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Abstract 

Though delays negatively impact rail passengers, eliminating all their incidences is impossible. 

Hence, it is important to understand the impacts of delays of various lengths and ways in which 

passengers can be compensated for the resulting disutility. This can, in turn, help dictate 

regulatory, operational and investment priorities. Against this background, this thesis aims to 

review the currently operating delay compensation mechanisms and investigate the link between 

delay occurrence, delay perception and satisfaction impacts. The results suggest that the current 

compensation scheme rules lead to an increasing revenue burden of the scheme for long-distance 

operators, highlighting the need for further research comparing the scheme’s costs and benefits. 

Subsequently, it was indicated that shorter delays are not always perceived by passengers and are 

likely to have a smaller impact on passenger satisfaction with marginal disutility of delay likely 

being non-constant across the different delay levels. At the same time, it was highlighted that 

journey quality, delay at departure and journey time also affect delay perception and satisfaction. 

The probability of perceiving a delay was estimated to be larger than the equivalent probability 

of being dissatisfied with the same delay, demonstrating the existence of a gap between delay 

perception and dissatisfaction. Finally, the journey satisfaction data were used to derive lateness 

multipliers, a conversion rate between a minute of delay and scheduled journey time. The 

calculated values were found to be larger than the estimates obtained from the traditionally used 

stated preference studies. The outcomes of the research conducted as part of this thesis can help 

design passenger delay compensation schemes and devise performance strategies and targets for 

railways. Moreover, the presented analysis provides additional evidence towards possible non-

linearities in delay impacts and highlights the potential of transport satisfaction data in economic 

valuation.  
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Chapter 1  

Introduction 

1.1. Background 

In the fast-paced world we live in, it has become of great importance to be able to move quickly. 

Transport is an important part of everyday life, being a means of moving between different places, 

required to access jobs, goods, services and leisure activities (Glazener et al., 2021). Different 

modes of transport have their specific characteristics, meaning that their suitability depends on 

the type of trip made and personal preferences. Similar to other areas of economics, the monetary 

cost of travel impacts the demand for it. However, in the case of transport, travellers 

simultaneously try to minimise the monetary cost and journey times. Whilst in some cases, travel 

activity on its own may be a source of enjoyment and/or fitness in the case of active modes (Cornet 

et al., 2022; Mokhtarian & Salomon, 2001; Wardman & Lyons, 2016), usually both increased 

travel time and cost are sources of disutility. Hence, transport is typically called a derived demand 

as it is related to the need to move between places, not to the travel activity itself. 

With travel time being a source of negative utility, it is worth mentioning that in the case of public 

transport users, the time spent travelling is not only related to the time spent in-vehicle. In other 

words, public transport trips also include time spent accessing stops or stations as well as waiting 

for the chosen services. Finally, whilst both private and public transport users are concerned with 

the length of time their trips are meant to take (i.e. based on their expectations or timetables), 

congestion and resulting delays have been suggested to affect passengers more than changes in 

scheduled times. In other words, a minute of delay is considered to be worse than an additional 

minute of scheduled journey time. This may be related to the inconvenience and uncertainty 

caused by delays, the possibility of interfering with other planned activities and subsequently the 

financial consequences of missed connections, appointments etc. However, the amount of 

inconvenience (or disutility) derived from the additional travel time resulting from a delay may 

depend on how sensitive a traveller is to potential late-running and the experienced travel 

conditions. 

1.1.1. Journey scheduling 

When choosing a service to travel on, passengers consider the scheduled arrival time of the 

services with respect to their preferred arrival time. As noted by Preston et al. (2009) and 

explained in more detail in Batley (2007), passengers typically also include safety buffers to their 

travel schedules that work as a time insurance against any possible disruptions and aim to increase 

the probability of arriving to the destination within passenger’s preferred arrival time. The amount 
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of buffer time may depend on the expectations, sensitivity to potential lateness, and personal 

characteristics of a passenger (this is further revisited in Chapter 2). 

1.1.2. Impacts of delays on passengers 

The impacts of delays on rail passengers are typically studied in terms of how performance affects 

demand. Intuitively, it would be expected that fewer trips will be made if the incidence of delays 

increases. Such a relationship is generally suggested by the literature, however, the estimated 

elasticities with respect to delay are inelastic. Performance has a statistically significant, yet 

marginal impact on rail demand as the estimated elasticities are typically not more (in absolute 

terms) than -0.10 (ATOC, 2004; Batley et al., 2011). At the same time, the relative impacts of 

changes in price levels or generalised journey times are suggested to be larger with the estimated 

elasticities closer to -1, indicating that demand is relatively responsive to such changes (ATOC, 

2004; Batley et al., 2011). The limited impact of performance on demand does not necessarily 

mean that travellers place low value on performance as individual-level studies suggest relatively 

high valuation of lateness, yet such experiences do not always lead to a demand response (Batley 

et al., 2011). This may be related to passengers not being able to change their travel behaviour 

following late running and especially so in the short term, which can be attributed to the lack of 

available alternatives. This means that while delays may have a negative impact on passengers, 

performance may not always be immediately linked to demand. Nevertheless, delays do 

contribute to inconvenience and the loss of time that could have been spent on other activities. 

Hence, this could be translated to a loss of social welfare resulting from increased travel times.  

1.1.3. Alternative methodologies used to study the impacts of delay 

With studies of demand not being able to capture the aforementioned impacts, some alternative 

lines of investigation have been used throughout the literature, employing the following data 

sources: 

1) stated preference (SP) surveys where respondents choose the preferred travel options 

based on the presented scenarios with different travel attributes (e.g. travel time and 

monetary cost), 

2) revealed preference (RP) surveys where travellers’ real choices are observed and 

compared to the alternatives, and 

3) satisfaction surveys where passengers report journey satisfaction based on their travel 

experiences. 

Demand and SP studies typically focus on evaluating the impacts of average performance (e.g. 

Batley and Ibáñez, 2012) on passenger numbers or preferences (this is further discussed in 

Chapter 8). At the same time, studies of passenger satisfaction are concerned with either overall 
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satisfaction with public transport (e.g. Cats et al., 2015) or the impact of delay incidents (or other 

travel attributes) on passenger satisfaction with a specific travel experience (e.g. Monsuur et al., 

2021) (Chapter 6 and Chapter 7 cover these aspects in more detail). Studying the impact of 

average performance on demand can provide information for the government and/or operators 

regarding the effects of changes in rail performance on passenger numbers and ticket revenues. 

Stated preference surveys are often used to estimate the relative importance of different travel 

attributes and trade-offs between them. These, are, however, related to hypothetical choices. On 

the other hand, studying real choices obtained through questionnaires and travel diaries also has 

its limitations as it assumes that travellers know about the other travel alternatives. Moreover, in 

the case of delays, these often cannot be predicted and are unlikely to affect any travel choices 

once a journey has started. Hence, the other body of literature is focused on studying the impact 

of different journey attributes on passenger satisfaction. In this case, passengers evaluate their 

actual experience ex post, giving insight into how different travel attributes (including delays) 

affected their satisfaction with the experienced journey.  

Several studies looked at the impact of different aspects of the journey on travel satisfaction (for 

reviews see De Vos et al., 2013; De Oña and De Oña, 2015; Gao et al., 2018; Rong et al., 2022), 

but studies relating actual performance to satisfaction are more limited. In principle, this thesis 

draws on a number of previous studies examining the impacts of lateness on passengers (i.e. 

Batley, 2007; Preston et al., 2009; Monsuur et al., 2021) whilst also responding to the conclusion 

in Wardman and Batley (2022) and Rong et al. (2022) that further research is needed to understand 

passengers’ perception of late-running and its marginal impacts on passengers. This is seen as an 

important first step in advancing our knowledge of the impact that delays have on passengers' 

satisfaction and the role that perception has in this relationship. 

1.1.4. Focus on British railways 

The main focus of this thesis is on the railways in Great Britain. This can be attributed to two 

reasons. First of all, the fact that the British rail planning practice is well-established with the first 

edition of British guidance on rail demand forecasting dating back to the 1980s (Wheat and 

Wardman, 2017). Secondly, the British railway industry structure is one characterised by vertical 

separation and privatisation of train operations (Nash et al., 2013), though in recent years a 

number of services has been brought back under the government’s control and are run by the so-

called ‘operator of last resort’. With multiple train operators providing services across the country, 

extensive regulation and a relatively complex industry structure, the British rail industry is also 

characterised by a relative abundance of open-access data what facilitates research. Yet, there still 

remain areas that call for further research. 
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In November 2019, 65% of rail station stops in Britain were on time with 95% of delays being 

shorter than 15 minutes and 3 out of 1000 station stops delayed by over 30 minutes (Network 

Rail, n.d.). While delays are endemic in the transport system (Batley, 2007; Rezapour and Ferraro, 

2021) and eliminating all of them may be impossible and not economically viable, the efforts can 

focus on reducing the delays that have the most negative impact on passengers or providing 

passengers with compensation for delays. Previous research suggests that passengers delayed by 

over 30 minutes are very unlikely to be satisfied with their journeys  (Wittmer and Laesser, 2010; 

Monsuur et al., 2021). However, as noted by Transport Focus (2015), satisfaction levels tend to 

start dropping from the very first minute of late running.  

1.2.Statement of the problem 

Whilst previous research provides us with some understanding of how passenger satisfaction 

changes with delays, little is known about how passengers perceive delays and the effects that 

delay perception may have on satisfaction. Nielsen (2000) and Rezapour and Ferraro (2021) 

indicated that passenger perception of late running has an impact on travel behaviour and public 

transport suppliers can learn how to improve their services by investigating these impacts too. At 

the same time, many studies that focused on the valuation of changes in journey times have argued 

that passengers are less likely to notice smaller changes, implying that the marginal benefits of 

small time savings are smaller (Mackie et al., 2003; Daly et al., 2014). Despite that, Mackie et al. 

(2003) noted that even if passengers are unlikely to recognise minor savings, it does not 

automatically mean that these savings have no benefits at all. Similar arguments can be applied 

to delays. It can be thought that the perception of delay is an intermediate step linking the 

existence of delay (supply-side disruption) with the impacts on satisfaction and ultimately demand 

and revenue (demand-side impact). 

1.2.1. How to compensate passengers for the experienced disutility? 

If delays have an impact on satisfaction, but a limited impact on demand, this poses a question 

regarding how travellers can be compensated for the disutility related to the existence of delays. 

This thesis was initially motivated by the limited understanding of the role that compensating 

passengers for late running has on both the demand and supply side of the railways. A rail 

passenger delay compensation scheme aiming at improving the attractiveness of rail services and 

providing minimum customer service standards for delayed passengers operates in the EU and 

Great Britain. The scheme rules were chosen arbitrarily, and are largely homogeneous across all 

ticket types and journey lengths. Each year, British TOCs repay around £80m to passengers as 

part of the delay compensation (pre-COVID) (Gov.uk, 2020). There are two distinct features 

concerning the design of the rail passenger delay compensation scheme, namely the delay length 

threshold when passengers start receiving compensation and how the value of compensation is 
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determined. In order to optimise the design of passenger delay compensation scheme, there is a 

need to better understand what levels of delays are especially inconvenient for travellers, which 

can be achieved by understanding delay perception and satisfaction in more detail.  

1.2.2. How do delays affect passengers? 

The analysis of passenger satisfaction builds on Monsuur et al. (2021) who used NRPS data to 

study the determinants of passenger satisfaction and the impacts of delays on the overall journey 

satisfaction of passengers who perceived delays. The aim of this thesis is to investigate how delays 

affect satisfaction with punctuality rather than overall journey satisfaction (as in Monsuur et al., 

2021) of different types of passengers, both in the cases of perceived and unperceived delays. 

Understanding how passengers perceive delays and how satisfaction with punctuality changes 

with increasing delays is important and interesting in its own right. However, its usefulness in the 

policymaking context is limited to indicating the minimum thresholds where passengers start 

perceiving delays and subsequently the minimum delay thresholds that have significant impact 

on passenger satisfaction. The estimated thresholds can be used for determining the plausible 

delay distribution and performance metrics with the possibility of targeting the delays that are 

more likely to significantly reduce passenger satisfaction. Alternatively, these can inform the 

potential design of compensation mechanisms. Nevertheless, the application of the concepts of 

delay perception and satisfaction to economic appraisal is currently limited. 

To better understand the difference between the nature of satisfaction data and the impacts of 

delays on satisfaction as compared to hypothetical or real choices, it is worth looking at ways in 

which satisfaction data can be used in deriving metrics that are typically obtained from other data 

sources. There is a precedent in the literature, especially covering health, labour and 

environmental economics, in utilising satisfaction data (particularly life satisfaction) in the 

context of economic valuation (e.g. Layard et al., 2008; Frey et al., 2009; Dickerson et al., 2014). 

This approach has, so far, not been widely used in transport. As time savings are often quantified 

as the largest benefit of many transport infrastructure projects, valuation of time and the impacts 

of reducing journey times and improving performance remain the key areas of interest for 

transport economists. It has been noted throughout the literature that performance improvements 

may often have larger benefits as compared to travel time reductions (e.g. de Jong et al., 2007). 

Stated preference surveys are typically used to estimate the relative valuation of delays respective 

to scheduled journey times (e.g. Batley and Ibáñez, 2012). However, due to the aforementioned 

limitations of the SP data and the different nature of the satisfaction data, it may be of interest to 

contrast how lateness valuation estimates vary depending on the type of data source used. Hence, 

this thesis also aims to explore that link by combining the methodology used in studies focusing 

on lateness valuation using stated preference data (e.g. Bates et al., 2001; Preston et al., 2009; 
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Batley and Ibáñez, 2012) and studies using satisfaction data in economic valuation (e.g. Dickerson 

et al., 2014) to derive reliability multipliers that are used in demand forecasting. This ensures that 

the concept of satisfaction is better translated to the currently used methodologies, allowing 

making comparisons and better translation of the results for policymaking. 

1.3. Aims and objectives 

The aim of this thesis is to investigate rail passengers’ perceptions of delays and the consequential 

impacts on satisfaction. In this sense, the thesis explores the intermediate steps that link the 

occurrence of delay and its possible impacts on demand and revenues, as for delays to have such 

impacts, they need to be perceived and have a material influence on travellers’ attitude and 

behaviours (in this case measured by reported satisfaction). The particular focus is on 

understanding the impacts of smaller versus larger delays on passengers, given that smaller 

measured delays may not be noticed or regarded as significant by travellers. The research can be 

helpful in designing/rethinking passenger delay compensation and devising performance 

strategies and targets for the British railways. This aim will be accomplished by the following 

objectives and the corresponding research questions: 

1) Review of the currently used passenger delay compensation mechanisms (Chapter 4) 

Q1: What are the costs and benefits of the currently operating passenger compensation scheme?  

2) Examination of how passengers perceive delays (Chapter 6) 

Q1: What are the minimum delay lengths perceivable by travellers? 

Q2: How do passengers perceive the lengths of delays they experienced? 

Q3: Do journey length, purpose, comfort and arrival versus departure delay impact upon how 

delays are perceived? 

3) Assessment of the impacts of delays on passenger satisfaction (Chapter 7) 

Q1: How does the probability of being satisfied with punctuality change with increasing levels of 

recorded delays? 

Q2: What are the delay lengths detrimental to passenger satisfaction? 

Q3: What are the ways in which other journey aspects, i.e. journey length and comfort affect 

passenger satisfaction? 

Q4: Is the impact of delays on satisfaction non-linear? 

4) Contrasting the concepts of delay perception and passenger satisfaction (Section 7.5) 



7 

 

Q1: Is there a gap between the moment a delay is perceived and starts having an impact on 

satisfaction? 

5) Determining the relative valuation of lateness to scheduled journey time using 

satisfaction data (Chapter 8) 

Q1: Is there any difference in the estimated trade-offs between delay and scheduled journey time 

based on the type of data used? 

1.4.Thesis structure 

This thesis follows the structure outlined below and depicted in Figure 1: 

Chapter 2 Impacts of delays on passengers 

This chapter summarises the theoretical models of trip scheduling as well as introduces the 

methods typically used to measure delay impacts. More extensive literature reviews form parts of 

each of the empirical chapters. 

Chapter 3 Data and methodology 

This chapter briefly describes the types of modelling approaches used in the thesis. However, 

each of the empirical chapters contains a more detailed description of the analysis undertaken. 

Chapter 4 Rail passenger delay compensation scheme 

This chapter evaluates the currently operating rail passenger delay compensation scheme in Great 

Britain. It consists of a qualitative review of scheme rules and passenger engagement, and an 

empirical quantitative analysis of the costs of running the scheme for different operators in Great 

Britain. This chapter serves as a motivation for further research conducted as part of the thesis. 

Chapter 5 Data: The National Rail Passenger Survey (NRPS) 

This chapter describes the main dataset used in the analysis conducted in Chapters 6-8, the 

National Rail Passenger Survey, its contents and limitations. 

Chapter 6 Rail delays and travellers’ perception of being delayed 

This chapter introduces the concept of delay perception. Binary logit models are used to estimate 

the probability of rail travellers perceiving a delay for increasing lengths of recorded delays.  

Chapter 7 Impacts of delay on travellers’ satisfaction 

This chapter analyses the impacts of recorded delays on reported satisfaction. Binary and ordered 

logistic methods are used to investigate how different levels of delays affect passenger 
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satisfaction. The concepts of delay perception and journey satisfaction are reconciled to 

investigate the existence of a gap between a length of delay that is perceivable and one that has a 

detrimental impact on passenger satisfaction. Moreover, the potential non-linearities in the impact 

of delays on passengers are examined. 

Chapter 8 Lateness valuation using satisfaction data 

This chapter proposes an approach utilising journey satisfaction data in the estimation of an 

established metric – the lateness multiplier - that represents a conversion rate between a minute 

of delay to an equivalent of scheduled journey time. 

Chapter 9 Conclusions 

This chapter summarises the results of the analysis conducted in the previous chapters along its 

limitations. Suggestions for future work and main implications for the policymakers are also 

introduced in this chapter.
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Figure 1 Thesis structure 

Figure 1 depicts the chapters of the thesis and the different impacts of delays that these investigate. Chapter 4 looks at the cost of delays in terms of passenger 

compensation. Chapters 6 and 7 describe the immediate steps between the occurrence of delay and its impacts on demand and revenue, namely delay 

perception and the consequential impacts on satisfaction. The direct link between journey satisfaction and demand response is not established, however, 

Chapter 8 aims to bridge the two concepts by utilising satisfaction data in studying delay valuation (providing an indirect link, represented by the dotted 

lines). 
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Chapter 2  

Impacts of delays on passengers 

2.1. Introduction 

To better understand the negative impacts that delays have on passengers, one needs to consider 

how travellers make travel choices and what affects them. The aim of this chapter is to provide a 

summary of theoretical models of trip scheduling as well as a brief review of methods typically 

used to measure the delay impacts. 

It is generally agreed throughout the literature that reliability has an important, yet relatively small 

impact on travel choices (e.g. Batley, 2007). Having said that, de Jong et al. (2007) suggested that 

the benefits of improved reliability may often be larger than those of reduced travel times - as 

travellers place a large value on performance. As noted by de Jong et al. (2007), most of the 

research covering the value of reliability uses one of the following three approaches: 

1) mean versus variance approach where unreliability is represented by the standard 

deviation or variance of the distribution of journey times, 

2) percentiles of travel distributions where unreliability is represented by the difference 

between the 80th or 90th percentile of the journey times distribution and their mean or 

3) scheduling models where unreliability is represented by the number of minutes a traveller 

departs and/or arrives early or late as compared to their Preferred Arrival Times (PATs). 

The value of reliability is typically estimated from SP studies where travellers are presented with 

multiple-choice sets characterised by different levels of travel attributes (including the lengths of 

delays). Subsequently, researchers calculate the chosen metrics (e.g. mean or standard deviation 

of delays) and the respondents’ relative valuations. While the first two approaches are more 

concerned about the overall performance, i.e. the distribution of delays, the latter looks at how 

expectations of unreliability impact trip scheduling. This approach is of particular relevance in 

investigating the impact of incidental lateness on passengers, which is the main focus of this 

thesis. The average and incidental lateness are, in fact, two distinct concepts as the impact of a 

given delay episode is different from the impact of general railway performance. In other words, 

a delay episode of 5 minutes is different from an average delay of 5 minutes. Hence, with some 

(deliberate) exceptions, this thesis looks at how incidental delays affect travel experiences. 

2.2. Scheduling models 

The basis for the trip scheduling models can be sought in the studies concerning theories of time 

allocation (Becker, 1965; DeSerpa, 1971) with time/money and scheduling constraints (Vickrey, 

1969; Small, 1982) under uncertainty (Small, 1982; Noland and Small, 1995; von Neumann and 



11 

 

Morgenstern, 2007). The major difference between the private car and public transport services 

can be seen in the latter providing less flexibility in terms of departure and arrival times that are 

bound by the timetables. Hence, Bates et al. (2001) and Batley (2007) discussed the discrete 

nature of the departure/arrival times of public transport. Considering the work by Small (1982) 

and Noland and Small (1995), it is worth noting that travellers attach disutility to longer travel 

times, but also to late or early arrival. Hence, the concept of a ‘schedule delay’, defining the 

difference between preferred and actual arrival times. Typically, it is assumed that travellers 

assess all the possible travel options and choose one that maximises their utility, what in transport 

is equivalent to the lowest generalised cost, i.e. monetary cost and travel time (Bates et al., 2001). 

Travellers typically have a preferred arrival time and assign utility to each of the travel options 

based on how distant the scheduled arrival is from their preferred PAT (Bates et al., 2001) or PAT 

band (Mahmassani and Chang, 1986) - with schedule delay being a source of larger disutility for 

late than early arrival. Bates et al. (2001) also extended the framework described above, 

considering that the choice of departure time faced by travellers is made under uncertainty that is 

introduced by unreliability. As such, any delays or early arrivals may affect passengers' 

expectations of travel time and encourage the choice of earlier or later departure in the future.  

A concept related to the previous discussion is that of a safety margin that defines the extra amount 

of time incorporated into the journeys, serving as insurance against any possible delays. This is 

likely to depend on both the expectations about delays (that can depend on previous experiences) 

and sensitivity towards late arrival (Gaver, 1968; Knight, 1974; Bates et al., 2001; Batley, 2007). 

Hence, it is likely that travellers are less sensitive to a delay that allows them to reach their 

destination within their preferred arrival time window and with the inclusion of larger safety 

buffers, the lengths of such delays increase. Nevertheless, the experienced delays may be larger 

than the included safety margins and, as noted by Bergström and Krüger (2013), in such cases, 

travellers may face long waits or need to make changes to their scheduled activities.  

2.3.  Measuring the impacts of delays 

The impacts of delays are typically evaluated using: 

1) market-level analysis focusing on the impact of delays on demand (e.g. Batley et al., 

2011) 

2) SP or RP surveys analysis of travel choices and the relative valuations of travel attributes 

(e.g. Batley and Ibáñez, 2012) or 

3) analysis of passenger satisfaction (e.g. Monsuur et al., 2021). 

With reference to journey scheduling, it has to be noted that travellers’ preferences and risk 

aversion are likely to be heterogeneous. Hence, the benefits arising from reliability improvements 
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are likely to have a differing impact on travellers (Batley, 2007). However, the demand analysis 

is aggregated at both demand and supply levels as it looks at the impacts of average delay on total 

demand. SP or RP surveys are also typically used to analyse the impacts of average delays (or 

their distribution) and their valuations. There is a large body of literature concerned with 

evaluating the impacts of delays on demand and valuation using SP and RP surveys. However, 

with these typically being concerned with the distribution of delays, a very limited number of 

studies looks at the impact of individual delays on passengers. Here, it would not be expected for 

a single delay to have a large impact on travel choices. However, such delays are a source of 

disutility in line with the scheduling models discussed in the previous section.  

As noted in the recent paper by Wardman and Batley (2022), the implied elasticities (i.e. from SP 

surveys) are typically larger than these estimated from the demand data, suggesting that delays 

are a source of disutility, however, may not ultimately lead to changes in travel behaviour as 

demand studies suggest that demand is relatively inelastic with respect to performance (ATOC, 

2004; Batley et al., 2011). Similarly, with SP surveys relating to hypothetical choices, there might 

be differences in the estimated impacts of delays on passengers based on the type of data used 

(i.e. SP versus satisfaction surveys).  

Travellers are risk-averse and uncertainty of arrival time can cause stress and anxiety (Preston, 

2008; Peer et al., 2012). Most delays are small and passengers are likely to prepare for the 

possibility of encountering them. However, the occurrence of longer delays that have a relatively 

low probability of occurring, but high impact, is more difficult to predict and prepare for 

(Bergström and Krüger, 2013). As eliminating all delays is practically impossible, in order to 

know whether it is more important to target the many small or the few very large delays,  it is 

necessary to understand how travellers are impacted by delays of differing sizes (Bergström and 

Krüger, 2013).  

Hence, conforming to the framework presented above, with the travel history impacting 

expectations about reliability, travellers schedule their journeys with respect to the preferred 

arrival time, also including a safety margin to their schedules. Subsequently, the experienced 

delay will lead to a disutility with its magnitude likely dependent on how far the actual arrival is 

from the preferred arrival. Subsequently, the disutility derived from a delay incident can be 

captured by satisfaction data where travellers evaluate their travel experience ex-post as shown in 

Figure 2. Eventually, the only way to compensate passengers for the disutility related to delays is 

to provide them with monetary compensation, as the time lost cannot be returned. Hence, the 

presented concepts ask for increased research investigating the impact of delays on passengers 
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using the alternative data sources. It is thought that passenger reports or journey evaluation data 

may be a useful addition when studying the described problem (Preston, 2008).  

 

Figure 2 Framework behind journey evaluation 
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Chapter 3  

Data and methodology 

This chapter aims to provide a summary of the data and methodologies used throughout this thesis 

to provide a clearer picture of the concepts introduced in each chapter. Table 1 serves as a roadmap 

and provides an overview of each of the chapters. Objectives, research questions and motivations 

associated with each of the chapters are presented alongside the methodology and data used in 

the analysis.    

Chapter 4 provides a literature review on the impacts of passenger delay compensation as well as 

an econometric analysis of its costs using financial and performance data from the British 

franchised TOCs obtained from the Department for Transport. The remaining chapters mostly 

utilise logistic regression techniques to investigate how delays are perceived and the impacts they 

have on passenger satisfaction. These methods are applied to passenger responses from NRPS, a 

rail passenger survey in the UK, obtained from Transport Focus, and linked to performance data 

from HSP (obtained from National Rail). These data sources are described in more detail in 

Chapter 5. 
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Table 1 Summary of data and methodologies used in the thesis 

Chapter Objective 

(based on 

section 1.3) 

Research 

question 

Motivation Methodology Data 

Chapter 4 

Rail passenger 

delay 

compensation 

scheme 

Review of the 

currently used 

passenger 

delay 

compensation 

mechanisms 

(Chapter 4) 

Q1: What are the 

costs and 

benefits of the 

currently 

operating 

passenger 

compensation 

scheme? 

Delay Repay has been introduced as a means of 

compensating passengers experiencing severe delays and to 

regulate the minimum customer service requirements for 

the treatment of passengers following late-running 

(Department for Transport, 2016). 

 

Department for Transport (2020) noted that while the 

proportion of passengers claiming compensation has been 

increasing, only 39% of surveyed passengers who 

experienced a delay qualifying for compensation decided to 

engage with the process in 2018. 

 

Literature review 

on the design and 

operational 

characteristics of 

the scheme. 

 

Econometric 

analysis of the 

costs of the 

scheme and 

impacts on 

different operators. 

Rail industry data 

sourced from the 

Department for 

Transport and ORR 

Chapter 6 

Rail delays and 

travellers’ 

perception of being 

delayed 

Examination 

of how 

passengers 

perceive 

delays 

(Chapter 6) 

Q1: What are the 

minimum delay 

lengths 

perceivable by 

travellers? 

 

Q2: How do 

passengers 

perceive the 

lengths of delays 

they 

experienced? 

 

Nielsen (2000) and Rezapour and Ferraro (2021) indicated 

that the perception of delays has an impact on travel 

behaviour and public transport suppliers can learn about 

ways in which they can improve their services by 

investigating it. 

 

Daly et al. (2014) suggesting that passengers are often not 

able to perceive small changes in travel times. 

 

Wardman and Batley (2022) and Rong et al. (2022) 

suggesting that research is needed to understand the 

differences between perceptions of late time and recorded 

Binary logistic 

models of delay 

perception; 

analysis of the 

distribution of 

reported and 

recorded delay 

lengths 

NRPS – passenger 

reports about 

delays;  

HSP – recorded 

performance 
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Q3: Do journey 

length, purpose, 

comfort and 

arrival versus 

departure delay 

impact upon how 

delays are 

perceived? 

 

delay lengths to better understand how delays affect 

passengers. 

 

Chapter 7 

Impacts of delay on 

travellers’ 

satisfaction 

Assessment of 

the impacts of 

delays on 

passenger 

satisfaction 

(Chapter 7) 

Q1: How does 

the probability of 

being satisfied 

with punctuality 

change with 

increasing levels 

of recorded 

delays? 

 

Q2: What are the 

delay lengths 

detrimental to 

passenger 

satisfaction? 

 

Q3: What are the 

ways in which 

other journey 

aspects, i.e. 

journey length 

and comfort 

Suggestions that performance may not lead to large 

changes in demand, due to the lack of viable alternatives 

particularly in the short-run (Batley et al., 2011). 

 

Limited research linking recorded performance with 

reported satisfaction. Though, generally performance has 

been suggested to have a very strong impact on satisfaction 

(Transport Focus, 2015; Carrel et al., 2016; Gao et al., 

2018; Monsuur et al., 2021).  

 

Monsuur et al. (2021) analysed the impact of recorded 

delays on passenger satisfaction using the NRPS dataset. 

However, some methodological differences are proposed. 

Wardman and Batley (2022) argued that proportional 

elasticities (i.e. based on the relative proportion of AML to 

GJT) better explain changes in demand than the actual 

delay lengths. 

 

Gao et al. (2018) proposed a cubic relationship between the 

difference in the experienced versus expected lengths of 

delays and satisfaction. 

 

Binary and ordered 

logit models of 

passenger 

satisfaction (to 

study the impact of 

incidental delay on 

individual 

passenger 

satisfaction); 

fractional outcome 

logit regression (to 

study the impact of 

average delay on 

the aggregated 

satisfaction levels). 

 

Maximum 

likelihood 

estimation of the 

elasticity of 

marginal utility of 

delay; Estimation 

NRPS – reported 

satisfaction;  

HSP – recorded 

performance 
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affect passenger 

satisfaction? 

 

Q4: Is the impact 

of delays on 

satisfaction non-

linear? 

Data from satisfaction surveys has been applied to study 

non-linearities, for example in the context of the marginal 

utility of income (e.g. Layard et al., 2008). 

 

of a cubic 

relationship and 

piecewise 

regression between 

recorded delays 

and reported 

satisfaction; 

Contrasting 

the concepts 

of delay 

perception 

and passenger 

satisfaction 

(Section 7.5) 

Q1: Is there a 

gap between the 

moment a delay 

is perceived and 

starts having an 

impact on 

satisfaction? 

Same as for chapters 6 and 7 Binary logit model 

of delay perception 

and satisfaction. 

NRPS – passenger 

reports about delays 

and reported 

satisfaction;  

HSP – recorded 

performance 

Chapter 8 

Lateness valuation 

using satisfaction 

data 

Determining 

the relative 

valuation of 

lateness to 

scheduled 

journey time 

using 

satisfaction 

data (Chapter 

8) 

Q1: Is there any 

difference in the 

estimated trade-

offs between 

delay and 

scheduled 

journey time 

based on the type 

of data used? 

Monsuur et al. (2021) analysed the impact of recorded 

delays on passenger satisfaction using the NRPS dataset. 

 

SP surveys are typically used to estimate lateness 

multipliers (e.g. Bates et al., 2001; Preston et al., 2009; 

Batley and Ibáñez, 2012; Wardman and Batley, 2022). 

However, some limitations of SP survey data were 

highlighted in the literature (e.g. Wardman, 1988). 

 

There is a large body of literature using data from surveys 

on life satisfaction in economic valuation, especially in 

health or environmental economics (e.g. Ferrer-i-Carbonell 

and van Praag, 2002; Frey et al., 2009). However, such 

approaches have not been as widely applied in the transport 

contexts (with the exception of Dickerson et al., 2014). 

 

Ordered logit 

model of passenger 

satisfaction to 

derive lateness 

multiplier. 

NRPS – passenger 

reports about delays 

and reported 

satisfaction;  

HSP – recorded 

performance 
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Chapter 4  

Rail passenger delay compensation scheme 

4.1. Introduction 

Eliminating all delays is practically impossible and probably not optimal (Batley, 2007; 

Rezapour and Ferraro, 2021). At the same time, previous research suggests that delays 

have negative impacts on passengers, but their ability to respond to worsening performance 

is limited (Batley et al., 2011). Following a delay, the immediate way of compensating for 

the additional disutility related to that is to refund the monetary value of the time lost. 

Against this background, and to improve the competitive position of rail, a rail passenger 

compensation scheme has been introduced in the UK and the EU with the aim of providing 

minimum customer service standards for delayed passengers.  

So far, there has been very limited research empirically reviewing how the rail passenger 

delay compensation schemes work in practice. The amount of compensation repaid by 

each train operating company (TOC) as part of the scheme depends on: 

1) the rules of the scheme, 

2) the number of passengers eligible to claim compensation and 

3) passengers’ levels of engagement with the scheme.  

Currently, British passengers can claim a portion of their original fare for delays of over 

15 minutes with the compensation thresholds set arbitrarily. At the same time, as noted, by 

Wardman and Batley (2022) and Rong et al. (2022), little is known about how passengers 

perceive delays or what levels of delays are detrimental to their satisfaction. Hence, 

designing appropriate compensation mechanisms is challenging.  

Assuming common speeds and equal probability of encountering a delay across the whole 

network, longer (and hence more expensive) journeys would be subjected to longer delays, 

hence TOCs operating long-distance services would be likely to see more passengers being 

eligible to claim compensation. This is likely combined with higher engagement rates as 

travellers state they are more likely to submit compensation claims for longer delays and/or 

more expensive journeys (Department for Transport, 2020). Hence, operators serving 

longer journeys may see higher claim rates due to differences in the disutility of lateness 

or opportunity cost of not claiming compensation. While this is likely an 

oversimplification, it can be hypothesised that this can lead to a differing revenue burden 

that the Delay Repay (DR) scheme has on the operators’ revenues.  
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Whilst it may be easy to review the costs of the scheme by looking at the amount of 

compensation repaid to travellers, its potential benefits are more difficult to measure. This 

would require quantifying the impact of the scheme on demand (i.e. the scheme either 

encouraging rail travel or limiting the loss of the revenue in the future). Due to the relative 

complexity, limited data and its sensitivity, this chapter mainly focuses on the effects of 

the design and mechanics of the DR scheme on its costs. Whilst the specific focus is on 

the scheme operating in the United Kingdom, comparisons are drawn to the rail passenger 

delay compensation schemes operating within other European countries as well as a similar 

scheme operating in aviation.  

The purpose of this chapter is to improve understanding of the role that the scheme 

currently has in the British railways and give recommendations and highlight research 

directions that might guide policymakers and regulators in the process of redesigning such 

a scheme in the future. 

The remainder of this chapter is structured as follows: 

 Section 4.2 provides a review of the British railway industry to position the DR 

scheme. 

 Section 4.3 provides information on how the currently operating scheme works in 

Great Britain. Comparisons to similar schemes operating in other countries and in 

the airline market are subsequently presented in sections 4.4 and 4.5. 

 Section 4.6 provides a qualitative analysis of passenger engagement with the 

scheme and a quantitative analysis of the scheme’s costs. 

 Section 4.7 summarises the research conducted as part of this chapter as well as 

provides some directions for further research and comments on the potential 

implications for policymaking.  

4.2. Background 

Delays are one of the crucial aspects of journey, affecting levels of demand, mode, route 

or travel time choices with significant heterogeneities in sensitivities to delays across 

different types of travellers (Balcombe et al., 2003; Paulley et al., 2006; Preston et al., 

2009; Batley et al., 2011; Holmgren, 2013). Passengers anticipating some level of 

disruption based on previous experiences or due to their sensitivity to lateness usually 

allow some extra buffer time to their schedules as a safety margin to increase the 

probability of arriving to their destination within the preferred time window (Bhat and 

Sardesai, 2006; NEXTOR, 2010). Depending on the nature of the journey, travellers 

perceive 1 minute of delay as being 1 to 6.5 times worse than 1 minute of scheduled journey 

time (Bates et al., 2001; Preston et al., 2009; Wardman and Batley, 2014; Nagy and 



20 

 

Csiszár, 2015). Most of the commuter journeys are, for example, relatively short, but occur 

regularly, meaning that repetitive disruption can especially affect these passengers 

(Zahavi, 1974; Zahavi and Talvitie, 1980; Marchetti, 1994; Joly, 2004). Following 

worsening performance, passengers can respond by increasing their safety buffer, 

changing operator, mode, time of travel or decide not to travel at all, but such responses 

will depend on the availability of alternatives (Preston et al., 2009; Batley et al., 2011). 

The Delay Repay scheme has been introduced in the UK as a means of compensating 

passengers experiencing severe delays and to regulate the minimum customer service 

requirements for the treatment of passengers following late-running (Department for 

Transport, 2016). The scheme rules in the UK are mostly homogeneous across all ticket 

types and have been chosen arbitrarily with all TOCs offering passenger compensation 

equating to 50% of their ticket price for delays of more than 30 minutes and 100% for 

delays of over 1 hour. In addition, 13 TOCs also provide compensation for delays of 

between 15-30 minutes equating to 25% of the original ticket price. 

Both abandoning the journey and spending more time travelling following a delay incur 

loss of social welfare. Operators may decide to compensate passengers for the resulting 

loss due to ethical reasons, regulation, competition or to prevent potential demand losses 

in the future. The only way to compensate for the increase in generalised cost following 

late running is to repay passengers an appropriate proportion of the fare component of the 

generalised cost. In the short-run, passengers can respond to lower performance by 

submitting compensation claims. However, if the late running occurs regularly, some 

passengers may likely try to find an alternative. Nevertheless, as argued by Wardman and 

Batley (2014), passengers will not always be able or willing to change their travel 

behaviour as a result of poor performance, at least in the short or medium term. Some 

travellers may also decide to increase their safety buffers which will, in turn, increase their 

generalised cost of travel – and this will not be captured by any compensation schemes. 

Britain’s railway industry is characterised by vertical separation of train operation and 

management of rail infrastructure. Train Operating Companies (TOCs) pay track and 

access charges to the infrastructure manager, responsible for the maintenance of tracks and 

stations (Pollitt and Smith, 2002). At the same time, they are also subject to regulation and 

a set of performance regime mechanisms that aim to ensure safety, protect passengers’ 

interests and facilitate cooperation (Pollitt and Smith, 2002; Nash et al., 2013). ‘Schedule 

8’ is a system involving payments between train operating companies (TOCs) and the 

infrastructure manager (IM) based on the marginal revenue effect of delays where affected 

parties compensate each other for the effects of late running on their long-term revenue 

(Network Rail, n.d.; Wardman and Batley, 2014; ORR, 2016; Steer, 2018). The aim of the 
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scheme (in principle financially neutral) is to incentivise TOCs and IM to invest money in 

preventing delays and reduce costs related to financial risks caused by delays (Network 

Rail, 2012; Wardman and Batley, 2014; Steer, 2018). Schedule 8 payments are currently 

unrelated to passenger compensation that TOCs are required to pay to delayed passengers 

as part of franchise agreements (ORR, 2014), though it has been proposed that the two 

schemes become more interlinked (ORR, 2021). As argued by ORR (2014), whilst both 

schemes reflect on performance, they serve different roles, with Schedule 8 relating to 

compensation and incentive arrangements between TOCs and IM and the DR scheme 

serving as a means of compensating passengers for delays. 

The DR scheme might be seen as an additional cost of delays with TOCs having little 

incentive to encourage passenger engagement unless the costs of the compensation scheme 

are seen as a prevention against future revenue loss. Without extensive regulation or 

competition, the TOCs may be incentivised to make the process of engaging with the 

scheme more difficult (costly) for passengers. Passengers may value the existence of a 

compensation scheme, but it remains difficult to estimate the impact the existence of the 

scheme has on demand or compare the benefits of the scheme (increased revenue) with its 

costs (compensation paid). In fact, little is known about the benefits of the scheme and the 

impact of the scheme’s design on its costs, which are driven by passengers’ eligibility to 

claim compensation and the levels of passenger engagement with the claiming process. 

Whilst eligibility is exogenous, being determined by the scheme rules and driven by 

performance, the impact of varying engagement on the scheme’s costs has not been 

empirically tested. It can be expected that engagement levels (propensity to claim 

compensation) may differ between passengers due to: 

 differences in sensitivities to the experienced levels of lateness as is the case with 

journey time or fare elasticities of demand (Bates et al., 2001; Preston et al., 2009; 

Wardman and Batley, 2014) and  

 as a result of the expected costs and benefits of claiming compensation 

(opportunity cost of not claiming compensation).  

Whilst this has generally been confirmed by passengers who state the length of the delay 

and ticket price as major factors determining their engagement (Department for Transport, 

2020), it is not known how these differences impact the compensation values and revenues 

of British TOCs.  

4.3.Rail passenger delay compensation scheme in Great Britain 

The rail passenger delay compensation scheme introduced in the UK is a more generous 

version of the scheme adopted by the European Parliament in 2007. The EU directive 
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1371/2007 details the level of compensation passengers are entitled to claim for severe 

delays - 25% of the ticket price paid for delays between 60 and 119 minutes and 50% for 

delays of over 2 hours with minimal compensation that can be set at up to 4 euros 

(European Commission, 2007).  

The original compensation scheme offered on the British railways, referred to as the 

Passengers’ Charter, was based on arrangements stipulated by the National Rail Conditions 

of Travel. Under these rules, travellers were eligible to receive 50% of the single ticket 

price for delays of over 60 minutes. This scheme has now been replaced by DR.   

All of the British franchised TOCs are required to provide compensation for passengers 

affected by delays of over 30 minutes with a number of TOCs voluntarily paying 

compensation for delays of over 15 minutes as detailed in Table 2. 

Table 2 Delay repay scheme rules in the United Kingdom 

Delay Compensation 

15-29 minutes 25% of single tickets (only selected TOCs 

decided to implement that voluntarily) 

30-59 minutes 50% of single tickets 

60-119 minutes 100% of single tickets 

>120 minutes 100% of return journey 

 

It is noted that the rules shown in Table 2 apply to non-seasonal tickets. However, season 

ticket holders are also eligible for compensation for individual incidences of delays. In 

such cases, the compensation value for a single delay incidence is determined on the 

assumption of 464 journeys made on an annual ticket. Hence, a single journey ticket price 

equivalent is calculated by dividing the total ticket cost by 464. Similar principles apply to 

other types of seasonal tickets. Prior to the introduction of Delay Repay, under the 

Passengers’ Charter, season ticket holders were eligible for compensation in the form of 

season ticket renewal discounts. Travellers were able to receive a 5% or 10% discount 

when their TOC did not meet performance targets.  

Both the guidelines provided by the European Commission and the UK’s implementation 

of the scheme have somewhat been arbitrary with no documented economic research into 
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the effects that late running has on passengers and the value passengers place on such a 

scheme contrasted with the costs of the scheme.  

In the UK, the total amount of compensation paid by TOCs in 2009/10 equalled £2.9m 

compared to £89.4m paid in 2019/20 as shown in Figure 3. It must, however, be noted that 

the values are not directly comparable as the current scheme is very different from how it 

was functioning earlier. First of all, under the Passengers’ Charter the compensation values 

also included discounts for seasonal ticket holders. Moreover, while Delay Repay had 

already been introduced in 2007, it has taken almost 15 years for all the franchised TOCs 

to adopt it with Chiltern being the last TOC to join (Haylen, 2019). The levels of 

compensation between 2009 and 2015 were visibly lower what can likely be attributed to 

the Passengers’ Charter offering more limited compensation as well as lower popularity of 

the scheme and/or higher costs of submitting claims due to limited automation. 

Since 2016/17, the compensation payments have been oscillating between £74m-£84m 

(not adjusted for inflation). In 2019, a number of TOCs also introduced a ‘DR15’ scheme 

where passengers are eligible to claim 25% of their ticket price following a delay of over 

15 minutes. At the time of conducting this research (2019), only two TOCs – Cross 

Country and LNER had not introduced it (Gov.uk, 2020). The introduction of the DR15 

scheme in 2019 contributed to an additional £5.2m repaid to passengers, though the timing 

of the introduction of the scheme differed across the TOCs and with only one (not full) 

year of data (Gov.uk, 2020), analysing the impact of the DR15 scheme is currently not in 

the scope of this work. Generally, DR compensation averaged around 1% of ticket revenue, 

ranging between 0.1% to almost 3% for individual TOCs in 2019.  
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Figure 3 Delay compensation paid to rail passengers in the UK between 2009-2019 

(Source: Gov.uk, 2020) 

To better understand the design of the DR compensation scheme, Figure 4 shows the levels 

of compensation available for journeys with scheduled in-vehicle time of 15, 30 and 60 

minutes for increasing actual in-vehicle times. The compensation thresholds are not 

dynamic, i.e. whether the delay is 35 minutes or 45 minutes does not affect the level of 

compensation available. Similarly, the compensation thresholds are the same for all 

journeys, regardless of their lengths. Three types of journeys were chosen for a more 

detailed investigation to depict the mechanics of the scheme – a shorter, commuter-type 

journey, a medium-length journey and an extremely long journey (as shown in Table 3). 

While these are not necessarily representative of average passenger experiences, the 

comparisons allow us to better understand the relationship between journey length, delay 

length, fares and compensation available to passengers. The comparisons in Figure 5 show 

compensation per 1% increase in journey time (because of delay) as the metric of interest, 

since it allows us to track the relationship between the relative change in journey time due 

to delay and the monetary compensation. While it has to be recognised that journey length, 

distance and ticket prices are unlikely to be perfectly correlated, assuming that longer 

journeys are typically also more expensive, the value of compensation per 1% increase in 

journey time is larger for longer journeys (i.e. Aberdeen to Penzance). The respective 

compensation per 1% of journey time added is smaller for shorter journeys as these are 

less expensive and a 30-minute delay represents a much larger relative increase in journey 

time. Nevertheless, the compensation per 1% of journey time added initially decreases 
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with delay length increasing from 30 to 59 minutes. After 60 minutes of delay, the eligible 

compensation equals full fare and compensation per 1% of journey time added is at the 

same level as for the 30-minute delay and subsequently starts decreasing again, 

highlighting the impact of the non-dynamic compensation thresholds. 

 

Figure 4 Relationship between actual journey time and compensation 

Table 3 Summary of journeys selected for further investigation 

Origin Destination Journey time (minutes) Price 

Ilkley Leeds 28 £5.40 

Nottingham London 113 £74.00 

Aberdeen Penzance 843 £252.25 
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Figure 5 Relationship between delay length and compensation per 1% increase in 

journey time for selected journeys 

4.4. Comparison with passenger delay compensation schemes operating in 

other European countries 

The previous section described the rail passenger delay compensation scheme in Great 

Britain. As noted before, the basis for the introduction of the scheme dates back to 

European Commission Directive 1371/2007. The European Commission recommended a 

scheme allowing passengers to receive 25% of the ticket price paid for delays between 60 

and 119 minutes and 50% for delays of over 2 hours, with minimal compensation set at up 

to 4 euros (European Commission, 2007). In principle, these rules apply to services across 

the EU, however, it is noted that there might be some local differences related to how the 

scheme works in practice. Urban, suburban and regional services may be exempt from 

these rules, but operators are not exempt from paying compensation in the case of force 

majeure as specified in the judgment related to case C-509/11 against ÖBB-

Personenverkehr AG. Since then, several European countries or operators introduced the 

scheme or its modified version. The scheme rules frequently change, but a comparison 

across countries and operators may give some indication of the differences in the recent 

scheme rules across the continent. Table 4 presents the rules for selected countries and 

operators that are interesting case studies and offer a scheme that is different from the 

scheme based on EU directive 1371/2007.  

Some countries, like Great Britain, the Netherlands or Belgium modified the scheme, 

providing more compensation and for shorter delays. In most cases, the scheme rules do 

not differentiate between different types of services and journey lengths. However, in the 
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case of Spanish operator Renfe, compensation thresholds differ between different types of 

services, with high-speed rail travellers being eligible for higher relative compensation and 

for shorter delays. In case of Czechia, an open-access operator, RegioJet, operates a more 

generous scheme than the incumbent České dráhy. This may be aimed at improving their 

competitive position in the market. Moreover, their compensation scheme has quite 

complicated rules as the proportion of fare that passengers can receive changes with 

journey lengths and is based on whether the responsibility for the delay is attributed to the 

operator. 

Outside of the EU and UK, there are also examples of delay compensation with Swiss 

National Railways offering the EU-style compensation, Canadian Via Rail offering travel 

credits for longer delays and Korean National Railroad providing compensation of 12.5% 

of fare for delays of over 20 minutes. In some countries, delay compensation is offered for 

the more expensive, high-speed services, e.g. Tejas Express in India or high-speed services 

in Taiwan. 
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Table 4 Rail passenger delay compensation scheme rules for selected EU countries and operators  

Delay 

(minutes) 

EU directive 

1371/2007 

(Germany, 

Czechia, 

Poland) 

Great 

Britain 

Spain 

(Medium 

distance) 

Spain  

(AVE high-

speed) 

The 

Netherlands 

Belgium RegioJet   

(<1.5 h, 

operator’s 

fault) 

RegioJet   

(<1.5 h, not 

operator’s 

fault) 

15-29 - 25%*  25% 50% - - - - 

30-44 - 50% 50% 100% 50% - 50% 25% 

45-59 - 50% 50% 
 

50% - 50% 25% 

60-89 25% 100% 100% 
 

100% 100% 100% 25% 

90-119 25%  
   

 
 

100% 

>120 50%  
   

 
  

*selected train operators 

Percentages represent the portion of fare passengers can reclaim following a delay of specified length 

Source: Operators’ websites as of 2022 
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Comparison of the compensation values repaid in various countries is difficult. First of all, 

the data availability in most cases is very limited. In the case of the UK, the compensation 

data is available from the regulator’s website. An attempt was made to review websites 

and reports conducted by local governments, operators and regulators to search for 

comparable data from other European countries. Compensation data for some countries 

may exist, but due to language barriers, the ability to search for it was limited. However, 

in a communication with the Polish regulator (UTK), as of November 2019, it was 

confirmed that the regulator did not collect any data on delay compensation paid to 

passengers. Nevertheless, some aggregated data about compensation volumes or numbers 

of submitted claims was successfully found for Spain, Germany and Austria. Another 

characteristic that limits the possible comparisons is related to the differences in the 

scheme rules. While these are quantifiable, there might also be some technical differences 

related to how passengers submit compensation claims, how compensation is paid as well 

as some country-specific characteristics, e.g. travel costs and journey times that can also 

affect the compensation levels and are more difficult to quantify. Hence, direct 

comparisons may be impractical, but the analysis of the compensation repaid in other 

countries can provide some useful context.  

As discussed before, in the UK, the total amount of compensation paid by TOCs in the 

recent (pre-COVID) years was around £80m per annum. In Germany, 2.7m rail passengers 

were compensated in 2018 with the total compensation reaching €53.6m (The Local, 

2019). This represents just over half of the total volume of compensation repaid in the UK 

in the corresponding time period. In Spain, 256 claims were submitted per 100,000 

passengers on high-speed/long-distance journeys and 105 on medium-distance journeys in 

2019 (Renfe, 2019). The number of compensation claims submitted for rail delays in 

Austria increased from 4,800 in 2009 to 35,000 in 2013 (a 7-fold increase) with the value 

of compensation paid changing from €275,000 in 2010 to €360,000 in 2012 and over 

€600,000 in 2015 (APF, 2015; 2018). Whilst these headline data provide some valuable 

insights, they are aggregated and not directly comparable between the countries. 

4.5. Comparison between passenger delay compensation scheme operating in 

railways and airline market 

Whilst the main focus of this chapter is on the delay passenger compensation scheme 

operating in railways, it is worth commenting on a similar scheme operating in the airline 

market. There are some unique characteristics of the two modes of transport that are likely 

to justify the differences in passenger delay compensation schemes between airlines and 
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railways, but in principle, the two schemes are similar. This section aims to review the 

airline compensation scheme and compare it to the scheme operating in railways.     

In 2004, the European Commission adopted 261/2004 legislation, establishing common 

rules regarding compensation and assistance to passengers whose flights are delayed or 

cancelled within the Bloc (European Commission, 2004). Current regulations, i.e. 

261/2004 legislation (European Commission, 2004) set the compensation levels based on 

route length, length of delay, and its cause. Passengers delayed due to external factors (that 

are outside of the airline’s control) are not eligible for any compensation. However, the 

airline is obliged to take care of passengers and ensure reasonable arrangements are made 

to provide the service. For eligible air passengers affected by a delay, the compensation is 

not linked to the ticket price (as is the case with railways). Hence, there is a possibility of 

compensation being larger than the ticket price, which is often criticised by the airlines 

(ERA, 2019). Levels of compensation set out by 261/2004 regulation (European 

Commission, 2004) are detailed in Table 5.  

Table 5 Airline compensation scheme rules in the EU (European Commission, 2004) 

 Length (km) Delay Compensation 

(euros) 

Short-haul <1500 >3h 250 

Medium-haul 1500-3500 >3h 400 

Long-haul >3500 >4h 600 

 

The definition of the ‘external factors’ has been a cause of multiple disputes with several 

cases taken to court (Europe Economics, 2019). The disputes were with regards to whether 

delay causes such as airport security and airline staff strikes or faults in the functioning of 

an aircraft can be regarded as extraordinary circumstances or not. Examples of court cases 

are C-549/07 Wallentin-Hermann and B2/2013/3277/CCRTF Huzar (Europe Economics, 

2019). The difficulties in establishing clear criteria for what can be classified as the 

disputable extraordinary circumstances and the high levels of compensation available (as 

the compensation, unlike in rail, is not linked to the ticket price) have caused the emergence 

of third parties. These act as intermediaries between passengers and airlines in the process 

of submitting compensation claims and usually operate a no-win, no-fee model (Europe 

Economics, 2019). These companies use social media platforms for marketing to increase 
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passenger awareness and encourage them to use their services. Kenny Jacobs, chief 

marketing officer for Ryanair (one of the leading low-cost airlines in Europe), claimed in 

an interview that for every £10m of compensation, £4-£5m is directed to the third parties 

(The Independent, 2018).  

With the level of compensation not being linked to ticket price and the arrival of low-cost 

airlines which often offer tickets priced at even less than 10 euros, the amount of 

compensation passengers could be entitled to in many cases is several times larger than the 

original fare. Hence, especially passengers travelling on low-cost airlines may benefit 

more from the compensation while the low-cost airlines may be more affected by the levels 

of compensation they have to pay. The European Regions Airline Association conducted 

a review study of the current EU261 regulation and surveyed employees of selected airlines 

to gain insights into the industry’s perspective (ERA, 2019). The report focused on smaller, 

regional airlines and argued that the compensation represents large portions of the revenue 

margins and leads to reductions in the range of services offered by the operators. For the 

airlines involved in this study, the compensation paid to passengers increased by over 

300% between 2016 and 2019 with the average compensation representing 300% of an 

average ticket price. The report recommended some changes to the regulations, including 

exoneration of PSO routes from the scheme, limiting compensation to a proportion of 

airfare, extending the delay threshold from 3 to 5 hours and acknowledging the knock-on 

effect of extraordinary circumstances on the whole daily flight programme (ERA, 2019). 

Finally, it was argued that the application of rail compensation scheme rules (in the form 

recommended by the European Commission) would lead to almost trebling of the number 

of eligible passengers and halving of the scheme’s costs (ERA, 2019). Moreover, the 

results of an anonymous survey conducted among airline employees suggested that most 

of the employees felt that the current regulation has a negative impact on safety. 

The current provision of delay compensation differs between the railway and airline 

industries. There might be some differences in the characteristics of air and rail travel that 

provide reasoning behind the different models of delay compensation for the two modes. 

For example, in the European context, it is highly unlikely that an experienced rail delay 

stretches to more than a couple of hours due to a relatively dense and small network, high 

frequency of departures, availability of alternative modes in the event of disruption or 

ability of train operating companies to provide a replacement relatively quickly. Flights, 

on the other hand, tend to be less frequent, meaning that in case of a delay it may be more 

difficult to find an alternative quickly (i.e. flights cannot always be as easily replaced by a 

bus or taxi journey, as is the case in railways). Taking all these into account, it is more 

likely for air passengers to be affected by lengthier delays than for rail passengers. As a 
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result, air passengers tend to include large safety margins in their journeys to increase the 

probability of arriving at their destination before their preferred arrival time (NEXTOR, 

2010). 

The summary of major characteristics of the rail and air delay repay schemes in the UK is 

provided in Table 6. Currently, rail passengers can be compensated up to the maximum of 

fare paid, whereas, airline passengers can only get compensation for extreme delays (only 

caused by airlines) with compensation not being constrained by the ticket price. Similarly, 

as in the case of the rail compensation scheme, the airline compensation scheme does not 

offer any compensation for passengers below the selected thresholds that, unlike in rail, 

vary and depend on the category of journey lengths. Therefore, compensation is only 

available for passengers affected by larger delays, usually only when the actual journey 

time is double or triple the scheduled journey time. It is, therefore, important to investigate 

whether there is a threshold beyond which passengers should get compensated more than 

they paid for the ticket, both in the rail and airline contexts and at what levels of delays rail 

and air passengers should start being compensated. Whilst such considerations are not in 

the scope of this study, it is recommended that policymakers investigate these in the future. 

Table 6 Comparison of rail and airline compensation schemes 

Characteristic Airline Rail 

Cause of delay Only eligible for compensation 

if the delay is caused by the 

airline 

Eligibility irrespective of 

who/what caused the delay 

in the case of Great Britain 

Value of 

compensation 

Not linked to the fare paid and 

can be larger than the ticket 

price 

Represents a proportion of 

ticket price 

Availability of 

information to 

the operating 

company 

Airlines generally have near 

perfect information on the 

number of passengers, their 

journeys and characteristics 

TOCs usually have more 

limited information about 

the number of passengers 

affected by delays  

  

In recent years, a large increase in demand for air travel has been fuelled by a rapid 

expansion of low-cost carriers (LCC) and the increase in demand generally had a negative 

impact on performance (Dobruszkes, 2006; Pratt and Schuckert, 2018). Bhadra (2009) 

suggested that passengers travelling on discounted fares are less likely to submit 
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complaints. This may be a result of LCC passengers accepting lower quality in return for 

lower travel costs (O’Connell and Williams, 2005; Bhadra, 2009; Chiou and Chen, 2010). 

However, O’Connell and Williams (2005) suggested that there are also significant 

differences in the characteristics of passengers choosing traditional and low-cost airlines. 

Nevertheless, Bhadra (2009) argued that this process can be seen as a mutually beneficial 

exchange that can be disrupted by extensive regulation. Forbes (2008) argued that 

passengers complain if the quality is worse than what they expected. Therefore, another 

reason why LCC passengers are less likely to complain may be due to an expectation of 

lower quality. An example application of the low-cost carrier phenomenon to railways 

could be an introduction of special low-fare tickets with limited eligibility for 

compensation (reducing revenue risk to TOCs). Studying this phenomenon further could 

also help understand the differences in passenger engagement in the claiming process 

based on different journey or operator types. However, as argued by the Department for 

Transport (2016), competition in the airline sector has resulted in larger heterogeneity of 

customer care and regulation may still be needed to set the minimum customer care 

standards. Whilst competition is greater in airlines and the extent of existence of low-cost 

carriers in airlines cannot be translated to rail, Stead et al. (2019) suggested that in the GB 

rail, open access operators have been typically scoring better in terms of passenger 

satisfaction despite worse performance in terms of punctuality, what could be due to lower 

expectations. Department for Transport (2016) suggested that it is not clear whether 

increased competition would be able to address any potential issues with the quality of 

customer service in railways, highlighting the need for including compensation schemes 

as part of franchise agreements with TOCs. On the other hand, Czechia is an example of a 

country where a new entrant RegioJet offers a more generous compensation scheme than 

the incumbent (RegioJet, n.d.; České dráhy, 2016). Nevertheless, it is currently difficult to 

understand the motivation behind the provision of a different scheme by the open-access 

operator and its possible impacts on the respective market shares of the operators. 

4.6. Analysis of the British ‘Delay Repay’ 

Section 4.3 introduced the rules of the rail passenger delay compensation scheme operating 

in Great Britain. Sections 4.4 and 4.5 summarised the compensatory mechanisms for 

travellers operating in other European countries and the airline market.  

Noting that the specific focus of this thesis is the railway market in Great Britain, Table 2 

introduced the rules for the British rail compensation scheme. The analysis conducted in 

the following sections aims to investigate how this scheme works in practice, how its rules 

affect its operations and passenger engagement, and the impacts it has on train operator 

revenues. Understanding the impacts of the scheme on passengers and operators and 
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contrasting its costs and benefits is currently not in the scope of the work conducted as part 

of this chapter as the focus remains on the costs of the currently operating scheme. 

With regard to the benefits, it may be expected that the scheme has an impact on demand 

through: 

 encouraging more demand due to travellers knowing that if they are delayed, they 

can be compensated or 

 limiting the demand loss related to worsening performance. 

It is, however, unlikely for an econometric analysis of the relationship between the 

compensation values and ticket sales to provide any insights into the size of any of the two 

aforementioned effects as they are, in fact, difficult to be observed. A more appropriate 

line of analysis would possibly include studies using stated preference surveys. These 

could provide some insights into travellers’ willingness-to-pay to be protected by a delay 

compensation scheme or its impacts on travellers’ stated mode choices. As this chapter 

focuses on the costs of the DR scheme, it is appropriate to consider factors affecting 

compensation levels. 

In principle, the compensation levels depend on:  

 the number of passengers eligible to claim compensation, 

 the proportion of eligible passengers who submit compensation claims and 

 the value of compensation for an eligible passenger. 

Having ignored the heterogeneity in ticket prices and experienced delays for different 

journeys, the total compensation can be represented as:  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 =  𝜅 ×  𝜔 ×  𝐷𝑒𝑚𝑎𝑛𝑑 ×  𝜁 ×  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 

( 1 ) 

where: 

𝐷𝑒𝑚𝑎𝑛𝑑 and 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 are exogenous 

𝜅 represents the proportion of eligible passengers who claimed compensation, i.e. the 

engagement rate 

𝜔 represents the proportion of passengers (𝐷𝑒𝑚𝑎𝑛𝑑) eligible to claim compensation and 

depends on the scheme rules 

𝜁 represents the proportion of fare available for compensation which is specified by the 

scheme rules (i.e. Table 2).  
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Whilst the scheme rules are pre-defined and directly affect both 𝜔 and 𝜁, both parameters 

are also likely to be affected by performance levels. At the same time, 𝜅 is determined by 

passengers’ levels of engagement with the claiming process. Under the full automation of 

the scheme, i.e. where all delayed passengers receive compensation automatically, this 

would be equal to 1. This leads to a discussion about the two main drivers of compensation 

levels, namely eligibility (total compensation passengers could have claimed) depending 

on scheme rules and engagement (proportion of passengers that decided to claim 

compensation) depending on how many eligible passengers submit claims, i.e. 

𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 = 𝑓(𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦 × 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡) 

( 2 ) 

4.6.1. Passenger engagement with the scheme 

It remains difficult to estimate the number of passengers affected by a given length of delay 

due to a very large number of ticket types, large number of station stops, different origins 

and destinations as well as varying delays at different station stops. In most countries, 

performance of a rail network is measured with a focus on the supply side of delays, for 

example looking at the proportion of trains that arrive to the destinations within a given 

margin of delay (Rietveld et al., 2001; Preston et al., 2009). However, this is not 

informative of the proportion of passengers affected by different levels of delays. This is 

due to each train being treated equally and not weighted by demand. Therefore, from the 

passenger DR perspective, the focus of monitoring performance should be on the demand 

side, looking at the number of passengers affected by given lengths of delays (Preston et 

al., 2009; Transport Focus, 2015). Nevertheless, the delay length measured by train arrival 

does not necessarily represent the final delay for passengers as they can be affected by 

congestion at stations, crowding on board (Preston et al., 2009) and missed connections.  

The number of claims and value of compensation were increasing pre-COVID, which 

could potentially be caused by two reasons, i.e. 

 increased demand and more delays, translating to more passengers being eligible 

to claim or  

 reduction in the costs of submitting a claim, resulting from making the claiming 

process easier.  

In recent years, there has been a lot of interest from the regulatory bodies, the public and 

TOCs regarding the levels of passenger engagement with the DR scheme. Department for 

Transport (2020) noted that while the proportion of passengers claiming compensation has 

been increasing, only 39% of surveyed passengers who experienced a delay qualifying for 
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compensation decided to engage with the process in 2018. There is evidence that 

passengers affected by lengthier delays and/or travelling with more expensive tickets are 

more likely to engage with the scheme (Department for Transport, 2019). Most of the 

eligible passengers who knew about the scheme but decided not to claim cited low 

expected compensation compared to the costs of engagement as the main reasons for 

choosing not to submit claims (Department for Transport, 2020). The marginal propensity 

to claim compensation may be non-constant as passengers quoted length of delay and ticket 

price as two major characteristics motivating their attitude towards the scheme with 

estimated claim rates ranging from 22% on Transport for Wales to 64% on LNER 

(Department for Transport, 2020). To better understand the drivers of engagement, the 

costs and benefits of applying for compensation have to be understood in more detail.  

In recent years, efforts have been made to facilitate the process of claiming compensation 

through the introduction of automatic repayments, more available information about the 

scheme for customers and/or online repayment systems (Europe Economics, 2019). 

However, in most cases, the claim submission process is relatively time-consuming and 

often requires providing a photo of the ticket used, personal and journey details with 

passengers having to create an account for each of the operators separately. Selected TOCs 

now offer automated compensation for season or advanced tickets, however, the impact of 

automation has not been understood very well so far. The process usually, in fact, requires 

some initial effort plus a “one-click” process to submit claims, reducing, but not totally 

removing the marginal costs of submission. Fully automating the process, while reducing 

administrative costs of the scheme, would require the usage of smart ticketing as the 

current ticketing system does not allow for accurate tracking of passenger journeys due to 

the existence of anytime tickets not matched to just one service. As suggested by Railway 

Technology (2020), this also leads to fraudulent claims. 

To better understand what influences the proportion of eligible passengers applying for 

compensation, the costs and benefits of applying for compensation have to be understood 

in more detail. As suggested by Europe Economics (2019), the costs of applying for 

compensation can be divided into three steps of submitting a claim:  

1) becoming aware of the ‘Delay Repay’ scheme,  

2) gathering information about the eligibility and claiming process and 

3) claim submission.  

Mainstream economics assumes that consumers’ decisions are rational and bounded by 

their personal preferences and available information (Europe Economics, 2019), hence 

assuming that travellers are rational, they only submit a claim if the value of compensation 
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is larger than the expected costs of the claim submission. The total costs of engaging with 

the scheme can differ for each of the aforementioned three steps of submitting claims, as 

outlined in Table 7. 

Table 7 Costs related to each of the steps of the claiming process (Europe 

Economics, 2019) 

Steps of the claiming process What influences the costs 

1. Becoming aware General availability of information about 

the scheme at stations, train operating 

companies’ websites and social media. 

 

Provision of information about the 

experienced disruption. 

2. Gathering information about 

eligibility criteria and the claim 

submission process 

Availability of information about 

eligibility, value of potential 

compensation and how to submit a claim. 

3. Claim submission Difficulty of submitting the first and 

subsequent claims (i.e. creating an 

account for the first submission and then 

filling in application forms). 

 

The first two steps can be thought of as the initial costs that are only incurred at the first 

instance of delay where a delayed passenger decides on whether or not to engage with the 

scheme. The costs for the third step have to be incurred for each of the claim submissions 

unless there is a fully automated compensation system. This mechanism is conceptually 

similar to switching bank accounts or energy providers with the potential for benefits after 

investing time and effort to engage with the process (as discussed in Klemperer, 1995; 

Wilson and Price, 2005; The Social Market Foundation, 2015; Europe Economics, 2019). 

When thinking about engaging with the scheme, a passenger chooses whether or not to 

claim compensation based on the disutility created by the delay (this will be further 

explored as part of this thesis) and the expected benefits (minus costs of submitting claims) 

which include the monetary compensation but are not limited to that form of compensation. 

Europe Economics (2019) argue that there are behavioural biases that influence the 

decision on whether to submit claims that are not based on the assumed rationality, i.e.  
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1) Behavioural bias may increase passenger engagement with the scheme as delays 

can be perceived as unfair. Receiving compensation (even if small related to the 

time spent submitting a claim) may be perceived as a benefit per se.  

2) Especially the more frequent travellers perceive a possibility of encountering more 

delays in the future. Therefore, they may see incurring the initial costs as an 

investment for the accumulation of benefits in the future, which is called a 

projection bias.  

3) Even if the benefits to costs ratio would indicate on claiming to be rational (i.e. 

large compensation for a small amount of time spent on sending a claim), the 

default behaviour, however, is not to engage with the scheme regardless of the 

expected benefits. Evidence from the pension ‘auto-enrollment’ schemes suggests 

that the default effects have large impacts on behavioural choices (Europe 

Economics, 2019; Hardcastle, 2012; Leicester et al., 2012). 

Hence, it is of interest to investigate how journey and passenger characteristics affect levels 

of compensation repaid by different TOCs. These can include journey purpose, length, 

fare, delay length and/or journey comfort. Similarly, passenger characteristics such as age, 

income, education level and access to internet may also affect claiming behaviour. 

However, analysing impacts of passenger characteristics is more difficult and would 

require conducting passenger surveys.   

It is crucial to test the hypothesis that the marginal propensity to claim compensation 

increases with fares and/or delay lengths as suggested by Europe Economics (2019) and 

Department for Transport (2020). As longer delays and higher ticket prices mean higher 

eligible compensation, claiming compensation for longer delays is naturally more worthy 

of investing time and effort. Moreover, some types of passengers may be more sensitive 

to delays as shown by research into delay elasticities (Wardman and Batley, 2014; 

Wardman and Toner, 2020; Wardman and Batley, 2022) and higher engagement levels 

may also result from the aforementioned behavioural biases. 

Summarising, the total amount of compensation repaid to passengers depends on how 

many passengers are eligible to claim compensation and the percentage of eligible 

passengers that submitted claims. Eligibility, which can be understood as the total 

compensation passengers could have claimed, depends on performance, and fare levels - 

and is determined by the scheme rules, which are predefined. Engagement, on the other 

hand, is expected to increase with delay length and ticket price. The following section will 

aim to quantify these effects. 
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4.6.2. Quantitative analysis of the impact of ‘Delay Repay’ on operator revenues 

To explore the impacts of the DR scheme on the operators’ revenues, data on performance, 

compensation, operation, and revenues were obtained for the British franchised TOCs 

from the regulator’s website. At the time of collating the data, most of it was available 

annually for at least 5 years between 2015 and 2019. TOCs and the regulator as of now 

(2023) publish monthly data on the number of claims and compensation volumes. 

However, caution would be needed in comparing pre-COVID data used as part of this 

analysis with the data from the COVID and post-COVID times as these periods may be 

characterised by structural changes in railway usage. 

As compensation represents a percentage of ticket price, it is natural that (assuming the 

same levels of performance and engagement) TOCs characterised by more demand repay 

more compensation, with average compensation increasing in line with fares. As shown in 

Figure 6, between 2015 and 2020, the average compensation was below 20 pence per 

passenger journey for most TOCs. There are, however, two TOCs characterised by an 

average compensation of between 20 to 100 pence per passenger journey, namely Avanti 

and LNER, both mainly operating long-distance services and employing the same version 

of DR as most of the other operators. Further analysis aims to analyse the impact of TOC 

characteristics on the scheme costs.  

 

Figure 6 Boxplot of compensation per passenger journey for years 2015-2020 

The impact of average fare on total compensation can be divided into four distinct effects 

that were identified based on the work by Europe Economics (2019): 
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1) Engagement effect: increased claim rates for journeys with higher fares due to 

anticipation of larger benefits and differences in passenger types or journey lengths 

leading to heterogeneity in the disutility of lateness. 

2) Eligibility effect: if longer journeys (in terms of distance) are more delayed (i.e. 

journey length and delay length are correlated), the incidence of longer delays that 

qualify for compensation is larger among TOCs operating such services. 

3) Revenue effect: if the TOC’s average fare is higher, compensation per passenger 

journey will also be higher as compensation represents a proportion of ticket price. 

4) Fare increase effect: changes in compensation per passenger between years could be 

explained by changes in average fare resulting from inflation. 

With fare increases being marginal compared to the differences in average fare between 

different TOCs, the revenue effect is a natural phenomenon, resulting from the scheme’s 

design and passengers’ behaviour does not have any impact on this. For direct comparisons 

and to enable inferences about engagement levels, it is necessary to control for the revenue 

effect. Therefore, compensation to ticket revenue ratio (CRR) is used as the primary 

variable of interest, i.e.  

𝐶𝑅𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒
× 100% 

( 3 ) 

Whilst the focus so far has been on compensation, it is necessary to look at the relationships 

between all of the aforementioned variables. The compensation, represented by CRR, is a 

function of eligibility and engagement as shown in Figure 7. With eligibility being mostly 

affected by the pre-defined scheme rules and operator’s performance, the engagement is 

suggested to depend on both fare levels and performance while both are likely to be 

correlated with journey time or distance (though likely not perfectly). The levels of 

engagement will also depend on the journey type and passenger characteristics, though 

when using aggregate (i.e. operator-level) data, it is not possible to disentangle these 

effects.  
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Figure 7 Schematic of the relationships between variables 

Two existing metrics reported by ORR can be particularly useful in studying the impact of 

performance on compensation levels: 

1) Average Passenger Lateness (APL) 

APL reported by ORR represents the estimated length of delay an average passenger on 

the British rail network is subjected to. This can be thought of as the mean of passenger 

delay distribution, but the compensation scheme only depends on the number of passengers 

affected by the more severe (and relatively more uncommon) delays. Therefore, this will 

depend more on the skewness of the delay distribution, rather than its mean. It can, 

however, be expected that average lateness generally increases with the increased 

incidence of longer delays. 

2) The proportion of station stops delayed by over 15 minutes 

As passengers are eligible to claim compensation only for severe delays, the distribution 

of delays is important in determining this and the metric reporting the proportion of larger 

delays is useful in understanding the shape of lateness distribution. However, it is focused 

on the supply side of delays, weighting delays by station stops. The two statistics are, as 

expected, highly correlated (r=0.95). It can be expected that with more station stops being 

severely delayed, an average passenger experiences a longer delay.  

Table 8 summarises the distribution of values for the selected variables related to 

performance, operational characteristics and compensation for the British franchised 

TOCs. 
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Table 8 Summary statistics (comparison between TOCs) 

Variable Minimum Maximum Mean Standard 

deviation 

APL (min) 0.8 10.5 3.78 1.95 

Average Fare (£) 3.0 36.8 10.7 9.8 

Average Journey 

Length (km) 
24.5 260.6 71.8 66.3 

Claims per 1,000 

passengers*  
0.5 21.6 5.3 5.2 

Compensation per 

passenger journey 

(pence) 

0.3 102.7 11.8 20.7 

CRR (%) 0.1 2.8 0.7 0.5 

Station stops 

delayed by over 15 

minutes (%) 

0.3 8.7 2.8 2.1 

*2018 and 2019 only 

The TOCs were divided into three categories based on average journey length, 

representing short (up to 50 km), medium (50-100 km) and long-distance journeys (over 

100 km) as shown in Table 9. This categorisation acts as a proxy for differences in 

passenger and journey characteristics that may affect levels of engagement for different 

journey lengths. Additional categorisation was based on whether the TOC operates within 

South East of England where London is a major attraction as similar segmentations have 

been used in, for example, fare elasticities recommended by PDFH (ATOC, 2004) 

(highlighting the potential for differences in engagement). 

Table 9 Summary statistics for selected TOCs 

TOC  

 

TOC 

type 

LSE 

TOC 

Average 

length 

(km) 

Average 

fare (£) 

APL  

(min) 

CRR  

(%) 

Avanti Long 0 197.2 31.2 7.36 1.32 

Chiltern Medium 1 55.6 8.1 2.08 0.22 

CrossCountry Medium 0 91.5 13.6 5.83 1.02 

EastMidlands Medium 0 88.6 14.7 4.03 1.05 

Govia Short 1 26.8 4.6 2.71 0.38 

GreatWestern Medium 1 61.5 10.4 3.55 1.12 

GreaterAnglia Short 1 45.5 7.6 2.55 0.74 

LNER Long 0 260 36.8 8.13 2.79 

Northern Short 0 26.8 3.1 4.02 0.51 
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SouthWestern Short 1 28.0 4.8 3.22 0.49 

Southeastern Short 1 25.8 4.7 2.19 0.41 

TfW Short 0 36.8 4.5 3.66 0.93 

Transpennine Medium 0 72.0 9.0 8.43 1.61 

WestMidlands Short 1 39.6 4.9 4.62 1.12 

c2c Short 1 25.4 3.7 0.80 0.01 

 

As the pricing model naturally suggests, longer journeys are usually more expensive with 

average fare per kilometre of journey length ranging from 11.6 to 18.2 pence in the 

investigated sample. It is noted that the opposite may be true in the cases of slower versus 

faster services, however, due to data aggregation, it is reasonable to assume that overall 

TOCs characterised by longer average journeys are characterised by larger average 

revenue. As expected, average journey length and average fare are characterised by an 

almost perfect positive correlation (r=0.99) as shown in Table 10. Average journey length 

is positively correlated with average passenger lateness (r=0.78), meaning that on average 

longer journeys are characterised by longer delays, possibly representing a smaller 

percentage increase in journey time. This could be due to the fact that while the total delay 

minutes usually increase with journey time, the marginal delay decreases with journey 

length due to some possible differences in journey characteristics, scheduling or capacity 

utilisation and demand (Armstrong and Preston, 2017; Yap and Cats, 2021). Taking all 

this into account, on average passengers travelling on more expensive services will usually 

be subjected to a longer delay overall resulting in a smaller percentage increase in journey 

time. This, in turn, means that while a higher percentage of passengers on the more 

expensive journeys will be eligible to claim compensation, higher claim rates can be 

expected due to longer delays and more expensive tickets as was also suggested by 

surveyed passengers (Department for Transport, 2020). This is likely to have an impact on 

the proportion of ticket revenue repaid by different TOCs. 

Figure 8 shows a box plot of the number of claims received by each of the TOCs in each 

of the categories per 100,000 passenger journeys made in 2019. It can be immediately seen 

that, while the ranges are similar for short (2-700 claims per 100,000 passengers) and 

medium-distance (85-820 claims per 100,000 passengers) TOCs with a slightly larger 

median value for medium-distance TOCs, all long-distance TOCs saw a larger number of 

claims per 100,000 passenger journeys in 2019 (825-3400 claims per 100,000 passengers). 

Here, it is worth reminding that in Spain, the equivalent number of claims submitted was 

between 100 and 250 per 100,000 passengers, suggesting that the UK figures are typically 

higher.  
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Table 10 Correlation matrix 

 (1) (2) (3) (4) (5) 

(1) Compensation to revenue ratio 1.00     

(2) Average passenger lateness 0.88 1.00    

(3) % stops delayed by over 15 min 0.85 0.94 1.00   

(4) Average fare 0.81 0.75 0.84 1.00  

(5) Average journey length 0.82 0.78 0.86 0.99 1.00 

 

 

Figure 8 Boxplot of the number of claims per 100,000 passengers 

The Kruskal-Wallis (Kruskal & Wallis, 1952) test was used to assess whether the 

differences in the within-categories distributions are statistically significant. The null 

hypothesis of the Kruskal-Wallis test is that the distribution of claims per 100,000 

passenger journeys is similar across the TOC categories. The data were ranked from the 

lowest to the highest value of claims per 100,000 journeys as shown in Figure 9 for 22 

TOCs where data on the number of claims was available. 
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Figure 9 Ranking of claims per passenger journey by TOC type 

While the null hypothesis of identical distributions was rejected (p=0.001), Dunn’s post 

hoc test (Dunn, 1964) for each pair of categories was used to test whether the probability 

of observing a random value of claims per passenger journey in the first group being larger 

than in the second group is equal to 0.5 under null hypothesis. The null hypothesis was 

rejected for short-long distance pairs (p=0.0004) but failed to be rejected for short-medium 

and medium-long distance pairs (p-values of 0.070 and 0.053). While this provides some 

evidence for the fact that longer journeys attract more compensation claims, it is now of 

interest to assess the extent to which this affects operator revenues. 

At the time of collecting the data, only two full years of data were available on the number 

of claims submitted to each of the TOCs, limiting the ability to analyse the impacts of 

eligibility and engagement on claim rates. Moreover, the claim rates per 100,000 journeys 

do not provide any information about the revenue impact. For these reasons, the main focus 

of this study remains on a more robust variable, namely the aforementioned CRR.   

An econometric model was constructed to test the impact of performance levels and TOC 

characteristics on the compensation payments made to passengers as part of the DR 

scheme. Data for 4 years were used starting in 2016/17 as this is the first year where 

compensation payments became to be directly comparable between TOCs. The payments 

made as part of the DR15 were excluded, as previously discussed. It was assumed that the 

scheme rules are homogeneous across all the TOCs while remembering that increasing 
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automation of the scheme through a one-click claiming process on advanced or seasonal 

tickets may have generally reduced the costs of submission throughout the years. To make 

comparisons between TOCs possible, the compensation to revenue ratio (shown in Figure 

10) was used as the variable representing the scheme’s revenue burden, where eligibility 

is determined by performance (represented by APL and proportion of stops delayed by 

over 15 minutes) and engagement is determined by both performance and fares 

(represented by APL and average fare).  

 

Figure 10 Compensation to fare ratio between 2016/17 and 2019/20 

A more detailed inspection was conducted to better understand any possible differences in 

the compensation schemes offered by the 15 TOCs in the 4 analysed years. The following 

observations were made: 

 Chiltern, for example, was offering a different version of the scheme, making 

direct comparisons with other TOCs impossible. The DR was only launched for 

Chiltern in 2022 as prior to this, travellers could only claim for delays of over 30 

minutes when disruption was within operator’s control or for all delays of more 

than 60 minutes (Global Railway Review, 2022). 

 In addition to the DR payments, Govia repaid £2.2m in 2016 and £12m in 2017 to 

Southern season ticket holders for extraordinary disruption in 2016. 

 Great Western Railway monthly and annual season ticket holders were still being 

offered seasonal ticket discounts rather than DR, but the impact of this on the total 
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compensation payments was deemed to be limited (Great Western Railway, 2019; 

Gov.uk, 2020).  

 Transport for Wales only introduced the scheme in 2018 and SouthWestern in 

2017.  

 A large increase in compensation payments by LNER in 2019 cannot be fully 

explained by a similar increase in APL. To mitigate that, the additional dummy 

representing 2019 LNER will be introduced to the model as a sensitivity test. 

Taking all these into consideration, Chiltern, South Western and Transport for Wales were 

excluded from further analysis.  

An OLS model was constructed to test the impacts of both eligibility and engagement on 

the revenue burden (represented as compensation to revenue ratio (𝐶𝑅𝑅𝑖,𝑡)) of the scheme 

for the selected 12 British TOCs for the years 2016-2019. The equation below presents the 

initial specification of the model (OLS1 in Table 12):  

𝐶𝑅𝑅𝑖,𝑡 = 𝛽0 + 𝛽1𝐴𝑃𝐿𝑖,𝑡 + 𝛽2𝐹𝑎𝑟𝑒𝑖,𝑡 

( 4 ) 

where: 

𝑖 : each of the TOCs in the sample 

𝑡 : year 

𝐶𝑅𝑅𝑖,𝑡 : compensation to revenue ratio 

𝐴𝑃𝐿𝑖,𝑡 : average passenger lateness 

𝐹𝑎𝑟𝑒𝑖,𝑡 : average fare 

As shown in the equation above, the first model only includes two explanatory variables, 

namely the average fare and APL. APL increases both eligibility (i.e. only longer delays 

qualify for compensation) and engagement (as previous research suggests that engagement 

generally increases with delay lengths), thus the APL coefficient is a proxy for the 

combined effect that increased eligibility and engagement have on the compensation 

levels. Average fare refers to the additional effect that the increased fare (and thus journey 

length as both are highly correlated) has on engagement levels. Hence, 𝛽1 corresponds to 

the additional engagement resulting from lateness disutility whilst 𝛽2 corresponds to the 

increased engagement due to the opportunity cost of not claiming compensation.  
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Subsequently, the model was extended with Table 11 providing more detailed information 

about the additional variables used in the modelling. These include dummy variables 

representing TOC characteristics and time trends. Moreover, the variable describing the 

distribution of delays (D15) is introduced to the model and as part of sensitivity testing 

with average fare replaced with long distance TOC dummy variable. 

Table 11 Summary of variables used in the modelling 

Variable Type Expected 

impact 

Comments Included 

in OLS 

models 

CRR Continuous Dependent 

variable 

 

n/a 1-4 

APL Continuous Positive Represents the combined 

eligibility and engagement 

impact of performance. 

 

1-4 

D15 Continuous Positive Percentage of station stops 

delayed by over 15 minutes 

represents the combined 

eligibility and engagement 

impact of performance, focusing 

on the performance distribution. 

 

2-4 

Fare Continuous Positive Represents the impact of 

additional engagement related to 

claiming compensation for more 

expensive tickets (opportunity 

cost of not claiming 

compensation). 

 

1, 3-4 

Long 

distance 

Categorical, 

binary 

Positive Replaces average fare to 

represent the impact of 

additional engagement on long-

distance journeys, which can be 

expected due to higher prices; 

included for sensitivity testing. 

 

2 

LSE Categorical, 

binary 

Positive or 

neutral 

Using aggregate TOC level data, 

it is not possible to apply flow 

segmentation, typically used in 

rail demand research (Institute 

for Transport Studies et al., 

2016). However, it is possible to 

test if passengers using TOCs 

operating in the South East 

claim more or less 

compensation, which may be 

due to higher sensitivity to 

lateness (increasing engagement 

with the scheme) or higher 

2-4 
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incomes (with lower marginal 

utility of income resulting in 

lower engagement levels). 

 

LNER 

2019 

Categorical, 

binary 

Positive Takes into account a relatively 

large change in CRR between 

2018 and 2019 for LNER not 

accompanied by a large change 

in performance levels. 

 

2-4 

Year Categorical, 

binary 

Positive or 

neutral 

Tests the impacts of potential 

increased automation or 

knowledge about the scheme 

with time or any potential year-

related effects. 

 

2-4 

 

The OLS econometric model was run to test the impact of increasing lateness and fares on 

the revenue burden of the scheme on different types of TOCs through increased eligibility 

and engagement as a cross-sectional model in its simpler form (model OLS1 in Table 12), 

with addition of the aforementioned controls (OLS2 to OLS4 in Table 12) as well as the 

OLS2 version of the model rerun as a random effects panel model (RE in Table 12).  

Random effects were found to be non-significant in the Breusch-Pagan Lagrange 

multiplier (Breusch & Pagan, 1979) (p=0.13), suggesting that a simple OLS model is run. 

A model with TOC-specific fixed effects is not included as it is believed that any 

differences in the scheme related to the claiming processes may be year, not TOC, specific.  

The results in Table 12, suggest that for each £1m ticket revenue, each 1 minute of average 

lateness costs TOCs around £2000 in compensation. Long distance TOCs, at the same 

time, repay an additional £4500 (or £2000 for each £10 of average fare) while London and 

South East operators repay an additional £1700-£2300. LNER in 2019 repaid more than 

expected by the lateness levels, suggesting that an additional £9630 was repaid for each 

£1m revenue. The time trend was not statistically significant, suggesting that overall, the 

changes in the scheme have not had any significant impact on claim engagement.  

It is noted that inclusion of the additional variables increases the R2 value, as the model is 

able to capture the larger portion of the variation in the CRR values. Moreover, the simpler 

model (i.e. OLS1) suffered from non-normally distributed errors (Shapiro–Wilk test for 

normal data (Shapiro & Wilk, 1965), p-value of 0.0388). This improved with the addition 

of controls. The likelihood-ratio test (Wilks, 1938) was also run to test whether adding 

more predictors significantly improves fit (between OLS1 and OLS4, p-value<0.0001). In 

conclusion, the extended version of the model (i.e. OLS4) may be better-suited for 
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modelling the studied relationship as the additional variables are able to capture the 

additional effects that average fare and APL are not able to capture on their own. 

Table 12 Modelling results 

    OLS1   OLS2    OLS3 OLS4    RE 

APL .0018*** .0024*** .0021*** .0022*** .0024*** 

   (.0003) (.0005) (.0004) (.0004) (.0005) 

D15  -.0444 -.0378 -.0408 -.0559 

    (.0545) (.0476) (.0517) (.062) 

Long 

distance 

 .0045***  .0003 .0049*** 

    (.0013)  (.0022) (.0016) 

LSE  .0017** .0023*** .0023** .0015 

    (.0008) (.0007) (.0008) (.0011) 

LNER 2019  .0096*** .0090*** .0090*** .0096*** 

    (.0021) (.0020) (.0020) (.0020) 

2017  -.0005 -.0004 -.0004 -.0005 

    (.0008) (.0007) (.0007) (.0007) 

2018  -.0001 .0001 .0001 .0000 

    (.0008) (.0007) (.0008) (.0007) 

2019  .0005 .0007 .007 .0005 

    (.0008) (.0008) (.0008) (.0007) 

Fare .0002**  .0002*** .0002*  

   (.0001)  (.0000) (.0001)  

Constant -.0017* -.0025** -.0038*** -.0038** -.0022* 

   (.0008) (.0010) (.0009) (.0011) (.0012) 

N 48 48 48 48 48 

R-squared .83 .89 .91 .92 .91 

  Standard errors in parentheses 

 *** p<.01, ** p<.05, * p<.1 

As previously discussed, APL increases with journey length and, thus, with average fare. 

Table 13 shows the average fare and APL averaged for short, medium and long-distance 

TOCs. These are then used to compute the average effects of performance on eligibility 

and engagement and the additional engagement effect of average fare using the different 

models estimated in Table 12. On average, the effect of APL on compensation increases 
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from 0.5% of revenue on short-distance TOCs to 1.3% for long-distance TOCs. The 

additional engagement related to the increased opportunity cost of not claiming 

compensation translates to 0.1% of revenue for short-distance TOCs to 0.7% for long-

distance TOCs. Both effects combined lead to an increasing burden of the scheme for 

TOCs operating longer journeys. Therefore, an average long-distance TOC would 

typically repay around 1.6% of their revenue compared to 0.7% and 0.3% for medium and 

short-distance TOCs respectively. Considering the fact that journey length and average 

passenger lateness are correlated, if long-distance TOCs repay a larger proportion of 

revenue, they repay more than what would be suggested by their performance levels. If 

this is the case, it might be needed to find an economic or regulatory explanation and 

reasoning for this discrepancy.  

Table 13 Impacts of eligibility and engagement on the predicted costs of the DR 

scheme 

 

Short Medium Long 

Averages based on the sample 

APL 2.72 4.63 7.01 

Fare 4.75 11.80 33.61 

Modelled impact of eligibility and additional engagement on CRR (OLS 1)* 

Eligibility 0.48% 0.82% 1.24% 

Additional engagement 0.08% 0.21% 0.60% 

Modelled impact of eligibility and additional engagement on CRR (OLS 3)* 

Eligibility 0.53% 0.85% 1.23% 

Additional engagement 0.10% 0.25% 0.72% 

Modelled impact of eligibility and additional engagement on CRR (OLS 4)* 

Eligibility 0.53% 0.85% 1.26% 

Additional engagement 0.10% 0.24% 0.68% 
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Predicted CRR using average sample values (95% CI in brackets) 

Model 1 

0.400% 

(0.31%, 

0.49%) 

0.862% 

(0.79%, 

0.94%) 

1.669% 

(1.51%, 

1.83%) 

Model 3 

0.252% 

(0.12%, 

0.38%) 

0.726% 

(0.64%, 

0.81%) 

1.575% 

(1.44%, 

1.71%) 

Model 4 

0.258%  

(0.11%, 

0.41%) 

0.723%  

(0.63%, 

0.82%) 

1.578% 

(1.44%, 

1.71%) 

*This was computed by first setting the average fare and APL to zero and computing the corresponding CRR 

based on the mean values for the other variables. Subsequently, the eligibility effect was computed as the 

difference in the predicted CRR when setting APL to sample averages (holding fare at 0). The additional 

engagement effect was then computed as the difference in the predicted CRR when setting both APL and 

average fare at sample averages. 

4.7.Conclusions 

This chapter aimed to review the rail passenger delay compensation scheme currently 

operating in Great Britain. This was achieved by: 

 providing a review of the scheme rules, 

 drawing comparisons to similar schemes operating in other countries and for other 

modes and 

 a qualitative and quantitative analysis of the relationship between performance 

and fares on the revenue burden of the scheme on different TOCs. 

This was done to improve the understanding of the role that the scheme currently has in 

British railways and give some recommendations and research directions that might guide 

policymakers and regulators in the process of redesigning such a scheme in the future. The 

analysis of the scheme’s benefits was currently out of scope due to limited data availability 

and complexity in capturing the effect that the scheme has on passengers and demand. 

Rail passenger delay compensation schemes have been introduced in the EU and GB to 

protect the rights of delayed passengers. The scheme rules differ between the EU countries 

and GB, but the economic rationale behind the schemes is similar. The focus on the scheme 

operating within Great Britain results from a lack of suitable data for other European 

countries. The compensation levels were compared between British franchised TOCs to 

better understand the impact of the scheme on the revenues of different types of train 

operators. Approximately £80m was repaid to passengers every year (pre-COVID) as part 
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of the DR scheme in GB, with TOCs typically repaying between 0.1% and 3% of ticket 

revenues. Whilst the scheme rules are homogeneous (i.e. the proportion of ticket price that 

passengers are eligible to claim back does not change with journey or delay lengths), longer 

journeys are typically characterised by longer delays. At the same time, longer journeys 

are also typically more expensive. This naturally affects the number of passengers eligible 

to claim compensation. This is further amplified by the marginal propensity to claiming 

compensation increasing with delay lengths and ticket prices, which, in turn, affects TOCs’ 

ticket revenues. The fact that passengers are more likely to claim compensation for more 

expensive journeys and longer delays may be due to non-constant marginal disutility of 

lateness impacting differences in journey satisfaction or higher opportunity costs of not 

claiming compensation for more expensive journeys. 

While more research is needed to understand the differences in engagement rates and 

possible reasons for their existence, this work provides additional evidence that the 

propensity to claiming compensation increases with delay lengths and ticket prices. The 

differences in eligibility (increasing with delay lengths) and engagement (increasing with 

ticket price and delay lengths) lead to significant differences in the scheme’s burden for 

different TOCs. Other things being equal, each additional minute of APL increases the 

proportion of ticket revenue repaid to passengers as part of the scheme by 0.2%. As a result 

of engagement levels increasing with the ticket price, for the same levels of performance, 

TOCs repay an additional 0.2% of their ticket revenue for each £10 of the average fare. 

This suggests a larger financial impact of the scheme on longer-distance operators. 

There are two immediate areas that would benefit from further research. First of all, more 

detailed data on compensation complemented by detailed ticket sales data would allow 

analysing the differences in eligibility and engagement at an OD pair level. It is reasonable 

to expect that being able to control for any OD-specific differences may further increase 

understanding of how the scheme works in practice. This study serves as a motivation for 

the regulators to require the TOCs to collect and publish more detailed data on 

compensation (and especially so in other European countries where only very limited data 

is available). This could enable further research into passenger engagement with the 

claiming process. Furthermore, it is recommended that a full-scale study be conducted to 

analyse the impacts of the scheme on passengers, revenues and, ultimately demand to 

contrast the scheme’s benefits with its costs. It is thought that there is a potential to conduct 

studies utilising journey satisfaction or stated preference surveys to understand how the 

prospects of receiving compensation for delays affect respondents’ choices or passenger 

satisfaction. 
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While this study provided evidence for the increased cost of the scheme for long-distance 

operators, it does not necessarily imply that the current scheme is suboptimal and needs to 

be changed. There might be reasons for having one fit-for-all set of rules that are easier to 

understand for passengers as well as operate from the administrative point of view. 

Nevertheless, there are examples of operators that offer a more complex version of the 

scheme where rules change based on journey or delay types, namely Spanish Renfe and 

Czech RegioJet. If the regulators aim to increase engagement with the scheme, apart from 

automating the process, the claiming process could also be centralised, allowing 

passengers to claim compensation for all journeys from the same (central) portal as was 

also suggested by the Williams-Shapps Plan for Rail (Department for Transport, 2021). 

This would reduce the initial costs of claiming, as passengers would not need to register a 

separate account to claim from an operator they had not claimed from before.  

If a comparison of the costs and benefits of the scheme leads to a conclusion that the current 

design is suboptimal, it is necessary to base the design of the scheme on research 

concerning the impact of delays on passengers. It can particularly be useful to establish: 

 the lengths of delays that are detrimental to passenger satisfaction,  

 whether the negative impacts of delays vary by journey lengths and/or types, 

 the potential non-linearities in the impacts of delays related to the impact of 

smaller versus larger delays. 

Finally, while compensation currently only accounts for a small percentage of TOCs’ 

revenues, greater automation of the scheme could contribute to increasing compensation 

payments (leading to TOCs repaying a larger portion of their revenues), highlighting the 

need for further research. It also needs to be noted that the analysis focused on the pre-

COVID period and it might be beneficial to consider how the DR scheme has been 

impacted by the COVID pandemic. 

Motivated by the analysis of the DR scheme conducted as part of this chapter, the 

remaining chapters of this thesis focus on analysing the impacts of delays on travellers 

what could provide an additional source of information and guidance should an operator 

or regulator (in GB or other European country) decide to redesign passenger compensation 

scheme. Hence, the remaining chapters will focus on delay perception and the 

consequential impacts on satisfaction with the following chapter introducing the dataset 

used in the subsequent analysis.  
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Chapter 5  

Data: The National Rail Passenger Survey (NRPS)  

5.1. Introduction 

The aim of this chapter is to introduce the data used in the analysis presented in the 

remaining chapters of this thesis. These utilise data on satisfaction and delay perception 

from the National Rail Passenger Survey (NRPS) obtained from Transport Focus and 

matched to the operational dataset using the Historic Service Performance database 

obtained from Network Rail. This chapter aims to summarise the two data sources, 

comment on the choice of variables used throughout the thesis and describe how 

satisfaction and operational data were matched. 

The National Rail Passenger Survey (NRPS) is conducted twice a year by Transport Focus 

in the United Kingdom and is concerned with rail passengers’ journey satisfaction. The 

survey has been built into franchising agreements and provides a passenger-centric 

perspective on the comparative performance of franchised TOCs (Campaign for Better 

Transport, 2015). The results of the survey have often been cited in research papers (i.e. 

Oliveira et al., 2019; Ojeda-Cabral et al., 2021; Calastri et al., 2022; Smith and Ojeda 

Cabral, 2022) and used by researchers to study: 

 passenger behaviour and use of time  (Lyons et al., 2007; Lyons et al., 2016), 

 differences between open-access and franchised train operators (Stead et al., 

2019), 

 relationship between delays and passenger satisfaction (Monsuur et al., 2021) and 

 impact of train and station types on service quality perceptions (Monsuur et al., 

2017). 

The survey is administered by intercepting passengers in the course of making a journey 

and consists of multiple questions relating to passengers’ satisfaction with different 

journey aspects (from station facilities and ticketing to journey times and in-vehicle 

experience). Typically, travellers receive questionnaires prior to boarding their services. 

As shown in Figure 11, the overall journey satisfaction levels have generally improved 

since the 2000s, driven by increases in the share of the ‘very satisfied’ passengers. In 2019, 

the overall satisfaction levels by TOC varied between 72%-96% (Transport Focus, 2019). 

At the same time, satisfaction with punctuality had initially improved in the early 2000s, 

given the increase in the share of the ‘very satisfied’ passengers. Otherwise, the punctuality 
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satisfaction levels have remained relatively unchanged with a similar proportion of 

travellers reporting to have been ‘very’ and ‘fairly satisfied’ with the remaining three 

satisfaction categories typically being chosen by around 5% of respondents each.  

 

 

Figure 11 Evolution of passenger satisfaction levels over time based on overall 

journey satisfaction (top) and satisfaction with punctuality (bottom) 

Public Performance Measure (PPM), a standard industrial measure of performance 

combining punctuality and reliability and indicating the proportion of services arriving to 

the destination on time, had improved since the 2000s but started worsening around 2010 
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(Campaign for Better Transport, 2015; ORR, 2020) as shown in Figure 12. As the figure 

presents performance by rail quarter, some seasonal impacts can also be visible.   

As a result, Average Passenger Lateness (APL), defined as the average length of delay a 

typical passenger is subjected to, increased, as depicted in Figure 13 below. An average 

passenger journey was subjected to a delay of around 3 minutes in the most recent (pre-

pandemic) years compared to around 2 minutes at the beginning of 2010s. As rail delays 

are, however, usually dependent on many different factors and not necessarily equally 

distributed across journeys, geographies, or days of the year, the NRPS survey responses 

are not necessarily representative of the delay distribution across the network. 

 

Figure 12 Rail performance measure by PPM by rail quarter (ORR, 2021) 
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Figure 13 Average passenger lateness (APL) by rail period (ORR, 2021) 

5.2. Data processing and matching passenger responses to the operational 

dataset 

The NRPS data were obtained directly from Transport Focus and whilst it is not available 

open-source, anyone interested can request access by contacting Transport Focus. To some 

extent, a relatively detailed analysis of the data can also be conducted using the Transport 

Focus data hub or the reports produced by Transport Focus after each survey wave. This 

piece of work uses data from almost 275,000 responses from 10 survey waves (between 

autumn 2015 and winter 2020). Each wave of the survey typically captures around 25,000-

30,000 passenger responses. The sampling design undertaken by Transport Focus ensures 

that different types of journeys, origin-destination pairs and passengers are represented in 

the sample (Transport Focus, 2020b). After filtering out the responses with missing data, 

the responses were subsequently matched with operational data using the Historic Service 

Performance (HSP) database. This platform contains historical data on train performance 

from Darwin (running information engine). The HSP is freely available upon registering 

for access using the National Rail Data Portal (for a more detailed description see National 

Rail Enquiries, 2021). In this way, each passenger journey was matched to an actual service 

and subsequently, scheduled and actual journey times were calculated for each of the 

journeys. 

As part of the NRPS, passengers were asked to specify their departure time, origin (where 
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allowed matching each response to the actual service to calculate scheduled and actual 

journey times. This matching process is a two-step process (as shown in Figure 14) that 

involves: 

1)  searching for a scheduled train running between the specified origin and 

destination within a specified time window (i.e. the departure time stated by 

passenger) and 

2) subsequently, a service RID code corresponding to the service that passenger 

travelled on is obtained and used to retrieve additional information about 

scheduled and actual departure and arrival times at the origin and destination 

stations. 

 

Figure 14 The matching process 

Elaborating on the matching process depicted in Figure 14, passenger responses were 

matched to the operational dataset in the following steps: 

1) Origin and destination station codes were extracted from the NRPS dataset 

alongside the scheduled departure time and date. The data were subsequently 

rearranged in the format depicted in Figure 15. 

 

Figure 15 Dataset snapshot 
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stated 
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destination
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code
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departure and 
arrival times
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2) The data described under point 1 were then used to retrieve a service RID code 

corresponding to the service that a passenger travelled on between the specified 

origin and destination as shown in Figure 16-Figure 18. 

 

Figure 16 NRPS data matching input 

 

Figure 17 HSP output 

 

Figure 18 Matched RID code 

3) The RID codes obtained were then used to request service details information as 

shown in Figure 19. In this example, a London Kings Cross to Aberdeen service 

with an RID code of 201509010384368 was scheduled to depart from London 

Kings Cross at 16:00 on the 1st of September 2015. The service was scheduled to 

arrive at Aberdeen at 23:12 after having stopped at 13 intermediate stations. It 

departed from London Kings Cross a minute earlier than scheduled (15:59) and 

arrived at the destination 4 minutes ahead of schedule (23:08).  
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Figure 19 HSP service details 

4) The origin and destination station codes were subsequently used to retrieve 

scheduled and actual departure and arrival times for the specified origin and 

destination pair. 

5) Finally, scheduled (𝐽𝑇𝑆) and actual journey lengths (𝐽𝑇𝐴), and delay lengths at 

departure (𝐿𝐷) and arrival (𝐿𝐴) were calculated. For clarity, the definitions are 

shown below: 

Scheduled journey length (𝐽𝑇𝑆) is the difference between the scheduled arrival time at 

the destination station (𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑆) and scheduled departure time at the origin station 

(𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑆). 

𝐽𝑇𝑆 = 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑆 − 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑆 

( 5 ) 

Delay length at arrival (𝐿𝐴) is the difference between the actual arrival time at the 

destination station (𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝐴) registered in the Historic Service Performance database and 

scheduled arrival time at the destination station (𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑆). 

𝐿𝐴 = 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝐴 − 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑆 

( 6 ) 
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Delay length at departure (𝐿𝐷) is the difference between the actual departure time at the 

origin station (𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝐴) registered in the Historic Service Performance database and 

scheduled departure time at the origin station (𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑆). 

𝐿𝐷 = 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝐴 − 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑆 

( 7 ) 

5.2.1. Summary of the matching process and issues encountered 

Out of the 274,862 responses in the dataset, 263,163 (95.7%) responses with no missing 

data were selected for matching with operational data. 244,712 (93.0%) were matched to 

an actual service RID code by searching for a service that was scheduled to depart from 

the origin station at the departure time stated by passenger. 

Transport Focus was approached to discuss the possible reasons for some of the responses 

not being matched with the operational data. As noted, it is expected that in some cases 

passengers rounded the departure times or provided an erroneous departure time based on 

actual (or expected) rather than scheduled departure time. Considering the proportion of 

responses successfully matched to the operational dataset, 93% was suggested to be in line 

with what was achieved in similar attempts conducted in the past.  

Following these considerations, an attempt was made to find possible services that could 

match the responses where a service RID code was not matched automatically. It was, 

however, found that while in some cases the differences between passenger-stated and 

scheduled departure times of a service are relatively small, there was still a considerable 

number of responses where finding a scheduled service based on passenger-stated 

scheduled departure time was more challenging. Therefore, it was decided to extend the 

search window by respectively +/- 3, 5 and 10 minutes from the stated departure time. The 

matching algorithm is depicted in Figure 20.  

By doing that an additional 1.4%, 1.9% and 2.5% responses were matched to an actual 

service. It was thought that extending the search window by +/- 5 minutes was possibly 

most valid as it minimises the risk of (erroneously) matching a different service, which can 

be the case if the search window is extended by +/- 10 minutes as on the busier stations 

headway can often be less than 20 minutes.  
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Figure 20 The matching algorithm 

Through this approach, the final dataset consisted of 249,686 responses successfully 

matched to a service RID code. Subsequently, service details were successfully retrieved 

for 242,311 responses as summarised in Table 14. 

Table 14 Summary of the HSP matching process 

 Responses matched Total responses 

matched (%) 

All responses with a 

satisfaction score 

263,163 100.00% 

Matching service RID codes 

 

RID matched 244,712 92.99% 

Extending search window 

+/- 3 minutes 3,685 +1.40% 

+/- 5 minutes 4,974 +1.89% 

+/- 10 minutes 6,450 +2.45% 

Final dataset 

 

Passenger-stated 

departure time +/- 5 

minutes 

249,686 94.88% 

Matching actual running times 

Actual running times 

matched 

242,311 92.08% 

 

When an RID code was matched, but no actual departure and arrival times were found, 

this may have been due to recording errors. It was initially thought that this might be due 
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to cancellations or truncation of the services. An investigation was conducted to better 

understand how cancellations or truncations are registered in the database and find the 

possible reasons for some service code RIDs being found, but not matched to the 

operational data. At first, a user forum, which is a place for an unofficial exchange of 

information and community-based support with occasional support provided by the Rail 

Delivery Group, was consulted to see if other users previously raised similar issues. One 

important consideration raised by the Rail Delivery Group representative was that HSP 

only reports on locations that have an actual running time or were cancelled. In the cases 

where no movement report was received and the cancellation state was not manually 

applied, the service becomes invisible for the HSP. Therefore, the two possible reasons for 

service details not being matched to the RID code supplied are errors with recording the 

train movement data or errors with manual inputs of cancellations. 

To better understand the mechanisms of HSP, an example of a disruption to the services 

was chosen for illustration. On the 13th of September 2021 some services were cancelled 

to/from Ilkley (ILK) following an emergency incident (Ilkley Gazette, 2021). Out of the 

11 services investigated, five were cancelled. Figure 21 and Figure 22 show how 

cancellation was recorded in the HSP database for the 06:51 Ilkley to Bradford Foster 

Square (BDQ) service and 09:03 Leeds (LDS) to Ilkley service respectively. The first 

service departed from Ilkley a minute ahead of schedule and the last station served was 

Guiseley where the service arrived a minute ahead of schedule. For the remaining four 

stations, planned departure and arrivals are supplied, but the actual recorded times are 

missing. In this case, a late/cancellation reason code (777) was also supplied. In the case 

of the LDS-ILK 09:03 service, it was already cancelled at Leeds and did not depart from 

the origin station. Similarly, a late/cancellation reason code (777) was also supplied in this 

case.  
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Figure 21 HSP service details outputs for the ILK-BDQ service 

 

Figure 22 HSP service details outputs for the LDS-ILK service 

As shown in the matching algorithm, an attempt was also made to search for the closest 

service that had the actual running data available for the services where the RID code was 

found, but the service details were not successfully retrieved. If a new RID code was found, 

the algorithm proceeded to match actual running times. If the actual running times were 

not found, the algorithm returned to finding the next possible service by increasing 

departure time by 1 minute until a new RID and actual running times were subsequently 

matched. The cancellation algorithm was capped at 6 hours. In some cases, specific OD 

pairs with no services matching passenger journey were investigated manually. In the case 

of journeys between Shanklin (SHN) and Ryde Pier Head (RYP) (depicted in Figure 23), 

no services were found in the HSP on the 19th of February 2020, but the service details 

were successfully retrieved for the week earlier. This would indicate on some possible 

errors with the recording system, but the magnitude of that issue is relatively small.   
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Figure 23 SHN-RYP services 

In conclusion, filtering out the responses where some data were missing and the responses 

that were not successfully matched to the operational data, 242,311 responses (92% of the 

original dataset) were selected for further investigation. 

5.2.2. Recorded and stated delay lengths 

While the delay data were obtained by matching the individual responses to the operational 

data using the HSP database as described in the previous section, the survey also contained 

a question regarding late running. This is used for monitoring the quality of the data by 

comparing the delay lengths recorded in the HSP database with the delays reported by 

passengers. Moreover, the comparison of the two sources can help better understand 

passengers’ ability to perceive delays (this will be explored as part of Chapter 6).  

In the first three waves of the survey, passengers were asked: “How long was your delay?” 

and needed to state their delay lengths in minutes. This was later changed and in the most 

recent seven versions of the survey, passengers needed to choose the length category their 

delay length fell into as shown in Figure 24. The survey data on delay lengths was used 

for monitoring and comparison purposes with the delay categories converted into delay 

minutes using the midpoint method and assuming the average delay of 90 minutes for the 

over 60 minutes delay length category.  

 

Figure 24 Question about the perception of delay from NRPS (Transport Focus, 

2020) 
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As shown in Table 15 below, almost 1 in 2 surveyed passengers arrived at their destination 

late according to the operational data, but only 1 in 5 actually reported being delayed. The 

matching methodology is expected to be more accurate than passenger perception data. In 

this case, a recorded delay is defined as a difference between actual and scheduled arrival 

time at the destination. This way, the smallest possible delay recorded is 1 minute. It is, 

however, unlikely that passengers are able to perceive the smaller delays and this is the 

potential explanation for a larger number of responses being matched to a delay than the 

number of passengers reporting late arrival. Nevertheless, it is also important to recognize 

smaller (likely unperceived) delays and this aspect is further explored as part of this thesis. 

In 6% of responses, a passenger claimed they were delayed, but no delay was matched. It 

is possible that in these cases passengers were either not able to board the train due to 

crowding or included the delay from a different leg of the journey or due to missed 

connections. In this case, it is not possible to trace the whole journey that a passenger was 

intending to make and these responses are discarded at this stage.  

Table 15 Comparison between passenger-stated and HSP-matched delay data 

 Perceived 

R
ec

o
rd

ed
  Delay No delay 

Delay 18.0% 30.8% 

No delay 5.8% 45.3% 

 

Typically, respondents failed to report shorter delays - possibly due to shorter delays 

falling below their perceptual thresholds. An average passenger lateness of 2.7 minutes 

was recorded for the whole NRPS sample. For the subset of journeys where a delay was 

recorded, an average delay of 3.6 minutes was recorded for passengers who were matched 

to a delay but did not report late running (i.e. row 1, column 2 in Table 15) versus 9.0 

minutes for passengers who also reported being delayed (i.e. row 1, column 1 in table 2). 

Figure 25 shows the cumulative distribution of recorded delays for passengers who did and 

did not report late running. Out of the 30.8% (74,628) responses, in almost 70% of cases, 

the matched delay length was within 3 minutes and in 98% of cases within 15 minutes. In 

line with expectations, it can be seen that passengers who were matched to a delay, but 

reported arriving on time (i.e. row 1, column 2 in Table 15), were typically matched a 

shorter delay.  
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Figure 25 Cumulative distribution of recorded delays for perceived and 

unperceived delays 

At the same time, Figure 26 shows how the proportion of passengers reporting late running 

changes with increasing delay lengths. It is worth noting that the number (not proportion) 

of responses decreases with increasing delay lengths, as typically most delays are relatively 

small and the delay distribution is positively skewed. The proportion of passengers 

reporting late running seems to be generally increasing with delay length, but this 

relationship needs to be studied in more detail. As suggested by Monsuur et al. (2021), 30 

minutes is a delay length following which passengers are very unlikely to remain satisfied 

with their journey. Therefore, the dataset is constrained to recorded delay lengths of up to 

30 minutes as it is assumed that passengers should already be able to perceive delays of 

that length and any discrepancies (i.e. passengers not reporting delays despite a recorded 

delay of over 30 minutes) may be erroneous (as described previously). Moreover, delays 

of over 30 minutes are relatively rare and the main focus of this study is on the smaller 

delays.  
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Figure 26 The proportion of passengers reporting late running 

As shown in Table 15, almost 2 out of 3 passengers agreed with the operational data 

regarding whether or not they were delayed. The cases where passengers failed to perceive 

the smaller recorded delays or reported delays when on-time performance was recorded 

are discussed above. However, it remains to be investigated how the reported delay lengths 

compare to the matched delay lengths for the cases where passengers who were matched 

to a delay also reported late arrival (i.e. row 1, column 1 in Table 15). Some discrepancies 

are expected and may be a result of: 

 passengers rounding the delay lengths to the closest 5 or 10 minutes (in the case 

of the first three survey waves where they were asked to type in the exact delay 

length) or  

 the conversion method for the delay length categories used in the latter 7 survey 

waves as described before.  

An attempt was made to understand the extent of these differences with the summary 

presented in Table 16 below. However, a more detailed analysis will be conducted as part 

of the investigation of delay perception in Chapter 6. In 11% of cases, there was no 

difference between stated and matched delay lengths with over 2/3 of the differences being 

within 5 minutes and only a small percentage (i.e. around 9%) of responses being 

characterised by the differences in matched and reported delay lengths of over 15 minutes. 
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Hence, it can be expected that most of the differences can be attributed to passenger 

perception. 

Table 16 Summary of differences between stated and matched delay lengths 

Difference Percentage of delayed 

responses 

No difference 10.6%* 

Within +/- 3 minutes 57.2%* 

Within +/- 5 minutes 70.1%* 

Within +/- 15 minutes 91.2%* 

Within +/- 30 minutes 96.3%* 

>30 minutes 3.7% 

*Cumulative distribution 

Given the suggestions that departure 𝐿𝐷 and arrival 𝐿𝐴 delays have a differing impact on 

passengers (see Batley and Ibáñez, 2012 for a more detailed discussion), this research also 

aims to investigate the impact that both can have on delay perception and satisfaction. 

Departure (origin) and arrival (destination) delays are, as expected, correlated (r=0.64) in 

the sample. Whilst in most cases throughout the thesis, the focus remains on the arrival 

delay, in some cases both variables are used in the modelling. 

5.3. The National Rail Passenger Survey 

The obtained data comes from 10 survey waves of NRPS between Autumn 2015 and 

Winter 2020. The sample design and the weighting process conducted by Transport Focus 

ensure that the responses are distributed across the different operators and routes over the 

different times of day and days of the week (Transport Focus, 2020). The sampling process 

is described in technical reports produced for each of the survey waves and generally 

involves the following steps: 

1) The whole network is divided into multiple building blocks. 

2) Selection of stations for each of the building blocks uses a PPS (probability 

proportionate to size) basis, so that the sample sizes are adjusted for station usage.  

3) Day of the week and times of the day distribution is based on the profiles of 

journey departures by journey purpose provided by TOCs.  

4) Sampling points are then assigned to weeks at random during the survey period. 

The questionnaires consist of multiple questions relating to the information about a 

passenger, the specific journey that the passenger made and their satisfaction with different 

aspects of that journey. The following subsections aim to review the different types of 
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questions asked as part of the survey that are particularly relevant to the analysis conducted 

as part of the thesis.  

5.3.1. Overall journey satisfaction and satisfaction with punctuality 

This work primarily focuses on analysing the impacts of increasing delays on delay 

perception and satisfaction. Therefore, there are two questions that appear particularly 

relevant in this context: 

1) Question 16 of the NRPS that concerns passengers’ overall satisfaction with their 

journey (Figure 27 below). Passengers are specifically asked to score their 

satisfaction with the origin station and the train they boarded after receiving a 

questionnaire.  

 

Figure 27 Overall satisfaction question from NRPS 

2) An alternative line of enquiry is to consider NRPS question 9, which is concerned 

specifically with satisfaction with punctuality and reliability of the train used 

(Figure 28). It potentially allows for direct analysis of the delay impacts without 

the need to control for satisfaction with other aspects of journey quality. 

 

Figure 28 Question related to satisfaction with punctuality from NRPS 

Passengers scored their overall satisfaction as well as satisfaction with punctuality on a 5-

point Likert scale with possible responses ranging from ‘very satisfied’ (5) to ‘very 

dissatisfied’ (1) and a ‘don’t know/no opinion’ option. Out of the 242,311 responses 

chosen for further analysis, 6,596 passengers (2.7%) chose the ‘don’t know/no opinion’ 

option regarding their satisfaction with punctuality (such responses have been excluded 

from the analysis). Monsuur et al. (2021) used overall journey satisfaction (i.e. question 
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16) to study the impacts of delays on passenger satisfaction. To better understand the 

difference between overall journey satisfaction and satisfaction with punctuality and to 

determine their usefulness, the two variables were investigated more closely.   

It is expected that delays have a negative impact on journey satisfaction. While the two 

satisfaction variables are correlated (i.e. Spearman rho of 0.57), it is also expected that 

satisfaction with punctuality is only one of the many factors determining overall journey 

satisfaction. Table 17a below shows how average recorded delay and overall satisfaction 

(NRPS question 16 in Figure 27) change with reported satisfaction with punctuality (NRPS 

question 9 in Figure 28) for travellers with a recorded delay. As expected, passengers who 

scored their satisfaction with punctuality lower were typically subjected to lengthier delays 

– from around 4 minutes of average recorded delay for passengers ‘very satisfied’ with 

punctuality to 12 minutes for those who were ‘very dissatisfied’. The overall satisfaction 

levels (i.e. NRPS Q16) decrease with both increasing delays and decreasing satisfaction 

with punctuality (i.e. NRPS Q9) – from 4.6 for passengers ‘very satisfied’ with punctuality 

to 2.5 for passengers ‘very dissatisfied’ with punctuality. Table 17b, in turn, shows how 

the same relationship changes for decreasing levels of reported overall journey satisfaction. 

Table 17a Relationship between satisfaction with punctuality, overall journey 

satisfaction and delay lengths (for journeys with a matched delay only) 

Satisfaction with punctuality Average 

recorded 

delay 

Number of 

responses 

Average 

overall 

satisfaction 

Very satisfied 4.07 42,632 4.58 

Fairly satisfied 4.64 38,989 4.06 

Neither satisfied nor dissatisfied 5.92 10,052 3.71 

Fairly dissatisfied 8.23 13,806 3.38 

Very dissatisfied 11.99 9,754 2.50 

Total 5.59 115,233 4.01 

 

Table 17b Relationship between overall journey satisfaction, satisfaction with 

punctuality and delay lengths (for journeys with a matched delay only) 

Overall journey satisfaction Average 

recorded 

delay 

Number of 

responses 

Average 

punctuality 

satisfaction 

Very satisfied 4.33 39,954 4.61 

Fairly satisfied 5.24 54,460 3.78 

Neither satisfied nor dissatisfied 6.61 12,909 2.82 

Fairly dissatisfied 9.91 7,542 2.15 

Very dissatisfied 12.61 3,438 1.72 

Total 5.59 115,233 3.79 
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5.3.2. Control variables 

Sixty three different questions related to satisfaction with very specific journey aspects 

along three more general questions were asked throughout the 10 NRPS survey waves used 

in this study. Satisfaction with each aspect of the journey was scored by passengers on a 

5-point Likert scale with an option of no score if a passenger felt they did not know how 

to score this aspect or did not experience/use it (e.g. toilet facilities, catering, etc.). The 

possibility to choose the option where no score was provided means that a large proportion 

of questions is characterised by a rather small percentage of responses. Moreover, some 

questions are mutually exclusive (e.g. a person who uses a car park is unlikely to also use 

a bike park). While many of these questions had a relatively low response (i.e. large 

proportion of passengers choosing an option not to score a specific element) or were not 

part of all the survey waves, 16 were chosen for further investigation based on the common 

number of responses with a summary presented in Table 18 below.  

Out of the 242,311 responses where a passenger scored their overall journey experience, 

there were 126,794 responses where a score was provided for all of the 16 questions 

relating to the specific aspects of the journey and three additional questions related to 

satisfaction with train, station, and overall journey as detailed in Table 19. Similarly as 

observed by Brons and Rietveld (2009), the average overall satisfaction is in most cases 

higher than the average satisfaction with the specific journey aspects. 

In cases where the overall journey satisfaction is modelled, there is a need to control for 

other aspects of journey satisfaction too (i.e. overall satisfaction does not only depend on 

the length of delay). In particular, it can be expected that the overall journey satisfaction is 

impacted by satisfaction with journey quality aspects (e.g. station or train), satisfaction 

with journey frequency, punctuality, scheduled journey time and/or value for money. 

However, in the case where satisfaction with punctuality is modelled, the quality aspects 

are likely to have a complementary (to delay length), but not a direct impact on punctuality 

satisfaction as bad journey quality (e.g. crowding) may amplify the negative impact of 

delay on satisfaction. Table 20 below reports correlations between the key satisfaction 

variables using Spearman’s rank correlation methodology (Spearman, 1904). 
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Table 18 Choice of satisfaction variables from NRPS 

Aspect Question 

Train and platform 

information 

How would you rate this station for provision of 

information about train times/platforms? 

Station upkeep How would you rate this station for the upkeep/repair 

of the station buildings/platforms? 

Station cleanliness How would you rate this station for cleanliness of the 

station? 

Station environment How would you rate this station for the overall station 

environment? 

Station security How would you rate this station for your personal 

security whilst using this station? 

Station seating How would you rate this station for availability of 

seating? 

Journey frequency Based on your experience on that journey, how 

satisfied were you with the frequency of the trains on 

that route? 

Delay Based on your experience on that journey, how 

satisfied were you with the punctuality/reliability (i.e. 

the train arriving/departing on time)? 

Scheduled journey time Based on your experience on that journey, how 

satisfied were you with the length of time the journey 

was scheduled to take? 

Value for money Based on your experience on that journey, how 

satisfied were you with the value for money of the 

price of your ticket? 

Train security How would you rate the train you boarded for that 

journey in terms of your personal security whilst on 

board the train? 

Train upkeep How would you rate the train you boarded for that 

journey in terms of upkeep and repair of the train 

(condition of seats, walls, tables, etc.)? 

Train information How would you rate the train you boarded for that 

journey in terms of the provision of information 

during the journey? 

Train cleanliness Specifically thinking about the cleanliness of the train 

you boarded for that journey, how would you rate it 

for the cleanliness of the inside of the train? 

Train cleanliness out Specifically thinking about the cleanliness of the train 

you boarded for that journey, how would you rate it 

for the cleanliness of the outside of the train? 

Train seating comfort How would you rate the train you boarded for that 

journey in terms of the comfort of the seating area? 

Station overall Overall how satisfied are you with this station? 

Train overall Overall how satisfied are you with the train you 

boarded for your journey? 

Overall Taking into account just the station where you 

boarded the train and the actual train travelled on 

after being given this questionnaire, how satisfied 

were you with your journey today? 
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Table 19 Summary of satisfaction variables 

Dimension Journey aspect Responses Mean SD 

Station quality 

 

 

Train and platform information 231,419 4.22 0.872 

Station upkeep 231,830 3.95 0.925 

Station cleanliness 232,500 4.03 0.881 

Station environment 233,162 3.95 0.873 

Station security 213,454 4.03 0.831 

Station seating 217,089 3.36 1.215 

Timetable 

 

Journey frequency 233,963 3.98 1.060 

Punctuality* 235,715 4.03 1.164 

Scheduled journey time 234,299 4.24 0.923 

Value for money 222,716 3.27 1.313 

Train quality 

 

Train security 221,050 4.08 0.833 

Train upkeep 235,233 3.95 0.953 

Train information 220,333 3.98 0.970 

Train cleanliness 239,497 3.99 0.928 

Train cleanliness out 209,085 3.94 0.901 

Train seating comfort 231,137 3.78 1.009 

Station overall  237,315 4.12 0.833 

Train overall  240,525 4.02 0.906 

Overall*  242,311 4.14 0.906 

* indicates the variables used as dependent variables (described in section 5.3.1) 

Table 20 Correlation between the key satisfaction variables 

 (1)   Overall (2) Station (3) Train (4) Punctuality 

(1) Overall 1.00    

(2) Station overall 0.53 1.00   

(3) Train overall 0.74 0.50 1.00  

(4) Punctuality 0.57 0.38 0.50 1.00 
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The satisfaction variables are expected to be correlated. In line with expectations, 

satisfaction with train and station is more positively correlated with the overall journey 

satisfaction than satisfaction with punctuality. One of the features of delays in railways is 

that they are typically correlated with increased crowding that, in turn, may have a negative 

impact on the satisfaction with train and/or station. Similarly, it is possible that travellers 

facing delays report lower satisfaction with other journey aspects to express general 

discontent related to a delay experience. However, it remains difficult to understand and 

isolate the effects of the general discontent from the actual experience. 

The correlations between all the satisfaction variables presented in Table 19 were 

investigated using Spearman’s rank correlation coefficients and are shown in the heat map 

in Figure 29. It is evident that some variables (i.e. station upkeep, station environment or 

cleanliness) are conceptually similar to each other, resulting in a relatively high correlation. 

At the same time, the overall journey satisfaction is typically more correlated to the 

variables relating to satisfaction with train or journey (timetable) rather than station. 

 

Figure 29 Heat map of correlation between key satisfaction variables 

5.3.3. Other control variables 

Apart from scoring satisfaction with train or seating comfort, passengers in the most recent 

seven survey waves were asked if they were able to find a seat on a train. 10.5% of the 

respondents in the sample reported that they were unable to find a vacant seat for the whole 



77 

 

journey. It can be expected that the availability of seating has a major impact on 

satisfaction with the journey and may also possibly have a complementary effect on 

satisfaction with punctuality. An average punctuality satisfaction of 3.3 was recorded for 

passengers without a seat while an APL of 3.1 was registered for them. Passengers who 

were able to find a seat scored their punctuality satisfaction on average better (mean 

satisfaction of 4.1 for an APL of 2.7 minutes).  

5.4. Demand segmentation 

The NRPS sample design ensures that the responses of passengers travelling on all the 

TOCs are captured, thus the dataset contains responses from different types of travellers 

on both shorter and longer journeys. The average scheduled journey time in the sample is 

53 minutes with an average passenger lateness of 2.2 minutes. The average passenger 

lateness in the sample is consistent with the values estimated by ORR (2020), suggesting 

APLs of 2-3 minutes in the last 10 years.  

The analysis employs passenger segmentation to enable comparison of delay perception 

and its impacts on the different types of passengers. The proposed approach to 

segmentation is based on ticket types, journey purposes and geographies. An alternative to 

this approach could be sought in clustering passenger types based on the available data. 

However, the motivation behind such segmentation is to align more with the PDFH 

framework. Nevertheless, some simplifications to the demand segmentation typically used 

within the PDFH are made to facilitate the analysis (i.e. reducing the number of passenger 

types) whilst also replacing the journey length categorisation by the inclusion of a 

continuous variable representing scheduled journey time in the conducted analysis. Twelve 

different journey purpose categories are used in the NRPS questionnaire, similar to that in 

the National Travel Survey. These are then classified by the three major journey purpose 

categories, i.e. commute (41%), business (14%) or leisure (45%), with the split being 

similar to that suggested in the National Travel Survey. The responses were further 

analysed based on the type of ticket bought and the geographical distribution. In this case, 

only passengers travelling on certain ticket types were chosen for further analysis, i.e. 

seasonal tickets for commuters while passengers travelling using special ticket types and 

passes were removed from the dataset. This is to ensure better homogeneity of passengers 

represented in a given demand segmentation category. Having consulted the approach of 

similar studies and to investigate whether there are any significant differences between 

passengers, the journey purpose categories were further split by geography (in the case of 

business and commute) and fare (full and reduced in the case of leisure travellers).  
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Alongside the proposed demand segmentation, Table 21 provides summary statistics of 

key variables that are later used in the modelling As can be seen, business and leisure 

journeys are typically longer and incur lengthier delays, but commuters (who are also more 

frequent travellers) seem to generally be less satisfied with punctuality levels. This may, 

to some extent, be explained by commuters being impacted by the largest relative change 

in journey times due to delays. On average, commuter journey times increase by around 

10% due to delays as compared to 5% for other travellers.  

Table 21 Demand segmentation summary 

 Mean SD p25 p75 p90 p95 

BL: Business London (N=18,428)      

Perceived delay (Yes=1) .21 .41     

Recorded delay (Yes=1) .52 .50     

Scheduled journey time 80 55 31 117 151 174 

Arrival delay 3.59 8.63 0 4 10 16 

Departure delay 1.36 4.04 0 1 4 7 

Punctuality satisfaction 4.27 .99     

Seated (Yes=1) .97 .18     

BnL: Business non-London (N=11,251)       

Perceived delay (Yes=1) .27 .44     

Recorded delay (Yes=1) .57 .50     

Scheduled journey time 73 57 31 97 158 191 

Arrival delay 3.54 7.43 0 4 9 16 

Departure delay 2.33 5.52 0 2 6 11 

Punctuality satisfaction 4.09 1.12     

Seated (Yes=1) .93 .25     

CL: Commute London (N=26,020)       

Perceived delay (Yes=1) .32 .47     

Recorded delay (Yes=1) .49 .50     

Scheduled journey time 33 19 19 44 58 68 

Arrival delay 2.53 5.51 0 3 7 11 

Departure delay 1.57 3.94 0 2 4 7 

Punctuality satisfaction 3.46 1.30     

Seated (Yes=1) .78 .41     
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CnL: Commute non-London (N=15,216)       

Perceived delay (Yes=1) .36 .48     

Recorded delay (Yes=1) .56 .50     

Scheduled journey time 25 16 14 32 46 56 

Arrival delay 2.85 5.71 0 3 8 12 

Departure delay 2.37 4.67 0 3 7 10 

Punctuality satisfaction 3.37 1.33     

Seated (Yes=1) .80 .40     

LF: Leisure Full (N=24,432)       

Perceived delay (Yes=1) .18 .38     

Recorded delay (Yes=1) .45 .50     

Scheduled journey time 50 46 22 60 108 150 

Arrival delay 2.36 5.74 0 2 6 11 

Departure delay 1.58 4.20 0 1 4 8 

Punctuality satisfaction 4.33 .99     

Seated (Yes=1) .93 .25     

LR: Leisure Reduced (N=51,667)       

Perceived delay (Yes=1) .21 .41     

Recorded delay (Yes=1) .51 .50     

Scheduled journey time 85 62 37 119 170 203 

Arrival delay 3.45 8.26 0 4 9 16 

Departure delay 1.82 5.08 0 2 5 9 

Punctuality satisfaction 4.36 .98     

Seated (Yes=1) .96 .19     

 

5.5. Summary 

This chapter summarised the two sources of data, namely NRPS and HSP and described 

how the satisfaction and operational data were matched. This will allow studying 

passengers’ perception of delays and the relationship between recorded performance and 

passenger satisfaction, as introduced later in the thesis. It is worth highlighting the few 

major limitations related to using NRPS data: 

1) While passengers report the origin and destination station they actually travelled 

between and satisfaction scores are supposed to be based on the specific leg of the 
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journey, it remains difficult to retrieve the whole journey in the cases where an 

interchange was needed and establish its potential impact on passenger responses. 

2) Linked to the previous point, passengers are asked to score their satisfaction with 

a specific service they travelled on. However, it remains difficult to know whether 

the passenger expected to travel on that service or was affected by some 

cancellations or delays that resulted in the need to travel on a different service, 

either later or earlier than initially anticipated. Moreover, it is not known if that 

could ultimately have an impact on the satisfaction score. 

3) Similarly, the timing of receiving a questionnaire and completing it may affect the 

results. Passengers filling in the questionnaire closer to the time of completing the 

journey may be more likely to have a better recollection of the journey. Similarly, 

any discontent related to being delayed or poor journey quality may be stronger, 

leading to more negative survey results. 

4) Due to the nature of survey approaches, the NRPS dataset is not necessarily 

representative of the delay distribution in the network, as the survey design has no 

control over the distribution of delays experienced by the respondents. However, 

using data from multiple survey waves makes the NRPS data more resilient to the 

potential impact of a one-off disruption on the other metrics. Moreover, the NRPS 

APL levels are in line with network performance estimates provided by ORR. 

5) Whilst the number of questions in the survey is relatively large, some of the 

questions suffer from a relatively low response. This is perhaps a secondary issue 

for the analysis conducted in this study. Nevertheless, it limits the ability to test 

the impacts of some of the more specific journey aspects on passenger satisfaction 

or has an impact on the statistical significance of the estimated results. 

6) While some differences between the reported and recorded delays are expected, 

there is a small proportion of passengers who failed to report very long delays. 

Whilst it is relatively rare, it may be a result of issues raised under points 1 and 2.  

7) The survey consists of a large number of questions, but it might further benefit 

from adding information about ticket prices and income that would potentially 

allow calculating metrics such as the value of time from satisfaction data.  

8) The nature of delay distribution in the network means that there are relatively few 

larger delays and it remains more difficult to study the impact of very long delays 

on passengers. This is further impacted by the larger probability of data errors in 
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such responses. In the case of this study, however, the main focus is on 

investigating the impacts of smaller delays. 

While the issues highlighted above are worth noting, it is believed that their impact on the 

modelling undertaken in this study is relatively modest. Nevertheless, some of the 

highlighted issues may be useful for researchers designing similar surveys in the future. 

The choice of variables was carefully described while highlighting the differences between 

using overall journey satisfaction and satisfaction with punctuality as the key dependent 

variables. In principle, the main difference between satisfaction with punctuality and 

overall journey satisfaction is the need to control the latter for satisfaction with different 

aspects of journey, as delay length is likely to be one of the key, but not the only aspect 

determining overall journey satisfaction. Whilst there is a large number of variables 

specifically treating satisfaction with different aspects of the journey, these are often highly 

correlated and characterised by a low response rate what can become problematic as the 

modelling strategy effectively discards the responses with missing data.  

The final dataset used in the analysis presented in the remaining chapters of the thesis 

consists of 147,014 responses. The summary of the process of data cleaning is shown in 

Table 22. While the reduction in the number of responses is sizeable, it still allows for 

investigating the impacts of delays on a large number of passengers, while reducing the 

scope for error and improving homogeneity among the studied segments of passengers.  

Table 22 Data cleaning and processing steps 

Data cleaning step Number of 

responses 

NRPS full sample 274,862 

Responses with a satisfaction score 263,163 

Operational data matched 242,311 

Delay lengths limit of 30 minutes 240,093 

Maximum difference between stated and reported delay 

within 30 minutes 

237,965 

Excluded if a delay reported but not matched 224,632 

Demand and ticket type segmentation 147,014 

 

The previous chapters provided the motivation behind the thesis, also describing the data 

used in the remaining chapters that will focus on estimating econometric models of delay 

perception and satisfaction.  
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Chapter 6  

Rail delays and travellers’ perception of being delayed 

6.1. Introduction 

Transport researchers are often interested in the impact that delays have on passengers and, 

ultimately, demand and operator revenues. The key aim of a large number of transport 

infrastructure projects is to reduce travel times with travel time savings being often 

quantified as the largest benefits of many such investments (for research on the value of 

time see Mackie et al., 2003; Batley et al., 2019; Schmid et al., 2021). At the same time, a 

minute of delay has a larger negative impact on travellers and is typically valued at around 

3 minutes of scheduled journey time (see Preston et al., 2009; Wardman and Batley, 2014; 

Wardman and Batley, 2022 for reviews on lateness valuation).  

When choosing a service to travel on, passengers consider the scheduled arrival time of 

the services with respect to their preferred arrival time. As noted by Preston et al. (2009), 

explained in more detail in Batley (2007) and discussed in Chapter 2, passengers typically 

also include a safety buffer to their travel schedules that works as a time insurance against 

any possible disruptions and aims to increase the probability of arriving to the destination 

within passenger’s preferred arrival time. The amount of buffer time depends on 

expectations, sensitivity to potential lateness, and personal characteristics of a passenger.  

While intuition suggests that performance affects levels of demand, passengers are not 

always able to change their travel behaviour following late running, at least in the short 

term (Batley et al., 2011). This means that while delays may have a negative impact on 

passengers, performance may not always be immediately linked to demand and an 

alternative way to study the delay impacts on passengers is to look at the relationship 

between delays and journey satisfaction. Several studies have looked at the impact of 

different aspects of the journey on travel satisfaction (for reviews see De Vos et al., 2013; 

De Oña and De Oña, 2015; Gao et al., 2018; Rong et al., 2022). Travel time, prices, journey 

comfort and provision of information are of paramount importance for travellers (Dziekan 

and Kottenhoff, 2007; Brons and Rietveld, 2009; St-Louis et al., 2014; Susilo and Cats, 

2014; Mouwen, 2015; De Oña et al., 2016; Abenoza et al., 2019; Monsuur et al., 2021).  

Previous research suggests that passengers delayed by over 30 minutes are very unlikely 

to be satisfied with their journeys (Wittmer and Laesser, 2010; Monsuur et al., 2021). 

Moreover, according to Monsuur et al. (2021), in the case of standing passengers, this 

threshold reduces to 10-20 minutes. Nevertheless, as noted by Transport Focus (2015), 

satisfaction levels tend to start dropping from the very first minute of late running. For  
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business and leisure travellers they decrease somewhat less rapidly until a threshold of 

respectively 5 and 8 minutes of lateness is reached.  

A large body of literature is devoted to the valuation of time changes, both in terms of 

reducing scheduled journey times and increasing punctuality and reliability (e.g. Mackie, 

et al., 2003; Preston et al., 2009; Batley and Ibáñez, 2012; Batley et al., 2019; Schmid et 

al., 2021). Mackie et al. (2003) and Daly et al. (2014) discussed the impacts of small time 

savings whereas Daly et al. (2014) noted that there is no consensus on the treatment of 

benefits arising from these small changes with differences in standard practices around the 

globe. As noted by Welch and Williams (1997), minor savings often account for a large 

proportion of the time benefits of transport projects. However, as suggested by Daly et al. 

(2014), it is likely that assuming a constant marginal value of time is wrong as passengers 

might not be able to notice the smaller journey time reductions. Though, Mackie et al. 

(2001) argued that even if passengers are not able to perceive these changes, they can still 

have economic benefits, similarly to the impacts from investment in road safety where 

changes in accident probabilities are not directly observed or noticed by the road users. 

Analogously, smaller delays that do not necessarily affect passenger satisfaction, or even 

remain unperceived, are not necessarily unimportant. Increased understanding of the 

impacts of smaller delays can contribute to exploring any potential inherent non-linearities 

in the valuation of time. 

While previous research provides us with some understanding of how passenger 

satisfaction changes with delays, little is known about how passengers perceive delays and 

the effects that delay perception may have on satisfaction. Nielsen (2000) and Rezapour 

and Ferraro (2021) indicated that passenger perception of late running has an impact on 

travel behaviour and public transport suppliers can learn how to improve their services by 

investigating these impacts too.  

In principle, work conducted as part of this chapter draws on a number of previous studies 

examining the impacts of lateness on passengers (i.e. Batley, 2007; Preston et al., 2009; 

Monsuur et al., 2021) whilst responding to the suggestion in Wardman and Batley (2022) 

and Rong et al. (2022) that looking at the differences between perceptions of late time and 

recorded delay lengths can improve understanding of the impact that delays have on 

passengers. In this context, the perception of delay is thought of as an intermediate step 

linking the existence of delay (supply-side disruption) with the impacts on utility and 

ultimately demand (demand-side impact), since for delays to have an impact on travellers, 

they clearly need to be perceived.  
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The work conducted as part of this chapter uses data on rail passenger delay perception 

from 10 waves of a travel satisfaction survey (NRPS) conducted by Transport Focus in the 

United Kingdom. Passenger responses were matched to the operational data using the 

Historic Service Performance (HSP) database to allow comparison between passengers’ 

reports of late arrival and recorded delay lengths as described in Chapter 5. The 

investigation of delay perception is based on the analysis of: 

1) travellers’ ability to perceive delays (i.e. Q1 from Table 1) 

2) passengers’ misperception or rounding of reported delay lengths (i.e. Q2 from 

Table 1) and 

3) the impact of journey type, length, comfort as well as arrival versus departure 

delay on how delays are perceived (i.e. Q3 from Table 1) 

First, binary response models are estimated where passengers' ability to perceive a delay 

is explained by delay length (both at the departure and arrival) while also controlling for 

journey length, quality, and type. The additional controls act as hypothesis tests to 

investigate whether they have a significant impact on how delays are perceived. 

Subsequently, additional analysis is conducted to better understand the possible 

misperceptions of delay lengths. 

The remainder of this chapter is structured as follows: 

 Section 6.2 provides a review of literature covering human perception in a variety 

of fields to describe the main differences in the ways people perceive the same 

stimulus and methods used to validate perception. 

 Section 6.3 discusses the possible determinants of delay perception. 

 Section 6.4 summarises how the NRPS dataset can be applied to analysing delay 

perception and reports the results of the analysis, first looking at delay perception 

as a binary outcome (i.e. delay is perceived or not). 

 Section 6.5 investigates the possible reasons as to why delays were reported 

despite on-time performance.  

 Section 6.6 looks at the relationship between perceived and recorded delay 

lengths. 

 Section 6.7 provides a summary of findings and conclusions. 

6.2. Review of studies on human perception 

Human perception plays an important role in behaviour and decision-making. As noted by 

Manski (2004), Shepperd et al. (2013) and Lupyan (2017), the knowledge of survey 
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respondents may be partial, leading to discrepancies between self-reports or expectations 

and actual values. To better understand how the perception of delays differs from actual 

performance, a review of studies on human perception was conducted across different 

disciplines. There is an abundance of literature looking at human perception in different 

contexts, which differ with respect to how easy it is to observe and measure a stimulus and 

subsequently compare the perception to measured/observed values. Table 23 below 

provides a multidisciplinary perspective on human perception. 

Having reviewed research on human perception in various contexts, it is now of interest to 

discuss the likely differences and similarities to delay perception. Crime perception 

research offers some insights into the divergence between perception and reality, but 

unlike transport delays, the crime statistics are not directly experienced by those reporting 

safety concerns. On the other hand, pain perception is conceptually closer to transport 

delays as pain is, indeed, directly experienced. However, pain levels are subjective as 

significant heterogeneities in their reporting have been found across patients. This means, 

that unlike delays, which have an objective measure (time), providing an objective measure 

of pain is not always easy. Similarly, while the probability of catching a virus can be 

calculated, the risk itself is not directly experienced as the outcome here is binary – either 

becoming ill or not. Walkability and accessibility, despite being transport-related concepts, 

are also difficult to be objectively quantified, i.e. there is no single measure that can capture 

them, since using distance as a proxy is argued to be an oversimplification. In terms of 

measurability, a comparison of perceived and actual test performance is probably most 

similar to train delays. However, significant conceptual differences remain - in the case of 

delays, the outcome is binary as is in the case of catching a virus. Though, a delay may 

need to cross some threshold for passengers to be able to notice it (this might depend on 

lateness sensitivities or tolerance) and is conceptually more similar to pain perception, in 

the sense that the longer the delay, the larger the negative impact and, hence, the 

probability of perceiving it. 
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Table 23 Literature review of studies on human perception 

Measure Observability Perception References 

Crime rates Measurable, 

not directly 

observable 

Tendency to overestimate. 

Influenced by personal views, 

news, and word of mouth. 

Perception has a larger impact on 

behaviour than the crime rates. 

Subject to biases such as feeling 

that familiar areas are safer. 

Spicer et al., 2014; 

Lora, 2016; Vallejo 

Velazquez et al., 2020; 

Manning et al., 2022 

Probability 

of being 

caught 

committing 

a crime 

Measurable, 

not directly 

observable 

Perception of the probability of 

being captured after committing 

a crime affects crime rates. 

In an educational setting, the 

perceived risk of punishment has 

an impact on self-reported 

delinquency in students. 

Bailey et al., 1974; 

Jensen et al., 1978; 

Lochner, 2007 

Pain 

perception 

Pain is a 

stimulus, but 

not directly 

measurable or 

comparable 

Sense of touch is not the only 

one playing a role in 

experiencing pain. 

Pain reporting methods used in 

medical research and clinical 

applications include descriptive, 

verbal, numerical scales, and 

pain drawings. 

Personal characteristics have an 

impact on perception and 

reporting. 

Freyd, 1923; Budzynski 

et al., 1973; Margolis et 

al., 1986; Crombez et 

al., 2005; Haefeli and 

Elfering, 2006; Mancini 

et al., 2011; Verma et 

al., 2015; Cimpean and 

David, 2019; González-

Roldán et al., 2020; 

McIntyre et al., 2020 

Test 

performance 

Results are 

measurable, 

but observable 

after the 

performance is 

perceived 

Significant differences between 

perception and actual test 

performance. 

Overconfidence of those who 

performed poorly. 

Ehrlinger et al., 2008; 

Papamitsiou and 

Economides, 2014  

Risk of 

catching 

viral 

diseases 

Measurable, 

but difficult to 

calculate for 

all the 

activities 

Reported infection rates and 

crowding levels determine 

perceived risk levels and 

influence behaviour. 

Lau et al., 2003; Boes 

and Winkelmann, 2006; 

Schneider et al., 2021; 

Lewis and Duch, 2021; 

Shelat et al., 2022; 

Cipolletta et al., 2022 

Accessibility 

and 

walkability 

Measurable, 

but no single 

metric able to 

describe it 

Calculated measures can only 

serve as a proxy for perceived 

accessibility. 

Saelens et al., 2003; 

Frank et al., 2010; 

Lättman et al., 2016; 

Tiznado-Aitken et al., 

2020; Pot et al., 2021; 

De Vos et al., 2023 
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In transport, there has been very limited research concerning travellers' perceptions, 

especially in the context of delays. A large number of studies looked at the impact of 

various aspects of the journey on traveller satisfaction (e.g. Brons and Rietveld, 2009; De 

Vos et al., 2013; Susilo and Cats, 2014; Cats et al., 2015; Mouwen, 2015; De Oña and De 

Oña, 2015; De Oña et al., 2016; Machado-León et al., 2017; Gao et al., 2018; Obsie et al., 

2020; Monsuur et al., 2021; Rong et al., 2022). However, in most cases, it is difficult to 

validate perception with a quantifiable service quality measure (Eboli and Mazzulla, 

2021). For example, satisfaction with seat comfort may depend on the type of seat, but the 

type of seat is a categorical variable and it cannot be immediately expressed by a numeric 

value, as is the case with time or money. On the other hand, delays have an objective 

quantifiable measure - time. In this sense, validating the perception of delays can help 

understand the relationship between the objective delay (actual performance), subjective 

delay (perception) as shown in Figure 30, and subsequently travel satisfaction (utility) or 

demand. 

 

Figure 30 Objective and subjective delays 

Whilst investigating the impacts of delays on passenger satisfaction, most studies typically 

focus on the relationship between perceived lateness and journey satisfaction. As 

suggested by Friman and Fellesson (2009), objective (actual) performance does not always 

perfectly explain passenger satisfaction. However, as noted by De Oña and De Oña (2015) 

and Eboli and Mazzulla (2021), objective performance indicators are more useful than the 

subjective ones as they are unbiased. As journey satisfaction data typically come from 

passenger surveys, the journey lengths and delays are rarely validated with operational 
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data. As argued by Nathanail (2008) and Rong et al., (2022), combining perceived delays 

with recorded delays can improve understanding of the impacts of lateness on passenger 

satisfaction. A few studies where this is explored include:  

 Higgins et al. (2018) looking at the relationship between satisfaction and duration 

of car commute combined with respondents’ perceptions of congestion levels in 

Canada. As suggested by this study, drivers who perceive congestion as a serious 

and frequent issue tend to be less satisfied with their travel times.  

 Carrel et al. (2016) matched transit passenger satisfaction data with smartphone 

location data from the San Francisco Travel Quality Study to relate satisfaction to 

unreliability levels and estimated a 69-percentage-point decrease in the proportion 

of satisfied bus passengers following a 10-minute delay.  

 Gao et al. (2018) estimated the impacts of differences between expected and 

experienced access, egress, and in-vehicle time on the satisfaction of public 

transport users in the Chinese city of Xi’an, suggesting that the gap between the 

two can better explain satisfaction levels than the absolute values.  

 Using data from the Greek rail national survey in combination with operational 

data, Nathanail (2008) compared performance and satisfaction levels and 

suggested that improvements in station and train facilities as well as developments 

of passenger information systems were of paramount importance for Greek 

railways at that time.  

 Rong et al. (2022) studied the relationship between actual and perceived 

performance and passenger satisfaction of bus users in the Chinese city of 

Shijiazhuang, concluding that actual travel time is not the most important factor 

influencing passengers’ perception of travel time. Instead, they suggested that the 

number of stops and stopping times are more important, arguing that these 

counter-intuitive results highlight passengers’ inability to perceive time 

accurately. The perception of travel time was suggested to be largely influenced 

by the negative emotions related to judgment impacted by stopping and speed. 

While there are inherent operational differences between buses and trains, this 

highlights the importance of factors other than arrival delay in determining 

perception of delays or their consequential satisfaction impacts. 

The review of the literature on the perception in very different contexts leads to 

formulation of the following hypotheses related to how delays may be perceived, given 

that delay has an objective and quantifiable measure, time: 
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1) It may be expected that the length of delay has to reach a certain threshold to be 

perceived. 

2) The outcome is binary – a delay is either perceived or not. However, the outcome 

will be continuous in the case of looking at the perception of delay lengths. 

3) The abundance of different biases affecting perception may also affect delay 

perception, e.g. travelling in comfortable versus crowded conditions may have an 

impact on the ability to perceive delays due to the negative emotions related to low 

journey comfort. 

The following section discusses the likely determinants of delay perception as it is noted 

that the length of delay is likely not the only factor affecting delay perception. 

6.3. Determinants of delay perception 

Before discussing the determinants of delay perception and the methodological approach, 

it is worth defining some key terms as shown in Figure 31 below: 

 Scheduled departure and arrival times are the scheduled times where the train was 

due to depart from the origin station and arrive at the destination with the 

difference between scheduled arrival time and scheduled departure time equalling 

to scheduled journey time. 

 Departure delay and arrival delay are the differences between actual and scheduled 

departure and arrival times with actual journey time being calculated as the 

difference between actual arrival at the destination and scheduled departure time. 

As generally suggested by the perception research, perception of a given stimulus or 

phenomenon is typically not only dependent on its intensity but also on personal 

characteristics or experiences. Conceptually, delay perception may be similar to pain 

perception where the research interest lies in understanding the pain levels (or thresholds) 

that start being noticeable by patients. In the case of delay perception where the focus is 

on understanding how the ability to perceive delays changes with increasing recorded 

delay lengths, this can be understood as determining the delay length where passengers 

start noticing that they arrived late. While the intuition suggests that the length of delay at 

arrival is the key motivator of delay perception, it is of interest to investigate if there are 

any other factors affecting how delays are perceived. 
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Figure 31 Definitions of delay and journey time 
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Whilst satisfaction effects are described in more detail in Chapter 7, it is worth highlighting the key 

findings from the literature on passenger satisfaction as journey aspects affecting satisfaction may, 

indeed, also affect delay perception. Nonetheless, the length of the experienced delay is expected to be 

the key determinant of delay perception with other factors expected to have an indirect (complementary) 

effect on how the experienced delays are perceived. These characteristics are assumed to only affect 

delay perception if the delay occurred, either increasing or decreasing the ability to perceive a given 

delay length. Figure 32 and the paragraphs below describe these expected complementary effects.  

 

 

Figure 32 Determinants of delay perception 

Personal characteristics 

In the case of pain, personal characteristics were suggested to play a very important role in how it is 

perceived. Passengers who are more sensitive to delays (i.e. commuters) may be more likely to perceive 

delays due to a larger focus on on-time arrival resulting from the inclusion of smaller buffer times and/or 

larger negative consequences of late arrival (i.e. being late for work) or better knowledge of timetables. 

Comfort 

Previous research also indicated the important role of journey comfort as increasingly, passengers try 

to find ways to use their travel time productively (either working or focusing on leisure activities) 

(Lyons and Urry, 2005; Lyons et al., 2007). Similarly, the valuation of journey time is typically higher 
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for passengers who travel in crowded conditions as compared to more comfortable settings. Seated 

passengers may use their travel time more productively, in turn, being less concerned with performance. 

Journey length 

It can be expected that passengers’ ability to perceive a delay may differ between shorter and longer 

journeys and is likely to decrease with journey length. Therefore, passengers who travel on shorter 

journeys may be more likely to notice a smaller difference in travel time as compared to passengers 

travelling on longer journeys. This may be related to the inclusion of different safety margins and a 

smaller delay already representing a large increase in journey time (as compared to longer journeys).  

Delay at departure 

While from the operational point of view, the main focus is on the length of delay at arrival (destination), 

it may be expected that from the passenger's point of view, the perception of performance is formed by 

personal beliefs, judgments and/or experiences. Previous research, particularly the work by Batley and 

Ibáñez (2012), found significant differences in the impact of departure versus arrival delays on 

passengers. It may be expected that a delay at boarding may distort delay perception due to the 

additional stress and discomfort related to uncertainty and waiting for a delayed train on platform. As 

passengers do not necessarily know the exact scheduled departure and arrival times (Rietveld, 2002), a 

large delay at departure may affect the perception of final performance.  

Delay information 

Similarly, related to personal beliefs or experiences, passengers’ ability to perceive a delay may also 

increase if real-time information is provided on-board or announcements about the delays are made to 

passengers at stations. 

The following sections describe the methodological approaches and report the results of the analysis. 

6.4. Binary outcome models of delay perception 

6.4.1. Data 

In investigating delay perception, the analysis introduced in this chapter employs the data from NRPS. 

Passenger responses recorded as part of ten NRPS survey waves between 2015 and 2020 were matched 

to operational data using the HSP database as described in section 5.2. This allowed computing 

scheduled journey length, actual journey length, and recorded delays (at departure and arrival) for each 

of the passengers taking part in the survey. The recorded delays were compared with passengers’ reports 

about their experience of delay (Figure 26). 

The introductory analysis of delay perception was presented in section 5.2.2 and highlighted that the 

proportion of travellers reporting being delayed in the sample increases with the length of recorded 
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delay. The subset of the data used in the main body of analysis corresponds to the dataset summarised 

in Table 21, but the analysis of delay perception generally focuses on the responses with a matched 

delay. However, smaller subsets of the dataset are used in the cases where some variables of interests 

were not included in all the analysed survey waves.  

The analysis conducted as part of this chapter looks at: 

 passengers’ general ability to perceive a delay (section 6.4), 

 reported delays when on-time performance was recorded (section 6.5) and 

 the perception of delay lengths (section 6.6).  

For the first two streams of analysis, binary outcome models of delay perception are estimated whilst 

the latter is explored through analysing correlations between reported and recorded delay lengths. 

The following section introduces the modelling approach undertaken to study passengers’ general 

ability to perceive a delay that represents the main stream of the analysis presented in this chapter. The 

alternative lines of investigation are presented in the relevant sections (6.5 and 6.6). 

6.4.2. Methodology 

With the aim of analysing the relationship between the recorded length of delay and passengers’ 

perception of being late, the aforementioned delay reports were converted to a binary response variable 

with a passenger either reporting late arrival or arriving on time: 

𝑌 = {
1 𝑖𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑙𝑎𝑡𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙         
0 𝑖𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑜𝑛 𝑡𝑖𝑚𝑒

 

( 8 ) 

To increase the understanding of the impact of delays on passengers, this work aims to investigate how 

the probability of reporting a delay changes with increasing delay lengths. This type of modelling 

requires the usage of binary outcome modelling methods. In this case, the modelling approach allows 

estimating the probability of a passenger reporting late arrival (i.e. 𝑌 = 1) versus arriving on time (i.e. 

𝑌 = 0) with the delay perception defined as: 

𝑃(𝑌 = 1) = 𝐹(𝛽𝑜 + 𝛽1𝑋1 + ⋯ + 𝛽𝑖𝑋𝑖) 

( 9 ) 

where 

𝐹 =
1

(1 + 𝑒−(𝛽𝑜+𝛽1𝑋1+⋯+𝛽𝑖𝑋𝑖))
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( 10 ) 

and Xi is an explanatory variable i, and βi is the corresponding parameter. 

If F is the cumulative normal distribution, then the binary response model is referred to as probit. If 

instead, it follows the logistic distribution, then the model is referred to as logit. Both distributions are 

symmetrical and the main difference is that the logistic distribution has longer tails (Horowitz and 

Savin, 2001).  

The binary outcome models were estimated using the logit model function in Stata 17 (StataCorp, 2021). 

The estimated model coefficients represent the rate of change in the log-odds as the estimated model 

has the following form: 

log (
𝑝

1 − 𝑝
) = 𝛽𝑜 + 𝛽1𝑋1 + ⋯ + 𝛽𝑖𝑋𝑖 

( 11 ) 

and  

𝑝 =
1

(1 + 𝑒−(𝛽𝑜+𝛽1𝑋1+⋯+𝛽𝑖𝑋𝑖))
 

( 12 ) 

The estimates can be indicative of the direction of the relationship and size but are relatively difficult 

to interpret directly. In addition to the estimated coefficients, estimated probabilities are shown 

graphically. Moreover, the delay length thresholds for the probability of perceiving a delay of 0.5 

(binary response cut-off where probability smaller than 0.5 is counted as 0 and probability of 0.5 or 

more is counted as 1) are compared for the different types of models estimated for comparison purposes, 

i.e.: 

0.5 =
1

(1 + 𝑒−(𝛽𝑜+𝛽1𝑋1+⋯+𝛽𝑖𝑋𝑖))
 

( 13 ) 

The so-called ‘delay thresholds’ are estimated using the model results as this presents a way to indicate 

a critical level needed to change the outcome, what is easily translated for policymaking. Moreover, 

this demonstrates a useful way of comparison between the different types of travellers as well as when 

contrasting the lengths of delays that are perceivable versus those that have a detrimental impact on 

delay satisfaction (as introduced in Chapter 7). This approach is used throughout the thesis and the 

forecasted thresholds are generally presented alongside the forecasted outcomes shown in plots that 
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depict the shape of the relationship in more detail. Average marginal effects are not generally reported 

due to the limited merit when comparing between the impacts of delays on delay perception and 

satisfaction. This is primarily driven by the fact that under the ‘no delay’ scenario, the probabilities of 

being satisfied are not necessarily equal to 0 what will be further discussed in Chapter 7. 

Four models were considered with delay perception explained by delay length at arrival in the initial 

model and extended models with inclusion of the additional variables as shown in Table 24. 

Table 24 Description of the estimated models 

Measure Variable Expected effect on 

delay perception 

(hypothesis tested) 

Model 

0 

Model 

1 

Model 

2 

Model 

3 

Delay at 

arrival  

Recorded length 

of arrival delay 

(LA) 

Positive 

 

X X X X 

Personal 

characteristics 

Journey purpose 

categorisation 

(JP) 

Commuters more likely 

to perceive delays 

 X X X 

Comfort Passengers’ 

reports about 

seat availability 

(Seat) 

Negative, seated 

passengers less likely to 

notice delays 

   X 

Journey 

length 

Scheduled 

journey time 

(SJT) 

Negative, long-distance 

travellers less likely to 

notice delays 

  X X 

Delay at 

departure 

Recorded length 

of delay at 

departure (LD) 

Positive, departure delay 

affecting perception of 

final performance 

   X 

Delay 

information 

Not represented  Positive, information 

increasing passengers’ 

focus on delays 

    

 

The initial model (model 0) has the following form with delay perception modelled as a function of 

arrival delay for responses where a delay at arrival was matched: 

log (
𝑝

1 − 𝑝
) = ∑(𝛽1 + 𝛽2 × 𝐿𝐴

+

𝑖=6

𝑖=1

) 

( 14 ) 

In model 1, model 0 is extended to allow for heterogeneity due to journey purpose, i.e.: 
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log (
𝑝

1 − 𝑝
) = ∑(𝐽𝑃𝑖 × 𝛽1,𝑖 + 𝐽𝑃𝑖 × 𝛽2,𝑖 × 𝐿𝐴,𝑖

+

𝑖=6

𝑖=1

) 

( 15 ) 

where: 

𝐽𝑃𝑖 is a journey purpose dummy variable for each of the 6 journey purposes that takes the value of 1 

when it matches the respondents’ journey purpose or 0 otherwise 

𝐿𝐴,𝑖
+  is the delay length at arrival which is defined as the difference between the actual and scheduled 

arrival for all cases where the difference is positive; when the difference is negative, such responses are 

treated as on-time arrival 

Model 2 aims to test the hypothesis that the marginal probability of perceiving a delay differs with 

journey lengths. An interaction term between scheduled journey length, arrival delay and journey 

purpose was introduced to the model. Testing how the impacts vary with journey purpose and lengths 

is in line with typical rail economics research (i.e. Batley and Ibáñez, 2012). However, journey length 

enters the model as a continuous, rather than categorical variable, which is often the case when flows 

are segmented into journey length categories in SP studies (i.e. Batley et al., 2019). In SP studies with 

just a few different flow types, it may not always be practical to use continuous variables due to the 

relatively few distinct values. Hence, the model takes the following form: 

log (
𝑝

1 − 𝑝
) = ∑(𝐽𝑃𝑖 × 𝛽1,𝑖 + 𝐽𝑃𝑖 × 𝛽2,𝑖 × 𝐿𝐴,𝑖

+

𝑖=6

𝑖=1

+ 𝐽𝑃𝑖 × 𝛽3,𝑖 × 𝐿𝐴,𝑖
+ × 𝑆𝐽𝑇𝑖) 

( 16 ) 

where: 

𝑆𝐽𝑇𝑖 is the scheduled journey time 

Model 3 extends the previous model by investigating the impacts of arrival versus departure delay as 

well as journey quality on delay perception. This is to represent the possible complementary nature of 

departure delay’s impact on the perception of arrival delay. This is done by introducing an interaction 

term between arrival and departure delay to the model. The arrival delay coefficients are also estimated 

separately for standing and seated passengers, with the seat dummy variable being a proxy for journey 

quality and taking the value of 1 if passenger was able to find a seat or 0 otherwise. As passengers' 

reports of seat availability were only available for 7 out of the 10 survey waves, the sample size used 

for model 3 is smaller than for the simpler models. This model takes the following form: 
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log (
𝑝

1 − 𝑝
) = ∑(𝐽𝑃𝑖 × 𝛽1,𝑖 + 𝑆𝑒𝑎𝑡𝑖 × 𝐽𝑃𝑖 × 𝛽2,𝑖 × 𝐿𝐴,𝑖

+

𝑖=6

𝑖=1

+ 𝑆𝑒𝑎𝑡𝑖 × 𝐽𝑃𝑖 × 𝛽3,𝑖 × 𝐿𝐴,𝑖
+ × 𝑆𝐽𝑇𝑖 + 𝐽𝑃𝑖

× 𝛽4,𝑖 × 𝐿𝐴,𝑖
+ × 𝐿𝐷,𝑖

+ ) 

( 17 ) 

where: 

𝑆𝑒𝑎𝑡𝑖 is a dummy variable that takes the value of 1 if passenger reported having a seat or 0 otherwise 

𝐿𝐷,𝑖
+  is the delay length at departure which is defined as the difference between the actual and scheduled 

departure. If a train departed before its scheduled departure time, this is counted as on time departure. 

Additional sensitivity analysis is introduced in Annex I. 

It is noted that the proposed models do not include all levels of interacted variables. This was done on 

purpose with the aim of only capturing the complementary nature of some of the explanatory variables. 

The main effect is then captured by the length of delay at arrival and if any other explanatory variables 

are introduced, they are introduced as an interaction between the length of delay at arrival and that 

variable. The explanatory variables included scheduled journey length, length of delay at departure and 

a dummy variable representing whether a passenger was seated or standing. For completeness, the fully 

specified models are also estimated (this applies to models 2 and 3) and compared to the proposed 

models. 

6.4.3. Results 

As noted in the previous sections, the ability to perceive a delay is modelled as a binary outcome based 

on respondents’ reports of late running. The probabilities of reporting a delay are estimated and the 

delay perception thresholds are predicted for increasing recorded lengths of delays for different types 

of journeys, also allowing investigation of the impact of journey quality, length and arrival versus 

departure delay on delay perception. The results of the simpler versions of the model are introduced 

first, followed by the extended version of the model (i.e. model 3) with more explanatory variables, 

with additional sensitivity analysis presented in Annex I. 

Initial models of delay perception 

This section reports the results of the binary outcome models of delay perception introduced earlier in 

section 6.4. The following models are introduced first with the results presented in Table 25: 

 Model 0 being the starting point of the analysis where delay perception is explained by the 

length of delay at arrival. 

 Model 1 that allows for heterogeneity due to different journey purposes. 
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 Model 2 investigating the complementary impact of scheduled journey length. 

 Model 2a that includes all levels of the interacted variables from model 2. 

In line with expectations, the arrival delay coefficients are positive and statistically significant in models 

0 and 1 as the probability of perceiving a delay increases with delay length. Introducing journey purpose 

segmentation (in model 1) improves R2 and a likelihood ratio test (Wilks, 1938) was run to determine 

the significance of the increase in the explanatory power, generally justifying the added complexity (LR 

test statistic of 2584.59, p-value of less than 0.0001). Figure 33 shows the predicted probabilities of 

reporting late running for each of the journey purposes and increasing delay lengths. The predicted 

delay length thresholds at 0.5 probability cut-off (p=0.5) suggest that commuters become more likely 

to perceive a delay after arriving around 4-5 minutes late. For other types of passengers, this delay 

threshold is between 8-11 minutes. On average, a minute of delay increases the probability of noticing 

it by around 0.025-0.03 for business travellers to London, 0.03-0.035 for leisure travellers, 0.035 for 

non-London business travellers, 0.04 for commuters to London and 0.045-0.055 for non-London 

commuters. It is worth highlighting, that for commuters, the probability of delay perception is suggested 

to reach almost 1 at delay lengths of 15 minutes. For the other travellers, the corresponding probability 

is around 0.75. This would suggest that commuters are more sensitive to delays, resulting from inclusion 

of shorter buffers around their PAT or the fact that commuter journeys are typically shorter (see Table 

21) and a smaller delay already represents a significant proportional change in journey time.  

   

Figure 33 Estimated probabilities of delay perception under model 1 from Table 25 
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Table 25 Estimated coefficients from the binary logit models of delay perception (models 0-2a) 

 (0) (1) (2) (2a) 

Constant -1.437*** -1.741*** -1.784*** -1.744*** 

 (-114.44) (-46.65) (-46.70) (-25.64) 

BnL  0.215*** 0.187** 0.357*** 

  (3.72) (3.15) (3.55) 

CL  0.714*** 0.730*** 0.695*** 

  (15.06) (15.07) (7.75) 

CnL  0.822*** 0.823*** 0.893*** 

  (15.62) (15.32) (9.29) 

LF  -0.0637 -0.0854 0.0355 

  (-1.25) (-1.63) (0.41) 

LR  -0.0148 -0.0463 0.252** 

  (-0.34) (-1.03) (3.22) 

Arrival delay     

BL 0.166*** 0.153*** 0.195*** 0.191*** 

 (86.22) (32.11) (23.63) (19.52) 

BnL  0.185*** 0.259*** 0.237*** 

  (26.92) (24.51) (19.43) 

CL  0.187*** 0.238*** 0.237*** 

  (33.28) (25.84) (20.95) 

CnL  0.225*** 0.305*** 0.290*** 

  (28.11) (24.90) (20.01) 

LF  0.185*** 0.241*** 0.225*** 

  (33.69) (31.07) (26.09) 

LR  0.171*** 

(55.70) 

0.239*** 

(47.80) 

0.208*** 

(36.44) 

Arrival delay x SJT     

BL   -0.000358*** -0.000316*** 

   (-6.50) (-3.93) 

BnL   -0.000726*** -0.000458*** 

   (-10.47) (-4.42) 

CL   -0.00122*** -0.00120*** 

   (-7.57) (-5.00) 

CnL   -0.00249*** -0.00194*** 

   (-9.59) (-5.08) 

LF   -0.000697*** -0.000419*** 

   (-11.24) (-4.47) 

LR   -0.000541*** -0.000213*** 

   (-18.74) (-5.00) 

SJT     

BL    -0.000492 

    (-0.72) 

BnL    -0.00285*** 

    (-3.50) 

CL    -0.000147 

    (-0.10) 

CnL    -0.00427 

    (-1.93) 

LF    -0.00326*** 

    (-4.00) 

LR    -0.00398*** 

    (-10.42) 

N 73050 73050 72884 72884 

LL -42557.5 -41265.2 -40772.8 -40699.0 

Pseudo R2 0.107 0.135 0.143 0.144 
Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; ^ difference between seated and non-seated coefficients being 

statistically significant; BL/BnL – Business London/non-London, CL/CnL – Commute London/non-London, LF/LR-Leisure Full/Reduced.  
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Model 2 extends model 1 by the addition of an interaction term between scheduled journey time and 

arrival delay to test the hypothesis that passengers travelling longer would need to be subjected to a 

lengthier delay to perceive it. The estimated coefficients are presented in Table 25 above (under model 

2). As expected, the probability of perceiving a delay is suggested to increase with increasing delay 

length. However, given the negative coefficients on the interaction between delay length and scheduled 

journey time, the probability of perceiving a delay is suggested to decrease with journey length. Figure 

34 below shows the predicted probabilities of perceiving a delay for all the journey purposes for 

increasing delays at the 10th and 90th percentile of scheduled journey time. This is to take into account 

the differing distribution of journey lengths. As the predicted probabilities show, typically for a longer 

journey, a longer delay is needed to achieve the same probability of delay perception. The delay 

perception thresholds where the predicted probability is 0.5 are shown in Figure 35 below for the 10th 

and 90th percentiles of scheduled journey lengths. Therefore, the change in the journey length from the 

10th to 90th percentile increases the delay length threshold required for a passenger to be more likely to 

perceive a delay. The difference between the delay length thresholds for journeys at the 10th and 90th 

percentile of journey length is smallest for commuters (1.7 minutes) followed by business travellers to 

London (3.2 minutes), leisure travellers on the full fare (3.5 minutes), non-London business travellers 

(4.6 minutes) and leisure travellers on reduced fares (4.7 minutes). However, both the estimated 

thresholds and scheduled journey lengths differ between the demand segments. It can be seen that at 

the 10th percentile of scheduled journey length, the delay length thresholds show considerable variation 

while scheduled journey lengths are similar, as the delay length threshold is the lowest for non-London 

commuters at 3.4 minutes for a journey time of 22.5 minutes compared to 9.6 minutes for a journey 

time of 22 minutes for business travellers to London. For the longer journeys, the change in the delay 

thresholds seems to be driven by scheduled journey lengths rather than journey purpose. Overall, model 

2 would suggest that some of the differences estimated in model 1 are, in fact, partly explained by the 

inherent differences in journey lengths between the different passenger categories. 

Model 2a expands the previous specification (of model 2) by incorporating scheduled journey length 

on its own (in addition to its interaction with delay length). However, as shown in more detail in Annex 

II (section A), there are no significant differences between the results of the two estimated models. 

While it is generally standard practice to include all levels of the interacted variables, the main interest 

here is on the impact that arrival delay has on the perception delay and the complementary nature of 

scheduled journey time. Conceptually, scheduled journey time itself should not impact the probability 

of perceiving a delay independently of delay. If it does affect it directly (i.e. as allowed in model 2a), 

then this could be considered to be an irrational response, unless this demonstrates the impacts of the 

expectations about delays on different journey types. Hence, the preferred model in this case remains 

model 2. 
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Figure 34 Estimated probabilities of delay perception under Model 2 from Table 25 

 

Figure 35 Estimated delay thresholds for p=0.5 and 10th and 90th percentile of SJT 

Extended models of delay perception 

Subsequently, the delay perception is expected to be additionally impacted by journey comfort, onboard 

announcements or length of delay at departure as: 

1) passengers may be more likely to notice a delay when journey comfort is worse, 
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2) passengers waiting for a delayed train at departure may be more likely to perceive a delay than 

passengers who were delayed while being on-board or 

3) on-board and platform announcements may influence passengers’ perception (though this is not 

explored as part of this analysis due to lack of data). 

Against this background, model 3 extends model 2 by estimating the coefficients separately for 

passengers who reported being seated and standing with results reported in Table 26. Additionally, an 

interaction between arrival and departure delay is added to represent the impact of the length of delay 

at the departure on delay perception for a given length of arrival (destination) delay. Not including all 

levels of interacted variables in model 3 is deliberate, aiming to focus on testing the complementary 

effects of the additional explanatory variables to the main effect of the length of arrival delay on delay 

perception. However, for completeness and to allow comparison, model 3 is also re-estimated with 

inclusion of all levels of interacted variables (model 3a in Table 26). 

Model 3 includes a larger number of explanatory variables, but due to data limitations, the sample size 

is reduced when compared to the previous models. Hence, assessing whether the more complex model 

significantly improves the fit using a likelihood ratio test (Wilks, 1938) is complicated. However, such 

a test was run following re-estimation of model 1 with the sample corresponding to that used in 

estimating model 3 (results not reported). The LR test statistic of 2066.20 was computed with a p-value 

of less than 0.0001, justifying the added complexity.  

In summary, under model 3 (as reported in Table 26): 

1) Arrival delay coefficients are positive and significant for all journey purposes and in both seat 

and no-seat scenarios, though typically larger for non-seated passengers (with not statistically 

significant difference for business travellers). 

2) The impact of scheduled journey length is generally negative (though insignificant for 

commuters and business travellers to London). 

3) Discerning the complementary effect of having a seat on how journey length affects delay 

perception is more challenging, given that the probability of perceiving a delay increases in a 

different way for seated and non-seated passengers. Hence, a reduction in the probability of 

perceiving a delay due to increasing journey length for seated and standing passengers is from 

a different level. 

4) The impact of departure delay is significant and positive, meaning that for a given length of 

arrival delay, the probability of perceiving a delay is larger if the train also departs late. 
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Table 26 Estimated coefficients from the binary logit model of delay perception (model 3 and 

model 3a with all levels of interacted variables) 

 (3) (3a) 

Constant -1.666*** -1.773*** 

 (-34.68) (-4.09) 

BnL 0.338*** 0.336 

 (4.60) (0.65) 

CL 0.783*** 0.433 

 (12.71) (0.95) 

CnL 0.966*** 0.843 

 (13.91) (1.80) 

LF 0.00961 0.213 

 (0.14) (0.44) 

LR 0.0416 0.312 

 (0.75) (0.67) 

Seat=1   

BL  -0.488 

  (-1.11) 

BnL  -0.528 

  (-1.77) 

CL  -0.462** 

  (-2.75) 

CnL  -0.416* 

  (-2.15) 

LF  -0.810*** 

  (-3.72) 

LR  -0.730*** 

(-4.00) 

Arrival delay (Seat=0)   

BL 0.150** 0.0941 

 (2.76) (1.41) 

BnL 0.192*** 0.110** 

 (4.99) (2.78) 

CL 0.229*** 0.140*** 

 (8.55) (4.60) 

CnL 0.336*** 0.132*** 

 (10.32) (3.48) 

LF 0.290*** 0.125*** 

 (9.84) (3.41) 

LR 0.247*** 

(10.83) 

0.126*** 

(5.38) 

Arrival delay (Seat=1)   

BL 0.120*** 0.161*** 

 (9.94) (11.21) 

BnL 0.145*** 0.152*** 

 (9.16) (9.03) 

CL 0.115*** 0.159*** 

 (7.61) (9.25) 

CnL 0.189*** 0.116*** 

 (8.83) (5.74) 

LF 0.152*** 0.151*** 

 (11.96) (11.83) 

LR 0.144*** 

(19.86) 

0.159*** 

(20.39) 

Arrival delay x SJT (Seat=0) 
BL 0.000512 0.00112 

 (0.86) (1.24) 
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BnL -0.000738* 0.0000925 

 (-2.33) (0.22) 

CL -0.0000537 0.000278 

 (-0.07) (0.31) 

CnL -0.00392*** -0.00174 

 (-4.37) (-1.47) 

LF -0.000933** 0.000474 

 (-3.15) (0.88) 

LR -0.000727*** -0.000102 

 (-4.05) (-0.51) 

Arrival delay x SJT (Seat=1) 
BL -0.0000924 -0.0000512 

 (-1.22) (-0.46) 

BnL -0.000489*** -0.0000159 

 (-5.19) (-0.12) 

CL -0.000152 -0.000223 

 (-0.61) (-0.66) 

CnL -0.00168*** 0.000307 

 (-4.80) (0.70) 

LF -0.000482*** 0.0000929 

 (-5.51) (0.77) 

LR -0.000298*** 0.0000536 

 (-7.55) (0.99) 

 

SJT (Seat=0) 

  

BL  -0.00129 

  (-0.21) 

BnL  -0.00435 

  (-0.95) 

CL  0.0129** 

  (2.71) 

CnL  0.00851 

  (1.31) 

LF  -0.00601 

  (-1.45) 

LR  -0.00142 

  (-0.62) 

SJT (Seat=1)   

BL  0.0000570 

  (0.06) 

BnL  -0.00302** 

  (-2.83) 

CL  0.00627** 

  (2.94) 

CnL  -0.00507 

  (-1.68) 

LF  -0.00284** 

  (-2.62) 

LR  -0.00255*** 

  (-5.30) 

Departure delay   

BL  0.465*** 

  (23.27) 

BnL  0.461*** 

  (22.28) 

CL  0.454*** 

  (27.05) 

CnL  0.450*** 

  (24.11) 
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LF  0.466*** 

  (28.99) 

LR  0.453*** 

  (42.84) 

Departure delay x arrival delay 
BL 0.0204*** -0.0170*** 

 (13.27) (-14.23) 

BnL 0.0153*** -0.0166*** 

 (9.62) (-14.85) 

CL 0.0119*** -0.0186*** 

 (8.64) (-19.98) 

CnL 0.00792*** -0.0167*** 

 (4.94) (-17.55) 

LF 0.0106*** -0.0183*** 

 (9.56) (-21.14) 

LR 0.0147*** -0.0167*** 

 (19.54) (-29.23) 

N 48793 48793 

LL -26973.4 -24095.8 

Pseudo R2 0.167 0.256 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

BL/BnL – Business London/non-London, CL/CnL – Commute London/non-London, LF/LR-Leisure 

Full/Reduced; SJT: scheduled journey time, Seat=0 represents a standing passenger 

 

The predicted probabilities are shown below in Figure 36-Figure 38 for each of the journey purposes 

under the scenarios where passengers did or did not have a seat, for the 10th and 90th percentile of 

journey length and the departure delay of respectively 0 and 15 minutes. The complexity introduced by 

the multiple interactions between numerous variables makes the direct comparisons complicated. 

However, it can be seen that generally, the predicted probabilities of perceiving a delay are always 

highest for a given length of delay at arrival if the passenger was standing, the train departed late and 

the journey was relatively short. This is also demonstrated by the estimated delay length thresholds at 

the p=0.5 in Figure 39 below. Looking at the shorter journeys with a large departure delay and in the 

case when the passenger was standing, the estimated thresholds are between 2.0 minutes for non-

London commuters to 3.9 minutes for leisure travellers on full fare. On the other hand, the estimated 

thresholds are the largest for the longer journeys with no delay at the departure and when the passenger 

was able to find a seat, between 6.4 minutes for non-London commuters to 19.9 minutes for non-London 

business travellers. This would be indicative of the impact that both journey quality, length and delay 

at departure can have on the perception of arrival delay, also suggesting that the impact of these travel 

attributes is much smaller on the commuters.  
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Figure 36 Estimated probabilities of delay perception for model 3 for business 

London (top) and non-London (bottom) under the ‘no seat’ (left) and ‘seat’ scenario 

(right) 
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Figure 37 Estimated probabilities of delay perception for model 3 for commute 

London (top) and non-London (bottom) under the ‘no seat’ (left) and ‘seat’ scenario 

(right) 
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Figure 38 Estimated probabilities of delay perception for model 3 for leisure full 

(top) and reduced (bottom) under the ‘no seat’ (left) and ‘seat’ scenario (right) 
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Figure 39 Estimated delay length thresholds for p=0.5 for different journey quality, 

SJT, and departure delay scenarios (based on model 3) 

Considering the complexity of the modelling approach and the number of continuous 

variables and interactions between them, the summary below aims to highlight the key 

conclusions regarding the impact of each of the variables on the delay perception of 

different types of travellers. 

Business and leisure 

The probability of perceiving an arrival delay by business and leisure travellers typically 

largely increases with the length of departure delay. As the departure delay increases, the 

equivalent delay at arrival required to reach 0.5 probability of delay perception decreases 

by up to 15 minutes, depending on journey length and seat availability. This also suggests 

that all these attributes have a large and complementary effect on the delay perception. 

Travellers on longer journeys may incorporate larger safety buffers to increase the 

probability of arriving to the destination before their scheduled activity (i.e. meeting or 

leisure activity) starts and, thus are not as sensitive to the smaller delays. Moreover, seated 

travellers are also more likely to use their travel time productively (i.e. on work or leisure 

activities) which can reduce their focus on on-time versus late arrival. 
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Commute 

Commuters’ perception of arrival delay is much less likely to be impacted by factors such 

as journey quality or length. However, the probability of perceiving a delay generally 

decreases if a traveller is seated and for longer journeys, and increases with length of delay 

at departure. Nevertheless, these impacts are typically less pronounced for commuters. 

Comparing with other travellers, for a given length of delay (all else being equal), 

commuters’ probability of perceiving a delay is typically larger than for the other 

passengers, but commuter journeys are usually also relatively short. To reach a 0.5 

probability of perceiving a delay, typically an arrival delay of 2-8 minutes is needed. This 

threshold decreases with increasing length of delay at departure. Having a seat has a 

significant and negative impact on the delay perception of London commuters. Non-

London commuters’ perception of delays is less affected by journey quality and departure 

delay. This could be a result of the differences in the safety buffers included in their 

journeys or differences in service offering that may be characteristic for non-London 

services (i.e. lower frequency of departures, meaning that any possible disruption has a 

larger impact on their journeys). 

It is highlighted that the comparison between the proposed model (model 3) and the fully 

specified model (model 3a) that includes all levels of interacted variables is complex due 

to the large number of interactions included. In the case of model 3a, some of the estimated 

coefficients do not have the expected sign (e.g. the coefficient on the interaction between 

arrival and departure delay is negative) or signs differ between journey purposes (e.g. the 

coefficients on scheduled journey lengths). While it is expected that the magnitude of the 

impact may differ between passengers, the direction of the relationship is expected to be 

uniform across all journey purposes and generally in line with the relationships estimated 

by model 3. The complication of this is clearly visible in Annex II in Figure 68. When 

looking at the plotted estimated probabilities of delay perception, it is clear that model 3a 

(estimated with inclusion of all levels of the interacted variables) fails to correctly predict 

the direction of the studied relationship. The estimated probability of perceiving a delay is 

suggested to decrease with increasing levels of delay at arrival at larger values of delay at 

departure. Moreover, in this case, the average marginal effects also suggest that the impact 

of a minute of delay at departure is larger than the impact of a minute of delay at arrival. 

This is expected to be due to the presence of multicollinearity in the model with all levels 

of interacted variables included. The variance inflation factor (Marquardt, 1970) for model 

3a was calculated to be 46.6 as compared to 3.9 for model 3 in its original form, suggesting 

that the model with all levels of the estimated variables suffers from high level of 
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multicollinearity. Given this, the more parsimonious model (i.e. model 3) which also yields 

interpretable and plausible results remains the preferred model.  

Model performance 

The estimated models have McFadden’s R2 (McFadden, 1974) of around 0.1-0.2 what is 

of a similar magnitude to the values reported for the ordered logit models of journey 

satisfaction in Monsuur et al. (2021) which also used NRPS data. It is clear that while a 

meaningful relationship between the variables is found in the data and statistically 

significant estimates can be computed, the model overall is not able to capture a very large 

proportion of the variance in the data. 

To investigate model performance, the estimated models were used to predict the outcomes 

(i.e. reports of delay perception) for the respondents in the samples. As summarised in 

Table 27, all the models correctly predict over 70% of responses with model 3 performing 

best (correct prediction rate of 73.41%). While determining whether model performance 

is satisfactory may depend on the context of the study, in this case, for almost 3 in 4 

travellers, the model correctly predicts their ability to perceive a delay. There are two 

additional measures that are typically reported when commenting on model performance 

(e.g. Harris, 2021): 

1) Sensitivity, defined as the ratio of correctly predicted positive outcomes (delay 

reports) to all positive outcomes. This ratio is also highest for model 3, at 77.77%. 

2) Specificity, defined as the ratio of correctly predicted negative outcomes (on-time 

arrival reports) to all negative outcomes. This ratio is highest for model 2, at 

72.72% with minimal differences between the models. 

Additionally, it was investigated what the minimal predicted perceived and maximum 

predicted unperceived delay lengths are for each of the estimated models. In the dataset, 

there are both cases where a minimum delay length of 1 minute is perceived and the 

maximum delay length of 30 minutes is unperceived. In the case of the estimated models, 

it is noted that some heterogeneity in the perception of delays is expected that needs to be 

controlled for, as is done by the inclusion of additional variables in models 2 and 3. Model 

1 is less capable of predicting the heterogeneities in the delay perception reports. Models 

2 and 3 are able to better capture the additional effects of journey length and quality as 

well as delay at departure what, in many cases, explains why smaller delays are perceived 

or larger delays remain unperceived. However, there remains a sizeable proportion of 

perceived delays that were predicted to be unperceived. In the dataset, around 35-37% of 

respondents reported a delay whereas the proportion of predicted perceived delays is at 18-
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20%. Sensitivity analysis (Annex I) tries to investigate whether the reasons for some wrong 

predictions may be attributed to data inaccuracies or heterogeneity in travellers.  

Table 27 Model performance 

Delay reported Predicted Model 1 Model 2 Model 3 

Yes Yes 12.95% 13.93% 15.81% 

Yes No 22.93% 21.95% 22.08% 

No Yes 5.39% 5.61% 4.52% 

No No 58.73% 58.51% 57.6% 

Total correct predictions 71.68% 72.44% 73.41% 

Total reported late (data) 35.88% 35.88% 37.89% 

Total predicted reporting late 18.34% 19.54% 20.33% 

Sensitivity (true positives to all positives) 70.61% 71.29% 77.77% 

Specificity (true negatives to all negatives) 71.92% 72.72% 72.29% 

Minimum delay predicted perceived 5 3 2 

Maximum delay predicted unperceived 11 30 30 

 

6.4.4. Summary 

This section introduced the concept of delay perception by examining how travellers’ 

probability of perceiving a delay changes with: 

 increasing delays at arrival and departure, 

 passengers being seated or standing, 

 journey length and  

 journey purpose. 

In line with the expectations, the following effects have been suggested: 

 The probability of perceiving a delay increases with increasing length of delay at 

arrival. 

 For any given length of delay at arrival, the probability of perceiving it also 

increases with increasing delay at departure. 

 For any given scenario, it can be expected that travellers are more likely to 

perceive a delay if they are standing (e.g. travel in crowded conditions). 

 Typically, the length of the journey contributes to a lower chance of perceiving a 

delay. 
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 Journey type was indicated to have a strong effect on delay perception as typically, 

commuters’ probability of perceiving the same level of delay is larger. 

Whilst some of the estimated results are, in fact, intuitive, studying delay perception may 

provide an explanation for differing impacts of delays on different types of travellers as 

well as explain the possible non-linearities in the delay impacts, which can be a result of 

the suggested relationships. Before proceeding to discuss these as part of the remaining 

chapters, the following sections will introduce the additional approaches to studying delay 

perception, by looking at: 

 passengers reporting being delayed when no delay was matched and  

 differences in the reported and recorded delay lengths 

6.5. Delay perception when no delay is recorded 

The previous section investigated how the probability of perceiving a delay changes with 

increasing levels of recorded delays. However, as described in section 5.2.2, in 5.8% of 

responses, a traveller reported arriving late, but no delay was recorded at the destination 

station. 

The main limitation of the NRPS dataset is the inability to define the exact journey that 

passenger was planning and expecting to make as compared to their actual experience. 

This means that while the information provided by passengers regarding their origin, 

destination and services used is useful as it allows matching passenger to a specific service 

they travelled on, it is impossible to verify whether the actual journey was the same as the 

planned one. Moreover, in the case of cancellations and multi-leg journeys, there is a 

possibility that passenger responses reflect on the whole journey rather than a specific 

journey leg, which can lead to some reporting inaccuracies. 

Due to these reasons, the responses where despite on-time performance being matched, a 

passenger reported late arrival, were removed from the dataset as noted in section 5.5. 

However, some additional analysis may be conducted to understand whether these reports 

could have been impacted by the delay at departure that was possibly later recovered (as 

no delay was recorded at arrival). Delay at departure may affect judgment and, therefore, 

there is a possibility that passengers arriving to their destination on time may perceive 

journeys as delayed due to late departure. 

On average, a departure delay of 0.38 minutes (95% confidence interval range of 0.376-

0.390) was registered for the responses where passengers reported on-time arrival as 

compared to 1.46 minutes (95% confidence interval range of 1.412-1.501) for the 

responses where passengers reported late arrival. The difference between the reported 
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means is statistically significant (p=0.000). Moreover, Table 28 summarises the 

distribution of recorded lengths of delay at departure for responses where no delay at 

arrival was matched and passenger either reported arriving on-time or late. In the former 

case, over 3 in 4 respondents who reported on-time arrival did not experience a delay at 

neither departure nor arrival. In the latter case, when passengers reported late arrival, but 

no arrival delay was matched, 1 in 2 respondents were matched a delay at departure with 

almost 15% of responses being characterised by a departure delay of over 4 minutes. This 

provides some indication that departure delay may also affect delay perception in the cases 

where the train arrives to the destination as scheduled. While the difference in the average 

departure delay may provide some explanation for this phenomenon, it would indicate that 

the thresholds of departure delay perception are smaller than in the case of the previously 

modelled delay perception for the responses affected by arrival delays. A simple logit 

model was run to investigate this further. This model imitates model 1 from Table 25, but 

the outcome variable now refers to delay reports in the case of no recorded arrival delay. 

Moreover, the delay perception is explained by the length of delay at departure, rather than 

at arrival (results presented in Table 29). 

In all the cases, the departure delay coefficients are positive and significant, indicating on 

the departure delay affecting travellers’ judgment and increasing the likelihood of 

perceiving a delay even if the train arrives to the destination as scheduled. The model 

predicts the outcome correctly in almost 80% of responses, though it better predicts the 

outcome for passengers who did not report a delay in this case (95.3% correct) as compared 

to passengers who did report a delay (21.7% correct). This might indicate on the existence 

of some additional reasons (likely data errors) why passengers who did not experience a 

delay at arrival reported otherwise as departure delay may be one of the explanations, but 

likely not the only one.  

Table 28 Distribution of recorded departure delays for passengers who reported on-

time or late arrival 

Recorded delay length at 

departure 

Proportion of passengers 

who reported on-time 

arrival when no arrival 

delay was matched 

Proportion of passengers 

who reported late arrival 

when no arrival delay 

was matched 

0 76.84% 48.17% 

1-3 21.69% 37.53% 

4-6 1.30% 11.08% 

>6 0.17% 3.22% 
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Table 29 Logit estimates of delay perception where delay is recorded at departure, 

but not at arrival 

 (1) 

Constant -2.657*** 

 (-23.98) 

BnL 0.173 

 (1.05) 

CL 0.898*** 

 (6.71) 

CnL 1.074*** 

 (7.21) 

LF 0.0853 

 (0.61) 

LR -0.123 

 (-0.97) 

Departure delay  

BL 0.587*** 

 (14.83) 

BnL 0.505*** 

 (12.32) 

CL 0.608*** 

 (16.47) 

CnL 0.506*** 

 (9.89) 

LF 0.439*** 

 (14.39) 

LR 0.528*** 

 (25.89) 

N 19130 

Log-likelihood -8880.8 

Pseudo R2 0.126 

% correct 79.76% 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

BL/BnL – Business London/non-London, CL/CnL – Commute London/non-London, LF/LR-

Leisure Full/Reduced 

 

Having investigated travellers’ ability to perceive a delay, the interest now lies in 

understanding how accurately the respondents reported the lengths of delays they 

experienced which will be investigated in the following section. 

6.6. (Mis)perception of delay lengths 

Previous sections were concerned with explaining the reasons why: 

1) delays are/are not perceived in the cases when delay is recorded (section 6.4) or  

2) why they might be perceived despite no delay being recorded (section 6.5). 

It may be expected that travellers can not only misperceive the fact of delay occurring but 

also its length. The focus of the analysis is on the subset of the dataset with travellers who 

reported late running and were also matched a delay and only the first three survey waves 

where passengers needed to state experienced delay length in minutes, instead of choosing 

the delay length categories (as discussed in section 5.3). The analysis was conducted for 
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responses where the recorded arrival delay was up to 30 minutes and passengers reported 

that they were delayed by up to 60 minutes, only for passengers who reported not changing 

trains (to improve accuracy). The methodology is based on analysing the distribution and 

summary statistics for the reported and recorded delay lengths with no additional 

econometric models introduced. 

Generally, there could be two possible reasons for the existence of differences between 

reported and recorded lengths of delays, related to delay perception or rounding errors. 

There is a large body of research investigating rounding of survey responses (e.g. Manski 

and Molinari, 2010; Giustinelli et al., 2019). For example, in the case of responses reported 

on a 1-100 scale, values that are not multiples of 5 occur relatively infrequently (Giustinelli 

et al., 2019). In transport, as noted by Rietveld (2001), Sato and Maruyama (2020) and 

Sanko and Iriguchi (2022), rounding errors are often present in travel surveys as 

respondents round their departure and arrival times to the nearest multiples of 5, 10, 15, 

30 and 60 minutes. As noted by Rietveld (2001), the departure times are more likely to be 

rounded than arrival times, what can be a result of a larger penalty for late arrival due to 

fixed schedules. In the case of the national transport survey from the Netherlands (Rietveld, 

2002), only up to 15% of reported times were not multiples of 5, suggesting that rounding 

is a very common phenomenon in travel surveys. As suggested by Rietveld (2001), this 

highlights the potential for biases and errors in using reported travel time data from 

surveys.  

Table 30 and Table 31 below provide a summary of respectively average reported delay 

length for every possible value of recorded delay and average recorded delay length for 

every possible value of reported delay with the distribution of reported delay lengths 

presented in a histogram in Figure 40.  
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Table 30 Summary of reported delay lengths for each of the recorded delay lengths 

 Reported delay length (minutes) 

Recorded 

delay 

Mean Max Min SD Median N 

1 8.87 60 1 9.14 5 745 

2 7.84 60 1 8.50 5 710 

3 8.63 60 1 9.48 5 647 

4 8.26 60 1 7.69 5 628 

5 8.27 60 1 8.14 6 557 

6 9.13 60 1 7.36 7 399 

7 9.86 58 1 7.31 8 366 

8 10.05 45 2 6.75 9.5 346 

9 10.49 60 1 7.68 10 276 

10 12.89 60 2 9.50 10 213 

11 12.25 60 1 7.42 10 181 

12 12.78 60 1 7.37 10 175 

13 13.40 50 1 6.68 12 129 

14 14.97 50 1 7.56 15 134 

15 14.21 30 1 5.59 15 107 

 

Table 31 Summary of recorded delay lengths for each of the reported delay lengths 

 Recorded delay length (minutes) 

Reported 

delay 

Mean Max Min SD Median N 

1  6.22  30 1  7.01  3 79 

2  2.91  29 1  2.77  2 354 

3  3.87  30 1  3.74  3 489 

4  4.60  30 1  3.85  4 343 

5  4.73  24 1  3.49  4 1165 

6  5.97  22 1  3.58  5 327 

7  6.13  29 1  4.02  5 252 

8  7.00  28 1  4.14  7 227 

9  7.27  20 1  4.18  7 75 

10  7.46  29 1  4.94  7 1166 

11  8.88  22 1  4.79  9.5 56 

12  9.86  22 1  5.41  10 109 

13  11.59  29 1  5.39  12 49 

14  12.52  28 1  5.18  13 31 

15  10.44  29 1  6.55  10 543 
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Figure 40 Distribution of reported delay lengths 

In line with expectations, passenger-reported lengths of delays are scattered around the 

closest 5 or 10 minutes. In the case of recorded delays, the lengths that are multiples of 5 

represent 15.8% of all responses while 58.3% of passengers reported their delay lengths to 

be a multiple of 5. In the case of Rietveld (2001), the rounding to the nearest multiple of 5 

was more frequent, characterising up to 85% of travel time reports. However, there are 

some key conceptual differences between departure or arrival time (reported in Rietveld, 

2001) and the delay length (analysed here). Moreover, it seems that there are relatively few 

delay length reports concentrated around 2-8 minutes. Nevertheless, as noted in section 

5.2.2, the distribution of recorded delays is skewed towards smaller delays as these are 

very frequent. In the case of the studied subsample, 11.6% of recorded delays are of only 

1 minute, 32.7% are within 3 minutes and 68.5% are within 8 minutes. In the case of 

reported delays, these proportions are respectively 1.3%, 14.8% and 51.2%. A relatively 

large number of delay reports (over 30%) in the case of smaller delays is not a multiple of 

5. However, this is still lower than the proportion of the smaller recorded delays that are 

not concentrated within multiples of 5 (almost 60% of all delays). 

The plots below show the average lengths of reported delays for each of the recorded delay 

length categories in Figure 41 and the average lengths of recorded delays for each of the 

reported delay length categories in Figure 42. This suggests that the average length of delay 

is over-reported for recorded delays of up to 15 minutes. However, the difference generally 
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becomes smaller with increasing recorded length of delay. In the case of reported delay 

lengths, the average recorded delay length (as well as the median as shown in Table 31) is 

very close to the reported delay lengths for delays of between 2 to 8 minutes. This would 

indicate that passengers who perceive such delays typically also perceive their lengths 

more accurately. The increased accuracy may be resulting from the fact that smaller delays, 

while generally less likely to be noticed, may be more likely to be perceived by passengers 

very sensitive to late running, especially commuters. Commuters are also likely to be more 

familiar with scheduled departure and arrival times of services that they regularly use what 

can, in turn, enable them to more quickly notice any deviations from the timetable and 

estimate any delays more accurately. It is also evident that in the case of reported delays 

of 1 minute, the average recorded delay is above 6 minutes, which is due to data errors or 

more frequent rounding of delays down to 1 minute in the case of some smaller delays. In 

the case of reported delays between 8 and 14 minutes, the average recorded delay is 

typically very close to the reported delay length, however, slightly lower. In the case of 

larger reported delays, especially above 20 minutes, the relationship becomes more 

difficult to follow as the number of responses largely decreases.  

 

Figure 41 Average reported delay length for each of the recorded delay length 

categories 
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Figure 42  Average recorded delay length for each of the reported delay length 

categories 

Upon suggestions that travellers who notice smaller delays may be more accurately 

perceiving their duration, additional investigation was conducted to understand the 

possible differences between different types of travellers. As suggested by the modelling 

in section 6.4, commuters are more likely to perceive smaller delays. Therefore, Figure 43 

looks at the average differences between reported and recorded delay lengths for 

commuters and other travellers. It can be seen that there does not seem to be a systematic 

difference in the accuracy of delay lengths as reported by commuters and other travellers. 

The only noticeable difference is the more accurate reporting of the delays in the case of 

the reports of 1-minute delays. Hence, this suggests that the improved accuracy of reported 

delay lengths for smaller delays may be a result of increased focus on performance by the 

travellers with increased sensitivity to lateness (not only commuters). 
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Figure 43 Average difference between reported and recorded delay length for 

commuters and other travellers 

6.7.Conclusions 

Motivated by the suggestions by Wardman and Batley (2022) and Rong et al. (2022), 

highlighting the importance of understanding how delays are perceived by passengers, this 

chapter investigated how the levels of recorded delays affect passengers’ delay reports. 

Passenger delay reports from the National Rail Passenger Survey in the United Kingdom 

were matched to an operational dataset to relate passengers’ perception of late running to 

actual performance. Passengers’ ability to perceive a delay was first modelled as a binary 

outcome, explained by the recorded length of delay registered at arrival and departure 

points, while also controlling for journey purpose, scheduled journey time, and journey 

quality. The results indicate that journey quality, length and delay at departure generally 

all have an impact on the perception of final performance with the probability of perceiving 

a delay generally suggested to increase with delay at arrival and departure but decrease 

with journey time and better journey quality. However, the effect of journey quality and 

length is generally larger if a passenger faces smaller delays at departure.  

Commuters are suggested to be the most sensitive travellers with respect to delays, 

typically being able to perceive arrival delays as small as 2 to 8.5 minutes. For business 

travellers, the respective thresholds are between 3.2 to 19.9 minutes and for leisure 
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travellers 3.7 to 17.8 minutes. In fact, the estimated thresholds are very similar for the two 

latter groups of travellers. Commuters may include shorter buffer times, their journeys are 

typically shorter and are also expected to be more familiar with the timetables what can 

result in their better ability to notice delays earlier than other travellers. 

The analysis highlights the large impact of departure delay on delay perception as it seems 

that passengers waiting for a delayed train at the origin station may be more likely to think 

that their journey was delayed what can be a result of the increased uncertainty and 

discomfort. Similarly, passengers who departed on time and were able to find a seat could 

use their travel time more productively, in turn, reducing their ability to perceive a delay 

(i.e. a longer delay is needed to achieve the same level of delay perception) and especially 

so for the longer journeys. However, the impact of departure delay on delay perception 

and satisfaction may, in fact, be different and future studies might want to incorporate 

departure delay into modelling the impacts of delays on passenger satisfaction.  

Moreover, an attempt was made to investigate the reports of late arrival in the case where 

no arrival delay was recorded. This was done to better understand whether such cases are 

due to:  

1) data errors due to differences between planned, experienced, recorded and 

reported journeys or 

2) perception of delay being strongly impacted by the delay at departure. 

The analysis suggested that the delays that are perceived in the case of recorded on-time 

arrival are possibly a result of both judgment impacted by recorded delay at departure and 

data errors. On one hand, the probability of perceiving a delay in the case of no recorded 

arrival delay was suggested to be larger for cases where a delay at departure was matched. 

However, still almost 1 in 2 passengers who reported late arrival and were not matched a 

delay at arrival, were also not matched a delay at departure. Further investigation could 

possibly explore whether these erroneous reports may have been a result of stopping 

patterns (as discussed in Rong et al., 2022), the inclusion of recovery times (as discussed 

in Ojeda-Cabral et al., 2021) or delays that happened while being on-board that were fully 

recovered. 

The next line of investigation was the analysis of perception of delay lengths for travellers 

who reported being late and were also matched a delay. The investigation generally 

indicated that similarly to reports of departure or arrival times in travel surveys, passengers 

tend to round the lengths of delays to the nearest multiple of 5 minutes. However, less 

commonly than when reporting departure and arrival times, likely due to a larger penalty 
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related to late arrival, as suggested by Rietveld (2001). Travellers generally quite 

accurately predict delay lengths between 2-8 minutes whereas longer delays are more often 

overstated. This may be a result of correlation between the ability to perceive a smaller 

delay and higher accuracy of reporting delay lengths for passengers who are more sensitive 

to delays due to their increased focus on train performance. However, the analysis 

generally highlighted the previously reported implications related to only using passenger 

reports in the analysis of travel patterns as some discrepancies were found that result from 

either misperceptions or data errors.  

Future research directions and policy implications 

The research conducted as part of this chapter fills the important gap in the literature by 

improving the understanding of delay perception. The predicted probabilities of delay 

perception and the respective thresholds suggest that very short delays are unlikely to be 

perceived. These thresholds could perhaps be used in formulating performance targets or 

further research into the non-linearity of delay impacts as, in line with previous 

suggestions, for a delay to have an impact on passengers, it would typically need to be 

perceived first. However, it is important to distinguish between delay perception and delay 

impacts on utility (or passenger satisfaction). The impact of delays on satisfaction was 

previously studied using the NRPS dataset by Monsuur et al. (2021) where the delay 

threshold of 30 minutes was suggested to be the cut-off point after which passengers are 

unlikely to remain satisfied with their journeys. That piece of work, however, only focused 

on passengers who were able to perceive a delay. This thesis, on the other hand, aims to 

test the hypothesis that passengers are not always able to notice the shorter delays which 

would suggest that the impact of unperceived delays is perhaps smaller. Therefore, the 

most obvious approach is to look at the relationship between delay lengths and reported 

satisfaction. This will be done as part of the following chapter and subsequently (in section 

7.5) the delay perception thresholds will be contrasted with the satisfaction thresholds what 

can help understand the differences between perceived delays and such that have a 

detrimental impact on passenger satisfaction. 

While this research used data on delay perception matched to an operational dataset, it is 

believed that the dataset would benefit from a more detailed description of planned and 

actual journeys, including the services that a passenger was planning to travel on and 

actually travelled on, and any possible interchanges. In addition to such information, data 

on fares, headways and average performance could be a useful addition, allowing for a 

more detailed investigation of the studied relationships. The dataset used as part of this 

analysis may be prone to some discrepancies resulting from the imperfect information 

about passenger journeys. 
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Unfortunately, it was impossible to study the impact that on-board and at-station 

notifications or access to real-time delay information may have on passengers’ ability to 

perceive delays, as it is difficult to understand whether, how and when a passenger was 

informed about any disruption. However, it is believed that the provision of information 

about late running may also be key in determining passengers’ perception of performance. 

This work has increased understanding of passengers’ perception of delay, but it is worth 

noting that the policymakers’ and rail operators’ objective should not, therefore, target 

travellers’ perception of delays as such approach is unlikely to be welfare maximising. The 

major benefits from the perception research would be in incorporating delay perception 

into research focusing on the impacts of lateness on passenger satisfaction and ultimately 

demand. This could focus on understanding the possible inherent non-linearities in delay 

impacts where the delay perception may be one of the explanations for such relationships 

being present, possibly leading to a discussion about how smaller versus larger delays 

should be treated in designing performance metrics, compensation schemes and appraisal 

of schemes looking at improving reliability.
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Chapter 7  

Impacts of delay on travellers’ satisfaction 

7.1. Introduction 

The impact of delay on passengers is usually articulated in terms of demand and revenue 

response – mindful perhaps of the financial implications of revenue compensation through 

the performance regimes of track access contracts. However, some previous studies have 

suggested that changes in performance may not directly lead to changes in demand, due to 

the lack of viable travel alternatives, particularly in the short-run (e.g. Batley et al., 2011). 

That said, whilst the demand/revenue impacts of performance may be limited by these 

situational constraints, this does not obviate the possibility that late running is detrimental 

to passenger satisfaction. 

Passenger satisfaction data has been widely used in transport as there is an abundance of 

literature looking at how it is impacted by different journey aspects (for reviews see De 

Vos et al., 2013; De Oña and De Oña, 2015; Gao et al., 2018; Rong et al., 2022). As 

suggested by Brons and Rietveld (2009), analysis of passenger satisfaction levels and the 

relative importance of different aspects of the journey can usefully inform priorities for 

journey quality improvements. Significant heterogeneities in satisfaction levels have been 

reported between different types of travellers and transport mode users (e.g. Brons and 

Rietveld, 2009; St-Louis et al., 2014; Susilo and Cats, 2014; Transport Focus, 2015; 

Lunke, 2020). However, in most of the studies, travel time, value for money, performance 

and journey comfort were found to be the strongest determinants of passenger satisfaction. 

Chapter 4 discussed the design of the currently operating compensation scheme as well as 

the determinants of passenger engagement with the scheme and its impacts on operators’ 

revenues. It was highlighted that the currently used delay thresholds where passengers 

become eligible to claim compensation were set arbitrarily and to better understand what 

lengths of delays are of detrimental impact to passenger satisfaction, more research is 

needed - especially looking at the potential non-linearities in delay impacts. Chapter 6 

noted that there is a very limited number of studies investigating the relationship between 

the perception of unreliability and satisfaction. Moreover, even fewer studies are related 

to public transport users (e.g. Transport Focus, 2015; Carrel et al., 2016; Gao et al., 2018; 

Monsuur et al., 2021). In all these cases, as expected, the lower performance of public 

transport was, however, suggested to negatively impact upon travellers’ satisfaction. One 

of the conclusions from the analysis of perception, however, was that some shorter delays 

have a very low probability of being perceived, what might indicate on the possible limited 
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consequential impacts on passenger satisfaction too. It was implied that for a delay to have 

an impact on satisfaction, it would typically need to be perceived first.  

On the other hand, it was noted that there generally is an abundance of studies investigating 

the determinants of traveller satisfaction. The modelling approaches utilised by these 

studies are often very different as these depend on the nature of the dependent (satisfaction) 

variable and the availability and nature of explanatory variables. For example, the 

satisfaction variable may be related to a specific journey experience (e.g. Gao et al., 2018; 

Soza-Parra et al., 2019; Monsuur et al., 2021) or general satisfaction with transport (e.g. 

Cats et al., 2015; Efthymiou et al., 2019). Moreover, as suggested by Gao et al. (2018), 

most of the research on journey satisfaction is empirically-driven where the choice of the 

functional relationship is made at the discretion of researchers.  

It was further noted that there is substantial precedent for exploiting satisfaction data in 

public policy research. In the context of the Dutch railways, Brons and Rietveld (2009) 

analysed passenger satisfaction with different journey aspects and their relative 

importance. Travel time reliability was found to be the second-worst scored journey aspect. 

Matching NRPS satisfaction data to operational data, Monsuur et al. (2021) found that the 

probability of being satisfied with a train journey decreases sharply after 30 minutes of 

delay (or 10 to 20 minutes if a passenger is standing in a crowded train), highlighting the 

importance of both travel time and comfort for passenger satisfaction. Transport Focus’ 

(2015) analysis of the NRPS survey revealed that commuters are least satisfied with their 

journeys and most sensitive to delays. According to Transport Focus (2015), passenger 

satisfaction levels tend to start declining from the very first minute of lateness but decline 

less rapidly for business and leisure than for commute, until a tipping point (respectively 

5 and 8 minutes of lateness) is reached, suggesting that smaller delays may have a smaller 

marginal impact on passenger satisfaction. Hence, there is some research discussing these 

topics, however, this chapter proposes some alternative approaches. One of the issues often 

faced when modelling choice of satisfaction categories may be found in their non-

quantitative nature, complicating the interpretation of the results. For example, it is not 

immediately clear what a difference between ‘very satisfied’ and ‘fairly satisfied’ means 

for passengers’ well-being and, hence, the implications of such change for policymakers, 

regulators or operators. In principle, the analysis forming part of this chapter aims to build 

on the work conducted by Monsuur et al. (2021) to increase understanding of the impact 

that delays have on passenger satisfaction. This will be explored by focusing on reported 

satisfaction with punctuality and analysing: 
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1) how the probability of being satisfied with punctuality changes with increasing 

levels of recorded delays, 

2) the delay lengths that are detrimental to passenger satisfaction and 

3) the potential indirect impact of other journey aspects, i.e. journey length and 

comfort on how delays affect passenger satisfaction. 

In doing so, the NRPS data described in Chapter 5 is employed to conduct analysis of the 

relationship between recorded lengths of delays and reported satisfaction. The major 

contribution of the work conducted as part of this chapter compared to the numerous 

studies looking at passenger satisfaction lies in studying the relationship between recorded 

delay lengths for a given journey experience and reported satisfaction (i.e. similar to 

Monsuur et al., 2021). The major differences between this study and Monsuur et al. (2021) 

are related to: 

1) The choice of the dependent satisfaction variable relating directly to satisfaction 

with punctuality as a specific journey aspect rather than focusing on overall 

journey satisfaction where performance is one of the many components affecting 

passenger satisfaction. 

2) Apart from modelling passenger satisfaction using ordered logit model, some 

modifications are made to the NRPS dataset to study the relationship between 

performance and satisfaction using the binary choice framework (i.e. satisfaction 

versus dissatisfaction). 

3) Aggregating the satisfaction data at the origin-destination pair level and estimating 

models of passenger satisfaction at an OD pair level to facilitate the application of 

the estimated results in policymaking (e.g. setting performance targets). 

Having considered the different possible representations of the satisfaction variable, this 

chapter will also address two additional lines of analysis: 

1) comparison of the relationship between delay length and probability of perceiving 

a delay versus being dissatisfied with it and 

2) investigation of the marginal (dis)utility of lateness, looking at how the additional 

impacts of delays on satisfaction (utility) change with increasing delays. 

The remainder of this chapter is structured as follows: 

 Section 7.2 describes the methodology used in this chapter and the main 

differences between this work and the study by Monsuur et al. (2021).  
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 Section 7.3 then reports the results of the modelling approaches introduced in the 

methodology section.  

 Summary of the results is presented in section 7.4.  

 Section 7.5 reconciles the concepts of delay perception and satisfaction to compare 

the delay length thresholds where these become perceived by passengers and such 

that start having detrimental impacts on passenger satisfaction.  

 Investigation of the potential non-linearities in delay impacts forms part of section 

7.6.  

 Finally, section 7.7 provides conclusions based on the work presented as part of 

this chapter. 

7.2. Methodology 

Modelling of passenger satisfaction is explored using the responses to the questionnaire 

from NRPS matched to operational data (as described in section 5.2) with the aim of 

analysing the impact of recorded performance on satisfaction reported on a 5-point Likert 

scale. There are two variables that describe passenger satisfaction that are particularly 

relevant to this work: 

1) overall passenger satisfaction (Figure 27) that is assumed to be affected by delays, 

but also other journey characteristics (e.g. comfort) as used in Monsuur et al. 

(2021) and 

2) satisfaction with punctuality (Figure 28) enabling studying a direct relationship 

between delays and satisfaction. 

There are benefits and disadvantages of using each of the two variables described above. 

The first approach allows to study the relative importance of different journey aspects 

(such as the ones related to train, station, staff, ticket prices, etc.) for passenger satisfaction. 

This is, however, the variable that is most similar to the ones used in the previous studies 

of passenger satisfaction (e.g. Monsuur et al., 2021). In the case of punctuality satisfaction, 

there is, however, no need for controlling for these aspects. For example, it is not expected 

that journey quality directly affects punctuality satisfaction. Rather, it can have a 

complementary impact on how delays affect punctuality satisfaction – i.e. better journey 

quality may limit the negative impact of delays on punctuality satisfaction. 

Statistical models are developed to explore the existence of a systematic and quantifiable 

relationship between passenger rail performance and passenger satisfaction with 

punctuality, whilst also controlling for the possible complementary impacts of other 

factors. Two alternative modelling approaches are employed:  
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 the ‘passenger’ model concerned with the impact of a given delay episode on a 

passenger’s satisfaction and 

 the ‘OD’ model concerned with the impact of average performance on average 

levels of passenger satisfaction by origin-destination (i.e. station-to-station) flow. 

Moreover, the modelling approach employs two alternative interpretations of the 5-point 

satisfaction scale used in the NRPS questionnaire: 

 binary response where the original 5-point scale is consolidated into 2 – so as to 

focus on the threshold at which passenger is satisfied versus dissatisfied and 

 ordered response retaining the original 5-point scale.  

A priori, it is expected that delays have a negative impact on journey satisfaction. Table 

17 showed the distribution of satisfaction scores for the travellers with a matched delay 

and how average recorded delay and overall satisfaction (NRPS question 16 in Figure 27) 

correspond to satisfaction with punctuality (NRPS question 9 in Figure 28). As expected, 

the passengers who scored their satisfaction with punctuality lower were typically 

subjected to lengthier delays – from around 4 minutes of average recorded delay for 

passengers ‘very satisfied’ with punctuality to 12 minutes for those who were ‘very 

dissatisfied’. Overall satisfaction levels decrease with both increasing delays and 

decreasing satisfaction with punctuality – from 4.6 for passengers ‘very satisfied’ with 

punctuality to 2.5 for passengers ‘very dissatisfied’ with punctuality as in line with the 

previous literature, performance is expected to be playing a key role in determining 

passenger satisfaction. 

While the NRPS employs a 5-point satisfaction scale with the choice of satisfaction 

categories being: 

1) very dissatisfied, 

2) fairly dissatisfied, 

3) neither satisfied nor dissatisfied, 

4) fairly satisfied and 

5) very satisfied, 

the satisfaction scale gives a degree of insight into the strength of feeling, but the scale 

itself is not strictly cardinal. Thus, a 1-point increase on the scale (e.g. from ‘very 

dissatisfied’ to ‘fairly dissatisfied’) may not imply the same increase in punctuality 
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satisfaction as an increase from ‘fairly satisfied’ to ‘very satisfied’. In this case, logistic 

regression would, in principle, be a more appropriate functional form than linear 

regression, since it takes account of such non-linearity. However, it has also been 

suggested that results from linear and logistic regression models applied to satisfaction 

data are often similar (i.e. Ferrer-i-Carbonell and van Praag, 2002; Stutzer and Frey, 2008). 

The main disadvantage of using logistic regression in satisfaction modelling is its 

complexity, as linear forms are easier to implement and interpret. 

Now, consider the two alternative interpretations of the satisfaction scale – firstly the raw 

ordinal scale, and secondly translation of the ordinal scale into a dichotomous ‘satisfied’ 

or ‘not satisfied’ variable. It is noted that the binary representation of the satisfaction 

variable allows easier representation of the delay impacts as there is a clear threshold of 

satisfaction and dissatisfaction, which lends itself to ready interpretation. However, 

retaining the original scale allows full investigation into the dynamics of the studied 

relationship and can provide additional insights into the strength of satisfaction or 

dissatisfaction. Hence, both interpretations are utilised as explained further below.   

Interpretation a): the ordinal data is converted to binary 

The proposition behind this interpretation is that the 5-point ordinal scale is not a 

continuous scale and that at some point on the scale, there is a threshold of satisfaction 

versus dissatisfaction. Dichotomisation of ordinal data is a common approach in the 

literature, for example in medical research (Capuano et al., 2007; Sankey et al., 1998). 

While it is noted that dichotomisation of responses leads to a loss of information as ordinal 

or continuous variables provide more accurate insight into the strength of response, binary 

representations may help provide more direct conclusions that are easier to understand for 

the wider audience (DeCoster et al., 2009; Farrington & Loeber, 2000). The loss of power 

may be a significant concern, especially when sample sizes are small or events rare, which 

may often be the case with medical research. For example, in clinical trials, the distribution 

of outcomes may be skewed and the strength of response may also be of importance 

(Ceyisakar et al., 2021; Manor et al., 2000). Nonetheless, any dichotomisation needs to 

have a theoretical justification – for example, dichotomisation of variables simply based 

on the median split is considered inappropriate (Fitzsimons, 2008). As suggested, the loss 

of power resulting from the dichotomisation of ordinal data may be justified in the cases 

with specific cut-off points, such as vaccine efficacy against infection (Capuano et al., 

2007). It is argued that in the case of passenger satisfaction, such a cut-off point is the 

switch point between satisfaction and dissatisfaction. After discussions with the railway 

industry, it has become clear that a question often asked by stakeholder relates to the 



131 

 

threshold values of delays, i.e. to determine levels of delays that are acceptable for 

passengers. Given the ability to define the clear cut-off points and a relatively large sample 

size, the ordinal scale has been converted into a binary outcome, representing satisfaction 

versus dissatisfaction and analysed in addition to the original ordinal representation.  

That said, there is more than one way to consolidate a 5-point scale into a binary variable 

as the satisfaction/dissatisfaction cut-off point may be interpreted in more than one way, 

and the following three versions are therefore tested:  

 V1: 1 if passenger was ‘very satisfied’ with punctuality (46.3%) and 0 if otherwise 

(53.7%), 

 V2: 1 if passenger was ‘very’ or ‘fairly satisfied’ with punctuality (79.0%) and 0 

if otherwise (21.0%) and 

 V3: 1 if passenger was not ‘fairly’ or ‘very dissatisfied’ with punctuality (86.3%) 

and 0 if otherwise (13.7%). 

In what follows, these alternative versions of the binary variable are used to explore the 

relationship between the length of delay and the probability of being satisfied. V2 is 

conceptually the closest to representing satisfaction versus dissatisfaction and it also 

follows the usual convention adopted by Transport Focus when reporting passenger 

satisfaction, where the top two categories (i.e. ‘very’ and ‘fairly satisfied’) are merged and 

compared to the other categories (e.g. Transport Focus, 2020a).  

Interpretation b): the ordinal data is retained  

The proposition behind this interpretation is that the 5-point scale is a continuous ordinal 

scale. 

In what follows, the ordinal data is modelled to discern patterns of switching between 

different satisfaction/dissatisfaction categories by the length of delay. Whilst the 5-point 

scale is rather less amenable to policy work, this is the natural form of the data and reveals 

additional insights, which cannot be discerned from the binary formulation.        

On the basis of restricting the dataset as discussed in Chapter 5 (see Table 21 for 

descriptive statistics), the sub-sample taken forward comprised 72,363 ‘on-time’ and 

74,651 ‘delayed’ responses – although for some of the models, the dataset was subject to 

further (albeit modest in most cases) attrition due to missing data in respect of covariates.  
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Having previously noted that the NRPS data has been used to study the impact of delays 

on satisfaction (e.g. Monsuur et al., 2021), the following section aims to discuss the 

similarities and differences between the two bodies of work. 

7.2.1. Differences in the approach to modelling satisfaction used by Monsuur et al. 

(2021) 

During the course of this PhD, a study was published by Monsuur et al. (2021), attempting 

to model passenger satisfaction and investigating how it changes with increasing delays. 

This study has been referred to in multiple places in the thesis as the methodology and the 

findings are relevant and show many similarities. The purpose of this section is to describe 

the main differences between the two studies as summarised in Table 32. 

Table 32. Main differences between the satisfaction modelling employed in this 

chapter and Monsuur et al., 2021 

Difference Expected impact 

Data from 10 waves of 

NRPS survey used as 

compared to 2 in Monsuur 

et al. (2021). 

 

Since the number of observations is larger, this is likely 

to increase the accuracy and statistical significance of 

the estimated results. 

Monsuur et al. (2021) 

restricts the dataset to 

responses where delay was 

both recorded and reported. 

Such restriction is not 

imposed in this chapter. 

 

Retaining responses where passenger did not perceive a 

delay or was not delayed aims to allow for studying the 

impact of both perceived and unperceived delays on 

passenger satisfaction. 

The core analysis in this 

chapter uses data on 

satisfaction with 

punctuality rather than 

overall satisfaction used in 

Monsuur et al. (2021). 

 

Satisfaction with punctuality is expected to be more 

directly linked to a delay experience. Therefore, it 

allows understanding the impacts of delays on 

satisfaction and how these are affected by journey 

quality and length. This is somewhat different to the 

impact that journey quality has on overall satisfaction. 

 

The recorded delays were 

retrieved using TRUST 

database in Monsuur et al. 

(2021)  instead of HSP 

database (used for this 

work). 

As noted by Monsuur et al. (2021), TRUST [Trains 

Running Under System TOPS (Total Operation 

Processing System)] records real-time train performance 

by comparing recorded train timings at designated 

timing points (e.g. stations, junctions). HSP only 

provides the timetabled and recorded timings at 

timetabled stopping points, what is sufficient for the 

purposes of this study. 

 

Apart from the ordered 

logit also used by Monsuur 

et al. (2021), alternative 

approaches are also 

introduced in this chapter. 

The different modelling approaches used in this chapter 

aim to decrease the complexity of the estimated models 

to allow easier interpretation of the results, increase the 

usefulness of this work for policymakers as well as 

serve as sensitivity tests. 
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As noted above, despite the similarities in the research questions investigated, there are 

some important differences that make the work conducted as part of this chapter unique 

with respect to the variables and methodological approaches used. This aims to provide 

new insights as well as facilitate the application of the results to policymaking/regulatory 

contexts, such as setting performance targets or designing compensation schemes. 

Having discussed the differences in the analysis of passenger satisfaction conducted as part 

of this chapter and the work done by Monsuur et al. (2021), the following section aims to 

provide a more detailed description of the modelling approaches used as part of this 

chapter. 

7.2.2. Modelling approach 

As aforementioned, there are three dimensions of the satisfaction modelling undertaken as 

part of this chapter: 

1) satisfaction (dependent) variable relating to overall or punctuality satisfaction, 

2) binary or ordinal representation of the satisfaction variable and 

3) individual passenger or aggregated OD-level modelling approach.  

Further details are now given on these approaches. 

7.2.2.1. The ‘passenger’ model 

Passenger model is concerned with modelling the satisfaction reported by individual 

passengers following the experience of a delay event of a specified duration. This approach 

offers particular insight into passenger satisfaction across the distribution of delays. Within 

the passenger model, satisfaction with punctuality is modelled using both interpretations 

of the satisfaction variable (i.e. binary and ordinal), and the binary interpretation is also 

modelled using all three versions of the satisfaction threshold (i.e. V1-V3).  

In more formal terms, the binary response variable takes the form: 

𝑌 = {
1 𝑖𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑤𝑖𝑡ℎ 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑙𝑖𝑡𝑦         
0 𝑖𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑤𝑖𝑡ℎ 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑙𝑖𝑡𝑦

 

( 18 ) 

The binary representation is modelled in a way that is methodologically very similar to 

modelling delay perception in Chapter 6 with the initial model conforming to the 

specification of model 1 in 6.4.2 and the extended version conforming to model 3. The 

only difference is the change of the outcome variable. 
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The binary response models (i.e. pertaining to the binary formulation of the data), as well 

as the ordered response models (i.e. pertaining to ordinal data) to follow, were estimated 

using Stata 17 (StataCorp, 2021). The estimates are indicative of the direction and strength 

of relationships between satisfaction with punctuality and the explanatory variables but 

may be challenging to interpret directly. Similarly as in the case of delay perception, in 

addition to the estimated coefficients, predicted probabilities are shown graphically for a 

range of arrival delay lengths from 0 to 30 minutes (for binary models) with  comparisons 

made between the predicted delay dissatisfaction threshold (at p=0.5 of satisfaction 

probability), i.e. 

0.5 =
1

(1 + 𝑒−(𝛽𝑜+𝛽1𝑋1+⋯+𝛽𝑖𝑋𝑖))
 

( 19 ) 

Following the analysis outlined above, the binary response model was extended to estimate 

passengers’ probability of choosing each of the five satisfaction levels. As the dependent 

variable can now take one of the five categories (more similar to the methodology used by 

Monsuur et al., 2021), which are in sequential order, an ordered logit model (McCullagh, 

1980) was employed to estimate the latent continuous variable y*. In this case, the 

probability of choosing a satisfaction category i is estimated for k thresholds, thus: 

𝑃(𝑌 = 𝑖) = 𝑃(𝑘𝑖−1 < 𝑦∗ ≤ 𝑘𝑖) 

( 20 ) 

In this case, the probability of 𝑌 = 𝑖 is: 

𝑃(𝑌 = 𝑖) = 𝐹(𝑘𝑖 − 𝜂) − 𝐹(𝑘𝑖−1 − 𝜂) 

( 21 ) 

where: 

𝐹 is the cumulative distribution function of the logistic distribution and 𝑦∗ = 𝜂 + 𝜖. 

Similarly, to the binary outcome models introduced above, the choice of explanatory 

variables conforms to the models of delay perception, i.e. model 1 for the initial model: 

𝜂 = ∑(𝐽𝑃𝑖 × 𝛽1,𝑖 + 𝐽𝑃𝑖 × 𝛽2,𝑖 × 𝐿𝐴,𝑖
+

𝑖=6

𝑖=1

) 

( 22 ) 
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and model 3 for the extended model: 

𝜂 = ∑(𝐽𝑃𝑖 × 𝛽1,𝑖 + 𝑆𝑒𝑎𝑡𝑖 × 𝐽𝑃𝑖 × 𝛽2,𝑖 × 𝐿𝐴,𝑖
+

𝑖=6

𝑖=1

+ 𝑆𝑒𝑎𝑡𝑖 × 𝐽𝑃𝑖 × 𝛽3,𝑖 × 𝐿𝐴,𝑖
+ × 𝑆𝐽𝑇𝑖 + 𝐽𝑃𝑖

× 𝛽4,𝑖 × 𝐿𝐴,𝑖
+ × 𝐿𝐷,𝑖

+ ) 

( 23 ) 

where: 

𝐽𝑃𝑖 is a journey purpose dummy variable for each of the 6 journey purposes that takes the 

value of 1 when it matches the respondents’ journey purpose or 0 otherwise 

𝐿𝐴,𝑖
+  is the delay length at arrival which is defined as the difference between the actual and 

scheduled arrival for all cases where the difference is positive; when the difference is 

negative, such responses are treated as on-time arrival 

𝑆𝐽𝑇𝑖 is the scheduled journey time 

𝑆𝑒𝑎𝑡𝑖 is a dummy variable that takes the value of 1 if passenger reported having a seat or 

0 otherwise 

𝐿𝐷,𝑖
+  is the delay length at departure which is defined as the difference between the actual 

and scheduled departure. If a train departed before its scheduled departure time, this is 

counted as on time departure. 

In logistic regression, the coefficients represent the change in log-odds of the outcome (i.e. 

being satisfied with punctuality) for a given change in explanatory variables, indicating 

the strength and direction of the relationship. This highlights one of the limitations of 

logistic regression relative to linear regression, in that the direct interpretation of the 

coefficients is less straightforward. However, the estimated coefficients can be converted 

into margins, representing the predicted outcome for a given change in an explanatory 

variable. Nevertheless, in the case of multiple explanatory variables, and especially if these 

are continuous, such interpretation becomes difficult because of the multi-dimensionality 

of the problem. This is further complicated in the ordered logit model where there are 

always five outcome categories leading to a set of five estimated probabilities for each set 

of values of explanatory variables. Hence, in the case of the ordered logit model in its 

extended form, this limits the ability to present the results of the modelling graphically.  

7.2.2.2. The ‘OD’ model 

The main difference between passenger and OD models is that, whilst the former consider 

the impacts of a delay event of a given length on journey satisfaction at the individual 
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passenger level, the latter consider average performance across the responses gathered on 

a given OD pair and its impacts on the proportion of satisfied passengers. 

This reformulation of the problem necessitates averaging of the raw passenger-level data 

for each OD pair with the dataset restricted to the OD pairs with at least 25 responses 

(arbitrary threshold) – which in the present work markedly reduced the scale of the dataset 

to 676 observations (OD pairs). It follows that the proportion of satisfied passengers (again 

using the three alternative versions of delay satisfaction V1-V3) is now expressed in 

relation to Average Passenger Lateness (APL). Similarly, the other variables represent 

means or proportions – for example, seat availability is presented as the proportion of 

passengers who were able to find a seat for a given OD. The averages are not weighted for 

flow sizes as the distribution of delays in NRPS is not necessarily representative of that in 

the network.  

The model is formulated in terms of the proportion of passengers satisfied with punctuality, 

which lends itself to a fractional outcome logit regression (Papke & Wooldridge, 2008) – 

as stated below. The model is conceptually similar to the binary logit model, but rather 

than considering the probability of being satisfied, here we consider the proportion of 

satisfied passengers. In more formal terms: 

𝐸(𝑌|𝑋) = 𝐹(𝛽𝑜 + 𝛽1𝑋1 + ⋯ + 𝛽𝑖𝑋𝑖) 

( 24 ) 

where: 

𝐹 =
1

(1 + 𝑒−(𝛽𝑜+𝛽1𝑋1+⋯+𝛽𝑖𝑋𝑖))
 

( 25 ) 

To simplify the studied relationship, the interaction between delay length at arrival and 

departure was excluded and journey purpose subcategories were grouped together, hence: 

𝐸(𝑌|𝑋) = 𝐹(∑(𝐽𝑃𝑖 × 𝛽1,𝑖 + 𝑆𝑒𝑎𝑡𝑖 × 𝐽𝑃𝑖 × 𝛽2,𝑖 × 𝐿𝐴,𝑖
+

𝑖=3

𝑖=1

+ 𝑆𝑒𝑎𝑡𝑖 × 𝐽𝑃𝑖 × 𝛽3,𝑖 × 𝐿𝐴,𝑖
+

× 𝑆𝐽𝑇𝑖) 

Unlike the passenger model, the OD model is not amenable to ordinal data, since such data 

does not readily lend itself to averaging. 
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7.3.Modelling results 

This section reports the results for the modelling approaches described in the previous 

section, starting with the so-called passenger model (and its binary and ordinal 

representations) and subsequently, the OD model using only the binary representation of 

the response variable). 

The following models are estimated, as summarised in Table 33: 

1) Passenger model 

a) Binary 

i. Initial model for three versions of punctuality satisfaction (Table 

34) 

ii. Extended model for three versions of punctuality satisfaction with 

additional control variables (Table 36) 

b) Ordinal 

iii. Initial model for punctuality satisfaction (Table 39) 

iv. Initial model for overall satisfaction (Table 39) 

v. Extended model for punctuality satisfaction with additional 

control variables (Table 41) 

2) The OD model 

a) Binary only 

i. Extended model with control variables (Table 45) 

Table 33 Guide to different model permutations estimated (OS refers to overall 

satisfaction while PS refers to satisfaction with punctuality) 

 Passenger model OD model 

 Binary Ordered Binary 

Initial Table 34 (PS) Table 39 

(PS, OS) 

- 

Extended Table 36 (PS) Table 41 (PS) Table 45 (PS) 

 

7.3.1. The ‘passenger’ model 

Binary logit 

The binary logit passenger model estimates the probability of a passenger being satisfied 

with punctuality, having experienced a journey, which may have been on-time or late – 
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with satisfaction being treated as a binary rather than ordinal outcome. The probability of 

being satisfied was modelled using each of the three versions of satisfaction (V1-3), 

outlined in section 7.2, for different journey purposes using the initial and then extended 

model specification. 

In the first model (reported in Table 34), the binary outcome for the three versions of 

satisfaction (V1-3) is explained by recorded delay at arrival, whilst allowing varying 

impacts by journey purpose. All the coefficients are statistically significant and, as 

expected, arrival delay has a negative impact on satisfaction with punctuality, meaning that 

the probability of being satisfied decreases with increasing delay length. McFadden’s R2 

values of around 0.1-0.2 are reported, which is of a similar magnitude to the models of 

delay perception. This suggests that while a general relationship is well-described by the 

estimated models, the models are unable to predict the choice of some of the respondents, 

e.g. where satisfaction was reported despite a long delay or dissatisfaction was reported 

when a relatively small delay was recorded. 

The purpose of the constant is to capture the probability of being satisfied with punctuality 

under ‘no delay’. Intuitively, one might expect passengers to report complete satisfaction 

with punctuality if they are not subjected to late running. However, significant differences 

in the constant were found between different types of passengers, in particular suggesting 

that commuters’ probability of being satisfied is lower in the ‘no delay’ case than that for 

leisure and business travellers. When passengers reported arriving on time, commuters’ 

average satisfaction with punctuality was found to be 3.66, as compared to 4.38 for the 

whole dataset. By contrast, when passengers reported arriving late, the respective average 

satisfaction scores were 2.93 and 3.08. This suggests that commuters are unlikely to be 

‘very satisfied’ with punctuality regardless of the level of performance. The possible 

reasons for this may include strategic bias where passengers score satisfaction lower to 

influence decision-making, or passengers reflecting more generally on performance rather 

than describing their satisfaction with the specific journey leg (as asked in the survey).  
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Table 34 Estimated binary logistic regression coefficients for the three versions of 

the binary representation of the punctuality satisfaction variable 

 Sat_V1 Sat_V2 Sat_V3 

Constant 0.468*** 2.554*** 3.374*** 

 (24.99) (79.56) (76.10) 

BnL -0.154*** -0.304*** -0.387*** 

 (-4.97) (-6.21) (-5.92) 

CL -1.294*** -1.505*** -1.690*** 

 (-49.39) (-41.04) (-34.58) 

CnL -1.312*** -1.610*** -1.847*** 

 (-41.99) (-40.71) (-35.95) 

LF 0.194*** -0.0271 -0.0388 

 (7.82) (-0.65) (-0.67) 

LR 0.292*** 0.188*** 0.135** 

 (13.29) (4.95) (2.58) 

Arrival delay    

BL -0.0954*** -0.133*** -0.154*** 

 (-25.78) (-34.55) (-35.66) 

BnL -0.138*** -0.175*** -0.183*** 

 (-23.64) (-32.78) (-33.22) 

CL -0.184*** -0.171*** -0.178*** 

 (-25.86) (-39.87) (-42.89) 

CnL -0.211*** -0.180*** -0.181*** 

 (-21.42) (-32.02) (-34.11) 

LF -0.135*** -0.163*** -0.178*** 

 (-31.52) (-38.64) (-38.77) 

LR -0.109*** -0.152*** -0.163*** 

 (-48.15) (-63.14) (-61.51) 

N 133478 133478 133478 

Log-likelihood -81605.2 -53501.1 -39138.9 

Pseudo R2 0.117 0.170 0.200 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

BL/BnL – Business London/non-London, CL/CnL – Commute London/non-London, LF/LR-

Leisure Full/Reduced 
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Figure 44 shows how the predicted probabilities of delay satisfaction change with 

increasing delays. For better comparison between the different versions of delay 

satisfaction (i.e. V1-3), as well as across different journey purposes, Table 35 shows the 

predicted delay lengths where the probability of accepting a delay is equal to 0.5 (i.e. the 

threshold at which a passenger becomes more likely to be dissatisfied than satisfied). As 

expected, the probability of being ‘very satisfied’ with punctuality (i.e. Version 1) is 

always smaller than the probability of being satisfied under the more relaxed definitions 

of delay satisfaction (i.e. Versions 2 and 3), and this applies to all journey purposes. The 

large difference between the probabilities of accepting a delay under V1 vs. V2-3 of the 

response variable suggests that the definition of satisfaction versus dissatisfaction has a 

large impact on the results.  

Commuters’ probability of being satisfied with punctuality never reaches 0.5 under V1 of 

delay satisfaction. However, for business travellers, the estimated probability of being 

satisfied with punctuality is larger than 0.5 for delays smaller than 5 minutes (London 

travellers) and 2.3 minutes (non-London travellers). In the case of leisure travellers, the 

threshold is 4.9 minutes for travellers on Full fares and 7.0 minutes on Reduced fares.   

 

Figure 44 Probability of ‘delay satisfaction’ for increasing delay lengths and 

different journey purposes based on the three definitions of delay satisfaction V1: 

(5) vs (1-4) ; V2: (4-5) vs (1-3); V3: (3-5) vs (1-2) based on the model from Table 34. 
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Under V2 with a more relaxed definition of delay satisfaction (i.e. ‘very satisfied’ and 

‘fairly satisfied’ categories), the predicted delay lengths where passengers are more likely 

to be dissatisfied with punctuality (i.e. p=0.5) increase. For business travellers, the 

threshold increases to 19.3 minutes (London travellers) and 12.9 minutes (non-London 

travellers). The respective thresholds for commuters are much lower – 6.2 minutes for 

London and 5.3 minutes for non-London travellers. The thresholds for leisure travellers 

are more similar to those of business travellers – 15.5 minutes for Full fare and 18.1 for 

Reduced. The relatively large difference between London and non-London business 

travellers may be a result of differences in journey quality, slightly longer journeys (though 

it is noted that the average journey length is only slightly longer for London business 

travellers) or inclusion of larger buffers which make these travellers less sensitive to any 

potential delays. 

The estimated thresholds suggest that, as expected, commuters are the most sensitive group 

of travellers with respect to delays. Relaxing the definition of delay satisfaction further 

(i.e. inclusion of the ‘neither satisfied nor dissatisfied’ category) increases the predicted 

delay length satisfaction thresholds by around 3 minutes for all types of passengers. 

Table 35 Delay length thresholds at the estimated probability p=0.5 

 Delay at 

p=0.5 

V1 

Delay at 

p=0.5 

V2 

Delay at 

p=0.5 

V3 

Business London 5.0 19.3 21.9 

Business non-London 2.3 12.9 16.4 

Commute London - 6.2 9.5 

Commute non-London - 5.3 8.5 

Leisure Full 4.9 15.5 18.8 

Leisure Reduced 7.0 18.1 21.6 

 

The comparison presented above asks for a commentary regarding how the estimated 

satisfaction thresholds compare with the perception thresholds estimated in Chapter 6 what 

will be discussed in section 7.5. 

The V2 of the model is now re-estimated with the addition of control variables (as in the 

case of the perception models) with the results presented in Table 36. The estimated model 

now has a larger number of dimensions as delay satisfaction is explained by multiple 

continuous variables and interactions. 
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Table 36 Estimated coefficients for the binary logit model with controls (aligning 

with the model 3 of delay perception estimated in Chapter 6) 

 (V2) (V2a) 

Constant 2.662*** 1.771*** 

 (62.67) (6.33) 

BnL -0.397*** -0.239 

 (-6.18) (-0.65) 

CL -1.516*** -0.701* 

 (-31.36) (-2.38) 

CnL -1.672*** -1.121*** 

 (-32.02) (-3.67) 

LF -0.0902 0.247 

 (-1.62) (0.77) 

LR 0.0573 0.166 

 (1.16) (0.53) 

Seat=1   

BL  1.042*** 

  (3.60) 

BnL  1.026*** 

  (4.14) 

CL  0.482*** 

  (4.61) 

CnL  0.686*** 

  (5.06) 

LF  0.792*** 

  (4.74) 

LR  0.899*** 

(6.07) 

Arrival delay (Seat=0)   

BL -0.311*** -0.114* 

 (-5.75) (-2.21) 

BnL -0.303*** -0.104** 

 (-8.26) (-2.96) 

CL -0.279*** -0.138*** 

 (-11.53) (-5.79) 

CnL -0.351*** -0.111*** 

 (-12.97) (-3.76) 

LF -0.332*** -0.136*** 

 (-12.31) (-5.18) 

LR -0.275*** 

(-13.77) 

-0.100*** 

(-5.32) 

Arrival delay (Seat=1)   

BL -0.171*** -0.160*** 

 (-14.65) (-13.20) 

BnL -0.193*** -0.148*** 

 (-14.16) (-10.70) 

CL -0.185*** -0.167*** 

 (-15.09) (-12.94) 

CnL -0.228*** -0.126*** 

 (-15.74) (-7.95) 

LF -0.203*** -0.146*** 

 (-18.39) (-12.75) 

LR -0.161*** 

(-24.50) 

-0.125*** 

(-18.99( 

Arrival delay x SJT (Seat=0) 
BL 0.00111* 0.0000748 

 (2.02) (0.12) 

BnL 0.000796* -0.000587 

 (2.51) (-1.43) 
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CL -0.000453 -0.000324 

 (-0.62) (-0.45) 

CnL 0.00178* 0.000588 

 (1.99) (0.58) 

LF 0.00137*** 0.000315 

 (4.06) (0.94) 

LR 0.000648*** -0.0000399 

 (3.54) (-0.22) 

Arrival delay x SJT (Seat=1) 
BL 0.000549*** 0.000222* 

 (6.70) (2.31) 

BnL 0.000620*** 0.0000332 

 (6.92) (0.30) 

CL 0.00112*** 0.000755** 

 (5.35) (3.12) 

CnL 0.00134*** 0.000198 

 (4.84) (0.61) 

LF 0.000814*** 0.000154 

 (8.58) (1.38) 

LR 0.000472*** -0.0000457 

 (11.31) (-0.96) 

SJT (Seat=0)   

BL  0.00122 

  (0.29) 

BnL  0.00899* 

  (2.34) 

CL  -0.0114*** 

  (-3.77) 

CnL  -0.00877 

  (-1.75) 

LF  0.00180 

  (0.60) 

LR  0.00228 

  (1.20) 

SJT (Seat=1)   

BL  0.00297*** 

  (3.38) 

BnL  0.00427*** 

  (4.20) 

CL  -0.00242 

  (-1.81) 

CnL  -0.000694 

  (-0.35) 

LF  0.00402*** 

  (3.98) 

LR  0.00480*** 

  (9.58) 

Departure delay   

BL  -0.307*** 

  (-19.14) 

BnL  -0.339*** 

  (-20.49) 

CL  -0.271*** 

  (-21.09) 

CnL  -0.269*** 

  (-18.08) 

LF  -0.305*** 

  (-23.30) 

LR  -0.304*** 

  (-36.11) 
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Departure delay x arrival delay 
BL -0.00919*** 0.0103*** 

 (-10.37) (10.31) 

BnL -0.00498*** 0.0121*** 

 (-5.58) (13.81) 

CL -0.00200* 0.0121*** 

 (-2.43) (15.89) 

CnL 0.00161* 0.0110*** 

 (2.01) (14.83) 

LF -0.00242*** 0.0117*** 

 (-3.65) (16.33) 

LR -0.00621*** 0.00966*** 

 (-15.75) (20.89) 

N 87882 87882 

LL -34114.7 -32109.5 

Pseudo R2 0.196 0.243 
Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

BL/BnL – Business London/non-London, CL/CnL – Commute London/non-London, LF/LR-Leisure 

Full/Reduced; SJT: scheduled journey time, Seat=0 represents a standing passenger 

 

Under model V2 in its extended form, delays at both departure and arrival are suggested 

to have a negative impact on delay satisfaction. This highlights the potential impact that 

departure delay may have on how passengers perceive late running, therefore, increasing 

the likelihood of being dissatisfied with punctuality. Alternatively, it may be related to the 

additional inconvenience and uncertainty related to waiting for a delayed train on platform. 

Having a seat has a mitigating impact on delay satisfaction, as seated passengers may be 

able to use their travel time more productively. All else being equal, journey time typically 

has a small positive impact on delay satisfaction, especially for seated passengers. In the 

case of standing London commuters, scheduled journey length is suggested to have a 

negative impact on delay satisfaction (though not significant). To some extent, this may 

be explained by the suggestion by Cats et al. (2015) that long commute is generally 

associated with lower satisfaction with public transport. 

Model V2 was also re-estimated with the inclusion of all levels of the interacted variables 

(model V2a). Similarly to model 3 of delay perception (from the previous chapter), in the 

case of the fully specified model, the model is affected by multicollinearity and the 

probability of being satisfied is suggested to start increasing with the length of delay at 

arrival for longer delays at departure, as depicted in Annex II (section B). This confirms 

that the fully specified model is unable to correctly capture the modelled relationship, 

hence, the originally proposed model (V2) is retained as the preferred one.  

The predicted perception thresholds in Chapter 6 were investigated in great detail (since 

the amount of research concerning delay perception is much more limited). For brevity, 

the probabilities of being satisfied with punctuality were estimated based on the extended 

binary logit model (reported in Table 36) for each of the 6 journey purposes and only for 

the 4 scenarios represented in Table 37 (as shown in Figure 45). 
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Table 37 Scenarios used in reporting probabilities of being satisfied with punctuality 

Scenario SJT Departure 

delay 

Seat Arrival delay 

1 Mean value 

for each of the 

journey 

purposes 

0 No 

0-30 minutes 
2 0 Yes 

3 15 No 

4 15 Yes 

 

 

Figure 45 Probability of ‘delay satisfaction’ for increasing delay lengths and 

scenarios shown in Table 37 

The delay length dissatisfaction thresholds (defined as the arrival delay length with equal 

predicted probabilities of satisfaction and dissatisfaction) were estimated (Figure 46), 

similarly to the delay perception thresholds (from Figure 39). The differences between the 

predicted dissatisfaction thresholds are mostly similar for leisure and business travellers, 

with much lower thresholds typically predicted for commuters. Table 38 provides a 

summary of the estimated values. 
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Figure 46 Estimated thresholds of delay dissatisfaction 

Table 38 Summary of the impacts of having a seat, journey lengths and departure 

delay on arrival delay dissatisfaction thresholds 

  Increase in the threshold due to 

Journey 

purpose 

Minimum 

threshold (i.e. 

standing, long 

departure 

delay, short 

journey) 

Having a seat Longer 

journey 

No delay at 

departure 

Business 6.3 +2 to +11 +3 to +13 +2 to +20 

Commute 3.5 +2 to +6 0 to +3 -1 to +2 

Leisure 7.4 +3 to +15 +3 to +12 +1 to +15 

 

The summary presented above highlights the impact of both journey quality and length on 

the impact of delays on passenger satisfaction. Moreover, for non-commuters, it would 

seem that being delayed at departure from the origin station has a large impact on delay 

satisfaction, likely due to the additional stress, uncertainty and discomfort related to late 

departure as well as any possible impacts that delay at departure may have on the 

perception of final performance. Section 7.5. will compare the concepts of delay 

perception and satisfaction. 

This section presented results from the models of passenger satisfaction that used the 

binary representation of the data. The subsequent section utilises the original (ordinal) 

nature of the satisfaction scale, estimating ordered logit models of passenger satisfaction. 
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Ordered logit 

The ordered logit works with the natural form of the data by modelling the probability of 

choosing each of the five original satisfaction categories for a given delay length. This 

allows insight into the dynamics of the reported satisfaction, especially with respect to how 

the most likely satisfaction category changes with increasing delay length.  

Firstly, an ordered logit model is estimated in its initial form. The choice of satisfaction 

categories is explained by arrival delay while allowing for differing impacts by journey 

purpose. Of note, the models are estimated for two dependent variables – punctuality 

satisfaction in the first model (as in the case of the previous models) and overall satisfaction 

in the second model (as in the case of Monsuur et al., 2021) with the estimated coefficients 

presented in Table 39. It is noted that satisfaction with a journey is likely affected by more 

factors, such as those related to journey quality. However, as modelling of overall journey 

satisfaction is not the main focus of the thesis, more sophisticated models of overall 

journey satisfaction are not introduced in this chapter with the overall journey satisfaction 

model reported for reference only. 

Table 39 Estimated logistic regression coefficients for the ordered logit model of 

punctuality and overall satisfaction 

 (1 Punc_Sat) (2 Overall_Sat) 

Journey purpose  

BnL -0.178*** -0.187*** 

 (-6.19) (-6.80) 

CL -1.360*** -0.805*** 

 (-59.27) (-36.18) 

CnL -1.450*** -0.798*** 

 (-55.56) (-31.21) 

LF 0.157*** 0.331*** 

 (6.64) (14.91) 

LR 0.280*** 0.378*** 

 (13.37) (19.21) 

Arrival delay   

BL -0.114*** -0.0648*** 

 (-37.84) (-21.99) 

BnL -0.159*** -0.0911*** 

 (-41.65) (-24.48) 
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CL -0.163*** -0.135*** 

 (-51.32) (-45.71) 

CnL -0.169*** -0.136*** 

 (-42.15) (-36.77) 

LF -0.155*** -0.0782*** 

 (-46.71) (-24.35) 

LR -0.134*** -0.0653*** 

 (-71.93) (-35.98) 

Threshold 1 -4.186*** -4.618*** 

 (-181.24) (-170.56) 

Threshold 2 -2.994*** -3.293*** 

 (-148.88) (-160.26) 

Threshold 3 -2.354*** -2.194*** 

 (-122.67) (-120.02) 

Threshold 4 -0.518*** 0.192*** 

 (-29.09) (11.38) 

N 133478 137176 

LL -148630.6 -148002.3 

Pseudo R2 0.0971 0.0554 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

BL/BnL – Business London/non-London, CL/CnL – Commute London/non-London, LF/LR-

Leisure Full/Reduced; Punc_Sat and Overall_Sat refer to satisfaction with punctuality and overall 

journey satisfaction 

 

The dynamics of the changes in the dominant categories are different for the models with 

the dependent variable being satisfaction with punctuality (Figure 47) and overall journey 

satisfaction (Figure 48). It is worth making some references to the models estimated by 

Monsuur et al. (2021) where the overall satisfaction model contained a larger number of 

explanatory variables.  Monsuur et al. (2021) estimated that the dominant category choice 

of overall satisfaction is ‘fairly satisfied’ up to around 50 minutes where it changes to ‘very 

dissatisfied’. 30 minutes was indicated to be the delay length that is detrimental to 

passenger satisfaction. The analysis conducted as part of this chapter suggests a similar 

relationship, but a much quicker change between satisfaction and dissatisfaction, 

especially so for commuters. While the exact comparisons are difficult due to the 

differences in the modelling approaches or variables used, Table 40 summarises the 
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dominant satisfaction category choice for increasing delays from the models reported in 

this section for overall and punctuality satisfaction as well as in Monsuur et al. (2021). 

The key observation is that the differences between the two outcome variables may be 

explained by overall journey satisfaction also being affected by other aspects of the 

journey. This also suggests that especially in the context of this piece of work, using 

satisfaction with punctuality as a variable of interest is preferable. Moreover, the smaller 

difference in the predicted probabilities (i.e. for the model of punctuality and overall 

satisfaction) for commuters would suggest that these travellers’ overall satisfaction is 

much more impacted by the delay lengths (with a much smaller impact of other journey 

aspects).  

 

Figure 47 Probability of punctuality satisfaction for increasing delays and different 

journey purposes 
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Figure 48 Probability of overall satisfaction for increasing delays and different 

journey purposes  

Table 40 Comparison of the estimated dominant satisfaction choice based on overall 

or punctuality satisfaction and Monsuur et al. (2021) 

Journey 

purpose 
Punctuality Satisfaction Overall Satisfaction 

Monsuur 

et al. 

(2021) 

Business 

Very satisfied dominant up to 10 

minutes 

 

Fairly satisfied dominant between 

10 to 20-25 minutes 

 

Very dissatisfied dominant for 20-

25+ minutes 

 

Fairly satisfied 

dominant up to 30 

minutes 

Fairly 

satisfied 

dominant 

up to 50 

minutes 

 

Very 

dissatisfied 

dominant 

for 50+ 

minutes 
Commute 

Fairly satisfied dominant up to 10 

minutes 

 

Very dissatisfied dominant for 10+ 

minutes 

 

Fairly satisfied 

dominant up to 15 

minutes 

 

Very dissatisfied 

dominant for 15+ 

minutes 
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Leisure 

Very satisfied dominant up to 10 

minutes 

 

Fairly satisfied dominant between 

10 to 20-25 minutes 

 

Very dissatisfied dominant for 20-

25+ minutes 

Very satisfied 

dominant up to 5 

minutes 

 

Fairly satisfied 

dominant for 5+ 

minutes 

 

With reference to Table 39, the ordered logit model is subsequently extended to include 

the same control variables as the binary response model from Table 36 with results 

reported in Table 41 (model Punc_Sat). In common with the binary model, the results 

highlight the importance of journey length and quality in determining the impacts of delays 

on passenger satisfaction as the estimated coefficients are of the expected signs. The 

extended model of punctuality satisfaction has a slightly higher pseudo R2 of over 0.1. 

While this is somewhat lower than the values reported in Monsuur et al. (2021) for the 

ordered models of overall journey satisfaction, this is probably due to the more complex 

nature of punctuality satisfaction as opposed to overall journey satisfaction. The estimated 

margins are not presented for the ordered logit model in its extended version due to its 

complexity as the choice probabilities for each of the scenarios relate to five, not two 

choices (as is the case with the binary outcome models). In practical terms, the same 

amount of information provided for the binary logit model in Figure 45 would need to be 

shown on four different plots for the ordered logit model, which also highlights the benefits 

of the binary representation of the modelling framework. 

The model was re-estimated with the inclusion of all levels of interacted variables (model 

Punc_Sat_1). Similarly as with the binary logit models, reported in the previous sections, 

the fully specified model predicts that at larger values of departure delay, the probability 

of being very dissatisfied (response 1) starts decreasing with longer delay at arrival (Annex 

II, section C). Hence, the fully specified model is not able to correctly predict the studied 

relationship. Additionally, there is the aforementioned problem with multicollinearity, 

hence, the original more parsimonious model is retained as the preferred model.  



152 

 

Table 41 Estimated ordered logit coefficients for punctuality satisfaction with 

controls 

 (Punc_Sat) (Punc_Sat_1) 

BnL -0.245*** -0.446 

 (-6.57) (-1.69) 

CL -1.394*** -0.946*** 

 (-47.34) (-4.45) 

CnL -1.465*** -1.289*** 

 (-42.91) (-5.70) 

LF 0.110*** 0.0348 

 (3.58) (0.15) 

LR 0.187*** 0.00969 

 (6.99) (0.04) 

Seat=1   

BL  0.686*** 

  (3.38) 

BnL  0.891*** 

  (5.00) 

CL  0.409*** 

  (4.80) 

CnL  0.685*** 

  (5.89) 

LF  0.792*** 

  (7.00) 

LR  0.744*** 

(7.32) 

Arrival delay 

(Seat=0) 

  

BL -0.193*** -0.0838* 

 (-4.66) (-2.24) 

BnL -0.255*** -0.108*** 

 (-10.19) (-4.36) 

CL -0.257*** -0.147*** 

 (-16.71) (-9.22) 

CnL -0.314*** -0.118*** 

 (-17.06) (-5.40) 

LF -0.284*** -0.125*** 

 (-14.62) (-6.25) 

LR -0.262*** 

(-16.99) 

-0.104*** 

(-6.87) 

Arrival delay 

(Seat=1) 

  

BL -0.143*** -0.131*** 

 (-16.33) (-14.36) 

BnL -0.179*** -0.131*** 

 (-17.76) (-12.54) 

CL -0.180*** -0.157*** 

 (-18.50) (-15.08) 

CnL -0.233*** -0.136*** 

 (-20.35) (-10.49) 

LF -0.189*** -0.133*** 

 (-21.97) (-14.83) 

LR -0.140*** 

(-29.24) 

-0.101*** 

(-20.62) 

Arrival delay x SJT (Seat=0) 
BL 0.000114 0.00000429 

 (0.27) (0.01) 

BnL 0.000682** -0.000286 

 (2.60) (-0.97) 
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CL 0.000610 0.000276 

 (1.44) (0.63) 

CnL 0.000263 0.0000166 

 (0.41) (0.02) 

LF 0.000892*** 0.000183 

 (4.07) (0.72) 

LR 0.000598*** 0.0000866 

 (3.88) (0.55) 

Arrival delay x SJT (Seat=1) 
BL 0.000397*** 0.000233*** 

 (6.64) (3.34) 

BnL 0.000553*** 0.000119 

 (8.02) (1.48) 

CL 0.000814*** 0.000470* 

 (4.77) (2.35) 

CnL 0.000867*** 0.0000248 

 (3.87) (0.09) 

LF 0.000764*** 0.000269** 

 (10.59) (3.22) 

LR 0.000431*** 0.0000236 

 (14.29) (0.69) 

SJT (Seat=0)   

BL  -0.00313 

  (-1.07) 

BnL  0.00660** 

  (2.66) 

CL  -0.0125*** 

  (-4.90) 

CnL  -0.0136** 

  (-3.10) 

LF  0.000764 

  (0.37) 

LR  0.0000257 

  (0.02) 

SJT (Seat=1)   

BL  0.000921* 

  (2.11) 

BnL  0.00259*** 

  (4.81) 

CL  -0.00214* 

  (-2.07) 

CnL  -0.00248 

  (-1.56) 

LF  0.00194*** 

  (3.88) 

LR  0.00329*** 

  (13.39) 

Departure delay   

BL  -0.264*** 

  (-22.96) 

BnL  -0.280*** 

  (-23.60) 

CL  -0.256*** 

  (-25.19) 

CnL  -0.251*** 

  (-21.14) 

LF  -0.280*** 

  (-28.04) 

LR  -0.267*** 

  (-44.35) 
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Departure delay x arrival delay 
BL -0.00551*** 0.00783*** 

 (-10.65) (11.25) 

BnL -0.00288*** 0.00891*** 

 (-5.68) (13.79) 

CL -0.0000687 0.0112*** 

 (-0.14) (18.50) 

CnL 0.00328*** 0.0107*** 

 (6.29) (17.97) 

LF -0.00256*** 0.00956*** 

 (-5.23) (16.04) 

LR -0.00493*** 0.00709*** 

 (-20.29) (21.17) 

cut1 -4.393*** -4.013*** 

 (-147.00) (-20.08) 

cut2 -3.117*** -2.702*** 

 (-120.47) (-13.56) 

cut3 -2.458*** -2.004*** 

 (-99.49) (-10.06) 

cut4 -0.627*** -0.0607 

 (-27.29) (-0.30) 

N 87882 87882 

LL -95882.9 -92964.9 

Pseudo R2 0.112 0.139 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

BL/BnL – Business London/non-London, CL/CnL – Commute London/non-London, LF/LR-

Leisure Full/Reduced; LA, LD refer to length of delay at arrival and departure, SJT: scheduled 

journey time, Seat=0 represents a standing passenger 

 

7.3.2. The ‘OD’ model 

Whilst passenger-level models reported in section 7.3.1 were concerned with the impacts 

of a single on-time or delayed journey on passenger satisfaction, the OD model examines 

the impacts of average performance on the proportion of satisfied passengers, using the 

same three versions of satisfaction (i.e. V1-3) as before.  

Passenger responses were sorted by origin and destination pair and subsequently 

aggregated and averaged at the station-to-station level for OD pairs with at least 25 

passenger responses. 676 such OD pairs were identified. It is noted that as NRPS is 

generally representative of the rail trips in the UK, selecting OD pairs with only 25 or more 

responses means that only the more popular flows are represented in the sample. Moreover, 

as the responses are averaged across each of the flows, each flow contributes equally to 

the results. However, the NRPS is not necessarily representative of the delay distribution 

across the network, thus it is not considered appropriate to account for flow sizes. 

Nevertheless, it must be highlighted that caution is needed when using the model outputs 

to generalise about the network-wide impacts. Table 42 shows a correlation matrix of the 

variables of interest. It can be seen that arrival delay is negatively correlated with the 

proportion of satisfied passengers using the three definitions of delay satisfaction. Table 

43 summarises the variables of interest for the sub-sample of OD pairs retained for analysis 
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and Table 44 shows the distribution of responses per OD pair. Average passenger lateness 

ranges from 0 to 8 minutes with a mean value of 2.85 minutes. This is similar to both the 

APL levels reported across the whole NRPS dataset as well as to those recorded at the 

network level in ORR (2022) APL statistics. Across the OD pairs in the sub-sample, an 

average journey time of 60 minutes was recorded whilst around 10% of passengers were 

standing and 90% were seated.   

A fractional response logit model was estimated for the three definitions of delay 

satisfaction (i.e. V1-3). Estimated coefficients are reported in Table 45. The number of 

journey purpose categories was reduced to just three (business, commute and leisure) to 

facilitate interpretation and due to relatively small and insignificant differences between 

journey purpose sub-categories suggested by the passenger models of satisfaction in 

section 7.3.1. as well as to take into account the effectively reduced sample size. The 

purpose of the constant varying by journey purpose is to control for differences in how 

passengers score their satisfaction with punctuality in the case of ‘no delay’. Furthermore, 

an interaction between lateness and scheduled journey time and an interaction between 

lateness and the proportion of seated passengers enter the model as explanatory variables.  

It is noted that the ‘OD’ models have relatively low pseudo R2 values when comparing 

with the ‘passenger’ models. However, these models are expected to perform worse as 

they use values that are averaged across all the responses within each of the OD pairs, thus 

ignoring the distribution of the averaged values. It also means that while a general 

relationship was estimated, there are multiple cases where the predicted proportions of 

satisfied passengers are much higher or lower than the actual values. 

Whilst APL is suggested to have a negative impact on the proportion of satisfied 

passengers, all else being equal, the impact of journey length is (in most cases) positive, 

but insignificant. At the same time, the proportion of seated passengers has a significant 

impact on satisfaction only in the case of commute. The insignificance of some of the 

coefficients may be a result of the OD model being:  

1) based on averages and proportions (thereby moderating the variance in the data) 

and  

2) based on a reduced sample size (i.e. around 700 OD pairs so as to focus on flows 

with a reasonable number of passenger responses).  

Nevertheless, the coefficients are of the expected signs, but only the APL coefficients are 

statistically significant for all journey purposes.  
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The proportion of passengers satisfied with punctuality was plotted for the three definitions 

of delay satisfaction (V1-3) in Figure 49 for a typical (average) journey. Figure 50 on the 

other hand shows the proportion of passengers satisfied with a given level of performance 

using Version 2 of delay satisfaction by journey purpose.  

Under V2 of delay satisfaction, the proportion of commuters satisfied with performance 

for a given level of APL is typically lower, in line with the previously estimated models. 

Whilst around 80% of commuters would typically be satisfied with performance if all 

trains run on-time, the proportion decreases to 50% for APL of around 5 minutes, 

suggesting an average decrease of 6 percentage points (pp) per minute of average lateness. 

For the other journey purposes, the proportion of satisfied passengers is above 90% under 

perfect performance (i.e. APL=0), but at an APL of around 5 minutes, satisfaction 

decreases to around 80%, on average by 2 pp per minute of average lateness. This means 

that the reduction in the proportion of satisfied passengers is also more pronounced for 

commuters than it is for other travellers.  

This would suggest that for any two OD pairs with comparable levels of APL, it is the 

journey purpose split (i.e. especially the proportion of commuters) that will have the most 

impact on differences in passenger satisfaction. Therefore, if the proportion of commuters 

using a given OD flow increases, all else being equal, then levels of satisfaction are likely 

to reduce. It is also worth highlighting that, whilst an explicit journey length effect could 

not be clearly discerned, longer journeys will generally be subjected to higher absolute 

APL (0.4 correlation in the sample) and, at the same time, they will involve a smaller 

proportion of commuters. Therefore, journey length is likely to have an indirect impact on 

the proportion of satisfied passengers via related variables. 

The models were re-estimated using all levels of the interacted variables (V1_AL-V3_AL). 

For the V2_AL model, as shown in Annex II (section D), at lower levels of APL, OD pairs 

with longer journey times are suggested to have a lower proportion of satisfied passengers 

what changes at higher levels of APL. Similarly to the previously estimated models, this 

suggests that when all levels of the interacted variables are included, the direction of the 

estimated relationship is not always plausible, highlighting the problems with using the 

fully specified models. Due to this reason, the original version of the model has been 

retained as the preferred version. 
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Figure 49 Levels of ‘delay satisfaction’ for increasing average delay based on the 

three definitions of delay satisfaction V1: (5) vs (1-4) ; V2: (4-5) vs (1-3); V3: (3-5) vs 

(1-2) based on the model from Table 45 

 

Figure 50 Proportion of satisfied passengers under Version 2 of delay satisfaction at 

the average values of control variables
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Table 42 Correlation matrix 

  Variables   (1)   (2)   (3)   (4)   (5)   (6)   (7)   (8)   (9)   (10)   (11)   (12)   (13) 

(1) APL (arrival) 1.000 

(2) D15 0.802 1.000 

(3) Punct (Sat_V1) -0.144 -0.021 1.000 

(4) Punct (Sat_V2) -0.316 -0.160 0.829 1.000 

(5) Punct (Sat_V3) -0.337 -0.179 0.759 0.933 1.000 

(6) Overall (Sat_V1) -0.081 0.036 0.737 0.619 0.563 1.000 

(7) Overall (Sat_V2) -0.160 -0.047 0.719 0.732 0.712 0.716 1.000 

(8) Overall (Sat_V3) -0.221 -0.112 0.599 0.683 0.702 0.558 0.806 1.000 

(9) APL (departure) 0.605 0.545 -0.391 -0.536 -0.546 -0.142 -0.270 -0.330 1.000 

(10) SJT 0.365 0.338 0.490 0.405 0.376 0.277 0.303 0.254 -0.154 1.000 

(11) PStated 0.681 0.454 -0.597 -0.740 -0.732 -0.380 -0.505 -0.538 0.727 -0.133 1.000 

(12) PRecord 0.768 0.416 -0.276 -0.378 -0.378 -0.200 -0.237 -0.259 0.451 0.157 0.677 1.000 

(13) PSeat 0.016 0.095 0.558 0.570 0.546 0.423 0.520 0.547 -0.285 0.451 -0.393 -0.134 1.000 

Legend: APL: average passenger lateness; D15: proportion of delays over 15 minutes; Punct/Overall: punctuality/overall satisfaction; V1-V3: three versions of 

binary representations of satisfaction; SJT: scheduled journey time; PStated, PRecorded, PSeat: proportion of passengers reporting being delayed, being matched a 

delay and reporting having a seat respectively; variable names in bold refer to the variables used in models from Table 45. 
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Table 43 Variable summary (Variable numbers correspond to variables presented in Table 42) 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) B C L 

Mean 2.85 0.04 0.49 0.81 0.88 0.39 0.85 0.94 1.68 61.33 0.21 0.55 0.91 0.19 0.28 0.53  

SD 1.48 0.04 0.15 0.12 0.09 0.12 0.09 0.05 1.16 49.72 0.12 0.18 0.10 0.14 0.29 0.23  

Min - - 0.03 0.39 0.44 0.07 0.48 0.66 - 3.34 - - 0.35 - - -  

Max 8.00 0.24 0.85 1.00 1.00 0.78 1.00 1.00 6.48 309.64 0.66 0.97 1.00 0.67 1.00 0.98  

Legend: B, C and L: proportion of business, commute and leisure travellers respectively; variables in bold refer to the variables used in models from Table 45. 

Table 44 Distribution of the number of responses per OD pair (N>25) 

 Mean SD Min Max P25 P50 P75 N 

Responses 83 133 25 1554 32 47 79 676 
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Table 45 Estimated coefficients of the OD model with control variables 

  V1 V1_AL V2 V2_AL V3 V3_AL 

 Constant 0.546* -7.855* 2.783*** -5.753 3.296*** -2.583 

  (2.03) (-2.10) (7.65) (-1.44) (7.40) (-0.59) 

J
P

 

Commute -0.886** 7.595* -1.289*** 6.685 -1.141* 4.920 

 (-3.02) (2.02) (-3.32) (1.62) (-2.43) (1.10) 

Leisure 0.178 8.501 -0.348 5.167 -0.250 1.208 

 (0.51) (1.81) (-0.75) (0.97) (-0.45) (0.20) 

C
o

m
m

u
te

 

APL -0.602*** -0.565** -0.674*** -0.423* -0.776*** -0.78*** 

 (-5.04) (-2.58) (-7.48) (-2.21) (-7.96) (-3.48) 

SJT  -0.0109  -0.00952  -0.00243 

  (-1.48)  (-1.11)  (-0.24) 

PSeat  0.368  1.225  0.104 

  (0.50)  (1.57)  (0.11) 

APLxSJT -0.00081 0.00257 0.00160 0.00420 0.00189 0.00212 

 (-0.70) (0.99) (1.31) (1.45) (1.41) (0.63) 

APLxPSeat 0.395** 0.217 0.325** -0.117 0.392** 0.335 

 (2.70) (0.73) (2.60) (-0.41) (2.92) (0.99) 

B
u

si
n

es
s 

     

APL -0.639* 0.824 -0.923*** 0.291 -1.038*** -0.333 

 (-2.01) (1.19) (-3.93) (0.41) (-4.69) (-0.44) 

SJT  0.00344  0.00632  0.00504 

  (0.55)  (0.65)  (0.46) 

PSeat  8.619*  8.483  5.636 

  (2.14)  (1.92)  (1.17) 

APLxSJT 0.00062 -0.00023 0.0025** 0.00071 0.00200 0.00055 

 (1.13) (-0.15) (2.73) (0.29) (1.57) (0.19) 

APLxPSeat 0.518 -0.978 0.507 -0.634 0.658 0.0701 

 (1.42) (-1.27) (1.55) (-0.76) (1.78) (0.08) 

L
ei

su
re

 

     

APL -0.474** -0.323 -0.441** 0.465 -0.376* 0.861 

 (-3.10) (-1.01) (-2.75) (1.17) (-2.12) (1.75) 

SJT  0.0001  0.00140  0.00236 

  (0.04)  (0.35)  (0.51) 

PSeat  0.0721  3.153  4.660* 

  (0.05)  (1.66)  (1.99) 

APLxSJT 0.0007** 0.0007 0.00067 0.00047 0.00118* 0.00080 

 (3.16) (1.13) (1.93) (0.50) (2.23) (0.72) 

APLxPSeat 0.321 0.163 0.198 -0.761 0.0709 -1.251* 
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 (1.87) (0.46) (1.05) (-1.74) (0.33) (-2.30) 

 N 676 676 676 676 676 676 

 LL -448.1 -447.8 -310.2 -309.5 -236.8 -236.3 

 Pseudo R2 0.0433 0.0439 0.0555 0.0576 0.0604 0.0624 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 
APL: average passenger lateness; SJT: scheduled journey time; PSeat: proportion of seated passengers; V1: (5) vs (1-4) ; 

V2: (4-5) vs (1-3); V3: (3-5) vs (1-2); AL refers to models with all interacted variables included 

 

7.4.Summary 

NRPS passenger satisfaction data represents a rich dataset, which supports the elicitation 

of new insights on passenger journey satisfaction, especially in the context of rail 

performance. All of the alternative approaches to modelling satisfaction introduced as part 

of this chapter are summarised in Table 46, highlighting the novelties and key insights 

from each of them. 

Table 46 Summary of the estimated models 

Model Approach Novelty Key insights 

Passenger Binary Binary representation 

allows easier 

interpretation of the 

satisfaction variable and 

estimation of the lengths 

of delay where travellers 

become more likely to be 

dissatisfied. 

Commuters more likely to 

be dissatisfied after 5-6 

minutes of delay, for other 

travellers this threshold is 

between 12-20 minutes 

Having a seat increases the 

dissatisfaction threshold by 

between 2 to 6 minutes for 

commuters and up to 15 

minutes for other travellers. 

 

Passenger Ordered  

(Overall 

Satisfaction) 

This model is based on a 

similar analysis by 

Monsuur et al. (2021), 

however with a few 

modifications, most 

importantly, inclusion of 

responses where delays 

were unperceived. 

Large differences in the 

choices between commuters 

and other travellers with 

commuters base category 

being ‘fairly satisfied’ for 

delays of up to 15 minutes, 

then changing to 

dissatisfied 

Other travellers’ base 

category is ‘fairly satisfied’ 

for up to 30 minutes. This is 

suggested to be earlier than 

the 50 minutes suggested 

by Monsuur et al. (2021). 

 

Passenger Ordered  

(Punctuality 

Satisfaction) 

Using a variable directly 

related to satisfaction with 

punctuality, not the whole 

journey, allows studying 

the indirect impacts of 

journey quality and/or 

Punctuality satisfaction is 

typically lower than overall 

satisfaction. ‘Satisfied’ 

categories are dominant for 

business and leisure 

travellers for delays of up to 
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length on how delays 

impact passengers rather 

than their impacts on 

overall satisfaction. 

20-25 minutes. For 

commuters, ‘dissatisfied’ 

categories already become 

dominant for delays of over 

10 minutes.  

 

OD Binary The binary representation 

at the aggregated OD 

levels allows estimating 

the impact of average 

performance on the 

proportion of satisfied 

passengers for a given OD 

pair. 

Under perfect performance, 

80% of commuters and 

90% of other travellers are 

suggested to be satisfied 

with performance. The 

proportion of satisfied 

passengers decreases by (on 

average) 6 pp for a minute 

of APL for commuters and 

2 pp for other travellers. 

 

Hence, commuter-focused 

OD pairs are likely to suffer 

from lower levels of 

passenger satisfaction given 

the same level of APL. 

 

In summary, the binary model of punctuality satisfaction under Version 2 of delay 

satisfaction is the recommended model with the OD model being possibly more useful for 

policy applications as it can be used for benchmarking and forecasting the impacts of 

performance on the proportion of satisfied passengers. The estimated thresholds could be 

used for setting performance targets where the ‘passenger’ models can be useful in 

suggesting the optimal, yet attainable, distribution of delay incidents of given lengths (i.e. 

delays of more than 15 or 20 minutes are more likely to lead to choices of the categories 

related to lower satisfaction). At the same time, the ‘OD’ model may be helpful in setting 

average performance targets, more in line with the typical focus of the industry. Finally, 

both models can be applied to set the performance targets, both in terms of the average 

performance and the distribution of delay length occurrences. Nevertheless, it must be 

noted that aggregating data (as in the case of the ‘OD’ model) as well as dichotomising the 

data (as in the case of the binary version of the ‘passenger’ model) lead to some loss of 

detail and especially so related to the strength of satisfaction versus dissatisfaction.  

In terms of the reported satisfaction, commuters are found to be considerably more 

sensitive to delays, being unlikely to express complete satisfaction even in the absence of 

delay. Therefore, station-to-station journeys with higher proportions of commuters are 

likely to be associated with lower levels of passenger satisfaction with delays. Whilst 

commuters express most dissatisfaction with performance, they are least responsive to 



163 

 

performance in demand/revenue terms. This is likely because of a lack of viable travel 

alternatives for commuters, which renders them captive to rail (Batley et al., 2011). 

Crowding (expressed as the ability to find a seat) is found to be an important confounding 

factor, such that dissatisfaction with delay will be compounded if passenger is stood rather 

than seated. Interestingly, the impact of scheduled journey time for a given delay length is 

suggested to be positive on delay satisfaction for seated business and leisure travellers. In 

the case of standing passengers, this impact is typically smaller. This may be due to the 

ability to use travel time more productively when seated (as discussed by Wardman and 

Lyons, 2016; Lyons et al., 2016) as well as larger safety buffers around arrival times or 

lower sensitivities to delays related to the type of activity planned. For commuters, 

however, the impact of scheduled journey time for a given delay length is less clear and, 

in one case, even negative (though insignificant). This may be connected to the suggestions 

made by Cats et al. (2015) that long commute is generally associated with lower 

satisfaction with public transport.  

The present work focused on understanding how different levels of incidental lateness and 

average performance affect passenger satisfaction. One area for future research could be 

to explore the scope to more explicitly link performance to satisfaction and demand. The 

main limitation of the NRPS dataset in this context is, however, its cross-sectional nature. 

Each NRPS record represents a given passenger’s satisfaction with a given incidence of 

delay. In the OD level model, this means that the proportion of satisfied passengers does 

not represent passenger satisfaction with average performance, but rather average 

satisfaction having averaged across all of the lateness incidents encountered by passengers. 

This property of the data does not readily lend itself to reconciliation with other (more 

established) performance metrics, such as AML, proportion of stops delayed by a given 

amount of minutes or similar supply-centric measures. This issue could potentially be 

addressed in the future, by collecting satisfaction data from a panel of commuters over a 

period of time to better understand the relationship between average satisfaction, incidental 

satisfaction and how both are affected by average delay length and its distribution.  

As previously discussed, another important limitation of NRPS also lies within its inability 

to represent cancellations or interchanges. The impact of these data errors was investigated 

more closely in the case of the analysis of delay perception. However, the results from 

sensitivity analyses were broadly in line with the main body of analysis.  

It has been suggested that commuters tend to be less satisfied with performance. This could 

be due to strategic bias or their reflection of general performance on the specific OD pair 

– being especially evident in relatively lower satisfaction levels for the ‘no delay’ case, as 
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well as a more rapid decrease in satisfaction levels as delays increase. These lower 

satisfaction levels do not, however, appear to stimulate a direct response in terms of 

demand. Further work is required to better understand this conundrum and how it can be 

represented in social welfare terms – so as to focus public investment in the railways where 

it will achieve best value for money. 

The satisfaction analysis presented useful insights into the levels of delays that are 

detrimental to passenger satisfaction for different types of passengers as well as the impacts 

of journey lengths and quality on the disutility of delay. Following the separate analysis of 

delay perception and satisfaction using comparable methodologies, the next step is to ask 

about the differences between the probabilities of perceiving a delay and then being 

dissatisfied with it – i.e. with an a priori expectation of a gap between the moment the 

delay is perceived and when it starts affecting passenger satisfaction. This analysis will be 

conducted as part of the next section. 

7.5. The gap between delay perception and dissatisfaction 

The main focus of this chapter is on comparing the concepts of delay perception and 

satisfaction by investigating how the predicted probabilities of delay perception and 

journey satisfaction change for increasing lengths of delays. This will be based on a 

comparison of the results from perception and satisfaction models presented in Chapter 6 

with the passenger model of delay satisfaction using V2 of the satisfaction variable (i.e. 

‘very satisfied’ or ‘fairly satisfied’ versus other options). The comparison will be based on 

the extended versions of the perception and satisfaction models that use the same control 

variables, allowing direct comparisons between them. The predicted delay length 

perception and satisfaction thresholds are subsequently compared where the gap between 

delay perception and its impacts on satisfaction is defined as the difference between the 

length of delay with an estimated 0.5 probability of perceiving and being satisfied with it. 

Considering the relative complexity of the logistic regression models with multiple 

explanatory continuous variables and their interactions as well as a relatively large number 

of journey purpose categories used in the previously estimated models, an attempt was also 

made to estimate a simplified version of the model of perception and satisfaction that 

would facilitate comparisons between the two. The simplified models were estimated with: 

1) Only three journey purpose categories – business, commute and leisure; 

2) Reduced number of explanatory variables to facilitate interpretation. The binary 

outcome referring to perception or satisfaction is now only explained by an 

interaction between the length of delay at arrival and a dummy variable 
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representing whether passenger was standing or seated, allowing for heterogeneity 

by journey purpose; 

3) Satisfaction variable being recoded with the outcome taking the value of 1 if a 

passenger was dissatisfied or 0 if a passenger was satisfied (previous satisfaction 

models used the opposite representation) to better align with the perception 

modelling framework where the probabilities increase with experienced delay 

lengths. This represents a rather cosmetic difference, facilitating graphical 

comparisons but having no impact on the econometric results. 

Hence, the purpose of this section is to uncover the intermediate stages of the impacts of 

delays on passengers by: 

1) establishing links between delay occurrence, perception and satisfaction to enable 

better understanding of these concepts and  

2) provide an estimate of a gap between delay perception and its impacts on 

satisfaction that is defined as the difference between the length of delay that is 

perceivable and the corresponding delay that is deemed detrimental to passenger 

satisfaction. 

This section is divided into a subsection reporting the results of the comparison between 

perception and satisfaction models (7.5.1) and a summary of results (7.5.2). 

7.5.1. Results 

To compare the concepts of delay perception and satisfaction, the model results are used 

to present: 

1) the threshold of delay perception, i.e. where the estimated probability of 

perceiving a delay reaches 0.5, 

2) the threshold of delay dissatisfaction, i.e. where the estimated probability of being 

dissatisfied with punctuality increases to 0.5 and 

3) the corresponding difference between the two thresholds that represents the gap 

between delay perception and dissatisfaction 

This is first introduced by comparing thresholds based on the previously estimated models 

and subsequently by estimating simplified versions of these models to facilitate reporting 

and interpretation. 
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Comparison of the extended models introduced in Chapter 6 and section 7.3 

Binary models of delay perception and satisfaction (using V2 of the binary variable) in the 

extended version were previously estimated and reported in Table 26 and Table 36. 

Based on the estimated models, the probabilities of perceiving a delay and being satisfied 

with it were predicted for: 

 six journey purposes, 

 10th and 90th percentile of scheduled journey time distribution (for each of the 

segments), 

 0 and 15 minutes of departure delay, 

 seated and standing passengers and 

 arrival delay length of 0-30 minutes. 

Subsequently, the arrival delay lengths were evaluated at 0.5 probability of perception and 

satisfaction and are reported in Figure 51. By comparing the two thresholds (i.e. of 

perception and satisfaction), this figure highlights the gap between delay perception and 

satisfaction, as indicated by the error bars. As expected, in most cases, the predicted delay 

length thresholds of satisfaction are larger than those of perception. This would be 

indicative of a gap between the moment when a delay is perceived and when it starts having 

a detrimental effect on passenger satisfaction. In the cases where the gap is suggested to 

be negative, this is due to the perception and satisfaction thresholds not being significantly 

different from each other. Moreover, as the perception variable truly represents a binary 

outcome, satisfaction variable is dichotomised and, as previously noted, there is more than 

one way to convert an ordinal scale into a binary one. This highlights the relative 

complexity of the extended versions of the models due to their multidimensional nature. 

However, it might be worth highlighting some key points resulting from the analysis: 

1) Perception and satisfaction thresholds for commuters are typically lower than 10 

minutes for all the studied scenarios. 

2) The respective thresholds for other travellers are typically between 4 and 20 

minutes. However, for long journeys with no delay at departure, these might be in 

excess of 20 minutes if passengers had a seat. 

3) Delay and perception thresholds are typically insignificantly different for very 

short journeys and/or in the cases where the train departed on time from the origin. 
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This would suggest the important role of departure delay that affects delay 

perception more than satisfaction. 

4) The gap between delay perception and satisfaction is relatively small for 

commuters, from less than 1 minute in the case of journeys with no delay at 

departure to around 4-5 minutes for longer journeys with a longer delay at 

departure and for seated passengers.  

5) For other travellers, the gap is typically small for short journeys with no delay at 

departure and for standing passengers (i.e. 0-2 minutes), but typically increases for 

seated passengers, with delay at departure (at least for short journeys as there is 

less confidence in the estimates for longer journeys) as well as with journey 

lengths. 

The next section aims to provide a clearer picture by introducing simplified versions of 

delay perception and satisfaction models that facilitate interpretation. 

 
Legend: perception thresholds indicated by column heights whilst error bars demonstrate the 

difference between perception and dissatisfaction thresholds. The example interpretation of the 

figure presented above would be that (for example, second column) for Business travellers to 

London with a seat, no delay at departure and journey length equal to the 10th percentile of 

journey length distribution, the probability of perceiving a delay is equal to 0.5 when a 14-minute 

delay is experienced. The corresponding delay length leading to the probability of dissatisfaction 

being equal to 0.5 is just under 17 minutes, hence, the difference between the two delay length 

thresholds is around 3 minutes as shown by the error bar.  

Figure 51 Estimated delay length perception and satisfaction thresholds  
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Estimation of the simplified models of delay perception and satisfaction 

Perception and satisfaction models in their extended form are relatively complex. This is 

primarily due to a large number of continuous variables and their interactions. To mitigate 

this, simplified models of delay perception and satisfaction were also estimated for only 

three journey purposes and two explanatory variables (interaction between a dummy 

variable representing whether a passenger was seated or standing and the length of delay 

at arrival). The reported coefficients are presented in Table 47 with the predicted 

probabilities depicted graphically in Figure 52. The pseudo R2 values are generally of a 

magnitude that is comparable to the models reported throughout the thesis. In both cases, 

the estimated coefficients are of expected signs and magnitudes.  

As was the case with the previously estimated models, the predicted delay perception and 

dissatisfaction thresholds are reported (Table 48). These are comparable for business and 

leisure travellers. As such, standing business and leisure travellers become more likely to 

perceive delays of around 6 minutes as compared to just under 10 minutes for seated 

passengers. The estimated gap between delay perception and dissatisfaction is around 2.5-

4 minutes for standing passengers and 7.5-9 minutes for seated passengers. This suggests 

that journey quality not only has an impact on delay perception and satisfaction separately 

– having a seat also increases the difference between the two. This is also in line with the 

previously reported results. Commuters are typically able to perceive smaller delays – 

around 3-5 minutes with the estimated gap between delay perception and dissatisfaction 

being much smaller, insignificant for standing passengers and just above 1 minute for 

seated passengers. This highlights the smaller impact of journey quality on commuters as 

well as these travellers being generally much more sensitive to delays. Moreover, the small 

gap is indicative of almost all the perceivable delays automatically affecting commuters’ 

satisfaction. 

The models were also re-estimated using all levels of the interacted variables (models 

Perc_AL and DSat_AL). The main difference between the originally estimated models and 

the fully specified models is in the estimated relationship between seat availability and the 

probability of perceiving a delay, and being dissatisfied with it. When all levels of 

interacted variables are included, this allows for the base levels to be different for seated 

and standing passengers. However, this also means that the model does not only capture 

the complementary nature of being seated versus standing on how delay is perceived or 

affects satisfaction as the baseline probabilities are assigned individually for both levels of 

the dummy variable. 
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Table 47 Estimated binary model coefficients for perception and dissatisfaction 

models 

  Perc Perc_AL DSat DSat_AL 

 Constant -1.540*** -0.945*** -2.047*** -1.022*** 

  (-47.17) (-7.28) (-56.80) (-8.21) 
J

o
u

rn
ey

 

p
u

rp
o

se
 

Commute 0.656*** 0.561*** 1.382*** 0.978*** 

 (15.13) (3.92) (30.90) (7.16) 

Leisure -0.148*** 0.125 -0.229*** -0.145 

 (-3.71) (0.80) (-5.14) (-0.95) 

 Seat=1     

 

Business  -0.630***  -1.099*** 

  (-4.69)  (-8.45) 

Commute  -0.631***  -0.782*** 

  (-9.18)  (-12.22) 

Leisure  -0.922***  -1.197*** 

  (-10.12)  (-13.19) 

 Arrival delay 

B
u

si
n

es
s 

(Seat=0) 0.236*** 0.160*** 0.226*** 0.116*** 

 (14.92) (7.76) (15.61) (6.87) 

(Seat=1) 0.163*** 0.167*** 0.121*** 0.127*** 

 (34.94) (34.91) (29.70) (30.34) 

C
o
m

m
u

te
 

(Seat=0) 0.294*** 0.204*** 0.227*** 0.130*** 

 (26.93) (15.39) (23.77) (12.01) 

(Seat=1) 0.176*** 0.195*** 0.104*** 0.124*** 

 (30.22) (30.34) (22.24) (24.00) 

L
ei

su
re

 

(Seat=0) 0.277*** 0.162*** 0.225*** 0.114*** 

 (24.16) (11.48) (23.98) (10.31) 

(Seat=1) 0.172*** 0.177*** 0.120*** 0.127*** 

 (52.17) (52.36) (43.17) (44.21) 

 N 48904 48904 48904 48904 

 LL -28062.1 -27965.0 -24617.7 -24438.7 

 Pseudo R2 0.136 0.139 0.145 0.151 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001;  

Seat=0 represents a standing passenger; AL refers to the model with all levels of interacted 

variables; Perc refers to perception and DSat - dissatisfaction 
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Figure 52 Probability of delay perception and dissatisfaction for increasing delay 

lengths and different journey purposes based on the models presented in Table 47 

Table 48 Estimated perception and dissatisfaction delay length thresholds based on 

models presented in Table 47 and Figure 52 

 Perception Dissatisfaction Gap 

Journey purpose No seat Seat No seat Seat No seat Seat 

Business 6.5 9.4 9.0 16.9 2.5 7.5 

Commute 3.0 5.0 2.9 6.3 -0.1 1.3 

Leisure 6.1 9.8 10.1 18.9 4.0 9.1 

 

7.5.2. Summary 

The previous section compared two concepts introduced in the thesis, i.e. delay perception 

and satisfaction, introducing the concept of a gap between delay perception and 

dissatisfaction. The predicted probabilities of perceiving a delay and being dissatisfied 

with it were compared to investigate the existence of a gap between: 

1) the moment of delay occurrence, 

2) the delay lengths that start being perceivable by travellers and 

3) the delay lengths that start having a negative impact on passenger satisfaction. 
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The so-called gap between delay perception and satisfaction was first compared for a more 

complicated model with several control variables and a simpler model for easier 

interpretation of the results. 

The analysis suggests existence of a gap between the moment when delays are perceived 

and start having impacts on passenger satisfaction. The gap is suggested to be between 0 

minutes for standing commuters to up to 9 minutes for seated leisure travellers. Typically, 

commuters are able to perceive smaller delays than other travellers, with smaller delays 

also having a more significant impact on their satisfaction levels. Both the thresholds of 

perception and dissatisfaction as well as the estimated gap between them are very similar 

for business and leisure travellers. It has been generally suggested that the gap between 

delay perception and dissatisfaction increases for seated passengers, with longer journeys 

and delay at departure. 

There are some limitations to the approach undertaken as part of this chapter: 

1) Most emphasis is placed on the thresholds where probabilities of delay perception 

and dissatisfaction reach 0.5. This may be a useful approach due to its simplicity, 

however, it can be seen that probabilities change marginally for each incremental 

increase in delay length. There might be some value in understanding how the so-

called gap changes with different lengths of recorded delays. 

2) Only one version of the binary representation of the dependent variable was used. 

This was based on the analysis conducted in the previous chapter as well as 

practical considerations. However, the previous analysis detailed and commented 

on the alternative approaches to the treatment of the reported satisfaction variable. 

The differences between the moments when delays are perceived and start having 

significant impacts on passenger satisfaction call for a more detailed analysis of the 

marginal impacts of delays on passengers. If very small delays are unperceived and there 

is a tolerance threshold for delays before passengers become dissatisfied, this would 

possibly suggest that the marginal impacts of smaller versus larger delays may be, in fact, 

different. As such, a natural recommendation that arises from this analysis is to study the 

possible non-linearities in the marginal utility of late time as discussed in the next section. 

7.6. Marginal (dis)utility of lateness 

Previous sections focused on establishing a link between delay length and passenger 

satisfaction with the use of logistic regression. The concepts of delay perception and 

satisfaction were compared, suggesting that smaller delays are often likely to be 

unperceived and noting that perceiving a delay does not automatically lead to a 
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consequential impact on passenger satisfaction. This, in turn, leads to posing a question 

about the curvature of the shape of the relationship between delay and travellers’ utility. 

Before introducing the possible ways of investigating the non-linearities in the impact of 

delays on utility, it is worth highlighting that most of the currently used methodologies in 

economic appraisal assume constant valuations of time and delays (e.g. value of time or 

reliability multipliers later introduced in Chapter 8). However, some indications of non-

linear unit valuations of late time were suggested in the literature, e.g. by Wardman and 

Batley (2022), arguing that proportional elasticities (i.e. based on the relative proportion 

of AML to GJT) better explain changes in demand than the actual delay lengths. 

Hence, the purpose of this section is to explore the potential non-linearities in the delay 

impacts using approaches introduced by previous literature. In doing so, it needs to be 

emphasised that such analysis is to be conducted with data on reported satisfaction used as 

a proxy for utility. One important characteristic of the satisfaction data that needs to be 

accounted for is its ordinal nature. Throughout the literature, different methodologies have 

been applied to modelling ordinal data from satisfaction surveys. Gao et al. (2018) 

summarised years of previous research concerning journey satisfaction, observing that 

most of the studies are empirically-driven where the choice of the functional relationship 

is made at the discretion of researchers. Hence, there is an abundance of studies modelling 

satisfaction using both the original ordinal scales (i.e. Cats et al., 2015; Yang et al., 2015; 

Ettema et al., 2016; Abenoza et al., 2017) or assuming an interval scale and applying linear 

regression methods (i.e. Cao and Ettema, 2014; De Vos et al., 2016; Wan et al., 2016). 

Conceptually, logistic regression methods are more appropriate for modelling the 

relationship between travel attributes and choice of satisfaction scores. That said, it has 

been noted that there are several benefits of applying linear regression with the most 

obvious being the ease of interpretation. Several studies discussed the pros and cons of 

imposing an assumption of cardinality on ordinal data, the usefulness of such approaches 

as well as how the results compare between these types of approaches (e.g. Dickerson et 

al., 2014). In such cases, there is implicitly a very strong assumption of equal distances 

between the different points on the ordinal scale. There is no consensus in the literature 

regarding this problem. However, some studies have shown similar results obtained from 

logistic and linear regressions (e.g. Ferrer-i-Carbonell and Frijters, 2004). This could 

possibly suggest that it may be worth applying both approaches simultaneously. 

The concept of utility dates back to Bernoulli's (1954) work on risk aversion suggesting 

that while prices for any two individuals are equal, the utility derived by each individual 

from buying the same good may differ. Similarly, for an individual on a lower income, a 
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same-value gain (income) may be usually more significant than for a person with a higher 

income. While utility is assumed to be additive, it is important to understand the rate of 

change in utility levels in response to changes in the variable of interest. This has been 

studied in various contexts in public policy, usually focusing on the marginal utility of 

income (Layard et al., 2008) or consumption (Evans, 2005). These estimates are important 

parameters in determining optimal taxation (Layard et al., 2008) including carbon tax and 

climate change policy (Anthoff et al., 2009; Bachmann, 2020), assessment of health 

technologies and valuing health (Phelps, 2019), analysis of labour market (Farzin, 2009; 

Rätzel, 2012; Masuda et al., 2021), progressive pricing (Coker and Izaret, 2021) and 

valuation and cost-benefit analysis of infrastructure investments (Greene et al., 2020), 

including valuation of time in transport contexts (Batley et al., 2019). 

The work conducted as part of this section aims to look at how the marginal utility of delay 

changes with increasing delays. This is done by following methodologies introduced by 

previous literature, described in more detail in section 7.6.1. Initial analysis of the 

relationship between delay and reported satisfaction based on the NRPS survey is 

presented in section 7.6.2 with the results and conclusions of the analysis presented in the 

remaining sections. 

7.6.1. Literature review 

When studying the non-linearities in the impacts of delays on passengers, it is worth 

looking at the methodologies used to study such non-linearities in other areas of economics 

(e.g. the previously mentioned labour economics). In the case of income, additional 

earnings can often only be obtained by increasing working hours. As shown by Rätzel 

(2012), marginal utility of labour follows an inverse U-shape relationship, suggesting that 

initially, work can increase utility. However, at some point, additional earnings are no 

longer able to compensate for the increased working hours. Similarly as in the case of 

labour supply, in transport passengers are concerned with the time and money aspect of 

travel. Increasing money cost and travel time sources of disutility. 

Layard et al. (2008) studied the relationship between household income and life 

satisfaction to estimate the elasticity of marginal utility of income and understand the 

marginal impact of income on life satisfaction. The obtained estimates of the elasticity of 

marginal utility of income of around -1.2 indicated that the marginal utility of income 

diminishes, contrary to the assumption made by Bernoulli (1954) of marginal utility of 

income being inversely proportional to income. While subjective well-being or stated life 

satisfaction is often considered to be a good approximation of utility levels (Layard et al., 

2008), Cooper (2020) noted that this approach may discriminate against people with lower 
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expectations or higher willingness to adapt. This reflection in the context of journey 

satisfaction may be translated to frequent travellers having better experience and 

knowledge about the typical journey times and average delays or higher sensitivity to 

lateness. Similarly, the findings of Boyce and Wood (2011) indicate a strong personality 

effect on the marginal utility of income, suggesting that there might be some levels of 

heterogeneity in the impacts of additional income on life satisfaction that can only be 

attributed to respondents’ personalities. However, these concerns can be addressed by 

segmenting travellers. Moreover, subjective well-being or satisfaction largely relies on the 

assumption of individual rationality which, as noted by Cooper (2020), cannot be 

guaranteed. On the other hand, subjective well-being has been found to correlate with 

socio-demographic characteristics, income, health, environment, geography, societal 

norms and culture (Layard, 2006; Layard et al., 2008; Cooper, 2020; Masuda et al., 2021). 

Thus, suggesting that the subjective well-being changes in line with the changes in 

objective measures and highlighting the usefulness of using satisfaction data in economic 

analysis. 

In public transport, the departure times are pre-defined and discrete rather than continuous 

as is the case with car travel. As discussed as part of section 2.2, scheduling models can be 

particularly useful in analysing how passengers schedule their journeys and how they are 

impacted by delays. A choice of departure time depends on the preferred arrival time 

(PAT) (timing constraints), public transport schedule as well as the safety margin. The size 

of the safety margin depends on individual preferences, risk aversion and expectations that 

can depend on previous experiences. Ultimately, passengers aim to maximise expected 

utility with respect to preferred arrival time but are unlikely to calculate probabilities for 

all possible travel options, as this is not feasible. The standard formulation used in UK rail 

assumes that the value of early arrival is 0 and PAT is equal to scheduled arrival (Bates et 

al., 2001) with the marginal (dis)utility of late arrival being constant. As indicated by Bates 

et al. (2001), only 1 in 3 travellers has a preferred arrival time equal to scheduled arrival 

as travellers are likely to include safety margins to their schedules. This could, perhaps, 

mean that some of the smaller delays are of lower importance as long as a traveller arrives 

to their destination before the other planned activities start. 

Drawing comparisons to income, it is important to note that income is a source of positive 

utility while additional travel time related to delays is expected to be a source of disutility. 

Of note, the distribution of delays is also much more skewed to the left with most delays 

being very small. The reasons for believing that the marginal utility of delay is non-

monotonous can be sought in:  
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1) the analysis of delay perception conducted as part of Chapter 6, suggesting that 

some smaller delays are unperceived and 

2) Wardman and Batley (2022) concluding that elasticities of AML relative to GJT 

better explain changes in demand than the ones based on the absolute values. 

As noted by Gao et al. (2018) different methods have been applied to modelling passenger 

satisfaction, often chosen at researchers’ discretion (typically logistic and linear regression 

methods). However, Gao et al. (2018) also proposed a cubic model of passenger 

satisfaction where the explanatory variables were related to differences between 

experienced and expected travel attributes (related to time components of GJT) for bus 

users in the Chinese city of Xi’an. Cubic relationships allow studying the different 

inflection points with marginal utility being non-monotonous.  

To decide on the best functional form for studying the relationship between delay and 

reported satisfaction whilst also examining the potential non-linearities, the next section 

aims to comment on this relationship using the data from the NRPS survey. 

7.6.2. Initial analysis 

If one assumes equal intervals between the responses on the original 5-point Likert scale 

forming part of the NRPS questionnaire then this allows for averaging satisfaction scores 

across the responses. While there might be some disadvantages to the introduced approach, 

it is noted that such methods have been used throughout the literature (i.e. in Layard et al., 

2008). Moreover, the binary representation of the satisfaction variables, introduced earlier 

in this chapter, also imposed a strong assumption as multiple scores were grouped, in fact, 

ignoring the distances on the scale between them. Figure 53 and Figure 54 show the 

relationship between delay length and reported satisfaction with punctuality and overall 

journey from the NRPS. The responses were sorted by three journey purposes and delay 

length, and subsequently averaged across groups of 100s. 

As expected, experienced utility (proxied by reported satisfaction) decreases with 

increasing delay levels with the base satisfaction being lower for commuters whose 

marginal reduction in utility is also larger (in absolute terms) as discussed earlier in 

Chapter 7. The utility levels seem to drop in a linear manner. However, towards lengthier 

delays, the changes become less pronounced. 
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Figure 53 Relationship between delay length and average satisfaction with 

punctuality (utility). Responses were sorted by journey purpose and delay lengths, 

and subsequently averaged across responses in the groups of 100 responses. 

 

Figure 54 Relationship between delay length and average overall satisfaction. 

Responses were sorted by journey purpose and delay lengths, and subsequently 

averaged across responses in the groups of 100 responses. 
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The methodology section introduces the modelling methods based on the previous 

literature, also taking into account the observed relationships described above. 

7.6.3. Methodology 

The key aspect of the investigation conducted as part of this section is to analyse the shape 

of the relationship between delay and utility of lateness. The first step is to choose a proper 

functional form that satisfies all the properties of the reported satisfaction data used as a 

proxy for utility. There is very limited literature covering the possible non-linearities in the 

delay impacts on passengers - despite Wardman and Batley (2022) considering this issue 

to be of great importance. On the other hand, there is an abundance of economic literature 

exploring the impacts of different variables on utility (satisfaction) in a variety of contexts. 

The approach undertaken here is based on previous literature, primarily on two studies: 

1) Layard et al. (2008) looking at the marginal utility of income and 

2) Gao et al. (2018) examining the non-linear relationship between the difference in 

observed versus expected trip attributes and reported satisfaction. 

It is, however, important to consider some of the following properties of NRPS satisfaction 

data and assumptions, which are additional to the limitations highlighted previously: 

1) The utility is based on a difference between experienced and scheduled journey 

length. This is slightly different to the formulation used in Gao et al. (2018) where 

a difference between expected and experienced in-vehicle times was used. In the 

analysis which follows, it is assumed that the expected arrival is equal to the 

scheduled arrival (as per the timetable). As such, it is expected that any positive 

difference between actual and scheduled arrival is a source of disutility. It is worth 

highlighting that in the case of Gao et al. (2018), surveyed respondents were metro 

or urban bus users with typically higher service frequencies as compared to rail 

passengers surveyed as part of NRPS. 

2) Reported travel satisfaction – i.e. both overall satisfaction and satisfaction with 

punctuality are proxies for individual welfare. This assumption has generally been 

used in the literature, especially in the context of subjective well-being (e.g. 

Kahneman and Krueger, 2006; Layard et al., 2008; MacKerron, 2012). 

3) For linear models, it is assumed that 1-point changes in reported satisfaction imply 

the same distances between the points on the scale. Such assumptions have been 

also made in the literature (i.e. Ferrer-i-Carbonell and Frijters, 2004; Layard et al., 

2008; Dickerson et al., 2014), suggesting that often similar results are obtained 



178 

 

from linear and ordered logit models. However, this approach has also been 

criticised (e.g. by Baetschmann et al., 2015), hence both cardinal and ordinal 

representations of the satisfaction (utility) variable are analysed below. 

Considering the relationships described previously, the data characteristics and the 

previous research, the approaches include: 

1) Maximum likelihood estimation of ρ using ordered logit and linear dependence 

model based on the Layard et al. (2008) investigation of the marginal utility of 

income, i.e. 

𝑈 = 𝛽0 + 𝛽1

𝐿𝐴
1−𝜌 − 1

1 − 𝜌
+ ∑ 𝛽𝑛𝑆𝑎𝑡𝑛

𝑛

𝑛=1

 

( 26 ) 

where: 

U: experienced utility (i.e. proxied by reported satisfaction, related to overall satisfaction 

or satisfaction with punctuality); 

𝐿𝐴: recorded length of delay at arrival (destination station) 

𝑆𝑎𝑡𝑛: relates to additional controls, denoting satisfaction with train and station for the 

models based on overall satisfaction. These are not included in the case of punctuality 

satisfaction that is related to delay-specific satisfaction (as discussed earlier in the chapter). 

In the case of the models of overall satisfaction where satisfaction with other journey 

aspects is used as explanatory variable, it is important to acknowledge the potential 

endogeneity bias. This is related to needing to control the overall journey satisfaction for 

those specific journey aspects that are difficult to measure and/or there is no alternative 

variable that could control for their effect on the overall satisfaction. This potential bias is 

only a concern for the extended version of the overall satisfaction models. 

ρ: minus elasticity of marginal utility of delay 

2) Estimation of a cubic model based on Gao et al. (2018) where it is assumed that 

utility depends on the difference between experienced and expected journey time 

with experienced journey time being calculated as the difference between actual 

and scheduled arrival and expected journey time assumed to be as per timetable. 

Here, a third-degree polynomial regression model is estimated in line with Gao et 

al. (2018), i.e. 
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𝑈 = 𝛽0 + 𝛽1𝐿𝐴 + 𝛽1𝐿𝐴
2 + 𝛽1𝐿𝐴

3 + ∑ 𝛽𝑛𝑆𝑎𝑡𝑛

𝑛

𝑛=1

 

( 27 ) 

3) Piecewise regression that allows estimating two linear relationships with a 

breakpoint 𝐶. The benefit of fitting such regression is that the breakpoint is not an 

input of the estimation. This approach is somewhat similar to assuming that at 

some level of delay, there is a threshold where the marginal impacts of delay start 

exhibiting a different relationship. The breakpoint is estimated in the model and a 

second regression model is estimated after the breakpoint 𝐶, i.e. 

𝑈 = {
𝛽0 + 𝛽1𝐿𝐴   𝑓𝑜𝑟 𝐿𝐴 < 𝐶
𝛽0 + 𝛽2𝐿𝐴   𝑓𝑜𝑟 𝐿𝐴 ≥ 𝐶

}  

( 28 ) 

7.6.4. Results 

This section presents the estimation results for the models introduced in the methodology 

section in the following order: 

1) Maximum likelihood estimation of ρ 

2) Cubic relationship between delay length and satisfaction 

3) Piecewise regression 

All the aforementioned models aim to investigate the non-linearities in the relationship 

between delays and utility.  

Maximum likelihood estimation of ρ 

Following the work conducted by Layard et al. (2008), maximum likelihood estimation of 

𝜌 was the first step of the analysis, focusing on analysing the curvature of the relationship 

between delay and satisfaction (utility). The analysis of the relationship between recorded 

delay length and average reported satisfaction suggested that the marginal change in 

satisfaction becomes less pronounced at lengthier delays as well as more noise is visible 

given that the prevalence of longer delays is more limited. The maximum likelihood 

estimation has been conducted for the whole sample used throughout the thesis (i.e. delays 

of up to 30 minutes) as well as for a more restricted version of the sample focusing on 

delays of up to 15 minutes (chosen as a potential arbitrary threshold based on the graphical 

analysis of the relationship) using the Apollo package in R (Hess & Palma, 2019). A very 

pronounced difference in the results from the estimation based on the ‘full’ and ‘restricted’ 
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samples would mean that the studied relationship is much more complex. In the case of 

income, as studied by Layard et al. (2008), the sample used in the initial version of the 

modelling had already been restricted by removing the observations in the tails of the 

distribution. Due to the differences in how income and delays are distributed, a similar 

method has not been considered appropriate in the present analysis.  

The estimated values of ρ are shown in Table 49 and range from -0.18 to 0.47 with some 

of the estimated values being close to 0 and insignificant. The values from the linear 

dependent variable model are typically lower than those from the ordered logit model. The 

values are also typically lower if the sample is restricted to delays of up to 15 minutes. 

When the models are estimated separately for each of the journey purposes, the estimated 

values of ρ are typically larger for commuters. 

To interpret the meaning of ρ estimated from these models, it might be worth providing an 

interpretation of all the possible values as this parameter indicates the sensitivity of 

marginal utility to delay. Therefore, a positive 𝜌 suggests that with delay increasing, the 

marginal utility of delay is becoming less negative whilst a negative 𝜌 suggests the 

opposite. Therefore if,  

1) 𝜌 > 1: the marginal utility increases with delay (becomes less negative) at an 

accelerating rate 

2) 0 >  𝜌 < 1: the marginal utility increases with delay (becomes less negative) at a 

decreasing rate 

3) 𝜌 = 0: the marginal utility is constant 

4) 0 <  𝜌 > −1: the marginal utility decreases with delay (becomes more negative) 

at a decreasing rate 

5) 𝜌 < −1: the marginal utility decreases with delay (becomes more negative) at an 

accelerating rate 

To better understand the difference in the estimated marginal utility of delay for positive 

and negative 𝜌, two values were chosen for further investigation. Figure 55 shows the 

estimated utility and marginal utility using the linear model of overall satisfaction for 

delays of up to 30 minutes and all the journey purposes combined (i.e. 𝜌 = 0.184). 

Subsequently, Figure 56 depicts the estimated utility and marginal utility using the linear 

model of overall satisfaction for delays of up to 15 minutes and only leisure travellers (i.e. 

𝜌 = −0.178).  
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Table 49 Estimates of ρ  

 A (Linear) B (Linear) C (Ordered) D (Ordered) 

Overall satisfaction (initial model) 

All 0.18 [0.1, 0.3] 0.03 [-0.2, 0.3] 0.30 [0.3, 0.4] 0.15 [0.1, 0.3] 

Business 0.05 [-0.3, 0.4] -0.05 [-0.9, 0.7] 0.15 [0.0, 0.3] 0.04 [-0.3, 0.4] 

Commute 0.20 [0.1, 0.3] 0.01 [-0.2, 0.3] 0.36 [0.3, 0.5] 0.18 [0.1, 0.3] 

Leisure 0.01 [-0.3, 0.2] -0.18 [-0.8, 0.3] 0.08 [0.0, 0.2] -0.11 [-0.4, 0.1] 

Overall satisfaction (extended) 

All 0.13 [0.0, 0.3] -0.11 [-0.8, 0.3] 0.26 [0.2, 0.3] 0.07 [-0.1, 0.2] 

Business -0.05 [-0.6, 0.4] -0.17 [-1.5, 0.8] 0.07 [-0.1, 0.2] -0.08 [-0.4, 0.3]  

Commute 0.11 [-0.1, 0.3] -0.11 [-0.5, 0.2] 0.29 [0.2, 0.4] 0.05 [-0.1, 0.2] 

Leisure 0.07 [-0.3, 0.4] -0.39 [-1.5, 0.7] 0.18 [0.1, 0.3] 0.01 [-0.2, 0.3] 

Punctuality satisfaction 

All 0.23 [0.2, 0.3] 0.10 [0.0, 0.2] 0.40 [0.4, 0.4] 0.26 [0.2, 0.3] 

Business 0.10 [-0.1, 0.3] -0.14 [-0.5, 0.2] 0.29 [0.2, 0.4] 0.03 [-0.2, 0.2] 

Commute 0.32 [0.2, 0.4] 0.16 [0.0, 0.3] 0.47 [0.4, 0.5] 0.31 [0.2, 0.4] 

Leisure 0.07 [0.0, 0.2] 0.00 [-0.2, 0.2] 0.30 [0.3, 0.4] 0.20 [0.1, 0.4] 

Delay lengths 1-29 1-14 1-29 1-14 

Legend: 95% confidence intervals in brackets; estimates significant at 95% shown in bold 
(models A and B are linear, C and D - ordered logit; the models were estimated using overall or punctuality 

satisfaction as a proxy for utility; in the extended model, satisfaction with train and station are added as 

controls) 

Interestingly, large differences in the estimated values were observed based on restricting 

the delay lengths to 15 or 30 minutes what may be suggestive of existence of a point where 

a maximum dissatisfaction is reached, such that satisfaction data is not able to capture the 

marginal disutility related to further increases in delay after that point. In such cases, the 𝜌 

values changed signs in multiple instances with marginal utility suggested to be increasing 

(becoming less negative) for models with delay lengths restricted to 30 minutes and 

decreasing (becoming more negative) for models with delay lengths restricted to 15 

minutes. Combining this estimation with previous research on delay perception and 

dissatisfaction, it is not expected for the marginal utility of delay to increase (become less 

negative) with delays as this would mean that the very first minute of delay is marginally 

the worst. Contrarily, it is expected that smaller delays have a lower probability of being 

perceived and having negative impact on travellers. 
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Figure 55 a) Estimated utility for model 1A b) Estimated marginal utility for model 
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Figure 56 a) Estimated utility for model 1lB b) Estimated marginal utility for model 

1lB 
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1) the dependent variable being overall satisfaction (both without and with controls) 

or punctuality satisfaction (without the additional controls) and 

2) restriction of delay lengths to up to 15 or 30 minutes. 

The results of the estimated models are shown in Table 50. The predicted delay coefficients 

are negative for linear and quadratic terms, but positive for the cubic term (though in some 

cases, some of the coefficients were insignificant or of a different sign), indicating that the 

marginal impact of delays first becomes more negative and later becomes less negative. 

Such a function would also lead to marginal utility finally becoming positive, though, this 

may be related to reaching a point where maximum dissatisfaction is reached (i.e. data 

imperfections) rather than long delays having a positive marginal impact on utility. 

Focusing on the models for delays up to 15 minutes, estimated utilities, marginal utilities 

and change in marginal utility for models 2a (based on punctuality satisfaction) and 3a 

(based on the extended model of overall satisfaction) are plotted below. 

The estimated models indicate that the marginal utility first decreases (i.e. becoming more 

negative) and then increases (i.e. becoming less negative). This inflection point is 

estimated to be at around 4 to 10 minutes (depending on journey purpose and the dependent 

variable used) with both models suggesting on the inflection point being at a lower delay 

length for commuters. 

Table 50 Results from a cubic model 

 (1) (2) (3) (1a) (2a) (3a) 

 Overall Punct Overall Overall Punct Overall 

Constant 4.278*** 4.437*** 2.942*** 4.266*** 4.397*** 2.944*** 

 (241.24) (195.32) (144.75) (163.73) (131.58) (115.59) 

Journey purpose 

Commute -0.235*** -0.508*** -0.162*** -0.253*** -0.509*** -0.175*** 

 (-11.40) (-19.27) (-7.03) (-8.38) (-13.13) (-6.04) 

Leisure 0.146*** 0.0798** 0.00996 0.147*** 0.0951* 0.0209 

 (7.13) (3.03) (0.41) (4.87) (2.45) (0.70) 

L_A       

Business -0.0316*** -0.0734*** -0.0197** -0.0196 -0.0362 -0.00634 

 (-3.88) (-7.03) (-3.07) (-1.04) (-1.49) (-0.43) 

Commute -0.0711*** -0.153*** -0.0413*** -0.0427*** -0.114*** -0.0264** 

 (-13.92) (-23.46) (-10.28) (-3.72) (-7.77) (-2.93) 

Leisure -0.0216*** -0.0696*** -0.0182*** -0.0103 -0.0439** -0.0163 
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 (-4.35) (-10.90) (-4.67) (-0.90) (-2.98) (-1.81) 

L_A2       

Business -0.000741 -0.00167 -0.000917 -0.00344 -0.00928* -0.00368 

 (-0.87) (-1.53) (-1.37) (-0.99) (-2.09) (-1.36) 

Commute 0.000503 0.00447*** -0.000763 -0.00529* -0.00384 -0.00370* 

 (0.91) (6.33) (-1.75) (-2.47) (-1.40) (-2.21) 

Leisure -0.00134* -0.00155* -0.000992* -0.00378 -0.00753** -0.00140 

 (-2.55) (-2.29) (-2.39) (-1.78) (-2.75) (-0.84) 

L_A3       

Business 0.0000294 0.0000838** 0.0000275 0.000184 0.000477* 0.000175 

 (1.27) (2.84) (1.52) (1.06) (2.15) (1.29) 

Commute 0.0000205 -0.0000443* 0.0000422*** 0.000321** 0.000406** 0.000188* 

 (1.34) (-2.27) (3.50) (2.96) (2.92) (2.20) 

Leisure 0.0000435** 0.0000730*** 0.0000349** 0.000178 0.000424** 0.0000564 

 (3.03) (3.96) (3.09) (1.65) (3.06) (0.67) 

Station_Sat       

Business   0.485***   0.481*** 

   (31.70)   (30.78) 

Commute   0.468***   0.465*** 

   (54.56)   (53.67) 

Leisure   0.472***   0.465*** 

   (46.52)   (45.03) 

Train_Sat       

Business   1.080***   1.064*** 

   (71.67)   (68.45) 

Commute   1.170***   1.166*** 

   (150.85)   (148.67) 

Leisure   1.201***   1.190*** 

   (118.09)   (113.64) 

Delay lengths 1-30 1-30 1-30 1-15 1-15 1-15 

N 112992 110369 112992 106196 103710 106196 

R2 0.111 0.173 0.451 0.0924 0.146 0.442 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

L_A refers to delay at arrival; Station_Sat, Train_Sat refer to satisfaction with station and train; 

Overall refers to overall journey satisfaction; Punct refers to satisfaction with punctuality. 
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Figure 57 Utility (top), marginal utility (middle) and change in marginal utility 

(bottom) for model 2a for punctuality satisfaction 
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Figure 58 Utility (top), marginal utility (middle) and change in marginal utility 

(bottom) for model 3a for overall satisfaction 

Piecewise regression 

Previously estimated models suggested that the marginal utility may be non-monotonous, 

hence a simpler relationship was estimated based on piecewise regression. This type of 

regression fits two linear relationships, before and after an estimated breakpoint. 

Estimating such a breakpoint is in line with suggestions that there exists a delay length 

where satisfaction data is no longer able to capture the marginal changes in experienced 
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estimated using punctuality satisfaction as the dependent variable with the results reported 

in Table 51 and the estimated relationship plotted in Figure 59. 

Table 51 Results from a piecewise regression 

 Business Commute Leisure 

Constant (𝛽0) 4.437*** 3.887*** 4.519*** 

 (330.15) (381.57) (574.58) 

𝛽1 -0.0795*** -0.122*** -0.0768*** 

 (-36.21) (-42.75) (-56.28) 

C 19.27*** 8.720*** 19.48*** 

 (15.18) (25.45) (20.73) 

𝛽2 -0.00615 -0.0430*** -0.0142 

 (-0.39) (-16.14) (-1.45) 

N 113178 

-176658.1 

0.918 

Log-likelihood 

R2 

 

 

Figure 59 Estimated utility from a piecewise regression 
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The results obtained from the piecewise regression suggest that the base utility levels are 

always lower for commuters (as also reported earlier in Chapter 7), in line with the 

investigation presented earlier in this chapter. Nevertheless, the reduction in utility levels 

is suggested to be more pronounced for commuters with the break point estimated to be at 

around 8-9 minutes. Subsequently, the marginal impact of delay is suggested to decrease. 

For leisure and business travellers, the estimated breakpoint is at around 19-20 minutes. 

Subsequently, the marginal utility of delay after the breakpoint is not significantly different 

from 0. It must be noted that the estimated breakpoints are just slightly above the predicted 

delay dissatisfaction thresholds obtained in Chapter 7. Considering that the marginal utility 

of delay of business and leisure travellers after the breakpoint is insignificantly different 

from 0, this raises a question whether there is a point where maximum dissatisfaction is 

reached. With maximum average satisfaction never reaching 5.0, the small changes in 

satisfaction after the breakpoint may not be indicative of such delays having no marginal 

impact. Rather, this may highlight the unsuitability of satisfaction scales to the 

investigation of the marginal impacts of the longer delays. This may be further complicated 

by a more limited number of responses related to such delays due to the delay distribution.  

7.6.5. Summary 

This section aimed to explore the non-linearities in the delay impacts on passengers. 

Different functional forms were suggested based on previous research and the reported 

relationship characteristic for the NRPS data. The following steps were taken: 

1) Estimation of 𝜌 parameter, allowing to study the curvature of the marginal utility 

of lateness function based on Layard et al. (2008) work on the marginal utility of 

income; 

2) Estimation of a cubic function describing the relationship between delay length 

and satisfaction based on Gao et al. (2018); 

3) Estimation of a piecewise regression and a break point 𝐶 determining the length 

of delay where marginal utility of lateness changes. 

The estimation of 𝜌 revealed a range of estimated values, both positive and negative. The 

values of opposite signs were obtained for the different dependent variables used in the 

modelling, ordered and linear models as well as for the delays restricted to 15 and 30 

minutes. This suggests that a different functional form may be more appropriate for this 

relationship. Hence, a cubic function was introduced with the predicted delay coefficients 

being negative for linear and quadratic terms, but positive for the cubic term (though in 

some cases, some of the coefficients were insignificant or of different signs). This would 
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indicate that the marginal impact of delays first becomes more negative and later becomes 

less negative. Such a function would also lead to marginal utility finally becoming positive, 

though this may be due to reaching a point where maximum dissatisfaction is reached. 

Subsequently, a simpler relationship was studied, assuming that the relationship between 

delay length and satisfaction is linear up to a certain threshold where it starts following a 

different linear relationship. The estimated breakpoints were around 9 minutes for 

commuters and just below 20 minutes for other travellers. It was also suggested that the 

marginal utility of delay is larger in absolute terms for commuters and subsequently 

decreases after the breakpoint. However, in the case of other travellers, the marginal utility 

of delay is not significantly different from 0 after the breakpoint. This was suggested to 

highlight a couple of limitations of the satisfaction data where: 

1) the estimated breakpoints may, in fact, be maximum dissatisfaction thresholds 

where average reported satisfaction does not reduce anymore - which is not 

equivalent to such delays having no negative marginal valuation and 

2) longer delays being relatively rare – which leads to lower significance of the 

estimated results for the underrepresented delay lengths 

Nevertheless, the work conducted as part of this section introduced different ways of 

investigating the non-linearities in the impacts of delays on passengers. Some indications 

of non-constant marginal (dis)utility of lateness were presented, possibly suggesting that 

the marginal utility of delay is non-monotonous. It may be more negative (and/or becoming 

more negative) for smaller delays (as the probability of perceiving them increases) and less 

negative for larger delays. However, the choice of methodology, variables and/or 

restricting the lengths of delay studied seemed to have a large impact on the estimated 

results.  

7.7. Conclusions 

This chapter first introduced the concept of journey (and delay) satisfaction, analysing how 

travellers’ satisfaction changes with increasing levels of delays using various 

representations of the satisfaction variable (i.e. binary and ordinal) at both individual 

passenger (i.e. the ‘passenger’ model) and aggregated (i.e. the ‘OD’ model) level. This 

allowed increasing understanding of how incidental and average lateness impact upon 

passenger satisfaction levels. The estimated models suggested that: 

1) Commuters are always less satisfied with a given level of delays and their 

satisfaction decreases more rapidly. 
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2) Commuters are already very likely to be dissatisfied even if they face delays of 

only around 5-10 minutes. 

3) For other travellers, these thresholds are typically larger, at around 10-20 minutes. 

4) The ‘passenger’ model indicates that the delay incidents of such lengths are 

detrimental to passenger satisfaction, also highlighting that the impact of delay of 

a given length is typically lower: 

 if journey quality is better (i.e. passengers are seated); 

 for longer journeys (i.e. suggesting that it is not only the absolute delay 

length but the delay relative to scheduled journey time that impact 

passenger satisfaction). This is in line with suggestions by Wardman and 

Batley (2022), who argued that proportional elasticities (i.e. based on the 

relative proportion of AML to GJT) better explain changes in demand than 

the actual delay lengths; 

 with a shorter delay at departure (i.e. travellers are more likely to notice 

the delays if their train departs late and typically also prefer to be delayed 

once being on-board as the additional journey time can be used more 

productively and delay at departure can be related to increased levels of 

uncertainty). 

5) The predicted delay length dissatisfaction thresholds are indicated to be lower than 

previously suggested in the literature (i.e. Monsuur et al., 2021). 

6) The ‘OD’ model suggested that commuter-focused OD pairs are likely to suffer 

from lower levels of satisfaction as: 

 under perfect performance, 80% of commuters and 90% of other travellers 

are suggested to be satisfied with performance and  

 the reduction in the proportion of satisfied passengers is more profound 

for commuters - (on average) 6 pp for a minute of APL for commuters and 

2 pp for other travellers. 

This analysis then suggested that the estimated models could be used in setting 

performance regimes and/or targets or help design passenger compensation mechanisms 

where: 

1) the ‘passenger’ model can be used to determine the preferable distribution of 

delays (i.e. minimising the incidence of delay episodes that are detrimental to 

passenger satisfaction), 

2) the ‘OD’ model at the same time can be used to determine the preferable average 

performance targets and 
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3) it should be noted that a combination of both approaches (i.e. lowering the 

incidence of longer delays and average delays simultaneously) is likely to achieve 

the best results in terms of passenger satisfaction. This means that the focus should 

not only be on minimising the average lateness, but also reducing the incidence of 

the longer delays. 

However, it has been noted that due to the non-quantitative nature of the satisfaction 

scores, the classification of satisfaction versus dissatisfaction is subject to interpretation. 

This also means that it is not immediately clear what the differences between the 

satisfaction categories mean and how various levels of satisfaction translate to well-being. 

This is one of the key limitations of using satisfaction data in setting policy targets. As 

suggested throughout this chapter, depending on the assumption related to how satisfaction 

versus dissatisfaction is classified, the targets may differ. Nevertheless, V2 of the binary 

representation provides the way of classifying satisfaction versus dissatisfaction that best 

aligns with the conceptual framework of studying the threshold of positive/non-positive 

satisfaction. Ultimately, how different satisfaction levels may affect wellbeing and rail 

demand is more difficult to discern. Regardless of the demand impacts, however, studying 

satisfaction may allow to understand the negative impacts of delays that occur even in the 

case where the worsening performance does not translate to demand impacts.  

Finally, this chapter reconciled the concepts of delay perception and satisfaction to test the 

hypothesis that there is a gap between the length of delay that is perceivable and such that 

impacts satisfaction. It was suggested that: 

1) there is a gap between delay perception and dissatisfaction as the probability of 

perceiving a delay is larger than the probability of being dissatisfied given the 

same length of delay incident, 

2) the estimated gap is suggested to be between 0 minutes for standing commuters to 

up to 9 minutes for seated leisure travellers and 

3) it has been generally suggested that the gap between delay perception and 

dissatisfaction increases for seated passengers, with longer journeys and delay at 

departure. 

This chapter focused on establishing a link between delay length and passenger satisfaction 

with the use of logistic regression. The concepts of delay perception and satisfaction were 

introduced, suggesting that smaller delays are often unperceived and have a small impact 

on passenger satisfaction. This, in turn, raised a question about the curvature of the shape 

of the relationship between delay and travellers’ utility. Such concerns were generally 

raised in the literature, e.g. by Wardman and Batley (2022) arguing that proportional 
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elasticities (i.e. based on the relative proportion of AML to GJT) better explain changes in 

demand than the actual delay lengths. Hence, an attempt was made to explore the potential 

non-linearities in the delay impacts using the satisfaction data from NRPS (as a proxy of 

individual utility) by applying approaches introduced by previous literature. Different 

functional forms were suggested based on previous research and the reported relationship 

characteristic for the NRPS data. Whilst the results were inconclusive, the work conducted 

as part of this chapter introduced different ways of investigating the non-linearities in the 

impacts of delays on passengers. Some indications of non-constant marginal (dis)utility of 

lateness were suggested by the estimated models, possibly indicating on the marginal 

utility of delay being non-monotonous. It may be more negative (and/or becoming more 

negative) for smaller delays (as the probability of perceiving it increases) and less negative 

for larger delays. However, the choice of methodology, variables and/or restricting the 

lengths of delay studied seemed to have a large impact on the estimated results. Moreover, 

the analysis suggested that one of the limitations of the satisfaction data in this context 

may be related to the existence of a point where the ‘maximum dissatisfaction’ is reached 

such that it is difficult to establish the relationship for longer delays.  

There are multiple ways in which the analysis conducted here could be improved. First of 

all, additional segmentation could be introduced based on journey lengths, geographies 

and/or sociodemographic characteristics. Moreover, since the focus of this analysis was on 

the absolute lengths of delays, a relative approach could be explored instead. In this case, 

the delay could be represented as the proportion of scheduled journey time or GJT. This 

would be more in line with the suggestions by Wardman and Batley (2022) where the 

demand elasticities based on relative proportions of AML to GJT were indicated to better 

explain changes in demand. However, it has to be noted that there are important differences 

between AML and incidental delays that are related to the type of data used (as discussed 

in Chapter 5). 

Future studies could also explore the non-linearity of delay impacts using the 

methodologies outlined in this chapter for different satisfaction surveys. It might be 

particularly useful to see if similar results are obtained for surveys from different countries, 

different modes or other satisfaction scales. 

Having compared the concepts of delay perception and dis(satisfaction), the purpose of the 

last empirical chapter of this thesis is to use satisfaction data to estimate lateness 

multipliers, defining a trade-off between a minute of delay to an equivalent length of 

scheduled journey time.
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Chapter 8  

Lateness valuation using satisfaction data 

8.1. Introduction 

Transport researchers are interested in the impacts that different journey aspects, including 

scheduled journey times, fares, delays and comfort have on rail passengers. These are often 

evaluated using demand data (e.g. Wheat and Wardman, 2017), stated preference (e.g. 

Ibáñez, 2012) or satisfaction surveys (e.g. Monsuur et al., 2021). Regardless of the source 

of the data, there generally is a consensus in the literature that delays negatively impact 

transport users, affecting both their satisfaction and travel choices. However, it has been 

suggested that the observed changes in demand in response to worsening performance 

(estimated in the market-level econometric analyses) are relatively limited as compared to 

the lateness valuation derived from individual-level discrete choice studies (Batley et al., 

2011).  

Several studies attempted using Stated Preference (SP) data in delay valuation, where the 

so-called lateness multipliers (also referred to as reliability multipliers by some authors) 

define the conversion rate between 1 minute of lateness to the equivalent of journey time 

and in this sense are defined as the trade-off between lateness and scheduled journey time 

(e.g. Börjesson and Eliasson, 2011; Batley and Ibáñez, 2012). In the British context, most 

studies supported the lateness multipliers of around 3 - i.e. 1 minute of lateness being 

valued as the equivalent of 3 minutes of scheduled journey time (for review see Wardman 

and Batley, 2014). This chapter draws on earlier work using SP surveys to estimate lateness 

multipliers (e.g. Bates et al., 2001; Preston et al., 2009; Börjesson and Eliasson, 2011; 

Wardman and Batley, 2022 and particularly Batley and Ibáñez, 2012) whilst estimating 

the lateness multipliers using journey satisfaction data. At the same time, the methodology 

used in this study is similar to the large body of literature using data from surveys on life 

satisfaction (e.g. Layard et al., 2008; Dickerson et al., 2014). The major difference is the 

use of a survey on journey, not life, satisfaction and its cross-sectional nature. Building on 

the work by Monsuur et al. (2021) and the previous chapter, the National Rail Passenger 

Survey is used to estimate an ordered logit model of passenger satisfaction and estimate 

the utilities of both scheduled journey time and delay (at departure and arrival) for a 

pseudo-panel of frequent rail travellers. The estimated coefficients are subsequently used 

in the estimation of lateness multipliers. Hence, the overall aim of this work is to use a 

dataset that is novel in the context of lateness valuation (i.e. responses from a survey on 

journey satisfaction) and apply it to the established methodologies to: 
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1) explore the potential of journey satisfaction data in economic valuation in 

transport-related contexts and 

2) compare the lateness multipliers estimated from satisfaction data to the values 

obtained from the traditional methods (i.e. SP surveys).  

This chapter is structured as follows: 

 section 8.2 presents a literature review, positioning the lateness multipliers within 

the British rail forecasting framework as well as a description of the data sources 

typically used in their estimation, 

 section 8.3 describes the data and the modelling approach undertaken, 

 section 8.4 presents the estimated models and lateness multipliers, 

 section 8.5 provides a comparison of the estimated values with previous literature,  

 section 8.6 summarises this work and discusses the potential for using satisfaction 

surveys in the future research concerning economic valuation in transport. 

8.2. Literature review 

8.2.1. Lateness valuation framework 

Ticket sales data is often used to estimate the effect that Generalised Journey Time (GJT) 

components have on rail demand (for a review see Wheat and Wardman, 2017). Following 

Wheat and Wardman (2017), the rail demand function in Great Britain (GB) is specified 

as: 

𝑉 = 𝜇𝐺𝐽𝑇𝐹𝐺𝑉𝐴 

( 29 ) 

where 𝐺𝐽𝑇 is generalized journey time, 𝐹 is fare, 𝐺𝑉𝐴 is income, , ,  are the respective 

elasticities and µ represents all the other factors impacting the demand. Generalised 

journey time in this formulation is a composite index specified as: 

𝐺𝐽𝑇 = 𝑇 + 𝛼𝐻 + 𝛽𝐼 

( 30 ) 

where 𝑇 is the station-to-station journey time, 𝐻 is a service headway and 𝐼 is the number 

of interchanges with 𝛼 and 𝛽 being the respective penalty multipliers converting both the 

number of interchanges and service headway into equivalent journey time. 

Extending the demand specification, Batley et al. (2011) used the following relationship 

between demand and average lateness at the destination, previously prescribed by 

passenger Demand Forecasting Handbook (PDFH) in Great Britain (ATOC, 2004):  
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𝑌 = [1 +
𝑤(𝐿̅𝑛𝑒𝑤

+  −  𝐿̅𝑏𝑎𝑠𝑒
+ )

𝐺𝐽𝑇𝑏𝑎𝑠𝑒
]



 

( 31 ) 

where 𝑌 is the proportionate change in rail demand, 𝐿̅𝑛𝑒𝑤
+  and 𝐿̅𝑏𝑎𝑠𝑒

+  represent average 

lateness at the destination in the new and base scenarios, 𝐺𝐽𝑇𝑏𝑎𝑠𝑒 is the generalized journey 

time in the base scenario,  is the elasticity of rail demand to generalized journey time and 

𝑤 is the reliability (lateness) multiplier. 

As noted by Wheat and Wardman (2017), PDFH is a set of guidelines and forecasting 

parameters that combine years of research into rail demand in Great Britain, providing a 

comprehensive and consistent framework for economic appraisal of railway schemes. Of 

note, as discussed by Wardman and Batley (2022), this represents the so-called 'indirect' 

approach to forecasting the impact of changes in railway performance. Since 2018 (PDFH 

v6), a recommendation was made to move to a 'direct' approach where a change in demand 

𝑌 is estimated directly based on a change in average lateness and the late time elasticities 

(usually obtained from rail demand models, for review see Wardman and Batley, 2014). 

The aforementioned lateness multiplier 𝑤 defines the conversion rate of 1 minute of 

lateness to the equivalent of journey time and in this sense is defined as the trade-off 

between lateness and scheduled journey time. It is typically estimated as the ratio of the 

utility of lateness to the utility of scheduled journey time. Wardman and Batley (2014) 

provide a review of estimates of lateness multipliers since 1984 with most of the initial 

values being around 3. Similar studies conducted throughout the years generally supported 

that figure but suggested values of up to 6.5 for airport journeys with Batley and Ibáñez 

(2012) estimating lateness multipliers for different demand segments based on journey 

purposes and lengths as shown in Table 52. As reported in Wardman and Batley (2014), 

in most cases, the estimated lateness multipliers range between 2-5 for business travellers 

and commuters and 2-7 for leisure travellers, though values larger than 10 have also been 

reported throughout the literature (e.g. Wardman, 2001; Börjesson and Eliasson, 2011). 

Table 52 Lateness multipliers (Batley and Ibáñez, 2012) 

Journey Purpose Short Long 

Business 2.68 1.78 

Commute 3.12 2.00 

Other 5.19 1.77 
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8.2.2. Data sources used in the estimation of lateness multipliers 

Stated Preference (SP) surveys are most often used in studies where lateness multipliers 

are estimated (e.g. Bates et al., 2001; Preston et al., 2009; Börjesson and Eliasson, 2011; 

Li et al., 2016). In such cases, passengers are presented with alternative hypothetical travel 

options and make a choice regarding their preferred scenario. The differences in the 

options presented to the respondent are the ticket prices, scheduled journey times and 

performance (presented as average delay or distribution of delays). An example of such an 

approach is Batley and Ibáñez (2012) where one of the pairs of journey options shown to 

respondents was: 

1) Option A where a 27-minute journey cost £2.40 with average lateness of 1 minute 

at departure and 4.4 minutes at arrival. 

2) Option B where a 23-minute journey cost £3.60 with average lateness of 4.4 

minutes at departure and 8.8 minutes at arrival.  

While the SP data can be subjected to biases, such as systematic bias (divergence between 

hypothetical and actual choices), justification bias (rationalizing actual choices) or 

strategic bias (influencing policy) (for review see Wardman, 1988), it has become a 

standard approach. Indeed, it is often the only possible source of such data (Bates et al., 

2001) as SP studies allow the analyst to design scenarios that may not be observable in the 

real world as well as explicitly control for the choice attributes (Tsoleridis et al., 2022). An 

alternative to stated preference data is revealed preference (RP) data where passengers' 

actual travel choices are investigated. While economists typically prefer data on actual 

choices, the RP data has its own limitations. It is more difficult to obtain, may be prone to 

reporting errors (especially in the case of traditional travel diaries) and is based on the 

assumptions of perfect information about the possible travel alternatives whereas, in fact, 

it is difficult to identify the choice sets and trade-offs faced by the participants (Wardman, 

1998; Bates et al., 2001; Hess et al., 2007; Preston et al., 2009; Tsoleridis et al., 2022). 

An alternative to SP and RP surveys can be sought in satisfaction surveys where passengers 

score their satisfaction with an actual travel experience ex-post. There is an abundance of 

literature looking at the impact of different journey aspects on passenger satisfaction (for 

reviews see De Vos et al., 2013; De Oña and De Oña, 2015; Gao et al., 2018; Ye et al., 

2022). Unlike SP or RP studies, passengers are not faced with multiple alternatives but 

score their satisfaction with a particular journey (though some studies analysed surveys 

referring to general satisfaction with public transport, e.g. Cats et al., 2015). Most studies 

cite travel time, monetary cost, performance, journey comfort and provision of information 

as key determinants of passenger satisfaction (e.g. Brons and Rietveld, 2009; Carrel et al., 
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2016; Börjesson and Rubensson, 2019; Lunke, 2020; Monsuur et al., 2021). In the British 

rail context, Monsuur et al. (2021) used the National Rail Passenger Survey to estimate the 

impact of delays on passenger satisfaction, suggesting that passengers are very unlikely to 

remain satisfied with journeys delayed by over 30 minutes, also highlighting the 

importance of journey quality on travel satisfaction. 

When considering satisfaction survey data, one must also remember about the limitations. 

As with SP surveys, respondents may be biased, aiming to influence the results (strategic 

bias). Furthermore, travellers may have imperfect knowledge or may not recall the correct 

answers to responses in the surveys (Choi & Pak, 2005). With NRPS, for example, it is 

highlighted that the timing of handing out the questionnaire (i.e. prior to boarding a train) 

may also impact when and how the travellers respond, hence affecting the results. It is 

likely that satisfaction surveys also are an imperfect source of data. That said, given that 

the sources of these imperfections are different to those encountered with SP or RP 

surveys, satisfaction surveys are a useful addition, offering an alternative and/or 

complementing those more traditional data sources.   

Whilst data on scheduled journey time and lateness may be available to supplement the 

reported satisfaction, it refers to incidental (i.e. for a specific journey), not mean or 

standard deviation of performance, as is typically the case with SP surveys. Satisfaction 

data, typically from longitudinal household panels, have been used in economic valuation 

in labour (e.g. Layard et al., 2008), health (e.g. Ferrer-i-Carbonell and van Praag, 2002) 

and environmental economics (e.g. Frey et al., 2009). However, similar approaches have 

not been as widely used in transport economics, possibly resulting from a lack of transport 

surveys with such detailed information or from household surveys lacking enough 

transport-related information. The most important exception is a study by Dickerson et al. 

(2014) looking at the relationship between life satisfaction and commuting. Hence, in this 

context, the use of journey satisfaction data in the estimation of lateness multipliers 

represents a relatively novel approach. The following section provides a more detailed 

description of the proposed approach. 

8.3. Methodology 

8.3.1. Pseudo-panel of frequent travellers from NRPS 

NRPS dataset described in Chapter 5 was used in the analysis conducted as part of this 

chapter. Following the initial analysis presented in Chapter 5, modelling of delay 

perception in Chapter 6 and passenger satisfaction in Chapter 7, the dataset was further 

restricted. 
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With the NRPS dataset being cross-sectional in nature, an attempt was made to create a 

subset of the original dataset capturing frequent rail travellers. Pseudo-panel approaches 

have been widely used in the literature in the absence of true panel datasets (e.g. Dargay, 

2002; Rich et al., 2023). This pseudo-panel of frequent travellers was then used to 

investigate the impact of both scheduled journey time and delays on passenger satisfaction. 

It is expected that while delays affect overall journey satisfaction of both frequent and 

infrequent travellers (i.e. as investigated in Monsuur et al., 2021), the scheduled journey 

time itself should not generally directly impact satisfaction with an individual journey. 

This is based on an assumption that travellers’ decision to travel on a given service 

characterised by a timetabled scheduled journey time was one that maximised travellers’ 

utility. However, as suggested by Cats et al. (2015), longer journeys may be associated 

with lower overall satisfaction with public transport for commuters. 

This can be illustrated using an example of two journeys: 

1) A long-distance 4-hour business journey between London and Edinburgh 

2) A short-distance 30-minute commuter journey between London and Stevenage 

The two examples presented above represent very different journeys. Considering the 

cross-sectional nature of the dataset, it is not believed that the differences in the timetabled 

lengths of journeys have an impact on journey satisfaction of the two different types of 

travellers. Journey time is a source of disutility for passengers travelling on different 

origin-destination (OD) pairs, but assuming that both types of travellers are rational and 

aim to maximise their utility, the choices to travel from London to Edinburgh and from 

London to Stevenage are ones that maximise their utility. Assuming that both services 

perform as timetabled, it would be expected that both types of travellers are satisfied with 

their journeys. Any differences in the satisfaction scoring may be due to the differences in 

other journey aspects (e.g. comfort) that may be correlated with journey length. 

On the other hand, a frequent traveller, i.e. between London and Stevenage may be able to 

perceive changes in scheduled journey times (timetable). Such changes may, in turn, affect 

their journey satisfaction. Investigating this relationship is, however, only possible for 

panel (not cross-sectional) datasets where the same traveller scores their satisfaction with 

multiple different journeys on the same OD pairs across time. Hence, constructing a 

pseudo-panel of frequent travellers allows investigating whether and how the changes in 

scheduled journey times and experienced lateness on the same OD pair affected reports of 

journey satisfaction. 
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To align with this framework, a number of modifications was applied to the original NRPS 

dataset, based on the following journey characteristics: 

1) Frequency of travel 

Out of the 46% of passengers responding to the question regarding the frequency of travel 

on a given route, 73% admitted to travelling at least every 2 months (classified as frequent 

travellers for the modelling purposes). It is assumed that delays may affect satisfaction of 

both frequent and infrequent travellers. However, it is only the frequent travellers whose 

satisfaction is assumed to be affected by potential changes in scheduled journey times on 

a given route.  

2) Recorded delay length and delay perception 

Responses where a passenger reported late arrival but no delay was matched using the 

operational data (5.7%) were discarded, as were responses associated with delays of more 

than 30 minutes – so as to remove outliers and possibly erroneous responses as in some 

cases large differences between recorded and reported delays were found for these records. 

However, responses where no delay was reported and recorded were retained as the interest 

here is in both delayed and on-time journeys (similarly to modelling journey satisfaction 

in Chapter 7). 

3) Number of responses for a given origin-destination (OD) pair 

OD pairs with more than 10 and 25 responses were selected. 792 OD pairs were identified 

with more than 10 responses (over 26,026 records) and 270 pairs with more than 25 

responses (over 17,695 records). The response thresholds of 10 and 25 were selected 

arbitrarily to find a compromise between the number of OD pairs and the number of 

responses per OD. 

In conclusion, between 14,000 and 40,000 responses are used in the estimation of the 

satisfaction models described in the following section. This depends on the choice of OD 

pairs as well as control variables (i.e. the more control variables, the fewer responses as 

some questions in the survey were subject to non-response). 

Passengers scored their overall satisfaction with journeys on a 5-point Likert scale, from 

‘very satisfied’ to ‘very dissatisfied’ as discussed in Chapter 5. Unlike in most of the 

analysis presented as part of Chapter 7, here the overall journey satisfaction score (instead 

of punctuality satisfaction) is used as the dependent variable as the interest lies in 

understanding the impacts of both delay and scheduled journey time on satisfaction. 

Punctuality satisfaction used in Chapter 7 is not well-suited to this body of analysis as it is 
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expected to be only affected by lengths of delay (but not scheduled journey time, at least 

directly), not allowing to estimate a trade-off between delay and scheduled journey time. 

Similarly, passengers scored their satisfaction with other journey aspects, e.g. train, station, 

value for money and service frequency, as discussed further in the following sections. 

These are used to control overall journey satisfaction for satisfaction with other journey 

aspects. 

8.3.2. Deriving the lateness multipliers 

As the dependent variable (overall journey satisfaction) can take one of the five outcome 

categories, which are in sequential order, an ordered logit model is used for estimating the 

latent continuous variable y*. In this case, the probability of choosing a satisfaction 

category i is estimated for a given number of k threshold (i.e. 4 thresholds given 5 

satisfaction categories), thus: 

𝑃(𝑌 = 𝑖) = 𝑃(𝑘𝑖−1 < 𝑦∗ ≤ 𝑘𝑖) 

( 32 ) 

where journey satisfaction is modelled as follows: 

𝑃(𝑌 = 𝑖) = 𝑃(𝑘𝑖−1 < 𝛽0 + 𝛽1𝑆𝐽𝑇 + 𝛽2𝐿𝐷 + 𝛽3𝐿𝐴 + ∑ 𝛽𝑛𝑆𝑎𝑡𝑛 + ∑ 𝛾𝑗𝑂𝐷𝑗

𝑗

𝑗=1

𝑛

𝑛=1

≤ 𝑘𝑖) 

( 33 ) 

where: 

𝑆𝐽𝑇: scheduled journey time 

𝐿𝐴: length of delay at arrival (destination) 

𝐿𝐷: length of delay at departure (origin) 

𝑂𝐷𝑗: OD pair 𝑗 

𝑆𝑎𝑡𝑛: a dummy for a variable representing passenger’s satisfaction with train and station 

(models 1-4) and also satisfaction with value for money and frequency (model 4). It takes 

the value of 1 if a passenger was ‘very satisfied’ or ‘fairly satisfied’ with a given journey 

aspect or 0 otherwise. It is important to acknowledge the potential endogeneity bias. This 

is related to needing to control the overall journey satisfaction for those specific journey 

aspects that are difficult to measure and/or there is no alternative variable that could control 

for their effect on the overall satisfaction. 
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In principle, the proposed model is very similar to the punctuality satisfaction models 

estimated in Chapter 7. However, in models 2-4, OD pair fixed-effects (Baltagi, 2021) are 

included by introducing a dummy variable representing each of the OD pairs represented 

in the sample. This allows the treatment of the dataset, which strictly speaking is cross-

sectional in nature, as a pseudo-panel of frequent rail travellers, to estimate the impacts of 

both changes in scheduled journey times and delays on passenger satisfaction.  

Ordered logit model is conceptually more suitable for modelling ordinal data than linear 

regression (Dickerson et al., 2014; for a review see Boes and Winkelmann, 2006), but its 

major disbenefit is the difficulty in directly interpreting the coefficients. However, as noted 

by Dickerson et al. (2014), the ratios of the coefficients in the ordered model can be used 

to evaluate the trade-offs between variables. In this case, lateness multipliers are estimated 

as a ratio of the utility of departure and arrival delay 𝛽2and 𝛽3 to the utility of scheduled 

journey length 𝛽1. The multipliers are calculated separately for the two types of delays, at 

departure (𝑤𝐷) and arrival (𝑤𝐴) following Batley and Ibáñez (2012) for the selected three 

journey purposes. In line with the literature (i.e. Bates et al., 2001; Preston et al., 2009; 

Batley and Ibáñez, 2012), the lateness multiplier represents the value of delayed time with 

respect to the scheduled time:  

𝑤𝐷 =
𝛽2

𝛽1
  and  𝑤𝐴 =

𝛽3

𝛽1
 

( 34 ) 

8.3.3. Choice of control variables and demand segmentation 

In terms of the choice of control variables, as noted previously, passengers' satisfaction 

with public transport is not only impacted by performance but also by other journey 

aspects. Chapter 5 described the different satisfaction variables forming part of the NRPS 

dataset. However, given the similarity in the questions, relatively high non-response rates 

for some of them as well as correlations, the choice of the control variables was limited to 

the two general satisfaction questions - satisfaction with train and station as well as 

satisfaction related to timetable or performance, i.e. satisfaction with train frequency, 

punctuality, scheduled journey time and value for money. However, satisfaction with 

punctuality and scheduled journey time are represented in the model by the directly 

observed (experienced) values, which is generally a preferred approach as using 

satisfaction variables as explanatory variables in the case of the overall satisfaction models 

introduces endogeneity bias. 

Initially, an attempt was made to directly compare the results obtained by estimating 

lateness multipliers using the methodology described in section 8.3.2 and the journey type 
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categorisation used in Batley and Ibáñez (2012). The same 12 OD pairs were chosen and 

categorised as long and short distance following Batley and Ibáñez (2012) as shown in 

Table 53. The decision to choose the same OD pairs as well as to follow the original 

journey type classification was made to allow more direct comparison of the results with 

the original research what was considered a sensible initial step, given the novelty of the 

proposed approach. With only 1176 responses across these pairs, the obtained model 

results were mostly insignificant. This is perhaps due to the fact that while in SP surveys 

the choice is fully determined by the described attributes and preferences, in the case of 

satisfaction surveys, the choice of passenger satisfaction scores is much more complex. 

Focusing on a smaller subset of OD pairs leads to a reduced number of responses and, in 

turn, with the distribution of delays typically skewed towards smaller values, only 248 out 

of 1176 responses were characterised by delays of over 5 minutes – 61 for long distance 

and 187 for short distance OD pairs. These numbers are reduced further following journey 

purpose categorisation (as shown in Table 55), as well due to non-responses to some of the 

satisfaction questions described in Chapter 5. 

Table 53 Journey type OD categorisation based on Batley and Ibáñez (2012). 

Long distance Short distance 

Bristol-London Brighton-London 

Leeds-London Kings Cross Glasgow-Edinburgh 

Swindon-London Paddington Leeds-Sheffield 

Leeds-Birmingham New Street Peterborough-London Kings Cross 

 Portsmouth Harbour-London Waterloo 

 Reading-London Paddington 

 Stevenage-London Kings Cross 

 Woking-London 

 

The initial model employs segmentation by three journey purposes - business, leisure and 

commute whilst the segmentation in the extended model aligns with that used by Batley 

and Ibáñez (2012) (i.e. by three journey purpose and two journey type categories) for better 

comparison of the estimated values. Therefore, all the responses were categorised based 

on the journey type classification provided in the dataset by Transport Focus and 

subsequently grouped as short and long, as shown in Table 54 to align with Batley and 

Ibáñez (2012). This classification is based on the genre definition used for the 

segmentation of the different services into 7 building blocks. As noted by Transport Focus, 

this classification aligns with operational data for sub divisions of the TOCs’ networks and 



205 

 

is used to benchmark performance against the respective building block genre (Transport 

Focus, 2020). 

Generally, commuter type services have been classified as short whereas the high-speed, 

interurban and long distance services were classified as long journeys with details on the 

distribution of responses provided in Table 55 and summary statistics presented in Table 

56. It is noted that this provides only one of many possible ways to segment the data. The 

alternative split could be based on journey length or distance. Finally, it is noted that the 

proposed segmentation not controls for the journey lengths, but also service types which 

can be related to the speed/distance ratios as well as prices of the different services forming 

part of the different NRPS building blocks. It is hypothesised that this allows for additional 

insights related to how different travellers value different aspects of their journeys. 

Table 54 OD pair distribution across journey type categories 

NRPS building block OD pairs Journey type category Average SJT 

Airport 11 - 24 

High-speed 37 Long 82 

Interurban 37 Long 55 

Long commute 85 Short 45 

Long distance 45 Long 91 

Rural 11 - 50 

Short commute 44 Short 31 

Table 55 OD pair distribution across journey purposes and journey types 

Distance 
Purpose 

Business Commute Leisure Total 

Short (%) 6.75 24.40 14.56 45.72 

Long (%) 18.33 9.86 26.10 54.28 

Total (%) 25.08 34.26 40.66 100.00 

Table 56 Descriptive statistics corresponding to model 4a from Table 59  

Segment Overall Station Train Freq VfM L_A L_D SJT N 

SB 4.14 0.86 0.84 0.87 0.43 2.68 1.39 58.7 947 

SC 3.82 0.80 0.72 0.75 0.20 2.16 1.31 35.3 3,504 

SL 4.36 0.90 0.88 0.90 0.62 1.95 1.14 51.1 2,068 

LB 4.15 0.84 0.84 0.88 0.44 3.68 1.31 103.5 2,556 

LC 3.77 0.80 0.71 0.79 0.20 3.92 2.62 37.9 1,418 

LL 4.39 0.88 0.90 0.91 0.67 3.10 1.44 99.7 3,653 

Overall refers to overall journey satisfaction; Station, Train, Freq and VfM are the proportions of 

passengers reporting satisfaction with station, train, frequency and value for money; L_A: delay at 

arrival and L_D: delay at departure; SJT: scheduled journey time; N: number of responses by 

demand segment; SB/LB – Short/Long Business, SC/LC – Short/Long Commute, SL/LL – 

Short/Long Leisure; 
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8.3.4. Summary 

Three iterations of models were estimated using Stata 17 (StataCorp, 2021) and are 

presented along three sets of the estimated lateness multipliers. For each of the iterations, 

four alternative specifications of the models are presented. The simpler versions of the 

models were estimated with a more limited segmentation whereas the extended models 

followed the segmentation similar to that in Batley and Ibáñez (2012). Additionally, as 

part of a sensitivity analysis, models with the exclusion of departure delay were estimated. 

In all cases, four sets of models are presented: 

1) Ordered logit model without OD fixed effects; 

2) Ordered logit model with OD fixed effects for a subset of OD pairs with at least 10 

responses; 

3) Ordered logit model with OD fixed effects, for a subset of OD pairs with at least 25 

responses; 

4) Ordered logit model with OD fixed effects, for a subset of OD pairs with at least 25 

responses and additional control variables representing satisfaction with value for 

money 𝑉𝑓𝑀𝑆𝑎𝑡 and service frequency 𝐹𝑟𝑒𝑞𝑆𝑎𝑡. 

8.4. Results 

The initial models 

The models of passenger satisfaction were estimated using an ordered logit model with 

estimated coefficients presented in Table 57. Model 1 is based on estimating the ordered 

logit without OD fixed effects. In this case, the delays at arrival and departure both have a 

statistically significant negative impact on satisfaction whilst the impact of scheduled 

journey time is less clear. As discussed previously, it is not expected for passengers 

travelling on different OD pairs to be less satisfied with the longer journey. Using overall 

journey satisfaction rather than punctuality satisfaction as the dependent variable means 

that the satisfaction needs to be controlled for other journey aspects. This is represented by 

the positive impact that satisfaction with station and train are suggested to have on the 

overall satisfaction. However, it is worth noting the significant and negative coefficient on 

scheduled journey time under model 1 for commuters that may be potentially explained by 

commuters generally showing larger dissatisfaction with longer travel for work as 

indicated by Cats et al. (2015). Nevertheless, it can be expected that respondents who travel 

on the same OD pair are sensitive to changes in scheduled journey times and it is further 

assumed that these impacts are similar for travellers on the same OD. With the introduction 

of OD fixed effects in models 2-4, the coefficients on scheduled journey time become 

significant and negative for all journey purposes, in line with expectations. 
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It is noted that the models where the outcome variable is overall satisfaction with the 

journey may suffer from endogeneity bias. As satisfaction with a journey is likely affected 

by more factors, such as those related to various aspects of the journey (not only the delay), 

hence the need to control for these journey aspects. Ideally, when modelling overall 

satisfaction, one would prefer using exogenous explanatory variables, i.e. not reported 

satisfaction with a given journey aspect. Due to the nature of the dataset, the overall 

satisfaction models include some explanatory variables that are endogenous (e.g., 

satisfaction with a specific aspect). This is because there are no measurable variables 

available that could serve as valid instruments for approaches such as instrumental variable 

estimation that could be used to address endogeneity. Consequently, these models may be 

subject to endogeneity bias. 

It is highlighted that the reported values of R2 are slightly higher than for the models of 

perception and delay satisfaction and, as previously noted, more similar to the values 

reported by Monsuur et al. (2021) in modelling overall journey satisfaction using NRPS 

data, what may be a result of the different nature of delay and overall journey satisfaction. 

Using the estimated coefficients, lateness multipliers for arrival and departure delay were 

calculated for models 2-4 as shown in Table 58. The estimated lateness multipliers at 

arrival are around 4.0-4.7 for business travellers, 7.4-8.9 for commuters and 4.6-5.6 for 

leisure travellers. The respective departure lateness multipliers are 5.6-6.0 for business 

travellers, 2.1-3.5 for commuters and 3.2-4.0 for leisure travellers. The three estimated 

models in Table 58 indicate that the model results are quite robust to reducing the sample 

size or inclusion of additional control variables (as the estimated lateness multipliers are 

of similar magnitude for models 2-4). The lateness multipliers are larger at departure for 

business travellers, slightly larger at arrival for leisure travellers and much larger at arrival 

for commuters. This would suggest that 1 minute of delay is valued as being equivalent to 

around 4 minutes of scheduled journey time for delay at arrival and 6 minutes at departure 

for business travellers, 8 minutes at arrival and 3 at departure for commuters, and 5 minutes 

at arrival and 3 minutes at departure for leisure travellers. However, it is worth noting that 

while the central values are different, the estimated confidence intervals generally suggest 

that the lateness multipliers are not significantly different from each other. Nevertheless, 

it is not known how the multipliers reported in the literature performed with this respect, 

given that confidence intervals are typically not reported (i.e. Batley and Ibáñez., 2012). 

With lateness multipliers being ratios of two values - utility of scheduled journey time and 

delay, the values depend on their relative magnitudes. At the same time, the observed 

differences in the scheduled journey times are typically relatively small (i.e. average 
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absolute difference in timetabled scheduled journey times was just above 4 minutes for the 

OD pairs in the subsample used in model 4). This highlights the limitation of satisfaction 

data as (unlike in SP experiments), the analyst has no control over the attributes of the 

presented choice sets (or scheduled journey times and experienced lateness in the case of 

satisfaction surveys). It is possible that the small differences may remain unperceived by 

some passengers (perhaps even by frequent travellers) or have a lower marginal valuation 

as compared to larger differences. Daly et al. (2014) discussed the possible non-linearities 

in relation to time losses and savings whilst Wardman and Batley (2022) talked about the 

importance of time perception in relation to delays. If this is the case, the utility of 

scheduled journey time may be underestimated. In such cases, overcoming this limitation 

may be difficult as satisfaction scores are related to an ex-post evaluation of experiences 

and large changes in scheduled journey times are rarely observable.  
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Table 57 Modelling results for the initial models 

 1 t-stat 2 t-stat 3 t-stat 4 t-stat 

Constant 

C -0.0778 -0.93 -0.225 -1.85 -0.186 -1.25 -0.117 -0.69 

L -0.0124 -0.14 -0.0553 -0.48 -0.0223 -0.16 -0.0793 -0.49 

Station_Sat 

B 1.345*** 20.3 1.350*** 17.3 1.325*** 15.1 1.137*** 12.3 

C 1.111*** 27.6 1.183*** 20.9 1.195*** 16.4 0.980*** 12.9 

L 1.401*** 27.9 1.465*** 21.5 1.413*** 17.1 1.172*** 13.6 

Train_Sat 

B 3.059*** 45.8 3.066*** 38.2 3.127*** 34.0 2.866*** 28.9 

C 3.049*** 72.2 2.998*** 52.0 3.042*** 41.6 2.770*** 36.0 

L 3.438*** 62.2 3.418*** 46.0 3.401*** 36.6 2.999*** 30.1 

Freq_Sat 

B       0.803*** 8.15 

C       0.888*** 12.3 

L       0.919*** 9.88 

VfM_Sat 

B       1.049*** 15.9 

C       1.120*** 15.0 

L       1.123*** 19.6 

L_ A (β_3) 

B -0.0505*** -8.82 -0.0567*** -8.89 -0.0521*** -7.68 -0.0537*** -7.53 

C -0.101*** -18.4 -0.1000*** -14.1 -0.114*** -13.1 -0.109*** -12.0 

L -0.0593*** -12.3 -0.0583*** -9.74 -0.0570*** -8.45 -0.0576*** -8.20 

L_ D (β_2) 

B -0.0690*** -7.77 -0.0683*** -6.46 -0.0729*** -5.99 -0.0758*** -6.01 

C -0.0522*** -7.71 -0.0472*** -5.20 -0.0296** -2.60 -0.0349** -2.97 

L -0.0404*** -6.30 -0.0421*** -5.02 -0.0354*** -3.54 -0.0402*** -3.84 

SJT (β_1) 

B -0.0009* -1.99 -0.0120*** -5.43 -0.0121*** -5.00 -0.0134*** -5.27 

C -0.0058*** -6.76 -0.0134*** -5.26 -0.0142*** -4.74 -0.0123*** -3.93 

L 0.0002 0.53 -0.0105*** -4.95 -0.0102*** -4.34 -0.0125*** -5.06 

Thresholds 

1 -2.482*** -31.6 -2.890*** -4.55 -3.755*** -7.41 -3.501*** -6.47 

2 -0.919*** -12.7 -1.243* -1.96 -2.112*** -4.19 -1.815*** -3.37 

3 0.772*** 10.7 0.455 0.72 -0.410 -0.81 -0.0466 -0.09 
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4 4.396*** 56.8 4.190*** 6.60 3.293*** 6.53 3.870*** 7.17 

Number of responses 

 40363  25457  17316  16632  

Log-likelihood 

 -36770.8  -22388.3  -15181.8  -13920.9  

Pseudo R2 

 0.234  0.246  0.231  0.267  

Fixed effects 

 X  V  V  V  

VfM and Freq Satisfaction 

 X  X  X  V  

Minimum N 

 1  10  25  25  

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

B – Business, C – Commute, L – Leisure; Station_Sat, Train_Sat, Freq_Sat, VfM_Sat refer to 

satisfaction with station, train, frequency and value for money; L_A, L_D refer to delay at arrival 

and departure; SJT – scheduled journey time 

 

Table 58 Estimated lateness multipliers 

Journey 

Purpose 

𝒘𝑨 𝒘𝑫 

(2) (3) (4) (2) (3) (4) 

Business 

z-stat 

95% CI 

 4.74*** 

(4.67) 

[2.8-6.7] 

4.31*** 

(4.22) 

[2.3-6.3] 

3.99*** 

(4.34) 

[2.2-5.8] 

5.72*** 

(4.12) 

[3.0-8.4] 

6.02*** 

(3.81) 

[2.9-9.1] 

5.64*** 

(3.94) 

[2.8-8.4] 

Commute 

z-stat 

95% CI 

7.43*** 

(4.90) 

[4.5-10.4] 

8.02*** 

(4.44) 

[4.5-11.6] 

8.86*** 

(3.73) 

[4.2-13.5] 

3.51*** 

(3.75) 

[1.7-5.3] 

2.08*** 

(2.31) 

[0.3-3.9] 

2.83*** 

(2.41) 

[0.5-5.1] 

Leisure 

z-stat 

95% CI 

5.52*** 

(4.51) 

[3.1-7.9] 

5.61*** 

(3.96) 

[2.8-8.4] 

4.61*** 

(4.42) 

[2.6-6.6] 

3.99*** 

(3.44) 

[1.7-6.3] 

3.49*** 

(2.67) 

[0.9-6.0] 

3.21*** 

(2.99) 

[1.1-5.3] 
Legend:  * p < 0.05, ** p < 0.01, *** p < 0.001 

The extended models 

To enable closer comparisons with the work conducted by Batley and Ibáñez (2012) and 

provide sensitivity analysis, the ordered logit models were re-estimated using the extended 

version of journey type segmentation (presented in Table 54) with the results shown in 

Table 59. As in the case of the simpler models, model 1a is estimated without OD fixed 

effects that are subsequently included in models 2a-4a. Similarly, in model 1a, the 

scheduled journey time coefficient is negative and significant for commuters. With the 

inclusion of OD fixed effects in models 2a-4a, the scheduled journey time coefficient 

becomes negative and significant for all segments. At the same time, coefficients for arrival 

delay are negative and significant for all journey length and purpose combinations. 
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However, in the case of departure delay, despite all of the coefficients being negative, they 

are not significant for short commute and leisure. This may be a result of the additional 

segmentation leading to fewer responses by demand segment. 

Table 59 Modelling results with extended segmentation 

 1a t-stat 2a t-stat 3a t-stat 4a t-stat 

Constant         

SC 0.0358 0.24 -0.0185 -0.09 0.0268 0.10 0.00342 0.01 

SL 0.286 1.76 0.322 1.40 0.464 1.65 0.240 0.75 

LB 0.0544 0.32 0.141 0.53 0.226 0.72 0.0669 0.19 

LC 0.0142 0.08 0.0390 0.15 0.193 0.61 0.223 0.63 

LL -0.0295 -0.18 0.0242 0.09 0.183 0.59 -0.0142 -0.04 

Station_Sat         

SB 1.718*** 13.1 1.818*** 10.5 1.823*** 8.98 1.593*** 7.33 

SC 1.090*** 23.0 1.141*** 16.5 1.077*** 11.53 0.864*** 8.90 

SL 1.376*** 17.1 1.427*** 11.7 1.264*** 7.82 0.955*** 5.70 

LB 1.168*** 13.0 1.127*** 11.4 1.053*** 9.36 0.899*** 7.54 

LC 1.126*** 12.1 1.118*** 9.56 1.300*** 9.20 1.098*** 7.44 

LL 1.340*** 18.2 1.386*** 15.3 1.360*** 12.65 1.169*** 10.4 

Train_Sat         

SB 2.845*** 23.0 2.826*** 17.7 2.870*** 15.5 2.629*** 12.9 

SC 3.079*** 63.9 3.043*** 44.2 3.158*** 34.91 2.863*** 29.8 

SL 3.286*** 41.1 3.290*** 28.2 3.369*** 22.0 3.006*** 18.3 

LB 3.119*** 36.6 3.159*** 31.6 3.260*** 28.4 3.024*** 24.2 

LC 2.992*** 34.8 2.941*** 27.3 2.808*** 21.5 2.574*** 18.4 

LL 3.666*** 46.7 3.625*** 36.0 3.566*** 28.8 3.110*** 22.9 

Freq_Sat         

SB       0.734*** 3.46 

SC       0.895*** 9.89 

SL       1.096*** 6.72 

LB       0.688*** 5.28 

LC       0.731*** 5.05 

LL       0.794*** 6.19 

VfM_Sat         

SB       0.884*** 6.12 

SC       1.065*** 11.4 

SL       0.972*** 9.71 
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LB       1.114*** 12.8 

LC       1.215*** 8.14 

LL       1.219*** 15.53 

L_ A (𝜷𝟑)         

SB -0.0892*** -6.17 -0.109*** -6.50 -0.102*** -5.72 -0.106*** -5.64 

SC -0.101*** -15.4 -0.0978*** -11.1 -0.114*** -9.94 -0.106*** -8.83 

SL -0.0658*** -7.01 -0.0555*** -4.14 -0.0722*** -4.55 -0.0792*** -4.82 

LB -0.0429*** -6.51 -0.0473*** -6.52 -0.0422*** -5.45 -0.0463*** -5.66 

LC -0.109*** -9.45 -0.113*** -8.34 -0.123*** -8.07 -0.119*** -7.50 

LL -0.0576*** -9.77 -0.0623*** -8.93 -0.0574*** -7.40 -0.0545*** -6.71 

L_D (𝜷𝟐)         

SB -0.0487* -2.56 -0.0423 -1.82 -0.0578* -2.19 -0.0627* -2.28 

SC -0.0659*** -7.97 -0.0508*** -4.31 -0.0181 -1.12 -0.0295 -1.77 

SL -0.0560*** -4.78 -0.0633*** -3.77 -0.0252 -1.22 -0.0175 -0.80 

LB -0.0585*** -5.43 -0.0578*** -4.58 -0.0552*** -3.74 -0.0560*** -3.66 

LC -0.0261 -1.92 -0.0367* -2.29 -0.0369* -2.05 -0.0385* -2.08 

LL -0.0332*** -4.12 -0.0345*** -3.40 -0.0362** -3.01 -0.0454*** -3.64 

SJT (𝜷𝟏)         

SB -0.00102 -0.70 -0.0115*** -3.44 -0.0109** -2.81 -0.0115** -2.84 

SC -0.00695*** -6.50 -0.0154*** -4.68 -0.0148*** -3.70 -0.0134** -3.21 

SL -0.000697 -0.80 -0.0117*** -4.18 -0.0118*** -3.70 -0.0144*** -4.32 

LB 0.000002 0.00 -0.0102*** -4.09 -0.0101*** -3.59 -0.0116*** -3.91 

LC -0.00334* -2.00 -0.0114*** -3.49 -0.0127** -3.28 -0.0121** -2.97 

LL 0.000119 0.31 -0.00960*** -3.99 -0.00906*** -3.35 -0.0115*** -4.02 

Threshold 1 -2.421*** -16.9 -2.779*** -4.18 -3.350*** -5.90 -3.298*** -5.41 

Threshold 2 -0.842*** -6.03 -1.107 -1.67 -1.672** -2.96 -1.581** -2.61 

Threshold 3 0.865*** 6.21 0.595 0.90 0.0369 0.07 0.184 0.30 

Threshold 4 4.499*** 31.5 4.348*** 6.55 3.755*** 6.63 4.114*** 6.76 

N 36220  22397  14733  14146  

LL -33007.8  -19694.8  -12928.6  -11862.8  

R2 0.237  0.251  0.236  0.271  

Fixed effects X  V  V  V  

VfM and Freq X  X  X  V  

Minimum N 1  10  25  25  

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

SB/LB – Short/Long Business, SC/LC – Short/Long Commute, SL/LL – Short/Long Leisure; 

Station_Sat, Train_Sat, Freq_Sat, VfM_Sat refer to satisfaction with station, train, frequency and 

value for money; L_A, L_D refer to delay at arrival and departure; SJT – scheduled journey time 
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The subsequently estimated lateness multipliers are shown in Table 60. Arrival delay 

multipliers are around 9 for short and 4 for long business journeys, 7 for short and 9 for 

long commute and 5-6 for leisure trips. The corresponding departure delay multipliers are 

4-5 for business journeys, 1-3 for commute and 1-5 for leisure trips. There is less 

confidence in the departure delay multipliers as the estimated values tend to vary 

considerably between the estimated models. 

Table 60 Estimated lateness multipliers for models with additional journey type 

categorisation 

Journey  

Purpose 

𝒘𝑨 𝒘𝑫 

(2) (3) (4) (2) (3) (4) 

SB 

z-stat 

95% CI 

9.46*** 

(2.97) 

[3.2-16] 

9.38*** 

(2.47) 

[1.9-17] 

 9.19*** 

(2.48) 

[1.9-16] 

3.68 

(1.64) 

[-0.8-8.1] 

5.31 

(1.75) 

[-0.6-11] 

5.45 

(1.81) 

[-0.4-11] 

LB 

z-stat 

95% CI 

4.63*** 

(3.50) 

[2.0-7.2] 

4.20*** 

(3.03) 

[1.5-6.9] 

 4.00*** 

(3.25) 

[1.6-6.4] 

5.66*** 

(3.03) 

[2.0-9.3] 

5.49*** 

(2.58) 

[1.3-9.6] 

4.84*** 

(2.67) 

[1.3-8.4] 

SC 

z-stat 

95% CI 

6.33*** 

(4.29) 

[2.3-9.2] 

7.72*** 

(3.48) 

[3.4-12] 

 7.91*** 

(3.02) 

[2.8-13] 

3.29*** 

(3.22) 

[1.3-5.3] 

1.22 

(1.08) 

[-1.0-3.4] 

2.21 

(1.56) 

[-0.6-5.0] 

LC 

z-stat 

95% CI 

9.84*** 

(3.15) 

[3.7-16] 

9.64*** 

(2.98) 

[3.3-16] 

 9.80*** 

(2.71) 

[2.7-17] 

3.20*** 

(1.99) 

[0.1-6.4] 

2.90 

(1.82) 

[-0.2-6.0] 

3.18 

(1.78) 

[-0.3-6.7] 

SL 

z-stat 

95% CI 

4.76*** 

(2.94) 

[1.6-7.9] 

6.11*** 

(2.89) 

[2.0-10] 

 5.49*** 

(3.23) 

[2.2-8.9] 

5.43*** 

(2.80) 

[1.6-9.2] 

2.13 

(1.15) 

[-1.5-5.7] 

1.21 

(0.79) 

[-1.8-4.2] 

LL 

z-stat 

95% CI 

6.49*** 

(3.70) 

[3.1-9.9] 

6.34*** 

(3.11) 

[2.3-10] 

 4.74*** 

(3.52) 

[2.1-7.4] 

3.60*** 

(2.53) 

[0.8-6.4] 

3.99*** 

(2.18) 

[0.4-7.6] 

3.95*** 

(2.63) 

[1.0-6.9] 
Legend:  * p < 0.05, ** p < 0.01, *** p < 0.001 

Sensitivity analysis 

To test the sensitivity of the approach used in estimating the lateness multipliers, the 

models from Table 59 were also re-run with the exclusion of departure delay from the list 

of explanatory variables. The results of the estimated models are presented in Table 61. 

The estimated coefficients are (similarly to the previously estimated models) negative and 

significant for arrival delay and scheduled journey time when OD pair fixed effects are 

included while the coefficients for scheduled journey time are mostly insignificant in the 

case of model 1 where OD pair fixed effects are excluded. The estimated lateness 

multipliers for arrival delay are shown in Table 62. These are similar to the ones from the 

main body of analysis - around 10 minutes for short and 4 minutes for long business 

journeys, 7 minutes for short and 10 minutes for long commute and 5-6 minutes for leisure 

journeys. 
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Table 61 Model estimates for models without departure delay 

 1 t-stat 2 t-stat 3 t-stat 4 t-stat 

Constant         

SC 0.0268 0.18 -0.0156 -0.07 0.0693 0.27 0.0233 0.08 

SL 0.292 1.82 0.320 1.41 0.506 1.81 0.270 0.85 

LB 0.0122 0.07 0.0727 0.28 0.170 0.54 0.000517 0.00 

LC 0.0404 0.23 0.0447 0.17 0.220 0.70 0.250 0.71 

LL -0.0248 -0.15 0.00372 0.01 0.171 0.56 -0.0463 -0.13 

Station_Sat         

SB 1.727*** 13.23 1.824*** 10.59 1.835*** 9.05 1.597*** 7.35 

SC 1.090*** 23.32 1.138*** 16.42 1.075*** 11.52 0.865*** 8.92 

SL 1.383*** 17.81 1.432*** 11.75 1.258*** 7.79 0.950*** 5.68 

LB 1.170*** 13.63 1.134*** 11.42 1.056*** 9.38 0.901*** 7.56 

LC 1.120*** 12.05 1.117*** 9.58 1.297*** 9.19 1.103*** 7.49 

LL 1.339*** 18.15 1.386*** 15.30 1.360*** 12.65 1.167*** 10.37 

Train_Sat         

SB 2.848*** 23.01 2.831*** 17.69 2.871*** 15.52 2.631*** 12.89 

SC 3.078*** 63.92 3.041*** 44.27 3.153*** 34.92 2.863*** 29.81 

SL 3.282*** 41.11 3.284*** 28.19 3.369*** 22.07 3.003*** 18.32 

LB 3.125*** 36.75 3.160*** 31.68 3.275*** 28.54 3.042*** 24.35 

LC 2.993*** 35.00 2.947*** 27.51 2.815*** 21.66 2.581*** 18.51 

LL 3.671*** 46.90 3.631*** 36.15 3.579*** 28.94 3.126*** 23.06 

Freq_Sat         

SB       0.716*** 3.37 

SC       0.887*** 9.81 

SL       1.097*** 6.73 

LB       0.684*** 5.25 

LC       0.709*** 4.91 

LL       0.792*** 6.17 

VfM_Sat         

SB       0.889*** 6.16 

SC       1.061*** 11.31 

SL       0.972*** 9.71 

LB       1.112*** 12.79 

LC       1.224*** 8.20 

LL       1.216*** 15.49 

L_ A (𝜷𝟑)         
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SB -0.113*** -10.45 -0.127*** -9.73 -0.125*** -8.66 -0.130*** -8.57 

SC -0.139*** -29.95 -0.122*** -18.14 -0.122*** -13.58 -0.119*** -12.78 

SL -0.0954*** -13.50 -0.0896*** -8.97 -0.0847*** -6.95 -0.0877*** -6.95 

LB -0.0599*** -10.30 -0.0620*** -9.49 -0.0530*** -7.36 -0.0577*** -7.67 

LC -0.125*** -16.83 -0.135*** -15.15 -0.145*** -13.90 -0.142*** -13.15 

LL -0.0713*** -14.60 -0.0748*** -12.65 -0.0694*** -10.35 -0.0698*** -10.06 

SJT (𝜷𝟏)         

SB -0.000484 -0.33 -0.0134*** -4.02 -0.0119** -3.09 -0.0126** -3.13 

SC -0.00545*** -5.19 -0.0168*** -5.11 -0.0159*** -4.00 -0.0145*** -3.49 

SL -0.000195 -0.22 -0.0132*** -4.74 -0.0130*** -4.08 -0.0158*** -4.74 

LB 0.000552 0.97 -0.0117*** -4.69 -0.0112*** -4.01 -0.0130*** -4.41 

LC -0.00281 -1.71 -0.0129*** -3.95 -0.0137*** -3.57 -0.0134*** -3.32 

LL 0.000382 1.01 -0.0113*** -4.71 -0.0104*** -3.85 -0.0130*** -4.56 

Threshold 1 -2.348*** -16.65 -2.901*** -4.34 -3.552*** -6.28 -3.557*** -5.86 

Threshold 2 -0.780*** -5.66 -1.239 -1.86 -1.881*** -3.34 -1.850** -3.06 

Threshold 3 0.919*** 6.69 0.454 0.68 -0.178 -0.32 -0.0926 -0.15 

Threshold 4 4.541*** 32.26 4.198*** 6.29 3.532*** 6.26 3.830*** 6.32 

N 36220  22397  14733  14146  

LL -33079.4  -19730.8  -12945.6  -11882.3  

R2 0.235  0.250  0.235  0.270  

Fixed effects X  V  V  V  

VfM and Freq X  X  X  X  

Minimum N 1  10  25  25  

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; SB/LB – Short/Long Business, 

SC/LC – Short/Long Commute, SL/LL – Short/Long Leisure; Station_Sat, Train_Sat, Freq_Sat, 

VfM_Sat refer to satisfaction with station, train, frequency and value for money; L_A, refers to delay at 

arrival; SJT – scheduled journey time 

 

Table 62 Estimated lateness multipliers for models without departure delay 

Journey Purpose 𝒘𝑨 

(2) (3) (4) 

Short Business 

z-stat 

95% CI 

 9.45*** 

(3.67) 

[4.4-14.5]  

10.47*** 

(2.87) 

[3.3-17.6] 

10.31*** 

(2.90) 

[3.3-17.3] 

Long  Business 

z-stat 

95% CI 

 5.32*** 

(4.24) 

[2.9-7.8] 

4.74*** 

(3.56) 

[2.1-7.3] 

4.45*** 

(3.86) 

[2.2-6.7] 

Short Commute 

z-stat 

95% CI 

7.28*** 

(4.92) 

[4.4-10.2] 

7.65*** 

(3.86) 

[3.8-11.5] 

8.19*** 

(3.38) 

[3.4-12.9] 

Long Commute 

z-stat 

 10.48*** 

(3.83) 

10.54*** 

(3.47) 

10.57*** 

(3.23) 
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95% CI [5.1-15.8] [4.6-16.5] [4.2-17.0] 

Short Leisure 

z-stat 

95% CI 

 6.78*** 

(4.18) 

[3.6-10.0] 

6.50*** 

(3.52) 

[2.9-10.1] 

5.55*** 

(3.93) 

[2.8-8.3] 

Long Leisure 

z-stat 

95% CI 

 6.62*** 

(4.44) 

[3.7-9.5] 

6.68*** 

(3.63) 

[3.1-10.3] 

5.37*** 

(4.19) 

[2.9-7.9] 
Legend:  * p < 0.05, ** p < 0.01, *** p < 0.001 

8.5.Comparison of the estimated lateness multipliers with Batley and Ibáñez 

(2012) 

The lateness multipliers from the initial (with three demand segments) and extended model 

(with segmentation by journey purpose and length conforming to the segmentation adopted 

by Batley and Ibáñez, 2012) were subsequently compared with the equivalent values 

estimated by Batley and Ibáñez (2012). These have been retrieved from Table 4b in Batley 

and Ibáñez (2012) for lateness multipliers at arrival whilst the lateness multipliers at 

departure were calculated from the estimated coefficients reported in Table 4a in Batley 

and Ibáñez (2012). These are presented in Figure 60. 

For the initial models where no journey type categorisation was introduced, arrival lateness 

multipliers of respectively 4, 8 and 5 were estimated for business, commute and leisure 

travellers. With the introduction of journey type categorisation, the estimated multipliers 

for business travel were suggested to be larger for short journeys (around 10) and 

comparable to the initial model for long journeys (around 4). For commuter and leisure, 

comparable lateness multipliers were estimated from the initial and extended models - 

between 7 and 10 for commuters (slightly larger for the long journeys) and around 4-6 for 

leisure. 

In the case of departure lateness multipliers, the values estimated from the initial and 

extended models are very similar in all cases and do not seem to differ between short and 

long journeys. These are around 5-6 for business journeys, 2-3 for commute and 3-4 for 

leisure journeys.  
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Legend: wA denotes lateness multipliers at arrival, wD - at departure; 'base' refers to the 

model with 3 demand segments, reported in Table 58, 'ext' refers to the models with 

additional demand segmentation reported in Table 60; 'lit' refers to the equivalent values 

estimated by Batley and Ibáñez (2012); for each of the estimated multipliers the error 

bars refer to minimum and maximum estimated value from models 2-4, while the median 

value is reported as the central value. 

Figure 60 Comparison of estimated lateness multipliers for delay at arrival  

 The results are indicative of lateness valuation increasing with journey time for 

commuters, decreasing for business travellers and being constant for leisure travellers. 

Hence, business travellers are suggested to be less concerned with delays relative to 

scheduled journey time for longer journeys – this may result from the productive use of 

in-vehicle times (as discussed in Wardman and Lyons, 2016; Lyons et al., 2016) and/or 

correlation between journey length and quality. However, in the case of commuters, the 

importance of delays relative to journey time seems to increase slightly with journey 

length. This may be related to the general dissatisfaction with long commute as noted in 

Cats et al. (2015) or correlations with other journey aspects. Though, it is worth 

highlighting that the lateness multipliers estimated here are not significantly different from 

each other. However, noting that confidence intervals are not generally reported in the 

literature for lateness multipliers, what makes detailed comparisons difficult. 

Nevertheless, the estimated lateness multipliers seem to be larger than the values estimated 

by Batley and Ibáñez (2012). This can be possibly related to the different nature of 
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satisfaction data or a relatively less negative disutility of scheduled journey time estimated 

from the satisfaction models due to the aforementioned data limitations. In line with Batley 

and Ibáñez (2012), in almost all cases (apart from long business journeys), the arrival delay 

multiplier is larger than the departure delay equivalent, indicative of the final (destination) 

delay being typically a source of larger disutility. However, it has to be noted that there are 

differences in the flows used for the analysis and some of the differences in the estimates 

can also be contributed to the differences in the journey type segmentation methods.  

8.6. Conclusions 

This work adds a degree of novelty in using passenger satisfaction data instead of the 

typically employed SP survey data to estimate lateness multipliers, a conversion rate 

between the value of a minute of lateness to the equivalent length of scheduled journey 

time. This combined the previous work using life satisfaction surveys in economic 

valuation (i.e. Layard et al., 2008) with work using passenger satisfaction surveys to study 

the impact of delays on passengers (i.e. Monsuur et al., 2021) and studies using SP surveys 

to estimate lateness multipliers (i.e. Batley and Ibáñez, 2012). A subset of the NRPS 

dataset provided by Transport Focus was used to create a pseudo-panel of frequent rail 

travellers to estimate an ordered logit model of passenger satisfaction with origin-

destination pair fixed-effects to estimate the utilities of delay and scheduled journey time. 

Subsequently, their ratios were calculated to derive the lateness multipliers. 

The estimated lateness multipliers are slightly larger than the ones typically estimated in 

the SP studies and some caution is needed while applying these values. To the best of 

knowledge, it is the first study attempting to use journey satisfaction data in such an 

application. It does, however, highlight the potential of using such data in transport 

economics as the estimated coefficients and resulting multipliers are of expected signs and 

magnitudes.   

The results suggest that: 

1) In most cases, delay at arrival is a source of larger disutility relative to delay at 

departure. This finding is in line with expectations and consistent with Batley and 

Ibáñez (2012). However, the opposite is suggested to be true for long business 

journeys, possibly due to the ability to more productively use the additional in-

vehicle time related to on-board delays (for discussion on productive use of travel 

time see Wardman and Lyons, 2016; Lyons et al., 2016).  

2) Relative to scheduled journey time, 1 minute of delay at arrival is valued as an 

equivalent of around 9 minutes of SJT for short business and long commute, 7 

minutes for short commute, 5 minutes for leisure and 4 minutes for long business 
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journeys. These values are typically larger than the estimates from SP studies with 

a minute of lateness valued up to 3 times more relative to scheduled journey time 

as compared with Batley and Ibáñez (2012). While the comparisons presented 

above are made in relation to the estimated values from Batley and Ibáñez (2012), 

it is noted that Wardman and Batley (2014) reported lateness multipliers between 

2-5 for business travellers and commuters and 2-7 for leisure travellers with even 

larger values being reported in Wardman (2001) and Börjesson and Eliasson 

(2011). 

3) The valuation of lateness at arrival with respect to scheduled journey time is 

suggested to decrease with journey length for business travellers, increase for 

commuters and remain constant for leisure travellers. This is slightly different to 

the results obtained by Batley and Ibáñez (2012), suggesting that the valuation 

decreases with journey length. 

4) Relative to scheduled journey time, 1 minute of delay at departure is valued at 

around 5 minutes for business journeys and 2-4 for other travellers. While the 

differences are not necessarily statistically significant, the larger disutility related 

to delay at departure for business users may be due to the impact of such a delay 

on their productive use of travel time, which is of paramount importance for such 

travellers. These values are also larger than the estimates from SP studies with a 

minute of lateness valued up to five times more relative to scheduled journey time 

as compared to Batley and Ibáñez (2012). 

The analysis presented as part of this chapter highlights the potential of satisfaction data 

in economic valuation. As noted previously – it has been previously applied in economic 

valuation in health, labour and environmental economics. However, application in 

transport has been very limited. Comparing satisfaction data to SP, RP or ticket sales data 

can offer some additional insights regarding the negative impacts (i.e. of delays) that are 

not reflected in hypothetical (i.e. SP) or actual (i.e. RP or ticket sales) choices. As noted 

by Batley et al. (2011) the higher valuation of lateness at the individual level, but a much 

more limited impact of delays on demand may be explained by delays having a very 

negative impact on passenger satisfaction, but not necessarily leading to changes in travel 

choices. If worsening performance does not lead to changes in behaviour (choices), these 

still have an impact on social welfare.  As noted by numerous articles, there is an increasing 

need to look at alternative ways of measuring social welfare (e.g. Fleurbaey, 2009). 

Therefore, using journey or life satisfaction data and relating it to the supply of public 

transport as well as its performance can become a valuable addition to the standard 

economic approaches in transport appraisal.  
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It is believed that applying the methodology used in this study to similar journey 

satisfaction datasets would be useful in further exploring the potential of such data sources. 

In doing so, it is worth considering the following limitations of the NRPS dataset: 

1) The dataset is cross-sectional in nature. The presented approach uses numerous 

assumptions to construct a pseudo-panel of frequent travellers. Using a true panel 

dataset would, therefore, be preferable. Moreover, the analysis of SP surveys 

typically focuses on the mean or standard deviation of performance (e.g. Batley 

and Ibáñez, 2012). However, the recorded delay lengths and satisfaction scores in 

the NRPS survey refer to incidental journey experiences. 

2) The observed changes in scheduled journey time as well as delay lengths are 

naturally beyond the researcher’s control. With most changes in scheduled journey 

time being relatively small, it is possible that the utility of scheduled journey time 

is less negative than it would be for larger changes. This could be the reason behind 

the estimated multipliers being larger than the ones typically estimated in the 

literature. Therefore, conducting similar surveys may be useful for OD pairs that 

present interesting case studies, allowing for studying the impact of smaller and 

larger differences in journey times. Ensuring representation of delays of differing 

lengths is more difficult, as ideally, the surveys would need to be conducted over 

a long time period of time (as was the case with the NRPS) to increase the chances 

of observing shorter and longer delays. 

3) While the results offer some useful insights into the valuation of delays, it is worth 

noting that the estimated lateness multipliers are generally not significantly 

different from each other, what may be a feature of using satisfaction data and the 

issues summarised above.  

4) The NRPS dataset may also be prone to data errors related to travel records as in 

some cases passenger reports of delay experiences were significantly different 

from the recorded performance, especially for the longer delays. This may be due 

to possible differences between the journeys travellers planned to make, actual, 

reported journeys and interchanges (as described in the previous chapters).  

Whilst for future studies, it is recommended that the aforementioned limitations are 

considered, the approach presented in this chapter led to the estimation of the utility of 

scheduled journey time and lateness that were both of expected direction (i.e. negative) 

and magnitude (i.e. delay coefficient being more negative than that of scheduled journey 

time), which shows the potential that satisfaction data has in economic valuation. 
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The approach used here was based on demand segmentation aligning with the work by 

Batley and Ibáñez (2012). However, some alternative segmentations could be applied 

based on sociodemographic characteristics. Moreover, a cluster analysis could be applied 

to identify the different types of passengers from the dataset rather than using the pre-

defined categorisation of respondents. 

It is recommended that accurate data on journey history is collected from the satisfaction 

surveys to allow detailed investigation of the journey that traveller was planning to make 

and their actual experience to reduce the scope for errors. Moreover, including more 

questions related to income and fares in the questionnaires could allow the estimation of 

more sophisticated metrics and limit the potential for endogeneity bias related to using 

satisfaction variables as explanatory variables. In the case of NRPS, the possible lines of 

investigation include looking at the relationship between income, fare, scheduled journey 

time, headway, performance, journey quality and satisfaction with value for money, 

possibly even allowing calculation of the value of time.  
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Chapter 9    

Conclusions 

9.1. Introduction  

Motivated by previous research and limited understanding of the impacts of delays on 

travellers, this thesis aimed to investigate rail passengers’ perception of delays, impacts of 

delays on journey satisfaction and delay valuation. The thesis explored the intermediate 

steps linking the occurrence of delays and their impacts on demand and revenues, with a 

particular focus on understanding the impacts of different lengths of delays on passengers, 

given that smaller measured delays may not be noticed by passengers. The focus was on 

British railways given it is a well-developed case study in railway planning and with rich 

data on performance, finances and passenger satisfaction. The research can be especially 

helpful in designing/rethinking passenger delay compensation (reviewed as part of this 

thesis) and devising performance strategies and targets for railways (particularly in the 

British context). The aim was achieved by: 

1) reviewing the current rail passenger delay compensation scheme rules, its impacts 

on passengers and operators, highlighting the current issues with the delay 

compensation scheme and advising future research directions as well as the 

considerations for the design of such a scheme in Chapter 4 (providing motivation 

for research conducted as part of the remaining chapters), 

2) examining how passengers perceive delays in Chapter 6 to help understand 

whether some of the smaller delays remain unperceived and to devise the delay 

length perception thresholds,  

3) investigating how recorded delays impact upon passenger satisfaction and any 

potential non-linearities in delay impacts in Chapter 7, 

4) contrasting the concepts of delay perception and satisfaction to investigate whether 

the inability to perceive some of the smaller delays may explain the reaction of 

passenger satisfaction to measured delays in section 7.5. and 

5) estimation of lateness multipliers (a conversion rate between a minute of delay and 

an equivalent length of scheduled journey time) using satisfaction instead of the 

typically utilised stated preference data in Chapter 8. 

9.2. Summary of the key results 

The work conducted as part of this thesis was motivated by the limited impact that 

performance has on rail demand. Travellers may be unable to change their travel behaviour 

in response to worsening performance due to limited availability of alternatives, what is 

reflected in relatively low values of estimated elasticities in the literature (ATOC, 2004; 
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Batley et al., 2011)., but this is not equivalent to delays having no impact on passengers. 

Though, it was noted that delayed travellers can claim compensation for the longer delays 

as part of the ‘Delay Repay’ scheme in Great Britain.  

Against this background, the literature review conducted suggested that travellers are more 

likely to claim compensation for longer delays and if they paid more for their tickets, which 

is likely to be a result of how the scheme rules are constructed. As the scheme rules were 

introduced arbitrarily and are largely homogeneous, the first objective of the thesis was to 

evaluate the impact of this scheme on both passengers and the operators. While passengers 

may value the existence of a compensation scheme, it is difficult to estimate its benefits. 

These can be related to either increased demand due to the existence of the scheme (i.e. 

the scheme serving as delay insurance) or limited revenue losses (i.e. compensation serving 

as a way of retaining demand). The econometric analysis suggested that the homogeneity 

of scheme rules leads to an increased revenue burden for TOCs operating longer journeys, 

resulting from longer journeys being usually more likely to be affected by longer delays, 

what increases the proportion of passengers eligible to claim compensation. At the same 

time, with such journeys being typically more expensive, the expected compensation 

values are typically larger what encourages a higher proportion of the eligible passengers 

to submit claims. On average, each additional minute of APL was estimated to increase 

the proportion of ticket revenue repaid to passengers as part of the scheme by 0.2%. 

Additionally, due to increased engagement, for the same levels of performance, TOCs 

repay an additional 0.2% of their ticket revenue for each £10 of average fare. The 

increasing revenue impact of the scheme was suggested to be in line with some of the 

previous analysis of passenger engagement. It was, however, noted that the amount of 

research looking at the impact of delays on passengers is not sufficient to enable designing 

the scheme based on economic evidence. Rather, it was noted that to design a passenger 

delay compensation scheme, it is necessary to better understand what levels of delays are 

especially inconvenient for travellers. Hence, motivating further research and encouraging 

further interest from the industry and regulatory bodies. 

First, the analysis of traveller perception suggested that passengers are highly unlikely to 

perceive delays of up to 2 minutes. It was estimated that commuters’ perception delay 

thresholds are between 2-8.5 minutes. For the other types of travellers, the respective delay 

lengths are between 3 and 20 minutes with the probability of perceiving a delay increasing 

with length of delay at both departure and arrival and decreasing with journey length and 

for seated passengers.  
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Regarding the ability to accurately perceive the lengths of experienced delays, a large 

proportion of reported lengths of delays is concentrated around multiples of 5s (almost 

60% against 15% of recorded delays being of such lengths). However, a relatively large 

proportion of reported delay lengths is also scattered around non-multiples of 5s in the case 

of smaller delays of up to 8 minutes. This indicates on passengers who perceive the smaller 

delays being more likely to report the lengths of experienced delays more accurately.  

The analysis of perception was suggested to be of limited application in economic 

appraisal, though, it can possibly provide an explanation behind the possibility for smaller 

delays having a more limited impact on passengers what was subsequently investigated. 

In the case of satisfaction modelling it was highlighted that the binary representation of the 

satisfaction scale has merits over the original ordinal scale, being more amenable to 

policymaking. However, noting that any interpretation or classification of satisfaction 

versus dissatisfaction is generally open to interpretation and will affect the results. The 

results of the preferred delay satisfaction model suggested that in the case of incidental 

delays, commuters are unlikely to remain satisfied with punctuality if the length of delay 

is over 5-10 minutes. In the case of the other travellers, the respective lengths are in the 

range of 10-20 minutes. This is suggested to be slightly lower than the 30 minutes 

previously suggested by the literature. In the case of average performance, it was suggested 

that under perfect performance, 80% of commuters and 90% of other travellers are satisfied 

and each minute of APL leads to a reduction in the proportion of satisfied passengers by 

(on average) 6 pp for a minute of APL for commuters and 2 pp for other travellers. 

Typically, longer journeys and better journey quality can be attributed to lower probability 

of being dissatisfied with a delay of a given length whereas the probability of being 

dissatisfied with a delay typically increases if the service was also delayed at departure. 

This research also highlighted the possible non-linearities in the delay impacts on 

passengers that can be related to journey length (as the impact of delay on passenger 

satisfaction typically decreases with journey length) and smaller delays being generally 

less likely to be perceived and significantly affect satisfaction. The analysis aiming at 

estimating the elasticity of the marginal disutility of lateness led to inconclusive results, 

being largely affected by the choice of methodology. Nevertheless, the suggestion that 

some non-linearities may be present is in line with both the literature and also the 

perception, and satisfaction research conducted as part of this thesis. The proposed models 

of delay satisfaction can be used in setting performance targets or designing compensatory 

mechanisms. 
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Contrasting the concepts of delay perception and satisfaction suggested the existence of a 

gap between the two concepts as the estimated probability of perceiving a delay is larger 

than the probability of being dissatisfied with a given delay incident. The estimated gap is 

suggested to be between 0 minutes for standing commuters to up to 9 minutes for seated 

leisure travellers. This suggested that for commuters perceiving a delay almost 

automatically translates to an impact on satisfaction. However, for the other travellers, it 

was suggested that the estimated gap is also affected by journey quality as on condition 

that travellers are seated, the gap between the perceived delay and one largely affecting 

satisfaction is larger. 

With perception and satisfaction having a limited application in economic appraisal, the 

work was extended to estimating lateness multipliers (the valuation of lateness with respect 

to scheduled journey time) using satisfaction data. As typically SP studies are used in their 

estimation, it was thought that comparing the valuation estimated using the hypothetical 

choice data and satisfaction data (representing evaluation of actual experience), may 

provide additional insights into the impacts that delays have on travellers. A minute of 

delay at arrival was estimated to be valued as equivalent of 4-9 minutes of scheduled 

journey time whilst a minute of delay at departure was estimated to be valued as equivalent 

of 2-5 minutes of scheduled journey time. The estimated values are larger than the lateness 

multipliers from Batley and Ibáñez (2012). However, it was noted that there are instances 

where values of similar magnitude were reported throughout the literature. The valuation 

of lateness at arrival was also suggested to decrease with journey length for business 

travellers, increase for commuters and remain constant for leisure travellers. 

Overall, the thesis highlighted the fact that small delays may often have a more limited 

impact on passengers, whilst also suggesting that  journey purpose, length, comfort and 

delay at departure are all important in determining the impact that delays have on 

passengers. In most cases, however, the delays that are likely to cause dissatisfaction, are 

much smaller than the current compensation thresholds. Nevertheless, the current scheme 

has a larger financial impact on TOCs operating longer journeys whereas the impact of 

delays for travellers on longer journeys was suggested to be less significant. Hence, the 

following section will summarise how the results of the work conducted as part of the 

thesis can be applied in practice, highlighting the main policy implications. 

9.3.Policy implications 

This section aims to position the results of the research conducted as part of this thesis and 

set out some recommendations for policymakers. These are not the direct results of the 

empirical analysis, but rather recommendations and measures through which the results 
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can potentially be applied when designing performance and compensation schemes and/or 

seeking to reduce the negative impact of delays on passengers. 

The investigation of the currently used rail passenger delay compensation scheme revealed 

that long-distance train operators are likely to repay a larger proportion of their revenues 

to passengers under the current scheme. The literature review and analysis conducted  

suggested that: 

 the delay length compensation thresholds have been set arbitrarily and there is a 

need to understand whether a different design of the scheme may be more optimal, 

 automation of the current scheme would lead to a larger portion of revenue repaid 

to passengers which motivates the need for research into the benefits versus costs 

of the currently used scheme, 

 there is a need to explain if there are some regulatory or administrative reasons 

behind the homogeneous design of the scheme that lead to such differences, 

 there is a precedent, particularly in the Czechia and Spain, for the eligibility criteria 

to vary with types or lengths of journey, and such a design of compensatory 

mechanisms could also be considered for the British railways, 

 while the one-fit-for-all approach that is currently used may have some underlying 

limitations, it is also noted that a homogeneous, easy-to-understand and run 

scheme may have some benefits, both for passengers (who can navigate the rules 

easier), and the operators (reducing administrative costs) and 

 regardless of the changes in the scheme, it could be centrally operated, which 

would greatly improve the homogeneity in its operation and facilitate the claiming 

processes for passengers. 

The concept of delay perception has not been very well studied before and while the results 

may be intuitive (i.e. the probability of perceiving a delay increases with delay length), an 

attempt was made to estimate the delay length perception thresholds, suggesting the 

lengths of delay where passengers become more likely to perceive late running (than not). 

It must, however, be noted that the application of the concept of delay perception is likely 

to be limited in economic appraisal, i.e.  

 the policymakers or train operators should not be focusing on targeting delay 

perception (i.e. reducing the probability that travellers perceive delays) as such 

solutions are not likely to be welfare maximising, 

 conversely, it is believed that providing real-time information and clear 

communication to travellers about any possible delays may increase passenger 
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satisfaction as it is likely to reduce the uncertainty and inconvenience caused by 

the delays, 

 the fact of perceiving or not perceiving a delay is not immediately connected to 

experienced utility or choices, 

 rather, perceiving or not perceiving a delay is likely to be a reason for some delays 

having a more limited impact on passenger satisfaction as for delays to have an 

impact on passengers, they would typically need to be perceived first. 

The concept of delay satisfaction is one that can have more application in policymaking as 

it can possibly aid the process of setting performance targets or delay compensation rules 

where: 

 the individual-level satisfaction models can help set performance targets related to 

the distribution of lengths of delay incidents as smaller delays are less likely to 

have a negative impact on passenger satisfaction, 

 whereas the aggregated OD-level models can help design performance targets 

related to average performance. 

Additionally, with large impacts of journey quality, length and length of delay at departure 

related to how the final (destination) delays affect passenger satisfaction, it is advisable to 

set performance targets: 

 related to lengths of delay at departure (not only at arrival), 

 related to crowding levels, especially for late running episodes, 

 varying by journey lengths as the analysis conducted in this thesis provided 

additional evidence that the impact of delay varies with length of journey (in line 

with Wardman and Batley, 2022 suggesting that proportional elasticities better 

explain changes in demand) and also 

 varying by type of route as in absolute terms, OD pairs with a large commuter 

focus are likely to suffer from lower levels of satisfaction (for the same level of 

performance). 

Ultimately, the estimated gap between lengths of delays that are perceived and start having 

a detrimental impact on passenger satisfaction also highlights the impact of journey quality 

on how delays affect passenger satisfaction. Hence, it is advisable to: 

 in the event of delays, ensure that passengers are well-informed about the revised 

departure and arrival times, 

 implement ways of reducing crowding on delayed services as worse journey 

quality will further reduce passenger satisfaction and 
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 limit cancellations or truncations of delayed services if these could lead to 

increased crowding. 

As the lateness multipliers based on satisfaction data estimated as part of this thesis were 

larger than the ones typically estimated from SP studies, this also suggests that delays 

might have a more negative valuation relative to scheduled journey time than previously 

thought. Nevertheless, the satisfaction data may be a source of additional information that 

may be used by policymakers to monitor the impacts of delays on passengers as: 

 the demand response following delays has been suggested to be relatively modest 

in the literature, 

 changes in satisfaction do not ultimately lead to a choice but are likely to have an 

impact on well-being, 

 hence, there is an argument for including the analysis of the impact of delays on 

travellers’ satisfaction and/or well-being and incorporate these into the economic 

appraisal, 

 estimation of the traditionally used metrics using satisfaction data may be a useful 

approach that allows better understanding of how passengers value different 

aspects of journeys and provide some sensitivity testing overcoming some of the 

limitations of SP surveys. 

While this section summarised the wider application of the analysis conducted as part of 

this thesis, the remaining sections will discuss the potential to improve and/or further 

develop the presented analysis. 

9.4. Limitations 

The investigation of passenger delay compensation scheme concluded that long-distance 

TOCs repay a larger proportion of their revenues as part of the scheme due to the 

differences in the nature of their operation (i.e. journey length correlated with delay length) 

as well as the increased claiming rates related to a larger average value of compensation 

per claim on such journeys. However, the analysis was only conducted using very 

aggregate data (i.e. annual data at TOC level). Moreover, it was noted that there might be 

some benefits related to having one set of rules for all passengers rather than providing a 

very complex compensation scheme that would be less easy to understand and more costly 

to administer. Hence, it was suggested that a large-scale study be conducted to estimate 

the benefits and costs of the DR scheme as well as review its current design. 

Throughout the thesis, several issues have been mentioned that are related to the use of the 

NRPS dataset. While the impact of most of them is likely to be small and, as part of the 
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analysis of delay perception, an extensive sensitivity analysis was presented with the aim 

of testing the impact of any possible limitations, it is worth noting that: 

 the questionnaires are handed out prior to passengers boarding trains what can 

have an impact on their responses and, hence, survey results; 

 passengers filling in the survey closer to the time of completing a journey may 

have a better recollection of the journey but equally any negative emotions may 

be stronger when a negative experience (e.g. a delay) is more recent; 

 some discrepancies between reported and recorded delays have been found; 

 for passengers with multiple interchanges, it is difficult to establish to what extent 

passengers truly score satisfaction with one leg of their journey or their whole 

experience; 

 the delays described by the dataset are related to delay incidents, not average 

performance. Hence, in the cases where models of passenger satisfaction are 

estimated at the aggregated, OD level, the levels of passenger satisfaction, in fact, 

relate to incidents of lateness averaged across all the responses; 

 the dataset is cross-sectional in nature with multiple assumptions used to create a 

pseudo-panel of frequent travellers and subsequently estimate an ordered logit 

model with OD fixed effects to derive lateness multipliers. However, using a true 

panel dataset would be preferable. 

Related to the choice of methodologies, the binary representations of the presented 

satisfaction models are highly sensitive to merging the five original satisfaction categories 

into two. This approach assumes that the distances on the scale between the points merged 

into each of the two categories are insignificant. On the other hand, the ordered logit 

models utilising the original five satisfaction scores are more difficult to interpret, as it is 

difficult to discern what is implied by a change between satisfaction scores. Similarly, 

some of the linear representations of the satisfaction variables assume that the distances 

between the satisfaction scores on the scale are equal, allowing averaging of satisfaction 

scores. Moreover, due to the non-quantitative nature of satisfaction, any policy targets set 

based on this work, are highly sensitive to the assumed definition of satisfaction versus 

dissatisfaction and the limitations of the approach used. 

Some of the proposed models did not include all levels of the interacted variables, aiming 

to capture the complementary effect of these variables on the effect of delay length on 

perception or satisfaction. When the fully specified models were estimated, these failed to 

capture the proposed relationship correctly. For example, the estimated probabilities of 

perceiving a delay were suggested to start decreasing with increasing levels of delay at 
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arrival at certain levels of delay at departure. The original models’ specification does not 

allow for such a relationship due to only accounting for the complementary nature of these 

explanatory variables.  

It is also noted that some of the overall satisfaction models that included satisfaction with 

specific journey aspects as explanatory variables may suffer from endogeneity bias. This 

is due to the fact that where some journey aspects are not captured by any of the measurable 

variables in the survey, reported satisfaction with those journey aspects is used as a proxy, 

hence introducing possible endogeneity bias.   

More generally, all data used in the analysis refers to pre-COVID times and several studies 

addressed the impact of the COVID-19 pandemic on travel behaviour (e.g. Coppola and 

De Fabiis, 2021; Vickerman, 2021; Hörcher et al., 2022; Bonera and Martinelli, 2023; 

Deole et al., 2023). It is possible that the impact of delays on travellers is different now as 

compared to the pre-COVID times. 

Finally, it must also be noted that the focus of this thesis remained on GB railways and, 

application of the results to other countries or industries may not be directly possible. 

However, it is believed that the methodologies outlined in this thesis may be applied to 

other contexts too. 

With this section summarising the main limitations of the work conducted as part of this 

thesis, the following section aims to highlight some key areas that would benefit from 

further research. 

9.5.Further research 

Related to the policymaking applications previously highlighted in section 9.3, it is 

recognised that there are several ways in which the analysis presented as part of this thesis 

could be enhanced or extended. 

First of all, it is advisable that the regulators and policymakers conduct a more advanced 

analysis of the costs and benefits of the currently operating passenger delay compensation 

scheme (perhaps using data at the OD level) to identify: 

 the value that the scheme has for passengers and the impacts of the scheme on 

passenger satisfaction, demand and operator revenues, 

 whether the rules of the compensation scheme are optimal, possibly exploring the 

alternative ways of design, including a version of the scheme where the rules vary 

by service type or journey length, 
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 how changes in ticketing or automation of the scheme would impact upon the 

scheme operation and costs and 

 the role and impacts of the compensation scheme before and after the COVID 

pandemic. 

Secondly, with this thesis presenting an extensive analysis of delay perception and delay 

impacts on satisfaction, it is advisable that studies aiming at using similar datasets include: 

 more detailed information about the journey plans versus the actual journey 

including specific information about all the interchanges to reduce the scope for 

errors and 

 questions related to income and fares that, along the satisfaction with value for 

money (forming part of the NRPS), could allow estimation of the value of time or 

similar metrics. 

The analysis of delay satisfaction poses a different question that relates to how to 

incorporate passenger satisfaction in economic appraisal. Several ways to pursue this 

direction could include investigating: 

 the link between passenger satisfaction and demand, and 

 the relationship between travel satisfaction and wellbeing. 

Subsequently, the thesis highlighted the potential for non-linearity in the delay impacts on 

passengers related to both the shorter delays not being perceived (thus likely having a 

smaller marginal valuation) as well as the impact of delays typically decreasing with 

journey length. In most cases, both delay and scheduled journey times enter the estimated 

models as continuous variables. However, alternative ways of representing these variables 

could also be used, for example including the relative length of delay as compared to the 

scheduled journey time. Moreover, the investigation of the elasticity of the marginal 

disutility of lateness led to some inconclusive results, suggesting that some non-linearities 

are present. Hence, it is advisable that alternative datasets and/or methodologies are 

implemented to investigate such non-linearities as well as advising on ways of 

implementing them in the economic appraisal.  

Finally, this thesis represents one of the very few attempts to use passenger satisfaction 

data in the economic valuation in transport. It highlights the potential of such data and 

future studies might want to repeat a similar exercise using a different satisfaction dataset 

that could help overcome some of the issues with the NRPS as well as numerous 

assumptions implemented. It is advisable to conduct such surveys as panel, not cross-

sectional studies that could then ask for satisfaction with a particular journey and/or general 



232 

 

satisfaction, and for selected case studies, i.e. looking at interesting OD pairs where travel 

alternatives vary with respect to journey times and prices. However, as noted previously, 

in the case of satisfaction surveys, it is difficult to investigate the impact of delays of 

varying lengths as these are beyond the researcher’s control. Hence, such a study would 

need to be conducted over a relatively long time period to ensure that the distribution of 

delays represents both shorter and longer journeys. This could lead to an RP study where 

participants are also asked to score their satisfaction, noting that the proposed study would 

be relatively complex and expensive to implement. 
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Annex I  

Sensitivity analysis for models of delay perception from Chapter 6 

The purpose of this annex is to present the results of the sensitivity analysis conducted as part of the 

analysis of delay perception from Chapter 6. A number of sensitivity tests was conducted to understand 

the sensitivity of model results to the used methodology or data errors.  

The sensitivity analysis includes: 

1) Estimation of probit, instead of logit, models of delay perception to investigate the impact of 

the chosen methodology (i.e. logit versus probit) on the estimated results. 

2) Estimation of model 1 only for the responses where no delay at arrival was recorded to 

investigate whether some of these travellers may have been biased by the existence of delay at 

departure (section 6.5). As such, the explanatory variable representing length of delay at arrival 

is replaced by the length of delay at departure.  

3) Restricting the sample used in the main body of analysis only to leisure travellers with restricted 

tickets who are only able to travel on a specific service. Hence, in case of delays they cannot 

use a previous service that had been delayed or the following service in case of delays to their 

service. This was expected to improve the accuracy of matching passenger reports of journey 

and operational data. It has previously been noted (in section 5.2.2) that some discrepancies are 

expected and especially so in the case of longer delays. This could be a result of differences 

between the travel plans and actual journeys made. For example, passengers might have 

originally wanted to travel on one service but travelled on a different one instead. Similarly, in 

the cases where passengers interchanged, there might be confusion related to whether 

passengers’ reports relate to this specific leg of the journey or the whole journey. Hence, the 

dataset was restricted to passengers on restricted tickets and with no interchanges. 

4) Relaxing  the assumptions from for the non-interchanging travellers (section B) 

5) Ultimately, model 1 is re-estimated using an extended version of journey purpose segmentation 

(section C) where all the six previously introduced journey categories are interacted with 

additional seven journey type categories (i.e. airport, high-speed, interurban, long commute, 

long distance, rural, short commute). These replace the previously used variables describing 

the length of the journey as journey length and type are correlated. It is believed that these 

journey type categories provide some additional insights as these are proxies for some 

characteristics related to the specific journey types and may be sources of heterogeneity in 

perception. 
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This is summarised in Table 63: 

Table 63 Summary of the sensitivity analysis 

Sensitivity 

analysis 

Section Description Impact Sample size 

1 - Probit A Estimation of 

probit, instead 

of logit models 

of delay 

perception 

Very small; the estimated 

probabilities slightly lower for 

probit due to logistic 

distribution having longer tails 

(Horowitz and Savin, 2001). 

48,793 to 

73,050 

2 – Restricted 

tickets with no 

interchanges 

B Logit model is 

run on a 

sample 

restricted to 

leisure 

travellers with 

advanced 

tickets and no 

interchanges 

Differences between the 

restricted and full model are 

insignificant, though, the 

predicted delay perception 

thresholds are slightly lower. 

1,241 to 3,281 

3 – No 

interchanges 

B Logit model is 

run on a 

sample 

restricted to 

travellers with 

no 

interchanges 

Results similar to the full 

model, however, some 

coefficients are insignificant 

(possibly due to smaller sample 

sizes). 

9,075 to 

29,125 

4 –Additional 

journey type 

categorisation 

C Logit model in 

its initial form 

(i.e. model 1) 

is run with the 

addition of 

interaction 

between the 

length of delay 

and 7 journey 

types 

Differences between arrival 

delay coefficients are typically 

insignificant, probably due to 

smaller sample sizes. However, 

the coefficient on arrival delay 

is generally larger for the 

journey types characterised by 

shorter journey lengths (i.e. 

probability of delay perception 

increases more rapidly), in line 

with the previously estimated 

models.  

73,050 

 

A. Probit model of delay perception 

First of all, the models described above and shown in Table 25 were run as binary probit instead of logit 

models to look at the impact of changes in the assumption of distribution, F (as noted in section 6.4). It 

is not expected that probit results would differ largely from the logit estimations reported in section 6.4. 

Rather, they are reported in Table 64 to investigate the sensitivity of the logit results while the predicted 

probabilities are shown in Figure 61. As expected, the predicted probabilities are lower for probit than 

logit due to logistic distribution having longer tails (Horowitz and Savin, 2001). 
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Table 64 Probit estimates of delay perception 

 (1) (2) (3) - seat (3) – no seat 

Constant -1.054*** -1.078*** -0.999*** 

 (-49.73) (-49.90) (-36.40) 

BnL 0.142*** 0.133*** 0.201*** 

 (4.32) (3.96) (4.76) 

CL 0.446*** 0.457*** 0.468*** 

 (16.37) (16.50) (13.11) 

CnL 0.541*** 0.543*** 0.582*** 

 (18.06) (17.83) (14.51) 

LF -0.0286 -0.0349 -0.0121 

 (-0.99) (-1.19) (-0.32) 

LR -0.00274 -0.0167 0.0248 

 (-0.11) (-0.66) (0.78) 

Arrival delay     

BL 0.0907*** 0.115*** 0.0745*** 0.0848** 

 (34.35) (24.70) (10.76) (2.85) 

BnL 0.106*** 0.146*** 0.0988*** 0.130*** 

 (29.39) (26.32) (11.50) (6.65) 

CL 0.107*** 0.133*** 0.0805*** 0.139*** 

 (35.75) (26.76) (9.78) (10.06) 

CnL 0.121*** 0.162*** 0.126*** 0.196*** 

 (30.48) (26.63) (11.70) (12.20) 

LF 0.107*** 0.137*** 0.108*** 0.168*** 

 (36.46) (33.26) (15.98) (11.24) 

LR 0.100*** 

(60.22) 

0.137*** 

(51.27) 

0.0944*** 

(23.48) 

0.147*** 

(13.75) 

Arrival delay x SJT  

BL  -0.000206*** -0.0000639 0.000352 

  (-6.42) (-1.48) (1.06) 

BnL  -0.000394*** -0.000302*** -0.000472** 

  (-10.03) (-5.84) (-2.69) 

CL  -0.000649*** -0.000164 -0.000153 

  (-6.97) (-1.24) (-0.40) 

CnL  -0.00126*** -0.000997*** -0.00212*** 

  (-9.46) (-5.82) (-4.62) 

LF  -0.000384*** -0.000317*** -0.000420* 

  (-10.80) (-6.69) (-2.41) 

LR  -0.000302*** -0.000185*** -0.000381*** 

  (-18.61) (-8.48) (-4.72) 

Arrival delay x departure delay  

BL   0.00866*** 

(13.69) 

0.00397*** 

(7.61) 

0.00299*** 

(6.26) 

0.00137* 

(2.34) 

0.00209*** 

(5.83) 

0.00424*** 

(16.66) 

   

BnL   

   

CL   

   

CnL   

   

LF   

   

LR   

   

N 73050 72884 48793 

Log-likelihood -41339.4 -40874.6 -27345.7 

Pseudo R2 0.133 0.141 0.155 
Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; BL/BnL – Business London/non-London, CL/CnL – 

Commute London/non-London, LF/LR-Leisure Full/Reduced.  
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Figure 61 Predicted probabilities of delay perception for probit (model 3) under the scenario of 

scheduled journey time of 30 minutes, 5 minutes of delay at departure and for seated passengers 

B. Interchanges and their impact on discrepancies between recorded and reported 

performance 

As previously noted, one of the limitations of the dataset used in the analysis is the inability to have full 

confidence in how passenger reports of delays may be affected by delays on other journey legs or due 

to passengers travelling on a different service than originally planned (either previous or following 

services). To mitigate the possible impacts of the discrepancies resulting from the described limitations, 

some further analysis was conducted. The dataset was restricted to passengers using restricted 

(advanced) tickets to eliminate the impact of possible differences between the reported (matched) 

journey and the journey that a passenger planned to make. This way, there is more confidence in a 

passenger travelling on a service they originally planned (though this could still have been the case if 

some services were cancelled). Additionally, the dataset was further restricted to passengers who 

reported they did not change trains as part of their journey. This is to act as a sensitivity check to see 

whether the perception modelling results reported previously may be impacted by passengers: 

a. travelling on a multi-leg journey and including a delay on the other journey legs, 

b. boarding a different train than originally planned (i.e. their scheduled train departed 

later), this can especially happen in the case of OD pairs with frequent connections 

and 

c. boarding a different train than originally planned (i.e. a delayed train departing earlier 

than the train passengers planned to travel on). 
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In these cases, it is impossible to deduce which applied to a passenger. Monsuur et al. (2021) looked at 

the impact of delays on passenger satisfaction, suggesting that passenger satisfaction is impacted 

negatively if the previous train was cancelled due to longer waiting times or increased crowding. 

However, as it is not exactly known how the travel plans differed from actual experience, there are 

limits as to what inferences can be drawn in this regard. 

Restriction to advance tickets and only for passengers who stated that they definitely did not change 

trains means reducing the sample size quite substantially as the question about the interchanges was not 

included in all the 10 survey waves used as part of this investigation and was also characterised by a 

lower response rate. Additionally, the sample is only restricted to leisure travellers as this is the type of 

travellers more likely to choose this type of ticket. The models were, therefore, run for the restricted 

sample with results being presented in Table 65 and the predicted delay length thresholds (i.e. where 

the probability of delay perception is 0.5) are shown in Figure 62. 

Table 65 Logit estimates of delay perception for a restricted sample 

 (1) (2) (3) - seat (3) – no seat 

Constant -2.216*** -2.270*** -2.153*** 

 (-31.37) (-31.42) (-18.01) 

     

L_A     

LR 0.187*** 

(22.12) 

0.250*** 

(16.62) 

0.168*** 

(5.93) 

0.394* 

(2.11) 

L_A x SJT  

LR  -0.000429*** -0.000139 -0.00163 

  (-5.40) (-0.94) (-0.86) 

L_A x L_D  

LR   0.0252*** 

(6.23)    

N 3281 3279 1241 

Log-likelihood -1559.3 -1544.6 -561.2 

Pseudo R2 0.180 0.187 0.264 

% correct 78.94% 79.45% 81.14% 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

LR-Leisure Reduced; ; L_A, L_D refer to arrival and departure delay; SJT – scheduled journey time 
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Figure 62 Delay length thresholds for P=0.5 for a restricted and full model 

In terms of the predicted delay perception thresholds, one can see that the thresholds are typically 

smaller. However, further restricting the sample results in lower statistical significance of the estimated 

results and larger confidence intervals around the estimated thresholds. Moreover, as in the case of 

model 3, the coefficients on the interaction between arrival delay and scheduled journey time are 

negative but insignificant. The thresholds do not decrease significantly with increasing length of the 

journey as was the case with the full model. 

Restricting the sample to journeys made on advance (restricted) tickets and with no interchanges aimed 

at improving accuracy between passenger experience, passenger reports and recorded performance. To 

relax this, the dataset is now only restricted to passengers not travelling on multiple journey legs, but 

with no restrictions related to the type of ticket. In the case of model 3, the length of arrival delay was 

also restricted to 25 minutes as some issues with convergence were encountered due to the small sample 

size in the case of longer delays. Table 66 shows the estimated coefficients for the model with the 

restricted sample. The main difference between the results presented as part of the sensitivity analysis 

and the models estimated in the main body of the thesis is the insignificance of some of the coefficients 

on the interaction between arrival delay and scheduled journey time in model 3. The overall sample size 

is still relatively large (9000 responses), but especially in the case of standing passengers, the number 

of responses for each of the journey purposes ranges between 30 for business London journey purpose 

to 300 for commute London journey purposes. This is likely affecting the statistical significance of the 

results from model 3 for non-interchanging passengers. Nevertheless, the estimated results are broadly 

in line with the main body of analysis, perhaps suggesting that the possible errors in the way that delays 

were recorded and satisfaction reported are not only due to the interchanges. 

0 5 10 15 20 25 30

No seat, 10th SJT, 0 departure delay

Seat, 10th SJT, 0 departure delay

No seat, 10th SJT, 15 departure delay

Seat, 10th SJT, 15 departure delay

No seat, 90th SJT, 0 departure delay

Seat, 90th SJT, 0 departure delay

No Seat, 90th SJT, 15 departure delay

Seat, 90th SJT, 15 departure delay

Restricted model Full model
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Table 66 Logit delay estimates of delay perception for not interchanging passengers 

 (1) (2) (3) - seat (3) – no seat 

Constant -1.841*** -1.893*** -1.776*** 

 (-31.48) (-31.54) (-15.33) 

BnL 0.0753 0.0741 0.211 

 (0.78) (0.75) (1.13) 

CL 0.684*** 0.695*** 0.660*** 

 (9.38) (9.31) (4.54) 

CnL 0.784*** 0.803*** 1.223*** 

 (9.71) (9.72) (7.73) 

LF -0.152 -0.165* -0.0549 

 (-1.89) (-1.99) (-0.35) 

LR -0.135 -0.159* -0.140 

 (-1.91) (-2.18) (-1.02) 

Arrival delay     

BL 0.151*** 0.196*** 0.129*** 0.569*** 

 (20.89) (15.74) (4.61) (4.28) 

BnL 0.202*** 0.261*** 0.161*** 0.293** 

 (16.18) (14.12) (3.42) (2.68) 

CL 0.191*** 0.264*** 0.169*** 0.294*** 

 (23.48) (18.90) (4.47) (3.84) 

CnL 0.215*** 0.290*** 0.0567 0.271** 

 (18.37) (15.84) (1.04) (3.25) 

LF 0.189*** 0.243*** 0.153*** 0.391*** 

 (21.71) (19.82) (5.53) (4.54) 

LR 0.183*** 

(33.27) 

0.249*** 

(28.05) 

0.139*** 

(6.84) 

0.366*** 

(4.36) 

Arrival delay x SJT  

BL  -0.000403*** 0.0000898 -0.00447*** 

  (-4.66) (0.46) (-3.98) 

BnL  -0.000610*** -0.000628 -0.000896 

  (-4.81) (-1.80) (-1.41) 

CL  -0.00171*** -0.00118 -0.00274 

  (-7.01) (-1.88) (-1.35) 

CnL  -0.00234*** -0.00159 -0.00404 

  (-5.98) (-1.69) (-1.81) 

LF  -0.000728*** -0.000654** -0.00221 

  (-6.81) (-2.84) (-1.73) 

LR  -0.000524*** -0.000147 -0.00263* 

  (-10.26) (-1.24) (-2.44) 

Arrival delay x departure delay  

BL   0.0193*** 

(5.30) 

0.0202*** 

(4.08) 

0.0321*** 

(6.29) 

0.0230*** 

(4.85) 

0.0138*** 

(5.01) 

0.0309*** 

(10.42) 

   

BnL   

   

CL   

   

CnL   

   

LF   

   

LR   

   

N 29125 29043 9075 

Log-likelihood -15846.5 -15657.8 -4758.5 

Pseudo R2 0.141 0.149 0.192 
Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; BL/BnL – Business London/non-London, CL/CnL – 

Commute London/non-London, LF/LR-Leisure Full/Reduced;  
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C. Additional journey type categorisation 

Both journey length and delay at departure previously entered the modelling as continuous variables. 

Additional categorisation is used to replace the continuous variables with categorical ones to aid the 

interpretation of the results model. This categorisation was done by Transport Focus and was based on 

journey type based geography, rather than reported journey purpose. These categories are: 

 Airport (6.2%) 

 High-speed (12.3%) 

 Interurban (14.3%) 

 Long commute (23.4%) 

 Long distance (21.5%) 

 Rural (3.6%) 

 Short commute (18.7%) 

The aforementioned categorisation may serve as an additional categorisation of journey type used to 

control for the impacts of possible divergence between the planned and actual journey. For example, 

the frequency of services in urban areas is typically higher than in rural areas, meaning that in such 

cases passengers may be more likely to travel on a different than planned service. It is believed that the 

inclusion of the outlined categories may provide some additional insights and help control for any likely 

discrepancies. 

The geographical journey types are likely characterised by some inherent differences that relate to the 

type of service – both in terms of journey lengths, headways and journey quality. Short commute, airport 

and long commute journeys are all characterised by an average journey time of below 50 minutes. Rural 

and interurban services are characterised by an average journey time close to the sample average while 

high-speed and long-distance journeys have average journey times of around 100 minutes. Therefore, 

the initial version of the model (i.e. model 1) was estimated with the arrival delay coefficient being 

estimated separately for each of the journey purpose and journey type combinations. The estimated 

coefficients are shown in Table 67 with the graphical representation shown in Figure 63. This was not 

done for models 2 and 3 as it is believed that the additional categorisation would reduce sample sizes – 

7 journey type categories, 6 journey purposes and 2 journey quality categories would ultimately lead to 

84 estimated coefficients with each of the groups likely having a reduced sample size, affecting the 

significance of the results. Moreover, the journey type categories, as mentioned before, are likely to be 

correlated with some of the explanatory variables used in models 2 and 3 as discussed above in the case 

of scheduled journey time. 
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Table 67 Logit estimates of delay perception for a model with typology 

  

Constant -1.798*** 

 (-46.42) 

BL 0 

 (.) 

BnL 0.240*** 

 (4.05) 

CL 0.759*** 

 (15.57) 

CnL 0.845*** 

 (15.60) 

LF -0.0225 

 (-0.43) 

LR 0.00725 

 (0.16) 

L_A – Airport 
BL 0.104*** 

 (9.55) 

BnL 0.245** 

 (2.62) 

CL 0.101*** 

 (8.48) 

CnL 0.332*** 

 (3.69) 

LF 0.114*** 

 (10.44) 

LR 0.145*** 

 (8.97) 

L_A – High-speed 
BL 0.171*** 

 (25.31) 

BnL 0.237*** 

 (12.18) 

CL 0.158*** 

 (11.92) 

CnL 0.179*** 

 (10.46) 

LF 0.167*** 

 (13.43) 

LR 0.169*** 

 (33.47) 

L_A – Interurban 
BL 0.185*** 

 (13.71) 

BnL 0.162*** 

 (16.76) 

CL 0.212*** 

 (12.12) 

CnL 0.212*** 

 (16.74) 

LF 0.197*** 

 (20.28) 

LR 0.190*** 

 (32.12) 

L_A – Long commute 
BL 0.224*** 
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 (23.86) 

BnL 0.310*** 

 (12.86) 

CL 0.200*** 

 (28.61) 

CnL 0.243*** 

 (17.47) 

LF 0.230*** 

 (21.88) 

LR 0.211*** 

 (33.77) 

L_A – Long distance 
BL 0.117*** 

 (19.52) 

BnL 0.184*** 

 (22.70) 

CL 0.208** 

 (3.29) 

CnL 0.218*** 

 (18.57) 

LF 0.185*** 

 (23.03) 

LR 0.155*** 

 (42.41) 

L_A – Rural 
BL - 

 - 

BnL 0.179*** 

 (9.54) 

CL - 

 - 

CnL 0.179*** 

 (8.54) 

LF 0.166*** 

 (11.43) 

LR 0.188*** 

(16.78) 

L_A – Short commute 
BL 0.257*** 

 (9.16) 

BnL 0.204*** 

 (10.82) 

CL 0.199*** 

 (24.52) 

CnL 0.276*** 

 (20.92) 

LF 0.214*** 

 (18.18) 

LR 0.226*** 

 (19.52) 

N 73050 

Log-likelihood -40987.3 

Pseudo R2 0.140 

% correct 72.07% 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

BL/BnL – Business London/non-London, CL/CnL – Commute London/non-London, LF/LR-Leisure 

Full/Reduced; L_A refers to arrival and departure delay; - no observations
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Figure 63 Coefficient plot for the logit model of delay perception by journey purpose and typology
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Looking at the sizes of arrival delay length coefficients for different journey types within 

the same journey purpose, it can be investigated whether there are any significant 

differences in the impacts of delay length on delay perception that result from the specific 

journey type characteristics.  

Business  

For business London travellers, the coefficients generally become smaller for journey 

types with lengthier average journey times. This is especially evident in the case of long-

distance journeys where the predicted delay length perception threshold is 17 minutes 

compared to 7-8 for short and long commute. For non-London business travellers, high-

speed and long commute are characterised by larger coefficients than other journey types 

with the predicted delay length perception thresholds being at 5-6.5 minutes compared to 

8-9 for the other journey types. It is not immediately clear why such differences between 

London and non-London travellers would be present. However, it is expected that 

differences in headways, service quality or journey times may play an important role in 

determining these differences. 

Commute 

For commuters, the differences between journey types are not significant. In the case of 

London commuters, a slightly lower coefficient for high-speed may indicate on the impact 

of journey quality on delay perception. In the case of non-London commuters, short and 

long commute are characterised by larger coefficients (the difference is only statistically 

significant in the case of short commutes). The delay perception thresholds are between 3-

4 minutes for the short and long commute and 4-5 for the other journey types. It is, 

however, worth mentioning that for non-London commute, the average journey times for 

all the journey types are very similar – between 21.4 and 29.7 minutes. This is unlike for 

the other journey types where the average journey times typically differ largely by journey 

type. 

Leisure 

For both leisure travellers on full and reduced ticket types, the pattern in the coefficient 

sizes is very similar. High-speed, long-distance, rural and interurban journey types are 

characterised by smaller coefficients whereas these journeys are also on average longer. 

At the same time, the coefficients for short and long commute are typically larger. The 

predicted delay length perception thresholds range between 9-12 minutes for the journey 

types characterised by lengthier journeys and around 8 minutes for the shorter journeys. 

This highlights the importance of journey length in determining the delay perception for 
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leisure travellers with this result being generally consistent with what was reported in the 

main body of the thesis. 

 

Figure 64 Delay length thresholds at p=0.5 by journey purpose and typology 

While the results of this analysis are in some cases difficult to explain or the differences 

are not statistically significant, they provide additional insights into the determinants of 

delay perception. It needs to be noted that journey types may have some characteristics 

that are not measured or quantifiable, i.e. other than journey time that may have an impact 

on how delays are perceived. These can generally relate to differences in journey quality, 

headways or in-station and on-board announcements.  

D. Summary 

The purpose of this annex was to provide sensitivity analysis around the previously 

estimated models of delay perception. This was done due to the novelty of the analysis as 

previous research into how passengers perceive delays is very limited. Moreover, as the 

NRPS dataset was suggested to have some limitations related to possible differences 

between passengers’ travel plans, actual journeys and how these are recorded in the 

questionnaire, an attempt was made to restrict the dataset to responses where the scope for 

error is limited (i.e. travellers with restricted tickets and no interchanges). Furthermore, 

additional journey type categorisation was introduced to better understand how different 

types of passengers may perceive delays as some differences may be expected due to 

different types of journeys being characterised by different journey lengths, frequencies, 

comfort of journey or delay sensitivities. Most of the results are in line with the main body 

of analysis, though, due to lower sample sizes, the significance of results is typically 

smaller.
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Annex II  

Interaction models 

This annex presents supplementary analysis comparing results from the preferred models 

of delay perception and satisfaction to their re-esimated versions that include all levels of 

interacted variables. 

A. Binary logit model of delay perception from Table 25 

Average marginal effects are reported in Table 68. The predicted probabilities are reported 

in Figure 65 and Figure 66 as well as Table 69. 

Table 68 Average marginal effects for model 2 and 2a from Table 25 

 (2) (2a)  (2) (2a) 

Arrival delay SJT   

BL 0.0303*** 0.0303*** BL -0.00034*** -0.00039*** 

BnL 0.0404*** 0.0399*** BnL -0.00066*** -0.00097*** 

CL 0.0343*** 0.0344*** CL -0.00120*** -0.00121*** 

CnL 0.0329*** 0.0361*** CnL -0.00217*** -0.00255*** 

LF 0.0338*** 0.0339*** LF -0.00064*** -0.00094*** 

LR 0.0360*** 0.0353*** LR -0.00049*** -0.00092*** 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

BL/BnL – Business London/non-London, CL/CnL – Commute London/non-London, LF/LR-

Leisure Full/Reduced 

 

 

Figure 65 Probability of delay perception for increasing delay lengths, scheduled 

journey lengths and different journey purposes using model 2  
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Figure 66 Probability of delay perception for increasing delay lengths, scheduled 

journey lengths and different journey purposes using model 2a with all levels of 

interacted variables 

Table 69 Estimated probabilities of delay perception for different levels of 

scheduled journey time and journey purposes using model 2 and model 2a  

  Model 2 Model 2a 

 SJT Prob 95% CI Prob 95% CI 

Business London 30 0.31 0.30, 0.32 0.31 0.30, 0.33 

Business London 90 0.29 0.28, 0.30 0.29 0.28, 0.30 

Business non-London 30 0.39 0.38, 0.40 0.40 0.39, 0.42 

Business non-London 90 0.35 0.34, 0.36 0.35 0.34, 0.36 

Commute London 30 0.47 0.46, 0.48 0.47 0.46, 0.48 

Commute London 90 0.40 0.38, 0.42 0.40 0.37, 0.42 

Commute non-London 30 0.51 0.50, 0.52 0.51 0.50, 0.52 

Commute non-London 90 0.37 0.33, 0.41 0.35 0.31, 0.39 

Leisure Full 30 0.33 0.32, 0.34 0.33 0.32, 0.34 

Leisure Full 90 0.29 0.28, 0.30 0.28 0.27, 0.29 

Leisure Reduced 30 0.34 0.33, 0.34 0.36 0.35, 0.37 

Leisure Reduced 90 0.31 0.30, 0.31 0.30 0.30, 0.31 

 

Model 3 extended model 2 by addition of more explanatory variables and interactions 

(Table 26). Average marginal effects are reported in Table 70 for both models with the 

estimated probabilities shown in Figure 67 and Figure 68 for increasing levels of delay at 

arrival and departure.  
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Table 70 Average marginal effects for models reported in Table 26 

 (3) (3a) 

   

Arrival delay   

BL 0.0268*** 0.0182*** 

BnL 0.0271*** 0.0177*** 

CL 0.0304*** 0.0211*** 

CnL 0.0237*** 0.0177*** 

LF 0.0263*** 0.0153*** 

LR 0.0270*** 0.0183*** 

SJT   

BL -0.0000691 0.0000402 

BnL -0.000439*** -0.000516*** 

CL -0.000161 0.00116*** 

CnL -0.00178*** -0.000559 

LF -0.000445*** -0.000367*** 

LR -0.000269*** -0.000343*** 

Departure delay 
BL 0.0167*** 0.0595*** 

BnL 0.0137*** 0.0607*** 

CL 0.0109*** 0.0704*** 

CnL 0.00684*** 0.0671*** 

LF 0.00928*** 0.0531*** 

LR 0.0126*** 0.0566*** 

Seat=1   

BL -0.110*** -0.0822** 

BnL -0.0889** -0.0464 

CL -0.138*** -0.172*** 

CnL -0.121*** -0.127** 

LF -0.143*** -0.0985*** 

LR -0.155*** -0.0982*** 

Legend: t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001; 

BL/BnL – Business London/non-London, CL/CnL – Commute London/non-London, LF/LR-

Leisure Full/Reduced 
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Figure 67 Probability of delay perception for increasing delay lengths and different  

journey purposes using model 3 in Table 26 (DD refers to departure delay) 

 

Figure 68 Probability of delay perception for increasing delay lengths and different 

journey purposes using model 3a in Table 26 (DD refers to departure delay) 



250 

 

B. Binary logit model of punctuality satisfaction with version 2 of the satisfaction 

classification from Table 36 

Average marginal effects are reported in Table 71. The estimated probabilities are then 

plotted in Figure 69 and Figure 70. 

Table 71 Average marginal effects for models from Table 36 

 (V2) (V2a) 

   

Arrival delay   

BL -0.0147*** -0.0102*** 

BnL -0.0199*** -0.0112*** 

CL -0.0257*** -0.0186*** 

CnL -0.0317*** -0.0185*** 

LF -0.0160*** -0.00850*** 

LR -0.0131*** -0.00780*** 

SJT   

BL 0.000227*** 0.000334*** 

BnL 0.000282*** 0.000483*** 

CL 0.000536*** -0.000243 

CnL 0.000756*** -0.000159 

LF 0.000360*** 0.000400*** 

LR 0.000186*** 0.000348*** 

Departure delay 
BL -0.00343*** -0.0237*** 

BnL -0.00220*** -0.0289*** 

CL -0.00107* -0.0442*** 

CnL 0.000889* -0.0465*** 

LF -0.000999*** -0.0215*** 

LR -0.00236*** -0.0214*** 

Seat=1   

BL 0.0367*** 0.119*** 

BnL 0.0424*** 0.0914*** 

CL 0.0987*** 0.236*** 

CnL 0.0459 0.233*** 

LF 0.0363*** 0.0892*** 

LR 0.0391*** 0.0996*** 
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Figure 69 Estimated probability of punctuality satisfaction for increasing lengths of 

departure (DD) and arrival delays, using model V2 in Table 36 

 

Figure 70 Estimated probability of punctuality satisfaction for increasing lengths of 

departure (DD) and arrival delays, using model V2a in Table 36  
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C. Ordered logit model of punctuality satisfaction from Table 41 

It is generally more difficult to depict the results of such a model as with 5 choice 

categories and multiple interactions. Three sets of plots are shown below for the original 

and the re-estimated model with all the levels of interacted variables for increasing levels 

of delay at arrival and delay at departure of respectively 0, 15 and 30 minutes in Figure 71, 

Figure 72 and Figure 73 for the original version of the model, and Figure 74, Figure 75 

and Figure 76 for the model estimated with all levels of the interacted variables.  

 

Figure 71 Probability of punctuality satisfaction based on the ordered logit model 

for increasing lengths of arrival (based on the model Punc_Sat from Table 41) 
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Figure 72 Probability of punctuality satisfaction based on the ordered logit model 

for increasing lengths of arrival delay and departure delay of 15 minutes (based on 

the model Punc_Sat from Table 41) 

 

Figure 73 Probability of punctuality satisfaction based on the ordered logit model 

for increasing lengths of arrival delay and departure delay of 30 minutes (based on 

the model Punc_Sat from Table 41) 
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Figure 74 Probability of punctuality satisfaction based on the ordered logit model 

for increasing lengths of arrival delay and departure delay of 0 minutes (based on 

the model Punc_Sat_1 from Table 41) 

 

Figure 75 Probability of punctuality satisfaction based on the ordered logit model 

for increasing lengths of arrival delay and departure delay of 15 minutes (based on 

the model Punc_Sat_1 from Table 41) 
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Figure 76 Probability of punctuality satisfaction based on the ordered logit model 

for increasing lengths of arrival delay and departure delay of 30 minutes (based on 

the model Punc_Sat_1 from Table 41) 

D. Fractional logit OD model of punctuality satisfaction from Table 45 

The average marginal effects are reported in Table 72. Figure 77 compares the estimated 

proportions of satisfied passengers using the two versions of the estimated models for 

different levels of APL and journey purposes. Figure 78, Figure 79 and Figure 80 then 

show the estimated proportions of satisfied passengers for different journey purposes, 

levels of APL and scheduled journey times using V2 of the binary representation of the 

satisfaction variable.  
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Table 72 Average marginal effects for models from Table 45 

 V2 V2_AL 

Sat_V1   

APL -0.0389 -0.0392 

SJT 0.0002 0.0001 

PSeat 0.2516 0.3714 

Sat_V2   

APL -0.0398 -0.0395 

SJT 0.0006 0.0005 

PSeat 0.1285 0.2537 

Sat_V3   

APL -0.0313 -0.0311 

SJT 0.0005 0.0005 

PSeat 0.0901 0.1668 

 

 

Figure 77 Levels of ‘delay satisfaction’ for increasing average delay , V1: (5) vs (1-

4); V2: (4-5) vs (1-3); V3: (3-5) vs (1-2) based on the model from Table 45 (AL refers 

to models with all levels of the interacted variables) 
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Figure 78 Proportion of satisfied passengers under Version 2 of delay satisfaction at 

the average values of control variables for the original model and model with all 

levels of interacted variables (AL) from Table 45 

 

Figure 79 Proportion of satisfied passengers using V2 of the satisfaction variable 

and results of the model V2 from Table 45 
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Figure 80 Proportion of satisfied passengers using V2 of the satisfaction variable 

and results of the model V2_AL from Table 45 

E.  Binary models of delay perception and punctuality dissatisfaction from 

Table 47 

Average marginal effects are presented in Table 73. The estimated probabilities are 

compared in Table 74 and Table 75 and are plotted in Figure 81 and Figure 82.  

Table 73 Average marginal effects for models from Table 47 

 Perc Perc_AL DSat DSat_AL 

Arrival delay     

Business 0.0329*** 0.0321*** 0.0201*** 0.0192*** 

Commute 0.0405*** 0.0417*** 0.0268*** 0.0282*** 

Leisure 0.0335*** 0.0323*** 0.0178*** 0.0170*** 

Seat     

Business -0.0668*** -0.123*** -0.0968*** -0.192*** 

Commute -0.0928*** -0.143*** -0.113*** -0.184*** 

Leisure -0.0914*** -0.174*** -0.0925*** -0.191*** 
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Table 74 Estimated probabilities of delay perception using models from Table 47 

Journey 

purpose 

Seat Arrival 

delay 

Perc 95%CI Perc_AL 95% CI 

Business 0 0 0.18 0.17,0.19 0.28 0.23,0.33 

Business 0 5 0.41 0.38,0.45 0.46 0.42,0.51 

Business 0 10 0.70 0.63,0.76 0.66 0.60,0.72 

Business 1 0 0.18 0.17,0.19 0.17 0.16,0.18 

Business 1 5 0.33 0.32,0.34 0.32 0.31,0.33 

Business 1 10 0.52 0.51,0.54 0.52 0.51,0.54 

Commute 0 0 0.29 0.28,0.30 0.41 0.38,0.43 

Commute 0 5 0.64 0.62,0.66 0.65 0.63,0.67 

Commute 0 10 0.89 0.87,0.91 0.84 0.81,0.86 

Commute 1 0 0.29 0.28,0.30 0.27 0.25,0.28 

Commute 1 5 0.50 0.49,0.51 0.49 0.48,0.50 

Commute 1 10 0.71 0.69,0.72 0.72 0.70,0.74 

Leisure 0 0 0.16 0.15,0.16 0.31 0.27,0.34 

Leisure 0 5 0.42 0.40,0.45 0.50 0.47,0.53 

Leisure 0 10 0.75 0.71,0.79 0.69 0.65,0.73 

Leisure 1 0 0.16 0.15,0.16 0.15 0.14,0.16 

Leisure 1 5 0.30 0.30,0.31 0.30 0.29,0.30 

Leisure 1 10 0.51 0.50,0.52 0.51 0.50,0.52 

Table 75 Estimated probabilities of delay dissatisfaction using model from Table 47 

Journey 

purpose 

Seat Arrival 

delay 

DSat 95% CI DSat_AL 95% CI 

Business 0 0 0.11 0.11,0.12 0.26 0.22,0.31 

Business 0 5 0.29 0.26,0.31 0.39 0.35,0.43 

Business 0 10 0.55 0.49,0.62 0.53 0.48,0.59 

Business 1 0 0.11 0.11,0.12 0.11 0.10,0.11 

Business 1 5 0.19 0.18,0.20 0.18 0.18,0.19 

Business 1 10 0.30 0.29,0.31 0.30 0.29,0.31 

Commute 0 0 0.34 0.33,0.35 0.49 0.46,0.52 

Commute 0 5 0.62 0.60,0.64 0.65 0.63,0.67 

Commute 0 10 0.83 0.81,0.86 0.78 0.75,0.80 

Commute 1 0 0.34 0.33,0.35 0.30 0.29,0.32 

Commute 1 5 0.46 0.45,0.47 0.45 0.44,0.46 

Commute 1 10 0.59 0.58,0.61 0.60 0.59,0.62 

Leisure 0 0 0.09 0.09,0.10 0.24 0.21,0.27 

Leisure 0 5 0.24 0.22,0.26 0.36 0.33,0.38 

Leisure 0 10 0.49 0.45,0.54 0.49 0.46,0.53 

Leisure 1 0 0.09 0.09,0.10 0.09 0.08,0.09 

Leisure 1 5 0.16 0.15,0.16 0.15 0.15,0.16 

Leisure 1 10 0.26 0.25,0.26 0.25 0.24,0.26 
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Figure 81 Estimated probabilities of delay perception using models Perc and 

Perc_AL from Table 47 

 

Figure 82 Estimated probabilities of delay dissatisfaction using models DSat and 

DSat_AL from Table 47 
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