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Abstract

This thesis introduces a novel framework for modelling task difficulty in Human-

Machine Teaming (HMT), inspired by Fitts’ Law and extended into a six-degrees-

of-freedom spatial domain. The proposed method accounts for both translational

and rotational constraints between machine agents and their targets, enabling

precise HMT performance prediction in complex, real-world tasks. By integrat-

ing cognitive fatigue into the model using the SAFTE (Sleep, Activity, Fatigue,

and Task Effectiveness) framework, the approach holistically captures both long-

term skill levels and short-term cognitive effectiveness of human operators. This

enables realistic and adaptive forecasting of team performance under varying

operational demands. The framework supports multiple applications. First, it

provides a robust predictive model for HMT performance, useful for mission plan-

ning, workload estimation, and system adaptation. Second, it enables quantita-

tive evaluation through a hybrid scheme combining objective measures, predictive

curves, and subjective assessments (e.g., NASA-TLX, SUS). The model has been

validated through a comprehensive human study, encompassing a simulation and

real-world experiments involving the teleoperation of a quadruped mobile manip-

ulator with different interfaces. Finally, this task difficulty model is adapted to

support decision-making in large language model (LLM)-driven multi-robot task

allocation. We introduce FittsPrompt, a pre-processing scheme that abstracts

iv



spatial complexity into structured difficulty descriptors. This abstraction allows

LLMs to make more efficient and scalable task allocation decisions compared to

raw observation inputs. Evaluations across 42 open- and closed-source LLMs

demonstrate that the proposed approach not only surpasses traditional baseline

methods but also outperforms expert human planners in real-world robotic task

allocation.
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Chapter 1

Introduction

1.1 Modelling task and predicting performance

Human-Machine Teaming (HMT), especially Human-Robot Teaming (HRT), rep-

resents a pivotal advancement in intelligent systems design, enabling coordi-

nated and synergistic interaction between human operators and autonomous or

semi-autonomous machines. This paradigm facilitates the execution of complex

tasks in highly dynamic and unstructured environments by leveraging the com-

plementary strengths of human cognitive flexibility and machine precision and

endurance. The importance of HMT has been increasingly recognised across a

spectrum of critical domains, including high-throughput manufacturing environ-

ments [4], next-generation aerial mobility and autonomous flight operations [5],

advanced aerospace missions requiring real-time adaptability [6], and disaster and

emergency response scenarios demanding robust situational awareness and rapid

intervention [7]. In these settings, human-machine collaboration is not merely

a convenience but a necessity for achieving mission success, particularly where

full autonomy remains infeasible or undesirable due to ethical, legal, or technical

1



1.1 Chapter 1. Introduction

constraints.

A central challenge in designing effective HMT systems is the accurate predic-

tion of team performance under varying operational conditions. Such prediction

is essential not only for real-time decision support and adaptive task allocation

but also for the pre-deployment planning phase, where understanding potential

bottlenecks and operator workload is crucial. Accurate performance forecasting

allows system designers and operators to anticipate risks, optimise the allocation

of human and machine resources, and refine training and control interfaces. More-

over, predictive models serve as foundational tools for safety assurance, helping

to prevent human errors and machine failures by proactively identifying mis-

matches between task demands and system capabilities [8]. As HMT systems

become increasingly embedded in safety-critical applications, the demand for ro-

bust performance modelling frameworks that account for human variability and

environmental uncertainty continues to grow.

Despite rapid advancements in robotic automation, sensor technologies, and arti-

ficial intelligence, accurately forecasting the time required for HMT to complete

specific tasks in real-world conditions remains an enduring and complex challenge.

While significant progress has been made in modelling operator behaviour and

task execution in constrained environments, the variability and uncertainty in-

herent in open-world scenarios continue to hinder precise performance prediction

[2], [4]. Factors such as unpredictable terrain, inconsistent sensor data, dynamic

goals, and variations in human operator proficiency all contribute to the diffi-

culty of generating reliable models. This complexity is further exacerbated in

heterogeneous HMT systems, where task requirements often demand nuanced

coordination between different types of robots and human roles, each possessing

distinct motion capabilities and functional limitations [9], [10].

2



Chapter 1. Introduction 1.1

This study seeks to address these multifaceted challenges by enhancing models

of task difficulty and human skill, with the goal of enabling more robust, accu-

rate, and context-sensitive performance forecasting. Central to the approach is

the extension of Fitts’ Law—a well-established predictive model of human motor

behaviour—into a three-dimensional context suitable for embodied interaction

between agents and their physical environment. Traditional Fitts’ Law formula-

tions focus on 2D target acquisition tasks, limiting their applicability in robotic

settings where movement occurs across spatial planes and includes orientation

constraints. By adapting the law to a 3D framework and incorporating motion

capability identification for both human and robotic agents, the method captures

not only the spatial distribution of targets but also the dynamic relationship

between agent positioning, reachable workspace, and environmental constraints.

One of the persistent and pressing challenges in HMT applications is the accu-

rate prediction of task execution time in real-world scenarios. Unlike controlled

laboratory environments, real-world operational contexts are often characterised

by uncertainty, variability in human behaviour, and unpredictable environmental

dynamics, all of which complicate performance estimation. The difficulty lies in

modelling the intricate interactions between human cognitive processes, such as

attention, decision-making speed, and fatigue, and machine dynamics, which may

include latency, mechanical limitations, or perception errors.

Accurately forecasting how long a human-machine team will take to complete a

given task is not just a matter of academic interest; it has profound implications

for mission success, resource allocation, and operator safety. Performance pre-

diction serves as a cornerstone for numerous downstream applications, including

adaptive scheduling, dynamic replanning, interface personalization, and supervi-

sory control. For instance, in time-critical domains such as emergency response or

3
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autonomous aerial surveillance, delays in execution can lead to mission failure or

even endanger human lives. Furthermore, inaccurate predictions can undermine

trust in automation, especially in settings where humans rely on systems to oper-

ate reliably under variable conditions [11]. Thus, developing robust models that

can predict HMT performance with high fidelity remains a fundamental research

challenge with high practical relevance.

Given the inherent complexity of human-machine systems, comprehensively mod-

elling performance requires accounting for a wide range of variables, including ma-

chine dynamics, human cognitive and physical capabilities, and potential sources

of system-level error. Explicitly modelling each of these elements is not only

computationally intensive but also often infeasible due to the unpredictability

and variability introduced by human behaviour and environmental factors. To

address this challenge, the approach adopts Fitts’ Law [12] as a unifying frame-

work, treating the human-machine team as an integrated entity. In this formula-

tion, task-relevant parameters—such as latency, dexterity, precision, and control

variability—are implicitly incorporated into the predictive model as hidden vari-

ables, allowing for a more abstract yet effective representation of overall system

performance.

To further adapt this framework to the spatially rich and physically grounded

context of real-world HMT, this study extends Fitts’ Law into a 3D formula-

tion encompassing six degrees of freedom (DoF)—three for translation and three

for orientation. This extension enables the model to more accurately capture

the spatial and kinematic relationship between the machine agent and its target,

reflecting real-world challenges such as approach angles, grasp alignment, and

workspace constraints. By doing so, this study not only improve the precision

of task difficulty estimation but also enable the identification of motion capa-

4



Chapter 1. Introduction 1.1

bilities that are essential for generating standardised benchmark tasks for HMT

performance assessment.

Crucially, the method builds upon and advances prior work in the human-computer

interaction (HCI) community [13], [14], where extensions of Fitts’ Law have been

applied to two-dimensional interfaces and limited 3D motion contexts. However,

these approaches often overlook the complexities introduced by full spatial orien-

tation, which are fundamental in robotics and HMT scenarios. By incorporating

both translational and rotational components, the framework represents the first

known extension of Fitts’ Law tailored specifically for real-world HMT applica-

tions. This novel contribution fills a critical gap in existing models and provides

a robust foundation for predicting performance in complex, unstructured, and

multidimensional task environments.

Predictive models for HMT performance span a wide array of methodologies, each

contributing unique insights into various dimensions of human-machine interac-

tion [15]. A significant portion of the literature has focused on human-centric

factors, acknowledging the critical influence of human cognition, attention, and

trust in shaping collaborative outcomes. For example, cognitive models have been

developed to represent mental workload and decision-making under varying task

loads [16], while other studies have explored the impact of operator trust, situa-

tional awareness, and automation transparency on performance and safety [17].

Further extending the human-centric lens, operator models have been proposed

to capture the semantic structure of working memory, helping to explain how

humans perceive, store, and recall task-relevant information during interaction

with autonomous systems [18].

In parallel, efforts have been made to quantify the scalability of HMT systems,

particularly in multi-robot scenarios. The concept of neglect tolerance—which
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estimates how long a robot can operate autonomously without human interven-

tion—has been used to determine the maximum number of robots an operator

can supervise effectively, providing valuable guidelines for workload balancing

and autonomy allocation [19]. Beyond static models, dynamic approaches such

as higher-order Markov chains have been employed to learn and predict sequential

human behaviour, such as assembly steps in collaborative manufacturing tasks,

enabling anticipatory planning for the robotic partner based on historical action

sequences [20].

Physiological sensing has also emerged as a promising avenue for performance

prediction. Studies have demonstrated the feasibility of using real-time neu-

rophysiological signals, including brain activity, heart rate variability, and eye

movement, to assess situational awareness and cognitive engagement during tele-

operated exploration tasks with drones [21]. These biometrics-driven approaches

offer a direct window into human mental states, potentially enabling adaptive

systems that respond dynamically to fluctuations in operator capacity.

While these diverse models provide important building blocks for understanding

HMT performance, they often suffer from key limitations. Most notably, they

tend to prioritise human state modelling in isolation, frequently overlooking the

mechanical, spatial, and task-specific characteristics of robotic agents and mission

contexts. Additionally, many of these approaches lack standardised evaluation

frameworks or real-world benchmarks, making it difficult to generalise findings

across different platforms and operational settings. These limitations highlight

the need for an integrated, task-centred modelling approach—such as the one

proposed in this thesis—that captures the coupled dynamics of both human and

machine contributions to performance.

Fitts’ Law [12], originally developed within the field of human motor control and

6



Chapter 1. Introduction 1.1

later widely adopted in HCI, provides a robust mathematical model for predicting

the time required to move a pointer to a target based on the distance to the target

and its size. As a foundational tool in interface design, Fitts’ Law enables system

developers to estimate user effort and efficiency in selecting on-screen elements,

making it a key component of usability studies. Its strength lies in its simplicity

and predictive power for 1D and 2D planar movements, typically modelled as log-

arithmic functions of the ratio between movement amplitude and target width.

However, this simplicity also introduces limitations: the model’s traditional for-

mulation assumes point-to-point linear movements in a one-dimensional space

and treats the motor task as a purely human-centric activity, without accounting

for physical embodiment or environmental complexity.

While extensions of Fitts’ Law have been proposed—incorporating variables such

as cursor diameter, angular displacement, and probabilistic target areas—most

of these remain grounded in virtual or simplified 2D user interface contexts [22]–

[26]. These adaptations are primarily geared toward improving interface design

for traditional computing systems rather than addressing the full complexity of

physical interactions in robotics or HMT applications. As a result, the applica-

bility of these models to real-world, embodied tasks remains limited.

A growing number of studies have attempted to bridge this gap by applying

Fitts’ Law and its derivatives to real-world tasks involving physical systems and

robots [27], [28]. However, even in these efforts, the role of machines is often

conceptualised as passive extensions of human operators—i.e., tools or actuators

controlled entirely by human input. Consequently, the predictive frameworks

continue to emphasise human movement characteristics while mainly neglecting

the mechanical constraints, actuation delays, spatial configurations, and control

fidelity of the robotic systems involved. This perspective severely limits the utility

7



1.1 Chapter 1. Introduction

of Fitts’ Law in evaluating or forecasting performance in fully integrated HMT

systems, where both the human and machine contribute actively and jointly to

task execution.

Therefore, there remains a critical need to develop a formulation of Fitts’ Law

that not only generalises to higher-dimensional, embodied contexts but also recog-

nises the autonomy and capability of robotic agents as active participants in task

execution. The work presented in this thesis addresses this gap by proposing a

novel extension of Fitts’ Law to six degrees of freedom, tailored specifically for

spatial HMT scenarios, and modelling performance as a function of both human

and machine factors within a unified predictive framework.

As a result, there remains a substantial gap in existing task difficulty models,

which often struggle to offer a comprehensive framework capable of capturing

the diverse and intricate nature of HMT systems and the varied tasks they must

perform. Current approaches frequently fall short in addressing key challenges

such as accurately characterising machine motion capabilities, modelling multi-

dimensional task constraints, and generalising to real-world operational environ-

ments. These limitations underscore the urgent need for predictive frameworks

that are both holistic—capturing the interaction dynamics of human and ma-

chine agents—and scalable—applicable across a broad range of task scenarios

and robotic platforms.

In response to these challenges, this thesis introduces a novel and unified task dif-

ficulty modelling framework for predicting the performance of HMT systems in

realistic operational settings. The method bridges insights from human-computer

interaction, embodied cognition, and robotics, offering a multidimensional mod-

elling approach grounded in an extended formulation of Fitts’ Law. The key

contributions of the work are as follows:
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1. This study proposes a systematic method to model HMT task

difficulty and predict real-world HMT performance. The approach

comprises three key components:

• The creation of an expansive mathematical model of HMT tasks by ex-

tending Shannon’s index of difficulty formulation into 3D space with 6

DoFs, considering both translation and orientation between the target

and the agent.

• The development of principles for designing standardised benchmark

tasks, which ascertain the motion capabilities of the targeted machine

agent, laying the foundation for a comprehensive model for all subse-

quent tasks.

• The development of a formulated performance prediction model based

on Fitts’ Law, employing standard tasks to understand the character-

istics of the HMT and predict future system performance.

• Implementation of a method to identify the minimum set of standard

tasks required for accurate prediction based on the machine agent’s

motion capabilities.

2. Following the theoretical contributions, this study conducted two

empirical validations to demonstrate the model’s efficacy and ap-

plicability in diverse HMT systems:

• A web-based simulation involving 16 human participants using a re-

mote control excavator, providing insights into virtual HMT interac-

tions.

• A real-world experiment with a quadruped manipulator robot, involv-

ing 7 human users and 2 distinct human-machine interfaces, to assess
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the model in a tangible, real-life scenario.

Together, these contributions advance the state of the art in HMT performance

modelling by offering a robust, interpretable, and generalizable framework that

captures the multidimensional nature of collaborative human-robot tasks. This

framework not only improves predictive accuracy but also supports practical ap-

plications such as task allocation, human-robot interface design, and adaptive

autonomy in real-world deployments.

1.2 Employing Quadruped Manipulator

This study chooses the mobile manipulators as an example of robot agents (RAs).

Nowadays, RAs are increasingly deployed by public safety and emergency re-

sponse agencies to support high-risk missions [29], including explosive ordnance

disposal (EOD) [30]. In these contexts, mobile manipulators—particularly those

based on quadruped locomotion platforms—are gaining traction due to their ver-

satility and operational advantages over human agents (HAs) in hazardous envi-

ronments.

In detail, a quadruped manipulator was used in the experiment. In certain mission

scenarios, quadruped manipulators offer clear benefits when compared to human

first responders. For example, a human operator wearing a level-A hazardous ma-

terials (HAZMAT) suit and a self-contained breathing apparatus (SCBA) faces

severe operational constraints. The duration of the mission is directly limited

by the capacity of the oxygen tank in the SCBA and further constrained by the

physical workload, body heat retention, and the additional weight of the protec-

tive gear [31]. These physiological and ergonomic limitations can significantly

reduce the efficiency and safety of human responders in prolonged or physically

demanding tasks.
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By contrast, a quadruped robot’s operational limits are primarily defined by its

battery life—typically ranging from 2.5 to 4.5 hours for commercially available

platforms such as the Unitree AlienGo—and can be extended with the integration

of external power sources. In addition to their operational endurance, quadruped

manipulators offer logistical and economic advantages. The long-term deployment

and maintenance cost of robotic systems is often lower than that of training,

equipping, and sustaining human teams for comparable missions. Furthermore,

the physical footprint of these robots is generally smaller than that of a human

responder in full protective gear, allowing for greater manoeuvrability in tight or

cluttered environments such as collapsed structures or chemically contaminated

areas—conditions frequently encountered in HAZMAT operations.

Given these benefits, quadruped manipulators can, in specific mission profiles,

outperform human responders in terms of safety, endurance, and task accessi-

bility. However, to fully exploit the potential of these robotic platforms, it is

essential to integrate them into a broader framework that allows seamless collab-

oration with human intelligence. In this regard, a well-designed Human-Machine

Teleoperation Interface (HMTI) plays a critical role. Such interfaces serve as the

conduit through which human expertise and real-time decision-making can be

effectively coupled with robotic precision and durability, enabling optimal perfor-

mance of the integrated system across a wide range of mission scenarios.

1.3 Considering Fatigue in Prediction

The preceding section introduced a methodology for evaluating HMT perfor-

mance through predictive modelling and empirical validation. While these ap-

proaches effectively capture task complexity, interface usability, and robotic ca-

pabilities, human cognitive factors—particularly fatigue—remain an essential yet
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challenging element to model precisely. Building upon the extended Fitts’ Law

framework introduced in the modelling task and predicting performance section,

and the evaluation methodologies from the Evaluating Human-Machine Team-

ing Performance section, this section further enhances the predictive model by

explicitly incorporating cognitive fatigue. By integrating physiological models

of human cognitive effectiveness with task difficulty estimations, the refined ap-

proach offers a more holistic and realistic prediction of HMT system performance

under varying operational conditions.

Predicting the performance of a robotic system for a given task, especially when

parameters such as distance, orientation, and mechanical constraints are well-

defined, is typically a deterministic and tractable problem. Robotic motion mod-

els and control algorithms offer high degrees of predictability and repeatability

under such conditions. However, in the context of MHT, performance prediction

becomes significantly more complex and less intuitive. This complexity arises

from the incorporation of human agents whose cognitive and physical states vary

dynamically throughout task execution.

Among the various human factors influencing HMT performance, cognitive fatigue

plays a particularly critical role. Fatigue can degrade human decision-making ac-

curacy, reaction time, motor coordination, and situational awareness—factors

that directly impact task effectiveness and team safety. Unlike mechanical degra-

dation in robots, which can often be quantified through sensor feedback and

predictive maintenance models, human fatigue manifests non-linearly and can be

influenced by a variety of interacting variables, including task complexity, work-

load, duration of operation, environmental stressors, and individual differences.

Modelling HMT performance with cognitive fatigue considerations introduces

unique challenges due to the stochastic and individualised nature of human be-
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haviour. Traditional task modeling frameworks typically assume a constant or

ideal level of human performance, thereby failing to capture the performance

degradation associated with fatigue over time. Nonetheless, incorporating cogni-

tive fatigue into predictive models could offer valuable insights for mission plan-

ning, interface adaptation, workload balancing, and the design of more robust

shared autonomy systems.

Fatigue is a well-documented risk factor in the operation of complex machinery,

including vehicles and robotic systems. In human-in-the-loop systems, fatigue has

been shown to significantly impair operator judgment, reaction time, and over-

all situational awareness—factors that can lead to critical errors. The aviation

sector, for example, has extensively studied fatigue-related risks. According to

the Federal Aviation Administration (FAA), approximately 21% of reports sub-

mitted to the Aviation Safety Reporting System (ASRS) mention pilot or crew

fatigue, and 3.8% of these reports directly attribute incidents to fatigue-related

causes [32]. Similarly, data from the U.S. National Highway Traffic Safety Ad-

ministration (NHTSA) estimate that drowsy driving contributes to over 100,000

crashes annually, resulting in more than 1,500 fatalities and 71,000 injuries [32].

While the transportation industry has developed robust fatigue models and miti-

gation protocols, corresponding research in the field of robotics—particularly tele-

operated and human-supervised systems—remains limited. Nevertheless, emerg-

ing evidence suggests that fatigue poses a comparable threat in robotic domains.

For instance, a study analysing 237 reported robotics incidents revealed that

63.27% were directly attributed to excessive workload and operational fatigue, ex-

acerbated by factors such as insufficient staffing, night shifts, and lack of rest [33].

Moreover, 31.39% of the root causes for unsafe behaviour in robot operation cases

were linked explicitly to night-time operations and fatigue accumulation. These
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findings underscore the pressing need to account for cognitive fatigue in predictive

models for Human-Robot Teaming, particularly in mission-critical or round-the-

clock deployments.

Human-robot teams are increasingly deployed in mission-critical domains such

as search and rescue, firefighting, and EOD, where operational reliability, rapid

decision-making, and sustained performance are essential. In such high-stakes sce-

narios, assessing whether a human operator is cognitively fit for the mission—and

predicting how their performance may evolve over time—becomes a vital com-

ponent of the overall system’s effectiveness and safety. Traditional models often

overlook the impact of operator fatigue, despite its critical influence on human

reliability and decision-making.

To address this gap, I introduces a performance prediction model that explicitly

incorporates the cognitive effectiveness of human operators by modelling fatigue

dynamics over time. The approach quantifies cognitive fatigue by jointly consid-

ering the demands of the task and the operator’s physiological sleep condition,

based on a homeostatic sleep regulation framework. This enables the model to dy-

namically estimate an operator’s cognitive effectiveness—a continuous measure

reflecting their mental readiness and performance capacity at any given time.

By integrating this fatigue-aware component into task performance prediction,

the model offers a more realistic and adaptive foundation for mission planning,

human-robot task allocation, and real-time supervisory control.

The operator’s cognitive effectiveness level can also be leveraged to enhance

the accuracy of human-robot team performance prediction. Traditional evalu-

ation frameworks often separate system performance—measured through objec-

tive metrics such as task completion time or success rate—from user experience,

which is typically assessed through subjective instruments such as workload or
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usability scales [34], [35]. While this bifurcation allows for modular analysis, it

fails to capture the intertwined nature of human cognitive state and system-level

outcomes during dynamic operations.

In particular, operator fatigue—reflected in diminished cognitive effectiveness—can

have a profound impact on real-time decision-making, control precision, and error

rates, all of which directly influence the overall performance of the human-robot

team. As missions grow in complexity and duration, overlooking this factor can

lead to overly optimistic or inaccurate performance estimates. Therefore, this

study argues that integrating the operator’s cognitive effectiveness with their skill

level is essential for a more comprehensive and realistic performance prediction

model. By accounting for both long-term proficiency and short-term cognitive

readiness, the approach provides a unified framework that better reflects the dy-

namic capabilities of human-robot teams in real-world scenarios.

The proposed model integrates the Sleep, Activity, Fatigue, and Task Effective-

ness (SAFTE) model [36] with an extended formulation of Fitts’ Law [35], as

illustrated in Fig. 4.1. The SAFTE model is a validated biomathematical frame-

work that simulates human cognitive effectiveness based on three key physiologi-

cal components: the homeostatic sleep drive, circadian rhythm, and sleep inertia.

These elements collectively determine fluctuations in an operator’s mental readi-

ness over time, accounting for sleep history, time of day, and recovery cycles.

This study enhances the SAFTE model by coupling it with a task demand model

derived from the extended Fitts’ Law. This formulation, which characterises task

difficulty in (6-DoF), enables a more precise estimation of the cognitive resources

required to perform specific motion-level tasks. This study uses the difficulty

score to modulate the depletion rate of attention capacity in the SAFTE model,

effectively amplifying fatigue effects during cognitively demanding tasks.
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The resulting cognitive effectiveness value reflects an operator’s real-time mental

readiness, which this study uses to assess their suitability for engaging in robotic

teleoperation. In parallel, operator skill level is independently quantified through

performance on standardised tasks defined by the extended Fitts’ Law, represent-

ing long-term proficiency. By integrating these two components—cognitive effec-

tiveness (short-term readiness) and skill level (long-term capability)—alongside

specific mission requirements, the model enables accurate prediction of human-

robot team performance, particularly in terms of task execution time and antici-

pated variability under fatigue.

The contribution to the field lies in the development of a novel performance pre-

diction model that simultaneously accounts for the cognitive fatigue and skill

level of human operators, offering a more accurate and realistic representation

of human-robot team performance. By integrating these two critical human

factors—short-term cognitive effectiveness and long-term operational proficiency—into

a unified predictive framework, the model provides actionable insights into how

team performance may fluctuate under varying task demands and fatigue condi-

tions.

The adoption of this model enables stakeholders to make more informed and

adaptive decisions regarding mission assignments, operator scheduling, and au-

tonomy allocation. In high-stakes and time-sensitive domains, such as emergency

response, this can significantly enhance both the efficiency and safety of opera-

tions. Moreover, this research lays the foundation for future investigations into

the temporal dynamics of fatigue and its broader implications for human-robot

collaboration. By incorporating physiological and cognitive considerations into

robotic system design and planning, this work contributes to the ongoing effort

to increase the robustness, adaptability, and human-centeredness of robotic de-
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ployments across a wide range of real-world applications.

1.4 Evaluating Human-Machine Teaming

As outlined in the previous section, the task difficulty modelling and performance

prediction framework developed in this thesis provides a robust approach for an-

ticipating HMT performance across a diverse range of operational scenarios. It

can serve as a foundational component for comprehensively evaluating HMT sys-

tems. By quantifying task difficulty and forecasting performance, the proposed

predictive model is integrated with additional statistical evaluation tools and sub-

jective assessment measures, thus providing a robust methodology for assessing

the effectiveness of various human-robot interaction strategies. In the following

subsections, this study outlines the systematic evaluation approach, demonstrat-

ing how these predictive insights are empirically validated through rigorous ex-

perimental testing with real-world teleoperation interfaces and robotic platforms.

As modern control methodologies continue to advance, RAs have become increas-

ingly capable and intelligent, particularly within structured environments. With

the integration of artificial intelligence (AI), current-generation robotic systems

can now operate with near-full autonomy in domains such as manufacturing and

warehouse logistics, executing repetitive and well-defined tasks with high pre-

cision and reliability. Despite these achievements, significant challenges remain

when robots are deployed in unstructured, open-world environments, where un-

predictability, variability, and high-stakes decision-making prevail.

In such contexts—especially in high-risk, mission-critical scenarios—fully au-

tonomous operation is often infeasible. Tasks such as HAZMAT rescue, chemical

decontamination, and EOD exemplify the types of operations that require not

only complex real-time interaction with dynamic environments but also deep do-
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main knowledge, situational awareness, and adaptive judgment—traits that are

inherently human. HAs bring valuable expertise and flexibility to these missions,

but their direct physical involvement also exposes them to considerable risks,

including injury or death.

Motion-level teleoperation has emerged as a viable solution to reconcile the com-

plementary strengths of both human and robotic agents while mitigating human

exposure to danger. In this paradigm, RAs serve as the physical executors of tasks

in hazardous zones, while HAs provide high-level cognitive guidance and control

from a remote location. This division of labour enables both agents to operate

within their respective domains of strength: RAs handle physical manipulation

and traversal under challenging conditions, while HAs contribute domain-specific

reasoning and strategic decision-making [37].

Therefore, evaluating such HMT in real-world conditions necessitates not only an

assessment of autonomous capabilities but also a rigorous examination of teleop-

eration interfaces, shared autonomy strategies, and performance prediction mod-

els. The subsequent sections present the evaluation methodology, including both

simulation-based and real-world experiments, designed to validate the proposed

predictive framework across diverse HMT applications.

While mobile manipulators are becoming increasingly prevalent in field opera-

tions, research explicitly targeting teleoperation strategies and interface design

for these systems remains limited [38]. This is especially notable considering the

rapid evolution of HMTs, including HMTIs, which now incorporate a wide array

of emerging technologies. Recent developments have introduced novel modalities

such as inertial measurement units (IMUs), vision-based recognition, wearable

motion capture systems, and even haptic feedback mechanisms. Each of these

innovations contributes uniquely to control precision, user experience, and situa-
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tional awareness in remote operation.

Yet, the growing diversity of HMTI designs presents a major obstacle to system-

atic comparison. Due to their varying input modalities, degrees of embodiment,

and interaction metaphors, it is currently infeasible to evaluate these interfaces

side by side using a consistent standard. This heterogeneity creates a barrier

to empirical validation and prevents the community from drawing generalizable

conclusions about interface performance. As such, the establishment of a stan-

dardised HMTI evaluation scheme is critical. A robust and repeatable evaluation

framework would not only facilitate the benchmarking of teleoperation systems

but also guide future development by identifying best practices and quantifiable

metrics for performance across diverse robotic platforms.

This study presents a standardised HMT evaluation scheme specifically designed

for mobile manipulators. This scheme enables a comprehensive assessment of

HMTs and HMTIs by integrating a suite of robot motion tests, both objective

and subjective evaluation metrics, and a quantified performance prediction model.

The evaluation includes statistical side-by-side comparisons of motion execution

times across different interface types, alongside first-hand user feedback on sys-

tem usability and workload. To ensure predictive utility, the performance model

incorporates both human and robot system characteristics, leveraging data from

standardised tasks to forecast performance in future real-world missions.

To validate and refine the proposed evaluation scheme, this study conducted

an experimental study comparing two HMTIs—namely, a conventional gamepad

and a wearable motion capture system (WMCS)—for teleoperating a quadruped

mobile manipulator. The main contributions of this work are summarised as

follows:

1. A standardised HMTI evaluation scheme for mobile manipulators,
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composed of three key components:

• A suite of standard motion tests, evaluating locomotion, manipulation,

and combined control performance.

• An objective evaluation protocol based on statistical analysis of oper-

ator motion time across interface types.

• A generalisable performance prediction model from the previous sec-

tion, extended from Fitts’ Law, enabling performance forecasting in

unseen tasks using data from standard tests.

2. Standardised subjective evaluation metrics, including the NASA Task

Load Index (NASA-TLX) and the System Usability Scale (SUS), to assess

perceived workload and system usability.

3. Empirical comparison of two HMTIs for quadruped manipulator

teleoperation, demonstrating the scheme’s utility in evaluating both per-

formance and usability. The study benchmarks the gamepad and WMCS

interfaces through real-world experimentation, enabling a data-driven un-

derstanding of interface trade-offs.

1.5 Apply Task Modelling with LLM

The preceding sections introduced a task difficulty modelling framework that cap-

tures the spatial and kinematic intricacies of HMT systems. Building upon this

foundation, this section explores the integration of task modelling with Large

Language Models (LLMs) to enhance autonomous decision-making for task allo-

cation in multi-robot systems. By abstracting complex spatial and environmen-

tal data into structured task difficulty representations, the proposed approach

leverages the predictive power of LLMs to achieve more efficient, scalable, and
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context-aware planning and coordination among heterogeneous robotic agents in

dynamic and unstructured environments.

In modern manufacturing environments, multi-robot systems have demonstrated

significant success, primarily owing to the structured nature of these settings and

the use of task-specific programming developed by skilled engineers [39]. Within

these controlled environments, each robot is typically assigned a predefined role,

executing repetitive motions and trajectories that have been meticulously de-

signed and optimised offline. This high degree of determinism facilitates seamless

coordination, minimises conflict or redundancy among RAs, and leads to high

operational efficiency.

However, the deployment of multi-robot systems in unstructured, open-world, or

dynamic environments remains a formidable challenge. Outside the confines of

factories and warehouses, such systems encounter unpredictable terrain, variable

task demands, incomplete information, and rapidly changing mission objectives.

In these contexts, robots must be capable of real-time sensing, reasoning, and

decision-making without relying on pre-scripted control policies. The absence of

fixed infrastructure and human supervision further complicates coordination. As

a result, traditional multi-robot paradigms often fail to achieve the same level of

reliability or efficiency in these settings [40].

This disparity highlights the need for advanced methods in autonomous task al-

location, environmental understanding, and adaptive behaviour for multi-robot

teams operating in complex environments. In particular, there is growing inter-

est in leveraging learning-based, distributed, and human-in-the-loop strategies to

improve the resilience and autonomy of such systems beyond the factory floor.

Using AI systems, including LLMs, has emerged as a powerful tool for generali-

sation and decision-making [41]–[45], offering the ability to process diverse inputs
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and adapt to various tasks. Others have already recognised these problems, and

efforts to find appropriate solutions for them have been underway in the field of

robot learning [46], [47]. Many distinct categories of approaches have emerged.

The first category follows a one-model-fits-all paradigm, where a single neural

network is trained to map raw sensory inputs (e.g., camera images) directly to

robot actions (e.g., end-effector velocities) [48]–[50]. While promising in its gen-

erality, this approach encounters several critical limitations. A major challenge

lies in the substantial data requirements for training such models. Unlike in

simulation, where data can be generated in large quantities and at low cost, real-

world robotics data collection is time-consuming, expensive, and constrained by

hardware wear, safety concerns, and environmental variability. Scaling data col-

lection to encompass the diversity of tasks, objects, and environments required

for generalisation remains a significant bottleneck.

Another inherent drawback is the risk of catastrophic forgetting—a phenomenon

in which pre-trained models lose previously acquired knowledge when fine-tuned

on new tasks or domains. This issue is particularly problematic in robotics, where

continual learning and task adaptation are essential. Without mechanisms for

retaining and integrating prior knowledge, one-model systems may underperform

or fail outright when deployed in scenarios that differ from their fine-tuning data.

Additionally, this approach often assumes a monolithic model without external

system dependencies, which conflicts with the modular and heterogeneous na-

ture of practical robotic systems. In real-world applications, frameworks such

as the Robot Operating System (ROS) are widely adopted due to their flexibil-

ity, modularity, and support for diverse hardware and software components. A

single end-to-end neural model may lack the structural modularity required for

seamless integration with such frameworks, limiting its adaptability to changes
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in hardware platforms, sensing modalities, or task configurations.

In summary, while the one-model-fits-all strategy holds promise for general-

purpose learning, it faces considerable hurdles regarding scalability, data effi-

ciency, lifelong learning, and practical deployment. These challenges underscore

the need for more robust, modular, and context-aware approaches that can sup-

port real-world multi-robot collaboration in complex and evolving environments.

Noticing the limitations of monolithic, data-intensive learning systems, researchers

have increasingly turned to LLMs as a promising alternative for robotic decision-

making and task planning [51]–[54]. LLMs offer strong symbolic reasoning capa-

bilities and broad generalisation across diverse tasks, making them well-suited to

serve as high-level priors in robotic frameworks. Several recent systems exemplify

this trend. For instance, LLM-Planner [55] demonstrates few-shot grounded plan-

ning for embodied agents using LLMs, while LaMI [56] enables enhanced multi-

modal human-robot interaction through language-conditioned policies. Other

works translate natural language commands into structured representations such

as behaviour trees or state machines [57], [58], facilitating interpretable and mod-

ular task execution.

These approaches aim to leverage the general-purpose capabilities of pre-trained

language models without requiring task-specific retraining from scratch. How-

ever, they introduce a distinct set of challenges. A fundamental limitation is the

assumption that a pre-defined and finite set of actions is available to the robot,

along with sufficient task-specific knowledge to ensure successful execution [55],

[59]. In practice, robotic actions are often highly contextual and may need to

be dynamically adjusted or even discovered through environmental interaction.

Rigidly pre-defining action spaces restricts a system’s adaptability, particularly

in real-world environments where task variability and unforeseen events are com-
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mon. This rigidity hampers the system’s ability to generalize, reducing robustness

in unfamiliar settings that deviate from training data distributions.

Given their capacity to understand abstract instructions and reason over general

logic, LLMs hold considerable promise for enabling autonomous decision-making

in dynamic and unstructured environments. In single-robot scenarios, task alloca-

tion is relatively straightforward, since only one agent is available, the question of

who should perform the task does not arise. Most focus instead lies in interpret-

ing, planning, and executing the task effectively, for example, Imitation Learning.

However, extending this paradigm to multi-robot systems introduces a new layer

of complexity. The presence of multiple heterogeneous RAs necessitates an ex-

plicit decision-making process to determine which robot is best suited for each

task, based on capabilities, proximity, workload, and environmental constraints.

Moreover, this decision must be made dynamically, often with incomplete infor-

mation and under time pressure, as conditions evolve in real-time. Incorporating

LLMs into such a framework raises fundamental questions: How should task-

relevant context be encoded and communicated to the model? Can LLMs reason

over robot capabilities and constraints? And to what extent can language models

support decentralised coordination among autonomous agents? These challenges

highlight the need for new architectures that tightly couple the reasoning power

of LLMs with real-world action grounding and coordination strategies suitable

for multi-robot systems operating in open-ended environments.

One of the most significant challenges in multi-robot task allocation in open-

world settings lies in the nature and structure of the input information. Unlike

structured environments where the state space is well-defined and relatively static,

open-world scenarios demand that robots interpret, reason, and act based on

complex, high-dimensional, and often unstructured raw sensory data. To enable
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effective decision-making, models typically rely on large-scale raw input from

visual, spatial, and semantic observations to form a coherent understanding of

the task environment. This includes detailed spatial configurations of robots and

targets, dynamic obstacles, terrain variability, and inter-agent relationships—all

of which are crucial for determining which agent is best suited for which task,

and how tasks should be sequenced or distributed across the team.

While LLMs excel at processing symbolic and textual data, they are not inher-

ently designed to parse or reason over dense spatial information. The intricate

and high-dimensional nature of real-world spatial relationships, such as three-

dimensional (3D) translation positions, orientations, visibility constraints, reach-

ability, and occlusions, is often underrepresented or abstracted in natural lan-

guage. Consequently, when tasked with multi-robot planning, LLMs frequently

struggle to maintain a precise mental model of the scene, leading to reasoning

errors or poor alignment between the plan and the physical environment [60].

A further complication arises from the sheer volume of information that must

be encoded into the input prompt. As the number of robots and objects in-

creases, so too does the complexity of the environment and the combinatorial

space of possible interactions. In order to provide sufficient context for decision-

making, prompts must grow longer to include spatial layouts, robot states, object

attributes, and mission constraints. However, LLMs are subject to memory lim-

itations and token constraints that restrict the total volume of input they can

effectively process. This often leads to “prompt saturation,” where critical de-

tails are either omitted or diluted amidst less relevant information, reducing the

model’s ability to attend to key variables and increasing the risk of suboptimal

or erroneous task allocation decisions [61].

These limitations underscore the urgent need for innovative strategies to enhance
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LLMs’ capacity for spatial reasoning and input abstraction in multi-robot sys-

tems. Approaches may include the use of compact scene representations, struc-

tured prompt engineering, hybrid architectures that combine language models

with geometric or graph-based encoders, or pre-processing layers that translate

raw spatial data into semantically meaningful language tokens. Such methods

aim to streamline input data, reduce cognitive overload within the model, and

maintain the clarity and precision required for effective task assignment and co-

ordination in real-world robotic teams.

To address the aforementioned challenges in spatial reasoning and prompt scala-

bility for multi-robot task planning, this study proposes a novel approach grounded

in task difficulty modelling [3], which is itself an extension of the well-established

Fitts’ Law [12]. Originally developed to model human motor behaviour, Fitts’

Law has been extended in this work to quantify the difficulty of robotic tasks

by incorporating spatial relationships, target/tool size, and dynamic constraints.

By leveraging this extended model, it transforms complex environmental and

agent-specific data into a concise, structured representation of task difficulty.

This abstraction significantly reduces the need for LLMs to process raw, high-

dimensional spatial inputs, instead allowing them to reason over more meaningful

and compact descriptors of task complexity.

The method enables LLMs to focus on the most relevant decision-making vari-

ables while mitigating the risk of prompt saturation and information dilution. In

doing so, it facilitates more scalable and interpretable planning for heterogeneous

multi-robot systems operating in dynamic environments.

The major contributions of the work are as follows:

• FittsPrompt: This study introduces FittsPrompt, a novel preprocess-

ing framework that encodes spatial task complexity into structured, low-
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dimensional representations. This preprocessing layer streamlines input for

LLMs, enhancing both decision-making quality and robustness in multi-

robot task allocation.

• Integration of Extended Fitts’ Law: This study adapts and opera-

tionalize the extended formulation of Fitts’ Law into a practical algorithm

suited for LLM-driven planning. This allows task difficulty to be numeri-

cally quantified and compared across agents and tasks, enabling grounded

and interpretable action selection.

• Comprehensive Evaluation: The methodology is evaluated through a

combination of standardised benchmarks, user studies, and real-world robotic

experiments. These evaluations demonstrate the effectiveness and generaliz-

ability of the approach across different robotic platforms and environmental

settings, with significant improvements observed in planning efficiency and

task success rates.

• Cross-Model Benchmarking: This study conducts a large-scale compar-

ative analysis of LLM performance in multi-robot planning tasks, evaluating

a total of 42 models—38 open-source and 4 closed-source. This benchmark

provides side-by-side comparisons of task allocation accuracy, error profiles,

and decision consistency across diverse model architectures.
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Related work

2.1 Fitts’ Law and extensions

P. M. Fitts proposed a widely recognised method, known as Fitts’ Law, for pre-

dicting human-machine interface performance [12]. This foundational model,

rooted in information theory, quantifies the trade-off between speed and accu-

racy in human computer control tasks. It has since become a cornerstone in the

evaluation of user interface efficiency and human psychomotor behaviour. Fitts’

Law predicts the Movement Time (MT) a user takes to move a pointing device,

such as a mouse cursor, to a designated target location through the optimal route,

as a function of the Index of Difficulty (ID) of the movement task:

MT = a+ b · ID, (2.1)

where the constants a and b are empirically determined coefficients that define

a linear regression line, often referred to as the prediction line, linking MT with

ID. This relationship reflects a consistent, measurable pattern in human-machine

actions under varied task demands. The foundation of the model’s predictive
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power lies in the accurate representation of task difficulty, encapsulated by the

ID metric. In its original formulation, ID considers only two spatial parameters

of the task—the distance (d) from the starting point to the center of the target

and the width (w) of the target along the axis of motion:

ID = log2

(
2d

w

)
. (2.2)

This logarithmic formulation mirrors the concept of information transmission,

where greater distance and smaller target width imply higher difficulty, thereby

requiring more time to complete the task. Notably, in Fitts’ original formula-

tion, the ratio 2d
w

retains physical units (distance over distance), giving ID the

dimension of bits per movement. However, many later extensions of Fitts’ Law

reformulated ID as a dimensionless quantity for generalisability across contexts.

In line with these extensions, the ID defined in this study is treated as unitless.

It is important to emphasise that the Index of Difficulty, as defined in this study,

characterises only the intrinsic properties of the task itself. In other words, ID

captures the spatial and geometric constraints of the task, and does not vary

according to whether the task is performed by a human operator or a robotic sys-

tem. This separation ensures that ID remains a purely task-centric metric, while

performance differences between agents are reflected in the parameters of the pre-

dictive model (e.g., a and b), rather than in the formulation of ID. Furthermore,

ID should be interpreted as providing a theoretical lower bound on task diffi-

culty, since the model assumes an optimal solution path; in practice, suboptimal

strategies or execution variability may result in greater effective difficulty.

Building upon the foundational principles introduced by Fitts, subsequent re-

search explored more nuanced representations of the factors contributing to move-

ment difficulty. A particularly influential refinement is Welford’s model [23],
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which reexamines the composition of the ID by separating the effects of distance

and target width. Unlike Fitts’ original formulation, which encapsulates both

variables into a single term, Welford proposed a bifactorial model that allows the

individual contributions of distance (d) and width (w) to be explicitly and in-

dependently modelled. This approach acknowledges that the two variables may

not symmetrically influence user performance, particularly under varying task

conditions or cognitive constraints. The movement time is then predicted as a

linear function of the logarithm of each variable:

MT = a+ b1 · log2(d) + b2 · log2(w), (2.3)

where a denotes a constant intercept, and b1 and b2 are empirical coefficients

reflecting the relative impact of distance and width on the movement duration.

By decoupling the influence of d and w, Welford’s formulation provides a more

flexible and potentially more accurate representation of user behaviour in target

acquisition tasks, particularly in scenarios where the spatial properties of the

task are complex or asymmetric. This model has been instrumental in deepening

the understanding of human-machine performance and has served as the basis

for numerous subsequent studies aiming to improve interface design and task

performance analysis.

An alternative formulation to Fitts’ Law was proposed by Kv̊alseth, known as

the power model formulation [62]. Unlike Fitts’ Law, which models movement

time as a linear function of the logarithmic index of difficulty and involves two

empirical constants, the power model introduces a power-law relationship with

three empirically determined constants. This added flexibility allows the model

to achieve higher multiple correlations when fitted to experimental data, offering

the potential for improved predictive accuracy in certain contexts. The power
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model can be particularly useful in scenarios where the linearity assumption of

Fitts’ Law does not hold or where more complex behaviour must be captured.

Despite these advantages, the power model has not achieved widespread adoption

in the human-computer interaction and robotics communities. One of the primary

reasons is its increased mathematical complexity, which makes it less intuitive and

more computationally intensive compared to the simplicity and interpretability

of Fitts’ original formulation. Moreover, the added parameter introduces a risk of

overfitting in empirical studies with limited sample sizes. As a result, the power

model remains a lesser-used alternative, often referenced in theoretical discussions

but infrequently employed in practical performance modelling applications.

Over the years, numerous modifications and enhancements have been introduced

to improve the original formulation of Fitts’ Law (2.2), with the goal of increas-

ing its empirical validity and robustness across a wider range of task conditions.

Among these, one of the most widely adopted variants is the Shannon formula-

tion [24], which revises the computation of the ID to address a key limitation in

the original model. Specifically, Fitts’ original logarithmic expression may yield

negative ID values when the target distance (d) is less than half the target width

(w), which can occur in small-scale or precision-oriented tasks. To circumvent this

issue and ensure non-negativity, the Shannon formulation introduces an additive

constant within the logarithmic term, yielding the following expression:

ID = log2

(
d

w
+ 1

)
. (2.4)

This adjustment not only prevents undefined or negative ID values but also aligns

more closely with observed user behaviour in empirical studies, particularly under

high-precision or short-distance conditions. As a result, the Shannon formulation

has gained widespread acceptance in both experimental psychology and human-
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computer interaction research, where it is often preferred for its stability and

consistency in modelling a broad spectrum of human-machine tasks. Its improved

numerical behaviour makes it especially suitable for computer implementations

in user interface evaluation and design.

However, both the Shannon formulation (2.4) and the original Fitts’ Law are

inherently constrained to one-dimensional movements and primarily focus on lin-

ear translations along a single axis. These limitations restrict their applicability

in more complex, real-world scenarios where movement typically occurs in two

or more dimensions and involves additional factors beyond linear displacement.

To address these shortcomings, subsequent research has sought to generalise the

model to accommodate 2D spatial configurations and compound movement pat-

terns. Most of these adaptations retain the core structure of the Shannon formu-

lation due to its improved empirical alignment and numerical stability.

One such extension incorporates not only the translational distance to the target

position but also the rotational displacement required to align with the target

orientation. This model, proposed by Stølen and Akin [25], augments the tra-

ditional difficulty index by adding a rotational term that captures the angular

effort needed to reach and orient toward the target. Specifically, the model intro-

duces rotational distance (θ) and rotational tolerance (δ) to quantify the difficulty

associated with orientation alignment:

ID = log2

(
d

w
+ 1

)
+ log2

(
θ

δ
+ 1

)
. (2.5)

This formulation allows for a composite evaluation of task difficulty by summing

the contributions of both translational and rotational components. It is par-

ticularly relevant in applications involving complex spatial manipulation, such

as robotic arm control, virtual object manipulation, and user interface interac-
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tions in 3D environments. By recognising and modelling the added cognitive and

machinery demands of rotational adjustments, this approach provides a more

comprehensive framework for analysing human performance in multidimensional

tasks.

Since the majority of Fitts’ Law-based models are designed for human control

of a virtual cursor—typically idealized as a dimensionless point with no physical

properties such as size or mass—they present inherent limitations when applied

to modeling embodied systems. These simplifications are particularly problem-

atic in the context of HMT, where both the human operator and the machinery

system possess spatial extent and physical constraints. Representing a complex,

embodied effector as a point target fails to account for interactions influenced by

geometry, surface area, and physical clearance.

To address this issue, an innovative study by Cha and Myung [13] employed a

more physically grounded representation by using a human finger as the cursor,

thereby introducing a tangible spatial dimension into the model. This approach

integrated the size of the finger (f) into the calculation of the Index of Difficulty,

resulting in a revised formulation:

ID = log2

(
2d

w + f

)
. (2.6)

By explicitly incorporating the end effector’s (in this case, the human finger’s)

physical dimensions, this method offers a more realistic estimation of task dif-

ficulty in settings where spatial constraints and surface interaction are non-

negligible. Such considerations are particularly pertinent in HMT tasks, where

robot end-effectors or manipulators must operate in constrained or cluttered en-

vironments. This formulation serves as a conceptual bridge toward more compre-

hensive models that take into account not only movement distances and target
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sizes but also the embodied characteristics of the agents involved.

Building on these insights, recent research has explored the integration of multi-

ple such modifications to assess the performance of human-robot systems more

holistically [3]. These efforts aim to develop a unified modelling framework ca-

pable of accurately reflecting the complex dynamics of shared autonomy tasks,

where physical embodiment and cooperative interaction are essential dimensions

of task difficulty.

Nevertheless, despite the advancements introduced by various formulations and

extensions of Fitts’ Law, the majority of these methodologies remain confined

to a two-dimensional spatial framework. This constraint poses significant chal-

lenges when attempting to accurately model real-world HMT operations, which

are inherently three-dimensional and often require precise coordination across

both translational and rotational degrees of freedom. To date, only limited re-

search has explored the extension of Fitts’ Law into 3D environments [63] and

its specific application within HMT contexts [27], where the nature of interaction

extends beyond planar motion.

Recent studies have attempted to bridge this gap by introducing formulations

that combine both translational and rotational distances in a unified difficulty

index [64], and by incorporating target depth as an additional variable within

the traditional Fitts’ Law structure [65]. These efforts represent important steps

toward capturing the spatial richness of natural human movement. Parallel de-

velopments in the field of human-computer interaction have applied Fitts’ Law to

evaluate performance in virtual reality (VR) environments, particularly focusing

on 3D cursor control tasks [14], [66]. While these VR-based models offer valuable

insights into human spatial behavior, they remain constrained by the nature of

the cursor metaphor, which typically only involves translational control in 3D
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space without accounting for orientation or torque—critical factors in robotic or

HMT systems.

Thus, although these adaptations are effective in characterising HMT perfor-

mance in immersive virtual interfaces, they fall short in representing the full

complexity of HMT scenarios, where manipulators must not only reach a target

but also align with specific orientations and constraints dictated by the environ-

ment or task. As a result, such models may underestimate the cognitive and

physical demands inherent in collaborative manipulation and control tasks in-

volving embodied robotic systems.

To address these shortcomings, the proposed model leverages the diversity of

approaches derived from Fitts’ Law and synthesizes them into a unified frame-

work that accounts for both translational and rotational demands in a three-

dimensional space. Specifically, this study introduces a 3D prediction model

with six degrees of freedom (6-DoFs), purpose-built to represent the operational

realities of HMT. This formulation is designed to more accurately reflect the

multidimensional nature of task difficulty in practical human-robot collaboration

scenarios, thereby offering a more comprehensive and predictive understanding

of joint performance in real-world settings.

Despite the extensive body of work exploring and extending Fitts’ Law in various

contexts, there remains a conspicuous lack of research dedicated to developing a

fully 3D predictive model tailored to HMT performance. Most existing models are

either constrained to planar motions or exclude rotational dimensions, thereby

limiting their applicability to embodied systems operating in complex spatial

environments. This gap is particularly critical given the increasing prevalence of

mobile manipulation systems that must navigate and interact within dynamic,

unstructured settings.
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A predictive framework grounded in a 3D formulation of Fitts’ Law would offer

significant benefits across both system development and operational deployment

phases. From a design perspective, it could provide quantitative insights into task

difficulty, enabling the optimisation of control strategies, interface design, and

motion planning for shared autonomy. In real-world operations, such a model

would be instrumental in forecasting performance constraints, informing task

allocation decisions, and adapting robotic behaviour in response to human input

and environmental variability.

This need is especially pronounced in mobile manipulation missions, where the

robot must coordinate movement across 6-DoFs to accomplish tasks such as grasp-

ing, insertion, or collaborative object transport. In these scenarios, accurately

modelling the interplay between translational reach, rotational alignment, and

environmental constraints is essential to achieving seamless and effective HMT.

Consequently, the development of a robust 3D Fitts’ Law model tailored to these

requirements constitutes a necessary advancement toward more intelligent, adap-

tive, and efficient human-robot collaboration in real-world applications.

2.2 Evaluation for Human-Machine Teaming In-

terfaces

Numerous scholars have undertaken empirical investigations into integrating hu-

man and robotic intelligence within human-machine collaboration, mainly focus-

ing on the design and evaluation of Human-Machine Teaming Interfaces (HMTIs) [37].

Over the years, a wide range of control modalities—ranging from traditional joy-

sticks and teleoperation systems to immersive virtual and motion-capture-based

interfaces—have been developed and applied to robotic platforms in both research
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and industry. These diverse HMTIs aim to enhance the fluency, adaptability, and

effectiveness of human-robot cooperation.

However, identifying the most effective control strategy remains an ongoing chal-

lenge, particularly given the variability in task requirements, user expertise, and

environmental complexity. This challenge is compounded by the lack of a unified

framework for objectively quantifying interface performance. In response, a grow-

ing body of literature has highlighted the need for a standardised methodology

to evaluate and compare the efficacy of different HMTIs [67]. Such a framework

would not only facilitate the benchmarking of interface technologies but also guide

interface selection and design based on empirical performance predictions.

Motivated by these observations, this research addresses this critical gap by

proposing a coherent and generalizable approach to HMTI performance evalu-

ation. Specifically, we employ the extended 3D formulation of Fitts’ Law that

captures the multidimensional nature of embodied interaction in HMT [1], along

with subjective evaluation.

Evaluating the effectiveness of teleoperation interfaces remains a critical com-

ponent in the development and refinement of human-robot teaming systems. A

task-based evaluation framework for teleoperation is introduced in [68], where

performance is quantified using task completion metrics. This framework incorpo-

rates measurable parameters based on the number of successful and unsuccessful

task executions, offering a practical approach to assessing objective performance.

In addition to quantitative data, user feedback is collected through structured

questionnaires, enabling a parallel evaluation of subjective user experience and

interface usability.

Building upon this foundation, more recent studies have presented broader and

more integrated frameworks for assessing operator performance in robotic sce-
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narios [34], [67]. These works emphasise the importance of combining objective

performance indicators—such as task efficiency, error rates, and accuracy—with

subjective measures, including perceived workload, ease of use, and user satis-

faction. Such comprehensive evaluation methods are essential for capturing the

multifaceted nature of teleoperation performance, particularly in tasks involving

prolonged cognitive engagement or physical coordination.

Despite the progress made in establishing standardised evaluation methodolo-

gies, the majority of existing frameworks rely on movement models constrained

to lower-dimensional task representations, often limited to one or two spatial di-

mensions. While such models are helpful for simplified experimental setups or

interface benchmarking, they may prove inadequate for capturing the full com-

plexity of real-world robotic missions, which typically involve 3D motion, orien-

tation alignment, and dynamic interaction with the environment.

As robotic systems continue to expand into more complex domains—ranging

from mobile manipulation in unstructured environments to collaborative indus-

trial tasks—there is a growing need for evaluation frameworks that reflect these

operational realities. Accurate and scalable evaluation models are essential not

only for quantifying system performance but also for guiding interface design,

task allocation, and operator training in practical applications of HMT.

Usability and Workload Evaluation

In the evaluation of HMTIs, subjective response measurements are commonly

categorised into two principal dimensions: the system’s perceived workload—both

mental and physical—on the human operator, and the overall usability of the

interface [69], [70]. These assessments provide valuable insights into the cognitive

and ergonomic impact of different interface modalities, complementing objective
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performance metrics.

Among the most widely adopted tools for measuring cognitive demand is the

NASA Task Load Index (NASA-TLX) [71], which captures an operator’s per-

ceived workload across six dimensions: mental demand, physical demand, tem-

poral demand, performance, effort, and frustration. The NASA-TLX is typically

implemented via a structured questionnaire and employs weighted averages to re-

flect the relative importance of each factor. Its comprehensive yet intuitive struc-

ture has made it particularly popular in applied engineering domains. Empirical

studies have shown that NASA-TLX remains the preferred choice for evaluating

cognitive load in real-world systems due to its reliability, ease of administration,

and strong correlation with task complexity [72].

In addition to workload assessment, situational awareness is a critical aspect of

teleoperation, especially in scenarios involving remote perception or video feed-

back. The NASA Situation Awareness Rating Technique (SART) [73] is specif-

ically designed to measure an operator’s perceived awareness of their environ-

ment. Unlike NASA-TLX, which focuses on task-related cognitive effort, SART

emphasises the human agent’s understanding of the external environment. It is

particularly relevant in supervisory control tasks and operations involving indi-

rect visual input. However, SART is less concerned with machinery manipulation

itself and is therefore typically used in conjunction with other evaluation tools in

the context of HMTIs.

Usability testing plays a crucial role in interface evaluation to further capture

the subjective quality of interaction. The System Usability Scale (SUS) [74] has

emerged as a standardised and widely accepted method for usability assessment.

Comprising a ten-item Likert-scale questionnaire, the SUS is designed to be easily

understood by users from diverse backgrounds and is applicable across a broad
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range of domains. Its simplicity, quick deployment, and industry-wide acceptance

have made it a favoured tool in HMTI research as well [75], [76], where it serves

to gauge user satisfaction, ease of learning, and perceived system effectiveness.

Together, these subjective evaluation methods provide a multi-faceted under-

standing of HMTI performance, bridging the gap between technical capabilities

and user experience.

2.3 Human-machine Interface Hardwares

In the context of HMT, two primary categories of Human-Agent (HA) to ma-

chine, in this case, Robotic-Agent (RA), interfaces have emerged. The first cat-

egory involves the use of remote control devices, such as gamepads, joysticks,

or keyboards, which enable HAs to issue commands to RAs through discrete or

analog inputs [77]. These interfaces are typically characterised by their low la-

tency, portability, and intuitive mapping of control schemes, making them widely

adopted in various robotic applications, from aerial drone navigation to ground-

based manipulation tasks.

The second category encompasses more immersive interaction modalities, wherein

HAs control RAs through natural body movements captured using motion cap-

ture (MoCap) systems [78]. These interfaces translate the physical gestures or

postures of the human operator into robotic actions, offering a more direct and

embodied form of teleoperation. MoCap-based systems are particularly advan-

tageous in complex manipulation or collaborative tasks, where the nuances of

human motion—such as hand orientation, joint articulation, and spatial aware-

ness—can be leveraged to achieve more precise and intuitive control.

In recent years, there has been a marked increase in research and development
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efforts focused on the application of motion capture technologies within robotic

teleoperation. Advances in wearable sensors, real-time kinematic tracking, and

machine learning-based motion interpretation drive this trend. As a result,

MoCap-enabled interfaces have gained traction for their potential to enhance

task fluency, reduce operator workload, and improve the overall transparency of

human-robot interaction. However, systematic methods for evaluating the per-

formance benefits of such interfaces—particularly in comparison to traditional

control modalities—remain underexplored, motivating the need for unified eval-

uation frameworks such as the one proposed in this work.

2.3.1 Simulation Technologies

Simulation environments play a central role in developing and evaluating HMT

systems. They provide a safe and cost-effective platform for rapid prototyping,

task benchmarking, and operator studies before real-world deployment. Modern

simulators combine physics engines with robot middleware to support realistic

interaction, data generation, and human-in-the-loop testing.

Physics-based simulators such as Gazebo/Ignition, Webots, MuJoCo [79], and

Isaac Sim (PhysX) model robot dynamics, collisions, and sensing with sufficient

fidelity for both manipulation and navigation. Platforms such as AI2-THOR [80],

Habitat, RLBench, and BEHAVIOR-1K [81] further provide standardised 3D

tasks and reproducible evaluation scenarios. These environments are often inte-

grated with ROS, enabling consistent interfaces across simulation and hardware.

Simulation in this study was conducted through an interactive web-based plat-

form built using the WebGL Application Programming Interface (API). This

approach allows the entire simulation to run locally in a web browser, without

the need for plug-ins or additional software installation. After the initial load-
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ing, all computation is executed on the participant’s machine, ensuring that task

execution is unaffected by internet latency; connectivity is only required at the

beginning and for submitting final results.

A key strength of WebGL is its direct access to the user’s GPU through HTML5,

enabling efficient use of available hardware for rendering and control. This de-

sign supports high-fidelity visualisation and responsive interaction while adapting

dynamically to the computational capacity of different devices. As a result, the

platform offers a consistent and scalable environment across a diverse participant

pool.

Participants controlled the excavator using a standard keyboard interface, with

specific keys mapped to both locomotion and manipulation functions. This

scheme balances accessibility with sufficient complexity to capture realistic task

demands. Overall, the WebGL-based system provides a robust and reproducible

environment for evaluating teleoperation performance, supporting the investiga-

tion of task difficulty and user variability under controlled yet realistic conditions.

2.3.2 Gamepad Technologies

Gamepad controllers have become one of the most prevalent and standardised

input devices for remotely operating RAs, mainly due to their ergonomic de-

sign, widespread availability, and ease of integration with robotic systems. Their

intuitive layout—typically composed of analogue sticks, directional pads, and

buttons—provides a versatile platform for issuing both discrete and continuous

commands, making them especially suitable for tasks that require simultaneous

control of multiple degrees of freedom.

As a result, gamepads are extensively used across a wide array of robotic applica-

tions. In the field of healthcare robotics, for instance, researchers have employed
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gamepad-based control for nursing and assistive robots, enabling operators to per-

form tasks such as guiding patients, manoeuvring mobile robots in constrained

environments, and assisting with activities of daily living [82], [83]. Their com-

pactness and responsiveness make them particularly advantageous in clinical set-

tings, where space and time efficiency are critical.

Beyond practical applications, gamepads have also served as a baseline control in-

terface in numerous empirical studies examining human-robot interaction. These

studies often explore how gamepad-based teleoperation compares with alternative

modalities in terms of performance, usability, and user preference. For example,

Zhao et al. [84] conducted a comparative analysis between gamepad control and

hand gesture-based interfaces, evaluating factors such as response time, accuracy,

and user cognitive load. Similarly, Oshita [85] examined the trade-offs between

gamepad and touchscreen controls, offering insight into interface selection for

different types of robotic tasks.

Commercial quadruped robots frequently incorporate gamepads as their primary

control method, given the need for simultaneous navigation and posture adjust-

ment. The dual analog sticks, particularly, are well-suited for controlling loco-

motion while allocating other buttons for limb or gripper articulation. This com-

patibility with complex locomotion and manipulation tasks has cemented the

gamepad’s role as a standard interface in many commercial robotic platforms.

2.3.3 Motion Capture Technologies

In addition to traditional gamepad controllers, MoCap systems have become an

increasingly prominent teleoperation modality within HMTIs, offering an immer-

sive and intuitive means of control. These systems utilise real-time human motion

tracking to generate corresponding control signals for robotic agents, enabling a
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more embodied and natural interaction paradigm. Depending on the specific im-

plementation, motion capture input can be derived from visual sensors such as

RGB and RGB-D cameras [86], or wearable devices equipped with IMUs [87] that

track body segment orientation and acceleration.

Contemporary MoCap technologies incorporate a diverse array of sensing ap-

proaches, including optical, inertial, mechanical, magnetic, and acoustic systems.

Optical systems often employ multiple high-speed cameras and reflective mark-

ers to reconstruct full-body kinematics with high spatial accuracy. In contrast,

inertial-based systems rely on IMUs attached to key body segments to estimate

joint angles and motion trajectories without needing external infrastructure. Me-

chanical and magnetic systems provide alternative tracking solutions using link-

ages or field sensors, while acoustic tracking uses time-of-flight measurements to

infer position.

Many MoCap systems are integrated with programming by demonstration frame-

works to enhance their applicability and adaptability in robotics. These include

techniques such as keyframing—where representative postures are selected and

interpolated over time—and clustering, which groups motion trajectories to iden-

tify reusable motion primitives [88]. Such methods allow for the efficient encoding

of complex human-machine behaviours, reducing the need for low-level program-

ming and enabling operators to specify tasks through natural movement patterns.

These technologies have been widely explored for their ability to replicate complex

manipulative and navigational actions, often with greater fluidity and responsive-

ness than traditional input devices. Their ability to track full-body motion makes

them particularly effective in applications that require whole-arm or whole-body

teleoperation, such as mobile manipulation, object handover, and collaborative

motions.
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Vision-based Motion Capture Technologies

Recent advancements in vision-based technologies have prompted growing interest

in utilising camera images as input for MoCap systems, particularly due to their

non-intrusive nature and ease of deployment. Vision-based MoCap systems rely

on visual sensors—often in the form of RGB cameras, depth sensors, or RGB-

D devices—to estimate human body pose and movement by analysing image

sequences. These systems typically employ computer vision algorithms and deep

learning models to detect key body landmarks, reconstruct skeletal structures,

and track dynamic motions in real time.

A representative example of this approach is presented in [89], where a camera-

based motion capture method is implemented using the Microsoft Kinect V2

sensor. This system leverages the Kinect’s built-in depth sensing capabilities to

perform human-body motion analysis, enabling full-body pose estimation with-

out the need for physical markers or wearable devices. The study outlines the

application of the Kinect sensor in teleoperation scenarios and demonstrates its

ability to capture joint positions and movements with reasonable fidelity and

responsiveness.

Overall, vision-based MoCap systems like the one described in [89] demonstrate

the feasibility of using camera input for intuitive human-robot interaction. They

offer promising avenues for achieving hands-free, naturalistic control of robotic

agents, especially in applications where freedom of movement and ease of use are

prioritised.

Wearable Motion Capture Technologies

Wearable motion capture technologies offer enhanced stability and robustness

compared to vision-based motion capture systems, particularly in dynamic or
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unstructured environments. These systems are less susceptible to external visual

disturbances such as varying lighting conditions, background clutter, or occlu-

sion by other objects or users. As a result, wearable systems are often favoured

in scenarios that require reliable tracking performance across diverse operating

contexts.

Wearable motion capture systems typically consist of suits or modules embedded

with IMUs, which track the orientation, velocity, and acceleration of individual

body segments. By aggregating data from multiple IMUs placed across the body,

these systems can reconstruct full-body skeletal motion in real time. Such config-

urations have enabled the accurate and responsive mapping of human motion to

RAs, facilitating intuitive and high-fidelity teleoperation [90], [91]. These systems

are particularly effective in tasks involving whole-body manipulation or coordi-

nated locomotion, where joint-level correspondence between human and robot is

crucial.

In addition to motion tracking, wearable systems also support higher-level inter-

action paradigms by integrating workspace mapping and path planning features.

For instance, virtual obstacles can be configured within the robot’s operating en-

vironment to impose motion constraints, thereby enhancing safety and improving

user experience [92]. These constraints help guide the RA’s actions within ac-

ceptable boundaries, reducing the risk of collisions and allowing the operator to

focus on task-level objectives rather than low-level motion details.

Through the combination of stable motion capture and intelligent interaction

design, wearable systems offer a compelling solution for intuitive human-robot

collaboration, particularly in applications requiring fine-grained control and sit-

uational adaptability.
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2.4 Prediction and Evaluation with Human Fa-

tigue

HMT has become a central focus in robotics research, particularly for applications

where full autonomy is currently infeasible or undesirable. In many real-world

missions, the complexity, unpredictability, and dynamic nature of the environ-

ment necessitate effective cooperation between HAs and RAs. As robotic systems

and the missions become increasingly complex, the workload on the HAs signif-

icantly increases and impacts the HMT performance, especially in longer-period

missions. Therefore, the need for systematic evaluation and modelling of HMT

performance becomes critical when considering the fatigue of HAs.

Such evaluation frameworks must consider not only the capabilities of the robotic

system and the quality of the control interface but also the cognitive and physical

states of the human operator. In particular, factors such as task difficulty, human

workload, and fatigue can substantially influence overall system performance.

This section reviews existing research related to the evaluation of human-robot

collaboration, with a particular focus on performance prediction with fatigue

modelling. This study first examines evaluation methods used to measure HMT

performance, emphasising task-based frameworks and workload assessment tech-

niques. This study then reviews approaches to modelling human fatigue, dis-

tinguishing between measurement-based methods and bio-mathematical models,

and discusses their relevance to predicting human performance in teleoperation

scenarios.

To this end, research has diverged into several streams focusing on different as-

pects of the collaborative system [93], [94]. Some studies emphasise the evaluation

of the robot itself, analysing aspects such as mechanical design, autonomy capa-

47



2.4 Chapter 2. Related work

bilities, and task execution efficiency [95]. Others focus on the development and

assessment of HRIs, aiming to improve the quality of interaction, reduce opera-

tor workload, and enhance task fluency [96], [97]. In parallel, an important line

of inquiry has emerged that seeks to incorporate human factors into the overall

system performance evaluation. Recognising that human operators are integral

components of collaborative systems, these studies examine cognitive load, situa-

tional awareness, mental workload, and fatigue as critical determinants of overall

HMT performance [34], [35], [68], [98].

By integrating these perspectives, researchers aim to develop comprehensive frame-

works that not only assess the technical proficiency of the robotic systems but

also account for the human-centred dimensions that fundamentally shape collab-

orative effectiveness in complex environments.

Beyond task outcome analysis, other evaluation methods place a stronger em-

phasis on understanding the cognitive and physical workload experienced by

participants during robotic teleoperation. Tools such as the NASA-TLX and

other customised workload assessment scales have been employed for this pur-

pose [34], [35]. These instruments measure multiple dimensions of perceived

workload—including mental demand, physical demand, temporal demand, effort,

and frustration—providing a comprehensive and multi-faceted view of the oper-

ator’s experience. Insights gained from workload evaluations are instrumental

in informing system design improvements, with the goal of minimising operator

strain and enhancing overall system usability and performance.

While workload is widely recognised as a key factor influencing system perfor-

mance, particularly through its contribution to human error and reduced oper-

ational efficiency, relatively few studies have extended their analysis to examine

the impact of workload-induced cognitive fatigue over time. Cognitive fatigue
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can significantly impair an operator’s ability to sustain high levels of attention,

decision-making quality, and teleoperation control, especially during prolonged

or demanding missions. Despite its importance, the relationship between accu-

mulated workload, mental fatigue, and performance degradation in robot tele-

operation contexts remains underexplored, highlighting a critical area for future

investigation.

Accurate modelling of task difficulty is a fundamental prerequisite for predicting

system performance during the execution of specific tasks. Task difficulty directly

influences the level of cognitive and physical demand placed on a human operator,

and in turn, significantly affects the rate of fatigue accumulation over the course

of task execution [99]–[103]. As cognitive and physical resources are progressively

depleted under high-demand conditions, an operator’s ability to maintain optimal

performance deteriorates, underscoring the critical need for predictive models that

can effectively quantify task difficulty.

Consequently, the development of precise and reliable task difficulty models is

essential for two interconnected purposes: task performance modelling and fatigue

modelling. From a performance standpoint, task difficulty serves as a predictor of

execution time, error likelihood, and control fluency. From a fatigue perspective,

task difficulty modulates the cognitive load that contributes to fatigue onset and

accumulation, thereby impacting long-term operational safety and efficiency.

Within the field of psychology, Fitts’ Law [12] stands as one of the most influen-

tial tools for modelling human-computer system performance. As stated in the

previous section, it describes the relationship between task difficulty and the time

required for targeted movements. Building upon this body of work, the previous

study proposed a refined task difficulty model specifically designed to better cap-

ture the unique demands of HMT in 3D. This refinement considers the additional
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degrees of freedom, environmental complexity, and embodiment characteristics

typical of teleoperated robotic systems. Nevertheless, to the best of our knowl-

edge, no existing research has yet leveraged such extended task difficulty models

to systematically generate task demand profiles and predict cognitive fatigue ac-

cumulation in human operators during robot teleoperation. Addressing this gap

could offer a powerful framework for anticipating operator state degradation and

optimising human-robot collaboration in complex, real-world missions.

2.4.1 Modelling Human Fatigue

Fatigue is a critical factor that substantially influences human performance in

HMT, impacting both task efficiency and operational safety. In collaborative

robotics, fatigue can manifest in multiple forms, each exerting distinct effects

depending on the nature of the interaction between the HA and the RA.

Physical fatigue primarily affects scenarios involving human-robot co-manipulation,

where the human operator is required to exert sustained physical effort to coor-

dinate or assist the robot’s movements [104]. Prolonged physical exertion can

lead to muscular fatigue, reduced precision, slower reaction times, and increased

risk of injury, ultimately degrading the effectiveness and safety of collaborative

operations.

Conversely, cognitive fatigue plays a predominant role in human-robot teleop-

eration tasks, where the human operator must maintain high levels of concen-

tration, decision-making, and perceptual processing over extended periods [105],

[106]. Cognitive fatigue can impair attention, situational awareness, and problem-

solving abilities, leading to delayed responses, increased error rates, and dimin-

ished overall system performance. Given that many teleoperation tasks require

continuous monitoring of robot status, dynamic environments, and task objec-
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tives, understanding and mitigating cognitive fatigue becomes essential for main-

taining mission success.

Accurately modelling both physical and cognitive fatigue is thus crucial for devel-

oping predictive frameworks that can enhance the design of HRC systems, inform

workload management strategies, and support real-time adaptation to operator

state fluctuations. The following subsections review existing approaches for mea-

suring and modelling human fatigue, distinguishing between measurement-based

methods and bio-mathematical models.

Measurement-Based Approaches

Cognitive fatigue can be influenced by a multitude of interacting factors, including

task demands, environmental conditions, and individual physiological states. To

capture the dynamic and multifaceted nature of fatigue, some research efforts

have focused on continuous monitoring approaches that estimate fatigue levels

by observing human behaviour and environmental variables in real time [107]–

[111].

One notable study [107] proposed a comprehensive model of human fatigue that

integrates a wide array of measured elements, such as ambient temperature, envi-

ronmental noise, circadian rhythm variations, and other contextual factors. This

model not only considers instantaneous indicators of operator state but also cap-

tures the accumulative property of fatigue as it builds up over time during pro-

longed task execution. To model this temporal evolution of fatigue, the study

introduced a dynamic fatigue detection framework based on Dynamic Bayesian

Networks, which can probabilistically infer the fatigue state of an individual by

integrating multiple streams of sensory data over time.

Building on this foundational work, subsequent studies have developed additional
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dynamic fatigue detection models tailored for applications such as driver monitor-

ing. These models leverage various machine learning techniques to track and pre-

dict changes in cognitive state. For example, fatigue detection approaches based

on Hidden Markov Models [108] and Dynamic Bayesian Networks [109] have been

proposed, capturing sequential dependencies in behavioural data. More recently,

deep learning-based methods have been explored [110], utilising neural networks

to model complex, nonlinear patterns in physiological and behavioural signals

associated with fatigue.

While these models offer comprehensive and sophisticated mechanisms for fa-

tigue estimation, a common limitation is their heavy reliance on large volumes of

multimodal sensor data, including physiological measurements (e.g., heart rate

variability, skin conductance), environmental readings, and behavioural observa-

tions (e.g., gaze patterns, body posture). The need for continuous, high-fidelity

data collection can impose significant practical challenges, particularly in real-

world mission scenarios where extensive sensor deployment may be impractical,

costly, or intrusive. This constraint highlights the necessity of exploring more

scalable and lightweight approaches to fatigue modelling, especially for opera-

tional environments involving human-robot collaboration.

Bio-mathematical Model

Bio-mathematical modelling approaches offer an alternative pathway for esti-

mating human cognitive performance and fatigue levels based on structured be-

havioural and environmental schedules [112]. Rather than attempting to model

the complex neurophysiological mechanisms underlying brain function—which

remains a significant scientific challenge due to individual variability and the in-

tricate nature of cognitive processes—these models are typically derived from

large-scale experimental data collected across diverse volunteer populations. By
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abstracting individual differences, bio-mathematical models provide generalised,

population-level predictions of performance fluctuations over time.

One of the most prominent examples of this approach is the Sleep, Activity, Fa-

tigue, and Task Effectiveness (SAFTE) model and its operational implementation

in the Fatigue Avoidance Scheduling Tool (FAST) [36], [113]. The SAFTE model

integrates sleep/wake histories, circadian rhythms, and homeostatic sleep drive

mechanisms to predict variations in human cognitive performance. It captures

the effects of sleep deprivation, time of day, and accumulated fatigue to gener-

ate a continuous estimate of operator effectiveness. The FAST software, widely

used in military and aerospace applications, leverages these predictions to design

schedules that minimise fatigue-related risks.

Further refinements to the SAFTE model have been proposed to enhance its

realism and applicability across different operational contexts. Studies have in-

corporated additional factors such as task demand intensity, exposure to light

countermeasures (to modulate circadian rhythms), pharmaceutical interventions,

and the disruptive effects of night shifts and jet lag [114]–[116]. These enhance-

ments recognise that external interventions and environmental conditions can

significantly alter the trajectory of cognitive performance, and thus must be con-

sidered when modelling fatigue for mission-critical operations.

As robotic systems continue to expand into sectors such as manufacturing, lo-

gistics, healthcare, and defence, the issue of human operators managing robots

while under the influence of fatigue has emerged as a growing concern. Fatigue

can impair situational awareness, decision-making, and control precision, under-

mining the safety and effectiveness of human-robot teams. Despite its critical

importance, relatively little research has incorporated fatigue modelling into the

broader context of human-robot collaboration [106]. Combining human-robot
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teleoperation models with well-established bio-mathematical fatigue models, such

as SAFTE, holds considerable promise for predicting human performance under

varying states of cognitive fatigue. Such integration could enable dynamic work-

load management, mission planning adjustments, and real-time adaptations to

ensure sustained operational effectiveness in fatigue-prone environments.

2.5 Multi-Robot Control with LLMs

Multi-robot task allocation (MRTA) is a critical problem in the field of robotics,

concerned with the efficient and reliable assignment of tasks to a team of robotic

agents. The primary objective of MRTA is to optimise mission outcomes, ensuring

that tasks are completed within specified constraints of time, cost, and resource

utilisation. Traditional MRTA approaches typically formulate the problem as an

optimisation or matching problem, relying on predefined cost metrics, capability

matrices, and heuristic or algorithmic methods to assign tasks to robots based

on their suitability [117], [118]. These classical frameworks are often grounded in

mathematical programming, graph theory, or auction-based mechanisms and have

demonstrated considerable success in structured and predictable environments.

However, classical approaches can face substantial limitations when applied to

more dynamic, uncertain, and unstructured operational contexts. In real-world

missions, the task environment may undergo frequent and unpredictable changes,

task descriptions may be provided at a high level or expressed in natural language,

and complex interdependencies among tasks may require flexible reasoning rather

than rigid optimisation. Traditional models, which depend heavily on predefined

cost functions and static assumptions about the environment and agent capabil-

ities, can struggle to adapt to these evolving and complex mission requirements.

In response to these challenges, Large Language Models (LLMs) have recently
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emerged as promising decision-making agents in robotic systems. Leveraging

their advanced language understanding, reasoning capabilities, and generative

flexibility, LLMs offer a fundamentally different approach to MRTA. Researchers

are increasingly exploring how LLMs can enhance task allocation by interpreting

high-level mission objectives, reasoning about the relationships between tasks and

robot capabilities, and dynamically adapting allocation strategies to optimise

performance metrics such as task completion time, success rate, and resource

usage [119].

By integrating LLMs into the task allocation process, robotic teams can achieve a

higher degree of autonomy and adaptability. LLMs are capable of parsing complex

instructions, inferring implicit task requirements, and proposing allocation plans

that are contextually aware and sensitive to changing operational conditions.

This new paradigm opens exciting opportunities for more intelligent, flexible, and

human-aligned multi-robot collaboration, especially in domains where mission

specifications cannot be fully predefined or where human-robot communication

needs to occur in naturalistic, high-level language forms.

2.5.1 Traditional Task Allocation Methods

A foundational approach in MRTA involves matching each task’s specific require-

ments with the skills, capabilities, or resource profiles of the available robotic

agents. This capability-task matching ensures that the selected robots are appro-

priately suited to accomplish their assigned missions efficiently and reliably. In

many systems, humans can play an active role in the allocation process. Tasks

may be assigned by a human operator acting as a mission supervisor [120], or

humans may themselves be treated as agents within the team, receiving and exe-

cuting tasks alongside robotic counterparts [121]. Incorporating humans into the
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agent pool introduces additional complexity, such as modelling human cognitive

load, task preferences, and dynamic availability.

Classical automatic task allocation algorithms have been widely developed to

automate the assignment process without requiring manual intervention. These

methods typically frame the task allocation problem as an optimisation problem,

seeking to optimise a global objective function such as minimising the total mis-

sion execution time, minimising energy consumption, or maximising the number

of tasks successfully completed. Among the most commonly used techniques are

the Hungarian method for solving assignment problems with polynomial-time

complexity and linear programming formulations that allow the incorporation of

complex constraints and cost structures [122].

These traditional approaches have demonstrated strong effectiveness in struc-

tured environments where task definitions, agent capabilities, and environmental

conditions are known a priori and remain relatively stable over time. They pro-

vide mathematically rigorous solutions with guarantees of optimality or bounded

sub-optimality under well-defined assumptions. However, their reliance on static

cost models and limited reasoning about unstructured or dynamic elements can

restrict their applicability in open, real-world mission scenarios where tasks may

evolve, interdependencies emerge, or new information becomes available during

execution.

2.5.2 LLMs in Robot Task Planning

Recent advances in LLMs have sparked growing interest in their integration into

robotic systems, particularly for enhancing HMT. Kim et al. [123] conducted a

user study to systematically investigate the capabilities and limitations of LLM-

powered robots in real-world HMT scenarios. Their findings highlight that LLM-
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enabled robots exhibit notable strengths in tasks that involve building social

connections, engaging in deliberative dialogues, and providing empathetic or con-

textually sensitive responses. These qualities suggest that LLMs can significantly

enhance the relational and communicative dimensions of human-robot collabora-

tion, fostering trust and rapport between users and robotic agents.

However, the study also identified several critical challenges associated with de-

ploying LLMs in robotic systems. Specifically, LLM-powered robots demon-

strated difficulties in maintaining logically coherent communication over extended

interactions, occasionally producing inconsistent or factually incorrect statements.

Furthermore, the unpredictability and lack of full transparency in LLM-generated

responses were found to induce anxiety and uncertainty in users, particularly in

safety-critical or decision-making contexts. These findings underscore the im-

portance of developing methods to improve the logical reasoning capabilities,

reliability, and explainability of LLM-driven robotic systems.

Action Planning from Language

The integration of LLMs with robotic systems for task planning through action

composition has been an active area of exploration in recent studies. Action

composition refers to the process of translating high-level language instructions

into structured sequences of executable actions that a robotic system can perform,

bridging the gap between natural language understanding and low-level robotic

control.

Zeng et al. [51] introduced Socratic Models, a framework designed to enhance mul-

timodal capabilities by enabling different specialised models (e.g., vision models,

language models) to communicate and reason collaboratively without the need for

fine-tuning. This modular interaction between models allows LLMs to contribute
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to complex action planning tasks while leveraging the strengths of domain-specific

perception modules.

Li et al. [52] proposed the Chain of Code method, which extends the Chain of

Thought prompting paradigm by incorporating executable code generation. This

approach improves reasoning reliability by enabling LLMs to reason through in-

termediate code-based steps. It supports complex task decomposition, making it

particularly suitable for robotic applications requiring precise logical sequencing.

In another study, Kwon et al. [53] demonstrated the direct application of LLMs to

robotic control by predicting robot end-effector poses from visual inputs and task

descriptions. Their results showcase the potential of LLMs to serve as high-level

policy generators, translating multimodal observations into actionable control

outputs without extensive task-specific retraining.

Furthermore, Silver et al. [54] explored the use of closed-source models such

as GPT-4 for task planning within Planning Domain Definition Language do-

mains. By generating Python programs that map to formal PDDL specifications,

LLMs are positioned to automate classical planning tasks—a domain with a long-

standing history in artificial intelligence for solving complex, multi-step problems.

Collectively, these studies highlight the expanding role of LLMs in enabling robots

to autonomously interpret, plan, and execute complex tasks derived from natural

language instructions, moving toward greater autonomy and adaptability in real-

world environments.

Song et al. [55] introduced the LLM-Planner, a framework designed for embodied

agents focusing on few-shot grounded planning. Their approach leverages the

capabilities of Large Language Models to perform high-level task decomposition

and action sequencing with minimal task-specific fine-tuning. A key emphasis of
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their work is the importance of dynamic planning adaptability, enabling agents

to respond flexibly to complex and evolving environments. LLM-Planner builds

upon the foundations of traditional symbolic planning methodologies [59], yet it

introduces a novel integration of natural language processing techniques, effec-

tively bridging the gap between symbolic task representations and the dynamic,

ambiguous nature of real-world interactions.

In parallel, Wang et al. [56] developed LaMI, a system designed to enhance multi-

modal human-robot interaction by incorporating LLMs into the planning and

control loop. LaMI integrates high-level linguistic guidance with atomic action

primitives and multi-modal sensory inputs, enabling robots to interpret rich hu-

man instructions and regulate their behavior accordingly. By combining language

understanding, visual perception, and action execution within a unified frame-

work, LaMI demonstrates the potential of LLMs to serve as central reasoning

engines for more natural, intuitive, and adaptive human-robot collaboration.

Together, these studies highlight the expanding frontier of LLM-integrated robotic

systems, illustrating how the fusion of natural language processing, symbolic rea-

soning, and multi-modal interaction can enable more intelligent, flexible, and

human-centric robot behaviors.

Izzo et al. [57] and Yang et al. [58] adopt a structured approach to integrating

natural language processing with robotic systems by translating natural language

instructions into formalized control architectures, such as behavior trees and state

machines. In these frameworks, natural language inputs are parsed and mapped

onto predefined structural templates that guide robotic behavior in a fixed, se-

quential manner. While such approaches benefit from the formal verifiability and

robustness of symbolic systems, they also inherently impose rigidity on the gen-

erated plans, limiting flexibility and adaptability to unforeseen changes in the
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environment.

Most existing robotic systems operate primarily in an open-loop configuration,

executing planned actions without the capability for autonomous error detec-

tion or recovery. This limitation constrains their robustness and adaptability in

real-world, dynamic environments. To address this, several recent studies have

introduced frameworks that incorporate human feedback into the robot learning

and task execution process.

Shi et al. [124] proposed a proactive framework in which robots anticipate poten-

tial failures during task execution and autonomously request human assistance

to refine their strategies. By incorporating anticipatory mechanisms, the system

reduces failure rates and enhances mission success by leveraging human exper-

tise at critical decision points. Similarly, Han et al. [125] developed a system

that allows robots to explain their planned actions to users and receive corrective

feedback. This interpretability improves transparency, fosters greater trust in

the robot’s decision-making process, and empowers users to intervene effectively

when necessary.

Singh et al. [126] introduced an interactive prompting system that utilizes struc-

tured feedback to correct robot behaviors, particularly targeting educational and

technical training environments. Their system demonstrates how structured user

input can efficiently guide robot behavior refinement without requiring deep tech-

nical knowledge from users. Additionally, Liu et al. [127] presented Operation-

relabeled Learning with Language Feedback (OLAF), a system that enables

robots to update their visuomotor neural policies based on natural language cor-

rections. OLAF allows verbal feedback to relabel failed experiences, thereby

helping robots learn to avoid repeating mistakes through interactive human guid-

ance.
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Building upon these ideas, the framework advances the state of the art by en-

abling real-time, closed-loop interaction between the user and the robotic system

during task execution. The approach allows users to naturally interact with

robots between task steps, offering corrections, adjustments, or new instructions

without requiring prior coding expertise. This seamless integration of real-time

feedback significantly enhances the flexibility, accessibility, and effectiveness of

human-robot collaboration, particularly in unstructured or rapidly changing en-

vironments.

Utilizing open-source models

The use of open-source models in robotics research plays a crucial role in pro-

moting accessibility, transparency, and reproducibility—factors that are essential

for the collective advancement of the field. Open-source frameworks enable re-

searchers and developers to replicate experimental studies, verify reported results,

and build upon prior work without prohibitive barriers to entry. This openness

not only enhances the credibility of technological innovations but also fosters

faster dissemination and collaborative development across the global research

community.

Several recent studies have effectively leveraged open-source language and mul-

timodal models to drive advancements in robotic capabilities. For instance, Mu

et al. [128] and Huang [129] utilise a range of open-source LLMs to power their

embodied AI systems, demonstrating that competitive performance in robotic

task planning and execution can be achieved without reliance on closed, propri-

etary models. Their approaches underscore the potential for democratizing access

to powerful AI tools and enabling broader participation in cutting-edge robotics

research.
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Similarly, Pueyo et al. [130] explore using the multimodal CLIP model, originally

developed for vision-language tasks, to unlock new functionalities in robotic con-

trol. By repurposing the visual-semantic embedding capabilities of CLIP, their

work showcases how multimodal models can serve as bridges between perception

and action, enabling more flexible and intuitive robotic behaviours.

Collectively, these efforts illustrate the growing impact of open-source models in

advancing embodied intelligence, highlighting how publicly available AI resources

can catalyse innovation, enhance reproducibility, and lower the barrier to entry

for robotics research and development.

The approach builds on these foundational developments by exclusively employing

open-source models, thereby ensuring that the methodologies remain transpar-

ent, accessible, and reproducible within the broader robotics research community.

This commitment to open-source solutions not only promotes stable development

environments but also facilitates the verification and extension of the results by

other researchers, contributing to the collaborative advancement of the field.

In addition to leveraging the accessibility benefits of open-source software, the

framework integrates real-world feedback mechanisms into the task execution

loop. This integration significantly enhances the system’s dynamic control capa-

bilities, enabling robots to adapt their behaviour in response to environmental

changes and user interactions in real time. By addressing critical limitations ob-

served in prior studies—such as the lack of empirical validation on actual robotic

platforms, as noted in the work of Cao and Lee [131]—the approach bridges

the gap between theoretical planning frameworks and practical deployment chal-

lenges.

Thus, the work not only capitalises on the foundational strengths of open-source

models to ensure reproducibility and foster community engagement but also ex-
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tends their application to dynamic, feedback-driven control scenarios. In doing

so, this study pushes the boundaries of what open-source, LLM-integrated robotic

systems can achieve in complex, real-world environments.

Experiment on real robots wth LLM

Experimentation on real robotic platforms represents a crucial step in robotics

research, as it enables the validation, refinement, and practical assessment of the-

oretical models and control strategies. Testing in real-world environments exposes

robotic systems to unpredictable dynamics, sensor noise, hardware limitations,

and environmental uncertainties that cannot be fully captured in simulation. As

a result, real-robot experiments provide indispensable insights into system ro-

bustness, adaptability, and practical feasibility.

Several recent studies have demonstrated the implementation of LLM-based method-

ologies on real robotic systems. For instance, Tanneberg et al. [132], Kwon et

al. [53], and Chu et al. [133] have showcased the successful application of LLMs to

real-world tasks, highlighting the potential of language models to facilitate robot

planning and action generation.

Moreover, in contrast to simulation-only studies such as Pueyo et al. [130], the

framework emphasises extensive and diverse real-world testing. This study vali-

dates system performance to ensure not only theoretical soundness but also op-

erational reliability, scalability, and practical readiness.

2.5.3 Multi-Robot Task Allocation with LLMs

In the context of MRTA, researchers have begun to explore the potential of LLMs

as high-level decision-makers capable of interpreting complex mission objectives

and facilitating task distribution among robotic teams. One promising line of
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research leverages LLMs to parse complex, often unstructured tasks described in

natural language into structured sub-tasks that can be systematically assigned

to individual robots [134]. This capability is particularly valuable in dynamic or

uncertain environments where explicit pre-programming of tasks is impractical

or where human operators issue high-level, goal-oriented commands that require

further decomposition.

LLMs have demonstrated remarkable proficiency in breaking down abstract or

high-level mission descriptions into actionable steps and generating structured

plans that align with robotic capabilities. Beyond language understanding, recent

studies have shown that LLMs can also reason directly over raw observational

data, such as positional or state information, to support task allocation and

decision-making [135]. By combining linguistic reasoning with perception-based

situational awareness, LLMs offer a novel approach to bridging the gap between

human intent and robotic execution.

However, despite their impressive generalisation and reasoning abilities, LLMs

face notable challenges when applied to MRTA scenarios involving complex spa-

tial relationships. Understanding and accurately interpreting relative positions,

orientations, and kinematic constraints between robots and targets remains a dif-

ficult problem. Traditional language models, primarily trained on textual data,

may lack the necessary inductive biases to fully capture geometric or spatial de-

pendencies intrinsic to multi-robot coordination. As a result, while LLMs can

generate reasonably high-level plans, their effectiveness in precise spatial reason-

ing and fine-grained task optimisation often requires supplementary mechanisms

or integration with specialised planning modules.

One of the recent works [136] developed a prompt-based system to assign tasks

across a heterogeneous team of robots, including a robotic manipulator, a mobile
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manipulator, and an aerial drone. Their system, built upon the BEHAVIOR-1K

benchmark [81], utilises feedback mechanisms to iteratively refine task planning

and correct errors, ultimately achieving higher success rates compared to baseline

methods. Performance is evaluated in terms of the number of steps required to

complete assigned tasks, providing a quantitative measure of planning efficiency

and effectiveness.

In parallel, recent studies have introduced formal mathematical problem formu-

lations and heuristic prompt optimisation techniques specifically targeting multi-

step task planning scenarios [137]. These approaches aim to improve the coher-

ence and reliability of LLM-generated plans over sequences of actions, addressing

the inherent difficulty of maintaining consistency across multi-stage missions.

Another line of work proposes the use of conformal prediction techniques to en-

hance completion guarantees in language-guided robotic planning. Within sim-

ulated environments such as AI2-THOR [80], conformal prediction frameworks

have been applied to quantify uncertainty and ensure safer execution of planned

behaviors [138]. These efforts contribute to building more trustworthy LLM-

integrated systems, particularly in settings where task execution risks must be

carefully managed.

Beyond safety and step-level optimisation, further research explores different as-

pects of task planning and execution for multi-robot systems. Topics include

few-shot prompting strategies for adapting LLMs to new tasks with minimal

additional data [134], [139], as well as architectural considerations regarding cen-

tralised versus decentralised planning frameworks. Another significant contribu-

tion discusses task-and-motion planning, emphasising the potential of few-shot

natural language translation into structured task representations that facilitate

seamless integration with motion planning pipelines [140].
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However, it is important to note that these recent methodologies predominantly

focus on heterogeneous multi-robot task allocation, optimising the sequencing

and assignment of distinct capabilities across robots with different hardware con-

figurations. They emphasise step order optimisation and inter-task reasoning

but pay relatively less attention to scenarios involving homogeneous robot teams,

where multiple robots possess identical or highly similar skill sets.

In contrast, the proposed method addresses this gap by targeting homogeneous

multi-robot task allocation within each planning step. This approach is designed

to complement and extend existing LLM-based frameworks by providing a mech-

anism for efficiently distributing tasks among identical or similar robots, thereby

broadening the applicability, scalability, and efficiency of task allocation strategies

in larger, more uniform multi-robot teams.
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Modelling task difficulty

3.1 Process Overview

The section below provides a comprehensive, step-by-step overview of the algo-

rithmic process involved in implementing the proposed 3D Fitts’ Law model for

predicting Human-Machine Teamwork (HMT) performance, based on our publi-

cation [1]. The process is designed to systematically guide the development and

application of this difficulty model, ensuring that all relevant factors influencing

task performance are considered and appropriately accounted for. This process

can be divided into several key stages, each of which contributes to the creation

of a robust predictive model capable of accurately forecasting the performance

of HMT systems across various tasks and configurations. The following stages

outline the procedure in a logical sequence:

1. Motion Capability Identification:

• The first step in the process involves identifying the motion capabilities

of the system. This is a crucial task as it establishes the fundamental

building blocks for the model. The motion capabilities refer to the

67



3.1 Chapter 3. Modelling task difficulty

various ways in which the HMT system can manipulate or interact

with the environment, such as locomotion movements from the robot

base and manipulation movements from the robot arms and tools.

These capabilities need to be clearly defined to ensure that the model

is representative of the system’s actual abilities and constraints.

• Once the motion capabilities are identified, the next task is to deter-

mine the minimum set of standard tasks required. Standard tasks act

as the foundation of the model, allowing for the decomposition of com-

plex tasks into simpler, more manageable components. These tasks are

defined in terms of their relevant parameters, such as distance, angle,

and target size, which are then used to evaluate the difficulty of a

task in terms of the 3D Fitts’ Law. The selection of the minimum set

of standard tasks is guided by the principle of ensuring model com-

prehensiveness, as detailed in Section 3.1.1. These tasks are chosen to

cover the range of potential motion capabilities of the system, enabling

the model to predict performance across a broad spectrum of possible

tasks.

2. Standard Task Modelling:

• In this stage, the focus shifts to the modelling of the standard tasks

identified in the previous step. To build a robust predictive model,

it is essential to clearly define the parameters for each standard task.

These parameters include, but are not limited to, the linear distances

the system must travel, the angles through which the system must

rotate, and the sizes of the targets the system must interact with.

Each of these parameters plays a vital role in determining the task’s

difficulty and directly impacts the calculation of the task’s Index of
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Difficulty (ID). A thorough and precise definition of these parameters

ensures that the model will be able to accurately represent real-world

task requirements and variations. The standard tasks are treated as

exemplar subtasks executed in an optimal order, thereby establishing

a theoretical lower bound on overall task difficulty.

• After the parameters for the standard tasks are defined, the next step

is to calculate the Index of Difficulty for each task. This is done using

the extended 3D formulation of Fitts’ Law, which incorporates both

translational and rotational motion, as discussed in Section 3.1.2. The

calculation of the ID for each standard task is a critical step, as it

provides the foundational data that will be used in subsequent stages

of the model. The ID is used to quantify the difficulty of each task

in terms of the time required to complete it, and thus forms the core

component of the predictive model. By calculating the ID for each

standard task, the model can generate predictions for a variety of

practical tasks by aggregating the difficulties of the subtasks that make

up those tasks.

3.1.1 Motion Capability Identification

Standard tasks play an integral role in understanding the system’s capabilities

and constructing an effective predictive model. These tasks serve as fundamen-

tal components in accurately characterising the performance of HMT systems,

as they allow for the systematic decomposition of complex real-world tasks into

more straightforward, more manageable elements. The process of identifying the

motion capabilities of the targeted machine agent forms the cornerstone of the

predictive model. Through this identification, the full range of the agent’s capa-
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bilities is understood, ensuring that the model is realistic and versatile enough to

handle diverse tasks across various configurations.

The identification process determines the minimum standard tasks (p) necessary

for constructing a comprehensive model. These standard tasks must cover a wide

variety of motion capabilities, enabling the model to predict the performance of

the machine agent across a broad spectrum of scenarios. By carefully selecting

and defining these standard tasks, this study ensures that the model is equipped

to handle different types of movements and interactions that the agent may en-

counter. The central goal here is to configure every potential real-world task as

a combination of these pre-defined subtasks, thereby simplifying the task space

and making the model adaptable to a variety of practical applications.

The calculation of the minimum set of standard tasks, p, is inherently linked to

the total number of distinct motion capabilities (m) of the machine agent. These

motion capabilities encompass both the individual capabilities and their possible

combinations, as certain tasks may require multiple capabilities working together.

To account for these combinations, this study employs the binomial coefficient

Cr
m, which represents the number of ways in which r capabilities can be selected

from a total of m distinct capabilities. The relationship between the number

of distinct motion capabilities and the minimum number of standard tasks is

mathematically described by the following formula:

p =
m∑
r=1

Cr
m =

m∑
r=1

m!

r!(m− r)!
= 2m − 1. (3.1)

This equation captures the combinatorial nature of the problem, where the num-

ber of standard tasks grows exponentially with the total number of distinct motion

capabilities. To illustrate this, consider a machine agent with multiple capabili-
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ties, such as locomotion and manipulation movements. Each combination of these

capabilities requires a corresponding standard task, leading to a rapidly increas-

ing number of tasks as the system’s motion capabilities expand. The value 2m−1

provides the minimum number of tasks needed to represent all combinations of

these capabilities, excluding the trivial case where no capabilities are used at

all. Thus, this formulation serves as the foundation for ensuring that the model

remains both comprehensive and efficient in predicting HMT performance.

To illustrate the application of the proposed model, consider the case of a wheeled-

legged humanoid robot, which possesses multiple motion capabilities that can be

classified into distinct categories. In this example, the robot has two types of

locomotion capabilities: one through its legs and the other through its wheels.

Additionally, the robot is equipped with two manipulation capabilities, one for

each arm. These capabilities represent the fundamental actions the robot can

perform, including both the translational and rotational motions required for

tasks such as walking, wheeling, and manipulating objects.

In this scenario, the total number of distinct motion capabilities (m) of the robot

is 4, as it encompasses the two locomotion modes (legs and wheels) and the

two arms for manipulation. Given this total of m = 4 motion capabilities, this

study can apply the formula derived earlier to calculate the minimum number of

standard tasks (p) required to fully represent the system’s motion capabilities in

the predictive model.

According to the model, the required number of standard tasks (p) for accurate

task prediction is computed as follows:

p = 2m − 1 = 24 − 1 = 15. (3.2)
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Figure 3.1: Giving the position of the machine agent and the target, the defini-
tion of each parameter used in calculating the 3D index of difficulty in a polar
coordinate system.

This result demonstrates that, despite the robot having only four distinct motion

capabilities, the model predicts that 15 standard tasks are necessary to capture all

possible combinations of these capabilities. These tasks would serve as the basis

for building a comprehensive predictive model, allowing the robot’s performance

to be accurately forecasted across a wide range of complex tasks involving various

combinations of locomotion and manipulation capabilities. Thus, the number of

required standard tasks grows rapidly.

3.1.2 Extending Fitts’ Law to 3D

The proposed model extends the classical formulation of Fitts’ Law by adapting

it to predict task performance in the context of HMT. The central objective of the

model is to estimate the motion time required for a machine agent to complete a
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given task by systematically quantifying its associated difficulty. This difficulty

is captured using an extended notion of the ID, tailored to the characteristics and

capabilities of the agent in a 3D operational space.

The key advancement introduced by the model lies in its comprehensive treatment

of task difficulty. Traditional applications of Fitts’ Law in robotics and human-

computer interaction have predominantly modelled task execution in simplified

settings, often treating the agent as a dimensionless point and the target as a

static volume in space. These models are typically limited to considering only

translational motion and largely ignore the role of orientation, thereby restrict-

ing their applicability in complex, real-world scenarios. In contrast, the model

overcomes these limitations by incorporating both translational and rotational as-

pects of motion, offering a complete 6-DoF formulation. Specifically, it accounts

for three degrees of translational freedom (movement along the x, y, and z axes)

and three degrees of rotational freedom (yaw, pitch, and roll), thereby enabling

predictions in truly three-dimensional task spaces.

This enhancement is particularly crucial for robotic systems engaged in real-world

operations, where orientation plays a vital role. For example, tasks such as press-

ing a button, aligning a connector, or inserting a component during assembly

require not just precise positioning but also specific approach angles. Neglect-

ing orientation in such contexts leads to an incomplete characterisation of the

task and, consequently, inaccurate performance predictions. By explicitly mod-

elling orientation alongside position, the extended 3D Fitts’ Law captures the full

spatial complexity of these interactions.

To operationalize this, the total index of difficulty in the 3D formulation is decom-

posed into two distinct but complementary components: the translation index of

difficulty (IDtrans), which quantifies the effort required to move the agent to the

73



3.1 Chapter 3. Modelling task difficulty

target location, and the orientation index of difficulty (IDori), which reflects the

effort needed to align the agent’s end-effector or tool with the desired target ori-

entation. These two components are additive and together represent the overall

difficulty of the task. The formulation is expressed as:

ID = IDtrans + IDori. (3.3)

Modelling distances

Inspired by the foundational formulations of Fitts’ Law, such as those expressed

in Equations (2.5) and (2.6), the model distinguishes between two fundamental

types of spatial difficulty: linear distance and rotational distance. These two

components correspond to the physical translation and angular alignment chal-

lenges that a robotic agent must overcome to successfully interact with a target

in 3D space. Together, they serve as the building blocks for the extended Index

of Difficulty, allowing us to systematically quantify motion effort across all six

degrees of freedom.

The first component, linear distance, refers to the straight-line displacement be-

tween the agent and the target. It is influenced not only by the spatial separation

d but also by the physical dimensions of both the target and the agent. These di-

mensions determine how much leeway the agent has in positioning its end-effector

near or on the target. A larger target or a wider end-effector generally makes the

task easier, while smaller or more precise targets require finer control and hence

incur greater difficulty.

This study define the index of difficulty associated with linear distance as follows:

IDlinear = log2(
d

wt ± we

+ 1), (3.4)
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where d denotes the Euclidean distance between the agent’s operational point

(e.g., end-effector or base) and the target center. The terms wt and we represent

the effective widths (or tolerances) of the target and agent, respectively, measured

along the relevant contact or interaction surface. The ± sign in the denominator

is chosen based on the task’s spatial configuration: in some cases, the target and

agent widths may be combined (e.g., when both contribute to interaction range),

whereas in others, a difference may be more appropriate (e.g., when the agent

must fit inside a narrow cavity).

The second component, rotational distance, captures the angular deviation be-

tween the agent’s current orientation and the desired orientation required to in-

teract effectively with the target. This is especially important in tasks where

alignment—such as inserting a peg into a hole, aligning a tool with a surface,

or orienting a sensor toward a field of interest—is critical to success. Rotational

distance is measured by the angle θ between the current and target orientations,

while δ represents the allowable tolerance or precision limit of the system.

The rotational index of difficulty is defined analogously to its linear counterpart:

IDrot = log2

(
θ

δ
+ 1

)
, (3.5)

where θ is typically expressed in degrees or radians, and δ defines the maximum

permissible error in alignment. Smaller values of δ indicate tighter tolerances

and therefore increase the difficulty of the task, while larger tolerances make the

alignment easier to achieve.

An additional consideration arises when the target possesses rotational symme-

try. For example, when the target is circular or when its geometry is invariant

under certain rotations, the required angular alignment is effectively relaxed. In
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such cases, the relevant angular displacement θeff is reduced by subtracting the

symmetry angle ϕ, corresponding to the smallest rotation that leaves the target

unchanged:

θeff = max
(
0, θ − ϕ

)
.

Accordingly, the rotational index of difficulty is evaluated as

IDsym
rot = log2

(
θeff
δ

+ 1

)
. (3.6)

This formulation ensures that for fully symmetric targets (e.g., a circle, ϕ = 360◦),

the effective displacement is θeff = 0, yielding IDsym
rot = 0 regardless of δ. For

partially symmetric objects (e.g., hexagons with ϕ = 60◦), the alignment tolerance

is widened by the symmetry factor, thereby reducing the effective difficulty while

still accounting for task precision.

By combining both linear and rotational indices, the model provides a holis-

tic measure of task difficulty that encompasses both translation and orientation

challenges. This is essential for accurately modelling robotic interactions in 3D

environments, where most real-world tasks involve coordinated control over both

position and attitude. The flexibility to incorporate both types of spatial relation-

ships enables the framework to generalise across a wide variety of applications,

from object manipulation and tool usage to locomotion and inspection tasks.

Translation index of difficulty

For the translation index of difficulty (IDtrans), the calculation begins with the

establishment of a consistent coordinate system centred at the initial position of

the machine agent. This spatial reference frame provides a standardised basis

for quantifying movement and ensures that translational distances are measured
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uniformly across different task scenarios. In this coordinate system, the agent

is oriented such that its default forward-facing direction aligns with the positive

x-axis. The +y direction is defined to point laterally to the agent’s left side,

while the +z direction points vertically upward, following the conventional right-

hand rule used in robotics and mechanical systems. This configuration provides

an intuitive and consistent spatial mapping that facilitates the measurement of

target locations and movement trajectories in 3D space.

To describe the relative position of a given target with respect to the agent,

two types of coordinate systems can be employed: Cartesian and polar. The

choice of a coordinate system depends on the mechanical structure and kinematic

behaviour of the robot or machine agent in question. For instance, Cartesian

robots—such as those that operate along orthogonal linear rails—naturally align

with the Cartesian coordinate system, as their motion is inherently constrained

along independent x, y, and z axes. In this case, the distance to the target

can be directly calculated using linear displacement components along each axis,

simplifying the formulation of IDtrans.

In contrast, robots with articulated or rotational joints, such as robotic arms

or humanoid manipulators, often benefit from a polar (or spherical) coordinate

system, which more naturally reflects their kinematic structure. These robots

typically perform tasks by rotating joints to achieve certain angles, making angu-

lar measurements—such as azimuth and elevation angles—more meaningful than

Cartesian distances. For such systems, the position of the target relative to the

agent is expressed using radial distance and angular displacements, allowing for

a more accurate and intuitive representation of motion effort.

By supporting both Cartesian and polar coordinate systems, the model ensures

compatibility with a wide range of robotic architectures, thereby enhancing its
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generality and applicability. This flexibility allows the model to be seamlessly

integrated into diverse robotic platforms without requiring major reconfiguration

of the coordinate systems or motion planning frameworks. Ultimately, the coor-

dinate system serves as the foundational structure for computing the translation

index of difficulty, enabling precise quantification of the spatial challenge involved

in reaching a target location.

In a Cartesian coordinate system, the translation is described by linear distances

along the x, y, and z axes. Thus, the IDtrans can be expressed as the sum of three

IDlinear components:

IDtrans =
∑

i∈{x,y,z}

IDlineari =
∑

i∈{x,y,z}

log2

(
di

wti ± wei

+ 1

)
. (3.7)

In a polar coordinate system, the position of a target relative to the agent is

described using two angular components and one radial component, making it

well-suited for systems with rotational kinematics, such as articulated manipu-

lators or mobile manipulators. Specifically, the location is characterized by two

rotational distances—denoted as α and β—and a linear distance, denoted as r.

These three parameters form a complete representation of a point in 3D space

from the perspective of a rotationally capable agent.

The first rotational component, α, corresponds to the azimuthal angle (θα), which

is defined as the angle between the projection of the target point onto the xy-

plane and the positive x-axis. This angle captures the horizontal deviation from

the forward-facing direction of the agent, essentially describing how far left or

right the target is located relative to the agent’s heading. The second rotational

component, β, corresponds to the polar or elevation angle (θβ), which is defined

as the angle between the vector pointing from the agent to the target and the
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xy-plane. This angle quantifies the vertical displacement of the target, indicating

whether the agent must reach upwards or downwards to access the target.

The linear component, r, represents the Euclidean distance from the agent to the

target, measuring the straight-line displacement required to physically reach the

target’s location. Together, (r, α, β) form a spherical coordinate representation of

the target’s position, which is particularly effective for capturing the full spatial

relationship in systems where angular movement is more relevant than linear

translation.

Each angular component—θα and θβ—is constrained by the mechanical configu-

ration of the agent. These constraints are captured by their respective maximum

movement ranges, denoted as δα and δβ, which define the bounds within which

the agent can rotate to reach a target. Typically, these values lie within the range

[0◦, 180◦], although they may vary depending on the joint limits and design of the

agent.

In cases where the agent possesses a full rotational capability of 360◦, the effective

maximum range is still modelled as 180◦ in either direction. This simplification is

adopted based on the assumption that the agent will always choose the shortest

angular path to the target. Thus, regardless of the full rotation capability, the

model assumes a maximum effective angle of 180◦, allowing the agent to approach

the target from the nearer side. This modelling choice ensures consistency in dif-

ficulty calculations and reflects the intelligent behaviour of most robotic systems,

which naturally optimise for minimal effort in reaching a goal.

As depicted in Fig. 3.1, this polar representation provides an intuitive and spa-

tially rich framework for defining target positions in relation to the agent, making

it a critical component in the calculation of the translation index of difficulty for

robots with articulated or rotational degrees of freedom.
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Thus, the translation index of difficulty (IDtrans) in a polar coordinate system can

be formulated as the cumulative difficulty arising from both rotational and linear

movements required to reach the target. Specifically, this index is composed of

two rotational components, corresponding to angular displacements in azimuth

(α) and elevation (β), and one linear component, corresponding to the radial dis-

tance (r) between the agent and the target. These three components collectively

describe the spatial effort involved in translating the agent’s end-effector to the

desired position in 3D space.

The rotational components are each quantified using a logarithmic formulation

consistent with Fitts’ Law, which models the trade-off between movement am-

plitude and precision. For each angle θi ∈ {α, β}, the corresponding index of

difficulty is computed as a function of the ratio between the angular displace-

ment to be covered and the allowable angular tolerance δi, which reflects the

agent’s rotational precision limits. Similarly, the radial or linear component is

evaluated using a standard IDlinear formulation, involving the ratio between the

radial distance dr and the combined widths of the target and agent along the

contacting surface.

The complete expression for IDtrans in a polar coordinate system is given by:

IDtrans =
∑

i∈{α,β}

IDroti + IDlinearr

=
∑

i∈{α,β}

log2

(
θi
δi

+ 1

)
+ log2

(
dr

wtr ± wer

+ 1

)
,

(3.8)

In this equation, wtr and wer denote the effective widths of the target and the

agent, respectively, along the relevant contact surface. These widths are crucial

for defining the spatial precision required in reaching the target, as they set the

bounds within which successful contact or alignment is considered acceptable.
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The angular displacements are defined using the two-argument arctangent func-

tion atan2, which avoids quadrant ambiguity:

θα = atan2(y, x), θβ = atan2
(
z,
√
x2 + y2

)
,

where (x, y, z) is the position of the target relative to the agent.

Since atan2 returns values in the range [−180◦, 180◦], the effective angular dis-

placement used in (3.8) is mapped to the minimal equivalent within [0◦, 180◦]:

θi = min
(
|θi|, 360◦ − |θi|

)
, i ∈ {α, β}.

This modelling choice reflects the assumption that the agent always follows the

shortest angular path to the target. Consequently, even when an agent possesses

full 360◦ rotation capability, the effective difficulty is bounded by 180◦, ensur-

ing consistency with the intelligent behaviour of robotic systems that naturally

optimise for minimal effort.

The interpretation of these widths depends on the nature of the task. In locomo-

tion tasks, where the agent is navigating toward a physical location on a surface

(e.g., walking to a waypoint), the contacting surface is typically the ground plane.

In this case, wt and we are computed as the diagonal lengths of the vertical pro-

jection areas of the target and the agent, respectively, providing an accurate

representation of their effective ground footprint. In manipulation tasks, by con-

trast, the interaction usually occurs through the front face of the end-effector.

Here, the relevant contact surface is the end-effector’s working plane, and the

sizes wt and we are measured along the projected frontal areas involved in the

interaction.
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By incorporating both angular and linear movement challenges, this formulation

enables the model to quantify the full complexity of spatial interaction in 3D

environments, whether for positioning during locomotion or alignment during

fine manipulation. This holistic view ensures that the predicted performance

accurately reflects the real-world difficulty of the movement, grounded in the

physical characteristics and precision limitations of the HMT system.

Orientation index of difficulty

The orientation index of difficulty (IDori) is a critical component of the extended

3D Fitts’ Law model, capturing the rotational effort required for the agent to

align itself with the desired orientation of the target. In many real-world scenar-

ios—particularly those involving fine manipulation, assembly, or interaction with

oriented surfaces—reaching the correct spatial location alone is insufficient. The

agent must also adopt an appropriate orientation to effectively engage with the

target, which may involve aligning tools, sensors, or grippers with specific ap-

proach directions. As such, the orientation component is essential for accurately

modelling the true complexity of these tasks.

The formulation of IDori accounts for two primary variables: the angular devi-

ation from the optimal approach angle, denoted by θ, and the allowed angular

tolerance or acceptance window, denoted by δ. The optimal approach angle rep-

resents the desired orientation of the agent’s end-effector relative to the target’s

facing direction, which is typically dictated by the geometry or functional require-

ments of the task. The tolerance δ defines how precisely this orientation must

be achieved in order for the task to be completed successfully, encapsulating the

precision constraints inherent to the task.

To systematically quantify the orientation difficulty, this study decomposes both
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the deviation θ and the tolerance δ into three principal components corresponding

to the standard Euler angles: yaw, pitch, and roll. These components describe the

rotation of the agent around the vertical, lateral, and longitudinal axes, respec-

tively. This decomposition is visualised in Fig. 3.1, which shows how the agent’s

orientation must be adjusted across all three rotational degrees of freedom to

match the target’s pose.

With this decomposition, the total orientation index of difficulty is expressed as

the sum of three IDrot components, each of which is calculated using a logarithmic

formulation that mirrors classical Fitts’ Law:

IDori =
∑

i∈{yaw,pitch,roll}

IDroti =
∑

i∈{yaw,pitch,roll}

log2

(
θi
δi

+ 1

)
. (3.9)

Each term in this summation reflects the difficulty associated with rotating the

agent about one of the three axes, depending on how far it must rotate (θi) and

how precise the alignment must be (δi). Tasks requiring exact orientation, such

as inserting a key into a lock or aligning a connector with a socket, will result in

larger values of IDori, indicating a higher overall difficulty due to tight tolerances.

The inclusion of orientation in the computation of task difficulty is one of the

main contributions of the work. While prior formulations of Fitts’ Law and its

adaptations to robotics have primarily focused on translational movement, of-

ten treating the robot as a point mass moving in space, the approach explicitly

models orientation by accounting for all six degrees of freedom (three transla-

tional and three rotational). This extension provides a more comprehensive and

realistic representation of tasks encountered in robotic applications, where ori-

entation often plays a crucial role. By doing so, the model not only improves

predictive accuracy but also offers a principled framework for planning, control,
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and evaluation of complex HMT tasks in fully 3D environments.

Generalization of the model

HMTs may exhibit diverse motion capabilities across different DoFs, and the

level of difficulty associated with executing a movement can vary substantially

depending not only on the specific DoF but also on the direction, type, and

dynamics of the motion. For example, a robot might perform forward transla-

tions more efficiently than lateral ones, or it may exhibit greater precision in yaw

rotations compared to pitch or roll due to mechanical constraints or sensor place-

ment. These disparities arise from variations in actuation strength, mechanical

structure, control algorithms, joint limits, payload distribution, and compliance

characteristics, among other factors.

To faithfully capture such variability and ensure that the model is capable of

generalising across a wide range of HMT systems and task settings, we introduce

a set of weighting factors, denoted by k, for each component of the ID. These

weighting factors serve as scaling parameters that adjust the contribution of in-

dividual DoFs to the total task difficulty based on the HMT system’s unique

motion characteristics and execution proficiency. Essentially, the weights encode

domain-specific knowledge about the system’s capabilities and limitations, allow-

ing the model to be customised or calibrated for different robotic platforms or

use-case scenarios.

By incorporating these weights, the model gains the flexibility to account for

anisotropic performance—that is, unequal ease or difficulty of movement across

different directions or modes. This is particularly important in heterogeneous

robot teams or adaptive systems, where capabilities may differ significantly be-

tween agents or evolve due to wear, reconfiguration, or learning. The weighting

84



Chapter 3. Modelling task difficulty 3.1

scheme thus enhances the adaptability and realism of the model, enabling it to

remain robust and predictive across a broad spectrum of real-world applications.

In practice, these weights can be empirically determined from experimental per-

formance data or derived analytically from the system’s kinematic and dynamic

specifications. Once defined, they are applied multiplicatively to the correspond-

ing translational and orientational components of the ID, as elaborated in the

following sections. This weighted formulation forms the basis for a generalised

and system-aware extension of Fitts’ Law to 6-DoF task performance modelling.

These weighting factors reflect the intrinsic motion capabilities of the HMT sys-

tem across different degrees of freedom, enabling the model to more accurately

represent the varying levels of difficulty associated with specific types of motion.

In real-world robotic systems, it is common for certain motions to be inherently

more efficient or precise than others due to differences in hardware design, actua-

tion mechanisms, control fidelity, or physical constraints. For example, an HMT

system might exhibit high speed and accuracy in translational motion along the

x-axis due to optimised linear actuators, while rotational movements around the

roll axis may be less stable or slower due to mechanical limitations or controller

sensitivity. These disparities in performance must be acknowledged in the diffi-

culty model to ensure realistic and system-aware predictions.

To accommodate such differences, the original unweighted formulation of the

total index of difficulty given in Equation(3.3) is extended by incorporating two

sets of weight vectors: ktrans for translational difficulty and kori for orientational

difficulty. These vectors encode the relative contribution or influence of each DoF

to the overall task difficulty. Depending on the structure of the robot, different

weights may be assigned to different axes or rotation types. For example, if a

system exhibits low precision in yaw but high accuracy in pitch and roll, a larger
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value of kyaw can be applied to reflect the additional challenge. The modified

formulation of the total difficulty is expressed as:

ID = ktrans · IDtrans + kori · IDori, (3.10)

where ktrans = [kx, ky, kz] and kori = [kyaw, kpitch, kroll] are the weight vectors

applied to each corresponding DoF. These weights can either be scalars applied

uniformly across each subcomponent or vectors allowing fine-grained tuning per

axis, depending on the specificity and granularity required by the application.

These weights can either be scalars applied uniformly across each subcomponent

or vectors allowing fine-grained tuning per axis, depending on the specificity and

granularity required by the application. Moreover, the k-weightings need not be

fixed a priori; they can be empirically learned through experimental data, in a

manner analogous to how the coefficients a and b in Fitts’ Law are determined

via linear regression.

By integrating these weights, the model gains a valuable mechanism for tailor-

ing itself to a wide range of heterogeneous robotic systems. It ensures that the

predictive outputs remain faithful to the system’s actual operational capabili-

ties, regardless of whether the robot is an aerial drone, a ground vehicle, a ma-

nipulator arm, or a hybrid configuration. This flexibility greatly enhances the

generalisability of the model and allows it to be deployed across diverse appli-

cation domains, including industrial assembly, search and rescue, teleoperation,

and assistive robotics.

For clarity and focus in this paper, this study assumes a simplified case where

the HMT is evenly capable across all DoFs. This assumption allows us to set

all weights to unity, i.e., k = 1 for all DoFs. This baseline configuration serves
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as a default setting for evaluation and comparison, while still leaving the door

open for more specialised tuning in future implementations or platform-specific

deployments.

Practical task modelling

In real-world applications, practical tasks are rarely monolithic; rather, they are

typically composed of a sequence or combination of multiple subtasks, each rep-

resenting a distinct movement, alignment, or interaction event. These subtasks

may vary in their spatial and temporal characteristics, and they often engage

different degrees of freedom to varying extents. For instance, a pick-and-place

operation may involve navigating toward an object, grasping it with an appropri-

ate end-effector orientation, transporting it across a workspace, and then precisely

aligning and releasing it at a target location. Each of these steps constitutes a

subtask with its own motion requirements and associated difficulty.

To model such complex task sequences within the framework, this study adopts

a modular approach that decomposes a practical task into its constituent sub-

tasks. This decomposition not only simplifies the analysis and planning process

but also aligns with the capabilities-based structure outlined in Section 3.1.1.

As long as each subtask falls within the identified motion capability set of the

HMT system—i.e., it can be executed using one or more of the standard task

primitives—the entire task remains representable within the framework.

Once the task has been broken down into subtasks, each one can be individually

evaluated in terms of difficulty using the weighted index of difficulty defined in

Equation (3.10). This approach allows for fine-grained modelling of performance

cost, taking into account both the spatial configuration and the specific move-

ment dynamics required for each subcomponent of the task. It also facilitates
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comparative analysis and optimisation, where individual subtasks may be real-

located, reordered, or adapted based on their respective difficulty scores and the

agent’s performance profile.

By enabling the difficulty estimation of practical tasks through the aggregation

of weighted subtask difficulties, the model provides a principled and scalable

way to analyse complex operations. This decomposition strategy is essential

for capturing the hierarchical and sequential nature of tasks in real-world HMT

applications, from industrial automation to service robotics and human-robot

collaboration scenarios.

Thus, for any feasible, practical task composed of multiple subtasks, the overall

index of difficulty for the proposed 3D Fitts’ Law model can be expressed as the

weighted sum of the individual subtask difficulties. Formally, this is written as:

IDprac =
n∑

i=1

ki · IDi, (3.11)

where n denotes the number of subtasks comprising the complete task, IDi repre-

sents the difficulty of the i-th subtask as computed using the 3D model, and ki is

the corresponding weight that modulates the contribution of that subtask to the

overall task difficulty. The weight ki may reflect a variety of factors, including

the intrinsic complexity of the motion, the dynamic properties of the system in

that configuration, or the strategic importance of that subtask within the broader

task context.

This formulation serves as a generalisation of Fitts’ Law from simple, single-target

movements to realistic, composite tasks that require coordinated sequences of

actions across multiple degrees of freedom. It allows us to capture the hetero-

geneity of effort involved in practical HMT tasks by appropriately scaling the
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difficulty contributions of each subtask. This is particularly important in scenar-

ios where some subtasks are disproportionately demanding—such as requiring

high-precision manipulation or long-range navigation—while others may be com-

paratively trivial.

The decomposition into weighted subtasks also provides significant practical ad-

vantages. It enables modular analysis, making it possible to evaluate and op-

timise individual components of a task independently or in parallel. Moreover,

this structure supports the implementation of learning-based or adaptive planning

algorithms that iteratively refine execution strategies based on the observed or

predicted difficulty of subtasks. By assigning task-specific weights, the model can

dynamically prioritise or reallocate resources to optimise performance outcomes.

Overall, Equation (3.11) forms the final step in the generalised difficulty mod-

elling pipeline, bringing together the geometric, kinematic, and system-specific

factors into a unified and interpretable measure of task complexity. The result-

ing framework is capable of predicting HMT performance in a broad spectrum

of real-world scenarios, including those involving heterogeneous agents, intricate

spatial configurations, and diverse motion requirements. Through this approach,

the proposed 3D Fitts’ Law transcends its classical roots and becomes a power-

ful tool for quantifying, comparing, and optimising robot behaviour in complex

environments.

3.2 Validation

This section presents a comprehensive validation process for the proposed pre-

diction model, encompassing both simulation-based evaluations and real-world

experimental trials. The primary objective of this validation is to rigorously as-

sess the model’s versatility, robustness, and predictive accuracy across different
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domains and agent types. By applying the model to both simulated and physical

robotic systems, this study aims to demonstrate its generalisability and practical

utility in diverse application scenarios.

The validation process is structured around two complementary experimental

platforms. The first involves a high-fidelity simulation environment featuring

a construction machinery agent, designed to test the model’s performance un-

der controlled and parameterised conditions. This simulation allows for repeat-

able trials and systematic exploration of motion difficulty across a wide range

of spatial configurations and subtasks. The second validation platform consists

of real-world experiments conducted with a legged robotic agent, providing a

physically grounded assessment of the model’s applicability in more dynamic and

unpredictable environments. These two platforms together offer a comprehensive

testbed for evaluating both the theoretical soundness and the empirical viability

of the proposed framework.

In both cases, the model is used to predict the performance of the agent on

a complex multistep task, representative of practical operations encountered in

construction, logistics, or field robotics. The prediction is grounded in the perfor-

mance parameters obtained from a predefined set of standard tasks, as outlined in

earlier sections. These standard task results serve as the foundation for estimat-

ing the difficulty—and hence the expected execution time—of a more advanced

composite task involving multiple degrees of freedom and sequential actions.

As mentioned, the advanced practical task is decomposed into subtasks, each

of which is mapped to its corresponding standard task for difficulty estimation.

The predicted total execution time is then obtained by aggregating the individual

subtask predictions using the extended and weighted formulation of the 3D Fitts’

Law. This predicted value is subsequently compared against the actual execution
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time measured during the experiment to assess the predictive accuracy of the

model.

By comparing predicted performance times with actual measurements, this study

can quantify the model’s effectiveness in both real-world and simulated contexts.

Strong alignment between the predicted and observed results provides evidence

for the validity of the model, confirming its capacity to represent and anticipate

HMT behaviour in practical scenarios. Discrepancies, where present, are analysed

to understand their origin—whether due to modelling assumptions, environmen-

tal noise, or execution uncertainties—offering further insight into areas for future

refinement.

3.2.1 General Validation

Design principle

This study selects articulated machines and robotic platforms as the focus of

the validation studies due to their broad applicability and increasing prevalence

in modern industrial and field robotics. These systems, which combine multiple

joints and linkages to provide flexible motion across a range of degrees of freedom,

are well-suited for complex manipulation and interaction tasks. Their widespread

adoption in domains such as construction, logistics, manufacturing, and service

robotics underscores the importance of ensuring that the prediction model is

well-adapted to their unique motion characteristics.

To reflect the kinematic structure of these systems, this study employs a polar

coordinate system for task modelling and difficulty estimation, as formalised in

Equation (3.8). This coordinate system offers a natural and intuitive way to

describe spatial relationships and target positions from the perspective of artic-

ulated agents, especially those with rotational bases or serial manipulators. It
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allows us to effectively capture both the radial and angular components of mo-

tion, which are particularly relevant for agents that rely on rotational joints for

reaching and alignment.

In the experimental setup, this study uses a mobile base equipped with an artic-

ulated robotic arm as the representative agent platform. This class of platform

offers the combined advantages of locomotion and manipulation: it can traverse

large or cluttered environments using the mobile base, and it can perform fine-

grained interaction tasks using the articulated arm. Such hybrid capabilities

make these platforms ideal candidates for deployment in unstructured environ-

ments where flexibility and adaptability are paramount.

For the simulation-based validation, this study selected a hydraulically actuated

construction excavator as the testbed. Excavators are quintessential articulated

machines widely used in heavy-duty industrial tasks such as digging, lifting, grad-

ing, and material handling. Their motion involves coordinated control of multiple

rotational and prismatic joints, making them an ideal candidate for evaluating

the 3D Fitts’ Law model under realistic control constraints.

For the real-world experimental validation, this study employed a legged mobile

manipulator robot—an advanced robotic platform that integrates legged loco-

motion with upper-body manipulation. These robots represent the frontier of

mobile manipulation systems and are especially suited for environments where

wheeled mobility is inadequate. Their articulation and dynamic balance capa-

bilities enable them to navigate irregular terrain, climb stairs, or reposition their

base to gain better manipulation leverage, all while performing fine-motor tasks

with their arm(s).

Although the excavator and the legged manipulator share a common high-level

structural architecture—namely, the integration of base mobility with articulated
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manipulation—their control strategies and motion capabilities differ significantly.

Excavators typically rely on hydraulic actuation and are operated using joint-level

teleoperation or programmable control sequences, often exhibiting non-trivial dy-

namics and limited feedback loops. In contrast, legged mobile manipulators usu-

ally involve sophisticated onboard control algorithms, sensor fusion for percep-

tion, and real-time motion planning to maintain balance and coordination across

limbs.

By selecting these two representative platforms, this study ensures that the val-

idation process covers a broad spectrum of control paradigms and operational

contexts, thus reinforcing the generalisability and practical relevance of the pro-

posed prediction model.

The selected mobile manipulator platform possesses two primary motion capa-

bilities (m = 2): a locomotion capability that enables it to navigate through

its environment, and a manipulation capability provided by its articulated arm

for object interaction and task execution. According to Equation (3.1), the to-

tal number of distinct standard tasks (p) required to fully characterize a system

with m motion capabilities is computed as p = 2m − 1 = 3. This result implies

that three standard tasks are sufficient to capture all necessary combinations of

motion capabilities for this platform.

These three standard tasks are strategically designed to independently and jointly

evaluate the key motion modalities of the HMT system. The first standard task

isolates and evaluates the agent’s locomotion capability, requiring the robot to

reach a spatial goal using its mobile base while excluding any manipulation ac-

tivity. This task enables us to measure baseline navigation performance, such as

travel time, spatial accuracy, and responsiveness under varying spatial conditions.

The second standard task focuses solely on the robot’s manipulation capability.
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In this task, the base remains stationary while the manipulator performs an object

interaction task, such as reaching, aligning, or grasping. This isolated evaluation

allows us to characterise the dexterity, precision, and control accuracy of the arm

across different spatial orientations and interaction conditions.

The third standard task integrates both capabilities, requiring coordinated use

of locomotion and manipulation. For example, the robot may need to reposition

itself to gain access to a workspace and then use its arm to complete a manip-

ulation subtask. This integrated task assesses the system’s ability to plan and

execute compound actions, including base-arm coordination and task sequenc-

ing. Importantly, it also reflects the kinds of challenges typically encountered in

real-world applications, where mobility and dexterity must be used in tandem.

Collectively, these three tasks form a minimal yet complete set of training ex-

amples that span the full motion capability space of the platform. As a result,

any future practical task—no matter how complex—can be decomposed into a

combination of these three standard task types. This decomposition is central to

the modelling process: the performance data collected from each standard task

serve as reference points for estimating the difficulty and expected completion

time of more advanced, composite tasks encountered in deployment.

Although the model supports generalisation via variable weighting, as introduced

in Section 3.1.2, this study adopts a conservative assumption for the current study

to isolate and evaluate the structural effectiveness of the framework. Specifically,

this study simplifies the system by assigning uniform weights (k = 1) to all motion

components and task types. This simplification allows us to assess the model’s

predictive capability without introducing additional tuning parameters, thereby

emphasising the foundational utility of the standard task formulation and the

additive index structure.

94



Chapter 3. Modelling task difficulty 3.2

Modelling tasks

The three standard tasks in the selected mobile manipulation platform are loco-

motion task (Tmob), manipulation task (Tmani), and combined task (Tcomb), as

shown in Fig. 3.2. The practical task (Tprac) is a complex Explosive Ordnance

Disposal (EOD) mission formed of a series of different subtasks.

Locomotion task This task necessitates only the locomotion capability. It

contains only locomotion movement, as shown in Fig. 3.2a. It has index of diffi-

culty (IDmob) calculated as (3.3).

Manipulation task This task utilises only the manipulation capability and

involves a single task, as shown in Fig. 3.2b. Thus, its index of difficulty (IDmani)

can be calculated as (3.3) as well.

Combined task The last standard task requires both locomotion and manip-

ulation capabilities, as shown in Fig. 3.2c. As such, the total index of diffi-

culty (IDcomb) is modelled as a sum of two subtasks (n = 2), as per (3.11):

IDcomb = IDcomb1 + IDcomb2 . (3.12)

In the first step, the machine travels to the target location in subtask 1 (Tcomb1).

In the second step, the machine employs the arm to touch the target in subtask

2 (Tcomb2), where the agent is expected to already stand directly in front of the

target, with the direction angle and the target’s best approach angle both set to

zero (θα = 0 and θyaw = 0).

Practical task As stated in Section 3.1.2, all practical tasks that are feasible

to the HMT can be decomposed into a combination of one or more standard tasks
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Figure 3.2: Example of parameters for the selected platform in three required
standard tasks: (a) locomotion task, (b) manipulation task, and (c) combined
task.

96



Chapter 3. Modelling task difficulty 3.2

with (3.11). Therefore, a practical task (Tprac) has its index of difficulty (IDprac)

to be calculated by the summation of these subtasks’ difficulty.

3.2.2 Simulation with Excavator

As depicted in Fig. 3.3, this study developed a web-based physical simulation

of a teleoperated excavator to evaluate the proposed task performance predic-

tion framework. The excavator, a widely deployed HMT system in industrial

and construction contexts, offers a rich testing ground due to its multiple de-

grees of freedom and combined manipulation and locomotion capabilities. This

simulation-based platform allows for controlled experimentation across a variety

of scenarios while facilitating scalable data collection.

The excavator used in the simulation supports two primary motion capabilities:

locomotion and manipulation. According to the task decomposition strategy dis-

cussed in Section 3.2.1, three standard tasks are defined. The first task isolates

the locomotion capability, evaluating the agent’s ability to reposition itself within

the environment. The second task focuses solely on the manipulator arm, mea-

suring the operator’s performance in handling objects without base movement.

The third task combines both locomotion and manipulation to assess compound

skill coordination under more complex conditions.

Simulation design

Participants engaged with the simulation through an interactive web-based plat-

form developed using the WebGL Application Programming Interface (API). This

platform allows the simulation to run entirely within a web browser, without re-

quiring any additional plug-ins or software installation. Once fully loaded, the

WebGL API executes the simulation locally on the user’s machine, leveraging the
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Table 3.1: Parameters of tasks and their subtasks with calculated indexes of
difficulty, where d and w are in meters, θ and δ are in degrees. Also, δβ = 90◦ for
simulation, δβ = 180◦ for experiment, δα = 180◦ for both.
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device’s hardware to provide a consistent and high-performance experience. This

design ensures that participant interactions are not affected by internet latency

or network instability during the trial itself; internet connectivity is only required

for loading the simulation initially and for submitting the final results upon task

completion.

A significant advantage of WebGL is its ability to access the user’s GPU directly

from the browser via HTML5 elements. This hardware-level integration allows

the simulation to utilise available graphical processing power efficiently, support-

ing high-fidelity visualisations and responsive controls. As a result, the system

dynamically adapts to the capabilities of different user-end devices, with visual

performance scaling according to the available computational resources.

Participants control the excavator using a standard keyboard interface. Specific

keys are mapped to locomotion and manipulation functions, enabling users to

intuitively perform the required tasks. This control scheme ensures accessibility

while preserving the complexity necessary to evaluate skill and task difficulty

effectively.

Overall, the simulation provides a robust and scalable environment for testing

and validating the proposed performance prediction methodology under realistic

teleoperation constraints and user variability.

The simulation environment consists of three standard tasks—Tsim
mob (mobility

task), Tsim
mani (manipulation task), and Tsim

comb (combined task)—as well as one

practical task denoted as Tsim
prac, which is composed of multiple subtasks that

emulate real-world operational sequences. The key parameters for each task are

detailed in Table 3.1. This structure adheres to the standard-task modelling

approach introduced in the framework, where isolated and compound capabilities

are evaluated in a systematic and controlled manner.
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In designing these tasks, this study accounted for the kinematic limitations of

the simulated excavator. Specifically, the excavator’s bucket is not actuated in

the roll direction, rendering it incapable of performing rolling movements. As

a result, the orientation difficulty associated with roll is inherently zero for all

tasks, i.e., IDroll
ori = 0. This simplification is essential for maintaining realism in

simulation fidelity, as it reflects the mechanical constraints of actual excavator

hardware.

(a) Standard task targets with markers indicating trajectories

(b) Practical task targets with markers representing trajectory of target order
1-3-2

Figure 3.3: Simulation environment setup. The white lines show the relative
distance to the targets. The blue and orange lines show the potential locomotion
and manipulation paths.
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Each standard task involves interacting with a designated spatial target. As

shown in Fig. 3.3a, the system requires the excavator to make physical contact

with the target to mark successful task completion. In the mobility-focused task

Tsim
mob, the goal is to navigate the excavator’s body to reach a specified location.

Here, the distance metric is calculated from the centre of the excavator’s base to

the centre of the target. Given that this task tests only locomotion, the approach

direction is not constrained—thus, the yaw angle difference is set to θyaw = 0

with a full rotational tolerance of δyaw = 360◦, indicating that the excavator can

approach the target from any heading.

Additionally, since the terrain in the simulation environment is a perfectly flat

plane, there is no pitch-based orientation requirement in any locomotion-related

task. This results in θpitch = 0 for all locomotion tasks and subtasks, as there is

no inclination that would otherwise introduce pitch-related difficulty. This setup

isolates translational performance during locomotion and simplifies the interpre-

tation of resulting Index of Difficulty values.

In the manipulation-focused task Tsim
mani, the task involves positioning the exca-

vator’s arm to bring its end-effector into contact with the target object. The

distance metric in this case is measured from the end-effector to the centre of the

target, capturing the full spatial complexity of the manipulative action. Since

this task emphasises precise articulation without base movement, it effectively

isolates the challenges associated with the manipulator’s kinematic reach and

orientation.

To ensure experimental control and isolate capability assessment, the control

interface is intentionally constrained in each standard task. In Tsim
mob, only base

movement controls are active, while arm controls are disabled. Conversely, in

Tsim
mani, only manipulator controls are enabled, with base movement locked. This
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separation ensures that each task evaluates only the intended capability, without

interference or compensatory behaviour from other subsystems.

This structured task design allows for consistent difficulty quantification and

serves as a foundation for evaluating how well the proposed framework predicts

performance in the subsequent practical task Tsim
prac, where both locomotion and

manipulation capabilities must be employed in sequence.

The practical task Tsim
prac is composed of three sequential subtasks, each requiring

the participant to navigate the excavator to a different target location and inter-

act with the designated object using both locomotion and manipulation. These

targets are spatially distributed across the environment to necessitate full-body

coordination, thus providing a realistic approximation of operational tasks en-

countered in real-world teleoperated excavation scenarios. A visual illustration

of the target arrangement and execution sequence is presented in Fig. 3.3b.

To ensure experimental rigour and enhance the generalisability of the results,

participants are required to complete the three subtasks in a randomised order,

determined by the system at runtime. This randomisation serves multiple pur-

poses. First, it mitigates potential learning effects or memorisation biases that

could occur if the task order were fixed across participants. Second, it maintains

participant engagement by introducing variation in task flow. Third, it allows

for broader coverage of possible trajectory sequences, enabling us to evaluate the

robustness of the proposed performance prediction model under diverse motion

patterns and difficulty combinations.

Due to the randomised execution order, the total difficulty of Tsim
prac varies across

trials. The computed Index of Difficulty values for the full task range from a

minimum of 12.29—when the execution follows the order Target 2 ⇒ 3 ⇒ 1—to

a maximum of 16.05, corresponding to the order Target 3 ⇒ 2 ⇒ 1. These values
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reflect accumulated difficulty from the start point through all subtasks, taking

into account both translational and orientational demands for each transition.

The detailed parameters, including distances, angular deviations, and tolerances

from the initial position to each target, are summarised in Table 3.1. These

parameters serve as input for calculating the predicted task performance using

the extended Fitts’ Law framework described in earlier sections. The varying

levels of task difficulty across different sequences also allow us to examine how

well the model generalises across complex multi-step tasks that require sustained

coordination between motion subsystems.

The simulation system is designed to automatically record the duration of each

task performed by the participants. This includes the execution time for each

standard task, as well as the total time taken to complete the practical task

Tsim
prac. Upon completing all tasks, participants are prompted to submit their

performance records, along with demographic and background information (e.g.,

prior experience with robotics or teleoperation), to a cloud-based data collection

server. This cloud infrastructure enables centralised storage and streamlined

analysis of user data for subsequent validation of the task performance prediction

model.

To increase user engagement and encourage broader participation, the simulation

interface also features a real-time leaderboard. The leaderboard displays top-

performing participants based on task completion times, allowing users to bench-

mark their performance against others. This competitive element has proven

effective in motivating participants to engage more thoroughly with the simula-

tion and strive for improved performance.

For the purpose of analysis, this study selected data from 9 participants whose

submitted records met the inclusion criteria for completeness and execution in-
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tegrity. The recorded data revealed that, across these participants, the randomly

generated practical task sequences in Tsim
prac yielded an average computed ID of

11.53. This average reflects the diverse nature of the randomly assigned target

sequences and serves as a representative benchmark for evaluating the predictive

power of the proposed FittsPrompt-based performance model under real-world

teleoperation constraints.

Participants

A total of 16 participants from various global locations took part in the simulation-

based study. These participants were recruited online and accessed the simulation

remotely through the web-based platform. Of the 16 individuals who initially en-

gaged with the experiment, 9 participants successfully completed all required

simulation tasks within the designated time constraints and without any critical

execution failures. Data from these 9 participants were selected for final analysis.

The selected cohort consisted of 2 female participants, 5 male participants, and 2

individuals who chose not to disclose their gender. The participants’ ages ranged

from 21 to 29 years, with a mean age of 25.8 years and a standard deviation of

2.4 years, indicating a relatively young and demographically consistent group.

Additionally, participants were asked to self-report their prior experience with

computer games on a scale from 0 (no experience) to 9 (expert level). The average

reported gaming experience across this cohort was 7.6, suggesting a generally high

level of familiarity with interactive digital environments and user interfaces.

This participant’s background information helps contextualise the results by pro-

viding insight into the user population’s technical familiarity and motor coordina-

tion, both of which are relevant factors in assessing performance in teleoperation-

based simulation tasks.
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3.2.3 Experiment with Quadruped

To further validate the proposed task modelling and prediction framework under

real-world conditions, this study conducted an additional set of experiments in-

volving human participants operating a physical quadruped manipulator robot.

This experiment focused on assessing human-in-the-loop performance in execut-

ing teleoperated robotic tasks via two distinct control interfaces: a conventional

gamepad and a wearable motion capture suit (WMCS). The goal was to com-

pare operator performance across different input modalities while evaluating the

effectiveness of the task design and difficulty modelling described in Section 3.2.1.

In alignment with the methodological framework, the experiment comprised three

standard tasks—Texp
mob (locomotion-only), Texp

mani (manipulation-only), and Texp
comb

(combined locomotion and manipulation)—along with one practical task, Texp
prac,

which involved a realistic multi-step objective. All tasks were conducted with

reference to the parameters detailed in Table 3.1, ensuring consistency with the

difficulty modelling approach used throughout this study.

Due to mechanical limitations in the robot’s hardware, its end-effector lacks roll

actuation. As a result, the system inherently incurs no difficulty associated with

roll movement, and the roll component of orientation difficulty is set to zero,

i.e., IDroll
ori = 0, for all tasks. This constraint was factored into the difficulty

calculations for the standard and practical tasks.

In terms of spatial configuration, the robot’s starting positions were standard-

ised across tasks to ensure consistency in trajectory computation and difficulty

modelling. For tasks involving locomotion—namely, Texp
mob, T

exp
comb, and Texp

prac—the

robot began each trial from the location designated as “Start 1.” For the manipulation-

only task Texp
mani, the robot started from a separate position labelled “Start 2,”

allowing for isolation of manipulation performance without the influence of pre-
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ceding locomotion. Each task required the participant-controlled robot to reach

and interact with predefined targets as illustrated in Fig. 3.4.

The practical task Texp
prac was designed to simulate a time-sensitive and high-stakes

bomb disposal operation. The scenario involved a target labelled “EOD” (Ex-

plosive Ordnance Disposal) and consisted of three sequential subtasks. First, the

operator directed the robot to walk toward the EOD site using its quadrupedal

locomotion system. Upon arrival, the robot was required to use its manipulator

arm to open a container placed at the site. In the final stage, the robot had

to reach inside the box and carefully extract a red wire, symbolising the act of

disabling a bomb.

This structured experimental design allowed us to test the task modelling frame-

work in a complex real-world scenario with multiple execution phases. It also

facilitated performance comparisons across input modalities and provided data

for validating the ID model in realistic human-robot interaction settings.

Similar to the simulation setup, in the locomotion-only task Texp
mob, the robot is

permitted to approach the target from any direction. As such, the yaw alignment

requirement is relaxed, with the angular deviation set to θyaw = 0◦ and a full

tolerance of δyaw = 360◦, indicating that the robot may navigate to the target

from any heading without penalty. Additionally, the experimental environment

features a flat and uniform ground surface. As a result, there is no pitch-related

challenge associated with approaching the targets in any locomotion task or sub-

task, and thus θpitch = 0◦ is assumed throughout all relevant stages.

However, in contrast to the simulation, the real-world experimental setup in-

troduces physical interaction constraints that require more cautious execution.

Specifically, several of the targets used in the experiment are rigid and sensitive

to accidental collision. To prevent mechanical damage or unintended contact,
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the operator is instructed to bring the robot to a halt at a predefined safe dis-

tance from the target, rather than making direct contact. This constraint applies

particularly to the locomotion phases of combined and practical tasks, namely

Texp
combmob

and Texp
pracstep1

.

To model this constraint within the task difficulty framework, the robot is treated

as a point mass during these subtasks, i.e., the robot’s effective width is set to

we = 0. This modelling choice eliminates the interaction margin normally af-

forded by the robot’s physical footprint, thereby enforcing stricter spatial preci-

sion. Instead of requiring contact with the target object, the task is redefined as

requiring the robot to reach a designated safe location in proximity to the target,

thereby satisfying the objective while avoiding physical impact.

This adaptation ensures that the ID remains realistic and reflective of actual op-

erational constraints encountered during teleoperated robot missions, particularly

in scenarios involving sensitive equipment or restricted manoeuvring zones.

In this experiment, human operators are required to control a quadruped ma-

nipulator robot (RA) using two distinct teleoperation interfaces: a gamepad and

a WMCS. However, due to the fundamental kinematic dissimilarity between the

human body and the robotic agent—particularly in terms of joint types, motion

constraints, and degrees of freedom—directly mapping human joint positions or

velocities to the robot’s actuators is not feasible. This mismatch necessitates

the design of a structured teleoperation strategy that translates intuitive human

motions into robot-executable commands.

To address this challenge, this study developed a two-layered teleoperation control

framework comprising a set of high-level robot strategies. These strategies are

divided into two functional groups: trigger strategies and argument strategies, as

summarised in Table 3.2. The trigger strategies serve to switch between different
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Table 3.2: Teleoperation strategies and teleoperation interfaces

Robot strategies
Interfacess

Gamepad WMCS

Trigger
strategies

Walking trigger LT Right hand down
Arm trigger LB Left hand up

Gripper trigger RT Right hand up
Homing trigger RB Left hand down

Argument
strategies

Walking arguments LS + RS Relative foot position
Arm arguments LS + RS Relative hand position

control modes, such as enabling locomotion or manipulation, while the argument

strategies determine the magnitude or directional parameters of the commanded

motions within the active mode.

This modular control logic allows operators to fluidly switch between robot func-

tionalities (e.g., walking, arm movement, or gripper control) and continuously

adjust motion parameters without requiring complex kinematic mappings. The

design prioritises intuitiveness, enabling operators to focus on task-level decision-

making rather than low-level control complexities.

To ensure experimental consistency and fairness in interface comparison, both

teleoperation interfaces—the gamepad and WMCS—employ the same underlying

control strategy. This shared strategy architecture minimises variability between

interface modalities and isolates the effect of interface type on task performance.

As a result, observed differences in execution efficiency or user experience can be

more confidently attributed to the interface itself rather than underlying differ-

ences in control logic.

Trigger Strategies

The trigger strategies are responsible for switching between high-level operational

modes of the robotic system. Each trigger is mapped to a distinct control com-

mand that enables or disables a specific category of motion or behaviour. These
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triggers serve as mode selectors, ensuring that only the desired subsystem is active

at a given time, thus preventing conflicting commands and improving operator

focus and control accuracy. The defined trigger strategies are as follows:

• Walking Trigger: Activates the robot’s locomotion mode. When this trig-

ger is engaged, the robot is permitted to perform walking or repositioning

actions. Locomotion commands are ignored unless this mode is explicitly

enabled.

• Arm Trigger: Enables manipulation mode. Once activated, this trigger al-

lows the operator to control the movements of the robot’s arm. Arm com-

mands are inactive unless the system is in this designated mode, ensuring

that manipulation and locomotion are mutually exclusive when necessary.

• Gripper Trigger: Controls the gripper mechanism located at the end of

the robotic arm. When activated, the gripper initiates a closing motion

and maintains its closed state until the trigger is released. This toggle-like

behaviour enables discrete grasping actions during manipulation tasks.

• Homing Trigger: Issues a homing command to the robotic arm, returning

it to a predefined home position. This function is used to reset the arm

configuration, either at the beginning of a task or to recover from undesired

configurations during operation.

Argument Strategies

Argument strategies define the continuous control parameters sent to the robot

once a specific operational mode is activated via trigger strategies. These argu-

ments determine the direction and magnitude of movement based on user input.

While the WMCS collects full-body 3D motion data, allowing for six degrees of

freedom (DoF) control, the gamepad interface is limited to 2D motion inputs. To
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compensate for this limitation, both the left stick (LS) and right stick (RS) on

the gamepad are used in tandem to provide sufficient input for multi-axis control,

as illustrated in Fig. 3.5.

• Walking Arguments: In walking mode, the operator controls the robot’s

trunk velocity across three components: forward/backwards translation,

left/right strafing, and rotation about the vertical axis (yaw). The argument

values are linearly proportional to the joystick displacement or body motion

captured by the WMCS. These commands are continuously updated and

directly control the robot’s base velocity in real time.

• Arm Arguments: When manipulation mode is activated, the operator is

given control over the arm’s end-effector. The arm argument inputs in-

clude linear displacement forward/backwards, vertical movement up/down,

and rotational movement of the arm’s base joint (yaw). These controls en-

able intuitive Cartesian motion of the end-effector, allowing the operator

to position the tool with precision. On the gamepad, this is achieved by

assigning motion axes to joystick components, whereas in WMCS mode,

body posture and limb movement are used to derive the same arguments.

This dual-interface design ensures that both control modalities—despite their

different input mechanisms—deliver equivalent motion commands to the robot.

This consistency in control logic allows for fair comparison in performance analysis

between the WMCS and gamepad interfaces.

Experiment hardware

The robotic platform used in this experiment comprises a legged-base mobile

manipulator designed for high-mobility teleoperation tasks. The mobile base is

a Unitree AlienGo quadruped robot, which weighs approximately 21.5 kg and
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provides stable, agile locomotion over uneven terrain. Mounted on the base is a

modified ViperX 300 robotic arm, weighing 2.5 kg, which serves as the manipu-

lator component for executing precision tasks [141].

Participants interacted with the robot using two distinct control interfaces: a

Logitech F710 wireless gamepad and a Noitom Perception Neuron-based WMCS.

These interfaces were selected to evaluate the usability and effectiveness of tradi-

tional input devices versus immersive, full-body teleoperation systems. To ensure

fair comparison and consistency, both interfaces employed the same unified set

of teleoperation strategies. This strategy set defines both trigger and argument

control layers, ensuring that differences in performance can be attributed to the

interface modality rather than variations in control logic.

The robot’s base locomotion is controlled using velocity commands, allowing for

continuous adjustment of walking speed and direction in real time. In contrast,

the robot arm operates under position control, enabling precise placement of the

end-effector during manipulation tasks. This hybrid control architecture supports

fine-grained manipulation while maintaining responsive and stable mobility.

For a comprehensive overview of the teleoperation strategy architecture and con-

trol logic, readers are referred to our prior work in [3].

Participants

To minimise bias introduced by individual differences in experience, skill level, or

familiarity with robotic systems, the experiment involved multiple participants.

This approach enables a more representative evaluation of HMT performance

within the intended user demographic and strengthens the generalisability of the

findings.

A total of 7 participants (comprising 3 females and 4 males) voluntarily partici-
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pated in the experiment. Their ages ranged from 21 to 28 years, with a mean age

of 26.3 years and a standard deviation of 4.2 years. Participants were also asked

to self-report their prior experience with robots on a scale from 0 (no experience)

to 5 (expert level), resulting in an average reported experience of 3.57, indicating

moderate familiarity with robotic systems. The detailed background information

is in Appendix.B.1.

To mitigate learning effects and reduce potential bias in the evaluation, partici-

pants were provided with only a brief instruction session prior to task execution

and were not given opportunities for extended practice. This design choice en-

sured that performance reflected intuitive control and natural interaction rather

than rehearsed proficiency. Furthermore, to eliminate order effects between inter-

face conditions, the sequence in which participants used the gamepad and WMCS

was randomised.

This experimental setup allows for robust comparative analysis of user perfor-

mance across control interfaces, while maintaining ecological validity and fairness

in participant evaluation.

3.2.4 Basic Training

To ensure a baseline level of familiarity and minimise initial user confusion, each

participant underwent a structured training process prior to commencing the ex-

perimental tasks. The training was designed to introduce participants to the

control interfaces and mission objectives while avoiding overfitting through ex-

tended practice, thus preserving the integrity of the comparative analysis.

The training session began with a brief demonstration video, which showcased

real-world teleoperation exercises performed by an experienced user operating the

robot through the WMCS. This visual overview provided participants with a clear
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understanding of the robot’s capabilities, movement dynamics, and the type of

tasks they would be expected to perform. The video emphasised both locomotion

and manipulation actions, illustrating the fluid switching between control modes

and the appropriate physical motions used to command the robot via the WMCS.

Following the demonstration, participants received step-by-step verbal instruc-

tions on how to operate both teleoperation interfaces—namely, the gamepad and

the WMCS. For the gamepad, the training covered joystick mappings, trigger

functions, and the procedures for activating walking, arm control, and gripper

modes. Similarly, for the WMCS, participants were instructed on how body move-

ments and gestures correspond to robot actions, including walking directions, arm

positioning, and interaction commands. This training aimed to establish a mental

model of the control logic across both interfaces.

To reinforce learning and provide ongoing reference, each participant was also

given a printed control diagram that outlined the command structure for both

interfaces. These physical instruction sheets, illustrated in Fig. 3.5, served as

quick-access visual aids during the missions. By offering participants tangible

materials, the design supported memory retention and reduced cognitive load

during high-demand phases of the task.

Importantly, no hands-on practice trials were provided before the official data

collection began. This decision was made to maintain fairness across participants

with differing levels of prior experience and to prevent learning bias from influ-

encing the standard task performance. Instead, the training focused on cognitive

familiarisation, ensuring that all participants had sufficient theoretical under-

standing of the system and its operation without gaining a motor advantage

through repetition.

Overall, the basic training process was structured to balance clarity and neutral-
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ity. It provided enough information to enable informed interaction with the robot

system while preserving the authenticity of participant performance during the

subsequent experimental trials.

3.2.5 Experiment Performing

After completing the training phase and confirming that users had acquired a

sufficient understanding of the teleoperation strategies and mission requirements,

participants proceeded to the experimental phase of the study. To minimise

potential bias introduced by the learning curve associated with repeated task

execution, a counterbalanced experimental design was employed to evaluate the

two human-robot teleoperation interfaces: the gamepad and the WMCS.

Specifically, the ten participants were divided into two groups. Five randomly se-

lected participants were instructed to perform all experimental procedures—including

the standardised tasks and the full real-world mission—using the gamepad inter-

face first, followed by the same sequence using the WMCS. The remaining five

participants executed the experimental sequence in the reverse order, starting

with the WMCS and then switching to the gamepad. This design ensures that

any improvements in user performance due to task repetition or growing familiar-

ity with the robot and environment are evenly distributed across both interface

conditions. The procedural flow for both groups is illustrated in Fig. 3.5, which

highlights the consistent application of teleoperation strategies across interface

types.

During task execution, users stood in close proximity to the robot, allowing them

to observe its actions and maintain spatial awareness. Participants were permit-

ted to walk around the robot to gain a better viewpoint or adjust their perspec-

tive during control, provided they did not interfere with the robot’s operational
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space or trajectory. This arrangement allowed for naturalistic user behaviour,

replicating how operators might reposition themselves in real-world teleoperation

scenarios.

To ensure participant safety and task integrity, experiment facilitators monitored

user positioning throughout each trial. Participants were advised to remain out-

side of the robot’s projected motion path, particularly during dynamic locomotion

and arm manipulation phases. Any encroachment into the robot’s movement zone

was gently corrected to avoid unintentional interference.

Notably, no time constraints were imposed on task execution. Each trial was

conducted without a strict time limit to reduce psychological pressure on the

participants and to allow them to perform each task with a focus on precision

rather than speed. This approach aligns with the study’s emphasis on naturalistic

task performance and ensures that the motion times recorded reflect true user-

system interaction rather than time-pressured behaviour.

This controlled yet flexible procedure allowed for a fair and comprehensive eval-

uation of both teleoperation interfaces, while preserving the authenticity of user

interaction and minimising order-related bias in the experimental results.

3.3 Results

The core principle of the proposed framework is based on the extended 3D Fitts’

Law, which models system performance by quantifying the relationship between

motion time and the inherent complexity of the motion. This study presents a

comprehensive evaluation of the model’s predictive capability using data collected

from both the simulation environment and real-world experiments.

Task difficulty values—expressed as ID—were computed for all standard and
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practical tasks according to the formulations described in earlier sections. These

computed values are summarised in Table 3.1. Correspondingly, the task execu-

tion time for each trial was recorded and analysed using MATLAB and Microsoft

Excel. In the simulation environment, motion times were automatically logged

by the system, whereas in the physical experiment, task durations were extracted

from video recordings and manually annotated. An overview of the experiment

flow and data collection pipeline is depicted in Fig. 3.6.

For the simulation study, data from 9 participants were included in the final

analysis. These participants successfully completed all assigned tasks within a

reasonable time frame and without system or procedural errors. The collected

motion time data and predicted task difficulties for these participants are visu-

alised in Fig. 3.6a.

In the real-world experiment, 7 volunteers who completed all four defined tasks

using both control interfaces (gamepad and wearable motion capture suit) were

selected for performance analysis. The interface-specific results are presented in

Fig. 3.6b and Fig. 3.6c, allowing for direct comparison between input modalities.

To validate the accuracy of the proposed prediction model, the measured per-

formance on standard tasks (i.e., tasks isolating locomotion, manipulation, or

combined capabilities) was used to forecast the motion time of the practical task

for each participant. The predicted times were then compared to the actual mea-

sured durations to evaluate the reliability and generalisability of the extended

Fitts’ Law formulation in both simulated and real-world teleoperation contexts.

3.3.1 Prediction

To evaluate the predictive capability of the extended 3D Fitts’ Law model, this

study analysed the relationship between the computed ID and the corresponding
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Table 3.3: Parameters in the prediction lines

Constant Simulation
Experiment
GP WMCS

a 3.57 -0.12 13.18
b 2.60 7.07 3.96

RMSE 0.06 2.32 16.61

average motion time for each task. The IoD values were derived from Table 3.1,

and the associated task durations were averaged across participants for both the

simulation and real-world experiments.

The results are visualised in Fig. 3.7, where the average motion time for each task

is plotted against its corresponding task difficulty. For both datasets, a linear re-

gression model was fitted to capture the relationship between task complexity

and execution time. This relationship is described using the predictive expres-

sion previously defined in Equation 2.1, where task time is modelled as a linear

function of difficulty.

The fitted line parameters, including the regression constants and the root-mean-

square deviation (RMSE) for each dataset, are summarised in Table 3.3. The

RMSE serves as a quantitative measure of prediction accuracy, indicating the

deviation between the predicted and actual motion times. Lower RMSE val-

ues reflect a stronger alignment with observed data and thus better predictive

performance.

The linear trends observed in both simulation and experimental results affirm

the effectiveness of the proposed model in capturing the relationship between

task difficulty and system performance. This confirms the utility of the 3D Fitts’

Law formulation in teleoperated robot task analysis.
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3.3.2 Verification

To assess the practical utility and accuracy of the proposed 3D Fitts’ Law-based

prediction model, this study used the fitted prediction line to estimate the execu-

tion time for the practical tasks in both the simulation and real-world experiment

settings. The predicted times were then compared against the actual measured

average times to quantify the prediction error.

In the simulation setting, the average ID for the practical task was calculated

to be 13.42. Using the fitted prediction line (as defined in Equation 2.1), the

predicted motion time was 38.42 seconds. The measured average time taken

by participants to complete the practical task was 43.7 seconds. This yields a

prediction error of approximately 12%, indicating a strong alignment between

predicted and observed performance in the simulated environment.

In the real-world experiment, task completion times were predicted separately for

each control interface. For the gamepad, the task was assigned an IoD of 13.63,

resulting in a predicted time of 96.19 seconds compared to an actual average

of 128.6 seconds, corresponding to a prediction error of 25%. For the WMCS

interface, the same task difficulty yielded a predicted time of 67.16 seconds, while

the measured average was 81.3 seconds, resulting in a prediction error of 17%.

The results are summarised in Table 3.4.

Table 3.4: Predicted vs. actual task completion times for different interfaces.

Interface IoD Predicted (s) Actual (s) Error (%)
Gamepad 13.63 96.19 128.6 25
WMCS 13.63 67.16 81.3 17

These results demonstrate that while the prediction model maintains high accu-

racy in the simulation environment, slightly larger deviations occur in real-world

settings, likely due to increased variability in human input, environmental dis-
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turbances, and mechanical latency. Nevertheless, the prediction errors remain

within an acceptable range, confirming the effectiveness and applicability of the

proposed difficulty-based performance prediction framework across both virtual

and physical teleoperation contexts.

To further evaluate the distinctiveness and effectiveness of the proposed model,

this study conducted a comparative analysis against several well-established Fitts-

based prediction methods under identical task conditions in both the simulation

and real-world experiments. These prior models were originally designed for

human-computer interaction scenarios, particularly cursor-based pointing tasks,

and include the formulations by Ware and Mikaelian [66], Stølen and Akin [25],

and Kulik et al. [64].

The results of this comparison revealed that the traditional models exhibited sub-

stantially higher prediction errors when applied to mobile manipulator scenarios.

Specifically, the model by Ware and Mikaelian produced an average error of 168%,

the Stølen and Akin model 82%, and the Kulik et al. model 72%. These signif-

icant deviations highlight the inadequacy of conventional Fitts-based models in

handling the complexities of mobile robotic systems.

The primary reason for their poor performance lies in their foundational assump-

tions, which are deeply rooted in 2D cursor-based control paradigms. As dis-

cussed in Section 2.4, these models do not account for the coupled translational

and rotational dynamics inherent to mobile manipulators. Consequently, they

fail to capture the true task complexity and spatial constraints that arise during

real-world robot control and teleoperation.

These findings underscore the necessity of the proposed 3D Fitts’ Law extension,

which explicitly models both translation and orientation across six degrees of

freedom. The model provides a more accurate and robust framework for predict-
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ing task performance in robotic and machinery applications, particularly those

involving mobile manipulators operating in unstructured or task-constrained en-

vironments.

3.4 Discussion

The results of the study affirm the efficacy of the proposed 3D Fitts’ Law-based

method in predicting HMT performance, with an error margin consistently main-

tained within 25%. This level of accuracy holds across both heavy machinery

simulations and real-world robotic experiments, underscoring the robustness and

generalisability of the model in diverse teleoperation contexts.

One key observation that illustrates the limitations of traditional models is the

overestimation of rotational difficulty. For instance, in the method proposed by

Stølen and Akin [25], the cursor rotation is treated as a single discrete action with

a disproportionately high impact on total task difficulty. However, in real-world

robotic teleoperation, operators often adjust the robot’s orientation continuously

during locomotion. As a result, orientation corrections are inherently integrated

into the movement process and do not contribute as significantly to the overall

motion time as predicted by cursor-based models.

A significant advantage of the proposed method lies in its ability to consider the

HMT system as an integrated whole. Instead of isolating factors such as interface

type, mechanical design, or operator variability, the framework encapsulates all

related influences within the performance of standard tasks. These standard tasks

serve as implicit representations of system-level characteristics, capturing latent

variables that are often difficult to model explicitly.

For example, in the real-world experiments, this study observed greater variabil-
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ity in task execution time during manipulation tasks when participants used the

gamepad, as visualised in Fig. 3.6. Participant feedback corroborated this obser-

vation, with several users reporting difficulty achieving fine-grained control using

the gamepad interface. Interestingly, although none of the participants had prior

experience with the WMCS, it consistently outperformed the gamepad in both

prediction and validation phases—reflected by a lower skill coefficient (b value)

in Table 3.3 and a smaller prediction error in Fig. 3.7.

This suggests that certain interface-related factors, such as usability, intuitiveness,

and learning curve, which are inherently difficult to quantify or model directly,

are nevertheless embedded in the empirical performance data captured by the

standard tasks. The model effectively absorbs these hidden variables through

its calibration process, providing a more holistic and adaptable framework for

performance prediction in teleoperated robotic systems.

The RMSE values presented in Table 3.3 reveal that the prediction model ex-

hibits a stronger correlation with the simulation data than with the experimental

data. This discrepancy is primarily attributed to the increased disturbances and

uncontrolled variables present in real-world environments, which are inherently

absent in simulation. For example, in experimental locomotion tasks, the robot’s

stopping distances were observed to vary depending on subtle shifts in its center

of mass, which were influenced by the arm’s position at the time of movement.

These dynamic changes introduce variability into motion execution that can-

not be easily predicted or accounted for in a simulation environment where the

physical interactions are idealised. This observation reinforces the sensitivity of

the model to the specific mechanical configuration of the robot and its environ-

ment, and suggests that factors such as the type of mobility platform—legged

versus wheeled—can significantly influence prediction accuracy. Legged robots,
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for instance, often exhibit greater oscillations and micro-adjustments during lo-

comotion, which may affect timing outcomes in ways that differ from smoother

wheeled motion.

Additionally, participant variability in interface familiarity played a significant

role in the observed results. Participants who had limited or no prior experience

using gamepads tended to perform more poorly, particularly during fine manip-

ulation tasks. This disparity in user proficiency impacted overall task execution

time and contributed to increased variance in the experimental data. Such find-

ings imply that in the context of HMT system design, interface selection should

consider the target user demographic. Interfaces such as WMCS, which may offer

more intuitive control through natural body movement, could be more suitable

for novice users or operators without prior gaming or joystick experience. On the

other hand, experienced users may benefit more from conventional input devices

like gamepads due to their familiarity with joystick-based control paradigms.

An additional noteworthy trend was that the predicted motion time for the prac-

tical task was consistently shorter than the actual motion time recorded from

users in both the simulation and experimental settings. This discrepancy likely

results from a learning effect, whereby participants gradually became more adept

at controlling the robot and understanding the task structure through repeated

exposure to the standard tasks. As a result, by the time participants reached the

practical task, their skill levels had improved beyond what was initially measured

in standard tasks. This performance gain, while beneficial for real-world execu-

tion, introduces a divergence between predicted and actual times, since the model

uses initial task data as a baseline for performance prediction. It underscores the

importance of factoring learning curves into predictive models, especially in sce-

narios involving novice users or tasks that require sequential skill acquisition.
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Furthermore, qualitative feedback from participants indicated certain limitations

in the simulation interface that may have affected task performance. Specifically,

several users reported difficulty in estimating distances to target objects due

to constraints in the camera view provided within the simulation environment.

This visual limitation impaired depth perception and spatial awareness, poten-

tially causing errors in manipulation and locomotion alignment. Such feedback

draws attention to an often-overlooked aspect of HMT systems—the design and

fidelity of visual feedback. Enhancing camera systems, integrating dynamic view

controls, or incorporating augmented visual aids could substantially improve user

perception and task accuracy. Overall, these insights emphasise the importance

of holistic interface and feedback system design in the broader context of HMT

performance and model validation.
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Figure 3.5: Details of mapping from interfaces to trigger and argument strategies,
and experiment operation example: (a) gamepad, (b) WMCS. For the WMCS,
each trigger is active by the user closing his/her hand.
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(a) Simulation

(b) Gamepad (c) Wearable motion capture suit

Figure 3.6: Motion time the users took to complete the standard tasks and prac-
tical tasks in (a) simulation and in the experiment with the (b) gamepad and (c)
WMCS, where each bar represents time for a participant.
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(a) Simulation

(b) Experiment

Figure 3.7: The motion time users took to complete each task versus different ID
values from Table 3.1. The fitted prediction line to the average motion time of
standard tasks, with a and b values in Table3.3.

127



Chapter 4

Predicting Performance Based on

Cognitive Fatigue

4.1 Methodology

This chapter presents the integrated modelling framework developed to predict

operator performance in complex missions, where both cognitive and physical

factors play critical roles. The methodology combines cognitive state estimation

based on the Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) model [36]

and task demand modelling [116] with an extended 3D Fitts’ Law [1], [35] to assess

task difficulty and operator skill level. These two components are then fused to

capture the dynamic interaction between an operator’s cognitive effectiveness

and their capacity to execute physically or mentally demanding tasks, as shown

in Fig. 4.1.

The core idea of the framework is to provide a continuous and adaptive prediction

of system performance by accounting for both the human operator’s physiological

condition and the task’s complexity. The model allows for mission-time predic-
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Result

SAFTE model

Extended Fitts’ law

Task difficulty

Operator skill 
level

Task demand  
model

Homeostatic 
sleep reservoir

Effectiveness 
model

Mission performance

Operator Effectiveness

Figure 4.1: Structure of the prediction model.

tion, as detailed in Equation. 2.1, with operator fatigue, circadian rhythms, and

task demands affecting mission execution capability. The integration of cognitive

effectiveness into the task performance model enables more accurate forecasting

of outcomes, informed operator scheduling, and human-machine decision-making

strategies in high-risk or extended missions.

The overall structure of the model is illustrated in Figure 4.2, which maps out the

dependencies and interactions between the main components. Each component is

linked to a corresponding mathematical formulation described in subsequent sec-

tions. The model outputs—cognitive effectiveness, operator performance index,

and task completion estimates—are highlighted in green, indicating their role in

influencing operational decisions or system-level planning.

4.1.1 Modelling Cognitive Effectiveness

Cognitive effectiveness, denoted by E(t), serves as a dynamic indicator of an

operator’s readiness and mental capability to perform tasks at any given time
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Figure 4.2: Relationship of components with corresponding equation numbers in
the model. Output Components are marked in green.

t. The proposed model is based on the SAFTE model [36], which incorporates

circadian rhythms, sleep pressure, and sleep inertia to estimate human fatigue and

cognitive performance. This study adapts the SAFTE model to focus solely on

waking periods, as mission-critical operations occur during these intervals. This

study further divides waking time into two distinct phases: the standby period,

which begins immediately after awakening, and the mission period, during which

the operator is actively engaged in performing tasks.

During the standby period, cognitive effectiveness is primarily a function of circa-

dian effects, residual sleep inertia, and sleep reservoir status. During the mission

period, cognitive effectiveness progressively declines as a function of accumulated

workload and attentional demand. The overall formulation for E(t) is given by:

E(t) =


R(t)/Rmax + Ct − It, during standby

E(t− 1)− Wmax−W (t)
Wmax

, during mission

. (4.1)

In this equation:

• R(t)/Rmax represents the normalised sleep reservoir, which quantifies how
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rested the operator is. The reservoir model is described in detail in Equa-

tion (4.6).

• Ct captures the circadian rhythm component, which reflects the biological

clock’s modulation of alertness throughout the day, as discussed in Equa-

tion (4.7).

• It denotes the transient sleep inertia immediately following awakening, re-

ducing cognitive performance temporarily (see Section 4.1.3 for details).

• W (t) denotes the current attentional capacity during mission engagement,

and Wmax = 75 is the maximum theoretical attention level (explained fur-

ther in Section 4.1.4).

This dual-phase structure captures how cognitive effectiveness initially rebounds

following sleep but then gradually depletes under task-induced strain. The model

provides a principled way to assess whether an operator is cognitively fit to un-

dertake a mission at a specific time. For mission planning and safety-critical

applications, the value of E(t) can serve as a threshold parameter to accept,

delay, or reassign tasks based on real-time assessments of operator state.

Moreover, this measure of effectiveness can be directly integrated with physi-

cal task performance models, as described in the following sections, to create

a comprehensive human-machine teaming model that adapts to both internal

(cognitive) and external (task) constraints.

4.1.2 Task-Based Performance Prediction

To model and predict the operator’s task performance, this study adopts and

extends the classical formulation of Fitts’ Law [12], a well-established empirical

model that relates the time required to complete a task to its inherent difficulty.
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Originally developed in the context of human motor control and aimed at charac-

terising pointing or reaching movements, Fitts’ Law has since been widely applied

in human factors, ergonomics, and human-robot interaction research.

In its canonical form, Fitts’ Law expresses the predicted task completion time

(PT ) as a linear function of the task’s Index of Difficulty (ID):

PT = a+ b · ID, (4.2)

where:

• PT denotes the predicted time required to complete the task,

• ID represents the quantified difficulty of the task,

• a is a constant offset representing baseline or reaction time, and

• b is the slope of the linear relationship, reflecting how sensitive the operator’s

performance time is to increasing task difficulty.

The parameter b plays a crucial role in the modelling framework, as it encap-

sulates the rate at which task time increases with difficulty. Conceptually, this

study interprets b as the operator skill coefficient, which serves as a proxy for

the operator’s proficiency or efficiency. A lower value of b indicates that the

operator can handle increasingly difficult tasks with only modest increases in

time—suggesting higher skill—whereas a higher b implies that performance de-

teriorates more rapidly as task difficulty grows, signaling lower skill or increased

cognitive or physical strain.

This linear formulation allows for straightforward interpretation and regression-

based parameter identification from empirical data. When integrated with the

extended version of Fitts’ Law (discussed in previous chapters), which includes
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both translational and rotational motion components, the model enables nuanced

performance prediction across a range of 3D tasks involving spatial positioning

and orientation.

This study further extends this framework by allowing the skill coefficient b to be

dynamically modulated by the operator’s cognitive state, as detailed in the next

section. This integration bridges the gap between physical task difficulty and

mental readiness, allowing us to model how factors such as fatigue, attention,

and circadian rhythm influence the operator’s effective skill level during mission

execution.

However, the original formulation of Fitts’ Law is inherently one-dimensional,

designed to model simple pointing or reaching tasks along a linear axis, typi-

cally in the context of two-dimensional interfaces such as computer screens or

planar workspaces. While highly effective in such constrained environments, this

one-dimensional approach proves inadequate for modelling complex interactions

in real-world spatial settings, particularly in robotics or teleoperation scenarios

where the operator must manage multiple degrees of freedom in three-dimensional

space.

To address the limitation of original Fitt’s Law, the privious work in [1] extends

the concept of task difficulty beyond one-dimensional pointing to encompass the

full complexity of three-dimensional motion tasks. This extension enables Fitts’

Law to be used in applications involving physical robot platforms, where opera-

tors control agents to perform navigation, manipulation, or interaction in unstruc-

tured and dynamic environments. In this extended formulation, task difficulty

is decomposed into multiple components that reflect the multifaceted challenges

faced during 3D motion.

Again, the total index of difficulty (IDtotal) for a practical task consisting of
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multiple motion steps can be extract from Equation.3.10 as:

IDtotal =
n∑
1

IDtransi + IDorii + IDdiri , (4.3)

where:

• n is the total number of motion steps that comprise the full task,

• IDtransi is the translational index of difficulty for the i-th motion step,

representing the spatial distance the agent must traverse,

• IDorii quantifies the difficulty of achieving the desired orientation, account-

ing for rotational displacements and tolerances,

• IDdiri represents the directional difficulty associated with executing motion

in a specific direction relative to the agent’s configuration or environmental

constraints.

Each of these components captures a distinct aspect of 3D movement, enabling

the model to reflect not only the physical distance to the target but also the com-

plexity of aligning orientation and dealing with constrained or awkward motion

directions. This decomposition is especially valuable for evaluating multi-step

tasks, where the difficulty may accumulate or vary significantly from one step to

another.

For detailed formulations and examples of how each ID component is computed,

the reader is referred to [35], where the extended 3D Fitts’ Law is applied and val-

idated in robot teleoperation scenarios. This study adopts this multidimensional

difficulty model as the foundation for coupling physical task requirements with

dynamic cognitive effectiveness, enabling more realistic and adaptive performance

prediction for human-machine systems operating in complex environments.
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In practical task execution scenarios—especially those involving sequential oper-

ations or multi-stage missions—the cumulative difficulty of the remaining task

naturally diminishes as the operator completes more motion steps. That is,

the overall task becomes progressively easier to complete as time progresses and

more subtasks are executed. To model this dynamic, this study defines a time-

dependent metric: the remaining task difficulty or residual Index of Difficulty,

denoted as IDleft(t), which captures the portion of the total task that remains to

be completed at a given time t.

The remaining difficulty is calculated as the difference between the total planned

task difficulty (IDtotal) and the cumulative difficulty of all completed motion steps

up to time t− 1, which I denote as IDdone(t− 1). Formally, this is expressed as:

IDleft(t) = IDtotal − IDdone(t− 1). (4.4)

This formulation reflects the intuitive notion that each completed subtask in-

crementally reduces the burden of the task as a whole. It also introduces a dy-

namic element into the performance prediction framework, allowing us to monitor

progress and forecast task completion in real-time.

To compute IDdone(t), this study leverages the earlier definition of operator skill

and cognitive effectiveness. Specifically, this study assumes that the amount of

difficulty that can be completed within a given time interval δt depends on two

main factors: the operator’s skill coefficient (b), which represents how efficiently

the operator can convert effort into completed work, and the operator’s current

cognitive effectiveness (E(t)), which modulates that efficiency based on fatigue,

alertness, or workload.

Accordingly, the cumulative difficulty completed up to time t is given by:
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IDdone(t) =
1

b
· E(t) · δt, (4.5)

In this expression:

• b is the operator skill coefficient introduced in Equation (4.2), with smaller

values corresponding to higher skill,

• E(t) is the operator’s cognitive effectiveness at time t, as defined in Equa-

tion (4.1),

• δt is the time interval under consideration (e.g., between system update

ticks or control cycles).

This formulation bridges the cognitive and physical models by dynamically ad-

justing the operator’s performance potential over time. When cognitive effec-

tiveness is high (e.g., immediately after rest or during peak circadian phases),

the operator completes more difficult units per unit time. Conversely, when the

operator is fatigued or distracted, E(t) decreases, thereby reducing IDdone(t) and

leaving more residual difficulty for future intervals.

Together, Equations (4.4) and (4.5) provide a powerful mechanism for real-time

monitoring and forecasting of task completion, grounded in both cognitive mod-

elling and empirical performance theory. This integration enables a deeper un-

derstanding of how human state and task dynamics co-evolve during mission

execution.

Building upon this, this study implements an iterative simulation process to

project forward in time and predict whether the operator will be able to complete

the mission within the bounds of acceptable cognitive effectiveness. Specifically,

the model continuously evaluates whether the operator’s cognitive effectiveness

E(t) remains above a defined safety threshold during the execution of each re-
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maining task segment. At each iteration, IDdone(t) is recomputed based on the

updated E(t), which itself evolves according to the operator’s fatigue, circadian

rhythm, and attentional workload. The remaining difficulty IDleft(t) is updated

accordingly.

This iterative process continues until one of two conditions is met. The first

condition occurs when IDleft(t) ≤ 0, indicating that the full task has been com-

pleted. The second condition occurs when the operator’s cognitive effectiveness

E(t) drops below a predefined safety threshold Emin, indicating that the operator

has become cognitively unfit to continue the mission safely.

Through this process, the model produces two key outputs: (1) a predicted mis-

sion duration based on the operator’s current and projected cognitive state, and

(2) a safety evaluation indicating whether the task is feasible given the operator’s

cognitive trajectory. These outputs are essential for proactive decision-making in

human-machine teaming contexts, allowing systems to trigger adaptive strategies

such as workload redistribution, task reassignment, or operator rest recommen-

dations before performance degradation or mission failure occurs.

By tightly coupling cognitive modelling with a task difficulty framework, this

predictive loop enables mission-level performance forecasting that accounts for

both the complexity of the work and the readiness of the human operator. As

such, it represents a step forward in enabling cognitively aware autonomy and

resilient human-machine collaboration in extended or high-risk operations.

4.1.3 Awaking and Standby Period

In the context of human performance modelling, the awake and standby period

is a critical phase in which the operator transitions from a sleep state to a state

of readiness for mission execution. During this period, cognitive effectiveness
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is primarily governed by homeostatic and circadian factors, as described in the

SAFTE model [36]. One of the key mechanisms in this phase is the homeostatic

sleep drive, which reflects both the accumulated need for sleep and the restorative

effects of prior rest. This process is represented through the concept of a sleep

reservoir, denoted as R(t), which serves as a proxy for the operator’s available

cognitive capacity upon awakening.

When the operator awakens from a sufficient period of sleep, the sleep reservoir

is assumed to be fully replenished, attaining its maximum value: R(t0) = Rmax =

2880. This corresponds to an optimal physiological state, where the operator

is well-rested and cognitively capable of performing demanding tasks. However,

empirical findings in sleep science and neuroscience indicate that performance

does not peak immediately after awakening. This is due to the presence of sleep

inertia—a temporary decline in cognitive functioning caused by a mismatch in

the reactivation rates of different brain regions. Specifically, while subcortical

areas such as the brainstem activate rapidly upon waking, the prefrontal cortex,

responsible for executive functions and decision-making, lags behind [142].

This short-term impairment is captured in the model by a transient inertia term,

It, which can reduce performance immediately following awakening. The maxi-

mum value of this inertia is set at 0.05 and is assumed to diminish after approxi-

mately two hours. During this initial post-sleep period, even if the sleep reservoir

is full, the inertia term lowers the effective cognitive readiness of the operator.

Following the dissipation of inertia, the operator enters the standby period, dur-

ing which they are not yet engaged in active mission tasks but are awake and

maintaining alertness. In this phase, the cognitive reservoir begins to deplete

gradually due to the effects of continued wakefulness. This depletion is modelled

as a linear decline, given by the following equation:
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R(t) = R(t− 1)− Vkδt, (4.6)

where Vk = 30 hour−1 represents the rate at which the sleep reservoir is con-

sumed during wakefulness, and δt is the time increment over which the model is

evaluated [116].

This formulation captures the natural decline in cognitive capacity over time,

even in the absence of active workload. The standby period thus serves as a

preparatory interval between rest and mission execution, during which the op-

erator’s available resources begin to diminish. The values of R(t) and It during

this phase are essential inputs for the subsequent prediction of task readiness and

performance during the mission period, ensuring that both physiological recovery

and short-term impairments are taken into account.

The circadian component, denoted as Ct, represents the influence of the body’s

internal biological clock on cognitive performance. The circadian rhythm is a

fundamental physiological mechanism that regulates sleep-wake cycles, hormone

release, core body temperature, and overall alertness. It plays a significant role

in modulating human cognitive effectiveness over the course of a 24-hour period,

independently of sleep pressure or task demand.

To capture the effect of circadian variation in the model, Ct is expressed as a

function of both the intrinsic circadian phase and the current state of the sleep

reservoir. The formulation used in this study follows the approach introduced

in [143], with additional modulation based on homeostatic sleep depletion. The

circadian contribution to cognitive effectiveness at time t is given by:

Ct = ct · (a1 + a2
Rmax −R(t)

Rmax

), (4.7)
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where:

• ct is the normalized circadian arousal value at time t, which oscillates be-

tween +1 and −1 over a 24-hour period, capturing daily fluctuations in

alertness levels [143];

• R(t) is the current sleep reservoir level at time t;

• Rmax is the maximum sleep reservoir capacity;

• a1 = 0.07 and a2 = 0.05 are empirical coefficients that define the base

circadian influence and its sensitivity to homeostatic sleep loss, which are

determined from user experiments without cognitive fatigue.

This equation models the idea that the impact of circadian rhythms on cog-

nitive performance is not static but is modulated by the current level of sleep

deprivation. When the sleep reservoir is near its maximum (i.e., the operator

is well-rested), the term (Rmax − R(t))/Rmax approaches zero, and the circadian

component simplifies to Ct ≈ ct · a1. This corresponds to a relatively stable

modulation of cognitive effectiveness due to circadian phase alone.

However, as the reservoir depletes with time awake, the term (Rmax−R(t))/Rmax

increases, enhancing the influence of ct on performance. This models the inter-

action between circadian and homeostatic effects, acknowledging that circadian

low points (e.g., early morning hours) have a stronger negative effect when the

operator is also fatigued.

The result is a dynamic, biologically plausible modulation of performance that

captures real-world phenomena such as the ”post-lunch dip” and early morning

performance decline, even in the absence of task execution. Incorporating Ct

into the overall cognitive effectiveness model enables more accurate prediction of

performance trajectories in extended operations, shift work, or around-the-clock
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mission scenarios.

4.1.4 Mission Period

During the mission period, the operator is actively engaged in performing tasks,

and cognitive resources are consumed at a variable rate depending on both

the task’s demand level and the operator’s physiological condition. Unlike the

standby period, where reservoir depletion is driven primarily by passive wakeful-

ness, the mission period introduces task-induced cognitive load, which directly

impacts attention capacity. The key variable representing the operator’s cogni-

tive readiness during this phase is the attention capacity W (t), which serves as a

proxy for the amount of available mental energy or bandwidth at time t.

Extensive research has demonstrated that cognitive workload and sleep quality

jointly influence the rate at which attentional resources are depleted [99]–[103].

High-demand tasks impose greater strain on cognitive systems, resulting in faster

depletion of attention capacity. In parallel, poor sleep quality or insufficient

rest reduces the system’s resilience to workload, thereby accelerating resource

consumption even further [103], [144], [145].

To capture these interacting effects, this work models the attention capacity W (t)

as a time-varying function updated through a rate-based formulation. The change

in attention capacity over a small time interval δt is given by:

W (t) = W (t− 1) + Ẇt δt, (4.8)

follows a discretised rate-based formulation. In this expression, W (t) denotes the

operator’s attention capacity at the current time step, while W (t−1) is the value

from the previous step. The term Ẇt represents the instantaneous rate of change
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of attention capacity at time t, which may be negative during task performance

(depletion) or positive during recovery (replenishment).

The increment δt defines the temporal resolution of the model, i.e., the size of

the discrete time step over which changes are computed. In continuous time, the

relationship would be written as

dW

dt
= Ẇt, (4.9)

where Ẇt represents the instantaneous rate of change in attention capacity at time

t, but in practice this derivative is approximated by discrete updates over intervals

of length δt. For example, if δt = 1 minute, the update describes how much

attention capacity changes per minute, given the current depletion or recovery

rate. A sufficiently small δt ensures that the model provides a close approximation

to continuous cognitive dynamics while remaining computationally efficient. This

rate is defined piecewise depending on whether the operator is actively engaged

in task performance or is in a recovery phase:

Ẇt =


− Rmax

100+R(t)
· L(t) · Vd, during task performance

Vr, during recovery

.

In this equation:

• Vd = 1.14 hour−1 is the base depletion rate of attention during task execu-

tion, as suggested by empirical fatigue models [146],

• L(t) denotes the task demand level at time t, representing how cognitively

taxing the current task is (to be further discussed below),

• R(t) is the current level of the sleep reservoir, as defined in Equation (4.6),
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• Rmax is the maximum sleep reservoir capacity,

• Vr = 11 hour−1 is the recovery rate of attention capacity during resting or

non-task periods [146].

The formulation captures two important dependencies. First, the depletion of

attention capacity is directly proportional to task demand, L(t), such that higher

workload leads to faster exhaustion of cognitive resources. Second, the depletion

rate is inversely related to current sleep reservoir level R(t): when the operator is

well-rested (R(t) near Rmax), the system can better tolerate high workload, and

depletion proceeds more slowly. Conversely, when the sleep reservoir is low, even

moderate task demands result in steep declines in attention capacity.

This dual dependency on physiological state and task characteristics makes the

model sensitive to real-world performance variability. It reflects the empirical ob-

servation that the same task may feel manageable or overwhelming depending on

the operator’s rest status and the time of day. During recovery intervals—such as

breaks or standby between tasks—the model switches to a fixed positive recovery

rate, Vr, allowing attention capacity to replenish toward its baseline.

This dynamic attention model enables the prediction of not just performance

degradation but also potential points of failure or recovery throughout the mis-

sion, making it a valuable tool for adaptive planning and operator state manage-

ment.

The task demand level at time t, denoted as L(t), refers to the amount of cognitive

attention required from the operator to effectively perform the task assigned at

that time. It acts as a dynamic multiplier in the attention depletion model,

modulating the rate at which cognitive resources are consumed based on the

complexity of the task being executed.
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In this framework, L(t) is directly influenced by the difficulty of the current

task segment. More specifically, tasks with higher spatial, temporal, or cognitive

complexity demand greater levels of sustained attention, decision-making, and

motor coordination from the operator. These demands translate into increased

cognitive workload, which in turn accelerates the depletion rate of the operator’s

attention capacity as modelled in Equation (4.10).

The level of task demand is therefore a function of task difficulty metrics derived

from the extended Fitts’ Law model, such as the translation, orientation, and

directional indices of difficulty. As task difficulty increases, so does L(t). For

instance, a high-precision manipulation task that requires the operator to align

an end-effector with a narrow or moving target would be assigned a higher L(t)

compared to a simple forward navigation task.

While L(t) may be predefined based on mission design or task type, it can also

be dynamically estimated in real-time by monitoring task parameters or using

performance metrics (e.g., time-on-task, error rates, or control effort). This allows

the model to remain responsive to variations in task complexity and operator

behaviour throughout the mission.

In summary, L(t) operationalises the cognitive demand imposed by the task and

serves as a critical input to the attention capacity model. By linking it to task dif-

ficulty, this study enables a unified treatment of cognitive and physical workload

within the overall performance prediction framework.

Although a task may theoretically possess an unbounded level of difficulty—particularly

when it becomes physically or cognitively infeasible to complete—it is neither

realistic nor cognitively meaningful to assume that such tasks impose infinite

mental demand on a human operator. In practice, even when a task is perceived

as overwhelmingly difficult or impossible, the operator’s cognitive system does
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not continuously escalate its internal workload. Instead, mental effort tends to

saturate or plateau, especially when the operator consciously acknowledges the

limits of their capabilities or the impossibility of the task at hand.

To reflect this bounded nature of cognitive demand, this study introduces a non-

linear mapping function that transforms the raw task difficulty—represented by

the residual Index of Difficulty IDleft(t)—into a normalized mental workload level,

denoted as L(t). This mapping ensures that task demand remains within a physi-

ologically and behaviorally plausible range, avoiding unrealistic spikes in attention

depletion during infeasible or prolonged operations.

The transformation is performed using the following arctangent-based function:

L(t) =
tan−1(IDleft(t)/3600)

π/6
, (4.10)

where L(t) is the task demand level at time t, scaled to lie within the range

[0, 3] [116]. The use of the arctangent function ensures asymptotic behaviour as

IDleft(t) increases, which prevents the task demand from growing without bound.

This reflects the cognitive reality that, beyond a certain point, increases in task

difficulty no longer translate into proportionally higher perceived demand.

The division by 3600 in the input argument serves as a unit conversion fac-

tor. Since IDleft(t) is measured in units equivalent to predicted task time in

seconds—according to the extended Fitts’ Law model—this normalization scales

the input to a unitless form that fits consistently within the range of the arctan-

gent function. The denominator π/6 in the overall expression scales the maximum

output of the arctangent to reach an upper bound of approximately 3, aligning

with established conventions in mental workload modelling literature [116].

This approach allows for a smooth, continuous mapping from objective task diffi-
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Figure 4.3: In the situation of both operators performing the whole mission
continuously, the upcoming task difficulty and current operator effectiveness in
task performance at the current time are shown in the graph. 0 upcoming task
difficulty means all tasks have been completed, and 0 effectiveness means the
operator is no longer suitable for a mission.

culty to subjective cognitive demand. It is suitable for integration with real-time

models of attention capacity, fatigue, and operator state monitoring. It also pro-

vides a robust foundation for simulating operator responses to dynamic changes

in task complexity throughout a mission.

4.2 Case Study and Results

To evaluate the feasibility and applicability of the proposed integrated cognitive-

task performance prediction model, this study conducted a case study based on

a hypothetical mission scenario. This scenario is constructed using parameters
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derived from the prior human-subject study on mobile manipulator teleoperation,

as detailed in [35]. By leveraging empirical data from this previous study, this

study aims to simulate realistic operator performance and assess how the model

captures differences in skill, cognitive state, and task progression.

The case study focuses on two representative human operators with contrasting

levels of teleoperation experience, corresponding to the user groups identified in

the prior experiment. Specifically, Group A comprised users with more extensive

prior experience in teleoperating robotic systems, while Group B consisted of

relatively inexperienced users who had limited exposure to such systems. From

the performance data collected, this study calculated average skill coefficients (b

values from Fitts’ Law) for each group.

Based on these group characteristics, this study defines two hypothetical opera-

tors for the simulation:

• Operator 1 represents an experienced teleoperator, modelled using the

average skill coefficient of Group A. This operator has a skill level of b = 7.9,

indicating greater efficiency in completing tasks of varying difficulty. A

lower b value implies that task performance time increases more slowly

with difficulty, reflecting higher operational skill.

• Operator 2 represents a less experienced user, modelled using the average

skill coefficient of Group B. This operator is characterised by a skill level

of b = 17.0, signifying reduced proficiency and a steeper increase in task

time with difficulty. This higher b value reflects the performance limitations

associated with inexperience, such as slower movement, higher error rates,

and less effective task strategies.

These two operator profiles allow us to explore how the model differentiates be-
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tween users with varying skill levels and how these differences interact with fa-

tigue, task complexity, and time-dependent cognitive changes. By simulating the

same mission for both operators under identical task conditions, this study can

compare predicted mission durations, cognitive effectiveness trajectories, and at-

tention depletion trends. The case study thereby provides insight into the model’s

ability to support individualised prediction and decision support in human-robot

teaming scenarios.

Both operators are required to complete the same mobile manipulator teleopera-

tion mission, which is designed to reflect a realistic multi-step operation commonly

encountered in remote manipulation scenarios. The mission consists of three se-

quential sub-tasks that involve a combination of locomotion, perception-guided

alignment, and manipulation actions. The total difficulty of the mission is set to

IDtotal = 1500, which is decomposed evenly across three stages, with each sub-

task assigned a difficulty of IDi = 500. These values are determined based on

the extended 3D Fitts’ Law formulation, incorporating translation, orientation,

and direction indices of difficulty [35].

The goal of this case study is to evaluate, under identical mission conditions,

whether each operator can successfully complete the mission given their respective

skill levels and initial cognitive states. Furthermore, this study aims to estimate

the time required for each operator to complete the mission using the integrated

model that combines cognitive effectiveness and task-based performance predic-

tion.

The initial cognitive and physiological conditions are assumed to be ideal for both

operators. Specifically, each operator begins the mission fully rested, with a sleep

reservoir R(t) = Rmax = 2880, and at the start of their circadian peak (ct = 0.5).

The inertia term It is set to 0.05 to reflect the transient post-awakening decline in
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Table 4.1: Parameters used in the case study, with calculated values in bold. All
parameters are dimensionless.

Parameters IDtotal IDi R(t) It ct Ct E(t0)

Value 1500 500 2880 0.05 0.5 0.035 98.5%

effectiveness. The circadian component Ct and the initial cognitive effectiveness

E(t0) are calculated using Equations (4.7) and (4.1), respectively. These values

are summarised in Table 4.1.

With these initial conditions and task parameters defined, the model simulates the

mission execution for both Operator 1 (b = 7.9) and Operator 2 (b = 17.0). For

each operator, the simulation iteratively computes the amount of task difficulty

completed per time step based on current cognitive effectiveness and skill level,

updating E(t) and IDleft(t) accordingly. The simulation continues until either

the mission is completed (IDleft(t) ≤ 0) or the operator’s cognitive effectiveness

drops below a critical threshold, indicating potential failure.

This setup allows for directly comparing estimated completion times, attention

capacity dynamics, and fatigue-induced limitations across operators of differing

experience. The results provide insight into how skill and cognitive state jointly

influence mission success, which is crucial for field commanders seeking to assign

tasks based on operator readiness and mission criticality.

4.2.1 Standby Period

In the simulated scenario, this study assumes that both operators arrive at the

workplace under favourable physiological conditions, particularly in terms of

homeostatic sleep status. Specifically, both individuals are presumed to have

had a full night of rest, resulting in a fully replenished sleep reservoir at the time

of awakening: R(t) = Rmax = 2880. This assumption reflects a best-case scenario

where the operators are well-prepared to engage in cognitively demanding tasks
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from a sleep and recovery perspective.

However, in realistic work environments, operators do not typically begin per-

forming mission-critical tasks immediately upon waking. Instead, there is usually

a delay between waking up and task initiation, due to activities such as commut-

ing, briefing, or preparation. This study assumes a delay of two hours between

the time of awakening and the start of the mission. This interval corresponds to

the standby period, during which the operators are awake but not yet engaged

in active task performance.

During this standby phase, two important physiological factors influence the op-

erator’s cognitive effectiveness. First, there is a transient inertia effect associated

with the early post-wake period. As discussed in Section 4.1.3, this inertia arises

from a temporary lag in the reactivation of cognitive control networks and is

modelled as an additive reduction in cognitive effectiveness. For both operators,

this inertia is set to It = 0.05, consistent with the expected magnitude within the

first two hours post-awakening.

Second, this study accounts for the influence of circadian rhythms, which fluctu-

ate over the course of the day. At the assumed mission start time—two hours after

awakening—this study sets the circadian phase to ct = 0.5, representing a mod-

erately elevated level of circadian arousal. Using Equation (4.7), the circadian

contribution to cognitive effectiveness at this time is computed as:

Ct = ct ·
(
a1 + a2 ·

Rmax −R(t)

Rmax

)
= 0.5 ·

(
0.07 + 0.05 · 2880− 2880

2880

)
= 0.035.

(4.11)

With all the components in place, the initial cognitive effectiveness E(t0) at the

start of the mission is calculated using Equation (4.1) for the standby condition:
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E(t0) =
R(t)

Rmax

+ Ct − It =
2880

2880
+ 0.035− 0.05 = 0.985 or 98.5%. (4.12)

This value indicates that both operators begin the mission in an optimal cognitive

state, with only a slight decrement from full effectiveness due to transient sleep

inertia. These initial conditions are summarised in Table 4.1 and provide a strong

baseline for comparing the impact of operator skill and task load during the

subsequent mission period.

4.2.2 Executing Mission as a Whole

To evaluate how the two operators would perform under continuous working

conditions, this study first applies the proposed integrated performance model

to simulate a scenario in which each operator attempts to complete the entire

mission in a single uninterrupted session. That is, no breaks, pauses, or task

reallocations are permitted throughout the execution. This test case serves to

demonstrate the effect of sustained workload and cognitive fatigue accumulation

on overall task feasibility, particularly in high-demand teleoperation scenarios.

Under these conditions, the model continuously tracks both task progress—via

IDleft(t)—and the operator’s cognitive effectiveness—via E(t)—at each time step.

The mission consists of a total task difficulty of IDtotal = 1500, as detailed in Sec-

tion 4.2. Each operator’s performance rate is modulated by their skill level (via

parameter b) and their current cognitive state (via E(t)). As task time progresses,

attention capacity depletes and cognitive effectiveness declines accordingly, reduc-

ing the operator’s ability to complete further difficulties.

The simulation results show that neither operator is able to complete the full

mission when executed continuously. Both operators eventually reach a state of
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complete cognitive exhaustion, defined by E(t) = 0, rendering them unfit for

safe or effective operation. This highlights the limitations imposed by sustained

workload on operator performance, even when initial conditions are optimal.

As illustrated in Figure 4.3, the total progress made by each operator plateaus

before reaching the full task difficulty threshold. Figure 4.3b provides a detailed

view of the cognitive effectiveness trajectory over time. For Operator 1 (the more

experienced user), effectiveness reaches zero at t = 2.49 hours. For Operator 2

(the less experienced user), cognitive effectiveness falls to zero slightly earlier, at

t = 2.32 hours.

These results clearly demonstrate the impact of individual skill and cognitive

fatigue on mission feasibility. While Operator 1 is able to maintain effective

control for a longer duration due to a lower skill coefficient (b = 7.9), even this

advantage is insufficient to complete the mission without breaks. In contrast,

Operator 2, with a higher skill coefficient (b = 17.0), experiences more rapid

fatigue and reaches the critical threshold sooner.

This simulation validates the importance of accounting for cognitive state in mis-

sion planning and suggests that uninterrupted execution of high-difficulty mis-

sions may not be realistic or safe. The next sections explore more adaptive

strategies, such as task segmentation or scheduled breaks, to improve mission

success and operator sustainability.

4.2.3 Dividing Mission without Resting

In the third simulation approach, the mission is divided into three discrete sub-

tasks, each with a difficulty of IDi = 500, and a short rest period of 5 minutes

(0.083 hours) is inserted between each sub-task. This setup simulates a practical

intervention strategy whereby task planners incorporate short recovery windows
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into the mission timeline to allow operators to partially restore attention capac-

ity before resuming work. Such segmentation is often employed in operational

settings to mitigate fatigue and enhance sustained performance during prolonged

or high-demand activities.

The inclusion of rest breaks allows the attention capacity model to temporarily

switch from depletion mode to recovery mode, governed by the recovery rate Vr

introduced in Section 4.1.4. This enables the operator’s cognitive effectiveness

E(t) to rebound during the rest periods, thereby improving the likelihood of

successful task completion compared to a continuous execution scenario.

As shown in Figure 4.4, this strategy significantly benefits the more experienced

Operator 1. With a lower skill coefficient (b = 7.9), Operator 1 successfully

completes all three sub-tasks with the assistance of recovery periods, reaching

mission completion at t = 3.86 hours. More importantly, Operator 1 retains a

high level of residual cognitive effectiveness at the end of the mission, with Eend =

76.91%. This indicates that not only was the mission completed successfully, but

the operator finished the task in a relatively safe and sustainable state, preserving

reserve capacity for future operations or contingencies.

In contrast, Operator 2, who possesses a higher skill coefficient (b = 17.0) and

therefore requires more time per unit of task difficulty, is unable to complete

the full mission despite the added recovery periods. As illustrated in Figure 4.4,

Operator 2 experiences gradual cognitive decline and eventually reaches zero ef-

fectiveness at t = 6.45 hours, just before completing the final sub-task. This out-

come highlights the limitations of rest-based strategies for operators with lower

baseline performance or in cases where task load remains excessively high over

extended periods.
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Figure 4.4: In the situation of the mission being split into 3 sub-tasks without
resting time in between, the upcoming task difficulty and current operator effec-
tiveness in task performance at the current time are shown in the graph.
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Figure 4.5: In the situation of the mission being split into 3 sub-tasks and having
resting time in between, the upcoming task difficulty and current operator effec-
tiveness in task performance at the current time are shown in the graph.

4.2.4 Division of Mission with Rest Periods

In the third approach, the agency splits the mission into three sub-tasks. It

also gives the operators 5 minutes of rest between each subtask to recover their

attention capacity, leading to a better result, as shown in Fig. 4.5. Operator

1 completes the mission at t = 3.86 hours, with the remaining effectiveness at

Eend = 76.91%. However, Operator 2 is still unable to finish the mission and

reaches 0 effectiveness at t = 6.45 hours.

These results underscore the utility of integrating rest planning into mission exe-

cution for enhancing operator sustainability, but also reveal that rest alone may

not fully compensate for lower skill levels or sustained high difficulty. The findings

motivate the need for more adaptive strategies, such as dynamic task redistribu-
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tion or predictive operator-task matching based on real-time monitoring.

4.3 Discussion

The comparative analysis of the three mission execution strategies—illustrated

in Figures 4.3, 4.4, and 4.5—demonstrates the critical role of task structuring

and rest integration in enabling successful human-machine teaming under cogni-

tively demanding conditions. The results clearly show that partitioning a complex

mission into smaller sub-tasks significantly improves mission feasibility and that

supplementing this structure with scheduled recovery periods yields further gains

in performance and sustainability.

The proposed model provides a mechanistic explanation for these observed out-

comes. Specifically, the act of dividing a high-difficulty mission into multiple seg-

ments reduces the instantaneous task demand level, L(t), associated with each

segment. This leads to a corresponding decrease in the rate at which attention

capacity, W (t), is depleted. Because cognitive effectiveness, E(t), is closely tied to

attention capacity, a slower rate of depletion results in a more gradual decline in

effectiveness over time. This relationship underscores the importance of manag-

ing task difficulty dynamically to preserve human operator capability throughout

a mission.

This finding aligns with established principles in cognitive ergonomics and work-

load management. In real-world operational settings, substituting a single com-

plex task with a sequence of smaller, more manageable subtasks reduces cognitive

load. By reducing the volume of information to be processed and narrowing the

scope of planning and decision-making required at any given moment, operators

can better maintain situational awareness, avoid cognitive overload, and sustain

higher levels of task performance.

156



Chapter 4. Predicting Performance Based on Cognitive Fatigue 4.3

Moreover, incorporating short rest periods between sub-tasks leverages the natu-

ral recovery dynamics modelled by the attention recovery rate Vr. These breaks

allow attention capacity to partially regenerate, which in turn elevates or stabilises

cognitive effectiveness. This intervention is particularly effective for experienced

operators, as demonstrated by Operator 1’s ability to complete the mission with

high residual effectiveness. However, as seen with Operator 2, rest intervals alone

may not be sufficient when baseline skill levels are low or when the mission diffi-

culty remains excessive relative to the operator’s capability.

These results indicate the value of intelligent mission design and operator-aware

task scheduling in complex human-machine systems. Rather than treating hu-

man operators as fixed resources with static performance capabilities, the model

supports a more adaptive and predictive approach—one that accounts for fatigue,

skill variability, and task complexity in real time. Such insights directly apply to

domains including teleoperation, remote inspection, space robotics, defence, and

other time-critical or safety-critical operations where human performance limits

must be proactively managed.

Figure 4.4 further highlights that, when the mission is divided into sub-tasks,

Operator 1 is not only able to complete the mission but does so with a relatively

high residual cognitive effectiveness of Eend = 76.91%. This outcome demon-

strates the benefit of aligning mission complexity with operator skill level, as the

more experienced operator (with a lower skill coefficient b = 7.9) can sustain high

performance under segmented execution. In contrast, Operator 2, despite bene-

fiting from the same task structure and recovery opportunities, remains unable

to complete the mission due to cumulative fatigue. Their effectiveness eventu-

ally drops to zero before the final task segment is completed. This result reflects

real-world trends where operators with higher proficiency are more capable of
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managing complex or extended workloads. At the same time, less experienced

users may require additional support or task simplification to succeed.

The comparison between Figures 4.4 and 4.5 reinforces the additional benefit

of incorporating short rest intervals between sub-tasks. These recovery periods

allow attention capacity to partially regenerate before the onset of the next task,

leading to improved endurance across the full mission. As shown in Figure 4.4b,

the operators regain part of their cognitive reserves during the 5-minute breaks,

and their effectiveness trajectories resume with a slower rate of decline after each

rest period. This observed recovery dynamic supports the theoretical prediction

in Section 4.1.4 that recovery, modelled through the rate Vr, can significantly

buffer against cognitive depletion over time.

Taken together, these findings underscore a key insight: partitioning demanding

missions into manageable segments, coupled with strategically placed rest periods,

is an effective strategy for sustaining operator performance, especially in high-risk

or long-duration scenarios. The model not only captures these effects quantita-

tively but also provides a planning tool that can be used to anticipate mission

feasibility based on individual operator profiles. From an operational standpoint,

this suggests that mission design should consider both cognitive workload distri-

bution and personalised recovery scheduling to optimise human-machine system

effectiveness.
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Chapter 5

Evaluation Scheme for

Human-Machine Team

5.1 Methods of Evaluation Scheme

The task difficulty modelling and performance prediction framework developed in

Chapter 3 provides a robust approach for anticipating HMT performance across a

diverse range of operational scenarios, as detailed in Equation.3.10. It can serve

as a component for comprehensively evaluating Human-Machine Team (HMT)

systems.

The proposed HMT evaluation scheme has four major components: standard

tests, objective measures, a prediction model based on extended Fitts’ Law [1],

and subjective measures, as illustrated in Fig. 5.1. This comprehensive structure

enables both quantitative and qualitative assessment of human-robot teaming

interfaces (HMTIs), taking into account performance, predictability, and user

experience.

As stated in Chapter. 3, the standard tests consist of four mission types: locomo-
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Figure 5.1: Structure of the HMTI evaluation scheme for mobile manipulator
applications.

tion, manipulation, combined operations, and an Explosive Ordnance Disposal

(EOD) task. These tests are designed to reflect essential capabilities in real-

world teleoperation scenarios and provide a consistent benchmark for comparing

different HMTIs.

The objective measures rely on time-based metrics and statistical analysis, in-

cluding T-tests and ANOVA, to evaluate system efficiency and user performance

variability. These measures offer a data-driven foundation to compare perfor-

mance across interfaces and user groups.

The prediction model extends Fitts’ Law to estimate task difficulty based on spa-

tial characteristics of the environment and target. By fitting a linear polynomial

to measured data, the model allows for motion time prediction in unseen tasks

and provides insight into how different interfaces scale with difficulty.

The subjective measures include user feedback on workload and usability, col-

lected through the NASA Task Load Index (NASA-TLX) and the System Us-

ability Scale (SUS). These tools evaluate mental and physical demand, as well as

overall user satisfaction, offering critical insights into user acceptance and prac-
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tical usability of each interface.

Together, these four components form an integrated evaluation framework that

captures both system-level performance and user-centred perspectives, support-

ing the development and selection of effective HMTIs.

5.1.1 Objective Measure

The quantified model provides essential data on the system’s operational perfor-

mance by focusing on measurable outcomes from each user trial. The primary

metric used is the motion time—defined as the time taken by the user to suc-

cessfully complete a given mission segment—which serves as the response variable

across the evaluation. This motion time is measured with high temporal precision

and verified by multiple observers using video recordings to ensure reliability and

consistency.

Once the response data is collected, it is cross-compared across a set of predictor

variables. These include the type of HMTI employed—such as the gamepad or

the wearable motion-capture system (WMCS)—and the user’s background, par-

ticularly their prior experience with gamepad devices. The comparative analysis

is conducted using statistical measures such as mean, standard deviation, and

inferential tests including T-tests and ANOVA. These tests reveal the presence

of statistically significant performance differences between groups and conditions,

thereby uncovering trends in system usability and adaptability.

Beyond motion time, additional performance indicators such as the number of

attempts required to complete a task, the frequency of errors, and mission-specific

metrics (e.g., successful manipulation or navigation accuracy) are also recorded.

These secondary variables enrich the understanding of user interaction with each

HMTI under different mission circumstances. For instance, a lower number of
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attempts paired with reduced motion time may indicate both system efficiency

and user proficiency.

Together, these objective measures establish a robust quantitative foundation for

evaluating HMTIs, allowing the identification of both strengths and limitations

in interface design and user interaction across varied task complexities.

5.1.2 Subjective Measures

The subjective measures analyse the usability and perceived workload of the

system from the user’s perspective, complementing the objective performance

metrics. These measures are critical for understanding the cognitive and physical

demands imposed by each HMTI, as well as the user’s overall comfort, effort, and

satisfaction during operation. In this evaluation, two widely accepted instruments

are employed: the NASA-TLX and the SUS.

NASA-TLX is a multidimensional assessment tool developed by the National

Aeronautics and Space Administration to evaluate perceived workload. It has

been extensively validated across various high-demand operational settings, in-

cluding aviation, medical systems, and more recently, robotics. The full NASA-

TLX assesses six workload dimensions: mental demand, physical demand, tem-

poral demand, effort, frustration, and perceived performance. However, given the

short-term and mission-oriented nature of robot teleoperation tasks in this study,

only the most directly relevant dimensions—mental and physical demands—are

selected for analysis. These two dimensions are sufficient to capture the primary

cognitive and bodily strain imposed during interaction without overburdening the

participant with unnecessary complexity.

In the questionnaire, participants rate the intensity of each selected workload

component on a scale from 0 (very low demand) to 100 (very high demand). A
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lower score corresponds to lower perceived workload, indicating that the interface

is more intuitive, less mentally taxing, or physically easier to operate. As shown

in Table 5.3, average workload ratings are reported separately for locomotion,

manipulation, and combined tasks, allowing for fine-grained comparison between

interfaces across different mission types. This distinction is particularly important

in robotic systems, where some interfaces may excel in 3D manipulation but

underperform in basic navigation or locomotion due to limitations in control

mapping or feedback.

The System Usability Scale (SUS) is applied to measure users’ overall impressions

of system usability. It consists of ten fixed statements rated on a five-point Likert

scale, ranging from 1 (“Strongly disagree”) to 5 (“Strongly agree”), as summarised

in Table 5.4. The statements alternate between positive and negative phrasing

to control for acquiescence bias and ensure a balanced assessment. While this

design increases reliability, it also complicates direct interpretation. Therefore,

the responses are converted into a normalised usability score, where a higher value

reflects better usability.

Together, NASA-TLX and SUS offer a comprehensive perspective on the subjec-

tive experience of users, revealing not only how well an interface performs but

how well it aligns with human preferences, cognitive ergonomics, and physical

comfort. These insights are essential for designing intuitive and effective HMTIs

that can be reliably deployed in high-stakes field scenarios.

5.1.3 Experiment Participation

The experiment involved voluntary participation from a group of users, each

of whom contributed to the evaluation of the proposed HMTIs. Prior to the

start of the experiment, each participant was required to complete a pre-test
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questionnaire. This questionnaire was designed to capture baseline information

about the users’ demographic background, prior experience with gamepads or

motion capture systems, and any previous exposure to robot teleoperation tasks.

This information serves as a key factor in interpreting the variability in user

performance and preference.

At the beginning of each experimental session, participants received standard-

ised basic training. This training included a demonstration video and hands-on

guidance to ensure users were familiar with the operation principles and control

strategies of both HMTIs. The goal was to minimise confusion and establish a

consistent knowledge base across all participants, thereby reducing bias due to

uneven prior experience, as detailed in Appendix.B.1.

The experimental trials were conducted in a controlled environment where users

performed a series of standard tasks using each interface. Two cameras were set

up to record the entire process: one focusing on the user’s interaction with the

HMTI and the other on the robot’s execution of tasks. This dual-angle recording

enabled thorough post-hoc analysis of both human input and robotic response,

and facilitated accurate measurement of motion time, task success, and other

performance metrics.

Upon completion of the experimental tasks, users were asked to fill out a post-test

questionnaire. This questionnaire included both the NASA-TLX and SUS forms,

as discussed in the previous section, and provided a structured way to capture

subjective feedback on usability, workload, and interface preferences. Informal

interviews and open-ended feedback were also encouraged to gain deeper insights

into the participants’ experiences.

Overall, this structured participation protocol ensured a consistent experimental

procedure while capturing both quantitative and qualitative data from diverse
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user backgrounds, thereby supporting a comprehensive evaluation of the proposed

HMTIs.

5.2 Result

The proposed HMTI evaluation scheme was applied to systematically assess the

performance and usability of two distinct interfaces across users with different

backgrounds. The evaluation aimed to capture both quantitative and qualitative

differences between the interfaces, focusing on task execution efficiency, predicted

performance trends, and user experience.

The results demonstrate that the choice of HMTI, as well as the user’s prior ex-

perience, particularly with gamepad control, significantly influence task perfor-

mance across various mission types. Notable differences were observed in motion

time, task completion attempts, and perceived workload. These findings are pre-

sented through three complementary analyses: objective performance measures,

prediction using extended Fitts’ Law, and subjective evaluations based on stan-

dardised questionnaires. Together, they provide a comprehensive understanding

of the relative strengths and limitations of each interface under different task

demands.

5.2.1 Objective Measure

The objective evaluation relies on motion time as the primary response variable to

assess system performance. This metric represents the time required for each of

the ten participants to complete the designated experiment missions. As shown

in Fig. 3.6, motion time data was systematically recorded and analysed using

MATLAB and Excel. To ensure accuracy and consistency, three independent

evaluators reviewed video recordings of each trial and manually annotated the
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Figure 5.2: The side-by-side comparison of the motion time to complete each mis-
sion between user group A with past gamepad experience, user group B without
past gamepad experience, and the total average of all the users.

time, which was then averaged across evaluators to reduce individual bias.

The experimental design includes two key predictor variables: the type of HMTI

used—either the gamepad or the wearable WMCS—and the user’s prior expe-

rience with gamepads. These predictors allow for a comparative analysis across

both interface types and user backgrounds. Fig. 3.6 presents the aggregated

motion times for all users, offering a side-by-side comparison of performance out-

comes across different mission types and interface conditions.

Fig. 5.2 presents the mean and range of motion time results for user groups A

and B, enabling a direct comparison of performance between users with and with-

out prior gamepad experience. This comparison highlights how user background

influences task efficiency across different HMTIs. To support this analysis, sta-

tistical methods—including the calculation of mean values, standard deviations,

and P-values from independent T-tests—are applied, as summarised in Table 5.1.

These statistical comparisons reveal the extent and significance of performance

differences between interfaces and user groups.

In addition to motion time, the number of attempts required to complete each

mission is also examined as an indicator of system usability. Specifically, for

the complex Explosive Ordnance Disposal (EOD) task, users required an average
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(a) User group A

(b) User group B

(c) All user groups

Figure 5.3: The motion time of users took to complete each mission, which is
represented by different IDs, and the fitted linear polynomial line for average
motion time: (a) user group A, (b) user group B, and (c) all 7 selected user.
(The lower the motion time, the better performance)

167



5.2 Chapter 5. Evaluation Scheme for Human-Machine Team

Table 5.1: Statistical analysis shows the mean, standard deviation (Std), and
p-value comparing two HMTIs and two groups of users. The most representative
results (p-value <0.1) appear in bold, and significant results (p-value <0.05)
appear in italic.

Users HMTI Result Locomotion Manipulation Combined EOD

All users

GP
Mean 14.60 23.80 40.70 149.88
Std 4.59 24.07 17.20 82.90

WMCS
Mean 31.90 13.40 41.88 89.50
Std 14.73 5.22 11.14 30.41

P-value 0.002 0.086 0.364 0.016

Group A
(w/ exp)

GP
Mean 14.00 14.40 30.40 63.67
Std 4.43 4.13 9.89 20.73

WMCS
Mean 23.40 12.20 36.75 63.00
Std 12.75 4.40 6.50 21.74

P-value 0.050 0.237 0.089 0.411

Group B
(w/o exp)

GP
Mean 15.20 33.20 51.00 201.60
Std 4.66 31.07 16.79 60.04

WMCS
Mean 40.40 14.60 47.00 105.40
Std 11.25 5.68 12.39 22.84

P-value 0.007 0.119 0.379 0.008
Group A

VS.
Group B

GP P-value 0.360 0.141 0.057 0.005
WMCS P-value 0.062 0.206 0.094 0.093
ALL P-value 0.054 0.102 0.016 0.012

of 3.4 attempts when using the gamepad, compared to only 1.8 attempts with

the WMCS. This suggests that the WMCS may offer more intuitive control in

high-difficulty, manipulation-heavy tasks, particularly for users with limited prior

experience.

The study adopts widely accepted statistical thresholds in the field of human-

robot interaction, setting a p-value of less than 0.1 as indicative of representative

results and a p-value below 0.05 as statistically significant, in line with prior work

[147]. As shown in Table 5.1, when considering all users, the comparison between

the two HMTIs in the combined test does not yield statistically significant re-

sults. However, in all other mission categories—locomotion, manipulation, and

the EOD task—representative or significant differences are observed, highlighting

meaningful variations in interface performance.
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Notably, the locomotion and EOD tasks exhibit statistically significant perfor-

mance differences between the two HMTIs, suggesting that interface design plays

a more critical role in these mission types. Further analysis of results within indi-

vidual user groups reveals interesting contrasts. For example, in the locomotion

test, both user groups show a performance advantage with the gamepad, but the

effect is more pronounced in group B (p-value = 0.007) than in group A (p-value

= 0.05). Similarly, the WMCS shows a stronger advantage in the manipulation

task for group B (p-value = 0.119) compared to group A (p-value = 0.237). In

the combined task, the results are reversed between the groups, and in the EOD

task, the WMCS yields a statistically significant advantage for group B (p-value

= 0.008), whereas no significant difference is observed for group A (p-value =

0.411).

These findings suggest that users without prior gamepad experience may benefit

more from the intuitive mapping offered by the WMCS, particularly in complex

manipulation or integrated tasks. Conversely, experienced users are better able

to leverage the precision of the gamepad in simpler locomotion tasks, leading to

nuanced performance dynamics across mission types and user backgrounds.

The standard deviation (std) provides insight into the variability of user perfor-

mance across trials. As shown in Table 5.1, the gamepad generally results in more

consistent performance during the locomotion test, with a notably smaller stan-

dard deviation compared to the WMCS (std = 4.59 vs. 14.73). In contrast, the

WMCS demonstrates more stable performance in tasks involving manipulation

(std = 5.22 vs. 24.07) and in the EOD task (std = 30.41 vs. 82.90), indicating

that users were able to achieve greater consistency with the wearable system in

scenarios requiring complex 3D arm movement.

When comparing across user groups, group A (users with prior gamepad experi-
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ence) exhibits more minor standard deviations in most missions, reflecting a more

uniform level of performance. The only exception is the locomotion task using

the WMCS, where group A shows more significant variability. This suggests that

while prior experience may enhance performance consistency overall, it does not

necessarily translate into more stable control when using unfamiliar interfaces

like the WMCS in locomotion tasks.

The performance differences between user groups operating the same interface

also present notable trends. To investigate this, the study conducts independent

T-tests comparing group A (users with prior gamepad experience) and group B

(users without prior experience) across each standard test and the EOD task,

as reported in the final three columns of Table 5.1. Results indicate a more

pronounced performance gap between the two groups when using the WMCS in

the locomotion test (p-value = 0.062) compared to the gamepad (p-value = 0.36).

This suggests that while the WMCS offers intuitive control, its effective use in

locomotion tasks may still be influenced by individual adaptability, particularly

for inexperienced users.

In the more complex EOD task, a significant advantage is observed for gamepad

users when using the gamepad interface (p-value = 0.005), whereas the perfor-

mance gap is less pronounced with the WMCS (p-value = 0.093). This result

aligns with the expectation that prior familiarity with discrete controls benefits

users in tasks that require both navigation and manipulation under time pressure.

Furthermore, when all users are considered collectively, statistically significant

differences between the user groups emerge in both the combined test and the

EOD task. These findings indicate that task complexity amplifies performance

disparities, reinforcing the importance of evaluating HMTIs across a range of

mission types to uncover how user experience interacts with interface design.
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5.2.2 Prediction Model using the Extended Fitts’ Law

As part of the proposed HMTI evaluation scheme, predictive modelling is incor-

porated to assess how well system performance can be anticipated based on task

characteristics. This component serves not only to validate existing performance

data but also to enable forward-looking evaluations of HMTI suitability for tasks

that have not been tested. In this study, an extended version of Fitts’ Law is

applied to model and predict motion time based on task difficulty, quantified

through an Index of Difficulty (ID) tailored to real-world robot teleoperation.

Fitts’ Law posits a logarithmic relationship between movement time and the dif-

ficulty of a task, where higher IDs are associated with longer completion times.

By extending this framework with mission-specific spatial and operational pa-

rameters, the model provides a scalable and interpretable method for forecasting

task performance across different interfaces and user groups.

To test the validity of this predictive model, the analysis focuses on a subset of

seven users who completed all four missions using both HMTIs. These users—A1,

A3, A4, and B1 through B4—were selected due to the availability of complete

data, as shown in Fig. 3.6. MATLAB was used to construct linear polynomial

fits between the extended ID values and the users’ measured motion times for

standard tests, forming the basis for predicting performance on the EOD task.

This predictive analysis complements the objective measurements by offering an

analytical tool to evaluate the expected behaviour of users across tasks of varying

complexity.

Due to technical constraints, three participants were unable to complete all mis-

sions in the experiment. As a result, the predictive model was evaluated using

data from the remaining seven users who successfully completed all four mis-

sion types—locomotion, manipulation, combined, and EOD—using both HMTIs.
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These users include A1, A3, A4, and B1 through B4, as referenced in Fig. 3.6.

To construct the prediction model, MATLAB was used to fit motion time data

against mission difficulty, as defined by the extended difficulty modelling. The ID

values for each mission had been previously calculated based on environmental

layout and target parameters, as formalised in Chapter 3, and are summarised in

Table 3.1. These values formed the basis for evaluating the relationship between

task complexity and user performance, enabling the prediction of motion time for

future missions.

The extended ID values were then plotted against the average motion time for

each mission, aggregated by user group, as shown in Fig. 5.3. The four mis-

sions—locomotion, manipulation, combined, and EOD—are presented from left

to right in each graph. A linear polynomial fit was applied to the average motion

times from the first three standard tests to model the relationship between ID

and performance. The resulting fit was then used to predict the motion time

for the EOD task, which serves as an unseen validation case. The fitted models

follow the form of extended Fitts’ Law, with coefficients a and b summarised in

Table 5.2.

To begin, the model was applied to data from the three users in group A. MAT-

LAB was used to generate linear regression curves for both the gamepad and

WMCS conditions. The root-mean-square deviation (RMSE) of the fitted lines

was 4.65 for the gamepad and 10.12 for the WMCS, indicating a closer fit in

the gamepad condition. The predicted EOD performance also aligned with real-

world observations: the model correctly projected that group A users—who had

prior gamepad experience—would perform better with the gamepad than with

the WMCS. These findings, illustrated in Fig. 5.3a, support the validity of the

extended Fitts’ Law as a predictive tool within this evaluation framework.
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Table 5.2: Constant a and b in Fitts’ Law and the difference between predicted
motion time and average measured time.

Users: HMTI Measured MT a b Predicted MT Difference

Group A
Gamepad 63.67s -5.504 7.884 73.98s -16.18%
WMCS 63s -4.513 8.622 82.40s -30.79%

Group B
Gamepad 177.25s -17.89 17.00 153.45s 13.43%
WMCS 95s 11.80 7.178 84.16s 11.42%

All users
Gamepad 128.57s -12.58 13.09 119.39s 7.14%
WMCS 81.29s 4.807 7.797 83.40s -2.6%

Next, the model was applied to the four users from group B, who lacked prior

gamepad experience. Linear polynomial curves were fitted to their average mo-

tion time data for both HMTIs using MATLAB. The resulting root-mean-square

deviation (RMSE) values were 8.81 for the gamepad and 22.26 for the WMCS,

indicating greater variability and a less precise fit compared to group A. Notably,

as shown in Fig. 5.3b, the fitted lines for the gamepad and WMCS intersect at

approximately an ID value of 3.1. This crossover point suggests that for sim-

pler tasks (lower ID), the gamepad yields better performance, while the WMCS

becomes more effective as task complexity increases.

When comparing across groups, group A demonstrates consistently lower RMSE

values than group B (4.65 vs. 8.81 for the gamepad, and 10.12 vs. 22.26 for

the WMCS), indicating that the model fits more accurately when users have

greater interface familiarity. This higher accuracy translates into more reliable

predictions. For instance, the difference between the predicted and actual motion

time for the EOD task is notably smaller in group B’s WMCS model (11.42%)

than in group A’s WMCS model (−30.79%), as detailed in Table 5.2. This finding

highlights that while model accuracy is influenced by user consistency, prediction

precision may also depend on interface adaptability to novice users.

Although users in groups A and B differed in their prior gamepad experience,

they shared several other relevant characteristics, including similar levels of tech-
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nical proficiency and task exposure during the study. Therefore, to evaluate the

generalisability of the prediction model, all seven selected users were aggregated

into a single group, and the extended Fitts’ Law model was reapplied. As shown

in Fig. 5.3c, linear polynomial curves were fitted to the combined dataset using

MATLAB. The resulting RMSE values were 3.04 for the gamepad and 17.06 for

the WMCS, suggesting improved model accuracy when aggregating across users.

Interestingly, the intersection point of the fitted lines occurs around an ID value

of 3.5, indicating a performance crossover between the two HMTIs. Specifically,

the gamepad outperforms the WMCS in lower-difficulty missions, whereas the

WMCS demonstrates superior performance as task complexity increases. This

trend aligns with earlier observations from individual groups and supports the

notion that interface effectiveness is task-dependent.

Furthermore, as the sample size increases, the model’s predictive reliability im-

proves. The differences between predicted and measured motion times for both

HMTIs fall below 10%, as shown in Table 5.2. This outcome reinforces the

value of incorporating prediction as a component of the evaluation framework,

demonstrating that the extended Fitts’ Law can effectively model and anticipate

performance trends across diverse user groups and mission types.

The proposed extended Fitts’ Law successfully predicted the performance out-

comes of different user groups across varying mission complexities. The accuracy

of the prediction was found to be influenced by both the sample size and the

users’ prior experience with the control interfaces. Specifically, users with consis-

tent backgrounds and familiarity yielded tighter model fits and smaller prediction

errors. Importantly, a power analysis confirmed that the selected group of seven

users provides sufficient statistical power (0.8) at a type I error rate of 0.1, af-

firming the adequacy of the sample for distinguishing performance differences
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Table 5.3: Mean scores for NASA Task Load Index, on a scale of 0 to 100. (The
lower score, the lower workload, marked in bold.)

NASA-TLX Gamepad WMCS

Mentally
demanding:

Locomotion 52 51
Manipulation 67 35
Combined and EOD task 69 49
Average workload 63 45

Physically
demanding:

Locomotion 27 55
Manipulation 39 32
Combined and EOD task 43 45
Average workload 36 44

between the two HMTIs in the context of quadruped manipulator teleoperation.

These results underscore the utility of integrating a predictive modelling com-

ponent within the evaluation framework, offering not only retrospective analysis

but also forward-looking insights into system scalability and task adaptability.

5.2.3 Subjective Measure

Subjective measures were gathered through post-experiment questionnaires to

capture user perceptions of workload and usability, complementing the objective

performance data. Two standardised assessment tools were employed: the NASA-

TLX, as shown in Appendix. B.2, and the SUS, as demonstrated in Appendix. B.3.

These instruments provided insight into how users experienced each HMTI during

different tasks, particularly in terms of cognitive effort, physical demand, and

interface intuitiveness.

Overall, user preferences varied across task types. Specifically, 58% of participants

preferred the gamepad for the locomotion test, while 44% favoured the WMCS

for the manipulation task. Interestingly, only 28% preferred the WMCS during

the complex EOD task, suggesting that interface preference may shift with task

complexity and required precision.
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Table 5.4: Users’ average scores for System Usability Scale (on a scale of 1
(Strongly disagree) to 5 (Strongly agree)).
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To evaluate workload, two key dimensions—mental and physical demand—were

extracted from the NASA-TLX, as shown in Apeendix.B.2, and applied to each

mission type. As summarised in Table 5.3, the WMCS consistently resulted in

lower reported mental workload across all task types. This suggests that the

spatially intuitive control mapping of the WMCS reduced users’ cognitive bur-

den. However, physical demand scores were more balanced: while the gamepad

imposed less physical strain in locomotion tasks, the WMCS was perceived as

physically easier during manipulation, likely due to its natural alignment with

arm movements.

Usability scores derived from the SUS, as shown in Table 5.4, reflect a nu-

anced perspective. While many users found the WMCS more complex to op-

erate—especially at first contact—they reported greater confidence when using

it, indicating that the wearable system may offer a steeper learning curve but

higher perceived control once mastered. These results highlight the importance

of considering both usability and learnability when evaluating HMTIs for field

deployment.

5.3 Discussion

This section interprets the findings from the objective, predictive, and subjective

evaluations of the two HMTIs: the gamepad and the wearable WMCS. By inte-

grating performance metrics, model predictions, and user feedback, the discussion

aims to highlight key insights into the practical implications of interface design,

user experience, and task complexity in teleoperated robot systems.

The results underscore the importance of selecting an appropriate HMTI based

on mission demands and user profiles. Significant differences were observed in

user performance and perception depending on the interface used and the type of
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task performed. These differences were especially prominent in locomotion and

manipulation scenarios—two fundamental operations in real-world teleoperation

tasks such as search and rescue, remote maintenance, and explosive ordnance

disposal. In light of these findings, the discussion explores the trade-offs between

intuitive control, usability, adaptability, and learnability of each interface, and

how they influence task success under varying operational conditions.

From the results presented in Table 5.1, it is evident that the most representative

(p-value ¡ 0.1) and statistically significant (p-value ¡ 0.05) findings appear across

the majority of mission types. These outcomes highlight notable performance

differences between the two evaluated HMTIs—the gamepad and the wearable

WMCS—particularly in tasks involving locomotion and manipulation. Such re-

sults are consistent with the distinct operational modalities of the two interfaces:

while the gamepad offers more structured and discrete control inputs, the WMCS

enables more natural and continuous movement mapping.

This distinction is highly relevant to real-world scenarios, where crisis manage-

ment missions such as hazardous material handling, search and rescue, or explo-

sive ordnance disposal typically require seamless integration of both locomotion

and manipulation within a single task [29]. For instance, navigating a robot

through rubble or a confined space often precedes or coincides with the manip-

ulation of tools, objects, or hazardous components. In such high-stakes environ-

ments, the interface must not only support accurate and efficient control but also

reduce operator cognitive load and facilitate intuitive interaction.

Therefore, the presence of measurable differences between HMTIs in these core

operational domains underscores the importance of employing a comprehensive

and multi-faceted evaluation framework—one that accounts for both performance

outcomes and user experience—to inform the selection and deployment of suitable
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interfaces. In particular, hybrid performance advantages suggest that combining

the intuitive, spatial mapping of the WMCS with the ergonomic familiarity and

accessibility of gamepads could offer a more robust solution. An HMTI that lever-

ages the best of both systems has the potential to improve operator effectiveness

and reduce the likelihood of failure during critical missions.

The control mechanisms of the two HMTIs differ fundamentally in how they trans-

late human input into robotic motion, which directly impacts user performance

across different task types. The gamepad interface, with its dual joystick config-

uration, primarily provides linear commands in a two-dimensional control space.

This modality is well-suited for planar navigation tasks, such as forward/back-

wards and lateral movement during locomotion. As a result, users generally found

it easier to perform locomotion tasks using the gamepad, as it aligns closely with

conventional input paradigms found in video games and remote-controlled vehi-

cles.

In contrast, the WMCS allows for position input in a three-dimensional space by

directly mapping the human operator’s arm and body movements to the robot’s

manipulator. This naturalistic mapping enables users to execute complex manip-

ulation tasks more intuitively, particularly when the robot arm must move in all

three spatial dimensions simultaneously. For example, actions such as reaching,

rotating, and grasping objects could be performed more fluidly and with greater

spatial awareness using the WMCS.

However, in practical trials, it was observed that users made more errors when

attempting to control the manipulator with the gamepad. These errors often

stemmed from the cognitive disconnect between the 2D joystick inputs and the

3D motion required for effective arm manipulation. Users had to mentally trans-

late joystick movements into Cartesian space operations, which increased their
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cognitive load and led to more frequent mistakes, particularly in tasks involv-

ing precise spatial coordination or rotational alignment. In contrast, the WMCS

reduced this cognitive translation effort, allowing for more direct and embodied

control over the manipulator’s motion. These findings highlight the impact of

control dimensionality on task performance and suggest that interface suitability

is closely linked to the nature of the motion being executed.

The extended Fitts’ Law model used in this study reinforces a foundational prin-

ciple in human motor control: motion time increases as task difficulty rises. This

observation is consistent with the original formulation of Fitts’ Law [12], as well

as with several of its later modifications designed for digital and embodied inter-

action contexts [13], [24], [25]. By introducing an extended Index of Difficulty

tailored to real-world robot teleoperation scenarios, the model enabled nuanced

prediction of user performance across both standardised and complex tasks.

Interestingly, empirical results show that both HMTIs—despite their differences—consistently

outperformed the predicted motion times generated by the extended Fitts’ Law,

as shown in Table 5.2. This suggests that participants may have leveraged strate-

gic or adaptive behaviours during the experiment, particularly in tasks requiring

higher-order reasoning or environmental improvisation. For example, the fastest

user shortened their task duration in the EOD scenario by pushing out the wire

connector instead of pulling it, as originally instructed. Such improvisation likely

reflects a combination of user familiarity with digital input devices and prior

gaming experience, which may have facilitated more efficient motion planning

and execution.

Another contributing factor lies in the order of task exposure. All users interacted

with both interfaces in the same progression—from tasks with the lowest ID to

those with the highest. Although none of the participants had prior experience
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with the WMCS, they progressively improved their performance over the course

of the experiment. This learning effect is reflected in the slope differences between

the linear fits shown in Fig. 5.3c, where motion times using the WMCS decreased

more sharply than those of the gamepad. Early-stage WMCS use was associated

with more frequent mistakes, but these errors diminished in later trials, indicating

a rapid increase in user proficiency through short-term adaptation.

Interviews and post-experiment feedback further support this observation. Sev-

eral users reported initial difficulty coordinating trigger-based activation with

gesture-driven input (referred to as “trigger-argument strategy coordination”)

when using the WMCS. However, as they gained more exposure, they became

more confident and efficient, reinforcing the hypothesis that the WMCS may

have a steeper learning curve but ultimately enables more expressive and efficient

control in high-difficulty tasks. These findings validate the usefulness of the ex-

tended Fitts’ Law not only as a predictive model but also as a diagnostic tool

for capturing learning dynamics and adaptive behaviour across different interface

modalities.

The usability results reveal a trade-off between cognitive and physical demands

across the two interfaces. Specifically, the gamepad was associated with a higher

mental workload but lower physical exertion, as indicated by NASA-TLX ratings.

In practical terms, users occasionally encountered difficulties recalling the func-

tions mapped to various buttons and joysticks, particularly when transitioning

between locomotion and manipulation tasks. This cognitive overhead was more

pronounced during high-pressure missions, where rapid response and multi-step

coordination were required. As a result, the mental load associated with inter-

face memorisation and discrete input control contributed to elevated subjective

workload scores.
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Conversely, the WMCS offered a more direct and embodied form of control, re-

ducing the need for abstract button mapping. Users were able to operate the

manipulator through natural arm and body movements, which made the interface

more intuitive, especially for spatially complex tasks. However, this advantage

came at the cost of increased physical effort. Unlike the gamepad, which relies

on finger movement, the WMCS demands full-body engagement—including arm

extension, rotation, and balance coordination—which can lead to fatigue during

prolonged use. These physical demands were reflected in higher physical workload

scores for locomotion tasks using the WMCS.

The SUS results suggest that users generally rated the gamepad as more usable

overall, particularly due to its familiarity and plug-and-play simplicity. Many

users had prior exposure to gamepads through gaming or other remote control

applications, giving them a significant advantage in initial trials. In contrast,

the WMCS required additional setup effort, including sensor calibration, wire-

less connection, and battery management, which introduced logistical complexity

and potential points of failure. While users acknowledged the intuitive nature

of motion-based control, these operational barriers contributed to lower overall

usability scores in SUS evaluations.

These findings highlight an important distinction between perceived and practi-

cal usability: while the WMCS offered a more natural control scheme, its setup

and maintenance requirements, combined with greater physical strain, made

it less accessible for users with limited technical experience. In contrast, the

gamepad—despite its steeper cognitive demands—benefited from existing user

familiarity and a lightweight, portable form factor that made it more convenient

for rapid deployment in field operations.

In addition to the structured questionnaires, direct message feedback and in-depth
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interviews provided valuable qualitative insights into user perceptions of the two

HMTIs. Several users shared specific reflections on the strengths and limitations

of each interface. One participant described the gamepad as “more sensitive

and user-friendly,” highlighting its responsiveness and ease of use, particularly

in tasks requiring quick directional input. Another user expressed a preference

for the WMCS, noting that “the motion-capture suit had more straightforward

controls,” referring to the intuitive spatial mapping between human movement

and robot action.

Some concerns were also raised regarding the reliability of the WMCS. One user

pointed out an initial issue with control accuracy, which was later traced back to

miscalibrated IMU sensors. After recalibration, the issue was resolved and did not

affect the overall experimental results. This highlights the importance of system

readiness and sensor integrity in ensuring consistent performance, particularly in

wearable interface setups.

Importantly, a recurring theme emerged from multiple interviews: the potential

benefit of a hybrid control system that combines the strengths of both interfaces.

As one user articulated, “In an ideal world, I’d have a hybrid system with a

joystick for locomotion and hand controls for the arm.” This sentiment reflects

the general consensus that while the gamepad excels in navigation due to its

precision and simplicity, the WMCS provides superior control for manipulation

through its natural motion correspondence.

This user-driven insight suggests a promising direction for future interface de-

velopment. A modular system that leverages the gamepad for locomotion tasks

and the WMCS for manipulator control could offer an optimal balance between

usability, intuitiveness, and task-specific efficiency. Such a hybrid HMTI would

not only enhance operational flexibility but also reduce training time by allowing
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users to engage with each subsystem in the context where it performs best.

The comparison between the gamepad and the WMCS reveals an important dis-

crepancy between system performance and perceived usability. While one inter-

face may yield faster or more consistent task execution, it does not necessarily

translate to higher user satisfaction or lower cognitive and physical workload.

This phenomenon highlights a potential dissociation between objective perfor-

mance metrics and subjective user experience, emphasising that high performance

does not inherently imply high usability, and vice versa.

Such a separation suggests that evaluating only one dimension—either quantita-

tive task efficiency or qualitative user preference—would provide an incomplete

picture of system effectiveness. For instance, the gamepad may appear superior

in terms of usability due to its simplicity and widespread familiarity, yet the

WMCS may offer superior manipulation precision and lower mental demand in

complex tasks. These contrasting outcomes underscore the necessity of incor-

porating both performance and usability evaluations within any comprehensive

human-robot interaction assessment.

Therefore, a dual-faceted evaluation approach is essential for informed decision-

making in HMTI design and deployment. By considering both how well a sys-

tem performs and how intuitively it can be used and maintained, researchers

and practitioners can make more nuanced judgments about interface suitability

across different users, tasks, and environments. This comprehensive perspective

is particularly critical in high-stakes applications, such as search and rescue or

hazardous material handling, where both efficiency and operator well-being are

paramount.
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Chapter 6

Multi-Robot Task Planning

Application

The task modelling proposed in Section 3 can also be used to help large lan-

guage models (LLMs) in decision making for multi-robot task allocation based

on mission spatial information.

6.1 Methodology

The cornerstone of the methodology is the introduction of a prompt-layer frame-

work tailored for LLM-based decision-making systems. This framework extends

the conventional multi-robot task allocation paradigm by incorporating not only

the static capabilities of each robot but also dynamic performance factors, such

as expected completion time and probability of success. These additional dimen-

sions are derived from a formal task difficulty model, which allows the system

to reason about task allocation in a manner that prioritises both efficiency and

robustness. As illustrated in Figure 6.1, this enables the system to make more
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Figure 6.1: Illustrative representation of the proposed FittsPrompt for multi-
robot task allocation.

nuanced allocation decisions by selecting the most appropriate robot for a given

task—not merely based on its ability to perform the task, but by evaluating how

challenging the task is for that robot and optimizing for reduced execution time

and higher likelihood of success.

This extension moves beyond traditional methods that often rely solely on rule-

based or cost-function-driven allocation schemes. Instead, this study embeds cog-

nitive and spatiotemporal reasoning into the LLM’s prompt design, allowing it

to account for task difficulty in a generalizable and interpretable way. To address

the intrinsic limitations of LLMs in processing complex, high-dimensional spatial

observations, such as robot-to-target distances, orientations, or joint constraints,

this study introduces a specialised preprocessing mechanism called FittsPrompt.

This module transforms raw spatial state data into a scalar task difficulty repre-

sentation using the extended Index of Difficulty (ID) model. By encoding relevant
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environmental complexity into this compact form, FittsPrompt prevents raw, ver-

bose state descriptions from overloading the LLM prompt, thereby improving the

model’s ability to generalise across environments while reducing token consump-

tion.

Algorithm 1 FittsPrompt pseudocode

Require: Set of robots R, set of tasks T , and set of targets G
Ensure: Optimal robot selection for each task
1: for each task tj ∈ T do
2: Identify candidate robots Rc ⊆ R based on capability

using LLM
3: if |Rc| = 1 then
4: Select the only robot r∗j ∈ Rc

5: else
6: for each robot ri ∈ Rc do
7: Compute ID(ri, gk) with observation
8: end for
9: Select r∗j = argminri∈Rc ID(ri, gk) optional using LLM
10: end if
11: Assign r∗j to task tj
12: Execute task tj with r∗j
13: end for

This preprocessing step is crucial in ensuring the effectiveness of the LLM as

a reasoning engine for robotics tasks. Without this abstraction, the model’s

input space would be cluttered with detailed metric data, making it prone to

confusion or hallucination. By contrast, with FittsPrompt, the LLM receives

a clear, semantically meaningful representation of the task environment, which

allows it to focus on optimising assignment logic. The full task allocation pipeline,

which combines the task difficulty scoring mechanism with LLM-driven planning

and selection, is formally described in Algorithm 1.

The design of the framework is rooted in two central assumptions, both consistent

with the empirical findings of Fitts’ Law [12] as applied to robotic contexts. First,

tasks that present higher inherent difficulty—as captured by geometric complex-

ity, spatial alignment, or orientation constraints—require more time for robots
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to execute. This relationship aligns with the original principle that movement

time increases logarithmically with task complexity. Second, this study assumes

that higher task difficulty also correlates with lower success rates, due to greater

sensitivity to execution errors, delays, or environmental disturbances. These as-

sumptions are supported by observations in robotic manipulation, navigation,

and coordination literature, where increased task difficulty often leads to higher

variance in performance outcomes.

By integrating the ID as a core component of the LLM decision process, the

method introduces a quantifiable, interpretable, and scalable measure of task

complexity that enhances the performance of multi-robot systems. This allows

the LLM to make informed decisions about not just whether a robot can perform

a task, but how well it is likely to do so, optimising allocation strategies with

respect to both time and reliability. As a result, the proposed framework sup-

ports more adaptive, efficient, and resilient task assignment in scenarios ranging

from warehouse automation to disaster response, where robot heterogeneity and

mission unpredictability are significant concerns.

6.1.1 Task Definition

This study considers a shared environment where multiple autonomous robots

operate concurrently to complete a predefined set of tasks. Each task involves

interacting with one or more physical targets and varies in complexity due to

differences in spatial configuration, required skills, and surrounding contextual

constraints. The objective is to assign these tasks to the most appropriate robots

in a manner that maximises mission efficiency, minimises execution time, and

increases the likelihood of success.

Let the set of robots in the environment be defined as R = {r1, r2, . . . , rn}. Each
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robot ri is associated with a specific state that includes spatial parameters such

as position and orientation, a defined set of capabilities or skills (also referred to

as a kill set), and possibly dynamic attributes like energy levels or current work-

load. These state descriptors influence the robot’s suitability and effectiveness in

performing a given task.

Similarly, this study defines the set of targets as G = {g1, g2, . . . , gm}, where each

target gk represents a physical objective within the environment that must be

approached, manipulated, or otherwise acted upon. Targets may impose spatial

constraints—such as occlusion, limited access angles, or confined workspace—and

can vary in how accessible or demanding they are depending on the robot’s con-

figuration.

The overall task set is denoted as T = {t1, t2, . . . , tl}, where each task tj ∈ T

corresponds to an allocation instance defined by three core elements: a designated

target gk ∈ G, the skill requirements needed to accomplish the task, and any

relevant environmental or operational constraints. These constraints may include

spatial difficulty, temporal urgency, or sequencing dependencies with other tasks.

In existing LLM-based task allocation frameworks, large language models are

typically used to parse task specifications and identify a subset of robots, Rc ⊆ R,

that possess the necessary skills to accomplish a given task tj. While this step

ensures basic feasibility, it does not account for spatial efficiency or potential

variation in performance across robot candidates.

To address this limitation, the proposed FittsPrompt framework introduces task

difficulty modelling into the LLM-driven decision process. Once the capable sub-

set Rc is identified, FittsPrompt enables the LLM to further evaluate each robot

ri ∈ Rc in relation to the assigned target gk, using spatial parameters to esti-

mate the difficulty of completing the task. These parameters—such as Euclidean
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distance, alignment angles, and task-specific interaction constraints—are used to

compute a scalar task difficulty value based on the extended 3D Index of Difficulty

formulation.

The resulting difficulty scores provide the LLM with a compact yet informative

abstraction of the task environment. Rather than processing raw geometric data,

the LLM receives a semantically meaningful prompt encoding the estimated effort

required for each robot-target pair. This allows the LLM to select the most

efficient robot ri ∈ Rc for executing task tj, ensuring that both capability and

spatial feasibility are taken into account during task assignment.

By embedding task difficulty directly into the decision pipeline, the framework

supports more context-aware and resource-efficient task allocations in multi-robot

systems operating in dynamic and spatially complex environments.

The task difficulty, quantified by the ID, is used to evaluate how challenging it

is for a given robot to complete a specific task based on its spatial relationship

to the target. For a task tj, the ID values are computed for each robot ri within

the subset of candidate robots Rc, in relation to a designated target gk. This is

expressed as:

{ID(ri, gk) | ri ∈ Rc} = {f(pri , pgk) | ri ∈ Rc} (6.1)

Here, Rc ⊆ R represents the subset of robots that possess the required capabilities

to perform task tj. Each robot ri is characterised by a set of spatial parameters,

denoted as pri , which includes its current position, orientation, and the physi-

cal dimensions of its end-effector or tool. Similarly, the target gk is defined by

a corresponding parameter set pgk , which includes its location, orientation in

the environment, physical size, and any relevant interaction constraints such as

190



Chapter 6. Multi-Robot Task Planning Application 6.1

approach angles or workspace limitations.

The function f serves as a mapping between the robot-target parameter pairs

and a scalar difficulty score. This function integrates geometric and kinematic

information to estimate how demanding the task would be for each robot given its

current state. The formulation of f is based on an extended version of Fitts’ Law,

adapted for 3D space and robot-specific execution contexts. It accounts for both

translational and rotational displacements, as well as task-specific tolerances. The

result is a set of ID values that reflect the relative ease or difficulty with which

each candidate robot can approach and interact with the assigned target.

This representation provides the LLM with a compact and interpretable abstrac-

tion of task complexity, reducing the burden of processing raw spatial inputs and

enabling more informed, context-aware decision-making during the task alloca-

tion process.

6.1.2 Optimization Layer

The optimisation process proceeds in two stages. First, the LLM performs a

capability filtering step to ensure that only feasible robots are considered for

allocation. For each task tj, the required skill set S(tj) is compared against the

capability set C(ri) of each robot ri ∈ R. The feasible candidate subset is then

defined as:

Rc = {ri ∈ R | S(tj) ⊆ C(ri)}. (6.2)

This ensures that only robots possessing all of the required capabilities are eligible

for assignment. For example, if S(tj) requires grasping and cutting, then any

robot lacking either a gripper or a cutter will be excluded from Rc, regardless of
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its proximity to the target. The prompt is provided in the Appendix.C.1.

Second, once the feasible subset Rc has been determined, task difficulty modelling

is applied to discriminate among candidates. For each ri ∈ Rc and the target gk

of task tj, a scalar difficulty score ID(ri, gk) is computed using the FittsPrompt

formulation introduced earlier. The final optimisation step then selects:

r∗j = arg min
ri∈Rc

ID(ri, gk). (6.3)

Here, r∗j denotes the optimal robot selected by the LLM to perform task tj. The

function ID(ri, gk) quantifies the spatial and operational difficulty associated with

assigning robot ri to target gk. The set Rc includes all robots capable of executing

tj, as determined during the capability filtering phase. The prompt is provided

in the Appendix.C.2. It corresponds to the robot expected to complete the task

with the greatest efficiency and reliability.

In this two-stage structure, the LLM serves as the high-level planner that inte-

grates both logical feasibility checks (via capability matching) and spatial rea-

soning (via difficulty-aware optimisation). By first pruning infeasible options and

then reasoning over structured difficulty scores, the system ensures that each se-

lected robot is not only able to perform the task but also likely to do so in the

most efficient manner.

Implement Task Difficulty Modelling

Unlike conventional optimisation approaches that require manually defined cost

functions or rule-based heuristics, this approach enables the LLM to internalise

these decision patterns from data and natural language instructions. This not

only simplifies the control logic but also enables more flexible generalisation to
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novel scenarios, provided that the prompt structure includes all relevant task

difficulty values and constraints.

Since task difficulty is influenced not only by the distance between the robot and

the target but also by their respective spatial tolerances, this study adopts an

extended version of Fitts’ Law [3] to model task difficulty more comprehensively.

This extended formulation accounts for both translational and orientational com-

plexity, allowing for a more accurate prediction of execution effort in robotic sys-

tems. Specifically, this study begins by quantifying the translational component

of the ID, which reflects the physical separation between the robot and the target

along a straight-line path in 3D space.

The translational task difficulty between a robot ri and a target gk is defined as:

IDtrans(ri, gk) = log2

(
d(ri, gk)

wg ± wr

+ 1

)
, (6.4)

In this expression, d(ri, gk) denotes the Euclidean distance between the robot

and the target, which captures the magnitude of spatial displacement required

to reach the target. The denominator incorporates both the physical size of the

target (wg) and the size of the robot’s tool or end-effector (wr). The operator ±

accounts for task-specific interactions: in some tasks, such as docking or contact-

based manipulation, the effective interaction area increases with the combined

sizes of the robot and target, while in others—such as insertion or precision

tasks—the difference between these sizes determines the spatial tolerance.

This formulation is grounded in the original principles of Fitts’ Law, which posits

a logarithmic relationship between movement time and task difficulty. By apply-

ing this relationship in the context of robot-target interactions, this study creates

a scalable and interpretable measure of task complexity that can be computed
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for any robot-target pair. This metric serves as a foundational component of

the ID used in the optimisation layer described previously, allowing both LLMs

and traditional planners to reason over spatial task difficulty in a consistent and

data-efficient manner.

In addition to translational distance, task difficulty is also influenced by orienta-

tional alignment between the robot and the target. Many real-world tasks—such

as insertion, assembly, docking, or precise manipulation—require the robot to ap-

proach the target not only from a specific position but also with an appropriate

orientation. Misalignment in orientation can significantly increase the likelihood

of task failure, even if the robot is spatially close to the target. Therefore, this

study incorporates an orientation-based task difficulty component into the ex-

tended ID formulation.

The orientation-based task difficulty between a robot ri and a target gk is given

by:

IDori(ri, gk) = log2

(
θ(ri, gk)

δ
+ 1

)
. (6.5)

In this expression, θ(ri, gk) represents the angular deviation between the robot’s

current orientation and the desired orientation required for successful task exe-

cution at the target. This angular deviation may be computed as the absolute

rotation difference in yaw, pitch, and roll, or via more compact representations

such as quaternion angular distance, depending on the application and platform.

The denominator δ denotes the allowable angular tolerance for the task. It de-

fines the maximum permissible orientation error within which the robot can still

successfully interact with the target. Tasks that require high precision, such as

aligning a connector to a socket, will have smaller δ values. In contrast, more
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forgiving tasks, such as general object pushing or rough placement, may allow for

higher orientation variability.

This orientation component mirrors the structure of the translational difficulty

formulation and maintains consistency with the logarithmic scaling of Fitts’ Law.

By introducing IDori alongside IDtrans, this study can capture both the positional

and directional challenges involved in robot-target interactions. This enriched

representation enables more nuanced and accurate assessments of task difficulty

in both planning and decision-making contexts.

To capture the full complexity of task execution from both positional and orien-

tational perspectives, the overall task difficulty is computed as a weighted sum of

the translational and orientational Index of Difficulty components. This compos-

ite metric, denoted as ID(ri, gk), provides a unified scalar representation of task

complexity that accounts for the spatial configuration and alignment required

between a robot ri and a target gk, as shown below:

ID(ri, gk) = α · IDtrans(ri, gk) + β · IDori(ri, gk). (6.6)

In this formulation, IDtrans(ri, gk) represents the difficulty arising from transla-

tional displacement, while IDori(ri, gk) quantifies the difficulty due to orientation

misalignment. The parameters α and β are tunable weight coefficients that deter-

mine the relative influence of each component in the overall score. These weights

can be set empirically based on task requirements, robot capabilities, or prior

experimental calibration. For instance, if a task is highly sensitive to alignment

precision, a higher value of β may be assigned to emphasise the importance of

orientation. Conversely, if task completion depends predominantly on reaching a

specific location, α would be weighted more heavily.
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The weighted combination enables flexible adaptation to diverse robotic applica-

tions. For example, in assembly tasks involving fine motor control, both trans-

lational reach and precise orientation are critical, whereas in transport tasks,

translation may dominate. This adaptability allows the ID framework to gener-

alise across multiple domains, robot types, and mission scenarios.

By unifying both spatial dimensions into a single metric, ID(ri, gk) serves as

an effective cost function for robot-task allocation decisions within the LLM-

based framework. It provides the basis for optimising robot selection in a way

that is both interpretable and computationally efficient, enabling the LLM to

compare robot-target pairs and select the most suitable option for each task.

This integration supports robust, skill-aware, and spatially-informed multi-robot

coordination in real-world environments.

Once the translational and orientational components of task difficulty have been

computed for each candidate robot-target pair, the LLM processes these precom-

puted ID values within a structured prompt. This prompt presents the LLM with

a concise representation of the task complexity associated with each robot in the

candidate set Rc for a given task tj. Rather than analysing raw spatial or sensory

input, the LLM reasons over these scalar difficulty values to identify the most

suitable robot for execution.

In this context, the original optimisation objective from Equation 6.3 can be

refined to incorporate the weighted difficulty model, yielding the following for-

mulation:

r∗j = arg min
ri∈Rc

(α · IDtrans(ri, gk) + β · IDori(ri, gk)) . (6.7)

Here, the LLM selects the optimal robot r∗j for task tj by minimising the total task
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difficulty, defined as the weighted sum of the translational and orientational ID

components. The parameters α and β balance the influence of positional distance

and angular alignment based on the task’s spatial and control requirements. This

formulation enables a more nuanced and physically grounded form of reasoning,

where the LLM selects robots not solely on binary skill compatibility but on

predicted performance efficiency.

It is worth noting that once scalar Index of Difficulty values have been computed,

a simple deterministic argmin could be used to select the robot with the lowest

task difficulty. In fact, a practical hybrid system might combine both approaches,

where the LLM provides an initial reasoning-based decision and a deterministic

controller subsequently verifies or overrides the choice based on efficiency. In this

work, however, we deliberately allow the LLM to perform the comparison step as

a proof of concept. This enables us to study the extent to which large language

models can reason over structured numeric abstractions, with the understanding

that additional decision factors (e.g., mission rules, safety constraints, or operator

preferences) could later be integrated into the same framework.

By leveraging the LLM’s language-based reasoning capabilities in conjunction

with structured, interpretable ID metrics, the system achieves context-aware task

allocation that reflects real-world spatial constraints. This approach significantly

enhances the decision quality over traditional rule-based or purely symbolic plan-

ners, particularly in environments where geometry, orientation, and physical tol-

erances play critical roles in task feasibility.

By incorporating this optimisation step, the LLM enhances the task allocation

process beyond traditional capability-based matching. Rather than merely se-

lecting a robot that can perform a task, the LLM leverages precomputed spatial

difficulty metrics to reason about which robot is best suited to execute the task
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with minimal effort and maximum reliability. This shift from binary feasibility

checks to quantitative difficulty-aware optimisation enables a more refined and

context-sensitive decision-making process.

As a result, the selected robot for each task is not only capable but also spatially

and kinematically optimal relative to the target, thereby reducing the execution

burden. This significantly improves overall system performance by minimising

execution time, lowering energy consumption, and increasing task success rates,

especially in scenarios involving complex geometries, limited workspace, or het-

erogeneous robot platforms.

Incorporating task difficulty into the LLM’s reasoning process contributes to a

more intelligent and adaptive multi-robot system, capable of making efficient al-

location decisions in dynamic and spatially constrained environments. This inte-

gration forms the foundation for robust, geometry-aware planning in large-scale

autonomous systems. It supports scalable deployment across various domains

such as warehouse automation, field robotics, and collaborative human-robot op-

erations.

6.2 Validation

To demonstrate the effectiveness and generalizability of the proposed FittsPrompt

framework, this study performs a two-stage validation process that combines

large-scale simulation-based benchmarking with targeted real-world robot exper-

iments. This dual approach ensures that the framework is evaluated not only

in controlled, reproducible simulation environments, but also in physical deploy-

ments that expose it to sensor noise, actuation imperfections, and environmental

uncertainties.
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It is important to note that, in this validation, the LLM itself is used to per-

form the difficulty-aware optimisation step. While a deterministic argmin over

precomputed Index of Difficulty values would suffice for selecting the numerically

optimal candidate, the goal in this work is to treat the LLM as the decision engine

as a proof of concept. This design allows us to directly evaluate the reasoning

capabilities of large language models when confronted with structured numeric

abstractions, while recognising that in future hybrid systems, the LLM could

provide initial reasoning and constraint handling, with a deterministic optimiser

ensuring efficiency.

The validation strategy is designed with three objectives:

1. Evaluate efficiency and correctness at scale: Using the benchmark,

this study tests FittsPrompt across diverse simulated household and task

environments. This provides systematic evidence of whether difficulty-

aware prompting consistently improves allocation quality compared to raw

state prompting.

2. Benchmark against human baselines: To contextualise the results,

this study compares the performance of LLM-based task planning with

human planners operating under the same information constraints. This

establishes whether the framework can match or exceed human decision-

making in time-critical allocation scenarios.

3. Assess transferability to physical platforms: By conducting experi-

ments with quadruped robots in a controlled laboratory setting, this study

evaluates whether plans generated via FittsPrompt can be reliably executed

in the real world under noisy and dynamic conditions.

Together, these validation steps provide both breadth (through high-volume, di-

199



6.2 Chapter 6. Multi-Robot Task Planning Application

verse simulations) and depth (through focused physical trials), ensuring that the

proposed approach is rigorously assessed in terms of scalability, robustness, and

practical applicability. The following subsections detail the benchmark and real-

robot evaluations.

6.2.1 Benchmark Evaluation

To systematically evaluate the task allocation efficiency and overall planning qual-

ity of FittsPrompt, this study develops a structured benchmark evaluation pro-

cedure based on the BEHAVIOR-1K benchmark suite [81]. BEHAVIOR-1K is

implemented on the OmniGibson simulation environment, which is built atop

NVIDIA Omniverse and PhysX 5, enabling realistic, interactive simulation of

complex object dynamics, deformables, fluids, and enriched object states. Rep-

resentative scenes are shown in Fig. 6.2, illustrating the diversity of challenges

that the models encountered during testing. Fig. 6.3, illustrating the robot fam-

ily that can be used in the benchmark. Within this validation framework, the

LLM is presented with a structured, spatially detailed environmental observation

comprising:

• Robot specifications: Descriptions of all available robots, including iden-

tities, skill/capability sets, and relevant operational parameters (e.g., mo-

bility type, tool availability, kinematic constraints).

• Spatial states: Explicit spatial data specifying the current poses of each

robot, as well as the precise locations, orientations, and dimensions of all

target objects and other salient items in the environment.

• Task instruction: A clearly defined instruction stating the objective (tar-

get object/location) and the required action (e.g., manipulation, transporta-

tion, assembly).
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ENV 0: Beechwood_0_int ENV 1: Merom_0_int ENV 2: grocery_store_cafe

ENV 3: Merom_0_garden ENV 4: office_vendor_machine

Figure 6.2: Visualisation of scenes used in the benchmark, where the robots’
initial positions are shown in red squares.

The observation is instantiated from an environment JSON file that generates

the simulation world; useful fields are extracted to inform the decision-making

process and are fed into the enquiry LLM. This comprehensive information en-

sures the LLM has sufficient context to generate optimised and executable task-

allocation plans, allowing rigorous assessment of performance in complex and

dynamic multi-robot scenarios.

The environmental observations used in FittsPrompt are instantiated from envi-

ronment JSON files, which specify both robot agents and target objects. Relevant

attributes such as positions, orientations, capabilities, and interaction properties

are extracted from these files and encoded into the LLM prompt. Tables 6.1

and 6.2 show simplified examples drawn from one such observation.

These structured entries demonstrate how raw simulation definitions are trans-

lated into concise, tabular inputs that inform the LLM’s decision-making. In
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Figure 6.3: Different types of robot used in the benchmark simulation.

practice, FittsPrompt further compresses this information into scalar difficulty

values, reducing token usage while preserving the spatial and functional seman-

tics required for effective task allocation.

Top model selection

In addition to providing a rigorous evaluation protocol, the benchmark also serves

as the basis for model selection. The performance of each LLM is quantified using

two primary metrics: success rate and optimisation rate.

The success rate measures the proportion of trials in which the LLM produces an

allocation plan that is both valid and achieves the specified task objective. For a

given model M evaluated over N benchmark trials, this is computed as:

SuccessRate(M) =
1

N

N∑
j=1

I
[
plan(M, tj) succeeds

]
, (6.8)

where I[·] is the indicator function, returning 1 if the generated plan for trial tj

successfully achieves the objective, and 0 otherwise.
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Table 6.1: Example robot specifications extracted from environment JSON (with
randomised locations and vertical formatting).

ID Class Movable Actions Location Orientation
Speed(m/s)

Mobile
Arm

23 Stretch3 True
REACH TO
PICK UP

(3.42
17.89
0.00)

(0.00
1.00
0.00)

0.35
0.50

24 UR5 False
PICK UP
OPEN
CLOSE

(12.76
8.54
0.00)

(0.00
0.00
0.00)

–
1.00

25 Fetch True

REACH TO
PICK UP
OPEN
CLOSE

(19.34
2.71
0.00)

(0.00
0.00
0.00)

1.00
0.75

26 Fetch True

REACH TO
PICK UP
OPEN
CLOSE

(7.82
14.29
0.00)

(0.00
0.00
0.00)

1.00
0.75

The optimisation rate measures the proportion of trials in which the LLM not

only succeeds but also selects the robot (or target) corresponding to the lowest

predicted task difficulty value according to FittsPrompt. Formally:

OptRate(M) =
1

N

N∑
j=1

I
[
r∗j (M) = arg min

ri∈Rc

ID(ri, gk)
]
, (6.9)

where r∗j (M) denotes the robot chosen by model M for task tj, and ID(ri, gk) is

the difficulty score defined in Section 6.

Since the benchmark covers both multi-robot task allocation and multi-target se-

lection, the overall optimisation performance of each model is obtained by aggre-

gating across both task types:

OverallOptRate(M) =
Nallo ·OptRateallo(M) +Nexec ·OptRateexec(M)

Nallo +Nexec

, (6.10)
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Table 6.2: Example target specifications extracted from environment JSON.

ID Category Class Properties
Location
(x,y,z)

States

1 Furniture coffee table
SURFACES

LOW HEIGHT

4.27
15.68
0.00

N/A

2 Facility grill
HEATABLE
SURFACES

ON HIGH SURFACE

10.53
7.89
0.00

HEATED

3 Appliances car N/A
18.42
2.75
0.00

N/A

4 Appliances mailbox
CONTAINERS
LOW HEIGHT

12.34
3.29
0.00

OPEN

5 Ball soccer ball
GRABABLE
MOVABLE

6.77
19.21
0.00

N/A

6 Drinks water bottle
GRABABLE
MOVABLE

ON HIGH SURFACE

2.89
11.46
0.00

N/A

where Nallo and Nexec denote the number of trials in allocation and execution

(target selection) benchmarks, respectively.

In this study, the top-performing model is selected as the LLM that achieves the

highest OverallOptRate(M) across all benchmark trials, subject to maintaining

a non-trivial success rate. This ensures that the chosen model is not only capable

of generating valid, executable plans but also demonstrates consistent difficulty-

aware optimisation across both allocation and selection scenarios, in line with the

design goals of FittsPrompt.

6.2.2 Real-Robot Evaluation

To thoroughly assess the practical applicability and transferability of FittsPrompt

beyond simulated environments, this study conducted real-world experiments us-
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ing physical legged robot platforms. These experiments were designed to evalu-

ate whether the task allocation plans generated by the LLM-driven FittsPrompt

method could be effectively deployed under realistic conditions, characterised by

uncertainty, sensory noise, and dynamic changes commonly encountered in phys-

ical environments.

The experimental setup, as depicted in Fig. 6.4, involved multiple legged-robots

operating concurrently in a carefully controlled yet dynamically complex workspace.

The environment was structured to present challenges representative of real-world

operational scenarios, including spatial obstacles, varied terrain textures, and pre-

cisely placed target objects requiring accurate navigation and manipulation. This

arrangement provided conditions that demanded spatial reasoning and precise

task difficulty modelling, which were essential for validating the effectiveness.

Experiment Setup

To validate the real-world applicability of the proposed FittsPrompt-based task

allocation framework, this study deployed a multi-robot system integrated with a

high-precision motion capture (MOCAP) system in a controlled indoor environ-

ment. The setup enabled continuous tracking of both robot agents and physical

targets, ensuring accurate spatial data acquisition for real-time task reasoning.

The OptiTrack MOCAP system, equipped with multiple ceiling-mounted cameras

and reflective markers affixed to the robots and target objects, provided precise

3D positional and orientational data. This information was used to construct a

structured observation of the environment, including both robot states and object

configurations. The structured observation was then translated into a prompt

format that encoded all relevant task information, such as robot capabilities, tool

sizes, and target parameters, along with a natural language instruction specifying
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the intended task.

This prompt was fed into the large language model gpt-o1-preview, chosen for

its top-tier performance in previous benchmark evaluations. Based on the spatial

reasoning embedded via the FittsPrompt difficulty model, the LLM selected the

robot best suited to execute the given task under real-world conditions. The

output of the LLM—specifying the chosen robot—was parsed and forwarded to

the robotic control stack, prompting the selected agent to initiate and complete

the assigned task autonomously.

The experimental environment consisted of the following core components:

• Robot agents: Two legged-robots from Unitree Robotics—an Aliengo and

an A1 quadruped platform [148]. These robots were selected for their dif-

fering physical specifications, particularly in terms of tool size and pay-

load capacity, thereby introducing variation in execution difficulty that

FittsPrompt could leverage in its decision-making process.

• Targets: Two physical objects were used as representative task goals: a 24-

can soft drink box and a model explosive device. These items were chosen

to simulate common robotic search, rescue, and transport tasks with varied

interaction demands and size constraints.

• MOCAP system: The tracking infrastructure consisted of an OptiTrack

motion capture and 3D tracking system. Cameras were mounted on the

ceiling to provide complete coverage of the task space, while active markers

were placed on all mobile agents and target items to ensure precise real-time

localisation and orientation estimation.

Fig. 6.4 presents visual documentation of the setup, showing the spatial arrange-

ment of the robots and targets during task execution. This setup allowed for
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a faithful validation of the FittsPrompt framework’s ability to transition from

simulation to physical execution and confirmed the effectiveness of LLM-driven

task allocation in dynamic, sensor-instrumented environments.

Experiment Planning

To validate the real-world applicability and decision-making effectiveness of FittsPrompt

in robotic task allocation, this study designed a set of three controlled exper-

iments. Each experiment presents a distinct scenario that challenges different

aspects of task difficulty modelling, including spatial reasoning, tool utility, and

response efficiency. These scenarios were selected to demonstrate FittsPrompt’s

ability to optimise task planning by considering multiple contextual parameters

beyond mere capability matching.

Experiment 1: Obstructed Path Removal. In the first experiment, an un-

expected obstacle—a 24-can soft drink box—is placed on a factory floor pathway,

simulating an urgent scenario where access must be restored quickly. The system

is instructed to select the most efficient robot to push the box away as rapidly

as possible. As shown in Fig. 6.4a, the LLM receives spatial observations of the

environment and must reason about both the relative position and orientation be-

tween each robot and the obstacle. In this scenario, the optimal solution requires

FittsPrompt to consider not only Euclidean distance but also angular alignment,

ensuring the robot approaches the object from a direction that minimises time-

consuming repositioning or reorientation.

Experiment 2: Tool-Based Precision Placement. The second experiment

focuses on task specificity involving hardware constraints. A robot is instructed

to push a box into a designated goal region. The available robots differ in their

end-effector or tool size, with one having a larger, more suitable pushing sur-
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face. As illustrated in Fig. 6.4b, the LLM must select the robot that is best

equipped to accomplish the task, prioritising tool appropriateness over raw prox-

imity. This scenario challenges FittsPrompt to reason beyond spatial distance

and incorporate physical parameters—such as tool dimensions—into its task al-

location process. An optimised plan, in this case, would prefer a robot with a

larger tool that enables more reliable contact and faster task completion, even if

it is farther from the object.

Experiment 3: Explosive Threat Inspection. In the third experiment, the

scenario simulates a high-priority inspection task involving a suspicious object

(the bomb used in the EOD practical task experiment in Chapter.3), representing

a model explosive device located in a semi-obstructed area. The robot must

reach the site and inspect it as quickly as possible. Fig. 6.4c depicts this complex

navigation setting where direct access may be impeded by nearby obstacles. Here,

FittsPrompt must prioritise time efficiency and feasible access routes rather than

the shortest distance alone. The optimised task plan requires the LLM to infer

which robot can reach the inspection site fastest, taking into account potential

navigational constraints that may not be captured by distance metrics alone.

Together, these three experiments comprehensively test FittsPrompt’s capacity

to reason under real-world physical constraints, adapt to diverse contextual cues,

and generate high-quality task plans that are both executable and optimised for

real-time deployment.

Human baseline cohort.

To contextualise the benchmarked LLM performance, this study additionally col-

lected a human baseline using a cohort of 8 participants (6 male, 2 female), all

with higher-education backgrounds (ages 23–30). Under the same observation
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format and timing constraints as the LLMs (one minute per trial), participants

produced task-allocation (and target-selection) plans from the benchmark scenes.

These human results serve as a comparative baseline for the analyses reported

later in this chapter and the Human study subsection).

6.3 Results

This section presents the results of the evaluation of the proposed FittsPrompt

framework. The focus of this study is limited to assessing the effectiveness of

FittsPrompt in generating valid and optimised task plans based on the proposed

difficulty-aware prompting strategy. The study explicitly exclude the downstream

execution of these plans by real robots, as execution dynamics—such as physical

actuation errors, delays, or environmental uncertainties—fall outside the scope

of this work. Instead, the evaluation centres on the quality, correctness, and

optimality of the plans generated by LLMs in response to FittsPrompt-structured

inputs.

To thoroughly evaluate the generalizability and robustness of the approach, this

study conducted extensive testing across a wide range of simulated environments.

These environments include diverse object arrangements and spatial configura-

tions to reflect varying levels of task complexity.

The evaluation pipeline involved a large-scale comparison of LLMs, comprising 42

models in total. This included 38 open-source LLMs and 4 proprietary models,

spanning a broad spectrum of parameter sizes and architectures. Notable models

evaluated include deepseek-r1-distill-qwen-32b, llama-3.3-70b-instruct,

and gpt-o1-preview, which represent the state-of-the-art in large-scale genera-

tive reasoning.
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Among the tested models, 34 successfully produced task plans that were both

syntactically valid and executable according to the simulation criteria. This suc-

cess rate demonstrates that the FittsPrompt framework is compatible with vari-

ous model backbones and can guide even distilled or lower-parameter models to

generate high-quality planning outputs.

From this pool, this study identified the top-performing model based on a combi-

nation of plan correctness, spatial efficiency, and alignment with the task difficulty

minimisation objective. This model was then used for a comparative analysis

against human-generated task plans, as detailed in Fig. 6.5. The results clearly

illustrate the superior planning capabilities enabled by FittsPrompt, highlight-

ing its ability to outperform human baselines in scenarios that require spatial

reasoning and optimal robot-task pairing. This comparative evaluation further

validates the utility of the proposed approach in supporting high-performance,

difficulty-aware planning in multi-robot systems.

To validate the effectiveness and generalizability of the proposed FittsPrompt

framework, this study conducted a two-pronged evaluation consisting of both

simulation-based benchmarking and real-world testing. The evaluation strategy

is summarised as follows:

• Benchmark Evaluation: this study performed multi-robot task alloca-

tion across 10 distinct trials, each conducted in a different environment

inspired by the BEHAVIOR-1K benchmark suite [81]. These environments

were designed to present diverse spatial layouts, object distributions, and

interaction requirements, thereby assessing the LLM’s ability to generalise

task planning across varied task contexts. In addition to the allocation

tasks, this study also conducted 10 target selection trials involving differ-

ent household items, focusing on the LLM’s capacity to choose the most
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suitable object or destination under spatial constraints and ambiguity.

• Real-World Robot Experiments: To evaluate the deployability of FittsPrompt

beyond simulation, this study conducted real-world trials using a quadruped

robot equipped with onboard computation and sensing. These experiments

aimed to validate whether the plans generated via FittsPrompt were not

only spatially optimised but also practically executable under real-world

conditions involving terrain variation, actuation noise, and perception un-

certainty. The robot successfully performed tasks based on FittsPrompt-

generated instructions, demonstrating the framework’s utility in bridging

high-level decision-making and low-level execution in physical settings.

6.3.1 Benchmark Results

To systematically evaluate the task allocation efficiency and overall planning

quality of FittsPrompt, this study designed a structured benchmark evaluation

procedure inspired by the BEHAVIOR-1K benchmark suite [81]. Within this

validation framework, the LLM is presented with a structured, spatially detailed

environmental observation. Each environmental observation provided to the LLM

includes:

• Robot Specifications: Detailed descriptions of all available robots, en-

compassing their respective identities, skill sets or capabilities, and relevant

operational parameters such as mobility type, tool availability, and kine-

matic constraints.

• Spatial States: Explicit spatial data specifying the current positions and

orientations of each robot, as well as the precise locations, orientations,

and dimensions of all target objects and other relevant items within the

environment.
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• Task Instruction: A clearly defined task instruction that explicitly states

the objective, identifying the target object or location and specifying the

required action, such as manipulation, transportation, or assembly.

This comprehensive information ensures the LLM has sufficient context to gen-

erate optimised and executable task allocation plans, allowing us to rigorously

assess its performance in complex and dynamic multi-robot scenarios.

To comprehensively assess the advantages of the proposed FittsPrompt frame-

work compared to traditional raw data prompts, this study evaluated its perfor-

mance across two essential metrics:

• Success Rate: This metric measures the proportion of trials in which the

generated task allocation plan successfully addresses and fulfils the specified

task objectives. A successful plan must correctly assign capable robots to

relevant tasks and produce executable sequences of actions resulting in task

completion.

• Optimization Rate: This metric assesses not only whether the task was

completed successfully but also if the allocation was optimized. Specifically,

this study measured the proportion of trials where the generated plans

assigned robots in a manner that minimised overall task execution time,

demonstrating effective utilisation of the difficulty-aware approach inherent

to FittsPrompt.

To maintain high reliability and objectivity in the evaluations, two independent

human evaluators performed manual verification of all generated plans. These

evaluators confirmed task completion status, assessed the correctness of robot

assignments, and verified the optimality of each allocation. Discrepancies be-

tween evaluators were resolved through discussion, ensuring robust and accurate
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assessment of the FittsPrompt framework’s efficacy.

Multi-Robot Task Allocation

In this benchmark evaluation, this study conducted a comprehensive set of 10 tri-

als involving multi-robot task allocation scenarios. Each trial involved 4 distinct

robots operating within 5 varied environmental scenes designed to challenge the

spatial reasoning and allocation capabilities of the tested LLM models. Fig. 6.2

provides visual examples of the diverse scenes used in these trials, illustrating the

complexity and variability of spatial arrangements encountered by the robots.

Out of the 34 LLMs that successfully produced syntactically valid and executable

task plans, 27 models were able to generate at least one fully correct task alloca-

tion plan, thereby demonstrating their baseline capability for accurate robot-task

matching, as shown in Appendix D.1. Among these models, a direct comparative

analysis was performed between the proposed FittsPrompt method and conven-

tional raw data prompting approaches.

As shown clearly in Fig. 6.6, FittsPrompt significantly outperformed traditional

raw data prompts across both evaluated metrics. Specifically, this study ob-

served an approximate 9% increase in overall task success rates, indicating that

FittsPrompt leads to more reliably executable and contextually appropriate robot

assignments. Even more pronounced was the improvement in optimisation rates,

where FittsPrompt achieved an impressive 30% enhancement. This metric under-

scores FittsPrompt’s ability to consistently produce not just feasible but optimally

efficient task allocations, minimising execution time and operational complexity.

Collectively, these quantitative results confirm the substantial advantages pro-

vided by FittsPrompt over conventional prompt-based methods. They highlight

the transformative potential of integrating explicit task difficulty modelling with
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LLM-driven planning to enhance the effectiveness and reliability of multi-robot

task allocation systems.

Multi-Target Selection

To further evaluate the capabilities of FittsPrompt, this study conducted an ad-

ditional benchmark focusing on multi-target selection tasks. In this scenario, the

large language model was required to choose the optimal target among several

available options within the environment. Unlike the multi-robot task alloca-

tion scenario, where the target object is explicitly predefined, the multi-target

selection benchmark granted the LLM autonomy to select the most appropri-

ate object based on task instructions, using a single predetermined robot. This

selection process required the LLM to exhibit spatial reasoning and optimality-

driven decision-making, choosing the object that allowed for the most efficient

task execution.

The multi-target selection benchmark comprised a total of 10 trials, each featuring

various types of objects placed in diverse spatial configurations. Some of these

objects appeared multiple times within the same scene, thus compelling the LLM

to differentiate and select the best instance of a given target type. For instance,

Fig. 6.7 visually exemplifies one such scenario, depicting a situation where the

robot is tasked with picking up a banana, necessitating the selection of the most

spatially suitable banana from several options available in the environment.

Out of the 34 LLM models that successfully generated executable plans, 30 were

capable of producing at least one correct multi-target selection, as shown in Ap-

pendix D.2. The performance comparison between FittsPrompt and conventional

raw data prompts, as clearly depicted in Fig. 6.8, demonstrates a significant ad-

vantage for the FittsPrompt approach. Specifically, FittsPrompt achieved a sub-
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stantial 24% increase in overall task success rates, highlighting its improved accu-

racy in correctly selecting the optimal targets. Even more notably, FittsPrompt

demonstrated a remarkable 45% improvement in optimisation efficiency, reflect-

ing its superior capability in consistently identifying the targets that minimised

overall execution complexity and time.

These results further underline the effectiveness and robustness of FittsPrompt,

confirming its ability to significantly enhance the decision-making quality of LLM-

driven robotic systems, particularly in scenarios requiring precise target selection

and spatial reasoning.

Human study

To further contextualize the performance of the proposed FittsPrompt frame-

work, this study conducted a comparative human study aimed at evaluating

task-planning capabilities between human planners and the proposed LLM-driven

approach. For this comparison, this study selected the GPT-o1-preview model

due to its outstanding performance observed in prior benchmarking tests. A total

of 8 independent trials were conducted with the model, each configured with a

generation temperature parameter of 1 to encourage diverse responses and reflect

realistic decision-making variability.

The human study involved 8 participants, each possessing prior experience in

robotic teleoperation and task planning. Participants were presented with the

same environmental observations and robot capability information provided to

the LLM, ensuring consistency in task conditions. Each participant was tasked

with manually assigning robots to perform the tasks defined in the Multi-Robot

Task Allocation benchmark scenarios, replicating the conditions under which the

LLM was evaluated. To establish equitable conditions, each human participant
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was allocated exactly 1 minute per task, matching the timeout threshold given

to the LLM. This design ensured fairness in comparisons by imposing identical

planning constraints for both human and model-based planners.

The comparative results of this human versus LLM evaluation are illustrated in

Fig. 6.5, clearly highlighting the performance differences between human planners

and the FittsPrompt-driven GPT-o1-preview model. The outcomes of this ex-

periment indicate that the FittsPrompt framework significantly surpassed human

planners in terms of optimisation efficiency. Specifically, the proposed approach

achieved a 35% improvement over human performance in multi-robot task allo-

cation scenarios and a 30% improvement in target selection tasks. These marked

improvements underscore the capability of FittsPrompt to consistently generate

optimized and highly effective plans under tight time constraints—conditions un-

der which human planners commonly exhibit limitations due to cognitive load

and time pressures.

These findings not only validate the practical superiority of the proposed method

but also highlight the broader implications of leveraging structured difficulty-

aware prompting in robotic task planning. FittsPrompt enables more reliable

and efficient robotic coordination than human planning, particularly in complex,

real-time operational environments.

6.3.2 Experiment Results

As a result of the real-world experimental evaluation, FittsPrompt—powered by

the gpt-o1-preview model—demonstrated exceptional precision in robotic task

allocation, achieving a perfect 100% alignment with the ground-truth optimal task

plans across all three tested scenarios. This outcome underscores the framework’s

effectiveness in translating difficulty-aware spatial reasoning into practical, real-
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world decision-making.

The system consistently succeeded in the following key aspects:

• Optimising task allocation based on spatial state: FittsPrompt accu-

rately evaluated the spatial configurations of the environment, enabling the

selection of the most time-efficient robot for each task. This directly con-

tributed to reduced task execution durations and more responsive system

behaviour.

• Selecting functionally appropriate robots: Beyond mere spatial prox-

imity, the framework effectively considered robot-specific functional at-

tributes, such as tool size, to determine the best-suited agent for the task.

This improved the overall quality and reliability of task execution.

• Handling real-world uncertainty and sensor noise: Despite the pres-

ence of environmental variability, actuation imperfections, and sensory noise,

the system maintained robust decision-making capabilities. This robust-

ness illustrates FittsPrompt’s potential for deployment in operational multi-

robot systems beyond controlled simulation settings.
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(c) Experiment 3

Figure 6.4: Setup and process of three real-world robot experiments, where robots
and targets are marked in yellow boxes and planned paths are marked in blue
dashed lines.
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(a) Task allocation results.
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(b) Target selection results.

Figure 6.5: The boxplots of the success rate and optimisation rate results from
FittsPrompt and Human trials.
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Figure 6.6: Comparison of Success and Optimisation Rate between raw data and
FittsPrompt for different LLMs in task allocation. Each plot uses a notched
boxplot representation: the central horizontal line shows the median, the box in-
dicates the interquartile range (IQR, 25th–75th percentile), the whiskers extend
to capture variability in the data, and the notch reflects an approximate 95%
confidence interval around the median. Narrower boxes and shorter whiskers de-
note more consistent performance, while taller boxes indicate greater variability.
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Fetch Moble Manipulator

Bananas

Figure 6.7: Visualization of sense where robot encounters multiple target objects.
In this case, the robot needs to pick up a banana, but there is more than one in
the observation.
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Figure 6.8: Comparison of Success and Optimisation Rate between raw data and
FittsPrompt for different LLMs in target selection.
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Chapter 7

Conclusion

This thesis presented a novel and comprehensive framework for task difficulty

modelling in HMT, grounded in an extended formulation of Fitts’ Law. By gen-

eralising the traditional 2D movement model to a six-degrees-of-freedom spatial

domain, the proposed method effectively captures both translational and rota-

tional constraints inherent in real-world robotic interactions. This advancement

enables more accurate prediction of HMT performance in dynamic, unstructured

environments.

Recognising the pivotal role of human operators in teleoperated and shared auton-

omy scenarios, the model further integrates cognitive fatigue through the SAFTE

framework. This integration allows for realistic and adaptive performance fore-

casting, taking into account not only the long-term skill of operators but also

their short-term cognitive readiness under operational stress. The framework

thus bridges the gap between physical task complexity and human variability,

offering a holistic tool for mission planning, operator scheduling, and system

adaptation.

The proposed methodology was validated through rigorous empirical studies, in-
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cluding a simulation-based evaluation and two real-world experiments involving a

quadruped mobile manipulator. These studies demonstrated the model’s practi-

cal utility in quantifying task difficulty and evaluating Human-Machine Interfaces

through both objective metrics and subjective assessments such as NASA-TLX

and SUS scores.

In extending this framework to modern AI-driven robotics, the thesis introduced

FittsPrompt, a novel pre-processing mechanism for enabling effective multi-robot

task allocation using LLMs. By abstracting spatial and motion-related com-

plexity into structured difficulty descriptors, FittsPrompt significantly improved

LLM-based decision-making performance, surpassing both traditional rule-based

methods and expert human planners in benchmark and real-world settings.

Overall, this work provides a generalisable and interpretable foundation for task

difficulty modelling, with implications for performance prediction, system evalu-

ation, and intelligent decision-making across a broad spectrum of robotic appli-

cations. Future research can build upon this foundation by exploring adaptive

learning of difficulty models in real-time, integrating physiological sensing for fa-

tigue estimation, and scaling FittsPrompt to broader domains of collaborative

autonomy.

7.1 Future Works

While this thesis has introduced a robust framework for task difficulty modelling

and demonstrated its utility across diverse HMT and multi-robot scenarios, sev-

eral promising directions remain for future exploration. These avenues aim to

further enhance the adaptability, scalability, and real-world applicability of the

proposed methods.
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The future research will extend the current linear framework to a non-linear

model, which is crucial in scenarios where human physical and cognitive fatigue

influences performance during high-stress missions. Besides manually modelling

human fatigue, artificial intelligence can be used to consider more complex human

factors to provide a more accurate prediction in the real world. On the other

hand, the quantified results of the proposed modelling can be leveraged by AI

algorithms to tune parameters in human-machine interface design, as well as to

refine task setups based on predictive feedback.

Moreover, the scope of the research will expand to encompass fine manipulation

manoeuvres post-target contact. These include detailed tasks like opening a

box, rotating a handle, or relocating a bottle. Incorporating these advanced

manoeuvres into the model will enhance its predictive accuracy for complex tasks

and offer insights into how human factors like fatigue can impact task execution

in HMT systems.

Given that the influence of fatigue on human-robot collaboration remains an

emerging area of research, many of the model’s elements and coefficients are

derived from studies in related fields, such as transportation and mechanical

operation. Future investigations will concentrate on measuring these elements

within human-robot interactions to refine the model’s accuracy. Additionally,

in the case study, the operator is considered unsuitable for executing missions

when their effectiveness falls to zero. In real-world applications, a more stringent

evaluation involving a higher cut-off for operator effectiveness would be imposed

as a safety precaution, particularly in high-risk missions.

The human study experiment provided an example of applying the presented

MHT evaluation scheme to real RA and HMTIs. From the results of the experi-

ment with the gamepad and WMCS interfaces, the proposed model can predict
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system performance in future missions. However, the HAs in the experiment had

limited experience in robot teleoperation compared to professional operators in

actual missions. Therefore, the results from the experiment only represent the

user group with limited robot teleoperation experience, and a professional user

group may produce different results.

Future work will concentrate on advancing the automation of data processing from

observations, specifically by enhancing the generation of task difficulty metrics

from detailed 3D models of the environment. Additionally, there is a significant

opportunity to refine the modelling of the proposed tasks. This will involve de-

veloping multipurpose algorithms capable of handling complex tasks with higher

precision.
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Appendix A

Ethics

This appendix includes the documentation related to the ethical approval for

the studies conducted as part of this research. All experiments involving human

participants were reviewed and approved by the appropriate ethics committee

to ensure compliance with institutional guidelines and ethical standards. The

approval covered participant recruitment, informed consent procedures, data col-

lection, and data handling protocols.
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Chapter A. Ethics A.1

A.1 Ethics approval

The related human study has been approved by the Engineering and Physical

Science Ethics (EPS/FREC) Committee.
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Appendix B

Human Study Forms

This appendix includes the questionnaires used in the user study, specifically the

background questionnaire, the NASA Task Load Index (NASA-TLX), and the

System Usability Scale (SUS).
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Chapter B. Human Study Forms B.1

B.1 Background questionnaire

Table B.1: Questions used in the participant background questionnaire.

ID Question
Q1 How much experience do you have with gaming joysticks?
Q2 How much experience do you have with the motion-capture

suit?
Q3 How much experience do you have with the VR display? (If

your answer is 1 please skip next question)
Q4 How do you feel during your experience using VR?
Q5 Do you have robot remote control experience?

B.1.1 Participant Responses

Table B.2: Participant responses to the questionnaire (Likert scale: 1 = very low
/ none, 5 = very high / extensive).

ID Q1 Q2 Q3 Q4 Q5
A1 5 1 4 4 5
A2 4 1 3 3 5
A3 5 1 2 4 5
B1 1 3 3 5 3
B2 1 1 2 2 1
B3 5 1 2 3 3
B4 2 2 3 3 3
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B.2 Chapter B. Human Study Forms

B.2 NASA-TLX

Figure B.1: NASA Task Load Index (NASA-TLX) form used for subjective work-
load assessment used in the study.
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Chapter B. Human Study Forms B.3

B.3 System Usability Scale

No. SUS Questions
1 I think that I would like to use this system frequently.
2 I found the system unnecessarily complex.
3 I thought the system was easy to use.
4 I think that I would need the support of a technical person to be

able to use this system.
5 I found the various functions in this system were well integrated.
6 I thought there was too much inconsistency in this system.
7 I would imagine that most people would learn to use this system

very quickly.
8 I found the system very cumbersome to use.
9 I felt very confident using the system.
10 I needed to learn a lot of things before I could get going with this

system.

Table B.3: System Usability Scale (SUS) Questionnaire
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Appendix C

Prompt used in FittsPrompt

For reproducibility, this appendix provides the exact prompts used in the two

steps of FittsPrompt. The prompts were structured to ensure consistency in

model behaviour, encourage reasoning over task difficulty values, and enforce

output in a machine-readable format.
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Chapter C. Prompt used in FittsPrompt C.1

C.1 Step 1: Capability Filtering

You are an expert robot planning assistant.

Your task is to create a plan for the robot to achieve its goal

efficiently and effectively.

Use principles from robotics planning instruction above to ensure

a structured and logical approach.

If there are multiple agent of the available to achieve the task,

do not out put your plan instead indicating there are more than

one agent.

And output the object’s id and agent’s id as following

{

"object_id":object_id,

"agent_id":agent_id,

"agent_id":agent_id,

"agent_id":agent_id

}

Else please output your plan in the form of:

[

{"agent_id": agent_id, "action": action, "object_id": object_id},

......

{"agent_id": agent_id, "action": action, "object_id": object_id},

{"agent_id": agent_id, "action": action, "object_id": object_id}

]
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C.2 Step 2: Difficulty-Aware Selection

You are an expert robot planning assistant.

Your task is to create a plan for the robot to achieve its goal

efficiently and effectively. Use principles from robotics planning

instruction above to ensure a structured and logical approach.

Think about your plan, make sure you select object with the

Smaller Difficulty when multiple item available.

Please output your plan in the form of:

[

{"agent_id": agent_id, "action": action, "object_id": object_id},

......

{"agent_id": agent_id, "action": action, "object_id": object_id},

{"agent_id": agent_id, "action": action, "object_id": object_id}

]
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LLM Benchmark Results
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D.1 Chapter D. LLM Benchmark Results

D.1 Multi-robot Task Allocation Results

Model
Raw data
Success Rate

FittsPrompt
Success Rate

Raw data
Optimal Rate

FittsPrompt
Optimal Rate

qwen2.5-7b-instruct 50% 60% 30% 40%
qwen2.5-coder-7b-instruct 30% 0% 20% 0%
internlm3-8b-instruct 20% 30% 0% 20%
llama-3.1-8b-instruct 30% 40% 30% 20%
codegeex4-all-9b 70% 40% 30% 0%
qwen2.5-14b-instruct 80% 60% 20% 30%
internvl2.5-26b 30% 60% 20% 40%
deepseek-r1-distill-qwen-32b 60% 60% 50% 40%
qwen2.5-32b-instruct 40% 100% 0% 100%
qwen2.5-32b-instruct-vllm 60% 90% 0% 90%
qwq-32b-preview 30% 50% 30% 10%
qwq-32b-preview-awq 60% 80% 40% 40%
internvl2.5-38b 100% 80% 50% 70%
llama-3.1-70b 80% 70% 40% 70%
llama-3.1-70b-instruct 100% 80% 30% 80%
llama-3.1-nemotron-70b-instruct 40% 70% 40% 70%
llama-3.3-70b-instruct 90% 80% 30% 80%
qwen2-72b-32k 80% 80% 40% 40%
qwen2-vl-72b-instruct 80% 90% 20% 50%
qwen2.5-72b-32k 60% 100% 10% 90%
qwen2.5-72b-instruct 40% 90% 20% 80%
qwen2.5-72b-instruct-lmdeploy 50% 90% 10% 90%
internvl2.5-78b 70% 80% 20% 80%
gpt-3.5-turbo-0125 80% 40% 20% 30%
gpt-4o-2024-08-06 80% 100% 40% 80%
gpt-4o-mini-2024-07-18 60% 100% 10% 100%
o1-preview 100% 90% 70% 90%
Average 62% 71% 27% 57%

Table D.1: Task allocation Success Rates and Optimal Rate of Models under
Raw and FittsPrompt Conditions

258



Chapter D. LLM Benchmark Results D.2

D.2 Multi-robot Task Execution Results

Model
Raw data
Success Rate

FittsPrompt
Success Rate

Raw data
Optimal Rate

FittsPrompt
Optimal Rate

qwen2.5-3b-instruct 0% 30% 0% 20%
qwen2.5-1.5b-instruct 0% 80% 0% 30%
qwen2.5-7b-instruct 80% 100% 40% 40%
qwen2.5-coder-7b-instruct 100% 10% 40% 10%
ui-tars-7b-dpo 40% 20% 30% 10%
internlm3-8b-instruct 40% 70% 30% 20%
llama-3.1-8b-instruct 80% 90% 30% 80%
codegeex4-all-9b 0% 10% 0% 10%
qwen2.5-14b-instruct 90% 90% 40% 90%
internvl2.5-26b 100% 90% 40% 30%
deepseek-r1-distill-qwen-32b 70% 100% 40% 100%
qwen2.5-32b-instruct 40% 100% 20% 100%
qwen2.5-32b-instruct-vllm 60% 100% 20% 100%
qwq-32b-preview 70% 70% 60% 50%
qwq-32b-preview-awq 60% 90% 50% 90%
internvl2.5-38b 60% 100% 20% 100%
llama-3.1-70b 100% 100% 50% 100%
llama-3.1-70b-instruct 100% 100% 40% 100%
llama-3.1-nemotron-70b-instruct 0% 100% 0% 100%
llama-3.3-70b-instruct 80% 100% 40% 100%
qwen2-72b-32k 90% 100% 40% 100%
qwen2-vl-72b-instruct 100% 100% 40% 100%
qwen2.5-72b-32k 20% 100% 0% 100%
qwen2.5-72b-instruct 20% 100% 0% 90%
qwen2.5-72b-instruct-lmdeploy 0% 90% 0% 90%
internvl2.5-78b 80% 100% 20% 100%
gpt-3.5-turbo-0125 100% 100% 40% 30%
gpt-4o-2024-08-06 80% 100% 20% 100%
gpt-4o-mini-2024-07-18 70% 100% 30% 80%
gpt-o1-preview 100% 100% 60% 100%
Average 61% 85% 28% 72%

Table D.2: Task execution Success Rates and Optimal Rate of Models under Raw
and FittsPrompt Conditions
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