, see (c) and (d). 100

4.16 Comparison of optimal drone trajectories among all three approaches in
different periods. 102

5.1 The scenario of drone delivery over three service areas within two con-
secutive time windows. 112

5.2 Overall framework of the methodology to solve multi-drone delivery
problem. 115

5.3 Customer requests segmentation of a city map with the area of 10×10km

in Shanghai City. 122
5.4 Comparison of optimal drone trajectories among all three approaches

in different time windows (MEC is mean energy consumption, ADE is
average delivery delay). 125

5.5 Performance comparison of HALOP across different values of trade-off
weight. 127

5.6 Performance comparison of three methods in all five metrics across dif-
ferent number of drones. 128

5.7 Performance comparison of three approaches across different flying cov-
erage density and number of service areas. 129

6.1 Three types of collisions and corresponding avoidance methods. 137
6.2 An overview of the prototyped M-TET architecture. 138
6.3 The DJI Tello EDU drone that flies and hovers to capture images of cells

in the sensing map. 139
6.4 Assembly of Crazyflies for two types of functions. 139
6.5 Test environment made by a printout for drone tasking. 141
6.6 indoor tasking lab using a large screen, Crazyflies, wireless chargers, and

lighthouse base stations for positioning. 141
6.7 An example of collision avoidance using artificial potential field. 144
6.8 Coordinated vs. greedy sensing by a swarm of drones. 148
6.9 Comparison between estimated and real energy consumption. 149
6.10 Energy, sensing and collision performance comparison of drones. 150

201

LIST OF FIGURES

A.1 Computation overhead comparison of all methods. 162
A.2 The first three figures are the cost performance comparison of methods

per time period. 162
A.3 The Pareto optimality of OPS and HALOP-P. 163
A.4 Cost comparison of OPS, MAPPO and HALOP as the increase of weight.164
A.5 Costs and average frequency of HALOP-P with different number of plan

groups and HALOP-B with different number of behavior ranges. 164
A.6 Performance comparison of all methods in the energy management scen-

ario (160 consumers, 10 plans per consumer and 16 time periods, i.e., 16
days). 166

B.1 Performance comparison for different parameters of the proposed method.168
B.2 Change the parameters of DO-RL in mobility range and agents’ behavior.169
B.3 The distribution of targets and total sensing values collected by drones. 172

202

List of Tables

2.1 Overall comparison in literature review. 27

3.1 Mathematical notations used in Chapter 3. 32
3.2 An example of applying collective learning and hard constraints with

three agents, each with two plans. 39
3.3 Comparison of computational and communication costs. 53
3.4 Comparison of hard constraint satisfaction rate. 56
3.5 Comparison with related work in Chapter 3. 59
3.6 Parameter comparison of multi-drone urban sensing and drone logistics. 62

4.1 Mathematical notations used in Chapter 4. 67
4.2 Notations for sensing drones. 84
4.3 Parameters of the I-EPOS algorithm. 86
4.4 Performance of two implementations in Greed-sensing. 88
4.5 Results for the number of visited cells in Round-robin. 88
4.6 Overall performance comparison of approaches under different parameters.102
4.7 Comparison with related work in Chapter 4. 104

5.1 Mathematical notations used in Chapter 5. 109
5.2 Notations for delivery drones. 122
5.3 Performance comparison of five methods on the basic delivery scenario. 124
5.4 Comparison with related work in Chapter 5. 132

6.1 Results of optimizing sensing for each DJI Tello UAV. 147

B.1 Reward and convergence vs. hyperparameter. 170

203

List of Code/Data/Videos

Hierarchical reinforcement and collective learning, which combines multi-
agent reinforcement learning (MAPPO) and multi-agent collective learning (I-EPOS):
https://github.com/TDI-Lab/HRCL

Constraints modelling in decentralized software, enforcing individual and
aggregate level constraints for EPOS project for Collective Learning which is voted in
the top 100 project by Unesco IRCAI:
https://github.com/epournaras/EPOS

Multi-Agent Reinforcement learning-based Optimized Plan Selection, a
powerful approach to solve vehicle routing problem for multi-drone last-mile delivery:
https://github.com/TDI-Lab/MAR-OPS

M-SET: Multi-drone swarm intelligence experimentation with collision
avoidance realism and a documentation for guidance:
https://github.com/TDI-Lab/M-SET
https://github.com/TDI-Lab/M-SET-Documentation

DJI Tello Edu UAVs output datasets, recorded by the testbed prototyping:
https://doi.org/10.6084/m9.figshare.20069366.v5

EPOS-based plans for multi-drones sensing, generated by the coordination
model for spatio-temporal sensing:
https://doi.org/10.6084/m9.figshare.7806548.v6

EPOS with Drones & CDCA, the videos to record the navigation, sensing,
recharging and collision avoidance of Crazyflies:
https://m.youtube.com/channel/UCbzdkFvuMy4sJmsXAmfNr0w

Visualization of multi-drone route planning, the videos of multi-drone nav-
igation, sensing and recharging using different approaches:
https://www.youtube.com/channel/UCKkWPVTy36rcN2lUa0YwRPA

204

Abbreviations

UAV Unmanned Aerial Vehicle
PMAC Planning-based Multi-Agent Coordination
OPS Optimized Plan Selection
HALOP Hierarchical multi-Agent Learning-based Optimized Planning
M-TET Multi-drone Tasking Experimentation Testbed
EPOS Economic Planning and Optimized Selection
I-EPOS Iterative Economic Planning and Optimized Selection
MARL Multi-Agent Reinforcement Learning
MAPPO Multi-Agent Proximal Policy Optimization
HRL Hierarchical Reinforcement Learning
CBBA Concensus-Based Bundle Algorithm
RMSE Root Mean Square Error
PFG Potential Fields Grid
SUMO Simulations of Urban MObility

205

Publications

Chuhao Qin, Fethi Candan, Lyudmila Mihaylova, and Evangelos Pournaras. 3, 2, 1, drones go! a test-
bed to take off UAV swarm intelligence for distributed sensing. In UK Workshop on Computational
Intelligence, pages 576-587. Springer, 2022.

Chuhao Qin and Evangelos Pournaras. Coordination of drones at scale: Decentralized energy-aware
swarm intelligence for spatio-temporal sensing. Transportation Research Part C: Emerging Tech-
nologies, 157:104387, 2023.

Srijoni Majumdar, Chuhao Qin, and Evangelos Pournaras. Discrete-choice multi- agent optimiza-
tion: Decentralized hard constraint satisfaction for smart cities. In International Conference on
Autonomous Agents and Multiagent Systems, pages 60-76. Springer, 2023.

Chuhao Qin, Alexander Robins, Callum Lillywhite-Roake, Adam Pearce, Hritik Mehta, Scott James,
Tsz Ho Wong, and Evangelos Pournaras. M-SET: Multi-drone swarm intelligence experimentation
with collision avoidance realism. In 2024 IEEE 49th Conference on Local Computer Networks
(LCN), pages 1-7. IEEE, 2024.

Chuhao Qin and Evangelos Pournaras. Short vs. long-term coordination of drones: When distrib-
uted optimization meets deep reinforcement learning. arXiv preprint arXiv:2311.09852, 2023.
(Submitted, Under Review)

Zeinab Nezami, Zhuolun Li, Chuhao Qin, Fatemeh Banaie, Rabiya Khalid and Evangelos Pournaras.
Blockchain and Edge Computing Nexus: A Large-scale Systematic Literature Review. arXiv
preprint arXiv:2506.08636, 2025. (Submitted, Under Review)

Chuhao Qin, Arun Narayanan, and Evangelos Pournaras. Coordinated Multi-Drone Last-mile Delivery:
Learning Strategies for Energy-aware and Timely Operations. arXiv preprint arXiv:2509.15830,
2025. (Submitted, Under Review)

Chuhao Qin and Evangelos Pournaras. Strategic Coordination for Evolving Multi-agent Systems: A
Hierarchical Reinforcement and Collective Learning Approach. arXiv preprint arXiv:2509.18088,
2025. (Submitted, Under Review)

206

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Research Scope
	1.2 Research Objectives
	1.2.1 Coordination at scale
	1.2.2 Drone-based adaptability
	1.2.3 Testbed experimentation

	1.3 Research Approach
	1.3.1 Research Philosophy
	1.3.2 Research Strategy

	1.4 Contributions
	1.4.1 Distributed multi-agent coordination model
	1.4.2 Coordination model for navigation and sensing
	1.4.3 Coordination model for last-mile delivery
	1.4.4 Indoor testbed prototype

	1.5 Thesis Outline

	2 Research Background and Literature Review
	2.1 Task Allocation and Constraints
	2.2 Distributed Combinatorial Optimization
	2.2.1 Distributed task allocation algorithms
	2.2.2 Bio-inspired algorithms
	2.2.3 Other distributed heuristics

	2.3 Learning-based Dynamic Task Allocation
	2.3.1 Multi-agent reinforcement learning
	2.3.2 Scalability challenges

	2.4 Multi-drone Intelligent Transportation Systems
	2.4.1 Urban sensing and traffic monitoring
	2.4.2 Drone logistics and last-mile delivery

	2.5 Conclusions

	3 Static vs. Evolving Multi-Agent Coordination
	3.1 Problem Description
	3.2 Framework Overview
	3.3 Optimized Plan Selection
	3.3.1 Multi-agent collective learning
	3.3.2 Hard constraint satisfaction
	3.3.3 Exact algorithms

	3.4 Hierarchical Learning-based Optimized Planning
	3.4.1 Learning-based modeling
	3.4.2 High-level strategies
	3.4.3 Training and execution

	3.5 Experimental Evaluation
	3.5.1 Experimental settings
	3.5.2 Evaluation on basic synthetic scenario
	3.5.3 Evaluation on complex synthetic scenario
	3.5.4 Evaluation on hard constraint satisfaction

	3.6 Comparison with Related Work
	3.7 Discussion and New Insights
	3.8 Operations of Multi-drone Task Allocation
	3.8.1 Common models for drone-based task planning
	3.8.2 Comparison of sensing and delivery tasks

	3.9 Conclusions

	4 Coordinated Multi-Drone Navigation and Sensing
	4.1 System Model
	4.1.1 Definitions and assumptions
	4.1.2 System overview

	4.2 Problem Statement and Formulation
	4.3 Sensing Plan Generation Strategy
	4.4 Learning-based Approach for Sensing
	4.4.1 MARL modeling
	4.4.2 Plan generation and selection
	4.4.3 Periodic state update

	4.5 Experimental Evaluation
	4.5.1 Experimental settings
	4.5.2 Algorithm settings and baselines
	4.5.3 Evaluation on static sensing scenarios
	4.5.4 Vehicle observation using static transportation data
	4.5.5 Evaluation on evolving transportation scenarios
	4.5.6 Overall comparison

	4.6 Comparison with Related Work
	4.7 Discussion and Future Work
	4.8 Conclusions

	5 Coordinated Multi-Drone Last-mile Delivery
	5.1 System model
	5.1.1 Definitions and assumptions
	5.1.2 Multi-parcel energy consumption model

	5.2 Problem Statement and Formulation
	5.3 Methodology Overview
	5.3.1 Clustering for customer requests segmentation
	5.3.2 Reinforcement learning for flight range selection
	5.3.3 Algorithm of optimized plan selection

	5.4 Experimental Evaluation
	5.4.1 Experimental settings
	5.4.2 Baselines and metrics
	5.4.3 Evaluation on basic delivery scenario
	5.4.4 Evaluation on complex delivery scenario

	5.5 Comparison with Related Work
	5.6 Discussion and Future Work
	5.7 Conclusions

	6 Multi-drone Testbed Prototyping
	6.1 Testbed Design
	6.1.1 Elements description
	6.1.2 Architecture overview

	6.2 Testbed Prototyping
	6.2.1 Hardware drones for tasking
	6.2.2 Setting up an indoor tasking environment
	6.2.3 Task allocation using collective learning
	6.2.4 Collision avoidance using artificial potential field

	6.3 Experimental Evaluation
	6.3.1 Experimental settings
	6.3.2 Evaluation on energy and sensing
	6.3.3 Evaluation on collision avoidance

	6.4 Comparison with Related Work
	6.5 Discussion and Future Work
	6.6 Conclusions

	7 Conclusions and Future Work
	7.1 Meeting Research Objectives
	7.1.1 Significance of the work

	7.2 Implications for Theory, Practice and Ethics
	7.2.1 Theoretical implications
	7.2.2 Practical implications
	7.2.3 Ethical implications

	7.3 Open Issues and Future work

	A Supplementary Material of Chapter 3
	A.1 Additional Experimental Evaluation
	A.2 Evaluation with Smart Grids

	B Supplementary Material of Chapter 4
	B.1 Effect of different parameters
	B.2 Mobility and Sensing Quality

	References
	List of Figures
	List of Tables
	List of Code/Data/Videos
	Abbreviations
	Publications

