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Dedicata a mamma e papa...



‘Aspettiamo le 18, aspettiamo il venerdi, aspettiamo l’amore perfetto, aspettiamo perfino il mo-
mento giusto per essere felici, aspettiamo una casa pit bella, quel viaggio che ci cambia la vita,
Uaumento, estate, il lunedi per iniziare la dieta e il sabato per il pasto libero, e intanto la vita ci
scorre accanto come un treno mentre aspettiamo sul binario sbagliato e la perdiamo nei "quando
avro tempo" o "quando sarda il momento giusto". E se non fosse mai il momento giusto? Se tutto
quello che avessimo fosse questo istante? Adesso, non c’é venerdi, non c’é estate, non c’¢ futuro
che ti dara indietro cio che stai vivendo oggi. La felicita € in tutta quella semplicita quotidiana
che ignoriamo perché troppo impegnati ad aspettare; smettila di rimandare costantemente la vita
a domani, perché domani potrebbe essere troppo tardi.’

- Alex Righi.

‘We wait for 6 PM, for Friday, for the perfect love, we even wait for the right moment to be happy, we

wait for a bigger house, for that life-changing trip, for a raise, for summer, for Monday to start the diet
and for Saturday for the free meal, while life passes us by like a train as we wait on the wrong platform,
losing it in the “when I have time” or “when the moment is right.” But what if the right moment never
comes? What if all we ever have is this very instant? Right now, there is no Friday, no summer, no future
that will give you back what you’re living today. Happiness lies in all that everyday simplicity we ignore
because we’re too busy waiting; stop constantly postponing life until tomorrow, because tomorrow might be

too late.’
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Abstract

In this thesis, we study a massive scalar field on a five-dimensional, rotating, asymptot-
ically anti-de Sitter black hole spacetime. We introduce an enhanced symmetry in the
spacetime by taking the two angular momentum parameters equal. We picked this setup
because the geometry possesses additional symmetries that simplify analysis of mode so-
lutions of the scalar field equation and the stress—energy tensor. In fact, when the angular
momentum of the black hole is sufficiently small (so we are slowly rotating), we find that
there is no speed-of-light surface. This allows us to identify a Killing vector field that
is timelike everywhere outside the event horizon. Numerous advantages come from this
setup, one of these is the absence of classical superradiance, which extremely simplifies the
calculation. We then use quantum field theory on curved spacetime to perform the canon-
ical quantisation of the massive scalar field on this background. We study separately the
angular and radial parts of the Klein-Gordon equation. We identify the radial differential
equation as a Heun equation, while the angular part takes the form of a spin-weighted
spherical harmonics differential equation. We also present addition theorems for spin-
weighted spherical harmonics, generalising previous results for scalar (spin-zero) spherical
harmonics. These new results simplify the numerical analysis of the stress—energy tensor
of a scalar field on a Kerr—AdSs black hole, but could be generalised to other scenarios.
After this, we construct the quantum states to evaluate observables. In particular, we
construct analogues of the Boulware and Hartle-Hawking quantum states for the quan-
tum scalar field. Finally, we compute the differences in expectation values of the square
of the quantum scalar field operator and the stress—energy tensor operator between these

two quantum states, and present their numerical evaluation.
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Chapter 1

The beginning of the journey:

general relativity

‘Nel mezzo del cammin di nostra vita, Mi ritrovai per una selva oscura, Che la diritta via era
smarrita.’

- Dante’s Inferno (Canto I, lines 1-3).

‘Midway upon the journey of our life, I found myself within a dark forest, For the straight path had been

lost.’

General relativity was, and still is, one of the most successful theories in describing classi-
cal phenomena in the universe. Historically, the need for a new theory to describe gravity
arose due to limitations in Newton’s theory of gravity. An example of these limitations
is that if we imagine moving the Sun to a different position further away from Earth,
changing in an instant the distance between the two objects, Newton’s theory implies that
Earth would instantly experience a change in gravitational pull. The word "instantly"
is incompatible with discoveries made at the beginning of the 20th century. Special rel-
ativity, introduced by Einstein in 1905 [52], postulates that electromagnetic interactions
propagate at the finite speed of light, ¢, in all inertial frames. As a result, it became clear
that a new theory was required, one that could reconcile these principles with gravity.

This is where General Relativity came into play.

In the framework of General Relativity (GR), gravity is described not as a force, but rather
as a consequence of the geometrical curvature of spacetime. We will introduce some of
the mathematical tools to describe this theory in the following sections. However, the
main goal of this thesis is to study and understand one of the most intriguing objects in

the universe, theorised within this framework and imaged through a highly sophisticated

11



1. The beginning of the journey: general relativity

interferometry method almost 100 years after their theorisation: black holes. In this con-
text, a black hole can be naively described as a region where gravity is so strong that
nothing, neither particles nor radiation, can escape from it. The theory of GR predicts
that a sufficiently compact mass can deform spacetime to create a black hole [53]. The
origin of this theory can be traced back to 1784, when John Michell submitted a paper
to Philosophical Transactions in which he attempted to describe light using Newtonian
gravitational laws [100]. Long before the concepts of light speed invariance or photons
were understood, Michell theorized the existence of a cosmological object with sufficient
mass (1.25 x 108My) to attract light to its surface.

The first "modern" work describing a black hole was written in 1916 by Karl Schwarzschild
[128], who derived the first static vacuum solution for Einstein’s field equations (1.40), de-
scribing the behaviour of a gravitational field around a spherical body of mass M. The
Schwarzschild solution illustrates how the curvature of spacetime around a massive object
leads to phenomena such as event horizons. The event horizon can be thought of as the
boundary that prevents an outside observer from seeing the singularity created by the
collapsed mass. It is what fully characterizes a black hole and limits the spacetime in such

a way that not even light can escape from it.

Another solution to Einstein’s field equations was found by Roy Kerr in 1963 [30], de-
scribing a rotating black hole. This solution contains two free parameters: one, M, rep-
resenting the mass of the source, and another, J, representing its angular momentum.
When J is set to zero, the Kerr solution reduces to that of Schwarzschild. It has been
proven that these are the only vacuum stationary families of solutions to Einstein’s field
equations, with associated spacetimes describing asymptotically flat black holes, in four
dimensions |74, 75, 123|. Like the Schwarzschild solution, the Kerr solution has an event
horizon and an inner curvature singularity. Kerr-like solutions represent the quintessential

models for black holes, as these are the one that we have seen in the universe.

Any non-extremal Kerr black hole features an inner horizon, an outer horizon, and an
ergosphere. The inner horizon is a Cauchy horizon, which, naively, represents a boundary
in spacetime beyond which the laws of physics, as predicted by classical general relativity,
break down in terms of predictability. The outer horizon, on the other hand, is a Killing
horizon, with the Killing parameter associated with its Killing vector field interpretable, as
in the Schwarzschild case, as a time coordinate. Lastly, in order to discuss the ergosphere,
we introduce the concept of frame-dragging. Frame-dragging is a general relativistic phe-
nomenon in which rotating massive objects twist the surrounding spacetime. The first
direct measurement of this effect was conducted in 2011 by the Gravity Probe B experi-

ment [55], which was able to detect it while orbiting the Earth. In the case of a rotating

12



1. The beginning of the journey: general relativity

black hole, frame-dragging becomes so extreme near the event horizon that it gives rise
to a region called the ergosphere. Within this region, objects are compelled to co-rotate

with the black hole, not due to any applied force, but because of the curvature of spacetime.

Black holes have been studied intensely by the scientific community, and the first experi-
mental image of a black hole was released on 10 April 2019 by the Event Horizon Telescope
(EHT) collaboration [5].

1.1 Geometrical tools

In this section we will present some core concepts of the theory of general relativity and
differential geometry, which will be propaedeutical for the thesis and the study that we

are going to present later on. We will follow [119,147].

We start by giving the definition of manifold which is the building block of the theory [1417].

1.1.1 Definition. A manifold M is a Hausdorff, second countable, connected, orientable,
smooth n-dimensional topological space, where Hausdorff means that for any two distinct
points p,q € M, there exist disjoint open neighbourhoods U of p and V of ¢q such that
unv =0.

The Hausdorff property ensures that points can be "separated" in the topology of M. In
our context, we require that a causal structure exists on our background manifold. Let M
be a smooth manifold. At each point x € M, we denote the tangent space by T,M and
the cotangent space (the dual space of T, M) by TxM.

1.1.2 Definition. A (p,q) tensor at a point x € M is defined as a multilinear map

T:ToM X - xToMXT,MXx - xT,M — R, (1.1)

p times q times

that is, a map which takes p covectors and q vectors at x and returns a real number, linear
in each of its arguments. The collection of all such tensors at x forms the tensor space
TF(M).

The second object that we need to define is a distance between points on a manifold, such
as the distance between p and ¢ in M. To this end we define a metric g on a manifold
M. This is a symmetric, nondegenerate tensor field of type (0,2). This means that a
metric defines an inner product on the tangent space at each point in M, though it is not

necessarily positive definite.

13



1. The beginning of the journey: general relativity

In a coordinate basis, the metric g can be expanded in terms of its components g,,, as:
g= Zg#ydac"@dac”, (1.2)
12214

where g, are the components of g in the chosen coordinate system. Alternatively, the
notation ds? is sometimes used to represent the metric tensor. In this case, Equation (1.2)

is written as:

ds? = Z G dz*dz”, (1.3)
%

where, by convention, we omit the outer product symbol between dz* and dx¥. This no-
tation ds? reflects the interpretation of the metric as representing "infinitesimal squared

distance" between points. This quantity is commonly refer to as the line element.

Given a metric g, we can construct an orthonormal basis v(y), ..., v(,) for the tangent

space at each point p € M, such that:
* 9(v(a),v)) = 0 if (a) # (b),
® 9(V(a), V(a)) = £1,

where v(,,) is a vector and the subscript (n) serves to label it. Although multiple orthonor-
mal bases exist at each point p, the number of basis vectors with g(v(q),v(q)) = +1 and
those with g(v(a),v(a)) = —1 does not depend on the chosen basis. This count of + and

— signs is known as the signature of the metric.

In Riemannian geometry, we usually work with positive definite metrics, where
the signature is + + ---+. However, in spacetime, the metric has a Lorentzian signa-
ture — + + + - - -, with one minus sign and the rest plus. Metrics of this type are called

Lorentzian metrics.
We call the pair (M, g) a Lorentzian manifold if M is as per Definition 1.1.1, endowed
with a Lorentzian metric g. Let us give an example:

1.1.3 Example. Consider Minkowski spacetime, M = R*, with standard Cartesian co-

ordinates with respects to which the metric tensor 7, is given by
N = diag(—1,1,1,1).

For any point p € R%, we can classify other points ¢ € R* relative to p by the properties

of the vector v,4, which is the vector connecting the point p and g:
e ¢ is timelike separated from p if 7(vpg, vpe) < 0,
e ¢ is spacelike separated from p if n(vyq, vpe) > 0,

14



1. The beginning of the journey: general relativity

e ¢ is lightlike separated from p if n(v,q, vpq) = 0.
Using this classification, we define four sets of points, Iﬂ:@ (p) and JRi (p):

e I, (p) and I, (p) represent the chronological future and chronological past of
p, respectively, while Ifki (p) represents the set containing all points that are timelike

separated from p.

° JH@ (p) and Jg,(p) represent the causal future and causal past of p, while, anal-
ogously JH@ (p) represents the set containing all points that are causally separated

from p (i.e., timelike or null separated).

This classification in Minkowski spacetime cannot be directly generalized to arbitrary
manifolds. For a general point p € M in a Lorentzian manifold, we examine the tangent

space T, M. Using the metric g, a tangent vector v € T, M can be classified as:
e timelike if g(v,v) < 0,
e spacelike if g(v,v) > 0,
e lightlike if g(v,v) = 0.

We call M a time-orientable manifold if there exists a global vector field on M that

is timelike at each point.

Now we introduce the concept of a differentiable manifold of dimension n. This is a
pair (M, A), where:

e M is a manifold as in Definition 1.1.1, and:

— it is locally Euclidean, meaning that each point in M has an open neighbour-
hood that is homeomorphic (a bijection that is continuous with a continuous

inverse) to an open subset of R”.
e A is a collection of charts {(Ua, ¢a)}, where each chart consists of:

— U, C M is an open subset of M,
— pq : Uy — R™ is a homeomorphism from each open subset U, to Euclidean

space R™, called a chart. Each ¢, provides local coordinates on U,.

We now introduce the concept of spacetime geometrically, following the definitions in

(06, 119].

1.1.4 Definition. A spacetime is a quadruple S = (M, g, 0,t) where:
e (M, g) is a time-orientable n-dimensional Lorentzian manifold,
e 0 is a choice of orientation on M,

e { is a choice of time orientation.

15



1. The beginning of the journey: general relativity

1.2 Differential geometry

In order to introduce the concepts of differential geometry we need a smooth transition
functions: for any two charts (Ua, ) and (Ug,¢g) with U, NUg # 0, the transition
map @q © cpgl t(Ua NUB) = ¢a(Uy NUg) must be a smooth (infinitely differentiable)
function. Moreover, the collection of open sets {U, } must cover the manifold M. This en-
sures that the manifold M is smooth in the sense that the coordinates can be transformed
in a differentiable way between overlapping charts. We also need to define the derivative
of a tensor. A rule must be provided to transport the tensor from one point to another,
which is essential for defining the covariant derivative and for ensuring consistency in the

differential structure of the manifold.

One such rule is parallel transport. Consider a curve v, parametrized by A, with tangent
vector u® and a vector field A defined in a neighbourhood of . Let a point p on the
curve have coordinates x“, and a nearby point ¢ have coordinates % 4 dx®. Then, the

derivative operator should have the form
DA® = A3(p) — A°(p), (1.4)

where A%(p) is the vector obtained by transporting A“ from ¢ to p.We can express this

as:
DA™ = dA® + §A®, (1.5)

where

SA =T95Atda?, (1.6)
and I'}5 is called the connection. The form of § A is motivated by the requirement that
the covariant derivative be linear in both the vector field A* and the coordinate differential
dz®. This ensures that the total differential DA® transforms tensorially under coordinate
changes, despite the connection itself not being a tensor. The connection coefficients ﬁﬁ
account for the variation of the basis vectors and capture how the components of a vector

field change under parallel transport. We now have
DA™ = 93A%da’ + Tz Aldal, (1.7)

and by dividing through by d\, the increment in the curve’s parameter, we obtain

DA%
™ u’VgA®%, (1.8)

where uf = % is the tangent vector, and

VBAD‘ = agAa + FgﬁA'u. (1.9)

A vector field A® is said to be parallel transported along a curve with tangent vector
ub if

DA®

a\x

0 (1.10)
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everywhere along the curve. Equation (1.9) is the covariant derivative of the vector
A®. Other standard notations are:

«

VgA* = A and = V, A% (1.11)

A
dA
In general relativity, the connection is symmetric and metric-compatible:

% =T%, Vigas=0, (1.12)

these properties emerge as a consequence of Einstein’s principle of equivalence. It is
straightforward to demonstrate that Equations (1.12) yield the following expression for

the connection: .
By = anu (Oy9u8 + 989y — Ougpy) - (1.13)

We can see that the connection is completely determined by the metric, and the quantities

%‘7 are known as the Christoffel symbols.

The connection in Equation (1.13) is known as the Levi-Civita connection. This will be
the connection used throughout this thesis, as it forms the foundation of the theory of
general relativity. Notably, it is possible to define different types of connections or to build
a theory that revolves around this geometrical object rather than the metric (see [63]).
However, this is beyond the scope of this thesis, and we should leave this to the proper

mathematicians.

1.2.1 Definition. A causal curve in M is a smooth, regular curve whose classification
depends on its tangent vector. A curve is said to be causal if its tangent vector is always

either timelike or null.
We also want to introduce another important concept, namely global hyperbolicity.

1.2.2 Definition. A spacetime S is globally hyperbolic if and only if there exists a Cauchy
surface ¥ that is a closed achronal subset of S such that Ds(X) = M, where:

e A subset Y C M is called achronal if each timelike curve in M intersects ¥ at most

once;

e For any subset ¥ C S, we define the future (+) and past (—) domains of de-
pendence Dif(Z) as the collection of all points ¢ € M such that every past (+),
respectively future (—), inextensible causal curve passing through q intersects ¥. We
denote the domain of dependence by Ds(X) := D& (X) U Dy ().

We give the definition of inextensibility below.
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1.2.3 Definition. An inextensible causal curve is a causal curve that is maximally ex-

tended within the spacetime manifold. If we consider a causal curve
y:l— M, (1.14)

where I is an interval in R and M is the spacetime manifold. The curve ~ is called

inextensible if there is no other causal curve
v:d =M, (1.15)

with I C J such that
A =7 (1.16)
In other words, v cannot be “continued” to a larger domain while preserving its property

of being a causal curve.

Global hyperbolicity not only ensures a well-defined notion of causality (second bullet
point) but also provides a surface (first bullet point) on which we can specify initial data

to solve the Klein-Gordon equation in a generic spacetime S.

Within this framework, we now introduce the concept of Lie derivatives. Consider a curve
~ with tangent vector u* = dj”—; and a vector field A® defined in a neighbourhood of . Let
the point p have coordinates %, and let the point ¢ be given by % + dz®. The equation

2% = 2% + da® = 2% + u®d\ (1.17)

represents the infinitesimal coordinate transformation from the system x to the system a’.
Under this transformation, the vector A% becomes

9B

A%z AP(z) = (65 + 0pud)) AP (z) = A%(x) + (0gu®) AP (z)dX.  (1.18)

In other words,

A (g) = A°(p) + (95u®) AP (p)dA. (1.19)
On the other hand, A%(q), the value of the original vector field at the point ¢, can be
expressed as

A%(q) = A%(x + dx) = A%(z) + DA% (x)dx” = A%(p) + uP I3 A%(p)dA. (1.20)

In general, A’*(q) and A%(g) will not be equal. Their difference defines the Lie derivative

of the vector A* along the curve ~:

£,a%(p) = A0 AND, (1.21)

Combining Equations (1.19), (1.20), and (1.21), we obtain:

LAY = uPogAY — APdgu®. (1.22)
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Notably, the Lie derivative £, A® can be defined without reference to a connection, imply-
ing that Lie differentiation is a more fundamental operation than covariant differentiation.
Furthermore, the definition of the Lie derivative can be extended to tensors of all types.
For scalars, we have

daf

Luf = e u®0a f. (1.23)

Now that we have defined the Lie derivative, we can introduce the concept of Killing vector
fields.

1.2.4 Definition. A vector field X is called a Killing vector field if the Lie derivative of

the metric g with respect to X vanishes:
Lxg=0. (1.24)
Using the Levi-Civita connection, this condition can be equivalently expressed as
9(VyX,Z) +g(Y,V5X) =0, (1.25)

for all vector fields Y and Z. In local coordinates, Equation (1.25) takes the form of the
Killing equation:
VX, +V, X, =0, (1.26)

which is valid in any coordinate system.

Killing vector fields are the infinitesimal generators of isometries, i.e. diffeomorphisms
@ : M — M that preserve the metric, ¢*g = g. In other words, the flow generated by a

Killing vector field corresponds to a continuous symmetry of the spacetime geometry.

Another important concept to introduce, which will be useful when discussing the Einstein
field equations, is that of a geodesic. In curved spacetime, we call a curve a geodesic if it

extremizes the spacetime interval between two fixed points.

Let a curve =y be described by the relations (), where A is an arbitrary parameter, and

let p and ¢ be two points on this curve. The distance between p and ¢ along ~ is given by

q
AS:/ \/ £ Gapieid d, (1.27)
p

where the positive or negative sign is chosen depending on whether the curve is spacelike
or timelike, and % = %. If the curve is lightlike the distance is intrinsically zero, hence
one cannot define a non-zero “distance” in the usual sense. The curve for which As is an

extremum is determined by substituting into the Euler-Lagrange equations:

d oL oL
o <ax> ~ g =0 (1.28)
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where L is the Lagrangian of the system. We find that z%(\) must satisfy the differential
equation:
B4 TG,3787 = k(M2 (1.29)

where k(A) = dg;\L , and L is the Lagrangian associated with the curve. It is possible to

assume an affine parametrisation so that x(\) = 0.

Geodesics are not only the curves that extremise the action but also those along which
the tangent vector is parallel transported. This gives a geometric interpretation of the
equation above. Introducing the tangent vector u® = 2%, also known as the four-velocity,

the geodesic equation can be equivalently written as:
uPVgu® = K(A\)u®, (1.30)

which shows that the tangent vector is parallel transported along the curve up to a scaling

governed by x()). In the case of affine parametrisation, this reduces to v’V zu® = 0.

Now that we have also introduced the concept of distance in a curved spacetime, we can
move our attention to defining the mathematical objects needed for us to write the Einstein
field equations. We now introduce the Riemann tensor Raﬁ,y s> Which may be defined by
the relation:

R%.5 = 0,1'gs — 0513, + I‘%Fgé — I‘%Fgw. (1.31)
This tensor arises naturally when examining the non-commutativity of covariant deriva-
tives. In curved spacetime, the covariant derivatives of a vector field do not generally
commute; applying them in different orders yields a discrepancy that is precisely captured
by the Riemann tensor. Specifically, for a vector V¢, the commutator of two covariant

derivatives gives:

[V, Vs]V® = R%, sVF. (1.32)
This relation shows that the Riemann tensor encodes the intrinsic curvature of spacetime,
reflecting how vectors are affected by parallel transport around an infinitesimal closed
loop. The Riemann tensor is antisymmetric in the first, and in the last two indices. Its
other symmetry properties are:

Raﬁ’yé = _Rﬁa’y5 = _Raﬁﬁ'y = R’y&aﬁa (133>

and
Ruapy + Ryyap + Rupya = 0. (1.34)

These are valid in any coordinate system. It is also possible to show that the Riemann

tensor satisfies the Bianchi identities,
vvRuuaﬁ + vﬁR,u,yya + VO(RMVIB'Y = 0. (135)
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A contraction of the Riemann tensor produces the Ricci tensor R,g and the Ricci scalar
R. These are defined by

Ro3 = R"

g R=R% (1.36)

It is easy to show that R,s is a symmetric tensor. The Einstein tensor is defined by
1
Gaﬂ = Raﬁ - iRgozﬁa (137)
which is also a symmetric tensor. The Einstein tensor satisfies
VAGap =0, (1.38)

the contracted Bianchi identities.

Now we have all the tools to write the Einstein field equations (EFE),

81G
Goeﬁ + Agaﬁ = CTTOéﬁﬂ (139>
where G is Newton’s gravitational constant, c is the speed of light in vacuum and where
A is the cosmological constant. In what follows, we set G = ¢ = 1, so that the Einstein

field equations reduce to:
Gap + Agap = 8mTp. (1.40)

These equations relate the curvature of spacetime, encoded in the Einstein tensor, with
the distribution of matter, represented by the stress-energy tensor T;,3. Consequently,

Equation (1.38) implies that the stress—energy tensor must have zero divergence:
VTP = 0. (1.41)

Because a symmetric 4 x 4 tensor has 10 independent components, one might expect there
to be 10 independent equations. However, the Einstein tensor satisfies Equation (1.38),
which impose 4 differential constraints on these equations. This means that, out of the 10
equations, only 6 are truly independent. Since the metric g, in four dimensions has 10
independent components and the field equations determine only 6 of them independently,
there remains the freedom to choose 4 arbitrary functions. The metric can therefore be
determined up to four arbitrary functions, reflecting our complete freedom in choosing
the coordinate system inherent in general relativity. This can be generalized to higher
dimensions. We note that the field equations (1.40) can also be written in the form

1
R.p = 8w <Ta5 — 2Tga5> , (1.42)

where T' = T}, is the trace of the stress—energy tensor.

Now let us give a bit more detail on the stress-energy tensor. In the context of classical

field theory and general relativity, the stress-energy tensor T3 is defined as the functional
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derivative of the matter part of the action S with respect to the metric ¢®?. The stress-

energy tensor is given by:
2 5Smatter

V=g 06g°F

where S is the action of the system, and g is the determinant of the metric tensor g,g. If

Top = — (1.43)

we consider the Einstein-Hilbert action as our S:

R
S — \/\d4x\/—g <167TG + Ematter) y (144)

where R is the Ricci scalar, Liatter 18 the Lagrangian density for the matter fields, and G
is Newton’s gravitational constant, then Equation (1.43) shows the relation between the
stress-energy tensor, the variation of the matter Lagrangian, and the geometry of space-
time. The first term in Equation (1.44) represents the contribution from the gravitational
field in the Einstein field equations. The second term in Equation (1.44) is the variation

of the matter Lagrangian, which gives the stress-energy tensor for the matter fields.

1.3 Black holes

We have now introduced all the geometrical tools needed for the introduction of the main
topic of this thesis. We are going to focus exclusively on black holes. Black holes are
specific solutions of the Einstein field equations in Equation (1.40), which exhibit a sin-
gular behaviour in the metric. These backgrounds are characterised by the presence of
a singularity. Naively, a black hole can be thought of as a region of spacetime in which
gravity is so strong that nothing, neither particles nor radiation, can escape from it. This
creates a causal boundary dividing the interior of the black hole from its exterior. The

delimiting boundary is called the event horizon.

As we mentioned in the introduction to this chapter, they were discovered in two kinds:
the static case, the Schwarzschild black hole, and the rotating case, the Kerr black hole.
Both of these are solutions of the Einstein field equation in the vacuum, which means that

the stress-energy tensor is zero, T, = 0, hence
1
R.g — §Rgaﬁ =0. (1.45)

We are going to give a brief description of these known cases, which will serve as an

introduction to Section 3.3.

1.3.1 Static black holes

Static black holes are black holes in which the line element does not depend explicitly on
the time coordinate and which do not possess any angular momentum. More precisely, a
spacetime is said to be static if it admits a timelike Killing vector field that is hypersurface-

orthogonal everywhere. This formal definition ensures both time independence and the
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absence of rotation in a coordinate-invariant manner, [30]. The Schwarzschild black hole
in four dimensions is a static black hole. The metric can be understood by analysing
the line element, which determines the distance between two neighbouring points. First,
we pick a set of coordinates, also known as Schwarzschild coordinates, (¢,7,6,¢), and a
signature (—, +, +,+). Then, the line element is [125]:

oM oM\ !
ds? = — (1 — ) dt® + (1 — ) dr? 4+ r2d6? + r? sin® 0 d¢?, (1.46)
T T

where M is the mass of the black hole.
In the Schwarzschild case, the event horizon, the boundary of the black hole, can be

evaluated by calculating what is known as the Schwarzschild radius rg:
Tse = 2M. (1.47)

At this radius, the coefficient of dt? in the line element goes to zero, and the dr? coefficient
diverges. Hence, we observe two singular behaviours: one when r — 0, and the other when
r — 2M. This requires closer examination. In fact, we can change the coordinate system
we initially chose to another, thanks to the property of general relativity being diffeomor-
phism invariant. By switching to the so-called Kruskal coordinates, we can extend the
solution. These coordinates have the advantage of covering the entire spacetime of the
maximally extended Schwarzschild solution and being well-behaved everywhere outside
the physical singularity. Let us denote the new coordinates as T and R. For r > 2M (the

exterior of the black hole), the transformation is defined as:

1/2 t
T= (ﬁ — 1) ¢"/*M sinh (4]\4) )
. T 1/2 T’/4M t
R = (m - 1) (& cosh m . (148)
For 0 < r < 2M (the interior of the black hole), the transformation is:
o T 1/2 7‘/4M t
T = (1 — m) (& cosh m ,

r \1/2 t
_ o r/AM _; v
R (1 2M> e sinh <4M> . (1.49)

Using these coordinates, the line element becomes:

3203 3203

ds? = e~z dT? + e~ 27 dR? + 2 d6? + r? sin® 0 d?, (1.50)

where r is implicitly defined in terms of the Kruskal coordinates 7" and R. From this form
of the line element, we see that the only singularity left is the one as r — 0, called the
physical singularity, while the other one at r — 2M was merely a coordinate singularity
arising from the choice of Schwarzschild coordinates. This can also be checked using the

Kretschmann scalar:

23



1. The beginning of the journey: general relativity

K = Rqp,5R*P, (1.51)

where R,gs is the Riemann curvature tensor. This quantity can help identify whether a
singular behaviour defines a physical singularity or not. In the Schwarzschild black hole,
K diverges when 7 — 0, indicating a physical singularity, and is regular when r — 2M,

indicating that this is just a coordinate singularity.

Thanks to the definition of the Kruskal coordinates, we are able to describe the Schwarzschild
spacetime with a Penrose diagram, see Figure 1.1. This picture is achieved by the com-
pactification of the Kruskal coordinates, which makes it possible to represent infinities.

r=20 .
Z+

r=20 ?

Figure 1.1: Penrose diagram for the maximal analytic extension of the Schwarzschild black
hole.

In Figure 1.1:

e 7T represents future null infinity, where outgoing radiation reaches an observer at

infinity,
e 7~ represents past null infinity, where incoming radiation originates from infinity,
e i1 is future timelike infinity,
e |~ is past timelike infinity,

-0

e ¢ is spacelike infinity,

e HT and H~ are the future and past event horizons, respectively, marking the bound-

aries of the black hole region.
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e 1 = ( corresponds to the singularity at the centre of the black hole, represented by

the zigzag lines.
e Y is a Cauchy surface.

This diagram encapsulates the causal structure of the Schwarzschild black hole spacetime.

1.3.2 Stationary black holes

Another possible solution to the vacuum EFE is the stationary black hole, also known as
the rotating black hole. A spacetime is said to be stationary if it admits a timelike Killing
vector field, indicating invariance under time translations. The Kerr solution is stationary
because the line element does not depend explicitly on the time coordinate, reflecting the
existence of such a symmetry. However, it possesses angular momentum J # 0, which
reveals its rotating nature and distinguishes it from static spacetimes, where the timelike
Killing vector is also required to be hypersurface-orthogonal. The line element for the

Kerr black hole, with coordinates (t,7, 6, ¢) and signature (—, +, +, +), is:

2Mr AMrasin® 0 )
2 _ e 2 TGSV Bl ) 2
ds* = (1 > >dt > dtdqﬁ—l—Adr +Xdo

n <r2 Loy QMTa;Sin29> sin20dg?, (1.52)
where ¥ = r2 4+ a?cos?0, A = r2 — 2Mr + a?, and a = J/M is the black hole’s spin
parameter. Here, M is the mass and J is the angular momentum. This expression does
not contain a parameter for the charge of the black hole, which will be denoted as ). This
will not be treated in this thesis, but it is useful to note that charged black holes are also a
branch of study [122]. For the metric in Equation (1.52), we can define the event horizon

of the Kerr black hole as the surface

rhn=M+\/ M?—a?, (1.53)

which is obtained by solving A = 0. More generally, the event horizon is a null hyper-
surface generated by a congruence of outgoing null geodesics whose expansion vanishes.
This provides a coordinate-independent and physically meaningful characterisation: it is
the boundary beyond which light cannot escape to future null infinity. Equivalently, in
stationary spacetimes such as Kerr, the event horizon is also a Killing horizon, i.e. a null
hypersurface where a suitable linear combination of the timelike and rotational Killing
vectors becomes null. In the Kerr geometry, this condition corresponds precisely to the
surface defined by A = 0. We can also study other characteristic surfaces. First, the
stationary limit surface rs, which can be defined as the surface inside which an observer

cannot remain at rest relative to infinity:
M? — a? cos? 6, (1.54)
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which we obtain imposing g = 0. This surface delimits a region in the Kerr spacetime
known as the ergosphere. In the ergoregion of a rotating black hole, frame-dragging be-
comes so extreme that all observers following timelike trajectories are forced to co-rotate
with the black hole, it is no longer possible to remain stationary relative to distant stars.
This effect, known as frame-dragging, arises due to the curvature of spacetime caused by
the black hole’s rotation. The first direct measurement of frame-dragging in the vicinity
of Earth was performed by the Gravity Probe B experiment in 2011 [55]. However, the
presence of an ergoregion is not required for the formation of an accretion disc. An ac-
cretion disc forms when matter, such as gas or dust from a nearby star, is captured by
the black hole’s gravitational field and begins to orbit it. Through internal friction and
viscous interactions within the disc, the material gradually loses angular momentum and
spirals inward. As this infall proceeds, a portion of the gravitational potential energy is
converted into electromagnetic radiation, causing the disc to shine brightly across a range
of wavelengths, particularly in X-rays. It is this luminous accretion structure that was
observed in the first image of a black hole captured by the Event Horizon Telescope in
2019 [5].

Two important surfaces around rotating black holes are central to much of the discussion

in this thesis: the stationary limit surface and the speed-of-light surface.

The stationary limit surface is defined as the hypersurface on which the Killing vector field
associated with time translations at infinity, usually denoted fé), becomes null. Outside
this surface, observers can remain at rest relative to infinity, but inside it, all timelike
observers are forced to co-rotate with the black hole due to frame-dragging. This surface
marks the boundary of the ergoregion, and it lies outside the event horizon for rotating
black holes.

The speed-of-light surface, on the other hand, is the surface on which the Killing vector
field that generates the outer event horizon, y* = 55) +Q Hféfp)’ becomes null. Here, Qg
is the angular velocity of the horizon, féfp) is the Killing vector field associated with axial
symmetry, and §é) is the Killing vector field associated with time translations at infinity.
An observer moving with angular velocity 2y reaches the speed of light at this surface,

and thus cannot exist beyond it.
We will explore the geometric and physical significance of these surfaces in more detail

in Chapter 4, particularly in the context of quantum fields on rotating black hole back-

grounds, where their presence or absence plays a crucial role.
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Summary

In this chapter, we have introduced the main concepts of general relativity, explaining
the mathematical tools necessary to define the Einstein field equations and providing a
definition of the classical stress-energy tensor. We have also introduced some examples of
the geometry of black holes. These foundational elements will be pivotal for our thesis,
as the main topic involves the analysis of black hole solutions within the framework of
quantum field theory in curved spacetime. This framework combines general relativity,
which describes the geometry of spacetime, with quantum field theory, which explains the

behaviour of matter in this background.

For this reason, in the next chapter, we will introduce the quantum tools needed for this

semi-classical theory and provide a description of the theory itself.
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Chapter 2

Quantum theory in curved spacetime

arises

We now to introduce the second protagonist of this story: quantum field theory (QFT).
This powerful framework governs the behaviour of the universe at small scales, describing
the dynamics of quantum fields. The foundations of QFT were laid as early as the 1920s
when Paul Dirac made the first attempt at quantizing the electromagnetic field [17]. Over
the subsequent decades, QFT evolved from quantum mechanics into a comprehensive the-

ory that describes the interactions of fundamental particles [117].

With QFT, we have a theory that successfully explains the microscopic world, while gen-
eral relativity, introduced in Chapter 1, provides a complete description of macroscopic
phenomena, such as the structure of spacetime and the behaviour of massive celestial
bodies. However, a significant challenge emerges: these two theories are fundamentally
incompatible. One of the scenarios where this incompatibility becomes apparent is in the

proximity of black holes.

Black holes, which we mentioned in the previous chapter in Section 1.3, are solutions to
Einstein’s equations in GR. They can form when matter collapses, creating a singularity
that curves spacetime so intensely that the effects of gravity become dominant. This sce-
nario is unique in the universe because gravitational effects are so relevant that they can

not be neglected near a black hole.

QFT, despite its remarkable success and predictive power, confirmed by numerous exper-
iments [117], was developed under the assumption of flat spacetime. On Earth, where the
curvature of spacetime due to gravity is negligible, this assumption holds true. However,
near a black hole, spacetime curvature is extreme, and the "classical" QFT becomes in-
adequate. To study quantum fields in such environments, an extension of QFT to curved

spacetime became necessary. This need led to the development of quantum field theory
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on curved spacetime in the 1960s [113, 118].

One of the most successful predictions of QFT in curved spacetime is Hawking radia-
tion [65], a theoretical result that suggests black holes can emit radiation and eventually
evaporate. While this prediction awaits experimental confirmation, it has already been

shown that an analogue of Hawking radiation can be measured experimentally [1412].

In this theoretical framework, the semi-classical approach emerged. This approach aims
to explore the behaviour of quantum matter in classical curved backgrounds by combining
the successes of GR and QFT. It does not attempt to be a full theory of quantum gravity
but rather seeks to uncover effects that could be instrumental in constructing such a
theory. By relying on the mathematical foundations of QFT in curved spacetime, the
semi-classical approach attempts to describe quantum phenomena in strong gravitational

fields. This is achieved by solving the semi-classical Einstein field equations:
Gap + Agap = 87T<Ta6>a (2.1)

where A is the cosmological constant, g, is the metric of the spacetime we are consider-
ing, G, is the Einstein tensor introduced in Chapter 1 and <Ta5> is the expectation value
of the stress-energy tensor, which we will discuss in more detail later on in this chapter.
In particular, the left side is classical, being unchanged from the Einstein field equations
(1.40), and the right-hand side is quantum, containing the expectation value of the SET

over a quantum state.

Throughout this thesis, we will explore these concepts in more detail. While this may
seem like a lot to grasp, we will proceed step by step. First, we need to focus on what is
required to provide a full description of a semi-classical theory. We need to define quantum
states over the curved background, then discuss how to evaluate the expectation value of
the stress-energy tensor, which will ultimately lead to solving the semi-classical Einstein
field equations (2.1).

To achieve this, we will first introduce the fundamentals of QFT in flat spacetime, and
then follow the historical progression, introducing the theory of QFT on curved spacetime.
We will then discuss the semi-classical approach and the semi-classical Einstein equations.

In particular, we will focus on black hole solutions.

2.1 Quantum field theory in flat spacetime

This will not be the place to summarize the entire scope of QFT, we leave that to standard
textbooks such as [22, 117, 118, 119]. Instead, we will present an example to demonstrate

how this theory can be applied. As mentioned earlier, we begin by introducing some basic
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concepts of QFT in flat spacetime to set the foundation for formulating a QFT on a curved
background. We consider a scalar field, which is not only the focus of this thesis but also

serves as the simplest example for this introduction.

Hence, we begin with the study of a classical scalar field, ®(x,t), in an n-dimensional
spacetime, where x is a vector of dimension n — 1, giving the spatial coordinates, and

where we choose ¢ as the time coordinate, with a Lagrangian density £(®,d,®) given by
1 1 5 5
where p is the mass of the field. We can then define the action S as

S[®,nuw] = /L(fb,@u(l)) d"z, (2.3)

where 7),,, is the Minkowski metric. We can obtain the equation of motion for the scalar

field by setting the variation of the action, 65, with respect to @, to zero giving

55 = / [355@ + ‘%)5(3@)] "z

- [ |5 - (agﬁ@))] e (24)

where we have used integration by parts to go from the first line to the second one in
Equation (2.4). We have also used Stokes’ theorem, rewriting a term as a surface term,
and we have assumed that the variation §® vanishes at the boundary. Requiring 5 = 0,

we find the Euler-Lagrange equation for the scalar field:

NE AR -
Substituting £ from Equation (2.2) into (2.5), we find the Klein-Gordon equation:
9,0"® — 2 = 0. (2.6)
A basis set of solutions to Equation (2.6) consist of the plane waves
Oz, t) = A e @2 —pP = 2, (2.7)

where w is the frequency, p is the momentum, and A is a normalization constant. We
distinguish w > 0 for ®, to represent positive frequency modes, while the complex conju-
gate @} gives the negative frequency modes when w > 0. This is pivotal in quantum field
theory for canonical quantization, allowing us to define quantum states over a background.
The theory requires us to find an orthonormal basis of solutions, in order to define an

inner product. We define:
<(I>1, (I)2> = —i/ (<I>18t<I>§ — ®§8t<1>1) dnilx, (2.8)
)
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where ¥ is an equal-time hypersurface. Due to the conservation of the current
gt = —i (®107®5 — 501Dy, (2.9)

the value of the inner product is independent of the particular choice of X, provided
that the field vanishes sufficiently rapidly at spatial infinity (which is typically ensured
by appropriate boundary conditions). To determine A, we use this inner product for two
solutions of the form in Equation (2.7). Substituting the plane wave solutions into (2.8)

and enforcing orthonormality,
(®p, @p) = 6(p—p') for w >0, (2.10)

we obtain the normalization constant:

A1 (2.11)

V2]w|(2m)—T

To quantize the classical field, we promote it to an operator, "putting a hat on it",
B(t,z) — (L, 2), (2.12)

and impose the equal-time commutation relations:

[®(t,x), d(t,2")] =0, (2.13)
[7(t,x), 7 (t,a")] = 0, (2.14)
[&(t, x), 7 (t,2")] = i6" "V (x — 2/, (2.15)
where 7(t, x) is the conjugate momentum:
#(t,x) = Bd(t,x) = B(t, ). (2.16)
We can expand the quantized field in terms of orthonormal modes:
b(t,z) =3 [apcpp(t, z) + b, x)} , (2.17)

P
where the sum over p denotes a schematic decomposition into modes; in cases where the
spectrum of the field is continuous, this summation should be understood as an integral
over the relevant mode parameters. a, and &}; are the annihilation and creation operators,

satisfying the canonical commutation relations (CCR):

Gy, 4] = 0, (2.18a)
bt

[, al,] =0, (2.18D)
(ap, at)) = 6"V (p — ), (2.18¢)

It is important to define now the difference between a ground state and a vacuum state.
A ground state |0) is an eigenvector of the Hamiltonian H such that any other state |¢))
satisfies

(|H|¢) > (0|H|0), (2.19)
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where |¢)) is any state in the Hilbert space and H is the Hamiltonian.

A vacuum state |0) is a ground state invariant under the Poincaré group:
U(a,A)|0) = |0), (2.20)

up to a phase (which can be set to 1), where {a, A} € ISO(1,d—1) (inhomogeneous special
orthogonal group or Euclidean group) and U is a unitary representation of the Poincaré
group. In this sense, being a vacuum state is more restrictive than being just a ground
state. For one thing, the former only exists in Poincaré invariant systems, while the latter

exists for any physically meaningful system (that is, whenever H is bounded from below).

In Minkowski spacetime, there is a preferred vacuum state |0) defined by
ip|0) = 0. (2.21)

Due to the lack of invariance under the Poincaré group, a preferred vacuum state does not
exist in curved spacetimes. Therefore, it becomes necessary to specify different ground
states. This will be discussed in the next section, where we generalize the process of

canonical quantization to quantum field theory in curved spacetime.

2.2 Quantum field theory in curved spacetime

In order to generalize what we have shown in the previous section to curved spacetimes,
we need to modify the action we are studying. Specifically, we must introduce the concept
of spacetime curvature into the action, which we achieve by incorporating the metric
guv into the action in Equation (2.3). Ordinary derivatives 0, are replaced by covariant
derivatives V,,, and the covariant volume element changes from d"z to \/—gd"x, where
g = det(guw). These are all concepts introduced in Chapter 1. We reiterate that our aim
is to present a practical example of applying the theory of quantum field theory in curved
spacetime (QFTCS) to a scalar field, rather than providing a comprehensive description

of the theory, which can be found in [22, 118]. The action then becomes

1 1
S[®, g, = / [—QQ“VVmbvwb - §(u2 +E(R)D?| /=g d'x, (2.22)

where R is the Ricci scalar, £ is a coupling constant and g, is the metric of the curved
spacetime that we are considering. The coupling constant £ determines the strength of
the interaction between the curvature of spacetime and the quantum field. For minimal
coupling, £ = 0, while for conformal coupling,

n—2

§=8&= m (2.23)
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In the previous section, we introduced all the ingredients needed to construct a real scalar
field theory on a flat background. However, before we write the generalisation of the
Klein-Gordon equation on (M, g), we need to make an important physical remark. In
Minkowski spacetime (R4,n), the presence of a large isometry group SO(3,1) x R* pro-
vides a mathematical procedure that allows us to classify free fields through a map from
R* into a finite-dimensional Hilbert space transforming under a unitary and irreducible
representation of the Poincaré group [19]. This procedure was introduced by Wigner [150],
and it gives us the ability to build an unambiguous identification of a free field and con-
struct the equations of motion. Hence, in Minkowski’s spacetime, there is no arbitrariness
when dealing with classical free theory. In a curved spacetime (M, g), the situation is not
so straightforward. In principle, the metric g may possess no isometries, in which case we
cannot apply the Wigner classification procedure, which relies on the existence of space-
time symmetries to label particles by mass and spin. Independently of this, in a general
curved spacetime there may be ambiguities in constructing the Lagrangian for a free scalar
field. These ambiguities can arise, for example, from the possible inclusion of curvature
couplings such as £ R¢?, where R is the Ricci scalar and £ is an arbitrary dimensionless
parameter. More generally, one can add any scalar function constructed from the scalar
field and curvature tensors—such as the Ricci tensor or Riemann tensor—that vanishes in
flat spacetime where g = 7. Using Occam’s razor, we wrote the action in Equation (2.22),

from which the Klein-Gordon equation in a generic spacetime (M, g) can be written as:
00 — (u® +ER)® =0, (2.24)
where [ is the covariant d’Alembertian:
0P = g"'V,V, & = g (auay - rjwak) o, (2.25)

Here, F;\W is the Christoffel symbol, defined by Equation (1.13). One of the key points
of the theory is the assumption that the underlying background is globally hyperbolic
(see Section 1.1). This condition on the geometry of spacetime guarantees that, given a
wave equation such as the Klein—-Gordon equation, the associated Cauchy problem is well
posed, ensuring the existence of a unique solution once suitable initial data are assigned.
This constraint can be loosened, which is what happens when we consider spacetimes that
are asymptotically Anti-de-Sitter (AdS), which will be the main interest in this thesis. In
these cases, the spacetime is not globally hyperbolic, but by assigning boundary conditions
we can still ensure the existence of a unique solution when initial data are assigned. This

will be discussed more in detail later on in the thesis.

As in the flat spacetime case, we need to define an inner product, in order to find an
orthonormal basis of solutions of Equation (2.24). In curved spacetime, the scalar product
is given by

(B, By) = —i /Z (©10, 5 — D30,81)v/=g n"dS, (2.26)

33



2. Quantum theory in curved spacetime arises

where ¥ is a spacelike hypersurface, n* is the unit normal vector to 3, d¥ is the volume
element on ¥, and g is the determinant of g,,. As discussed in the previous section, the

scalar product (@1, ®2) does not depend on the choice of the hypersurface X.

We then proceed with the analysis, by performing a mode expansion of the scalar field
in terms of an orthonormal basis of modes f;(¢,x). In this expansion, the modes f;(t,x)
are chosen to have positive frequency with respect to the time coordinate ¢, while their

complex conjugates f;‘(t, x) correspond to the negative-frequency solutions. This yields

~

di,x) =" [aj filtoz) +alfi (o)) (2.27)

J

where the index j labels the modes, and the annihilation and creation operators &j,&;

obey the CCR:

[dj, &j’] = 0, (228&)
laf,al,] = o, (2.28b)
[ag, al] = 601 = ). (2.28¢)

Furthermore, similarly to the flat spacetime case, we define a vacuum state |0f) that is

annihilated by all the annihilation operators:
a;|0f) = 0. (2.29)

Now, it might appear that we have extended the theory simply by introducing the concept
of curvature into spacetime, modifying the action we start with, and replacing ordinary
derivatives with covariant derivatives. However, consider a scenario where we have a

different orthonormal set of basis modes hg(t, x), leading to an expansion of the field as

b(t,z) =Y [i)khk(t,x) + BLh;;(t,x)] , (2.30)
k

where Bk and BL are a new set of annihilation and creation operators that satisfy the same

CCR as in Equations (2.28). This allows us to define another vacuum state |0p), such that
bi|04) = 0. (2.31)

Since both sets of modes are defined on the same background for the same field, they
can be related. The f; modes form an orthonormal basis, allowing the hj modes to be

expanded as

hy, = Z [ f5 + Bri 7] (2.32a)
J

fi= Z [ — Brjhi] - (2.32b)
%
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These relations are known as Bogoliubov transformations, where «aj, and 3, are the

Bogoliubov coefficients, given by:

Using the orthonormality of the modes, the creation and annihilation operators can be

related as:
a5 = > (ansbr + 70} ) (2.34a)
k
b= (a,’;jaj - 5,;3@}) . (2.34b)
J
The Bogoliubov coefficients satisfy the following normalization conditions [22]:
> (ajiai; = BjiBis) = jms (2.350)
i
Z(Oéjiﬁki — Bjioi) = 0. (2.35b)

i
While this framework is well-defined in both Minkowski spacetime and curved spacetime,
its implications in curved spacetime become particularly significant. We can notice this
if we consider a system in the f-vacuum state |0¢), where no particles are detected using
the f; basis modes. Now, for the h-vacuum state, we can evaluate the number operator
N = i)zl;k, given by:

(0| Ni[0g) = D185l (2.36)

J

which evaluates the number of particles seen by an observer using the hj; basis modes.
We can see that if any of the 3;, are non-zero, an observer employing the hj basis will
detect particles even in a vacuum defined by the f; basis. This occurs because the Bo-
goliubov transformations mix creation and annihilation operators between the two bases,
highlighting that the notion of particles in curved spacetime is observer-dependent. This
becomes relevant when it is not possible to select a preferred vacuum state, as is the case

in a general curved background.

In this thesis, we focus on the analysis of on a black hole background, which requires

examining three possible ground states, depending on the set of coordinates used.

We have now provided a brief overview of quantum field theory in curved spacetime
framework and developed mode-sum expressions for the quantum scalar field P. Next,
we will turn our attention to computing expectation values. Throughout this thesis,
we will evaluate the expectation values of the vacuum polarization <<i>2> and the stress-
energy tensor (TW>. We will also show how to renormalize these quantities if possible.
Additionally, we will introduce a method to compute finite, renormalized quantities by
subtracting expectation values of the same observable in different ground states. These

calculations will make use of Green’s functions, which will be the subject of Section 2.3.
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2.3 Green’s functions

We now introduce what are known as Green’s functions. These will be pivotal for the
renormalization, as we will shortly see that these objects play an important role in this
process. In this section, we consider a spacetime in which a vacuum state |0) exists (though
it may not be unique) and where a time coordinate ¢ is chosen to allow for proper time-
ordering. This will be the case in the spacetimes that we will consider. In a general curved
spacetime, the Green’s functions satisfy the inhomogeneous equation:

[O— (1 +£€R)] G(z,2)) = —\/1_75(") (x — ), (2.37)
where 6™ is the n-dimensional Dirac delta function, G refers to any one of a number
of Green’s functions, and x, 2’ represent two spacetime points, this is why the Green’s
functions are two-point functions. However, there are two-point functions that do not
satisfy Equation (2.37), but instead only satisfy the Klein-Gordon equation (2.24) when

considering a scalar field.

In the name of completeness, we mention some two-point functions of particular impor-
tance among the family of two-point functions. These are the Pauli-Jordan (Schwinger)
two-point function G, the anticommutator function GV, and the Feynman propagator
GF, [22]. In particular, the Feynman propagator G is defined as the time-ordered vac-
uum expectation value and is constructed so that it indeed solves equation (2.37); that
is, when the differential operator [J — (;P + fR) acts on G, the delta function source is
produced. On the other hand, the Pauli-Jordan (Schwinger) two-point function G and
the anticommutator function G are solutions of the corresponding homogeneous equa-
tion, they vanish when acted upon by the differential operator, reflecting the fact that
they do not contain the delta function source. Hence, they are not solution of the inho-

mogeneous equation (2.37). Next, we provide a detailed construction of Green’s functions.

The vacuum Pauli-Jordan and anticommutator two-point functions are given by [22]:
iG(z,2') = (0|[&(z), &(2")]|0), GV (z,a’) = (0[{$(x), b(z')}|0), (2.38)
where the anticommutator {A, B} of two operators A and B is defined as
{A, B} = AB + BA. (2.39)
They can be split into their respective positive and negative frequency parts as:

iG(z,2') = Gy (2,2)) — G_(z, "), GV (z,2') = Gy(zx,2') +G_(2,2), (2.40)
where G4 (z,2'), the Wightman functions, are defined as:
G (,2) = OB@)BE)0), G (z,2') = (01B(a")B(x)[0). (2.41)
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The Feynman propagator GI'(x,z') is defined as [22]:
iGF (z,2) = (O|T (é(x)ci)(x’)) 0), (2.42)

where T denotes time-ordering. For two spacetime points with time coordinates ¢ and ¢,

the time-ordering operation is defined as:

K>

i z)d(z) if !
T(b(x)d(x')) = Ex’))&((x; ) ilitt (2.43)

>

The Feynman propagator can be expressed as:
iGF(z,2") =0t —t)Gy(z,2)+ O —t) G_(x,2), (2.44)
where © represents the Heaviside step function:

) 1 ift>t,
ot —t)= (2.45)
0 ift<t.

Two additional Green’s functions of interest are the retarded G and advanced G 4 Green’s

functions, which are defined as [22]:
Gr(x,2') = -0t —t)G(z,2'), Ga(z,2") =0 —1t)G(z,2). (2.46)
Additionally, the Feynman propagator can be rewritten in terms of Gr and G 4 as:
GF(,2') = —Go(w,2) — %G<1>(I,x’), (2.47)
where G, the average of G and G 4, is given by:

Ge(z,2') = % (Gr(z,2") + Ga(z,2")] . (2.48)

As we shall see later in this thesis, Green’s functions are essential for determining the
expectation values of the observables we wish to investigate, such as (®2) and <TW>. In
particular, they will prove useful for understanding Hadamard renormalization. However,
we still need to introduce one last piece of the puzzle: the definition and concept of

Hadamard quantum states.

2.4 Hadamard quantum states

If we look at Equation (2.37), we see that the right-hand side diverges when = — 2’
In order for us to find expectation values from the Green’s functions and continue the
analysis we need to renormalize. This can be addressed in flat spacetime by employing a

technique known as normal ordering, denoted by “::”. Normal ordering means that in any
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product of creation and annihilation operators, the annihilation operators are placed to
the right of the creation operators. For example,

apl) = @y, (2.49)

However, renormalization in curved spacetime is considerably more challenging than in
flat spacetime. This increased complexity arises because the quantum stress-energy tensor,
<T/w>’ not only acts as a source of gravity, but also influences the curvature of the space-
time, see Equation (1.40). We need to apply a different procedure. Several renormalization
schemes have been proposed in the literature, including the adiabatic approach [114], the
DeWitt-Schwinger method [15], zeta-function regularisation |54], dimensional renormal-
ization [131], and the Pauli-Villars method [115]. In this thesis, we employ a technique
known as Hadamard renormalization [22|. Hadamard renormalization relies on expressing
the Feynman propagator, G (z,2) (the two-point function), in Hadamard form, which
requires that the points z and z’ are connected by a unique geodesic. It has been demon-
strated [121] that if the two-point function exhibits Hadamard structure in an open neigh-
bourhood of a Cauchy surface on a C'°° globally hyperbolic manifold, then this structure

persists everywhere.

First, we need to define when a quantum state is a Hadamard state, which constitutes
the initial step towards discussing renormalization. We have already introduced the con-
cept of ground states and vacuum states in curved spacetime, which arise from the lack
of invariance under transformations of the Poincaré group in curved spacetimes. This
implies that, unlike in Minkowski spacetime, there is no preferred unique vacuum state.
In Minkowski spacetime, the vacuum is the state with the lowest energy and the absence
of particles for an inertial observer. For this reason, we seek a quantum state possessing
certain properties to mimic the features of the Minkowski vacuum. We require that a good

physical state satisfies the following conditions [119, Chap. 3]:

e It yields finite quantum fluctuations for all observables, including the components

of the stress-energy tensor.

e [t mimics the ultraviolet behaviour of the Minkowski vacuum. This condition re-
flects the expectation that probing higher energies corresponds to performing mea-
surements at smaller spacetime scales. Since, locally, the metric reduces to that
of Minkowski spacetime, the underlying quantum state is expected to resemble the

Poincaré ground state.

Additionally, when evaluating the product of two or more observables; such as fields at
two or more distinct spacetime points (e.g., x and z’), it is crucial to control the structure
of the singularities arising as x — 2’ in the two-point function. In Minkowski spacetime,

we can control this using the normal ordering procedure, which relies on the creation and
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annihilation operators. In curved spacetime we must identify a class of states that fulfil
the mentioned conditions. These states are known as Hadamard states. Before presenting
the formal expressions for Hadamard states, we need to introduce two essential quantities

that are going to be useful for their construction.

The first one is Synge’s world function, which can also be expressed as [22]:

1
o(x,z") = 5()\1 - o) /g,wt“t” dA, (2.50)

z

where t# = g—f\ is the tangent vector to the unique geodesic z(\) connecting = and 2.

Assuming that z and 2’ lie within a normal neighbourhood, this ensures that any two
points in the neighbourhood are connected by a unique geodesic lying entirely within that
region. The parameter A is affine, with = z(\o) and 2’ = z(\1). The world function
satisfies:

20 =0, 0", (2.51)

and it is important to note the following:

o(z,2') <0 for timelike separation,
o(z,2’) =0 for null separation,

o(z,2’) >0 for spacelike separation. (2.52)

The second quantity we need to introduce is the van Vleck-Morette determinant, A(x, x),
which provides information on how geodesics originating from the point x converge or

spread out at the point z’. It is defined as [22]:

_1 , _1
Az, ") = [—g(x)]” 2 det [0, (z,2")] [-g(z")] 2. (2.53)
In n dimensions, A(z, ) satisfies the differential equation:
1
Oo=n— QA_%A;?“O'W, (2.54)
with the boundary condition:
lim A(z,z') = 1. (2.55)

z—a’
We now have all the ingredients to define the local Hadamard condition that characterises
a Hadamard state and to describe how the two-point function of a Hadamard state can

be written on a globally hyperbolic spacetime.

2.4.1 Definition. Let (M, g) be a four dimensional spacetime. We say that a state and

its two-point function are of local Hadamard form if, for every x € M, we can write:

Ghy(z,2') = lim {8;2 (IM + Vig(z,2') In (W) + W(4)(:c,a:’)) } ,
(2.56)
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where x, ' are two arbitrary points in the spacetime that lie in a normal neighbourhood,
€ is a regularisation parameter, X\ is a reference length introduced to make the argument
of the logarithm dimensionless, and o(x,z') is defined as oc(x,2') = o(x,2’) + ie, where

o(x,x) is the Synge’s function.

We have defined o (x,2") with the factor ie because when € — 07 we want to ensure that
G¥(z,2") has a singularity structure that resembles that of the Feynman propagator. The
definition of the two-point function is strictly related to the dimension we are considering.
Equation (2.56) applies in a general four-dimensional spacetime, and Us), Vigy, and Wy
are symmetric and regular biscalars in four dimensions. They can be found in Decanini
and Folacci [11], where the general formula for D > 2 dimensions is also provided. In this

thesis, we are concerned with spacetimes in five dimensions.

2.4.2 Definition. The Hadamard form of the two-point function for a scalar field in

general odd dimensions is given by:

G (a,a') = 142 ( ks
[ z

5 T+ W(:U,x')) , (2.57)

where U(z,z") and W (x,2') are symmetric and regular biscalar functions, which possess

expansions of the form:

+oo

U(z,2') = Z Up(z,2")o" (z,2), (2.58)
T

W(x,2') = Z Wy (z, 2" o™ (z, 2). (2.59)
n=0

Notably, Equation (2.57) does not contain a V (z, ') term, which was a source of divergence
caused by the logarithmic term. This showcase once more why working in odd dimensions

is beneficial and easier than working in even dimensions. The coefficient ap is given by:

_T(Dj2-1)

The coefficients U, (z, z") satisfy the recursion relations:

(n+1)2n+4—D)Upt1 + (2n+4— D)Upy1,u0"
— (2n+4 — D) U1 ATV2AY oM + (O — p? — ER)U, =0, forn €N, (2.61)

with the boundary condition:
Uy = A2, (2.62)

The coefficients W, (z, 2’) satisfy the recursion relations:

(n+1)2n + D)Wpy1 +2(n+ 1)Wyyr,,0t
—2(n+ 1)W1 ATV2AY 200 4 (O — p? — ER)W,, =0, forn € N. (2.63)
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From the recursion relations (2.61) and (2.63), and the boundary condition (2.62), it is
possible to prove that GF'(x, z'), as given by Equation (2.57), solves Equation (2.37). This

follows straightforwardly from
(0 —p? —ERYW (z,2") = 0. (2.64)

It is important to notice that W, (z, ") is not uniquely defined. Indeed, the first coeffi-
cient of this sequence, Wy(z,2'), is not constrained by the recursion relations (2.63). If
Wo(x,2') is not fixed, the same holds for all W, (z,2") with n > 1. We can exploit this
arbitrariness to show the quantum state dependence in the biscalar W (x, ') by specifying
the Hadamard coefficient Wy(z,2"). Once it has been specified, the recursion relations
(2.63) uniquely determine the coefficients W,,(x, 2’) for n > 1 and, therefore, the biscalar
W(x,x').

We now proceed by splitting G¥'(x,2’) into the sum of two components, H(z,z') +
W (x,z"), where the first term is called the Hadamard parametrix:
iap Uz, )

2 o(z,2) + ie]gfl '

H(z,2') = (2.65)
In odd dimensions, this function encodes the full local singularity structure of the Feynman
propagator of a Hadamard state. Hence, the singular part of the Feynman propagator,
which depends only on the geometry and the field being considered, is known, allowing
us to renormalize that quantity. We use states that fulfil the local Hadamard condition.
The biscalars U and W can be determined via the Hadamard recursion relations given by
(2.61) and (2.63), and all the relevant partial differential equations depend only on the

spacetime metric and the equation of motion. Hence, we conclude that:

e The local singularity structure of the two-point function of a Hadamard state is fully

determined by the spacetime geometry.

This being the case means that we have control over the singular structure of the Feynman
propagator, and we can remove all unwanted pathologies with a suitable subtraction,
because we can fully determine explicitly the expression of the divergent part once the
geometry of the spacetime and the field under consideration are given. With the Hadamard
states, we can describe one of the most important observables, namely, the stress-energy

tensor for the Klein—Gordon scalar field, which will be discussed in the next section.

2.5 Stress-energy tensor

The stress-energy tensor (SET), T),,, is the observable we will mainly focus on throughout

this thesis, together with the vacuum polarisation, which is evaluated as an intermediate
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step to determine the quantum stress-energy tensor. This is because the SET encodes in-
formation about matter and energy, a property true for both the classical and the quantum
regimes. More specifically, the SET is a rank-two tensor that compactly describes how
energy and momentum are distributed and flow through spacetime. To interpret the com-
ponents of the energy-momentum tensor 7),,, physically, it is useful to introduce a locally

orthonormal tetrad {e’(il)}, where Latin indices in parentheses label the local inertial frame

o
(0

the components of the energy-momentum tensor acquire the following interpretations:

components and e )= u* is the 4-velocity of an observer at a given point. In this frame,

e Energy Density: The component T{g)) = Tjuu” represents the energy density
measured by an observer with 4-velocity u#”. This gives the amount of energy per

unit volume in the local rest frame of the observer.

i

e Energy Fluxes: The components T(gy;) = TWu“el(’ ) describe the flux of energy in
the spatial direction ¢, as measured in the observer’s local rest frame. By symmetry,
Tiiyo) = Ty

e Stresses (Pressure and Shear): The purely spatial components T(;)(;) = Tuyeﬁ.)e‘(’j)

encode the stresses in the system, including isotropic pressure when ¢ = 5, and shear

stresses when i # j.

In the framework of general relativity, the SET acts as the source of the gravitational field
in Einstein’s field equations (1.40). This means that the distribution and flow of energy

and momentum directly influence the curvature of spacetime, see Equation (1.40).

The quantum SET requires careful treatment when transitioning from classical theories.
Notably, the quantum fluctuations modify the classical picture, necessitating renormal-
ization procedures to extract meaningful physical predictions. We start our description
by following the procedure outlined in [!1] retrieving the formula for the classical stress-

energy tensor from the action, for a massive scalar field.

The functional derivative of S in Equation (2.22) with respect to g, allows us to define

the stress-energy tensor 7}, associated with a scalar field ®, [22,148]. Specifically, we have
2 65[P, gl

Tw=
: v —9 6guu

(2.66)

and by considering the variation

Juv — Guv + 69}“/7 (267)

the classical stress-energy tensor reads [!1]:
1 1
T =(1-2§)V,oV, o + <2§ - 2) G gV BV & — §9WN2@2

— 269V, V,® + 2£g,, 0D + £ (G ,) P2, (2.68)
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where we report the definition of the Einstein tensor introduced in Chapter 1 for simplicity:

1
G;w = R/u/ - §g,uuRa (2'69>

with R, being the Ricci tensor and R the scalar curvature. This tensor satisfies the
conservation equation:

V', = 0. (2.70)

If we consider a quantum field rather than a classical one, we need to be able to evaluate
products of fields at the same spacetime point, namely: : ®2(z) :. If the quantum state
|t)) that we are considering is a Hadamard state, then the expression of the stress-energy

tensor is given by:
(/T (@)l = lim [7;”(3;,3;’) (—z’GF(x,x’))} : (2.71)

where GF'(x,2') is the Feynman propagator or the two-point function, see Section 2.3
and ﬁy(x,x’ ) is a differential operator which is constructed by point-splitting from the
classical expression for the stress-tensor (2.68). It is a tensor of type (0,2) in x and a

scalar in z’. It is given by

y 1 .
T = (1-28)¢g" VuVy + (25 - 2) Guv g’ V Vo
- 25 g,u/; gyz// vu’vu’ + 25 Guv vpvp

1 1
+ 5 (RMV - 29,WR> - 5 guyﬂ2 9 (272)

where g,,» denotes the bi-covector of parallel transport between « and 2/, which is defined

by the partial differential equation

Oy Gy 97) =0, (2.73)

and the boundary condition
li v = Guu- 2.74
m g, = g, (2.74)

The expectation value of the stress-energy tensor requires renormalization since the Feyn-
man propagator diverges in the coincidence limit,  — z’. This renormalization is made
possible by the properties of Hadamard quantum states, see Section 2.4 and the concept

of Hadamard renormalization, which we will explore further in Sections 2.6.

2.6 Hadamard renormalization of the stress-energy tensor

As we mentioned in Section 2.5 the expectation value of the stress-energy tensor operator

with respect to a Hadamard quantum state [¢) is formally given as the limit:

<¢]TW($)|1/J> m ﬁ,,(:n,x’) (—iGF(ac,:U')) , (2.75)

=1
' —x
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where G¥'(x, 2') is the Feynman propagator, as defined in Equation (2.42). This propaga-
tor is assumed to possess one of the Hadamard forms described in Section 2.4. ’77“,(1', z') in
Equation (2.75) is a differential operator constructed via point-splitting from the classical

expression of the stress-energy tensor.

For this formulation of the renormalization we follow the procedure outlined in [11]. Given
the singular behaviour of the Feynman propagator when x — z’, the expression for the
expectation value of the stress-energy tensor operator in Equation (2.75) with respect to
the Hadamard state |¢) is divergent and therefore ill-defined. However, since we have
taken an Hadamard state we know that this pathological behaviour arises from the purely

geometrical part of the Hadamard expansion, for D odd as given in Equation (2.57):

GF(z,2) ~ — (2.76)

o(r,2)2 !
where o(z,2’) is the Synge world function. This divergence reflects the fact that the co-
incidence limit 2’ — x of the propagator is singular, which necessitates regularisation. It
is possible to cure the pathological behaviour of (7,/1|TW|1/1> given by Equation (2.76) and
to construct from it a meaningful expression that can act as a source in the semi-classical
Einstein equations (2.82). This can also be regarded as the renormalized expectation value

of the stress-energy tensor operator with respect to the Hadamard quantum state [¢).

The Hadamard regularization prescription achieves this in odd dimensions as follows: we
first discard the purely geometrical part of GI', as given in Equation (2.57) from the

right-hand side of Equation (2.75). Specifically, we apply the replacement:

lim 72,,(:13,30') (—iGF(m,x')) — ap lim ﬁy(x,x')W(m,x'), (2.77)

o' 2 'z
where W (z,z") is the regularized part of the Hadamard expansion. This ensures the
conservation of the resulting expression. Therefore, the renormalized expectation value of
the stress-energy tensor operator in the Hadamard state |¢) is given by:

~ aD . A
(/T3 @) ) e = L2 Timm Ty (, )W (1, 2. (2.78)

2 2>z

We obtain the renormalized expectation value of the stress-energy tensor operator in the
Hadamard state |¢) as [11]:

N a 1 1
<¢|Tuu|¢>ren = 7[) [— (wm/ - 29uuwpp> + 5(1 - 2§)V#Vl,w

1 1 1 1
+ ) (25 - 2) guwlw + & <R,u1/ - 2gul/R> w — 2guuﬂ2w] , (2.79)

where we define

w(r) = lim W(z,2'), (2.80a)
' —x
Wy (x) = ml,iinx W(z,2'). (2.80b)
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and we also report the results of [11] for the odd dimension case:
w’, = (p* + ER)w, (2.81a)
1 1 1
Dpw’, = 1(%(Dw) + §Rpaapw + §§8aRw. (2.81b)

By subtracting the purely geometric, state-independent part of the Hadamard form of the
propagator, the renormalized RSET becomes finite. Hence, we can use this expression to
introduce the fundamental equations of the semi-classical theory, the semi-classical Ein-
stein equations (2.83). It is important to note that the renormalisation procedure leaves
a finite ambiguity in (T}, )ren, corresponding to the freedom to add local, conserved, sym-
metric tensors constructed purely from the curvature of the background spacetime. These
additional terms typically take the form of combinations of gWRZ, R, R* | Ryype RFVP?
and their derivatives. Their presence reflects the fact that renormalisation is not unique,

and must be fixed by physical considerations or renormalisation conditions.

2.7 Semi-classical Einstein field equations

Now that we have explained the renormalization procedure we are going to use it to

introduce the semi-classical Einstein field equations:

G + Mg = (VT |¥), (2.82)

where the left-hand side is identical to the Einstein field equations (1.40), consisting of
A, the cosmological constant, G, the Einstein tensor, and g, the metric of the space-
time under consideration. This encapsulates all the information about the geometry of
the spacetime. The right-hand side, however, differs from the conventional formulation
of general relativity, as it contains the expectation value of the stress-energy tensor op-
erator evaluated in a quantum state i. This term encodes all the information regarding
the energy and momentum of the system, which has been quantised using the procedure

described in Section 2.2.

As we have seen, the right-hand side exhibits divergences when evaluated at the same
point in spacetime, x — z’. To properly define these equations, the right-hand side must
be renormalized. There are various methods for achieving this, but in this thesis, we will
use the Hadamard renormalization introduced in Section 2.6. Thus, the semi-classical

Einstein field equations become:

G;w + Ag,w = <¢|wa|¢>ren' (283>

We will also demonstrate a clever way to evaluate a finite quantity that provides informa-

tion about the behaviour of the spacetime and quantum fluctuations without employing
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any renormalization procedure. This is possible due to the presence of multiple states in
the theory of QFTCS, which arise from the lack of invariance under the Poincaré group. If
we define two ground states for the same spacetime and quantum field, and if both states
are Hadamard states (satisfying the decomposition presented in Equation (2.57)), we can
subtract the expectation values of the same observable—in this case, the stress-energy
tensor, obtaining a finite quantity. This is because, since the divergent part depends only
on the spacetime and the type of field being considered, it is mathematically identical for
both states. Therefore, subtracting these two expectation values cancels out the diver-
gences, leaving the quantity of interest finite. This will be explored in more detail in Part
II. This does not resolve the need to renormalize the right-hand side of Equation (2.83),
but it provides a first step towards a full analysis, giving us a finite quantity that can be

studied to extract physical information about the system.

2.7.1 Quantum corrected metric

The quantum-corrected metric is obtained by solving the problem of the backreaction. Let
us suppose that we have evaluated the renormalized stress-energy tensor for a quantum
field in a certain curved spacetime. To solve the semi-classical Einstein field equations
(2.83), one must use this tensor as a source, making the unknown quantity the metric
of the spacetime in Equation (2.83). This approach allows us to investigate, at the first
perturbative level, how quantum perturbations affect the spacetime under consideration.
Solving this is referred to as the backreaction problem, and the resulting metric is called the
quantum-corrected metric. Two important assumptions underlie this calculation. First,
it is assumed that quantum fluctuations of the matter fields are small, so that the semi-
classical approximation remains valid. Second, it is typically assumed that the expectation
value of the renormalised stress-energy tensor (T}, )ren respects the symmetries of the
background spacetime, such as stationarity or spherical symmetry, ensuring consistency
with the symmetries of the classical geometry. This implies that these fluctuations do not
affect the symmetries of the spacetime being studied. For example, if we are considering

the Schwarzschild metric, a spherically symmetric spacetime, its line element is given by:

oM oM\ !
ds? = — (1 — ) dt® + (1 — ) dr? 4+ r2d6? + r? sin® 0 d¢?, (2.84)
T T

where M is the mass of the black hole, and ¢, 7,0, and ¢ are the spherical coordinates (as
introduced in Section 1.3). This symmetry is preserved in the quantum-corrected metric;

hence, we can use the same form of the metric to find the new one:

ds? = —A(r)dt* + B(r)~'dr? + r2d9? + r*sin® 0 d¢?, (2.85)

where A(r) is a general function that we need to determine. Substituting this metric into

Equation (2.83) and solving for A(r) and B(r) provides the quantum-corrected metric of
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the Schwarzschild black hole, which incorporates the quantum fluctuations of matter given

by a scalar field.

Summary

In this chapter, we have introduced all the primary concepts related to quantum field
theory, and its extension to quantum field theory on curved spacetime, that are necessary
to proceed with this thesis. This is not a comprehensive description, which can be found
in textbooks on the topic such as |22, 147, 148], but rather a condensed summary of the

main topics that we will explore in the research chapters later on.

In particular, the Hadamard condition for a quantum state and Hadamard renormalization
will be pivotal in studying the semi-classical analysis of the five dimensional Kerr-AdS later
in the thesis. However, before delving into these analyses, we still need to provide a proper
definition of what anti-de Sitter spacetimes are and what black holes in AdS entail. This

will be the subject of the next chapter.
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Chapter 3

Quantum field theory on anti-de
Sitter black holes

In this chapter, we will discuss black holes that are asymptotically Anti-de Sitter (AdS).
Before delving into this topic, we introduce the concept of AdS spacetime. AdS spacetime
is a solution of the Einstein field equations obtained for negative values of the cosmological
constant, A. Naively, it can be thought of as putting the universe in a “box.” This analogy
implies that, at infinity, we need to impose boundary conditions to solve the equations of
motion for the quantum field considered in this spacetime. The type of boundary condi-
tions depends on the differential equation governing the field’s motion. For a scalar field,
which is the focus of this thesis, the boundary conditions are the ones that we can impose
on the solution of the Klein-Gordon equation which is a second-order homogeneous partial
differential equation. These are the Dirichlet, Neumann, or Robin boundary conditions,

see Section 3.2.

The reason for the focus on asymptotically AdS spacetimes in this thesis are twofold. First,
the “box’-like nature of AdS simplifies the analysis [07]. For example, in AdS black hole
spacetimes, problems related to superradiance disappear [08]. Second, the discovery of the
AdS/CFT correspondence [93]. While this thesis does not present this theory, as it is not
directly relevant to the QFTCS framework studied here, it remains a significant area of
research. The AdS/CFT correspondence establishes a relationship between asymptotically
Anti-de Sitter spacetimes and conformal field theories (CFT). This correspondence states
an equivalence between the gravitational theory in the AdS spacetime and the conformal
field theory on its boundary, such that there exists a dictionary to translate calculations

between the two.

Nonetheless, we will focus on AdS spacetimes in the framework of QFTCS for our anal-
ysis. The structure of this chapter is outlined as follows: Section 3.1 will introduce the

geometry of AdS spacetimes, focusing especially on the Poincaré patch and its significance
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3. Quantum field theory on anti-de Sitter black holes

in simplifying the analysis of asymptotically AdS spacetimes. Section 3.2 will address the
imposition of boundary conditions at the AdS boundary. Then, in Section 3.3, we will
focus on the geometry and properties of AdS black holes, introducing some notable exam-
ples. Finally, in Section 3.4, we will introduce the different quantum states that can be

studied on AdS black hole spacetimes for a scalar field.

3.1 Anti-de-Sitter spacetimes

We begin by introducing the AdS;y; spacetime. The AdS spacetime can be visualised
as a (d + 1)-dimensional single-sheeted hyperboloid embedded in a (d 4 2)-dimensional
flat Buclidean space, E4) 22,25 26], with the metric nap = diag(—1, 1, 1,...,1, —1).
This spacetime is a maximally symmetric solution of the (d + 1)-dimensional Einstein
equations with a negative cosmological constant. Using the Cartesian coordinates X4

(A=0,1,2,...,d+ 1), the hyperboloid in the embedding space satisfies the equation:
—(X0)2 + (X1)2 + (X2)2 NS (Xd>2 o (Xd+1)2 — —LQ, (31)

where L > 0 is the radius of the waist of the hyperboloid and is related to the cosmological

constant by:

d(d—1)
A=—-———"__", 2
In Equation (3.1), there are two time-like coordinates, X° and X9*t!, while X?, i =
1,...,d, are space-like. The metric on the embedding space is given by
ds? = —(dX°)? + (dX1)? 4+ (dX?)? + - + (dX D2 — (dX )2 (3.3)
t
p

Figure 3.1: Schematic representation of AdS spacetime, with the (n — 2) angular co-
ordinates omitted. This shows that pure AdS admits closed timelike curves (adapted
from [10]).

We now choose a suitable set of dimensionless coordinates for AdSg; spacetime [79, 106]:
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3. Quantum field theory on anti-de Sitter black holes

t, —an<t<m, (3.4a)
p, 0<p< g, (3.4b)
0;, 0<0;<m, j=12,...,d-2, (3.4c)
6, 0<¢<2m, (3.4d)

where p is the radial coordinate, ¢; are polar coordinates, and ¢ is the azimuthal coor-
dinate. The time coordinate t is periodic with a period of 27, leading to closed timelike
curves, see Figure 3.1. This can cause causality problems in our spacetime; however,
these can be circumvented by considering the covering space, CAdSy,1, where the time
coordinate is extended to ¢ € (—o00,00). We can then pick the coordinate transforma-

tions that relate the dimensionless coordinates to the embedding space coordinates in
E24) [10,103,104]:

X% = Lcostsecp,
X! = Ltanpcosf,

X? = L tan psin 61 cos 62,

X491 — [ tan psin 6 sin s - - - sin O4_ cos o,
X% = L tan psin 6 sin s - - - sin Oy_ sin ¢,

X — Lsintsecp. (3.5)
Taking derivatives of the embedding coordinates in Equation (3.5), we have:

dX® = L (—sintsec pdt + costsec ptan pdp),
dX'=1 (sec2 pcos By dp — tan psin 6; d@l) )

dX4 = L (costsec pdt + sintsec ptan pdp). (3.6)

Substituting the derivatives from Equation (3.6) into the embedding in Equation (3.3)

space metric gives the AdS;;1 metric:

d—2i-1 d—2
ds® = L?sec? p | —dt? + dp® + sin? p | d6?3 + Z H sin? 0; do? + H sin? 0; d¢?
i=2 j=1 j=1

(3.7)
In this thesis, we will focus on AdS black hole spacetimes in odd dimensions, so we will
not treat the pure AdS case specifically. However, it is important to review this spacetime,

as it will also serve as the asymptotic expression for the metric of the black holes we will
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consider, specifically in the five-dimensional (d = 4) case. The corresponding metrics are

given as follows:

ds* = L?sec® p (—dt* + dp® + sin” p [d0} + sin® 01 d3 + sin® 0y sin® 6 do*]),  (3.8)
for AdSs spacetime.
We present the Penrose diagram for the AdS,, spacetime, which is a useful example for
understanding the difference between pure AdS,, and the covering CAdS,,. Notably, this

is a pivotal point in the construction of the BTZ black hole that we will briefly introduce

in Section 3.3. We suppress all the angular coordinates in order to show the diagram.

t=m
T T
T
t=0
t=-—m
pP=75 p=735

Figure 3.2: Penrose diagrams of the pure AdS,, spacetime (left), where the time coordinate
has a period of 27, allowing for the possibility of closed timelike curves. The radial
coordinate p extends to a boundary at p = 5. The covering space of this spacetime,
CAdS,, (right), has a time coordinate ¢ € (—o0, 00). In the blue causal diamond, we take ¥
as a spacelike hypersurface (red line). Given initial data on ¥, the evolution is determined
only within the shaded region; to extend beyond this region, boundary conditions must

be imposed (adapted from [14, 106]).

The timelike boundary in AdS and CAdS encloses the spacetimes in a “box”. This means
that, physically, null rays can reach the boundary in finite coordinate time. Hence, neither
AdS nor CAdS are globally hyperbolic spacetimes. This implies that these spacetimes

require boundary conditions because, in order to solve the equations of motion, we must
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Figure 3.3: ESU with two dimensions suppressed. The cylinder extends to infinity in both
directions (adapted from |10, 106]).

specify what happens to the field at the boundary Z. This is a mandatory requirement for
constructing a meaningful quantum field theory [14,18,21,34,35/37,38,59,72, 73,1006, 1 46].
However, one problem arises: the boundary in AdS, spacetime at p = /2 is not part

of the AdS, spacetime itself; this can introduce some difficulties in imposing boundary

conditions [72,73,106]. This problem can be overcome by mapping the AdSs spacetime
into the Einstein Static Universe (ESU) [14]. We give the ESU metric as (see Figure 3.3)
ds®> = L? (—dt2 +dp? +sin’p [d92 + sin’ 6 d¢2] ) (3.9)

ESU is globally hyperbolic and its metric is conformal to that of the AdS metric in four
dimensions,

ds? = L% sec? p(—dt2 + dp* 4 sin’ p [d92 + sin” 6 ddﬂ ) (3.10)
We can make a conformal transformation of the AdS metric (3.10) to that of the ESU

g =2 g, Q= secp. (3.11)

As we can see from Figure 3.3, this spacetime can be thought of, in four dimensions, as a
cylinder with no boundary, embedded in a five-dimensional Minkowski space. This eases
the imposition of boundary conditions at the AdS boundary, because we have now made

it part of the spacetime.

3.1.1 Poincaré patch

For our purposes, we will not work with the entire CAdS4y1 spacetime. Instead, we

focus on the Poincaré patch (PAdSg41), defined by selecting an appropriate coordinate
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system [20]:
XY = % (22 +L*+ 2 —t7), (3.12)
Xi:L:i, i=1,2,...,(d—1), (3.13)
Xt = % (22— L +2* —t7), (3.14)
X+l — % (3.15)

where t,2° € R, z € (0,00), and
d—1

7= (2" (3.16)

i=1

and z acts as the radial coordinate, given by

1 X0 Xxd
—= 3.17
The Poincaré patch metric now takes the form
L7 2 2 2

Thus, PAdS411 in Figure 3.4 is conformal to the upper half-plane:

z=0

Figure 3.4: Penrose diagram for the Poincaré patch shown in blue, denoted by z > 0
(adapted from [100]).

HTY = {(t,z1,...,2q_1,2) € R | 2 > 0}, (3.19)

endowed with the Minkowski metric. The conformal factor is Q = 7, i.e., 229 =n. In

this way, the Poincaré patch is identified with the Minkowski metric through a conformal

transformation. This greatly simplifies the analysis of conformal fields on the curved
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spacetime, as it allows the use of two-point functions in Minkowski space for calculations,
taking into account the transition between metrics via the conformal factor. The radial
coordinate z effectively divides CAdS spacetime into two regions, z > 0 and z < 0. Each
of these regions represents half of the CAdS spacetime, with the Poincaré patch typically
given by z > 0, see Figure 3.4. The plane z = 0 is a timelike boundary, which is not part
of the PAdS spacetime, as evident from Equation (3.18). QFTCS formulated on PAdS
still requires boundary conditions to be specified at the timelike boundary z = 0, which

will be the topic of the next section.

3.2 Boundary conditions

As we mentioned in the previous section, CAdS spacetime can be naively thought of as
placing the universe in a box. The "box" idea comes from the fact that the spacetime
possesses a boundary at infinity, making it non-globally hyperbolic as explained in the
previous section. One of the fundamental assumptions in quantum field theory in curved
spacetime is that the underlying background is globally hyperbolic, see Definition 1.2.2.
This condition on the spacetime geometry ensures that, for a wave equation such as the
Klein-Gordon equation, the associated Cauchy problem is well-posed, with a unique so-
lution existing once suitable Cauchy initial data are specified. However, in the case of
CAdS spacetime, this issue can be addressed by prescribing appropriate boundary condi-
tions |72, 73, 116]. The choice of boundary conditions is closely related to the differential
equation under consideration. Since our primary focus is on the scalar field, for conve-

nience, we recall the Klein-Gordon equation in curved spacetime:
(O—-p?>-ER)@ =0, (3.20)

where the implementation of boundary conditions depends on the type of differential
equation, and hence on the type of field that we are studying. Notably, the d’Alembertian
operator [ is metric-dependent, so if we were considering something other than asymptot-
ically AdS spacetimes, we would also see a difference in the construction of this differential
operator. However, this will not be the case, as we focus on asymptotically AdS space-

times in this thesis.

For conformal fields, boundary conditions on AdS are broadly classified into two categories:
transparent and reflective. With transparent boundary conditions, scalar field modes can
freely pass through the CAdS boundary. For these boundary conditions to be properly
defined, we need to embed the CAdS spacetime in the ESU, enabling the field modes to
traverse the boundary and reappear on the opposite side within the ESU. This can be
seen in Figure 3.5, where the left-hand image illustrates the embedding of spacetime in
the ESU and the behaviour of scalar field modes under transparent boundary conditions.

These boundary conditions were utilised in [92]. On the other hand, reflective boundary
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Transparent boundary conditions Reflective boundary conditions

Figure 3.5: Representation of boundary conditions for a classical field on AdS. The di-
agrams show the ESU from Figure 3.3, with the cylinder opened up. The vertical lines
marked with double arrows indicate where we cut, and once identified, they restore the
cylinder. AdS spacetime lies between the interior vertical lines. The blue diagonal lines
denote null geodesics (on the ESU in the left-hand figure and on AdS in the right-hand
figure), while the red curved lines in the right-hand figure represent timelike geodesics
(adapted from [10, 106]).

conditions correspond to Dirichlet, Neumann, and Robin (mixed) conditions, as shown in
the right-hand image of Figure 3.5. In this case, the Dirichlet boundary condition imposes
that the field modes vanish at the spacetime boundary,

d =0. (3.21)

Neumann boundary condition, that the normal derivative of the field vanishes at the

spacetime boundary,
0P

in_

While Robin (mixed) boundary condition is a linear combination of Dirichlet and Neumann

0. (3.22)

conditions, parameterised by the Robin parameter ¢, |73, 1006],

dcos( + gfsing =0, (e€l0,n]. (3.23)

From the general Robin condition, it is evident that for ( = 0, the Dirichlet condition is

recovered,
P =0, (3.24)
and for ¢ = 7, the Neumann condition is recovered,
0d
op

Furthermore, Dirichlet and Neumann boundary conditions are maximally symmetric,

0. (3.25)

meaning they do not break the symmetry of the spacetime when imposed. Hence, in
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pure AdS, which lacks a singularity, its maximal symmetry allows many quantities rele-
vant to quantum field theory (QFT) to be derived in closed form when these boundary

conditions are imposed.

This freedom in choosing the type of boundary condition to be imposed on an AdS back-
ground gives rise to a wide range of possible scenarios that can be studied. This could be
an interesting branch of research, where one can investigate whether changing the bound-
ary conditions modifies the final physical results of the evaluation of observables such as
the SET. The possibility of changing boundary conditions is useful also for studies of the
AdS/CFT correspondence. In fact, changing boundary conditions corresponds to new the-
ories in the “bulk”. We have only introduced a few possibilities for boundary conditions;
the type of boundary condition also depends on the type of field that we are studying.
For more general boundary conditions, see [31-38,10,59|. The analysis that we have pre-
sented focused mainly on the pure AdS spacetime without considering a singularity. The
same approach and analysis can be applied to black hole spacetimes that are asymptot-
ically AdS. In fact, the same boundary conditions can be imposed, depending only on
the nature of the differential equation we are considering (in this case, the Klein-Gordon

equation). We will now introduce some AdS black hole spacetimes.

3.3 Anti-de-Sitter black holes

Black holes in AdS spacetime have been extensively studied in the literature. In this thesis,
we will present a study of the five-dimensional Kerr—AdS black hole in Part II. However,
the BTZ black hole in three dimensions, as well as the Schwarzschild-AdS and Kerr—AdS
black holes in four dimensions, have also been investigated in the literature [27,67,68], and
we will provide a brief review of them in Sections 3.3.1, 3.3.2 and 3.3.3. Several advantages

arise when working with AdS black holes.

Firstly, AdS black holes exhibit a unique thermal behaviour due to the presence of a
boundary. Unlike their asymptotically flat counterparts, AdS black holes can reach ther-
mal equilibrium with their surrounding radiation [67]. This leads to the existence of
stable AdS black holes, whereas asymptotically flat black holes are generally unstable. In
this thesis, we will be particularly interested in Hartle-Hawking states, which describe
quantum fields in thermal equilibrium with a black hole. These states are well-suited for
studying the thermodynamic properties of AdS black holes and their associated quantum
field behaviour.

Secondly, the relevance of AdS black holes stems from the AdS/CFT correspondence [93],

which hypothesizes a duality between gravity in asymptotically AdS spacetime and a con-
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formal field theory (CFT) on its boundary. Hence, studying AdS black holes provides
an opportunity to explore this duality, enabling researchers to probe aspects of quantum

gravity and strongly coupled field theories [151].

Finally, AdS black holes are particularly useful in quantum studies, as they provide a
simplified framework that facilitates analysis. For instance, the superradiant effect, which
complicates the study of modes in asymptotically flat rotating black hole spacetimes, does

not occur due to the presence of the boundary. We will see this more in detail in Part II.

In this thesis, we will explore various aspects of AdS black holes, providing a brief review
of Schwarzschild-AdS, Kerr-AdS, and the BTZ black hole.

3.3.1 Schwarzschild-AdS

We will now introduce the Schwarzschild-AdS black hole, which is a static black hole in
four dimensions, to highlight the differences between this case and the asymptotically flat
Schwarzschild black hole metric introduced in Section 1.3. The Schwarzschild-AdS black
hole is a solution of the Einstein field equations (1.40) when A is negative. This generates

solutions that are asymptotically AdS.

The metric for the static Schwarzschild-AdS black hole can be written using Schwarzschild
coordinates (¢,r,0,¢) and a signature (—, +, +, +):

oM 2 oM 2\
ds? = — (1= 2+ D) a2+ (1- 25+ ) ar? +02d0% + 72 sin0d6?,  (3.26)
r L? r L?

where M is the mass of the black hole, and L is the AdS radius, related to the cosmo-
logical constant A by L? = —%. The event horizon can still be determined through the
Schwarzschild radius r,, modified for the AdS case. This can be found by putting the

coefficient of dt? in the metric equal to zero, and we find:

2M 12
1-= +%:0. (3.27)
S

This can be rearranged into a cubic equation of the form:
3 —2ML? + 1L = 0. (3.28)

The nature of the solutions can be analysed using the discriminant A. Depending on the

value of A, we have the following cases:
e When A > 0, the cubic equation has three distinct real roots.

e When A < 0, the equation has one real root and two complex conjugate roots.
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e When A = 0, the equation has at least two coincident roots, resulting in a multiple

root.

The discriminant for a cubic polynomial ax® + bx? + cx +d =0 is
A = 18abed — 4b3d + b*? — 4ac® — 27a%d?, (3.29)

in this case, A is:
A = —4L5 —108LAM?, (3.30)

which is negative for all L and M in R. This means that we have only one real root, which
corresponds to the value of the event horizon of this black hole. The real root of A is usually
evaluated numerically. We can still introduce the coordinates for the Schwarzschild-AdS
case, u and v, also introducing 7, as the tortoise coordinate for the AdS case, for which the
explicit evaluation depends on the event horizon radius. The Kruskal coordinates (U, V)
can then be defined, where we use the surface gravity of the Schwarzschild-AdS black hole.
This coordinate transformation regularises the metric, showing once again that the only
physical singularity is at 7 — 0. Hence, the AdS case retains the essential features of the
flat case, but the asymptotic behaviour of the spacetime is determined by the negative
cosmological constant. Once defined the Kruskal coordinates as in the asymptotically flat

case we show the Penrose diagram for this spacetime, see Figure 3.6.
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Figure 3.6: Penrose diagram for the maximal analytic extension of the Schwarzschild AdS
black hole.

Another important difference is the one of thermodynamic stability which changes between

the asymptotically flat and AdS case, see [07] for more detail. We will introduce the

concept of quantum states on this background in Section 3.4.

o8



3. Quantum field theory on anti-de Sitter black holes

3.3.2 Kerr-AdS

We will now introduce the corresponding rotating AdS black hole as in Section 1.3. The
Kerr-AdS black hole is a stationary black hole, having mass M and angular momentum
J. The Kerr-AdS black hole in four dimensions is a rotating black hole solution, whose

line element, with coordinates (¢,r,0, ¢) and signature (—, 4, +, +), is:

A asin? @ 2 p?
2 r 2
ds® = _F (dt— = dng) + A—Tdr
2 Apsin2 2 2 2
+ g—ede%r ‘)i% <a ar— L0 d¢>> . (3.31)
where
2
Ar = (T‘2 + (12) <1 + [/2> — QMT, (332)
a?
Apg=1-— 73 o8 0, (3.33)
p? =1r? +a’cos? 0, (3.34)
2
_ a

Here, a = J/M represents the rotation parameter, L is the AdS radius related to the
cosmological constant A by L? = —3/A, and = accounts for the asymptotically AdS
nature of the spacetime. The Kerr-AdS black hole in higher dimensions generalises to
what is known as the Myers-Perry-AdS metric [105], where the metric solution includes
multiple independent rotation parameters corresponding to each plane of rotation [61,62].
We will now introduce the corresponding characteristic surfaces for the Kerr-AdS black
hole, similar to those introduced for the asymptotically flat case in Section 1.3. For the
Kerr-AdS metric, the position of the event horizon, defined as one of the roots of A, = 0,
is no longer as straightforward as in the Kerr solution in flat spacetime. It requires the
analysis of the discriminant of A, to understand the nature of the solutions. The radii of

the event horizon will depend not only on M and a, but also on L in a non-trivial way.

In addition, we can generalise the stationary limit surface to the AdS case. This surface
retains its definition as the limit surface inside which an observer cannot remain at rest
relative to infinity. In this case, the parameter L will also appear in the expression for
the stationary limit surface. The ergosphere still exists in the Kerr-AdS case, and it is

delimited by the stationary limit surface.

Lastly, the third characteristic surface, the light surface, is defined as the surface where
the angular velocity of an observer co-rotating with the black hole matches the speed of
light. The presence or absence of this surface in Kerr-AdS black holes significantly affects

the analysis. This will be discussed extensively in Chapter 4, particularly in the context
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3. Quantum field theory on anti-de Sitter black holes

of higher-dimensional Kerr-AdS spacetimes. We will see a direct example of these surfaces

and how to analyse them for an AdS black hole in Chapter 4.

3.3.3 BTZ black hole

In this subsection, we present another important case of the AdS black hole scenario, the
BTZ black hole [16, 17]. Tt is named after the authors who first analysed this black hole:
Banados, Teitelboim, and Zanelli. The BTZ black hole is a topological black hole in three
dimensions that is asymptotically AdS and rotating. In this case, a topological black hole
refers to a geometric construction obtained by identifying points in CAdS spacetime. This
identification creates a situation in which we can define an event horizon that causally
separates the rest of the spacetime. Since it is generated from CAdS, this is an asymp-
totically AdS black hole which, in its most general form, is also rotating. The resulting
metric is a solution to the Einstein field equations and can be studied in the same way as

the previous examples.

We will not provide an extensive analysis of this black hole in this thesis, even though it
serves perfectly as a toy model to study new approaches and theories. We will present the
line element and give some intuition on why it is an interesting case of study, even if it is

a black hole in three dimensions, and how we can exploit this to our advantage.

The line element of the black hole is:

2 2 2\ —1
2 _ 2 r J 2, 292
ds —(M—L2>dt Jdtd9+<L2 M+47“2> dr® + r=df”, (3.36)
where (t,, ) is the coordinate system, with —oo < ¢ < 400, 0 < 7 < 00, and 0 < 6 < 2.
M and J are, respectively, the mass and the angular momentum in these spacetimes. We

will mainly follow the results shown in [92].

We will introduce, as in the other cases, the characteristic surfaces of this background,
starting with the event horizon, at ry. This spacetime also has an inner horizon at r_.
We define both as:

ry = L|O‘i| \/M+ i\/M— (3.37)

where M and J can be written as

% +a? L ojo_
M=-—"F—"—"">0, J="-7""7
4 > 9y 2 Y

2 2 2 J2
al —o =4\ M 7L (3.39)
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3. Quantum field theory on anti-de Sitter black holes

This is the general solution for the rotating case of a BTZ black hole. The static black
hole is obtained simply by setting J = 0, where a4 = 2v/ M > 0, a— = 0, and there is no

inner horizon.

We can also define the stationary limit surface r¢. This is a Killing horizon, which is a null
hypersurface where the norm of a Killing vector field vanishes. Looking at the component

gyt of Equation (3.36), we find that when it vanishes, we can define:
re = MYV?L, (3.40)

and the region between r and rs is called the ergosphere. Hence, Equation (3.40) defines
a Killing horizon for the Killing vector d;. We then have that 0; is timelike for r > rg,
lightlike at r = rg, spacelike for r; < r < rg, and no static observer can exist for r < r,.

Furthermore, we can define a Killing vector £ as
§ =0+ 0p, (3.41)

where 2, is the angular velocity of the event horizon, defined as

J

Qy = —.
h 27“3_

(3.42)

The Killing vector in Equation (3.41) is the generator of the event horizon r = ri. In
addition, £ is timelike everywhere outside the event horizon, which is what we need for
the QFTCS analysis. Also, there is no speed-of-light surface as in the slowly rotating
Kerr-AdS case.

This setup looks quite similar to the one we will encounter in Part II, where we study
a Kerr-AdS five-dimensional black hole. However, in this case, the lower dimensionality
makes every calculation significantly easier, allowing almost everything to be evaluated
explicitly without resorting to numerical analysis. We report a few of the useful litera-
ture on this black hole which shows the multitude of possible avenues of research of this

background [31,33,36,39,46,584,90,92,94-96, 133].

3.4 Quantum states on black holes and anti-de-Sitter black

holes

We will now use the definition of quantum states given in Section 2.4, specifically look-
ing at its application to black hole spacetimes. To define a quantum state, we need to
quantise the field under consideration. As we mentioned before we will consider a scalar
field. Following the framework of quantum field theory in curved spacetime, see Chapter

2, there are different ways to accomplish this.
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3. Quantum field theory on anti-de Sitter black holes

One approach is known as the algebraic approach. This method utilises algebraic princi-
ples to construct an algebra that encapsulates all the information about the field and the
spacetime under study. Quantum states are then defined as linear functionals on this alge-
bra. The second approach is the more conventional method of canonical quantisation. In
this method, the field is decomposed into sets of positive- and negative-frequency modes.
The process involves constructing annihilation and creation operators: upon quantisa-
tion, positive-frequency modes are associated with annihilation operators, while negative-
frequency modes are associated with creation operators. The ground state is then defined
as the state for which the annihilation operator, constructed in this manner, acts to yield
zero. These are the two primary methods of quantisation, we will explore the canonical

quantisation in Part II.

For our purposes, we will consider the canonical quantisation procedure to define the fol-
lowing quantum states in this section. In Minkowski spacetime, which is a flat spacetime, it
is possible to define a unique global vacuum state. However, in QFTCS, this is usually not
the case. In fact, there is no preferred way to decompose the scalar field into positive- and
negative-frequency modes. This arises from the fact that, in curved spacetimes, a unique
vacuum state does not exist due to the lack of invariance under the Poincaré group. This
translates into the fact that we can decompose the scalar field modes into positive and
negative frequency modes with respect to different choices of time coordinate systems,
allowing the definition of different vacuum states with different physical interpretations.
We will now briefly review the possible ground states that can be defined on black hole
spacetimes. In particular, we will first focus on the Schwarzschild black hole case for a
scalar field and then explain the differences for a Schwarzschild-AdS black hole.

One major difference that will be common throughout the analysis and the construction
of the quantum states can be seen by studying the Penrose diagrams of the Schwarzschild
black hole spacetime, as shown in Figure 3.7 (which is reported from Section 1.3 for conve-
nience), and the Penrose diagram for the Schwarzschild-AdS black hole, shown in Figure
3.6.

In an asymptotically flat Schwarzschild black hole spacetime, we have two sets of modes
that we need to study in order to construct quantum states [113]. These are called the “in”
and “up” modes, as shown in Figure 3.8. The “in” modes originate from past null infinity
Z~, while the “up” modes originate from the past horizon H~. The “in” and “up” modes
form an orthonormal basis of the field modes, which can be used to decompose the scalar

field and proceed with the canonical quantization procedure.

In the asymptotically Schwarzschild-AdS black hole spacetime, this scenario does not oc-
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3. Quantum field theory on anti-de Sitter black holes
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Figure 3.7: Penrose diagram for the maximal analytic extension of the Schwarzschild black
hole.

Figure 3.8: In/up modes (blue lines) depicted in Region I of the Schwarzschild black hole
(adapted from [113]).

cur. In fact, the presence of the spacetime boundary at r = oo makes it that we only have
one set of modes, as shown in Figure 3.9, when we impose reflective boundary conditions.
This will simplify the construction of the quantum states as we will see more in detail in
Part II.

In Schwarzschild spacetime, three primary quantum states have been defined: the Boul-
ware state, | B) [23], the Unruh state, |U) [110,111], and the Hartle-Hawking state, |H) [6].
Each of these states is associated with a distinct choice of time coordinate, which is used to
decompose the scalar field into positive and negative frequency modes. It will be possible
to define the Boulware and Hartle-Hawking states also for the spacetimes that we will

study in more detail in this thesis. We will now discuss each of these states, highlighting
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3. Quantum field theory on anti-de Sitter black holes

Figure 3.9: Penrose diagram of Region I in the Schwarzschild-AdS black hole with reflective

boundary conditions, showing one set of modes (blue line).

the physical significance of the corresponding choice of time coordinate.

3.4.1 Boulware state

The Boulware state, |B) [23], is the ground state defined with respect to the Schwarzschild
coordinate t. This has the physical interpretation of being as empty as possible for a static
observer far from the black hole. This means that at both past Z= and future Z* null
infinities in Figure 3.7, the state appears vacuum. In terms of the scalar field modes, this

corresponds to an absence of particles.

The choice of time coordinate is motivated by the fact that the Schwarzschild spacetime
is asymptotically flat. This means that as r — oo, the spacetime approaches Minkowski
spacetime. At infinity, we can choose the time coordinate to be the Schwarzschild coordi-
nate t. Consequently, we can define positive- and negative-frequency modes following the
standard quantum field theory prescription in flat spacetime, utilizing the “in” and “up”
modes as an orthonormal basis for the construction, see Figure 3.8. Another important
aspect is that the Boulware state respects the underlying symmetries of the Schwarzschild

spacetime. However, this state diverges on the event horizon [29].

The Boulware state can also be defined in asymptotically AdS black holes. A more de-
tailed description of the canonical quantisation procedure will be provided for the five
dimensional Kerr-AdS black hole in Part II. For now, this section offers only a brief review

of the physical meaning of this quantum state.
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3. Quantum field theory on anti-de Sitter black holes

3.4.2 Hartle-Hawking state

The Hartle-Hawking state |H) [64] is the thermal ground state, defined with respect to
the Kruskal coordinates U and V. This choice is motivated by the fact that the Kruskal
coordinate U serves as the affine parameter along the null generators of the past horizon
‘H~, where an outgoing flux of Hawking radiation is observed. Similarly, the Kruskal coor-
dinate V is the affine parameter along the null generators of the future horizon H*, where
an incoming flux of Hawking radiation is present. For this reason, the Kruskal coordinates
provide a natural choice for defining positive- and negative-frequency modes. Physically,
this state corresponds to a scenario in which Hawking radiation is incoming from past null
infinity Z— and outgoing at future null infinity Z", in Figure 3.7. This results in a thermal
flux of particles at both past and future null infinity.

Another interpretation of the Hartle-Hawking state |H) is that of a black hole in an unsta-
ble thermal equilibrium with a heat bath at the Hawking temperature [76]. This ground

state is regular on both the past and future horizons, H*.

The Hartle-Hawking state cannot be defined for a quantum scalar field in the Kerr black
hole background [78]. Specifically, there is no quantum state that describes a Kerr black
hole in thermal equilibrium with the spacetime at the Hawking temperature. This re-
striction can be intuitively understood by considering the simplified example of a rotating
thermal state in Minkowski spacetime. In Minkowski spacetime, a rigidly rotating thermal
state for a quantum scalar field does not exist [14]. However, we can define such a state
if the Minkowski spacetime is confined within an infinite cylinder, symmetric around the
axis of rotation, with a sufficiently small radius to avoid the formation of a speed-of-light
surface [9]. We introduced the concept of the speed-of-light surface in Chapter 1 when
discussing the Kerr metric. Similarly, if a Kerr black hole is enclosed by a perfectly re-
flecting mirror, such as in the case of a Kerr-AdS black hole, a Hartle-Hawking state can

be defined for a quantum scalar field [51].

To summarise, this quantum state can be defined for the Schwarzschild-AdS black hole.
While it does not exist for the Kerr black hole, it does for the Kerr-AdS black hole when
specific condition are met. We will see its construction in more detail when studying
the case of the Kerr—AdS five-dimensional black hole in Part II, where we will determine
these specific conditions. An unfortunate side effect of introducing a reflecting boundary
to construct such rotating thermal states is the emergence of Casimir divergences at the
boundary [29,50]. These divergences however are absent on asymptotically AdS black
holes. Specifically, as we will see, in the Kerr-AdS case in five dimensions, these effects do

not occur.
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3. Quantum field theory on anti-de Sitter black holes

3.4.3 Unruh state

The Unruh state, |U), is the ground state defined with respect to both the Schwarzschild
time ¢ and the Kruskal coordinate U. This is because the Unruh state exhibits charac-
teristics of both the Boulware and Hartle-Hawking states. It is a ground state that is as
empty as possible at past null infinity, Z~, like the Boulware state, while having a thermal
flux of Hawking radiation at future null infinity, Z", similar to the Hartle-Hawking state.
In terms of the scalar field modes, this state can be interpreted as an absence of particles
in the in-modes at past null infinity and a thermalised flux of particles in the up-modes
at future null infinity. Hence, we use the Schwarzschild time coordinate ¢ to decompose
the scalar field into positive- and negative-frequency modes for the in-modes at past null
infinity Z~, as done for the Boulware case. Meanwhile, for the up-modes which exhibit an
outgoing Hawking radiation at future null infinity Z*, we employ the Kruskal coordinate
U, which serves as an affine parameter along the null generators of the past horizon H ™,
to decompose the field into positive- and negative-frequency modes. The Unruh state |U)
is regular on the future horizon H™* but diverges on the past horizon H~. This state is

often interpreted as describing a black hole formed by gravitational collapse.

For this reason, it would seem that the Unruh state is a suitable quantum state to study
black holes and Hawking radiation. The construction of the Unruh state on a Kerr black
hole spacetime is well-established [110, 111], and it is also possible to compute the expec-
tation value of the renormalized stress-energy tensor [ 11]. However, the Unruh state does
not preserve all the symmetries of the underlying spacetime, specifically, it lacks symme-
try under the simultaneous inversion of the time and azimuthal angular coordinates. The
literature usually prefers the use of the Hartle-Hawking state [11,12,69,70,137]. This is
mainly because the Hartle-Hawking state is a thermal state in equilibrium that is also
regular across both the future and past event horizons, and it respects the symmetries
of the underlying black hole geometry. In addition, the Unruh state cannot be defined
for asymptotically AdS black hole spacetimes. This arises from the fact that we cannot
treat the “in” and “up” modes differently in the asymptotically AdS case, as we only have
one set of modes, as shown in Figure 3.9, when we impose reflective boundary conditions.
Therefore, the Unruh state will not be addressed in this thesis. For further details, we

refer to [1 11, 141].

Summary

In this chapter, we have introduced the final main concepts needed before delving into
the research parts of the thesis. We have explained what Anti-de Sitter spacetime is, with
particular focus on the presence of a boundary, for which we have introduced some of the
possible boundary conditions that can be imposed to solve the Klein-Gordon equation. We

then introduced the main focus of the thesis: AdS black holes, providing a brief summary
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3. Quantum field theory on anti-de Sitter black holes

of known cases.

Finally, we have given a physical interpretation of the quantum states that can be con-
structed over a black hole spacetime. These are the Boulware, the Hartle-Hawking, and
the Unruh states. Specifically, we focus more on the Hartle-Hawking state since it is
the preferred state for QFTCS analysis, due to its regularity across the event horizon
when studying black holes, and because its symmetry properties make computations and
numerical evaluations easier. This is particularly true for Euclideanized black holes, for
which the evaluation of renormalized expectation values using the Hartle-Hawking state
is simpler. However, in this thesis we will take advantage of the Hadamard properties
and the fact that both the Boulware and the Hartle-Hawking state are Hadamard states;
hence, we will not perform renormalization, because we will consider differences in the
expectation values of observables in these two quantum states, more detail will be given
in Part II.
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Part 11

Kerr-AdS, (4 + 1)-dimensional black
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Introduction

‘This project has completely confiscated my life, darling. Consumed me as only hero work can.
My best work, I must admit. Simple, elegant, yet bold.’
- Edna, from "The Incredibles".

‘Questo progetto mi ha completamente confiscato la vita, tesoro. Mi ha consumato come solo un lavoro

da eroe riesce a fare. E il mio capolavoro, lo ammetto: semplice, elegante eppure importante.’

We now begin the description of the main protagonist of this thesis, and of my PhD, the
Kerr-AdS 5D black hole spacetime. In Chapter 4 we introduce the geometry of this black
hole, and then we start building a QFT on this curved spacetime, following the approach
introduced in Chapters 1, 2, and 3. We do this by analysing a scalar field in Chapter 6.
Before that, we provide a description of the spin-weighted spherical harmonics functions
in Chapter 5, which will be propedeutical for the analysis later on. We then construct
quantum states on this background in Chapter 7. Finally, we evaluate the two main ob-
servables of interest, the stress-energy tensor and the vacuum polarisation, presenting the

numerical analysis and results in Chapter 8.

During Part II we will use an unconventional coordinate system array, permitted by GR
theory, namely (r, 0, ¢,1,t) instead of the usual (¢,7,0,¢,1) as typically utilised in the
literature. This choice originates from my initial calculation of this metric at the start of
my PhD, where I displayed all the spatial coordinates first and then the time coordinate.
Although I did not expect this to be a significant choice at the time, it has stuck with me
throughout my PhD. Hence, the space-time signature will be (+, +, 4+, +, —) throughout

Part II and we use units in which 871G =c=h=kg = 1.

This will be a comprehensive journey spanning three and a half years of my life, so buckle
up, dear reader, there is much to discover. The first question that comes to mind is:
why should someone study this black hole, in five dimensions and in AdS? This question

inspired the titles of many of my talks and was a genuine puzzle at the start of my PhD.
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I will try to show you why it is indeed interesting to study this black hole.

One of the main reasons for choosing this black hole is that, regardless of appearances,
studying a quantum scalar field over this background is easier than on a rotating black
hole in four dimensions. One of the many reasons why it is easier is that, thanks to the
additional dimensions, we can introduce an enhanced symmetry in the metric, as we shall
see in Chapter 4. Together with many other reasons that will be highlighted throughout
the whole Part II.

Furthermore, an intuitive picture of why one might be "dragged" to study this black hole
is provided by the light surface. We briefly introduced this characteristic surface in Part I,
and it will be discussed in depth in Chapter 4. In order to grasp this “intuitive” picture,
we have to dip our toes into the ocean of concepts that we will need to explore to fully
understand this topic. Hence, if this is not clear, I promise it will be by the end of the
thesis. We are interested in whether the light surface r; exists, where, by abuse of nota-
tion, we use the same symbol to denote both the surface itself and its radial coordinate.
This is because if this surface does not exist, we can define a time-like Killing vector field
(see Equation (1.24)) that remains time-like everywhere outside the event horizon of the
black hole under consideration, which means that we can properly define a QFT on this

background.

Furthermore, we will mainly focus on the Hartle-Hawking state introduced in Section 3.4
and will be discussed more in detail in Section 7.3. The Hartle-Hawking state is a partic-
ular type of state in thermal equilibrium. From what we know thus far, the presence of
rj seems to have a significant impact on the existence of this state. Let us now consider
a table of different black holes:

Black Holes Tj Hartle-Hawking State
BTZ X v

Kerr-4D v X
Kerr-4D-AdS X (in some limit of L) v (in some limit of L)
Kerr-5D-AdS ? ?

Thus, considering the special cases for the Kerr-4D-AdS black hole, we can see that the
presence of the light surface is related to the existence of the Hartle-Hawking state. There
is a theorem in four dimensions [60] which proves the existence of the Hartle-Hawking state
on a stationary black hole spacetime if there is a globally timelike Killing vector and no
speed-of-light surface. We would like to understand if this result holds in Kerr-5D—-AdS.

We will investigate whether r; exists and, if so, in which limit of L it disappears, or if it
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exists for every value of L. If r; does not exist, then we will examine whether it is pos-
sible to construct the Hartle-Hawking state for that black hole. Hence, not only can we
properly define a QFT over this background in the absence of r;, but we can also specify
the quantum state of interest, namely the Hartle-Hawking state. Spoiler alert: we will
discover that in some regime the light surface does not exist, enabling us to construct the
Hartle-Hawking state and carry out the remainder of the QFTCS analysis, which would
have been impossible otherwise. The reader may have already noticed that there are more
than ten pages left to read, which means that we have indeed managed to achieve some-

thing.

Hence, without further ado, let us begin our journey into the Kerr-AdS 5D black hole

world by introducing its metric in three possible ways.
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Chapter 4
The geometry of the spacetime

In this chapter, we introduce three possible coordinate choices for the 5D-Kerr-AdS
black hole metric, namely the general metric of the 5D Kerr-AdS black hole (4.1), given
in [58,109,125], the enhanced symmetry metric (4.6), given in [13], and the asymptotically

flat metric (4.15), given in [57].

In the first section, we will introduce these three metrics and outline their differences. We
will also show the coordinate transformations between them for later comparisons within
the thesis. Furthermore, we present the Killing vectors (4.19), and symmetries associated
with the metric (4.6), which is the one that we study throughout this thesis. Notably, we
highlight the importance of ¢ (4.36), which acts as the null generator of the event horizon

and can be also used to derive the expression for the light surface (4.44).

In the second section, we evaluate the three characteristic radii of the black hole: the event
horizon, the light surface, and the stationary limit surface. We explore how they qualita-
tively change with variations in the rotational parameter of the black hole. In particular,
we will focus our attention on the identification of a regime where the light surface ceases
to exist. This leads us to define ¢ as a time-like Killing vector (see Equation (1.24) for
the definition of a time-like Killing vector) everywhere in the spacetime outside the event
horizon, providing a definition of time and also laying the foundations for later calcula-
tions on the scalar field. Additionally, we offer insights into some of the geometrical and
thermodynamic properties of the black hole, including the evaluation of the Kretschmann

scalar, the temperature, and the surface gravity.

4.1 The metric of the 5D-Kerr-AdS black hole

Thanks to the diffeomorphism invariance of general relativity, we can describe the same
physical system using different sets of coordinates. Therefore, in this section, we will define

three distinct line elements associated with the 5D Kerr-AdS black hole: the general line
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element (4.1), as presented in [105, 109, 125], the enhanced symmetry line element (4.6),
given in |13], and the asymptotically flat line element (4.15), shown in [57]. We will focus
on their properties, in particular on the enhanced symmetry introduced in metric (4.6).
Furthermore, we will show how to change between the coordinate systems associated with
these line elements, which is going to be useful for later comparisons. Additionally, we
will introduce the symmetries and Killing vectors specific to the line element (4.6), which

is the one that we are going to study throughout Part II.

4.1.1 General metric of the 5D-Kerr-AdS black hole

The general metric for the 5D Kerr-AdS black hole, with coordinate system (o, ¥, 1, @2, t)

is given in [105, 109, 125],

A .2 2 2 2 2
@M:_g@hmmﬁw_@mﬁwg+ww+wwa
2
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Ay sin? 9 24 a2 2 Agcos?d 24+ a3 2
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a
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where ¥ € (0,5), ¢1 € (0,27) and @2 € (0,27). The metric in (4.1) is a solution
of the vacuum Einstein field equations in five dimensions with a cosmological constant
proportional to —L~2, namely,

20

R, = —4L7%g,,, R:—ﬁ,

(4.3)

and the limit L — oo reproduces the asymptotically flat case. Here, M is the mass of the
black hole, a; is the rotational parameter associated with the coordinate @1, and as is the
rotational parameter associated with the coordinate 2. We denote this line element by
ds%yp, With N M referring specifically to Noda and Motohashi [109]. We want to exploit

the fact that we are working in five dimensions and in order to do this we introduce an
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enhanced symmetry in the system taking a; = a2 = a in the metric (4.1) which becomes:

A in2 Y 2.9 2 2 2
ds?y = — =1 (dt LR P b d<p2> + 20 gp2 4+ 20 gy?

9 Ag Aﬁ Ag Aﬁ
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2
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a
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4.1.2 Enhanced symmetry metric of the 5D-Kerr-AdS black hole

In addition to the enhanced symmetry introduced in the metric (4.4), we introduce a
particular set of coordinates that will aid us in the calculations later on, acting in synergy
with the enhanced symmetry. We start our analysis by reporting the line element of the
metric of the 5D Kerr-AdS black hole with the set of coordinates (r, 8, ¢, v, t) [13]:

2
@2:_f@fﬁ2+gvfmﬂ+fipw2+$¥9d&]
1 2
+ h(r)? d¢4—§am9d¢—fxﬂdt ., (4.6)

where 0 € [0,7), ¢ € [0,47), ¢ € [0,27). The metric in (4.6) is a solution of the vacuum
Einstein field equations in five dimensions with a cosmological constant proportional to
a length scale —L~2, and the limit L — oo reproduces the asymptotically flat case. We

have that the metric functions are

9 12 2M  2Ma?  2Ma*\ "
g(r):<1+L2_r2+r2L2 7"4> ;
h(r)? = r? (1 + 2]7\ia2> )
Qr) = e
1= o) o

where M and a stand for the mass and spin parameters, respectively. We take a to be non-

negative, without loss of generality. We also display the value of the angular momentum

74



4. The geometry of the spacetime

J of the black hole [13]:
J = 2r%aM. (4.8)

We also write the transformation of coordinate with respect to the metric (4.4):

S TET IR
1-% Ay
0= 209,
¢ =—(p1— ¥2),
w=%§+¢2;¢1, (4.9)
and N
M = ié' (4.10)

Notably ¢ in (4.4) is the same as in (4.6). We report also the matrix form of the metric
Guv (4.6)

2

g°(r) 0 0 0 0
0o 0 0 0
0 0 %h2(7") cos?(0) + %7‘2 sin?() %h2(7“) cos(0) —%hZ(r) cos(0)Q(r) |, (4.11)
0 0 %hQ (r) cos(6) R2(r) —h2(r)Q(r)
0 0 —%hz(r) cos(0)Q(r) —R2(r)Qr)  h2(r)Q(r)? — W}Qﬁ(r)
its inverse g
207 0 0 0 0
0 % 0 0 0
0 o @ eg® — 200t(0) escl6) 0 . (4.12)
0 0 _2cot(ei)2csc(e) B gQ(r)hi(z'r)Q(r)Q 4 h21(r) n co‘si(@) B gQ(T)hjg'r)Q(r)
N 0 GGG S
and its determinant
g=+v—-g= ir?’ sin 6. (4.13)

It is important to note that the metric (4.6) depends on both r and 6 in this form. This
will be useful later, as it simplifies the computational analysis we will undertake. An
alternative form of the same metric can be written, emphasizing its particular structure,

as described in [35]. Using the same coordinate system (r, 6, ¢,,t) in [13], we can write:
4t = — (e + g(r2dr® + h(r)? [d) + Aada® — Q(r)H? + r2apda®da’, (4.14)

where g,g is the Fubini-Study metric on CP¥, where N is the dimension of the space-
time; in this case, N = 1. The coordinates (6, ¢) correspond to the CP! sector. The
two-dimensional Ricci tensor is ]:Za/g =2(N +1)gap, and A = Andz® is a 1-form such that

75



4. The geometry of the spacetime

J = 1dA is the Kéhler form on CPV.

As explained in [85], this alternative formulation of the metric for the 5D-Kerr-AdS black
hole arises from the geometrical property where S2N+1 can be written as an S! fibre over

CPN. We are going to use the metric (4.14) for comparison later on, see section 6.2.

4.1.3 Asymptotically flat metric of the 5D-Kerr-AdS black hole

We also present an alternative form of the metric (4.6) that will be useful for later results.
In this case, where the spacetime is asymptotically flat rather than asymptotically AdS,
the metric takes the following form, expressed in the coordinate system (R, 9, T, ¥, t) [57]:

2
dstg = —dt* + (R* + a*)[sin® ¥ dY? 4 cos® ¥ d¥?] + @ [dt + asin® 9 dY + acos® ¥ dV] ?

PEs
RQ 2
+ 2B GR? 4 g2 di?, (4.15)
=FS
where
Zps = (R*+a*? - RER? and pg = R*+d? (4.16)

and the coordinates YT and ¥ take values in the interval [0, 27|, while the angle ¥ takes

values [0, 7/2], and Ry is a length parameter related to the mass of the black hole

3R?
8\/7G

where we reported the form in which 87G # 1 to facilitate comparison with the reference

Mpg = if 87G =1 then Mpg = 3\/7R2, (4.17)

paper [57], which adopts this choice, in contrast to our convention of 871G = 1. Addition-
ally, we use ¢ in (4.15) as it is the same as in (4.4). As in the previous case, we denote
the line element by dshg, where FS refers to Frolov and Stojkovic [57]. Finally, we state

the relationship between the coordinates in the metrics (4.6) and (4.15):

I S
19—2, T—2 ¥, U= 5 Y, R =r°—a”. (4.18)

In order to bring a bit more clarity to all these coordinates systems, we report a table
(see Table 4.1) with all the changes to move from the metric (4.6) to the others. For
convenience, we also provide a table representing the transformation of the black hole
parameters, including mass, length scale, and rotational parameter, see Table 4.2. Now
that we have brought peace into the world of different line elements and we have a good
grasp on how to move between different papers, we can focus on the particular symmetries

of this spacetime.
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Metric (4.6) | Metric (4.15) Metric (4.4)
r R? =172 —qg? gzzrz(l—%z)—aQ
0 9=1 9 =1
¢ T=5-v | ;i=—fh+v-3%
¥ V=—5-v | pa=—fh+y+3
t t t

Table 4.1: The connections between the sets of coordinates in the metrics (4.4), (4.6) and
(4.15).

Metric (4.6) | Metric (4.15) | Metric (4.4)
M Mps =3yTR: | M = A3M
L L — L
a a a

Table 4.2: The connections between the parameters in the metrics (4.4), (4.6) and (4.15).

4.1.4 Symmetries and Killing vectors

We report the Killing vectors, see Definition 1.2.4, of the metric (4.6), which is the one
that we are going to use throughout this part of the thesis [13]:

0 0 0
fo_au gl_%7 €2_%7
0 0 0
= 2¢08 p— — 2si 2 =

& cosqbaa 81n¢cot96¢+81n¢cscﬁaw,

&= —251n¢2 —2(:05.<bcot<92 —|—cos<Z>csc0i (4.19)

1 90 oo oY’ '
In addition, the metric (4.6) has other symmetries [112, 115], which will become more

important when studying the separability of the Klein-Gordon equation in Chapter 6.

One that can be seen manifestly is:
4.2 Event horizon, stationary limit surface, speed of light

surface

In this section, we now introduce the surfaces associated with the black hole described
by the metric (4.6). We determine the event horizon, light surface, and stationary limit

surface. Additionally, we provide an intuitive representation of the three radii after giving
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a comprehensive analysis. Furthermore, we demonstrate the existence of two key values

of the rotational parameter, denoted as amax and amin.

4.2.1 Event horizon

Firstly, we are going to study the most important surface for a black hole to exist, this is
the event horizon, which can be thought as a boundary between two non-causally related
regions of spacetime. In order to find the event horizon r,, we shall put the inverse
matrix element g.! equal to zero, which, after some manipulation, gives the following

cubic equation for 2

6 4
T r 9 (1 1
= 1=0. 4.21
2a2LZM | 2a2M (L2 a2> + (421)
As a rule, we know that if the discriminant A of the cubic is positive we will have three
real solutions otherwise we will have two complex and one real solution, see Section 3.3.

For this black hole:

8M2 (L2 — a?)” + L*M (L* — 8a* — 20a°L?) — 242 L*
P AVE !

the sign of the discriminant determines whether the solution corresponds to a black hole

A:

(4.22)

or a naked singularity. When the discriminant is positive, it indicates the presence of an
event horizon. However, for sufficiently large values of the spin parameter a, for example
a 2 0.7 as shown in Figure 4.2, the discriminant can become negative. In such cases, no
horizon exists and the solution describes a naked singularity. The extremal case, described
below, corresponds to the boundary where the discriminant vanishes. In the following, we
will focus exclusively on the black hole case. We have three real solutions 'ri, r2, and 7"8.
While the first two are positive, T‘(Q) is negative. We find that our black hole has two event

horizons, an inner r_ and an outer 7 horizon:

1 1/2
= ([B+C]1/3+A[B+C]‘1/3—L2> , (4.23)

and the expressions for r_ and rg are

1 , 1/3 , ~1/3 2\
1 . 1/3 , —1/3 12
ro = \/6<(—1+Z\/§) [B+C)Y*+ A (-1-iv3)[B+C]Y —2L2> . (4.25)
where

C =i/(A3 — B?), (4.26)

and

A= —6a>M + L* + 6L>M, (4.27)
B=—-9L*M (2a® + L*) — LS. (4.28)
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While there is an ¢ in the definition of r_, this is real, and it is because C' is a purely
imaginary number. This is not true for rg, even though it has an 4 in the expression, as
r% is a negative solution for the cubic. Therefore, ry is a purely imaginary variable of the

black hole, which we use to simplify calculations later on.

However, the important result is that we have analytical expressions for all the solutions
to Equation (4.21), that depend only on the three parameters characterizing the metric
of the black hole, namely a, M, L. We show the behaviour of r1 in Figure 4.1 and the

combined behaviour of 1 and r_ in Figure 4.2.

r r

0421 100
N ’ .
0.40 -
095+

0.38 - 090"

0361 085"

0.34 - 0.80

032} 075"

0.30 0.70 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7

I I I I I I I
a
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 4.1: Event horizon radius r4 for different masses: M = 0.1, M =1, and M = 10
when L = 1.

100

05

a
0.2 0.4 0.6 0.8 1.0

Figure 4.2: Representation of r and r— when L =1 and M = 10.
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From these plots (see Figures 4.1-4.2), it is clear that the radial coordinate r exhibits
qualitatively the same behaviour for different values of the mass M, while keeping L con-
stant. Additionally, if we look at Figure 4.2, we can observe that for fixed values of M
and L, both r; and r_ converge to the same value as a varies. This scenario occurs when
the discriminant becomes zero, indicating a unique solution to Equation (4.21). This re-
sults in what is known as the extremal case of the 5D Kerr-AdS black hole. Furthermore,
the plot reveals that r1 persists up to a maximum value of a, beyond which the event
horizon ceases to exist. We denote this maximum value as amax. We also observe similar

qualitative behaviour for other values of M (see [13]).

We can show how to evaluate amax analytically. We multiply the metric function g=2 (4.7)
by 74 in order to get a polynomial of order 6. We know that setting this equation equal to
zero gives us the expressions for vy, r— and rg. Hence, we can make a change of variable
x =72 and 1"3_ = xy. This will gives us a cubic polynomial P(z),

2

+a? 4 2M (22 - 1) z + 242 M. (4.29)

3

P(x) = 72

Since x4 is a root of Equation (4.29) we know that this expression can be factorized as

P(z) = (z —21)Q(x), (4.30)
where Q(x) is
Q(a:)zzz+(92§+1>x+2M(f;—1>+(i§+1)x+. (4.31)

At apax as we can see from Figure 4.2, we have the extremal case for our black hole, in
which the two horizons, the inner (r_) and the outer (r;), coalesce. This means that
at amax the polynomial Q(x4) = 0. We can use this information to find the analytical

expression of aymax. We know that

73 a

P(.le+) = Li_;— + .ZU%'_ + 2Mext < zl;x — 1) T4 + 2@1211aXMeXt =0 (432)
Bxi G’IQnaX

Qz+) = 75 + 204+ +2Mexe { 5 —1) =0, (4.33)

where Moyt is the value of the mass of the black hole, when a = amax. If we solve this

system of equations for My and apmax we find that

L2z (L% +2xy)
2 + +
= 4.34
zy(zy + L%)?

L4 '

The last important object that we can define now that we have found the event horizon is

My = (4.35)

¢. This is vector field defined as a linear combination of &y and &; (see Equation (4.19)),

0 0
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where Qg is the angular velocity of the black hole at the event horizon, which is the same

as the function Q in Equation (4.7) of the metric evaluated at the event horizon, r:

2Ma

=0 4.37
4 + 2Ma? (4.37)

Qy

¢ is the null generator of the event horizon and can also be used to evaluate the light
surface as we will discuss later. Another notable property of ¢ is that it is a time-like
Killing vector (1.24). Under certain conditions, it remains time-like throughout the entire

spacetime outside the event horizon, which is pivotal for our analysis.

4.2.2 Stationary limit surface

The next characteristic surface is the stationary limit surface r;, this can be defined as the
surface inside which an observer cannot stay at rest relative to infinity. It is characterized
by the Killing vector &, = %, (4.19) and how it changes from time-like to space-like. In

order to find the limit surface where the vector changes we must study:

guuggfg =0. (4.38)
Given the Killing vector & is associated with the time coordinate we are just asking when:

r?  2M
gtt:—ﬁﬁ-?—lzo, (4.39)

is:

which can be easily solved, and we find that the only real positive solution for this equation
L
ry = ——

N (1+8L]\24>%—1r. (4.40)

As we can see the stationary limit surface is surprisingly independent of a.

4.2.3 Light surface

The same analysis can also be performed for the speed of light surface. This is the surface
where an observer with the same angular velocity as the event horizon is moving at the
speed of light. The light surface is connected to the Killing vector ¢ and following the

result reported in the Appendix of [51] we must solve:
gut't” =0, (4.41)

from which we obtain:
git + 294125 + Qan%{ =0, (4.42)

where Qp is the angular velocity at the event horizon (4.37). We can rewrite expression

(4.42) using the elements of the metric as:
—r? g_2(r) + h4(r) ( (22(7‘) —-2Q Q(r) + Q%{ ) =0. (4.43)
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Solving this equation we have found an expression for the light surface (r;):

1
L (1+1-88 G0y —1)2 (1203 - 1)\
= — . (4.44)
V2 L20% -1

We can see that r; is real and positive real only when LQQ% — 1 > 0, which corresponds

to

1

hence we have found a bound for the existence of ;. Notably, when L goes to infinity, in

the asymptotically flat case, r; becomes

1 (14/1-8MQ3 (-1 + an)?
ri=—= when L — co. (4.46)

V2 %,

The analytical expression of r; is pivotal for our future analysis, particularly because we

will work in a regime where the light surface does not exist. Thanks to this, we can define
a timelike Killing vector (1.24) in the exterior region to the event horizon. In particular,
this result regarding the light surface directly comes from the fact that we are working
in Anti-de Sitter (AdS) space, which intuitively corresponds to operating within a ‘box,’

given the presence of boundary in the spacetime.

We display Equation (4.44) in Figure 4.3. We can see that r; also does not exist beyond
Gmax, Which acts as an asymptote for this quantity. In addition, we introduce a new quan-
tity, denoted as ayin, which is tailored to r; and is related to the existence bound Qy > %

In fact, r; does not exist for values of a below amin.

In the same way, as we did for anyax, We can also find an analytical solution for a,;, which
corresponds to the vertical asymptote for the function of r; in Figure 4.3. We know that
r; exists only in the case of Qy > 1/L. We can use the expression of the mass M in terms
of the square event horizon z = ri

2 (12 +a2)
2(a?L? + a?xy — L2z4)’
if we substitute this into Equation (4.37) we obtain:

1 1
Qg = —+— . 4.4
e <L2 i $+> (4.48)

M=— (4.47)

Now, if we approach Qg — % we are approaching the asymptote, so:

1 1 1
Qg = — 4+ — ) == 4.4
" a(p%) L (4.49)
which implies
L$+
min — . 4.50
“ L2 + Ty ( )
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20—

! . . . . ! . . . . ! . . . . !
0.680 0.685 0.690 0.695

Figure 4.3: Light surface r; for L = 1 and M = 10, with the two asymptotes amax and

Gmin-

4.2.4 Graphical representation of r, r; and 7,

We now study the three radii 74, 75, and r; for a Kerr-AdS-5D black hole. Since we have
analytical expressions for these three radii, (4.23), (4.40), and (4.44), we can present a
graphical analysis of them, Figure 4.4. We only report the specific case for L = 1 and
M = 10 since the other cases, for different values of L and M present the same qualitative

features [13].

We can see that r; is always greater than r,. We can also observe that as the rotation of
the black hole increases (indicated by the parameter a), r; collapses to the extremal case
upon reaching amax, where r; = r4. Additionally, 7; crosses r; and it becomes complex

at amax-

In particular, both Figure 4.4 and Figure 4.5 illustrate how the black hole exhibits a spe-
cific geometry resembling a group of shells with different radii around the singularity. This
structure appears much more like a Schwarzschild black hole than a Kerr black hole. This
is due to the fact that the three surfaces have constant radius once we fix the black hole
parameters, whereas in the Kerr black hole case, the stationary limit surface r; and the
speed-of-light surface r; depends on the polar angle made with the axis of rotation. In
the 5D case, as shown in the intuitive representation (Figure 4.5), the light surface 7; is
dashed, reflecting the existence of a regime where the light surface is absent. Another

important aspect is the difference between the 4D case and the 5D case which resides
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6
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4
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| 0.é85 | | | | 0.(;90 | | | | 0.6‘95 | | | ?
Figure 4.4: 74, ry and r; for L =1 and M = 10, see also [13].
Rotating black hole 4D Rotating black hole 5D

<« Light Surface —

Event Horizon

Stationary Limit Surface —*~

Figure 4.5: Schematic representation of the three radii 4, r; and 74, and the difference

between the 5D case and the 4D case, see also |91] for similar behaviour.

completely in the form of the light surface and the stationary limit surface. In the 4D
case both these surfaces depend on the angular coordinate 6, while in the 5D case, thanks
to the enhanced symmetry that we have introduced, they only depend on the parameters
of the black hole, M, a, L. This makes the whole analysis a lot easier and it is one of the
many reasons why we have decided to work with the 5D Kerr-AdS black hole.

From now on, we will confine our analysis to the case when « is restricted to lie between
(0, amin), in the slow rotational regime, where r; does not exist, while both r, and 4 do.
Notably, within this framework, we can define a time-like Killing vector ¢ (4.36) throughout

the region exterior to the event horizon. This vector is pivotal for later calculations and,
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importantly, provides us with a consistent definition of time.

4.2.5 Surface gravity and temperature

In order to evaluate the temperature we compute the surface gravity x4 [117]:
2 1 a,f
Ky = —§(v ) (Vatg), (4.51)

where ¢ is a Killing vector for our background (4.36). Notably, the normalization of k4
follows from the fact that the event horizon of a stationary black hole is a Killing horizon:
a null hypersurface whose generators are tangent to a Killing vector field *. On the

horizon, t* becomes null and satisfies
VL =Rk M (4.52)

This equation defines k. as the proportionality factor relating the derivative of the Killing
vector along itself to itself on the horizon. In stationary, asymptotically flat spacetimes,
one fixes the overall scale of * by requiring it to match the unit time translation at
infinity, ensuring that k4 is uniquely defined and corresponds to the physical Hawking
temperature via Ty = k4 /(27) |117]. The explicit formula given above follows directly
from manipulating this definition and using the Killing property of (* together with the

fact that it is null on the horizon.

We are using this Killing vector mainly because of its properties, being the null generator
of the event horizon and the fact that is also a time-like Killing vector outside the event

horizon. So this brings us to

2 gy L0 R0 )

rory 4g(r)

and the temperature of the black hole at the event horizon is:

K4
T=_—. 4.53
- (4.53)

We can substitute the values of the metric functions (4.7) and obtain a polynomial ex-

pression that depends on r:

2M (L*QF; (202 + L?) 4+ a® — 6aL*Qy + 2L%)  8a’M?(aQdy — 1)?

2 _
i = LAr? s *
AMA(L — a)(a + D)(aQp — 12 3 (1-L03)
+ 28 + 77 —2Q7%. (4.54)
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4.2.6 Kretschmann scalar and Penrose diagram

We can also evaluate the Kretschmann scalar:

K = Ragys - RO =
8 (192a4L4M2 +36M2r4 (a2 — 12)° + 1920202 M*%(a — L)(a + L) + 5r12)

LAr12 )
(4.55)

which in the limit for r — oo results in
40 1
Ti + O (7’3> ) (4.56)

The Kretschmann scalar is utilized to verify if the singularities present in the spacetime
are simply due to a choice of coordinates or real singularities. In this case, K makes it
clear that the only singularity of this black hole with metric (4.6) is at » = 0. We can
restrict our analysis to only the Kretschmann scalar because the Ricci scalar R is constant,

and the Ricci tensor Ry, is proportional to the metric g,,, as shown in Equation (4.3).

We can also show the Penrose diagram of this black hole [2]. To do this, we first need to
define the Kruskal coordinates as introduced in Section 1.3. For this purpose, we begin

by introducing a corotating coordinate 1):

Ve =9 — Qp t, (4.57)

where Qp is defined in Equation (4.37). If we substitute ¢, in Equation (4.6) the metric

becomes

2
ds? = = f(r)? de* + g(r)2dr® + - [d6* + sin® 0 do?]
1 2
+h(r)? |diby + 5 cos0dg — {Q(r) = Q) dt| . (4.58)

Next, we define the “tortoise” coordinate r,, which is given by [35]

T =80 = g hir) (4.59)

where ¢(r), f(r) and h(r) are the metric functions in Equation (4.7). Finally, we define

the change of coordinates to the Eddington—Finkelstein « and v coordinates, given by:

v—1Uu

=g (4.60)
p=2 ; Y (4.61)
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Knowing that

dr* _ dU ; dUJ7 (462)

dr = ; dv. (4.63)

dp = dip, + dt Qp, (4.64)
f(r)

dr = dry, 4.65

g(r) " (465)

the line element in Equation (4.6) becomes

2
ds? = —f('r)2 du dv + TZ (d02 +sin%0 d<b2)

h(r)®

T

(2 dip, + Qpy (du + dv) + cos 0 dg — Q(r) (du + dv)>2. (4.66)

We then define the Kruskal coordinates U and V as:

1 1
U=——¢e"" and V=—e"" (4.67)
R4 R4

where k4 is the surface gravity at the event horizon, given in Equation (4.54). From this
definition, we can write

dU = e "+"du, dV ="’ dv, (4.68)

and hence
AU dV = "+@=) qu dv = e25+™ du dv. (4.69)

Thus, the line element can be written as

2 f(T)Q ﬁ 2 .2 2
dsi = 20V av dv + 1 [d6” + sin® § d¢”|
2
1 1 v dUu
2 — _— J— —_ —_
+ h(r)” |dy + 5 cos 6 d¢o T {Qr) —Qu} < v + i > (4.70)
We also define the determinant of (4.70)
r2h(r) 2 2 2]
gk = VK = s 264 £ ()7 +{Q(r) = Qur Y h(r)? sing. (4.71)
8k1UV

Finally, we can construct the Penrose diagram of the Kerr—AdS five-dimensional black
hole [2].
Summary

In this chapter, we introduced three key metrics for our analysis: the general metric of
the 5D Kerr-AdS black hole (4.1), the enhanced symmetry metric (4.6), and the asymp-

totically flat metric (4.15). We provided a guide on transitioning between these metrics
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Figure 4.6: Penrose diagram of metric (4.6). The dotted lines represent the horizons: the
event horizon is at » = r4 and the inner horizon at r = r_. Null infinity corresponds to
the time-like boundary at » = oo, and the dashed lines indicate the curvature singularity

at =0 [2].

which is going to be useful for later comparisons within the thesis.

Furthermore, we have reported the Killing vectors and symmetries for the metric (4.6),
which is the one that we are going to study throughout this thesis. Of particular interest is
L, serving as the null generator of the event horizon, and providing a means to also derive
the expression for the light surface. We have evaluated the three characteristic radii of the
black hole: the event horizon, the light surface, and the stationary limit surface, focusing
on their bounds, limits, and their qualitative behaviour on changing a, the rotational pa-
rameter of the black hole.

Notably, we identify a regime for which the light surface does not exist. Consequently, ¢
is a time-like Killing vector everywhere in the spacetime outside the event horizon, which
not only gives us a proper definition of time in our spacetime but it is also going to be

pivotal for later calculations on the scalar field.
Moreover, we have also shown some of the geometrical and thermodynamic properties

of the black hole evaluating the Kretschmann scalar, the temperature, and the surface

gravity.
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Chapter 5
Spin-weighted spherical harmonics

In this chapter, we present some properties of the spin-weighted spherical harmonics
(swsh) [77,108] and introduce new results. In particular, we discuss the addition the-
orem for this class of functions and a new generalisation with new addition theorems that
we have derived. We also demonstrate how this knowledge can be advantageous in the

analysis of a scalar field in this curved background in Chapter 8.

The spin-weighted spherical harmonics are used in different fields of physics; for this reason,
we believe that the results we present could be useful not only for the study of a scalar
field in a curved background but also in other branches of physics. For example, the spin-

weighted spherical harmonics have been used to study anisotropies in the cosmic microwave

background |3, 71,129, 132, 154, 155], gravitational physics (including gravitational waves
and perturbations of black hole space-times) [1,36,131,139]; geosciences [56,99]; anisotropic
turbulence [120]; and electromagnetism [126]. We now give a brief summary of these

functions, focusing on the properties that we need for our studies; for a more detailed

description, we refer the reader to [15,21,28,18,19,56,99, 118].

5.1 Properties of spin-weighted spherical harmonics

In this section, we analyse the spin-weighted spherical harmonics, focusing in particular
on their properties. We will examine the edth, 0, and edth-bar, O, differential opera-
tors [118]. The use of a different notation from that in [118] is intentional; indeed, we will
also define the edth-—prime, &, and edth-bar—prime, ', operators for reasons that will soon

become clear. We begin by presenting the definition of a spin-weighted spherical harmonic.

The spin-weighted spherical harmonics Y, (0, ¢) are functions on the two-sphere S? that
have spin-weight s, where s is an integer or half-integer [77, 108]. We employ the usual
spherical polar coordinates (6, ¢) on S?, with 6 € [0, 7] and ¢ € [0,27). The spin-weighted

spherical harmonics depend on three quantum numbers: s, £, and m. The spin s is a pos-
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5. Spin-weighted spherical harmonics

itive or negative integer or half-integer. The orbital angular momentum quantum number
¢ then takes the values £ = [s|, [s| + 1, |s| +2, ..., and the azimuthal quantum number m
takes the values m = —¢, -+ 1, ..., £—1, £.

There are many different ways to define the spin-weighted spherical harmonics in the
literature. In this thesis, we follow the conventions of [99], which will serve well for our

purposes in studying the scalar field in Chapter 6.

5.1.1 Definition. The spin-weighted spherical harmonics ;Y;™ (0, ¢) are defined in terms
of the Wigner D-function by [99]

14
X(0.0) = (-1 2 D L(6.6.0) (5.1

where the asterisk * denotes complex conjugation.

Notably, s can be a half-integer; this does not compromise the procedure, but it introduces

an 7 in front of some formulas, which can be accounted for.

The function Dfn,,s(qﬁ, 6,0) is called the Wigner D-function and it is mainly used in quan-
tum mechanics in order to describe the angular momentum together with the dfn’_s(ﬁ),
which is called lesser Wigner D-Function. We can define Dfn’_s(gb, 0,1) as |111]

DL, J(¢,0,9) = e "mdl _ (0)e. (5.2)

In addition, we can define the lesser Wigner D-functions through the Jacobi polynomials
as [141]

/

SUS+MA+AMN T2 (. O\M M v
f _ _ _ ’
A —s(0) = N, —s (S—l-/\/l)!(S—i—/\/l’)!} (sm2> <c052> Pg (cos®), (5.3)

where S, M and M’ are related to m, s and ¢ by
1
M=|m+s|, M =|m-s|, S:E—i(M—l—M/), (5.4)

and N, _ is
1 if —s>m,
Non—s = (5.5)
(=1)=6+tm) i — s < m.
We will focus on an addition theorem for these functions, as this is the main result that

we will use later in the thesis. Its proof is based on the definitions of the operators ;0 and

s0, as given below [1183]:
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5. Spin-weighted spherical harmonics

5.1.2 Definition. The operators ;0 and 40 act on the spin-weighted spherical harmonics

as follows [77,99, 108]:

s0sY,"(0,0) = — [89 + ﬁ&ﬁ — scot 9] Y (0,0), (5.6a)
s0sY,"(0,0) = — [89 — ——0y + scot 9] Y7 (0, 9). (5.6b)

1
sin @

The operators 40, ;0 respectively increase and decrease the spin-weight s of a spin-weighted

spherical harmonics ;Y™ by one [77, 108]:

$0sY[" = s+1YEm\/(€ —s)(l+s+1), (5.7a)
$0Y" = — Y (L+5)(0 —s+1). (5.7b)

We now introduce the differential operators that we will use to prove the new addition
theorems that were not previously defined in [1158]. We denote by 43’ and 40’ the oper-
ators 40 and s0 where the coordinates (6, ¢) are replaced by (¢, ¢') and the spin s by s

S/ﬁls/nm(0/7 (Z)/) = — |:89/ =+ ﬁ(%y + S/ cot 0/:| S/YZ"(Q’, (ZS/), (58&)

i

S/gs/YEm(el’ ¢/) = - [69/ - 6¢/ - S/ cot 9/:| s/Y[”(G’, (ﬁ,), (5.8b)

sin 6/

where, by replacing s with s’, we obtain the same result for raising and lowering the spin

s’ as was previously found for s, thus obtaining

Szﬁs/ng = S/-i-l)/fm\/(g — SI)(K + S/ + 1), (59&)
s’gs/nm = _Slfli/ém\/(g + s’)(ﬁ — Sl + 1) (59b)

We can also show how derivatives with respect to the coordinates 6, ¢, #’ and ¢’ act on
the spin-weighted spherical harmonics. The following lemma, which follows directly from

Definition 5.1.2, shows this and we will use this for the derivation of the addition theorems:

5.1.3 Lemma.
9 m 1 = m
%SYK (6, ¢) = -5 [s0 + 0] sY/"(6, ), (5.10a)
a 1 : > m : m
%S}Qm(ﬁ,qb) =3 sinf [0 — ;0] sY;"(0,9) —iscosf Y, (0, 9), (5.10Db)
0 1 _
5o Y (0,0) = =5 [¢0" +40'] ¥[8, ), (5.10c)
(;Zbls/}/}m(H',qbl) = %sin 0 [¢0' — 0] Y0, ¢) +is cost YO, ), (5.10d)

where we can use Definition 5.1.2 and Equation (5.8) to find the right hand side for these

equations.
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5. Spin-weighted spherical harmonics

Lastly, it is important to highlight that
0 S (0,0)] = im Y70, 6), (5.11)

which will become important in the calculation for the new addition theorems.

5.2 Addition theorem

We begin our analysis by recovering the well-known spin-weighted spherical harmonics
addition theorem, before introducing the generalisations that we have found. We utilise
the relationship in Definition 5.1.1 between the spin-weighted spherical harmonics and the
Wigner D-functions to do this, and then we will apply the differential operators directly
to the spin-weighted spherical harmonics using the edth and edth—bar operators to find

the generalisations of the addition theorem.

We start by reporting the addition theorem for the Wigner D-functions [1 16, 114]:

Z D OQ)B?"Y?) m,s’ (alaﬁla'yl) ﬁ,s’(a,aﬁla’}/)' (512>

m=—/

This result is valid whenever s and s’ differ by an integer, and ¢ > max{|s|, |s'|}. Here o/,

B, + are Euler angles [116, 1414], which satisfy the following relations:
cot (o/ — ag) = cos (2 cot (a1 + 7y2) + cot By sin B2 csc (o + 72) , (5.13a)
cos 3’ = cos 31 cos B2 — sin By sin By cos (a1 + 72), (5.13b)
cot (fy’ — 71) = cos (1 cot (a1 + 7y2) + cot B2 sin B csc (a1 + 72), (5.13c)
and

sin (o/ —ag) _sin(y/ —y1) _ sin (a1 +2) (5.13d)
sin /31 sin B9 sin 3/ ’ .

Since we know the relationship between the spin-weighted spherical harmonics and the

Wigner D-functions (5.2), deriving the addition theorem for spin-weighted spherical har-

monics is straightforward [71,99, 131]:
4 4
m 20 + 1 »
Y Y0,0)0 Y ) = s (¢6/,0/,0) Dy _(6,6,0)
m=— m=—/
2W+1
!l Y4 N _
A7 ~, m,—s’(d) 79 70)D—s,m(07 07 ¢)
_ 2041,
—in D=s—s(8,7)
2€+1 —zsa O
S el L (3,5,0), (514)

where we have used Equation (5.12), (5.18) and the following property of the Wigner

D-functions [144]:
Dyin(6,6,X) = Din (=X, =0, =9). (5.15)
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5. Spin-weighted spherical harmonics

5.2.1 Definition. From (5.13), the Euler angles «, 3, vy are now given in terms of the
angles (0, ¢) and (¢, ¢') as follows [99)]:

cot av = cos f cot A¢ — cot 8’ sin 0 csc Ao, (5.16a)
cos 3 = cosf cos @ + sinfsin @' cos A¢, (5.16Db)
coty = cos @ cot Ag — cot §sin ' csc Ag, (5.16¢)

where A¢ is ¢ — ¢'.

The Definitions (5.16) are, strictly speaking, valid only when ¢ — ¢’ is not a multiple of
7. The corresponding definitions of the Euler angles when ¢ — ¢’ is a multiple of 7 can be
found in [99]. For our purposes, we require only that &« = 5 = v = 0 in the coincidence

limit 6 = 0 and ¢’ = ¢. We also have

sina siny  sin(¢ — ¢')

(5.17)

Csin@  sinf  sinf
Next we use the result |111]
DL (o, Bv) = e7#DE (0, 8,7) (5.18)

to obtain the addition theorem for spin-weighted spherical harmonics [71,99, 131].

5.2.2 Theorem. The addition theorem for the spin-weighted spherical harmonics is:

L

(=1)° D Y(0,0) Y™ (0, ¢)

m=—/{

20+ 1
= —e¢

A 7isaDﬁ,s’ (07 B, ’7)

20+ 1 —isa —s’
e A

This result is valid whenever s and s differ by an integer, and ¢ > max{|s|,|s’|}. The

addition theorem is equivalent to the addition theorem for monopole harmonics [18,19,153].
We will be interested in the case when s = s’ that we will discuss later. In addition, we
want to point out that several results have been retrieved when s = 0, see 143, [14].
We have written Equation (5.19) in an alternative, yet equivalent, form to that presented
in [99]. Note that the addition theorem takes a slightly different form in some references
[71,131] due to variations in the definition of the spin—weighted spherical harmonics. In
the coincidence limit 6 = 0 and ¢’ = ¢, the Euler angles become o = 8 = v = 0 and the
right-hand side of Equation (5.19) simplifies as follows

5.2.3 Lemma. We have [99]

_ 2041 20+1
sY, %(0,0) = ?DS,S/(O,O,O) = g,/ P (5.20)
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5. Spin-weighted spherical harmonics

where 6 ¢ is the usual Kronecker delta:

1 ifs =s,
0g,5 = (5.21)
0 otherwise,

and using the result [111]
Ds.(0,0,0) = 6, . (5.22)

5.2.4 Corollary. The coincidence limit §' = 6, ¢/ = ¢ of the addition theorem (5.19) is:

¢
Z Y[ (0,0)s Y™ (0, 9) = I

m=—/

Os- (5.23)

This gives us the addition theorem for the spin-weighted spherical harmonics. In addition,
given Definition 5.1.2 and Equation (5.8) we could also apply the differential operator
directly, in doing so we can generalise this results to further addition theorems, which will
be useful later in the thesis in the calculation for the Kerr—AdS five-dimensional black

hole, specifically in Chapter 8.

5.3 New addition theorems

We now present our results for the new addition theorems. These results are valid under
the same conditions on the quantum numbers s, s’ and ¢ as for the original addition
theorem; that is, the spins s and s’ may differ only by an integer, and it must hold
that ¢ > max{|s|,|s'|}. Our strategy for deriving these results is to apply appropriate
combinations of the operators 8, s0, ¢0’, and 40’ (as defined in Definition 5.1.2) to the
original addition theorem (5.19). We then utilise the "raising and lowering" properties of
these operators given in Equations (5.7). We will go through the first two derivations step
by step, while we will highlight the main differences in the calculation for the remaining

results.

5.3.1 Theorem. The new addition theorem obtained when taking a derivative with re-

spect to 6 on one term Is:
‘L To
S m m* / /
(1 3 |00 v @)

=;w¥;1{¢w@w+s+ngﬁﬂwﬁa;#aw

—¢w+@w—s+maM*mkﬂ;%@w}.@2@
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5. Spin-weighted spherical harmonics

Its derivation and proof can be obtained from the following calculation:

L
(=1 > [aaesnm(e,qs)} Y0 )
m=—/

(-1

=L Y [0.570.6)+ B Y0.0)] Y8, (5.25)

m=—/{

where we have used the result in Lemma 5.1.3 to introduce ;0 and 40,

(-1)° «
_ S V=)l +5+1) 31Y"(0,0)

2

m=—/

—VAF =5+ 1) 1Y (0.0) | Y70, ), (5.26)

where we have applied the properties in Equation (5.7),

14

= 1{¢<€ =)l +s+1) > (1) Y0, 0) Y0, ¢)

2

m=—/{

l
Vs (0=s+1) Y (=1 LY (0,0)0 Y™, ¢')}7 (5.27)

m=—/
where we have multiplied the factor (—1)(—1)® inside the parenthesis rearranging and

exploiting the fact that (—1)! = (—=1)7! = (=1),

1 /2041 —i(s+1a —s'
=/ {m—s)(mme DY, (8,7)

—V(l+s)(0—s+1)e ey, (3, v)}> (5.28)

where we have used the result of the addition theorem in Equation (5.19).
We will now present the second new result in the same manner.

5.3.2 Theorem. The new addition theorem obtained when taking a derivative with re-

spect to ¢ on one term is:

¢

(=1)° Y m Y (0,0)9 Y™ (¢, ¢)

1 /2041 —i(s+1)a —s'
- {W—sxﬂsﬂ)e 0¥ (6,9)

+ \/(5 +s5)(l—s+1) e*i(sfl)as_lYé_sl (ﬁ,fy)} sin

20 +1
47

-5 e_iSO‘SY[S/ (8,7v)cosf. (5.29)
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Its derivation and proof can be obtained from the following calculation:

0
0
=—i(-1)° —sY(0,0)| oY, 8, (5.30)
m; [&b ‘ } ‘

where we have used the result in Equation (5.11),

s L
= (_21) Z |:56 s}/’ém(eﬂlﬁ) — 36 sng(Q, d))] o Em*(9/7¢/) sin O

m=—/{

¢
—s(=1)7cosf Y Y[(0,0)s (0, ¢), (5.31)

m=—/{

where we have used the result in Lemma 5.1.3,

s !
-y {[¢<f—s><£+s+1>5+mm<e,¢>

m=—/

F/(UF 8) (0= s+ 1) 41 Y0, ¢>)}S, Y ¢’)} sin 0

¢
—s(=1)cosf Y Y[(0,0)s Y™ (0, ¢), (5.32)

m=—/{

where we have applied the results in Equation (5.7),

0
= ;{—\/(f — S)(g + s+ 1) Z (_1)8+1s+1}/@m(9, ¢)s’ gm*(el, ¢/)
m=—/
V4

V=51 3~ 6. 0)s em*w’,qb’)} sinf

— s cosf Z (=1)°:Y,/™(0,9)s Y0, ¢), (5.33)

where we have multiplied the factor (—1)(—1)® inside the parenthesis rearranging and

again exploiting the fact that (—1)! = (—1)~! = (—1), displaying everything in order to
apply the addition theorem,

1 /2 1 i !
- ‘2\/5 { V=) (E+s+1) e Y, (5,9)

V(04 5)( —s+1)e iy, (5,7)} sin 0

20+1 _. /
— 54/ % e Y, 7 (B,7)cosB, (5.34)

where we applied the result in Equation (5.19).
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5. Spin-weighted spherical harmonics

In both of these derivations we can see the procedure that we will also apply to the
other results, utilising the properties of the differential operators ;0 and ,0, that we can
introduce thanks to Lemma 5.1.3. Notably, we can see how the label —s’ stays unchanged
throughout the analysis; this is because the operation of raising and lowering the spin
s happens when applying ;0 and 40, as shown in Equation (5.7). In Theorem 5.3.2,
the evaluation is a bit more convoluted because the result in Lemma 5.1.3 introduces an
additional factor depending on 6. In the following analysis we will not proceed step by

step but we will highlight main differences on the derivation.

5.3.3 Theorem. The new addition theorem obtained when taking a derivative with re-

spect to 0 on one term and 0’ on the other term is:

‘o

(=1 > a(,snmw,@]
m=—/

R WEES

4V dr
V=)l +s+ 1)+l —s+1) e—i(8+1)as+1y£—s/+1(ﬁ’ )
—V(l+s)(l—s+1)(l—s)(l+ s +1) e_i(s_l)aqu[S/_l(ﬁ, )

0

ws/nm*(el, ¢/)]

VU=l +s+1)(—8)(l+s +1) e—i(8+1)as+lyé—8’—1(57 )

+¢w+@w—s+nw+ww—y+nem1hkﬂ;“%@wr (5.35)

Its derivation and proof can be obtained from the following calculation:

“fo
S [aesnmw,@]

m=—/

6 mx
TR <0’,¢’>]

L

_ (=17
-y

m=—{

s0 Y (0,0) + 50 Y{"(0, ¢)]

*

X

S/ESISY—Zm(e/,(b/) +s’8/snm(0/7¢/)]

4

- ( Z [\/(6 —8)(l+s+1)s1Y"(0, ¢) — \/(g +5)(l—s+1)s1Y/" (0, ¢)]

m=—{

X [\/(ﬁ — )+ +1) g1 YO, ¢ — (U + )-8 + 1)3/1}Qm*(0’,¢’)]

4
=3 2 {V (=) s+ D= 1) () ¥ (6,6)0a V™ (¢, 6)

m=—/{

VT s T D+ =5+ 1) (~1)" Y70, 0) 1 Y7 (0, &)
S VEF O s T D= )T+ 5+ 1) (~1)" 1 Y7(0,0)g1 Y7 (0, &)

V)= s+ D)L+ )(0— 5 +1) (1) L1 Y0, 6) g Y™ (0, d’/)}
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R WEES

4V 4r
V(=) +s+1)(L+8) (-5 +1) e—i(5+1)as+1ye—5’+1(ﬁ’ )
—V(l+s)(l—s+1)(l—s)(l+ s +1) e—i(s—l)as_lye—S’—l(ﬂ’ )

V=)l s+ (=) (4 +1) e Y71 (8,9)

V(s —s+1)([L+8) (-8 +1) e*i(sfl)as_lY[‘S/H(ﬁ, 'y)] , (5.36)

where we can see that we have used for the first time the differential operators 40’ and
&0’ defined in Equation (5.9).

5.3.4 Theorem. The new addition theorem obtained when taking a derivative with re-

spect to ¢ on one term and ¢’ on the other term is:

0

0 L
(=1)° Y m® Y (0,0) Y™ (O, ¢) = (-1)° ) [aad)snm(@»@ﬁ)] o5 ;”*(ef,cp’)]

m=—/{ m=—/{

SR {i sinf sinf! [\/(0— )€+ s+ (L~ )+ + e 00y, 91(5,)
+ /(=) +s+ 1)+ 8) (0~ +1)e Doy (3 )
+V U+ ) (E—s+ 1) (=)l + 5 + 1) ey, 71(3, )
+VUl+s)l—s+1)(l+5)(l—s+1) 671(571)045_1}/[3%1 (577)]

/

- %sin@ cos [\/(6 —s)(l+s+1) efi(s+1)as+1Yg_8/ (B,7)
V(05— s+ 1)e iGNy, (5, 7)}

+ gcosﬁ sin ¢’ [\/(E —sH(l+ s +1) e_iSO‘SY[slfl(ﬁ, v)

+ U+l -5 +1) e_isasY[S,H(ﬂ, ’y)} — ss' e_isasY[Sl (8,7) cos 8 cos 6’}.
Its derivation and proof can be obtained from the following calculation:

l L
(=1)° Y m? Y0, 0) YT (0, ¢) = (—1)° > [;sn’”w,@

m=—~ m=—~

9
Y

0]

)4 .
= (-1)* Z {;sinﬁ [35 - 35}517[”(«9,@5) - iscosGSYEm(G,qb)}

m=—/

X {; sin ¢/ [5/5' — 3/5’] sY(0, @) —is cost s&@’”(@’,(b’)}

V4 .
= (-1 Y {; sin 6 [\/(f —8)(l+s+1)s1Y,"(0,0)

m=—/

F V) — s+ 1), Y(0, M ~iscosf Y0, ¢)}

98



5. Spin-weighted spherical harmonics

X {_; sin ' [\/(5 =)+ +1) g1 Y0, ¢)

+ \/(€+S/)(€—Sl—|— 1) S/_lnm*(9/’¢l):| +iSIC089/5/nm*(9/,¢/)}

l
=— Z {isin& sin 6’ [\/(E — )4+ s+ 1)l =&)L+ s +1) (=1 V™0, h)g 1 Y (O, )

m=—¢

— V=)l + s+ 1)+ =8 +1) (1) 1Y) (0, 9) w1 Y (0, &)
— V()= s+ 1) =)+ +1) (1) 1Y) (0, 9)1 Y (0, &)
+ V(U +s) (0= s+ 1)+ )5 +1) (=1)° 1Y (0, 6) g1 Y™ (0, ¢)

- 82/sin9 cos 0’ [\/(8 —5)(0+s+1) (=) Y8, )
V)= s+ D) ()Y, 0)| Y (0, )
+ ;COS@ sin 6’ [\/(E — N+ +1) g1 Y0, )

V=5 1) Y™ (0, 8)] (-1)°7 (6, 9)

— 88" (=1)°Y)(0,0) s Y0, ¢') cos 0 cos 9'}

2 1 1 . !
=5t {4sinasm9’ V=) s+ =)+ 5+ D e 0y (g, )

4

+ V=)l Hs+ D)+l —s + D)o v -s"+1(3 )
Vs (= s+ 1) =)+ s + 1) e Doy, ~1(5,4)
V)= s+ D+ )= s+ e 0oy, 15 )]

!/

- S§sinc9 cos @’ [\/(f —s)(l+s+1) e_i(SH)QSHY[S/ (B,7)
+V/(C+5)(— s+ 1)e e 1y, (B, v)}

+ %cos@ sin ¢’ [\/(E —sHh(l+ s +1) e_isasY[S/_l(ﬂy )

+ V(U +5)(l—5+1) efisasY[‘S,H(ﬁ, )| — ss’ e*isaSY[S/(ﬁ, ) cos 8 cos 0’}.

5.3.5 Theorem. The new addition theorem obtained when multiplying by m and taking

a derivative respect to 6 on one term is:

14

0
(_1)8 Z m[%snm(eagﬁ)}s’ Zm*(el7¢,)
m=—/
=2 ”Af{ VI T s T DT ST 7 D0y, 1(8,)

~VlHs)(=s+ 1)l — )+ +1)e Vo 1 Y,71(8,5)
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+ VUl =)l +s+ D)l +5)(l—5+1) eri(SJrl)ocSHY[S’H(57 )

— U+ )l —s+ 1)l + )l -5 +1)e Doy~ (g ’y)] sin @'

—25' |\ (L —s)(l+s+1) efi(sﬂ)asﬂyg_sl (B,7)

—V{l+s)(l—s+1)e Doy (5,7)] cos 9’}. (5.37)

Its derivation and proof can be obtained from the following calculation:

«nsﬁ%mg}wwam%wmwwv
—i(-1)" i[(,fesme,m} (¥ (06
- _% (—1)* Z: 0 Y0, 0) + 0 SYZ”(M)]
X {; sin @’ [5/6’ — 5/3’} dYH(0',0) —is cost oY, ™(O, ¢')}*

[\/(5 =)L+ 5 +1) 1Y (0,0) = V(€ +5) (0~ s+ 1) 1 Y["(0, ¢)]

Il
—~
ol L
N—
w»
3
HMN
L

: { [\/(f =)+ 8 +1) g1 V(0 ¢)

+ VU4 =5 +1) g1 Y0, ¢)|sin@ — 25" cos ' Y™ (0, qb’)}

VIE=3s)l+s+1)(0 =)0+ +1) (=1)" 1Y/ (0, )

]

m=—/{

S VF U= s+ D)=+ +1) (~1) 1Y (0, 9)
=)+ s+ D+ )= 5 1) (~1) 1 Y0, 6)

—VUFs)l—s+ 1)l +5)l—s +1)(=1)"1 Y8, gb)] sin ¢’

— 25 [\/(ﬁ —5)(0+s+1) (=) Y8, )

SYI(0, ) cos e’}

V()0 = s+ 1) (1) H51Y/"(0,9)

B 1/2£+1
4 A7

—Vl+s)({—s+1)({— )+ +1)e Doy 571(5,4)

VU=l +s+ )= )+ + 1) e ity =515 -
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+ VUl =)l +s+ D)l +5)(l—5+1) eri(SJrl)ocSHY[S’H(57 )

— U+ )l —s+ 1)l + )l -5 +1)e Doy~ (g ’y)] sin @'

—25' |\ (L—s)(l+s+1) efi(sﬂ)asﬂyg_s/ (B,7)

—V(l+s)(l—s+1) e*i(sfl)as_lY[SI (6,7)] cos 9’}. (5.38)

The addition theorems just presented all involve one derivative of a spin-weighted spherical
harmonics. Similar theorems involving two or more derivatives acting on the same spin-
weighted spherical harmonics can be deduced from the above, together with the differential

’ ) ) ]

equation governing the spin-weighted spherical harmonics |3,

S1n

{Siieae {sineag} - — 120 [32 —2iscos00y — aﬂ } $Y"(0,0) =
_ —£[£+ 1}55/;”(9@)- (5.39)

We will now take the coincidence limit ' = 6, ¢’ = ¢ in each of the results in the previous
equations. We will explain the first result step by step, while for the following ones we
will highlight the differences in the same manner as we did previously. Using Equation
(5.20), Theorems 5.3.2, 5.3.1, 5.3.4, 5.3.3 and 5.3.5 gives:

5.3.6 Corollary.

‘L ro
) [%sme,@} oY/ (6,9)
l

1 /2¢+1 —i(s+1)a —s'
=35\ is {\/(5—5)@4‘34‘1)6 (s+1) s+1Y, ° (8,7)

—V(l+s)(0—s+1)e ey, 73, v)}> (5.40)

where we have used the result of Theorem 5.3.1,

:% /2644;1 {\/(e—s)(£+s+ Ty emilete_, y=+(0,0)

—V(l+ )l —s+1)e Dy, (0, 0)}, (5.41)

where we have taken the coincidence limit that takes the Euler angles to be zero as

previously mentioned,

2 +1
87

{W (PR N/ (] ey 5} (5.42)
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where we have used the result in Equation (5.20),

=241 {m =)+ s+ s — T NTH5 1) 5s,s,+1}, (5.43)

8w

where we have used 05_1,¢ = 05 ¢41 In order to make the result symmetric in s and s’ and

replaced s by s’ + 1 in the second form.

5.3.7 Corollary.

l
D mY0,6)0 Y™ (0, 9)

m=—/
1 /2041 —i(s+1)a —s'
:‘2\/?{%6—9(6%“)(3 D Y (8,)

V(8 —s+1)eilhay, (5,7)} sin 0

2 1 /
— 54/ 847—1_ e Y, 7 (B,7)cosB, (5.44)
T

where we have used the result of Theorem 5.3.2,

_2+1
87

{\/(z —8)(l+5+1) 051

20+ 1
+ VUl —s)l+5 +1) 5575/4_1} sinf — 4;5 s, cos B, (5.45)
7T

where we have used the same steps as in Corollary 5.3.6.
5.3.8 Corollary.

> [2 0] [2amo.o)

m=—/{

BEWCET

4V dn
V=)l +s+ 1) +5) (-5 +1) e—i(8+1)as+lye—s/+1(ﬁ’ )
—V(l+s)(l—s+1)(l—s)(l+ s +1) e—i(s—l)asil)/e—s/—l(ﬁ’ )

VU=l +s+1)(l—8)(l+s +1) e—i(erl)OéerlYE—S’—I(57 )

V) —s+ 1)+ 5) (-5 +1)e Doyt (B )|, (5.46)
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where we used the result of Theorem 5.3.3,

_ —21;1 V= U5+ D=+ 5 +1)6erre1

— V=)l +s+ 1)+ )l =5 +1)ep191
—V{lHs) =5+ 1) =)+ + 1) dsm1,941

V)= s+ DI+ ) (=5 1) 5] . (547)

where we have used the coincidence limit and the result in Equation (5.20),

2+1
167

2 (62 . 52) S

V=) U+ s+ 1)+ )5 +1) 654191

—V(l+s)(l—s+1)(l—5)l+s +1) 55_175/“] , (5.48)
where we have used the fact that 0541 41 = 0s,¢ and 0s_1,¢—1 = Og.,

2+1
167

2 (62 . 52) B

—V(l—=s=1)(l—s)(l+s+1)({+5+2)6eia

V(=5 =1l -5+ +1)(l+5 +2) 5575,4 . (5.49)

where we have substituted s’ with s+ 2 in the coefficient of §42 ¢ and replaced s by s’ +2

in the coefficient of 0 419, using the fact that 6541 ¢ 1 = 0512 and dg_1 41 = 05 /2.

5.3.9 Corollary.

0
S mP Y0, 6) Y (0, 6) = %4:; L { [% (ﬁ o— s2> sin? 6 + 52 cos? 9] So.y

m=—~{

1
+1 sin? 0 [\/({ —s)(l+s+ 1)+ )l —8 +1)0s1.01

+VUl+s)l—s+1)(l—s) 0+ +1) 55_1,s/+1]

- %sin@cos@ (23’ + 1) V=)l 48 +1) 6011

v (23 n 1) VIl +s+1) 55—}—1,5’] } (5.50)
where this is the result starting from Theorem 5.3.4.
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5.3.10 Corollary.
8 m m*
Z m %s}/g (97¢) S’YVK (9a¢)
l

C2+1
167

——1 | 2505«
V=5 =)l =)L+ 8+ 1)L+ 8 +2) 0510

+V/(l—s—1)(l—s)l+s+1)l+5+2) 65+2,5/] sin 6

2 [\/@ — )+ 5+ 1) bes1s

— VU =sl+5+1) 5878/“] cosﬂ}, (5.51)
where this is the result starting from Theorem 5.3.5.

We have attempted to put every result in a symmetric expression in (s, s’), however, the

last Corollary 5.3.10 is not symmetric.

Finally, if we also set the spins equal, s’ = s, which is the case we will be interest in

studying later in the thesis, the results reduce further, giving, respectively:

5.3.11 Corollary.

4
> [ gpree.0] v .0 -0 (5.522)
m=—/
¢ (20+1)s
> m Y70, 0)|* = —~————cos¥, (5.52b)
=, 47
4 2
o m 22U+ s,
mz;g 552X 0.0) = —— (2 +0-5%), (5.52c)
4
Z m? | Y0, ¢)* = 2£8+ ! [(6% + ¢ — s?) sin? 0 + 2% cos® 4] , (5.52d)
™
m=—/
4
Som [jesme,as)] Y (0,6) = — 205 G (5.5%)
T
m=—/

Our results hold for both integer and half-integer spins s. When s is a half-integer, the
factor (—1)® in Equation (5.1) is purely imaginary (see, for example, [15] for specific
examples of spin-weighted spherical harmonics in this case). When s = 0, the results in

Equations (5.52) reduce to
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5.3.12 Corollary.

¢

d
> | e.0)| v 6.6 =0, (5.534)
m=—/
¢
> m Y0, ¢))> =0, (5.53b)
m=—~
1o 2 2041
—oY;" = 2 :
m;g 50V (0,0) o (40, (5.53¢)
‘ 20+ 1
> om? Y0, ) = o (P +0)sin®6], (5.53d)
m=—/
: 9
> | o2 (0.0)| o7 0.6) 0. (5.53¢)
m=—~
These results can also be found in Appendix C of [113] (see also [114, §5.10]). Notably,

Equation (5.52a) is zero for all s. Although the precise form of the addition theorems
in Equations (5.40), (5.44), (5.46), (5.50), and (5.51) depends on the conventions used
for defining the spin-weighted spherical harmonics, the final results in Equations (5.52)

remain independent of the choice of phase.

Summary

In this chapter, we have presented the main properties of the spin-weighted spherical har-
monic functions. We have restricted our attention to the properties needed to prove the
addition theorems in Equation (5.19) and to those required to present the new addition
theorems that we have derived in Theorems 5.3.1, 5.3.2, 5.3.3, 5.3.4, and 5.3.5. These
calculations will be pivotal in simplifying the analysis of the scalar field on a curved back-

ground, as we will see in Chapter 6 and 8.

We were able to prove these new addition theorems thanks to the properties of the dif-
ferential operators ;0 and ;0 and also thanks to the differential operators that we have
introduced, 0’ and ¢d’. We then took the coincidence limit and examined the result
when s = s’. While all the previous results are general, this particular case is the one that

we are going to use in later calculations in the thesis (see Chapter 8).
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Chapter 6

Classical scalar field

In this chapter, we will present a comprehensive analysis of the classical scalar field on
the black hole spacetime discussed in Chapter 4. Specifically, we will discuss the Klein-
Gordon equation on this curved background and outline the procedure for solving it. Our

approach follows the work of [13,57,85, 109].

In the first section, we will provide a general overview of the Klein-Gordon equation (6.1).
We will demonstrate how the separability of this differential equation allows us to find

the angular part, which depends on 6, and the radial part, which depends on r, separately.

In the second section, we will present the calculations required to solve the angular part
of the Klein-Gordon equation (6.8). We will outline two possible methods for solving
it: one using hypergeometric functions, in Section 6.2.1, and another using spin-weighted
spherical harmonics, in Section 6.2.2. For the remaining of the thesis, we will use only the

solution in the form of spin-weighted spherical harmonics.

In Section 6.3, we will present methods for solving the radial part of the Klein-Gordon
equation (6.41), again showing two different approaches. The first method transforms the
radial equation into the form of a Schrédinger equation in Section 6.3.1, allowing us to
study the potential V(7). This is useful for understanding the behaviour of the scalar field
modes, especially near the event horizon. The second method employs the theory of Heun
functions. In Section 6.3.2 we will solve the radial part of the Klein-Gordon equation by
transforming it into a Heun differential equation, which has known solutions in the form

of Heun functions. This solution will be used for the rest of the thesis.

In Section 6.4, we will present the normalization procedure for the scalar field modes and
introduce the observable that we will focus on later in the thesis: the classical stress-energy
tensor. We will show how the symmetries of the spacetime we are working in simplify the

form of the stress-energy tensor.
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6.1 Scalar field equation

We now consider a scalar field on Kerr-AdS in five-dimensional spacetime where the line
element is given in Equation (4.6). To achieve this, we must solve the Klein-Gordon

equation on a curved background, expressed as:
0P — (u? + &R)® = 0, (6.1)

where [ represents the d’Alembertian operator, defined by two covariant derivatives de-
pendent on the Christoffel symbols and, consequently, on the metric of the background
itself. In the equation, u denotes the mass of the scalar field, &g is the coupling con-
stant of the scalar field with the curvature of the background, and we also report again
R= —%, (4.3), which is the scalar curvature of the spacetime. To simplify the notation,
we introduce a parameter

pg = (1* + &o R), (6.2)

since R is constant (4.3).

There are two important couplings £3: one is the minimal coupling case, where £ = 0,
and the other is the conformal coupling {o = &.(D), where &.(D) is defined in Equation

(2.23) and depends on the number of spacetime dimensions. We report the explicit formula

for convenience that can be found in [11]. It is given by:
1/D-2
(D)=~ (=—2). :
&0 =1 (p=1) (63

For the five-dimensional case we are considering, this results in &.(5) = %.

In order to solve the Klein-Gordon equation in curved spacetime, we will use a method
called separation of variables. This mathematical method is well known and is frequently
used to solve partial differential equations (PDEs). The method assumes that the solution
can be written as a product of functions depending only on one variable of the original

equation. We assume the form of ® as reported in [13,57,85, 109]:
O(r,0,6,1),t) = eIV ()Y (0), (6.4)

where w represents the frequency of the field, and m and p are parameters linked to the
quantum numbers associated with ¢ and v, respectively, with 2m € Z and p € Z, given the
range of ¢ € [0,47) and ¢ € [0,27). Additionally, Y (6) and X (r) denote the angular and
radial functions in five dimensions respectively. We proceed by writing the Klein-Gordon
equation (6.1) as:

=0/ =50"®) ~ 0 =0 (65)

Using (6.4) in (6.5), we can rewrite it as:

Flr,X(r), X' (r), X"(r)] + G]0,Y (0),Y'(9),Y" ()] = 0, (6.6)
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where F[r, X (r), X'(r), X" (r)] is the “radial part” of the Klein-Gordon differential equa-
tion, depending only on the variable r, and G[0,Y(0),Y’(6),Y” ()] is the “angular part”,
depending only on the variable §. We have divided by ® as in Equation (6.4), which gets
rid of the common exponential factor e/?+iP¥=iw ghtaining a form in Equation (6.6) that

only depends on r and 6. Hence, we set one part equal to A and the other to —A:
Flr, X(r),X'(r), X"(r)] = A, G[0,Y(0),Y'(9),Y"(0)] = -, (6.7)

where A is the separation constant. In this way, we have used the theory behind the sep-
aration of variables to obtain two ordinary differential equations (ODEs) to solve instead
of a PDE. In the following sections, we will focus on solving the angular part in Section
6.2 and the radial part in Section 6.3.

6.2 Angular equation

Using Equation (6.5) together with the explicit expressions for the metric and the inverse
metric given in Equation (4.11) and Equation (4.12), we can evaluate the box operator
and obtain an explicit expression for the function G[6,Y(0),Y'(6),Y”(0)]. In this section,
we will demonstrate how this equation can be solved and discuss the types of solutions it
can have. The variety of possible forms of the solution is somewhat hidden in the freedom

of choosing the form of the constant A, which will also affect the radial equation.

6.2.1 Angular equation and hypergeometric function

We start our analysis showing the form of the angular ordinary differential equation:

(p — 2m)? (p+2m)*  4[Y"(0) + cot 0Y'(0)]
At 2(cos —1)  2(cos + 1) + Y (6) =0 (68)

Before we solve Equation (6.8), it is important to highlight that there is an alternative way
to do it that we are not going to study in this thesis. In [85], the metric is treated slightly
differently, as shown in (4.14). In this case, the authors take full advantage of the metric
expression resembling a two-dimensional metric describing C P! [152]. They successfully
solved the angular equation using the theory of harmonics on CPY. We are not going to
analyse this method in detail, but we verified that our results matched theirs. As we will
see later in Section 6.3.1, the behaviour of the radial potential can also be matched with

the analysis performed in [35].

To simplify the differential equation (6.8), we introduce a change of variable, setting

x = cos 6. This yields:

4 (1= Y"(x) =8z (1 —2°) Y'(z) + [dmpz — p* —4m® + X1 — 23)] Y () = 0. (6.9)
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We identify two regular singular points, one at « = 1 and the other at x = —1. In this
scenario, we can apply the Frobenius method to solve this differential equation in a neigh-

bourhood of each of the regular singular points.

This technique is used to find series solutions to linear differential equations, particularly
when the differential equation has a regular singular point, as is the case here. The
method extends the power series approach by allowing the solution to take the form of a
generalised series, in which each term is multiplied by (z — «)", where « represents the
singular point, and v may be non-integer. This allows the method to handle equations

with regular singular points. The procedure begins by substituting the Frobenius series
o
Y(2)=(x—-a)") an(z — )", (6.10)
n=0

into the differential equation. By balancing terms and equating powers of (z — «), the
indicial equation is obtained, and we can determine the coefficients a, of the series and
the value of v. The coefficient ag # 0 is usually fixed by normalization, and the other

coefficients {an },e {0} are computed recursively.

In order to study the behaviour of the solution near the singular points, a = 1, —1, we
focus only on the leading order term of the series expansion. This approximation leads to

the following expression for the solution near z = a:
Y(x) ~ap(z — ), (6.11)

where ag is a nonzero constant coefficient, « is the position of the regular singular point,
and v is determined from the indicial equation. Since there are two singular points, we
perform the procedure for both, resulting in two distinct values for v, denoted as gy and
7 for @« = +1 and o = —1, respectively. Now we can substitute (6.11) in the Equation
(6.9) to find the indicial equation:

ao(x — a)?{—4m? + 4mpzx — p* — (2% — DA + (z — a) " H[8z(2? — 1)v]
+4(22=1) (z—a)2(v -1} =0. (6.12)

If we substitute for a = 1 and simplify a bit we get the following equation

ag(z — 1)7{=4m? + dmpz — p* + (z + 1)[(1 — 2)A + 4og(z — 1 + 09 + 209)]} = 0,
(6.13)

while if we substitute for « = —1 we get the following equation

ao(x + 1) {—4m? +dmpz — p* + (z — D)][~(z + DA +4r(z +1 -7 +27)]} =0. (6.14)
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We then divide Equation (6.13) and Equation (6.14) by ag(x —1)?¢ and ag(z+1)" respec-
tively,
—dm? + dmpz — p® + (z + 1)[(1 — )X\ + dog(x — 1 + 0 + z0y)] = 0, (6.15)
—dm? +dmpz —p* + (z = V)[—(z+ DA+ 47(z +1 — 7 +27)] = 0. (6.16)

We then substitute x = 1 in Equation (6.15) and x = —1 in Equation of (6.16), and we

obtain

—4m? 4 dmp — p* + 1607 = 0,
—4m? — dmp — p* + 1672 = 0. (6.17)

If we solve the system of equations (6.17) for oy and 7 respectively we find:

_lp—2m| __ lp+2m|

4 4 7
where we have chosen oy and 7 to be always positive preventing divergences in the angular
function Y ().

(6.18)

g9

From this analysis, we obtain that the solution to the angular equation (6.8) should have
the form of:

Y(z)=(1-2)7 1+2z) Z(z), (6.19)
where Z(z) is an arbitrary function regular in = £1. We introduce a change of coordinate

that will aid us in retrieving the hypergeometric differential equation form:

r+1
= 2
=3 (6.20)
from which we obtain
Y (w) = (2 —2w)7 (2w)" Z(w). (6.21)
We then substitute this new form of Y (w) in (6.9) and we obtain:
0=w(l—w)Z"(w)+ 1+ 27 —2w(l + 09+ 7)) 2" (W) (6.22)
4m? 4 p? + 4mp(1 — 2w)
16(w — 1w
4(—4Ar2 + w? (A —4(og+ 7)1+ o9 + 7)) + w(—A + 4(og + 7)(1 + 27))) Z(w)
16(w — Dw
After some computation, we can see that this equation can be simplified into:
w(l—w) Z"(w) + [c— (a+ b+ 1)w] Z'(w) — ab Z(w) = 0, (6.23)
where
1 1
a=—§v)\+1+09+7+§,
1 1
b= VA+14op+7+ 2,
c=1+2r. (6.24)
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Finally, we obtain the solution for the angular equation of the scalar field in terms of

hypergeometric function:
V(z)=(1-2)7 (14+2)" 2F1(a,b;c;w), (6.25)

where both z and w can be expressed as functions of the variable 6

x = cos(f)
w:cmﬂ2+1. (6.26)

The hypergeometric function oF(a,b;c;w) is defined by the Gauss series on the disk
|lw| < 1, and by analytic continuation elsewhere. On the circle of convergence, |w| = 1,

the Gauss series, see [1]
e Converges absolutely when ¢ —a — b > 0.
e Converges conditionally when —1 < c—a — b < 0 for w # 1.
e Diverges when ¢ —a —b < —1.

While for w = 0 the solution always converges, see [1], for w = 1 we are looking at one
of the possible three available cases defined above. Now, we determine the eigenvalue
for Equation (6.8). We do this using the properties of the hypergeometric function o F1,

looking specifically at the behaviour at the singular points [!]:

w=0—2=-1—2F(a,b;c0) =1 (6.27)

w=1—2=41—2Fi(a,b;¢;1) = 0.

In our case we can check that ¢ — a — b = —20y, which is clearly always negative from

(6.18). Therefore, the angular function Y (w) diverges at w = 1, it can only converge if

the hypergeometric series terminates, and this occurs when a = —n, where n is a positive
natural number |[1],
1 1
—SVA+ltop+7+5=-n (6.28)

Hence, we obtain the values of the eigenvalues:
A=[2n+1+2(cp +7)]* - 1. (6.29)
This result corresponds exactly to the one evaluated in [57] and [35].

6.2.2 Angular function and spin-weighted spherical harmonics

We now introduce the form of the angular function that we will use for our numerical
computations in Chapter 8. We have already introduced the spin-weighted spherical har-

monics in Chapter 5, and now we are going to show how we will utilise their properties
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in our analysis. To do this, let us take a step back and properly introduce the subject.
In Equation (5.1), the spin-weighted spherical harmonics are defined as depending on the
angles 6 and ¢. In order to match this definition, we need to modify the way we look at

the separation of variables in Equation (6.4). To this end, we define:
Y (0,4) = ™Y (6), (6.30)
so that Equation (6.4) becomes

O(r,0,0,0,t) = PVTRX ()Y (0, ¢). (6.31)

Substituting the separable mode ansatz in Equation (6.31) for the scalar field into Equation
(6.1) and separating variables, the resulting equation for the angular function Y (4, ¢) can

be written as

2y Y Y 2Y 1 ,o e
0= %92 + cot 0880 — ipcot O csc QZQS + csc? H?M)Q 1 %Y cot? 0 + )Y, (6.32)

where X = (A — p?) is the separation constant.
We compare Equation (6.32) with the governing equation for the spin-weighted spherical

harmonics (5.39) 5Y;*(6, ¢), which have spin s, total angular momentum quantum number

¢, and azimuthal quantum number n [28,12,56,77,99, 108, 118]:

&2 Y} O dY,
0= 8?926 + cot 6 8806 + 2is cot 6 csc ;J
2 82517; 2 yn 2 2 21 v
+ csc” 0 95° — 7Y cot? O+ [0° + 0 — $°] Y. (6.33)
Here, s is a, positive or negative, integer or half-integer, £ = |s|, [s| + 1, |s| + 2, ... is
a positive integer or half-integer, and m = —¢,—¢ + 1,...,£ — 1,/ is also an integer or

half-integer, taking both positive and negative values.

Comparing Equations (6.32) and (6.33), we see that the spin s is related to the quantum

number p by
p
== 6.34
s=-2, (634

and the separation constant X is given by

~ 1
)\:£2+£—s2:€2+€—1p2. (6.35)

We can also substitute back the form of the angular function in Equation (6.30) and divide

by the exponential e"™? to obtain a differential equation that depends only on 6:

Y"(6) 4 cot 0Y'(0)
n {0802 9 [—(m +scos0)?] +(C—s)(C+s+1)+ s}y(e) —0. (6.36)
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From this, we can highlight two important points. First, we can identify m = n in Equation

(6.33). Secondly, this corresponds exactly to our Equation (6.8), where
< 1
A= (A —p?), (6.37)
s —2s. (6.38)

It is also important to note the different form of the separation constant this being A or
\. This difference arises because there is a choice in selecting the eigenvalue’s form, as we
previously mentioned. While all choices are valid, maintaining consistency is vital. Hence,

we will use Equation (6.35) throughout this thesis.

The advantage of working with spin-weighted spherical harmonics is the existence of ad-
dition theorems proven in Chapter 5 for sums over the azimuthal quantum number m, see
Section 5.3. These theorems will enable us, in Chapter 8, to simplify the expressions for

the vacuum polarisation and stress—energy tensor for the quantum scalar field.

Finally, we introduce the normalisation of the angular function of the quantum scalar field.
The standard normalisation for the spin—weighted spherical harmonics having integer spin
s is
2 ™ . ~
/ / SYZ”*(Q, gZ)) S/}/[f/n (9, qb) sin 6 df dqb = 558/ (5@/ 5mm’- (6.39)
$=0 J6=0
We use this normalisation so that the addition theorems in Chapter 5 can be applied.

However, since we have ¢ € [0,4m) rather than ¢ € [0, 27), our normalisation is

4m T ~
/ S}/gm* (9, gf)) S/)/;/n (9, d)) sin 0 df dd) =2 5531 5@5/ 5mm’- (6.40)
¢=0J6=0

This normalisation condition is valid for both half-integer and integer spin. It is important
to note that, from now on the indexes that will then be used in Chapter 7 as quantum

numbers will be £, m and —p/2, and w as the frequency.

6.3 Radial equation

Now that we have discussed the angular equation, we can focus on the radial part of
Equation (6.1). From the separation of variables introduced earlier in this chapter, we
now look at the function F[r, X (r), X'(r), X" (r)]. This is expressed as follows:
3 24

g (T):| X,(T)

=¥+ [2 - 255

w — r)}2 2
+mm2F pnE i X, (6

f(r)? h(r)?

where )\ is the separation constant in Equation (6.7) and g is defined in Equation (6.2).
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The analysis of the radial equation can be done following two different approaches. The
first one is to write Equation (6.41) as a Schrodinger equation. This will give us insights
into the behaviour of the modes, helping us defining an orthonormal basis of field modes
for the canonical quantization of the scalar field in Chapter 7. The second one, is per-
formed choosing an appropriate change of variables and writing the differential equation
(6.41) as a Heun differential equation |1, Eq.31.2.1]. This will be useful for our numerical

computations in Chapter 8.

6.3.1 Schrodinger equation form

Firstly, we are going to use the tortoise coordinate r,, and simplify the differential equation
[25]. Let us define

dr,  g(r) R(ry)
=27 d X(r)= —= 6.42
dr  f(r) an (r) r h(r)t/2’ (6.42)
where the functions f, g and h are the ones defined in (4.7). We can see that:
r« =& —00 when r —rg, (6.43)
r« -0 when r — +o0. (6.44)

Using this variable we have re-derived the fact that the radial equation can be written as
a Schrodinger equation as shown in [85]
2

CZ‘ER(T*) + V(T)R(T*) = 0, (645)

where V(r) is the potential of this equation, which is

2
V(r) = [w—pQ(r)* = f(r)* |5+ % + hfr)z}
)2 r r)2h(r
I >T2¢W a [f( P d o, W}] . (6.46)

where we have used the relationship between the metric functions f, g and h, in Equation

(4.7). We can now give some insights on the asymptotic behaviour of the potential.
e For r — o0,

1572 B ,u%rQ

C4If L2
We can see that this expression is valid for finite values of L. Furthermore, we can

V(r) ~ (6.47)

show the behaviour in the minimally coupled case and in the conformally coupled

case of the potential V' (r) when r — oo,

1572 2,2
Minimally coupled case: & =0 — V(r) ~ — 4554 - 'MLZ . (6.48)
3 :U'2T2
Conformally coupled case: o = &.(5) = T Vr)~— 77 (6.49)
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We can see that V(r) diverges like 72 as 7 — 400 unless the field is massless and

conformally coupled, we will not consider this case in this thesis.

e For f - 0,r— 1y,

V(r) ~ (w—pQm)?, (6.50)

which gives us the behaviour of the potential at the horizon r and this is constant.
We can also define:
w=w-—py, (6.51)

where w is the frequency of the mode. This quantity will be pivotal for the evaluation

of observables in the following chapters.

In case L goes to infinity, given the relation to the cosmological constant L oc A~!, the
spacetime becomes asymptotically flat rather than asymptotically AdS. This will bring
the potential V() to zero as r — oo and to be (6.50) on the event horizon [35].

Near the horizon, as » — r4 and 7, — —oo, the solutions of the radial equation (6.45)
take the form
R(ry) ~ Cy €@ 4 C_ 7, (6.52)

where C4 are complex constants, representing ingoing and outgoing plane waves. As

r — oo and r, — 0, the solutions of Equation (6.45) are [35]
R(ry) ~ Dy ry/?Hli0 L p_pl/2-Lio (6.53)

where D4 are complex constants, and

N 4
fio° = pd + Iz (6.54a)
In order for the scalar field to exhibit no classical mode instabilities, the Breitenléhner—
Freedman bound |25, 26| must be satisfied, namely:
fio> > 0. (6.54b)

From this point forward, we will assume that this condition holds. We then consider only

the regular, decaying solution in (6.53); that is, we assume g > 0 and
R(r.) ~ Dy v/, (6.55)

as r — oo and 7, — 0. When g = 0, although the Breitenlohner-Freedman bound is still
satisfied, the radial equation no longer yields solutions of the form (6.53). This change
arises because terms in the potential V (r) that are subleading when pg # 0 become the

leading-order terms. We will not consider this possibility in this thesis.
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Finally we will present the analysis for the normalization of the radial function. We can
absorb the constant C1 in Equation (6.52) into an overall normalisation constant, and we

can, without loss of generality, take the radial function R(r) to have the form

e + Rypre ™™, 1y — —00,

1/2+Lig
7:.)pf T'x > re — 0,

prg(T’) ~ (656)
where Rp¢ and 7T, are complex constants, and the subscripts indicate that the radial
function depends only on the frequency w and the quantum numbers p and ¢. Since
Equation (6.45) is a Schrodinger-like form equation, the Wronskian of any two linearly
independent solutions is a nonzero constant. In particular, by considering the Wronskian

of R,p¢ and its complex conjugate, we obtain
& (|prg|2 - 1) ~0, (6.57)

which implies that either |prg]2 =1lorw=0.

This is a good moment to pause and introduce one of the choices made in our analy-
sis of a quantum scalar field on a five-dimensional Kerr-AdS black hole. Given that the
AdS structure generates a boundary at infinity, as discussed in Chapter 3, we must impose
boundary conditions. In this work, we adopt the reflective boundary conditions introduced
in Section 3.2; specifically, we impose Dirichlet boundary conditions by picking Equation
(6.56) as the radial equation for the scalar field. As a result, the scalar field flux through
the boundary at » — oo is zero, and the field is reflected at the boundary. This implies
that, unlike the case of rotating asymptotically flat black holes, there is no classical su-
perradiance in this setup, and hence no superradiant instability for slowly rotating black

holes (e.g. for 0 < a < amin) [08,33].

With this analysis, we also highlight that we have only one set of modes, which simpli-
fies the study of this case considerably compared to other black hole cases, such as the
Schwarzschild black hole, see Section 1.3. In particular, these are the ingoing and outgoing
modes at the horizon. All of this is consistent with the analysis performed in [35]. This
will be the key point for constructing quantum states, in particular, the Hartle-Hawking

state for this background.

6.3.2 Heun equation form

In order to solve the differential equation (6.41), we will use a different method than the
one introduced for the angular part (namely, the Frobenius method in Equation (6.11)).
However, we will still focus on the singular points of Equation (6.41) in order to solve it.
In fact, we will attempt to transform the radial equation (6.41) into the form of a Heun dif-

ferential equation [124]. To this end, we follow the method of [6,5,83,109]. In [6,8,83,109],
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the authors use a different coordinate system from that employed here; this means that

their expressions for the various constants introduced below differ from ours.

Initially, we observe that g(r)~2, as defined in Equation (4.7), constitutes a cubic function

in 72, multiplied by r—*:

Ia
-2 _ 4 2= 2
g(r) —T4<LQ+7° —2Mru+2Ma>. (6.58)
The roots of the equation g(r)™2 = 0 are 2 > r> > 0 and r§ < 0. We also know that
(see Chapter 4)
ri+r? 15 = L% (6.59)

The radial equation (6.41) has four regular singular points, at r? = r%r, r? =12, r? =1}

and 72 = oo. Since the Heun differential equation also has four regular singular points, we
are confident that it will be possible to transform the form of the radial equation (6.41)
into the Heun form using an appropriate change of variables. To this end, we first define

an independent variable [109]:

7"2 — T'_2~_
s (6.60)

The regular singular points are then at z =0 (r=r3), z2=1(r=00), 2 =29 (r =r_)

and z = oo (r =1¢), where

2 2

Here, r4, r— and rg are the roots of g(r) defined above, which also provide information
about the surfaces of the black hole, as explained in Chapter 4. We can then define a new

function H(z) by writing the radial function as
X(z) = 2% (2 = 1) (2 — 20)"~ H(2), (6.62)

where 0., o and 0_, corresponding to the singular points 0, 1 and zg, are possibly complex
constants to be determined. Instead of constructing the indicial equation for each singular
point as we did for the angular differential equation, we substitute this form of the radial
function into Equation (6.41); this gives us

0=H"(z)+ g +- f -+ - _Ez_ H'(2) +B(2)H(2), (6.63)

where the constants v, § and € are given by
y=1+20,, 6=—-1+4+20, e=1+20_, (6.64)

and U(z) is a function of z that is too lengthy to display here, serving the purpose of
transforming Equation (6.41) into a Heun differential equation. To this end, we require

U(z) to take the form
afz—q
2(z—=1)(z — 20)’

B(z) = (6.65)
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where o and 8 are constants such that
a+fB+l=v+d+e (6.66)
The constraint (6.66) is satisfied for a and (3 given by

a=0L+0_+ 0+ 00,
B=0,4+0_+0—0, (6.67)
where 0y is another constant to be determined. Now we must determine the constants

04, 0_, o and 0y. These are found by requiring U(z) to have the form given in Equation

(6.65). After a considerable amount of lengthy algebra, we find

7

= — (w—pQ .
01 = o (o~ ). (6.652)
1
1
90 = 27%0 ((JJ — pQO) s (668C)

[ 1
o=1+1/1+ Zugm, (6.68d)

where g is given in Equation (6.2), the constants x4 in Equation (4.54) and Qp in

Equation (4.37) can be written in the alternative form

(2= (2 =)

32 +2) (24 7).

0 ir_Toy /7"3r + L2 6 st
o= 2 2 2 2\ (6.681)
Lry (r+—|—7“,) (r,—I—L)

and we have defined the quantities k_, )_, kg and ¢ in a similar way:

B [

w0t (2 )

iryroy/r? + L2
Q= : (6.68h)
L3+ 12) (12 +02)
oy i) ()
0 — )
Dty (134 12) (02 + 1)

Ty /7‘_2F +7r2 .
Qp = (6.6&])

Lroy/ (72 + L2) (2 + L2)

Ky = (6.68e)

(6.68g)

(6.681)

All quantities under a square-root sign in Equation (6.68) are positive, and since r% < 0,

we have that rg is purely imaginary. Therefore, k4 and €2+ are real, while kg and g are
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purely imaginary. This means that both 61 are purely imaginary but 6y is real. Since
pugL? > —% in Equation (6.54), we also have that ¢ is real. Finally, the constant ¢ is
given by
L 272 .2 4% ,2,2
=———— WL —p*—4r—r
RN ) [ P +Ho
+ 2 (20+O' +o0— 9+)

+ (0. +0)(0y +6_+1)—63, (6.69)

where 1o can be found in Equation (6.2) and X in Equation (6.35). Now that we have

successfully matched our radial equation to the Heun differential equation and determined

the form of every parameter, we can use this to our advantage. We know that the solutions

to Equation (6.63) are the Heun functions, specifically,

HOI(Z) = Hl(Z(),q;Oé,,B,")/,(S;Z),
HOQ(Z) = Zl_’y Hl<207 ('206 + 6)(1 - PY) +q,0& + 1- 77/3 + 1-— 772 _’7757'2)7 (670)

in a neighbourhood of z = 0, while
Hll(Z) = Hl(]' - ZO,QIB - q;aaﬁ)éa’y; 1— Z)7
His(z) = (1 — )¢ Hl(l — 20, (1 — 2z0)y + €)(1 — 8) + aB — ¢; (6.71)
a+1—&5+1—&2—&%1—0,

in a neighbourhood of z = 1. These results can be matched with those reported by [109].
Hop1(z) and Hoz(z) are two linearly independent solutions of Equation (6.63) with (z)
given by Equation (6.65). Hj1(z) and Hia(z) are also two linearly independent solutions
of the radial equation (6.63). We see that Hp1(z) is regular at z = 0 and Hi1(2) is regular

at z =1, since

HOI(’Z) = HZ(ZO’Q;av/Bvry?é; O) =1 asz— 07 (672>
Hll('z) = Hl(l - Z0,0(,B - q;avﬁada’y; 0) =1 asz— 17 (673>

for any parameters zg, q, a, 8, 7, 0. However,

Hoo(z2) ~ 22077 as z — 0, (6.74)
Hip(2) ~ (1—2)2179) asz -1, (6.75)

where o is given by Equation (6.68d) and -y is given by Equation (6.64). We focus on the
solutions in a neighbourhood of z = 1, since o > 1, we see that Hia(z) diverges as z — 1.

We therefore choose the solution Hi1(z) to be the appropriate radial function, so that

prf(r) = %wpﬁ Z0+ (Z - 1)0 (Z - 20)97 Hl(l — 20, C\fﬁ -4 avﬁ) 5a7; 1- Z)a (676>
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where X,,,¢ is a constant that we will determine in the next section. The choice of this
radial function corresponds to reflective boundary conditions. In particular, we use the
Dirichlet boundary conditions, which we have introduced in Section 3.2. We assume that
the radial function tends to zero as rapidly as possible as r — oco. The form of the
radial function given in Equation (6.76) is the one that we shall use for our numerical
computations in Chapter 8, since the Heun functions Hl(zo,q; «, 3,7, d; 2) are built into

Mathematica.

Another important property of the Heun functions, these being solutions of a second order
linear ODE, is that we can relate the solution in Equation (6.70) at z = 0 to the solution

in Equation (6.71) at z = 1 via linear combinations,

H01(z) =C1 HH(Z) + Cq2 le(z), (677)
HQQ(Z) = 021 HH(Z) + C22 H12(Z), (6.78)

where Cj;, with ¢ = 1,2 and j = 1,2 are constants which can be expressed as the ratios

of Wronskians W{, } of Heun functions as

W_.[Ho1, H12] W [Ho1, Hi1]
Chy = . Cyy = , 6.79
U WL[Hy, Ho 2 W.[Hig, Hil (6:79)

W.[Ho2, H12] W [Hoz, H11]
Coy = Oy = , 6.80
T W.[Huy, Hig) > W.[Hia, Hu1| (6.80)

and where p p

W.lu,v] =u diz] - d—z v, (6.81)

is the Wronskian. If we use the form of the radial function in Equation (6.63), it holds
that
224 (2 = 1)7(2 — 20)?~ W.[H,, Hy) = const. (6.82)

This means that the Wronskian itself is not constant, but the ratio between Wronskians

is [109]. On the other hand, in a neighbourhood of z = 1 we can express the solutions as

HH(Z) = D11 H()l(z) + D19 HOQ(Z), (683)
ng(z) = Do H()l(z) + Do HOQ(Z), (684)

where D;;, with ¢ = 1,2 and j = 1,2 are constants which can be expressed as the ratios

of Wronskians W{, } of Heun functions as

W,|Hy1, H W, Hy1, H

Dy — 2 [Hi, 02]’ Dy — 2[Hit, 01]’ (6.85)
W.[Ho1, Hoz] W.[Hoz, Ho1]
W, |Hqo, H W, Hyo, H

Dy — 2[Hia, 02]’ Day — 2[Hi2, Ho1) (6.56)
W.[Hot, Hoo] W.[Hoz, Ho1]

We will make use of this property in the next subsection, where we will see why it is

important that one Heun function can be written as a linear combination of the others.
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6.3.3 Matching the two forms of the radial equation

In the previous two subsections, we have derived two forms of the radial function X,,,¢(r).
What we do now is to match their definitions, since Equation (6.76) and Equation (6.42)

need to represent the same function. We report them here for simplicity:

Xope(r) = m, (6.87a)
Xupe(r) = Xupe 2+ (z=1)7 (2 - Z—)e_ Hyi(2), (6.87b)

where R,p¢(7,) has the asymptotic forms given in (6.56), the variable z is defined in Equa-
tion (6.60), and Hi;(z) is the Heun function in Equation (6.71). In Section 6.4, we will
use the form in Equation (6.87a) near the past event horizon to determine the overall
normalisation of the modes. In this subsection we would like to find the constant X,
so that, near the past horizon (where r = ry), the two asymptotic forms in Equation
(6.87) match. Our analysis follows that in [109], although we use different coordinates.
In particular, our definition of the tortoise coordinate in Equation (6.42) differs from that

in [109].

Since we know the behaviour of Equation (6.87a) near the past horizon, we can write
ei@ T

riyV/h(re)

where the tortoise coordinate r, is determined by the differential equation (6.42). As

Xope(r) ~ (6.88)

r ~ r4, we have, for r > r|

1 _
ry ~ ——log (T ths ) el (6.89)
2/€+ T4+

where k4 is the surface gravity in Equation (6.68¢) and C' is a constant, which leads to a
phase in Equation (6.88) which we will not consider. Effectively we are putting C' = 0. If
we substitute Equation (6.89) into Equation (6.88), we obtain

1w

Xy (r) v —— <T — I > o (6.90)

T’+\/h(7’+) T+

This is the form we wish to match to the expression in Equation (6.87b) for X, (r) in-

volving a Heun function.

The expression (6.87b) involves a Heun function whose asymptotics as z — 0 is not easily
obtainable. However, we can use the fact that the solution defined in a neighbourhood
of z =1 can be rewritten as a linear combination of the solutions in Equation (6.70), as
shown in Equation (6.83). Hence, substituting Equation (6.83) for Hii(z) in Equation
(6.87b) we obtain, for z ~ 0 (noting that 61 in Equation (6.68a) is purely imaginary),

prg(’l“) ~ %wpﬁ Dy 20+ (*1)0 (*ZO)G_ . (6'91)
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Next, since for r ~ ry

2ry (r—ry)
R, R (6.92)
+ 0
we have ;
- 2ry(r—r +
Kpe(r) ~ Zeope D11 (—1)7 (—20)" <*2(2+)> : (6.93)
ry =13

Comparing Equation (6.90) and Equation (6.93), the constant X,,,, is determined to be

1
Diyry/h(ry)

We have already chosen the overall phase in our derivation of the form (6.90) of the

0+
Xyt = e e - R ) SRR

2
2T‘+

radial function near the past horizon. As a result, we need to retain all the phases in the
constant X,,¢. Notably, the ratios of Wronskians in Equation (6.85) will be convenient

for our numerical computations in Chapter 8.

6.4 Normalization of the scalar field

We have solved the Klein-Gordon equation (6.1), finding solutions for both the angular
part (6.8) and the radial part (6.41). The final step in constructing an orthonormal
basis of scalar field modes is to ensure that the modes are normalised. We have already
discussed the normalisation of the angular function in Section 6.2.2, which follows from
the properties of spin-weighted spherical harmonics introduced in Chapter 5. In order to

complete the analysis, let us consider the scalar field modes which take the form
(I)(’I”, 07 ¢7 ¢; t) = prf e_th eip¢ prg(T) —p/QYVZm(Qv Qb), (695>

where the quantum numbers are as follows: the frequency w € R; the azimuthal quantum
number p € Z; the total angular momentum quantum number ¢, which takes the values
Ip/2|, Ip/2| + 1, |p/2| + 2,...; and the additional angular quantum number m, ranging
from —¢ to ¢ in integer steps. In Equation (6.95), the constant N, is a normalisation
constant that depends only on w, p and £. Notably, the only dependence on the quantum
number m is contained in the spin-weighted spherical harmonics _,/»Y;" (0, ¢), which will

be useful for simplifying the expectation values of observables in Chapter 8.

The modes in Equation (6.95) are normalised using the inner product (®1, ®3) of any two

solutions of the scalar field equation (6.1), which is defined by
(P, Py) = z/ (V,@7) @y — TV, Do) dXFH, (6.96)
b

where the star denotes complex conjugation. Consider a spacelike hypersurface ¥ that
extends from the event horizon to the spacetime boundary. In an asymptotically AdS

black hole, this hypersurface is not a Cauchy surface. However, by imposing appropriate

122



6. Classical scalar field

boundary conditions on the radial function X,.(r), we ensure that the scalar field modes
vanish as r — oo. Consequently, the inner product defined in Equation (6.96) is indepen-
dent of the choice of the surface X.

We choose the hypersurface X to lie near the past horizon, where the Kruskal coordinate
V is set to zero, and we parameterise this surface using the Kruskal coordinate U (as
defined in Equation (4.67)). On X, by employing the radial function given in Equation
(6.87a) together with its asymptotic behaviour from Equation (6.56), we obtain

1 —iwt i 10Ty m
¢wp£m (t7 T, 0,9, ¢) = , h(r)prZe te¥e —p/21/€ (97 ¢)
1 —iwu i m
= , h(T)prfe e Py —p/QYé (97 (Z))a (697)

where the corotating angle 1, is given by (4.57). The surface element is dX* = nt d3,

where n#* is the normal

2k2UV
w2 T sk
n Fe v (6.98)
where k4 is the surface gravity in Equation (4.54), and
Y= +/—gxdU dfdodiy, (6.99)

where y/—gk is defined in Equation (4.71). Substituting (4.71) into (6.99), we obtain

r2h(r)

= e i e

[2n+f(r)2 + Q@) — Q)2 h(r)z] sin 0 01 dU dO dep i,
~ —%r2h(r) sin 6 8f; dU df d dipy,  (6.100)

where in the last line we give the leading-order expression near the past event horizon,
where r — r4. Changing the integration variable to u (4.61), the inner product of two

scalar field modes is

<¢wp€m(t T, 9 ¢ d} ¢w ' l'm t T, 9 ¢ ¢)>
/ / / pZNw 'l [w +w ] i(a_al)ue_i(P—p/)er
=—00 J0=0 ¢ er 0

X X po (1) Xy (1) _p 2 Y7™ (0, 0) _p ;2 YE (0, 6) dudf dp dip.  (6.101)

Using the normalisation shown in Equation (6.40) of the spin-weighted spherical harmonics
and that

27 . ,
/ e =PV gy, = 278y s (6.102a)
0
/ ei(C)—CD/)u du = 2716 ((:) _ a/) , (6102b)
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the inner product (6.101) becomes

(Guptm (t,7,0, 0, 9), burprrm (8,7,0,,)) = 8776 [Nopel* 6 (@ — &) Sy Ot Gy, (6.103)
and requiring orthonormality takes the normalisation constant to be,

Nupt = (6.104)

1
2V/2m |@|
where we have taken N, to be positive. Note that, from (6.103), modes having w > 0
have positive “norm”, whereas those with w < 0 have negative “norm”. Now that we have
evaluated the normalisation constant, we are ready for the construction of the quantum
states. In particular, in the next chapter, we will display the procedure to derive the

Boulware state and the Hartle-Hawking state for the system.

Summary

In this chapter, we have presented a comprehensive analysis of the classical scalar field on
Kerr—AdS in five dimensions. We have provided a general overview of the Klein—-Gordon
equation (6.1), and, using the separability of this differential equation, we have solved

both the angular and the radial parts.

We have detailed the calculations required to solve the angular part of the Klein—Gordon
equation (6.8) using two methods: one utilising hypergeometric functions (6.25) and the
other employing spin—weighted spherical harmonics (6.32). We have also shown that there
is a choice associated with selecting the eigenvalue form (6.29), thanks to these two meth-

ods.

We have also shown how to solve the radial part of the Klein—Gordon equation (6.41)
using two different approaches. The first method transformed the radial equation into
the form of a Schrodinger equation (6.45), which allowed us to study the potential V' (r)
and provided insights into the behaviour of the modes close to the event horizon. The
second method transformed the radial equation into a Heun differential equation, whose
solutions are given in terms of Heun functions (6.76). This form of the radial function is
the one that we will use to evaluate the observables in Chapter 8, as the Heun functions

are implemented in Mathematica, providing an advantage in the numerical calculations.

Finally, we have presented the normalisation procedure for the scalar field modes, which
was the last step required to create an orthonormal basis of modes. This was the first step
towards constructing the quantum states over the Kerr—AdS five-dimensional background,

which will be the topic of the next chapter.
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Chapter 7
Canonical quantisation on Kerr-AdSs

In Chapter 6, we introduced the properties of a classical scalar field with general coupling
on a classical background 5D Kerr-AdS spacetime. In this chapter, we quantize the scalar
field in order to define quantum states while maintaining the background 5D Kerr-AdS
spacetime as classical. We will achieve this by following the prescription of quantum field

theory on curved backgrounds, using the canonical quantization method.

The process of canonically quantizing the scalar field involves decomposing the field ®
into sets of modes that are positive-frequency or negative-frequency with respect to a
time coordinate, as we discussed in Part I. We will then define quantum operators for
the positive-frequency modes, which will be annihilation operators, and quantum opera-
tors for the negative-frequency modes, which will be creation operators. A key aspect in
the construction of these operators relies on the fact that positive-frequency modes have
positive norm, while negative-frequency modes have negative norm. Only under these con-
ditions will the canonical commutation relations associated with the operators be valid.
In this manner, we will define the two quantum states, the Boulware [23] state and the
Hartle-Hawking state [61].

We will also present a method to evaluate observables in a manner that does not require
renormalization. We will use the two quantum states that we have defined, and we will
exploit the fact that both these quantum states are Hadamard states (see Section 2.4),
which means that their two-point functions share the same divergent part. This divergence
depends only on the field and on the geometry of the spacetime, which are the same for
both quantum states. This means that we can subtract the two expectation values of an

observable in two different quantum states and obtain a quantity which is finite.

In Section 7.1, we will introduce the canonical quantization procedure, providing an easy
example of its application. We will also display results to show how working in an asymp-

totically AdS five-dimensional spacetime can actually simplify the whole calculation. In
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7. Canonical quantisation on Kerr-AdSs

Sections 7.2 and 7.3, we will describe the construction of the Boulware state and the Hartle-
Hawking state, which are quantum states that are going to be pivotal in the evaluation
of observables. Finally, in Sections 7.4 and 7.5, we will evaluate the vacuum polarization

and the renormalized stress-energy tensor.

7.1 Canonical quantization procedure

In the previous chapter, we solved the Klein-Gordon equation on the 5D Kerr-AdS black

hole, giving us this form for the scalar field modes:

O(r,0, ¢, t) = eMOTPYTIO X (1Y (), (7.1)

where we now know the form of X (r) (6.76) and Y (#) (6.33). We have also evaluated the
normalisation constant (6.104). (7.1) provides us with an orthonormal basis of modes in

which we can decompose our field.

In order to canonically quantise the field, we need to decompose the scalar field modes
introduced in Chapter 6 into sets of positive- and negative-frequency modes, following
Section 2.2. We remind the reader that in Minkowski spacetime, there is a unique choice
for the vacuum state. On the other hand, in QFTCS, this is not the case, as we discussed
in Section 3.4. This arises from the diffeomorphism invariance of GR, which allows the
scalar field to be decomposed into positive- and negative-frequency modes with respect to
different time coordinates, depending on the chosen coordinate system. For this reason,
we will present the construction of two quantum states, based on the coordinate system
used for the field decomposition. Specifically, we will discuss the Boulware state and the

Hartle-Hawking state, both introduced in Section 3.4.

We are about to reach one of the main goals of the analysis, which is the possibility of
evaluating observables, such as the stress-energy tensor or the vacuum polarization. In
order to do this, we have to define suitable quantum states to evaluate the expectation
value of these quantum objects. These calculations are new in the literature since, as far
as we know, no one has constructed the Hartle-Hawking or the Boulware states on a five
dimensional Kerr-AdS black hole.

We start the analysis by giving a definition:

7.1.1 Definition. Let us consider the Fourier transform of an arbitrary integrable func-
tion f: R — C,
/ dXe Y f(X) = F(p) VpeR, (7.2)

—00
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7. Canonical quantisation on Kerr-AdSs

where F(p) is the Fourier transform. Then if

/OO dXe PYf(X) =0, p>0, (7.3)

—00

holds, the function f(X) is defined to be positive frequency w.r.t the variable X. In

the same way we can define the negative frequency w.r.t the variable X as
o0 .
/ dXe PYf(X)=0, p<O0. (7.4)
—0o0

In order to define quantum states, we need to separate the positive frequency modes from
the negative frequency modes. In our case, the frequency is denoted by the parameter
w, and from this we will construct the creation and annihilation operators as described
in Section 2.2. We would like these modes to be defined with respect to the Kruskal
coordinates (U, V), see Section 7.3. However, the modes are not well defined throughout
the entire spacetime as the Kruskal coordinates. To overcome this problem, we are going

to use the Heaviside function, so that we can write the following Lemma [110].

7.1.2 Lemma. Let us take the Heaviside function ©(X) w.r.t a variable X,

1, X>0
O(X) = (7.5)
0, X <0,
then -
/ dxe X {e*iq (X Q) + e e ln(*’@e(—)c)} =0, (7.6)

for positive real p and arbitrary q € R. By Definition 7.1.1 the quantity inside the curly
brackets is defined to be positive frequency w.r.t X. For the same reason we can define

negative frequency taking the complex conjugate of Equation 7.6,

/ axe¥ {10 (x) 4 e N (-x) | ~ 0, (7.7)

for positive real p and arbitrary q € R.

Lastly, we want to emphasise once again that, due to the AdS boundary of the Kerr-AdS
five-dimensional black hole, we have only one set of modes, as observed in the previous
chapter. This greatly simplifies the analysis, and we do not encounter superradiance
effects, which are typically expected in Kerr black holes. To visualise this, let us focus
on Region I in Figure 4.6, see Figure 7.1. Given that the radial function takes the form
in Equation (6.56), we can see that we have only one set of modes and that, due to the
reflective boundary conditions we have chosen (Dirichlet boundary conditions), the modes
are reflected back into the black hole. We have only one set of modes going “in” and “out".
We are now ready to define and construct the quantum states. We begin by constructing

the Boulware state.
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7. Canonical quantisation on Kerr-AdSs

Figure 7.1: Region I of the Penrose diagram in Figure 4.6, where the blue lines indicates

the scalar field modes.

7.2 Boulware state

In order to define the Boulware state [23], which corresponds to the vacuum state of
the system defined w.r.t. the Schwarzschild-like coordinate ¢, we report the scalar field
modes in terms of these coordinates. We find it useful for later calculation to also use the

corotating coordinate 1, introduced in Equation (4.57). Hence, we have
B 1
2v/27 |@| r+/h(r)

where this expression is valid only near the past event horizon since we are assuming that
the radial function R(r,) is of the form (6.56). The modes in Equation (7.8) are already

efthJripw* ei@r* 7p/2}/€m (07 ¢)7 (78)

an orthonormal basis and we can define ®g,,, to have positive frequency with positive

norm and ®%, myp 0O have negative frequency with negative norm when w > 0. We will call

them respectively <I>~£mp and (I)Mmp
1 o .
T = WP e YA, p), @ >0, 7.9
W /27" (0.9) (7.9
1 St i ~
O = WP VM0, 4), @ <0, (7.10)

2v/27 | @
where these are defined in a neighbourhood of the past event horizon, where the coordinates

(t, 74,0, 0,1,) remain regular and the solutions are well behaved. So the classical scalar

field ® can be written as a sum of modes as,
Z Z Z {/ [ a‘:’empq)ﬁfmp + aI)Zmp(I)mep] } (711)
p=—00 f=|p|/2 m=—L

where a and al are constants for the classical field. Since we were able to define the scalar
field using an orthonormal basis of field modes, we can now proceed with the canonical

quantization and promote the field and the expansion coefficients to operators,

b = Z Z Z { / 5 | Gty @iy + I}Zmpéggmp]}, (7.12)

p=—00 f=|p|/2 m=—L
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where @ and a are respectively annihilation and creation operators, which satisfy the

usual commutation relations,

(@5 tmps @511y ) = O(@ = & )00 O Oy for & > 0, (7.13)
(8 g @) = 0, (7.14)
[6ctmps @5y = 0 (7.15)

We can then define the Boulware state by,
agemp | B) =0 for w > 0. (7.16)

The Boulware state, defined as in Equation (7.16), is the natural definition of a ground
state for an observer at constant (r,6, ¢,,), in other words, an observer corotating with
the event horizon of the black hole. It has the physical interpretation of being as empty
as possible to an observer far from the black hole who is also corotating with the event

horizon.

7.3 Hartle-Hawking state

In order to define the Hartle-Hawking state, which corresponds to the vacuum state of
the system defined w.r.t. the Kruskal coordinate U (see Equation (4.67)), we first need to
report the expression for the scalar field modes in terms of these coordinates. The choice

to use the Kruskal coordinate system has been motivated in Section 3.4.

Now in order to define positive and negative frequency, we should express the scalar field
modes near the past event horizon in term of the Kruskal coordinates, we first introduce

the coordinate U that will simplify the notation later on,

1 - - -
u= —;ln(—U), where U =&kU, U € (—00,0), (7.17)

then for the outgoing modes near the past event horizon, we can write

_ 1 LW r7 ipihs m r7
‘I)@pgm—2\/§7r|a’7‘\/%exp [zmln (—U)}ep Y (0,6)© (—U), (7.18)

where we again referred to a system of coordinates that is corotating with the black hole
as in the construction of the Boulware state, using 1, defined in Equation (4.57) and we
have included the Heaviside step function ©(X) so that the argument of the logarithm is
positive. The quantity s is the surface gravity (4.54), and w the shifted frequency (6.51).
The scalar field modes that we have constructed in Equation (7.18) are nonzero in Region
I and vanish in Region IV in Figure 4.6. From Equation (6.103) the modes (7.18) have
positive “norm” when @ > 0 and negative “norm” when w < 0. We want to construct

positive and negative frequency modes that can be defined in both Region I and Region
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IV. To achieve this, we need to define a set of modes that is nonvanishing in Region
D _ . The
(U,V)=(-U,-V)

coordinate V' does not appear in Equation (7.18) because we are considering the form of

IV. This can be constructed by applying the transformation ¥ =

the modes near past event horizon where V' = 0. Hence after the transformation we get:

1 w ~ . ~
A exp |i-LIn (U)} e Y0, 6)O (U) : 7.19
Y iy T o VI (0,9) (7.19)
where the modes have positive norm for negative w and negative norm for positive w, as

we can see from the inner product

<\I’G1€1m1p17 qj&zézmzpz> - —sign(&)é(&l - cN‘)2)5m1m251911925@152- (7-20)

For the construction of the Hartle-Hawking state, we are going to use Lemma 7.1.2. The

second term of the Lemma can be built from (7.19) choosing the variables as,

U and q=——, (7.21)
Kt

X

this means that
/ dﬁe—ipf] {6ic~u/nln(l7)@(ﬁ) + ewﬁ/neiﬁ/ﬁln(—ﬁ)@(_ﬁ)} =0, (722)

where this is valid for arbitrary positive p. Then from (7.22), since the ®z,,, are already
normalized, we have

S ~ . T7 ~
/ dUe_Zpngzmp =0 where Y Uaomp + em/“@ggmp, (7.23)

+ _
wlmp —
—00

which are the positive frequency modes w.r.t. U for all &. In regard of the negative

frequency modes we can apply the same principle, and apply the Lemma 7.1.2 with the

choice of -
X=U and q=2, (7.24)
K
giving
/ dﬁeipU {ez‘&/mln(U)@(ﬁ) + e—ﬂ&/neia/mln(—U)@(_ﬁ)} =0, (7.25>
where this is valid for arbitrary positive p. Then from (7.25) we have
/_ dﬁe_ipﬁxcgfmp =0, where X(.%Kmp = \ijgmp + e_ﬂa/’iq)@émp (726)

which define negative frequency modes w.r.t. U for all &.

We have defined positive and negative frequency modes w.r.t. U , hence we have a set
of modes that can act as a basis, however, we need to normalize these in order to be
able to quantize the field w.r.t. this basis. We introduce two normalization constant

to be determined /\fgemp and Somp? which for simplicity we will report only with the w
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dependence in the following calculation. So, let us start with the positive frequency modes

and consider,

+ .+ + .+
<NL~01 X&1 tmp NLT)Q X@Emp> (7.27)
= 6*7"(&1+@2)/21€N£—1N£* <\I,531€mpa qj@z@mp> + eﬂ(51+&2)/2,i./\/‘£—1./\[£* (cD@lEmpa (I)Gzﬂmp>

= 2N N[ sinh(7&/k)[6 (@1 — @),

where we used the facts that ¥ and ® are orthonormal and the fact that (¥|¥) < 0 for

w > 0. If we require normalized modes this means,

NE = ! (7.28)

whmp /3] sinh(rw/k)|

We can apply the same procedure to the negative frequency modes which gives us

N, L (7.29)

Btmp ol Sinh (e /#)|

Now that we have an orthonormal basis of positive and negative frequency modes we can

write the field as a sum of these modes as

oS (o9 y4 S 1 )
PP IDD {/ood” 2[sinh(ns /)| [b‘”mpxamp”;fmpxwﬂw}}7 (7.:30)

p=—00 {=|p|/2 m=—¢

where b and bf are constants. In the same manner as before since we are able to define
the scalar field using an orthonormal basis of field modes, we can now proceed with the

canonical quantization and promote the field and the expansion coefficients to operators,

R 00 00 4 S 1 X ) )
RSP VP {/ood“’ o[ sinh(nio/r)] [b@fmpx&mp”fvemwmmp}}’ T

p=—00 (=[p|/2 m=—{

where l;;gmp and i)gﬁmp are respectively annihilation and creation operators, which satisfy

the usual commutation relations,

[Bafmpy B;’f’m’p’] - 5(C~U - w/)(sﬁ’(smm’ pp’ s (732)
[o— -} (7.33)
[Z;Z'uémp’ B&’Z’m’p’] =0. (734)

Let us focus on Region I in Figure 4.6 of the spacetime, so that the modes Wy, vanish,

then the scalar field reduces to

) 00 0 L o 1
b= > > /ood” 2] sinh (r&/r))|

p=—00 (=|p|/2m=—L""

X [ B@gmpefﬂwmﬁq)ggmp -+ I;I eﬂa/2n(bg,gmp:| , (7.35)

wlmp
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Now we can define the Hartle-Hawking state by,
bgsemp |HH) = 0. (7.36)

The Hartle-Hawking state |H H) is the natural definition of a ground state for an observer
freely falling towards the event horizon of the black hole. It has the physical interpretation

of exhibiting outgoing thermal radiation at infinity.

7.4 Vacuum polarization

Now that we have defined |B) and |HH), we can evaluate observables. The first and
easiest observable to evaluate is the expectation value of the square of the quantum scalar
field operator (also known as the “vacuum polarization” or the “scalar condensate”), and
it is given by % (| otd + dof |1y for a generic quantum state . This quantity will need
to be renormalized, but before that, let us start with evaluating the quantity (B| &1 |B).
We will use the expression for the field operator as reported in Equation (7.12). Hence,

since |<I>5£mp|2 = |<I>§£mp|2, we can write

00 00 l 0o
BIEDE) = Y S S [ ol (Blasamily,, B (137

p=—00f=|p|/2m=—L" "

and using the commutation rules,

00 0o V4 00
BléeE =Y 2 Y / 085 [®50mpl? (BI (1 — aLyy, izemp) | B)

p=—00 (=|p|/2m=—t" "
0o o) 1 co
=y > Y / Ao |@zempl?.  (7.38)
p=—00 b=|p|/2m=—£""
In the same way we can also evaluate the quantity (B|®®'|B) which gives us the same
result. Hence we can write
1 00 00 l 00
5 (B oM+ 21p (B = > > > / A% |®emp)?- (7.39)
p=—00 (=|p|/2m=—L" "

We can do the same analysis for |HH), so using (7.35), we can write

(HH|®'® |HH) =

eTw/k

e} o] ¢

Z Z z : dw ————— <I)(~ 2 HH [3~ [A)i HH '

——00 /oo 2| Sinh(?lcu/l{',)| ’ Zmp’ < | wempU G emp | > ) (‘ 40)
p L=|p|/2 m=—£

and using the commutation rules,

00 00 l 0o w3k )
o > D €| By | .
HH|®'® |HH) = § do & Fetmpl i b - i
I 2 %, 4/—00 % s/ ] T = Yompbaemp) (HH)
=—0f=|p m=—

0 o0 ¢ 0o Tw/K 2
_ _ ™ D, |
=22 > /mdw S smh(no k)| (741)

p=—00 =|p|/2m=—0"

132



7. Canonical quantisation on Kerr-AdSs

In the same way as before we can also evaluate the quantity (HH|®®t |[HH). We find

o o ¢ 00 —TW0/k 2

“ A - € ‘(I)&Em ‘
HH|®d" |HH) = d Pl 42
(HH]| HH)= > >, > /Oo ¥ ol sinh(nw /x| (7.42)

p=—o0 ¢=p|/2m=—t"~

Finally, we can evaluate the quantity (HH|®1® + &1 |HH),

0o 00 ¢
% (HH|®'® + 00T [HH) = Y~ Y ) / s |®50mp|?| coth(ni/k)|.  (7.43)
p=—00 {=|p|/2m=—L" "

The vacuum polarization in Equation (7.39) and in Equation (7.43) needs to be renor-
malized. However, in this thesis we will not present a renormalization procedure for
this quantity; instead, we are going to exploit the properties of the Hadamard states in-
troduced in Chapter 2. In fact, we can subtract the vacuum polarization evaluated in
Equation (7.39) from that in Equation (7.43) to obtain a finite quantity that does not
need renormalization. This is due to the fact that both the Boulware and Hartle-Hawking
states are Hadamard states, which means that the divergent part of the expectation value

of an observable is the same for both (see Section 2.6). Hence, we can write
(HH|®'® + 0T |HH) — (B| &' + T |B) =

oo [e’e) 4 0o
=2 > Z/ A |@z0mp|* (| coth(n@/K)| — 1) =
p=—00 {=|p|/2m=—£" "%
o0 o0 Y4
-> >

p=—00 (=|p|/2m=—L""

o0

Ood@ |<I>ump|2m, (7.44)
where we can see that the thermal factor is in the form of a Bose-Einstein distribution.
We have finally retrieved the expression for the difference between the vacuum polariza-
tions evaluated in two different ground states, which is finite and can be studied. This
procedure can be used to evaluate all kinds of observables on the Kerr—AdS spacetime
in five dimensions, and it gives us a sum over the scalar field modes that, with some

manipulation, can be evaluated numerically (see Chapter 8).

7.5 Renormalized stress energy tensor

Now that we have presented the formula for the evaluation of vacuum polarization, we
can introduce the next observable we would like to evaluate: the renormalized stress-
energy tensor (RSET). As is known, the stress-energy tensor possesses divergences in the
quantum picture, see Chapter 2. To eliminate these divergences, we can renormalize the
stress-energy tensor using a prescription given by the theory of QFTCS. However, this
process has some complications in the case of a rotating black hole, for which a more

practical implementation has yet to be developed.
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In this case, we will use the results we have obtained for the vacuum polarization and
evaluate the stress-energy tensor again as a difference between quantum states, which cir-
cumvents the problem of renormalization. Indeed, we will have a finite observable that
we can study; however, this will be a combination of the finite parts of the two quantum
states we have defined earlier, the Boulware state and the Hartle-Hawking state. While
we would also like to study a method to renormalize the stress-energy tensor utilizing just
the Hartle-Hawking state, since the Boulware state is ill-defined on the event horizon, we
still think this quantity is interesting to understand the behaviour of the scalar field in
the 5D Kerr-AdS spacetime.

As we can see in Section 2.6, the vacuum polarisation appears directly in the expression
of the renormalized stress—energy tensor; this is also why we decided to evaluate it before

this observable. Applying the same method presented in the previous section, we obtain

AT,LW = <H‘T,LLV‘H> - <B‘T#V‘B> =
00 ~ NT

00 00 V4
=Y Y Y[ e e 09

p=—c0 (=[p|/2 m=—t

where NTW is the classical SET for a scalar field mode in Equation (6.4). We use the
notation X = {w, p, ¢, m} to denote the quantum numbers on which the mode contribution
to the SET depends. We will study the symmetries and the components of this quantity in

Section 8.2, where we will also give the explicit analytical expression for each component.

Summary

In this chapter, we have quantised the scalar field and defined quantum states while
maintaining the background 5D Kerr—AdS spacetime as classical. We achieved this using
the canonical quantisation procedure. We then defined quantum operators corresponding
to the positive-frequency modes, which are annihilation operators, and quantum opera-
tors corresponding to the negative-frequency modes, which are creation operators. We
constructed the Boulware state and the Hartle-Hawking state, which we then used to
evaluate observables. We presented the analysis to calculate the expectation values of the
vacuum polarisation and of the renormalized stress—energy tensor through subtraction of

the expectation values of the two quantum states.
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Chapter 8
Numerical results

Having defined the Boulware |B) and Hartle-Hawking |H) states in the previous chapter,
we now present the calculation, numerical evaluation, and results for the expectation values
of the vacuum polarisation, evaluated in Section 7.4, and the SET evaluated in Section
7.5. In this chapter, we also describe the steps carried out using Mathematica to compute
the numerical results for the stress-energy tensor and the vacuum polarisation, taking also

a closer look at the HPC implementation and the numerical side of this calculation.

8.1 Vacuum polarization

The simplest non-trivial expectation value that we are going to numerically evaluate is
the square of the scalar field <é>2>, the vacuum polarization. We have presented the sum
over the modes in Section 7.4. In this thesis, we will not provide a demonstration of how
to renormalize this quantity, as this technique is yet to be developed, we will provide some
discussion of this in the conclusion of the thesis, see Part III. Instead, we consider the
difference between the two expectation values in Equation (7.44), which, being a finite
quantity, gives us insightful information. This will give us important insights into the
behaviour of the quantum field in this curved background. For convenience, we report the

equation for the expectation value of the vacuum polarisation in Equation (7.44):
(B|®'® + 00T |B) =

|

p=—00 (=lp|/2m=—0"~

1 A A s 1
5 (HH| 1o 4 ¢ |HH) — 5
oodw | Pesemp 2@l — 1 (8.1)
This difference in expectation values does not require renormalization, as the singular

terms in the Green’s function for the scalar field are independent of the quantum state |11].

In the next sections, we first describe the numerical method employed to compute (8.1),

and then we will discuss the numerical results.
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8.1.1 Mathematica computation

To evaluate Equation (8.1), we use the separated form of the scalar field, derived in
Chapter 6, for the scalar field modes:

m 2
prg(T)|2 ‘—p/2}/£ (9’ @)‘

|
5 exp 2@l jrr) - 1

, (8.2)

adi- LSy - [

’ s p;oo €=§p|:/2 mgé /5’—00
where we know the form of the angular and radial function to be respectively a spin-
weighted spherical harmonic and a Heun function. We observe that there is no dependence
on the time coordinate ¢ or the azimuthal coordinate ¢. Furthermore, as shown in Chapter
5, the norm of the spin-weighted spherical harmonics does not depend on ¢, so the final
expression of Equation (8.2) depends only on the radial coordinate r and the polar angle 6.
In our numerical work, we use the coordinate z (6.60) instead of r as the radial coordinate.
This choice is advantageous because the radial function X,,¢(r) can be expressed in terms
of the Heun function when applying the coordinate transformation r — z, as described in
Section 6.3.2. With this transformation, the entire region exterior to the event horizon,
r € [ry,00), is mapped to z € [0,1]. This approach not only simplifies the representation
but also facilitates numerical computation, particularly as the Heun functions are built

into Mathematica.

In Equation (8.2), we first evaluate the sum over m, which can be performed analytically
using the addition theorem for spin-weighted spherical harmonics, as detailed in Chapter
5, see Equation (5.19). This yields:

(20 + 1) [Xupe(r)
|@| fexp (27|l /ky) = 1]

. 1 0o 00 00
A= > D /~

p=—00 (=lp|/27¥= 7%

dw (8.3)
We have obtained an analytical expression that we can now analyse numerically. As a first
step in the numerical computation, it is useful to examine the behaviour of the integral

over the shifted frequency w. To do this, we define:

o) 2
Lo(r) = / i [ Koope(r) (8.4)

G=—oo  |@] [exp (27|@|/k1) — 1]

We must fix the parameters of the black hole and the scalar field. We select:

1 1

- L=1 M=1 = — .
9’ ) 07 Mo 100a (85)

a =

and these values will be used throughout this chapter unless otherwise specified. They
have been chosen to respect the bound imposed at the beginning of the analysis, namely
that the light surface does not exist when a < ani. In this manner, we obtain a numerical
expression for the integrand in Equation (8.4), which depends only on z, @, ¢, p, and m,

where ¢ is either an integer or a half-integer and p is an integer. Specifically, we plotted
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the integrand for a given mode, fixing the value of the radial coordinate to z = %, as
shown in Figure 8.1. The qualitative behaviour of the integrand is unchanged when we
modify the values of z, £ or p, with the cusp that we see in Figure 8.1 due to the presence

of |@| in the denominator of Equation (8.4).

0.020

10 -5 5 10

w

Figure 8.1: Integrand of Equation (8.4) as a function of the shifted frequency w (6.51).
The integrand is evaluated at the radial coordinate z = 1/10 (6.60), for the scalar field
mode with p =5 and ¢ = 5/2.

Notably, it is integrable, but there are three important aspects to consider. Firstly, the
integrand converges quickly to zero for |w| — oo, which is an important feature for numer-
ical analysis because it allows us to limit the interval of integration significantly. Secondly,
the integrand is not symmetric in w, which is something to consider while limiting the
integral interval. Lastly, the peak of this curve is quite sharp, so during the numerical
analysis we had to implement the function Exclusions in the code to exclude this point

in the calculation of the integral.

The integrals Ip¢(r) are computed using Mathematica’s built-in NIntegrate function. We
have used a working precision of 32 digits, and the integration is performed over |w| < 30.
We picked this value for the integration interval in the convergence test on the integrand
to see after which value of w the function get close to zero. The relative errors due to
truncating the integration interval at this value are negligible. For instance, we estimate
this truncation error to be less than 10712 for the mode shown in Figure 8.1. The peak in
Figure 8.1 typically increases as z decreases and decreases as either p or £ increases. While
it is convenient from a coding perspective that the radial functions are expressed in terms
of Heun functions, the evaluation of the integrals I,,(r) requires significant computational
effort due to the numerical evaluation of these Heun functions. The integrals I,,(r) are

evaluated on an evenly spaced grid of 99 points for z € (0, 1), for values of p and ¢ that
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Figure 8.2: Summand Sy(r) (8.7) as a function of 2¢ for a selection of values of z (6.60).

we will discuss shortly. This translates to more than 1 hour of numerical computation per

mode to derive the value of the integral for each of the 99 points of z.

Now that we have studied the integrand of Ip,(r) and performed the integrals, we need

to perform the summation over the quantum numbers p and £. We can express Equation
(8.3) as

N 1 o0 o0
AD? = 53 DT> (204 1) Ip(r)

P=—00 (=|p|/2

00 20
1
= 393 DD 20+ 1) I(r), (8.6)
20=0 p=—2¢

where in the second line we have rewritten the two infinite sums over £ and p in an
equivalent form. Using the second line is advantageous because it reduces the summation
to a finite range of the quantum number p for each value of £, with only the final summation
over the infinite range of /. The finite sum over p is, in this way, straightforward to compute
for each value of £ and z. Defining

1 20

Se(r) = g5 D 20+ 1) I(r), (8.7)
p=—2¢

the final step in our computation of the vacuum polarization is to evaluate

)

AP =" 5y(r), (8.8)

20=0

which will be discussed in Section 8.4. Typical summands Sy(r) are shown in Figure 8.2
for a selection of values of the radial coordinate z (see Equation (6.60)). The profiles of Sy
as a function of 2¢ have similar shapes for all values of z in Figure 8.2. In particular, there
is a peak in the value of Sy at £ ~ 4 for each value of z, and Sy then decreases rapidly as
£ increases. The value of Sy at the peak increases as z decreases, and Sy is significantly

greater than zero for larger values of £ as z decreases.
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Figure 8.3: Ratio of the summands Sy,1/S; (8.7) as a function of 2¢ for a selection of
values of z (6.60).

8.1.2 Convergence test

In order to understand where we could truncate the numerical evaluation of the infinite
sum over ¢, we conducted a series of convergence tests. If the sum is convergent and we
can determine the value of ¢ after which the terms become negligible, we can make a
more precise approximation of the infinite sum. To this end, we employed three different

methods, which are explained below.

The ratio method

The ratio method for series convergence involves calculating the limit of the absolute ratio

of consecutive terms in the series. We define L as

L = lim

n—oo

fi+1
J

(8.9)

where f; is a sequence in which each term is a real or complex number. The ratio method

states that:
e if £ < 1 then the series converges absolutely,
e if £ > 1 then the series diverges,

e if £ =1 the test is inconclusive.

To illustrate this, we evaluated and plotted the ratio of the summands Sy1/S; for our
specific case. In Figure 8.3, we show this ratio as a function of 2¢ for a selection of values
of z. We find that the ratio is less than 1 for sufficiently large 2¢, confirming that the sum
is convergent. However, the sums over 2¢ are not uniformly convergent as z varies, with

the rate of convergence decreasing as z decreases.

Shanks method

We have also employed a series acceleration method called the Shanks method [69, ,

|, which utilises partial sums. This transformation is a non-linear series acceleration
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Figure 8.4: Partial sums Sy (8.11) as a function of 2¢ for a selection of values of z (6.60).

technique designed to increase the rate of convergence of a sequence, at the expense of

precision. We first introduce the partial sums

j
pi= > fr (8.10)
k=1

where fi is a sequence in which each term is a real or complex number and j could, in
principle, take any sufficiently large value. As in the previous case f will be represented
by Sy in Equation (8.8) in our analysis. For the vacuum polarization in our case, the
partial sums are defined as )
2
Se(r) =Y Su(r), (8.11)
20'=0
and are shown in Figure 8.4 for a selection of values of z. We can see that in this plot
for each value of z, the partial sums converge for sufficiently large 2¢, with the limiting
value increasing as z decreases. This is a crucial point for the employment of the series
acceleration method, such as the Shanks method, because the series and the partial sums

need to be convergent to accelerate the rate of convergence.

The Shanks method involves the sequence:

2
Pj+1Pj—1 — P;
Py= ———— — (8.12)
Dj+1 +Dj—1 Py

where the p; are the partial sums of fi in Equation (8.10). The sequence P; converges
faster than the original series, providing valuable insights into the convergence of fi. An-
other test that can be performed involves using the resulting sequence as the initial sum
and repeating the construction process. However, due to the way this sequence is defined,
the accelerated convergence comes at a price: precision loss. This is because the sequence
in Equation (8.12) is nonlinear, which results in increasing the error. This is accentuated

even more when looking at multiple iterations of this method.
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Figure 8.5: Sy plotted for z = %, showing the results for each of the three iterations of the
Shanks method.

We can apply this method directly to our definition of the partial sums for the vacuum
polarization in Equation (8.11). Hence, we can write
S, = Se4180-1 — SF
Sey1+Se-1— 285,

We can see from Figure 8.4 that at 2¢ = 40, Sy is convergent. Hence, we truncate the

(8.13)

sum in Equation (8.8), which yields small relative errors, estimated to be of the order of
1078 for z = % at 20 = 40. We can use &p as the initial sum and repeat the process.
In this iteration, the number of "modes" considered is reduced, with the maximum index
decreasing from 40 to 38, and the process can be repeated for as many iterations as the
initial maximum value of the summation index permits. In our case, an example of three
iteration of the Shanks method is shown in Figure 8.5, which illustrates the convergence

of the sum.

8.2 Stress-energy tensor

We now turn our attention to the expectation value of the quantum stress-energy tensor,

T,., as presented in Equation (7.45). We report the result for convenience here:

AT, = (H|T,,|H) — (B|T,,,|B) =

00 00 V4 00 N NT/U/
RPN e e

p=—00 (=|p|/2m=—t /¥

where YT, is the classical SET for a scalar field mode in Equation (6.4). We use the
notation N = {@, p, £, m} to denote the quantum numbers on which the mode contribution
to the SET depends. Before delving into the numerical analysis we performed, let us focus
on the properties and symmetries of this particular SET, which will simplify the study

later on.
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8.2.1 General properties of the stress-energy tensor
Symmetries

In five-dimensional spacetime, there are fifteen independent components of the stress-
energy tensor, as it is a symmetric tensor. Using the mode solutions in Equation (6.4) of
the scalar field equation, the form of these components, NTW, can be expressed in terms of
the radial and angular functions X,,,¢(r) and s?em (0). We will use the symmetries of the
spacetime, given in Equation (4.6), to constrain the form and to find information about
the components of the stress-energy tensor in Equation (8.14). We assume that the SET

shares the symmetries of the underlying background.

We use the Killing vectors in Equation (4.19), so that the Lie derivatives of the SET along

each of these Killing vectors vanish, given the properties shown in Chapter 1:
Le,(TH)y =0, i=0,1,...,5. (8.15)

We apply this to the first three Killing vectors in Equation (4.19). From this, we conclude
that the components of <T‘“’ ) are independent of the coordinates t, ¢, and ¥. The re-
maining independent Killing vectors, 3 and &, in Equation (4.19), impose more complex

constraints. Writing the Lie derivative Lg, (T, ) as

0= Efi <TAW>
= E20a(TH) — (00l (T™) — (0a)) (TH™), (8.16)

gives fifteen equations for each of the two remaining Killing vectors. Considering the
combination L¢, (TH) sin @ + Les (T") cos ¢ leads us to conclude that the following SET

components vanish:
(T%) = (%) = (T7%) = (1"¢) = (T%%) = (T") = 0. (8.17)

In addition, it also gives us the following relations:

(T9%) = iinzeg, (8.184)
700
<T¢w> - _2t;:9 s>in9' (8.18b)

Next, we consider L, (TH) cos p — Le, (T") sin ¢, which also tells us that the following
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components do not depend on 6:

ge@rt) o, (8.19a)
0 -
%q?“?“) =0, (8.19b)
9 .
%g’@@) =0, (8.19¢)
0 -
%mt) =0, (8.19d)
0 -
Z (T — 1
) =0, (819¢)
0 -
%<T”ﬂ) =0 (8.19f)
There is one further relation arising from this combination of Lie derivatives, which takes
the form o0
. 7°%)
dpfvy — - T7) 8.20
o ) 2 tan @ sin? @’ (8.20a)
and which is readily integrated to give
. 700
vy = L) L peuiy), (8.20D)

4in? 6

where F¥¥(r) is an arbitrary function of 7. In summary, we can write the SET in matrix

form as follows:

Fi(r)y Fir(r) 0 0 F(r)
Ftr(r)y  F(r) 0 0 Fré(r)
(1H) ’ ° . . (8.21)
Yy = ]:00 (7“) ]_-90 (7") s .
0 0 0 sin? 0 " 2tanfsind
FU) FU) 0 FO) P | gy

" 2tanfsinf  4sin20

where the F**(r) are arbitrary functions of . We also note that the order in which the
coordinates are displayed has changed from the previous choice (7,0, ¢, 1, ), see Equation
(4.11), to the standard ordering (¢, r, 0, ¢,1). This change is purely conventional and does
not affect the results in any way. The important thing to notice is that the underlying
symmetries of the black hole geometry have completely fixed the dependence of the SET
components on the angle §. This resembles the case of the static spherically symmetric
black holes, and we are left with seven arbitrary functions of r, which are to be determined.

We will determine these numerically later in this chapter.

Conservation

Before doing this, we can further constrain these seven arbitrary functions of r by imposing

the requirement that the SET is conserved:

(8.22)
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which we write in the alternative form

Oy <g<Tuy>> = %g (a,u.gocﬁ) <To¢ﬁ>’ (8'23)

where g is the determinant of the metric given by Equation (4.13). Utilizing the expressions

of these quantities, we notice that the p = 6 equation is trivial. Since the metric in

Equation (4.6) does not depend on t, ¢, or 9, there are three simple conservation equations
arising from Equation (8.23). The ¢ and v equations are identical and give

d 2 "(r "(r

2, f0), d0)

A ()
P P TS BT SRS

]:1(7“) = 0, (8.24)

where we have defined
Fi(r) = F¥(r) — Q(r) F" (r) (8.25)

and f(r), g(r), h(r), and Q(r) are the metric functions given in Equation (4.7). If we
integrate Equation (8.2.1), we obtain

Y Y
2 fgA(r) R (8.26)

where Y is an arbitrary constant. The p = ¢ equation arising from Equation (8.23) then

Fi(r)

takes the form

d 2 3f'(r) d'(r) W) YeY(r)

%}"”’(r) + <T + o + o + 0 ) Fr(r) + B 0. (8.27)
This is also readily integrated to give
oy 2= V) Z-YNr)
T = gni) R (529
where Z is an arbitrary constant. Hence, using (8.25), we have
1
Fr(r) = B Fr2h(r)?2 (V) +h(r)*Q(r) [2 = YQur)]} - (8.29)

The remaining conservation equation (8.23) has p = r and is more complicated:

[27" + h(r)h'(r)} ]-"99(1")

Dy g [24 20 2000 WO ey
O_drF(H r+f(r) + o) +h(r) F(r) 00)?

" 9(71")2 {1£(r)f'(r) = h(r)W (r)Q(r)* — h(r)*Qr)Q (r)] F*(r)
o [2B(r) R (1)QUr) + h(rPQ ()] F(r) = h(r)l (1) F(r) } (8.30)

We can integrate Equation (8.30) to obtain F'"(r):

r

) = 7"3;(7“) [;g + /r/:u o) dr'] , (8.31)
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where C is an arbitrary constant, and we have defined

3

O(r) = m

{ [F(r) f/(r) = B(r)R' (r)2(r)? = h(r)?Q(r)Q (r)] F¥(r)
+ [Qh(r)h/(r)ﬂ(r) + h(T)QQ/(T)] ftw(r)

— h(r) (r) F¥¥ (r) — i (27 + h(r)h'(r)] f%(r)}. (8.32)

We have found, by only using the symmetries of the spacetime and the properties of the
SET, that the SET is determined by three arbitrary constants (K, Y and Z) and four
arbitrary functions of the radial coordinate r only, namely F%(r), F®(r), F®¥(r) and
F¥¥(r). This is again a place where we can see the power of working in five dimensions.
The enhanced symmetries that we were able to impose on the metric and on the spacetime
compared to the four-dimensional Kerr metric managed to simplify tremendously the
evaluation of the SET, enabling us to constrain the SET much more than in the Kerr
case [I11]. Studying the Kerr black hole introduced in Section 1.3, using the Killing
vectors and the conservation equations in the same way we did for the five-dimensional
case, gives the four-dimensional SET in terms of two arbitrary functions of the angle 6 and
six functions of both # and r, which are constrained by two coupled equations [111]. In our
scenario, the enhanced symmetry of the metric in Equation (4.6) managed to completely
fix the dependence over the angular coordinates, especially 8, and reduced the components
that we have to evaluate to just four unknown functions of r. However, the structure of
the SET is more complex than the static spherically symmetric black hole case introduced
in Section 1.3 and studied in [101], which is determined by just two arbitrary constants

and two arbitrary functions of the radial coordinate.

Components

We now outline the computations that are needed to find the analytical expressions of
these functions starting from the classical SET components (2.68) evaluated for a scalar
field mode (6.4) with angular function 5)7;”(9). We omit the indices on the radial and
angular functions for simplicity, as these equations, as the reader will see, are quite lengthy.
In terms of the metric functions f(r), g(r), h(r) and Q(r) in Equation (4.7), the SET

components are:

Ry = W2 | X (1) Y (0)?

26 , d
S0 |77 0) = e g {ree) |
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X =0, (8.33¢)

N = —mew | X (1) 2V (0)? — i—gh(T)ZQ(T) X () V(0)Y(6) sin 0

{h(?’) / / * / Ve
g7 [P () 21 (r)Qr)| Re{ X* (1) X" (1) }Y(6)? cos 6

_%h(r)QQ(r)B(T,Q)COSG, (8.33d)

Ty = —pw | X(r)|* Y (9)?

§h(r) >

20 (B9 () + 20 (1)) | Re{ X* () X (1) } ¥ (6)?

V]

— h(r)2Q(7')3(r, 0), (8.33e)

N, = (1-26) | X' ()| Y (0)?

—2¢g(r)?

r2h1<r>2 {pr s ) ne? ) - o o {w- pn<r>}2]

f'(r)  2h(r) +rh'(r)

X | X (r)PY(0)* + 2¢ O

Re{ X* () X'(r) } 7 (6)*

+ g(r)%3(r,0), (8.33f)

Mo = |1 -4 R X)X ()} + Z IXCR |V OF(0), (8330

R, =m Im{X*(r)X’(r)}Y(0)2 , (8.33h)

Y g Im{X*(r)X'(r)}?(e)Q . (8.331)

ér
2g(r)?

2 -
A— %(pcot@ — 2mcsc€> ] X ()2 Y (0)?

Mg = (1 - 26) | X ()P Y'(6)? -

Re{X*(r)X’(r)}Y(e)Q

+2¢

+2Ecot 0| X (r)|2 Y ()Y (6) + %23(74, 0), (8.33j)
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Y, =0, (8.33k)

XTyy =0, (8.331)

Ny, = m? |X(r)] Y (6)°

oA sin? 0 + h(r)l! (r) cos® e} Re{X*(r)X’(r)}f/(e)?
§

-5 [h(r)Z . 7«2} X ()2 Y (0)Y (6) sin(26)

1
+ 1 [7“2 sin? 6 4 h(r)? cos? «9} 3(r,0), (8.33m)

Ny = mp | X(r) 2V (6)° - ;?T) r )Re{X*(r)X’(r)}?(e)%ose
+ 2§h(’“)2| X V(07 (0) sin9+%h(r)23(r, 0)cos, (8.33n)

Ny = P IX ()Y (6)% - Wae{x*(mx'(r)}?(e)?+h(r)23(r,e>. (8.330)

where

1 1 3
3(r,0) = (25 — 2) gD, P, + 3 (46 — 1) 2 ®? +¢R <25 — w) P2

= 1 LQ 1 cot @ — 2m csc 0] — ! w— 2

— (26-3) [{e 4 ztp 0= 2mesed]® = 1 o =00 X (P T16)
/ 257 = /

b XOPTOR + 5 IXOF V67

HIEE I s—)] X T (0" (8.33p)

In Equation (8.33), the radial functions X (r) depend on the frequency w and the az-
imuthal quantum number p € Z, while the angular functions 17(0) depend on the quan-
tum number m = —¢, —¢ +1,...,¢ — 1,4, the spin s = —p/2 and the quantum number
C=s|,|s|+1,]s| +2,....

We now use the addition theorems for the spin-weighted spherical harmonics in Chapter
5 to perform the sum over m in each of the SET components. We define new quantities

tuw by

20+ 1
> M = ol (8.34)
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where XT, uw are the components given in Equations (8.33). A further simplification arises
from the fact that, for our particular modes (6.56), we have Im {X*(r)X’(r)} = 0. This
can be seen by taking advantage of the Schrédinger-like equation defined in Section 6.3.
We know from that analysis (see Equation (6.42)) that

R(ry) . R(ry)

X0 = 2 = Fiy (8.35)
Hence,
it (53 )
e )

= 7o iR ) R}, (836)

where we took advantage of the linearity of the Im function and the fact that Im {R*(r,) R(rx)} =

0. Near the horizon, as r — r, the radial equation takes the form (6.52):
R(r*) ~Cy eicf)r* +C_ 6_@”. (8.37)
Thus, close to the event horizon we have:

dre
dr

% Im {R*(r,) R'(r.) } = Im{ crem@r qer e ey ize™r —coimem | }

d _ N ~ o _
= % Im{z’w IC4[? — i@ |C_|? +im C*Cy 2P — i e e—2w7‘*}. (8.38)

Given the analysis we performed (see Equation (6.56)) and the fact that there is no

superradiance effect in the Kerr-AdSs black hole in the slow-rotation regime, when a <

amin, We know that |C;| = |C_|. Also, the complex conjugate of +iwC*Cy €™ is

—iwCiC e~2@r+ this means that if we sum this two we always obtain something real.

Hence,

Im {R*(r,) R (r.)} = % @ (|C4P—c-]*) =0. (8.39)

dry
dr

Then we have

2

ty = w? | X (r)]* +
i | X (r)] POE

1017 () = RO S h ()} R X ()X ()

t =0, (8.40D)

tg =0, (8.40¢)
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1 Eh(r) ’ /
tip = {2pw \X(T)\2 + 29(r)? h(r)Q(r) + 2h (T)Q(T)]
x Re{X*(r)X'(r)} — ;h(r)2Q(T)5(T)} cosf, (8.40d)
o = —po X + L[ 0) + 20/ ()00 | Re{ X ()X (1)

— h(r)2Q(r)3(r), (8.40¢)

ter = (1= 2¢) |X'(r)”

L {w—pQ(T)}QI |X("”)|2

2t gr)? [r?hl(q«)?{p%z + (4)\ + r2y2>h(7“)2} TP

f’(r) 2h(7") + Th/(T) Re{X*(r)X/(T’)} 4 g(?“)23(7’)7 (840f)

TR T e

trO — 07 (840g)
trso — 07 (840h>
try =0, (8.401)

Loy = é(1 —46) (42 + 40— ) X () + 26 A X (1)

- R (X)) + %5 (), (s.40)
t@(p — 07 (8401{)
toy =0, (8.401)

top = %e X ()2 Y (0)? - [7’ sin® 0 + h(r)h'(r) cos® 9} Re{X™(r)X"(r)}

29(r)?
+ [0 4 hry? cos?0]30),  (8.40m)
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by = —{;pQ X ()% + WRG}{X*(T)X’(T)} - ;h(r)2g(r)} cos,  (8.40n)

tyy = D° X (r)]* - WRG{X*(T)X/(T)} + h(r)?3(r). (8.400)
where € is given by
¢ = (£ + ¢~ s%)sin® 0 + 2s* cos? 0, (8.40p)

3(r) = { LA L (462 + 40 — p*) — L [w — pQ(r))?

h(r)? = 2r2 f(r)?
1 3
5 6= P +ER (26— 5 ) 11X ()
2 10
1 10,02 1 2 2 2
+ PGE | X' (r)|” + 52 (46 + 40— p*) | X (r)|*, (8.40q)
and we have simplified using the result in Equation (6.35) that we report for convenience
1

)\:€2+€—s2:£2+€—1p2. (8.41)

It can be seen from Equations (8.40) that all the dependence on the angle 6 is now deter-

mined in closed form.

We now wish to compare the components in Equations (8.40) with the form of the SET
in Equations (8.21) derived from symmetry principles. Using the metric in Equation (4.6)

to lower the indices on Equations (8.21), we find

(T = [10 — )] 7
+2h(r)*Q(r) [f (r)? = h(r)?Q(r)?| F(r)

R F ) + TR0 FO), (8.42)
(Tir) = —g(r)*| f(r)* — h(r)ZQ(r)ﬂ Fr(r) — g(r)2h(r)2Q(r) F¥(r), (8.42D)

(Tig) = 0, (8.42¢)

— £ = 20020 F ()

— B PO FP ) — Jhr0() f%(r)} cosf, (8.42d)
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— h(r)2ﬂ(r) ]:TW(T) — %h(T‘)2Q(T) ];00(7,)} , (8.42¢)

(Trr) = g(r)* F"(r), (8.42f)
<T7"9> =0, (842g>

T _ 1 2 2 ) tr
(Trg) = 59()h(r)2{ F™*(r) = Qr) F"(r) } cos (8.42h)
(T} = g(r)*h(r)2{ F¥ () = Q) F" (1) }, (8.42i)

~ 7“4

(Too) = 757 (1). (8.42))
(Ty,) =0, (8.42k)
(Tyy) =0, (8.421)

(Top) = zh(r)4{9(7')2 F(r) —20(r) F¥ (r) + PM)(T’)} cos? 6

+ % [h(r)4 cos? 0 4 r* sin? 0} F%(r), (8.42m)

1
+ gh(r)4 F%(r)cosh, (8.42n)

(Ty) = hOHQEPF) = 200) FU0) + FP0)} + (h0) P, (3420

from which it is clear that the dependence on the angle 6 in all components is of the same
form. Let §°*° be the classical mode contribution to F** arising from the scalar field mode

(6.4), with the sum over m completed. To find the F°*°, it is simplest to use the inverse
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metric in Equation (4.12) to raise both indices on the components in Equations (8.40) and

then compare with Equations (8.21). This gives us

oy L w— ” 2 )2 2 f'(r) X (mx/(m L — 1 - a
§0) = i [P0 IXOI s R X (DX 0) = 5553000, (8.430)
F7(r) =0, (8.43b)

) f(r)jh(r)Q {w =) Hp 1) + nr?0r) [0 = p0(r)] }IX ()2
- fng{ F0)2 () = 21 (9(r) JRe{ X* (1 X'(r) } ;2(53)23’(7«), (8.43¢)

§7() = o (1-26) [ X0 P
1 4\ 2 w—pQ(r)
f[gm?{ P [ Fop? ] pxor

- g(?l“)‘l {% + ];,((:)) + Z((:)) JRe{ X" (X1} | + p (1)23(7«), (8.43d)
§V(r) =0, (8.43¢)

3°(r) = %(1 - 45) [462 +40— pz} X ()

-8 re‘»gl(r)zRG{X*(T)X/(T)}_?«j'X(T)|2 +%3(r), (B.436)
570 = oyt (P £+ 00 [0 =900 ]} X )P
2% (W) NYG)  FEND Ly (e
_g(T)Q{h(r3+ OENIGE — 5 Re{ X X0}
1 Q(r)27~
(7~ FoE 3, (53

where the above expressions will need to be multiplied by an overall factor of (2¢ 4+ 1) /4w
in the final mode sums. We have found the analytical expression of the functions of r that
were left in the SET after the study based on the symmetries of the spacetime. We will

show the numerical results in Section 8.4.
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Trace

In addition to these studies, we can also introduce and discuss the trace of the stress-
energy tensor. This can work as a constraint on the SET components. In the case of a
massless, conformally coupled scalar field, we have already seen that the trace vanishes
without anomalies in five spacetime dimensions [11]. When the scalar field has general

mass p and coupling £ to the scalar curvature, the trace <T/f ) is given by [11]

. . 3 .
(1) = 2@ +4 (¢~ ) 0@, (5.44)
which depends on the vacuum polarisation ($2). When we look at the massless (1 = 0)
and conformally coupled (§ = 3/16) case, this evidently vanishes. Since we will have
to compute the vacuum polarisation numerically, Equation (8.44) does not reduce the
number of unknown functions of the SET. However, we will use this constraint as a useful

check of our numerical results. In particular, using the SET form in Equation (8.21) and

the metric in Equation (4.6), we have

() = [~ 092 + B 2r)?) F(r) = 20 2r)F(0) + 9(r)2F (1)
1

+ 5 2% = ()] FO@r) + h(r)2F¥¥(r). (8.45)

8.2.2 Mathematica computation

In this subsection, we will present the steps taken to obtain a form of ATW in Equa-
tion (8.14) that is suitable for numerical computations. As a first step, we will use our
knowledge of the symmetries and the conservation equations discussed in the previous
subsection. As we have seen, in order to determine the difference in expectation values of
the SET between the Hartle-Hawking and Boulware states in Equation (8.14), we require
the determination of three arbitrary constants (K, X, and Z) and the numerical compu-
tation of four functions of the radial coordinate r: F%(r), Ft(r), F¥(r), and F¥¥(r).

We will implement some of the studies carried out for the vacuum polarization in Section
8.1. First, we require mode-sum expressions for the functions F**(r). To find these, we
start with the expressions for NTW, the classical SET components for a scalar field mode in
Equation (6.4), which are given in Equation (8.33). We then utilize our knowledge of spin-
weighted spherical harmonics and sum over m using the addition theorems as presented
in Chapter 5. The resulting quantities can be found in Equation (8.40). From these, we
can express each F**(r) as an integral over the shifted frequency w and a sum over the

quantum numbers p and ¢:

[e's) 20

ACEF=D OB O R, e (5.46)
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8. Numerical results

where expressions for the individual §**(r) can be found in Equation (8.43). Now, we
can proceed in the same way as we did for the vacuum polarization in Equation (8.6) and
rewrite the sums over p = —o0,...,00 and 2¢ = [p|,... 00 as a sum over a finite number
of values of p and a sum over 2¢ = 0,...00. Once we have rewritten Equation (8.46),
we observe that 7 (r) = 0 = §¥(r), and hence F¥(r) = 0 = F¥(r). Using Equations
(8.26) and (8.28), we can immediately fix two of our constants as Y =0 = Z.

For the remaining constant K, it is more convenient to compute F'"(r) directly. The
reason is that the following derivation will be carried out numerically, and the evaluation
of K would in practice only reproduce part of the definition of F'"(r), leaving the second
part to be evaluated numerically as well, see Equation (8.31). By focusing on F'"(r) from
the beginning, we simply shift the numerical computation from IC to F""(r), which makes
the procedure more straightforward and convenient. This implies that we will compute
five functions of r, namely F%(r), F(r), F®¥(r), F¥¥(r), and F™"(r). As in Section
8.1, we first perform the integral over the shifted frequency w in Equation (8.46). This

leads to the following integral expressions for each p and ¢:

(1) ) = > > W|pr€(7”)|2 a

W= [ Bl fexp @nla)/ms) — 1 (8.47a)

(2) ) = > » W2|pr€("")|2

0= | P e aem ey T (B.475)

G [T s Re{X7,(r)X/,(r)} .

B0 = [ e G T (8.47c)
2

@Oy [T Xl

0= [ B e T (8.47d)

(5) r) = o &VJ ‘XWPZ(T)F e

WO [ e et T (8470

()

where Ip? (r) coincides exactly with the integral I,.(r) presented in the study of the
vacuum polarization in Equation (8.4). This explicitly demonstrates why studying the
vacuum polarization was a crucial first step towards the evaluation of the stress-energy
tensor. Hence, we will need to evaluate these five integrals numerically to obtain both the

vacuum polarization and the stress-energy tensor.

In the same way as the integrand in Equation (8.4) Ip.(r) (see Figure 8.1), the integrands
in Equations (8.47) are regular and rapidly decaying as |w| — oo. We will use similar
methods to evaluate these integrals numerically; hence, we will employ Mathematica’s
built-in NIntegrate function. However, these computations require a longer runtime than
that needed for I,¢(r), approximately four hours for one integral. We will provide a more

detailed discussion on obtaining these numerical results in Section 8.3.
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8. Numerical results

Once we have computed the integrals in Equations (8.47), we need to take appropriate

combinations of these to study a sum over the modes. Using Equation (8.43), we obtain

~e0 _ > ~ S”(T’)
0= P m e T (8.48)
in terms of which we have
1 00 20 _
Fe) = DY @E+1Fr). (8.49)
20=0 p=—2¢

The sums over the quantum number p in Equation (8.49) are again straightforward to
compute, just as in the vacuum polarization case, leaving only the sum over 2¢. To
determine where it is possible to truncate this infinite sum for the SET, we reproduce
the same convergence analysis performed for the vacuum polarization. We found that, as
in the vacuum polarization case, summing over values of 2¢ from 0 to 40 yields results
that are accurate enough for our purposes. This is because we have performed the same
analysis presented for the vacuum polarization for each component of the SET in Equation
(8.42), and we saw that for 2¢ around 20 the sums start to converge, so we took 2¢ to
40 for good measure. We had to come to a compromise between precision and time of
evaluation, since these calculations require a long time to produce numerical results, as

we will discuss in the next section.

8.2.3 Consistency checks

In order to test our results and verify that our numerical computations are consistent, we
perform several consistency checks. First, we validate our results by computing the trace
of ATW in Equation (8.14) using Equation (8.45) and comparing it with the result in
Equation (8.44), which involves the difference in vacuum polarization between the Hartle-
Hawking and Boulware states. For a conformally coupled field with £ = 3/16, we find

that the relative error is 10712,

Another check that we could perform is to verify that the stress-energy tensor we have
computed satisfies the conservation equations and that Equation (8.44) holds for values
of & other than 3/16. However, performing any of these checks for our functions F**(r)
requires derivatives of quantities computed numerically. We obtained these values by inter-
polating our results between the grid points in z and then differentiating the interpolating
function. This procedure introduces additional numerical errors. In our case, these errors
are compounded by the fact that both the difference in vacuum polarization A®? and the
functions F**(r) vary by several orders of magnitude over the range of values of z (see, for
example, Figure 8.7). Furthermore, different functions F**(r) have very different orders of

magnitude at the same value of z, see Figure 8.8 and Figure 8.9. As a result, neither the
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conservation equation test nor the trace test (for nonconformally-coupled fields) is giving
meaningful results. However, we do find that, at intermediate values of z, the relative
error in evaluating the conservation equation (8.30) is several orders of magnitude smaller
than the largest magnitude of the F**(r) functions. This at least gives some credibility

to our numerical results.

8.3 HPC implementation

In this section, we describe in detail the procedure used for the numerical analysis of both
the vacuum polarization and the stress-energy tensor, utilizing the HPC computing facil-
ities at the University of Sheffield. We also outline the challenges encountered during the
computations and the solutions implemented to address them. Building on the analysis
presented in Section 8.1 and Section 8.2, we evaluate the sum over the modes in Equation
(8.46).

Regarding the integral over w, it is important to note that the integrand is not symmetric
with respect to @ = 0, as illustrated in Figure 8.1. This means that the tails of the
integrand are different for every mode that we look at; for this reason, the integration
range must be large enough to minimise the error introduced by truncating the interval
over which we integrate. Furthermore, the sum over p is also constrained, due to the

properties of the spin-weighted spherical harmonics, to the range —2¢ < p < 2/.

The code

We are now going to present the code that has been used to conduct the numerical eval-
uation, focusing on its structure. In particular, we have integrated w between -30 and 30,
summed ¢ between 0 and 20, and p between —2¢ and 2¢, for 99 points of z ranging from
1 99
100 to 100"
needed, specifically with £ going from 0 to 5. This is because, as we will see later, splitting

In Figure 8.6 we report the code used to evaluate a fraction of the modes

the evaluation into different codes sped up the numerical evaluation. The structure of the
code is identical for each case, with the interval of ¢ changed accordingly; for example, the

next code would have ¢ between 6 and 10.

In Figure 8.6 highlighted in yellow, we can see the For and the Do functions. The first
fixes j, which is what we have called 2¢, and the second fixes a value of p that runs from
—20 to 2¢. Once these two quantum numbers are fixed, the code proceeds with performing
the integral for w using the function NIntegrate, highlighted in red in Figure 8.6, for each
of the 99 points of z, creating a table with all these values. It will export each of these
evaluations in a file, in which we will have the numerical evaluation of the integral for 99

different points of z with fixed p and j. Once this is done for every p associated with the
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Clear|listee2];
For[j=8,j=18,]++,Print["Processing 21 - ",j]:
Do[Print[" Processing p - ",i[1]," to ",i[-1]];

(ParallelDo|list@@2-ConstantArray (@, {99} ) (-Initialize list@e2.)testsuml=Vacuum/. p—k/.

timingResult=Timing|

(iistaazzTahle [Quiet [Check [NIntegrate [testsuml, {wt,-38,38) ,Exclusions ,-_‘E])
porkingPrecision»28],8]],(z,1/188,99/186,1 /18] ;

Print["Time taken for 1=",3,", p=",k,": ",timingResult[1]," seconds"];

Export[Stringloin[“HPC Vacuum 21%,ToString[3j]," p",ToString[k],".dat"],list@e2];,{k,1i]

(,{i,Partition Range -j,]j,2],UpTo(1@]]}]}]
Clear[listee2];

Figure 8.6: Sample of the code that has been used in HPC to perform the numerical

integration.

respective value of j, the code will start again and fix the next j, repeating until com-
pletion. Notably, p is the quantum number associated with the spin in the spin-weighted
spherical harmonics, so it increases by one each time. However, in Figure 8.6 we are con-
sidering the fact that j = 2¢ for this reason the steps are set at two as we can see on the

bottom line inside the Range function.

While we were attempting to generate this code, we encountered some complications. The
integrals for one mode, with fixed values of p and j, took almost 4 days of computation to
give a result, for all 99 points of z. This is due to the high complexity of the expression of
the Heun functions, which are also very sensitive to changes in parameters. To overcome
this problem, we not only requested more CPU resources from the HPC but also added
a string to the code ParallelDo that allows us to parallelize the process, highlighted in
green in Figure 8.6. This way, the code can use multiple cores of the HPC to evaluate the
integrals, meaning that we were able to evaluate multiple integrals simultaneously. For
fixed j, we were able to evaluate the integrals for 99 points of z for multiple values of p at

the same time, which sped up the analysis significantly.

Another problem was related to the need for a safety net in case the code crashed during
the evaluation of an integral. For this reason, we added the functions Quiet and Check,
which prevent error messages from appearing in the final output. Additionally, if one of
the integrals was not evaluated correctly, it assigns a value of zero to that integral. This
allows the code to continue the loop until completion. Even though in a few instances
most of the errors occurred because the integral was too small to evaluate, hence this
approach also serves as a reasonable approximation. In particular, this was happening for
extremal values of p, specifically when p is equal to —2¢ or 2¢. The integral was giving
quite small results. To address this issue, other that introducing a safety net we needed

to improve the working precision to twenty decimal digits. Fortunately, this can be easily
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8. Numerical results

done by adding the function WorkingPrecision in Mathematica.

8.4 Final results

We now present the results of our numerical computations obtained using the HPC code
described in the previous section. First, we display the vacuum polarisation results, fol-
lowed by an analysis of the five functions of r that form the components of the SET.

Throughout this chapter, the spacetime parameters are fixed as given in Equation (8.5).

8.4.1 Vacuum polarisation numerical results

The vacuum polarisation, as expressed in Equation (8.1), is shown in Figure 8.7. The
upper plot in Figure 8.7 shows the difference in vacuum polarisation between the Hartle-
Hawking and Boulware states using a linear scale. It can be seen that this difference
tends to zero as z — 1, corresponding to the Anti-de Sitter boundary at r — oo, while it
diverges as z — 0, close to the event horizon. In the upper plot of Figure 8.7, the differ-
ence in vacuum polarisation becomes indistinguishable from zero for z 2 0.2. In order to
clarify its behaviour near the event horizon, we present the lower plot in Figure 8.7 which
gives the representation of the same data on a log-log scale. This highlights the rate of

divergence as z — 0.

This divergence is expected because the Boulware state |B) diverges on the event horizon
since it is ill-defined there, while the Hartle-Hawking state is expected to be regular on the
event horizon. This is in agreement with the divergence of (B|®2|B) at the event horizon
of, for example, a Schwarzschild black hole [29,89]. This is because the Boulware state |B)
is expected to be a vacuum state and to be as empty of particles as possible, far from the
black hole, see Section 7.2. We expect that (B|®2|B) tends to zero very quickly as r — oo

and z — 1. Hence, we can infer that (H|®2|H) tends to zero as z — 1 from Figure 8.7.

On the other hand, the Hartle-Hawking state |H) represents a black hole in thermal
equilibrium with a heat bath at the Hawking temperature s /27, which, at the event
horizon, is regular, see Section 7.3. The vacuum polarisation for a quantum scalar field in a
thermal equilibrium state in pure Anti-de Sitter spacetime tends to its vacuum expectation
value at the boundary [7,10,18,103,107]. This is also the case for the 5D Kerr-AdS black
hole in which the vacuum polarisation in the Hartle-Hawking state approaches that in the

Boulware state far from the black hole.

8.4.2 Stress energy tensor numerical results

In this section, we present our numerical results for the difference in expectation values

between the Hartle-Hawking and Boulware quantum states of the stress-energy tensor, as
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Figure 8.7: Difference in expectation values of the vacuum polarisation in the Hartle-
Hawking and Boulware states, shown in Equation (8.2), as a function of the radial coordi-
nate z (defined in Equation (6.60)). The upper plot displays the values on a linear scale,

while the lower plot uses a log-log scale.
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expressed in Equation (8.14).

We first plot the functions F*® as functions of z in the conformally coupled case £ = 3/16,
in Figure 8.8. What we can see is that the resulting graphs are not particularly infor-
mative and resemble the vacuum polarisation shown in Figure 8.7. In particular, these
functions diverge at the event horizon and decay rapidly to zero as z — 1, confirming the
behaviour of the field both at the event horizon and at infinity as described for the vacuum
polarisation. Notably, the range of values is very different for each component of the SET
and the .7-'5923 /16 (r) becomes negative after a certain value of z. We also plot the functions
F** in a log-log plot, as we did for the vacuum polarization (see Figure 8.9). This again
confirms the asymptotic behaviour at infinity that we expected from the analysis of the
vacuum polarization, and does not provide any additional insight into the behaviour of

the F*° functions.

To gain more insight into the behaviour of the SET components, we instead consider ratios
of the functions F*® for selected values of the coupling constant &, normalised by their
corresponding values when & = 3/16, where the scalar field is conformally coupled, see
Figure 8.10. This operation brought the numerical values to be comparable, allowing us

to see the behaviour of each component more clearly.

The radial functions X,,,¢(r), found from the radial equation (6.76), and the vacuum po-
larisation in Equation (8.2) depend on the scalar field mass p and coupling £ only through
the combination pg in Equation (6.2). However, as seen in Equation (8.43), the SET com-
ponents and functions F**(r) depend separately on p? and . Given the computational
intensity of our numerical calculations, as described in Section 8.3, we present results for
a fixed value of g = 1/100. With this fixed pg, we can vary both the coupling constant
& and the mass u, allowing us to study how the SET changes with different couplings to

the scalar curvature.

A similar approach was taken in [13,138], where the SET on four-dimensional Schwarzschild
and Reissner-Nordstréom backgrounds was analysed. In those cases, the Ricci scalar cur-
vature vanishes identically, meaning that £ does not appear in the scalar field equation,
and the scalar field mass plays a role analogous to our pg. The results in |13, 135] indicate
that varying the scalar field mass does not significantly alter the qualitative behaviour of
the SET components. However, changes in the coupling constant £ can have a substantial
effect, influencing whether the SET components increase or decrease monotonically with
radius, as well as determining the presence of maxima or minima. In Figure 8.10, we
explore the effect of varying the coupling constant £, and consequently the scalar field

mass p, while keeping the effective mass pg fixed. We find that changes in £ have a sig-
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Figure 8.8: Functions F¢%; 6 (r) in the SET, shown in Equation (8.21), for £ = 3/16,

where the scalar field is conformally coupled.
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Figure 8.9: Functions f£;3/16(r) in the SET, shown in Equation (8.21), for £ = 3/16,
where the scalar field is conformally coupled, in a log-log plot. Since the function
fgi3 /16(7") is negative for the majority of the data points, it is displayed here with a

minus sign, —ngg/w(r), to make it positive.
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shown in Equation (8.21), for selected values of the coupling constant &, normalised by

the corresponding functions for £ = 3/16, where the scalar field is conformally coupled.

163



8. Numerical results

nificant impact on the difference in expectation values of the SET operator and can even
alter the sign of the functions F**(r). As expected, all the ratios R**(r) are identically
equal to unity when & = 3/16, where the field is conformally coupled. Decreasing the
coupling constant & below 3/16 increases all the ratios R*®(r) for every value of the radial
coordinate z, while increasing £ above 3/16 decreases these ratios. Notably, all five ratios

are negative for nearly all values of z when £ =1 or £ = 2.

Near the horizon, as z — 0, the ratios R**(r) all diverge, implying that the SET compo-
nents exhibit a stronger divergence when the field is not conformally coupled. The rate of
divergence increases as [€ — 3/16| grows. The ratios R**(r) display distinct behaviours as
2 — 1, where the spacetime boundary is approached. The ratios R¥(r) increase slightly in
magnitude as z — 1, but appear to remain finite. In contrast, R™"(r) and R%(r) decrease
slightly in magnitude as the boundary is approached, tending towards nonzero limits. Fi-
nally, the ratios R (r) and R¥¥(r) approach unity for all values of ¢ as z — 1. Another
notable feature is that the ratios R®(r) and R¥¥(r) are very similar, while not exactly
the same, they are indistinguishable in the plots, even though the functions F*¥(r) and
F¥¥(r) are not.

On a four-dimensional Reissner-Nordstrom black hole, it was found in [13]| that for all
nonzero components of the renormalized SET in the Hartle-Hawking, Boulware, or Unruh
states, changing the value of £ does not alter the expectation value far from the black
hole. In our case, this behaviour appears to hold only for certain components of the
SET. Furthermore, in [13], varying the coupling constant £ does not affect the regularity
or rate of divergence of the SET components, depending on the quantum state under
consideration. However, this result does not seem to be fully replicated in our set-up.
A complete computation of the renormalized SET would be necessary to examine this
issue in greater detail, but that will need new methodologies and a brand new method
on renormalization on curved spacetime for rotating black holes which we leave for future

studies.

Summary

In this chapter, we have presented the numerical analysis that we have performed on the
difference in expectation values for the vacuum polarization and the stress—energy tensor
of a scalar field. We have shown the steps to take in order to proceed with a numerical

evaluation from Equation (8.1) and from Equation (8.14).
For the vacuum polarization, we have shown a detailed analysis of the integrand and dis-

cussed the convergence test that we have utilised to study the sum over the modes. We

have then introduced the SET tensor, particularly focusing on the symmetries. We have
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exploited the fact that we are working on an enhanced symmetry Kerr—AdS spacetime
in five dimensions, to our advantage. We have showed how it was possible through the
properties of the SET and the symmetries of the background to reduce what was the
evaluation of fifteen independent components to the evaluation of just five functions that

depend only on r.

We have also displayed all the analytical expressions for each component of the SET. We
have discussed the code that was utilised in HPC to retrieve the numerical results, with all
the difficulties that arose from this analysis and the solutions that we have implemented.
Finally, we have displayed the numerical results that we obtained in Figure 8.7 and Figure
8.10.
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Part III

Final considerations
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Conclusion

‘T sei mai chiesto come dovremmo fare a lasciare andare qualcosa che un tempo significava tutto?
Una persona, un momento, una vita che pensavi sarebbe durata per sempre. La gente ti dice di
andare avanti, di lasciar andare, ma nessuno ti dice mai come. Come si lascia andare cid che
ci ha plasmato? Forse la verita ¢ che non siamo destinati a dimenticare. Lasciare andare non
significa cancellare il passato. Significa imparare a portarlo con sé. Perché anche i capitoli piu
belli devono finire affinché la storia possa continuare. E forse é proprio da qui che nasce la forza.
Non nel fingere che non faccia male, ma nel trovare il coraggio di voltare pagina, anche quando
sembra impossibile, perché la vita non aspetta che noi guariamo. Va avanti e in qualche modo lo
facciamo anche noi.’

- Kynd.

‘Have you ever wondered how we are supposed to let go of something that once meant everything? A

person, a moment, a life you thought would last forever. People tell you to move on, to let go, but no one
ever tells you how. How do you let go of what has shaped us? Perhaps the truth is that we are not destined
to forget. Letting go does not mean erasing the past. It means learning to carry it with us. Because even
the most beautiful chapters must come to an end for the story to continue. And perhaps it is from this that
strength is born—not in pretending that it doesn’t hurt, but in finding the courage to turn the page, even

when it seems impossible, because life doesn’t wait for us to heal. It goes on, and somehow, so do we.’
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We have reached the end of our journey. So let us summarise what we have done and the

possible ramifications of this research.

In this thesis, we studied a massive quantum scalar field on a rotating black hole spacetime
in five dimensions, utilising the framework of quantum field theory on curved spacetimes.
We have performed a numerical evaluation for the difference in expectation values of the
vacuum polarisation and the stress—energy tensor between two quantum states, taking
advantage of the fact that these quantities do not need renormalization. The main goals

of this thesis were

e to study a quantum massive scalar field on the Kerr—AdSs black hole spacetime by
solving the Klein—Gordon equation and proceeding with the canonical quantisation

of the field,

e to present new results on the addition theorems for the spin—weighted spherical

harmonics,

e to construct the Boulware and the Hartle-Hawking quantum states for the massive
scalar field on the Kerr—AdSs black hole spacetime,

e to evaluate the difference in the expectation values of the vacuum polarisation and
the stress—energy tensor for the massive scalar field evaluated in the Boulware state

and the Hartle-Hawking state,

e to present a numerical evaluation of the difference in the expectation values of the

vacuum polarisation and the stress—energy tensor.

Before analysing the results, let us take a moment to summarise why we have chosen a
five-dimensional rotating black hole. We have picked this background because, against
all odds, studying the scalar field on this spacetime is easier than studing it on its four-
dimensional counterpart. This is because, in a five-dimensional spacetime, we can exploit
the extra symmetry provided by the fifth dimension to impose an enhanced symmetry on
the background, which simplifies the calculation of observables, as we have seen through-
out Part II. We selected the equal angular momentum Kerr—AdS five-dimensional metric
(Equation (4.7)), which, as its name suggests, has the rotational parameters for ¢ and
1 equal. This gives us a shell structure for the geometry of the spacetime, resembling
the symmetry of a static black hole while being a stationary one. It is also important to
point out that in QFTCS theory, working in odd dimensions simplifies both the analysis
and the renormalization procedure. Although we have not considered renormalization in
this thesis, it remains a goal for future work. This is because a Hadamard state in odd
dimensions does not exhibit logarithmic divergences in the two-point function, as we have

seen in Chapter 2.
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We have also chosen to study the case of an asymptotically AdS black hole. This can be
thought of as if our black hole were enclosed in a "box", meaning that we have a bound-
ary at infinity. This makes, on one side, the analysis slightly more complicated because
QFTCS theory is based on the hypothesis that the background we are studying is globally
hyperbolic, which is not the case for AdS black holes. However, this simply translates to
imposing boundary conditions at the boundary. The asymptotically AdS spacetimes offer
multiple advantages. Firstly, working in AdS gives us only one set of modes for the scalar
field, as we have seen in Chapter 6. This means that no superradiance occurs, in contrast
to what happens in four-dimensional Kerr black holes. We thus avoid the possible compli-
cation of canonical quantisation shown in [111,143]. Another important aspect is the fact
that asymptotically AdS black holes seem to have a regime (which is when the angular
momentum of the black hole is sufficiently small) in which the speed-of-light surface does
not exist. As we have discussed in the beginning of Part II, the absence of this surface
allows us to define a Killing vector which is timelike everywhere outside the event horizon.
This is pivotal for our analysis because it allowed us to proceed with the canonical quan-
tisation procedure for the scalar field, and to construct quantum states for it, as we have
seen in Chapter 7. Particularly, the Boulware state |B) and the Hartle-Hawking state

|HH) do not exist in Kerr spacetime.

To this end, we have solved the Klein—-Gordon equation by splitting the differential equa-
tion into a radial part and an angular part, exploiting the separability of the scalar field.
We have studied the radial part potential to discover the behaviour of the modes, showing
that no superradiant modes appear in this scenario. We have then identified the radial
part as a Heun differential equation, which was useful for our numerical analysis since
Heun functions are implemented in Mathematica. Then, we found that the angular part
is a spin—weighted spherical harmonics differential equation (see Chapter 6). We have
proved new addition theorems for these functions, which we have displayed in Chapter 5.
We have used the addition theorems of the spin—weighted spherical harmonics to simplify

the numerical analysis of observables.

Thanks to our studies of the background, we were able to use the QFTCS framework
to canonical quantise the scalar field, by expressing our field as a sum over modes split
between positive and negative-frequency modes, as shown in Chapter 7. Once we had
quantised the scalar field, we were able to construct the Boulware and the Hartle-Hawking
quantum states on the Kerr—AdSs black hole. This was an important step in continuing

the analysis and study observables.

Once we obtained the ground states, we evaluated the difference in expectation values of

the stress—energy tensor and the vacuum polarisation evaluated both in the Boulware and
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the Hartle-Hawking states (see Equation (7.44) and (7.45)). We then showed the numer-
ical evaluation of the stress—energy tensor and the vacuum polarisation obtained in this
way in Chapter 8. We used HPC for the numerical evaluation of the sum over the modes.
We needed to sum over the quantum numbers m, p and ¢, and integrate over w. The sum
over the quantum number m was resolved by the addition theorems of the spin—weighted
spherical harmonics that we have found, and the sum over p was limited by the quantum
number ¢ thanks to the properties of the spin—weighted spherical harmonics. We then
limited the integral over the frequencies w and the infinite sum over /. We have shown

the asymptotic behaviour through numerical analysis, and we have plotted the results.

Possible future avenues for this work include, as a first step, varying the black hole pa-
rameters—the mass M, the angular momentum parameter a, and the scalar field effective
mass o (see Equation (6.2)). In this thesis, we have only shown results for a fixed set of
these values, as the numerical computations were quite lengthy. This was considering all
the simplifications brought by the symmetries of the five-dimensional Kerr-AdS black hole.
It would be interesting to study the behaviour of the SET and the vacuum polarisation

while varying these parameters.

Another generalisation regards the boundary conditions. Being an AdS black hole, we had
to impose boundary conditions. In our analysis, we chose the simplest one, the Dirichlet
boundary condition (which is a reflective boundary condition). This means that the scalar
field modes tend to zero near infinity. While these boundary conditions are the most com-
monly used in the literature and serve as a good first step, it would be interesting to study
the behaviour of the SET and vacuum polarisation when changing these boundary condi-
tions to Neumann boundary conditions. This can be motivated by some studies that have
been conducted in pure AdS spacetimes in three and four dimensions [103, 107]. Another
possibility is to consider the most general case, the Robin boundary conditions, which

have been implemented in asymptotically AdS spacetime before, see [102-104, 106, 107].

Furthermore, we can extend this analysis not only to the exterior of the event horizon
but also to the interior. This has been the focus of many papers in the literature (see for
example [81,82,97,98,156,157]). In our case, the Boulware state diverges at the event
horizon. However, the Hartle-Hawking state is regular across the horizon. It might be
possible to extend the definition we have presented to also include the interior of the black
hole. Usually, this would not be possible since the Hartle-Hawking state does not exist

on four-dimensional Kerr black holes, see [78].

Another possibility could be to analyse the case in lower dimensionality. We have briefly
introduced the BTZ black hole in Part I. This is a rotating black hole that is asymp-
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totically AdS in three dimensions. The lower dimensionality allows us to build the SET
expectation value of a quantum scalar field using the method of images [133]. It has been
shown that it is possible to construct a Hartle-Hawking state on a BTZ spacetime, and
such a state has been used to compute the renormalized SET for both the interior and
exterior of the black hole (see [32,46,92,133]). This result can also be used to study the

back-reaction of the scalar field [32].

A natural extension of this work would be to use the definition of the Hartle-Hawking
state for the scalar field on this background to evaluate a renormalized SET and vac-
uum polarisation for this state, and to verify whether these quantities are regular across
the horizon. This would entail, that instead of exploiting the Hadamard properties and
studying the differences in the expectation values of observables between quantum states,
one could attempt to find a renormalization method for the stress—energy tensor and the
vacuum polarisation. This has yet to be done for the Kerr AdSs black hole. The full
computation of the SET expectation value on Kerr black holes has been performed only
relatively recently [87,88,156—-159]. This is because the techniques that were implemented
for static black holes were not easily extendable to the stationary ones. The method used
in [87,88] still faces formidable practical challenges; for example, four million scalar field
modes are required to produce results. However, progress has been made in the static
case for the renormalization of the SET using a method called the "extended coordinates
method" [135, 136]. This method is the only one that has been used to find renormalized
expectation values in more than four dimensions. Our suggestion for proceeding from
here is to use this method to achieve renormalization. This would overcome the numerical
difficulties of the method shown in [87,55] and provide a renormalized SET. To do this, we
need to extend this method to rotating black holes. This is where we think that our setup
comes to our aid. In fact, the fifth dimension could be the key to generalising this method
to any Kerr black hole, not just the five-dimensional one. This is because the symmetries
of this spacetime, as mentioned earlier, resemble those of a static black hole. We believe
that the enhanced symmetry could be exploited even further to help find a generalisation

of the "extended coordinates method", which extends to also the four dimensional case.
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