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Abstract
Though delays negatively impact rail passengers, eliminating all their incidences is impossible.
Hence, it is important to understand the impacts of delays of various lengths and ways in which
passengers can be compensated for the resulting disutility. This can, in turn, help dictate
regulatory, operational and investment priorities. Against this background, this thesis aims to
review the currently operating delay compensation mechanisms and investigate the link between
delay occurrence, delay perception and satisfaction impacts. The results suggest that the current
compensation scheme rules lead to an increasing revenue burden of the scheme for long-distance
operators, highlighting the need for further research comparing the scheme’s costs and benefits.
Subsequently, it was indicated that shorter delays are not always perceived by passengers and are
likely to have a smaller impact on passenger satisfaction with marginal disutility of delay likely
being non-constant across the different delay levels. At the same time, it was highlighted that
journey quality, delay at departure and journey time also affect delay perception and satisfaction.
The probability of perceiving a delay was estimated to be larger than the equivalent probability
of being dissatisfied with the same delay, demonstrating the existence of a gap between delay
perception and dissatisfaction. Finally, the journey satisfaction data were used to derive lateness
multipliers, a conversion rate between a minute of delay and scheduled journey time. The
calculated values were found to be larger than the estimates obtained from the traditionally used
stated preference studies. The outcomes of the research conducted as part of this thesis can help
design passenger delay compensation schemes and devise performance strategies and targets for
railways. Moreover, the presented analysis provides additional evidence towards possible non-
linearities in delay impacts and highlights the potential of transport satisfaction data in economic

valuation.
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Chapter 1
Introduction

1.1. Background

In the fast-paced world we live in, it has become of great importance to be able to move quickly.
Transport is an important part of everyday life, being a means of moving between different places,
required to access jobs, goods, services and leisure activities (Glazener et al., 2021). Different
modes of transport have their specific characteristics, meaning that their suitability depends on
the type of trip made and personal preferences. Similar to other areas of economics, the monetary
cost of travel impacts the demand for it. However, in the case of transport, travellers
simultaneously try to minimise the monetary cost and journey times. Whilst in some cases, travel
activity on its own may be a source of enjoyment and/or fitness in the case of active modes (Cornet
et al., 2022; Mokhtarian & Salomon, 2001; Wardman & Lyons, 2016), usually both increased
travel time and cost are sources of disutility. Hence, transport is typically called a derived demand
as it is related to the need to move between places, not to the travel activity itself.

With travel time being a source of negative utility, it is worth mentioning that in the case of public
transport users, the time spent travelling is not only related to the time spent in-vehicle. In other
words, public transport trips also include time spent accessing stops or stations as well as waiting
for the chosen services. Finally, whilst both private and public transport users are concerned with
the length of time their trips are meant to take (i.e. based on their expectations or timetables),
congestion and resulting delays have been suggested to affect passengers more than changes in
scheduled times. In other words, a minute of delay is considered to be worse than an additional
minute of scheduled journey time. This may be related to the inconvenience and uncertainty
caused by delays, the possibility of interfering with other planned activities and subsequently the
financial consequences of missed connections, appointments etc. However, the amount of
inconvenience (or disutility) derived from the additional travel time resulting from a delay may
depend on how sensitive a traveller is to potential late-running and the experienced travel

conditions.

1.1.1. Journey scheduling
When choosing a service to travel on, passengers consider the scheduled arrival time of the
services with respect to their preferred arrival time. As noted by Preston et al. (2009) and
explained in more detail in Batley (2007), passengers typically also include safety buffers to their
travel schedules that work as a time insurance against any possible disruptions and aim to increase

the probability of arriving to the destination within passenger’s preferred arrival time. The amount



of buffer time may depend on the expectations, sensitivity to potential lateness, and personal
characteristics of a passenger (this is further revisited in Chapter 2).

1.1.2. Impacts of delays on passengers
The impacts of delays on rail passengers are typically studied in terms of how performance affects
demand. Intuitively, it would be expected that fewer trips will be made if the incidence of delays
increases. Such a relationship is generally suggested by the literature, however, the estimated
elasticities with respect to delay are inelastic. Performance has a statistically significant, yet
marginal impact on rail demand as the estimated elasticities are typically not more (in absolute
terms) than -0.10 (ATOC, 2004; Batley et al., 2011). At the same time, the relative impacts of
changes in price levels or generalised journey times are suggested to be larger with the estimated
elasticities closer to -1, indicating that demand is relatively responsive to such changes (ATOC,
2004; Batley et al., 2011). The limited impact of performance on demand does not necessarily
mean that travellers place low value on performance as individual-level studies suggest relatively
high valuation of lateness, yet such experiences do not always lead to a demand response (Batley
et al., 2011). This may be related to passengers not being able to change their travel behaviour
following late running and especially so in the short term, which can be attributed to the lack of
available alternatives. This means that while delays may have a negative impact on passengers,
performance may not always be immediately linked to demand. Nevertheless, delays do
contribute to inconvenience and the loss of time that could have been spent on other activities.

Hence, this could be translated to a loss of social welfare resulting from increased travel times.

1.1.3. Alternative methodologies used to study the impacts of delay
With studies of demand not being able to capture the aforementioned impacts, some alternative
lines of investigation have been used throughout the literature, employing the following data

sources:

1) stated preference (SP) surveys where respondents choose the preferred travel options
based on the presented scenarios with different travel attributes (e.g. travel time and

monetary cost),

2) revealed preference (RP) surveys where travellers’ real choices are observed and

compared to the alternatives, and

3) satisfaction surveys where passengers report journey satisfaction based on their travel

experiences.

Demand and SP studies typically focus on evaluating the impacts of average performance (e.g.
Batley and Ibéafez, 2012) on passenger numbers or preferences (this is further discussed in

Chapter 8). At the same time, studies of passenger satisfaction are concerned with either overall



satisfaction with public transport (e.g. Cats et al., 2015) or the impact of delay incidents (or other
travel attributes) on passenger satisfaction with a specific travel experience (e.g. Monsuur et al.,
2021) (Chapter 6 and Chapter 7 cover these aspects in more detail). Studying the impact of
average performance on demand can provide information for the government and/or operators
regarding the effects of changes in rail performance on passenger numbers and ticket revenues.
Stated preference surveys are often used to estimate the relative importance of different travel
attributes and trade-offs between them. These, are, however, related to hypothetical choices. On
the other hand, studying real choices obtained through questionnaires and travel diaries also has
its limitations as it assumes that travellers know about the other travel alternatives. Moreover, in
the case of delays, these often cannot be predicted and are unlikely to affect any travel choices
once a journey has started. Hence, the other body of literature is focused on studying the impact
of different journey attributes on passenger satisfaction. In this case, passengers evaluate their
actual experience ex post, giving insight into how different travel attributes (including delays)

affected their satisfaction with the experienced journey.

Several studies looked at the impact of different aspects of the journey on travel satisfaction (for
reviews see De Vos et al., 2013; De Ofia and De Ofia, 2015; Gao et al., 2018; Rong et al., 2022),
but studies relating actual performance to satisfaction are more limited. In principle, this thesis
draws on a number of previous studies examining the impacts of lateness on passengers (i.e.
Batley, 2007; Preston et al., 2009; Monsuur et al., 2021) whilst also responding to the conclusion
in Wardman and Batley (2022) and Rong et al. (2022) that further research is needed to understand
passengers’ perception of late-running and its marginal impacts on passengers. This is seen as an
important first step in advancing our knowledge of the impact that delays have on passengers'

satisfaction and the role that perception has in this relationship.

1.1.4. Focus on British railways
The main focus of this thesis is on the railways in Great Britain. This can be attributed to two
reasons. First of all, the fact that the British rail planning practice is well-established with the first
edition of British guidance on rail demand forecasting dating back to the 1980s (Wheat and
Wardman, 2017). Secondly, the British railway industry structure is one characterised by vertical
separation and privatisation of train operations (Nash et al., 2013), though in recent years a
number of services has been brought back under the government’s control and are run by the so-
called ‘operator of last resort’. With multiple train operators providing services across the country,
extensive regulation and a relatively complex industry structure, the British rail industry is also
characterised by a relative abundance of open-access data what facilitates research. Yet, there still

remain areas that call for further research.



In November 2019, 65% of rail station stops in Britain were on time with 95% of delays being
shorter than 15 minutes and 3 out of 1000 station stops delayed by over 30 minutes (Network
Rail, n.d.). While delays are endemic in the transport system (Batley, 2007; Rezapour and Ferraro,
2021) and eliminating all of them may be impossible and not economically viable, the efforts can
focus on reducing the delays that have the most negative impact on passengers or providing
passengers with compensation for delays. Previous research suggests that passengers delayed by
over 30 minutes are very unlikely to be satisfied with their journeys (Wittmer and Laesser, 2010;
Monsuur et al., 2021). However, as noted by Transport Focus (2015), satisfaction levels tend to

start dropping from the very first minute of late running.

1.2.Statement of the problem

Whilst previous research provides us with some understanding of how passenger satisfaction
changes with delays, little is known about how passengers perceive delays and the effects that
delay perception may have on satisfaction. Nielsen (2000) and Rezapour and Ferraro (2021)
indicated that passenger perception of late running has an impact on travel behaviour and public
transport suppliers can learn how to improve their services by investigating these impacts too. At
the same time, many studies that focused on the valuation of changes in journey times have argued
that passengers are less likely to notice smaller changes, implying that the marginal benefits of
small time savings are smaller (Mackie et al., 2003; Daly et al., 2014). Despite that, Mackie et al.
(2003) noted that even if passengers are unlikely to recognise minor savings, it does not
automatically mean that these savings have no benefits at all. Similar arguments can be applied
to delays. It can be thought that the perception of delay is an intermediate step linking the
existence of delay (supply-side disruption) with the impacts on satisfaction and ultimately demand

and revenue (demand-side impact).

1.2.1. How to compensate passengers for the experienced disutility?
If delays have an impact on satisfaction, but a limited impact on demand, this poses a question
regarding how travellers can be compensated for the disutility related to the existence of delays.
This thesis was initially motivated by the limited understanding of the role that compensating
passengers for late running has on both the demand and supply side of the railways. A rail
passenger delay compensation scheme aiming at improving the attractiveness of rail services and
providing minimum customer service standards for delayed passengers operates in the EU and
Great Britain. The scheme rules were chosen arbitrarily, and are largely homogeneous across all
ticket types and journey lengths. Each year, British TOCs repay around £80m to passengers as
part of the delay compensation (pre-COVID) (Gov.uk, 2020). There are two distinct features
concerning the design of the rail passenger delay compensation scheme, namely the delay length

threshold when passengers start receiving compensation and how the value of compensation is



determined. In order to optimise the design of passenger delay compensation scheme, there is a
need to better understand what levels of delays are especially inconvenient for travellers, which
can be achieved by understanding delay perception and satisfaction in more detail.

1.2.2. How do delays affect passengers?
The analysis of passenger satisfaction builds on Monsuur et al. (2021) who used NRPS data to
study the determinants of passenger satisfaction and the impacts of delays on the overall journey
satisfaction of passengers who perceived delays. The aim of this thesis is to investigate how delays
affect satisfaction with punctuality rather than overall journey satisfaction (as in Monsuur et al.,
2021) of different types of passengers, both in the cases of perceived and unperceived delays.
Understanding how passengers perceive delays and how satisfaction with punctuality changes
with increasing delays is important and interesting in its own right. However, its usefulness in the
policymaking context is limited to indicating the minimum thresholds where passengers start
perceiving delays and subsequently the minimum delay thresholds that have significant impact
on passenger satisfaction. The estimated thresholds can be used for determining the plausible
delay distribution and performance metrics with the possibility of targeting the delays that are
more likely to significantly reduce passenger satisfaction. Alternatively, these can inform the
potential design of compensation mechanisms. Nevertheless, the application of the concepts of

delay perception and satisfaction to economic appraisal is currently limited.

To better understand the difference between the nature of satisfaction data and the impacts of
delays on satisfaction as compared to hypothetical or real choices, it is worth looking at ways in
which satisfaction data can be used in deriving metrics that are typically obtained from other data
sources. There is a precedent in the literature, especially covering health, labour and
environmental economics, in utilising satisfaction data (particularly life satisfaction) in the
context of economic valuation (e.g. Layard et al., 2008; Frey et al., 2009; Dickerson et al., 2014).
This approach has, so far, not been widely used in transport. As time savings are often quantified
as the largest benefit of many transport infrastructure projects, valuation of time and the impacts
of reducing journey times and improving performance remain the key areas of interest for
transport economists. It has been noted throughout the literature that performance improvements
may often have larger benefits as compared to travel time reductions (e.g. de Jong et al., 2007).
Stated preference surveys are typically used to estimate the relative valuation of delays respective
to scheduled journey times (e.g. Batley and Ibéafez, 2012). However, due to the aforementioned
limitations of the SP data and the different nature of the satisfaction data, it may be of interest to
contrast how lateness valuation estimates vary depending on the type of data source used. Hence,
this thesis also aims to explore that link by combining the methodology used in studies focusing

on lateness valuation using stated preference data (e.g. Bates et al., 2001; Preston et al., 2009;



Batley and Ibafiez, 2012) and studies using satisfaction data in economic valuation (e.g. Dickerson
et al., 2014) to derive reliability multipliers that are used in demand forecasting. This ensures that
the concept of satisfaction is better translated to the currently used methodologies, allowing
making comparisons and better translation of the results for policymaking.

1.3. Aims and objectives

The aim of this thesis is to investigate rail passengers’ perceptions of delays and the consequential
impacts on satisfaction. In this sense, the thesis explores the intermediate steps that link the
occurrence of delay and its possible impacts on demand and revenues, as for delays to have such
impacts, they need to be perceived and have a material influence on travellers’ attitude and
behaviours (in this case measured by reported satisfaction). The particular focus is on
understanding the impacts of smaller versus larger delays on passengers, given that smaller
measured delays may not be noticed or regarded as significant by travellers. The research can be
helpful in designing/rethinking passenger delay compensation and devising performance
strategies and targets for the British railways. This aim will be accomplished by the following

objectives and the corresponding research questions:

1) Review of the currently used passenger delay compensation mechanisms (Chapter 4)

Q1: What are the costs and benefits of the currently operating passenger compensation scheme?

2) Examination of how passengers perceive delays (Chapter 6)

Q1: What are the minimum delay lengths perceivable by travellers?
Q2: How do passengers perceive the lengths of delays they experienced?

Q3: Do journey length, purpose, comfort and arrival versus departure delay impact upon how

delays are perceived?

3) Assessment of the impacts of delays on passenger satisfaction (Chapter 7)

Q1: How does the probability of being satisfied with punctuality change with increasing levels of

recorded delays?
Q2: What are the delay lengths detrimental to passenger satisfaction?

Q3: What are the ways in which other journey aspects, i.e. journey length and comfort affect

passenger satisfaction?
Q4: Is the impact of delays on satisfaction non-linear?

4) Contrasting the concepts of delay perception and passenger satisfaction (Section 7.5)



Q1: Is there a gap between the moment a delay is perceived and starts having an impact on
satisfaction?

5) Determining the relative valuation of lateness to scheduled journey time using

satisfaction data (Chapter 8)

Q1: Is there any difference in the estimated trade-offs between delay and scheduled journey time

based on the type of data used?

1.4.Thesis structure

This thesis follows the structure outlined below and depicted in Figure 1:
Chapter 2 Impacts of delays on passengers

This chapter summarises the theoretical models of trip scheduling as well as introduces the
methods typically used to measure delay impacts. More extensive literature reviews form parts of
each of the empirical chapters.

Chapter 3 Data and methodology

This chapter briefly describes the types of modelling approaches used in the thesis. However,

each of the empirical chapters contains a more detailed description of the analysis undertaken.
Chapter 4 Rail passenger delay compensation scheme

This chapter evaluates the currently operating rail passenger delay compensation scheme in Great
Britain. It consists of a qualitative review of scheme rules and passenger engagement, and an
empirical quantitative analysis of the costs of running the scheme for different operators in Great

Britain. This chapter serves as a motivation for further research conducted as part of the thesis.
Chapter 5 Data: The National Rail Passenger Survey (NRPS)

This chapter describes the main dataset used in the analysis conducted in Chapters 6-8, the

National Rail Passenger Survey, its contents and limitations.
Chapter 6 Rail delays and travellers’ perception of being delayed

This chapter introduces the concept of delay perception. Binary logit models are used to estimate

the probability of rail travellers perceiving a delay for increasing lengths of recorded delays.
Chapter 7 Impacts of delay on travellers’ satisfaction

This chapter analyses the impacts of recorded delays on reported satisfaction. Binary and ordered

logistic methods are used to investigate how different levels of delays affect passenger



satisfaction. The concepts of delay perception and journey satisfaction are reconciled to
investigate the existence of a gap between a length of delay that is perceivable and one that has a
detrimental impact on passenger satisfaction. Moreover, the potential non-linearities in the impact
of delays on passengers are examined.

Chapter 8 Lateness valuation using satisfaction data

This chapter proposes an approach utilising journey satisfaction data in the estimation of an
established metric — the lateness multiplier - that represents a conversion rate between a minute
of delay to an equivalent of scheduled journey time.

Chapter 9 Conclusions

This chapter summarises the results of the analysis conducted in the previous chapters along its
limitations. Suggestions for future work and main implications for the policymakers are also
introduced in this chapter.



Compensation
Chapter 4 Chapter 4
Delay Chapter 6 Perception  |Chapter 7 | Satisfaction Demand Revenue
occurrence
\—//r\”“-\(jlmpter 8 __,,-""/
Chapter 7 T
Valuation

Figure 1 Thesis structure

Figure 1 depicts the chapters of the thesis and the different impacts of delays that these investigate. Chapter 4 looks at the cost of delays in terms of passenger
compensation. Chapters 6 and 7 describe the immediate steps between the occurrence of delay and its impacts on demand and revenue, namely delay
perception and the consequential impacts on satisfaction. The direct link between journey satisfaction and demand response is not established, however,
Chapter 8 aims to bridge the two concepts by utilising satisfaction data in studying delay valuation (providing an indirect link, represented by the dotted

lines).
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Chapter 2
Impacts of delays on passengers

2.1.  Introduction

To better understand the negative impacts that delays have on passengers, one needs to consider
how travellers make travel choices and what affects them. The aim of this chapter is to provide a
summary of theoretical models of trip scheduling as well as a brief review of methods typically

used to measure the delay impacts.

Itis generally agreed throughout the literature that reliability has an important, yet relatively small
impact on travel choices (e.g. Batley, 2007). Having said that, de Jong et al. (2007) suggested that
the benefits of improved reliability may often be larger than those of reduced travel times - as
travellers place a large value on performance. As noted by de Jong et al. (2007), most of the
research covering the value of reliability uses one of the following three approaches:

1) mean versus variance approach where unreliability is represented by the standard

deviation or variance of the distribution of journey times,

2) percentiles of travel distributions where unreliability is represented by the difference

between the 80™ or 90" percentile of the journey times distribution and their mean or

3) scheduling models where unreliability is represented by the number of minutes a traveller

departs and/or arrives early or late as compared to their Preferred Arrival Times (PATS).

The value of reliability is typically estimated from SP studies where travellers are presented with
multiple-choice sets characterised by different levels of travel attributes (including the lengths of
delays). Subsequently, researchers calculate the chosen metrics (e.g. mean or standard deviation
of delays) and the respondents’ relative valuations. While the first two approaches are more
concerned about the overall performance, i.e. the distribution of delays, the latter looks at how
expectations of unreliability impact trip scheduling. This approach is of particular relevance in
investigating the impact of incidental lateness on passengers, which is the main focus of this
thesis. The average and incidental lateness are, in fact, two distinct concepts as the impact of a
given delay episode is different from the impact of general railway performance. In other words,
a delay episode of 5 minutes is different from an average delay of 5 minutes. Hence, with some

(deliberate) exceptions, this thesis looks at how incidental delays affect travel experiences.

2.2.  Scheduling models

The basis for the trip scheduling models can be sought in the studies concerning theories of time
allocation (Becker, 1965; DeSerpa, 1971) with time/money and scheduling constraints (Vickrey,
1969; Small, 1982) under uncertainty (Small, 1982; Noland and Small, 1995; von Neumann and
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Morgenstern, 2007). The major difference between the private car and public transport services
can be seen in the latter providing less flexibility in terms of departure and arrival times that are
bound by the timetables. Hence, Bates et al. (2001) and Batley (2007) discussed the discrete
nature of the departure/arrival times of public transport. Considering the work by Small (1982)
and Noland and Small (1995), it is worth noting that travellers attach disutility to longer travel
times, but also to late or early arrival. Hence, the concept of a ‘schedule delay’, defining the
difference between preferred and actual arrival times. Typically, it is assumed that travellers
assess all the possible travel options and choose one that maximises their utility, what in transport
is equivalent to the lowest generalised cost, i.e. monetary cost and travel time (Bates et al., 2001).
Travellers typically have a preferred arrival time and assign utility to each of the travel options
based on how distant the scheduled arrival is from their preferred PAT (Bates et al., 2001) or PAT
band (Mahmassani and Chang, 1986) - with schedule delay being a source of larger disutility for
late than early arrival. Bates et al. (2001) also extended the framework described above,
considering that the choice of departure time faced by travellers is made under uncertainty that is
introduced by unreliability. As such, any delays or early arrivals may affect passengers'
expectations of travel time and encourage the choice of earlier or later departure in the future.

A concept related to the previous discussion is that of a safety margin that defines the extra amount
of time incorporated into the journeys, serving as insurance against any possible delays. This is
likely to depend on both the expectations about delays (that can depend on previous experiences)
and sensitivity towards late arrival (Gaver, 1968; Knight, 1974; Bates et al., 2001; Batley, 2007).
Hence, it is likely that travellers are less sensitive to a delay that allows them to reach their
destination within their preferred arrival time window and with the inclusion of larger safety
buffers, the lengths of such delays increase. Nevertheless, the experienced delays may be larger
than the included safety margins and, as noted by Bergstrom and Kriiger (2013), in such cases,

travellers may face long waits or need to make changes to their scheduled activities.

2.3. Measuring the impacts of delays

The impacts of delays are typically evaluated using:

1) market-level analysis focusing on the impact of delays on demand (e.g. Batley et al.,
2011)

2) SP or RP surveys analysis of travel choices and the relative valuations of travel attributes
(e.g. Batley and Ibafiez, 2012) or

3) analysis of passenger satisfaction (e.g. Monsuur et al., 2021).

With reference to journey scheduling, it has to be noted that travellers’ preferences and risk

aversion are likely to be heterogeneous. Hence, the benefits arising from reliability improvements
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are likely to have a differing impact on travellers (Batley, 2007). However, the demand analysis
is aggregated at both demand and supply levels as it looks at the impacts of average delay on total
demand. SP or RP surveys are also typically used to analyse the impacts of average delays (or
their distribution) and their valuations. There is a large body of literature concerned with
evaluating the impacts of delays on demand and valuation using SP and RP surveys. However,
with these typically being concerned with the distribution of delays, a very limited number of
studies looks at the impact of individual delays on passengers. Here, it would not be expected for
a single delay to have a large impact on travel choices. However, such delays are a source of

disutility in line with the scheduling models discussed in the previous section.

As noted in the recent paper by Wardman and Batley (2022), the implied elasticities (i.e. from SP
surveys) are typically larger than these estimated from the demand data, suggesting that delays
are a source of disutility, however, may not ultimately lead to changes in travel behaviour as
demand studies suggest that demand is relatively inelastic with respect to performance (ATOC,
2004; Batley et al., 2011). Similarly, with SP surveys relating to hypothetical choices, there might
be differences in the estimated impacts of delays on passengers based on the type of data used

(i.e. SP versus satisfaction surveys).

Travellers are risk-averse and uncertainty of arrival time can cause stress and anxiety (Preston,
2008; Peer et al., 2012). Most delays are small and passengers are likely to prepare for the
possibility of encountering them. However, the occurrence of longer delays that have a relatively
low probability of occurring, but high impact, is more difficult to predict and prepare for
(Bergstrom and Kriiger, 2013). As eliminating all delays is practically impossible, in order to
know whether it is more important to target the many small or the few very large delays, it is
necessary to understand how travellers are impacted by delays of differing sizes (Bergstrom and
Kruger, 2013).

Hence, conforming to the framework presented above, with the travel history impacting
expectations about reliability, travellers schedule their journeys with respect to the preferred
arrival time, also including a safety margin to their schedules. Subsequently, the experienced
delay will lead to a disutility with its magnitude likely dependent on how far the actual arrival is
from the preferred arrival. Subsequently, the disutility derived from a delay incident can be
captured by satisfaction data where travellers evaluate their travel experience ex-post as shown in
Figure 2. Eventually, the only way to compensate passengers for the disutility related to delays is
to provide them with monetary compensation, as the time lost cannot be returned. Hence, the

presented concepts ask for increased research investigating the impact of delays on passengers
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using the alternative data sources. It is thought that passenger reports or journey evaluation data
may be a useful addition when studying the described problem (Preston, 2008).

> Travelhistory>> Expectations >> PAT >> Choice >> Delay >> Evaluation >

Figure 2 Framework behind journey evaluation
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Chapter 3
Data and methodology

This chapter aims to provide a summary of the data and methodologies used throughout this thesis
to provide a clearer picture of the concepts introduced in each chapter. Table 1 serves as a roadmap
and provides an overview of each of the chapters. Objectives, research questions and motivations
associated with each of the chapters are presented alongside the methodology and data used in

the analysis.

Chapter 4 provides a literature review on the impacts of passenger delay compensation as well as
an econometric analysis of its costs using financial and performance data from the British
franchised TOCs obtained from the Department for Transport. The remaining chapters mostly
utilise logistic regression techniques to investigate how delays are perceived and the impacts they
have on passenger satisfaction. These methods are applied to passenger responses from NRPS, a
rail passenger survey in the UK, obtained from Transport Focus, and linked to performance data
from HSP (obtained from National Rail). These data sources are described in more detail in
Chapter 5.
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Table 1 Summary of data and methodologies used in the thesis

Chapter Objective Research Motivation Methodology Data
(based on question
section 1.3)
Chapter 4 Review of the  Q1: What are the  Delay Repay has been introduced as a means of Literature review Rail industry data
Rail passenger currently used  costs and compensating passengers experiencing severe delays and to  on the designand  sourced from the
delay passenger benefits of the regulate the minimum customer service requirements for operational Department for
compensation delay currently the treatment of passengers following late-running characteristics of Transport and ORR
scheme compensation  operating (Department for Transport, 2016). the scheme.
mechanisms passenger
(Chapter 4) compensation Department for Transport (2020) noted that while the Econometric
scheme? proportion of passengers claiming compensation has been analysis of the
increasing, only 39% of surveyed passengers who costs of the
experienced a delay qualifying for compensation decided to  scheme and
engage with the process in 2018. impacts on
different operators.
Chapter 6 Examination ~ Q1: What are the  Nielsen (2000) and Rezapour and Ferraro (2021) indicated  Binary logistic NRPS — passenger
Rail delays and of how minimum delay that the perception of delays has an impact on travel models of delay reports about
travellers’ passengers lengths behaviour and public transport suppliers can learn about perception; delays;
perception of being  perceive perceivable by ways in which they can improve their services by analysis of the HSP — recorded
delayed delays travellers? investigating it. distribution of performance
(Chapter 6) reported and
Q2: How do Daly et al. (2014) suggesting that passengers are often not  recorded delay
passengers able to perceive small changes in travel times. lengths

perceive the
lengths of delays
they
experienced?

Wardman and Batley (2022) and Rong et al. (2022)
suggesting that research is needed to understand the
differences between perceptions of late time and recorded
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Q3: Do journey
length, purpose,
comfort and
arrival versus
departure delay
impact upon how
delays are
perceived?

delay lengths to better understand how delays affect
passengers.

Chapter 7

Impacts of delay on
travellers’
satisfaction

Assessment of
the impacts of
delays on
passenger
satisfaction
(Chapter 7)

Q1: How does
the probability of
being satisfied
with punctuality
change with
increasing levels
of recorded
delays?

Q2: What are the
delay lengths
detrimental to
passenger
satisfaction?

Q3: What are the
ways in which
other journey
aspects, i.e.
journey length
and comfort

Suggestions that performance may not lead to large
changes in demand, due to the lack of viable alternatives
particularly in the short-run (Batley et al., 2011).

Limited research linking recorded performance with
reported satisfaction. Though, generally performance has
been suggested to have a very strong impact on satisfaction
(Transport Focus, 2015; Carrel et al., 2016; Gao et al.,
2018; Monsuur et al., 2021).

Monsuur et al. (2021) analysed the impact of recorded
delays on passenger satisfaction using the NRPS dataset.
However, some methodological differences are proposed.
Wardman and Batley (2022) argued that proportional
elasticities (i.e. based on the relative proportion of AML to
GJT) better explain changes in demand than the actual
delay lengths.

Gao et al. (2018) proposed a cubic relationship between the
difference in the experienced versus expected lengths of
delays and satisfaction.

Binary and ordered
logit models of
passenger
satisfaction (to
study the impact of
incidental delay on
individual
passenger
satisfaction);
fractional outcome
logit regression (to
study the impact of
average delay on
the aggregated
satisfaction levels).

Maximum
likelihood
estimation of the
elasticity of
marginal utility of
delay; Estimation

NRPS — reported
satisfaction;

HSP — recorded
performance
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affect passenger
satisfaction?

Q4: Is the impact
of delays on
satisfaction non-
linear?

Data from satisfaction surveys has been applied to study
non-linearities, for example in the context of the marginal
utility of income (e.g. Layard et al., 2008).

of a cubic
relationship and
piecewise
regression between
recorded delays
and reported
satisfaction;

Contrasting
the concepts
of delay
perception
and passenger
satisfaction

Q1: Isthere a
gap between the
moment a delay
is perceived and
starts having an
impact on

Same as for chapters 6 and 7

Binary logit model
of delay perception
and satisfaction.

NRPS — passenger
reports about delays
and reported
satisfaction;

HSP — recorded
performance

(Section 7.5)  satisfaction?
Chapter 8 Determining Q1: Isthereany  Monsuur et al. (2021) analysed the impact of recorded Ordered logit NRPS — passenger
Lateness valuation the relative difference inthe  delays on passenger satisfaction using the NRPS dataset. model of passenger reports about delays
using satisfaction valuation of estimated trade- satisfaction to and reported
data lateness to offs between SP surveys are typically used to estimate lateness derive lateness satisfaction;
scheduled delay and multipliers (e.g. Bates et al., 2001; Preston et al., 2009; multiplier. HSP — recorded
journey time  scheduled Batley and Ibafiez, 2012; Wardman and Batley, 2022). performance
using journey time However, some limitations of SP survey data were
satisfaction based on the type highlighted in the literature (e.g. Wardman, 1988).
data (Chapter  of data used?
8) There is a large body of literature using data from surveys

on life satisfaction in economic valuation, especially in
health or environmental economics (e.g. Ferrer-i-Carbonell
and van Praag, 2002; Frey et al., 2009). However, such
approaches have not been as widely applied in the transport
contexts (with the exception of Dickerson et al., 2014).
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Chapter 4
Rail passenger delay compensation scheme

4.1. Introduction

Eliminating all delays is practically impossible and probably not optimal (Batley, 2007;
Rezapour and Ferraro, 2021). At the same time, previous research suggests that delays
have negative impacts on passengers, but their ability to respond to worsening performance
is limited (Batley et al., 2011). Following a delay, the immediate way of compensating for
the additional disutility related to that is to refund the monetary value of the time lost.
Against this background, and to improve the competitive position of rail, a rail passenger
compensation scheme has been introduced in the UK and the EU with the aim of providing

minimum customer service standards for delayed passengers.

So far, there has been very limited research empirically reviewing how the rail passenger
delay compensation schemes work in practice. The amount of compensation repaid by

each train operating company (TOC) as part of the scheme depends on:

1) the rules of the scheme,
2) the number of passengers eligible to claim compensation and
3) passengers’ levels of engagement with the scheme.

Currently, British passengers can claim a portion of their original fare for delays of over
15 minutes with the compensation thresholds set arbitrarily. At the same time, as noted, by
Wardman and Batley (2022) and Rong et al. (2022), little is known about how passengers
perceive delays or what levels of delays are detrimental to their satisfaction. Hence,

designing appropriate compensation mechanisms is challenging.

Assuming common speeds and equal probability of encountering a delay across the whole
network, longer (and hence more expensive) journeys would be subjected to longer delays,
hence TOCs operating long-distance services would be likely to see more passengers being
eligible to claim compensation. This is likely combined with higher engagement rates as
travellers state they are more likely to submit compensation claims for longer delays and/or
more expensive journeys (Department for Transport, 2020). Hence, operators serving
longer journeys may see higher claim rates due to differences in the disutility of lateness
or opportunity cost of not claiming compensation. While this is likely an
oversimplification, it can be hypothesised that this can lead to a differing revenue burden

that the Delay Repay (DR) scheme has on the operators’ revenues.
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Whilst it may be easy to review the costs of the scheme by looking at the amount of
compensation repaid to travellers, its potential benefits are more difficult to measure. This
would require quantifying the impact of the scheme on demand (i.e. the scheme either
encouraging rail travel or limiting the loss of the revenue in the future). Due to the relative
complexity, limited data and its sensitivity, this chapter mainly focuses on the effects of
the design and mechanics of the DR scheme on its costs. Whilst the specific focus is on
the scheme operating in the United Kingdom, comparisons are drawn to the rail passenger
delay compensation schemes operating within other European countries as well as a similar

scheme operating in aviation.

The purpose of this chapter is to improve understanding of the role that the scheme
currently has in the British railways and give recommendations and highlight research
directions that might guide policymakers and regulators in the process of redesigning such

a scheme in the future.
The remainder of this chapter is structured as follows:

e Section 4.2 provides a review of the British railway industry to position the DR
scheme.

e Section 4.3 provides information on how the currently operating scheme works in
Great Britain. Comparisons to similar schemes operating in other countries and in
the airline market are subsequently presented in sections 4.4 and 4.5.

e Section 4.6 provides a qualitative analysis of passenger engagement with the
scheme and a quantitative analysis of the scheme’s costs.

e Section 4.7 summarises the research conducted as part of this chapter as well as
provides some directions for further research and comments on the potential

implications for policymaking.

4.2. Background

Delays are one of the crucial aspects of journey, affecting levels of demand, mode, route
or travel time choices with significant heterogeneities in sensitivities to delays across
different types of travellers (Balcombe et al., 2003; Paulley et al., 2006; Preston et al.,
2009; Batley et al., 2011; Holmgren, 2013). Passengers anticipating some level of
disruption based on previous experiences or due to their sensitivity to lateness usually
allow some extra buffer time to their schedules as a safety margin to increase the
probability of arriving to their destination within the preferred time window (Bhat and
Sardesai, 2006; NEXTOR, 2010). Depending on the nature of the journey, travellers
perceive 1 minute of delay as being 1 to 6.5 times worse than 1 minute of scheduled journey
time (Bates et al., 2001; Preston et al., 2009; Wardman and Batley, 2014; Nagy and
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Csiszar, 2015). Most of the commuter journeys are, for example, relatively short, but occur
regularly, meaning that repetitive disruption can especially affect these passengers
(Zahavi, 1974; Zahavi and Talvitie, 1980; Marchetti, 1994; Joly, 2004). Following
worsening performance, passengers can respond by increasing their safety buffer,
changing operator, mode, time of travel or decide not to travel at all, but such responses
will depend on the availability of alternatives (Preston et al., 2009; Batley et al., 2011).
The Delay Repay scheme has been introduced in the UK as a means of compensating
passengers experiencing severe delays and to regulate the minimum customer service
requirements for the treatment of passengers following late-running (Department for
Transport, 2016). The scheme rules in the UK are mostly homogeneous across all ticket
types and have been chosen arbitrarily with all TOCs offering passenger compensation
equating to 50% of their ticket price for delays of more than 30 minutes and 100% for
delays of over 1 hour. In addition, 13 TOCs also provide compensation for delays of

between 15-30 minutes equating to 25% of the original ticket price.

Both abandoning the journey and spending more time travelling following a delay incur
loss of social welfare. Operators may decide to compensate passengers for the resulting
loss due to ethical reasons, regulation, competition or to prevent potential demand losses
in the future. The only way to compensate for the increase in generalised cost following
late running is to repay passengers an appropriate proportion of the fare component of the
generalised cost. In the short-run, passengers can respond to lower performance by
submitting compensation claims. However, if the late running occurs regularly, some
passengers may likely try to find an alternative. Nevertheless, as argued by Wardman and
Batley (2014), passengers will not always be able or willing to change their travel
behaviour as a result of poor performance, at least in the short or medium term. Some
travellers may also decide to increase their safety buffers which will, in turn, increase their

generalised cost of travel — and this will not be captured by any compensation schemes.

Britain’s railway industry is characterised by vertical separation of train operation and
management of rail infrastructure. Train Operating Companies (TOCs) pay track and
access charges to the infrastructure manager, responsible for the maintenance of tracks and
stations (Pollitt and Smith, 2002). At the same time, they are also subject to regulation and
a set of performance regime mechanisms that aim to ensure safety, protect passengers’
interests and facilitate cooperation (Pollitt and Smith, 2002; Nash et al., 2013). ‘Schedule
8’ is a system involving payments between train operating companies (TOCs) and the
infrastructure manager (IM) based on the marginal revenue effect of delays where affected
parties compensate each other for the effects of late running on their long-term revenue
(Network Rail, n.d.; Wardman and Batley, 2014; ORR, 2016; Steer, 2018). The aim of the
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scheme (in principle financially neutral) is to incentivise TOCs and IM to invest money in
preventing delays and reduce costs related to financial risks caused by delays (Network
Rail, 2012; Wardman and Batley, 2014; Steer, 2018). Schedule 8 payments are currently
unrelated to passenger compensation that TOCs are required to pay to delayed passengers
as part of franchise agreements (ORR, 2014), though it has been proposed that the two
schemes become more interlinked (ORR, 2021). As argued by ORR (2014), whilst both
schemes reflect on performance, they serve different roles, with Schedule 8 relating to
compensation and incentive arrangements between TOCs and IM and the DR scheme

serving as a means of compensating passengers for delays.

The DR scheme might be seen as an additional cost of delays with TOCs having little
incentive to encourage passenger engagement unless the costs of the compensation scheme
are seen as a prevention against future revenue loss. Without extensive regulation or
competition, the TOCs may be incentivised to make the process of engaging with the
scheme more difficult (costly) for passengers. Passengers may value the existence of a
compensation scheme, but it remains difficult to estimate the impact the existence of the
scheme has on demand or compare the benefits of the scheme (increased revenue) with its
costs (compensation paid). In fact, little is known about the benefits of the scheme and the
impact of the scheme’s design on its costs, which are driven by passengers’ eligibility to
claim compensation and the levels of passenger engagement with the claiming process.
Whilst eligibility is exogenous, being determined by the scheme rules and driven by
performance, the impact of varying engagement on the scheme’s costs has not been
empirically tested. It can be expected that engagement levels (propensity to claim

compensation) may differ between passengers due to:

o differences in sensitivities to the experienced levels of lateness as is the case with
journey time or fare elasticities of demand (Bates et al., 2001; Preston et al., 2009;
Wardman and Batley, 2014) and

e as a result of the expected costs and benefits of claiming compensation

(opportunity cost of not claiming compensation).

Whilst this has generally been confirmed by passengers who state the length of the delay
and ticket price as major factors determining their engagement (Department for Transport,
2020), it is not known how these differences impact the compensation values and revenues
of British TOCs.

4.3.Rail passenger delay compensation scheme in Great Britain
The rail passenger delay compensation scheme introduced in the UK is a more generous

version of the scheme adopted by the European Parliament in 2007. The EU directive
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1371/2007 details the level of compensation passengers are entitled to claim for severe
delays - 25% of the ticket price paid for delays between 60 and 119 minutes and 50% for
delays of over 2 hours with minimal compensation that can be set at up to 4 euros
(European Commission, 2007).

The original compensation scheme offered on the British railways, referred to as the
Passengers’ Charter, was based on arrangements stipulated by the National Rail Conditions
of Travel. Under these rules, travellers were eligible to receive 50% of the single ticket

price for delays of over 60 minutes. This scheme has now been replaced by DR.

All of the British franchised TOCs are required to provide compensation for passengers
affected by delays of over 30 minutes with a number of TOCs voluntarily paying
compensation for delays of over 15 minutes as detailed in Table 2.

Table 2 Delay repay scheme rules in the United Kingdom

Delay Compensation

15-29 minutes 25% of single tickets (only selected TOCs

decided to implement that voluntarily)

30-59 minutes 50% of single tickets
60-119 minutes 100% of single tickets
>120 minutes 100% of return journey

It is noted that the rules shown in Table 2 apply to non-seasonal tickets. However, season
ticket holders are also eligible for compensation for individual incidences of delays. In
such cases, the compensation value for a single delay incidence is determined on the
assumption of 464 journeys made on an annual ticket. Hence, a single journey ticket price
equivalent is calculated by dividing the total ticket cost by 464. Similar principles apply to
other types of seasonal tickets. Prior to the introduction of Delay Repay, under the
Passengers’ Charter, season ticket holders were eligible for compensation in the form of
season ticket renewal discounts. Travellers were able to receive a 5% or 10% discount

when their TOC did not meet performance targets.

Both the guidelines provided by the European Commission and the UK’s implementation

of the scheme have somewhat been arbitrary with no documented economic research into
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the effects that late running has on passengers and the value passengers place on such a
scheme contrasted with the costs of the scheme.

In the UK, the total amount of compensation paid by TOCs in 2009/10 equalled £2.9m
compared to £89.4m paid in 2019/20 as shown in Figure 3. It must, however, be noted that
the values are not directly comparable as the current scheme is very different from how it
was functioning earlier. First of all, under the Passengers’ Charter the compensation values
also included discounts for seasonal ticket holders. Moreover, while Delay Repay had
already been introduced in 2007, it has taken almost 15 years for all the franchised TOCs
to adopt it with Chiltern being the last TOC to join (Haylen, 2019). The levels of
compensation between 2009 and 2015 were visibly lower what can likely be attributed to
the Passengers’ Charter offering more limited compensation as well as lower popularity of
the scheme and/or higher costs of submitting claims due to limited automation.

Since 2016/17, the compensation payments have been oscillating between £74m-£84m
(not adjusted for inflation). In 2019, a number of TOCs also introduced a ‘DR15’ scheme
where passengers are eligible to claim 25% of their ticket price following a delay of over
15 minutes. At the time of conducting this research (2019), only two TOCs — Cross
Country and LNER had not introduced it (Gov.uk, 2020). The introduction of the DR15
scheme in 2019 contributed to an additional £5.2m repaid to passengers, though the timing
of the introduction of the scheme differed across the TOCs and with only one (not full)
year of data (Gov.uk, 2020), analysing the impact of the DR15 scheme is currently not in
the scope of this work. Generally, DR compensation averaged around 1% of ticket revenue,
ranging between 0.1% to almost 3% for individual TOCs in 2019.
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Figure 3 Delay compensation paid to rail passengers in the UK between 2009-2019
(Source: Gov.uk, 2020)
To better understand the design of the DR compensation scheme, Figure 4 shows the levels
of compensation available for journeys with scheduled in-vehicle time of 15, 30 and 60
minutes for increasing actual in-vehicle times. The compensation thresholds are not
dynamic, i.e. whether the delay is 35 minutes or 45 minutes does not affect the level of
compensation available. Similarly, the compensation thresholds are the same for all
journeys, regardless of their lengths. Three types of journeys were chosen for a more
detailed investigation to depict the mechanics of the scheme — a shorter, commuter-type
journey, a medium-length journey and an extremely long journey (as shown in Table 3).
While these are not necessarily representative of average passenger experiences, the
comparisons allow us to better understand the relationship between journey length, delay
length, fares and compensation available to passengers. The comparisons in Figure 5 show
compensation per 1% increase in journey time (because of delay) as the metric of interest,
since it allows us to track the relationship between the relative change in journey time due
to delay and the monetary compensation. While it has to be recognised that journey length,
distance and ticket prices are unlikely to be perfectly correlated, assuming that longer
journeys are typically also more expensive, the value of compensation per 1% increase in
journey time is larger for longer journeys (i.e. Aberdeen to Penzance). The respective
compensation per 1% of journey time added is smaller for shorter journeys as these are
less expensive and a 30-minute delay represents a much larger relative increase in journey

time. Nevertheless, the compensation per 1% of journey time added initially decreases
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with delay length increasing from 30 to 59 minutes. After 60 minutes of delay, the eligible
compensation equals full fare and compensation per 1% of journey time added is at the
same level as for the 30-minute delay and subsequently starts decreasing again,
highlighting the impact of the non-dynamic compensation thresholds.

100%
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Compensation as % of fare paid

Actual in-vehicle journey time [minutes]

e ] 5-minute scheduled JT e 30-minute scheduled JT

60-minute scheduled JT

Figure 4 Relationship between actual journey time and compensation

Table 3 Summary of journeys selected for further investigation

Origin Destination Journey time (minutes)  Price

likley Leeds 28 £5.40
Nottingham London 113 £74.00

Aberdeen Penzance 843 £252.25
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Figure 5 Relationship between delay length and compensation per 1% increase in
journey time for selected journeys
4.4. Comparison with passenger delay compensation schemes operating in
other European countries

The previous section described the rail passenger delay compensation scheme in Great
Britain. As noted before, the basis for the introduction of the scheme dates back to
European Commission Directive 1371/2007. The European Commission recommended a
scheme allowing passengers to receive 25% of the ticket price paid for delays between 60
and 119 minutes and 50% for delays of over 2 hours, with minimal compensation set at up
to 4 euros (European Commission, 2007). In principle, these rules apply to services across
the EU, however, it is noted that there might be some local differences related to how the
scheme works in practice. Urban, suburban and regional services may be exempt from
these rules, but operators are not exempt from paying compensation in the case of force
majeure as specified in the judgment related to case C-509/11 against OBB-
Personenverkehr AG. Since then, several European countries or operators introduced the
scheme or its modified version. The scheme rules frequently change, but a comparison
across countries and operators may give some indication of the differences in the recent
scheme rules across the continent. Table 4 presents the rules for selected countries and
operators that are interesting case studies and offer a scheme that is different from the
scheme based on EU directive 1371/2007.

Some countries, like Great Britain, the Netherlands or Belgium modified the scheme,
providing more compensation and for shorter delays. In most cases, the scheme rules do

not differentiate between different types of services and journey lengths. However, in the
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case of Spanish operator Renfe, compensation thresholds differ between different types of
services, with high-speed rail travellers being eligible for higher relative compensation and
for shorter delays. In case of Czechia, an open-access operator, RegioJet, operates a more
generous scheme than the incumbent Ceské dréhy. This may be aimed at improving their
competitive position in the market. Moreover, their compensation scheme has quite
complicated rules as the proportion of fare that passengers can receive changes with
journey lengths and is based on whether the responsibility for the delay is attributed to the

operator.

Outside of the EU and UK, there are also examples of delay compensation with Swiss
National Railways offering the EU-style compensation, Canadian Via Rail offering travel
credits for longer delays and Korean National Railroad providing compensation of 12.5%
of fare for delays of over 20 minutes. In some countries, delay compensation is offered for
the more expensive, high-speed services, e.g. Tejas Express in India or high-speed services

in Taiwan.
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Table 4 Rail passenger delay compensation scheme rules for selected EU countries and operators

Delay EU directive Great Spain Spain The Belgium RegioJet RegioJet
(minutes) 1371/2007 Britain (Medium (AVE high-  Netherlands (<1.5h, (<1.5 h, not
(Germany, distance) speed) operator’s operator’s
Czechia, fault) fault)
Poland)
15-29 - 25%* 25% 50% - - - -
30-44 - 50% 50% 100% 50% - 50% 25%
45-59 - 50% 50% 50% - 50% 25%
60-89 25% 100% 100% 100% 100% 100% 25%
90-119 25% 100%
>120 50%

*selected train operators
Percentages represent the portion of fare passengers can reclaim following a delay of specified length

Source: Operators’ websites as of 2022
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Comparison of the compensation values repaid in various countries is difficult. First of all,
the data availability in most cases is very limited. In the case of the UK, the compensation
data is available from the regulator’s website. An attempt was made to review websites
and reports conducted by local governments, operators and regulators to search for
comparable data from other European countries. Compensation data for some countries
may exist, but due to language barriers, the ability to search for it was limited. However,
in a communication with the Polish regulator (UTK), as of November 2019, it was
confirmed that the regulator did not collect any data on delay compensation paid to
passengers. Nevertheless, some aggregated data about compensation volumes or numbers
of submitted claims was successfully found for Spain, Germany and Austria. Another
characteristic that limits the possible comparisons is related to the differences in the
scheme rules. While these are quantifiable, there might also be some technical differences
related to how passengers submit compensation claims, how compensation is paid as well
as some country-specific characteristics, e.g. travel costs and journey times that can also
affect the compensation levels and are more difficult to quantify. Hence, direct
comparisons may be impractical, but the analysis of the compensation repaid in other

countries can provide some useful context.

As discussed before, in the UK, the total amount of compensation paid by TOCs in the
recent (pre-COVID) years was around £80m per annum. In Germany, 2.7m rail passengers
were compensated in 2018 with the total compensation reaching €53.6m (The Local,
2019). This represents just over half of the total volume of compensation repaid in the UK
in the corresponding time period. In Spain, 256 claims were submitted per 100,000
passengers on high-speed/long-distance journeys and 105 on medium-distance journeys in
2019 (Renfe, 2019). The number of compensation claims submitted for rail delays in
Austria increased from 4,800 in 2009 to 35,000 in 2013 (a 7-fold increase) with the value
of compensation paid changing from €275,000 in 2010 to €360,000 in 2012 and over
€600,000 in 2015 (APF, 2015; 2018). Whilst these headline data provide some valuable

insights, they are aggregated and not directly comparable between the countries.

4.5. Comparison between passenger delay compensation scheme operating in
railways and airline market

Whilst the main focus of this chapter is on the delay passenger compensation scheme

operating in railways, it is worth commenting on a similar scheme operating in the airline

market. There are some unique characteristics of the two modes of transport that are likely

to justify the differences in passenger delay compensation schemes between airlines and
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railways, but in principle, the two schemes are similar. This section aims to review the

airline compensation scheme and compare it to the scheme operating in railways.

In 2004, the European Commission adopted 261/2004 legislation, establishing common
rules regarding compensation and assistance to passengers whose flights are delayed or
cancelled within the Bloc (European Commission, 2004). Current regulations, i.e.
261/2004 legislation (European Commission, 2004) set the compensation levels based on
route length, length of delay, and its cause. Passengers delayed due to external factors (that
are outside of the airline’s control) are not eligible for any compensation. However, the
airline is obliged to take care of passengers and ensure reasonable arrangements are made
to provide the service. For eligible air passengers affected by a delay, the compensation is
not linked to the ticket price (as is the case with railways). Hence, there is a possibility of
compensation being larger than the ticket price, which is often criticised by the airlines
(ERA, 2019). Levels of compensation set out by 261/2004 regulation (European
Commission, 2004) are detailed in Table 5.

Table 5 Airline compensation scheme rules in the EU (European Commission, 2004)

Length (km) Delay Compensation
(euros)
Short-haul <1500 >3h 250
Medium-haul 1500-3500 >3h 400
Long-haul >3500 >4h 600

The definition of the ‘external factors’ has been a cause of multiple disputes with several
cases taken to court (Europe Economics, 2019). The disputes were with regards to whether
delay causes such as airport security and airline staff strikes or faults in the functioning of
an aircraft can be regarded as extraordinary circumstances or not. Examples of court cases
are C-549/07 Wallentin-Hermann and B2/2013/3277/CCRTF Huzar (Europe Economics,
2019). The difficulties in establishing clear criteria for what can be classified as the
disputable extraordinary circumstances and the high levels of compensation available (as
the compensation, unlike inrail, is not linked to the ticket price) have caused the emergence
of third parties. These act as intermediaries between passengers and airlines in the process
of submitting compensation claims and usually operate a no-win, no-fee model (Europe

Economics, 2019). These companies use social media platforms for marketing to increase
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passenger awareness and encourage them to use their services. Kenny Jacobs, chief
marketing officer for Ryanair (one of the leading low-cost airlines in Europe), claimed in
an interview that for every £10m of compensation, £4-£5m is directed to the third parties
(The Independent, 2018).

With the level of compensation not being linked to ticket price and the arrival of low-cost
airlines which often offer tickets priced at even less than 10 euros, the amount of
compensation passengers could be entitled to in many cases is several times larger than the
original fare. Hence, especially passengers travelling on low-cost airlines may benefit
more from the compensation while the low-cost airlines may be more affected by the levels
of compensation they have to pay. The European Regions Airline Association conducted
areview study of the current EU261 regulation and surveyed employees of selected airlines
to gain insights into the industry’s perspective (ERA, 2019). The report focused on smaller,
regional airlines and argued that the compensation represents large portions of the revenue
margins and leads to reductions in the range of services offered by the operators. For the
airlines involved in this study, the compensation paid to passengers increased by over
300% between 2016 and 2019 with the average compensation representing 300% of an
average ticket price. The report recommended some changes to the regulations, including
exoneration of PSO routes from the scheme, limiting compensation to a proportion of
airfare, extending the delay threshold from 3 to 5 hours and acknowledging the knock-on
effect of extraordinary circumstances on the whole daily flight programme (ERA, 2019).
Finally, it was argued that the application of rail compensation scheme rules (in the form
recommended by the European Commission) would lead to almost trebling of the number
of eligible passengers and halving of the scheme’s costs (ERA, 2019). Moreover, the
results of an anonymous survey conducted among airline employees suggested that most

of the employees felt that the current regulation has a negative impact on safety.

The current provision of delay compensation differs between the railway and airline
industries. There might be some differences in the characteristics of air and rail travel that
provide reasoning behind the different models of delay compensation for the two modes.
For example, in the European context, it is highly unlikely that an experienced rail delay
stretches to more than a couple of hours due to a relatively dense and small network, high
frequency of departures, availability of alternative modes in the event of disruption or
ability of train operating companies to provide a replacement relatively quickly. Flights,
on the other hand, tend to be less frequent, meaning that in case of a delay it may be more
difficult to find an alternative quickly (i.e. flights cannot always be as easily replaced by a
bus or taxi journey, as is the case in railways). Taking all these into account, it is more

likely for air passengers to be affected by lengthier delays than for rail passengers. As a
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result, air passengers tend to include large safety margins in their journeys to increase the
probability of arriving at their destination before their preferred arrival time (NEXTOR,
2010).

The summary of major characteristics of the rail and air delay repay schemes in the UK is
provided in Table 6. Currently, rail passengers can be compensated up to the maximum of
fare paid, whereas, airline passengers can only get compensation for extreme delays (only
caused by airlines) with compensation not being constrained by the ticket price. Similarly,
as in the case of the rail compensation scheme, the airline compensation scheme does not
offer any compensation for passengers below the selected thresholds that, unlike in rail,
vary and depend on the category of journey lengths. Therefore, compensation is only
available for passengers affected by larger delays, usually only when the actual journey
time is double or triple the scheduled journey time. It is, therefore, important to investigate
whether there is a threshold beyond which passengers should get compensated more than
they paid for the ticket, both in the rail and airline contexts and at what levels of delays rail
and air passengers should start being compensated. Whilst such considerations are not in
the scope of this study, it is recommended that policymakers investigate these in the future.

Table 6 Comparison of rail and airline compensation schemes

Characteristic Airline Rail

Cause of delay  Only eligible for compensation  Eligibility irrespective of

if the delay is caused by the ~ who/what caused the delay

airline in the case of Great Britain
Value of Not linked to the fare paid and Represents a proportion of
compensation can be larger than the ticket ticket price
price

Availability of Airlines generally have near TOCs usually have more

information to perfect information on the limited information about
the operating number of passengers, their the number of passengers
company journeys and characteristics affected by delays

In recent years, a large increase in demand for air travel has been fuelled by a rapid
expansion of low-cost carriers (LCC) and the increase in demand generally had a negative
impact on performance (Dobruszkes, 2006; Pratt and Schuckert, 2018). Bhadra (2009)

suggested that passengers travelling on discounted fares are less likely to submit
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complaints. This may be a result of LCC passengers accepting lower quality in return for
lower travel costs (O’Connell and Williams, 2005; Bhadra, 2009; Chiou and Chen, 2010).
However, O’Connell and Williams (2005) suggested that there are also significant
differences in the characteristics of passengers choosing traditional and low-cost airlines.
Nevertheless, Bhadra (2009) argued that this process can be seen as a mutually beneficial
exchange that can be disrupted by extensive regulation. Forbes (2008) argued that
passengers complain if the quality is worse than what they expected. Therefore, another
reason why LCC passengers are less likely to complain may be due to an expectation of
lower quality. An example application of the low-cost carrier phenomenon to railways
could be an introduction of special low-fare tickets with limited eligibility for
compensation (reducing revenue risk to TOCs). Studying this phenomenon further could
also help understand the differences in passenger engagement in the claiming process
based on different journey or operator types. However, as argued by the Department for
Transport (2016), competition in the airline sector has resulted in larger heterogeneity of
customer care and regulation may still be needed to set the minimum customer care
standards. Whilst competition is greater in airlines and the extent of existence of low-cost
carriers in airlines cannot be translated to rail, Stead et al. (2019) suggested that in the GB
rail, open access operators have been typically scoring better in terms of passenger
satisfaction despite worse performance in terms of punctuality, what could be due to lower
expectations. Department for Transport (2016) suggested that it is not clear whether
increased competition would be able to address any potential issues with the quality of
customer service in railways, highlighting the need for including compensation schemes
as part of franchise agreements with TOCs. On the other hand, Czechia is an example of a
country where a new entrant RegioJet offers a more generous compensation scheme than
the incumbent (RegioJet, n.d.; Ceské drahy, 2016). Nevertheless, it is currently difficult to
understand the motivation behind the provision of a different scheme by the open-access

operator and its possible impacts on the respective market shares of the operators.

4.6. Analysis of the British ‘Delay Repay’
Section 4.3 introduced the rules of the rail passenger delay compensation scheme operating
in Great Britain. Sections 4.4 and 4.5 summarised the compensatory mechanisms for

travellers operating in other European countries and the airline market.

Noting that the specific focus of this thesis is the railway market in Great Britain, Table 2
introduced the rules for the British rail compensation scheme. The analysis conducted in
the following sections aims to investigate how this scheme works in practice, how its rules
affect its operations and passenger engagement, and the impacts it has on train operator

revenues. Understanding the impacts of the scheme on passengers and operators and
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contrasting its costs and benefits is currently not in the scope of the work conducted as part
of this chapter as the focus remains on the costs of the currently operating scheme.

With regard to the benefits, it may be expected that the scheme has an impact on demand

through:

e encouraging more demand due to travellers knowing that if they are delayed, they
can be compensated or

e limiting the demand loss related to worsening performance.

It is, however, unlikely for an econometric analysis of the relationship between the
compensation values and ticket sales to provide any insights into the size of any of the two
aforementioned effects as they are, in fact, difficult to be observed. A more appropriate
line of analysis would possibly include studies using stated preference surveys. These
could provide some insights into travellers’ willingness-to-pay to be protected by a delay
compensation scheme or its impacts on travellers’ stated mode choices. As this chapter
focuses on the costs of the DR scheme, it is appropriate to consider factors affecting

compensation levels.
In principle, the compensation levels depend on:

o the number of passengers eligible to claim compensation,
o the proportion of eligible passengers who submit compensation claims and

e the value of compensation for an eligible passenger.

Having ignored the heterogeneity in ticket prices and experienced delays for different

journeys, the total compensation can be represented as:
Total Compensation = k X w X Demand X { X Average Revenue
(1)
where:
Demand and Average Revenue are exogenous

K represents the proportion of eligible passengers who claimed compensation, i.e. the

engagement rate

w represents the proportion of passengers (Demand) eligible to claim compensation and

depends on the scheme rules

¢ represents the proportion of fare available for compensation which is specified by the

scheme rules (i.e. Table 2).
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Whilst the scheme rules are pre-defined and directly affect both w and ¢, both parameters
are also likely to be affected by performance levels. At the same time, k is determined by
passengers’ levels of engagement with the claiming process. Under the full automation of
the scheme, i.e. where all delayed passengers receive compensation automatically, this
would be equal to 1. This leads to a discussion about the two main drivers of compensation
levels, namely eligibility (total compensation passengers could have claimed) depending
on scheme rules and engagement (proportion of passengers that decided to claim

compensation) depending on how many eligible passengers submit claims, i.e.

Compensation = f(Eligibility X Engagement)

(2)
4.6.1. Passenger engagement with the scheme

It remains difficult to estimate the number of passengers affected by a given length of delay
due to a very large number of ticket types, large number of station stops, different origins
and destinations as well as varying delays at different station stops. In most countries,
performance of a rail network is measured with a focus on the supply side of delays, for
example looking at the proportion of trains that arrive to the destinations within a given
margin of delay (Rietveld et al., 2001; Preston et al., 2009). However, this is not
informative of the proportion of passengers affected by different levels of delays. This is
due to each train being treated equally and not weighted by demand. Therefore, from the
passenger DR perspective, the focus of monitoring performance should be on the demand
side, looking at the number of passengers affected by given lengths of delays (Preston et
al., 2009; Transport Focus, 2015). Nevertheless, the delay length measured by train arrival
does not necessarily represent the final delay for passengers as they can be affected by

congestion at stations, crowding on board (Preston et al., 2009) and missed connections.

The number of claims and value of compensation were increasing pre-COVID, which

could potentially be caused by two reasons, i.e.

e increased demand and more delays, translating to more passengers being eligible
to claim or
e reduction in the costs of submitting a claim, resulting from making the claiming

process easier.

In recent years, there has been a lot of interest from the regulatory bodies, the public and
TOC:s regarding the levels of passenger engagement with the DR scheme. Department for
Transport (2020) noted that while the proportion of passengers claiming compensation has

been increasing, only 39% of surveyed passengers who experienced a delay qualifying for
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compensation decided to engage with the process in 2018. There is evidence that
passengers affected by lengthier delays and/or travelling with more expensive tickets are
more likely to engage with the scheme (Department for Transport, 2019). Most of the
eligible passengers who knew about the scheme but decided not to claim cited low
expected compensation compared to the costs of engagement as the main reasons for
choosing not to submit claims (Department for Transport, 2020). The marginal propensity
to claim compensation may be non-constant as passengers quoted length of delay and ticket
price as two major characteristics motivating their attitude towards the scheme with
estimated claim rates ranging from 22% on Transport for Wales to 64% on LNER
(Department for Transport, 2020). To better understand the drivers of engagement, the

costs and benefits of applying for compensation have to be understood in more detail.

In recent years, efforts have been made to facilitate the process of claiming compensation
through the introduction of automatic repayments, more available information about the
scheme for customers and/or online repayment systems (Europe Economics, 2019).
However, in most cases, the claim submission process is relatively time-consuming and
often requires providing a photo of the ticket used, personal and journey details with
passengers having to create an account for each of the operators separately. Selected TOCs
now offer automated compensation for season or advanced tickets, however, the impact of
automation has not been understood very well so far. The process usually, in fact, requires
some initial effort plus a “one-click” process to submit claims, reducing, but not totally
removing the marginal costs of submission. Fully automating the process, while reducing
administrative costs of the scheme, would require the usage of smart ticketing as the
current ticketing system does not allow for accurate tracking of passenger journeys due to
the existence of anytime tickets not matched to just one service. As suggested by Railway

Technology (2020), this also leads to fraudulent claims.

To better understand what influences the proportion of eligible passengers applying for
compensation, the costs and benefits of applying for compensation have to be understood
in more detail. As suggested by Europe Economics (2019), the costs of applying for

compensation can be divided into three steps of submitting a claim:

1) becoming aware of the ‘Delay Repay’ scheme,
2) gathering information about the eligibility and claiming process and

3) claim submission.

Mainstream economics assumes that consumers’ decisions are rational and bounded by
their personal preferences and available information (Europe Economics, 2019), hence

assuming that travellers are rational, they only submit a claim if the value of compensation
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is larger than the expected costs of the claim submission. The total costs of engaging with
the scheme can differ for each of the aforementioned three steps of submitting claims, as
outlined in Table 7.

Table 7 Costs related to each of the steps of the claiming process (Europe
Economics, 2019)

Steps of the claiming process What influences the costs

1. Becoming aware General availability of information about
the scheme at stations, train operating

companies’ websites and social media.

Provision of information about the

experienced disruption.

2. Gathering information about  Awvailability of information about
eligibility criteria and the claim eligibility, value of potential

submission process compensation and how to submit a claim.

3. Claim submission Difficulty of submitting the first and
subsequent claims (i.e. creating an
account for the first submission and then

filling in application forms).

The first two steps can be thought of as the initial costs that are only incurred at the first
instance of delay where a delayed passenger decides on whether or not to engage with the
scheme. The costs for the third step have to be incurred for each of the claim submissions
unless there is a fully automated compensation system. This mechanism is conceptually
similar to switching bank accounts or energy providers with the potential for benefits after
investing time and effort to engage with the process (as discussed in Klemperer, 1995;
Wilson and Price, 2005; The Social Market Foundation, 2015; Europe Economics, 2019).

When thinking about engaging with the scheme, a passenger chooses whether or not to
claim compensation based on the disutility created by the delay (this will be further
explored as part of this thesis) and the expected benefits (minus costs of submitting claims)
which include the monetary compensation but are not limited to that form of compensation.
Europe Economics (2019) argue that there are behavioural biases that influence the

decision on whether to submit claims that are not based on the assumed rationality, i.e.
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1) Behavioural bias may increase passenger engagement with the scheme as delays
can be perceived as unfair. Receiving compensation (even if small related to the
time spent submitting a claim) may be perceived as a benefit per se.

2) Especially the more frequent travellers perceive a possibility of encountering more
delays in the future. Therefore, they may see incurring the initial costs as an
investment for the accumulation of benefits in the future, which is called a
projection bias.

3) Even if the benefits to costs ratio would indicate on claiming to be rational (i.e.
large compensation for a small amount of time spent on sending a claim), the
default behaviour, however, is not to engage with the scheme regardless of the
expected benefits. Evidence from the pension ‘auto-enrollment’ schemes suggests
that the default effects have large impacts on behavioural choices (Europe
Economics, 2019; Hardcastle, 2012; Leicester et al., 2012).

Hence, it is of interest to investigate how journey and passenger characteristics affect levels
of compensation repaid by different TOCs. These can include journey purpose, length,
fare, delay length and/or journey comfort. Similarly, passenger characteristics such as age,
income, education level and access to internet may also affect claiming behaviour.
However, analysing impacts of passenger characteristics is more difficult and would

require conducting passenger surveys.

It is crucial to test the hypothesis that the marginal propensity to claim compensation
increases with fares and/or delay lengths as suggested by Europe Economics (2019) and
Department for Transport (2020). As longer delays and higher ticket prices mean higher
eligible compensation, claiming compensation for longer delays is naturally more worthy
of investing time and effort. Moreover, some types of passengers may be more sensitive
to delays as shown by research into delay elasticities (Wardman and Batley, 2014;
Wardman and Toner, 2020; Wardman and Batley, 2022) and higher engagement levels

may also result from the aforementioned behavioural biases.

Summarising, the total amount of compensation repaid to passengers depends on how
many passengers are eligible to claim compensation and the percentage of eligible
passengers that submitted claims. Eligibility, which can be understood as the total
compensation passengers could have claimed, depends on performance, and fare levels -
and is determined by the scheme rules, which are predefined. Engagement, on the other
hand, is expected to increase with delay length and ticket price. The following section will

aim to quantify these effects.
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4.6.2. Quantitative analysis of the impact of ‘Delay Repay’ on operator revenues
To explore the impacts of the DR scheme on the operators’ revenues, data on performance,
compensation, operation, and revenues were obtained for the British franchised TOCs
from the regulator’s website. At the time of collating the data, most of it was available
annually for at least 5 years between 2015 and 2019. TOCs and the regulator as of now
(2023) publish monthly data on the number of claims and compensation volumes.
However, caution would be needed in comparing pre-COVID data used as part of this
analysis with the data from the COVID and post-COVID times as these periods may be

characterised by structural changes in railway usage.

As compensation represents a percentage of ticket price, it is natural that (assuming the
same levels of performance and engagement) TOCs characterised by more demand repay
more compensation, with average compensation increasing in line with fares. As shown in
Figure 6, between 2015 and 2020, the average compensation was below 20 pence per
passenger journey for most TOCs. There are, however, two TOCs characterised by an
average compensation of between 20 to 100 pence per passenger journey, namely Avanti
and LNER, both mainly operating long-distance services and employing the same version
of DR as most of the other operators. Further analysis aims to analyse the impact of TOC
characteristics on the scheme costs.
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Figure 6 Boxplot of compensation per passenger journey for years 2015-2020

The impact of average fare on total compensation can be divided into four distinct effects

that were identified based on the work by Europe Economics (2019):
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1) Engagement effect: increased claim rates for journeys with higher fares due to
anticipation of larger benefits and differences in passenger types or journey lengths
leading to heterogeneity in the disutility of lateness.

2) Eligibility effect: if longer journeys (in terms of distance) are more delayed (i.e.
journey length and delay length are correlated), the incidence of longer delays that

qualify for compensation is larger among TOCs operating such services.

3) Revenue effect: if the TOC’s average fare is higher, compensation per passenger
journey will also be higher as compensation represents a proportion of ticket price.

4) Fare increase effect: changes in compensation per passenger between years could be

explained by changes in average fare resulting from inflation.

With fare increases being marginal compared to the differences in average fare between
different TOCs, the revenue effect is a natural phenomenon, resulting from the scheme’s
design and passengers’ behaviour does not have any impact on this. For direct comparisons
and to enable inferences about engagement levels, it is necessary to control for the revenue
effect. Therefore, compensation to ticket revenue ratio (CRR) is used as the primary

variable of interest, i.e.

Total Compensation
CRR =

X 1009
Total Revenue %

(3)
Whilst the focus so far has been on compensation, it is necessary to look at the relationships
between all of the aforementioned variables. The compensation, represented by CRR, is a
function of eligibility and engagement as shown in Figure 7. With eligibility being mostly
affected by the pre-defined scheme rules and operator’s performance, the engagement is
suggested to depend on both fare levels and performance while both are likely to be
correlated with journey time or distance (though likely not perfectly). The levels of
engagement will also depend on the journey type and passenger characteristics, though
when using aggregate (i.e. operator-level) data, it is not possible to disentangle these

effects.
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Figure 7 Schematic of the relationships between variables

Two existing metrics reported by ORR can be particularly useful in studying the impact of

performance on compensation levels:
1) Average Passenger Lateness (APL)

APL reported by ORR represents the estimated length of delay an average passenger on
the British rail network is subjected to. This can be thought of as the mean of passenger
delay distribution, but the compensation scheme only depends on the number of passengers
affected by the more severe (and relatively more uncommon) delays. Therefore, this will
depend more on the skewness of the delay distribution, rather than its mean. It can,
however, be expected that average lateness generally increases with the increased

incidence of longer delays.
2) The proportion of station stops delayed by over 15 minutes

As passengers are eligible to claim compensation only for severe delays, the distribution
of delays is important in determining this and the metric reporting the proportion of larger
delays is useful in understanding the shape of lateness distribution. However, it is focused
on the supply side of delays, weighting delays by station stops. The two statistics are, as
expected, highly correlated (r=0.95). It can be expected that with more station stops being

severely delayed, an average passenger experiences a longer delay.

Table 8 summarises the distribution of values for the selected variables related to
performance, operational characteristics and compensation for the British franchised
TOCs.
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Table 8 Summary statistics (comparison between TOCs)

Variable Minimum Maximum Mean Standard
deviation
APL (min) 0.8 10.5 3.78 1.95
Average Fare (£) 3.0 36.8 10.7 9.8

Average Journey

245 260.6 71.8 66.3
Length (km)
Claims per 1,000
0.5 21.6 5.3 5.2
passengers*
Compensation per
passenger journey 0.3 102.7 11.8 20.7
(pence)
CRR (%) 0.1 2.8 0.7 0.5

Station stops
delayed by over 15 0.3 8.7 2.8 2.1

minutes (%o)

*2018 and 2019 only

The TOCs were divided into three categories based on average journey length,
representing short (up to 50 km), medium (50-100 km) and long-distance journeys (over
100 km) as shown in Table 9. This categorisation acts as a proxy for differences in
passenger and journey characteristics that may affect levels of engagement for different
journey lengths. Additional categorisation was based on whether the TOC operates within
South East of England where London is a major attraction as similar segmentations have
been used in, for example, fare elasticities recommended by PDFH (ATOC, 2004)
(highlighting the potential for differences in engagement).

Table 9 Summary statistics for selected TOCs

TOC TOC LSE Average Average APL CRR
type TOC length  fare(£) (min) (%)

(km)
Avanti Long 197.2 31.2 7.36 1.32

Chiltern Medium 55.6 8.1 2.08 0.22

0

1
CrossCountry  Medium 0 91.5 13.6 5.83 1.02
EastMidlands  Medium 0 88.6 14.7 4.03 1.05
Govia Short 1 26.8 4.6 2.71 0.38
GreatWestern  Medium 1 61.5 10.4 3.55 1.12
GreaterAnglia  Short 1 45.5 7.6 2.55 0.74
LNER Long 0 260 36.8 8.13 2.79
Northern Short 0 26.8 3.1 4.02 0.51
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SouthWestern Short 1 28.0 4.8 3.22 0.49
Southeastern Short 1 25.8 4.7 2.19 0.41
TfW Short 0 36.8 4.5 3.66 0.93
Transpennine  Medium 0 72.0 9.0 8.43 1.61
WestMidlands Short 1 39.6 4.9 4.62 1.12
c2c Short 1 25.4 3.7 0.80 0.01

As the pricing model naturally suggests, longer journeys are usually more expensive with
average fare per kilometre of journey length ranging from 11.6 to 18.2 pence in the
investigated sample. It is noted that the opposite may be true in the cases of slower versus
faster services, however, due to data aggregation, it is reasonable to assume that overall
TOCs characterised by longer average journeys are characterised by larger average
revenue. As expected, average journey length and average fare are characterised by an
almost perfect positive correlation (r=0.99) as shown in Table 10. Average journey length
is positively correlated with average passenger lateness (r=0.78), meaning that on average
longer journeys are characterised by longer delays, possibly representing a smaller
percentage increase in journey time. This could be due to the fact that while the total delay
minutes usually increase with journey time, the marginal delay decreases with journey
length due to some possible differences in journey characteristics, scheduling or capacity
utilisation and demand (Armstrong and Preston, 2017; Yap and Cats, 2021). Taking all
this into account, on average passengers travelling on more expensive services will usually
be subjected to a longer delay overall resulting in a smaller percentage increase in journey
time. This, in turn, means that while a higher percentage of passengers on the more
expensive journeys will be eligible to claim compensation, higher claim rates can be
expected due to longer delays and more expensive tickets as was also suggested by
surveyed passengers (Department for Transport, 2020). This is likely to have an impact on

the proportion of ticket revenue repaid by different TOCs.

Figure 8 shows a box plot of the number of claims received by each of the TOCs in each
of the categories per 100,000 passenger journeys made in 2019. It can be immediately seen
that, while the ranges are similar for short (2-700 claims per 100,000 passengers) and
medium-distance (85-820 claims per 100,000 passengers) TOCs with a slightly larger
median value for medium-distance TOCs, all long-distance TOCs saw a larger number of
claims per 100,000 passenger journeys in 2019 (825-3400 claims per 100,000 passengers).
Here, it is worth reminding that in Spain, the equivalent number of claims submitted was
between 100 and 250 per 100,000 passengers, suggesting that the UK figures are typically
higher.
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Table 10 Correlation matrix

“m @ & @ 6

(1) Compensation to revenue ratio  1.00

(2) Average passenger lateness 0.88 1.00

(3) % stops delayed by over 15 min  0.85 0.94 1.00

(4) Average fare 0.81 0.75 0.84 1.00

(5) Average journey length 0.82 0.78 0.86 0.99 1.00
o
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Figure 8 Boxplot of the number of claims per 100,000 passengers

The Kruskal-Wallis (Kruskal & Wallis, 1952) test was used to assess whether the
differences in the within-categories distributions are statistically significant. The null
hypothesis of the Kruskal-Wallis test is that the distribution of claims per 100,000
passenger journeys is similar across the TOC categories. The data were ranked from the
lowest to the highest value of claims per 100,000 journeys as shown in Figure 9 for 22

TOCs where data on the number of claims was available.
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Figure 9 Ranking of claims per passenger journey by TOC type

While the null hypothesis of identical distributions was rejected (p=0.001), Dunn’s post
hoc test (Dunn, 1964) for each pair of categories was used to test whether the probability
of observing a random value of claims per passenger journey in the first group being larger
than in the second group is equal to 0.5 under null hypothesis. The null hypothesis was
rejected for short-long distance pairs (p=0.0004) but failed to be rejected for short-medium
and medium-long distance pairs (p-values of 0.070 and 0.053). While this provides some
evidence for the fact that longer journeys attract more compensation claims, it is now of

interest to assess the extent to which this affects operator revenues.

At the time of collecting the data, only two full years of data were available on the number
of claims submitted to each of the TOCs, limiting the ability to analyse the impacts of
eligibility and engagement on claim rates. Moreover, the claim rates per 100,000 journeys
do not provide any information about the revenue impact. For these reasons, the main focus

of this study remains on a more robust variable, namely the aforementioned CRR.

An econometric model was constructed to test the impact of performance levels and TOC
characteristics on the compensation payments made to passengers as part of the DR
scheme. Data for 4 years were used starting in 2016/17 as this is the first year where
compensation payments became to be directly comparable between TOCs. The payments
made as part of the DR15 were excluded, as previously discussed. It was assumed that the

scheme rules are homogeneous across all the TOCs while remembering that increasing
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automation of the scheme through a one-click claiming process on advanced or seasonal
tickets may have generally reduced the costs of submission throughout the years. To make
comparisons between TOCs possible, the compensation to revenue ratio (shown in Figure
10) was used as the variable representing the scheme’s revenue burden, where eligibility
is determined by performance (represented by APL and proportion of stops delayed by
over 15 minutes) and engagement is determined by both performance and fares

(represented by APL and average fare).

2016 2017 2018 2019
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Cross Country
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West Midlands
c2c

T T
o .01 02 03 0 .01 .02 03 0 .01 .02 .03 0 .01 .02 .03
Compensation to revenue ratio (CRR)

Figure 10 Compensation to fare ratio between 2016/17 and 2019/20

A more detailed inspection was conducted to better understand any possible differences in
the compensation schemes offered by the 15 TOCs in the 4 analysed years. The following

observations were made:

o Chiltern, for example, was offering a different version of the scheme, making
direct comparisons with other TOCs impossible. The DR was only launched for
Chiltern in 2022 as prior to this, travellers could only claim for delays of over 30
minutes when disruption was within operator’s control or for all delays of more
than 60 minutes (Global Railway Review, 2022).

e Inaddition to the DR payments, Govia repaid £2.2m in 2016 and £12m in 2017 to
Southern season ticket holders for extraordinary disruption in 2016.

o Great Western Railway monthly and annual season ticket holders were still being

offered seasonal ticket discounts rather than DR, but the impact of this on the total
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compensation payments was deemed to be limited (Great Western Railway, 2019;
Gov.uk, 2020).

e Transport for Wales only introduced the scheme in 2018 and SouthWestern in
2017.

e A large increase in compensation payments by LNER in 2019 cannot be fully
explained by a similar increase in APL. To mitigate that, the additional dummy
representing 2019 LNER will be introduced to the model as a sensitivity test.

Taking all these into consideration, Chiltern, South Western and Transport for Wales were

excluded from further analysis.

An OLS model was constructed to test the impacts of both eligibility and engagement on
the revenue burden (represented as compensation to revenue ratio (CRR; ;)) of the scheme
for the selected 12 British TOCs for the years 2016-2019. The equation below presents the
initial specification of the model (OLS1 in Table 12):

CRR;; = Po + P1APL; + [, Fare;,
(4)

where:
i : each of the TOCs in the sample
t:year
CRR; . : compensation to revenue ratio
APL; , : average passenger lateness
Fare;, : average fare

As shown in the equation above, the first model only includes two explanatory variables,
namely the average fare and APL. APL increases both eligibility (i.e. only longer delays
gualify for compensation) and engagement (as previous research suggests that engagement
generally increases with delay lengths), thus the APL coefficient is a proxy for the
combined effect that increased eligibility and engagement have on the compensation
levels. Average fare refers to the additional effect that the increased fare (and thus journey
length as both are highly correlated) has on engagement levels. Hence, 8, corresponds to
the additional engagement resulting from lateness disutility whilst 8, corresponds to the

increased engagement due to the opportunity cost of not claiming compensation.
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Subsequently, the model was extended with Table 11 providing more detailed information

about the additional variables used in the modelling. These include dummy variables

representing TOC characteristics and time trends. Moreover, the variable describing the

distribution of delays (D15) is introduced to the model and as part of sensitivity testing

with average fare replaced with long distance TOC dummy variable.

Table 11 Summary of variables used in the modelling

Variable

Type

Expected
impact

Comments

Included
in OLS
models

CRR

APL

D15

Fare

Long

distance

LSE

Continuous

Continuous

Continuous

Continuous

Categorical,
binary

Categorical,
binary

Dependent
variable

Positive

Positive

Positive

Positive

Positive or
neutral

n/a

Represents the combined
eligibility and engagement
impact of performance.

Percentage of station stops
delayed by over 15 minutes
represents the combined
eligibility and engagement
impact of performance, focusing
on the performance distribution.

Represents the impact of
additional engagement related to
claiming compensation for more
expensive tickets (opportunity
cost of not claiming
compensation).

Replaces average fare to
represent the impact of
additional engagement on long-
distance journeys, which can be
expected due to higher prices;
included for sensitivity testing.

Using aggregate TOC level data,
it is not possible to apply flow
segmentation, typically used in
rail demand research (Institute
for Transport Studies et al.,
2016). However, it is possible to
test if passengers using TOCs
operating in the South East
claim more or less
compensation, which may be
due to higher sensitivity to
lateness (increasing engagement
with the scheme) or higher

14

1-4

2-4

1,34

2-4
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incomes (with lower marginal
utility of income resulting in
lower engagement levels).

LNER Categorical, Positive Takes into account a relatively 2-4
2019 binary large change in CRR between
2018 and 2019 for LNER not
accompanied by a large change
in performance levels.

Year Categorical, Positive or  Tests the impacts of potential 2-4
binary neutral increased automation or
knowledge about the scheme
with time or any potential year-
related effects.

The OLS econometric model was run to test the impact of increasing lateness and fares on
the revenue burden of the scheme on different types of TOCs through increased eligibility
and engagement as a cross-sectional model in its simpler form (model OLS1 in Table 12),
with addition of the aforementioned controls (OLS2 to OLS4 in Table 12) as well as the
OLS2 version of the model rerun as a random effects panel model (RE in Table 12).

Random effects were found to be non-significant in the Breusch-Pagan Lagrange
multiplier (Breusch & Pagan, 1979) (p=0.13), suggesting that a simple OLS model is run.
A model with TOC-specific fixed effects is not included as it is believed that any

differences in the scheme related to the claiming processes may be year, not TOC, specific.

The results in Table 12, suggest that for each £1m ticket revenue, each 1 minute of average
lateness costs TOCs around £2000 in compensation. Long distance TOCs, at the same
time, repay an additional £4500 (or £2000 for each £10 of average fare) while London and
South East operators repay an additional £1700-£2300. LNER in 2019 repaid more than
expected by the lateness levels, suggesting that an additional £9630 was repaid for each
£1m revenue. The time trend was not statistically significant, suggesting that overall, the

changes in the scheme have not had any significant impact on claim engagement.

It is noted that inclusion of the additional variables increases the R? value, as the model is
able to capture the larger portion of the variation in the CRR values. Moreover, the simpler
model (i.e. OLS1) suffered from non-normally distributed errors (Shapiro-Wilk test for
normal data (Shapiro & Wilk, 1965), p-value of 0.0388). This improved with the addition
of controls. The likelihood-ratio test (Wilks, 1938) was also run to test whether adding
more predictors significantly improves fit (between OLS1 and OLS4, p-value<0.0001). In

conclusion, the extended version of the model (i.e. OLS4) may be better-suited for
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modelling the studied relationship as the additional variables are able to capture the
additional effects that average fare and APL are not able to capture on their own.

Table 12 Modelling results

OLS1 OLS2 OLS3 OL34 RE
APL .0018*** .00247*** .0021*** .0022*** .0024***
(.0003) (.0005) (.0004) (.0004) (.0005)
D15 -.0444 -.0378 -.0408 -.0559
(.0545) (.0476) (.0517) (.062)
Long .0045*** .0003 .0049***
distance
(.0013) (.0022) (.0016)
LSE .0017** .0023*** .0023** .0015
(.0008) (.0007) (.0008) (.0011)
LNER 2019 .0096*** .0090*** .0090*** .0096***
(.0021) (.0020) (.0020) (.0020)
2017 -.0005 -.0004 -.0004 -.0005
(.0008) (.0007) (.0007) (.0007)
2018 -.0001 .0001 .0001 .0000
(.0008) (.0007) (.0008) (.0007)
2019 .0005 .0007 .007 .0005
(.0008) (.0008) (.0008) (.0007)
Fare .0002** .0002%** .0002*
(.0001) (.0000) (.0001)
Constant -.0017* -.0025** -.0038*** -.0038** -.0022*
(.0008) (.0010) (.0009) (.0011) (.0012)
N 48 48 48 48 48
R-squared .83 .89 91 .92 91

Standard errors in parentheses
*** n<.01, ** p<.05, * p<.1

As previously discussed, APL increases with journey length and, thus, with average fare.
Table 13 shows the average fare and APL averaged for short, medium and long-distance
TOCs. These are then used to compute the average effects of performance on eligibility
and engagement and the additional engagement effect of average fare using the different

models estimated in Table 12. On average, the effect of APL on compensation increases
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from 0.5% of revenue on short-distance TOCs to 1.3% for long-distance TOCs. The
additional engagement related to the increased opportunity cost of not claiming
compensation translates to 0.1% of revenue for short-distance TOCs to 0.7% for long-
distance TOCs. Both effects combined lead to an increasing burden of the scheme for
TOCs operating longer journeys. Therefore, an average long-distance TOC would
typically repay around 1.6% of their revenue compared to 0.7% and 0.3% for medium and
short-distance TOCs respectively. Considering the fact that journey length and average
passenger lateness are correlated, if long-distance TOCs repay a larger proportion of
revenue, they repay more than what would be suggested by their performance levels. If
this is the case, it might be needed to find an economic or regulatory explanation and

reasoning for this discrepancy.

Table 13 Impacts of eligibility and engagement on the predicted costs of the DR
scheme

Short Medium Long

Averages based on the sample

APL 2.72 4.63 7.01

Fare 4.75 11.80 33.61

Modelled impact of eligibility and additional engagement on CRR (OLS 1)*

Eligibility 0.48% 0.82% 1.24%

Additional engagement 0.08% 0.21% 0.60%

Modelled impact of eligibility and additional engagement on CRR (OLS 3)*

Eligibility 0.53% 0.85% 1.23%

Additional engagement 0.10% 0.25% 0.72%

Modelled impact of eligibility and additional engagement on CRR (OLS 4)*

Eligibility 0.53% 0.85% 1.26%

Additional engagement 0.10% 0.24% 0.68%
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Predicted CRR using average sample values (95% CI in brackets)

0.400% 0.862% 1.669%

Model 1 (0.31%, (0.79%, (1.51%,
0.49%) 0.94%) 1.83%)

0.252% 0.726% 1.575%

Model 3 (0.12%, (0.64%, (1.44%,
0.38%) 0.81%) 1.71%)

0.258% 0.723% 1.578%

Model 4 (0.11%, (0.63%, (1.44%,
0.41%) 0.82%) 1.71%)

*This was computed by first setting the average fare and APL to zero and computing the corresponding CRR
based on the mean values for the other variables. Subsequently, the eligibility effect was computed as the
difference in the predicted CRR when setting APL to sample averages (holding fare at 0). The additional
engagement effect was then computed as the difference in the predicted CRR when setting both APL and
average fare at sample averages.

4.7.Conclusions

This chapter aimed to review the rail passenger delay compensation scheme currently

operating in Great Britain. This was achieved by:

e providing a review of the scheme rules,

e drawing comparisons to similar schemes operating in other countries and for other
modes and

e a qualitative and quantitative analysis of the relationship between performance

and fares on the revenue burden of the scheme on different TOCs.

This was done to improve the understanding of the role that the scheme currently has in
British railways and give some recommendations and research directions that might guide
policymakers and regulators in the process of redesigning such a scheme in the future. The
analysis of the scheme’s benefits was currently out of scope due to limited data availability

and complexity in capturing the effect that the scheme has on passengers and demand.

Rail passenger delay compensation schemes have been introduced in the EU and GB to
protect the rights of delayed passengers. The scheme rules differ between the EU countries
and GB, but the economic rationale behind the schemes is similar. The focus on the scheme
operating within Great Britain results from a lack of suitable data for other European
countries. The compensation levels were compared between British franchised TOCs to
better understand the impact of the scheme on the revenues of different types of train

operators. Approximately £80m was repaid to passengers every year (pre-COVID) as part
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of the DR scheme in GB, with TOCs typically repaying between 0.1% and 3% of ticket
revenues. Whilst the scheme rules are homogeneous (i.e. the proportion of ticket price that
passengers are eligible to claim back does not change with journey or delay lengths), longer
journeys are typically characterised by longer delays. At the same time, longer journeys
are also typically more expensive. This naturally affects the number of passengers eligible
to claim compensation. This is further amplified by the marginal propensity to claiming
compensation increasing with delay lengths and ticket prices, which, in turn, affects TOCs’
ticket revenues. The fact that passengers are more likely to claim compensation for more
expensive journeys and longer delays may be due to non-constant marginal disutility of
lateness impacting differences in journey satisfaction or higher opportunity costs of not

claiming compensation for more expensive journeys.

While more research is needed to understand the differences in engagement rates and
possible reasons for their existence, this work provides additional evidence that the
propensity to claiming compensation increases with delay lengths and ticket prices. The
differences in eligibility (increasing with delay lengths) and engagement (increasing with
ticket price and delay lengths) lead to significant differences in the scheme’s burden for
different TOCs. Other things being equal, each additional minute of APL increases the
proportion of ticket revenue repaid to passengers as part of the scheme by 0.2%. As a result
of engagement levels increasing with the ticket price, for the same levels of performance,
TOC:s repay an additional 0.2% of their ticket revenue for each £10 of the average fare.

This suggests a larger financial impact of the scheme on longer-distance operators.

There are two immediate areas that would benefit from further research. First of all, more
detailed data on compensation complemented by detailed ticket sales data would allow
analysing the differences in eligibility and engagement at an OD pair level. It is reasonable
to expect that being able to control for any OD-specific differences may further increase
understanding of how the scheme works in practice. This study serves as a motivation for
the regulators to require the TOCs to collect and publish more detailed data on
compensation (and especially so in other European countries where only very limited data
is available). This could enable further research into passenger engagement with the
claiming process. Furthermore, it is recommended that a full-scale study be conducted to
analyse the impacts of the scheme on passengers, revenues and, ultimately demand to
contrast the scheme’s benefits with its costs. It is thought that there is a potential to conduct
studies utilising journey satisfaction or stated preference surveys to understand how the
prospects of receiving compensation for delays affect respondents’ choices or passenger

satisfaction.
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While this study provided evidence for the increased cost of the scheme for long-distance
operators, it does not necessarily imply that the current scheme is suboptimal and needs to
be changed. There might be reasons for having one fit-for-all set of rules that are easier to
understand for passengers as well as operate from the administrative point of view.
Nevertheless, there are examples of operators that offer a more complex version of the
scheme where rules change based on journey or delay types, namely Spanish Renfe and
Czech RegioJet. If the regulators aim to increase engagement with the scheme, apart from
automating the process, the claiming process could also be centralised, allowing
passengers to claim compensation for all journeys from the same (central) portal as was
also suggested by the Williams-Shapps Plan for Rail (Department for Transport, 2021).
This would reduce the initial costs of claiming, as passengers would not need to register a

separate account to claim from an operator they had not claimed from before.

If a comparison of the costs and benefits of the scheme leads to a conclusion that the current
design is suboptimal, it is necessary to base the design of the scheme on research
concerning the impact of delays on passengers. It can particularly be useful to establish:

o the lengths of delays that are detrimental to passenger satisfaction,
e whether the negative impacts of delays vary by journey lengths and/or types,
e the potential non-linearities in the impacts of delays related to the impact of

smaller versus larger delays.

Finally, while compensation currently only accounts for a small percentage of TOCs’
revenues, greater automation of the scheme could contribute to increasing compensation
payments (leading to TOCs repaying a larger portion of their revenues), highlighting the
need for further research. It also needs to be noted that the analysis focused on the pre-
COVID period and it might be beneficial to consider how the DR scheme has been
impacted by the COVID pandemic.

Motivated by the analysis of the DR scheme conducted as part of this chapter, the
remaining chapters of this thesis focus on analysing the impacts of delays on travellers
what could provide an additional source of information and guidance should an operator
or regulator (in GB or other European country) decide to redesign passenger compensation
scheme. Hence, the remaining chapters will focus on delay perception and the
consequential impacts on satisfaction with the following chapter introducing the dataset

used in the subsequent analysis.
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Chapter 5
Data: The National Rail Passenger Survey (NRPS)

5.1. Introduction

The aim of this chapter is to introduce the data used in the analysis presented in the
remaining chapters of this thesis. These utilise data on satisfaction and delay perception
from the National Rail Passenger Survey (NRPS) obtained from Transport Focus and
matched to the operational dataset using the Historic Service Performance database
obtained from Network Rail. This chapter aims to summarise the two data sources,
comment on the choice of variables used throughout the thesis and describe how

satisfaction and operational data were matched.

The National Rail Passenger Survey (NRPS) is conducted twice a year by Transport Focus
in the United Kingdom and is concerned with rail passengers’ journey satisfaction. The
survey has been built into franchising agreements and provides a passenger-centric
perspective on the comparative performance of franchised TOCs (Campaign for Better
Transport, 2015). The results of the survey have often been cited in research papers (i.e.
Oliveira et al., 2019; Ojeda-Cabral et al., 2021; Calastri et al., 2022; Smith and Ojeda
Cabral, 2022) and used by researchers to study:

e passenger behaviour and use of time (Lyons et al., 2007; Lyons et al., 2016),

o (differences between open-access and franchised train operators (Stead et al.,
2019),

o relationship between delays and passenger satisfaction (Monsuur et al., 2021) and

e impact of train and station types on service quality perceptions (Monsuur et al.,
2017).

The survey is administered by intercepting passengers in the course of making a journey
and consists of multiple questions relating to passengers’ satisfaction with different
journey aspects (from station facilities and ticketing to journey times and in-vehicle

experience). Typically, travellers receive questionnaires prior to boarding their services.

As shown in Figure 11, the overall journey satisfaction levels have generally improved
since the 2000s, driven by increases in the share of the “very satisfied” passengers. In 2019,
the overall satisfaction levels by TOC varied between 72%-96% (Transport Focus, 2019).
At the same time, satisfaction with punctuality had initially improved in the early 2000s,

given the increase in the share of the ‘very satisfied” passengers. Otherwise, the punctuality
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satisfaction levels have remained relatively unchanged with a similar proportion of
travellers reporting to have been ‘very’ and ‘fairly satisfied” with the remaining three

satisfaction categories typically being chosen by around 5% of respondents each.

Overall journey satisfaction
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Figure 11 Evolution of passenger satisfaction levels over time based on overall
journey satisfaction (top) and satisfaction with punctuality (bottom)
Public Performance Measure (PPM), a standard industrial measure of performance
combining punctuality and reliability and indicating the proportion of services arriving to

the destination on time, had improved since the 2000s but started worsening around 2010
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(Campaign for Better Transport, 2015; ORR, 2020) as shown in Figure 12. As the figure
presents performance by rail quarter, some seasonal impacts can also be visible.

As a result, Average Passenger Lateness (APL), defined as the average length of delay a
typical passenger is subjected to, increased, as depicted in Figure 13 below. An average
passenger journey was subjected to a delay of around 3 minutes in the most recent (pre-
pandemic) years compared to around 2 minutes at the beginning of 2010s. As rail delays
are, however, usually dependent on many different factors and not necessarily equally
distributed across journeys, geographies, or days of the year, the NRPS survey responses

are not necessarily representative of the delay distribution across the network.
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Figure 12 Rail performance measure by PPM by rail quarter (ORR, 2021)
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Figure 13 Average passenger lateness (APL) by rail period (ORR, 2021)

5.2. Data processing and matching passenger responses to the operational
dataset
The NRPS data were obtained directly from Transport Focus and whilst it is not available
open-source, anyone interested can request access by contacting Transport Focus. To some
extent, a relatively detailed analysis of the data can also be conducted using the Transport
Focus data hub or the reports produced by Transport Focus after each survey wave. This
piece of work uses data from almost 275,000 responses from 10 survey waves (between
autumn 2015 and winter 2020). Each wave of the survey typically captures around 25,000-
30,000 passenger responses. The sampling design undertaken by Transport Focus ensures
that different types of journeys, origin-destination pairs and passengers are represented in
the sample (Transport Focus, 2020b). After filtering out the responses with missing data,
the responses were subsequently matched with operational data using the Historic Service
Performance (HSP) database. This platform contains historical data on train performance
from Darwin (running information engine). The HSP is freely available upon registering
for access using the National Rail Data Portal (for a more detailed description see National
Rail Enquiries, 2021). In this way, each passenger journey was matched to an actual service
and subsequently, scheduled and actual journey times were calculated for each of the

journeys.

As part of the NRPS, passengers were asked to specify their departure time, origin (where

the questionnaires were handed) and destination, focusing on the specific journey leg. This
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allowed matching each response to the actual service to calculate scheduled and actual
journey times. This matching process is a two-step process (as shown in Figure 14) that
involves:

1) searching for a scheduled train running between the specified origin and
destination within a specified time window (i.e. the departure time stated by
passenger) and

2) subsequently, a service RID code corresponding to the service that passenger
travelled on is obtained and used to retrieve additional information about

scheduled and actual departure and arrival times at the origin and destination

stations.
4 p ) 4 ) 4 )
assenger- Scheduled and
stated )
Service RID actual
departure
. - code departure and
time, origin, . .
TS arrival times
destination
_ J _ J _ J

Figure 14 The matching process

Elaborating on the matching process depicted in Figure 14, passenger responses were

matched to the operational dataset in the following steps:

1) Origin and destination station codes were extracted from the NRPS dataset
alongside the scheduled departure time and date. The data were subsequently
rearranged in the format depicted in Figure 15.

A B C D E F G H
1 |case_id from_loc to_loc from_time to_time  from_date to_date days
2 1 BIF MIA 644 645 01/09/2015 01/09/2015 WEEKDAY
3 2 MYB BMO 1545 1546 11/01/2016 11/01/2016 WEEKDAY
4 3 PNZ PAD 1752 1753 02/09/2016 02/09/2016 WEEKDAY
5 4 KGX ABD 1600 1601 01/09/2015 01/09/2015 WEEKDAY
6 5 DDG KID 1517 1518 11/01/2016 11/01/2016 WEEKDAY
7 6 LBG EBN 1823 1824 02/09/2016 02/09/2016 WEEKDAY
8 7 BAN MYB 645 646 11/01/2016 11/01/2016 WEEKDAY
9 8 MAN BRI 944 945 01/09/2015 01/09/2015 WEEKDAY
10 9 BHM LIV 1636 1637 11/01/2016 11/01/2016 WEEKDAY
11 10 DID PAD 749 750 02/09/2016 02/09/2016 WEEKDAY

Figure 15 Dataset snapshot
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2) The data described under point 1 were then used to retrieve a service RID code
corresponding to the service that a passenger travelled on between the specified
origin and destination as shown in Figure 16-Figure 18.

In [6]: print(A, B, C, D, E, F, G)

KGX ABD 1600 1601 2015-09-01 2015-09-81 WEEKDAY

Figure 16 NRPS data matching input

Tn [5]: print(resp.content)

b*{"header":{"from location":"KGX","to location™:"
{"origin_location":"K ination_location™:"
"GR", "matched_se

[{"tolerance_value™:"@",

_tolerance":true}]}]1}’

In [7]: print(rid)
01509610384368

Figure 18 Matched RID code

3) The RID codes obtained were then used to request service details information as
shown in Figure 19. In this example, a London Kings Cross to Aberdeen service
with an RID code of 201509010384368 was scheduled to depart from London
Kings Cross at 16:00 on the 1st of September 2015. The service was scheduled to
arrive at Aberdeen at 23:12 after having stopped at 13 intermediate stations. It
departed from London Kings Cross a minute earlier than scheduled (15:59) and
arrived at the destination 4 minutes ahead of schedule (23:08).
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n [9]: print(resp.content)
iceAttributesDetails™:
:"2015-09-0 "toc_ " ":"201500010 368", "locations":
"gbtt_ptd": ', "gbtt_pta”: -tual : 9","actual_ta":"","late_canc_reaso

", "gbtt_ptd”:"1754","gbtt_pta":"1752","actual_td":"1756","actual_ta":"1753","late_can
", "gbtt_ptd”:"1823","gbtt_pta":"1821","actual_td":"1824","actual_ta":"1822","late_can
gbtt_ptd":"1855","gbtt_pta":"1851","actual_td":"1855","actual_ta":"1849","late_can
", "gbtt ptd":"1941","gbtt pta":"1939","actual td":"1942","actual ta":"1939","late can
", "ebtt ptd":"2032","gbtt pta":"2822"  "actual td":"2032","actual ta":"2023","late can
M", "gbtt_ptd":"2037","gbtt_pta":"2035","actual_td":"2037","actual_ta":"2835","late_can
", "gbtt_ptd":"2053","gbtt_pta":"2051","actual_td":"","actual _ta":"","late_canc_reason
", "gbtt_ptd”:"2111","gbtt_pta":"2109","actual_td":""," "", "late_canc_reason
", "gbtt_ptd”:"2139","gbtt_pta":"2137","actual_td":"2139" :"2135","late_can
gbtt_ptd":"2153","gbtt_pta":"2152","actual_ td":
", "ebtt_ptd":"2211","gbtt_pta":"2209","actual_td":"22 ,actual_ta":"2210","late_can
S","gbtt ptd":"2227","gbtt pta":"2225","actual td":" ", "actual ta":"2225","late can
", "gbtt pta":"2248" "actual td":"","actual ta":"","late canc_reason

", "gbtt_ptd”:"","gbtt_pta":"2312","actual_td":"","actual ta":"23@8","late_canc_reason

Figure 19 HSP service details

4) The origin and destination station codes were subsequently used to retrieve
scheduled and actual departure and arrival times for the specified origin and

destination pair.

5) Finally, scheduled (JTs) and actual journey lengths (JT4), and delay lengths at
departure (Lp) and arrival (L,) were calculated. For clarity, the definitions are

shown below:

Scheduled journey length (JTs) is the difference between the scheduled arrival time at
the destination station (Arrivals) and scheduled departure time at the origin station

(Departureg).
JT¢ = Arrival ¢ — Departureg
(5)
Delay length at arrival (L,) is the difference between the actual arrival time at the

destination station (Arrivaly) registered in the Historic Service Performance database and

scheduled arrival time at the destination station (Arrivalg).

Ly = Arrival 4 — Arrival ¢

(6)
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Delay length at departure (Lp) is the difference between the actual departure time at the
origin station (Departure,) registered in the Historic Service Performance database and

scheduled departure time at the origin station (Departureg).

Lp = Departure 4 — Departure ¢

(7)

5.2.1. Summary of the matching process and issues encountered
Out of the 274,862 responses in the dataset, 263,163 (95.7%) responses with no missing
data were selected for matching with operational data. 244,712 (93.0%) were matched to
an actual service RID code by searching for a service that was scheduled to depart from

the origin station at the departure time stated by passenger.

Transport Focus was approached to discuss the possible reasons for some of the responses
not being matched with the operational data. As noted, it is expected that in some cases
passengers rounded the departure times or provided an erroneous departure time based on
actual (or expected) rather than scheduled departure time. Considering the proportion of
responses successfully matched to the operational dataset, 93% was suggested to be in line

with what was achieved in similar attempts conducted in the past.

Following these considerations, an attempt was made to find possible services that could
match the responses where a service RID code was not matched automatically. It was,
however, found that while in some cases the differences between passenger-stated and
scheduled departure times of a service are relatively small, there was still a considerable
number of responses where finding a scheduled service based on passenger-stated
scheduled departure time was more challenging. Therefore, it was decided to extend the
search window by respectively +/- 3, 5 and 10 minutes from the stated departure time. The

matching algorithm is depicted in Figure 20.

By doing that an additional 1.4%, 1.9% and 2.5% responses were matched to an actual
service. It was thought that extending the search window by +/- 5 minutes was possibly
most valid as it minimises the risk of (erroneously) matching a different service, which can
be the case if the search window is extended by +/- 10 minutes as on the busier stations

headway can often be less than 20 minutes.
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Figure 20 The matching algorithm

Through this approach, the final dataset consisted of 249,686 responses successfully
matched to a service RID code. Subsequently, service details were successfully retrieved

for 242,311 responses as summarised in Table 14.

Table 14 Summary of the HSP matching process

Responses matched Total responses
matched (%0)
All responses with a 263,163 100.00%

satisfaction score
Matching service RID codes

RID matched 244,712 92.99%
Extending search window

+/- 3 minutes 3,685 +1.40%

+/- 5 minutes 4,974 +1.89%

+/- 10 minutes 6,450 +2.45%

Final dataset

Passenger-stated 249,686 94.88%
departure time +/- 5
minutes
Matching actual running times
Actual running times 242,311 92.08%
matched

When an RID code was matched, but no actual departure and arrival times were found,

this may have been due to recording errors. It was initially thought that this might be due
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to cancellations or truncation of the services. An investigation was conducted to better
understand how cancellations or truncations are registered in the database and find the
possible reasons for some service code RIDs being found, but not matched to the
operational data. At first, a user forum, which is a place for an unofficial exchange of
information and community-based support with occasional support provided by the Rail
Delivery Group, was consulted to see if other users previously raised similar issues. One
important consideration raised by the Rail Delivery Group representative was that HSP
only reports on locations that have an actual running time or were cancelled. In the cases
where no movement report was received and the cancellation state was not manually
applied, the service becomes invisible for the HSP. Therefore, the two possible reasons for
service details not being matched to the RID code supplied are errors with recording the

train movement data or errors with manual inputs of cancellations.

To better understand the mechanisms of HSP, an example of a disruption to the services
was chosen for illustration. On the 13th of September 2021 some services were cancelled
to/from llkley (ILK) following an emergency incident (llkley Gazette, 2021). Out of the
11 services investigated, five were cancelled. Figure 21 and Figure 22 show how
cancellation was recorded in the HSP database for the 06:51 llkley to Bradford Foster
Square (BDQ) service and 09:03 Leeds (LDS) to llkley service respectively. The first
service departed from llkley a minute ahead of schedule and the last station served was
Guiseley where the service arrived a minute ahead of schedule. For the remaining four
stations, planned departure and arrivals are supplied, but the actual recorded times are
missing. In this case, a late/cancellation reason code (777) was also supplied. In the case
of the LDS-ILK 09:03 service, it was already cancelled at Leeds and did not depart from
the origin station. Similarly, a late/cancellation reason code (777) was also supplied in this

case.
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b*{"serviceAttributesDetails":
{"date_of service":"2021-09-13","toc_code":"NT","rid":"202109137607600","locations"

'"locatlon"'"IL’",“ﬂbtt _ptd":"@8651","gbtt pta":"","actual td":"@650","actual ta":"
late_ _canc_ reason":"777"},

:"@658", "gbtt_pta":"@658", "actual_td":"0659","actual_ta
"lc_reason":"777 1,
,gbtt ptd":"","gbtt pta":"e701","actual td":"","actual ta":"@659"
"latP canc_ rPason“'“777"'
{"locatlon"'"GHY",“gbtt ptL":" 85" ,"gbtt pta":"@7@5","actual td":"","actual ta":"®@
704" ,"late_canc_reason":"777"
'"locatlon"'“BLD",“ghtt ptt"'"ﬂ711","gbtt pta":"e71e","actual_td":"","actual_ta":""
, 'late canc_reason":"777"},
‘"locatlon :"SHY", "gbtt pti"'"ﬂ714" "gbtt pta":"@714","actual td":"","actual ta":
"late canc_ rPabon“'“777"'
'"locatlon"'"FLH" "gbtt ptd":"B?l?","gbtt_pta“:“B?l?",“actual_td":"","actual_ta":
, late_canc_ reason“'“777"'
'"locatlon“'"BDQ" " htt_ptd":""J"gbtt_pta“:“B?EB“,"actual_td":""J"actual_ta":"“,“la
te canc_reason":"777"}]}}'

Figure 21 HSP service details outputs for the ILK-BDQ service

b'{"serviceAttributesDetails":
{"date of service":"2021-09-13","toc_code":"NT","rid":"202109137609952" , "locations"

[’“locatlon"'"LD\“,"gbtt ptd":"@9e3","gbtt pta":"","actual td":"","actual ta":"","1
ate_canc_reason”
{"location":"GSY", gbtt ptd”:"","gbtt_pta“:"@914","actual_td":"","actual_ta":"","la
te canc_reason":

J'“loc.altion"'"f"lr'.lr'.l“‘.“gbtt ptd":"@918","gbhtt pta":"@918","actual td":"","actual ta":""
,"late_canc rPﬂbO "LMITINY,
‘“locatlo gbtt ptd":“ﬂqzl" "gbtt pta":"0920","actual td":"","actual ta":""
,"late canc_reason":"777"},
’“locatlon"'"BEY“,“gbtt ptt":“ﬂq£4" "gbtt pta":"0924","actual td":"","actual ta":""

"late canc_reason":"777
{“locatlon":"ILK“,“Uhtt_ptt":““,"ghtt_pta“:“@931","actual_tt“:"","actual_ta":"","la
te canc reason":"777"}1}}

Figure 22 HSP service details outputs for the LDS-ILK service

As shown in the matching algorithm, an attempt was also made to search for the closest
service that had the actual running data available for the services where the RID code was
found, but the service details were not successfully retrieved. If a new RID code was found,
the algorithm proceeded to match actual running times. If the actual running times were
not found, the algorithm returned to finding the next possible service by increasing
departure time by 1 minute until a new RID and actual running times were subsequently
matched. The cancellation algorithm was capped at 6 hours. In some cases, specific OD
pairs with no services matching passenger journey were investigated manually. In the case
of journeys between Shanklin (SHN) and Ryde Pier Head (RYP) (depicted in Figure 23),
no services were found in the HSP on the 19" of February 2020, but the service details
were successfully retrieved for the week earlier. This would indicate on some possible

errors with the recording system, but the magnitude of that issue is relatively small.



66

24 _actu ~ date - | daytype = | daytype = lorigin |~ |destinal ~
1018 27/02/2020 Weekday Weekday SHN RYP
1035 02/03/2020 Weekday Weekday SHN RYP
907 0710/2019 Weekday Weekday RYP SHN
1038 07/10/2019 Weekday Weekday SHN RYP
618 19/02/2020 Weekday Weekday SHM RYP
918 19/02/2020 Weekday Weekday SHMN RYP
918 19/02/2020 Weekday Weekday SHN RYP
918 19/02/2020 Weekday Weekday SHM RYP
918 19/02/2020 Weekday Weekday SHMN RYP
918 19/02/2020 Weekday Weekday SHN RYP
918 19/02/2020 Weekday Weekday SHM RYP
918 19/02/2020 Weekday Weekday SHM RYP
918 19/02/2020 Weekday Weekday SHN RYP
718 19/02/2020 Weekday Weekday SHM RYP

Figure 23 SHN-RYP services

In conclusion, filtering out the responses where some data were missing and the responses
that were not successfully matched to the operational data, 242,311 responses (92% of the
original dataset) were selected for further investigation.

5.2.2. Recorded and stated delay lengths
While the delay data were obtained by matching the individual responses to the operational
data using the HSP database as described in the previous section, the survey also contained
a question regarding late running. This is used for monitoring the quality of the data by
comparing the delay lengths recorded in the HSP database with the delays reported by
passengers. Moreover, the comparison of the two sources can help better understand

passengers’ ability to perceive delays (this will be explored as part of Chapter 6).

In the first three waves of the survey, passengers were asked: “How long was your delay?”’
and needed to state their delay lengths in minutes. This was later changed and in the most
recent seven versions of the survey, passengers needed to choose the length category their
delay length fell into as shown in Figure 24. The survey data on delay lengths was used
for monitoring and comparison purposes with the delay categories converted into delay
minutes using the midpoint method and assuming the average delay of 90 minutes for the

over 60 minutes delay length category.

013 Did you experience any delay either on this train or because the train you had planned to catch at
Glasgow Central was cancelled?

NG IRIRY o erciisnimmsmes mrmsssisamisiness: 13 0030 O35 16-20 minutes delay........ .o I GO to Q14
Up to 5 minutes delay..........ccevvvenneee [ Go to Q14 21-30 minutes delay........cuwimmimimeen ] Go to Q14
6-10 minutes delay.....mmmmmessessriones O GotoQ14 31-60 minutes delay..........cornrisiaen s L] Go to Q14
11-15 minutes delay.......u i I GO to Q14 Over 60 minutes delay.....oe e 1) GO to Q14

Figure 24 Question about the perception of delay from NRPS (Transport Focus,
2020)
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As shown in Table 15 below, almost 1 in 2 surveyed passengers arrived at their destination
late according to the operational data, but only 1 in 5 actually reported being delayed. The
matching methodology is expected to be more accurate than passenger perception data. In
this case, a recorded delay is defined as a difference between actual and scheduled arrival
time at the destination. This way, the smallest possible delay recorded is 1 minute. It is,
however, unlikely that passengers are able to perceive the smaller delays and this is the
potential explanation for a larger number of responses being matched to a delay than the
number of passengers reporting late arrival. Nevertheless, it is also important to recognize
smaller (likely unperceived) delays and this aspect is further explored as part of this thesis.
In 6% of responses, a passenger claimed they were delayed, but no delay was matched. It
is possible that in these cases passengers were either not able to board the train due to
crowding or included the delay from a different leg of the journey or due to missed
connections. In this case, it is not possible to trace the whole journey that a passenger was

intending to make and these responses are discarded at this stage.

Table 15 Comparison between passenger-stated and HSP-matched delay data

Perceived
Delay No delay

Delay 18.0% 30.8%
No delay | 5.8% 45.3%

Recorded

Typically, respondents failed to report shorter delays - possibly due to shorter delays
falling below their perceptual thresholds. An average passenger lateness of 2.7 minutes
was recorded for the whole NRPS sample. For the subset of journeys where a delay was
recorded, an average delay of 3.6 minutes was recorded for passengers who were matched
to a delay but did not report late running (i.e. row 1, column 2 in Table 15) versus 9.0
minutes for passengers who also reported being delayed (i.e. row 1, column 1 in table 2).
Figure 25 shows the cumulative distribution of recorded delays for passengers who did and
did not report late running. Out of the 30.8% (74,628) responses, in almost 70% of cases,
the matched delay length was within 3 minutes and in 98% of cases within 15 minutes. In
line with expectations, it can be seen that passengers who were matched to a delay, but
reported arriving on time (i.e. row 1, column 2 in Table 15), were typically matched a
shorter delay.
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Cumulative distribution

T T
0 20 40 60
Recorded arrival delay (minutes)

No delay reported Delay reported

Figure 25 Cumulative distribution of recorded delays for perceived and
unperceived delays
At the same time, Figure 26 shows how the proportion of passengers reporting late running
changes with increasing delay lengths. It is worth noting that the number (not proportion)
of responses decreases with increasing delay lengths, as typically most delays are relatively
small and the delay distribution is positively skewed. The proportion of passengers
reporting late running seems to be generally increasing with delay length, but this
relationship needs to be studied in more detail. As suggested by Monsuur et al. (2021), 30
minutes is a delay length following which passengers are very unlikely to remain satisfied
with their journey. Therefore, the dataset is constrained to recorded delay lengths of up to
30 minutes as it is assumed that passengers should already be able to perceive delays of
that length and any discrepancies (i.e. passengers not reporting delays despite a recorded
delay of over 30 minutes) may be erroneous (as described previously). Moreover, delays
of over 30 minutes are relatively rare and the main focus of this study is on the smaller

delays.
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Figure 26 The proportion of passengers reporting late running

As shown in Table 15, almost 2 out of 3 passengers agreed with the operational data
regarding whether or not they were delayed. The cases where passengers failed to perceive
the smaller recorded delays or reported delays when on-time performance was recorded
are discussed above. However, it remains to be investigated how the reported delay lengths
compare to the matched delay lengths for the cases where passengers who were matched
to a delay also reported late arrival (i.e. row 1, column 1 in Table 15). Some discrepancies

are expected and may be a result of:

e passengers rounding the delay lengths to the closest 5 or 10 minutes (in the case
of the first three survey waves where they were asked to type in the exact delay
length) or

o the conversion method for the delay length categories used in the latter 7 survey

waves as described before.

An attempt was made to understand the extent of these differences with the summary
presented in Table 16 below. However, a more detailed analysis will be conducted as part
of the investigation of delay perception in Chapter 6. In 11% of cases, there was no
difference between stated and matched delay lengths with over 2/3 of the differences being
within 5 minutes and only a small percentage (i.e. around 9%) of responses being

characterised by the differences in matched and reported delay lengths of over 15 minutes.
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Hence, it can be expected that most of the differences can be attributed to passenger
perception.

Table 16 Summary of differences between stated and matched delay lengths

Difference Percentage of delayed
responses

No difference 10.6%*
Within +/- 3 minutes 57.2%*
Within +/- 5 minutes 70.1%*
Within +/- 15 minutes 91.2%*
Within +/- 30 minutes 96.3%*

>30 minutes 3.7%

*Cumulative distribution

Given the suggestions that departure L, and arrival L, delays have a differing impact on
passengers (see Batley and Ibafiez, 2012 for a more detailed discussion), this research also
aims to investigate the impact that both can have on delay perception and satisfaction.
Departure (origin) and arrival (destination) delays are, as expected, correlated (r=0.64) in
the sample. Whilst in most cases throughout the thesis, the focus remains on the arrival

delay, in some cases both variables are used in the modelling.

5.3. The National Rail Passenger Survey

The obtained data comes from 10 survey waves of NRPS between Autumn 2015 and
Winter 2020. The sample design and the weighting process conducted by Transport Focus
ensure that the responses are distributed across the different operators and routes over the
different times of day and days of the week (Transport Focus, 2020). The sampling process
is described in technical reports produced for each of the survey waves and generally

involves the following steps:

1) The whole network is divided into multiple building blocks.

2) Selection of stations for each of the building blocks uses a PPS (probability
proportionate to size) basis, so that the sample sizes are adjusted for station usage.

3) Day of the week and times of the day distribution is based on the profiles of
journey departures by journey purpose provided by TOCs.

4) Sampling points are then assigned to weeks at random during the survey period.

The questionnaires consist of multiple questions relating to the information about a
passenger, the specific journey that the passenger made and their satisfaction with different

aspects of that journey. The following subsections aim to review the different types of
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guestions asked as part of the survey that are particularly relevant to the analysis conducted

as part of the thesis.

5.3.1. Overall journey satisfaction and satisfaction with punctuality
This work primarily focuses on analysing the impacts of increasing delays on delay
perception and satisfaction. Therefore, there are two questions that appear particularly

relevant in this context:

1) Question 16 of the NRPS that concerns passengers’ overall satisfaction with their
journey (Figure 27 below). Passengers are specifically asked to score their
satisfaction with the origin station and the train they boarded after receiving a

guestionnaire.

Your overall opinion of your journey today

Q16 Taking into account Glasgow Central
station where you boarded the train and

the actual train travelled on after being Neither Don't
given this qye"stlonnglre, h"\:’o;“‘s’f‘ed Very Fairly  satisfied nor Fairly Very know/no
WS YOU WIEN yOUE JOINTRY i satisfied satisfied  dissatisfied dissatisfied dissatisfied opinion

() o O O O O

Figure 27 Overall satisfaction question from NRPS

2) An alternative line of enquiry is to consider NRPS question 9, which is concerned
specifically with satisfaction with punctuality and reliability of the train used
(Figure 28). It potentially allows for direct analysis of the delay impacts without
the need to control for satisfaction with other aspects of journey quality.

Q9 Based on your experience on that journey,
how satisfied were you with: Neither Don't
Very Fairly satisfied nor Fairly Very know/no
satisfied satisfied  dissatisfied dissatisfied dissatisfied opinion
Frequency of the trains on that route............... % 18 (W) O ) () 0

Punctuality/reliability of the train (i.e, the
train arriving/departing on time).........ou.coseeenrs O
Length of time the journey was
scheduled t0 take.........ecoreecaressssmsaresasassssasens
LEVELOF CrOWMINE . disocsrssiimesssarmacirrens
Connections with other train services......
Value for money of the price of your ticket..........

DE]DD

oooo o
oooo O
oooo o
oooo o
oopo O

Figure 28 Question related to satisfaction with punctuality from NRPS

Passengers scored their overall satisfaction as well as satisfaction with punctuality on a 5-
point Likert scale with possible responses ranging from ‘very satisfied” (5) to ‘very
dissatisfied’ (1) and a ‘don’t know/no opinion’ option. Out of the 242,311 responses
chosen for further analysis, 6,596 passengers (2.7%) chose the ‘don’t know/no opinion’
option regarding their satisfaction with punctuality (such responses have been excluded

from the analysis). Monsuur et al. (2021) used overall journey satisfaction (i.e. question
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16) to study the impacts of delays on passenger satisfaction. To better understand the
difference between overall journey satisfaction and satisfaction with punctuality and to

determine their usefulness, the two variables were investigated more closely.

It is expected that delays have a negative impact on journey satisfaction. While the two
satisfaction variables are correlated (i.e. Spearman rho of 0.57), it is also expected that
satisfaction with punctuality is only one of the many factors determining overall journey
satisfaction. Table 17a below shows how average recorded delay and overall satisfaction
(NRPS question 16 in Figure 27) change with reported satisfaction with punctuality (NRPS
question 9 in Figure 28) for travellers with a recorded delay. As expected, passengers who
scored their satisfaction with punctuality lower were typically subjected to lengthier delays
— from around 4 minutes of average recorded delay for passengers ‘very satisfied’” with
punctuality to 12 minutes for those who were ‘very dissatisfied’. The overall satisfaction
levels (i.e. NRPS Q16) decrease with both increasing delays and decreasing satisfaction
with punctuality (i.e. NRPS Q9) — from 4.6 for passengers ‘very satisfied” with punctuality
to 2.5 for passengers ‘very dissatisfied” with punctuality. Table 17b, in turn, shows how
the same relationship changes for decreasing levels of reported overall journey satisfaction.

Table 17a Relationship between satisfaction with punctuality, overall journey
satisfaction and delay lengths (for journeys with a matched delay only)

Satisfaction with punctuality Average Number of Average
recorded responses overall
delay satisfaction
Very satisfied 4.07 42,632 4.58
Fairly satisfied 4.64 38,989 4.06
Neither satisfied nor dissatisfied 5.92 10,052 3.71
Fairly dissatisfied 8.23 13,806 3.38
Very dissatisfied 11.99 9,754 2.50
Total 5.59 115,233 4,01

Table 17b Relationship between overall journey satisfaction, satisfaction with
punctuality and delay lengths (for journeys with a matched delay only)

Overall journey satisfaction Average Number of Average
recorded responses punctuality
delay satisfaction
Very satisfied 4.33 39,954 461
Fairly satisfied 5.24 54,460 3.78
Neither satisfied nor dissatisfied 6.61 12,909 2.82
Fairly dissatisfied 9.91 7,542 2.15
Very dissatisfied 12.61 3,438 1.72

Total 5.59 115,233 3.79
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5.3.2. Control variables
Sixty three different questions related to satisfaction with very specific journey aspects
along three more general questions were asked throughout the 10 NRPS survey waves used
in this study. Satisfaction with each aspect of the journey was scored by passengers on a
5-point Likert scale with an option of no score if a passenger felt they did not know how
to score this aspect or did not experience/use it (e.g. toilet facilities, catering, etc.). The
possibility to choose the option where no score was provided means that a large proportion
of questions is characterised by a rather small percentage of responses. Moreover, some
guestions are mutually exclusive (e.g. a person who uses a car park is unlikely to also use
a bike park). While many of these questions had a relatively low response (i.e. large
proportion of passengers choosing an option not to score a specific element) or were not
part of all the survey waves, 16 were chosen for further investigation based on the common

number of responses with a summary presented in Table 18 below.

Out of the 242,311 responses where a passenger scored their overall journey experience,
there were 126,794 responses where a score was provided for all of the 16 questions
relating to the specific aspects of the journey and three additional questions related to
satisfaction with train, station, and overall journey as detailed in Table 19. Similarly as
observed by Brons and Rietveld (2009), the average overall satisfaction is in most cases

higher than the average satisfaction with the specific journey aspects.

In cases where the overall journey satisfaction is modelled, there is a need to control for
other aspects of journey satisfaction too (i.e. overall satisfaction does not only depend on
the length of delay). In particular, it can be expected that the overall journey satisfaction is
impacted by satisfaction with journey quality aspects (e.g. station or train), satisfaction
with journey frequency, punctuality, scheduled journey time and/or value for money.
However, in the case where satisfaction with punctuality is modelled, the quality aspects
are likely to have a complementary (to delay length), but not a direct impact on punctuality
satisfaction as bad journey quality (e.g. crowding) may amplify the negative impact of
delay on satisfaction. Table 20 below reports correlations between the key satisfaction

variables using Spearman’s rank correlation methodology (Spearman, 1904).
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Table 18 Choice of satisfaction variables from NRPS

Aspect Question
Train and platform How would you rate this station for provision of
information information about train times/platforms?

Station upkeep
Station cleanliness
Station environment
Station security
Station seating

Journey frequency

Delay

Scheduled journey time

Value for money

Train security

Train upkeep

Train information

Train cleanliness

Train cleanliness out

Train seating comfort

Station overall
Train overall

Overall

How would you rate this station for the upkeep/repair
of the station buildings/platforms?
How would you rate this station for cleanliness of the
station?
How would you rate this station for the overall station
environment?
How would you rate this station for your personal
security whilst using this station?
How would you rate this station for availability of
seating?

Based on your experience on that journey, how
satisfied were you with the frequency of the trains on
that route?

Based on your experience on that journey, how
satisfied were you with the punctuality/reliability (i.e.
the train arriving/departing on time)?

Based on your experience on that journey, how
satisfied were you with the length of time the journey
was scheduled to take?

Based on your experience on that journey, how
satisfied were you with the value for money of the
price of your ticket?

How would you rate the train you boarded for that
journey in terms of your personal security whilst on
board the train?

How would you rate the train you boarded for that
journey in terms of upkeep and repair of the train
(condition of seats, walls, tables, etc.)?

How would you rate the train you boarded for that
journey in terms of the provision of information
during the journey?

Specifically thinking about the cleanliness of the train
you boarded for that journey, how would you rate it
for the cleanliness of the inside of the train?
Specifically thinking about the cleanliness of the train
you boarded for that journey, how would you rate it
for the cleanliness of the outside of the train?
How would you rate the train you boarded for that
journey in terms of the comfort of the seating area?
Overall how satisfied are you with this station?
Overall how satisfied are you with the train you
boarded for your journey?

Taking into account just the station where you
boarded the train and the actual train travelled on
after being given this questionnaire, how satisfied
were you with your journey today?
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Table 19 Summary of satisfaction variables

Dimension Journey aspect Responses Mean SD

Station quality Train and platform information 231,419 422 0.872

Station upkeep 231,830 3.95 0.925

Station cleanliness 232,500 4.03 0.881

Station environment 233,162 3.95 0.873

Station security 213,454 403 0.831

Station seating 217,089 3.36 1215

Timetable Journey frequency 233,963 3.98 1.060
Punctuality* 235,715 403 1.164

Scheduled journey time 234,299 424  0.923

Value for money 222,716 3.27 1313

Train quality Train security 221,050 4.08 0.833
Train upkeep 235,233 3.95 0.953

Train information 220,333 3.98 0.970

Train cleanliness 239,497 3.99 0.928

Train cleanliness out 209,085 3.94 0.901

Train seating comfort 231,137 3.78 1.009

Station overall 237,315 412 0.833
Train overall 240,525 4.02 0.906
Overall* 242,311 4.14 0.906

* indicates the variables used as dependent variables (described in section 5.3.1)

Table 20 Correlation between the key satisfaction variables

(1) Overall (2) Station (3) Train (4) Punctuality

(1) Overall 1.00
(2) Station overall 0.53 1.00
(3) Train overall 0.74 0.50 1.00

(4) Punctuality 0.57 0.38 0.50 1.00
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The satisfaction variables are expected to be correlated. In line with expectations,
satisfaction with train and station is more positively correlated with the overall journey
satisfaction than satisfaction with punctuality. One of the features of delays in railways is
that they are typically correlated with increased crowding that, in turn, may have a negative
impact on the satisfaction with train and/or station. Similarly, it is possible that travellers
facing delays report lower satisfaction with other journey aspects to express general
discontent related to a delay experience. However, it remains difficult to understand and

isolate the effects of the general discontent from the actual experience.

The correlations between all the satisfaction variables presented in Table 19 were
investigated using Spearman’s rank correlation coefficients and are shown in the heat map
in Figure 29. It is evident that some variables (i.e. station upkeep, station environment or
cleanliness) are conceptually similar to each other, resulting in a relatively high correlation.
At the same time, the overall journey satisfaction is typically more correlated to the
variables relating to satisfaction with train or journey (timetable) rather than station.

(1) Train and platform information —
(2) Station upkeep
(3) Station cleanliness

(4) Station environment -

(5) Station security

(6) Station seating -

(7) Journey frequency

(8) Punctuality

(9) Scheduled journey time - 0.75
(10) Value for money
(11) Train security —
(12) Train upkeep —
(13) Train information 0.50
(14) Train cleanliness
(15) Train cleanliness out -

(16) Train seating comfort 0

(17) Station overall -

(18) Train overall
(19) Overall

Figure 29 Heat map of correlation between key satisfaction variables

5.3.3.  Other control variables
Apart from scoring satisfaction with train or seating comfort, passengers in the most recent
seven survey waves were asked if they were able to find a seat on a train. 10.5% of the

respondents in the sample reported that they were unable to find a vacant seat for the whole
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journey. It can be expected that the availability of seating has a major impact on
satisfaction with the journey and may also possibly have a complementary effect on
satisfaction with punctuality. An average punctuality satisfaction of 3.3 was recorded for
passengers without a seat while an APL of 3.1 was registered for them. Passengers who
were able to find a seat scored their punctuality satisfaction on average better (mean

satisfaction of 4.1 for an APL of 2.7 minutes).

5.4. Demand segmentation

The NRPS sample design ensures that the responses of passengers travelling on all the
TOCs are captured, thus the dataset contains responses from different types of travellers
on both shorter and longer journeys. The average scheduled journey time in the sample is
53 minutes with an average passenger lateness of 2.2 minutes. The average passenger
lateness in the sample is consistent with the values estimated by ORR (2020), suggesting
APLs of 2-3 minutes in the last 10 years.

The analysis employs passenger segmentation to enable comparison of delay perception
and its impacts on the different types of passengers. The proposed approach to
segmentation is based on ticket types, journey purposes and geographies. An alternative to
this approach could be sought in clustering passenger types based on the available data.
However, the motivation behind such segmentation is to align more with the PDFH
framework. Nevertheless, some simplifications to the demand segmentation typically used
within the PDFH are made to facilitate the analysis (i.e. reducing the number of passenger
types) whilst also replacing the journey length categorisation by the inclusion of a
continuous variable representing scheduled journey time in the conducted analysis. Twelve
different journey purpose categories are used in the NRPS questionnaire, similar to that in
the National Travel Survey. These are then classified by the three major journey purpose
categories, i.e. commute (41%), business (14%) or leisure (45%), with the split being
similar to that suggested in the National Travel Survey. The responses were further
analysed based on the type of ticket bought and the geographical distribution. In this case,
only passengers travelling on certain ticket types were chosen for further analysis, i.e.
seasonal tickets for commuters while passengers travelling using special ticket types and
passes were removed from the dataset. This is to ensure better homogeneity of passengers
represented in a given demand segmentation category. Having consulted the approach of
similar studies and to investigate whether there are any significant differences between
passengers, the journey purpose categories were further split by geography (in the case of

business and commute) and fare (full and reduced in the case of leisure travellers).
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Alongside the proposed demand segmentation, Table 21 provides summary statistics of
key variables that are later used in the modelling As can be seen, business and leisure
journeys are typically longer and incur lengthier delays, but commuters (who are also more
frequent travellers) seem to generally be less satisfied with punctuality levels. This may,
to some extent, be explained by commuters being impacted by the largest relative change
in journey times due to delays. On average, commuter journey times increase by around

10% due to delays as compared to 5% for other travellers.

Table 21 Demand segmentation summary

Mean SD p25 p75 p90 p95

BL: Business London (N=18,428)

Perceived delay (Yes=1) 21 41

Recorded delay (Yes=1) 52 .50

Scheduled journey time 80 55 31 117 151 174
Arrival delay 359 863 0 4 10 16
Departure delay 136 404 O 1 4 7
Punctuality satisfaction 4.27 .99

Seated (Yes=1) 97 .18

BnL: Business non-London (N=11,251)

Perceived delay (Yes=1) 27 44

Recorded delay (Yes=1) 57 .50

Scheduled journey time 73 57 31 97 158 191
Arrival delay 354 743 O 4 9 16
Departure delay 233 552 0 2 6 11
Punctuality satisfaction 409 112

Seated (Yes=1) .93 .25

CL: Commute London (N=26,020)

Perceived delay (Yes=1) 32 A7

Recorded delay (Yes=1) 49 .50

Scheduled journey time 33 19 19 44 58 68
Arrival delay 253 551 O 3 7 11
Departure delay 157 394 0 2 4 7
Punctuality satisfaction 346 1.30

Seated (Yes=1) .78 41
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CnL: Commute non-London (N=15,216)

Perceived delay (Yes=1) .36 A48

Recorded delay (Yes=1) .56 .50

Scheduled journey time 25 16 14 32 46 56
Arrival delay 285 571 O 3 8 12
Departure delay 237 467 O 3 7 10
Punctuality satisfaction 3.37 133

Seated (Yes=1) .80 40

LF: Leisure Full (N=24,432)

Perceived delay (Yes=1) 18 .38

Recorded delay (Yes=1) 45 .50

Scheduled journey time 50 46 22 60 108 150
Arrival delay 236 574 0 2 6 11
Departure delay 158 420 O 1 4 8
Punctuality satisfaction 433 .99

Seated (Yes=1) .93 .25

LR: Leisure Reduced (N=51,667)

Perceived delay (Yes=1) 21 41

Recorded delay (Yes=1) 51 .50

Scheduled journey time 85 62 37 119 170 203
Arrival delay 345 826 O 4 9 16
Departure delay 182 508 O 2 5 9
Punctuality satisfaction 436 .98

Seated (Yes=1) .96 19

5.5. Summary

This chapter summarised the two sources of data, namely NRPS and HSP and described
how the satisfaction and operational data were matched. This will allow studying
passengers’ perception of delays and the relationship between recorded performance and
passenger satisfaction, as introduced later in the thesis. It is worth highlighting the few

major limitations related to using NRPS data:

1) While passengers report the origin and destination station they actually travelled

between and satisfaction scores are supposed to be based on the specific leg of the
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journey, it remains difficult to retrieve the whole journey in the cases where an
interchange was needed and establish its potential impact on passenger responses.

Linked to the previous point, passengers are asked to score their satisfaction with
a specific service they travelled on. However, it remains difficult to know whether
the passenger expected to travel on that service or was affected by some
cancellations or delays that resulted in the need to travel on a different service,
either later or earlier than initially anticipated. Moreover, it is not known if that

could ultimately have an impact on the satisfaction score.

Similarly, the timing of receiving a questionnaire and completing it may affect the
results. Passengers filling in the questionnaire closer to the time of completing the
journey may be more likely to have a better recollection of the journey. Similarly,
any discontent related to being delayed or poor journey quality may be stronger,

leading to more negative survey results.

Due to the nature of survey approaches, the NRPS dataset is not necessarily
representative of the delay distribution in the network, as the survey design has no
control over the distribution of delays experienced by the respondents. However,
using data from multiple survey waves makes the NRPS data more resilient to the
potential impact of a one-off disruption on the other metrics. Moreover, the NRPS

APL levels are in line with network performance estimates provided by ORR.

Whilst the number of questions in the survey is relatively large, some of the
questions suffer from a relatively low response. This is perhaps a secondary issue
for the analysis conducted in this study. Nevertheless, it limits the ability to test
the impacts of some of the more specific journey aspects on passenger satisfaction

or has an impact on the statistical significance of the estimated results.

While some differences between the reported and recorded delays are expected,
there is a small proportion of passengers who failed to report very long delays.

Whilst it is relatively rare, it may be a result of issues raised under points 1 and 2.

The survey consists of a large number of questions, but it might further benefit
from adding information about ticket prices and income that would potentially

allow calculating metrics such as the value of time from satisfaction data.

The nature of delay distribution in the network means that there are relatively few
larger delays and it remains more difficult to study the impact of very long delays

on passengers. This is further impacted by the larger probability of data errors in
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such responses. In the case of this study, however, the main focus is on
investigating the impacts of smaller delays.

While the issues highlighted above are worth noting, it is believed that their impact on the
modelling undertaken in this study is relatively modest. Nevertheless, some of the

highlighted issues may be useful for researchers designing similar surveys in the future.

The choice of variables was carefully described while highlighting the differences between
using overall journey satisfaction and satisfaction with punctuality as the key dependent
variables. In principle, the main difference between satisfaction with punctuality and
overall journey satisfaction is the need to control the latter for satisfaction with different
aspects of journey, as delay length is likely to be one of the key, but not the only aspect
determining overall journey satisfaction. Whilst there is a large number of variables
specifically treating satisfaction with different aspects of the journey, these are often highly
correlated and characterised by a low response rate what can become problematic as the

modelling strategy effectively discards the responses with missing data.

The final dataset used in the analysis presented in the remaining chapters of the thesis
consists of 147,014 responses. The summary of the process of data cleaning is shown in
Table 22. While the reduction in the number of responses is sizeable, it still allows for
investigating the impacts of delays on a large number of passengers, while reducing the

scope for error and improving homogeneity among the studied segments of passengers.

Table 22 Data cleaning and processing steps

Data cleaning step Number of
responses
NRPS full sample 274,862
Responses with a satisfaction score 263,163
Operational data matched 242,311
Delay lengths limit of 30 minutes 240,093
Maximum difference between stated and reported delay 237,965
within 30 minutes
Excluded if a delay reported but not matched 224,632
Demand and ticket type segmentation 147,014

The previous chapters provided the motivation behind the thesis, also describing the data
used in the remaining chapters that will focus on estimating econometric models of delay

perception and satisfaction.
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Chapter 6
Rail delays and travellers’ perception of being delayed

6.1. Introduction

Transport researchers are often interested in the impact that delays have on passengers and,
ultimately, demand and operator revenues. The key aim of a large number of transport
infrastructure projects is to reduce travel times with travel time savings being often
quantified as the largest benefits of many such investments (for research on the value of
time see Mackie et al., 2003; Batley et al., 2019; Schmid et al., 2021). At the same time, a
minute of delay has a larger negative impact on travellers and is typically valued at around
3 minutes of scheduled journey time (see Preston et al., 2009; Wardman and Batley, 2014;
Wardman and Batley, 2022 for reviews on lateness valuation).

When choosing a service to travel on, passengers consider the scheduled arrival time of
the services with respect to their preferred arrival time. As noted by Preston et al. (2009),
explained in more detail in Batley (2007) and discussed in Chapter 2, passengers typically
also include a safety buffer to their travel schedules that works as a time insurance against
any possible disruptions and aims to increase the probability of arriving to the destination
within passenger’s preferred arrival time. The amount of buffer time depends on

expectations, sensitivity to potential lateness, and personal characteristics of a passenger.

While intuition suggests that performance affects levels of demand, passengers are not
always able to change their travel behaviour following late running, at least in the short
term (Batley et al., 2011). This means that while delays may have a negative impact on
passengers, performance may not always be immediately linked to demand and an
alternative way to study the delay impacts on passengers is to look at the relationship
between delays and journey satisfaction. Several studies have looked at the impact of
different aspects of the journey on travel satisfaction (for reviews see De Vos et al., 2013;
De Ofia and De Ofia, 2015; Gao et al., 2018; Rong et al., 2022). Travel time, prices, journey
comfort and provision of information are of paramount importance for travellers (Dziekan
and Kottenhoff, 2007; Brons and Rietveld, 2009; St-Louis et al., 2014; Susilo and Cats,
2014; Mouwen, 2015; De Oiia et al., 2016; Abenoza et al., 2019; Monsuur et al., 2021).

Previous research suggests that passengers delayed by over 30 minutes are very unlikely
to be satisfied with their journeys (Wittmer and Laesser, 2010; Monsuur et al., 2021).
Moreover, according to Monsuur et al. (2021), in the case of standing passengers, this
threshold reduces to 10-20 minutes. Nevertheless, as noted by Transport Focus (2015),

satisfaction levels tend to start dropping from the very first minute of late running. For
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business and leisure travellers they decrease somewhat less rapidly until a threshold of
respectively 5 and 8 minutes of lateness is reached.

A large body of literature is devoted to the valuation of time changes, both in terms of
reducing scheduled journey times and increasing punctuality and reliability (e.g. Mackie,
et al., 2003; Preston et al., 2009; Batley and Ibafiez, 2012; Batley et al., 2019; Schmid et
al., 2021). Mackie et al. (2003) and Daly et al. (2014) discussed the impacts of small time
savings whereas Daly et al. (2014) noted that there is no consensus on the treatment of
benefits arising from these small changes with differences in standard practices around the
globe. As noted by Welch and Williams (1997), minor savings often account for a large
proportion of the time benefits of transport projects. However, as suggested by Daly et al.
(2014), it is likely that assuming a constant marginal value of time is wrong as passengers
might not be able to notice the smaller journey time reductions. Though, Mackie et al.
(2001) argued that even if passengers are not able to perceive these changes, they can still
have economic benefits, similarly to the impacts from investment in road safety where
changes in accident probabilities are not directly observed or noticed by the road users.
Analogously, smaller delays that do not necessarily affect passenger satisfaction, or even
remain unperceived, are not necessarily unimportant. Increased understanding of the
impacts of smaller delays can contribute to exploring any potential inherent non-linearities

in the valuation of time.

While previous research provides us with some understanding of how passenger
satisfaction changes with delays, little is known about how passengers perceive delays and
the effects that delay perception may have on satisfaction. Nielsen (2000) and Rezapour
and Ferraro (2021) indicated that passenger perception of late running has an impact on
travel behaviour and public transport suppliers can learn how to improve their services by

investigating these impacts too.

In principle, work conducted as part of this chapter draws on a number of previous studies
examining the impacts of lateness on passengers (i.e. Batley, 2007; Preston et al., 2009;
Monsuur et al., 2021) whilst responding to the suggestion in Wardman and Batley (2022)
and Rong et al. (2022) that looking at the differences between perceptions of late time and
recorded delay lengths can improve understanding of the impact that delays have on
passengers. In this context, the perception of delay is thought of as an intermediate step
linking the existence of delay (supply-side disruption) with the impacts on utility and
ultimately demand (demand-side impact), since for delays to have an impact on travellers,

they clearly need to be perceived.



84

The work conducted as part of this chapter uses data on rail passenger delay perception
from 10 waves of a travel satisfaction survey (NRPS) conducted by Transport Focus in the
United Kingdom. Passenger responses were matched to the operational data using the
Historic Service Performance (HSP) database to allow comparison between passengers’
reports of late arrival and recorded delay lengths as described in Chapter 5. The

investigation of delay perception is based on the analysis of:
1) travellers’ ability to perceive delays (i.e. Q1 from Table 1)

2) passengers’ misperception or rounding of reported delay lengths (i.e. Q2 from
Table 1) and

3) the impact of journey type, length, comfort as well as arrival versus departure

delay on how delays are perceived (i.e. Q3 from Table 1)

First, binary response models are estimated where passengers' ability to perceive a delay
is explained by delay length (both at the departure and arrival) while also controlling for
journey length, quality, and type. The additional controls act as hypothesis tests to
investigate whether they have a significant impact on how delays are perceived.
Subsequently, additional analysis is conducted to better understand the possible
misperceptions of delay lengths.

The remainder of this chapter is structured as follows:

Section 6.2 provides a review of literature covering human perception in a variety
of fields to describe the main differences in the ways people perceive the same
stimulus and methods used to validate perception.

e Section 6.3 discusses the possible determinants of delay perception.

e Section 6.4 summarises how the NRPS dataset can be applied to analysing delay
perception and reports the results of the analysis, first looking at delay perception
as a binary outcome (i.e. delay is perceived or not).

e Section 6.5 investigates the possible reasons as to why delays were reported
despite on-time performance.

e Section 6.6 looks at the relationship between perceived and recorded delay

lengths.

e Section 6.7 provides a summary of findings and conclusions.

6.2. Review of studies on human perception
Human perception plays an important role in behaviour and decision-making. As noted by
Manski (2004), Shepperd et al. (2013) and Lupyan (2017), the knowledge of survey



85

respondents may be partial, leading to discrepancies between self-reports or expectations
and actual values. To better understand how the perception of delays differs from actual
performance, a review of studies on human perception was conducted across different
disciplines. There is an abundance of literature looking at human perception in different
contexts, which differ with respect to how easy it is to observe and measure a stimulus and
subsequently compare the perception to measured/observed values. Table 23 below

provides a multidisciplinary perspective on human perception.

Having reviewed research on human perception in various contexts, it is now of interest to
discuss the likely differences and similarities to delay perception. Crime perception
research offers some insights into the divergence between perception and reality, but
unlike transport delays, the crime statistics are not directly experienced by those reporting
safety concerns. On the other hand, pain perception is conceptually closer to transport
delays as pain is, indeed, directly experienced. However, pain levels are subjective as
significant heterogeneities in their reporting have been found across patients. This means,
that unlike delays, which have an objective measure (time), providing an objective measure
of pain is not always easy. Similarly, while the probability of catching a virus can be
calculated, the risk itself is not directly experienced as the outcome here is binary — either
becoming ill or not. Walkability and accessibility, despite being transport-related concepts,
are also difficult to be objectively quantified, i.e. there is no single measure that can capture
them, since using distance as a proxy is argued to be an oversimplification. In terms of
measurability, a comparison of perceived and actual test performance is probably most
similar to train delays. However, significant conceptual differences remain - in the case of
delays, the outcome is binary as is in the case of catching a virus. Though, a delay may
need to cross some threshold for passengers to be able to notice it (this might depend on
lateness sensitivities or tolerance) and is conceptually more similar to pain perception, in
the sense that the longer the delay, the larger the negative impact and, hence, the

probability of perceiving it.
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Table 23 Literature review of studies on human perception

Measure Observability

Perception

References

Crime rates Measurable,
not directly
observable

Probability Measurable,

of being not directly
caught observable
committing
acrime
Pain Painis a
perception stimulus, but
not directly
measurable or
comparable
Test Results are

performance  measurable,
but observable

after the
performance is
perceived
Risk of Measurable,
catching but difficult to
viral calculate for
diseases all the
activities

Accessibility ~ Measurable,

and but no single
walkability ~ metric able to
describe it

Tendency to overestimate.

Influenced by personal views,
news, and word of mouth.

Perception has a larger impact on
behaviour than the crime rates.

Subject to biases such as feeling
that familiar areas are safer.

Perception of the probability of
being captured after committing
a crime affects crime rates.

In an educational setting, the
perceived risk of punishment has
an impact on self-reported
delinquency in students.

Sense of touch is not the only
one playing a role in
experiencing pain.

Pain reporting methods used in
medical research and clinical
applications include descriptive,
verbal, numerical scales, and
pain drawings.

Personal characteristics have an
impact on perception and
reporting.

Significant differences between
perception and actual test
performance.

Overconfidence of those who
performed poorly.

Reported infection rates and
crowding levels determine
perceived risk levels and
influence behaviour.

Calculated measures can only
serve as a proxy for perceived
accessibility.

Spicer et al., 2014;
Lora, 2016; Vallejo
Velazquez et al., 2020;
Manning et al., 2022

Bailey et al., 1974;
Jensen et al., 1978;
Lochner, 2007

Freyd, 1923; Budzynski
etal., 1973; Margolis et
al., 1986; Crombez et
al., 2005; Haefeli and
Elfering, 2006; Mancini
et al., 2011; Verma et
al., 2015; Cimpean and
David, 2019; Gonzélez-
Roldéan et al., 2020;
Mclintyre et al., 2020

Ehrlinger et al., 2008;
Papamitsiou and
Economides, 2014

Lau et al., 2003; Boes
and Winkelmann, 2006;
Schneider et al., 2021;
Lewis and Duch, 2021;
Shelat et al., 2022;
Cipolletta et al., 2022

Saelens et al., 2003;
Frank et al., 2010;
Lattman et al., 2016;
Tiznado-Aitken et al.,
2020; Pot et al., 2021;
De Vos et al., 2023
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In transport, there has been very limited research concerning travellers' perceptions,
especially in the context of delays. A large number of studies looked at the impact of
various aspects of the journey on traveller satisfaction (e.g. Brons and Rietveld, 2009; De
Vos et al., 2013; Susilo and Cats, 2014; Cats et al., 2015; Mouwen, 2015; De Oiia and De
Ona, 2015; De Ofia et al., 2016; Machado-Leon et al., 2017; Gao et al., 2018; Obsie et al.,
2020; Monsuur et al., 2021; Rong et al., 2022). However, in most cases, it is difficult to
validate perception with a quantifiable service quality measure (Eboli and Mazzulla,
2021). For example, satisfaction with seat comfort may depend on the type of seat, but the
type of seat is a categorical variable and it cannot be immediately expressed by a numeric
value, as is the case with time or money. On the other hand, delays have an objective
guantifiable measure - time. In this sense, validating the perception of delays can help
understand the relationship between the objective delay (actual performance), subjective
delay (perception) as shown in Figure 30, and subsequently travel satisfaction (utility) or

demand.

Objective
delay

(recorded)

Journey

satisfaction

Subjective
delay

(perceived)

Figure 30 Objective and subjective delays

Whilst investigating the impacts of delays on passenger satisfaction, most studies typically
focus on the relationship between perceived lateness and journey satisfaction. As
suggested by Friman and Fellesson (2009), objective (actual) performance does not always
perfectly explain passenger satisfaction. However, as noted by De Ofia and De Ofia (2015)
and Eboli and Mazzulla (2021), objective performance indicators are more useful than the
subjective ones as they are unbiased. As journey satisfaction data typically come from
passenger surveys, the journey lengths and delays are rarely validated with operational
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data. As argued by Nathanail (2008) and Rong et al., (2022), combining perceived delays
with recorded delays can improve understanding of the impacts of lateness on passenger
satisfaction. A few studies where this is explored include:

e Higgins et al. (2018) looking at the relationship between satisfaction and duration
of car commute combined with respondents’ perceptions of congestion levels in
Canada. As suggested by this study, drivers who perceive congestion as a serious
and frequent issue tend to be less satisfied with their travel times.

o Carrel et al. (2016) matched transit passenger satisfaction data with smartphone
location data from the San Francisco Travel Quality Study to relate satisfaction to
unreliability levels and estimated a 69-percentage-point decrease in the proportion

of satisfied bus passengers following a 10-minute delay.

e Gao et al. (2018) estimated the impacts of differences between expected and
experienced access, egress, and in-vehicle time on the satisfaction of public
transport users in the Chinese city of Xi’an, suggesting that the gap between the

two can better explain satisfaction levels than the absolute values.

e Using data from the Greek rail national survey in combination with operational
data, Nathanail (2008) compared performance and satisfaction levels and
suggested that improvements in station and train facilities as well as developments
of passenger information systems were of paramount importance for Greek

railways at that time.

e Rong et al. (2022) studied the relationship between actual and perceived
performance and passenger satisfaction of bus users in the Chinese city of
Shijiazhuang, concluding that actual travel time is not the most important factor
influencing passengers’ perception of travel time. Instead, they suggested that the
number of stops and stopping times are more important, arguing that these
counter-intuitive results highlight passengers’ inability to perceive time
accurately. The perception of travel time was suggested to be largely influenced
by the negative emotions related to judgment impacted by stopping and speed.
While there are inherent operational differences between buses and trains, this
highlights the importance of factors other than arrival delay in determining

perception of delays or their consequential satisfaction impacts.

The review of the literature on the perception in very different contexts leads to
formulation of the following hypotheses related to how delays may be perceived, given

that delay has an objective and quantifiable measure, time:
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1) It may be expected that the length of delay has to reach a certain threshold to be
perceived.

2) The outcome is binary — a delay is either perceived or not. However, the outcome

will be continuous in the case of looking at the perception of delay lengths.

3) The abundance of different biases affecting perception may also affect delay
perception, e.g. travelling in comfortable versus crowded conditions may have an
impact on the ability to perceive delays due to the negative emotions related to low

journey comfort.

The following section discusses the likely determinants of delay perception as it is noted

that the length of delay is likely not the only factor affecting delay perception.

6.3. Determinants of delay perception
Before discussing the determinants of delay perception and the methodological approach,
it is worth defining some key terms as shown in Figure 31 below:

o Scheduled departure and arrival times are the scheduled times where the train was
due to depart from the origin station and arrive at the destination with the
difference between scheduled arrival time and scheduled departure time equalling

to scheduled journey time.

o Departure delay and arrival delay are the differences between actual and scheduled
departure and arrival times with actual journey time being calculated as the

difference between actual arrival at the destination and scheduled departure time.

As generally suggested by the perception research, perception of a given stimulus or
phenomenon is typically not only dependent on its intensity but also on personal
characteristics or experiences. Conceptually, delay perception may be similar to pain
perception where the research interest lies in understanding the pain levels (or thresholds)
that start being noticeable by patients. In the case of delay perception where the focus is
on understanding how the ability to perceive delays changes with increasing recorded
delay lengths, this can be understood as determining the delay length where passengers
start noticing that they arrived late. While the intuition suggests that the length of delay at
arrival is the key motivator of delay perception, it is of interest to investigate if there are

any other factors affecting how delays are perceived.
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Figure 31 Definitions of delay and journey time
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Whilst satisfaction effects are described in more detail in Chapter 7, it is worth highlighting the key
findings from the literature on passenger satisfaction as journey aspects affecting satisfaction may,
indeed, also affect delay perception. Nonetheless, the length of the experienced delay is expected to be
the key determinant of delay perception with other factors expected to have an indirect (complementary)
effect on how the experienced delays are perceived. These characteristics are assumed to only affect
delay perception if the delay occurred, either increasing or decreasing the ability to perceive a given
delay length. Figure 32 and the paragraphs below describe these expected complementary effects.

Personal
characteristics

Comfort

Delay Delay at Ty

perception arrival e

Delay at
departure

EIEW,
information

Figure 32 Determinants of delay perception

Personal characteristics

In the case of pain, personal characteristics were suggested to play a very important role in how it is
perceived. Passengers who are more sensitive to delays (i.e. commuters) may be more likely to perceive
delays due to a larger focus on on-time arrival resulting from the inclusion of smaller buffer times and/or
larger negative consequences of late arrival (i.e. being late for work) or better knowledge of timetables.

Comfort

Previous research also indicated the important role of journey comfort as increasingly, passengers try
to find ways to use their travel time productively (either working or focusing on leisure activities)
(Lyons and Urry, 2005; Lyons et al., 2007). Similarly, the valuation of journey time is typically higher
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for passengers who travel in crowded conditions as compared to more comfortable settings. Seated

passengers may use their travel time more productively, in turn, being less concerned with performance.
Journey length

It can be expected that passengers’ ability to perceive a delay may differ between shorter and longer
journeys and is likely to decrease with journey length. Therefore, passengers who travel on shorter
journeys may be more likely to notice a smaller difference in travel time as compared to passengers
travelling on longer journeys. This may be related to the inclusion of different safety margins and a
smaller delay already representing a large increase in journey time (as compared to longer journeys).

Delay at departure

While from the operational point of view, the main focus is on the length of delay at arrival (destination),
it may be expected that from the passenger's point of view, the perception of performance is formed by
personal beliefs, judgments and/or experiences. Previous research, particularly the work by Batley and
Ibafez (2012), found significant differences in the impact of departure versus arrival delays on
passengers. It may be expected that a delay at boarding may distort delay perception due to the
additional stress and discomfort related to uncertainty and waiting for a delayed train on platform. As
passengers do not necessarily know the exact scheduled departure and arrival times (Rietveld, 2002), a
large delay at departure may affect the perception of final performance.

Delay information

Similarly, related to personal beliefs or experiences, passengers’ ability to perceive a delay may also
increase if real-time information is provided on-board or announcements about the delays are made to

passengers at stations.
The following sections describe the methodological approaches and report the results of the analysis.

6.4. Binary outcome models of delay perception

6.4.1. Data
In investigating delay perception, the analysis introduced in this chapter employs the data from NRPS.
Passenger responses recorded as part of ten NRPS survey waves between 2015 and 2020 were matched
to operational data using the HSP database as described in section 5.2. This allowed computing
scheduled journey length, actual journey length, and recorded delays (at departure and arrival) for each
of the passengers taking part in the survey. The recorded delays were compared with passengers’ reports

about their experience of delay (Figure 26).

The introductory analysis of delay perception was presented in section 5.2.2 and highlighted that the

proportion of travellers reporting being delayed in the sample increases with the length of recorded
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delay. The subset of the data used in the main body of analysis corresponds to the dataset summarised
in Table 21, but the analysis of delay perception generally focuses on the responses with a matched
delay. However, smaller subsets of the dataset are used in the cases where some variables of interests

were not included in all the analysed survey waves.
The analysis conducted as part of this chapter looks at:

e passengers’ general ability to perceive a delay (section 6.4),
o reported delays when on-time performance was recorded (section 6.5) and

o the perception of delay lengths (section 6.6).

For the first two streams of analysis, binary outcome models of delay perception are estimated whilst
the latter is explored through analysing correlations between reported and recorded delay lengths.

The following section introduces the modelling approach undertaken to study passengers’ general
ability to perceive a delay that represents the main stream of the analysis presented in this chapter. The

alternative lines of investigation are presented in the relevant sections (6.5 and 6.6).

6.4.2. Methodology
With the aim of analysing the relationship between the recorded length of delay and passengers’
perception of being late, the aforementioned delay reports were converted to a binary response variable
with a passenger either reporting late arrival or arriving on time:

v = {1 if passenger reported late arrival
~ |0 if passenger reported arriving on time

(8)
To increase the understanding of the impact of delays on passengers, this work aims to investigate how
the probability of reporting a delay changes with increasing delay lengths. This type of modelling
requires the usage of binary outcome modelling methods. In this case, the modelling approach allows
estimating the probability of a passenger reporting late arrival (i.e. Y = 1) versus arriving on time (i.e.

Y = 0) with the delay perception defined as:
P(Y =1) =F(Bo + B1X1 + -+ Bi X))
(9)
where

1
F= 1+ e_(Bo+B1X1+'“+BiXi))
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(10)
and X is an explanatory variable i, and B; is the corresponding parameter.

If F is the cumulative normal distribution, then the binary response model is referred to as probit. If
instead, it follows the logistic distribution, then the model is referred to as logit. Both distributions are
symmetrical and the main difference is that the logistic distribution has longer tails (Horowitz and
Savin, 2001).

The binary outcome models were estimated using the logit model function in Stata 17 (StataCorp, 2021).
The estimated model coefficients represent the rate of change in the log-odds as the estimated model

has the following form:

p
log(7=) = fo + Buly + o+ Biki
(11)
and
B 1
p= 1+ e—(ﬂo+B1X1+"'+BiXi))
(12)

The estimates can be indicative of the direction of the relationship and size but are relatively difficult
to interpret directly. In addition to the estimated coefficients, estimated probabilities are shown
graphically. Moreover, the delay length thresholds for the probability of perceiving a delay of 0.5
(binary response cut-off where probability smaller than 0.5 is counted as 0 and probability of 0.5 or
more is counted as 1) are compared for the different types of models estimated for comparison purposes,
ie.

1

0.5 = 1+ e_(Bo+lel+"'+BiXi))

(13)

The so-called “delay thresholds’ are estimated using the model results as this presents a way to indicate
a critical level needed to change the outcome, what is easily translated for policymaking. Moreover,
this demonstrates a useful way of comparison between the different types of travellers as well as when
contrasting the lengths of delays that are perceivable versus those that have a detrimental impact on
delay satisfaction (as introduced in Chapter 7). This approach is used throughout the thesis and the

forecasted thresholds are generally presented alongside the forecasted outcomes shown in plots that
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depict the shape of the relationship in more detail. Average marginal effects are not generally reported
due to the limited merit when comparing between the impacts of delays on delay perception and
satisfaction. This is primarily driven by the fact that under the ‘no delay’ scenario, the probabilities of
being satisfied are not necessarily equal to 0 what will be further discussed in Chapter 7.

Four models were considered with delay perception explained by delay length at arrival in the initial

model and extended models with inclusion of the additional variables as shown in Table 24.

Table 24 Description of the estimated models

Measure Variable Expected effect on Model Model Model Model
delay perception 0 1 2 3
(hypothesis tested)
Delay at Recorded length Positive X X X X
arrival of arrival delay
(La)
Personal Journey purpose  Commuters more likely X X X
characteristics  categorisation to perceive delays
(JP)
Comfort Passengers’ Negative, seated X
reports about passengers less likely to
seat availability notice delays
(Seat)
Journey Scheduled Negative, long-distance X X
length journey time travellers less likely to
(SJT) notice delays
Delay at Recorded length  Positive, departure delay X
departure of delay at affecting perception of
departure (Lo) final performance
Delay Not represented Positive, information
information increasing passengers’

focus on delays

The initial model (model 0) has the following form with delay perception modelled as a function of

arrival delay for responses where a delay at arrival was matched:

p
1-p

=6
log(2—) = D (B + 2 X L)
i=1

(14)

In model 1, model 0 is extended to allow for heterogeneity due to journey purpose, i.e.:
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p
1-p

=6
log(—) = ) (P X B+ JP X o X L)
i=1

(15)

where:

JP; is a journey purpose dummy variable for each of the 6 journey purposes that takes the value of 1

when it matches the respondents’ journey purpose or 0 otherwise

Ly ; is the delay length at arrival which is defined as the difference between the actual and scheduled

arrival for all cases where the difference is positive; when the difference is negative, such responses are

treated as on-time arrival

Model 2 aims to test the hypothesis that the marginal probability of perceiving a delay differs with
journey lengths. An interaction term between scheduled journey length, arrival delay and journey
purpose was introduced to the model. Testing how the impacts vary with journey purpose and lengths
is in line with typical rail economics research (i.e. Batley and Ibafiez, 2012). However, journey length
enters the model as a continuous, rather than categorical variable, which is often the case when flows
are segmented into journey length categories in SP studies (i.e. Batley et al., 2019). In SP studies with
just a few different flow types, it may not always be practical to use continuous variables due to the
relatively few distinct values. Hence, the model takes the following form:
i=6

p
lOg(l - p) - ZUPi X Bi +JP; X oy X La; + Py X Bs i X Lig; X SJT})

i=1

(16)

where:
SJT; is the scheduled journey time

Model 3 extends the previous model by investigating the impacts of arrival versus departure delay as
well as journey quality on delay perception. This is to represent the possible complementary nature of
departure delay’s impact on the perception of arrival delay. This is done by introducing an interaction
term between arrival and departure delay to the model. The arrival delay coefficients are also estimated
separately for standing and seated passengers, with the seat dummy variable being a proxy for journey
quality and taking the value of 1 if passenger was able to find a seat or 0 otherwise. As passengers'
reports of seat availability were only available for 7 out of the 10 survey waves, the sample size used

for model 3 is smaller than for the simpler models. This model takes the following form:
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i=6

log (—1 f p) = ZUPi X Byi + Seat; X JP; X By ; X L} + Seat; X JP; X B ; X L} ; X SJT; + JP;
i=1

X By X Ly X L} )

(17)
where:

Seat; is adummy variable that takes the value of 1 if passenger reported having a seat or O otherwise

L}, ; is the delay length at departure which is defined as the difference between the actual and scheduled

departure. If a train departed before its scheduled departure time, this is counted as on time departure.
Additional sensitivity analysis is introduced in Annex I.

It is noted that the proposed models do not include all levels of interacted variables. This was done on
purpose with the aim of only capturing the complementary nature of some of the explanatory variables.
The main effect is then captured by the length of delay at arrival and if any other explanatory variables
are introduced, they are introduced as an interaction between the length of delay at arrival and that
variable. The explanatory variables included scheduled journey length, length of delay at departure and
a dummy variable representing whether a passenger was seated or standing. For completeness, the fully
specified models are also estimated (this applies to models 2 and 3) and compared to the proposed

models.

6.4.3. Results
As noted in the previous sections, the ability to perceive a delay is modelled as a binary outcome based
on respondents’ reports of late running. The probabilities of reporting a delay are estimated and the
delay perception thresholds are predicted for increasing recorded lengths of delays for different types
of journeys, also allowing investigation of the impact of journey quality, length and arrival versus
departure delay on delay perception. The results of the simpler versions of the model are introduced
first, followed by the extended version of the model (i.e. model 3) with more explanatory variables,

with additional sensitivity analysis presented in Annex I.

Initial models of delay perception
This section reports the results of the binary outcome models of delay perception introduced earlier in

section 6.4. The following models are introduced first with the results presented in Table 25:

o Model 0 being the starting point of the analysis where delay perception is explained by the
length of delay at arrival.

e Model 1 that allows for heterogeneity due to different journey purposes.
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e Model 2 investigating the complementary impact of scheduled journey length.

e Model 2a that includes all levels of the interacted variables from model 2.

In line with expectations, the arrival delay coefficients are positive and statistically significant in models
0 and 1 as the probability of perceiving a delay increases with delay length. Introducing journey purpose
segmentation (in model 1) improves R? and a likelihood ratio test (Wilks, 1938) was run to determine
the significance of the increase in the explanatory power, generally justifying the added complexity (LR
test statistic of 2584.59, p-value of less than 0.0001). Figure 33 shows the predicted probabilities of
reporting late running for each of the journey purposes and increasing delay lengths. The predicted
delay length thresholds at 0.5 probability cut-off (p=0.5) suggest that commuters become more likely
to perceive a delay after arriving around 4-5 minutes late. For other types of passengers, this delay
threshold is between 8-11 minutes. On average, a minute of delay increases the probability of noticing
it by around 0.025-0.03 for business travellers to London, 0.03-0.035 for leisure travellers, 0.035 for
non-London business travellers, 0.04 for commuters to London and 0.045-0.055 for non-London
commuters. It is worth highlighting, that for commuters, the probability of delay perception is suggested
to reach almost 1 at delay lengths of 15 minutes. For the other travellers, the corresponding probability
is around 0.75. This would suggest that commuters are more sensitive to delays, resulting from inclusion
of shorter buffers around their PAT or the fact that commuter journeys are typically shorter (see Table

21) and a smaller delay already represents a significant proportional change in journey time.

Business London Business non-London
1 14
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(%\ 5 / .5
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T o o
(@)] T T T T T T T T
c 1 5 10 15 1 5 10 15
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Q
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° 1 1
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9_-) 5 5 /
a . .
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04 0
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Recorded arrival delay (minutes)

Figure 33 Estimated probabilities of delay perception under model 1 from Table 25
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Table 25 Estimated coefficients from the binary logit models of delay perception (models 0-2a)

) 1) ) (22)
Constant -1.4377 -1.7417 -1.784™ -1.744™
(-114.44) (-46.65) (-46.70) (-25.64)
BnL 0.215™" 0.187™ 0.357™"
(3.72) (3.15) (3.55)
CL 0.714™ 0.730™" 0.695™"
(15.06) (15.07) (7.75)
CnL 0.822"" 0.823™" 0.893™"
(15.62) (15.32) (9.29)
LF -0.0637 -0.0854 0.0355
(-1.25) (-1.63) (0.41)
LR -0.0148 -0.0463 0.252™
(-0.34) (-1.03) (3.22)
Arrival delay
BL 0.166™" 0.153™ 0.195™ 0.191™
(86.22) (32.11) (23.63) (19.52)
BnL 0.185™" 0.259™" 0.237""
(26.92) (24.51) (19.43)
CL 0.187" 0.238™" 0.237""
(33.28) (25.84) (20.95)
CnL 0.225™" 0.305™" 0.290™"
(28.11) (24.90) (20.01)
LF 0.185™" 0.241" 0.225™"
(33.69) (31.07) (26.09)
LR 0.171" 0.239™" 0.208™"
(55.70) (47.80) (36.44)
Arrival delay x SJT
BL -0.000358™" -0.000316™"
(-6.50) (-3.93)
BnL -0.000726™" -0.000458™"
(-10.47) (-4.42)
CL -0.00122™" -0.00120™
(-7.57) (-5.00)
CnL -0.00249™" -0.00194™"
(-9.59) (-5.08)
LF -0.000697"" -0.000419™
(-11.24) (-4.47)
LR -0.000541" -0.000213™
(-18.74) (-5.00)
SJT
BL -0.000492
(-0.72)
BnL -0.00285™"
(-3.50)
CL -0.000147
(-0.10)
CnL -0.00427
(-1.93)
LF -0.00326™"
(-4.00)
LR -0.00398™
(-10.42)
N 73050 73050 72884 72884
LL -42557.5 -41265.2 -40772.8 -40699.0
Pseudo R? 0.107 0.135 0.143 0.144

Legend: t statistics in parentheses; " p < 0.05, ™ p < 0.01, ™ p < 0.001; ~ difference between seated and non-seated coefficients being

statistically significant; BL/BnL — Business London/non-London, CL/CnL — Commute London/non-London, LF/LR-Leisure Full/Reduced.
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Model 2 extends model 1 by the addition of an interaction term between scheduled journey time and
arrival delay to test the hypothesis that passengers travelling longer would need to be subjected to a
lengthier delay to perceive it. The estimated coefficients are presented in Table 25 above (under model
2). As expected, the probability of perceiving a delay is suggested to increase with increasing delay
length. However, given the negative coefficients on the interaction between delay length and scheduled
journey time, the probability of perceiving a delay is suggested to decrease with journey length. Figure
34 below shows the predicted probabilities of perceiving a delay for all the journey purposes for
increasing delays at the 10" and 90" percentile of scheduled journey time. This is to take into account
the differing distribution of journey lengths. As the predicted probabilities show, typically for a longer
journey, a longer delay is needed to achieve the same probability of delay perception. The delay
perception thresholds where the predicted probability is 0.5 are shown in Figure 35 below for the 10™
and 90" percentiles of scheduled journey lengths. Therefore, the change in the journey length from the
10" to 90 percentile increases the delay length threshold required for a passenger to be more likely to
perceive a delay. The difference between the delay length thresholds for journeys at the 10" and 90™
percentile of journey length is smallest for commuters (1.7 minutes) followed by business travellers to
London (3.2 minutes), leisure travellers on the full fare (3.5 minutes), non-London business travellers
(4.6 minutes) and leisure travellers on reduced fares (4.7 minutes). However, both the estimated
thresholds and scheduled journey lengths differ between the demand segments. It can be seen that at
the 10" percentile of scheduled journey length, the delay length thresholds show considerable variation
while scheduled journey lengths are similar, as the delay length threshold is the lowest for non-London
commuters at 3.4 minutes for a journey time of 22.5 minutes compared to 9.6 minutes for a journey
time of 22 minutes for business travellers to London. For the longer journeys, the change in the delay
thresholds seems to be driven by scheduled journey lengths rather than journey purpose. Overall, model
2 would suggest that some of the differences estimated in model 1 are, in fact, partly explained by the

inherent differences in journey lengths between the different passenger categories.

Model 2a expands the previous specification (of model 2) by incorporating scheduled journey length
on its own (in addition to its interaction with delay length). However, as shown in more detail in Annex
Il (section A), there are no significant differences between the results of the two estimated models.
While it is generally standard practice to include all levels of the interacted variables, the main interest
here is on the impact that arrival delay has on the perception delay and the complementary nature of
scheduled journey time. Conceptually, scheduled journey time itself should not impact the probability
of perceiving a delay independently of delay. If it does affect it directly (i.e. as allowed in model 2a),
then this could be considered to be an irrational response, unless this demonstrates the impacts of the
expectations about delays on different journey types. Hence, the preferred model in this case remains

model 2.
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Figure 35 Estimated delay thresholds for p=0.5 and 10th and 90th percentile of SJT

Extended models of delay perception
Subsequently, the delay perception is expected to be additionally impacted by journey comfort, onboard

announcements or length of delay at departure as:

1) passengers may be more likely to notice a delay when journey comfort is worse,
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2) passengers waiting for a delayed train at departure may be more likely to perceive a delay than
passengers who were delayed while being on-board or

3) on-board and platform announcements may influence passengers’ perception (though this is not

explored as part of this analysis due to lack of data).

Against this background, model 3 extends model 2 by estimating the coefficients separately for
passengers who reported being seated and standing with results reported in Table 26. Additionally, an
interaction between arrival and departure delay is added to represent the impact of the length of delay
at the departure on delay perception for a given length of arrival (destination) delay. Not including all
levels of interacted variables in model 3 is deliberate, aiming to focus on testing the complementary
effects of the additional explanatory variables to the main effect of the length of arrival delay on delay
perception. However, for completeness and to allow comparison, model 3 is also re-estimated with

inclusion of all levels of interacted variables (model 3a in Table 26).

Model 3 includes a larger number of explanatory variables, but due to data limitations, the sample size
is reduced when compared to the previous models. Hence, assessing whether the more complex model
significantly improves the fit using a likelihood ratio test (Wilks, 1938) is complicated. However, such
a test was run following re-estimation of model 1 with the sample corresponding to that used in
estimating model 3 (results not reported). The LR test statistic of 2066.20 was computed with a p-value

of less than 0.0001, justifying the added complexity.
In summary, under model 3 (as reported in Table 26):

1) Arrival delay coefficients are positive and significant for all journey purposes and in both seat
and no-seat scenarios, though typically larger for non-seated passengers (with not statistically
significant difference for business travellers).

2) The impact of scheduled journey length is generally negative (though insignificant for
commuters and business travellers to London).

3) Discerning the complementary effect of having a seat on how journey length affects delay
perception is more challenging, given that the probability of perceiving a delay increases in a
different way for seated and non-seated passengers. Hence, a reduction in the probability of
perceiving a delay due to increasing journey length for seated and standing passengers is from
a different level.

4) The impact of departure delay is significant and positive, meaning that for a given length of

arrival delay, the probability of perceiving a delay is larger if the train also departs late.
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Table 26 Estimated coefficients from the binary logit model of delay perception (model 3 and
model 3a with all levels of interacted variables)

3 (3a)
Constant -1.666™" -1.773™
(-34.68) (-4.09)
BnL 0.338™ 0.336
(4.60) (0.65)
CL 0.783"™ 0.433
(12.71) (0.95)
CnL 0.966™" 0.843
(13.91) (1.80)
LF 0.00961 0.213
(0.14) (0.44)
LR 0.0416 0.312
(0.75) (0.67)
Seat=1
BL -0.488
(-1.12)
BnL -0.528
(-1.77)
CL -0.462™
(-2.75)
CnL -0.416"
(-2.15)
LF -0.810™"
(-3.72)
LR -0.730™"
(-4.00)
Arrival delay (Seat=0)
BL 0.150™ 0.0941
(2.76) (1.42)
BnL 0.192™ 0.110™
(4.99) (2.78)
CL 0.229™ 0.140™"
(8.55) (4.60)
CnL 0.336™" 0.132"
(10.32) (3.48)
LF 0.290™" 0.125™
(9.84) (3.41)
LR 0.247™ 0.126™"
(10.83) (5.38)
Arrival delay (Seat=1)
BL 0.120™" 0.161""
(9.94) (11.21)
BnL 0.145™ 0.152"™"
(9.16) (9.03)
CL 0.115™ 0.159™"
(7.61) (9.25)
CnL 0.189™" 0.116™
(8.83) (5.74)
LF 0.152™" 0.151""
(11.96) (11.83)
LR 0.144™ 0.159™"
(19.86) (20.39)

Arrival delay x SJT (Seat=0)
BL 0.000512 0.00112
(0.86) (1.24)



BnL

CL

CnL

LF

LR

Arrival delay x SJT (Seat=1)

BL
BnL
CL
CnL
LF
LR
SJT (Seat=0)
BL
BnL
CL
CnL
LF
LR

SJT (Seat=1)
BL

BnL
CL
CnL
LF
LR

Departure delay
BL

BnL
CL

CnL
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-0.000738"
(-2.33)
-0.0000537
(-0.07)
-0.00392"*
(-4.37)
-0.000933™
(-3.15)
-0.000727"
(-4.05)

-0.0000924
(-1.22)
-0.000489™*
(-5.19)
-0.000152
(-0.61)
-0.00168"
(-4.80)
-0.000482™
(-5.51)
-0.000298™
(-7.55)

0.0000925
(0.22)
0.000278
(0.31)
-0.00174
(-1.47)
0.000474
(0.88)
-0.000102
(-0.51)

-0.0000512
(-0.46)
-0.0000159
(-0.12)
-0.000223
(-0.66)
0.000307
(0.70)
0.0000929
0.77)
0.0000536
(0.99)

-0.00129
(-0.21)
-0.00435
(-0.95)
0.0129"
2.71)
0.00851
(1.31)
-0.00601
(-1.45)
-0.00142
(-0.62)

0.0000570
(0.06)
-0.00302™
(-2.83)
0.00627"
(2.94)
-0.00507
(-1.68)
-0.00284™
(-2.62)
-0.00255™
(-5.30)

0.465
(23.27)
0.461"
(22.28)
0.454"
(27.05)
0.450"
(24.11)
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LF 0.466™"
(28.99)
LR 0.453™"
(42.84)
Departure delay x arrival delay
BL 0.0204™" -0.0170™
(13.27) (-14.23)
BnL 0.0153™" -0.0166™"
(9.62) (-14.85)
CL 0.0119™ -0.0186™"
(8.64) (-19.98)
CnL 0.00792™ -0.0167"
(4.94) (-17.55)
LF 0.0106™" -0.0183™
(9.56) (-21.14)
LR 0.0147™ -0.0167™"
(19.54) (-29.23)
N 48793 48793
LL -26973.4 -24095.8
Pseudo R? 0.167 0.256

Legend: t statistics in parentheses; “ p < 0.05, ™ p < 0.01, ™ p < 0.001;
BL/BnL — Business London/non-London, CL/CnL — Commute London/non-London, LF/LR-Leisure
Full/Reduced; SJT: scheduled journey time, Seat=0 represents a standing passenger

The predicted probabilities are shown below in Figure 36-Figure 38 for each of the journey purposes
under the scenarios where passengers did or did not have a seat, for the 10th and 90th percentile of
journey length and the departure delay of respectively 0 and 15 minutes. The complexity introduced by
the multiple interactions between numerous variables makes the direct comparisons complicated.
However, it can be seen that generally, the predicted probabilities of perceiving a delay are always
highest for a given length of delay at arrival if the passenger was standing, the train departed late and
the journey was relatively short. This is also demonstrated by the estimated delay length thresholds at
the p=0.5 in Figure 39 below. Looking at the shorter journeys with a large departure delay and in the
case when the passenger was standing, the estimated thresholds are between 2.0 minutes for non-
London commuters to 3.9 minutes for leisure travellers on full fare. On the other hand, the estimated
thresholds are the largest for the longer journeys with no delay at the departure and when the passenger
was able to find a seat, between 6.4 minutes for non-London commuters to 19.9 minutes for non-London
business travellers. This would be indicative of the impact that both journey quality, length and delay
at departure can have on the perception of arrival delay, also suggesting that the impact of these travel

attributes is much smaller on the commuters.
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Probability of reporting delay

0
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Recorded arrival delay (minutes)
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Figure 36 Estimated probabilities of delay perception for model 3 for business
London (top) and non-London (bottom) under the ‘no seat’ (left) and ‘seat’ scenario

(right)
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Figure 37 Estimated probabilities of delay perception for model 3 for commute
London (top) and non-London (bottom) under the ‘no seat’ (left) and ‘seat’ scenario

(right)
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Figure 39 Estimated delay length thresholds for p=0.5 for different journey quality,
SJT, and departure delay scenarios (based on model 3)

Considering the complexity of the modelling approach and the number of continuous

variables and interactions between them, the summary below aims to highlight the key

conclusions regarding the impact of each of the variables on the delay perception of

different types of travellers.
Business and leisure

The probability of perceiving an arrival delay by business and leisure travellers typically
largely increases with the length of departure delay. As the departure delay increases, the
equivalent delay at arrival required to reach 0.5 probability of delay perception decreases
by up to 15 minutes, depending on journey length and seat availability. This also suggests
that all these attributes have a large and complementary effect on the delay perception.
Travellers on longer journeys may incorporate larger safety buffers to increase the
probability of arriving to the destination before their scheduled activity (i.e. meeting or
leisure activity) starts and, thus are not as sensitive to the smaller delays. Moreover, seated
travellers are also more likely to use their travel time productively (i.e. on work or leisure

activities) which can reduce their focus on on-time versus late arrival.
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Commute

Commuters’ perception of arrival delay is much less likely to be impacted by factors such
as journey quality or length. However, the probability of perceiving a delay generally
decreases if a traveller is seated and for longer journeys, and increases with length of delay
at departure. Nevertheless, these impacts are typically less pronounced for commuters.
Comparing with other travellers, for a given length of delay (all else being equal),
commuters’ probability of perceiving a delay is typically larger than for the other
passengers, but commuter journeys are usually also relatively short. To reach a 0.5
probability of perceiving a delay, typically an arrival delay of 2-8 minutes is needed. This
threshold decreases with increasing length of delay at departure. Having a seat has a
significant and negative impact on the delay perception of London commuters. Non-
London commuters’ perception of delays is less affected by journey quality and departure
delay. This could be a result of the differences in the safety buffers included in their
journeys or differences in service offering that may be characteristic for non-London
services (i.e. lower frequency of departures, meaning that any possible disruption has a

larger impact on their journeys).

It is highlighted that the comparison between the proposed model (model 3) and the fully
specified model (model 3a) that includes all levels of interacted variables is complex due
to the large number of interactions included. In the case of model 3a, some of the estimated
coefficients do not have the expected sign (e.g. the coefficient on the interaction between
arrival and departure delay is negative) or signs differ between journey purposes (e.g. the
coefficients on scheduled journey lengths). While it is expected that the magnitude of the
impact may differ between passengers, the direction of the relationship is expected to be
uniform across all journey purposes and generally in line with the relationships estimated
by model 3. The complication of this is clearly visible in Annex Il in Figure 68. When
looking at the plotted estimated probabilities of delay perception, it is clear that model 3a
(estimated with inclusion of all levels of the interacted variables) fails to correctly predict
the direction of the studied relationship. The estimated probability of perceiving a delay is
suggested to decrease with increasing levels of delay at arrival at larger values of delay at
departure. Moreover, in this case, the average marginal effects also suggest that the impact
of a minute of delay at departure is larger than the impact of a minute of delay at arrival.
This is expected to be due to the presence of multicollinearity in the model with all levels
of interacted variables included. The variance inflation factor (Marquardt, 1970) for model
3a was calculated to be 46.6 as compared to 3.9 for model 3 in its original form, suggesting

that the model with all levels of the estimated variables suffers from high level of
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multicollinearity. Given this, the more parsimonious model (i.e. model 3) which also yields
interpretable and plausible results remains the preferred model.

Model performance

The estimated models have McFadden’s R? (McFadden, 1974) of around 0.1-0.2 what is
of a similar magnitude to the values reported for the ordered logit models of journey
satisfaction in Monsuur et al. (2021) which also used NRPS data. It is clear that while a
meaningful relationship between the variables is found in the data and statistically
significant estimates can be computed, the model overall is not able to capture a very large

proportion of the variance in the data.

To investigate model performance, the estimated models were used to predict the outcomes
(i.e. reports of delay perception) for the respondents in the samples. As summarised in
Table 27, all the models correctly predict over 70% of responses with model 3 performing
best (correct prediction rate of 73.41%). While determining whether model performance
is satisfactory may depend on the context of the study, in this case, for almost 3 in 4
travellers, the model correctly predicts their ability to perceive a delay. There are two
additional measures that are typically reported when commenting on model performance
(e.g. Harris, 2021):

1) Sensitivity, defined as the ratio of correctly predicted positive outcomes (delay
reports) to all positive outcomes. This ratio is also highest for model 3, at 77.77%.

2) Specificity, defined as the ratio of correctly predicted negative outcomes (on-time
arrival reports) to all negative outcomes. This ratio is highest for model 2, at

72.72% with minimal differences between the models.

Additionally, it was investigated what the minimal predicted perceived and maximum
predicted unperceived delay lengths are for each of the estimated models. In the dataset,
there are both cases where a minimum delay length of 1 minute is perceived and the
maximum delay length of 30 minutes is unperceived. In the case of the estimated models,
it is noted that some heterogeneity in the perception of delays is expected that needs to be
controlled for, as is done by the inclusion of additional variables in models 2 and 3. Model
1 is less capable of predicting the heterogeneities in the delay perception reports. Models
2 and 3 are able to better capture the additional effects of journey length and quality as
well as delay at departure what, in many cases, explains why smaller delays are perceived
or larger delays remain unperceived. However, there remains a sizeable proportion of
perceived delays that were predicted to be unperceived. In the dataset, around 35-37% of

respondents reported a delay whereas the proportion of predicted perceived delays is at 18-
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20%. Sensitivity analysis (Annex I) tries to investigate whether the reasons for some wrong
predictions may be attributed to data inaccuracies or heterogeneity in travellers.

Table 27 Model performance

Delay reported Predicted Model 1 Model 2 Model 3
Yes Yes 12.95% 13.93% 15.81%

Yes No 22.93% 21.95% 22.08%

No Yes 539%  561%  4.52%

No No 58.73% 58.51%  57.6%

Total correct predictions 71.68% 72.44% 73.41%
Total reported late (data) 35.88% 35.88% 37.89%
Total predicted reporting late 18.34% 19.54% 20.33%

Sensitivity (true positives to all positives) 70.61% 71.29% 77.77%
Specificity (true negatives to all negatives) 71.92% 72.72% 72.29%
Minimum delay predicted perceived 5 3 2
Maximum delay predicted unperceived 11 30 30

6.4.4. Summary
This section introduced the concept of delay perception by examining how travellers’

probability of perceiving a delay changes with:

increasing delays at arrival and departure,

passengers being seated or standing,

journey length and

journey purpose.
In line with the expectations, the following effects have been suggested:

e The probability of perceiving a delay increases with increasing length of delay at
arrival.

e For any given length of delay at arrival, the probability of perceiving it also
increases with increasing delay at departure.

e For any given scenario, it can be expected that travellers are more likely to
perceive a delay if they are standing (e.g. travel in crowded conditions).

o Typically, the length of the journey contributes to a lower chance of perceiving a

delay.
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e Journey type was indicated to have a strong effect on delay perception as typically,

commuters’ probability of perceiving the same level of delay is larger.

Whilst some of the estimated results are, in fact, intuitive, studying delay perception may
provide an explanation for differing impacts of delays on different types of travellers as
well as explain the possible non-linearities in the delay impacts, which can be a result of
the suggested relationships. Before proceeding to discuss these as part of the remaining
chapters, the following sections will introduce the additional approaches to studying delay

perception, by looking at:

e passengers reporting being delayed when no delay was matched and

o differences in the reported and recorded delay lengths

6.5. Delay perception when no delay is recorded

The previous section investigated how the probability of perceiving a delay changes with
increasing levels of recorded delays. However, as described in section 5.2.2, in 5.8% of
responses, a traveller reported arriving late, but no delay was recorded at the destination
station.

The main limitation of the NRPS dataset is the inability to define the exact journey that
passenger was planning and expecting to make as compared to their actual experience.
This means that while the information provided by passengers regarding their origin,
destination and services used is useful as it allows matching passenger to a specific service
they travelled on, it is impossible to verify whether the actual journey was the same as the
planned one. Moreover, in the case of cancellations and multi-leg journeys, there is a
possibility that passenger responses reflect on the whole journey rather than a specific

journey leg, which can lead to some reporting inaccuracies.

Due to these reasons, the responses where despite on-time performance being matched, a
passenger reported late arrival, were removed from the dataset as noted in section 5.5.
However, some additional analysis may be conducted to understand whether these reports
could have been impacted by the delay at departure that was possibly later recovered (as
no delay was recorded at arrival). Delay at departure may affect judgment and, therefore,
there is a possibility that passengers arriving to their destination on time may perceive

journeys as delayed due to late departure.

On average, a departure delay of 0.38 minutes (95% confidence interval range of 0.376-
0.390) was registered for the responses where passengers reported on-time arrival as
compared to 1.46 minutes (95% confidence interval range of 1.412-1.501) for the

responses where passengers reported late arrival. The difference between the reported
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means is statistically significant (p=0.000). Moreover, Table 28 summarises the
distribution of recorded lengths of delay at departure for responses where no delay at
arrival was matched and passenger either reported arriving on-time or late. In the former
case, over 3 in 4 respondents who reported on-time arrival did not experience a delay at
neither departure nor arrival. In the latter case, when passengers reported late arrival, but
no arrival delay was matched, 1 in 2 respondents were matched a delay at departure with
almost 15% of responses being characterised by a departure delay of over 4 minutes. This
provides some indication that departure delay may also affect delay perception in the cases
where the train arrives to the destination as scheduled. While the difference in the average
departure delay may provide some explanation for this phenomenon, it would indicate that
the thresholds of departure delay perception are smaller than in the case of the previously
modelled delay perception for the responses affected by arrival delays. A simple logit
model was run to investigate this further. This model imitates model 1 from Table 25, but
the outcome variable now refers to delay reports in the case of no recorded arrival delay.
Moreover, the delay perception is explained by the length of delay at departure, rather than
at arrival (results presented in Table 29).

In all the cases, the departure delay coefficients are positive and significant, indicating on
the departure delay affecting travellers’ judgment and increasing the likelihood of
perceiving a delay even if the train arrives to the destination as scheduled. The model
predicts the outcome correctly in almost 80% of responses, though it better predicts the
outcome for passengers who did not report a delay in this case (95.3% correct) as compared
to passengers who did report a delay (21.7% correct). This might indicate on the existence
of some additional reasons (likely data errors) why passengers who did not experience a
delay at arrival reported otherwise as departure delay may be one of the explanations, but

likely not the only one.

Table 28 Distribution of recorded departure delays for passengers who reported on-
time or late arrival

Recorded delay length at  Proportion of passengers  Proportion of passengers

departure who reported on-time who reported late arrival
arrival when no arrival when no arrival delay
delay was matched was matched
0 76.84% 48.17%
1-3 21.69% 37.53%
4-6 1.30% 11.08%

>6 0.17% 3.22%
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Table 29 Logit estimates of delay perception where delay is recorded at departure,
but not at arrival

@)
Constant -2.657"
(-23.98)
BnL 0.173
(1.05)
CL 0.898™"
(6.71)
CnL 1.074™
(7.21)
LF 0.0853
(0.61)
LR -0.123
(-0.97)
Departure delay
BL 0.587""
(14.83)
BnL 0.505™"
(12.32)
CL 0.608™"
(16.47)
CnL 0.506™"
(9.89)
LF 0.439™
(14.39)
LR 0.528™"
(25.89)
N 19130
Log-likelihood -8880.8
Pseudo R? 0.126
% correct 79.76%

Legend: t statistics in parentheses; “ p < 0.05, ™ p < 0.01, ™ p < 0.001;
BL/BnL — Business London/non-London, CL/CnL — Commute London/non-London, LF/LR-
Leisure Full/Reduced

Having investigated travellers’ ability to perceive a delay, the interest now lies in
understanding how accurately the respondents reported the lengths of delays they

experienced which will be investigated in the following section.

6.6. (Mis)perception of delay lengths

Previous sections were concerned with explaining the reasons why:

1) delays are/are not perceived in the cases when delay is recorded (section 6.4) or

2) why they might be perceived despite no delay being recorded (section 6.5).

It may be expected that travellers can not only misperceive the fact of delay occurring but
also its length. The focus of the analysis is on the subset of the dataset with travellers who
reported late running and were also matched a delay and only the first three survey waves
where passengers needed to state experienced delay length in minutes, instead of choosing

the delay length categories (as discussed in section 5.3). The analysis was conducted for
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responses where the recorded arrival delay was up to 30 minutes and passengers reported
that they were delayed by up to 60 minutes, only for passengers who reported not changing
trains (to improve accuracy). The methodology is based on analysing the distribution and
summary statistics for the reported and recorded delay lengths with no additional

econometric models introduced.

Generally, there could be two possible reasons for the existence of differences between
reported and recorded lengths of delays, related to delay perception or rounding errors.
There is a large body of research investigating rounding of survey responses (e.g. Manski
and Molinari, 2010; Giustinelli et al., 2019). For example, in the case of responses reported
on a 1-100 scale, values that are not multiples of 5 occur relatively infrequently (Giustinelli
et al., 2019). In transport, as noted by Rietveld (2001), Sato and Maruyama (2020) and
Sanko and Iriguchi (2022), rounding errors are often present in travel surveys as
respondents round their departure and arrival times to the nearest multiples of 5, 10, 15,
30 and 60 minutes. As noted by Rietveld (2001), the departure times are more likely to be
rounded than arrival times, what can be a result of a larger penalty for late arrival due to
fixed schedules. In the case of the national transport survey from the Netherlands (Rietveld,
2002), only up to 15% of reported times were not multiples of 5, suggesting that rounding
is a very common phenomenon in travel surveys. As suggested by Rietveld (2001), this
highlights the potential for biases and errors in using reported travel time data from

surveys.

Table 30 and Table 31 below provide a summary of respectively average reported delay
length for every possible value of recorded delay and average recorded delay length for
every possible value of reported delay with the distribution of reported delay lengths

presented in a histogram in Figure 40.
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Table 30 Summary of reported delay lengths for each of the recorded delay lengths

Reported delay length (minutes)

Recorded Mean Max Min SD Median N
delay
1 8.87 60 1 9.14 5 745
2 7.84 60 1 8.50 5 710
3 8.63 60 1 9.48 5 647
4 8.26 60 1 7.69 5 628
5 8.27 60 1 8.14 6 557
6 9.13 60 1 7.36 7 399
7 9.86 58 1 7.31 8 366
8 10.05 45 2 6.75 9.5 346
9 10.49 60 1 7.68 10 276
10 12.89 60 2 9.50 10 213
11 12.25 60 1 7.42 10 181
12 12.78 60 1 7.37 10 175
13 13.40 50 1 6.68 12 129
14 14.97 50 1 7.56 15 134
15 14.21 30 1 5.59 15 107

Table 31 Summary of recorded delay lengths for each of the reported delay lengths

Recorded delay length (minutes)

Reported Mean Max Min SD Median N
delay

1 6.22 30 1 7.01 3 79
2 291 29 1 2.77 2 354
3 3.87 30 1 3.74 3 489
4 4.60 30 1 3.85 4 343
5 4.73 24 1 3.49 4 1165
6 5.97 22 1 3.58 5 327
7 6.13 29 1 4.02 5 252
8 7.00 28 1 4.14 7 227
9 7.27 20 1 4.18 7 75
10 7.46 29 1 4.94 7 1166
11 8.88 22 1 4.79 9.5 56
12 9.86 22 1 541 10 109
13 11.59 29 1 5.39 12 49
14 12.52 28 1 5.18 13 31
15 10.44 29 1 6.55 10 543
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Figure 40 Distribution of reported delay lengths

In line with expectations, passenger-reported lengths of delays are scattered around the
closest 5 or 10 minutes. In the case of recorded delays, the lengths that are multiples of 5
represent 15.8% of all responses while 58.3% of passengers reported their delay lengths to
be a multiple of 5. In the case of Rietveld (2001), the rounding to the nearest multiple of 5
was more frequent, characterising up to 85% of travel time reports. However, there are
some key conceptual differences between departure or arrival time (reported in Rietveld,
2001) and the delay length (analysed here). Moreover, it seems that there are relatively few
delay length reports concentrated around 2-8 minutes. Nevertheless, as noted in section
5.2.2, the distribution of recorded delays is skewed towards smaller delays as these are
very frequent. In the case of the studied subsample, 11.6% of recorded delays are of only
1 minute, 32.7% are within 3 minutes and 68.5% are within 8 minutes. In the case of
reported delays, these proportions are respectively 1.3%, 14.8% and 51.2%. A relatively
large number of delay reports (over 30%) in the case of smaller delays is not a multiple of
5. However, this is still lower than the proportion of the smaller recorded delays that are

not concentrated within multiples of 5 (almost 60% of all delays).

The plots below show the average lengths of reported delays for each of the recorded delay
length categories in Figure 41 and the average lengths of recorded delays for each of the
reported delay length categories in Figure 42. This suggests that the average length of delay

is over-reported for recorded delays of up to 15 minutes. However, the difference generally
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becomes smaller with increasing recorded length of delay. In the case of reported delay
lengths, the average recorded delay length (as well as the median as shown in Table 31) is
very close to the reported delay lengths for delays of between 2 to 8 minutes. This would
indicate that passengers who perceive such delays typically also perceive their lengths
more accurately. The increased accuracy may be resulting from the fact that smaller delays,
while generally less likely to be noticed, may be more likely to be perceived by passengers
very sensitive to late running, especially commuters. Commuters are also likely to be more
familiar with scheduled departure and arrival times of services that they regularly use what
can, in turn, enable them to more quickly notice any deviations from the timetable and
estimate any delays more accurately. It is also evident that in the case of reported delays
of 1 minute, the average recorded delay is above 6 minutes, which is due to data errors or
more frequent rounding of delays down to 1 minute in the case of some smaller delays. In
the case of reported delays between 8 and 14 minutes, the average recorded delay is
typically very close to the reported delay length, however, slightly lower. In the case of
larger reported delays, especially above 20 minutes, the relationship becomes more
difficult to follow as the number of responses largely decreases.
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Figure 41 Average reported delay length for each of the recorded delay length
categories
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Figure 42 Average recorded delay length for each of the reported delay length
categories

Upon suggestions that travellers who notice smaller delays may be more accurately
perceiving their duration, additional investigation was conducted to understand the
possible differences between different types of travellers. As suggested by the modelling
in section 6.4, commuters are more likely to perceive smaller delays. Therefore, Figure 43
looks at the average differences between reported and recorded delay lengths for
commuters and other travellers. It can be seen that there does not seem to be a systematic
difference in the accuracy of delay lengths as reported by commuters and other travellers.
The only noticeable difference is the more accurate reporting of the delays in the case of
the reports of 1-minute delays. Hence, this suggests that the improved accuracy of reported
delay lengths for smaller delays may be a result of increased focus on performance by the

travellers with increased sensitivity to lateness (not only commuters).
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Figure 43 Average difference between reported and recorded delay length for
commuters and other travellers
6.7.Conclusions
Motivated by the suggestions by Wardman and Batley (2022) and Rong et al. (2022),
highlighting the importance of understanding how delays are perceived by passengers, this

chapter investigated how the levels of recorded delays affect passengers’ delay reports.

Passenger delay reports from the National Rail Passenger Survey in the United Kingdom
were matched to an operational dataset to relate passengers’ perception of late running to
actual performance. Passengers’ ability to perceive a delay was first modelled as a binary
outcome, explained by the recorded length of delay registered at arrival and departure
points, while also controlling for journey purpose, scheduled journey time, and journey
quality. The results indicate that journey quality, length and delay at departure generally
all have an impact on the perception of final performance with the probability of perceiving
a delay generally suggested to increase with delay at arrival and departure but decrease
with journey time and better journey quality. However, the effect of journey quality and

length is generally larger if a passenger faces smaller delays at departure.

Commuters are suggested to be the most sensitive travellers with respect to delays,
typically being able to perceive arrival delays as small as 2 to 8.5 minutes. For business

travellers, the respective thresholds are between 3.2 to 19.9 minutes and for leisure
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travellers 3.7 to 17.8 minutes. In fact, the estimated thresholds are very similar for the two
latter groups of travellers. Commuters may include shorter buffer times, their journeys are
typically shorter and are also expected to be more familiar with the timetables what can
result in their better ability to notice delays earlier than other travellers.

The analysis highlights the large impact of departure delay on delay perception as it seems
that passengers waiting for a delayed train at the origin station may be more likely to think
that their journey was delayed what can be a result of the increased uncertainty and
discomfort. Similarly, passengers who departed on time and were able to find a seat could
use their travel time more productively, in turn, reducing their ability to perceive a delay
(i.e. a longer delay is needed to achieve the same level of delay perception) and especially
so for the longer journeys. However, the impact of departure delay on delay perception
and satisfaction may, in fact, be different and future studies might want to incorporate
departure delay into modelling the impacts of delays on passenger satisfaction.

Moreover, an attempt was made to investigate the reports of late arrival in the case where
no arrival delay was recorded. This was done to better understand whether such cases are

due to:

1) data errors due to differences between planned, experienced, recorded and
reported journeys or

2) perception of delay being strongly impacted by the delay at departure.

The analysis suggested that the delays that are perceived in the case of recorded on-time
arrival are possibly a result of both judgment impacted by recorded delay at departure and
data errors. On one hand, the probability of perceiving a delay in the case of no recorded
arrival delay was suggested to be larger for cases where a delay at departure was matched.
However, still almost 1 in 2 passengers who reported late arrival and were not matched a
delay at arrival, were also not matched a delay at departure. Further investigation could
possibly explore whether these erroneous reports may have been a result of stopping
patterns (as discussed in Rong et al., 2022), the inclusion of recovery times (as discussed
in Ojeda-Cabral et al., 2021) or delays that happened while being on-board that were fully

recovered.

The next line of investigation was the analysis of perception of delay lengths for travellers
who reported being late and were also matched a delay. The investigation generally
indicated that similarly to reports of departure or arrival times in travel surveys, passengers
tend to round the lengths of delays to the nearest multiple of 5 minutes. However, less

commonly than when reporting departure and arrival times, likely due to a larger penalty
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related to late arrival, as suggested by Rietveld (2001). Travellers generally quite
accurately predict delay lengths between 2-8 minutes whereas longer delays are more often
overstated. This may be a result of correlation between the ability to perceive a smaller
delay and higher accuracy of reporting delay lengths for passengers who are more sensitive
to delays due to their increased focus on train performance. However, the analysis
generally highlighted the previously reported implications related to only using passenger
reports in the analysis of travel patterns as some discrepancies were found that result from

either misperceptions or data errors.

Future research directions and policy implications

The research conducted as part of this chapter fills the important gap in the literature by
improving the understanding of delay perception. The predicted probabilities of delay
perception and the respective thresholds suggest that very short delays are unlikely to be
perceived. These thresholds could perhaps be used in formulating performance targets or
further research into the non-linearity of delay impacts as, in line with previous
suggestions, for a delay to have an impact on passengers, it would typically need to be
perceived first. However, it is important to distinguish between delay perception and delay
impacts on utility (or passenger satisfaction). The impact of delays on satisfaction was
previously studied using the NRPS dataset by Monsuur et al. (2021) where the delay
threshold of 30 minutes was suggested to be the cut-off point after which passengers are
unlikely to remain satisfied with their journeys. That piece of work, however, only focused
on passengers who were able to perceive a delay. This thesis, on the other hand, aims to
test the hypothesis that passengers are not always able to notice the shorter delays which
would suggest that the impact of unperceived delays is perhaps smaller. Therefore, the
most obvious approach is to look at the relationship between delay lengths and reported
satisfaction. This will be done as part of the following chapter and subsequently (in section
7.5) the delay perception thresholds will be contrasted with the satisfaction thresholds what
can help understand the differences between perceived delays and such that have a

detrimental impact on passenger satisfaction.

While this research used data on delay perception matched to an operational dataset, it is
believed that the dataset would benefit from a more detailed description of planned and
actual journeys, including the services that a passenger was planning to travel on and
actually travelled on, and any possible interchanges. In addition to such information, data
on fares, headways and average performance could be a useful addition, allowing for a
more detailed investigation of the studied relationships. The dataset used as part of this
analysis may be prone to some discrepancies resulting from the imperfect information

about passenger journeys.
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Unfortunately, it was impossible to study the impact that on-board and at-station
notifications or access to real-time delay information may have on passengers’ ability to
perceive delays, as it is difficult to understand whether, how and when a passenger was
informed about any disruption. However, it is believed that the provision of information

about late running may also be key in determining passengers’ perception of performance.

This work has increased understanding of passengers’ perception of delay, but it is worth
noting that the policymakers’ and rail operators’ objective should not, therefore, target
travellers’ perception of delays as such approach is unlikely to be welfare maximising. The
major benefits from the perception research would be in incorporating delay perception
into research focusing on the impacts of lateness on passenger satisfaction and ultimately
demand. This could focus on understanding the possible inherent non-linearities in delay
impacts where the delay perception may be one of the explanations for such relationships
being present, possibly leading to a discussion about how smaller versus larger delays
should be treated in designing performance metrics, compensation schemes and appraisal
of schemes looking at improving reliability.



125

Chapter 7
Impacts of delay on travellers’ satisfaction

7.1. Introduction

The impact of delay on passengers is usually articulated in terms of demand and revenue
response — mindful perhaps of the financial implications of revenue compensation through
the performance regimes of track access contracts. However, some previous studies have
suggested that changes in performance may not directly lead to changes in demand, due to
the lack of viable travel alternatives, particularly in the short-run (e.g. Batley et al., 2011).
That said, whilst the demand/revenue impacts of performance may be limited by these
situational constraints, this does not obviate the possibility that late running is detrimental
to passenger satisfaction.

Passenger satisfaction data has been widely used in transport as there is an abundance of
literature looking at how it is impacted by different journey aspects (for reviews see De
Vos et al., 2013; De Ofia and De Ofia, 2015; Gao et al., 2018; Rong et al., 2022). As
suggested by Brons and Rietveld (2009), analysis of passenger satisfaction levels and the
relative importance of different aspects of the journey can usefully inform priorities for
journey quality improvements. Significant heterogeneities in satisfaction levels have been
reported between different types of travellers and transport mode users (e.g. Brons and
Rietveld, 2009; St-Louis et al., 2014; Susilo and Cats, 2014; Transport Focus, 2015;
Lunke, 2020). However, in most of the studies, travel time, value for money, performance

and journey comfort were found to be the strongest determinants of passenger satisfaction.

Chapter 4 discussed the design of the currently operating compensation scheme as well as
the determinants of passenger engagement with the scheme and its impacts on operators’
revenues. It was highlighted that the currently used delay thresholds where passengers
become eligible to claim compensation were set arbitrarily and to better understand what
lengths of delays are of detrimental impact to passenger satisfaction, more research is
needed - especially looking at the potential non-linearities in delay impacts. Chapter 6
noted that there is a very limited number of studies investigating the relationship between
the perception of unreliability and satisfaction. Moreover, even fewer studies are related
to public transport users (e.g. Transport Focus, 2015; Carrel et al., 2016; Gao et al., 2018;
Monsuur et al., 2021). In all these cases, as expected, the lower performance of public
transport was, however, suggested to negatively impact upon travellers’ satisfaction. One
of the conclusions from the analysis of perception, however, was that some shorter delays

have a very low probability of being perceived, what might indicate on the possible limited



126

consequential impacts on passenger satisfaction too. It was implied that for a delay to have
an impact on satisfaction, it would typically need to be perceived first.

On the other hand, it was noted that there generally is an abundance of studies investigating
the determinants of traveller satisfaction. The modelling approaches utilised by these
studies are often very different as these depend on the nature of the dependent (satisfaction)
variable and the availability and nature of explanatory variables. For example, the
satisfaction variable may be related to a specific journey experience (e.g. Gao et al., 2018;
Soza-Parra et al., 2019; Monsuur et al., 2021) or general satisfaction with transport (e.g.
Cats et al., 2015; Efthymiou et al., 2019). Moreover, as suggested by Gao et al. (2018),
most of the research on journey satisfaction is empirically-driven where the choice of the
functional relationship is made at the discretion of researchers.

It was further noted that there is substantial precedent for exploiting satisfaction data in
public policy research. In the context of the Dutch railways, Brons and Rietveld (2009)
analysed passenger satisfaction with different journey aspects and their relative
importance. Travel time reliability was found to be the second-worst scored journey aspect.
Matching NRPS satisfaction data to operational data, Monsuur et al. (2021) found that the
probability of being satisfied with a train journey decreases sharply after 30 minutes of
delay (or 10 to 20 minutes if a passenger is standing in a crowded train), highlighting the
importance of both travel time and comfort for passenger satisfaction. Transport Focus’
(2015) analysis of the NRPS survey revealed that commuters are least satisfied with their
journeys and most sensitive to delays. According to Transport Focus (2015), passenger
satisfaction levels tend to start declining from the very first minute of lateness but decline
less rapidly for business and leisure than for commute, until a tipping point (respectively
5 and 8 minutes of lateness) is reached, suggesting that smaller delays may have a smaller
marginal impact on passenger satisfaction. Hence, there is some research discussing these
topics, however, this chapter proposes some alternative approaches. One of the issues often
faced when modelling choice of satisfaction categories may be found in their non-
guantitative nature, complicating the interpretation of the results. For example, it is not
immediately clear what a difference between ‘very satisfied’ and ‘fairly satisfied’ means
for passengers’ well-being and, hence, the implications of such change for policymakers,
regulators or operators. In principle, the analysis forming part of this chapter aims to build
on the work conducted by Monsuur et al. (2021) to increase understanding of the impact
that delays have on passenger satisfaction. This will be explored by focusing on reported

satisfaction with punctuality and analysing:
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2)

3)
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how the probability of being satisfied with punctuality changes with increasing
levels of recorded delays,

the delay lengths that are detrimental to passenger satisfaction and

the potential indirect impact of other journey aspects, i.e. journey length and
comfort on how delays affect passenger satisfaction.

In doing so, the NRPS data described in Chapter 5 is employed to conduct analysis of the

relationship between recorded lengths of delays and reported satisfaction. The major

contribution of the work conducted as part of this chapter compared to the numerous

studies looking at passenger satisfaction lies in studying the relationship between recorded

delay lengths for a given journey experience and reported satisfaction (i.e. similar to

Monsuur et al., 2021). The major differences between this study and Monsuur et al. (2021)

are related to:

1)

2)

3)

The choice of the dependent satisfaction variable relating directly to satisfaction
with punctuality as a specific journey aspect rather than focusing on overall
journey satisfaction where performance is one of the many components affecting
passenger satisfaction.

Apart from modelling passenger satisfaction using ordered logit model, some
modifications are made to the NRPS dataset to study the relationship between
performance and satisfaction using the binary choice framework (i.e. satisfaction

versus dissatisfaction).

Aggregating the satisfaction data at the origin-destination pair level and estimating
models of passenger satisfaction at an OD pair level to facilitate the application of

the estimated results in policymaking (e.g. setting performance targets).

Having considered the different possible representations of the satisfaction variable, this

chapter will also address two additional lines of analysis:

1)

2)

comparison of the relationship between delay length and probability of perceiving
a delay versus being dissatisfied with it and
investigation of the marginal (dis)utility of lateness, looking at how the additional

impacts of delays on satisfaction (utility) change with increasing delays.

The remainder of this chapter is structured as follows:

Section 7.2 describes the methodology used in this chapter and the main

differences between this work and the study by Monsuur et al. (2021).
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e Section 7.3 then reports the results of the modelling approaches introduced in the
methodology section.

e Summary of the results is presented in section 7.4.

e Section 7.5 reconciles the concepts of delay perception and satisfaction to compare
the delay length thresholds where these become perceived by passengers and such
that start having detrimental impacts on passenger satisfaction.

¢ Investigation of the potential non-linearities in delay impacts forms part of section
7.6.

o Finally, section 7.7 provides conclusions based on the work presented as part of
this chapter.

7.2. Methodology

Modelling of passenger satisfaction is explored using the responses to the questionnaire
from NRPS matched to operational data (as described in section 5.2) with the aim of
analysing the impact of recorded performance on satisfaction reported on a 5-point Likert
scale. There are two variables that describe passenger satisfaction that are particularly

relevant to this work:

1) overall passenger satisfaction (Figure 27) that is assumed to be affected by delays,
but also other journey characteristics (e.g. comfort) as used in Monsuur et al.
(2021) and

2) satisfaction with punctuality (Figure 28) enabling studying a direct relationship

between delays and satisfaction.

There are benefits and disadvantages of using each of the two variables described above.
The first approach allows to study the relative importance of different journey aspects
(such as the ones related to train, station, staff, ticket prices, etc.) for passenger satisfaction.
This is, however, the variable that is most similar to the ones used in the previous studies
of passenger satisfaction (e.g. Monsuur et al., 2021). In the case of punctuality satisfaction,
there is, however, no need for controlling for these aspects. For example, it is not expected
that journey quality directly affects punctuality satisfaction. Rather, it can have a
complementary impact on how delays affect punctuality satisfaction — i.e. better journey

quality may limit the negative impact of delays on punctuality satisfaction.

Statistical models are developed to explore the existence of a systematic and quantifiable
relationship between passenger rail performance and passenger satisfaction with
punctuality, whilst also controlling for the possible complementary impacts of other

factors. Two alternative modelling approaches are employed:
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e the ‘passenger’ model concerned with the impact of a given delay episode on a

passenger’s satisfaction and

e the ‘OD’ model concerned with the impact of average performance on average

levels of passenger satisfaction by origin-destination (i.e. station-to-station) flow.

Moreover, the modelling approach employs two alternative interpretations of the 5-point

satisfaction scale used in the NRPS questionnaire:

e binary response where the original 5-point scale is consolidated into 2 — so as to

focus on the threshold at which passenger is satisfied versus dissatisfied and
e ordered response retaining the original 5-point scale.

A priori, it is expected that delays have a negative impact on journey satisfaction. Table
17 showed the distribution of satisfaction scores for the travellers with a matched delay
and how average recorded delay and overall satisfaction (NRPS question 16 in Figure 27)
correspond to satisfaction with punctuality (NRPS question 9 in Figure 28). As expected,
the passengers who scored their satisfaction with punctuality lower were typically
subjected to lengthier delays — from around 4 minutes of average recorded delay for
passengers ‘very satisfied” with punctuality to 12 minutes for those who were ‘very
dissatisfied’. Overall satisfaction levels decrease with both increasing delays and
decreasing satisfaction with punctuality — from 4.6 for passengers ‘very satisfied’ with
punctuality to 2.5 for passengers ‘very dissatisfied” with punctuality as in line with the
previous literature, performance is expected to be playing a key role in determining

passenger satisfaction.

While the NRPS employs a 5-point satisfaction scale with the choice of satisfaction

categories being:
1) very dissatisfied,
2) fairly dissatisfied,
3) neither satisfied nor dissatisfied,
4) fairly satisfied and
5) very satisfied,

the satisfaction scale gives a degree of insight into the strength of feeling, but the scale
itself is not strictly cardinal. Thus, a 1-point increase on the scale (e.g. from ‘very

dissatisfied” to ‘fairly dissatisfied’) may not imply the same increase in punctuality
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satisfaction as an increase from ‘fairly satisfied’ to ‘very satisfied’. In this case, logistic
regression would, in principle, be a more appropriate functional form than linear
regression, since it takes account of such non-linearity. However, it has also been
suggested that results from linear and logistic regression models applied to satisfaction
data are often similar (i.e. Ferrer-i-Carbonell and van Praag, 2002; Stutzer and Frey, 2008).
The main disadvantage of using logistic regression in satisfaction modelling is its

complexity, as linear forms are easier to implement and interpret.

Now, consider the two alternative interpretations of the satisfaction scale — firstly the raw
ordinal scale, and secondly translation of the ordinal scale into a dichotomous ‘satisfied’
or ‘not satisfied’ variable. It is noted that the binary representation of the satisfaction
variable allows easier representation of the delay impacts as there is a clear threshold of
satisfaction and dissatisfaction, which lends itself to ready interpretation. However,
retaining the original scale allows full investigation into the dynamics of the studied
relationship and can provide additional insights into the strength of satisfaction or
dissatisfaction. Hence, both interpretations are utilised as explained further below.

Interpretation a): the ordinal data is converted to binary

The proposition behind this interpretation is that the 5-point ordinal scale is not a
continuous scale and that at some point on the scale, there is a threshold of satisfaction
versus dissatisfaction. Dichotomisation of ordinal data is a common approach in the
literature, for example in medical research (Capuano et al., 2007; Sankey et al., 1998).
While it is noted that dichotomisation of responses leads to a loss of information as ordinal
or continuous variables provide more accurate insight into the strength of response, binary
representations may help provide more direct conclusions that are easier to understand for
the wider audience (DeCoster et al., 2009; Farrington & Loeber, 2000). The loss of power
may be a significant concern, especially when sample sizes are small or events rare, which
may often be the case with medical research. For example, in clinical trials, the distribution
of outcomes may be skewed and the strength of response may also be of importance
(Ceyisakar et al., 2021; Manor et al., 2000). Nonetheless, any dichotomisation needs to
have a theoretical justification — for example, dichotomisation of variables simply based
on the median split is considered inappropriate (Fitzsimons, 2008). As suggested, the loss
of power resulting from the dichotomisation of ordinal data may be justified in the cases
with specific cut-off points, such as vaccine efficacy against infection (Capuano et al.,
2007). It is argued that in the case of passenger satisfaction, such a cut-off point is the
switch point between satisfaction and dissatisfaction. After discussions with the railway

industry, it has become clear that a question often asked by stakeholder relates to the
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threshold values of delays, i.e. to determine levels of delays that are acceptable for
passengers. Given the ability to define the clear cut-off points and a relatively large sample
size, the ordinal scale has been converted into a binary outcome, representing satisfaction
versus dissatisfaction and analysed in addition to the original ordinal representation.

That said, there is more than one way to consolidate a 5-point scale into a binary variable
as the satisfaction/dissatisfaction cut-off point may be interpreted in more than one way,

and the following three versions are therefore tested:

e VI: 1 ifpassenger was ‘very satisfied’” with punctuality (46.3%) and 0 if otherwise
(53.7%),

e V2: 1if passenger was ‘very’ or ‘fairly satisfied” with punctuality (79.0%) and 0
if otherwise (21.0%) and

o V3:1if passenger was not ‘fairly’ or ‘very dissatisfied” with punctuality (86.3%)
and O if otherwise (13.7%).

In what follows, these alternative versions of the binary variable are used to explore the
relationship between the length of delay and the probability of being satisfied. V2 is
conceptually the closest to representing satisfaction versus dissatisfaction and it also
follows the usual convention adopted by Transport Focus when reporting passenger
satisfaction, where the top two categories (i.e. ‘very’ and ‘fairly satisfied”) are merged and

compared to the other categories (e.g. Transport Focus, 2020a).
Interpretation b): the ordinal data is retained

The proposition behind this interpretation is that the 5-point scale is a continuous ordinal

scale.

In what follows, the ordinal data is modelled to discern patterns of switching between
different satisfaction/dissatisfaction categories by the length of delay. Whilst the 5-point
scale is rather less amenable to policy work, this is the natural form of the data and reveals

additional insights, which cannot be discerned from the binary formulation.

On the basis of restricting the dataset as discussed in Chapter 5 (see Table 21 for
descriptive statistics), the sub-sample taken forward comprised 72,363 ‘on-time’ and
74,651 ‘delayed’ responses — although for some of the models, the dataset was subject to

further (albeit modest in most cases) attrition due to missing data in respect of covariates.
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Having previously noted that the NRPS data has been used to study the impact of delays
on satisfaction (e.g. Monsuur et al., 2021), the following section aims to discuss the
similarities and differences between the two bodies of work.

7.2.1. Differences in the approach to modelling satisfaction used by Monsuur et al.
(2021)

During the course of this PhD, a study was published by Monsuur et al. (2021), attempting
to model passenger satisfaction and investigating how it changes with increasing delays.
This study has been referred to in multiple places in the thesis as the methodology and the

findings are relevant and show many similarities. The purpose of this section is to describe

the main differences between the two studies as summarised in Table 32.

Table 32. Main differences between the satisfaction modelling employed in this
chapter and Monsuur et al., 2021

Difference

Expected impact

Data from 10 waves of
NRPS survey used as
compared to 2 in Monsuur
etal. (2021).

Monsuur et al. (2021)
restricts the dataset to
responses where delay was
both recorded and reported.
Such restriction is not
imposed in this chapter.

The core analysis in this
chapter uses data on
satisfaction with
punctuality rather than
overall satisfaction used in
Monsuur et al. (2021).

The recorded delays were
retrieved using TRUST
database in Monsuur et al.
(2021) instead of HSP
database (used for this
work).

Apart from the ordered
logit also used by Monsuur
et al. (2021), alternative
approaches are also
introduced in this chapter.

Since the number of observations is larger, this is likely
to increase the accuracy and statistical significance of
the estimated results.

Retaining responses where passenger did not perceive a
delay or was not delayed aims to allow for studying the
impact of both perceived and unperceived delays on
passenger satisfaction.

Satisfaction with punctuality is expected to be more
directly linked to a delay experience. Therefore, it
allows understanding the impacts of delays on
satisfaction and how these are affected by journey
quality and length. This is somewhat different to the
impact that journey quality has on overall satisfaction.

As noted by Monsuur et al. (2021), TRUST [Trains
Running Under System TOPS (Total Operation
Processing System)] records real-time train performance
by comparing recorded train timings at designated
timing points (e.g. stations, junctions). HSP only
provides the timetabled and recorded timings at
timetabled stopping points, what is sufficient for the
purposes of this study.

The different modelling approaches used in this chapter
aim to decrease the complexity of the estimated models
to allow easier interpretation of the results, increase the
usefulness of this work for policymakers as well as
serve as sensitivity tests.
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As noted above, despite the similarities in the research questions investigated, there are
some important differences that make the work conducted as part of this chapter unique
with respect to the variables and methodological approaches used. This aims to provide
new insights as well as facilitate the application of the results to policymaking/regulatory
contexts, such as setting performance targets or designing compensation schemes.

Having discussed the differences in the analysis of passenger satisfaction conducted as part
of this chapter and the work done by Monsuur et al. (2021), the following section aims to
provide a more detailed description of the modelling approaches used as part of this

chapter.

7.2.2. Modelling approach
As aforementioned, there are three dimensions of the satisfaction modelling undertaken as
part of this chapter:

1) satisfaction (dependent) variable relating to overall or punctuality satisfaction,
2) binary or ordinal representation of the satisfaction variable and
3) individual passenger or aggregated OD-level modelling approach.

Further details are now given on these approaches.

7.2.2.1. The ‘passenger’ model
Passenger model is concerned with modelling the satisfaction reported by individual
passengers following the experience of a delay event of a specified duration. This approach
offers particular insight into passenger satisfaction across the distribution of delays. Within
the passenger model, satisfaction with punctuality is modelled using both interpretations
of the satisfaction variable (i.e. binary and ordinal), and the binary interpretation is also

modelled using all three versions of the satisfaction threshold (i.e. V1-V3).
In more formal terms, the binary response variable takes the form:

_ {1 if passenger is satisfied with punctuality
~ |0 if passenger is not satisfied with punctuality

(18)

The binary representation is modelled in a way that is methodologically very similar to
modelling delay perception in Chapter 6 with the initial model conforming to the
specification of model 1 in 6.4.2 and the extended version conforming to model 3. The

only difference is the change of the outcome variable.
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The binary response models (i.e. pertaining to the binary formulation of the data), as well
as the ordered response models (i.e. pertaining to ordinal data) to follow, were estimated
using Stata 17 (StataCorp, 2021). The estimates are indicative of the direction and strength
of relationships between satisfaction with punctuality and the explanatory variables but
may be challenging to interpret directly. Similarly as in the case of delay perception, in
addition to the estimated coefficients, predicted probabilities are shown graphically for a
range of arrival delay lengths from 0 to 30 minutes (for binary models) with comparisons
made between the predicted delay dissatisfaction threshold (at p=0.5 of satisfaction

probability), i.e.

1

05 = A e Gorprr—+pxD)

(19)

Following the analysis outlined above, the binary response model was extended to estimate
passengers’ probability of choosing each of the five satisfaction levels. As the dependent
variable can now take one of the five categories (more similar to the methodology used by
Monsuur et al., 2021), which are in sequential order, an ordered logit model (McCullagh,
1980) was employed to estimate the latent continuous variable y*. In this case, the
probability of choosing a satisfaction category i is estimated for k thresholds, thus:

P(Y =0) =P(ki—y <y" <k;)
(20)
In this case, the probability of Y =i is:
P(Y=1)=F(k;—n) —F(ki—y —n)
(21)
where:
F is the cumulative distribution function of the logistic distribution and y* =n + €.

Similarly, to the binary outcome models introduced above, the choice of explanatory

variables conforms to the models of delay perception, i.e. model 1 for the initial model:

i=6

M=) U X Bui+JPi X o X L)
i=1

(22)
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and model 3 for the extended model:

i=6
n= ZUPL X Bl,i + Seatl- X]Pi X ﬁZ,i X L:l-,i +Seatl- X]Pl' X BS,i X L:l-,i X S]Tl +]Pl
i=1
X Bai X Li; X Lp )
(23)
where:

JP; is a journey purpose dummy variable for each of the 6 journey purposes that takes the

value of 1 when it matches the respondents’ journey purpose or 0 otherwise

L ; is the delay length at arrival which is defined as the difference between the actual and
scheduled arrival for all cases where the difference is positive; when the difference is

negative, such responses are treated as on-time arrival
SJT; is the scheduled journey time

Seat; is a dummy variable that takes the value of 1 if passenger reported having a seat or

0 otherwise

L’lg‘i is the delay length at departure which is defined as the difference between the actual
and scheduled departure. If a train departed before its scheduled departure time, this is

counted as on time departure.

In logistic regression, the coefficients represent the change in log-odds of the outcome (i.e.
being satisfied with punctuality) for a given change in explanatory variables, indicating
the strength and direction of the relationship. This highlights one of the limitations of
logistic regression relative to linear regression, in that the direct interpretation of the
coefficients is less straightforward. However, the estimated coefficients can be converted
into margins, representing the predicted outcome for a given change in an explanatory
variable. Nevertheless, in the case of multiple explanatory variables, and especially if these
are continuous, such interpretation becomes difficult because of the multi-dimensionality
of the problem. This is further complicated in the ordered logit model where there are
always five outcome categories leading to a set of five estimated probabilities for each set
of values of explanatory variables. Hence, in the case of the ordered logit model in its

extended form, this limits the ability to present the results of the modelling graphically.

7.2.2.2. The ‘OD’ model
The main difference between passenger and OD models is that, whilst the former consider

the impacts of a delay event of a given length on journey satisfaction at the individual
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passenger level, the latter consider average performance across the responses gathered on
a given OD pair and its impacts on the proportion of satisfied passengers.

This reformulation of the problem necessitates averaging of the raw passenger-level data
for each OD pair with the dataset restricted to the OD pairs with at least 25 responses
(arbitrary threshold) — which in the present work markedly reduced the scale of the dataset
to 676 observations (OD pairs). It follows that the proportion of satisfied passengers (again
using the three alternative versions of delay satisfaction V1-V3) is now expressed in
relation to Average Passenger Lateness (APL). Similarly, the other variables represent
means or proportions — for example, seat availability is presented as the proportion of
passengers who were able to find a seat for a given OD. The averages are not weighted for
flow sizes as the distribution of delays in NRPS is not necessarily representative of that in
the network.

The model is formulated in terms of the proportion of passengers satisfied with punctuality,
which lends itself to a fractional outcome logit regression (Papke & Wooldridge, 2008) —
as stated below. The model is conceptually similar to the binary logit model, but rather
than considering the probability of being satisfied, here we consider the proportion of

satisfied passengers. In more formal terms:
E(Y|X) = F(Bo + B1 X1 + -+ BiXy)
(24)
where:

1
F= A4 e GorpiXar )

(25)

To simplify the studied relationship, the interaction between delay length at arrival and
departure was excluded and journey purpose subcategories were grouped together, hence:
i=3
E(Y|X) = F(Z (JP: X By + Seat; X JP; X By X L ; + Seat; X JP; X B X L ;
i=1

X SJT;)

Unlike the passenger model, the OD model is not amenable to ordinal data, since such data

does not readily lend itself to averaging.
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7.3.Modelling results

This section reports the results for the modelling approaches described in the previous
section, starting with the so-called passenger model (and its binary and ordinal
representations) and subsequently, the OD model using only the binary representation of

the response variable).
The following models are estimated, as summarised in Table 33:
1) Passenger model
a) Binary

i. Initial model for three versions of punctuality satisfaction (Table
34)

ii. Extended model for three versions of punctuality satisfaction with

additional control variables (Table 36)
b) Ordinal
iii. Initial model for punctuality satisfaction (Table 39)
iv. Initial model for overall satisfaction (Table 39)

v. Extended model for punctuality satisfaction with additional

control variables (Table 41)
2) The OD model
a) Binary only

i. Extended model with control variables (Table 45)

Table 33 Guide to different model permutations estimated (OS refers to overall
satisfaction while PS refers to satisfaction with punctuality)

Passenger model OD model
Binary Ordered Binary
Initial Table 34 (PS) Table 39 -
(PS, OS)
Extended Table 36 (PS) Table 41 (PS) Table 45 (PS)

7.3.1. The ‘passenger’ model
Binary logit
The binary logit passenger model estimates the probability of a passenger being satisfied

with punctuality, having experienced a journey, which may have been on-time or late —
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with satisfaction being treated as a binary rather than ordinal outcome. The probability of
being satisfied was modelled using each of the three versions of satisfaction (V1-3),
outlined in section 7.2, for different journey purposes using the initial and then extended
model specification.

In the first model (reported in Table 34), the binary outcome for the three versions of
satisfaction (V1-3) is explained by recorded delay at arrival, whilst allowing varying
impacts by journey purpose. All the coefficients are statistically significant and, as
expected, arrival delay has a negative impact on satisfaction with punctuality, meaning that
the probability of being satisfied decreases with increasing delay length. McFadden’s R?
values of around 0.1-0.2 are reported, which is of a similar magnitude to the models of
delay perception. This suggests that while a general relationship is well-described by the
estimated models, the models are unable to predict the choice of some of the respondents,
e.g. where satisfaction was reported despite a long delay or dissatisfaction was reported
when a relatively small delay was recorded.

The purpose of the constant is to capture the probability of being satisfied with punctuality
under ‘no delay’. Intuitively, one might expect passengers to report complete satisfaction
with punctuality if they are not subjected to late running. However, significant differences
in the constant were found between different types of passengers, in particular suggesting
that commuters’ probability of being satisfied is lower in the ‘no delay’ case than that for
leisure and business travellers. When passengers reported arriving on time, commuters’
average satisfaction with punctuality was found to be 3.66, as compared to 4.38 for the
whole dataset. By contrast, when passengers reported arriving late, the respective average
satisfaction scores were 2.93 and 3.08. This suggests that commuters are unlikely to be
‘very satisfied” with punctuality regardless of the level of performance. The possible
reasons for this may include strategic bias where passengers score satisfaction lower to
influence decision-making, or passengers reflecting more generally on performance rather

than describing their satisfaction with the specific journey leg (as asked in the survey).
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Table 34 Estimated binary logistic regression coefficients for the three versions of
the binary representation of the punctuality satisfaction variable

Sat V1 Sat V2  Sat V3

Constant 0.468™" 2554  3.374™
(24.99)  (79.56)  (76.10)

BnL -0.154™  -0.304™ -0.387""
(-497)  (-6.21)  (-5.92)

CL -1.294™  -1.505™" -1.690""
(-49.39)  (-41.04) (-34.58)

CnL -1.312""  -1.610"" -1.847™
(-41.99)  (-40.71) (-35.95)

LF 0.194™  -0.0271 -0.0388
(7.82)  (-0.65)  (-0.67)

LR 0.292"" 0.188™ 0.135™

(13.29)  (4.95)  (2.58)

Arrival delay
BL -0.0954™ -0.133™" -0.154™"
(-25.78)  (-34.55) (-35.66)
BnL -0.138™ -0.175"" -0.183™
(-23.64) (-32.78) (-33.22)
CL -0.184™ -0.171"" -0.178™"
(-25.86)  (-39.87) (-42.89)
CnL -0.211™ -0.180™" -0.181™"
(-21.42)  (-32.02) (-34.11)
LF -0.135™ -0.163™" -0.178""
(-31.52)  (-38.64) (-38.77)
LR -0.109™ -0.152™" -0.163"™"
(-48.15)  (-63.14) (-61.51)
N 133478 133478 133478
Log-likelihood -81605.2 -53501.1 -39138.9
Pseudo R? 0.117 0.170 0.200

Legend: t statistics in parentheses; * p < 0.05, ™ p < 0.01, ™ p < 0.001;
BL/BnL — Business London/non-London, CL/CnL — Commute London/non-London, LF/LR-
Leisure Full/Reduced
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Figure 44 shows how the predicted probabilities of delay satisfaction change with
increasing delays. For better comparison between the different versions of delay
satisfaction (i.e. V1-3), as well as across different journey purposes, Table 35 shows the
predicted delay lengths where the probability of accepting a delay is equal to 0.5 (i.e. the
threshold at which a passenger becomes more likely to be dissatisfied than satisfied). As
expected, the probability of being ‘very satisfied’ with punctuality (i.e. Version 1) is
always smaller than the probability of being satisfied under the more relaxed definitions
of delay satisfaction (i.e. Versions 2 and 3), and this applies to all journey purposes. The
large difference between the probabilities of accepting a delay under V1 vs. VV2-3 of the
response variable suggests that the definition of satisfaction versus dissatisfaction has a

large impact on the results.

Commuters’ probability of being satisfied with punctuality never reaches 0.5 under V1 of
delay satisfaction. However, for business travellers, the estimated probability of being
satisfied with punctuality is larger than 0.5 for delays smaller than 5 minutes (London
travellers) and 2.3 minutes (non-London travellers). In the case of leisure travellers, the
threshold is 4.9 minutes for travellers on Full fares and 7.0 minutes on Reduced fares.

Business London Business non-London
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B — =Re) \-
S | — S~ S
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Ew =®
Q© 2©
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0 10 20 30 0 10 20 30
Arrival delay (minutes) Arrival delay (minutes)
Leisure Full Leisure Reduced
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Probability
0.24.6.81
Probability
0.2.4.6.81
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Arrival delay (minutes) Arrival delay (minutes)
Sat_V1 Sat_V2 Sat_V3

Figure 44 Probability of ‘delay satisfaction’ for increasing delay lengths and
different journey purposes based on the three definitions of delay satisfaction V1:
(5) vs (1-4) ; V2: (4-5) vs (1-3); V3: (3-5) vs (1-2) based on the model from Table 34.
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Under V2 with a more relaxed definition of delay satisfaction (i.e. ‘very satisfied’ and
“fairly satisfied’ categories), the predicted delay lengths where passengers are more likely
to be dissatisfied with punctuality (i.e. p=0.5) increase. For business travellers, the
threshold increases to 19.3 minutes (London travellers) and 12.9 minutes (non-London
travellers). The respective thresholds for commuters are much lower — 6.2 minutes for
London and 5.3 minutes for non-London travellers. The thresholds for leisure travellers
are more similar to those of business travellers — 15.5 minutes for Full fare and 18.1 for
Reduced. The relatively large difference between London and non-London business
travellers may be a result of differences in journey quality, slightly longer journeys (though
it is noted that the average journey length is only slightly longer for London business
travellers) or inclusion of larger buffers which make these travellers less sensitive to any

potential delays.

The estimated thresholds suggest that, as expected, commuters are the most sensitive group
of travellers with respect to delays. Relaxing the definition of delay satisfaction further
(i.e. inclusion of the ‘neither satisfied nor dissatisfied’ category) increases the predicted

delay length satisfaction thresholds by around 3 minutes for all types of passengers.

Table 35 Delay length thresholds at the estimated probability p=0.5

Delay at Delay at Delay at
p=0.5 p=0.5 p=0.5
V1 V2 V3
Business London 5.0 19.3 21.9
Business non-London 2.3 12.9 16.4
Commute London - 6.2 9.5
Commute non-London - 5.3 8.5
Leisure Full 49 155 18.8
Leisure Reduced 7.0 18.1 21.6

The comparison presented above asks for a commentary regarding how the estimated
satisfaction thresholds compare with the perception thresholds estimated in Chapter 6 what

will be discussed in section 7.5.

The V2 of the model is now re-estimated with the addition of control variables (as in the
case of the perception models) with the results presented in Table 36. The estimated model
now has a larger number of dimensions as delay satisfaction is explained by multiple

continuous variables and interactions.
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Table 36 Estimated coefficients for the binary logit model with controls (aligning
with the model 3 of delay perception estimated in Chapter 6)

(V2) (V2a)
Constant 2.662"" 1771
(62.67) (6.33)
BnL -0.397™ -0.239
(-6.18) (-0.65)
CL -1.516™" -0.701"
(-31.36) (-2.38)
CnL -1.672™ -1.121™
(-32.02) (-3.67)
LF -0.0902 0.247
(-1.62) 0.77)
LR 0.0573 0.166
(1.16) (0.53)
Seat=1
BL 1.042"
(3.60)
BnL 1.026™"
4.14)
CL 0.482""
(4.61)
CnL 0.686™"
(5.06)
LF 0.792""
(4.74)
LR 0.899™"
(6.07)
Arrival delay (Seat=0)
BL -0.311™ -0.114"
(-5.75) (-2.21)
BnL -0.303™" -0.104™
(-8.26) (-2.96)
CL -0.279™ -0.138™"
(-11.53) (-5.79)
CnL -0.351™" -0.111™
(-12.97) (-3.76)
LF -0.332™" -0.136™"
(-12.31) (-5.18)
LR -0.275™ -0.100™"
(-13.77) (-5.32)
Arrival delay (Seat=1)
BL -0.171™ -0.160™"
(-14.65) (-13.20)
BnL -0.193™ -0.148™
(-14.16) (-10.70)
CL -0.185™" -0.167"
(-15.09) (-12.94)
CnL -0.228™" -0.126™"
(-15.74) (-7.95)
LF -0.203™" -0.146™
(-18.39) (-12.75)
LR -0.161™ -0.125™"
(-24.50) (-18.99(
Arrival delay x SJT (Seat=0)
BL 0.00111" 0.0000748
(2.02) (0.12)
BnL 0.000796" -0.000587

(2.51) (-1.43)
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CnL

LF

LR

Arrival delay x SJT (Seat=1)

BL
BnL
CL
CnL
LF
LR

SJT (Seat=0)
BL

BnL
CL
CnL
LF
LR

SJT (Seat=1)
BL

BnL
CL
CnL
LF
LR

Departure delay
BL

BnL
CL
CnL
LF

LR
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-0.000453
(-0.62)
0.00178"
(1.99)
0.00137*
(4.06)
0.000648"
(3.54)

0.000549™*
(6.70)
0.000620™"
(6.92)
0.00112"
(5.35)
0.00134™
(4.84)
0.000814™
(8.58)
0.000472"*
(11.31)

-0.000324
(-0.45)
0.000588
(0.58)
0.000315
(0.94)
-0.0000399
(-0.22)

0.000222*
(2.31)
0.0000332
(0.30)
0.000755™
(3.12)
0.000198
(0.61)
0.000154
(1.38)
-0.0000457
(-0.96)

0.00122
(0.29)
0.00899"
(2.34)
-0.0114™*
(-3.77)
-0.00877
(-1.75)
0.00180
(0.60)
0.00228
(1.20)

0.00297""
(3.38)
0.00427"
(4.20)
-0.00242
(-1.81)
-0.000694
(-0.35)
0.00402""
(3.98)
0.00480™"
(9.58)

-0.307"
(-19.14)
-0.339""
(-20.49)
-0.271
(-21.09)
-0.269""
(-18.08)
-0.305"
(-23.30)
-0.304"
(-36.11)
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Departure delay x arrival delay

BL -0.00919™" 0.0103™
(-10.37) (10.31)
BnL -0.00498™* 0.0121*"
(-5.58) (13.81)
CL -0.00200" 0.0121*"
(-2.43) (15.89)
CnL 0.00161" 0.0110"™
(2.01) (14.83)
LF -0.00242™" 0.0117"
(-3.65) (16.33)
LR -0.00621™" 0.00966™""
(-15.75) (20.89)
N 87882 87882
LL -34114.7 -32109.5
Pseudo R? 0.196 0.243

Legend: t statistics in parentheses; * p < 0.05, ™ p < 0.01, ™" p < 0.001;
BL/BnL — Business London/non-London, CL/CnL — Commute London/non-London, LF/LR-Leisure
Full/Reduced; SJT: scheduled journey time, Seat=0 represents a standing passenger

Under model V2 in its extended form, delays at both departure and arrival are suggested
to have a negative impact on delay satisfaction. This highlights the potential impact that
departure delay may have on how passengers perceive late running, therefore, increasing
the likelihood of being dissatisfied with punctuality. Alternatively, it may be related to the
additional inconvenience and uncertainty related to waiting for a delayed train on platform.
Having a seat has a mitigating impact on delay satisfaction, as seated passengers may be
able to use their travel time more productively. All else being equal, journey time typically
has a small positive impact on delay satisfaction, especially for seated passengers. In the
case of standing London commuters, scheduled journey length is suggested to have a
negative impact on delay satisfaction (though not significant). To some extent, this may
be explained by the suggestion by Cats et al. (2015) that long commute is generally

associated with lower satisfaction with public transport.

Model V2 was also re-estimated with the inclusion of all levels of the interacted variables
(model VV2a). Similarly to model 3 of delay perception (from the previous chapter), in the
case of the fully specified model, the model is affected by multicollinearity and the
probability of being satisfied is suggested to start increasing with the length of delay at
arrival for longer delays at departure, as depicted in Annex Il (section B). This confirms
that the fully specified model is unable to correctly capture the modelled relationship,

hence, the originally proposed model (\VV2) is retained as the preferred one.

The predicted perception thresholds in Chapter 6 were investigated in great detail (since
the amount of research concerning delay perception is much more limited). For brevity,
the probabilities of being satisfied with punctuality were estimated based on the extended
binary logit model (reported in Table 36) for each of the 6 journey purposes and only for

the 4 scenarios represented in Table 37 (as shown in Figure 45).
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Table 37 Scenarios used in reporting probabilities of being satisfied with punctuality

Scenario SJT Departure Seat Arrival delay
delay
1 Mean value 0 No
2 for each of the 0 Yes .
. 0-30 minutes
3 journey 15 No
4 purposes 15 Yes
Business London Business non-London
> >
=0 Zoo
Q0 ©o 0o
I
ow Be
oo oo
0 10 20 30 0 10 20 30
Arrival delay (minutes) Arrival delay (minutes)
Commute London Commute non-London
> >
Eoo Ex
Qo 0 ©o
S« S+ %z
o« o
oo Qo
0 10 20 30 0 10 20 30
Arrival delay (minutes) Arrival delay (minutes)
Leisure Full Leisure Reduced
P >
L) £
Q ©o Qo
o« =
oo Qo
0 10 20 30 0 10 20 30
Arrival delay (minutes) Arrival delay (minutes)

15 DD, seat

15 DD, no seat

No DD, no seat No DD, seat

Figure 45 Probability of ‘delay satisfaction’ for increasing delay lengths and
scenarios shown in Table 37
The delay length dissatisfaction thresholds (defined as the arrival delay length with equal
predicted probabilities of satisfaction and dissatisfaction) were estimated (Figure 46),
similarly to the delay perception thresholds (from Figure 39). The differences between the
predicted dissatisfaction thresholds are mostly similar for leisure and business travellers,
with much lower thresholds typically predicted for commuters. Table 38 provides a

summary of the estimated values.
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BL BnL CL CnL LF LR

[ = T S =
N &~ O 0O O

Recorded arrival delay (minutes)
[E=N
(e}

oS N B~ O ®

B No seat, 10th SJT, 0 departure delay
® No seat, 10th S]T, 15 departure delay
No seat, 90th S]T, 0 departure delay

No seat, 90th S]T, 15 departure delay

H Seat, 10th SJT, 0 departure delay
W Seat, 10th SJT, 15 departure delay
H Seat, 90th SJT, 0 departure delay
W Seat, 90th SJT, 15 departure delay

Figure 46 Estimated thresholds of delay dissatisfaction

Table 38 Summary of the impacts of having a seat, journey lengths and departure
delay on arrival delay dissatisfaction thresholds

Increase in the threshold due to

Journey Minimum Having a seat Longer No delay at
purpose threshold (i.e. journey departure
standing, long
departure
delay, short
journey)
Business 6.3 +2 to +11 +3to +13 +2to +20
Commute 35 +2 to +6 0to +3 -1to +2
Leisure 7.4 +3to0 +15 +3 10 +12 +1to +15

The summary presented above highlights the impact of both journey quality and length on
the impact of delays on passenger satisfaction. Moreover, for non-commuters, it would
seem that being delayed at departure from the origin station has a large impact on delay
satisfaction, likely due to the additional stress, uncertainty and discomfort related to late
departure as well as any possible impacts that delay at departure may have on the
perception of final performance. Section 7.5. will compare the concepts of delay

perception and satisfaction.

This section presented results from the models of passenger satisfaction that used the
binary representation of the data. The subsequent section utilises the original (ordinal)

nature of the satisfaction scale, estimating ordered logit models of passenger satisfaction.
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Ordered logit

The ordered logit works with the natural form of the data by modelling the probability of
choosing each of the five original satisfaction categories for a given delay length. This
allows insight into the dynamics of the reported satisfaction, especially with respect to how
the most likely satisfaction category changes with increasing delay length.

Firstly, an ordered logit model is estimated in its initial form. The choice of satisfaction
categories is explained by arrival delay while allowing for differing impacts by journey
purpose. Of note, the models are estimated for two dependent variables — punctuality
satisfaction in the first model (as in the case of the previous models) and overall satisfaction
in the second model (as in the case of Monsuur et al., 2021) with the estimated coefficients
presented in Table 39. It is noted that satisfaction with a journey is likely affected by more
factors, such as those related to journey quality. However, as modelling of overall journey
satisfaction is not the main focus of the thesis, more sophisticated models of overall
journey satisfaction are not introduced in this chapter with the overall journey satisfaction
model reported for reference only.

Table 39 Estimated logistic regression coefficients for the ordered logit model of
punctuality and overall satisfaction

(1 Punc_Sat) (2 Overall_Sat)

Journey purpose

BnL -0.178™ -0.187"
(-6.19) (-6.80)
CL -1.360" -0.805™
(-59.27) (-36.18)
CnL -1.450"" -0.798™
(-55.56) (-31.21)
LF 0.157" 0.331™
(6.64) (14.91)
LR 0.280™" 0.378™
(13.37) (19.21)
Arrival delay
BL -0.114™ -0.0648™"
(-37.84) (-21.99)
BnL -0.159™" -0.0911™

(-41.65) (-24.48)
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CL -0.163™ -0.135™
(-51.32) (-45.71)
CnL -0.169™ -0.136™
(-42.15) (-36.77)
LF -0.155™" -0.0782"™
(-46.71) (-24.35)
LR -0.134™ -0.0653™
(-71.93) (-35.98)
Threshold 1 -4.186™" -4.618"™
(-181.24) (-170.56)
Threshold 2 -2.994 -3.293"™
(-148.88) (-160.26)
Threshold 3 -2.354" -2.194™
(-122.67) (-120.02)
Threshold4  -0.518" 0.192"
(-29.09) (11.38)
N 133478 137176
LL -148630.6 -148002.3
Pseudo R? 0.0971 0.0554

Legend: t statistics in parentheses; “ p < 0.05, ™ p < 0.01, ™ p < 0.001;
BL/BnL — Business London/non-London, CL/CnL — Commute London/non-London, LF/LR-
Leisure Full/Reduced; Punc_Sat and Overall_Sat refer to satisfaction with punctuality and overall
journey satisfaction

The dynamics of the changes in the dominant categories are different for the models with
the dependent variable being satisfaction with punctuality (Figure 47) and overall journey
satisfaction (Figure 48). It is worth making some references to the models estimated by
Monsuur et al. (2021) where the overall satisfaction model contained a larger number of
explanatory variables. Monsuur et al. (2021) estimated that the dominant category choice
of overall satisfaction is ‘fairly satisfied” up to around 50 minutes where it changes to ‘very
dissatisfied’. 30 minutes was indicated to be the delay length that is detrimental to
passenger satisfaction. The analysis conducted as part of this chapter suggests a similar
relationship, but a much quicker change between satisfaction and dissatisfaction,
especially so for commuters. While the exact comparisons are difficult due to the

differences in the modelling approaches or variables used, Table 40 summarises the
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dominant satisfaction category choice for increasing delays from the models reported in

this section for overall and punctuality satisfaction as well as in Monsuur et al. (2021).

The key observation is that the differences between the two outcome variables may be

explained by overall journey satisfaction also being affected by other aspects of the

journey. This also suggests that especially in the context of this piece of work, using

satisfaction with punctuality as a variable of interest is preferable. Moreover, the smaller

difference in the predicted probabilities (i.e. for the model of punctuality and overall

satisfaction) for commuters would suggest that these travellers’ overall satisfaction is

much more impacted by the delay lengths (with a much smaller impact of other journey

aspects).
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Commute London

T T T
0 10 20 30
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Passenger lateness

——— V DSat(1) ——— F_DSat(2)

3) F Sat(4) ——— V_Sat(5

Figure 47 Probability of punctuality satisfaction for increasing delays and different

journey purposes
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Figure 48 Probability of overall satisfaction for increasing delays and different
journey purposes

Table 40 Comparison of the estimated dominant satisfaction choice based on overall
or punctuality satisfaction and Monsuur et al. (2021)

Journe Monsuur
ur OSZ Punctuality Satisfaction Overall Satisfaction et al.
purp (2021)
Very satisfied dominant up to 10
minutes
. _ . . . Fairly
Fairly satisfied dominant between Fairly satisfied satisfied
Business 10 to 20-25 minutes dominant up to 30 .
. dominant
minutes UD 10 50
Very dissatisfied dominant for 20- p
. minutes
25+ minutes
- — Very
Fairly satisfied dominant up to 10 Fal_rly satisfied dissatisfied
. dominant up to 15 .
minutes . dominant
minutes
Commute for 50+
Very dissatisfied dominant for 10+ L minutes
. Very dissatisfied
minutes

dominant for 15+
minutes
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Very satisfied dominant up to 10

. Very satisfied
minutes

dominant up to 5

. - . minutes
Fairly satisfied dominant between

Leisure 10 to 20-25 minutes

Fairly satisfied
dominant for 5+

Very dissatisfied dominant for 20- .
minutes

25+ minutes

With reference to Table 39, the ordered logit model is subsequently extended to include
the same control variables as the binary response model from Table 36 with results
reported in Table 41 (model Punc_Sat). In common with the binary model, the results
highlight the importance of journey length and quality in determining the impacts of delays
on passenger satisfaction as the estimated coefficients are of the expected signs. The
extended model of punctuality satisfaction has a slightly higher pseudo R? of over 0.1.
While this is somewhat lower than the values reported in Monsuur et al. (2021) for the
ordered models of overall journey satisfaction, this is probably due to the more complex
nature of punctuality satisfaction as opposed to overall journey satisfaction. The estimated
margins are not presented for the ordered logit model in its extended version due to its
complexity as the choice probabilities for each of the scenarios relate to five, not two
choices (as is the case with the binary outcome models). In practical terms, the same
amount of information provided for the binary logit model in Figure 45 would need to be
shown on four different plots for the ordered logit model, which also highlights the benefits

of the binary representation of the modelling framework.

The model was re-estimated with the inclusion of all levels of interacted variables (model
Punc_Sat_1). Similarly as with the binary logit models, reported in the previous sections,
the fully specified model predicts that at larger values of departure delay, the probability
of being very dissatisfied (response 1) starts decreasing with longer delay at arrival (Annex
I1, section C). Hence, the fully specified model is not able to correctly predict the studied
relationship. Additionally, there is the aforementioned problem with multicollinearity,

hence, the original more parsimonious model is retained as the preferred model.
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Table 41 Estimated ordered logit coefficients for punctuality satisfaction with

controls
(Punc_Sat) (Punc_Sat_1)
BnL -0.245™" -0.446
(-6.57) (-1.69)
CL -1.394™ -0.946™"
(-47.34) (-4.45)
CnL -1.465™" -1.289""
(-42.91) (-5.70)
LF 0.110™" 0.0348
(3.58) (0.15)
LR 0.187" 0.00969
(6.99) (0.04)
Seat=1
BL 0.686™"
(3.38)
BnL 0.891"
(5.00)
CL 0.409™"
(4.80)
CnL 0.685™"
(5.89)
LF 0.792™
(7.00)
LR 0.744™
(7.32)
Arrival delay
(Seat=0)
BL -0.193™ -0.0838"
(-4.66) (-2.24)
BnL -0.255™" -0.108™"
(-10.19) (-4.36)
CL -0.257" -0.147
(-16.71) (-9.22)
CnL -0.314™ -0.118™"
(-17.06) (-5.40)
LF -0.284™" -0.125™"
(-14.62) (-6.25)
LR -0.262™ -0.104™
(-16.99) (-6.87)
Arrival delay
(Seat=1)
BL -0.143™ -0.131™
(-16.33) (-14.36)
BnL -0.179™ -0.131™
(-17.76) (-12.54)
CL -0.180™" -0.157™"
(-18.50) (-15.08)
CnL -0.233"™ -0.136™"
(-20.35) (-10.49)
LF -0.189™" -0.133™
(-21.97) (-14.83)
LR -0.140™" -0.101™"
(-29.24) (-20.62)
Arrival delay x SJT (Seat=0)
BL 0.000114 0.00000429
(0.27) (0.01)
BnL 0.000682"™ -0.000286

(2.60) (-0.97)
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CnL
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Arrival delay x SJT (Seat=1)

BL
BnL
CL
CnL
LF
LR

SJT (Seat=0)
BL

BnL
CL
CnL
LF
LR

SJT (Seat=1)
BL

BnL
CL
CnL
LF

LR

Departure delay

BL

BnL

CL

CnL

LF

LR
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0.000610
(1.44)
0.000263
(0.41)
0.000892"
(4.07)
0.000598™*
(3.88)

0.000397"*
(6.64)
0.000553"*
(8.02)
0.000814™*
4.77)
0.000867"*
(3.87)
0.000764™*
(10.59)
0.000431"*
(14.29)

0.000276
(0.63)
0.0000166
(0.02)
0.000183
(0.72)
0.0000866
(0.55)

0.000233"*
(3.34)
0.000119
(1.48)
0.000470"
(2.35)
0.0000248
(0.09)
0.000269™
(3.22)
0.0000236
(0.69)

-0.00313
(-1.07)
0.00660"
(2.66)
-0.0125™"
(-4.90)
-0.0136"
(-3.10)
0.000764
(0.37)
0.0000257
(0.02)

0.000921"
(2.11)
0.00259***
(4.81)
-0.00214"
(-2.07)
-0.00248
(-1.56)
0.00194"
(3.88)
0.00329"**
(13.39)

-0.264"
(-22.96)
-0.280"
(-23.60)
-0.256""
(-25.19)
-0.251"
(-21.14)
-0.280"
(-28.04)
-0.267""
(-44.35)
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Departure delay x arrival delay

BL -0.00551™ 0.00783™"
(-10.65) (11.25)
BnL -0.00288™" 0.00891
(-5.68) (13.79)
CL -0.0000687 0.0112*
(-0.14) (18.50)
CnL 0.00328™* 0.0107*
(6.29) (17.97)
LF -0.00256™" 0.00956™"
(-5.23) (16.04)
LR -0.00493™" 0.00709™
(-20.29) (21.17)
cutl -4.393" -4.013™
(-147.00) (-20.08)
cut2 -3.117 -2.702™
(-120.47) (-13.56)
cut3 -2.458™ -2.004™
(-99.49) (-10.06)
cut4 -0.627 -0.0607
(-27.29) (-0.30)
N 87882 87882
LL -95882.9 -92964.9
Pseudo R? 0.112 0.139

Legend: t statistics in parentheses; “ p < 0.05, ™ p < 0.01, ™ p < 0.001;

BL/BnL — Business London/non-London, CL/CnL — Commute London/non-London, LF/LR-
Leisure Full/Reduced; La, Lp refer to length of delay at arrival and departure, SJT: scheduled
journey time, Seat=0 represents a standing passenger

7.3.2. The ‘OD’ model
Whilst passenger-level models reported in section 7.3.1 were concerned with the impacts
of a single on-time or delayed journey on passenger satisfaction, the OD model examines
the impacts of average performance on the proportion of satisfied passengers, using the

same three versions of satisfaction (i.e. V1-3) as before.

Passenger responses were sorted by origin and destination pair and subsequently
aggregated and averaged at the station-to-station level for OD pairs with at least 25
passenger responses. 676 such OD pairs were identified. It is noted that as NRPS is
generally representative of the rail trips in the UK, selecting OD pairs with only 25 or more
responses means that only the more popular flows are represented in the sample. Moreover,
as the responses are averaged across each of the flows, each flow contributes equally to
the results. However, the NRPS is not necessarily representative of the delay distribution
across the network, thus it is not considered appropriate to account for flow sizes.
Nevertheless, it must be highlighted that caution is needed when using the model outputs
to generalise about the network-wide impacts. Table 42 shows a correlation matrix of the
variables of interest. It can be seen that arrival delay is negatively correlated with the
proportion of satisfied passengers using the three definitions of delay satisfaction. Table

43 summarises the variables of interest for the sub-sample of OD pairs retained for analysis
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and Table 44 shows the distribution of responses per OD pair. Average passenger lateness
ranges from O to 8 minutes with a mean value of 2.85 minutes. This is similar to both the
APL levels reported across the whole NRPS dataset as well as to those recorded at the
network level in ORR (2022) APL statistics. Across the OD pairs in the sub-sample, an
average journey time of 60 minutes was recorded whilst around 10% of passengers were

standing and 90% were seated.

A fractional response logit model was estimated for the three definitions of delay
satisfaction (i.e. V1-3). Estimated coefficients are reported in Table 45. The number of
journey purpose categories was reduced to just three (business, commute and leisure) to
facilitate interpretation and due to relatively small and insignificant differences between
journey purpose sub-categories suggested by the passenger models of satisfaction in
section 7.3.1. as well as to take into account the effectively reduced sample size. The
purpose of the constant varying by journey purpose is to control for differences in how
passengers score their satisfaction with punctuality in the case of ‘no delay’. Furthermore,
an interaction between lateness and scheduled journey time and an interaction between

lateness and the proportion of seated passengers enter the model as explanatory variables.

It is noted that the ‘OD’ models have relatively low pseudo R? values when comparing
with the ‘passenger’ models. However, these models are expected to perform worse as
they use values that are averaged across all the responses within each of the OD pairs, thus
ignoring the distribution of the averaged values. It also means that while a general
relationship was estimated, there are multiple cases where the predicted proportions of

satisfied passengers are much higher or lower than the actual values.

Whilst APL is suggested to have a negative impact on the proportion of satisfied
passengers, all else being equal, the impact of journey length is (in most cases) positive,
but insignificant. At the same time, the proportion of seated passengers has a significant
impact on satisfaction only in the case of commute. The insignificance of some of the

coefficients may be a result of the OD model being:

1) based on averages and proportions (thereby moderating the variance in the data)

and

2) based on a reduced sample size (i.e. around 700 OD pairs so as to focus on flows

with a reasonable number of passenger responses).

Nevertheless, the coefficients are of the expected signs, but only the APL coefficients are

statistically significant for all journey purposes.
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The proportion of passengers satisfied with punctuality was plotted for the three definitions
of delay satisfaction (VV1-3) in Figure 49 for a typical (average) journey. Figure 50 on the
other hand shows the proportion of passengers satisfied with a given level of performance
using Version 2 of delay satisfaction by journey purpose.

Under V2 of delay satisfaction, the proportion of commuters satisfied with performance
for a given level of APL is typically lower, in line with the previously estimated models.
Whilst around 80% of commuters would typically be satisfied with performance if all
trains run on-time, the proportion decreases to 50% for APL of around 5 minutes,
suggesting an average decrease of 6 percentage points (pp) per minute of average lateness.
For the other journey purposes, the proportion of satisfied passengers is above 90% under
perfect performance (i.e. APL=0), but at an APL of around 5 minutes, satisfaction
decreases to around 80%, on average by 2 pp per minute of average lateness. This means
that the reduction in the proportion of satisfied passengers is also more pronounced for

commuters than it is for other travellers.

This would suggest that for any two OD pairs with comparable levels of APL, it is the
journey purpose split (i.e. especially the proportion of commuters) that will have the most
impact on differences in passenger satisfaction. Therefore, if the proportion of commuters
using a given OD flow increases, all else being equal, then levels of satisfaction are likely
to reduce. It is also worth highlighting that, whilst an explicit journey length effect could
not be clearly discerned, longer journeys will generally be subjected to higher absolute
APL (0.4 correlation in the sample) and, at the same time, they will involve a smaller
proportion of commuters. Therefore, journey length is likely to have an indirect impact on

the proportion of satisfied passengers via related variables.

The models were re-estimated using all levels of the interacted variables (V1_AL-V3_AL).
For the V2_AL model, as shown in Annex Il (section D), at lower levels of APL, OD pairs
with longer journey times are suggested to have a lower proportion of satisfied passengers
what changes at higher levels of APL. Similarly to the previously estimated models, this
suggests that when all levels of the interacted variables are included, the direction of the
estimated relationship is not always plausible, highlighting the problems with using the
fully specified models. Due to this reason, the original version of the model has been

retained as the preferred version.
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Proportion of satisfied passengers
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Sat_V1 ——— Sat V2 ———— Sat V3

Figure 49 Levels of ‘delay satisfaction’ for increasing average delay based on the
three definitions of delay satisfaction V1: (5) vs (1-4) ; V2: (4-5) vs (1-3); V3: (3-5) vs
(1-2) based on the model from Table 45

Proportion of satisfied passengers
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1 1 1 1
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Figure 50 Proportion of satisfied passengers under Version 2 of delay satisfaction at
the average values of control variables
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Variables (1) (2) (3) 4) (5) (6) (7 8) 9) (10) (11) (12) (13)
(1) APL (arrival) 1.000

(2) D15 0.802  1.000

(3) Punct (Sat_V1) -0.144  -0.021  1.000

(4) Punct (Sat_V2) -0.316 -0.160 0.829  1.000

(5) Punct (Sat_V3) -0.337 -0.179 0.759  0.933  1.000

(6) Overall (Sat_V1) -0.081 0.036 0737 0619 0563 1.000

(7) Overall (Sat_V2) -0.160 -0.047 0.719 0732 0.712 0.716  1.000

(8) Overall (Sat_V3) -0.221 -0.112 0599 0.683 0.702 0.558 0.806  1.000

(9) APL (departure) 0.605 0545 -0.391 -0.536 -0.546 -0.142 -0.270 -0.330 1.000

(10) SJT 0365 0.338 0490 0405 0376 0.277 0303 0.254 -0.154 1.000

(11) PStated 0.681 0454 -0597 -0.740 -0.732 -0.380 -0.505 -0.538 0.727 -0.133 1.000

(12) PRecord 0.768 0416 -0.276 -0.378 -0.378 -0.200 -0.237 -0.259 0451 0.157 0.677 1.000

(13) PSeat 0.016 0.095 0558 0570 0546 0423 0520 0547 0285 0451 -0.393 -0.134 1.000

Legend: APL: average passenger lateness; D15: proportion of delays over 15 minutes; Punct/Overall: punctuality/overall satisfaction; V1-V3: three versions of
binary representations of satisfaction; SJT: scheduled journey time; PStated, PRecorded, PSeat: proportion of passengers reporting being delayed, being matched a

delay and reporting having a seat respectively; variable names in bold refer to the variables used in models from Table 45.
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Table 43 Variable summary (Variable numbers correspond to variables presented in Table 42)

Variable (1) (2) (3) 4) (5) (6) (7) (8) 9) (10) (11) (12) (13) B C L
Mean 285 004 049 081 08 039 08 094 168 61.33 021 055 091 019 028 053
SD 148 004 015 012 009 012 0.09 0.05 116  49.72 012 018 010 014 029 0.23
Min - - 003 039 044 007 048 066 - 3.34 - - 035 - - -
Max 800 024 085 1.00 1.00 0.78 1.00 100 6.48  309.64 0.66  0.97 1.00 0.67 1.00 0.98

Legend: B, C and L: proportion of business, commute and leisure travellers respectively; variables in bold refer to the variables used in models from Table 45.

Table 44 Distribution of the number of responses per OD pair (N>25)

Mean

SD Min

Max

P25 P50 P75

N

Responses

83

133

25 1554

32 47 79

676
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Table 45 Estimated coefficients of the OD model with control variables

V1 V1 AL V2 V2 AL V3 V3 AL

Constant  0546°  -7.855  2.783 5753  3.296  -2.583
(2.03)  (-210)  (7.65)  (-1.44)  (7.40)  (-0.59)
Commute  -0.886™  7.595%  -1289™*  6.685  -1.141"  4.920
(-3.02)  (202)  (-3.32)  (1.62)  (-2.43)  (1.10)

5 Leisure 0.178 8.501 -0.348 5.167 -0.250 1.208
(0.51) (181)  (075)  (0.97) (045  (0.20)
APL -0.602"™"  -0.565™  -0.674™"  -0.423" -0.776™"  -0.78""
(-5.04)  (-2.58)  (-748)  (221)  (-7.96)  (-3.48)
SIT -0.0109 -0.00952 -0.00243
(-1.48) (-1.12) (-0.24)
= PSeat 0.368 1.225 0.104
§ (0.50) (1.57) (0.11)
©  APLXSIT 000081 000257 000160 000420 000189  0.00212
(-0.70)  (0.99) (1.31) (1.45) (1.41) (0.63)
APLxPSeat  0.395™ 0217 0325  -0.117 0392  0.335
(2.70) (0.73) (2.60)  (-0.41)  (2.92) (0.99)
APL -0.639"  0.824  -0.923"" 0291  -1.038™  -0.333
(2.01)  (119)  (-393)  (041)  (-469)  (-0.44)
SIT 0.00344 0.00632 0.00504
(0.55) (0.65) (0.46)
% PSeat 8.619" 8.483 5.636
g (2.14) (1.92) (1.17)
APLXSJT ~ 0.00062 -0.00023 0.0025 0.00071  0.00200  0.00055
(113) (015  (2.73) (0.29) (1.57) (0.19)
APLxPSeat  0.518 -0.978 0.507 -0.634 0.658 0.0701
(142)  (-127)  (155)  (-0.76)  (L.78) (0.08)
APL -0.474™  -0.323  -0441™ 0465  -0.376"  0.861
(-310)  (-1.01) (275  (A17)  (212)  (L75)
SIT 0.0001 0.00140 0.00236
(0.04) (0.35) (0.51)
% PSeat 0.0721 3.153 4.660*
= (0.05) (1.66) (1.99)

APLXSJT ~ 0.0007”  0.0007  0.00067  0.0047 0.00118"  0.00080
(3.16) (1.13) (1.93) (0.50) (2.23) (0.72)
APLxPSeat  0.321 0.163 0.198 0761 0.0709  -1.251*
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(187)  (046)  (1.05)  (-1.74)  (0.33)  (-2.30)
N 676 676 676 676 676 676
LL 4481  -4478  -3102  -3095  -2368  -236.3

PseudoR2  0.0433  0.0439 00555 00576  0.0604  0.0624

Legend: t statistics in parentheses; " p < 0.05, ™ p < 0.01, ™ p < 0.001;
APL: average passenger lateness; SJT: scheduled journey time; PSeat: proportion of seated passengers; V1: (5) vs (1-4) ;
V2: (4-5) vs (1-3); V3: (3-5) vs (1-2); AL refers to models with all interacted variables included

7.4.Summary

NRPS passenger satisfaction data represents a rich dataset, which supports the elicitation
of new insights on passenger journey satisfaction, especially in the context of rail
performance. All of the alternative approaches to modelling satisfaction introduced as part

of this chapter are summarised in Table 46, highlighting the novelties and key insights

from each of them.

Table 46 Summary of the estimated models

Model Approach Novelty Key insights
Passenger Binary Binary representation Commuters more likely to
allows easier be dissatisfied after 5-6

interpretation of the
satisfaction variable and
estimation of the lengths
of delay where travellers
become more likely to be
dissatisfied.

minutes of delay, for other
travellers this threshold is
between 12-20 minutes
Having a seat increases the
dissatisfaction threshold by
between 2 to 6 minutes for
commuters and up to 15
minutes for other travellers.

Passenger Ordered
(Overall
Satisfaction)

This model is based on a
similar analysis by
Monsuur et al. (2021),
however with a few
modifications, most
importantly, inclusion of
responses where delays
were unperceived.

Large differences in the
choices between commuters
and other travellers with
commuters base category
being ‘fairly satisfied’ for
delays of up to 15 minutes,
then changing to
dissatisfied

Other travellers’ base
category is ‘fairly satisfied’
for up to 30 minutes. This is
suggested to be earlier than
the 50 minutes suggested
by Monsuur et al. (2021).

Passenger Ordered
(Punctuality
Satisfaction)

Using a variable directly
related to satisfaction with
punctuality, not the whole
journey, allows studying
the indirect impacts of
journey quality and/or

Punctuality satisfaction is
typically lower than overall
satisfaction. “Satisfied’
categories are dominant for
business and leisure
travellers for delays of up to
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length on how delays 20-25 minutes. For
impact passengers rather ~ commuters, ‘dissatisfied’
than their impacts on categories already become
overall satisfaction. dominant for delays of over
10 minutes.

oD Binary The binary representation ~ Under perfect performance,
at the aggregated OD 80% of commuters and
levels allows estimating 90% of other travellers are
the impact of average suggested to be satisfied
performance on the with performance. The
proportion of satisfied proportion of satisfied
passengers for a given OD  passengers decreases by (on
pair. average) 6 pp for a minute

of APL for commuters and
2 pp for other travellers.

Hence, commuter-focused
OD pairs are likely to suffer
from lower levels of
passenger satisfaction given
the same level of APL.

In summary, the binary model of punctuality satisfaction under Version 2 of delay
satisfaction is the recommended model with the OD model being possibly more useful for
policy applications as it can be used for benchmarking and forecasting the impacts of
performance on the proportion of satisfied passengers. The estimated thresholds could be
used for setting performance targets where the ‘passenger’ models can be useful in
suggesting the optimal, yet attainable, distribution of delay incidents of given lengths (i.e.
delays of more than 15 or 20 minutes are more likely to lead to choices of the categories
related to lower satisfaction). At the same time, the ‘OD’ model may be helpful in setting
average performance targets, more in line with the typical focus of the industry. Finally,
both models can be applied to set the performance targets, both in terms of the average
performance and the distribution of delay length occurrences. Nevertheless, it must be
noted that aggregating data (as in the case of the ‘OD’ model) as well as dichotomising the
data (as in the case of the binary version of the ‘passenger’ model) lead to some loss of

detail and especially so related to the strength of satisfaction versus dissatisfaction.

In terms of the reported satisfaction, commuters are found to be considerably more
sensitive to delays, being unlikely to express complete satisfaction even in the absence of
delay. Therefore, station-to-station journeys with higher proportions of commuters are
likely to be associated with lower levels of passenger satisfaction with delays. Whilst

commuters express most dissatisfaction with performance, they are least responsive to
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performance in demand/revenue terms. This is likely because of a lack of viable travel
alternatives for commuters, which renders them captive to rail (Batley et al., 2011).

Crowding (expressed as the ability to find a seat) is found to be an important confounding
factor, such that dissatisfaction with delay will be compounded if passenger is stood rather
than seated. Interestingly, the impact of scheduled journey time for a given delay length is
suggested to be positive on delay satisfaction for seated business and leisure travellers. In
the case of standing passengers, this impact is typically smaller. This may be due to the
ability to use travel time more productively when seated (as discussed by Wardman and
Lyons, 2016; Lyons et al., 2016) as well as larger safety buffers around arrival times or
lower sensitivities to delays related to the type of activity planned. For commuters,
however, the impact of scheduled journey time for a given delay length is less clear and,
in one case, even negative (though insignificant). This may be connected to the suggestions
made by Cats et al. (2015) that long commute is generally associated with lower
satisfaction with public transport.

The present work focused on understanding how different levels of incidental lateness and
average performance affect passenger satisfaction. One area for future research could be
to explore the scope to more explicitly link performance to satisfaction and demand. The
main limitation of the NRPS dataset in this context is, however, its cross-sectional nature.
Each NRPS record represents a given passenger’s satisfaction with a given incidence of
delay. In the OD level model, this means that the proportion of satisfied passengers does
not represent passenger satisfaction with average performance, but rather average
satisfaction having averaged across all of the lateness incidents encountered by passengers.
This property of the data does not readily lend itself to reconciliation with other (more
established) performance metrics, such as AML, proportion of stops delayed by a given
amount of minutes or similar supply-centric measures. This issue could potentially be
addressed in the future, by collecting satisfaction data from a panel of commuters over a
period of time to better understand the relationship between average satisfaction, incidental

satisfaction and how both are affected by average delay length and its distribution.

As previously discussed, another important limitation of NRPS also lies within its inability
to represent cancellations or interchanges. The impact of these data errors was investigated
more closely in the case of the analysis of delay perception. However, the results from

sensitivity analyses were broadly in line with the main body of analysis.

It has been suggested that commuters tend to be less satisfied with performance. This could
be due to strategic bias or their reflection of general performance on the specific OD pair

— being especially evident in relatively lower satisfaction levels for the ‘no delay’ case, as
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well as a more rapid decrease in satisfaction levels as delays increase. These lower
satisfaction levels do not, however, appear to stimulate a direct response in terms of
demand. Further work is required to better understand this conundrum and how it can be
represented in social welfare terms — so as to focus public investment in the railways where

it will achieve best value for money.

The satisfaction analysis presented useful insights into the levels of delays that are
detrimental to passenger satisfaction for different types of passengers as well as the impacts
of journey lengths and quality on the disutility of delay. Following the separate analysis of
delay perception and satisfaction using comparable methodologies, the next step is to ask
about the differences between the probabilities of perceiving a delay and then being
dissatisfied with it — i.e. with an a priori expectation of a gap between the moment the
delay is perceived and when it starts affecting passenger satisfaction. This analysis will be
conducted as part of the next section.

7.5. The gap between delay perception and dissatisfaction

The main focus of this chapter is on comparing the concepts of delay perception and
satisfaction by investigating how the predicted probabilities of delay perception and
journey satisfaction change for increasing lengths of delays. This will be based on a
comparison of the results from perception and satisfaction models presented in Chapter 6
with the passenger model of delay satisfaction using V2 of the satisfaction variable (i.e.
‘very satisfied’ or ‘fairly satisfied” versus other options). The comparison will be based on
the extended versions of the perception and satisfaction models that use the same control
variables, allowing direct comparisons between them. The predicted delay length
perception and satisfaction thresholds are subsequently compared where the gap between
delay perception and its impacts on satisfaction is defined as the difference between the

length of delay with an estimated 0.5 probability of perceiving and being satisfied with it.

Considering the relative complexity of the logistic regression models with multiple
explanatory continuous variables and their interactions as well as a relatively large number
of journey purpose categories used in the previously estimated models, an attempt was also
made to estimate a simplified version of the model of perception and satisfaction that

would facilitate comparisons between the two. The simplified models were estimated with:
1) Only three journey purpose categories — business, commute and leisure;

2) Reduced number of explanatory variables to facilitate interpretation. The binary
outcome referring to perception or satisfaction is now only explained by an

interaction between the length of delay at arrival and a dummy variable
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representing whether passenger was standing or seated, allowing for heterogeneity
by journey purpose;

Satisfaction variable being recoded with the outcome taking the value of 1 if a
passenger was dissatisfied or O if a passenger was satisfied (previous satisfaction
models used the opposite representation) to better align with the perception
modelling framework where the probabilities increase with experienced delay
lengths. This represents a rather cosmetic difference, facilitating graphical

comparisons but having no impact on the econometric results.

Hence, the purpose of this section is to uncover the intermediate stages of the impacts of

delays on passengers by:

1)

2)

establishing links between delay occurrence, perception and satisfaction to enable

better understanding of these concepts and

provide an estimate of a gap between delay perception and its impacts on
satisfaction that is defined as the difference between the length of delay that is
perceivable and the corresponding delay that is deemed detrimental to passenger
satisfaction.

This section is divided into a subsection reporting the results of the comparison between

perception and satisfaction models (7.5.1) and a summary of results (7.5.2).

7.5.1. Results
To compare the concepts of delay perception and satisfaction, the model results are used
to present:
1) the threshold of delay perception, i.e. where the estimated probability of

2)

3)

perceiving a delay reaches 0.5,

the threshold of delay dissatisfaction, i.e. where the estimated probability of being

dissatisfied with punctuality increases to 0.5 and

the corresponding difference between the two thresholds that represents the gap

between delay perception and dissatisfaction

This is first introduced by comparing thresholds based on the previously estimated models

and subsequently by estimating simplified versions of these models to facilitate reporting

and interpretation.
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Comparison of the extended models introduced in Chapter 6 and section 7.3
Binary models of delay perception and satisfaction (using V2 of the binary variable) in the
extended version were previously estimated and reported in Table 26 and Table 36.

Based on the estimated models, the probabilities of perceiving a delay and being satisfied

with it were predicted for:
e sSiX journey purposes,

e 10" and 90™ percentile of scheduled journey time distribution (for each of the
segments),

e 0and 15 minutes of departure delay,

e seated and standing passengers and

arrival delay length of 0-30 minutes.

Subsequently, the arrival delay lengths were evaluated at 0.5 probability of perception and
satisfaction and are reported in Figure 51. By comparing the two thresholds (i.e. of
perception and satisfaction), this figure highlights the gap between delay perception and
satisfaction, as indicated by the error bars. As expected, in most cases, the predicted delay
length thresholds of satisfaction are larger than those of perception. This would be
indicative of a gap between the moment when a delay is perceived and when it starts having
a detrimental effect on passenger satisfaction. In the cases where the gap is suggested to
be negative, this is due to the perception and satisfaction thresholds not being significantly
different from each other. Moreover, as the perception variable truly represents a binary
outcome, satisfaction variable is dichotomised and, as previously noted, there is more than
one way to convert an ordinal scale into a binary one. This highlights the relative
complexity of the extended versions of the models due to their multidimensional nature.

However, it might be worth highlighting some key points resulting from the analysis:

1) Perception and satisfaction thresholds for commuters are typically lower than 10

minutes for all the studied scenarios.

2) The respective thresholds for other travellers are typically between 4 and 20
minutes. However, for long journeys with no delay at departure, these might be in

excess of 20 minutes if passengers had a seat.

3) Delay and perception thresholds are typically insignificantly different for very

short journeys and/or in the cases where the train departed on time from the origin.
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This would suggest the important role of departure delay that affects delay
perception more than satisfaction.

4) The gap between delay perception and satisfaction is relatively small for
commuters, from less than 1 minute in the case of journeys with no delay at
departure to around 4-5 minutes for longer journeys with a longer delay at

departure and for seated passengers.

5) For other travellers, the gap is typically small for short journeys with no delay at
departure and for standing passengers (i.e. 0-2 minutes), but typically increases for
seated passengers, with delay at departure (at least for short journeys as there is
less confidence in the estimates for longer journeys) as well as with journey
lengths.

The next section aims to provide a clearer picture by introducing simplified versions of

delay perception and satisfaction models that facilitate interpretation.
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Recorded arrival delay (minutes)

S N A~ O @

B No seat, 10th SJT, 0 departure delay m Seat, 10th SJT, 0 departure delay
m No seat, 10th SJT, 15 departure delay W Seat, 10th SJT, 15 departure delay
No seat, 90th SJT, 0 departure delay B Seat, 90th SJT, 0 departure delay

No seat, 90th SJT, 15 departure delay B Seat, 90th SJT, 15 departure delay

Legend: perception thresholds indicated by column heights whilst error bars demonstrate the
difference between perception and dissatisfaction thresholds. The example interpretation of the
figure presented above would be that (for example, second column) for Business travellers to
London with a seat, no delay at departure and journey length equal to the 10th percentile of
journey length distribution, the probability of perceiving a delay is equal to 0.5 when a 14-minute
delay is experienced. The corresponding delay length leading to the probability of dissatisfaction
being equal to 0.5 is just under 17 minutes, hence, the difference between the two delay length
thresholds is around 3 minutes as shown by the error bar.

Figure 51 Estimated delay length perception and satisfaction thresholds
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Estimation of the simplified models of delay perception and satisfaction

Perception and satisfaction models in their extended form are relatively complex. This is
primarily due to a large number of continuous variables and their interactions. To mitigate
this, simplified models of delay perception and satisfaction were also estimated for only
three journey purposes and two explanatory variables (interaction between a dummy
variable representing whether a passenger was seated or standing and the length of delay
at arrival). The reported coefficients are presented in Table 47 with the predicted
probabilities depicted graphically in Figure 52. The pseudo R? values are generally of a
magnitude that is comparable to the models reported throughout the thesis. In both cases,

the estimated coefficients are of expected signs and magnitudes.

As was the case with the previously estimated models, the predicted delay perception and
dissatisfaction thresholds are reported (Table 48). These are comparable for business and
leisure travellers. As such, standing business and leisure travellers become more likely to
perceive delays of around 6 minutes as compared to just under 10 minutes for seated
passengers. The estimated gap between delay perception and dissatisfaction is around 2.5-
4 minutes for standing passengers and 7.5-9 minutes for seated passengers. This suggests
that journey quality not only has an impact on delay perception and satisfaction separately
— having a seat also increases the difference between the two. This is also in line with the
previously reported results. Commuters are typically able to perceive smaller delays —
around 3-5 minutes with the estimated gap between delay perception and dissatisfaction
being much smaller, insignificant for standing passengers and just above 1 minute for
seated passengers. This highlights the smaller impact of journey quality on commuters as
well as these travellers being generally much more sensitive to delays. Moreover, the small
gap is indicative of almost all the perceivable delays automatically affecting commuters’

satisfaction.

The models were also re-estimated using all levels of the interacted variables (models
Perc_AL and DSat_AL). The main difference between the originally estimated models and
the fully specified models is in the estimated relationship between seat availability and the
probability of perceiving a delay, and being dissatisfied with it. When all levels of
interacted variables are included, this allows for the base levels to be different for seated
and standing passengers. However, this also means that the model does not only capture
the complementary nature of being seated versus standing on how delay is perceived or
affects satisfaction as the baseline probabilities are assigned individually for both levels of

the dummy variable.
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models
Perc Perc_AL DSat DSat_ AL
Constant  -1.540""  -0.945™"  -2.047""  -1.022""
(-47.17) (-7.28) (-56.80) (-8.21)
Commute  0.656™ 0.561"" 1.382" 0.978™
q; Gé (15.13) (3.92) (30.90) (7.16)
§ é Leisure ~ -0.148™" 0.125 -0.229™ -0.145
(-3.71) (0.80) (-5.14) (-0.95)
Seat=1
Business -0.630"" -1.099"™
(-4.69) (-8.45)
Commute -0.631" -0.782"
(-9.18) (-12.22)
Leisure -0.922™ -1.197™
(-10.12) (-13.19)
Arrival delay
(Seat=0)  0.236™  0.160™  0.226™  0.116™
8 (14.92) (7.76) (15.61) (6.87)
% (Seat=1)  0.163™  0.167™"  0.121™  0.127™
® (34.94)  (34.91)  (29.70)  (30.34)
(Seat=0) 0.294™" 0.204™ 0.227™ 0.130™"
= (26.93) (15.39) (23.77) (12.01)
g (Seat=1) 0.176™" 0.195™ 0.104™ 0.124™
© (30.22) (30.34) (22.24) (24.00)
(Seat=0) 0.277™ 0.162"" 0.225™" 0.114™
) (24.16) (11.48) (23.98) (10.31)
'% (Seat=1) 0.172™ 0.177™ 0.120™" 0.127™
(52.17) (52.36) (43.17) (44.21)
N 48904 48904 48904 48904
LL -28062.1  -27965.0  -24617.7  -24438.7
Pseudo R? 0.136 0.139 0.145 0.151

Legend: t statistics in parentheses; “ p < 0.05, ™ p < 0.01, ™ p < 0.001;

Seat=0 represents a standing passenger; AL refers to the model with all levels of interacted
variables; Perc refers to perception and DSat - dissatisfaction
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Figure 52 Probability of delay perception and dissatisfaction for increasing delay
lengths and different journey purposes based on the models presented in Table 47

Table 48 Estimated perception and dissatisfaction delay length thresholds based on
models presented in Table 47 and Figure 52

Perception  Dissatisfaction Gap
Journey purpose Noseat Seat Noseat Seat Noseat Seat
Business 6.5 94 9.0 16.9 2.5 7.5
Commute 3.0 5.0 2.9 6.3 -0.1 1.3
Leisure 6.1 9.8 10.1 18.9 4.0 9.1

7.5.2. Summary
The previous section compared two concepts introduced in the thesis, i.e. delay perception
and satisfaction, introducing the concept of a gap between delay perception and
dissatisfaction. The predicted probabilities of perceiving a delay and being dissatisfied

with it were compared to investigate the existence of a gap between:
1) the moment of delay occurrence,
2) the delay lengths that start being perceivable by travellers and

3) the delay lengths that start having a negative impact on passenger satisfaction.
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The so-called gap between delay perception and satisfaction was first compared for a more
complicated model with several control variables and a simpler model for easier

interpretation of the results.

The analysis suggests existence of a gap between the moment when delays are perceived
and start having impacts on passenger satisfaction. The gap is suggested to be between 0
minutes for standing commuters to up to 9 minutes for seated leisure travellers. Typically,
commuters are able to perceive smaller delays than other travellers, with smaller delays
also having a more significant impact on their satisfaction levels. Both the thresholds of
perception and dissatisfaction as well as the estimated gap between them are very similar
for business and leisure travellers. It has been generally suggested that the gap between
delay perception and dissatisfaction increases for seated passengers, with longer journeys
and delay at departure.

There are some limitations to the approach undertaken as part of this chapter:

1) Most emphasis is placed on the thresholds where probabilities of delay perception
and dissatisfaction reach 0.5. This may be a useful approach due to its simplicity,
however, it can be seen that probabilities change marginally for each incremental
increase in delay length. There might be some value in understanding how the so-
called gap changes with different lengths of recorded delays.

2) Only one version of the binary representation of the dependent variable was used.
This was based on the analysis conducted in the previous chapter as well as
practical considerations. However, the previous analysis detailed and commented

on the alternative approaches to the treatment of the reported satisfaction variable.

The differences between the moments when delays are perceived and start having
significant impacts on passenger satisfaction call for a more detailed analysis of the
marginal impacts of delays on passengers. If very small delays are unperceived and there
is a tolerance threshold for delays before passengers become dissatisfied, this would
possibly suggest that the marginal impacts of smaller versus larger delays may be, in fact,
different. As such, a natural recommendation that arises from this analysis is to study the

possible non-linearities in the marginal utility of late time as discussed in the next section.

7.6. Marginal (dis)utility of lateness

Previous sections focused on establishing a link between delay length and passenger
satisfaction with the use of logistic regression. The concepts of delay perception and
satisfaction were compared, suggesting that smaller delays are often likely to be

unperceived and noting that perceiving a delay does not automatically lead to a
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consequential impact on passenger satisfaction. This, in turn, leads to posing a question

about the curvature of the shape of the relationship between delay and travellers’ utility.

Before introducing the possible ways of investigating the non-linearities in the impact of
delays on utility, it is worth highlighting that most of the currently used methodologies in
economic appraisal assume constant valuations of time and delays (e.g. value of time or
reliability multipliers later introduced in Chapter 8). However, some indications of non-
linear unit valuations of late time were suggested in the literature, e.g. by Wardman and
Batley (2022), arguing that proportional elasticities (i.e. based on the relative proportion

of AML to GJT) better explain changes in demand than the actual delay lengths.

Hence, the purpose of this section is to explore the potential non-linearities in the delay
impacts using approaches introduced by previous literature. In doing so, it needs to be
emphasised that such analysis is to be conducted with data on reported satisfaction used as
a proxy for utility. One important characteristic of the satisfaction data that needs to be
accounted for is its ordinal nature. Throughout the literature, different methodologies have
been applied to modelling ordinal data from satisfaction surveys. Gao et al. (2018)
summarised years of previous research concerning journey satisfaction, observing that
most of the studies are empirically-driven where the choice of the functional relationship
is made at the discretion of researchers. Hence, there is an abundance of studies modelling
satisfaction using both the original ordinal scales (i.e. Cats et al., 2015; Yang et al., 2015;
Ettema et al., 2016; Abenoza et al., 2017) or assuming an interval scale and applying linear
regression methods (i.e. Cao and Ettema, 2014; De Vos et al., 2016; Wan et al., 2016).

Conceptually, logistic regression methods are more appropriate for modelling the
relationship between travel attributes and choice of satisfaction scores. That said, it has
been noted that there are several benefits of applying linear regression with the most
obvious being the ease of interpretation. Several studies discussed the pros and cons of
imposing an assumption of cardinality on ordinal data, the usefulness of such approaches
as well as how the results compare between these types of approaches (e.g. Dickerson et
al., 2014). In such cases, there is implicitly a very strong assumption of equal distances
between the different points on the ordinal scale. There is no consensus in the literature
regarding this problem. However, some studies have shown similar results obtained from
logistic and linear regressions (e.g. Ferrer-i-Carbonell and Frijters, 2004). This could

possibly suggest that it may be worth applying both approaches simultaneously.

The concept of utility dates back to Bernoulli's (1954) work on risk aversion suggesting
that while prices for any two individuals are equal, the utility derived by each individual

from buying the same good may differ. Similarly, for an individual on a lower income, a
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same-value gain (income) may be usually more significant than for a person with a higher
income. While utility is assumed to be additive, it is important to understand the rate of
change in utility levels in response to changes in the variable of interest. This has been
studied in various contexts in public policy, usually focusing on the marginal utility of
income (Layard et al., 2008) or consumption (Evans, 2005). These estimates are important
parameters in determining optimal taxation (Layard et al., 2008) including carbon tax and
climate change policy (Anthoff et al., 2009; Bachmann, 2020), assessment of health
technologies and valuing health (Phelps, 2019), analysis of labour market (Farzin, 2009;
Ratzel, 2012; Masuda et al., 2021), progressive pricing (Coker and lzaret, 2021) and
valuation and cost-benefit analysis of infrastructure investments (Greene et al., 2020),

including valuation of time in transport contexts (Batley et al., 2019).

The work conducted as part of this section aims to look at how the marginal utility of delay
changes with increasing delays. This is done by following methodologies introduced by
previous literature, described in more detail in section 7.6.1. Initial analysis of the
relationship between delay and reported satisfaction based on the NRPS survey is
presented in section 7.6.2 with the results and conclusions of the analysis presented in the

remaining sections.

7.6.1. Literature review
When studying the non-linearities in the impacts of delays on passengers, it is worth
looking at the methodologies used to study such non-linearities in other areas of economics
(e.g. the previously mentioned labour economics). In the case of income, additional
earnings can often only be obtained by increasing working hours. As shown by Rétzel
(2012), marginal utility of labour follows an inverse U-shape relationship, suggesting that
initially, work can increase utility. However, at some point, additional earnings are no
longer able to compensate for the increased working hours. Similarly as in the case of
labour supply, in transport passengers are concerned with the time and money aspect of

travel. Increasing money cost and travel time sources of disutility.

Layard et al. (2008) studied the relationship between household income and life
satisfaction to estimate the elasticity of marginal utility of income and understand the
marginal impact of income on life satisfaction. The obtained estimates of the elasticity of
marginal utility of income of around -1.2 indicated that the marginal utility of income
diminishes, contrary to the assumption made by Bernoulli (1954) of marginal utility of
income being inversely proportional to income. While subjective well-being or stated life
satisfaction is often considered to be a good approximation of utility levels (Layard et al.,

2008), Cooper (2020) noted that this approach may discriminate against people with lower
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expectations or higher willingness to adapt. This reflection in the context of journey
satisfaction may be translated to frequent travellers having better experience and
knowledge about the typical journey times and average delays or higher sensitivity to
lateness. Similarly, the findings of Boyce and Wood (2011) indicate a strong personality
effect on the marginal utility of income, suggesting that there might be some levels of
heterogeneity in the impacts of additional income on life satisfaction that can only be
attributed to respondents’ personalities. However, these concerns can be addressed by
segmenting travellers. Moreover, subjective well-being or satisfaction largely relies on the
assumption of individual rationality which, as noted by Cooper (2020), cannot be
guaranteed. On the other hand, subjective well-being has been found to correlate with
socio-demographic characteristics, income, health, environment, geography, societal
norms and culture (Layard, 2006; Layard et al., 2008; Cooper, 2020; Masuda et al., 2021).
Thus, suggesting that the subjective well-being changes in line with the changes in
objective measures and highlighting the usefulness of using satisfaction data in economic

analysis.

In public transport, the departure times are pre-defined and discrete rather than continuous
as is the case with car travel. As discussed as part of section 2.2, scheduling models can be
particularly useful in analysing how passengers schedule their journeys and how they are
impacted by delays. A choice of departure time depends on the preferred arrival time
(PAT) (timing constraints), public transport schedule as well as the safety margin. The size
of the safety margin depends on individual preferences, risk aversion and expectations that
can depend on previous experiences. Ultimately, passengers aim to maximise expected
utility with respect to preferred arrival time but are unlikely to calculate probabilities for
all possible travel options, as this is not feasible. The standard formulation used in UK rail
assumes that the value of early arrival is 0 and PAT is equal to scheduled arrival (Bates et
al., 2001) with the marginal (dis)utility of late arrival being constant. As indicated by Bates
et al. (2001), only 1 in 3 travellers has a preferred arrival time equal to scheduled arrival
as travellers are likely to include safety margins to their schedules. This could, perhaps,
mean that some of the smaller delays are of lower importance as long as a traveller arrives

to their destination before the other planned activities start.

Drawing comparisons to income, it is important to note that income is a source of positive
utility while additional travel time related to delays is expected to be a source of disutility.
Of note, the distribution of delays is also much more skewed to the left with most delays
being very small. The reasons for believing that the marginal utility of delay is non-

monotonous can be sought in:
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1) the analysis of delay perception conducted as part of Chapter 6, suggesting that

some smaller delays are unperceived and

2) Wardman and Batley (2022) concluding that elasticities of AML relative to GJT

better explain changes in demand than the ones based on the absolute values.

As noted by Gao et al. (2018) different methods have been applied to modelling passenger
satisfaction, often chosen at researchers’ discretion (typically logistic and linear regression
methods). However, Gao et al. (2018) also proposed a cubic model of passenger
satisfaction where the explanatory variables were related to differences between
experienced and expected travel attributes (related to time components of GJT) for bus
users in the Chinese city of Xi’an. Cubic relationships allow studying the different

inflection points with marginal utility being non-monotonous.

To decide on the best functional form for studying the relationship between delay and
reported satisfaction whilst also examining the potential non-linearities, the next section

aims to comment on this relationship using the data from the NRPS survey.

7.6.2. Initial analysis
If one assumes equal intervals between the responses on the original 5-point Likert scale
forming part of the NRPS questionnaire then this allows for averaging satisfaction scores
across the responses. While there might be some disadvantages to the introduced approach,
it is noted that such methods have been used throughout the literature (i.e. in Layard et al.,
2008). Moreover, the binary representation of the satisfaction variables, introduced earlier
in this chapter, also imposed a strong assumption as multiple scores were grouped, in fact,
ignoring the distances on the scale between them. Figure 53 and Figure 54 show the
relationship between delay length and reported satisfaction with punctuality and overall
journey from the NRPS. The responses were sorted by three journey purposes and delay

length, and subsequently averaged across groups of 100s.

As expected, experienced utility (proxied by reported satisfaction) decreases with
increasing delay levels with the base satisfaction being lower for commuters whose
marginal reduction in utility is also larger (in absolute terms) as discussed earlier in
Chapter 7. The utility levels seem to drop in a linear manner. However, towards lengthier

delays, the changes become less pronounced.



176

S ITTHIT
°
®
lig:
THIR
q—_
®
. l! §iect:,
_-0: .
E “. ¢ :! ....:o ".;.o
3 : sete cgfesstt?
o0 | ° s s ¢8e
a>3m ¢ oq l'l“ ® A A F YR X
3 oo ¥ § ..‘....' . .o
®
o oo 3300.. oo .,
¢ e ee @
° Se "S5
o
C\i_ T T T
0 10 20 30
Delay (minutes)
® Business @ Commute @ Leisure

Figure 53 Relationship between delay length and average satisfaction with
punctuality (utility). Responses were sorted by journey purpose and delay lengths,
and subsequently averaged across responses in the groups of 100 responses.
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Figure 54 Relationship between delay length and average overall satisfaction.
Responses were sorted by journey purpose and delay lengths, and subsequently

averaged across responses in the groups of 100 responses.
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The methodology section introduces the modelling methods based on the previous
literature, also taking into account the observed relationships described above.

7.6.3. Methodology
The key aspect of the investigation conducted as part of this section is to analyse the shape
of the relationship between delay and utility of lateness. The first step is to choose a proper
functional form that satisfies all the properties of the reported satisfaction data used as a
proxy for utility. There is very limited literature covering the possible non-linearities in the
delay impacts on passengers - despite Wardman and Batley (2022) considering this issue
to be of great importance. On the other hand, there is an abundance of economic literature
exploring the impacts of different variables on utility (satisfaction) in a variety of contexts.

The approach undertaken here is based on previous literature, primarily on two studies:
1) Layard et al. (2008) looking at the marginal utility of income and

2) Gao et al. (2018) examining the non-linear relationship between the difference in
observed versus expected trip attributes and reported satisfaction.

It is, however, important to consider some of the following properties of NRPS satisfaction

data and assumptions, which are additional to the limitations highlighted previously:

1) The utility is based on a difference between experienced and scheduled journey
length. This is slightly different to the formulation used in Gao et al. (2018) where
a difference between expected and experienced in-vehicle times was used. In the
analysis which follows, it is assumed that the expected arrival is equal to the
scheduled arrival (as per the timetable). As such, it is expected that any positive
difference between actual and scheduled arrival is a source of disutility. It is worth
highlighting that in the case of Gao et al. (2018), surveyed respondents were metro
or urban bus users with typically higher service frequencies as compared to rail

passengers surveyed as part of NRPS.

2) Reported travel satisfaction — i.e. both overall satisfaction and satisfaction with
punctuality are proxies for individual welfare. This assumption has generally been
used in the literature, especially in the context of subjective well-being (e.g.
Kahneman and Krueger, 2006; Layard et al., 2008; MacKerron, 2012).

3) For linear models, it is assumed that 1-point changes in reported satisfaction imply
the same distances between the points on the scale. Such assumptions have been
also made in the literature (i.e. Ferrer-i-Carbonell and Frijters, 2004; Layard et al.,

2008; Dickerson et al., 2014), suggesting that often similar results are obtained
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from linear and ordered logit models. However, this approach has also been
criticised (e.g. by Baetschmann et al., 2015), hence both cardinal and ordinal
representations of the satisfaction (utility) variable are analysed below.

Considering the relationships described previously, the data characteristics and the

previous research, the approaches include:

1) Maximum likelihood estimation of p using ordered logit and linear dependence
model based on the Layard et al. (2008) investigation of the marginal utility of

income, i.e.
Umpytpt——1y Z B.Sat,

(26)
where:

U: experienced utility (i.e. proxied by reported satisfaction, related to overall satisfaction
or satisfaction with punctuality);

L,: recorded length of delay at arrival (destination station)

Sat,,: relates to additional controls, denoting satisfaction with train and station for the
models based on overall satisfaction. These are not included in the case of punctuality
satisfaction that is related to delay-specific satisfaction (as discussed earlier in the chapter).
In the case of the models of overall satisfaction where satisfaction with other journey
aspects is used as explanatory variable, it is important to acknowledge the potential
endogeneity bias. This is related to needing to control the overall journey satisfaction for
those specific journey aspects that are difficult to measure and/or there is no alternative
variable that could control for their effect on the overall satisfaction. This potential bias is

only a concern for the extended version of the overall satisfaction models.
p: minus elasticity of marginal utility of delay

2) Estimation of a cubic model based on Gao et al. (2018) where it is assumed that
utility depends on the difference between experienced and expected journey time
with experienced journey time being calculated as the difference between actual
and scheduled arrival and expected journey time assumed to be as per timetable.
Here, a third-degree polynomial regression model is estimated in line with Gao et
al. (2018), i.e.
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n
U=PBo+Pila+Pila®+ Pl + Z pnSat,
n=1

(27)

3) Piecewise regression that allows estimating two linear relationships with a
breakpoint C. The benefit of fitting such regression is that the breakpoint is not an
input of the estimation. This approach is somewhat similar to assuming that at
some level of delay, there is a threshold where the marginal impacts of delay start
exhibiting a different relationship. The breakpoint is estimated in the model and a

second regression model is estimated after the breakpoint C, i.e.

U_{ﬂ0+[>’1LA forLA<C}
- ﬁo‘l‘ﬂzLA fOTLAZC

(28)

7.6.4. Results
This section presents the estimation results for the models introduced in the methodology
section in the following order:

1) Maximum likelihood estimation of p
2) Cubic relationship between delay length and satisfaction
3) Piecewise regression

All the aforementioned models aim to investigate the non-linearities in the relationship

between delays and utility.

Maximum likelihood estimation of p

Following the work conducted by Layard et al. (2008), maximum likelihood estimation of
p was the first step of the analysis, focusing on analysing the curvature of the relationship
between delay and satisfaction (utility). The analysis of the relationship between recorded
delay length and average reported satisfaction suggested that the marginal change in
satisfaction becomes less pronounced at lengthier delays as well as more noise is visible
given that the prevalence of longer delays is more limited. The maximum likelihood
estimation has been conducted for the whole sample used throughout the thesis (i.e. delays
of up to 30 minutes) as well as for a more restricted version of the sample focusing on
delays of up to 15 minutes (chosen as a potential arbitrary threshold based on the graphical
analysis of the relationship) using the Apollo package in R (Hess & Palma, 2019). A very

pronounced difference in the results from the estimation based on the ‘full” and ‘restricted’
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samples would mean that the studied relationship is much more complex. In the case of
income, as studied by Layard et al. (2008), the sample used in the initial version of the
modelling had already been restricted by removing the observations in the tails of the
distribution. Due to the differences in how income and delays are distributed, a similar
method has not been considered appropriate in the present analysis.

The estimated values of p are shown in Table 49 and range from -0.18 to 0.47 with some
of the estimated values being close to 0 and insignificant. The values from the linear
dependent variable model are typically lower than those from the ordered logit model. The
values are also typically lower if the sample is restricted to delays of up to 15 minutes.
When the models are estimated separately for each of the journey purposes, the estimated

values of p are typically larger for commuters.

To interpret the meaning of p estimated from these models, it might be worth providing an
interpretation of all the possible values as this parameter indicates the sensitivity of
marginal utility to delay. Therefore, a positive p suggests that with delay increasing, the
marginal utility of delay is becoming less negative whilst a negative p suggests the

opposite. Therefore if,

1) p > 1: the marginal utility increases with delay (becomes less negative) at an

accelerating rate

2) 0> p < 1:the marginal utility increases with delay (becomes less negative) at a

decreasing rate
3) p = 0: the marginal utility is constant

4) 0 < p > —1:the marginal utility decreases with delay (becomes more negative)

at a decreasing rate

5) p < —1: the marginal utility decreases with delay (becomes more negative) at an

accelerating rate

To better understand the difference in the estimated marginal utility of delay for positive
and negative p, two values were chosen for further investigation. Figure 55 shows the
estimated utility and marginal utility using the linear model of overall satisfaction for
delays of up to 30 minutes and all the journey purposes combined (i.e. p = 0.184).
Subsequently, Figure 56 depicts the estimated utility and marginal utility using the linear
model of overall satisfaction for delays of up to 15 minutes and only leisure travellers (i.e.
p =—0.178).
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Table 49 Estimates of p

A (Linear) B (Linear) C (Ordered) D (Ordered)
Overall satisfaction (initial model)
All 0.18[0.1,0.3] 0.03[-0.2,0.3] 0.30[0.3,0.4] 0.15[0.1,0.3]
Business 0.05[-0.3,0.4] -0.05[-0.9,0.7] 0.15[0.0,0.3] 0.04[-0.3,0.4]
Commute 0.20[0.1,0.3] 0.01[-0.2,0.3] 0.36[0.3,0.5] 0.18[0.1,0.3]
Leisure 0.01[-0.3,0.2] -0.18[-0.8,0.3] 0.08[0.0,0.2] -0.11[-0.4,0.1]
Overall satisfaction (extended)
All 0.13[0.0,0.3] -0.11[-0.8,0.3] 0.26[0.2,0.3] 0.07[-0.1,0.2]
Business -0.05[-0.6,0.4] -0.17[-1.5,0.8] 0.07[-0.1,0.2] -0.08 [-0.4,0.3]
Commute 0.11[-0.1,0.3] -0.11[-0.5,0.2] 0.29[0.2,0.4] 0.05[-0.1,0.2]
Leisure 0.07[-0.3,04] -0.39[-1.5,0.7] 0.18[0.1,0.3] 0.01[-0.2,0.3]
Punctuality satisfaction
All 0.23[0.2,0.3] 0.10[0.0,0.2] 0.40[0.4,0.4] 0.26[0.2,0.3]
Business 0.10[-0.1,0.3] -0.14[-0.5,0.2] 0.29[0.2,0.4] 0.03[-0.2,0.2]
Commute 0.32[0.2,04] 0.16[0.0,0.3] 0.47[0.4,0.5] 0.31[0.2,0.4]
Leisure 0.07[0.0,0.2] 0.00[-0.2,0.2] 0.30[0.3,0.4] 0.20[0.1,0.4]
Delay lengths  1-29 1-14 1-29 1-14

Legend: 95% confidence intervals in brackets; estimates significant at 95% shown in bold
(models A and B are linear, C and D - ordered logit; the models were estimated using overall or punctuality
satisfaction as a proxy for utility; in the extended model, satisfaction with train and station are added as
controls)

Interestingly, large differences in the estimated values were observed based on restricting
the delay lengths to 15 or 30 minutes what may be suggestive of existence of a point where
a maximum dissatisfaction is reached, such that satisfaction data is not able to capture the
marginal disutility related to further increases in delay after that point. In such cases, the p
values changed signs in multiple instances with marginal utility suggested to be increasing
(becoming less negative) for models with delay lengths restricted to 30 minutes and
decreasing (becoming more negative) for models with delay lengths restricted to 15
minutes. Combining this estimation with previous research on delay perception and
dissatisfaction, it is not expected for the marginal utility of delay to increase (become less
negative) with delays as this would mean that the very first minute of delay is marginally
the worst. Contrarily, it is expected that smaller delays have a lower probability of being

perceived and having negative impact on travellers.
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Figure 56 a) Estimated utility for model 1I1B b) Estimated marginal utility for model
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Investigating the cubic relationship between delay length and satisfaction

The estimation of the p parameter led to both positive and negative values, providing

inconclusive evidence as to whether the marginal utility of delay becomes more positive

or negative with increasing delays. This, in turn, could suggest that the marginal utility of

delay is a non-monotonous function. Hence, estimation of a cubic function (following Gao

et al., 2018) was thought to be a particularly useful approach. This was done for:
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1) the dependent variable being overall satisfaction (both without and with controls)
or punctuality satisfaction (without the additional controls) and

2) restriction of delay lengths to up to 15 or 30 minutes.

The results of the estimated models are shown in Table 50. The predicted delay coefficients
are negative for linear and quadratic terms, but positive for the cubic term (though in some
cases, some of the coefficients were insignificant or of a different sign), indicating that the
marginal impact of delays first becomes more negative and later becomes less negative.
Such a function would also lead to marginal utility finally becoming positive, though, this
may be related to reaching a point where maximum dissatisfaction is reached (i.e. data
imperfections) rather than long delays having a positive marginal impact on utility.

Focusing on the models for delays up to 15 minutes, estimated utilities, marginal utilities
and change in marginal utility for models 2a (based on punctuality satisfaction) and 3a

(based on the extended model of overall satisfaction) are plotted below.

The estimated models indicate that the marginal utility first decreases (i.e. becoming more
negative) and then increases (i.e. becoming less negative). This inflection point is
estimated to be at around 4 to 10 minutes (depending on journey purpose and the dependent
variable used) with both models suggesting on the inflection point being at a lower delay

length for commuters.

Table 50 Results from a cubic model

@) 0] ®) (1) (22) (32)

Overall Punct Overall Overall Punct Overall
Constant 4.278"™ 4,437 2.942" 4.266™" 4.397™ 2.944™

(241.24) (195.32) (144.75) (163.73)  (131.58)  (115.59)

Journey purpose

Commute -0.235™  -0.508"" -0.162" -0.253™ 0509 -0.175™
(-11.40) (-19.27) (-7.03) (-8.38) (-13.13)  (-6.04)

Leisure 0.146™* 0.0798™ 0.00996 0147 0.0951°  0.0209
(7.13) (3.03) (0.41) (4.87) (2.45) (0.70)

LA

Business -0.0316™  -0.0734™  -0.0197" -0.0196 -0.0362 -0.00634
(-3.88) (-7.03) (-3.07) (-1.04) (-1.49) (-0.43)

Commute -0.0711™  -0.153"™" -0.0413™  -0.0427""  -0.114™  -0.0264™
(-13.92) (-23.46) (-10.28) (-3.72) (-7.77) (-2.93)

Leisure -0.0216™" -0.0696™"" -0.0182™" -0.0103 -0.0439™  -0.0163
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(-4.35) (-10.90) (-4.67) (-0.90) (-2.98) (-1.81)
L A2
Business -0.000741 -0.00167 -0.000917 -0.00344 -0.00928"  -0.00368
(-0.87) (-1.53) (-1.37) (-0.99) (-2.09) (-1.36)
Commute 0.000503 0.00447 -0.000763 -0.00529"  -0.00384 -0.00370"
(0.91) (6.33) (-1.75) (-2.47) (-1.40) (-2.21)
Leisure -0.00134" -0.00155" -0.000992" -0.00378 -0.00753™  -0.00140
(-2.55) (-2.29) (-2.39) (-1.78) (-2.75) (-0.84)
L_A3
Business 0.0000294 0.0000838™  0.0000275 0.000184 0.000477*  0.000175
(1.27) (2.84) (1.52) (1.06) (2.15) (1.29)
Commute 0.0000205 -0.0000443*  0.0000422**" 0.000321** 0.000406™ 0.000188"
(1.34) (-2.27) (3.50) (2.96) (2.92) (2.20)
Leisure 0.0000435™  0.0000730™" 0.0000349™  0.000178 0.000424**  0.0000564
(3.03) (3.96) (3.09) (1.65) (3.06) (0.67)
Station_Sat
Business 0.485"" 0.481™
(31.70) (30.78)
Commute 0.468™" 0.465™"
(54.56) (53.67)
Leisure 0.472™" 0.465™"
(46.52) (45.03)
Train_Sat
Business 1.080™" 1.064™
(71.67) (68.45)
Commute 1.170™ 1.166™"
(150.85) (148.67)
Leisure 1.201™ 1.190™
(118.09) (113.64)
Delay lengths  1-30 1-30 1-30 1-15 1-15 1-15
N 112992 110369 112992 106196 103710 106196
R? 0.111 0.173 0.451 0.0924 0.146 0.442

Legend: t statistics in parentheses; * p < 0.05, ™ p < 0.01, ™ p < 0.001;
L_A refers to delay at arrival; Station_Sat, Train_Sat refer to satisfaction with station and train;
Overall refers to overall journey satisfaction; Punct refers to satisfaction with punctuality.
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Piecewise regression

Previously estimated models suggested that the marginal utility may be non-monotonous,
hence a simpler relationship was estimated based on piecewise regression. This type of
regression fits two linear relationships, before and after an estimated breakpoint.
Estimating such a breakpoint is in line with suggestions that there exists a delay length
where satisfaction data is no longer able to capture the marginal changes in experienced

utility, noting that this may be an artefact of the chosen data type. Such a regression was
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estimated using punctuality satisfaction as the dependent variable with the results reported
in Table 51 and the estimated relationship plotted in Figure 59.

Table 51 Results from a piecewise regression

Business Commute Leisure

Constant (B,) 4437  3.887 4519
(330.15)  (381.57)  (574.58)

B -0.0795™" -0.122™"  -0.0768™
(-36.21)  (-42.75)  (-56.28)
C 19.277"  8.720"™"  19.48™
(15.18) (25.45) (20.73)
Ba -0.00615 -0.0430™" -0.0142
(-0.39) (-16.14)  (-1.45)
N 113178
Log-likelihood -176658.1
R? 0.918
5
4
3
z
=
2
1
0
0 5 10 15 20 25 30

Delay (minutes)

e Business Commute Leisure

Figure 59 Estimated utility from a piecewise regression
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The results obtained from the piecewise regression suggest that the base utility levels are
always lower for commuters (as also reported earlier in Chapter 7), in line with the
investigation presented earlier in this chapter. Nevertheless, the reduction in utility levels
is suggested to be more pronounced for commuters with the break point estimated to be at
around 8-9 minutes. Subsequently, the marginal impact of delay is suggested to decrease.
For leisure and business travellers, the estimated breakpoint is at around 19-20 minutes.
Subsequently, the marginal utility of delay after the breakpoint is not significantly different
from 0. It must be noted that the estimated breakpoints are just slightly above the predicted
delay dissatisfaction thresholds obtained in Chapter 7. Considering that the marginal utility
of delay of business and leisure travellers after the breakpoint is insignificantly different
from 0, this raises a question whether there is a point where maximum dissatisfaction is
reached. With maximum average satisfaction never reaching 5.0, the small changes in
satisfaction after the breakpoint may not be indicative of such delays having no marginal
impact. Rather, this may highlight the unsuitability of satisfaction scales to the
investigation of the marginal impacts of the longer delays. This may be further complicated
by a more limited number of responses related to such delays due to the delay distribution.

7.6.5. Summary
This section aimed to explore the non-linearities in the delay impacts on passengers.
Different functional forms were suggested based on previous research and the reported

relationship characteristic for the NRPS data. The following steps were taken:

1) Estimation of p parameter, allowing to study the curvature of the marginal utility
of lateness function based on Layard et al. (2008) work on the marginal utility of

income;

2) Estimation of a cubic function describing the relationship between delay length

and satisfaction based on Gao et al. (2018);

3) Estimation of a piecewise regression and a break point C determining the length

of delay where marginal utility of lateness changes.

The estimation of p revealed a range of estimated values, both positive and negative. The
values of opposite signs were obtained for the different dependent variables used in the
modelling, ordered and linear models as well as for the delays restricted to 15 and 30
minutes. This suggests that a different functional form may be more appropriate for this
relationship. Hence, a cubic function was introduced with the predicted delay coefficients
being negative for linear and quadratic terms, but positive for the cubic term (though in

some cases, some of the coefficients were insignificant or of different signs). This would
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indicate that the marginal impact of delays first becomes more negative and later becomes
less negative. Such a function would also lead to marginal utility finally becoming positive,
though this may be due to reaching a point where maximum dissatisfaction is reached.
Subsequently, a simpler relationship was studied, assuming that the relationship between
delay length and satisfaction is linear up to a certain threshold where it starts following a
different linear relationship. The estimated breakpoints were around 9 minutes for
commuters and just below 20 minutes for other travellers. It was also suggested that the
marginal utility of delay is larger in absolute terms for commuters and subsequently
decreases after the breakpoint. However, in the case of other travellers, the marginal utility
of delay is not significantly different from 0 after the breakpoint. This was suggested to

highlight a couple of limitations of the satisfaction data where:

1) the estimated breakpoints may, in fact, be maximum dissatisfaction thresholds
where average reported satisfaction does not reduce anymore - which is not

equivalent to such delays having no negative marginal valuation and

2) longer delays being relatively rare — which leads to lower significance of the

estimated results for the underrepresented delay lengths

Nevertheless, the work conducted as part of this section introduced different ways of
investigating the non-linearities in the impacts of delays on passengers. Some indications
of non-constant marginal (dis)utility of lateness were presented, possibly suggesting that
the marginal utility of delay is non-monotonous. It may be more negative (and/or becoming
more negative) for smaller delays (as the probability of perceiving them increases) and less
negative for larger delays. However, the choice of methodology, variables and/or
restricting the lengths of delay studied seemed to have a large impact on the estimated

results.

7.7. Conclusions

This chapter first introduced the concept of journey (and delay) satisfaction, analysing how
travellers’ satisfaction changes with increasing levels of delays using various
representations of the satisfaction variable (i.e. binary and ordinal) at both individual
passenger (i.e. the ‘passenger’ model) and aggregated (i.e. the ‘OD’ model) level. This
allowed increasing understanding of how incidental and average lateness impact upon

passenger satisfaction levels. The estimated models suggested that:

1) Commuters are always less satisfied with a given level of delays and their

satisfaction decreases more rapidly.
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2) Commuters are already very likely to be dissatisfied even if they face delays of
only around 5-10 minutes.

3) For other travellers, these thresholds are typically larger, at around 10-20 minutes.

4) The ‘passenger’ model indicates that the delay incidents of such lengths are
detrimental to passenger satisfaction, also highlighting that the impact of delay of
a given length is typically lower:

e if journey quality is better (i.e. passengers are seated);

o for longer journeys (i.e. suggesting that it is not only the absolute delay
length but the delay relative to scheduled journey time that impact
passenger satisfaction). This is in line with suggestions by Wardman and
Batley (2022), who argued that proportional elasticities (i.e. based on the
relative proportion of AML to GJT) better explain changes in demand than
the actual delay lengths;

e with a shorter delay at departure (i.e. travellers are more likely to notice
the delays if their train departs late and typically also prefer to be delayed
once being on-board as the additional journey time can be used more
productively and delay at departure can be related to increased levels of
uncertainty).

5) The predicted delay length dissatisfaction thresholds are indicated to be lower than
previously suggested in the literature (i.e. Monsuur et al., 2021).

6) The ‘OD’ model suggested that commuter-focused OD pairs are likely to suffer
from lower levels of satisfaction as:

e under perfect performance, 80% of commuters and 90% of other travellers
are suggested to be satisfied with performance and

e the reduction in the proportion of satisfied passengers is more profound
for commuters - (on average) 6 pp for a minute of APL for commuters and

2 pp for other travellers.

This analysis then suggested that the estimated models could be used in setting
performance regimes and/or targets or help design passenger compensation mechanisms

where:

1) the ‘passenger’ model can be used to determine the preferable distribution of
delays (i.e. minimising the incidence of delay episodes that are detrimental to
passenger satisfaction),

2) the ‘OD’ model at the same time can be used to determine the preferable average

performance targets and
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3) it should be noted that a combination of both approaches (i.e. lowering the
incidence of longer delays and average delays simultaneously) is likely to achieve
the best results in terms of passenger satisfaction. This means that the focus should
not only be on minimising the average lateness, but also reducing the incidence of
the longer delays.

However, it has been noted that due to the non-quantitative nature of the satisfaction
scores, the classification of satisfaction versus dissatisfaction is subject to interpretation.
This also means that it is not immediately clear what the differences between the
satisfaction categories mean and how various levels of satisfaction translate to well-being.
This is one of the key limitations of using satisfaction data in setting policy targets. As
suggested throughout this chapter, depending on the assumption related to how satisfaction
versus dissatisfaction is classified, the targets may differ. Nevertheless, V2 of the binary
representation provides the way of classifying satisfaction versus dissatisfaction that best
aligns with the conceptual framework of studying the threshold of positive/non-positive
satisfaction. Ultimately, how different satisfaction levels may affect wellbeing and rail
demand is more difficult to discern. Regardless of the demand impacts, however, studying
satisfaction may allow to understand the negative impacts of delays that occur even in the

case where the worsening performance does not translate to demand impacts.

Finally, this chapter reconciled the concepts of delay perception and satisfaction to test the
hypothesis that there is a gap between the length of delay that is perceivable and such that

impacts satisfaction. It was suggested that:

1) there is a gap between delay perception and dissatisfaction as the probability of
perceiving a delay is larger than the probability of being dissatisfied given the
same length of delay incident,

2) the estimated gap is suggested to be between 0 minutes for standing commuters to
up to 9 minutes for seated leisure travellers and

3) it has been generally suggested that the gap between delay perception and
dissatisfaction increases for seated passengers, with longer journeys and delay at

departure.

This chapter focused on establishing a link between delay length and passenger satisfaction
with the use of logistic regression. The concepts of delay perception and satisfaction were
introduced, suggesting that smaller delays are often unperceived and have a small impact
on passenger satisfaction. This, in turn, raised a question about the curvature of the shape
of the relationship between delay and travellers’ utility. Such concerns were generally

raised in the literature, e.g. by Wardman and Batley (2022) arguing that proportional
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elasticities (i.e. based on the relative proportion of AML to GJT) better explain changes in
demand than the actual delay lengths. Hence, an attempt was made to explore the potential
non-linearities in the delay impacts using the satisfaction data from NRPS (as a proxy of
individual utility) by applying approaches introduced by previous literature. Different
functional forms were suggested based on previous research and the reported relationship
characteristic for the NRPS data. Whilst the results were inconclusive, the work conducted
as part of this chapter introduced different ways of investigating the non-linearities in the
impacts of delays on passengers. Some indications of non-constant marginal (dis)utility of
lateness were suggested by the estimated models, possibly indicating on the marginal
utility of delay being non-monotonous. It may be more negative (and/or becoming more
negative) for smaller delays (as the probability of perceiving it increases) and less negative
for larger delays. However, the choice of methodology, variables and/or restricting the
lengths of delay studied seemed to have a large impact on the estimated results. Moreover,
the analysis suggested that one of the limitations of the satisfaction data in this context
may be related to the existence of a point where the ‘maximum dissatisfaction’ is reached

such that it is difficult to establish the relationship for longer delays.

There are multiple ways in which the analysis conducted here could be improved. First of
all, additional segmentation could be introduced based on journey lengths, geographies
and/or sociodemographic characteristics. Moreover, since the focus of this analysis was on
the absolute lengths of delays, a relative approach could be explored instead. In this case,
the delay could be represented as the proportion of scheduled journey time or GJT. This
would be more in line with the suggestions by Wardman and Batley (2022) where the
demand elasticities based on relative proportions of AML to GJT were indicated to better
explain changes in demand. However, it has to be noted that there are important differences
between AML and incidental delays that are related to the type of data used (as discussed
in Chapter 5).

Future studies could also explore the non-linearity of delay impacts using the
methodologies outlined in this chapter for different satisfaction surveys. It might be
particularly useful to see if similar results are obtained for surveys from different countries,

different modes or other satisfaction scales.

Having compared the concepts of delay perception and dis(satisfaction), the purpose of the
last empirical chapter of this thesis is to use satisfaction data to estimate lateness
multipliers, defining a trade-off between a minute of delay to an equivalent length of

scheduled journey time.
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Chapter 8
Lateness valuation using satisfaction data

8.1. Introduction

Transport researchers are interested in the impacts that different journey aspects, including
scheduled journey times, fares, delays and comfort have on rail passengers. These are often
evaluated using demand data (e.g. Wheat and Wardman, 2017), stated preference (e.g.
Ibafiez, 2012) or satisfaction surveys (e.g. Monsuur et al., 2021). Regardless of the source
of the data, there generally is a consensus in the literature that delays negatively impact
transport users, affecting both their satisfaction and travel choices. However, it has been
suggested that the observed changes in demand in response to worsening performance
(estimated in the market-level econometric analyses) are relatively limited as compared to
the lateness valuation derived from individual-level discrete choice studies (Batley et al.,
2011).

Several studies attempted using Stated Preference (SP) data in delay valuation, where the
so-called lateness multipliers (also referred to as reliability multipliers by some authors)
define the conversion rate between 1 minute of lateness to the equivalent of journey time
and in this sense are defined as the trade-off between lateness and scheduled journey time
(e.g. Borjesson and Eliasson, 2011; Batley and Ibafiez, 2012). In the British context, most
studies supported the lateness multipliers of around 3 - i.e. 1 minute of lateness being
valued as the equivalent of 3 minutes of scheduled journey time (for review see Wardman
and Batley, 2014). This chapter draws on earlier work using SP surveys to estimate lateness
multipliers (e.g. Bates et al., 2001; Preston et al., 2009; Bérjesson and Eliasson, 2011;
Wardman and Batley, 2022 and particularly Batley and Ibafiez, 2012) whilst estimating
the lateness multipliers using journey satisfaction data. At the same time, the methodology
used in this study is similar to the large body of literature using data from surveys on life
satisfaction (e.g. Layard et al., 2008; Dickerson et al., 2014). The major difference is the
use of a survey on journey, not life, satisfaction and its cross-sectional nature. Building on
the work by Monsuur et al. (2021) and the previous chapter, the National Rail Passenger
Survey is used to estimate an ordered logit model of passenger satisfaction and estimate
the utilities of both scheduled journey time and delay (at departure and arrival) for a
pseudo-panel of frequent rail travellers. The estimated coefficients are subsequently used
in the estimation of lateness multipliers. Hence, the overall aim of this work is to use a
dataset that is novel in the context of lateness valuation (i.e. responses from a survey on

journey satisfaction) and apply it to the established methodologies to:
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1) explore the potential of journey satisfaction data in economic valuation in
transport-related contexts and

2) compare the lateness multipliers estimated from satisfaction data to the values
obtained from the traditional methods (i.e. SP surveys).

This chapter is structured as follows:

e section 8.2 presents a literature review, positioning the lateness multipliers within
the British rail forecasting framework as well as a description of the data sources
typically used in their estimation,

e section 8.3 describes the data and the modelling approach undertaken,

e section 8.4 presents the estimated models and lateness multipliers,

e section 8.5 provides a comparison of the estimated values with previous literature,

e section 8.6 summarises this work and discusses the potential for using satisfaction

surveys in the future research concerning economic valuation in transport.

8.2. Literature review

8.2.1. Lateness valuation framework
Ticket sales data is often used to estimate the effect that Generalised Journey Time (GJT)
components have on rail demand (for a review see Wheat and Wardman, 2017). Following
Wheat and Wardman (2017), the rail demand function in Great Britain (GB) is specified

as:
V = uGJT*FYGV A®

(29)

where GJT is generalized journey time, F is fare, GV A is income, A, y, d are the respective
elasticities and p represents all the other factors impacting the demand. Generalised

journey time in this formulation is a composite index specified as:

GJT =T + aH + BI

(30)

where T is the station-to-station journey time, H is a service headway and I is the number
of interchanges with a and S being the respective penalty multipliers converting both the

number of interchanges and service headway into equivalent journey time.

Extending the demand specification, Batley et al. (2011) used the following relationship
between demand and average lateness at the destination, previously prescribed by
passenger Demand Forecasting Handbook (PDFH) in Great Britain (ATOC, 2004):
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where Y is the proportionate change in rail demand, Lt,,, and L} ., represent average
lateness at the destination in the new and base scenarios, GJ T 4. 1S the generalized journey
time in the base scenario, A is the elasticity of rail demand to generalized journey time and

w is the reliability (lateness) multiplier.

As noted by Wheat and Wardman (2017), PDFH is a set of guidelines and forecasting
parameters that combine years of research into rail demand in Great Britain, providing a
comprehensive and consistent framework for economic appraisal of railway schemes. Of
note, as discussed by Wardman and Batley (2022), this represents the so-called 'indirect’
approach to forecasting the impact of changes in railway performance. Since 2018 (PDFH
v6), a recommendation was made to move to a 'direct' approach where a change in demand
Y is estimated directly based on a change in average lateness and the late time elasticities
(usually obtained from rail demand models, for review see Wardman and Batley, 2014).

The aforementioned lateness multiplier w defines the conversion rate of 1 minute of
lateness to the equivalent of journey time and in this sense is defined as the trade-off
between lateness and scheduled journey time. It is typically estimated as the ratio of the
utility of lateness to the utility of scheduled journey time. Wardman and Batley (2014)
provide a review of estimates of lateness multipliers since 1984 with most of the initial
values being around 3. Similar studies conducted throughout the years generally supported
that figure but suggested values of up to 6.5 for airport journeys with Batley and Ibafiez
(2012) estimating lateness multipliers for different demand segments based on journey
purposes and lengths as shown in Table 52. As reported in Wardman and Batley (2014),
in most cases, the estimated lateness multipliers range between 2-5 for business travellers
and commuters and 2-7 for leisure travellers, though values larger than 10 have also been

reported throughout the literature (e.g. Wardman, 2001; Borjesson and Eliasson, 2011).

Table 52 Lateness multipliers (Batley and Ibéfiez, 2012)

Journey Purpose Short Long
Business 2.68 1.78
Commute 3.12 2.00

Other 5.19 1.77
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8.2.2. Data sources used in the estimation of lateness multipliers
Stated Preference (SP) surveys are most often used in studies where lateness multipliers
are estimated (e.g. Bates et al., 2001; Preston et al., 2009; Borjesson and Eliasson, 2011;
Lietal., 2016). In such cases, passengers are presented with alternative hypothetical travel
options and make a choice regarding their preferred scenario. The differences in the
options presented to the respondent are the ticket prices, scheduled journey times and
performance (presented as average delay or distribution of delays). An example of such an
approach is Batley and Ibafiez (2012) where one of the pairs of journey options shown to

respondents was:

1) Option A where a 27-minute journey cost £2.40 with average lateness of 1 minute
at departure and 4.4 minutes at arrival.
2) Option B where a 23-minute journey cost £3.60 with average lateness of 4.4

minutes at departure and 8.8 minutes at arrival.

While the SP data can be subjected to biases, such as systematic bias (divergence between
hypothetical and actual choices), justification bias (rationalizing actual choices) or
strategic bias (influencing policy) (for review see Wardman, 1988), it has become a
standard approach. Indeed, it is often the only possible source of such data (Bates et al.,
2001) as SP studies allow the analyst to design scenarios that may not be observable in the
real world as well as explicitly control for the choice attributes (Tsoleridis et al., 2022). An
alternative to stated preference data is revealed preference (RP) data where passengers'
actual travel choices are investigated. While economists typically prefer data on actual
choices, the RP data has its own limitations. It is more difficult to obtain, may be prone to
reporting errors (especially in the case of traditional travel diaries) and is based on the
assumptions of perfect information about the possible travel alternatives whereas, in fact,
it is difficult to identify the choice sets and trade-offs faced by the participants (Wardman,
1998; Bates et al., 2001; Hess et al., 2007; Preston et al., 2009; Tsoleridis et al., 2022).

An alternative to SP and RP surveys can be sought in satisfaction surveys where passengers
score their satisfaction with an actual travel experience ex-post. There is an abundance of
literature looking at the impact of different journey aspects on passenger satisfaction (for
reviews see De Vos et al., 2013; De Ofia and De Ofia, 2015; Gao et al., 2018; Ye et al.,
2022). Unlike SP or RP studies, passengers are not faced with multiple alternatives but
score their satisfaction with a particular journey (though some studies analysed surveys
referring to general satisfaction with public transport, e.g. Cats et al., 2015). Most studies
cite travel time, monetary cost, performance, journey comfort and provision of information

as key determinants of passenger satisfaction (e.g. Brons and Rietveld, 2009; Carrel et al.,



199

2016; Borjesson and Rubensson, 2019; Lunke, 2020; Monsuur et al., 2021). In the British
rail context, Monsuur et al. (2021) used the National Rail Passenger Survey to estimate the
impact of delays on passenger satisfaction, suggesting that passengers are very unlikely to
remain satisfied with journeys delayed by over 30 minutes, also highlighting the
importance of journey quality on travel satisfaction.

When considering satisfaction survey data, one must also remember about the limitations.
As with SP surveys, respondents may be biased, aiming to influence the results (strategic
bias). Furthermore, travellers may have imperfect knowledge or may not recall the correct
answers to responses in the surveys (Choi & Pak, 2005). With NRPS, for example, it is
highlighted that the timing of handing out the questionnaire (i.e. prior to boarding a train)
may also impact when and how the travellers respond, hence affecting the results. It is
likely that satisfaction surveys also are an imperfect source of data. That said, given that
the sources of these imperfections are different to those encountered with SP or RP
surveys, satisfaction surveys are a useful addition, offering an alternative and/or

complementing those more traditional data sources.

Whilst data on scheduled journey time and lateness may be available to supplement the
reported satisfaction, it refers to incidental (i.e. for a specific journey), not mean or
standard deviation of performance, as is typically the case with SP surveys. Satisfaction
data, typically from longitudinal household panels, have been used in economic valuation
in labour (e.g. Layard et al., 2008), health (e.g. Ferrer-i-Carbonell and van Praag, 2002)
and environmental economics (e.g. Frey et al., 2009). However, similar approaches have
not been as widely used in transport economics, possibly resulting from a lack of transport
surveys with such detailed information or from household surveys lacking enough
transport-related information. The most important exception is a study by Dickerson et al.
(2014) looking at the relationship between life satisfaction and commuting. Hence, in this
context, the use of journey satisfaction data in the estimation of lateness multipliers
represents a relatively novel approach. The following section provides a more detailed

description of the proposed approach.

8.3. Methodology

8.3.1. Pseudo-panel of frequent travellers from NRPS
NRPS dataset described in Chapter 5 was used in the analysis conducted as part of this
chapter. Following the initial analysis presented in Chapter 5, modelling of delay
perception in Chapter 6 and passenger satisfaction in Chapter 7, the dataset was further

restricted.
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With the NRPS dataset being cross-sectional in nature, an attempt was made to create a
subset of the original dataset capturing frequent rail travellers. Pseudo-panel approaches
have been widely used in the literature in the absence of true panel datasets (e.g. Dargay,
2002; Rich et al., 2023). This pseudo-panel of frequent travellers was then used to
investigate the impact of both scheduled journey time and delays on passenger satisfaction.

It is expected that while delays affect overall journey satisfaction of both frequent and
infrequent travellers (i.e. as investigated in Monsuur et al., 2021), the scheduled journey
time itself should not generally directly impact satisfaction with an individual journey.
This is based on an assumption that travellers’ decision to travel on a given service
characterised by a timetabled scheduled journey time was one that maximised travellers’
utility. However, as suggested by Cats et al. (2015), longer journeys may be associated

with lower overall satisfaction with public transport for commuters.
This can be illustrated using an example of two journeys:

1) A long-distance 4-hour business journey between London and Edinburgh

2) A short-distance 30-minute commuter journey between London and Stevenage

The two examples presented above represent very different journeys. Considering the
cross-sectional nature of the dataset, it is not believed that the differences in the timetabled
lengths of journeys have an impact on journey satisfaction of the two different types of
travellers. Journey time is a source of disutility for passengers travelling on different
origin-destination (OD) pairs, but assuming that both types of travellers are rational and
aim to maximise their utility, the choices to travel from London to Edinburgh and from
London to Stevenage are ones that maximise their utility. Assuming that both services
perform as timetabled, it would be expected that both types of travellers are satisfied with
their journeys. Any differences in the satisfaction scoring may be due to the differences in

other journey aspects (e.g. comfort) that may be correlated with journey length.

On the other hand, a frequent traveller, i.e. between London and Stevenage may be able to
perceive changes in scheduled journey times (timetable). Such changes may, in turn, affect
their journey satisfaction. Investigating this relationship is, however, only possible for
panel (not cross-sectional) datasets where the same traveller scores their satisfaction with
multiple different journeys on the same OD pairs across time. Hence, constructing a
pseudo-panel of frequent travellers allows investigating whether and how the changes in
scheduled journey times and experienced lateness on the same OD pair affected reports of

journey satisfaction.
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To align with this framework, a number of modifications was applied to the original NRPS
dataset, based on the following journey characteristics:

1) Frequency of travel

Out of the 46% of passengers responding to the question regarding the frequency of travel
on a given route, 73% admitted to travelling at least every 2 months (classified as frequent
travellers for the modelling purposes). It is assumed that delays may affect satisfaction of
both frequent and infrequent travellers. However, it is only the frequent travellers whose
satisfaction is assumed to be affected by potential changes in scheduled journey times on

a given route.
2) Recorded delay length and delay perception

Responses where a passenger reported late arrival but no delay was matched using the
operational data (5.7%) were discarded, as were responses associated with delays of more
than 30 minutes — so as to remove outliers and possibly erroneous responses as in some
cases large differences between recorded and reported delays were found for these records.
However, responses where no delay was reported and recorded were retained as the interest
here is in both delayed and on-time journeys (similarly to modelling journey satisfaction
in Chapter 7).

3) Number of responses for a given origin-destination (OD) pair

OD pairs with more than 10 and 25 responses were selected. 792 OD pairs were identified
with more than 10 responses (over 26,026 records) and 270 pairs with more than 25
responses (over 17,695 records). The response thresholds of 10 and 25 were selected
arbitrarily to find a compromise between the number of OD pairs and the number of

responses per OD.

In conclusion, between 14,000 and 40,000 responses are used in the estimation of the
satisfaction models described in the following section. This depends on the choice of OD
pairs as well as control variables (i.e. the more control variables, the fewer responses as

some questions in the survey were subject to non-response).

Passengers scored their overall satisfaction with journeys on a 5-point Likert scale, from
‘very satisfied’ to ‘very dissatisfied’ as discussed in Chapter 5. Unlike in most of the
analysis presented as part of Chapter 7, here the overall journey satisfaction score (instead
of punctuality satisfaction) is used as the dependent variable as the interest lies in
understanding the impacts of both delay and scheduled journey time on satisfaction.

Punctuality satisfaction used in Chapter 7 is not well-suited to this body of analysis as it is
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expected to be only affected by lengths of delay (but not scheduled journey time, at least
directly), not allowing to estimate a trade-off between delay and scheduled journey time.
Similarly, passengers scored their satisfaction with other journey aspects, e.g. train, station,
value for money and service frequency, as discussed further in the following sections.
These are used to control overall journey satisfaction for satisfaction with other journey

aspects.

8.3.2. Deriving the lateness multipliers
As the dependent variable (overall journey satisfaction) can take one of the five outcome
categories, which are in sequential order, an ordered logit model is used for estimating the
latent continuous variable y*. In this case, the probability of choosing a satisfaction
category i is estimated for a given number of k threshold (i.e. 4 thresholds given 5
satisfaction categories), thus:

P(Y =10) =P(ki1 <y" <k

(32)

where journey satisfaction is modelled as follows:
n j
P(Y = 1) = P(kios < fo+ FiSIT + Bolo + Bsla + ) BaSaty + ) v,0D; < k)
n=1 j=1

(33)

where:

SJT: scheduled journey time

L,: length of delay at arrival (destination)
Lp: length of delay at departure (origin)
0D;: OD pair j

Sat,: a dummy for a variable representing passenger’s satisfaction with train and station
(models 1-4) and also satisfaction with value for money and frequency (model 4). It takes
the value of 1 if a passenger was ‘very satisfied” or ‘fairly satisfied’” with a given journey
aspect or 0 otherwise. It is important to acknowledge the potential endogeneity bias. This
is related to needing to control the overall journey satisfaction for those specific journey
aspects that are difficult to measure and/or there is no alternative variable that could control

for their effect on the overall satisfaction.
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In principle, the proposed model is very similar to the punctuality satisfaction models
estimated in Chapter 7. However, in models 2-4, OD pair fixed-effects (Baltagi, 2021) are
included by introducing a dummy variable representing each of the OD pairs represented
in the sample. This allows the treatment of the dataset, which strictly speaking is cross-
sectional in nature, as a pseudo-panel of frequent rail travellers, to estimate the impacts of

both changes in scheduled journey times and delays on passenger satisfaction.

Ordered logit model is conceptually more suitable for modelling ordinal data than linear
regression (Dickerson et al., 2014; for a review see Boes and Winkelmann, 2006), but its
major disbenefit is the difficulty in directly interpreting the coefficients. However, as noted
by Dickerson et al. (2014), the ratios of the coefficients in the ordered model can be used
to evaluate the trade-offs between variables. In this case, lateness multipliers are estimated
as a ratio of the utility of departure and arrival delay S,and S5 to the utility of scheduled
journey length B,. The multipliers are calculated separately for the two types of delays, at
departure (wp) and arrival (w,) following Batley and Ibafiez (2012) for the selected three
journey purposes. In line with the literature (i.e. Bates et al., 2001; Preston et al., 2009;
Batley and Ibafiez, 2012), the lateness multiplier represents the value of delayed time with
respect to the scheduled time:

(34)

8.3.3. Choice of control variables and demand segmentation
In terms of the choice of control variables, as noted previously, passengers' satisfaction
with public transport is not only impacted by performance but also by other journey
aspects. Chapter 5 described the different satisfaction variables forming part of the NRPS
dataset. However, given the similarity in the questions, relatively high non-response rates
for some of them as well as correlations, the choice of the control variables was limited to
the two general satisfaction questions - satisfaction with train and station as well as
satisfaction related to timetable or performance, i.e. satisfaction with train frequency,
punctuality, scheduled journey time and value for money. However, satisfaction with
punctuality and scheduled journey time are represented in the model by the directly
observed (experienced) values, which is generally a preferred approach as using
satisfaction variables as explanatory variables in the case of the overall satisfaction models

introduces endogeneity bias.

Initially, an attempt was made to directly compare the results obtained by estimating

lateness multipliers using the methodology described in section 8.3.2 and the journey type
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categorisation used in Batley and Ibafiez (2012). The same 12 OD pairs were chosen and
categorised as long and short distance following Batley and Ibafiez (2012) as shown in
Table 53. The decision to choose the same OD pairs as well as to follow the original
journey type classification was made to allow more direct comparison of the results with
the original research what was considered a sensible initial step, given the novelty of the
proposed approach. With only 1176 responses across these pairs, the obtained model
results were mostly insignificant. This is perhaps due to the fact that while in SP surveys
the choice is fully determined by the described attributes and preferences, in the case of
satisfaction surveys, the choice of passenger satisfaction scores is much more complex.
Focusing on a smaller subset of OD pairs leads to a reduced number of responses and, in
turn, with the distribution of delays typically skewed towards smaller values, only 248 out
of 1176 responses were characterised by delays of over 5 minutes — 61 for long distance
and 187 for short distance OD pairs. These numbers are reduced further following journey
purpose categorisation (as shown in Table 55), as well due to non-responses to some of the

satisfaction questions described in Chapter 5.

Table 53 Journey type OD categorisation based on Batley and Ibéafiez (2012).

Long distance Short distance
Bristol-London Brighton-London
Leeds-London Kings Cross Glasgow-Edinburgh
Swindon-London Paddington Leeds-Sheffield
Leeds-Birmingham New Street Peterborough-London Kings Cross

Portsmouth Harbour-London Waterloo
Reading-London Paddington
Stevenage-London Kings Cross

Woking-London

The initial model employs segmentation by three journey purposes - business, leisure and
commute whilst the segmentation in the extended model aligns with that used by Batley
and Ibafiez (2012) (i.e. by three journey purpose and two journey type categories) for better
comparison of the estimated values. Therefore, all the responses were categorised based
on the journey type classification provided in the dataset by Transport Focus and
subsequently grouped as short and long, as shown in Table 54 to align with Batley and
Ibafiez (2012). This classification is based on the genre definition used for the
segmentation of the different services into 7 building blocks. As noted by Transport Focus,

this classification aligns with operational data for sub divisions of the TOCs’ networks and
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is used to benchmark performance against the respective building block genre (Transport
Focus, 2020).

Generally, commuter type services have been classified as short whereas the high-speed,
interurban and long distance services were classified as long journeys with details on the
distribution of responses provided in Table 55 and summary statistics presented in Table
56. It is noted that this provides only one of many possible ways to segment the data. The
alternative split could be based on journey length or distance. Finally, it is noted that the
proposed segmentation not controls for the journey lengths, but also service types which
can be related to the speed/distance ratios as well as prices of the different services forming
part of the different NRPS building blocks. It is hypothesised that this allows for additional
insights related to how different travellers value different aspects of their journeys.

Table 54 OD pair distribution across journey type categories

NRPS building block OD pairs Journey type category Average SJT

Airport 11 - 24
High-speed 37 Long 82
Interurban 37 Long 55

Long commute 85 Short 45
Long distance 45 Long 91

Rural 11 - 50
Short commute 44 Short 31

Table 55 OD pair distribution across journey purposes and journey types

) Purpose
Distance Business Commute Leisure Total
Short (%) 6.75 24.40 1456 4572
Long (%)  18.33 9.86 26.10 54.28

Total (%)  25.08 34.26 40.66 100.00

Table 56 Descriptive statistics corresponding to model 4a from Table 59

Segment Overall Station Train Freq VIM LA L_D SJT N

SB 4.14 0.86 0.84 087 043 268 139 587 947

SC 3.82 0.80 072 075 020 216 131 353 3,504
SL 4.36 0.90 088 090 062 195 114 511 2,068
LB 4.15 0.84 084 088 044 368 131 1035 2,556
LC 3.77 0.80 071 079 020 392 262 379 1,418
LL 4.39 0.88 090 091 067 310 144 99.7 3,653

Overall refers to overall journey satisfaction; Station, Train, Freq and VfM are the proportions of
passengers reporting satisfaction with station, train, frequency and value for money; L_A: delay at
arrival and L_D: delay at departure; SJT: scheduled journey time; N: number of responses by
demand segment; SB/LB — Short/Long Business, SC/LC — Short/Long Commute, SL/LL —
Short/Long Leisure;
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8.3.4. Summary
Three iterations of models were estimated using Stata 17 (StataCorp, 2021) and are
presented along three sets of the estimated lateness multipliers. For each of the iterations,
four alternative specifications of the models are presented. The simpler versions of the
models were estimated with a more limited segmentation whereas the extended models
followed the segmentation similar to that in Batley and Ibafiez (2012). Additionally, as
part of a sensitivity analysis, models with the exclusion of departure delay were estimated.

In all cases, four sets of models are presented:

1) Ordered logit model without OD fixed effects;

2) Ordered logit model with OD fixed effects for a subset of OD pairs with at least 10
responses;

3) Ordered logit model with OD fixed effects, for a subset of OD pairs with at least 25
responses;

4) Ordered logit model with OD fixed effects, for a subset of OD pairs with at least 25
responses and additional control variables representing satisfaction with value for

money VMg, and service frequency Freqgg;.

8.4. Results

The initial models

The models of passenger satisfaction were estimated using an ordered logit model with
estimated coefficients presented in Table 57. Model 1 is based on estimating the ordered
logit without OD fixed effects. In this case, the delays at arrival and departure both have a
statistically significant negative impact on satisfaction whilst the impact of scheduled
journey time is less clear. As discussed previously, it is not expected for passengers
travelling on different OD pairs to be less satisfied with the longer journey. Using overall
journey satisfaction rather than punctuality satisfaction as the dependent variable means
that the satisfaction needs to be controlled for other journey aspects. This is represented by
the positive impact that satisfaction with station and train are suggested to have on the
overall satisfaction. However, it is worth noting the significant and negative coefficient on
scheduled journey time under model 1 for commuters that may be potentially explained by
commuters generally showing larger dissatisfaction with longer travel for work as
indicated by Cats et al. (2015). Nevertheless, it can be expected that respondents who travel
on the same OD pair are sensitive to changes in scheduled journey times and it is further
assumed that these impacts are similar for travellers on the same OD. With the introduction
of OD fixed effects in models 2-4, the coefficients on scheduled journey time become

significant and negative for all journey purposes, in line with expectations.
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It is noted that the models where the outcome variable is overall satisfaction with the
journey may suffer from endogeneity bias. As satisfaction with a journey is likely affected
by more factors, such as those related to various aspects of the journey (not only the delay),
hence the need to control for these journey aspects. Ideally, when modelling overall
satisfaction, one would prefer using exogenous explanatory variables, i.e. not reported
satisfaction with a given journey aspect. Due to the nature of the dataset, the overall
satisfaction models include some explanatory variables that are endogenous (e.g.,
satisfaction with a specific aspect). This is because there are no measurable variables
available that could serve as valid instruments for approaches such as instrumental variable
estimation that could be used to address endogeneity. Consequently, these models may be

subject to endogeneity bias.

It is highlighted that the reported values of R? are slightly higher than for the models of
perception and delay satisfaction and, as previously noted, more similar to the values
reported by Monsuur et al. (2021) in modelling overall journey satisfaction using NRPS
data, what may be a result of the different nature of delay and overall journey satisfaction.

Using the estimated coefficients, lateness multipliers for arrival and departure delay were
calculated for models 2-4 as shown in Table 58. The estimated lateness multipliers at
arrival are around 4.0-4.7 for business travellers, 7.4-8.9 for commuters and 4.6-5.6 for
leisure travellers. The respective departure lateness multipliers are 5.6-6.0 for business
travellers, 2.1-3.5 for commuters and 3.2-4.0 for leisure travellers. The three estimated
models in Table 58 indicate that the model results are quite robust to reducing the sample
size or inclusion of additional control variables (as the estimated lateness multipliers are
of similar magnitude for models 2-4). The lateness multipliers are larger at departure for
business travellers, slightly larger at arrival for leisure travellers and much larger at arrival
for commuters. This would suggest that 1 minute of delay is valued as being equivalent to
around 4 minutes of scheduled journey time for delay at arrival and 6 minutes at departure
for business travellers, 8 minutes at arrival and 3 at departure for commuters, and 5 minutes
at arrival and 3 minutes at departure for leisure travellers. However, it is worth noting that
while the central values are different, the estimated confidence intervals generally suggest
that the lateness multipliers are not significantly different from each other. Nevertheless,
it is not known how the multipliers reported in the literature performed with this respect,

given that confidence intervals are typically not reported (i.e. Batley and Ibafiez., 2012).

With lateness multipliers being ratios of two values - utility of scheduled journey time and
delay, the values depend on their relative magnitudes. At the same time, the observed

differences in the scheduled journey times are typically relatively small (i.e. average
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absolute difference in timetabled scheduled journey times was just above 4 minutes for the
OD pairs in the subsample used in model 4). This highlights the limitation of satisfaction
data as (unlike in SP experiments), the analyst has no control over the attributes of the
presented choice sets (or scheduled journey times and experienced lateness in the case of
satisfaction surveys). It is possible that the small differences may remain unperceived by
some passengers (perhaps even by frequent travellers) or have a lower marginal valuation
as compared to larger differences. Daly et al. (2014) discussed the possible non-linearities
in relation to time losses and savings whilst Wardman and Batley (2022) talked about the
importance of time perception in relation to delays. If this is the case, the utility of
scheduled journey time may be underestimated. In such cases, overcoming this limitation
may be difficult as satisfaction scores are related to an ex-post evaluation of experiences

and large changes in scheduled journey times are rarely observable.
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Table 57 Modelling results for the initial models

1 t-stat 2 t-stat 3 t-stat 4 t-stat
Constant
C -0.0778 -0.93 -0.225 -1.85 -0.186 -1.25 -0.117 -0.69
L -0.0124 -0.14 -0.0553 -0.48 -0.0223 -0.16 -0.0793 -0.49
Station_Sat
B 1.345™* 20.3 1.350™" 17.3 1.325"" 151 1,137 12.3
C 11117 27.6 1.183™" 20.9 1,195 16.4 0.980™" 12.9
L 1.401™ 27.9 1.465™" 215 1.413"™ 171 1172 13.6
Train_Sat
B 3.059"" 458 3.066™" 38.2 3.127 34.0 2.866"" 28.9
C 3.049™ 722 2.998™ 52.0 3.042" 41.6 2.770™ 36.0
L 3.438™ 62.2 3.418™ 46.0 3.401 36.6 2.999" 30.1
Freg_Sat
B 0.803"" 8.15
C 0.888™" 12.3
L 0.919™ 9.88
VIfM_Sat
B 1.049™ 15.9
C 1.120™ 15.0
L 1.123™ 19.6
L_AP3)
B -0.0505"" -8.82  -0.0567"" -8.89  -0.0521"" -7.68  -0.0537""  -7.53
C -0.101™" -18.4 -0.1000"" -14.1 -0.114™ -13.1 -0.109™ -12.0
L -0.0593""  -123  -0.0583™ -9.74  -0.0570""  -845  -0.0576™"  -8.20
L_D(p_2)
B -0.0690" -1.77 -0.0683"" -6.46 -0.0729™" -5.99 -0.0758™" -6.01
C -0.0522"" -7.71  -0.0472"" -520  -0.0296™  -2.60  -0.0349™ = -2.97
L -0.0404™" -6.30 -0.0421™ -5.02 -0.0354™" -3.54 -0.0402"™" -3.84
SIT (B_1)
B -0.0009" -1.99 -0.0120™" -5.43 -0.0121™ -5.00 -0.0134™" -5.27
C -0.0058™  -6.76  -0.0134™"  -526  -0.0142""  -474  -0.0123""  -3.93
L 0.0002 0.53 -0.0105™" -4.95 -0.0102™* -4.34 -0.0125™" -5.06
Thresholds
1 -2.482™" -31.6 -2.890™" -4.55 -3.755™" -7.41 -3.501™" -6.47
2 -0.919™" -12.7 -1.243" -1.96 -2.112" -4.19 -1.815™ -3.37
3 0.772™ 10.7 0.455 0.72 -0.410 -0.81 -0.0466 -0.09
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4 4.396™" 56.8 4.190™ 6.60 3.293™ 6.53 3.870™ 7.17
Number of responses
40363 25457 17316 16632
Log-likelihood
-36770.8 -22388.3 -15181.8 -13920.9
Pseudo R?
0.234 0.246 0.231 0.267
Fixed effects
X \Y \Y \Y
VfM and Freq Satisfaction
X X X \Y
Minimum N
1 10 25 25

Legend: t statistics in parentheses; “ p < 0.05, ™ p < 0.01, ™ p < 0.001;
B — Business, C — Commute, L — Leisure; Station_Sat, Train_Sat, Freq_Sat, VfM_Sat refer to
satisfaction with station, train, frequency and value for money; L_A, L_D refer to delay at arrival
and departure; SJT — scheduled journey time

Table 58 Estimated lateness multipliers

Journey Wy Wp

Purpose (2) 3) (4) (2) ) (4)
Business 4.74™ 4.31™ 3.99™ 572" 6.02" 5.64™
z-stat (4.67) (4.22) (4.34) (4.12) (3.81) (3.94)
95% ClI [2.8-6.7] [2.3-6.3] [2.2-5.8] | [3.0-8.4] [2.9-9.1] [2.8-8.4]
Commute 7.43™ 8.02" 8.86™ 3.51™ 2.08™ 2.83™
z-stat (4.90) (4.44) (3.73) (3.75) (2.31) (2.41)
95% ClI [4.5-10.4] [4.5-11.6] [4.2-13.5] | [1.7-5.3] [0.3-3.9] [0.5-5.1]
Leisure 5.52" 5.61™ 4.61™ 3.99™ 3.49™ 3.21™
z-stat (4.51) (3.96) (4.42) (3.44) (2.67) (2.99)
95% ClI [3.1-7.9] [2.8-8.4] [2.6-6.6] | [1.7-6.3] [0.9-6.0] [1.1-5.3]

Legend: "p<0.05 ™ p<0.01, " p<0.001

The extended models

To enable closer comparisons with the work conducted by Batley and Ibafiez (2012) and

provide sensitivity analysis, the ordered logit models were re-estimated using the extended

version of journey type segmentation (presented in Table 54) with the results shown in

Table 59. As in the case of the simpler models, model 1a is estimated without OD fixed

effects that are subsequently included in models 2a-4a. Similarly, in model 1a, the

scheduled journey time coefficient is negative and significant for commuters. With the

inclusion of OD fixed effects in models 2a-4a, the scheduled journey time coefficient

becomes negative and significant for all segments. At the same time, coefficients for arrival

delay are negative and significant for all journey length and purpose combinations.
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However, in the case of departure delay, despite all of the coefficients being negative, they
are not significant for short commute and leisure. This may be a result of the additional
segmentation leading to fewer responses by demand segment.

Table 59 Modelling results with extended segmentation

la t-stat 2a t-stat 3a t-stat 4a t-stat
Constant
SC 0.0358 0.24 -0.0185  -0.09 0.0268 0.10 0.00342  0.01
SL 0.286 1.76 0.322 1.40 0.464 1.65 0.240 0.75
LB 0.0544 0.32 0.141 0.53 0.226 0.72 0.0669 0.19
LC 0.0142 0.08 0.0390 0.15 0.193 0.61 0.223 0.63
LL -0.0295  -0.18 0.0242 0.09 0.183 0.59 -0.0142  -0.04
Station_Sat
SB 1.718™ 131 1.818™ 10.5 1.823" 8.98 1593  7.33
SC 1.090"" 23.0 1,141 16.5 1.077 1153  0.864™ 8.90
SL 1.376™ 171 1.427 117 1.264™ 7.82 0.955™" 5.70
LB 1.168™ 13.0 1127 114 1.053" 9.36 0.899™" 7.54
LC 1.126™ 121 1.118™ 9.56 1.300"™" 9.20 1.098™ 7.44
LL 1.340" 18.2 1.386™" 153 1.360"" 1265 1.169"™ 104
Train_Sat
SB 2.845™" 23.0 2.826™" 17.7 2.870™" 155 2,629 12.9
SC 3.079™ 63.9 3.043™ 44.2 3.158™" 3491 2.863"  29.8
SL 3.286™" 41.1 3.290™" 28.2 3.369™" 22.0 3.006™" 18.3
LB 3.119™ 36.6 3.159™ 31.6 3.260™" 28.4 3.024™ 24.2
LC 2.992" 34.8 2.941 27.3 2.808™" 215 2.574™ 184
LL 3.666™" 46.7 3.625™" 36.0 3.566™" 28.8 3.110™ 22.9
Freg_Sat
SB 0.734™ 3.46
SC 0.895""  9.89
SL 1.096™" 6.72
LB 0.688™"  5.28
LC 0.731™ 5.05
LL 0.794™  6.19
VfM_Sat
SB 0.884™" 6.12
SC 1.065™ 11.4

SL 0.972" 971
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LB 1.114™ 12.8
LC 1.215™ 8.14
LL 1.219™" 15,53
L_A(B3)
SB -0.0892""  -6.17 -0.109"™" -6.50 -0.102™" -5.72  -0.106™" -5.64
SC -0.101™  -154  -0.0978™" -11.1  -0.114™ -9.94  -0.106™" -8.83
SL -0.0658™" -7.01 -0.0555™" -4.14 -0.0722"" -455 -0.0792"" -4.82
LB -0.0429"™"  -6.51 -0.0473™" -6.52 -0.0422"" -545 -0.0463"" -5.66
LC -0.109"™" -9.45 -0.113"™" -8.34 -0.123™" -8.07 -0.119™ -7.50
LL -0.0576™" -9.77 -0.0623"" -8.93 -0.0574™" -7.40 -0.0545"" -6.71
L_D (B2)
SB -0.0487" -2.56 -0.0423 -1.82 -0.0578" -2.19  -0.0627" -2.28
SC -0.0659""  -7.97 -0.0508™"  -4.31 -0.0181 -1.12 -0.0295 -1.77
SL -0.0560™" -4.78 -0.0633"" -3.77 -0.0252 -1.22 -0.0175 -0.80
LB -0.0585™" -5.43 -0.0578™" -458 -0.0552"" -3.74 -0.0560"" -3.66
LC -0.0261 -1.92 -0.0367" -2.29 -0.0369" -2.05  -0.0385" -2.08
LL -0.0332""  -4.12 -0.0345™" -3.40 -0.0362" -3.01 -0.0454™" -3.64
SJT (B1)
SB -0.00102 -0.70 -0.0115™" -3.44 -0.0109™ -2.81 -0.0115™ -2.84
SC -0.00695™" -6.50 -0.0154™" -4.68 -0.0148™" -3.70 -0.0134™ -3.21
SL -0.000697 -0.80 -0.0117"" -4.18 -0.0118™" -3.70 -0.0144™" -4.32
LB 0.000002 0.00 -0.0102"" -409 -0.0101™ -3.59 -0.0116™" -3.91
LC -0.00334* -2.00 -0.0114™ -3.49 -0.0127* -3.28  -0.0121" -2.97
LL 0.000119 0.31 -0.00960"™* -3.99 -0.00906™" -3.35 -0.0115"" -4.02

Threshold 1 -2.421"" -169  -2.779™  -418  -3.350™" 590 -3.298™" -541
Threshold 2 -0.842™"  -6.03 -1.107 -1.67 -1.672" -2.96  -1.581" -2.61
Threshold 3 0.865™" 6.21 0.595 0.90 0.0369 0.07 0.184 0.30
Threshold 4 4.499™" 315 4.348™" 6.55 3.755™" 6.63  4.114™  6.76

N 36220 22397 14733 14146
LL -33007.8 -19694.8 -12928.6 -11862.8
R? 0.237 0.251 0.236 0.271
Fixed effects X \ \% \Y
VM and Freq X X X \Y
Minimum N 1 10 25 25

Legend: t statistics in parentheses; “ p < 0.05, ™ p < 0.01, ™ p < 0.001;
SB/LB — Short/Long Business, SC/LC — Short/Long Commute, SL/LL — Short/Long Leisure;
Station_Sat, Train_Sat, Freq_Sat, VfM_Sat refer to satisfaction with station, train, frequency and
value for money; L_A, L_D refer to delay at arrival and departure; SJT — scheduled journey time
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The subsequently estimated lateness multipliers are shown in Table 60. Arrival delay
multipliers are around 9 for short and 4 for long business journeys, 7 for short and 9 for
long commute and 5-6 for leisure trips. The corresponding departure delay multipliers are
4-5 for business journeys, 1-3 for commute and 1-5 for leisure trips. There is less
confidence in the departure delay multipliers as the estimated values tend to vary

considerably between the estimated models.

Table 60 Estimated lateness multipliers for models with additional journey type
categorisation

Journey Wy wp

Purpose (2) 3 4) (2) 3) 4)
SB 9.46™" 9.38™ 9.19™ 3.68 5.31 5.45
z-stat (2.97) (2.47) (2.48) (1.64) (1.75) (1.81)
95% ClI [3.2-16] [1.9-17] [1.9-16] | [-0.8-8.1] [-0.6-11] [-0.4-11]
LB 4.63™ 4.20™" 4.00™" 5.66™" 5.49™ 484
z-stat (3.50) (3.03) (3.25) (3.03) (2.58) (2.67)
95% ClI [2.0-7.2] [1.5-6.9] [1.6-6.4] | [2.0-9.3] [1.3-9.6] [1.3-8.4]
SC 6.33™ 7727 7.91™ 3.29™ 1.22 2.21
Z-stat (4.29) (3.48) (3.02) (3.22) (1.08) (1.56)
95% ClI [2.3-9.2] [3.4-12] [2.8-13] | [1.3-5.3] [-1.0-3.4] [-0.6-5.0]
LC 0.84™ 9.64™" 9.80™" 3.20™ 2.90 3.18
Z-stat (3.15) (2.98) (2.71) (1.99) (1.82) (1.78)
95% ClI [3.7-16] [3.3-16] [2.7-17] | [0.1-6.4] [-0.2-6.0] [-0.3-6.7]
SL 476" 6.117 5.49™ 5.43™ 2.13 1.21
z-stat (2.94) (2.89) (3.23) (2.80) (1.15) (0.79)
95% ClI [1.6-7.9] [2.0-10] [2.2-8.9] | [1.6-9.2] [-1.5-5.7] [-1.8-4.2]
LL 6.49™" 6.34™" 474 3.60™" 3.99™ 3.95™
Z-stat (3.70) (3.11) (3.52) (2.53) (2.18) (2.63)
95% ClI [3.1-9.9] [2.3-10] [2.1-7.4]| [0.8-6.4] [0.4-7.6] [1.0-6.9]

Legend: "p<0.05 ™ p<0.01, " p<0.001

Sensitivity analysis

To test the sensitivity of the approach used in estimating the lateness multipliers, the
models from Table 59 were also re-run with the exclusion of departure delay from the list
of explanatory variables. The results of the estimated models are presented in Table 61.
The estimated coefficients are (similarly to the previously estimated models) negative and
significant for arrival delay and scheduled journey time when OD pair fixed effects are
included while the coefficients for scheduled journey time are mostly insignificant in the
case of model 1 where OD pair fixed effects are excluded. The estimated lateness
multipliers for arrival delay are shown in Table 62. These are similar to the ones from the
main body of analysis - around 10 minutes for short and 4 minutes for long business
journeys, 7 minutes for short and 10 minutes for long commute and 5-6 minutes for leisure

journeys.
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Table 61 Model estimates for models without departure delay

1 t-stat 2 t-stat 3 t-stat 4 t-stat
Constant
SC 0.0268 0.18 -0.0156 -0.07  0.0693 0.27 0.0233 0.08
SL 0.292 1.82 0.320 1.41 0.506 1.81 0.270 0.85
LB 0.0122 0.07 0.0727 0.28 0.170 0.54 0.000517  0.00
LC 0.0404 0.23 0.0447 0.17 0.220 0.70 0.250 0.71
LL -0.0248 -0.15 0.00372 0.01 0.171 0.56 -0.0463 -0.13
Station_Sat
SB 1727 13.23  1.824™ 1059 1.835™ 9.05 1.597" 7.35
SC 1.090"" 2332 1.138™ 16.42  1.075™ 1152  0.865™" 8.92
SL 1.383™" 17.81  1.432™ 11.75  1.258™ 7.79 0.950™" 5.68
LB 1.170™* 13.63  1.134™ 1142  1.056™ 9.38 0.901™" 7.56
LC 1.120™ 1205 11177 9.58 1.297 9.19 1,103 7.49
LL 1.339™ 18.15  1.386™" 1530 1.360" 1265 11677 10.37
Train_Sat
SB 2.848™" 23.01 2.831™ 1769 2.871™ 1552 2.631™ 12.89
SC 3.078™ 63.92 3.041" 4427  3.153"™ 3492 2.863™ 29.81
SL 3.282™ 4111  3.284™ 28.19  3.369™" 22.07 3.003™" 18.32
LB 3.125™" 36.75 3.160™ 31.68 3.275"™ 28.54  3.042" 24.35
LC 2.993™ 35.00 2.947™ 2751 2.815™ 21.66 2,581 18.51
LL 3.671™ 46.90 3.631™" 36.15 3.579"™ 28.94 3.126™ 23.06
Freg_Sat
SB 0.716™" 3.37
sC 0.887" 9.81
SL 1.097 6.73
LB 0.684™" 5.25
LC 0.709™" 491
LL 0.792"* 6.17
VfM_Sat
SB 0.889"" 6.16
SC 1.061™ 11.31
SL 0.972" 9.71
LB 1.112™" 12.79
LC 1.224 8.20
LL 1.216™ 15.49

L_A(B3)
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SB -0.113" -1045 -0.127"" 973  -0.125"" -8.66  -0.130"™"  -8.57
SC -0.139™ -29.95 -0.122"*  -18.14 -0.122""  -1358 -0.119"™  -12.78
SL -0.0954™"  -13.50 -0.0896™" -8.97  -0.0847"" -6.95 -0.0877"" -6.95
LB -0.0599™"  -10.30 -0.0620"™" -9.49  -0.0530™" -7.36  -0.0577"" -7.67
LC -0.125™" -16.83 -0.135™  -15.15 -0.145""  -1390 -0.142"" -13.15
LL -0.0713™"  -1460 -0.0748™" -12.65 -0.0694™" -10.35 -0.0698"" -10.06
SJT (B1)

SB -0.000484  -0.33  -0.0134™ -4.02 -0.0119" -3.09 -0.0126™ -3.13
SC -0.00545™" -5.19  -0.0168™" -5.11  -0.0159™" -4.00 -0.0145"" -3.49
SL -0.000195 -0.22  -0.0132"" -474  -0.0130"" -4.08 -0.0158"" -4.74
LB 0.000552 0.97 -0.0117™  -469  -0.0112™" -401 -0.0130™" -4.41
LC -0.00281 -1.71  -0.0129™" -3.95  -0.0137"" -3.57  -0.0134™" -3.32
LL 0.000382 1.01 -0.0113™* -471  -0.0104™" -3.85 -0.0130"™" -4.56
Threshold 1 -2.348™ -16.65 -2.901™"  -4.34  -3552""  -6.28  -3.557""  -5.86
Threshold 2 -0.780™" -5.66  -1.239 -1.86  -1.881"™"  -3.34  -1.850" -3.06
Threshold 3 0.919™ 6.69 0.454 0.68 -0.178 -0.32  -0.0926 -0.15
Threshold 4 4541 3226 4.198™ 6.29 3.532™" 6.26 3.830™" 6.32
N 36220 22397 14733 14146

LL -33079.4 -19730.8 -12945.6 -11882.3

R? 0.235 0.250 0.235 0.270

Fixed effects X \ \Y \Y

ViMand Freq X X X X

Minimum N 1 10 25 25

Legend: t statistics in parentheses; “ p < 0.05, ™ p < 0.01, ™ p < 0.001; SB/LB — Short/Long Business,
SC/LC - Short/Long Commute, SL/LL — Short/Long Leisure; Station_Sat, Train_Sat, Freq_Sat,
VIM_Sat refer to satisfaction with station, train, frequency and value for money; L_A, refers to delay at

arrival;

SJT — scheduled journey time

Table 62 Estimated lateness multipliers for models without departure delay

Journey Purpose Wy

) @) (4)
Short Business 9.45™ 10.47 10.31™
z-stat (3.67) (2.87) (2.90)
95% ClI [4.4-14.5] [3.3-17.6] [3.3-17.3]
Long Business 532" 4.74™ 4.45™
z-stat (4.24) (3.56) (3.86)
95% ClI [29-7.8] [2.1-7.3] [2.2-6.7]
Short Commute 7.28™ 7.65™ 8.19™
z-stat (4.92) (3.86) (3.38)
95% ClI [4.4-10.2] [3.8-11.5] [3.4-12.9]
Long Commute 10.48™  10.54™ 10.57™
z-stat (3.83) (3.47) (3.23)
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95% ClI [5.1-15.8] [4.6-16.5] [4.2-17.0]
Short Leisure 6.78"" 6.50"" 5.55"
z-stat (4.18) (3.52) (3.93)
95% ClI [3.6-10.0] [2.9-10.1] [2.8-8.3]
Long Leisure 6.62" 6.68™ 537
z-stat (4.44) (3.63) (4.19)
95% ClI [3.7-9.5] [3.1-10.3] [2.9-7.9]

Legend: “p<0.05 ™ p<0.01, ™ p<0.001

8.5.Comparison of the estimated lateness multipliers with Batley and Ibafiez
(2012)

The lateness multipliers from the initial (with three demand segments) and extended model
(with segmentation by journey purpose and length conforming to the segmentation adopted
by Batley and Ibafiez, 2012) were subsequently compared with the equivalent values
estimated by Batley and Ibafiez (2012). These have been retrieved from Table 4b in Batley
and Ibafiez (2012) for lateness multipliers at arrival whilst the lateness multipliers at
departure were calculated from the estimated coefficients reported in Table 4a in Batley
and Ibafez (2012). These are presented in Figure 60.

For the initial models where no journey type categorisation was introduced, arrival lateness
multipliers of respectively 4, 8 and 5 were estimated for business, commute and leisure
travellers. With the introduction of journey type categorisation, the estimated multipliers
for business travel were suggested to be larger for short journeys (around 10) and
comparable to the initial model for long journeys (around 4). For commuter and leisure,
comparable lateness multipliers were estimated from the initial and extended models -
between 7 and 10 for commuters (slightly larger for the long journeys) and around 4-6 for

leisure.

In the case of departure lateness multipliers, the values estimated from the initial and
extended models are very similar in all cases and do not seem to differ between short and
long journeys. These are around 5-6 for business journeys, 2-3 for commute and 3-4 for

leisure journeys.
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Legend: wA denotes lateness multipliers at arrival, wD - at departure; 'base' refers to the
model with 3 demand segments, reported in Table 58, 'ext' refers to the models with
additional demand segmentation reported in Table 60; 'lit' refers to the equivalent values
estimated by Batley and Ibafiez (2012); for each of the estimated multipliers the error
bars refer to minimum and maximum estimated value from models 2-4, while the median

value is reported as the central value.

Figure 60 Comparison of estimated lateness multipliers for delay at arrival

The results are indicative of lateness valuation increasing with journey time for
commuters, decreasing for business travellers and being constant for leisure travellers.
Hence, business travellers are suggested to be less concerned with delays relative to
scheduled journey time for longer journeys — this may result from the productive use of
in-vehicle times (as discussed in Wardman and Lyons, 2016; Lyons et al., 2016) and/or
correlation between journey length and quality. However, in the case of commuters, the
importance of delays relative to journey time seems to increase slightly with journey
length. This may be related to the general dissatisfaction with long commute as noted in
Cats et al. (2015) or correlations with other journey aspects. Though, it is worth
highlighting that the lateness multipliers estimated here are not significantly different from
each other. However, noting that confidence intervals are not generally reported in the

literature for lateness multipliers, what makes detailed comparisons difficult.

Nevertheless, the estimated lateness multipliers seem to be larger than the values estimated

by Batley and Ibafiez (2012). This can be possibly related to the different nature of
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satisfaction data or a relatively less negative disutility of scheduled journey time estimated
from the satisfaction models due to the aforementioned data limitations. In line with Batley
and Ibafiez (2012), in almost all cases (apart from long business journeys), the arrival delay
multiplier is larger than the departure delay equivalent, indicative of the final (destination)
delay being typically a source of larger disutility. However, it has to be noted that there are
differences in the flows used for the analysis and some of the differences in the estimates

can also be contributed to the differences in the journey type segmentation methods.

8.6. Conclusions

This work adds a degree of novelty in using passenger satisfaction data instead of the
typically employed SP survey data to estimate lateness multipliers, a conversion rate
between the value of a minute of lateness to the equivalent length of scheduled journey
time. This combined the previous work using life satisfaction surveys in economic
valuation (i.e. Layard et al., 2008) with work using passenger satisfaction surveys to study
the impact of delays on passengers (i.e. Monsuur et al., 2021) and studies using SP surveys
to estimate lateness multipliers (i.e. Batley and Ibafiez, 2012). A subset of the NRPS
dataset provided by Transport Focus was used to create a pseudo-panel of frequent rail
travellers to estimate an ordered logit model of passenger satisfaction with origin-
destination pair fixed-effects to estimate the utilities of delay and scheduled journey time.

Subsequently, their ratios were calculated to derive the lateness multipliers.

The estimated lateness multipliers are slightly larger than the ones typically estimated in
the SP studies and some caution is needed while applying these values. To the best of
knowledge, it is the first study attempting to use journey satisfaction data in such an
application. It does, however, highlight the potential of using such data in transport
economics as the estimated coefficients and resulting multipliers are of expected signs and

magnitudes.
The results suggest that:

1) In most cases, delay at arrival is a source of larger disutility relative to delay at
departure. This finding is in line with expectations and consistent with Batley and
Ibafiez (2012). However, the opposite is suggested to be true for long business
journeys, possibly due to the ability to more productively use the additional in-
vehicle time related to on-board delays (for discussion on productive use of travel
time see Wardman and Lyons, 2016; Lyons et al., 2016).

2) Relative to scheduled journey time, 1 minute of delay at arrival is valued as an
equivalent of around 9 minutes of SJT for short business and long commute, 7

minutes for short commute, 5 minutes for leisure and 4 minutes for long business



219

journeys. These values are typically larger than the estimates from SP studies with
a minute of lateness valued up to 3 times more relative to scheduled journey time
as compared with Batley and Ibafiez (2012). While the comparisons presented
above are made in relation to the estimated values from Batley and Ibafiez (2012),
it is noted that Wardman and Batley (2014) reported lateness multipliers between
2-5 for business travellers and commuters and 2-7 for leisure travellers with even
larger values being reported in Wardman (2001) and Boérjesson and Eliasson
(2011).

3) The valuation of lateness at arrival with respect to scheduled journey time is
suggested to decrease with journey length for business travellers, increase for
commuters and remain constant for leisure travellers. This is slightly different to
the results obtained by Batley and Ibafiez (2012), suggesting that the valuation
decreases with journey length.

4) Relative to scheduled journey time, 1 minute of delay at departure is valued at
around 5 minutes for business journeys and 2-4 for other travellers. While the
differences are not necessarily statistically significant, the larger disutility related
to delay at departure for business users may be due to the impact of such a delay
on their productive use of travel time, which is of paramount importance for such
travellers. These values are also larger than the estimates from SP studies with a
minute of lateness valued up to five times more relative to scheduled journey time

as compared to Batley and Ibafiez (2012).

The analysis presented as part of this chapter highlights the potential of satisfaction data
in economic valuation. As noted previously — it has been previously applied in economic
valuation in health, labour and environmental economics. However, application in
transport has been very limited. Comparing satisfaction data to SP, RP or ticket sales data
can offer some additional insights regarding the negative impacts (i.e. of delays) that are
not reflected in hypothetical (i.e. SP) or actual (i.e. RP or ticket sales) choices. As noted
by Batley et al. (2011) the higher valuation of lateness at the individual level, but a much
more limited impact of delays on demand may be explained by delays having a very
negative impact on passenger satisfaction, but not necessarily leading to changes in travel
choices. If worsening performance does not lead to changes in behaviour (choices), these
still have an impact on social welfare. As noted by numerous articles, there is an increasing
need to look at alternative ways of measuring social welfare (e.g. Fleurbaey, 2009).
Therefore, using journey or life satisfaction data and relating it to the supply of public
transport as well as its performance can become a valuable addition to the standard

economic approaches in transport appraisal.
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It is believed that applying the methodology used in this study to similar journey
satisfaction datasets would be useful in further exploring the potential of such data sources.
In doing so, it is worth considering the following limitations of the NRPS dataset:

1) The dataset is cross-sectional in nature. The presented approach uses numerous
assumptions to construct a pseudo-panel of frequent travellers. Using a true panel
dataset would, therefore, be preferable. Moreover, the analysis of SP surveys
typically focuses on the mean or standard deviation of performance (e.g. Batley
and Ibafiez, 2012). However, the recorded delay lengths and satisfaction scores in
the NRPS survey refer to incidental journey experiences.

2) The observed changes in scheduled journey time as well as delay lengths are
naturally beyond the researcher’s control. With most changes in scheduled journey
time being relatively small, it is possible that the utility of scheduled journey time
is less negative than it would be for larger changes. This could be the reason behind
the estimated multipliers being larger than the ones typically estimated in the
literature. Therefore, conducting similar surveys may be useful for OD pairs that
present interesting case studies, allowing for studying the impact of smaller and
larger differences in journey times. Ensuring representation of delays of differing
lengths is more difficult, as ideally, the surveys would need to be conducted over
a long time period of time (as was the case with the NRPS) to increase the chances
of observing shorter and longer delays.

3) While the results offer some useful insights into the valuation of delays, it is worth
noting that the estimated lateness multipliers are generally not significantly
different from each other, what may be a feature of using satisfaction data and the
issues summarised above.

4) The NRPS dataset may also be prone to data errors related to travel records as in
some cases passenger reports of delay experiences were significantly different
from the recorded performance, especially for the longer delays. This may be due
to possible differences between the journeys travellers planned to make, actual,

reported journeys and interchanges (as described in the previous chapters).

Whilst for future studies, it is recommended that the aforementioned limitations are
considered, the approach presented in this chapter led to the estimation of the utility of
scheduled journey time and lateness that were both of expected direction (i.e. negative)
and magnitude (i.e. delay coefficient being more negative than that of scheduled journey

time), which shows the potential that satisfaction data has in economic valuation.
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The approach used here was based on demand segmentation aligning with the work by
Batley and Ibafiez (2012). However, some alternative segmentations could be applied
based on sociodemographic characteristics. Moreover, a cluster analysis could be applied
to identify the different types of passengers from the dataset rather than using the pre-
defined categorisation of respondents.

It is recommended that accurate data on journey history is collected from the satisfaction
surveys to allow detailed investigation of the journey that traveller was planning to make
and their actual experience to reduce the scope for errors. Moreover, including more
guestions related to income and fares in the questionnaires could allow the estimation of
more sophisticated metrics and limit the potential for endogeneity bias related to using
satisfaction variables as explanatory variables. In the case of NRPS, the possible lines of
investigation include looking at the relationship between income, fare, scheduled journey
time, headway, performance, journey quality and satisfaction with value for money,
possibly even allowing calculation of the value of time.
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Chapter 9
Conclusions

9.1. Introduction

Motivated by previous research and limited understanding of the impacts of delays on
travellers, this thesis aimed to investigate rail passengers’ perception of delays, impacts of
delays on journey satisfaction and delay valuation. The thesis explored the intermediate
steps linking the occurrence of delays and their impacts on demand and revenues, with a
particular focus on understanding the impacts of different lengths of delays on passengers,
given that smaller measured delays may not be noticed by passengers. The focus was on
British railways given it is a well-developed case study in railway planning and with rich
data on performance, finances and passenger satisfaction. The research can be especially
helpful in designing/rethinking passenger delay compensation (reviewed as part of this
thesis) and devising performance strategies and targets for railways (particularly in the

British context). The aim was achieved by:

1) reviewing the current rail passenger delay compensation scheme rules, its impacts
on passengers and operators, highlighting the current issues with the delay
compensation scheme and advising future research directions as well as the
considerations for the design of such a scheme in Chapter 4 (providing motivation
for research conducted as part of the remaining chapters),

2) examining how passengers perceive delays in Chapter 6 to help understand
whether some of the smaller delays remain unperceived and to devise the delay
length perception thresholds,

3) investigating how recorded delays impact upon passenger satisfaction and any
potential non-linearities in delay impacts in Chapter 7,

4) contrasting the concepts of delay perception and satisfaction to investigate whether
the inability to perceive some of the smaller delays may explain the reaction of
passenger satisfaction to measured delays in section 7.5. and

5) estimation of lateness multipliers (a conversion rate between a minute of delay and
an equivalent length of scheduled journey time) using satisfaction instead of the

typically utilised stated preference data in Chapter 8.

9.2. Summary of the key results

The work conducted as part of this thesis was motivated by the limited impact that
performance has on rail demand. Travellers may be unable to change their travel behaviour
in response to worsening performance due to limited availability of alternatives, what is

reflected in relatively low values of estimated elasticities in the literature (ATOC, 2004;
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Batley et al., 2011)., but this is not equivalent to delays having no impact on passengers.
Though, it was noted that delayed travellers can claim compensation for the longer delays

as part of the ‘Delay Repay’ scheme in Great Britain.

Against this background, the literature review conducted suggested that travellers are more
likely to claim compensation for longer delays and if they paid more for their tickets, which
is likely to be a result of how the scheme rules are constructed. As the scheme rules were
introduced arbitrarily and are largely homogeneous, the first objective of the thesis was to
evaluate the impact of this scheme on both passengers and the operators. While passengers
may value the existence of a compensation scheme, it is difficult to estimate its benefits.
These can be related to either increased demand due to the existence of the scheme (i.e.
the scheme serving as delay insurance) or limited revenue losses (i.e. compensation serving
as a way of retaining demand). The econometric analysis suggested that the homogeneity
of scheme rules leads to an increased revenue burden for TOCs operating longer journeys,
resulting from longer journeys being usually more likely to be affected by longer delays,
what increases the proportion of passengers eligible to claim compensation. At the same
time, with such journeys being typically more expensive, the expected compensation
values are typically larger what encourages a higher proportion of the eligible passengers
to submit claims. On average, each additional minute of APL was estimated to increase
the proportion of ticket revenue repaid to passengers as part of the scheme by 0.2%.
Additionally, due to increased engagement, for the same levels of performance, TOCs
repay an additional 0.2% of their ticket revenue for each £10 of average fare. The
increasing revenue impact of the scheme was suggested to be in line with some of the
previous analysis of passenger engagement. It was, however, noted that the amount of
research looking at the impact of delays on passengers is not sufficient to enable designing
the scheme based on economic evidence. Rather, it was noted that to design a passenger
delay compensation scheme, it is necessary to better understand what levels of delays are
especially inconvenient for travellers. Hence, motivating further research and encouraging

further interest from the industry and regulatory bodies.

First, the analysis of traveller perception suggested that passengers are highly unlikely to
perceive delays of up to 2 minutes. It was estimated that commuters’ perception delay
thresholds are between 2-8.5 minutes. For the other types of travellers, the respective delay
lengths are between 3 and 20 minutes with the probability of perceiving a delay increasing
with length of delay at both departure and arrival and decreasing with journey length and

for seated passengers.
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Regarding the ability to accurately perceive the lengths of experienced delays, a large
proportion of reported lengths of delays is concentrated around multiples of 5s (almost
60% against 15% of recorded delays being of such lengths). However, a relatively large
proportion of reported delay lengths is also scattered around non-multiples of 5s in the case
of smaller delays of up to 8 minutes. This indicates on passengers who perceive the smaller

delays being more likely to report the lengths of experienced delays more accurately.

The analysis of perception was suggested to be of limited application in economic
appraisal, though, it can possibly provide an explanation behind the possibility for smaller

delays having a more limited impact on passengers what was subsequently investigated.

In the case of satisfaction modelling it was highlighted that the binary representation of the
satisfaction scale has merits over the original ordinal scale, being more amenable to
policymaking. However, noting that any interpretation or classification of satisfaction
versus dissatisfaction is generally open to interpretation and will affect the results. The
results of the preferred delay satisfaction model suggested that in the case of incidental
delays, commuters are unlikely to remain satisfied with punctuality if the length of delay
is over 5-10 minutes. In the case of the other travellers, the respective lengths are in the
range of 10-20 minutes. This is suggested to be slightly lower than the 30 minutes
previously suggested by the literature. In the case of average performance, it was suggested
that under perfect performance, 80% of commuters and 90% of other travellers are satisfied
and each minute of APL leads to a reduction in the proportion of satisfied passengers by
(on average) 6 pp for a minute of APL for commuters and 2 pp for other travellers.
Typically, longer journeys and better journey quality can be attributed to lower probability
of being dissatisfied with a delay of a given length whereas the probability of being
dissatisfied with a delay typically increases if the service was also delayed at departure.
This research also highlighted the possible non-linearities in the delay impacts on
passengers that can be related to journey length (as the impact of delay on passenger
satisfaction typically decreases with journey length) and smaller delays being generally
less likely to be perceived and significantly affect satisfaction. The analysis aiming at
estimating the elasticity of the marginal disutility of lateness led to inconclusive results,
being largely affected by the choice of methodology. Nevertheless, the suggestion that
some non-linearities may be present is in line with both the literature and also the
perception, and satisfaction research conducted as part of this thesis. The proposed models
of delay satisfaction can be used in setting performance targets or designing compensatory

mechanisms.
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Contrasting the concepts of delay perception and satisfaction suggested the existence of a
gap between the two concepts as the estimated probability of perceiving a delay is larger
than the probability of being dissatisfied with a given delay incident. The estimated gap is
suggested to be between 0 minutes for standing commuters to up to 9 minutes for seated
leisure travellers. This suggested that for commuters perceiving a delay almost
automatically translates to an impact on satisfaction. However, for the other travellers, it
was suggested that the estimated gap is also affected by journey quality as on condition
that travellers are seated, the gap between the perceived delay and one largely affecting

satisfaction is larger.

With perception and satisfaction having a limited application in economic appraisal, the
work was extended to estimating lateness multipliers (the valuation of lateness with respect
to scheduled journey time) using satisfaction data. As typically SP studies are used in their
estimation, it was thought that comparing the valuation estimated using the hypothetical
choice data and satisfaction data (representing evaluation of actual experience), may
provide additional insights into the impacts that delays have on travellers. A minute of
delay at arrival was estimated to be valued as equivalent of 4-9 minutes of scheduled
journey time whilst a minute of delay at departure was estimated to be valued as equivalent
of 2-5 minutes of scheduled journey time. The estimated values are larger than the lateness
multipliers from Batley and Ibafiez (2012). However, it was noted that there are instances
where values of similar magnitude were reported throughout the literature. The valuation
of lateness at arrival was also suggested to decrease with journey length for business

travellers, increase for commuters and remain constant for leisure travellers.

Overall, the thesis highlighted the fact that small delays may often have a more limited
impact on passengers, whilst also suggesting that journey purpose, length, comfort and
delay at departure are all important in determining the impact that delays have on
passengers. In most cases, however, the delays that are likely to cause dissatisfaction, are
much smaller than the current compensation thresholds. Nevertheless, the current scheme
has a larger financial impact on TOCs operating longer journeys whereas the impact of
delays for travellers on longer journeys was suggested to be less significant. Hence, the
following section will summarise how the results of the work conducted as part of the

thesis can be applied in practice, highlighting the main policy implications.

9.3.Policy implications
This section aims to position the results of the research conducted as part of this thesis and
set out some recommendations for policymakers. These are not the direct results of the

empirical analysis, but rather recommendations and measures through which the results
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can potentially be applied when designing performance and compensation schemes and/or
seeking to reduce the negative impact of delays on passengers.

The investigation of the currently used rail passenger delay compensation scheme revealed
that long-distance train operators are likely to repay a larger proportion of their revenues
to passengers under the current scheme. The literature review and analysis conducted

suggested that:

¢ the delay length compensation thresholds have been set arbitrarily and there is a
need to understand whether a different design of the scheme may be more optimal,

e automation of the current scheme would lead to a larger portion of revenue repaid
to passengers which motivates the need for research into the benefits versus costs
of the currently used scheme,

o there is a need to explain if there are some regulatory or administrative reasons
behind the homogeneous design of the scheme that lead to such differences,

e thereisaprecedent, particularly in the Czechia and Spain, for the eligibility criteria
to vary with types or lengths of journey, and such a design of compensatory
mechanisms could also be considered for the British railways,

o while the one-fit-for-all approach that is currently used may have some underlying
limitations, it is also noted that a homogeneous, easy-to-understand and run
scheme may have some benefits, both for passengers (who can navigate the rules
easier), and the operators (reducing administrative costs) and

o regardless of the changes in the scheme, it could be centrally operated, which
would greatly improve the homogeneity in its operation and facilitate the claiming

processes for passengers.

The concept of delay perception has not been very well studied before and while the results
may be intuitive (i.e. the probability of perceiving a delay increases with delay length), an
attempt was made to estimate the delay length perception thresholds, suggesting the
lengths of delay where passengers become more likely to perceive late running (than not).
It must, however, be noted that the application of the concept of delay perception is likely

to be limited in economic appraisal, i.e.

o the policymakers or train operators should not be focusing on targeting delay
perception (i.e. reducing the probability that travellers perceive delays) as such
solutions are not likely to be welfare maximising,

o conversely, it is believed that providing real-time information and clear

communication to travellers about any possible delays may increase passenger
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satisfaction as it is likely to reduce the uncertainty and inconvenience caused by
the delays,

o the fact of perceiving or not perceiving a delay is not immediately connected to
experienced utility or choices,

e rather, perceiving or not perceiving a delay is likely to be a reason for some delays
having a more limited impact on passenger satisfaction as for delays to have an
impact on passengers, they would typically need to be perceived first.

The concept of delay satisfaction is one that can have more application in policymaking as
it can possibly aid the process of setting performance targets or delay compensation rules

where:

¢ theindividual-level satisfaction models can help set performance targets related to
the distribution of lengths of delay incidents as smaller delays are less likely to
have a negative impact on passenger satisfaction,

e whereas the aggregated OD-level models can help design performance targets

related to average performance.

Additionally, with large impacts of journey quality, length and length of delay at departure
related to how the final (destination) delays affect passenger satisfaction, it is advisable to

set performance targets:

o related to lengths of delay at departure (not only at arrival),

o related to crowding levels, especially for late running episodes,

e varying by journey lengths as the analysis conducted in this thesis provided
additional evidence that the impact of delay varies with length of journey (in line
with Wardman and Batley, 2022 suggesting that proportional elasticities better
explain changes in demand) and also

e varying by type of route as in absolute terms, OD pairs with a large commuter
focus are likely to suffer from lower levels of satisfaction (for the same level of

performance).

Ultimately, the estimated gap between lengths of delays that are perceived and start having
a detrimental impact on passenger satisfaction also highlights the impact of journey quality

on how delays affect passenger satisfaction. Hence, it is advisable to:

e inthe event of delays, ensure that passengers are well-informed about the revised
departure and arrival times,
e implement ways of reducing crowding on delayed services as worse journey

quality will further reduce passenger satisfaction and
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e limit cancellations or truncations of delayed services if these could lead to

increased crowding.

As the lateness multipliers based on satisfaction data estimated as part of this thesis were
larger than the ones typically estimated from SP studies, this also suggests that delays
might have a more negative valuation relative to scheduled journey time than previously
thought. Nevertheless, the satisfaction data may be a source of additional information that
may be used by policymakers to monitor the impacts of delays on passengers as:

o the demand response following delays has been suggested to be relatively modest
in the literature,

e changes in satisfaction do not ultimately lead to a choice but are likely to have an
impact on well-being,

e hence, there is an argument for including the analysis of the impact of delays on
travellers’ satisfaction and/or well-being and incorporate these into the economic
appraisal,

o estimation of the traditionally used metrics using satisfaction data may be a useful
approach that allows better understanding of how passengers value different
aspects of journeys and provide some sensitivity testing overcoming some of the
limitations of SP surveys.

While this section summarised the wider application of the analysis conducted as part of
this thesis, the remaining sections will discuss the potential to improve and/or further

develop the presented analysis.

9.4. Limitations

The investigation of passenger delay compensation scheme concluded that long-distance
TOCs repay a larger proportion of their revenues as part of the scheme due to the
differences in the nature of their operation (i.e. journey length correlated with delay length)
as well as the increased claiming rates related to a larger average value of compensation
per claim on such journeys. However, the analysis was only conducted using very
aggregate data (i.e. annual data at TOC level). Moreover, it was noted that there might be
some benefits related to having one set of rules for all passengers rather than providing a
very complex compensation scheme that would be less easy to understand and more costly
to administer. Hence, it was suggested that a large-scale study be conducted to estimate

the benefits and costs of the DR scheme as well as review its current design.

Throughout the thesis, several issues have been mentioned that are related to the use of the

NRPS dataset. While the impact of most of them is likely to be small and, as part of the
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analysis of delay perception, an extensive sensitivity analysis was presented with the aim
of testing the impact of any possible limitations, it is worth noting that:

o the questionnaires are handed out prior to passengers boarding trains what can
have an impact on their responses and, hence, survey results;

o passengers filling in the survey closer to the time of completing a journey may
have a better recollection of the journey but equally any negative emotions may
be stronger when a negative experience (e.g. a delay) is more recent;

o some discrepancies between reported and recorded delays have been found;

o for passengers with multiple interchanges, it is difficult to establish to what extent
passengers truly score satisfaction with one leg of their journey or their whole
experience;

o the delays described by the dataset are related to delay incidents, not average
performance. Hence, in the cases where models of passenger satisfaction are
estimated at the aggregated, OD level, the levels of passenger satisfaction, in fact,
relate to incidents of lateness averaged across all the responses;

o the dataset is cross-sectional in nature with multiple assumptions used to create a
pseudo-panel of frequent travellers and subsequently estimate an ordered logit
model with OD fixed effects to derive lateness multipliers. However, using a true

panel dataset would be preferable.

Related to the choice of methodologies, the binary representations of the presented
satisfaction models are highly sensitive to merging the five original satisfaction categories
into two. This approach assumes that the distances on the scale between the points merged
into each of the two categories are insignificant. On the other hand, the ordered logit
models utilising the original five satisfaction scores are more difficult to interpret, as it is
difficult to discern what is implied by a change between satisfaction scores. Similarly,
some of the linear representations of the satisfaction variables assume that the distances
between the satisfaction scores on the scale are equal, allowing averaging of satisfaction
scores. Moreover, due to the non-quantitative nature of satisfaction, any policy targets set
based on this work, are highly sensitive to the assumed definition of satisfaction versus

dissatisfaction and the limitations of the approach used.

Some of the proposed models did not include all levels of the interacted variables, aiming
to capture the complementary effect of these variables on the effect of delay length on
perception or satisfaction. When the fully specified models were estimated, these failed to
capture the proposed relationship correctly. For example, the estimated probabilities of

perceiving a delay were suggested to start decreasing with increasing levels of delay at
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arrival at certain levels of delay at departure. The original models’ specification does not
allow for such a relationship due to only accounting for the complementary nature of these
explanatory variables.

It is also noted that some of the overall satisfaction models that included satisfaction with
specific journey aspects as explanatory variables may suffer from endogeneity bias. This
is due to the fact that where some journey aspects are not captured by any of the measurable
variables in the survey, reported satisfaction with those journey aspects is used as a proxy,

hence introducing possible endogeneity bias.

More generally, all data used in the analysis refers to pre-COVID times and several studies
addressed the impact of the COVID-19 pandemic on travel behaviour (e.g. Coppola and
De Fabiis, 2021; Vickerman, 2021; Horcher et al., 2022; Bonera and Martinelli, 2023;
Deole et al., 2023). It is possible that the impact of delays on travellers is different now as

compared to the pre-COVID times.

Finally, it must also be noted that the focus of this thesis remained on GB railways and,
application of the results to other countries or industries may not be directly possible.
However, it is believed that the methodologies outlined in this thesis may be applied to
other contexts too.

With this section summarising the main limitations of the work conducted as part of this
thesis, the following section aims to highlight some key areas that would benefit from

further research.

9.5.Further research
Related to the policymaking applications previously highlighted in section 9.3, it is
recognised that there are several ways in which the analysis presented as part of this thesis

could be enhanced or extended.

First of all, it is advisable that the regulators and policymakers conduct a more advanced
analysis of the costs and benefits of the currently operating passenger delay compensation

scheme (perhaps using data at the OD level) to identify:

o the value that the scheme has for passengers and the impacts of the scheme on
passenger satisfaction, demand and operator revenues,

o whether the rules of the compensation scheme are optimal, possibly exploring the
alternative ways of design, including a version of the scheme where the rules vary

by service type or journey length,
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o how changes in ticketing or automation of the scheme would impact upon the
scheme operation and costs and
o the role and impacts of the compensation scheme before and after the COVID

pandemic.

Secondly, with this thesis presenting an extensive analysis of delay perception and delay
impacts on satisfaction, it is advisable that studies aiming at using similar datasets include:

e more detailed information about the journey plans versus the actual journey
including specific information about all the interchanges to reduce the scope for
errors and

e (questions related to income and fares that, along the satisfaction with value for
money (forming part of the NRPS), could allow estimation of the value of time or

similar metrics.

The analysis of delay satisfaction poses a different question that relates to how to
incorporate passenger satisfaction in economic appraisal. Several ways to pursue this
direction could include investigating:

o the link between passenger satisfaction and demand, and

o the relationship between travel satisfaction and wellbeing.

Subsequently, the thesis highlighted the potential for non-linearity in the delay impacts on
passengers related to both the shorter delays not being perceived (thus likely having a
smaller marginal valuation) as well as the impact of delays typically decreasing with
journey length. In most cases, both delay and scheduled journey times enter the estimated
models as continuous variables. However, alternative ways of representing these variables
could also be used, for example including the relative length of delay as compared to the
scheduled journey time. Moreover, the investigation of the elasticity of the marginal
disutility of lateness led to some inconclusive results, suggesting that some non-linearities
are present. Hence, it is advisable that alternative datasets and/or methodologies are
implemented to investigate such non-linearities as well as advising on ways of

implementing them in the economic appraisal.

Finally, this thesis represents one of the very few attempts to use passenger satisfaction
data in the economic valuation in transport. It highlights the potential of such data and
future studies might want to repeat a similar exercise using a different satisfaction dataset
that could help overcome some of the issues with the NRPS as well as numerous
assumptions implemented. It is advisable to conduct such surveys as panel, not cross-

sectional studies that could then ask for satisfaction with a particular journey and/or general
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satisfaction, and for selected case studies, i.e. looking at interesting OD pairs where travel
alternatives vary with respect to journey times and prices. However, as noted previously,
in the case of satisfaction surveys, it is difficult to investigate the impact of delays of
varying lengths as these are beyond the researcher’s control. Hence, such a study would
need to be conducted over a relatively long time period to ensure that the distribution of
delays represents both shorter and longer journeys. This could lead to an RP study where
participants are also asked to score their satisfaction, noting that the proposed study would

be relatively complex and expensive to implement.
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Annex |

Sensitivity analysis for models of delay perception from Chapter 6

The purpose of this annex is to present the results of the sensitivity analysis conducted as part of the

analysis of delay perception from Chapter 6. A number of sensitivity tests was conducted to understand

the sensitivity of model results to the used methodology or data errors.

The sensitivity analysis includes:

1)

2)

3)

4)

5)

Estimation of probit, instead of logit, models of delay perception to investigate the impact of
the chosen methodology (i.e. logit versus probit) on the estimated results.

Estimation of model 1 only for the responses where no delay at arrival was recorded to
investigate whether some of these travellers may have been biased by the existence of delay at
departure (section 6.5). As such, the explanatory variable representing length of delay at arrival
is replaced by the length of delay at departure.

Restricting the sample used in the main body of analysis only to leisure travellers with restricted
tickets who are only able to travel on a specific service. Hence, in case of delays they cannot
use a previous service that had been delayed or the following service in case of delays to their
service. This was expected to improve the accuracy of matching passenger reports of journey
and operational data. It has previously been noted (in section 5.2.2) that some discrepancies are
expected and especially so in the case of longer delays. This could be a result of differences
between the travel plans and actual journeys made. For example, passengers might have
originally wanted to travel on one service but travelled on a different one instead. Similarly, in
the cases where passengers interchanged, there might be confusion related to whether
passengers’ reports relate to this specific leg of the journey or the whole journey. Hence, the

dataset was restricted to passengers on restricted tickets and with no interchanges.
Relaxing the assumptions from for the non-interchanging travellers (section B)

Ultimately, model 1 is re-estimated using an extended version of journey purpose segmentation
(section C) where all the six previously introduced journey categories are interacted with
additional seven journey type categories (i.e. airport, high-speed, interurban, long commute,
long distance, rural, short commute). These replace the previously used variables describing
the length of the journey as journey length and type are correlated. It is believed that these
journey type categories provide some additional insights as these are proxies for some
characteristics related to the specific journey types and may be sources of heterogeneity in

perception.
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Table 63 Summary of the sensitivity analysis

Sensitivity Section Description Impact Sample size
analysis
1 - Probit A Estimation of ~ Very small; the estimated 48,793 to

probit, instead  probabilities slightly lower for 73,050

of logit models probit due to logistic

of delay distribution having longer tails

perception (Horowitz and Savin, 2001).
2 — Restricted B Logit model is  Differences between the 1,241 to 3,281
tickets with no runona restricted and full model are
interchanges sample insignificant, though, the

restricted to predicted delay perception

leisure thresholds are slightly lower.

travellers with

advanced

tickets and no

interchanges
3-No B Logit model is  Results similar to the full 9,075 to
interchanges runona model, however, some 29,125

sample coefficients are insignificant

restricted to (possibly due to smaller sample

travellers with  sizes).

no

interchanges
4 —Additional Cc Logit model in  Differences between arrival 73,050
journey type its initial form  delay coefficients are typically
categorisation (i.e. model 1) insignificant, probably due to

is run with the  smaller sample sizes. However,

addition of the coefficient on arrival delay

interaction is generally larger for the

between the journey types characterised by

length of delay  shorter journey lengths (i.e.

and 7 journey
types

probability of delay perception
increases more rapidly), in line
with the previously estimated
models.

A. Probit model of delay perception

First of all, the models described above and shown in Table 25 were run as binary probit instead of logit
models to look at the impact of changes in the assumption of distribution, F (as noted in section 6.4). It
is not expected that probit results would differ largely from the logit estimations reported in section 6.4.
Rather, they are reported in Table 64 to investigate the sensitivity of the logit results while the predicted
probabilities are shown in Figure 61. As expected, the predicted probabilities are lower for probit than

logit due to logistic distribution having longer tails (Horowitz and Savin, 2001).
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Table 64 Probit estimates of delay perception

(1) (2) (3) - seat (3) — no seat
Constant -1.054™" -1.078™ -0.999™
(-49.73) (-49.90) (-36.40)
BnL 0.142™ 0.133™ 0.201™"
(4.32) (3.96) (4.76)
CL 0.446™" 0.457"" 0.468™"
(16.37) (16.50) (13.12)
CnL 0.541™" 0.543™" 0.582""
(18.06) (17.83) (14.51)
LF -0.0286 -0.0349 -0.0121
(-0.99) (-1.19) (-0.32)
LR -0.00274 -0.0167 0.0248
(-0.11) (-0.66) (0.78)
Arrival delay
BL 0.0907"" 0.115™ 0.0745™" 0.0848™
(34.35) (24.70) (10.76) (2.85)
BnL 0.106™" 0.146™" 0.0988™" 0.130™"
(29.39) (26.32) (11.50) (6.65)
CL 0.107" 0.133™ 0.0805™" 0.139™
(35.75) (26.76) (9.78) (10.06)
CnL 0.121™ 0.162" 0.126™" 0.196™"
(30.48) (26.63) (11.70) (12.20)
LF 0.107" 0.137"™ 0.108™" 0.168™"
(36.46) (33.26) (15.98) (11.24)
LR 0.100™" 0.137" 0.0944™ 0.147™
(60.22) (51.27) (23.48) (13.75)
Arrival delay x SJT
BL -0.000206™"  -0.0000639 0.000352
(-6.42) (-1.48) (1.06)
BnL -0.000394™"  -0.000302"" -0.000472™"
(-10.03) (-5.84) (-2.69)
CL -0.000649™"  -0.000164 -0.000153
(-6.97) (-1.24) (-0.40)
CnL -0.00126™  -0.000997*"  -0.00212"""
(-9.46) (-5.82) (-4.62)
LF -0.000384™"  -0.000317""  -0.000420"
(-10.80) (-6.69) (-2.41)
LR -0.000302"" -0.000185"" -0.000381""
(-18.61) (-8.48) (-4.72)
Arrival delay x departure delay
BL 0.00866™"
(13.69)
BnL 0.00397""
(7.61)
CL 0.00299™
(6.26)
CnL 0.00137"
(2.34)
LF 0.00209™
(5.83)
LR 0.00424™
(16.66)
N 73050 72884 48793
Log-likelihood -41339.4 -40874.6 -27345.7
Pseudo R? 0.133 0.141 0.155

Legend: t statistics in parentheses; * p < 0.05, ™ p < 0.01, ™" p < 0.001; BL/BnL — Business London/non-London, CL/CnL —

Commute London/non-London, LF/LR-Leisure Full/Reduced.
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Figure 61 Predicted probabilities of delay perception for probit (model 3) under the scenario of
scheduled journey time of 30 minutes, 5 minutes of delay at departure and for seated passengers
B. Interchanges and their impact on discrepancies between recorded and reported

performance

As previously noted, one of the limitations of the dataset used in the analysis is the inability to have full
confidence in how passenger reports of delays may be affected by delays on other journey legs or due
to passengers travelling on a different service than originally planned (either previous or following
services). To mitigate the possible impacts of the discrepancies resulting from the described limitations,
some further analysis was conducted. The dataset was restricted to passengers using restricted
(advanced) tickets to eliminate the impact of possible differences between the reported (matched)
journey and the journey that a passenger planned to make. This way, there is more confidence in a
passenger travelling on a service they originally planned (though this could still have been the case if
some services were cancelled). Additionally, the dataset was further restricted to passengers who
reported they did not change trains as part of their journey. This is to act as a sensitivity check to see

whether the perception modelling results reported previously may be impacted by passengers:

a. travelling on a multi-leg journey and including a delay on the other journey legs,

b. boarding a different train than originally planned (i.e. their scheduled train departed
later), this can especially happen in the case of OD pairs with frequent connections
and

c. boarding a different train than originally planned (i.e. a delayed train departing earlier

than the train passengers planned to travel on).
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In these cases, it is impossible to deduce which applied to a passenger. Monsuur et al. (2021) looked at
the impact of delays on passenger satisfaction, suggesting that passenger satisfaction is impacted
negatively if the previous train was cancelled due to longer waiting times or increased crowding.
However, as it is not exactly known how the travel plans differed from actual experience, there are

limits as to what inferences can be drawn in this regard.

Restriction to advance tickets and only for passengers who stated that they definitely did not change
trains means reducing the sample size quite substantially as the question about the interchanges was not
included in all the 10 survey waves used as part of this investigation and was also characterised by a
lower response rate. Additionally, the sample is only restricted to leisure travellers as this is the type of
travellers more likely to choose this type of ticket. The models were, therefore, run for the restricted
sample with results being presented in Table 65 and the predicted delay length thresholds (i.e. where

the probability of delay perception is 0.5) are shown in Figure 62.

Table 65 Logit estimates of delay perception for a restricted sample

(1) (2) (3) -seat  (3) —no seat
Constant -2.216™  -2.270™" -2.153™"
(-31.37) (-31.42) (-18.01)
LA
LR 0.187"" 0.250™" 0.168™" 0.394"
(22.12) (16.62) (5.93) (2.11)
L_ AxSJT
LR -0.000429™" -0.000139  -0.00163
(-5.40) (-0.94) (-0.86)
L AxL_D
LR 0.0252"*
(6.23)
N 3281 3279 1241
Log-likelihood  -1559.3 -1544.6 -561.2
Pseudo R? 0.180 0.187 0.264
% correct 78.94% 79.45% 81.14%

Legend: t statistics in parentheses; “ p < 0.05, ™ p < 0.01, ™ p < 0.001;
LR-Leisure Reduced; ; L_A, L_D refer to arrival and departure delay; SJT — scheduled journey time
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Figure 62 Delay length thresholds for P=0.5 for a restricted and full model

In terms of the predicted delay perception thresholds, one can see that the thresholds are typically
smaller. However, further restricting the sample results in lower statistical significance of the estimated
results and larger confidence intervals around the estimated thresholds. Moreover, as in the case of
model 3, the coefficients on the interaction between arrival delay and scheduled journey time are
negative but insignificant. The thresholds do not decrease significantly with increasing length of the

journey as was the case with the full model.

Restricting the sample to journeys made on advance (restricted) tickets and with no interchanges aimed
at improving accuracy between passenger experience, passenger reports and recorded performance. To
relax this, the dataset is now only restricted to passengers not travelling on multiple journey legs, but
with no restrictions related to the type of ticket. In the case of model 3, the length of arrival delay was
also restricted to 25 minutes as some issues with convergence were encountered due to the small sample
size in the case of longer delays. Table 66 shows the estimated coefficients for the model with the
restricted sample. The main difference between the results presented as part of the sensitivity analysis
and the models estimated in the main body of the thesis is the insignificance of some of the coefficients
on the interaction between arrival delay and scheduled journey time in model 3. The overall sample size
is still relatively large (9000 responses), but especially in the case of standing passengers, the number
of responses for each of the journey purposes ranges between 30 for business London journey purpose
to 300 for commute London journey purposes. This is likely affecting the statistical significance of the
results from model 3 for non-interchanging passengers. Nevertheless, the estimated results are broadly
in line with the main body of analysis, perhaps suggesting that the possible errors in the way that delays

were recorded and satisfaction reported are not only due to the interchanges.
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Table 66 Logit delay estimates of delay perception for not interchanging passengers

(1) (2) (3)-seat  (3) —no seat
Constant -1.841™  -1.893"™ -1.776™
(-31.48) (-31.54) (-15.33)
BnL 0.0753 0.0741 0.211
(0.78) (0.75) (1.13)
CL 0.684™" 0.695™" 0.660™"
(9.38) (9.31) (4.54)
CnL 0.784™" 0.803™" 1.223™
(9.71) (9.72) (7.73)
LF -0.152 -0.165" -0.0549
(-1.89) (-1.99) (-0.35)
LR -0.135 -0.159" -0.140
(-1.92) (-2.18) (-1.02)
Arrival delay
BL 0.151™" 0.196™" 0.129™" 0.569™"
(20.89) (15.74) (4.61) (4.28)
BnL 0.202" 0.261" 0.161"" 0.293™
(16.18) (14.12) (3.42) (2.68)
CL 0.191™ 0.264™" 0.169™" 0.294™
(23.48) (18.90) 4.47) (3.84)
CnL 0.215™ 0.290™ 0.0567 0.271™
(18.37) (15.84) (1.04) (3.25)
LF 0.189™" 0.243™ 0.153™ 0.391™
(21.71) (19.82) (5.53) (4.54)
LR 0.183™ 0.249™ 0.139™ 0.366™"
(33.27) (28.05) (6.84) (4.36)
Arrival delay x SJT
BL -0.000403™"  0.0000898  -0.00447""
(-4.66) (0.46) (-3.98)
BnL -0.000610™"  -0.000628 -0.000896
(-4.81) (-1.80) (-1.41)
CL -0.00171™ -0.00118 -0.00274
(-7.01) (-1.88) (-1.35)
CnL -0.00234™ -0.00159 -0.00404
(-5.98) (-1.69) (-1.81)
LF -0.000728"™" -0.000654™  -0.00221
(-6.81) (-2.84) (-1.73)
LR -0.000524™"  -0.000147 -0.00263"
(-10.26) (-1.24) (-2.44)
Arrival delay x departure delay
BL 0.0193™
(5.30)
BnL 0.0202™"
(4.08)
CL 0.0321""
(6.29)
CnL 0.0230""
(4.85)
LF 0.0138"™"
(5.01)
LR 0.0309™"
(10.42)
N 29125 29043 9075
Log-likelihood -15846.5  -15657.8 -4758.5
Pseudo R? 0.141 0.149 0.192

Legend: t statistics in parentheses; * p < 0.05, ™ p < 0.01, ™" p < 0.001; BL/BnL — Business London/non-London, CL/CnL —
Commute London/non-London, LF/LR-Leisure Full/Reduced;
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C. Additional journey type categorisation

Both journey length and delay at departure previously entered the modelling as continuous variables.
Additional categorisation is used to replace the continuous variables with categorical ones to aid the
interpretation of the results model. This categorisation was done by Transport Focus and was based on

journey type based geography, rather than reported journey purpose. These categories are:

e Airport (6.2%)

o High-speed (12.3%)

e Interurban (14.3%)

e Long commute (23.4%)
e Long distance (21.5%)
e Rural (3.6%)

e Short commute (18.7%)

The aforementioned categorisation may serve as an additional categorisation of journey type used to
control for the impacts of possible divergence between the planned and actual journey. For example,
the frequency of services in urban areas is typically higher than in rural areas, meaning that in such
cases passengers may be more likely to travel on a different than planned service. It is believed that the
inclusion of the outlined categories may provide some additional insights and help control for any likely

discrepancies.

The geographical journey types are likely characterised by some inherent differences that relate to the
type of service — both in terms of journey lengths, headways and journey quality. Short commute, airport
and long commute journeys are all characterised by an average journey time of below 50 minutes. Rural
and interurban services are characterised by an average journey time close to the sample average while
high-speed and long-distance journeys have average journey times of around 100 minutes. Therefore,
the initial version of the model (i.e. model 1) was estimated with the arrival delay coefficient being
estimated separately for each of the journey purpose and journey type combinations. The estimated
coefficients are shown in Table 67 with the graphical representation shown in Figure 63. This was not
done for models 2 and 3 as it is believed that the additional categorisation would reduce sample sizes —
7 journey type categories, 6 journey purposes and 2 journey quality categories would ultimately lead to
84 estimated coefficients with each of the groups likely having a reduced sample size, affecting the
significance of the results. Moreover, the journey type categories, as mentioned before, are likely to be
correlated with some of the explanatory variables used in models 2 and 3 as discussed above in the case

of scheduled journey time.
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Table 67 Logit estimates of delay perception for a model with typology

Constant -1.798™
(-46.42)
BL 0
(') Kkk
BnL 0.240
(4.05)
CL 0.759™"
(15.57)
CnL 0.845™"
(15.60)
LF -0.0225
(-0.43)
LR 0.00725
(0.16)
L_A - Airport
BL 0.104™
(9.55)
BnL 0.245™
(2.62)
CL 0.101™
(8.48)
CnL 0.332™
(3.69)
LF 0.114™
(10.44)
LR 0.145™"
(8.97)
L_A — High-speed
BL 0.171™
(25.31)
BnL 0.237"
(12.18)
CL 0.158™"
(11.92)
CnL 0.179™
(10.46)
LF 0.167™"
(13.43)
LR 0.169™
(33.47)
L_A - Interurban
BL 0.185™"
(13.72)
BnL 0.162™
(16.76)
CL 0.212™
(12.12)
CnL 0.212™
(16.74)
LF 0.197
(20.28)
LR 0.190™"
(32.12)

L_A - Long commute
BL 0.224™
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(23.86)
BnL 0.310™
(12.86)
CL 0.200™"
(28.61)
CnL 0.243™
(17.47)
LF 0.230™"
(21.88)
LR 0.211™
(33.77)
L_A - Long distance
BL 0.117™
(19.52)
BnL 0.184™
(22.70)
CL 0.208™
(3.29)
CnL 0.218™
(18.57)
LF 0.185™
(23.03)
LR 0.155™
(42.41)
L_A - Rural
BL -
BnL 0.179™
(9.54)
CL -
CnL 0.179™
(8.54)
LF 0.166™"
(11.43)
LR 0.188™"
(16.78)
L_A - Short commute
BL 0.257™"
(9.16)
BnL 0.204™"
(10.82)
CL 0.199"
(24.52)
CnL 0.276™"
(20.92)
LF 0.214™
(18.18)
LR 0.226™"
(19.52)
N 73050
Log-likelihood -40987.3
Pseudo R? 0.140
% correct 72.07%

Legend: t statistics in parentheses; “ p < 0.05, ™ p < 0.01, ™ p < 0.001;
BL/BnL — Business London/non-London, CL/CnhL — Commute London/non-London, LF/LR-Leisure
Full/Reduced; L_A refers to arrival and departure delay; - no observations
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Figure 63 Coefficient plot for the logit model of delay perception by journey purpose and typology
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Looking at the sizes of arrival delay length coefficients for different journey types within
the same journey purpose, it can be investigated whether there are any significant
differences in the impacts of delay length on delay perception that result from the specific
journey type characteristics.

Business

For business London travellers, the coefficients generally become smaller for journey
types with lengthier average journey times. This is especially evident in the case of long-
distance journeys where the predicted delay length perception threshold is 17 minutes
compared to 7-8 for short and long commute. For non-London business travellers, high-
speed and long commute are characterised by larger coefficients than other journey types
with the predicted delay length perception thresholds being at 5-6.5 minutes compared to
8-9 for the other journey types. It is not immediately clear why such differences between
London and non-London travellers would be present. However, it is expected that
differences in headways, service quality or journey times may play an important role in

determining these differences.
Commute

For commuters, the differences between journey types are not significant. In the case of
London commuters, a slightly lower coefficient for high-speed may indicate on the impact
of journey quality on delay perception. In the case of non-London commuters, short and
long commute are characterised by larger coefficients (the difference is only statistically
significant in the case of short commutes). The delay perception thresholds are between 3-
4 minutes for the short and long commute and 4-5 for the other journey types. It is,
however, worth mentioning that for non-London commute, the average journey times for
all the journey types are very similar — between 21.4 and 29.7 minutes. This is unlike for

the other journey types where the average journey times typically differ largely by journey

type.
Leisure

For both leisure travellers on full and reduced ticket types, the pattern in the coefficient
sizes is very similar. High-speed, long-distance, rural and interurban journey types are
characterised by smaller coefficients whereas these journeys are also on average longer.
At the same time, the coefficients for short and long commute are typically larger. The
predicted delay length perception thresholds range between 9-12 minutes for the journey
types characterised by lengthier journeys and around 8 minutes for the shorter journeys.

This highlights the importance of journey length in determining the delay perception for
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leisure travellers with this result being generally consistent with what was reported in the
main body of the thesis.
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Figure 64 Delay length thresholds at p=0.5 by journey purpose and typology

While the results of this analysis are in some cases difficult to explain or the differences
are not statistically significant, they provide additional insights into the determinants of
delay perception. It needs to be noted that journey types may have some characteristics
that are not measured or quantifiable, i.e. other than journey time that may have an impact
on how delays are perceived. These can generally relate to differences in journey quality,

headways or in-station and on-board announcements.
D. Summary

The purpose of this annex was to provide sensitivity analysis around the previously
estimated models of delay perception. This was done due to the novelty of the analysis as
previous research into how passengers perceive delays is very limited. Moreover, as the
NRPS dataset was suggested to have some limitations related to possible differences
between passengers’ travel plans, actual journeys and how these are recorded in the
guestionnaire, an attempt was made to restrict the dataset to responses where the scope for
error is limited (i.e. travellers with restricted tickets and no interchanges). Furthermore,
additional journey type categorisation was introduced to better understand how different
types of passengers may perceive delays as some differences may be expected due to
different types of journeys being characterised by different journey lengths, frequencies,
comfort of journey or delay sensitivities. Most of the results are in line with the main body
of analysis, though, due to lower sample sizes, the significance of results is typically

smaller.



246

Annex Il

Interaction models

This annex presents supplementary analysis comparing results from the preferred models

of delay perception and satisfaction to their re-esimated versions that include all levels of

interacted variables.

A. Binary logit model of delay perception from Table 25

Average marginal effects are reported in Table 68. The predicted probabilities are reported

in Figure 65 and Figure 66 as well as Table 69.

Table 68 Average marginal effects for model 2 and 2a from Table 25

2 (22) (3] (22)

Arrival delay SJT

BL 0.0303™ 0.0303™ BL -0.00034™" -0.00039™"
BnL 0.0404™" 0.0399™ BnL -0.00066™" -0.00097"
CL 0.0343™ 0.0344™ CL -0.00120™" -0.00121""
CnL 0.0329" 0.0361"" CnL -0.00217 -0.00255""
LF 0.0338"" 0.0339" LF -0.00064"" -0.00094"
LR 0.0360"" 0.0353"™" LR -0.00049™" -0.00092""

Legend: t statistics in parentheses; “ p < 0.05, ™ p < 0.01, ™ p < 0.001;
BL/BnL — Business London/non-London, CL/CnL — Commute London/non-London, LF/LR-
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Figure 65 Probability of delay perception for increasing delay lengths, scheduled
journey lengths and different journey purposes using model 2
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Figure 66 Probability of delay perception for increasing delay lengths, scheduled
journey lengths and different journey purposes using model 2a with all levels of

interacted variables

Table 69 Estimated probabilities of delay perception for different levels of
scheduled journey time and journey purposes using model 2 and model 2a

Model 2 Model 2a
SJT Prob 95% CI Prob 95% CI
Business London 30 0.31 0.30, 0.32 0.31 0.30, 0.33
Business London 90 0.29 0.28, 0.30 0.29 0.28, 0.30
Business non-London 30 0.39 0.38,0.40 0.40 0.39, 0.42
Business non-London 90 0.35 0.34,0.36 0.35 0.34,0.36
Commute London 30 0.47 0.46, 0.48 0.47 0.46, 0.48
Commute London 90 0.40 0.38,0.42 0.40 0.37,0.42
Commute non-London 30 0.51 0.50, 0.52 0.51 0.50, 0.52
Commute non-London 90 0.37 0.33,0.41 0.35 0.31,0.39
Leisure Full 30 0.33 0.32,0.34 0.33 0.32,0.34
Leisure Full 90 0.29 0.28, 0.30 0.28 0.27,0.29
Leisure Reduced 30 0.34 0.33,0.34 0.36 0.35, 0.37
Leisure Reduced 90 0.31 0.30, 0.31 0.30 0.30, 0.31

Model 3 extended model 2 by addition of more explanatory variables and interactions
(Table 26). Average marginal effects are reported in Table 70 for both models with the
estimated probabilities shown in Figure 67 and Figure 68 for increasing levels of delay at

arrival and departure.
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Table 70 Average marginal effects for models reported in Table 26

©) (32)
Arrival delay
BL 0.0268"" 0.0182"
BnL 0.0271™" 0.0177""
CL 0.0304™ 0.0211™"
CnL 0.0237"" 0.0177"
LF 0.0263™" 0.0153™"
LR 0.0270™" 0.0183™"
SJT
BL -0.0000691 0.0000402
BnL -0.000439™ -0.000516™"
CL -0.000161 0.00116™"
CnL -0.00178™ -0.000559
LF -0.000445™" -0.000367"
LR -0.000269"" -0.000343™
Departure delay
BL 0.0167" 0.0595™"
BnL 0.0137"" 0.0607""
CL 0.0109" 0.0704™
CnL 0.00684" 0.0671""
LF 0.00928"" 0.0531""
LR 0.0126™" 0.0566™"
Seat=1
BL -0.110™ -0.0822™
BnL -0.0889™ -0.0464
CL -0.138™" -0.172™
CnL -0.121™ -0.127™
LF -0.143™ -0.0985™"
LR -0.155™" -0.0982""

Legend: t statistics in parentheses; * p < 0.05, ™ p < 0.01, ™ p < 0.001;
BL/BnL — Business London/non-London, CL/CnL — Commute London/non-London, LF/LR-
Leisure Full/Reduced
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Figure 67 Probability of delay perception for increasing delay lengths and different
journey purposes using model 3 in Table 26 (DD refers to departure delay)
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Figure 68 Probability of delay perception for increasing delay lengths and different
journey purposes using model 3a in Table 26 (DD refers to departure delay)
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B. Binary logit model of punctuality satisfaction with version 2 of the satisfaction
classification from Table 36

Average marginal effects are reported in Table 71. The estimated probabilities are then

plotted in Figure 69 and Figure 70.

Table 71 Average marginal effects for models from Table 36

(V2) (V2a)
Arrival delay
BL -0.0147 -0.0102""
BnL -0.0199™" -0.0112™"
CL -0.0257"" -0.0186™"
CnL -0.0317" -0.0185™"
LF -0.0160™" -0.00850™"
LR -0.0131™" -0.00780™"
SJT
BL 0.000227™" 0.000334™"
BnL 0.000282™*" 0.000483™
CL 0.000536™" -0.000243
CnL 0.000756™" -0.000159
LF 0.000360™" 0.000400™"
LR 0.000186™" 0.000348™"
Departure delay
BL -0.00343™ -0.0237
BnL -0.00220™" -0.0289™
CL -0.00107" -0.0442"
CnL 0.000889" -0.0465™"
LF -0.000999™" -0.0215™"
LR -0.00236™" -0.0214™"
Seat=1
BL 0.0367™" 0.119™
BnL 0.0424™" 0.0914™"
CL 0.0987""" 0.236™"
CnL 0.0459 0.233™
LF 0.0363™" 0.0892™"
LR 0.0391™" 0.0996™"
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Figure 69 Estimated probability of punctuality satisfaction for increasing lengths of
departure (DD) and arrival delays, using model V2 in Table 36
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Figure 70 Estimated probability of punctuality satisfaction for increasing lengths of
departure (DD) and arrival delays, using model V2a in Table 36
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C. Ordered logit model of punctuality satisfaction from Table 41

It is generally more difficult to depict the results of such a model as with 5 choice
categories and multiple interactions. Three sets of plots are shown below for the original
and the re-estimated model with all the levels of interacted variables for increasing levels
of delay at arrival and delay at departure of respectively 0, 15 and 30 minutes in Figure 71,
Figure 72 and Figure 73 for the original version of the model, and Figure 74, Figure 75

and Figure 76 for the model estimated with all levels of the interacted variables.
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>
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5 1015202530 0 5 1015202530 o 5 1015202530
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—e— V DSat(1) —@— F _DSat(2) —@— (3) —®— F_Sat(4) —@— V _Sat(5

Figure 71 Probability of punctuality satisfaction based on the ordered logit model
for increasing lengths of arrival (based on the model Punc_Sat from Table 41)
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Figure 72 Probability of punctuality satisfaction based on the ordered logit model
for increasing lengths of arrival delay and departure delay of 15 minutes (based on
the model Punc_Sat from Table 41)
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Figure 73 Probability of punctuality satisfaction based on the ordered logit model
for increasing lengths of arrival delay and departure delay of 30 minutes (based on
the model Punc_Sat from Table 41)
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Figure 74 Probability of punctuality satisfaction based on the ordered logit model
for increasing lengths of arrival delay and departure delay of 0 minutes (based on
the model Punc_Sat_1 from Table 41)
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Figure 75 Probability of punctuality satisfaction based on the ordered logit model
for increasing lengths of arrival delay and departure delay of 15 minutes (based on
the model Punc_Sat_1 from Table 41)
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Figure 76 Probability of punctuality satisfaction based on the ordered logit model
for increasing lengths of arrival delay and departure delay of 30 minutes (based on
the model Punc_Sat_1 from Table 41)

D. Fractional logit OD model of punctuality satisfaction from Table 45

The average marginal effects are reported in Table 72. Figure 77 compares the estimated
proportions of satisfied passengers using the two versions of the estimated models for
different levels of APL and journey purposes. Figure 78, Figure 79 and Figure 80 then
show the estimated proportions of satisfied passengers for different journey purposes,
levels of APL and scheduled journey times using V2 of the binary representation of the

satisfaction variable.
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Table 72 Average marginal effects for models from Table 45

V2 V2_AL
Sat V1
APL -0.0389 -0.0392
SIT 0.0002 0.0001
PSeat 0.2516 0.3714
Sat V2
APL -0.0398 -0.0395
SIT 0.0006 0.0005
PSeat 0.1285 0.2537
Sat V3
APL -0.0313 -0.0311
SJT 0.0005 0.0005
PSeat 0.0901 0.1668
o
o
7
g
- ©
2
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7
e YA
o
5
2o
e
o
o 4
0 2 4 6 8 10
Average passenger lateness
Sat_V1 Sat_V1 (AL) Sat_V2
Sat_V2 (AL) Sat_V3 Sat_V3 (AL)

Figure 77 Levels of ‘delay satisfaction’ for increasing average delay , V1: (5) vs (1-
4); V2: (4-5) vs (1-3); V3: (3-5) vs (1-2) based on the model from Table 45 (AL refers
to models with all levels of the interacted variables)
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Figure 78 Proportion of satisfied passengers under Version 2 of delay satisfaction at
the average values of control variables for the original model and model with all
levels of interacted variables (AL) from Table 45
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Figure 79 Proportion of satisfied passengers using V2 of the satisfaction variable
and results of the model V2 from Table 45
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Figure 80 Proportion of satisfied passengers using V2 of the satisfaction variable

E. Binary models of delay perception and punctuality dissatisfaction from
Table 47

Average marginal effects are presented in Table 73. The estimated probabilities are

and results of the model V2_AL from Table 45

compared in Table 74 and Table 75 and are plotted in Figure 81 and Figure 82.

Table 73 Average marginal effects for models from Table 47

Perc Perc_AL DSat DSat_AL
Arrival delay
Business 0.0329*** 0.0321*** 0.0201*** 0.0192***
Commute 0.0405*** 0.0417%** 0.0268*** 0.0282***
Leisure 0.0335*** 0.0323*** 0.0178*** 0.0170***
Seat
Business -0.0668*** -0.123*** -0.0968*** -0.192***
Commute -0.0928*** -0.143*** -0.113*** -0.184***
Leisure -0.0914*** -0.174%** -0.0925*** -0.191%**
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Table 74 Estimated probabilities of delay perception using models from Table 47

Journey Seat Arrival Perc  95%C| Perc_AL 95% CI

purpose delay

Business 0 0 0.18 0.17,019 0.28 0.23,0.33
Business 0 5 0.41 0.38,0.45 0.46 0.42,0.51
Business 0 10 0.70 0.63,0.76 066  0.60,0.72
Business 1 0 0.18 0.17,0.19 0.17 0.16,0.18
Business 1 5 0.33 0.32,034 032 0.31,0.33
Business 1 10 0.52 0.51,0.54 0.52 0.51,0.54
Commute 0 0 0.29 0.28,030 041 0.38,0.43
Commute 0 5 0.64 0.62,0.66 0.65 0.63,0.67
Commute 0 10 0.89 0.87,091 084 0.81,0.86
Commute 1 0 0.29 0.28,0.30 0.27 0.25,0.28
Commute 1 5 0.50 0.49,051 049 0.48,0.50
Commute 1 10 0.71 0.69,0.72 0.72 0.70,0.74
Leisure 0 0 0.16 0.15,0.16 0.31 0.27,0.34
Leisure 0 5 0.42 0.40,0.45 0.50 0.47,0.53
Leisure 0 10 0.75 0.71,0.79 069 0.65,0.73
Leisure 1 0 0.16 0.15,0.16 0.15 0.14,0.16
Leisure 1 5 0.30 0.30,0.31 0.30 0.29,0.30
Leisure 1 10 0.51 0.50,0.52 0.51 0.50,0.52

Table 75 Estimated probabilities of delay dissatisfaction using model from Table 47

Journey Seat Arrival DSat 95% Cl DSat AL 95% CI
purpose delay

Business 0 0 0.11 0.11,0.12 0.26 0.22,0.31
Business 0 5 0.29 0.26,0.31 0.39 0.35,0.43
Business 0 10 0.55 0.49,0.62 0.53 0.48,0.59
Business 1 0 0.11 0.11,0.12 0.11 0.10,0.11
Business 1 5 0.19 0.18,0.20 0.18 0.18,0.19
Business 1 10 0.30 0.29,0.31 0.30 0.29,0.31
Commute 0 0 0.34 0.33,0.35 0.49 0.46,0.52
Commute 0 5 0.62 0.60,0.64 0.65 0.63,0.67
Commute 0 10 0.83 0.81,0.86 0.78 0.75,0.80
Commute 1 0 0.34 0.33,0.35 0.30 0.29,0.32
Commute 1 5 0.46 0.45,0.47 0.45 0.44,0.46
Commute 1 10 059 0.58,0.61 0.60 0.59,0.62
Leisure 0 0 0.09 0.09,0.10 0.24 0.21,0.27
Leisure 0 5 0.24 0.22,0.26 0.36 0.33,0.38
Leisure 0 10 0.49 0.45,054 049 0.46,0.53
Leisure 1 0 0.09 0.09,0.10 0.09 0.08,0.09
Leisure 1 5 0.16 0.15,0.16 0.15 0.15,0.16
Leisure 1 10 0.26 0.25,0.26 0.25 0.24,0.26
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Figure 81 Estimated probabilities of delay perception using models Perc and
Perc_AL from Table 47
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Figure 82 Estimated probabilities of delay dissatisfaction using models DSat and
DSat_AL from Table 47
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