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Abstract 

The assessment of myocardial perfusion using dynamic contrast enhanced 

magnetic resonance imaging (DCE-MRI) is a powerful tool for diagnosing 

myocardial ischaemia due to coronary heart disease, which affects nearly 2.7 

million people in the UK and for which there is an effective treatment.  Although 

visual analysis of DCE-MRI data performs well diagnostically, a quantitative 

estimate of myocardial blood flow (MBF) makes the diagnosis objective and 

could increase diagnostic performance.  Obtaining MBF estimates from DCE-

MRI data is a multi-step process requiring: 

- the localisation of the myocardium and arterial input function (AIF) to 

generate signal intensity vs. time curves; 

- the conversion of signal intensity data to contrast agent concentration 

values; 

- the application of a perfusion model to generate a quantitative MBF 

estimate; 

- the interpretation of MBF estimates to make a diagnostic assessment of 

myocardial ischaemia. 

There are a range of approaches for solving each of these problems.  The aim 

of the work presented in this thesis has been to provide clinically relevant 

evidence for choosing between these approaches.  Myocardial localisation 

contour error tolerance levels are suggested based on simulations using a 

volunteer dataset.  A non-linear signal intensity to contrast agent concentration 

conversion method is presented and tested using simulations and phantom 

data.  An investigation into the best way to interpret quantitative MBF estimates 

is then presented.  Finally a comparison of four, widely applied, perfusion 

models is conducted.   

Where possible, methods have been compared on a sizeable patient dataset in 

terms of diagnostic performance rather than MBF estimate accuracy.  This 

provides evidence suitable for informing clinical decisions on the best 

methodology for quantitative perfusion.  Such evidence could contribute to a 

standard methodology for quantitative cardiac MR perfusion.  This is necessary 

for large clinical trials, which are essential before quantitative MBF estimates 

can be accepted into routine clinical practice.   
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1. Introduction 

1.1. Background 

Coronary heart disease (CHD) is the formation of plaque in the coronary 

arteries that supply blood to the heart.  The resulting arterial narrowing can 

reduce blood flow to the heart causing myocardial ischaemia leading to painful 

angina symptoms.  Complete obstruction, most commonly through thrombus 

formation on a vulnerable plaque, may result in myocardial infarction (cardiac 

cell death), know as a heart attack.  CHD affects 2.7 million people in the UK (1) 

but, if a patient is diagnosed, there is an effective treatment by coronary 

angioplasty or coronary bypass grafting (see section 3.3).   

 

The methods for diagnosing CHD and myocardial ischaemia are many and 

varied (see section 3.4).  However, the role of magnetic resonance imaging 

(MRI) in the assessment of myocardial perfusion is becoming more and more 

recognised within the cardiology community.  At the time of writing two of the 

largest clinical trials for cardiac MR perfusion have shown that the cardiac 

dynamic contrast enhanced (DCE)-MRI perfusion test is as specific and more 

sensitive than the current standard assessment, nuclear medicine, in 

diagnosing CHD (2,3).  Furthermore, there is reason to hope that these figures 

will improve in the future as subendocardial defects become more easily 

detectable with ever increasing image resolution and signal to noise ratio (SNR) 

capabilities in MRI. 

 

These assessments were performed using a visual analysis of the MR data.  

Corresponding large scale diagnostic performance studies using quantitative 

myocardial blood flow (MBF) estimates based on cardiac DCE-MRI data are 

lacking.  Such studies would show whether quantitation can improve diagnosis 

of CHD.  Of particular interest is the impact on diagnosing three vessel disease, 

where stenoses in all three coronary vessels can confound visual detection as 

there is no healthy myocardium to compare against.  Apart from the extra 
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complexity and time-consuming nature of many aspects of quantitative image 

acquisition and analysis, a further obstacle to researchers seeking to undertake 

such trials is the lack of consensus on the analysis method. 

 

Image 

Acquisition

Localisation

Uptake Curve 

(SI -> Conc.)

Perfusion 

Model

Diagnosis
MBF

Mapping

Quantitative

 

Figure 1-1 – Flow diagram depicting the analysis pathway for quantitative DCE-

MRI cardiac perfusion.  After the DCE-MRI dataset has been acquired the 

myocardium and blood pool arterial input function (AIF) must be identified on 

every image frame (localisation).  Typically the myocardium is then subdivided 

into regions related to different coronary arteries (mapping).  Signal intensity (SI) 

vs. time uptake curves must then be generated from each frame and then 

converted to contrast agent concentrations.  A perfusion model is then applied 

to the two uptake curves in order to generate a quantitative estimate of 

myocardial blood flow (MBF).  This MBF value must then be interpreted in order 

to make a diagnosis as to whether the myocardial region is ischaemic or not.  

Only quantitative, or semi-quantitative, analysis requires the steps within the 

box. 

 

The analysis pathway for quantitative perfusion is outlined in Figure 1-1.  Each 

of the steps in Figure 1-1 has been the subject of substantial research effort 

and, as a result, there are a variety of techniques available to tackle each one 

and each solution has its own set of advantages and disadvantages.  This 

leaves the research community with a vast array of options for performing 

quantitative analysis.  The lack of a standardised consensus approach for 

quantifying MBF limits the generalisability of any trial using quantitative MBF 
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values, as any differences in methodology could feasibly affect the results.  

What evidence is there upon which to formulate a consensus methodology?  

Validation of each new innovation has been in terms of the measured MBF, 

either using animal studies, or an independent measurement in humans such 

as PET.  One comparison of quantitative perfusion models on the same dataset 

has been performed showing good agreement of MBF values between 

perfusion models (4).  However, differences in MBF between different studies 

can be quite profound.  For example compare the results of (5) and (6) rest 

MBF 0.52 + 0.11 ml/g/min to 0.88 + 0.28 ml/g/min and stress MBF 1.78 + 0.53 

ml/g/min to 2.32 + 0.46 ml/g/min.  Both of these studies were performed in 

healthy volunteers having previously reported good correlations with PET. 

   

The ultimate purpose of the MBF measurement is to diagnose ischaemia.  

Therefore, the most powerful evidence base for a consensus opinion on 

quantitative analysis is a comparison of diagnostic performance between 

methods on real-world clinical data.  Differences observed in terms of diagnostic 

performance will have a more profound influence on clinical choices, and real-

world clinical datasets differ from healthy volunteer studies.  Clinical datasets 

are more prone to patient dependent problems, such as poor breath-holding 

and unreliable ECG data, and of course include perfusion defects and lower 

MBF values.  Therefore, when attempting to distinguish methods for clinical 

use, it is important to use data that includes patients suffering from CHD.  

Furthermore, in the context of imperfect, real-world imaging it may be that the 

distinguishing factor between methods is not the accuracy of the measurement 

but the robustness to imperfections in the datasets enabling application to a 

wider cohort of patients. 

 

1.2. Aims 

The primary aim of this research was to compare quantitative perfusion models 

in terms of diagnostic performance.  This involved providing a method for non-

linear conversion of the MR signal to contrast agent concentration values and 

automated methods for processing large volumes of DCE-MRI data.  A 
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comparison of methodologies for obtaining a diagnosis from MBF estimates has 

also been performed.  The aims of this research are related to the 

methodological steps outlined in Figure 1-1 as follows: 

Aim 1 – To compare quantitative perfusion models in terms of diagnostic 

performance (perfusion model). 

Aim 2 – To compare methodologies for interpreting regional quantitative MBF 

estimates in terms of diagnostic performance (mapping). 

Aim 3 – To provide myocardial contour error tolerance levels for quantitative 

perfusion purposes (localisation). 

Aim 4 – To provide a methodology for converting MR signal values to 

concentrations, specific to the pulse sequence used in this research (uptake 

curve). 

Aim 5 – To provide fully automated quantitative perfusion uptake curve 

processing algorithms. 

 

1.3. Overview 

Chapter 2 provides a description of the basic physics of MRI before describing 

the imaging pulse sequences applied to cardiac perfusion imaging.  The 

choices and compromises that must be made when designing a perfusion 

imaging sequence are then described taking into account the extra 

considerations pertinent to quantitative imaging. 

 

Chapter 3 gives a brief description of cardiac anatomy and physiology before 

describing coronary heart disease and its treatment.  A review of medical 

imaging modalities for diagnosing CHD and myocardial ischaemia is given 

before a more detailed discussion is made of the advantages and 

disadvantages of cardiac perfusion MRI including a review of the diagnostic 

performance literature.   
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Chapter 4 provides an explanation of the models used to make estimates of 

MBF.  Semi-quantitative methods are described briefly before a detailed 

mathematical description of the quantitative methods used in this thesis is 

given. 

 

Most of the research presented in this thesis is based on two datasets.  Chapter 

5 describes in detail the acquisition protocol for the dual-phase study and the 

CE-MARC trial.  The original purposes of the investigations are given along with 

the pulse sequence parameters.  A description of the manual contouring 

methodology applied in all cases is then provided.  The automated methods 

used for uptake curve pre-processing (prior to quantitative analysis) are then 

described and tested qualitatively. 

 

Chapter 6 explains the method used to convert signal intensity values into 

contrast agent concentrations.  The pulse sequence for the acquisition of the 

perfusion DCE-MRI data is represented as a mathematical model.  The 

assumptions of this model are then tested using computer simulations.  The 

model is then further tested using images acquired of a T1-gel phantom using 

the perfusion imaging sequence. 

 

Chapter 7 describes a novel method used to derive tolerance limits for 

myocardial contours.  In order to assess the affect of myocardial contour errors 

on MBF estimates, contour errors are simulated on manual contours applied to 

a dataset of healthy volunteers.  These simulations are used to describe the 

relationship between contour errors and MBF errors.  This relationship is then 

used to provide a basis for setting an allowable error rate in the context of 

global and regional perfusion analysis. 

 

Chapter 8 describes the subset of patients taken from the CE-MARC trial before 

describing the exclusion process for this dataset.  The dataset is then used to 

investigate whether the non-linear concentration conversion described in 
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chapter 6 improves diagnostic power.  Separate investigations are then 

performed to attempt to find the best way to use regional MBF estimates for 

diagnosing myocardial ischaemia.  The use of separate MPR cut-offs for each 

of the coronary arteries is investigated.  An investigation into whether the mean 

or minimum regional MPR value should be used is conducted.  Finally the 

comparative power of using only the middle imaging slice, as opposed to all 

three slices, is carried out and the diagnostic performance when global analysis 

is used instead of regional analysis is evaluated. 

 

In chapter 9 four quantitative perfusion methods are compared in terms of 

diagnostic performance.  Model-independent deconvolution, Fermi-constrained 

deconvolution, the uptake model and the one-compartment model are 

implemented on the entire CE-MARC subset.  The diagnostic performance of 

these four models is then compared using the methods derived in chapter 8. 

 

Chapter 10 draws general conclusions from the research described in this 

thesis, details the limitations of the research and provides recommendations for 

future work. 
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2. Background: perfusion MRI physics 

2.1. Introduction 

Although the basics of MRI have been described many times in the literature 

this thesis will have cause to analyse the evolution of longitudinal magnetization 

Mz in detail and so would not be complete without a description of this concept.  

Numerous MRI texts have described the basics of magnetic resonance with 

reference to spin-up and spin-down energy eigenstates.  However, other 

authors argue that this has led to confusion and that the classical description is 

adequate for understanding magnetic resonance imaging (7,8).  For this reason 

the description given in this thesis follows that of Levitt (8), and is an entirely 

classical description.  After describing the origins of the MR signal, the basic 

gradient recalled echo sequence is described.  A brief description of the 

extensions to this sequence that are most commonly applied in cardiac 

perfusion imaging is then presented.  A discussion of the multiple factors that 

must be taken into account when designing a perfusion sequence and the 

inevitable compromises that must be struck between competing demands on 

the resulting image is then given.  This latter part is based on sections of a 

review paper recently published in JCMR (9), written by the author of this thesis. 

 

2.2. The origin of the MR signal 

Nucleons possess a magnetic moment and an angular momentum by virtue of 

an intrinsic property called „spin‟.  The spin angular momentum S and magnetic 

moment μ are proportional to each other and are oriented either parallel or anti-

parallel to each other dependent on the sign of the gyromagnetic ratio  : 

     

Equation 2-1 
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Figure 2-1 - In the presence of an external magnetic field, Bo, the spin magnetic 

moment   precesses around Bo at an angular frequency   describing a cone 

shape. 

 

The spin angular momentum is a vector which can point in any direction in 

three-dimensional space, thus the magnetic moment can also point in any 

direction.  In the presence of an external magnetic field, Bo, the combination of 

the angular and magnetic moments of the spin causes it to precess around the 

external magnetic field describing a cone, keeping a constant angle between 

the spin magnetic moment and Bo (Figure 2-1).  The frequency of precession is 

known as the Larmor frequency,   , and is given by the Larmor equation: 

        

Equation 2-2 

2.3. Longitudinal recovery  

By virtue of the fact that the spins are initially randomly orientated the net 

magnetization over any macroscopic sample is zero.  Once placed into an 

external magnetic field the spins all precess at the same angular frequency 

(assuming a completely homogeneous Bo) but this has no affect on the net 

magnetization due to the arbitrary phase of each precessing spin.  However the 
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molecules that carry the protons are in constant motion.  This in itself has no 

effect on the orientations of the spins, which maintain their orientation 

independent of molecular orientation.  However each molecule possesses small 

localised magnetic fields.  The magnetic field at a given time is the sum of Bo 

and contributions from the immediate molecular neighbourhood.  Thus, each 

spin experiences small fluctuations in magnetic field strength which lead to 

small changes in the cone angle between   and Bo.  Over time the magnetic 

moment wanders over the complete range of possible cone orientations. 

 

The magnetic energy between two magnetic moments is at a minimum when 

those two moments are parallel.  At finite temperatures it is slightly more 

probable that each spin is driven to an orientation with low magnetic energy 

than to a high magnetic energy (8).  Thus, as the spins wander through cone 

angles there is a slight preference for alignment with Bo.  Over time this leads to 

a stable state where there is a finite net magnetization parallel with Bo.  This is 

denoted Meq as it is the magnetization at thermal equilibrium.  At any one time 

the net magnetization is Meq however the individual spins are still constantly 

changing orientation and the net magnetization is due to the slight preference in 

the system toward low energy magnetization orientations. 

 

The transition to thermal equilibrium after exposure to Bo is not instantaneous.  

The net magnetization in the z-direction at time t, Mz(t), increases exponentially 

to Meq: 

             
  

  
   

Equation 2-3 

T1 is the longitudinal relaxation time and describes the rate at which the system 

arrives at thermal equilibrium.  Importantly for magnetic resonance imaging 

(MRI) T1 is different for different substances.  Fundamentally T1 depends on the 

correlation time of the molecular motion, i.e. how fast the molecules move.  By 

acquiring data at different times on the T1
 recovery curve MRI is able to 

generate images with different Mz values for different tissues and this is one of 

the sources of image contrast in MRI. 
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2.4. Transverse magnetization  

The longitudinal net magnetization is almost undetectable along the z-axis in 

the presence of the large Bo field.  In an MR experiment, in order to be able to 

detect the net magnetization, it is flipped into the transverse plane.  This is done 

by applying, for a brief time, a second magnetic field, B1, which is perpendicular 

to Bo.  The spins, still precessing around Bo, now begin to precess around B1 

resulting in the net magnetization spiralling into the transverse plane.  Because 

the spins are precessing at    the B1 field must oscillate at the same frequency 

in order for each spin to experience a constant magnetic field relative to its 

constantly changing orientation.  The rate of oscillation required is in the 

radiofrequency range of the electromagnetic spectrum (Figure 2-2).     

z

x y

B1

a) Stationary frame of reference

z

x y

B1

b) frame of reference rotating at  

μ μ

 

Figure 2-2 – a) The net magnetization simultaneously precesses about Bo and a 

second magnetic field oscillating at exactly    causing the net magnetization to 

spiral into the transverse plane.  b) Viewed from a frame of reference rotating at 

   the oscillations of B1 are removed and the net magnetization appears to 

simply flip directly into the xy-plane. 

 

The preference in the spins for alignment with Bo has now been rotated 90o 

from the z-axis and manifests as a preference to precess in phase in the xy-

plane. The net magnetization now rotates around the z-axis with an angular 

frequency   .  Once in the xy-plane the net magnetization can be measured by 

the strength of electric signal it induces in a wire coil placed near the sample 

and this is the basis for all MR measurements.  The net magnetization will 

return to align with Bo at a rate dictated by T1 as described in section 2.3.  
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However, the transverse magnetization decays by a separate mechanism.  

Directly after the B1 field has been switched off the spins start to dephase and 

the transverse net magnetization rapidly deteriorates. Fluctuations in the 

microscopic magnetic field that each spin experiences cause small changes in 

precessional frequency which lead to dephasing and deterioration of the net 

transverse magnetization.  In real-world MR experiments spatial 

inhomogeneities in the generated Bo field are also responsible for dephasing.  

The transverse magnetization, Mxy(t), decays exponentially according to the 

transverse relaxation time constant T2 (or T2* when Bo inhomogeneities are not 

corrected for) according to: 

           
  

  
 

 

Equation 2-4 

2.5. Generating an image: localisation 

The process described so far leads only to the measurement of an oscillating 

electric signal in a conducting coil placed near the substance.  How can these 

signals be interpreted to generate an image?  Almost all image localisation in 

MRI is performed using temporally variable magnetic gradients1.  These are 

generated by additional coils positioned inside the bore of the main 

superconducting magnet, which generate small gradient magnetic fields that 

add and subtract from the main Bo field.   

 

Selective excitation (slice selection) 

If a magnetic field gradient is applied across the object of interest the 

precessional frequencies vary spatially with the gradient.  As described in 

section 2.4 the B1 field must be at the Larmor frequency for spins to rotate into 

the transverse plane.  By limiting the radiofrequency bandwidth of the B1 pulse 

whilst the gradient is applied the B1 field is limited to only effect spins in a finite 

spatial area (Figure 2-3).   

 

                                            

1 In parallel imaging the position of the multiple coils is also used as part of the 
image generation process. 
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Figure 2-3 – By applying an additional gradient, Gz, whilst exposing the object 

only to a limited bandwidth of B1 frequencies only spins in a  finite slice are 

excited.   

 

Localisation within the excited slab is performed by exploiting the Fourier 

transform (FT), which transforms time domain signals into the frequency domain 

and vice versa.  Applying a frequency encoding magnetic field gradient in the x 

direction causes spins at higher field strengths to precess at higher frequencies.  

In other words frequency has become a function of x: 

                

Equation 2-5 

Where      is the precessional frequency at a position x along the x-axis and 

Gx is the gradient strength dB/dx.  The time domain signal will consist of signal 

from all the spin frequencies from the entire excited slab.  However, the Fourier 

transform converts this time domain signal onto a frequency axis.  As the 

signals have been encoded such that frequency is synonymous with position 

the frequency axis can be reinterpreted as spatial position (Figure 2-4). 
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Figure 2-4 – Precessional frequency increases with x due to the magnetic field 

gradient Gx.  The measured signal is the sum of all spin frequencies and 

amplitudes.  The Fourier transform represents these on a frequency axis.  As 

frequency is synonymous with spatial position, by virtue of the frequency 

encoding gradient Gx, the frequency axis can be reinterpreted as position along 

the x direction2. 

 

The final spatial dimension is encoded in terms of the phase of the spins.  Prior 

to frequency encoding a phase encoding magnetic field gradient is applied, 

orthogonal to the frequency encoding direction, which varies the spin frequency 

for a short interval before the phase encoding gradient is turned off (Figure 2-4).  

In this case phase is encoded with distance y: 

                
 

 

 

Equation 2-6 

                                            

2 The final amplitudes in Figure 2-4 have been drawn to reflect proton density 
(the number of spins at a given frequency).  In most MR images the signal 
strength is dominated by T1 and T2 contrast. 
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Where      , is the change in phase at position y,  T is time for which the 

phase encoding pulse is applied and Gy is the phase encoding gradient 

        . 

Before phase 
encode

After phase 
encode

B

y

Bo + Gy

Bo

 

Figure 2-5 – After the application of a phase encoding gradient for a short time in 

the y direction the spin’s phase is a function of distance along y. 

 

The Fourier transform can only analyse time variant signals and so cannot 

decode a single phase encoding step.  Therefore, the process is repeated over 

a range of phase encoding gradients.  The signals from each phase encoding 

step are arranged in order of phase encoding gradient amplitude in a matrix 

known as k-space.  In the frequency encoding direction the data represents 

time variant changes in signal whose Fourier transforms are frequencies, which 

have been encoded to represent position along x.  In the phase encoding 

direction the data represents the rate of change of phase at each position in the 

object over all of the phase encoding steps.  The rate of change of phase will be 

higher at the outer edges of the object where the gradient changes were most 

extreme.  The Fourier transform in this direction will represent rate of change of 

phase as simply another frequency, which has been encoded to represent 

distance along the y direction.  Thus, by representing the data in this way and 

performing a 2D Fourier transform an image of the MR signal is produced.  
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Figure 2-6 – Signal acquisitions acquired with  increasing phase encoding 

gradient strength are arranged sequentially in a matrix called k-space.  In the 

frequency encoding direction the FT transforms the data onto a frequency axis 

    .  In the phase encoding direction the FT transforms the data to a rate of 

change of phase axis 
     

  
. 

2.6. Pulse sequences 

2.6.1. Gradient recalled echo (GRE) 

The MR pulse sequence, of which there are an enormous variety, refers to the 

particular series of RF pulses and gradients, with associated timings, used to 

generate the image.  Here the description is limited only to sequences that are 

used in myocardial perfusion DCE-MRI.  The pulse sequence diagram for 

gradient recalled echo (GRE) is shown in Figure 2-7.  In an MR acquisition, 

before each line of k-space is acquired a time TR (the relaxation time) must be 

left to allow the longitudinal magnetization to recover sufficiently before applying 

the next RF pulse.  This parameter controls the degree to which T1 differences 

between substances effect the image contrast.  To generate a T1-weighted 

image after a 90o RF pulse TR needs to be of the order of a few hundred 

milliseconds making the acquisition time for the full k-space long.  By using a 

flip angle α < 90o much shorter TRs can be used, albeit with poorer image 
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contrast.  The top line of the pulse sequence diagram in Figure 2-7 depicts the 

αo RF pulse in conjunction with a gradient in the slice selection direction.  The 

application of any gradient causes dephasing of the spins, which is an 

undesirable loss of signal coherence in this instance, and so an immediate 

rephasing pulse is applied in the opposite direction to undo the dephasing in the 

slice selection direction.  This is followed by the phase encoding gradient Gp, 

which causes dephasing necessary for the image formation.  Simultaneously, a 

dephasing gradient is applied in the frequency encoding direction prior to the 

frequency encoding gradient.  The frequency encoding gradient then 

immediately rephases and then continues to dephase the signal whilst the 

acquisition is made.  This results in the generation of a symmetric echo with a 

peak signal strength at the centre of k-space.  The centre of k-space contains 

the low spatial frequency information, which is the most critical for image 

contrast.  The time between the RF pulse and the centre of the read-out signal 

is the echo time (TE) and controls the strength of the effect of T2* contrast on 

the image. 

o o o

rf

Gs

Gp

Gf

S

TR

TE

 

Figure 2-7 – Gradient recalled echo.  The αo RF pulse is applied in conjunction 

with the slice selection gradient Gs, followed by a rephasing gradient.  The phase 

encoding gradient ,Gp, is applied in conjunction with the a dephasing gradient Gf, 

after which the signal is acquired during the frequency rephasing gradient.  

 

2.6.2. Fast sequences 

At very low flip angles TR can be set so low that the transverse signal has not 
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completely dephased by the onset of subsequent RF pulses, leading to image 

artifacts.  Spoiled gradient echo uses a spoiler gradient to dephase transverse 

magnetization to destroy transverse magnetization prior to the next RF pulse.  

Conversely, balanced steady state free precession (bSSFP) „rewinds‟ the signal 

dephased by the applied gradients by applying additional balancing gradients to 

rephase the MR signal before each subsequent RF pulse.  The remnant 

transverse magnetization is then superimposed onto the magnetization 

generated by subsequent RF pulses generating high signal.  Echo planar 

imaging (EPI) uses rapidly alternating frequency encoding gradients, 

interspersed by phase encoding pulses, to refocus multiple gradient echoes 

following a single RF pulse. Single-shot EPI acquires all of the echoes required 

to fill k-space in a single echo train, however T2* decay throughout the echo 

train causes the images to be heavily T2*-weighted resulting in relatively poor 

image quality. For cardiac perfusion imaging a hybrid-EPI (also known as 

segmented EPI) approach is typically employed where a number of shorter 

echo trains are acquired by applying multiple RF pulses.  This reduces the 

detrimental effect of T2* weighting, improving the image quality while 

maintaining some of the speed advantage provided by the EPI technique 

(Figure 2-8). 

TR

o o

GS

GP

rf

GF

 

Figure 2-8 - Hybrid Echo Planar Imaging (hybrid-EPI).  The slope of the frequency 

encoding gradient is rapidly alternated, generating a train of gradient echoes 

following a single RF excitation pulse.  Phase encoding gradients are applied 

between each frequency encoding gradient to ensure each gradient echo fills a 

different line of k-space.  In hybrid-EPI multiple RF pulses are used, each 

followed by an echo train. (ETL = 5 in this case). 
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2.6.3. The preparation pulse 

To reduce acquisition time the perfusion sequences described above employ 

small flip angles and very short TRs resulting in poor T1-contrast.  For this 

reason a preparation pulse can be applied prior to the read-out pulse sequence 

with a sufficiently long saturation time (TS) to establish a high T1-contrast before 

the read-out sequence is employed.  For instance a spoiled gradient echo read-

out sequence uses small flip angle RF pulses so that Mz is only partially 

decreased, and full recovery occurs earlier after the read-out.  This enables 

short repetition times (TR), but also limits the changes in contrast between 

substances (Figure 2-9a).  If a 90o preparation-pulse is applied with a long delay 

before the read-out then the image contrast is increased (Figure 2-9b), before 

the fast read-out sequence is applied.  The time between the preparation pulses 

and the central, contrast defining, line of k-space, ko, is known as the saturation 

time (TS). 

o o o o o

Central line 
of k-space

Mz

t

muscle

fat

T1 contrast

a) Spoiled gradient echo

o o o o o
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of k-space

Mz

t
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fat
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b) Spoiled gradient echo with a pre-pulse

90o

TR
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Figure 2-9 – a) small flip angles and short TRs in spoiled gradient echo creates 

poor T1 image contrast.  b) The use of a 90o saturation pulse and a long 

saturation time (TS) establishes strong T1 contrast before applying the spoiled 

gradient echo read-out. 
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2.7. MR contrast agents 

MR contrast agents enhance MR signal by modifying tissue T1 and T2 relaxation 

times.  The most commonly used contrast agents exploit the strong 

paramagnetic properties of the lanthanide ion gadolinium (Gd).  Local field 

interactions between the seven unpaired electrons of the Gd ion and the 

hydrogen nuclei within adjacent water molecules cause a reduction in both the 

T1 and T2 of the surrounding tissue.  The Gd ion is bound, or chelated, to a 

larger electron-donating molecule or ligand to render it safe for in-vivo human 

use, except in cases of impaired renal function (10–12).  The ability of a given 

contrast agent to influence relaxation rates is expressed in terms of its relaxivity 

which is the change in relaxation rate per unit concentration expressed in mM-1 

.s-1.  If the concentration in mM of contrast agent is C and the T1 relaxivity is r1 

then the observed relaxation rate of the tissue T1 (observed) can be related to its 

native relaxation rate T1(native) as follows (13):   

1/T1 (observed) = 1/T1 (native) + r1 . C 

Equation 2-7 

There is a corresponding expression for the observed T2 relaxation rate of the 

substance T2 (observed) as follows:   

1/T2 (observed) = 1/T2(native) + r2 . C 

Equation 2-8 

Where r2 is the T2 relaxivity and T2(native) is the native relaxation rate.  Relating 

T1(observed) to the final image signal intensity (SI) value is more complicated.  SI is 

dependent on T1, T2, proton density, the MR imaging sequence and its 

parameters.  Figure 2-10 shows a plot of SI versus contrast agent 

concentration.  At low concentrations T1 shortening is the dominant effect of the 

contrast agent so that the SI increases with concentration. However at higher 

concentrations the T2 shortening effect becomes dominant and SI begins to fall.  

If the images are to be used for quantitative analysis then the contrast-induced 

changes in SI must directly reflect changes in Gd concentration.  At low 

concentrations this assumption holds because the relationship between SI and 

Gd concentration is approximately linear.  At higher concentrations this 
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relationship becomes non-linear and quantitation of concentration based on 

uncorrected SI values will yield erroneous results.  At still higher values the 

signal becomes saturated and it is no longer possible to derive a single 

concentration from the measured SI value because the relationship between SI 

and CA concentration ceases to be monotonic. 

 

1%    2%  4%   8%   10% 20% 40% 60%  80% 100%

T2* relationship T 1 relationship

 

Figure 2-10 - Signal intensity values over a range of concentrations for a spoiled 

gradient echo pulse sequence.  The solid line shows the combined effect of T1 

and T2* on signal intensity.  The two dashed curves show the separate 

dependencies of the signal behaviour for T1 or T2* alone. At low concentrations 

the effect of T1 shortening is dominant, while at higher concentrations the T2* 

shortening dominates.  A series of samples imaged with increasing percentage 

concentrations of Gadolinium are shown underneath the plot as a visual 

demonstration of the effect. 
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Extra-vascular, extra-cellular contrast agents are the most commonly used in 

clinical practice.  These agents are small enough to leak through the capillaries 

from the vascular space into the extra-vascular, extra-cellular space but not 

through cell membranes.  It is this property of the contrast agent that enables 

late gadolinium enhancement of myocardial infarcts where the extravascular, 

extracellular space is enlarged.  Intravascular contrast agents, which stay within 

the vascular space, are less commonly used but may be preferable for 

quantitative perfusion imaging as they allow simpler mathematical models to be 

used for flow quantification as no account needs to be taken of leakage from the 

vascular space (14). 

 

2.8. Dynamic contrast enhanced magnetic resonance imaging 

(DCE-MRI) myocardial perfusion3 

In order to assess myocardial perfusion, blood passing into the myocardium 

needs to alter image signal intensity so that areas of reduced perfusion can be 

detected.  This is typically achieved using a signal enhancing contrast agent.  

The contrast agent is injected intravenously whilst multiple images of the heart 

in the same anatomical position and the same cardiac phase are acquired in 

successive heart beats (Figure 2-11).  Typically short-axis images are acquired 

but a long-axis image is also sometimes additionally acquired in order to cover 

the apex of the heart.  The acquisition protocol needs to take into account the 

trade-off between spatial requirements (i.e. coverage, resolution) and the 

temporal resolution. 

                                            

3 This section is based on a previously published review paper, Biglands, 2012 
(9). 
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Figure 2-11 - Contrast agent is injected intravenously whilst multiple images of 

the heart are acquired to create a dynamic series showing the contrast agent 

passing through the heart.  Contrast agent can be seen as signal enhancement 

in the right ventricle (RV) followed by the left ventricle (LV) and more gradually in 

the myocardium, before finally washing out. 

 

The essential requirements of a DCE-MRI cardiac perfusion imaging sequence 

can be summarised as follows: All data for multiple images must be acquired 

within a single heart beat and the effects of cardiac and respiratory motion must 

be minimised.  In addition the image contrast must be T1-weighted to maximise 

the effect of the contrast agent on image signal intensity. In order to fulfil these 

requirements, the choice of pulse sequence, method of contrast generation and 

approaches to minimise motion effects must be carefully considered. 

 

2.8.1. The perfusion pulse sequence: read-out sequence 

In DCE-MRI the image appearance changes significantly between contiguous 

frames due to the passage of the contrast agent through the heart so multi-shot 

k-space imaging strategies that fill k-space over multiple cardiac cycles are not 

applicable.  Therefore, in order to acquire images quickly, DCE-MRI perfusion 

imaging is generally performed as a single shot technique with a fast (or turbo) 

spoiled gradient echo (FGE), balanced steady state free precession (bSSFP), 

or echo planar imaging (EPI) pulse sequence.  Despite numerous comparison 

studies there is still no consensus on the optimal data acquisition pulse 

sequence for perfusion imaging. Objective measures of pulse sequence 
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performance include the speed of acquisition, the level of artifact and the signal-

to-noise ratio (SNR) and contrast-to-noise ratio (CNR).  SNR is the ratio of the 

signal intensity of a particular tissue to the background image intensity in an 

area where signal is absent, while CNR is the ratio of the signal difference 

between two particular tissues and the background image intensity.  As FGE 

uses a RF pulse per read-out line it is less susceptible to fluctuations in k-

space, which should theoretically make it less susceptible to ghosting artifacts.   

 

Nevertheless, hybrid EPI has been shown practically to be less artifact prone 

than FGE (15).  Hybrid-EPI is also faster, allowing increases in coverage and 

resolution.  By maintaining steady state transverse magnetization bSSFP 

sequences generate the greatest signal of the three methods (16).  The higher 

SNR of bSSFP images allow a much higher bandwidth to be selected leading to 

shorter TE and TR making bSSFP a faster sequence than FGE and SSFP has 

been shown to have better sensitivity for detecting perfusion defects (17), also 

due to its high image SNR and CNR.   

 

However, of the three sequences SSFP is the most prone to artifacts (18) 

caused by off resonance magnetization.  It has a greater occurrence of 

susceptibility artifact and ghosting and is prone to truncation artifact in the 

endocardium due to the increased difference in signal intensity between the 

blood and the myocardium (19).  Due to the large number of causes of artifacts 

with bSSFP it tends to be the least robust sequence, being both capable of 

producing high quality images but prone to significant image artifacts. 

 

2.8.2. The perfusion pulse sequence: T1-weighting and TS 

DCE-MR images should be T1-weighted in order to maximise the effect of the 

contrast agent on signal intensity.  This is achieved using a preparation pulse 

(section 2.6), with the amount of T1 weighting controlled by the saturation time 

(TS) (Figure 2-12).  Perfusion imaging is usually carried out using a saturation 

recovery preparation pulse as inversion recovery increases the total scan time, 

and is more vulnerable to RR variation (18).  For visual analysis of perfusion 

defects the T1 weighting can be optimised to maximise T1 contrast using a long 

TS.  However, unnecessarily long TS values take up too much of the RR-
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interval and limit coverage and spatial resolution.  Furthermore, if the images 

are to be used for quantitative imaging, shorter TS values are preferable to 

minimise the non-linearity in the relationship between CA concentration and 

signal intensity. 

 

2.8.3. The perfusion pulse sequence: trigger delay (TD) 

RR interval
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Acquisition 
gradients
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Figure 2-12 - The trigger delay (TD) sets the point at which the centre of k-space, 

k0, is acquired within each RR-interval. The saturation time (TS) determines the 

time between the saturation pulse and the centre of k-space, thereby controlling  

the T1-weighted contrast of the image for a particular image slice. 

 

In perfusion imaging each single-shot image acquisition is acquired quickly 

enough to avoid the detrimental effect of cardiac motion.  The use of ECG 

triggering serves only to determine at what phase of the cardiac cycle the heart 

will be imaged. This is set by the trigger delay (TD), which is the time from the 

ECG R-wave to the time of the acquisition of the central line of k-space, ko, 

(Figure 2-12).  In a single slice acquisition this can be set to any point of the 

cardiac cycle. TD does not change with RR interval so if the heart rate 

increases during imaging the cardiac phase of the image will change during 

imaging.  The fastest heart motion is during systole and early diastole, thus 

imaging at mid-diastole should minimise motion artifacts.  Conversely there is a 
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preference for imaging in systole if quantitative analysis is foreseen, as the 

thicker myocardial wall in systole allows larger ROIs within the myocardium and 

subsequently improved SNR in contrast uptake curves. 

 

2.8.4. Coverage and resolution 
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Figure 2-13 - With a single slice acquisition per RR interval (top) there is flexible 

choice for the optimal cardiac phase and T1-weighted image contrast, but poor 

coverage of the LV. For multiple slice acquisitions, the use of a separate 

preparation pulse for each slice (centre) allows the same image contrast for each 

slice (fixed TS) but the two slices are acquired at different cardiac phases due to 

their different trigger delays and the number of slices is limited.  Using a pre-

pulse shared by all the slice acquisitions (bottom) potentially allows more slices 

to be acquired, but  leads to each slice having both a different T1-contrast 

behaviour, and a different cardiac phase. 

 

For the detection of sub-endocardial perfusion defects there is a requirement to 

maximise spatial resolution but this increases the acquisition time for each slice 

which renders the acquisition more prone to cardiac motion and limits the 



26 
 

number of slices that can be acquired within a heartbeat, thus limiting coverage.  

However, endocardial perfusion defects may occur at any point in the left 

ventricular wall and so maximising the coverage of the left ventricle is also 

important.  The AHA recommend that three short-axis slices are acquired to 

cover basal, mid and apical regions of the left ventricle (20) and that a spatial 

resolution of at least 2.5mm (21,22) is necessary to be able to reliably detect 

sub-endocardial defects.  The achievement of all of these requirements within a 

single RR-interval is challenging.  One approach to increase coverage along the 

long-axis of the left ventricle is to acquire an increased number of slices over 2  
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Figure 2-14 - For every image in the dynamic sequence contours describing the 

myocardium and a region in the blood pool are drawn.  The average signal 

intensity from within each region is plotted for each time point to generate plots 

of signal intensity versus time that show the increase in signal intensity in both 

the  myocardium (green) and the blood pool (red).   

 

RR-intervals, which has the effect of decreasing the temporal resolution of the 

dynamic series.  This is a less desirable option if a quantitative assessment of 

perfusion is required (18,21).  A further alternative is to abandon the 

requirement that each read-out pulse has a separate preparation pulse (23).  

The delay following the saturation pulse, TS, is the longest time delay in the 
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sequence and so the use of a shared saturation pulse applied to all three slices, 

followed by three slice data acquisitions reduces the acquisition time 

significantly (Figure 2-13).  However, this approach results in a different image 

contrast for each slice, with the longer TS slices less suited to quantitative 

analysis. 

 

2.8.5. Factors relevant to quantitation of myocardial blood flow 

In order to quantify myocardial blood flow (MBF) signal vs. time uptake curves 

must be obtained.   Regions of interest (ROIs) are drawn on each frame of the 

dynamic series of images to define the myocardium and an area within the left 

ventricular blood pool.  Signal intensities for each of these regions are then 

plotted at each time point to generate dynamic uptake curves.  The blood pool 

curve is taken to represent the contrast agent passing into the myocardium or 

the arterial input function (AIF) and the myocardial region represents the 

contrast agent remaining within the myocardium (Figure 2-14).  These curves 

can be analysed to obtain semi-quantitative or quantitative estimates of MBF. 
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Figure 2-15 - The left hand graph shows the difference between the assumed 

linear relationship between signal intensity and Gd concentration (dotted line) 

and the true relationship (solid line).  The right hand graph shows how the non-

linear relationship at higher concentrations can propagate into a peak height 

error in the measured blood pool curve (the arterial input function or AIF) 

causing an overestimate in MBF. 
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2.8.6. Non-linearity effects at high gadolinium concentrations 

If perfusion data are to be used for MBF quantitation then an extra 

consideration becomes relevant in terms of the MR acquisition.  The non-

linearity in the relationship between gadolinium concentration and signal 

intensity (SI) must be minimised.  Typically for perfusion measurements 

contrast agent doses do not exceed 0.1mmol/kg and so the SI to concentration 

curve has negligible influence from T2
* shortening (Figure 2-10).  Figure 2-15 

illustrates how the non-linearity in the relationship between signal intensity and 

Gd concentration causes blunting of the AIF peak yielding overestimates in 

MBF.  The degree of non-linearity depends on the dose and injection rate of the 

administered contrast agent, the type of MR pulse sequence (EPI, FFE, SSFP) 

and the saturation time (TS).  Acquisition protocols for quantitative perfusion 

imaging attempt to optimise these factors to ameliorate the effect of this non-

linearity on the MBF estimate. 

 

The simplest method is to administer a low dose of contrast agent so that the 

relationship between MR signal intensity and Gd concentration is in the 

approximately linear region (Figure 2-15).  Contrast agent doses need to be 

around 0.01 mmol/kg to ensure linearity in the blood pool (24).  These low 

doses reduce the CNR and SNR of the images rendering visual analysis (still 

the main-stay of clinical reporting) difficult.  The myocardial curve enhances less 

dramatically than the AIF due to the lower concentration within the myocardium 

and such low administered doses can reduce the change in signal in the 

myocardium to such an extent that MBF estimates become significantly affected 

by image noise, compromising the precision of the MBF estimate.   

 

To tackle these issues dual-bolus strategies have been proposed that employ 

two contrast injections.  Firstly a low dose bolus is injected from which the AIF 

will be acquired but the poor CNR myocardial data will be discarded.  This is 

followed by a higher dose bolus from which only the myocardial curves will be 

used.  The method is practically challenging as it requires the patient to undergo 

a total of four contrast injections (if they are to be imaged under rest and stress 
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conditions), but has shown good agreement with PET MBF values (5).  

However the increased accuracy of the dual-bolus technique has not been 

shown to increase its diagnostic value over single bolus (25).  This might be 

explained by the introduction of extra noise from the separate pre-bolus 

analysis. 

 

An alternative approach is to reduce non-linearities by altering sequence 

parameters.  The dual-sequence strategy uses a sequence with very short TS 

(~10ms) and low image resolution followed by a more typical TS (~100ms) 

acquisition (26).  The short TS images exhibit a more linear SI to concentration 

relationship and are used to generate the AIF curve, whereas the longer TS 

images are used for the myocardial enhancement curve.  Acquiring two 

acquisitions for each heart position requires a corresponding reduction in 

coverage and, as with dual-bolus, the AIF images will suffer from lower CNR 

than the myocardial images. 

 

Non-linearity correction attempts to convert the SI vs. time curve to a 

concentration vs. time curve post hoc. (27,28).  In this approach the MR 

imaging sequence equation is used to convert each SI value into a T1 value 

(using prior knowledge of the imaging parameters) (29–31).  If the native tissue 

T1 has been measured prior to the perfusion scan then the contrast enhanced 

T1 values can be converted to concentrations.  If the SI value lies in the 

approximately linear, or non-linear region (Figure 2-15) then it should be 

possible to convert it to CA concentration.  However, if the curve has passed 

into the plateau region then the solution to the pulse sequence equation will 

become error prone and the correction becomes useless.  Such conversions 

are also susceptible to errors in the native T1 measurement and errors in the 

pulse sequence parameters. 

 

2.9. The dark rim artifact (DRA) 

All MR images are susceptible to image artifacts.  However in cardiac perfusion 

imaging the dark rim artifact (DRA) is particularly problematic as it mimics the 

very perfusion defects that the investigation is designed to show.  DRAs 
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manifest as transient signal voids at the endocardial boundary and can be 

mistaken for genuine sub-endocardial perfusion defects.  They differ from 

genuine hypoperfusion events in that they typically last only a few heart beats 

(32) and they can cause the myocardial signal intensity to drop below the 

baseline (pre-contrast) signal value (33).  A number of comparison studies have 

been conducted to investigate which sequences are most prone to DRAs 

(16,17,34) showing that bSSFP is the acquisition sequence most affected.  The 

cause of a given DRA is difficult to pinpoint as multiple factors have been shown 

to contribute.  Motion during image acquisition can generate abrupt 

discontinuities in k-space which translate into banding artifacts at tissue 

boundaries in the image (35).  Magnetic susceptibility effects may also cause 

DRA due to increased magnetic field distortions around boundaries in the image 

and temporal changes in magnetic susceptibility on the arrival of contrast agent 

(17,33).  This effect is most prominent in bSSFP due to its higher sensitivity to 

changes in magnetic susceptibility which cause local changes to the Larmor 

frequency. These off-resonance effects become worse at stronger 

concentrations of contrast agent.  The presence of truncation artifact at the high 

contrast boundary between the blood pool and myocardium is another potential 

cause of DRA (22).  This is caused by an insufficient content of high spatial 

frequency data in k-space which means that the Fourier transform is unable to 

accurately represent true high contrast boundaries in the image.  This causes 

signal variations adjacent to these boundaries that appear as bright and dark 

bands.  This effect becomes worse at higher contrast levels such as with higher 

bolus concentrations and injection rates, and when using bSSFP as the 

acquisition sequence. 

 

2.10. Summary 

The basics of MRI, including the origin of the MR signal and basic pulse 

sequences, have been described with a focus on the imaging methods used in 

CMR perfusion imaging.  The demanding imaging requirements for CMR 

perfusion imaging have been described and the options and compromises as to 

how these demands are to be met have been discussed.  The next chapter will 

discuss coronary heart disease and myocardial ischaemia, explaining the role 
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that these CMR perfusion techniques play in its diagnosis.
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3. Background: ischaemia and myocardial 

perfusion 

3.1. Introduction 

MRI is by no means the only method for diagnosing coronary heart disease 

(CHD).  Most medical imaging modalities have methods for detecting the 

disease with their own sets of advantages and disadvantages.  After a 

discussion of basic cardiac anatomy and function, CHD and its treatments are 

briefly described in this chapter.  An overview of the main methods for diagnosis 

of these conditions is then given considering the methods used, the associated 

advantages and disadvantages and the diagnostic performance of each test.  

As befitting a thesis on MR perfusion, a more detailed description of the 

performance of MR is given considering the impact of visual, semi-quantitative 

and fully quantitative analysis on diagnostic performance as reported in the 

cardiac MR literature. 

 

3.2. Cardiac anatomy 

The human heart consists of four chambers: the right and left atria and the right 

and left ventricles.  The right side of the heart is dedicated to reoxygenating the 

blood via the lungs, whereas the left side pumps oxygenated blood to the rest of 

the body.  This gives the left side of the heart a higher workload than the right, 

which is why the left ventricular muscle wall is thicker than that of the right 

ventricle.  This process is illustrated schematically in Figure 3-1 a).  For such an 

active organ as the heart sufficient nutrients could not diffuse quickly enough 

through the heart wall to supply all the myocardial cells.  Instead, the coronary 

arteries, branching directly from the ascending aorta, encircle the heart and 

provide the heart with blood (Figure 3-1 b).  The finer details of the coronary 

circulation vary between individuals, with a major distinction being drawn 

between left and right dominant circulations dependant on which artery provides 

blood to the posterior descending artery, which supplies blood to the posterior 

third of the interventricular septum (the wall between the ventricles).   
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Figure 3-1 – a) Oxygenated blood from the pulmonary veins enters the left atrium 

(LA) and is pumped into the left ventricle (LV), which pumps oxygenated blood to 

the rest of the body.  The deoxygenated blood returns via the inferior and 

superior vena cavae into the right atrium where it passes into the right ventricle 

to be pumped to the lungs for reoxygenation via the pulmonary arteries.  b) The 

right coronary artery (RCA) and left main stem (LMS) branch directly from the 

ascending aorta.  The LMS bifurcates into the left anterior descending artery 

(LAD) and the left circumflex (LCX).  

 

The coronary circulation also contains multiple anastomoses, where two or 

more arteries interconnect.  These interconnections provide alternative routes 

for blood and can allow myocardial perfusion to persist when single arteries 

become blocked.  These complications make the mapping of an ischaemic 

blood vessel to the corresponding myocardial region in a medical image difficult.  

The process is further confounded by the possibility for coronary 

collateralization, where microscopic cardiac collateral vessels widen their lumen 

in order to preserve blood flow to ischaemic regions of the myocardium.    

 

3.3. Coronary heart disease (CHD) 

Coronary heart disease affects  nearly 2.7 million people in the UK (1).  

Ischaemic heart disease (IHD) occurs when the cardiac blood supply is 

reduced, typically due to the narrowing of one or more coronary arteries by 

atherosclerotic plaques (coronary artery disease (CAD)).  The reduced blood 

supply causes hypoxia (reduced oxygen supply) in the myocardium, especially 
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under stress conditions.  Chronic hypoxia causes cells to enter a „hibernation‟ 

state, where function is dramatically reduced and the patient may experience 

pain (angina pectoris).  However the cells are still viable and if the oxygen 

supply is re-established they will recover.  Complete and acute obstruction of 

blood flow, most commonly through thrombus formation on a vulnerable plaque, 

may result in myocardial infarction (commonly called a heart attack).  Here the 

cells in the affected region of the heart die and are replaced by non-contractile 

scar tissue.  If the sufferer survives the event the scar tissue can manifest as 

abnormal contractile function in the heart.      

 

Lifestyle changes (exercise, stopping smoking and diet improvements) can slow 

the progression of ischaemia.  Cholesterol lowering agents stabilise the plaque, 

making it less susceptible to attracting blood clots.  Beta blockers reduce the 

heart rate thus reducing oxygen demand and reducing hypoxia, whilst nitrates 

increase blood supply by vasodilation (widening of the blood vessels).  Medical 

therapy typically consists of a combination of these approaches whereas 

mechanical interventions involve physically restoring the blood flow to the heart. 

 

a) b) c)

 

Figure 3-2 – PTCA.  a) X-ray with iodinated contrast agent of right coronary artery 

showing a significant stenosis.  b) X-ray without contrast agent showing balloon 

angioplasty and the radio-opaque catheter guidewire.  c) X-ray with contrast 

agent showing the opened artery post angioplasty and stent placement4 

 

Percutaneous transluminal coronary angioplasty (PTCA), also known as 

percutaneous coronary intervention (PCI) involves the insertion of a catheter 

                                            

4 Images provided by Andy Davies, University of Leeds. 
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into an artery in the arm or leg.  The catheter is then fed to the stenotic site, 

under X-ray guidance, and a balloon is inflated to squash the plaque against the 

artery wall.  Because 30-50% of PTCA re-opened arteries restenose within six 

months of the procedure a stent (resembling a small spring) is then deployed in 

the artery to keep the artery open (Figure 3-2).  

 

A Coronary artery bypass graft (CABG) uses a section of artery or vein from 

another part of the body (typically the chest wall for arterial grafts and the leg for 

venous grafts) to connect the aorta directly to a region downstream from the 

stenosis.  This effectively bypasses the problem area and allows blood to flow 

beyond the diseased artery.   

 

Revascularisation aims to restore blood supply to living but hypo-perfused 

tissue.  However if the tissue is infarcted (cell death) then revascularization will 

have no benefit.  There is a small but significant risk to the patient undergoing 

arterial catheterization and so it is important to avoid the procedure when it will 

be of no benefit to the patient.  MR viability imaging provides imaging of 

myocardial scar.  Images are acquired 5-15 minutes post contrast injection.  In 

scar tissue cell walls break down increasing the extravascular space and the 

wash-in and wash-out characteristics of this space are slower (36) thus the scar 

manifests as a bright, contrast filled zone, on late gadolinium enhanced (LGE) 

images.  These images provide important diagnostic information about whether 

or not a given patients prognosis will be improved by revascularization (37). 

3.4. Diagnosing coronary heart disease 

3.4.1. The cascade of ischaemia 

The cascade of ischaemia (38) describes the order in which detectable events 

occur in response to ischaemia.  Initially only subendocardial perfusion defects 

are detectable (39).  More severe stenosis leads to transmural hypoperfusion 

followed by diastolic (relaxed heart), and then systolic (contracted heart), wall 

motion abnormalities.  Finally electrocardiogram (ECG) (See section 3.4.4) 

changes become detectable and angina symptoms may manifest.  Therefore, 

imaging modalities which can detect subendocardial perfusion defects have the 

potential to be the most powerful test for early detection of myocardial 
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ischaemia. 

 

The argument may be made, and in many cases may be quite valid, that an 

even earlier test for ischaemia is possible by imaging the coronary artery 

stenosis itself, as is routinely performed in X-ray angiography.  However, the 

relationship between coronary artery stenosis and myocardial ischaemia is not 

straightforward.  It has been widely demonstrated that an anatomical 

assessment alone is unreliable in predicting the functional significance of a 

coronary stenosis. Multiple other physiological processes determine the 

functional relevance of an epicardial stenosis.  A perfusion defect demonstrates 

a mismatch between blood demand and blood supply at a specific myocardial 

site.  Syndrome-X patients manifest such defects without exhibiting any 

coronary stenosis (40), whereas other patients with significant coronary 

stenosis have been found to have no myocardial ischaemia due to collateral 

flow maintaining myocardial blood flow.  Thus a reliable method for detecting 

subendocardial hypo-perfusion has the potential to be the most direct and 

diagnostically powerful test for detecting ischaemic heart disease. 

 

3.4.2. Stress testing 

Auto-regulation maintains myocardial blood flow in the heart even in the 

presence of ischaemia until the degree of stenosis becomes critical.  For this 

reason it is necessary to perform tests under stress conditions in order to reveal 

myocardial ischaemia in a diagnostic test.  In ECG based tests, where the 

patient‟s mobility is not limited, stress is simply induced by requiring the patient 

to exercise, either on a treadmill or an exercise bike.  With investigations that 

limit patient movement due to the constraints of the imaging apparatus, stress is 

typically induced pharmacologically using an infusion of either a positive 

inotropic agent such as dobutamine or a vasodilator like adenosine.  

Dobutamine increases the heart rate and contractility actually inducing 

ischaemia in patients, whereas adenosine dilates the coronary arteries to their 

maximum, increasing myocardial blood flow without inducing ischameia.  

Whether the differences between maximal vasodilation, induced ischameia and 

physical stress are relevant in terms of diagnosing CHD from perfusion imaging 

is yet to be established. 
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3.4.3. Myocardial perfusion reserve (MPR) 

Diagnostic studies using quantitative or semi-quantitative myocardial blood flow 

(MBF) estimates often express their results in terms of the myocardial perfusion 

reserve (MPR). The MPR is the ratio of the stress and resting myocardial blood 

flows: 

    
          

        
 

Equation 3-1 

The rationale for expressing perfusion measures in this way goes back to the 

concept of coronary flow reserve (CFR) (41).  The ultimate effect of a given 

stenosis depends on the ability of the coronary circulation to compensate for the 

increased impedance to blood flow by vasodilation.  To make a CFR 

measurement rest and stress coronary flow measurements are made 

downstream from a given stenosis, with the stress measurement made under 

adenosine induced, maximal vasodilation.  The ratio of the stress and rest 

measurements can be taken as a measure of the ability of the system to 

maintain flow in the face of a given stenosis i.e. its reserve of possible flow 

increase before maximal vasodilation occurs.  The concept is illustrated in 

Figure 3-3, which is reproduced from (41).  Stress and resting coronary flow 

rates are shown at a range of stenosis levels.  The CFR measures the ratio 

between the vasodilated and rest flows.  The coronary pressure (being the 

pressure gradient that drives blood down the artery) reduces non-linearly with 

the degree of stenosis, giving a corresponding reduction in CFR.  

Autoregularory reserve is exhausted between 85% and 90% stenosis, with 90% 

stenosis giving slight reductions in flow even under resting conditions. 
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Figure 3-3 – Coronary Flow Reserve.  The dotted line describes the coronary flow 

at maximal vasodilation and the solid line the flow at rest.  Each solid circle 

corresponds to a different percentage degree of coronary stenosis.  Reproduced 

from (41) 

 

The MPR is an analogous measure to CFR based on MBF measurements 

made in the myocardium itself.  The relationship between coronary stenosis and 

MBF is more complicated than that for coronary flow, due to the high 

interconnectivity of the arterial pathways and the possibilities for 

collateralization.  However MPR can be taken as a measure of the ability of the 

entire coronary and myocardial system to maintain blood flow in the event of 

coronary stenosis and has been shown to be a good measure of the presence 
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of CAD (Table 3-1). 

 

3.4.4. Electrocardiogram (ECG) 
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Figure 3-4 – Normal ECG plot.  The P wave corresponds to the depolarisation of 

the AV node and atrial contraction.  The QRS complex corresponds to the 

simultaneous repolarisation of the atria and depolarisation and contraction of 

the ventricles (systole).  The T wave corresponds to repolarisation of the 

ventricles. 

 

The pacing of heart contraction is controlled by a network of specialised fibres; 

the autorythmic fibres.  An electrical action potential initiated by the sinoatrial 

(SA) node is conducted down the heart, through the atria (causing them to 

contract first) and finally to the Purkinje fibres which rapidly conduct the 

potential from the apex of the heart upward causing ventricular contraction.  The 

passage of these potentials through the heart generates current that can be 

detected by electrodes placed on the surface of the body.   The resulting plot is 

known as the electrocardiogram (ECG) and has peaks and troughs 

corresponding to the electrical stimuli that cause the heart to beat.  

Abnormalities in the ECG trace can be correlated with a range of cardiac 

abnormalities.  Under stress conditions cardiac depression of the ST segment 
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(below baseline) is an indicator of ischaemia.  The ST segment represents the 

time when the ventricular fibres are depolarized and is depressed when the 

heart is receiving insufficient oxygen.  The ECG test is easy to perform and is 

often the first test performed when patients present with chest pain but has 

limited diagnostic accuracy for ischaemic heart disease (sensitivity 73-90%, 

specificity 50-74%) (42). 

 

3.4.5. X-ray angiography 

X-ray angiography obtains images of the coronary artery tree and enables direct 

visualisation of coronary stenosis rather than the resulting perfusion defect.  In 

the operating theatre a radio-opaque catheter is inserted into an artery in the leg 

or arm and guided through the vascular system to the ostia of the coronary 

arteries in the ascending aorta.  The procedure is done under the guidance of 

fluoroscopy X-ray.  A relatively low dose (thus low image quality), X-ray movie is 

displayed to enable the cardiologist to navigate the catheter to the correct place.  

A short bolus of iodine based X-ray contrast agent (e.g Ultravist at around 370 

mg/ml Iodine) is then injected into either the right or left coronary artery whilst a 

higher dose, high quality X-ray movie is recorded for several heart beats.  The 

resulting movie can then be assessed to give a qualitative or quantitative 

assessment of the degree of stenosis.  An example of a stenosis imaged in this 

way is shown in Figure 3-2 a).  The coronary arteries bifurcate multiple times 

and the artery routes are tortuous. Therefore, a single planar X-ray view may 

miss stenoses if they happen to be obscured by other arteries at a given 

imaging angle or if the stenosis does not manifest around the complete 

circumference of the artery wall.  For this reason multiple views of the coronary 

tree are taken ideally, using repeated contrast boluses or multi-detector 

systems.  Alternatively three-dimensional views of the coronary arteries can be 

acquired using a computed tomography (CT) angiogram.  Acquiring X-ray 

images from a range of imaging angles around the patient during the infusion of 

a radio-opaque contrast agent yields high resolution, 3D images of the coronary 

arteries.   

 

Routinely a visual, qualitative analysis of the degree of stenosis is made from 

the X-ray angiogram, expressed as the percentage narrowing relative to the 
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adjacent, healthy lumen size.  Quantitative coronary angiography (QCA) makes 

a measurement or the degree of stenosis using semi-automated software (e.g. 

QCAPlus software, Sanders Data Systems, Palo Alto, California, USA).  A line 

is drawn manually along the artery through the stenotic region.  The software 

then expresses the narrowest part of the defined region as a percentage of the 

healthy artery lumen, calculated from the outer portions of the selected artery 

length.   

 

X-ray angiography is the gold-standard assessment for the diagnosis of 

coronary artery disease and the presence and severity of coronary stenosis. In 

clinical practice, angiographic stenosis severity is often also assumed to 

correlate with myocardial ischaemia.  However, there are a number of important 

limitations, which should be understood.  Firstly there are problems regarding 

the acquisition and interpretation of the data.  Qualitative analysis of X-ray 

angiography is associated with significant observer variability (43,44).  The 

variability can be improved by using quantitative analysis (45), however 

significant variability has also been found between QCA software 

implementations (46).  QCA is also susceptible to errors when there is diffuse 

disease as the „normal‟, unstenosed lumen diameter is difficult to locate (47).  

Furthermore the assumption that arterial flow reduction is correlated with 

stenotic diameter is too simplistic.  Models taking into account stenosis size and 

length and allowing for the additive value of multiple stenoses have been 

validated but these are complicated and difficult to introduce into routine clinical 

practice (48).  These limitations can be overcome by measuring the fractional 

flow reserve (FFR) across the stenosis.  To make this measurement a sensor 

on the tip of the wire is used to measure pressure and flow before and after the 

stenosis giving a direct measurement of the impact of the stenosis on coronary 

blood flow.  FFR measurements are becoming more common in research 

studies using angiography as the gold-standard.      

 

Secondly, the assumption that a reduction in arterial flow is directly linked to a 

resultant and proportional reduction in myocardial blood flow (MBF) is too 

simplistic.  The ability of the cardiac system to utilise collateral arteries in the 

presence of stenoses means that some stenoses may not manifestly reduce 

MBF at all.  Conversely there are cases of patients exhibiting the symptoms of 
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ischaemic heart disease, including myocardial perfusion defects, with no 

detectable coronary stenoses; the so called „Syndrome X‟ (40). 

 

Finally, it is important to recognise the risks associated with X-ray angiography.  

The investigation has a small but significant morbidity and mortality at ~0.5% for 

procedural death, myocardial infarction or stroke. Furthermore, it involves 

ionising radiation with the subsequent risk of developing a solid tumour 

estimated at 1 in 2500 (49,50). 

 

3.4.6. Single photon emission computed tomography (SPECT) 

Gamma camera

 

Figure 3-5 – SPECT – Multiple planar gamma camera images are taken at a range 

of viewing angles which can be reconstructed to generate a transaxial view of 

the distribution of radioactive tracer in the myocardium. 

 

Nuclear medicine based techniques use a radioactive tracer that is injected into 

the patient.  This can then be imaged using radiosensitive imaging equipment.  

Single photon computed tomography (SPECT) uses a gamma camera, 

mounted on a rotating gantry to acquire planar images representing the 

distribution of radioactive tracer within the patient at multiple viewing angles 

(Figure 3-5).  These planar views can then be reconstructed into cross-sectional 

views of the heart, typically using a filtered back-projection, or an iterative 

reconstruction method.  Unlike MRI perfusion, SPECT perfusion imaging does 
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not image the passage of contrast agent through the myocardium.  Rather the 

tracer builds up in the myocardial tissue over time with underperfused regions 

showing as a relative shortage of tracer and appearing as „cold spots‟ on the 

resulting image (Figure 3-6).   

 

 

Figure 3-6 – Transaxial SPECT images acquired at stress (rows 1 & 3) and rest 

(rows 2 & 4) in 10 slices through the heart.  A reversible perfusion defect in the 

anterior wall manifests as an under-perfused area at stress with normal 

perfusion rest.5  

 

Typical radio-tracers are Thallium-201, Tc99m methoxyisobutylisonitrile (MIBI) or 

Tc99m tetrafosmin, which are taken up by the myocytes.  All have shown similar 

sensitivities and specificities for detecting CAD, with Thallium-201 having worse 

image quality due to its lower energy gamma rays (51,52).  Stress can be 

achieved with physical exercise (using a treadmill or bicycle prior to imaging), 

but is commonly pharmaceutically induced with adenosise or dypridamole, 

achieving comparable diagnostic accuracies to exercise (53,54). 

 

                                            

5 Images provided by Dr Penny Thorley, Leeds Teaching hospitals 
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Myocardial SPECT imaging is susceptible to artifacts due to cardiac motion and 

tissue attenuation.  Heart wall motion can lead to underestimates in regional 

uptake and so acquisitions should be ECG-gated (55) as illustrated in Figure 

3-7. 
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Figure 3-7 – Cardiac SPECT ECG gating.  The ECG RR interval is broken down 

into N temporal bins.  Data acquired during each temporal bin from multiple RR-

intervals is averaged to create a series of images representing one heart beat. 

 

In order for gamma-photons to be detected they must pass from the heart 

through the body of the patient to the gamma camera.  Attenuation within the 

patient is a well recognised problem leading to poor image quality and, in some 

cases, mimics the appearance of perfusion defects.  In order to ameliorate 

attenuation artifacts CT imaging can be used.  The CT image, which represents 

the tissue densities of the image in Hounsfield units (HU), can be incorporated 

into the SPECT reconstruction to correct for tissue attenuation and significantly 

ameliorate attenuation artifacts.  Attenuation corrected SPECT data have been 

shown to improve agreement with PET studies (56) and to improve the 

specificity and sensitivity of the diagnostic test (57). 
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Cardiac SPECT images can be reported visually by simply locating „cold-spots‟ 

on the images.  However, semi-quantitative analysis of cardiac SPECT images 

is possible.  Typically multiple slices are represented as a single polar plot by 

dividing each slice into radial regions and taking the maximum pixel value.  

These polar plots are then normalised and compared to a database of pixel 

values from normal healthy patients and the difference used to automatically 

classify a given region as unhealthy or not.  Such methods have been shown to 

improve the detection of CAD from cardiac SPECT data (58–60).   

 

Cardiac SPECT is a well accepted and well validated technique.  However its 

resolution is relatively poor and subendocardial artifacts, visible in MRI, are not 

detectable.  It also exposes the patient to a radiation dose, which can be 

avoided with other modalities. 

 

3.4.7. Positron emission tomography (PET) 

In order to obtain an image that represents a planar transmission of gamma 

rays from the source distribution within the patient gamma cameras use parallel 

hole lead collimators.  The collimator successfully limits detection events to rays 

travelling perpendicular to the gamma camera but also reduces the count 

sensitivity of the system.  Positron emission tomography (PET) overcomes this 

fundamental limitation of the gamma camera by using coincidence detection.  

Radioactive tracers that decay by positron emission are used on PET imaging.  

After travelling a few millimetres an emitted positron annihilates with an electron 

creating two 511KeV gamma-rays travelling in opposite directions.  The PET 

scanner consists of a ring of detectors surrounding the patient.  When two 

detection events occur within the same temporal detection window (6-12ns) 

they are assumed to originate from the same annihilation event (Figure 3-8).  

The finite temporal window is necessary to allow for the different transit times of 

the two gamma rays.  The source of the annihilation event must lie along the 

line connecting the coincidence detectors.  A reconstruction algorithm is used to 

deduce the original radioactive source distribution from multiple lines of 

coincidence detected during a PET acquisition. 
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Figure 3-8 – Coincidence detection in PET.  A positron travels a small distance 

before annihilating with an electron to produce two 180o opposed gamma-rays 

which are detected within a small temporal window at two points in the PET 

detector ring.  The line connecting the two detectors is the line along which the 

annihilation event must have occurred.   

 

For quantitative myocardial perfusion PET imaging an intravenous injection is 

made of one of a variety of positron emitting tracers such as 82Rb, 13N-

Ammonia, 15O-Water.  Like SPECT tracers these cross the capillary walls and 

are taken up by the myocardial cells (myocytes).  Unlike SPECT however 

dynamic imaging is possible in PET, albeit with an inferior temporal resolution to 

MRI (~5s as opposed to ~1s in MRI).  The ability of PET to obtain dynamic 

transaxial views of the heart means that radioactivity counts vs. time plots can 

be generated.  Based on these tracer-kinetic models such as those described in 

chapter 4 can be used to calculate quantitative estimates of myocardial blood 

flow.  As with SPECT, attenuation is a significant factor and has to be corrected 

for using pre-PET CT scanning, or an equivalent transmission imaging 

technique (61).  Data must be corrected for radioactive decay and detector 
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dead-time.  With the exception of 15O PET tracers the extraction of tracer from 

the blood into the myocardium is reduced as the perfusion is increased.  The 

relationship between extraction and flow is non-linear and, if it cannot be 

corrected for using mathematical models, it leads to an underestimate in the 

estimated MBF (62).  Image resolution, though superior to SPECT, is still lower 

than MRI techniques and partial volume effects must be corrected for when 

trying to obtain separate arterial input function (AIF) and myocardial uptake 

curves from regions of interest (ROIs) placed on PET images.  PET is 

associated with a significant radiation dose (especially with the accompanying 

CT scan), which is a cause for concern, especially if repeated scans are 

necessary.   

 

PET measurements have been validated against  microsphere blood 

measurements in animal studies (63–67).  In a recent meta-analysis 

investigating the diagnostic accuracies of SPECT, PET and MRI, PET was 

found to achieve the highest diagnostic performance (AUC analysis), although 

CMR had the highest sensitivity at 89% (68) and other studies have shown 

comparable performances (69).  On the basis of such evidence quantitative 

PET MBF values have been used as a reference standard against which to 

compare MR MBF estimates.  In the absence of more absolute measurements 

of MBF in humans this is a strong reference measure for justifying any MRI 

methodology.  However, care should be taken in the interpretation of PET 

measurements.  PET based diagnostic accuracy studies have found that the 

optimal hyperaemic MBF cut-off values for diagnosing CAD is dependent on 

PET methodology and tracer (62,70,71).  This suggests that PET MBF 

estimates are strongly correlated with CAD, but not absolute measures of the 

true MBF.  The same argument is true for quantitative CMR measurements and 

so this is not an argument for the superiority of MRI, but care should be taken 

when „validating‟ any MBF estimate against PET.  A set of MBF measurements 

that reflect disease status but do not fall in the same MBF range as the PET 

measurements should not be classed as incorrect on that basis. 

 

3.4.8. Echocardiography 

Echocardiography refers to the application of ultrasound imaging to the heart.  
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Ultrasound generates images using a transducer that generates and records 

high frequency sound signals.  Sound waves, travelling at different speeds in 

different tissues reflect from tissue interfaces and are recorded by the 

transducer.  These recorded echoes are used to build up images of the tissue 

surfaces.  Perfusion measurements with echocardiography have been made 

possible through the development of ultrasound contrast agents.  These consist 

of microbubbles which are highly reflective to ultrasound signals.  These 

contrast agents have been used in dogs to show that measurements of the 

transit times of the bubbles through the myocardium can reflect MBF in dogs 

with artificially occluded arteries (72).  The method was later shown to have a 

comparable diagnostic performance to SPECT in humans (73).  As a non-

ionising imaging alternative the method shows promise, however, to date the 

method is in use in research studies only and larger clinical trials are required 

before it can to be accepted into clinical practice. 

 

3.4.9. Computed tomography (CT) 

By far the most common use of CT in the context of myocardial ischaemia is CT 

angiography, described briefly in section 3.4.5.  However, CT based quantitative 

myocardial perfusion estimates are also possible, though rarely performed, 

using iodine based contrast agents and electron beam CT (EBCT), also known 

as ultrafast CT.  Conventional CT mechanically moves the X-ray tube around 

the patient in order to rapidly generate multiple viewing angles.  In EBCT 

electromagnetic coils are used to direct a beam of electrons onto any given 

point on a ring shaped tungsten target surrounding the patient.  It is the impact 

of the electrons onto this circular target which generates the X-rays for imaging.  

The reduction in mechanical moving parts involved in EBCT  enables images to 

be acquired much more quickly and makes the temporal resolution necessary 

for CT based perfusion imaging possible.  An iodine based contrast agent is 

injected into the patient and dynamic images are acquired.  MBFs can be 

quantified using similar models to those described in chapter 4.  The method 

has been validated in animal studies against radioactive microspheres (74) and 

in humans against SPECT (75,76) with promising results.  However the method 

does underestimate MBF at high flow rates.  Although EBCT systems are the 

fastest CT scanners they are expensive and there are comparatively few 
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imaging systems in use.  This fact, combined with the significant radiation dose 

associated with dynamic CT, makes the future of CT based cardiac perfusion 

measurements uncertain. 

 

3.4.10. Magnetic resonance imaging (MRI) 

Perfusion imaging in MRI uses a gadolinium based MR signal enhancing 

contrast agent.  Dynamic images, captured every RR-interval, show the 

passage of the contrast agent bolus through the heart.  For quantitative analysis 

regions of interest (ROIs) drawn over the myocardium and within the blood pool 

are used to generate signal vs. time uptake plots.  These data are analysed to 

generate estimates of blood flow.  The imaging process is described in greater 

detail in section 2.8 and a description of the models used to estimate MBF is 

given in chapter 4. 

 

Many studies have correlated quantitative and semi-quantitative analyses of MR 

perfusion estimates with microsphere measurements in animals (5,77–81) and 

against PET measurements in humans (5,29,80,82).  One of the reasons for so 

many validation studies is due to the lack of standardization in the MR 

approach.  The choice of imaging sequence, contrast agent injection scheme 

and analysis methodology for MBF estimation may all affect the final result.  

One of the aims of this thesis is to provide evidence for standardisation in MR 

perfusion analysis schemes.  The reproducibility of MR derived perfusion 

measurements has also been evaluated (83–86).  The results are not excellent, 

with only good to moderate reproducibility, but this performance is no worse 

than PET reproducibility values (87,88). 
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Ref No. 

patients 

MR assessment 

method 

X-ray 

assessment 

method 

Sensitivity Specificity 

(89) 42 Visual > 50% stenosis 0.85 0.67 

(90) 79 Visual > 50% stenosis 0.91 0.62 

(91) 30 Visual > 50% stenosis 0.79 0.83 

(3) 533 Visual > 50% stenosis 0.67 0.61 

(92) 136 Visual > 70% stenosis 0.85 0.88 

(93) 104 Visual > 70% stenosis 0.90 0.85 

(94) 75 Visual > 70% stenosis 0.93 0.75 

(95) 40 Visual > 70% stenosis 0.81 0.68 

(96) 101 Visual > 70%, (> 50% 

LMS)  

0.91 0.94 

(2) 752 Visual > 70%, (> 50% 

LMS) 

0.86 0.83 

Visual analysis average values 0.81 0.76 

(97) 44 Semi-quantitative > 50% stenosis 0.93 0.75 

(98) 43 Semi-quantitative > 50% stenosis 0.88 0.90 

(99) 48 Semi-quantitative > 50% stenosis 0.88 0.85 

(100) 92 Semi-quantitative > 70% stenosis 0.88 0.82 

(101) 20 Semi-quantitative > 75% stenosis 0.90 0.83 

(102) 84 Semi-quantitative > 75% stenosis 0.88 0.90 

(103) 31 Semi-quantitative FFR distinguish in 

range 50% - 75% 

0.88 0.87 

Semi-quantitative average values 0.89 0.85 

(91) 30 Quantitative > 50% stenosis 0.88 0.67 

(104) 37 Quantitative > 50% stenosis 0.85 0.49 

(103) 31 Quantitative FFR distinguish in 

range 50% - 75% 

0.77 0.86 

Quantitative average values 0.83 0.66 

Table 3-1 – Table summarising diagnostic performance studies for CMR against 

X-ray angiography.  Averages, weighted for study population, are shown for 

studies with visual, semi-quantitative and quantitative CMR data analysis. 
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The diagnostic accuracy of MR perfusion measurements has been assessed in 

a number of investigations summarized in Table 3-1.  The studies are grouped 

in terms of whether the CMR analysis was performed using visual, semi-

quantitative or quantitative analyses.  It is difficult to say whether this data 

represents an improved diagnostic performance with semi-quantitative and 

quantitative methods over visual analysis.  Indeed the fully quantitative scores 

reported here appear to have a lower diagnostic accuracy.  One of the 

motivating factors for pursuing quantitative over semi-quantitative methods is 

due to the reported non-linearity of semi-quantitative MBF estimates with 

increasing MBF.  In a comparison of semi-quantitative and quantitative 

perfusion methods Christian et al. found that, whereas quantitative MBF 

measurements agreed well with microsphere measurements in animals, semi-

quantitative measurements substantially underestimated hyperaemic MBFs 

(77).  However, these reported improvements in the quantitative approach have 

not propagated into an improvement in diagnostic accuracy detectable in the 

studies presented in Table 3-1. 

 

There is still no consensus on an ideal protocol for acquiring DCE-MRI data for 

quantitative perfusion and imperfect data may be one reason for a lack of 

improvement with quantitation.  For instance, of the three quantitative studies in 

Table 3-1, two studies (103,104) use a contrast dose that has been shown to 

lead to non-linearity effects and overestimates of MBF (105), without attempting 

to apply a correction.  One of the motivations for quantitation is the detection of 

triple-vessel disease where the entire myocardium is similarly under-perfused.  

In this case visual detection of a perfusion defect is difficult whereas, 

quantitative analysis has been shown to be able to detect triple-vessel disease 

and to distinguish the increased ischaemic burden between single and triple 

vessel disease (91).  As the incidence of 3 vessel disease is relatively small, 

another reason for the lack of a detectable improvement may be that the studies 

are underpowered to show such differences, particularly given the variety of 

acquisition protocols used.   

 

Two large trials assessing the diagnostic performance of CMR with respect to 

SPECT, using X-ray angiography as the reference standard have recently been 
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published.  The MR-IMPACT II trial (3) assessed 533 patients and achieved a 

sensitivity of 0.67 and 0.61, with CMR achieving a superior sensitivity but 

inferior specificity to the SPECT performance in that trial.  The CE-MARC trial 

(described in detail in section 5.2.1) is the largest clinical CMR trial to date and 

recruited 752 patients.  CMR achieved a sensitivity and specificity of 0.86 (0.82, 

0.90) and 0.83 (0.79, 0.87) respectively, outperforming SPECT sensitivity but 

not specificity.  These trials provide much needed, large patient cohort evidence 

supporting the wider use of CMR in the clinical investigation of CHD.  However, 

both trials evaluated the CMR data with visual analysis only.  A well conducted 

quantitative analysis of a trial of this size would provide more persuasive 

evidence as to the impact of quantitation on diagnostic accuracy. 

 

3.4.11. The AHA mapping 

In 2002 Cerquieira et al (106) published recommendations for a standardized 

myocardial segmentation and nomenclature for tomographic imaging of the 

heart, which has been widely applied in the cardiac imaging community.  For 

imaging modalities that represent myocardial perfusion a segmentation model is 

recommended that subdivides the imaged myocardium into 17 separate 

segments (Figure 3-9).  The 17th segment corresponds to the apical cap, which 

is frequently discarded from investigations as it requires a separate long-axis 

acquisition (with associated scanning time) and is often too thin to provide any 

meaningful information.  A diagnosis of ischaemia can be made by simply 

considering whether the MBF in any of the segments falls below a certain value, 

or visually appears hypoperfused.  However the AHA mapping associates each 

of the 17 segments with one of the three coronary arteries (Figure 3-9 c) 

meaning that in principle a separate diagnosis for each coronary artery could be 

made or the perfusion image could be used to deduce the location of the 

coronary stenosis.  In fact the coronary architecture varies from patient to 

patient and so the validity of this mapping will depend on the patient in each 

case, with the greatest variability at the apical cap which can in fact be supplied 

by any of the three arteries.  Nevertheless, in the absence of separate images 

of the coronary arteries registered to the perfusion dataset the AHA mapping is 

the closest approximation to knowing which artery provides each territory.  
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Figure 3-9 – The AHA segmentation model.  Three transaxial imaging slices and 

a long-axis view (a) are subdivided into a 17 segment bulls-eye view (b).  This 

can be used to each territory to the corresponding coronary artery (c). 

 

3.4.12. The role of CMR in diagnosing myocardial ischaemia 

MR perfusion imaging is now proven to be as good as SPECT (the most 

commonly used test) in diagnosing ischaemic heart disease, with the largest 

current clinical trial reporting an improvement in diagnostic sensitivity (2).  There 

is reason to believe that CMR should out-perform nuclear medicine techniques 

due to its superior image resolution.  Typically image resolution for SPECT is 

10mm, with PET achieving 6mm.  CMR achieves 3mm as standard with studies 

incorporating techniques such as temporal under-sampling achieving 1.5mm 

image resolution (107).  This gives MR the ability to detect subendocardial 

defects, which has the potential to increase its sensitivity for detection of CAD 

(108).  A significant advantage of the MRI investigation, which can often be 

overlooked when making direct comparisons of diagnostic performance, is the 

versatility of investigations that can be performed in a single imaging session.  

In a one hour CMR investigation images for investigating cardiac perfusion, 

wall-motion abnormalities, tissue viability and MR angiography images of the 

coronary arteries themselves can be obtained without the patient moving from 

the investigation couch (109,110).  This so called „one-stop‟, comprehensive 

investigation is more convenient for the patient and has the potential to be more 

cost-effective.  The lack of ionising radiation exposure with MR is also a 

significant advantage, and enables longitudinal measurements to be made 

without concerns of increasing radiation exposure.   
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There are however disadvantages with MR.  Patients with non MR safe 

implants are contraindicated and the recent concerns over the link between 

gadolinium contrast agents and nephrogenic systemic fibrosis (NSF) mean that 

renally impaired patients are contraindicated for gadolinium based contrast 

agents (111–114).  Due to the nature of the image acquisition MR is prone to 

image artifacts that are often not intuitive and can obscure images entirely, 

rendering them unfit for diagnostic purposes.  Peculiar to DCE-MRI cardiac 

perfusion imaging is the dark rim artifact (DRA) which mimics the appearance of 

a perfusion defect, although experienced observers can distinguish the two.  

There are a number of potential causes of the artifact (see section 2.9) but they 

are reduced with increasing resolution (107) and the continuing improvements 

in this area have the potential to reduce their impact substantially.  Finally, MRI 

is an expensive investigation to perform.  However, due to the number 

investigations it can perform in a single visit, it may still be a cost-effective 

alternative to other perfusion assessment methods.   

3.5. Summary 

Coronary heart disease and myocardial ischaemia have been described along 

with the current treatments and interventions for these conditions.  The 

techniques for diagnosing CHD and ischaemia have been described and the 

advantages and disadvantages of each modality have been discussed.  An 

analysis of the diagnostic accuracy of cardiac perfusion DCE-MRI has been 

presented in terms of visual analysis as well as considering semi-quantitative 

and quantitative analysis methods.  The methods for estimating myocardial 

blood flow using semi-quantitative and quantitative analysis of cardiac DCE-MRI 

perfusion data is the subject of the next chapter.  
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4. Quantitative myocardial perfusion 

4.1. Introduction 

Previous sections have described how the MRI dataset of the contrast agent 

passing through the heart is acquired and how the resulting data series is 

processed to generate an uptake curve (chapter 2).  This section provides a 

background to understanding some of the methods employed to estimate 

myocardial blood flow (MBF) based on this uptake curve.  After a brief 

description of semi-quantitative methods a description of deconvolution 

approaches is given.  A description of tracer kinetic model based MBF 

measurements is then given including a description of each of the methods 

compared in chapter 9. 

 

4.2. Semi-quantitative analysis  

Semi-quantitative methods do not attempt to make absolute measurements of 

myocardial blood flow (MBF).  Rather they measure some property of the 

uptake curve that is thought to correlate with MBF.  Figure 4-1 illustrates some 

of the key curve parameters.  These have been interpreted as semi-quantitative 

measures of MBF in a variety of ways, some of which are described below: 

Contrast enhancement ratio (CER) is expressed as: 

    
                 

        
 

Equation 4-1 

 

Where SIpk_myo is the peak of the myocardial uptake curve and SIbl_myo is the 

pre-contrast baseline.  This is a measure of peak enhancement, i.e. the 

maximum effect of the contrast agent on signal intensity, after accounting for 

the native signal intensity.  Consequently CER is a measure of the 

accumulation of contrast agent but takes no account of the rate of delivery or 

clearance of contrast agent, and so should not be expected to correlate well 

with MBF. 
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Figure 4-1 – Semi-quantitative analysis parameters.  Diagram showing the 

baseline (SIbl) and peak height SI values for the AIF (SIpk_AIF) and myocardium 

(SIpk_myo) as well as the AIF (USAIF) and myocardial (USmyo) up-slopes and the area 

under the myocardial curve up to the AIF peak position (AIFmyo). 

 

Upslope Index is the ratio of the AIF and myocardial up-slopes i.e. 
     

     
 .  

The individual up-slopes are calculated by a „sliding window‟ method.  A straight 

line is fitted to n contiguous time points from t1 to tn and the gradient measured.  

The procedure is then repeated for time points ti to ti+n for i=1:Nt-n, where Nt is 

the number of time points in the sequence.  The maximum calculated straight 

line gradient is then taken as the up-slope.  The up-slope of the myocardial 

curve is intuitively linked to flow.  As the rate of flow increases the rate of 

change of signal due to contrast agent will increase.  However, the shape of the 

myocardial uptake curve, and therefore its up-slope, depends on the shape of 

the AIF.  In an attempt to factor this in to the perfusion measurement the 

myocardial up-slope measurements are normalised by dividing by the AIF up-
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slopes.  The problem is that the up-slope is an obviously limited measure of the 

full curve shape.  The relationship between AIF and myocardial curves can only 

be fully accounted for using fully quantitative, deconvolution based methods.    

 

Area under the curve (AUC) measures the area under the myocardial uptake 

curve from the bolus arrival time (BAT) to the point corresponding to the peak 

enhancement in the AIF, tAIF_pk.  The AUC will be more sensitive to different 

aspects of the uptake curve shape than the up-slope method, however it 

incorporates no measurement of the AIF and is therefore susceptible to 

changes in AIF which depend on a range of factors other than MBF, such as 

injection rate, bolus volume, and the degree of dispersion within the vasculature 

prior to reaching the heart. 

 

The AUC method has been correlated with quantitative MBF measurements in 

animals (115) and the up-slope index has been shown to be a diagnostically 

sensitive measure of CAD in humans (see Table 3-1).  However in a 

comparison of semi-quantitative and quantitative methods significant non-

linearities between semi-quantitative measurements and microsphere 

measurements were found in dogs (77).  In general the semi-quantitative 

measures began to underestimate MBF at higher flow rates.  This plateauing 

occurred at around 1ml/min/g with CER, 2ml/min/g with upslope index and 

3ml/g/min with AUC.  This was reflected in the linear correlation scores, CER 

(r=0.75), upslope index (r=0.69) and AUC (r=0.89).  However, the 

corresponding quantitative Fermi deconvolution based correlation was excellent 

at r=0.95.  The study illustrates how semi-quantitative measures can achieve a 

strong diagnostic performance in clinical trials, by virtue of their significant 

correlation with flow, without achieving an absolute quantification of MBF. 

 

4.3. Quantitative analysis 

4.3.1. The central volume principle 

The fundamental measurement on which quantitative perfusion estimates are 



58 

based is the signal intensity at a given time t in the myocardium.  This is related 

to contrast agent concentration (see section 2.7) so that we have an estimate of 

the quantity of contrast agent in the myocardium at time t, Cmyo(t).  For the most 

simple perfusion analysis the myocardium is represented as a single 

compartment with an arterial input of concentration Ca(t) at time t, and venous 

output Cv(t).  Such a representation is model-independent in the sense that no 

functional tissue structure is specified.  If the system is closed and stationary ( 

Figure 4-2) then, from the principle of mass balance the amount of tracer within 

the compartment is simply the difference between the amount of tracer washed 

into the compartment and that washed out: 

        

  
                   

Equation 4-2 

The contrast agent resides in the blood plasma and cannot penetrate the red 

blood cells in the blood.  Ca and Cv are plasma concentrations, as opposed to 

blood concentrations, that can be related to the concentration in the blood, Cb, 

via the hematocrit (Hct) which is a measure of the percentage volume of red 

blood cells in the blood: 

             

Equation 4-3 

 

F is the flow rate of blood plasma through the compartment. 
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Figure 4-2 - A single compartment model.  It is a closed system in that it has a 

single input Ca(t) and output Cv(t).  The system is stationary if the distribution of 

flows f1:N remains constant over the duration of the measurement.  The system is 

linear if the response of the myocardial tissue to an injected dose is linearly 

proportional to that injected dose.  

 

For any linear and stationary system the outflow concentration can also be 

expressed as a convolution of the inflow concentration with transfer function h(t) 

(116,117): 

            

 

 

         

                 

Equation 4-4 

The symbol „*‟ represents the convolution operation.  The transfer function h(t) 

represents the frequency distribution of transit times in the compartment, i.e. the 

distribution of times taken for CA molecules to traverse the compartment.  By 

substituting this expression for Cv(t) into Equation 4-2 an expression for Cmyo(t) 

that is independent of Cv(t) (which we cannot measure) can be written: 
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Equation 4-5 

Introducing the flow weighted impulse response function Rf(t): 

                  
 

 

          

 

Equation 4-6 

Equation 4-4 becomes: 

                     

Equation 4-7 

R(t) is the tissue response function which represents the fraction of contrast 

agent  that remains in the compartment at time t, where t=0 corresponds to the 

time of injection.  By this definition, at time zero, it has value one (R(t=0) = 1) 

signifying that no tracer can instantaneously traverse the ROI.  Therefore from 

Equation 4-6 Rf(t=0) = F.  This means that if Equation 4-7 can be solved for Rf(t) 

then it is possible to estimate the flow by evaluating Rf(t=0). 

 

4.3.2.  Deconvolution 

If estimates for Cmyo(t) and Ca(t) are obtained from ROIs placed over the 

myocardium and the left ventricular blood pool in the dynamic image series then 

it might be expected that it would be possible to solve Equation 4-7 by 

performing deconvolution.  However, deconvolution is a mathematically ill-
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posed problem.  This means that there are multiple solutions for Rf(t) that give a 

good fit to the same data set.  In practice this means that very small changes in 

Ca(t) or Cmyo(t) yield large changes in the resulting Rf(t).  It is easier to 

understand why this is so if one considers the Fourier convolution method for 

performing deconvolution in the Fourier domain.  The Fourier convolution 

theorem states that convolution in the time domain is equivalent to point-wise 

multiplication of the Fourier transforms of the two quantities in the convolution 

integral: 

                     

                            

Equation 4-8 

Where      represents the Fourier transform of x.  Thus the flow weighted 

response function can be calculated as follows: 

          
          

        
  

Equation 4-9 

As Ca(t) will be a smoothly varying function          will contain some 

frequencies with zero, or very small amplitude, giving infinite, or very large, 

corresponding values in Rf(t) (118).  Hence the solution described in Equation 

4-9 is unstable. 

 

4.3.3. Fermi-constrained deconvolution 

In cardiac perfusion the most widely accepted method for constraining Equation 

4-7 is to represent Rf(t) as a Fermi function, which is a three parameter 

monotonically decaying curve (119,120): 

      
 

    
     

 

 

Equation 4-10 

Once the form for Rf(t) has been defined like this the deconvolution problem 

becomes a matter of finding the parameters for Equation 4-10 that best fit the 
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given Cmyo(t) after convolution (Equation 4-7). Thus the deconvolution process 

is reduced to a three parameter fit, which can be approached robustly with 

linear least squares fitting techniques.  The Fermi function is a decreasing 

exponential with a shoulder near t=0.  The early flattening of the curve allows 

for the initial filling stage of the compartment and the later exponential fall off is 

due to the decreasing fraction of CA left in the compartment with increasing 

time.  Fermi-constrained deconvolution can be described as parametric 

deconvolution, as it provides a parametrisation of the response function which is 

not based on an underlying model of the tissue structure.  The choice of the 

Fermi-function to constrain the data is empirical, not theoretical.  It has a shape 

that resembles response functions derived using detailed models of the 

vasculature or those derived using model-independent methods (section 4.3.4), 

but it is not based on a theory of indicator passage through the myocardium.  In 

practice Fermi-constrained deconvolution only performs comparably with other 

models if the data is limited to the first-pass only.  Failure to reduce the data 

before fitting this way results in a 25% overestimate in blood flow with the Fermi 

model (4).   

 

4.3.4. Model independent analysis 

Model-independent deconvolution methods perform deconvolution without 

inherently assuming a structure for Rf(t).  Rather than imposing a theoretical 

model or a given parameterisation on the response function these models only 

impose general side constraints on the solution to Equation 4-7.  This can be 

done by posing the problem as a matrix inversion problem and adding an 

additional side constraint.  Expressing the convolution in Equation 4-7 as the 

convolution integral: 

                        

 

 

 

Equation 4-11 

Adopting the convention that the value of a vector Rf at the ith time point is Rfi,  

Equation 4-11 can be discretised as follows: 
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Equation 4-12 

Where A is a matrix constructed of the N elements of Ca(t) such that matrix 

multiplication with A performs convolution with Ca(t): 

   

      
        
    

            

     

Equation 4-13 

Thus: 

          

Equation 4-14 

And the solution for Rf(t) can in principle be obtained by inverting A: 

            

Equation 4-15 

Again this is an ill-posed problem and Equation 4-15 yields unstable solutions 

for Rf(t).  Posed as a matrix inversion problem, singular value decomposition 

(SVD) can be used to find the best solution to Equation 4-15 in the least 

squares sense.  We seek the response function that minimises: 

               
 
  

Equation 4-16 

Equation 4-16 is in the correct form to apply the SVD to find Rf(t) (121)(122) : 

              

        
  
         

  
    

  

   

 

Equation 4-17 
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where ui and vi represent the ith columns of the output matrices from the SVD 

algorithm U and V respectively and σi represents the ith value along the leading 

diagonal of Σ, of length s, that is the ith singular value. Equation 4-17 gives the 

closest solution to Equation 4-16 in the least squares sense.  However if there 

are small singular values in σ then very large values will be generated in the Rf 

and the solution will show large spurious oscillations (81).  The problem can be 

tackled using truncated SVD where only singular values up to a certain cut off 

(Ns < N) are included in Equation 4-17. 

     

An alternative method for regularizing the solution, frequently utilised in the 

cardiac perfusion literature (81,123), is that of Tikhonov regularization (121), 

which incorporates an additional side constraint into Equation 4-16.  The matrix 

L applied to Rf incorporates an additional constraint, dependent on the response 

function, into minimisation: 

                     
 
           

 
  

Equation 4-18 

Typically L is the identity matrix, but the first order differential matrix can also be 

used, in which case the solution is constrained by the temporal gradient of the 

response function which forces the solution to be smooth to a degree dictated 

by the value in the coefficient λ.   

 

Truncated SVD and Tikhonov regularization both provide a framework for a 

generalised, model-independent solution to Equation 4-17.  However they are 

both critically dependent on a single parameter (the cut-off point Ns for TSVD 

and the parameter λ in Tikhonov regularization).  A common approach for 

finding the optimal value for these parameters is L-curve analyses (121) which 

is described in the context of Tikhonov regularization as follows.  The technique 

plots the two components of Equation 4-18 over a range of values of λ, on a log 

scale.  When the smoothness constraint is dominant there is a large change in 

         as λ  changes.  Conversely when the unconstrained solution is 

dominant                   change rapidly with λ .  The resulting plot has an 

„L‟ shape, hence „L-curve‟ analysis (Figure 4-3), with the optimal value for λ at 
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the corner of the „L‟, i.e. at the maximum point of curvature. 

 

Figure 4-3 – L-curve analysis - the y-axis (log||Lx||) shows the smoothness 

constraint alone, whilst the x-axis plots only the unconstrained solution log||Ax-

y||.  The ‘x’ marks the optimal λ value where neither component is dominant. 

 

Model-independent analysis is completely model free, in that the response 

function can take any form.  Therefore the entire dataset (as opposed to just the 

first-pass in Fermi-analysis) can be incorporated into the analysis.  However, 

the lack of any constraint, apart from smoothness, on the response function 

means that unphysiological response functions (that create good fits but 

extreme MBF estimates) can be generated.  The method described here has 

been validated in human volunteers (6).  Previous validation against radioactive 

microsphere measurements in pigs was performed using a similar model-

independent strategy that represented the response function as a sum of B-

splines before applying Tikhonov regularization (81). 
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4.3.5. Tracer-kinetic modelling   
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Figure 4-4 – Contrast agent enters through a single input with concentration Ca(t) 

and leaves with concentration Cv(t).  Contrast agent flows across the capillary 

membrane from the vascular space to the extravsacular, extracellular space 

(EES).  Contrast agent cannot pass through cell membranes into the intracellular 

space. 

 

Parametric deconvolution methods (such as Fermi) and model-independent 

techniques attempt to find a response function to relate Ca and Cmyo without any 

theoretical consideration of the form of the response function.  Tracer-kinetic 

modelling approaches pose an analytic form for the response function based on 

a set of assumptions about the tracer-kinetic properties of the tissues (124).  

Depending on the complexity of the model they can generate other 

physiological parameters describing the nature of the perfused tissue, such as 

the volumes of the vascular and extravascular spaces.  However care must be 

taken that the assumptions made in the derivation of the model hold true in all 

cases of application and that the data is of sufficient quality to derive robust 
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measurements of the parameters, as more complex models can over-fit data 

and generate results which are physiologically non representative. 

 

Gd-DTPA is an extravascular contrast agent and as such leaks from the 

vascular space (inside capillaries and arteries) into the extravascular, 

extracellular space (the tissue space outside the vasculature also known as the 

interstitium) but not through cell membranes into cells (the intracellular space), 

except in necrotic cells.  Figure 4-4 illustrates these spaces and denotes the CA 

concentrations and volumes of each of the spaces accordingly.  The process 

can be modelled using the two compartment exchange model (2CXM) 

illustrated in Figure 4-5.   

vp ve

Fp

Fp

PS

PS

 

Figure 4-5 – The two compartment exchange model.  Contrast agent flows at a 

rate Fp into the vascular space of volume fraction vp.  Indicator leaks between the 

vascular space and the EES (volume fraction ve) at a rate dictated by the product 

of the capillary surface area S and permeability P.  

 

Plasma flows at a rate Fp into the vascular space and out at the same rate.  

Whilst in the vascular space, indicator passes through capillary walls at a rate 
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dictated by the product of the capillary surface area S and the capillary 

permeability P.  The volume fraction of the vascular space and EES are defined 

relative to the volume of the tissue region: 

   
    

    
 

   
    
    

 

In the previous discussion a compartment was a space across which indicator 

could traverse with a distribution of transit times.  In this context the definition of 

a compartment becomes a well mixed space into which contrast agent 

instantaneously and homogeneously mixes.  Once this has been established 

systems of equations defining the rate of change of indicator in each 

compartment can be constructed by employing conservation of indicator mass 

which states that no indicator is created or destroyed inside the tissue.  Hence 

the rate of change of indicator for a given compartment must be the difference 

between the influx and outflux from the compartment.  The outflux from any 

compartment is equal to concentration of CA in that compartment multiplied by 

the flow rate.  Applying these principles to Figure 4-5: 

  
     

  
                                   

Equation 4-19 

  
     

  
                    

Equation 4-20 

 

The two compartment model has a bi-exponential impulse response function 

(125) and can be used for uptake curve fitting.  However in general, and 

particularly in the heart, much simpler models are used. 

 

4.3.6. One compartment (    ) 

Capillary permeability in the myocardium is high.  If permeability is high enough 
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the two compartment model becomes flow limited and it is not possible to derive 

permeability figures from the model because effectively all indicator that arrives 

permeates the capillaries immediately.  In this case the vascular space and 

EES become one compartment with a concentration Cmyo: 

                        

Equation 4-21 

If we assume that the indicator is instantaneously and well mixed, and that there 

is only a single compartment then the venous output concentration will be 

equivalent: 

                  

Equation 4-22 

      
       

     
 

  Equation 4-23 

Now utilising the original equation for the one compartment model Equation 4-2: 

        

  
           

       

     
 

Equation 4-24 

Equation 4-24 is an inhomogeneous, first-order linear differential equation with 

constant coefficient, for which an equation of the form: 

  

  
              

Has the solution: 

                         

Therefore, setting          , Equation 4-24 has the solution: 

                 
 

  
     

 
 

Equation 4-25 
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4.3.7. The uptake model 

The model can be simplified even further by removing the venous outflow from 

the model such that: 

        

  
         

Equation 4-26 

This model only holds in the early stages of contrast uptake in the myocardium 

when the finite transit time of the myocardium means that CA is entering but not 

leaving the compartment.  From Equation 4-26 it follows that: 

                  

 

 

 

Equation 4-27 

So that Fp can be measured plotting the integral of the AIF up to t against the 

myocardial concentration at t and taking the slope of the straight line fit to the 

data points.   

 

This is a very simple analysis method to perform.  The difficulty is in deciding at 

which time point the no venous output assumption ceases to hold.  This can be 

done by establishing the data set for which the best fit to the straight line is 

achieved (126).  A more pragmatic approach is to simply choose the peak of the 

AIF as the cut-off point (123). 

 

4.4. Summary 

This chapter has provided a description of some of the methods used for 

estimating myocardial blood flow in the heart.  Most of these methods are also 

used in other anatomies and imaging modalities.  However the emphasis here 

has been on the application of these methods to measure myocardial blood flow 

from cardiac perfusion DCE-MRI datasets only.  The chapter provides the 

underlying theory for the quantitative methods used in later chapters of this 

thesis.  In particular the models that are compared in chapter 9 have been 
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described in detail. 
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5. General methods 

5.1. Overview 

The research in this thesis is primarily based on data from two studies; the 

dual-phase study and the CE-MARC trial and the following chapters will refer 

to these datasets repeatedly.  The full methodologies and primary purposes 

of these two studies are outlined in section 5.2 in order to avoid unnecessary 

repetition in subsequent chapters.  In order to generate quantitative MBF 

estimates from these datasets contours depicting the myocardium, and a 

region within the left ventricular blood pool depicting the AIF, must be drawn.  

The contouring protocol used in this thesis is described in detail in section 

5.3.  All of the quantitative MBF estimates presented in this thesis were 

generated using automated curve pre-processing.  The algorithms used to 

automate pre-processing are described in section 5.4 and are tested for 

failures as assessed by human observation in section 5.5. 

 

5.2. Datasets 

5.2.1. CE-MARC 

Purpose 

The CE-MARC trial (2,23) was designed to establish the accuracy of a multi-

parametric cardiovascular magnetic resonance (CMR) protocol for 

diagnosing coronary heart disease against a reference standard of X-ray 

coronary angiography.  The trial also compared the diagnostic capabilities of 

CMR and nuclear medicine SPECT.  752 patients with suspected angina 

were assigned to the trial and 628 patients completed with assessable and 

available results in all three modalities (CMR, SPECT and X-ray 

angiography).  The trial concluded that CMR had a sensitivity of 86.5% and 

specificity of 83.4% and found a significant improvement in the sensitivity of 

CMR over SPECT in diagnosing CHD (2). 
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Method 

Out of 4065 consecutive patients  presenting at Pinderfields General 

Hospital or Leeds Teaching Hospitals with suspected angina pectoris 752 

were recruited to the trial.  Exclusion criteria were; previous coronary artery 

bypass surgery, crescendo angina, acute coronary syndrome or 

contraindication to CMR, adenosine or gadolinium based contrast agent.  

628 patients completed CMR, SPECT and X-ray angiography investigations 

and were included in the final analysis.  

R-R interval

Systole Diastole

90o

126ms

Mz

Saturation 
Pulse

272ms

418ms

time

basal middle apical

basal

middle

apical

  

Figure 5-1 – CE-MARC perfusion pulse sequence.  A single, shared 90o 

saturation pulse is used giving saturation times (TS) for the basal, middle and 

apical cardiac slices of 126ms, 272ms and 418ms respectively and resulting 

in different T1-weighting and cardiac phase for each of the three slices. 

 

Cardiac MRI 

For the MRI investigation patients were positioned supine on a dedicated 

cardiac research scanner (1.5T, Intera CV, Philips, Best, The Netherlands) 
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equipped with „Master‟ gradients (30mT/m peak gradients and 150mT/m/ms 

slew rate).  Signals were received with a 5 element cardiac phased-array RF 

coil and ECG gating and triggering was performed.  For the perfusion 

investigation patients were imaged using aT1-weighted saturation recovery 

turbo field echo (SR-TFE) imaging sequence.  Three slices were acquired 

with a single shared saturation pulse in order to fit the three image 

acquisitions in a single RR-interval.  Images were acquired with a linear k-

space ordering, with the central line of k-space acquired at 126ms for the 

basal slice, 272ms for the middle slice and 418ms for the apical slice.  Using 

a shared pre-pulse results in a different image contrast for each imaging 

slice as well as different cardiac phases for each slice.  The basal slice will 

be more systolic (and less T1-weighted) whereas the apical slice will have a 

stronger T1-weighting and will be imaged in the diastolic phase (See Figure 

5-1).   

No. lines of k-space in FAS 12 

Central line of k-space 21 

Partial Fourier 0.67 

TR/TE 2.7ms / 1.0ms 

Alpha (after FAS) 15o 

TS Basal 126ms, middle 272ms, apical 

418ms (from 90o pulse to central line 

of k-space) 

SENSE  Factor 2 

FOV 320mm – 460mm 

Typical matrix size 144x144 (reconstructed to 256x256 

by zero filling before reconstruction) 

Slice thickness 10mm 

Table 5-1 – Scan parameters for the CE-MARC perfusion imaging sequence 

 

The three slices were positioned according to the "3 of 5" technique (127). 

Pulse sequence parameters: TE 1.0 ms, TR 2.7 ms, flip angle 15°, SENSE 

factor 2, matrix 144 × 144, field of view 320–460 mm, slice thickness 10 mm 
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partial Fourier 0.67, resulting in a single slice acquisition time of 130ms 

(summarized in Table 5-1).  Imaging was carried out whilst a bolus 

intravenous injection of 0.05 mmol/kg dimeglumine gadopentetate 

(Magnevist®, Schering AG, West Sussex, UK) followed by a 15 ml saline 

flush was delivered through an arm vein at 5 ml/s using a power injector 

(Spectris®, Medrad, Pittsburgh, Pennsylvania).  The patient held their breath 

at end expiration timed to coincide with the first-pass of the bolus through 

the heart.  The patient was then directed to hold their breath for imaging for 

as long as possible thereafter and then to commence gentle breathing to 

minimise breathing motion as much as possible in subsequent image 

frames.  Stress was pharmacologically induced using an intravenous 

injection of adenosine administered at a dose of 140 mcg/kg/min. The 

patient's blood pressure was recorded every two minutes and the heart 

rhythm monitored on the vector-ECG. The perfusion study commenced 

approximately 4 minutes into the adenosine infusion.  A rest perfusion study 

was performed approximately 15 minutes after the stress investigation.  

 

Nuclear Medicine 

The nuclear medicine investigation was conducted using SPECT (Single 

Photon Emission Computed Tomography) gamma camera imaging.  As with 

the MR investigation patients were imaged under rest and stress conditions, 

with stress induced using 140 mcg/kg/min of adenosine for 4 minutes so that 

the techniques for SPECT and CMR were directly comparable.  Patients 

were injected with the radioisotope tracer 99mTc tetrofosmin (Myoview) using 

a standard dose of 400 MBq for each examination, adjusted for weight to a 

maximum of 600 MBq per examination.  SPECT images were acquired with 

the patients in the supine position.  Eight ECG gated frames per cardiac 

cycle were acquired using 64, 40s long projections at 3o over a 180o orbit 

using a 64 x64 matrix size.  Transaxial slices of 6mm were reconstructed 

using filtered back projection using a Butterworth filter with a cut-off 

frequency of 0.4 Nyquist and order of 6.  Transaxial slices were reorientated 

to the cardiac axes for analysis.  Semi-quantitative analysis of the perfusion 

data including summed stress and rest scores was performed.   Based on 



76 

visual comparison of rest and stress SPECT perfusion scans, each SPECT 

dataset was summarized as having fixed or inducible defects in the anterior, 

lateral, septal or inferior positions. 

 

X-ray Reference Standard 

Invasive X-ray angiography using a radio-opaque dye was performed on all 

of the patients after CMR and SPECT.  A quantitative estimate of the degree 

of coronary stenosis (expressed as a percentage reduction in vessel lumen) 

was made for each identified stenosis.  Coronary artery stenoses were then 

mapped to myocardial segments using the AHA recommended mapping 

(106) (see section 3.4.11). 

 

5.2.2. Dual phase 

Purpose 

The dual-phase study was designed to acquire DCE-MRI cardiac perfusion 

time series with identical scan parameters at systole and diastole. The 

primary purpose of this dataset was to identify differences in MBF between 

systole and diastole (128).  For this reason the pulse sequence was 

designed to optimize image quality in a single 2D slice and allow this slice to 

be scanned using identical preparation and read-out settings at two separate 

time points in the cardiac cycle. 

 

Method 

Seventeen healthy volunteers (9 male, 8 female, mean age 34 years age 

range 24–48 years) with no history of heart disease, diabetes, 

hyperlipidaemia or chronic illness were recruited into the study. All 

volunteers had normal blood pressures and showed normal left ventricular 

mass as assessed by planimetry in short-axis left ventricle stack images. 

Informed consent was taken from all volunteers in accordance with a study 

protocol approved by the regional ethics committee. All volunteers were 
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instructed to refrain from caffeine for 24 h prior to the examination.  

Volunteers underwent myocardial perfusion DCE-MR imaging on a 1.5T 

whole body imaging system (Phillips Medical Intera systems, Best, The 

Netherlands).  Volunteers were positioned supine with a flexible five element 

cardiac phased array receiver coil placed on their chest. Images were 

acquired during an intravenous injection of contrast (Magnevist, Schering, 

Berlin, Germany) at a dose of 0.05mmol/kg Gd-DTPA at a rate of 5ml/s 

followed by a 20ml saline flush via an automated infusion pump (Medrad 

Spectris Solaris,Medrad, Indianola, PA,USA). Volunteers were initially 

imaged under stress, which was pharmaceutically induced by an intravenous 

infusion of adenosine over 4 min at 140 µgmin−1 kg−1. A rest scan was 

acquired approximately 15 min later. Mid-ventricular short-axis DCE-MRI 

series were acquired at mid-systole and mid-diastole.  Images were acquired 

using a saturation recovery prepared single-shot gradient echo pulse 

sequence, (see Figure 5-2). 

R-R interval

read-out90o read-out90o

TD systole
TD diastole

TS TS

ko ko

 

Figure 5-2 – The dual-phase imaging sequence.  In a single RR-interval two 

SR-GRE images are acquired with equal saturation times (TS) from the 90o 

pulse to the central line of k-space (ko) and different trigger delays (TD) to 

place the two images in mid-systole and mid-diastole. 

 

The pulse sequence parameters are described in Table 5-2, including the 
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number of lines of k-space involved in the flip angle sweep and the position 

of the central line of k-space (ko), which were ascertained using the Phillips 

Pulse Programming Environment (PPE).  The slice thickness was 10mm and 

the mean FOV was 332 mm × 284 mm (range: 290 mm × 245 mm to 410 

mm × 338 mm). The mean scan pixel size was 2.27 mm × 1.95 mm (range: 

2.08 mm × 1.70 mm to 2.64 mm × 2.35 mm). All images were reconstructed 

to a 256 × 256 matrix size giving a mean reconstructed pixel size in the 

image of 1.30 mm × 1.11 mm (range: 1.13 mm × 0.96 mm to 1.60 mm × 

1.32 mm). Each dynamic image was obtained after an ECG triggering timed 

to image the heart in systole or diastole. Volunteers were instructed to hold 

their breath at end expiration, timed to coincide with the arrival of contrast 

into the heart, for as long as they were capable and then to resort to gentle 

breathing thereafter. This breath-holding strategy minimizes motion during 

the first-pass of contrast agent through the myocardium, which is the data 

used for MBF estimation in this study.  A total of 60 dynamic frames were 

acquired in each DCE-MRI set.  Slice positioning and the timing of 

acquisition were designed to image the same single mid-ventricular short- 

No. lines of k-space in FAS 12 

Central line of k-space 21 

Partial Fourier 0.67 

TR/TE 2.7ms / 1.0ms 

Alpha (after FAS) 15o 

TS 150ms (from 90o pulse to central line 

of k-space) 

SENSE  Factor 2 

Typical matrix size 160x160 (reconstructed to 256x256 

by zero filling before reconstruction) 

Slice thickness 10mm 

rFOV 80% 

Table 5-2 – Pulse sequence parameters for the dual-phase imaging protocol.  

 

axis slice at systole and diastole.  The position of the end-systolic slice was 



79 

planned using a cine series (two-chamber and four- chamber view, 30 

phases) so that it was located in the mid-ventricular position. Because of the 

longitudinal lengthening of the heart from systole to diastole, the 

myocardium at the mid-ventricular level in systole moves toward the base of 

the heart in diastole.  To allow for this movement the diastolic slice position 

was planned immediately above the middle slice, nearer to the base of the 

heart, and its position was verified in the chosen diastolic frame. Finally, the 

trigger delay for each slice of the DCE-MRI readout was selected from the 

cine images so that slice 1 was acquired in end-systole, followed by the slice 

2, which was acquired mid-diastole (see Figure 5-2). 

 

5.3. Manual contouring of myocardial perfusion imaging 

For all of the datasets described in this thesis endocardial and epicardial 

contours were manually drawn by an expert user for every frame and every 

slice of the cardiac DCE-MRI dynamic series using dedicated cardiac image 

analysis software (Mass 7.0, Medis, Leiden University, Leiden, The 

Netherlands). A further contour was drawn within the left ventricular blood 

pool, avoiding the papillary muscles to sample the blood pool (see Figure 

5-3).  In order to subdivide the myocardium into the circumferentially 

equidistant regions recommended by the AHA (106) a reliable marker is 

required to ensure that the myocardium is divided with respect to the same 

reference point.  For the dual-phase dataset this was taken to be the anterior 

insertion point (where the right ventricular wall meets the left ventricular 

myocardium).  For the CE-MARC dataset it was found that the 

corresponding posterior junction (where the right ventricular wall meets the 

left ventricular myocardium) was easier to identify, thus a more reproducible 

marker, and so this was used as the marker in that dataset. 
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Figure 5-3 – Contour example from the CE-MARC dataset.  Myocardial 

contours (green), a contour within the left ventricular blood pool representing 

the AIF (red) and the reference point marker (blue). 

 

In a given dynamic series the image exhibiting maximum contrast between 

the myocardium and surrounding tissues was used to draw the contours. 

These contours were then copied to the full time series and manually 

translated to compensate for breathing motion.  This contouring 

methodology inherently assumes that the cardiac motion in the dynamic 

series consists of rigid translations only.  In fact rotational motion and some 

non-rigid deformity is also present in these datasets.  This must be accepted 

as a limitation to the contours used in these investigations.  However, it is 

important to note that breath-holding for these acquisitions was timed to 

coincide with the first-pass of contrast agent through the myocardium, being 

the most important data for quantifying perfusion.  Throughout breath-

holding the „rigid translation only‟ assumption is reasonable.  An alternative 

contouring strategy would be to draw separate contours for every individual 

frame.  Besides the substantial increase in time and effort that using such a 

strategy would entail, it is not certain that the resulting contours would be a 

better representation of the true myocardial uptake curves.  It is very difficult 

to identify the myocardium in the low image contrast images before and after 

the main bolus and the contour errors generated due to poor image contrast 

in these frames may well exceed those generated by allowing rigid 

translation only (see Figure 5-4).  The ideal contouring methodology would 
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consist of propagating the maximal contrast contours to the rest of the 

dataset via a non-linear registration algorithm.  However image registration 

algorithms can also be unreliable (especially in the presence of image 

artifacts).  Suffice to say that, although the contouring strategy used here will 

generate errors, there is not an alternative strategy that would be 

guaranteed to yield more accurate results.  Furthermore, the protocol used 

here is commonly employed, and thus the conclusions of the work in this 

thesis should be generally applicable across centres applying similar 

contouring strategies. 

 

Figure 5-4 – Example of poor image contrast pre contrast bolus making 

accurate myocardial contouring difficult.  (Taken from the same patient as 

Figure 5-3). 

 

5.4. Automated analysis of perfusion curves 

Introduction 

Quantitative analysis of myocardial perfusion uptake curves requires pre-

processing of the curves.  Both AIF and myocardial uptake curves must be 

baseline corrected so that the native tissue has a concentration value of 

zero.  For Fermi-constrained deconvolution the post first-pass data must be 

cropped from the curves to avoid significant overestimates in MBF (4).  For 

analysis of large datasets, especially when the myocardium is subdivided 
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into multiple regions, manual pre-processing becomes prohibitively time-

consuming and one of the multiple obstacles to the acceptance of 

quantitative MBF estimates into clinical practice.  This section describes 

methods for full automation of myocardial perfusion uptake curve pre-

processing before evaluating the performance of these methods by visual 

verification. 

 

Methods 

5.4.1. Measuring the baseline 

Quantitative perfusion methods model the passage of a contrast agent bolus 

through the heart.  The pre-contrast signal intensity should therefore be 

zero, corresponding to zero contrast agent in the tissue.  If the signal values 

from the imaging system are converted to CA concentration before analysis 

then the resulting pre-contrast CA concentration will be zero by definition, 

but the conversion process requires a measurement of the pre-contrast 

baseline signal intensity in any case.  For the rest dataset, remnant contrast 

agent will be present from the stress study and so a second baseline 

subtraction step will be required to remove remnant contrast agent. 
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Figure 5-5 – Diagram illustrating two problems with using a simple baseline 

based on first n=10 data points.  a) An unusually short pre-bolus time 

incorporates some contrast enhanced points erroneously raising the 

baseline.  b) Noise in the early points generates errors in the baseline that 

would have been avoided had n been longer. 

 

A simple automated approach to baseline measurement would be to take 

the first n data-points of the data series and average them.  However the 

choice of n is clearly critical to this method.  If n is too large the method runs 

the risk of encountering a data series with an earlier injection time, thus the 

baseline will incorporate contrast enhanced data points and be set too high 

(Figure 5-5 a).  Conversely if n is too small the susceptibility to noise is 

increased (Figure 5-5 b).  High levels of noise are common in the early data 

points as image contrast is poor, making contours difficult to choose (Figure 

5-4).  In reality a large dataset will contain both types of problem.  The ideal 

solution is to have a bespoke, case specific baseline region that maximises 

the available data in each case.  The method adopted for this study uses a 

piecewise linear-linear continuous regression model to fit two conjoined 

a)

b)

Data point 
Data point incorporated into baseline 

Baseline 
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straight lines to the uptake curve.  The method was originally suggested as a 

way of estimating bolus arrival time (129).  After cropping the uptake curve 

of all data points following the point where the curve reaches half the peak 

height the curve is assumed to approximate to a linear-linear piecewise 

continuous function:   

         
                                                      

                                  
  

Equation 5-1 

C(t[i])=βo

C(t[i])=βo+ m(t[i]-t[k])

k
 

Figure 5-6 – Illustration of the method for finding the end of the baseline k.  

All data points after the curve has risen to half peak (x) are excluded.  The 

piecewise linear-linear continuous regression fits a horizontal line of 

amplitude βo to data points before k and a straight line of gradient m and 

intercept βo to points following k.  The solid line is the fit through the included 

point (o).  

 

Equation 5-1 represents the fitting of a horizontal line with amplitude βo to 

the data preceding the bolus arrival time k and a straight line of gradient m 
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and intercept βo to all data points following k.  The fit is repeated with k set to 

every data point in the series and the value of k producing the best fit to the 

data is the bolus arrival time.  Figure 5-6 illustrates the function fitted to an 

example uptake curve.  

 

5.4.2. Identifying the end of the first pass 

Tracer kinetic models that derive a tissue response function theoretically 

should be able to model enhancement curves wherever the assumptions of 

that model are valid.  Thus model independent methods (section 4.3.4) and 

the one compartment model (section 4.3.6) can be applied to full datasets.  

The use of the Fermi function to represent the response function is not 

based on a theoretical tracer-kinetic model.  It is rather a pragmatic choice 

based on the appearance of empirical response functions.  This may 

account for the importance of limiting data sets to the first-pass when using 

Fermi-constrained deconvolution to avoid poor fits and significant 

overestimates in MBF estimate (4). 

The automated method used to find the end of the first-pass is illustrated in 

Figure 5-7.  After smoothing the AIF using a spline function in order to 

reduce the impact of high frequency oscillations, due to noise and frame 

specific contouring errors, the AIF is differentiated to generate a plot of 

dSI/dt against time.  The minimum dSI/dt corresponds to the downslope of 

the first pass peak.  The next point where dSI/dt crosses the line dSI/dt=0 

corresponds to the valley immediately following the first-pass peak, i.e. the 

end of the first-pass.  All data subsequent to this point in the original uptake 

curve is then cropped to generate a first-pass only uptake curve. 
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a)

b)

(1)

(2)

 

Figure 5-7 – The AIF data points (o) are smoothed by fitting with a spline 

function (a).  The differential of the smoothed function (dSI/dt) is then 

calculated (b).  The minimum dSI/dt value corresponds to the downslope of 

the first-pass (1).  The point where dSI/dt next crosses the line dSI/dt=0 is the 

end of the first-pass (2).  
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5.4.3. Calculating the delay time 

It is not possible to gain a reliable arterial input function from the coronary 

arteries themselves. The current limitations in image resolution and the large 

amount of movement would generate very noisy AIFs.  Some authors have 

used a separate imaging slice in the aorta to gain an input function as close 

as possible to the input function that enters the myocardial tissue (31).  

However this requires dedicating an imaging slice to the aorta alone, thereby 

losing a myocardial slice and decreasing the cardiac coverage.  For this 

reason many studies, including all the myocardial perfusion studies 

presented in this thesis opt to take the AIF from the left ventricular blood 

pool.  Here a large ROI can be used to obtain a high SNR AIF.  However the 

contrast bolus generating this AIF must then pass through the aortic valve, 

into the aorta, through the coronary arteries and into the myocardium.  For 

this reason there is a significant time delay (dt) between the arrival of the 

contrast agent bolus in the left ventricle and in the myocardium.  This 

manifests as a translational shift along the time axis between the AIF and 

the myocardial uptake curve.  Uncorrected, this time delay causes an 

underestimate in the MBF.  There are a variety of ways of determining dt.  

Some investigations require a human observer to set dt manually (120).  

This becomes impractical when large numbers of datasets are to be 

analysed.  Furthermore it is often not clear what the optimal dt is from 

visually inspecting the curves and so this method may introduce errors into 

the quantitation.  An automated bolus arrival time finding algorithm has been 

described (129) but this will be susceptible to the same ambiguities in the 

curves that reduce the accuracy of the manual method.  Alternatively dt can 

be incorporated into the fitting procedure as an extra parameter in the fit.  

Although this increases the degrees of freedom in the fitting procedure, and 

may increase the likelihood finding local minima, it is a fully automated 

method and has been widely applied in the literature (123).  Alternatively, for 

the studies in this thesis, dt was determined by performing model fitting 

multiple times over a range of n values of dt.  The delay-time was 

implemented by zero padding before the AIF.  The optimal dt value was then 

chosen as that which achieved the best fit to the data.  This method is more 

computationally expensive than incorporating dt into the model fit (by factor 
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n), however it reduces the likelihood of local minima.  In our experience we 

have found this to be a more reliable method than those previously 

mentioned, although we have not conducted formal investigations to verify 

this quantitatively.  A disadvantage of this method is that it inherently limits 

the delay time to the temporal resolution of the dynamic acquisition, whereas 

fitting can set dt to any value.  To ameliorate this problem all data sets were 

interpolated by a factor of 4 to increase the apparent temporal resolution of 

the dynamic series.  In order to achieve this a piecewise cubic hermite 

interpolating polynomial (130), MATLAB® pchip, was used to preserve the 

local shape of the curve. 

 

5.5. Qualitative evaluation of automated curve pre-

processing for quantitative myocardial perfusion. 

5.5.1. Introduction 

The automated curve pre-processing algorithms described in section 5.4 

were used in all of the MBF estimates used in this thesis. Although an 

absolute gold-standard for these parameters was not available the 

performance of these algorithms was tested against human observer opinion 

as to the correct values.  In this section the performance of the automated 

algorithms was checked by human observers and the number of failures and 

the reasons for failure are discussed. 

 

5.5.2. Method 

The automated pre-processing algorithms described in section 5.4  were 

applied to all of the uptake curves in the CE-MARC subset (described in 

section 5.2.1).  This amounted to 4800 (50 patients x 2 rest/stress states x 3 

slices x 16 regions) myocardial uptake curves and 1600 AIFs (as AIFs were 

taken from the basal slice only).  Each curve was visualised using the 

Perfusion graphical user interface (GUI).  This GUI is described in detail in 

chapter 8.  It enabled rapid visual assessment of the automated pre-

processing algorithms by displaying MR images, contours and uptake curves 



89 

pre and post automated processing, with the baseline and first-pass cut-off 

points overlaid on the plots (Figure 5-8).  Wherever it was deemed 

necessary the automated pre-processing parameters were adjusted for later 

analysis and the parameter adjustment, and reasons for it were noted.  

Parameter adjustment was deemed necessary if it would give a more 

accurate representation of the parameter in question.  This is obviously a 

subjective criterion, but it is clear from the examples given in section 5.5.4 

that the need for manual intervention was usually obvious.  

Image with contours 
overlaid

Concentration curves 
with pre-processing 
parameters overlaid

Pre-processed 
concentration curves

Slice 
slider

Frame 
slider

Contour 
overlay 
toggles

Stress/rest selector

Region selector Pre-processing slider

Model fitMBF 
estimates

Exclude region 
from dataset

 

 

Figure 5-8 - GUI allowing simultaneous viewing of stress and rest images, 

contrast uptake curves and estimated MBFs as well as manual adjustment of 

pre-processing parameters and an exclusion button to exclude the region if 

necessary.  The black circles depict the time on the curve that the dynamic 

image shown corresponds to (see section 8.3). 
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5.5.3. Results 

The number of regions (and percentage regions) that required manual 

adjustment are shown in Table 5-3. 

Manual 

Intervention 

adjusted 

AIF 

Baseline  

Myocardial 

Baseline  

First-pass 

cut-off  

Bolus 

arrival 

delay time 

Total 

No. regions 

affected  

0 (0%) 32 (0.6%) 32 (0.6%) 0 (0%) 64  

No. Cases 

affected 

0 (0%) 3 (0.06%) 2 (2%) 0 (0%) 5 

Table 5-3 – Summary of cases where manual intervention was deemed 

necessary expressed as the number of individual regions and as a 

percentage in brackets.  The number of individual patients affected by these 

adjustments is also shown. 

 

5.5.4. Discussion 

Of the 4800 segments considered (50 patients at rest and stress over three 

slices divided into 16 regions) 64 regions required manual intervention.  Of 

these 32 required adjustment of the myocardial baseline and 32 were 

affected by adjustment of the first-pass cut-off.  Almost all the myocardial 

baseline adjustments were due to a single patient (30 regions adjusted at 

rest and stress).  The first-pass cut-off adjustments were due to 2 AIFs, 

which affected all regions.  No corrections were required in the AIF baseline 

or the bolus arrival time delay.  It is to be expected that automated baseline 

calculation would be more difficult in the myocardium than the LV blood pool 

as a single myocardial region is typically smaller (and less dramatically 

enhanced) than the LV blood region making it more susceptible to noise.   

The myocardial baseline corrections required were actually due to problems 

with the myocardial contours.  In the  patient concerned poor contour 

placement in the pre-contrast frames incorporated high signal in the 

myocardial baseline (Figure 5-9 a).  At the onset of contrast the contours 

were shifted (Figure 5-9 b) generating a dip in the myocardial curve.  The 
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true baseline value should be at the base of this dip as the preceding 

baseline was contaminated by non-myocardial signal. 

a)

b)

 

Figure 5-9 – Myocardial baseline correction was required due to problems 

with the myocardial contours.  Pre-contrast contours incorporated signal 

from surrounding structures increasing the baseline signal value (panel a).  

At contrast enhancement the contour was shifted so as not to include these 

structures (panel b). 
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The errors in the first-pass cut-off occurred in two patients only.  It is 

important to note that the first-pass cut-off was based on the AIF of the basal 

slice, which was used for all regions.  Therefore, a single failure of the 

algorithm on this AIF affected all regions for that case.  Figure 5-10 shows 

one of the AIFs that caused a failure in this study.  The valley at the peak of 

the AIF is difficult to explain.  The AIF ROI is close to some interior dark 

structure in the LV cavity and movement of the ROI into this region at the 

peak of the AIF may explain the signal loss at this point.  Another 

explanation is signal loss due to T2* effects but that is unlikely with this 

protocol (see section 6.3.1).  The cut-off algorithm searches for the first 

valley after the AIF peak, which it has found in this case, but it is evident that 

this valley is not the end of the first-pass in this case, hence the need for 

manual intervention. 

    

 

Figure 5-10 – Failure in end of first-pass finding algorithm due to a valley in 

the AIF peak. 

 

5.5.5. Conclusion 

The results show that the automated pre-processing algorithms are robust 

and reliable.  No interventions were required in the AIF baseline and the 

bolus arrival time delay parameters, meaning that complete automation for 
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these two parameters has performed as well as visual analysis.  The failures 

of the myocardial baseline and first-pass cut-off algorithms have been 

explained in terms of contouring errors.  Although these cases required 

genuine manual intervention, the automated algorithms could not be 

expected to perform well due to contouring errors generating anomalous 

uptake curves.  In conclusion the automated pre-processing algorithms have 

proved to be robust in practice although manual checks on curves are still 

advisable because of the possibility of contour error induced anomalies in 

the uptake curves. 

 

5.5.6. Limitations 

The reference standard in this investigation was visual assessment.  This is 

a subjective measure and it is possible that errors in the automated 

algorithms may have been missed as a result.  This is particularly possible in 

the case of the bolus arrival delay time which is difficult to assess visually.  

However, the author is aware of no superior, more objective, standard 

against which the curves could be compared in the context of genuine 

patient datasets.  To the author‟s knowledge visual assessment represents 

the best reference standard available.  This assessment shows that the 

automated solutions are at least as good as manual methods. 

 

5.6. Summary 

This chapter has described in detail the datasets and methods that are used 

throughout the remainder of the thesis.  A subset of the CE-MARC dataset 

(section 5.2.1) is the basis upon which the comparison of methods (chapter 

8) and the comparison of perfusion models (chapter 9) were performed.  The 

dual-phase dataset (section 5.2.2) was used in the evaluation of contour 

errors (chapter 7) and was used in the patient data based simulations in 

chapter 6.  The contouring protocol described in section 5.3 has been used 

on all the datasets described in this thesis.  The automated analysis 

methods described in section 5.4 and qualitatively validated in section 5.5 
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have been used to generate all of the MBF estimates presented in this 

research. 
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6. Signal intensity to concentration conversion 

in magnetic resonance imaging for 

quantitative myocardial perfusion 

6.1. Overview 

In order to justify the assumption that the signal measured from the MR 

image is linearly proportional to the concentration of contrast agent in the 

ROI, quantitative blood flow MRI investigations in the heart are usually 

carried out using either a low dose single bolus injection or, more recently, a 

dual-bolus protocol (see section 2.8.6).  In the single bolus case the price for 

using a small enough dose for this assumption to hold true is poor SNR in 

the resulting images.  This has an adverse affect on the contrast uptake 

curves and reduces the accuracy of visual reporting.  Dual-bolus injection 

protocols aim to avoid this issue by using separate, dedicated bolus 

concentrations for the AIF and myocardial tissue curves.  However 

administration of two boluses makes the investigation complicated, requiring 

three injection pumps (two contrast agent (CA) boluses plus saline) or a 

member of staff in the investigation room to swap syringes mid scan (131).  

Adequate separation between pre-bolus and bolus injections is difficult to 

time correctly and bolus time courses can become contaminated by the pre-

bolus.  An alternative approach is to convert the signal intensity (SI) values 

into CA concentrations by modelling the non-linear relationship between SI 

and CA concentration.  This allows simple, single-bolus acquisitions, with 

good SNR, to be used in quantitative analysis. 

 

The aim of this chapter was to derive and validate a method for converting 

signal values derived from DCE-MRI cardiac perfusion into CA 

concentrations.  The mathematical model of the pulse sequence is described 

in detail (section 6.2.1) and is then refined to incorporate a simulation of the 

flip-angle sweep used on Philips systems to reduce image artifacts (section 

6.2.3).  Simulation experiments are then used to defend potential criticisms 
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of the model.  The use of an assumed blood T1 is shown to be unlikely to 

cause significant errors in MPR (section 6.3.7), the assumption that the 

effect of T2* on signal intensity will be small is validated and the effect of flip 

angle sweep on MPR is also shown to be small (section 6.3.2).  The model 

is then validated using a T1-gel phantom showing excellent fits of the model 

to the phantom (section 6.4).  The phantom is also used to investigate the 

effect of flip angle errors on the conversion.  In-vivo tests of the model were 

not carried out due to concerns over the dual-bolus dataset on which this 

was to be performed.  These concerns were based on the significant 

discrepancy between pre-bolus and dual-bolus MBF estimates in these 

datasets.  These discrepancies are reported and preliminary investigations 

into what has caused them are described. 

 

6.2. A method for converting signal intensities to 

concentrations in myocardial perfusion imaging 

In order to use cardiac MRI perfusion data for quantitative MBF 

measurements the measured signal intensities should be linearly 

proportional to the concentration of contrast agent in the ROI.  Section 2.8.6 

explains this requirement in detail and outlines the main proposed methods 

for dealing with it.  In this section an approach is described to convert each 

signal intensity value to its corresponding T1 value using the mathematical 

description of the imaging pulse sequence.  The method was first described 

by Fritz-Hansen et al and Larsson et al. (30,31) for an inversion recovery 

FFE (IR-FFE) pulse sequence.  In the heart it is reasonable to assume a 

mono-exponential T1 recovery, i.e. that there is a fast rate of exchange 

between tissue compartments (132).  Therefore, the change in longitudinal 

relaxation rate T1 due to a given concentration c(t) of contrast agent at time t 

can be related as follows (13): 

)(
1

)(

1
1

11

tcr
TtT o



 

Equation 6-1 
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where T1o is the native relaxation time without CA, T1(t) is the relaxation time 

at time t with the CA and r1 is the CA relaxivity. Thus, the concentration c(t) 

of CA at time t can be expressed as: 

1

1 )(
)(

r
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
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Equation 6-2 

Therefore, CA concentration can be derived from the R1 in a given ROI 

provided that the native R1 of the tissue is known.  The problem then 

becomes one of relating a given signal intensity to R1.  The relationship 

between signal intensity and R1 can be written as: 

)( 1RfSI   

Equation 6-3 

SI is the signal intensity measured from a given region, f(R1) is an 

abbreviation for the full pulse sequence equation, described later in this 

chapter (sections 6.2.1 and 6.2.3), for which R1 is the only unknown 

parameter.  Ψ is a calibration factor, which is constant over the DCE-MRI 

experiment.  For this derivation ψ comprises the receiver gain factor Ω, the 

net magnetization vector Mo, sin(α), and the factor for T2* decay  
   

  
  
 

              
   

  
  
 

Equation 6-4 

Considering the left ventricular ROI containing blood only, the blood 

calibration factor ψb can be calculated using the pre-contrast (baseline) 

signal intensities (SIbo) and the native R1 value for blood (R1bo): 

)( 1bo

bo
b

Rf

SI


 

Equation 6-5 

Once obtained ψb can be used to derive R1b(t) for every time point in the 

perfusion series assuming f(R1) is invertible: 
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Equation 6-6 

         
   

      

  
  

Equation 6-7 

Ideally R1bo would be measured on a patient by patient basis.  However, 

these measurements can be time-consuming and error prone and are not 

available in all perfusion studies.  An alternative is to assume a value from 

measurements published in the cardiac MRI literature.  This is the approach 

adopted in this chapter. 

 

The above method should also be applied to the myocardial ROI.  Using a 

measured or assumed value for normal myocardial R1 is not practical in 

ischaemic patients whose native myocardial R1 will be modified by their 

disease.  An alternative is to assume that the calibration constant is the 

same for the blood and the myocardium (ψb= ψm), so that: 

         
   

      

  
  

Equation 6-8 

SIm and R1m are the myocardial signal and R1 values respectively.  This is a 

reasonable assumption within an imaging slice as one would not expect 

large changes in coil sensitivity between adjacent areas within the same 

slice.  Furthermore, most perfusion acquisition protocols will use parallel 

imaging techniques which should improve within slice B1 homogeneity. 

 

In order to generate a myocardial perfusion reserve (MPR) cardiac perfusion 

imaging is carried out under rest and stress conditions with a separate 

contrast bolus in each case.  Typically rest perfusion is conducted 10 – 15 

minutes after stress perfusion, after which time remnant CA is still present in 
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the blood and myocardium (Figure 6-1).  For this reason it is not possible to 

generate a separate calibration factor for the rest acquisition.  Therefore a 

further assumption has to be made that the calibration factor does not 

change between the stress and rest acquisitions (ψstress=ψrest) and the stress 

calibration factor is applied to the entire dataset.  This assumption is also 

reasonable as the same location is being imaged in both cases. 

15 min 
pause

time

SI

Stress acquisition Rest acquisition

Rest pre-contrast SI

Stress pre-contrast SI
SI due to remnant Gd

 

Figure 6-1: Signal intensity vs. time plot showing stress and rest data.  The 

precontrast (baseline) signal intensity for the rest scan is higher than the 

native tissue signal intensity due to remnant CA in the tissue from the stress 

scan.  The calibration factor should be derived from the stress pre-contrast 

data only. 

 

For the CE-MARC imaging sequence (section 5.2.1) a shared pre-pulse 

(section 2.8.4) was used resulting in different saturation times for each 

imaging slice.  For this reason the AIF was taken from the basal slice 

(corresponding to the shortest saturation time) for all slices, whereas the 

myocardial uptake curve was taken from each individual slice.  The coil gain 

within the imaging slice is reasonably homogeneous, justifying the 

assumption used above that the myocardial curve can be converted using 

the blood calibration factor (ψb= ψm).  However, the same assumption 

cannot be made when the AIF and myocardial uptake curves are taken from 

different imaging slices.  For this reason each myocardial uptake curve was 

converted using a calibration factor derived from the baseline blood signal 

from its own slice, even though the AIF was always taken from the basal 
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slice.  

 

6.2.1. Derivation of the SR-TFE pulse sequence equation 

The SR-TFE sequence consists of an initial 90o saturation pulse followed by 

a TFE read-out consisting of multiple low flip angle (α) RF pulses separated 

by short relaxation times (TR) (see section 2.6).  The recovery of the 

longitudinal magnetization Mz after the initial 90o RF pulse is given by: 

              
   

  
   

Equation 6-9 

Where TS is the saturation time between the 90o RF pulse and the first TFE 

read-out RF pulse and Meq is the equilibrium magnetization of the fully 

relaxed system.  The magnetization at any point in the readout pulse can be 

determined by considering the affect of each RF pulse on Mz.  Recovery 

towards Meq from an arbitrary initial magnetization Mz(0) is described by: 

                           
  

  
   

            
  

  
         

  
  
   

Equation 6-10 

The magnetization after the first RF pulse of the TFE read-out train M1(+) is 

related to the magnetization before the RF pulse M1(-) by: 

                

Equation 6-11 

corresponding to point B in Figure 6-2.  Inserting this expression into 

Equation 6-10, following recovery over TR, the magnetization immediately 

prior to the next RF pulse is: 

                
   

  
         

   
  
   

Which reduces to: 
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Equation 6-12 

Where        
   

  
 

 and       
   

  
  , which corresponds to point C 

in Figure 6-2.  In general the expression for the nth RF pulse can be written 

as: 

                 
      

   
      

Equation 6-13 

TS TR TR TR

A

B

C

D

 

Figure 6-2 – Illustration of longitudinal magnetization, Mz, recovery in the SR-

TFE pulse sequence.  Initially the magnetization recovers from Mz(0) over TS 

to point A.  The initial read out flip angle then reduces Mz to point B followed 

by recovery over TR to point C.  The magnetization after n TR readout pulses 

is D. 

 



102 

Utilizing the identity:                 
    

   
.  Mn(-) corresponds to 

point D in Figure 6-2 if n=10.     

Finally incorporating, Equation 6-9: 

     
 

   
         

   
  
    

      

   
   

Equation 6-14 

 

6.2.2. SR-TFE with flip angle sweep 

The derivation described in section 6.2.1 assumes a constant flip angle α 

throughout the TFE read-out sequence.  On Philips imaging systems the 

SR-TFE pulse sequence incorporates a steadily increasing flip angle 

scheme or flip-angle sweep (FAS) at the commencement of the sequence in 

order to reduce oscillations in the evolution of the longitudinal magnetization 

which can cause ghost artifacts.  If the flip angle sweep evolves over N lines 

of k-space then the flip angle used for the nth line is given by (133):    

 


2

2

N

nNn
n


  

Equation 6-15 

In order to validate Equation 6-15 the Philips PPE environment was used to 

measure the RF pulse magnitudes for each k-space line of the acquisition. 

(Figure 6-3). 
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Figure 6-3 – RF pulse amplitudes displayed in the Philips PPE environment 

showing flip angle evolution over the initial 12 lines of k-space (rf-pulse 

durations are constant hence amplitude is proportional to flip angle). 

 

The PPE measurement tool was then used to measure the maximum 

amplitude of the RF pulse for each k-space line.  Equation 6-15 was used to 

generate angles with N=12 normalised to the maximum RF amplitude 

measured and plotted on the same scale.  The signal evolution trends were 

compared and shown to match well with differences of less than 1% 

between the measured and calculated RF pulse amplitude for each 

individual point (Figure 6-4). 
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Figure 6-4 – Measured RF amplitudes (points) and calculated values using 

Equation 6-15. 

 

6.2.3. Derivation of the SR-TFE signal intensity equation incorporating 

flip angle sweep 

The influence of variations in the flip angle can be modelled mathematically 

in a similar manner to section 6.2.1 as follows;  The magnetization after the 

first RF pulse of the TFE read-out train M1(+) is related to the magnetization 

before the RF pulse M1(-) by: 

                 

Where α1 is the 1st flip angle in the TFE sequence.  Using Equation 6-10, 

following recovery over TR, the magnetization immediately prior to the 

second RF pulse is: 

                 
   

  
         

   
  
   

Which reduces to: 
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Where    
   

  
 

 and          
   

  
  . 

Iterating to the 3rd RF pulse: 

                     

Substituting in M2(-) 

                                  

Similarly for the 4th and RF pulse: 

                                                     

And in general: 

             

   

   

          
   

  
       

              
   

   

   

   

   

   

 

Equation 6-16 

6.2.4. Minimization 

In order to use Equation 6-14 and Equation 6-16 for converting signal values 

to concentrations these equations must be solved for T1.  An analytical 

solution for T1 is not possible therefore T1 must be found by minimization 

techniques.  For all of the implementations in this thesis this was done using 

a single-variable non-linear zero finding algorithm (fzero.m MATLAB7 

R2009b) (134) 
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6.3. Simulation Studies 

6.3.1. T2* effects 

Introduction 

The models described in section 6.2 do not incorporate T2* effects into the 

pulse sequence equations, i.e. they assume that the change in the 

measured signal due to T2* effects is small due to the short TE used in the 

pulse sequence.  The aim of this section was to ascertain whether T2* 

effects are indeed small enough to be discarded from the model for the 

pulse sequences used in the following studies. 

 

Theory 

Equation 6-1 relates contrast induced change in T1 to concentration via the 

T1 relaxivity.  A similar relationship exists for T2* relaxivity: 

  
        

    
       

Equation 6-17 

Equation 6-3 can be modified to incorporate T2* decay as follows: 

             
      

     

Equation 6-18 

The calibration factor is now denoted ψ  to emphasies the fact that its value 

is different to that in previous simulations, which effectively assumed a 

constant T2* decay for all contrast concentrations.  Substituting Equation 6-1 

and Equation 6-17 into Equation 6-18: 

                             
         

    

                    
      

      

Equation 6-19 

Where the constant         
 

 has been incorporated into a new calibration 

constant ψ ’: 
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Equation 6-20 

 

Method 

Using Equation 6-19 signal vs. concentration curves were generated.  Based 

on previous observations, using a similar injection protocol, the peak 

concentration in AIF was expected to be around 3mM and to not exceed 

5mM (30).  Signal vs. concentration curves were plotted with and without T2* 

effects and the percentage difference due to T2* effects was calculated at 

each TS.  The simulations were implemented in MATLAB (The Mathworks, 

Natick, MA) using a calibration factor of one ( =1).  The simulation was run 

using the range of saturation times (TS) used in the experiments in this 

thesis (TS=126ms, 150ms, 272ms, 418ms).  An assumed value of T1 

commensurate with the literature for blood in the left ventricle (1393ms) was 

used, derived from an average (weighted for study population) of the 

measurements published in (135–138).  A T1 relaxivity for Magnevist in 

blood plasma of 4.1 L mmol-1 s-1 (13) was used and a T2* relaxivity of 7.6 L 

mmol-1 s-1 (139). 

 

Results 

Figure 6-5 shows signal intensity vs. concentration plots for the four 

saturation times.  The percentage errors at 5mM and the predicted peak AIF 

concentration (3mM) are shown in Table 6-1. 
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Figure 6-5 – Signal Intensity (S) vs. concentration (C) as simulated with T2* 

effects (solid line) and without T2* effects (dotted line). 

 

TS 126ms 150ms 272ms 418ms 

Percentage 

difference at 3mM 

2.9% 3.3% 4.0% 4.1% 

Percentage 

difference at 5mM 

7.0% 7.3% 7.8% 7.8% 

Table 6-1 – Percentage errors between the T2* model and the non T2* model at 

3mM and 5mM. 

 

Discussion 

The differences in signal intensity due to T2* effects at the concentrations 

expected in cardiac perfusion imaging are small for this pulse sequence 

(~3.5% at 3mM and ~7.5% at 5mM).  This difference is unlikely to have a 
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significant effect on diagnosis as it will be of a similar magnitude and 

direction for both rest and stress scans thus having a negligible effect on 

MPR.  The representation of the data in terms of signal errors is perhaps not 

ideal and the fact that these simulations have not been used to show the 

degree of MBF error due to T2* effects is a limitation of this study.  However, 

the results presented here in terms of signal imply that the changes in MBF 

will be small. 

 

6.3.2. Comparing SR-TFE equations with and without flip angle sweep 

Introduction 

Philips MR imaging systems use a flip angle sweep (FAS) in the Cardiac 

perfusion pulse sequence.  The aim of this study was to ascertain the effect 

of the FAS on MR signal intensity, and the subsequent effect of neglecting 

FAS when converting signal intensities to concentration on quantitative MBF 

estimates and MPRs was then assessed. 

 

6.3.3. Method 

Pulse sequence simulations 

In order to allow a visual comparison of the signal evolution for the two 

models signal intensities were simulated using the no FAS model (Equation 

6-13) and the FAS model (Equation 6-15 and Equation 6-16).  The 

mathematical models were implemented in MATLAB (The Mathworks, 

Natick, MA) using a calibration factor of one ( =1).  The simulation was run 

once using an assumed value of T1 commensurate with the literature for 

blood in the left ventricle (1393ms) and once with an estimate of the T1 

expected at the peak of the AIF in the myocardial perfusion investigation 

(50ms).  The native blood T1 was derived from an average (weighted for 

study population) of the measurements published in (135–138).  

Experiments using a bolus dose of 0.1 mmol/kg (30,31) have presented 

enhancement curves with AIF peaks not exceeding 3mM.   Using our 

assumed blood T1 of 1393ms and a relaxivity for Magnevist in blood plasma 
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of 4.1 L mmol-1 s-1 (13), Equation 6-2 yields a T1 of approximately 40ms.  

Noting that this study uses a half dose of 0.05 mmol/kg we can be confident 

that our T1 values will not fall below this value thus our expected blood T1 at 

the peak of the AIF was estimated to be around 50ms and no shorter than 

40ms. 

  

To investigate variations between the models over a realistic range of T1 

values SI values from the two models were generated using T1s ranging 

from 10ms to 2000ms.  Absolute and percentage differences between the 

FAS and no FAS models were then plotted against T1. 

 

Perfusion Analysis 

The dual-phase dataset, described in detail in section 5.2.2, was used to 

make the comparison.  Manual contours depicting the myocardium and an 

area within the left ventricular pool avoiding papillary muscles were drawn 

for both rest and stress datasets on each volunteer as described in section 

5.3.  The signal uptake curves derived from the image contours were then 

converted into concentration curves using the method described in section 

6.2 using mathematical models incorporating FAS (section 6.2.3) and 

neglecting FAS (section 6.2.1).  Myocardial blood flow (MBF) values were 

then derived from both sets of curves using fully automated curve 

preparation (section 5.4) and Fermi-constrained deconvolution (section 

4.3.3).  Myocardial perfusion reserves (MPR) were calculated as the ratio of 

stress to rest MBFs.  Significant differences in stress and rest MBF values 

and MPR from the two pulse sequence models were assessed using a 

paired t-test. 

 

6.3.4. Results 

Figure 6-6 shows the evolution of signal to the central line of k-space (ko) 

with and without FAS incorporated into the simulation.  The percentage 

difference in signal at ko (difference in SI at ko / average of the two SIs at ko) 
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was 8.6% with native T1 and 4.1% at the peak of the AIF (T1=50ms).    

Figure 6-7 relates the ko SI for the two models to T1 and shows the absolute 

and percentage differences at each T1 value.  The largest absolute 

difference in SI occurred at T1=90ms, corresponding to a 6% difference in SI 

values.    
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Figure 6-6 - Evolution of signal intensity (Mz) simulated with and without 

incorporating FAS.  The central line of k-space is denoted ko. [left pane] 

simulation with native T1=1393ms.  [right pane] simulation with T1 estimate at 

peak of AIF (T1=50ms). 
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Figure 6-7 – Signal intensity vs. T1 curves for SR-TFE ignoring (solid line) and 

including (dotted line) FAS [top panel].  Absolute [central panel] and 

percentage [bottom panel] differences between the models. 
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MBF values 

The conversion algorithm successfully generated concentration curves for all 

the volunteers.  One volunteer was excluded because their concentration 

conversion yielded very high peak AIF concentrations which could not be 

representative of the true concentration.  The curve in question had a peak 

concentration 35 mM with a T1 value of 7ms.  This was due to an unusually 

small pre-contrast AIF SI value.  This yielded a small calibration factor ψ and 

correspondingly small R1 values yielding high concentrations.  The 

anomalous curve was detected visually but could have been detected by 

testing curve parameters, such as testing that the peak AIF concentration 

did not exceed 10mM or that the peak T1 was not less than 20ms, or by 

setting a limit on the ratio between the pre-contrast baseline and AIF peak SI 

values.  The reasons for the particularly low pre-contrast baseline in this 

volunteer are unknown.  Signal reduction could be caused by poor 

contouring (incorporating low signal voxels in the lung for example) or by 

image artifacts but neither of these were visually noticeable on the dataset.  

 

The no FAS vs. FAS MBF estimates at stress and rest (mean+sd) were 

2.27+0.68 vs. 1.97+0.71 and 0.81+0.28 vs. 0.72+0.30 respectively with MPR 

values of 2.9+0.62 vs. 2.83+0.78.  The difference in MBFs between 

concentration curves incorporating FAS and no FAS was significant at stress 

(p<0.0001) and rest (p<0.0001) with average differences of 0.3ml/g/min and 

0.08ml/g/min.  In each case the MBF was overestimated when FAS was not 

incorporated into the conversion.  These differences did not propagate to 

significant differences in MPR (p=0.32) with MPR differences approximately 

normally distributed around a mean positive bias of 0.07 (Figure 6-8). 
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Figure 6-8 – Bland Altman comparison of MPR values generated using signal 

to concentration conversions incorporating and not incorporating FAS. 

 

6.3.5. Discussion 

The SI vs. k-space line number plots in Figure 6-6 illustrate well the 

differences between the evolution of SI in the two models, with the no FAS 

model decreasing monotonically, whilst the FAS model increases over the 

flip angle sweep before entering a monotonic descent once the flip angle 

becomes constant.  At the central line of k-space (ko) this manifests as an 

increased SI value with the FAS model.  The magnitude of this error is more 

profound at the AIF peak (0.03 [a.u.]) than the native blood (0.005 [a.u.]).  

However, expressed proportionally to the SI the larger percentage error is in 

the non-contrast tissue (8.5% for native blood and 4% at the AIF peak).  

These errors are illustrated by Figure 6-7, which shows the difference 

between the models over a range of T1 values.  The maximum absolute 

difference (pane b) occurs at TI=90ms (corresponding to a 6% error) but the 

larger percentage errors occur at larger T1 values (pane c) due to the 

generally lower SI at these T1s (pane a).  Both of these errors have the 
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potential to affect MBF estimates.   Clearly a change in the peak of the AIF 

will be reflected in the MBF measured, but errors in the pre-contrast baseline 

concentration will also indirectly affect the MBF measurement through the 

baseline correction, although it is likely that at these lower SIs noise will be a 

more profound cause of error then the small systematic shift between pulse 

sequence models described here. 

 

Considering the volunteer study, a failure to incorporate FAS in the 

concentration conversions yielded a small (~10%) but systematic and 

therefore statistically significant difference in MBF value.  These differences 

did not propagate to a significant change in MPR.  This is to be expected as 

a similar ~10% increase in MBF at both stress and rest should not alter 

MPR=stress MBF/rest MBF.    

 

6.3.6. Conclusion 

The error induced in concentration conversion due to neglecting FAS effects 

is small but systematic.  Absolute differences are most significant at T1s 

close to the peak of the AIF (which has most effect on MBF estimates) but 

percentage differences are more profound at native tissue T1 values.  

Neglecting FAS in the conversion has a moderately small but significant 

systematic effect on MBF estimates, however this effect does not 

significantly affect MPR measurements.   

 

Small but significant improvements in the accuracy of MBF estimates from 

cardiac myocardial perfusion datasets can be made by incorporating FAS 

into the mathematical model of the imaging pulse sequence.  However these 

improvements will not significantly impact MPR estimates.  Where possible 

FAS should be incorporated into future studies where Philips sequences that 

incorporate FAS are used but the effects are small enough to be able to 

accept results of studies that did not incorporate FAS into their modelling 

with confidence. 
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6.3.7. The effect of errors in the assumed blood T1
1 

Introduction  

The method for converting SI values to concentration described in section 

6.2 is dependent on the native T1 of blood.  This can be obtained by 

measurement prior to the perfusion scan (31).  However, T1 measurement is 

time consuming (both in terms of scanning time and off-line analysis) and of 

limited accuracy, especially when applied to the left ventricular blood pool 

where the native T1 is long (requiring long TIs) and flow effects may create 

signal changes that are difficult to compensate for.  Accepting then that the 

baseline T1 (whether it is assumed or measured) will have some error 

associated with it the aim of this study was to establish how robust the non-

linear conversion to concentration is to errors in T1 as expressed in the final 

MBF estimate. 

 

Method 

The dual-phase data set described in section 5.2.2 was used in the study.  A 

weighted average of the native cardiac blood values taken from (135–138) 

gave a mean + standard deviation (SD) T1 value of 1393 + 126ms, giving a 

95% confidence interval of 1141 ms to 1645 ms. Signal to concentration 

conversion was carried out using the method described in section 6.2 and 

6.2.3 (incorporating FAS) using a range of assumed T1 values 

encompassing this confidence interval.  The resulting curves were used to 

estimate MBF using Fermi-constrained deconvolution with automated curve 

pre-processing (section 5.4).  Box plots of the MBF for each assumed T1 

value were plotted for comparison. 

 

Results 

The mean MBFs (+ SD) using the reference T1 (1393ms) at stress and rest 
                                            

1 This study was previously published with a smaller volunteer dataset (158) 
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were 3.14 + 0.70 ml/g/min and 1.09 + 0.36 ml/g/min respectively.  Using the 

reference blood T1 to derive the calibration factor ψ, the mean myocardial T1 

derived from the myocardial baseline using the reference blood T1 was 1195 

+ 266ms.  Figure 6-9 shows the distribution of stress and rest MBFs and 

MPRs over the volunteers for each assumed T1 value.  With respect to the 

reference T1, the largest mean difference in MBF occurred at T1=1141ms, 

which gave an absolute mean difference in MBF at stress of 0.73 ml/g/min 

and at rest 0.29 ml/g/min, giving percentage differences of 22% and 28% 

respectively. This corresponded to a change in the MPR ratio of 0.16 (5%).  

The largest shift in MBF in a single measurement due to changing T1 was 

1.6 ml/g/min at stress and 0.53 at rest, both observed with a T1 of 1141ms.  

The largest individual increase in MPR was 1.58. 
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b)

a)

c)

Distributions of Rest MBFs vs. T1

 

Figure 6-9 – Boxplots showing the distribution of stress MBF values for each 

assumed T1 value (a), the corresponding distributions for REST MBF values 

(b) and MPRs (c). 
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Discussion  

None of the median MBFs in Figure 6-9 fall outside of the inter-quartile 

range of the MBFs estimated assuming the reference T1, suggesting that the 

variation in MBF induced by varying T1 is less pronounced than the 

experimental variation of MBFs within the reference (T1 = 1393ms) dataset.  

It could be postulated that a larger dataset than this, using data not requiring 

correction, or corrected using measured T1 values, might exhibit a narrower 

variation in MBF.  However, the weighted mean of resting MBF 

measurements taken from studies (6,29,126,140), which satisfied these 

criteria, was 0.85 + 0.32 ml/g/min.  The resting MBFs for all T1 values in this 

study maintained a standard deviation comparable with this suggesting that 

the variability in this dataset is not abnormal.  The mean derived myocardial 

T1 in the experimental data (1195 + 266ms) was higher than a weighted 

mean of myocardial T1 values taken from (135–138), 944 + 87ms, although 

still within one standard deviation of the literature value.  The effect of 

changing the assumed blood T1 on MPR values is smaller than that for MBF 

(5% maximum change in the mean MPR) due to the fact that a change in 

assumed T1 affects both rest and stress MBF in the same direction (increase 

or decrease) so resulting changes in the ratio between the measurements 

are small.   

In conclusion, errors in assumed T1 can have a substantial impact on 

individual MBF estimates.  However, the variation in MBF induced by errors 

in the assumed T1 of blood is less pronounced than the experimental 

variation in MBF estimates and is therefore unlikely to affect diagnosis 

decisions within a single patient cohort. 

 

6.4. Phantom experiments 

6.4.1. Introduction 

Section 6.2 described the method for converting SI values to concentrations 

theoretically.  This section attempts to validate the theoretical models using 
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phantom data.  The purpose of this study was to establish whether Equation 

6-16 correctly models the relationship between T1 and signal intensity for a 

given calibration factor ψ using T1-gel phantoms.   

 

6.4.2. Method 

A phantom consisting of tubes containing gels doped with different 

concentrations of gadolinium was imaged using an inversion recovery spin 

echo (IRSE) pulse sequence with TI: (50, 100, 200, 400, 800, 1600, 

3200)ms.  An additional spin echo image without an inversion pulse was 

acquired in order to normalise the recovery curves to the fully relaxed 

magnetization Mo.  The phantom was then imaged with the pulse sequence 

used for perfusion imaging in the CE-MARC study (section 5.2.1).  Regions 

of interest were drawn on each IRSE image for each tube over all the 

inversion times in order to obtain mean signal intensity values from each 

tube over time.  The IRSE signal intensities for each tube were normalised 

by dividing by the corresponding value from the spin echo image acquired 

without the inversion pulse.  The T1 value for each vial was calculated by 

fitting a mono-exponential recovery curve to the normalized mean signal 

value (S) from each tube over time with three free parameters A, B and T1: 

 

      
   
   

Equation 6-21 

 

with A~1 and B~2 post-normalization giving the standard inversion recovery 

T1 relaxation equation: 

 

      
   
   

Equation 6-22 

Regions of interest were then drawn within each tube in the perfusion 

images and mean signal intensities were plotted against the measured T1 for 

each vial.  The equation describing the signal intensity of the pulse 
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sequence, given R1=1/T1, was then fitted to the data allowing the calibration 

factor ψ as a free parameter: 

 

)( 1RfSI   

Equation 6-23 

where f(R1) is shorthand for Equation 6-16, which is a function of R1. 

 

The parameter most likely to be susceptible to inaccuracies in the model is 

the flip angle, α.  For this reason the investigation was repeated allowing 

both ψ and α as free parameters in the model to see what improvements to 

the fit could be made by varying α.  The results of this study showed lower 

flip angles than those set at the MR console.  Therefore the experiment was 

repeated with administered flip angles of (5o, 10o, 15o, 20o and 30o) to further 

investigate how the fitted flip angle related to that reportedly administered by 

the scanner. 

 

Previous simulations have dealt with the longitudinal magnetization (Mz(t)) 

only.  The sin α term, which takes the transverse component of the 

magnetization, has been incorporated into the calibration factor, ψ.  In order 

to include α as a fitted parameter this term must be included in the pulse 

sequence equation.  Incorporating this term Equation 6-16 becomes:  

 

                 

   

   

          
   

  
       

              
   

   

 

   

   

   

      

Equation 6-24 

With a modified calibration constant: 

 

         
   

  
  
 

Equation 6-25 
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The vector of flip angles in the read-out pulse αj-n-1 must be recalculated for 

each flip angle value.  This was done using the flip angle sweep equation 

(Equation 6-15) for each instance of α. 

 

6.4.3. Results 

 

The T1s of the tubes as measured using the IRSE sequence were 54.6, 176, 

436, 703, 856, 935, 1058, 1097.3 and 2510.5ms.  Figure 6-10 shows the 

measured signal values from each tube using the perfusion sequence and 

the fit of the mathematical model to the data.  For the apical, middle and 

basal slices the imaging TS values were 418ms, 272ms, 128ms, the 

calibration factor values were  307710, 300400, 299890 respectively.  The 

fitted R2 value was 0.99 for all slices. 

 

Figure 6-11 shows the corresponding plots allowing both ψ and α as free 

parameters For the apical, middle and basal slices  the fitted value for ψ was 

339170, 392300 and 500000  with α of 11.15o, 8.65o and 6.75o respectively.  

The fitted R2 value was 1.00 for all slices.  At a T1 of 50ms the difference 

between the ψ only fit and the fit incorporating α as well was 4.18% for the 

apical slice, 4.61% for the middle slice and 2.59% for the basal slice.  

 

Figure 6-12 shows the fits applied to the data when a range of applied flip 

angles were administered by the scanner, for the middle slice only.  Table 

6-2 shows the values of the fitted parameters. 
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a)

b)

c)

 

Figure 6-10 – Signal vs. T1 allowing ψ only as a free parameter.  Panels a, b 

and c correspond to perfusion slice 1 (apical), slice 2 (middle) and slice 3 

(basal) with TS 418ms, 272ms and 126ms respectively and were fitted by the 

model with an R2 of 0.99 in each case. 
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a)

b)

c)

 

Figure 6-11 - Signal vs. R1 allowing both ψ and α as free parameters.  Panels 

a, b and c correspond to perfusion slices 1 (apical) ,slice 2 (middle) and slice 

3 (basal) respectively and were fitted by the model with an R2 of 1.0 in each 

case. 
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a)

c)

e)

b)

d)

 

Figure 6-12 – Model fits for the middle slice for data acquired with an 

administered flip angle of a) 5o, b) 10o, c) 15o, d) 20o, e) 30o. 
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Panel in Figure 

6-12 

Administered flip 

angle 

Fitted flip angle Calibration 

factor (ψ) 

a) 5o 2.59o 5 x105 

b) 10o 4.95o 5 x 105 

c) 15o 8.65o 3.9 x 105 

d) 20o 15.58o 3.3 x105 

e) 30o 17.80o 3.3 x 105 

Table 6-2 – Administered and fitted flip angles, with corresponding calibration 

factor values for the plots displayed in Figure 6-12. 

 

6.4.4. Discussion 

The initial model, using the reported flip angle from the scanner, fitted the 

data well with R2~0.99 for all three slices suggesting that Equation 6-16 is a 

good representation of the pulse sequence.  The calibration factor Ψ was 

consistent over the three slices with only 2.5% maximum difference between 

ψ values.  The absolute error between the model and the measurement is 

largest at the shortest T1~50ms (R1~20s-1).  This T1 value corresponds to the 

estimate of T1 at the AIF peak, which will have the most profound effect on 

MBF values.  The percentage errors between the model and the measured 

data points for the apical, middle and basal slices at this point are 3.62%, 

3.72% and 3.52% respectively.  

 

The flip angle used in the model in Figure 6-10 assumes that the flip angle 

set in the scanning parameters is delivered fully and homogeneously to the 

imaged object.  This is often not the case and so it is of value to investigate 

whether allowing α as a free parameter in the model fit generates realistic 

estimates of the actual flip angle delivered to the phantom.  Figure 6-11 

shows the improvements to the model fit after allowing α as a free parameter 

in the model fitting.  The fact that the R2 values improve is expected as there 

is an extra degree of freedom in the model.  The resulting flip angles were all 

less than the reported administered flip angle of 15o, which is consistent with 

the theory that the full flip angle has not been delivered to the phantom.    

However, the calibration factor, Ψ, varied dramatically between the slices 
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with this model.  In fact for the basal slice the unconstrained fit used a very 

small flip angle (2o) and a large calibration factor (1400000).  It is unlikely 

that the calibration factor would change so dramatically between slices 

therefore the model was constrained to an upper limit on ψ of 5x105.  After 

applying this constraint the percentage difference between the two models 

(ψ only and incorporating α as a free parameter) was less than 5% in all 

slices.  This implies that the effect of errors in administered flip angle on the 

signal intensity at the AIF peak is small and should not generate large errors 

in MBF.  Furthermore the effect should be similar for rest and stress MBF 

values and so the effect of flip angle errors on MPR should be minimal.        

 

Figure 6-12 shows the results of the model fit when the actual administered 

flip angle was varied.  The fitted data consistently underestimates the 

administered flip angle suggesting that the flip angle that the phantom 

experiences is consistently lower than that administered.  When the 

unconstrained model was fitted to these data the model tended to generate 

high ψ values and very low (<1o) flip angles.  These are unlikely to be 

representative of the true parameter values.  In order to generate Figure 

6-12 ψ was again constrained to not exceed 5x105. 

 

The need to constrain Ψ in the model means that the model is unstable with 

these datasets.  For this reason the fitted flip angles cannot be taken as 

good estimates of the actual administered flip angles.  However, in cases 

where the calibration factor was consistent and the model was stable (e.g. 

20o and 30o flip angles in Table 6-2) the fitted flip angle was still lower than 

the reported flip angle.  This implies that the administered flip angle is 

genuinely lower than that reported on the scanner console.  In any case, 

these simulations have shown that the changes in SI due to inaccurate flip 

angle distribution will be small.  This is not surprising as the predominant 

contribution to signal level will be the recovery time of the saturation pre-

pulse (TS).  

 

A limitation of the study is that it has only presented the results in terms of 

errors in signal intensity.  Propagating the errors distributions onto DCE-MRI 
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perfusion datasets and investigating the actual effect on the resulting MBF 

estimate would strengthen the study but this step has not been implemented 

in this investigation. 

 

6.4.5. Conclusion 

The signal intensity model predicts T1 phantom data with excellent 

agreement.  Investigations into the differences between the reported and 

administered flip angles have been inconclusive due to instabilities of the 

model.  However allowing flip angle as a free parameter has shown that the 

affects of flip angle errors on SI are small for the perfusion sequences 

considered and thus unlikely to affect MBF. 
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6.5. In-vivo experiments 

6.5.1. Introduction 

The next step in assessing the performance of the non-linear correction 

described in this chapter should be to assess its performance on in-vivo 

data.  In order to assess the non-linearity correction presented here on 

human data an independent assessment of MBF is required.  The dual-bolus 

approach (section 2.8.6) provides such an alternative.  However, the MBF 

estimates obtained from the dual-bolus datasets acquired for such 

investigations were much lower than the values expected from the literature.  

This prompted an investigation into dual-bolus protocol that was used, which 

is presented in this section 

 

The dual-bolus protocol uses a low dose pre-bolus to obtain an AIF where 

linearity can be assumed, followed by a normal dose bolus so that adequate 

SNR can be obtained in the myocardial curve.  Practically the process is 

complicated as it requires three syringes, (two bolus syringes of equal 

volumes but different concentration, and a saline flush syringe).  For this 

study the protocol recommended by Ishida et al. (131) was adopted, which 

uses a three-way tap to push the boluses into the injection line (see Figure 

6-13).  To test this protocol the method of Kostler et al. (141) was used, 

which compares the MBF acquired using the pre-bolus data alone with that 

acquired using the dual-bolus analysis.  As the linear assumption for SI 

should hold for both these analyses the results should be comparable, albeit 

with larger noise values for the pre-bolus myocardial data analysis, as has 

been shown using early dual-bolus protocols (141).      

 

6.5.2. Method  

Volunteer study 

Four healthy volunteers were recruited for the study.  The study was 

approved by the national research ethics service (05/Q1205/142) and all 

volunteers gave written informed consent.   Volunteers refrained from 
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caffeine for 24 hours before imaging.  Imaging was performed using the CE-

MARC study imaging protocol (section 5.2.1) except that the bolus injection 

protocol described in detail in (131), was used.  Two syringes of Gd-DTPA 

were prepared per perfusion scan (4 in total for rest and stress imaging).  

The two syringes contained equal volumes but the first syringe contained a 

0.005mmol/kg dose, achieved by dilution with saline solution, whereas the 

second contained 0.05mmol/kg.  Prior to imaging the pre-bolus syringe was 

attached to a 3-way tap in the line between the injector pump and the 

patient.  After the pre-bolus syringe was injected into the line the power 

injector was used to push 25ml of saline down the line, at a rate of 5ml/s, to 

force the pre-bolus into the patient.  The bolus syringe was then connected 

to the three way connector and injected into the line.  After a delay (~25s) 

the power injector was then used to push the bolus into the patient with 

another 25ml of saline.  As with the CE-MARC protocol stress imaging was 

performed first (induced with a 4 minute intravenous infusion of adenosine at 

140 mcg/kg/min) followed by rest imaging approximately 15 minutes later.   

Power 
injector

To patient

Bolus 
syringe

3-way 
connector

 

Figure 6-13 – Illustration of the dual-bolus injection method as described by 

Ishida et al. (131).  The pre-bolus syringe is connected to the three-way 

connector and injected into the line before the power injector flushes saline 

into the patient.  After a delay the process is then repeated with the full bolus 

syringe.   

 

Analysis 

The dual-bolus technique was evaluated by comparing the MBFs obtained 

using the dual-bolus analysis with the MBF obtained using the pre-bolus 
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data only.  For the dual-bolus analysis the pre-bolus AIF was multiplied by a 

factor of 10 (the bolus concentration ratio) and analysed with the myocardial 

uptake curve from the main bolus.  For the pre-bolus analysis both the AIF 

and myocardial uptake curves were taken from the pre-bolus.  The analysis 

is illustrated in Figure 6-14.  None of the data used in these analyses should 

exhibit significant non-linearity and so the resulting MBFs should be 

comparable, as has been shown with other dual-bolus protocols (141), albeit 

with a larger susceptibility to noise when using the low SNR pre-bolus tissue 

curve.  The MBF values from the two analyses were compared using a 

paired t-test.  

Pre-
bolus

Pre-
bolus

bolus bolus

Pre-bolus
pre bolus AIF
pre-bolus myo

- model fit

x 10

Dual-bolus
pre bolus AIF x 10
bolus myo

- model fit

 

Figure 6-14 – The analysis method for analysing the dual-bolus technique.  

The pre-bolus MBF is calculated using the AIF and myocardial uptake curve 

from the pre-bolus injection.  The dual-bolus MBF is calculated using the pre-

bolus AIF (dose corrected by multiplication by 10) and the bolus myocardial 

curve.  As neither result should exhibit significant non-linearity the resulting 

MBF values should not be significantly different.     
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Patient study 

As the number of volunteers in the first study was small the investigation 

was repeated on a ten patient pilot study looking into the effects of 

rheumatoid arthritis on MBF, that had been conducted using the same dual-

bolus injection protocol.  Ten patients diagnosed with rheumatoid arthritis 

gave informed consent in this small study approved by the regional ethics 

committee (10/H1307/103).  The patients underwent stress and rest, dual-

bolus DCE-MRI cardiac perfusion imaging using a protocol identical to that 

described above except that imaging was performed on a 3T magnet and an 

independent saturation pulse was used for each slice (TS = 100ms), as 

opposed to the shared pre-pulse used in the CE-MARC protocol.  Analysis 

was identical to that described in the preceding section.  In order to reduce 

the contouring time commitment only the basal slice was contoured for the 

AIF and the middle slice for myocardium.   

 

6.5.3. Results 

Volunteer study 

Mean MBF 

[ml/g/min] 

i) Pre-bolus ii) Bolus iii) Dual-

bolus 

Stress 4.77+1.24 3.42+0.68 1.16+0.23 

Rest 1.66+0.60 1.50+0.27 0.43+0.09 

MPR 3.45+1.02 2.35+0.14 3.16+0.29 

Table 6-3 – Stress MBF, rest MBF and MPR averaged over all volunteers and 

all slices (mean + standard deviation) analysed using i) pre-bolus (AIF and 

myocardial uptake curve taken from the pre-bolus), ii) bolus (AIF and 

myocardium taken from main bolus), iii) dual-bolus (AIF taken from pre-bolus 

and dose adjusted, myocardium taken from main bolus).  
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Ratio i) Pre-bolus 

/ Dual-Bolus 

ii) Pre-bolus 

/ Bolus 

iii) Bolus / 

Dual-bolus 

Stress 3.66 + 1.57 1.47 + 0.61 2.77 + 0.68 

Rest 3.91 + 1.64 1.14 +0.47 3.55 + 0.53 

MPR 1.22 + 0.89 1.68 + 1.07 0.80 + 0.25 

Table 6-4 –results expressed as ratios between analysis regimens (mean + 

standard deviation).  i) The ratio of pre-bolus to dual-bolus results, ii) the ratio 

of pre-bolus to bolus results and iii) the ratio of bolus to dual-bolus results. 

 

Table 6-3 shows the results, averaged over all volunteers and all slices, for 

stress MBF, rest MBF and MPR.  There are three analysis strategies 

displayed here: i) Pre-bolus – both AIF and myocardial curves are taken 

from the pre-bolus, ii) Bolus -  both AIF and myocardial curves are taken 

from the main bolus curves, iii) Dual–bolus – the AIF is taken from the pre-

bolus and dose corrected (multiplied by 10) whilst the myocardial curve is 

taken from the main bolus.  Table 6-4 represents the results as ratios 

between the analysis regimens. 

 

Due to the low concentration CA dose used for the pre-bolus, the myocardial 

uptake curves were particularly prone to noise.  Of the 12 (4 volunteers x 3 

slices) curves considered, six of the pre-contrast analyses were excluded 

because the data was too noisy to generate a meaningful fit of the model to 

the data. 

 

There was a significant difference between the pre-bolus and dual-bolus 

MBF values at stress (p=0.001) and rest (p=0.003) but not in the MPR 

(p=0.96).  The bolus MBFs were significantly different to the dual-bolus 

MBFs at stress (p<0.0001), rest (p<0.0001) and MPR (p=0.017). 

 

Patient Study 
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Mean MBF 

[ml/g/min] 

i) Pre-bolus ii) Bolus iii) Dual-

bolus 

Stress 2.54+0.86 3.70+0.92 1.32+0.33 

Rest 1.71+0.67 2.29+0.70 0.62+0.17 

MPR 1.81+1.28 1.70+0.44 2.21+0.76 

Table 6-5 - Stress MBF, rest MBF and MPR averaged over all patients (mean + 

standard deviation) analysed using i) pre-bolus(AIF and myocardial uptake 

curve taken from the pre-bolus), ii) bolus (AIF and myocardium taken from 

main bolus), iii) dual-bolus (AIF taken from pre-bolus and dose adjusted, 

myocardium taken from main bolus). 

 

Ratio i) Pre-bolus 

/ Dual-Bolus 

ii) Pre-bolus 

/ Bolus 

iii) Bolus / 

Dual-bolus 

Stress 2.08 + 0.82 0.69 + 0.18 2.88 + 0.61 

Rest 2.87 + 1.11 0.82 + 0.35 3.74 + 1.09 

MPR 0.94 + 0.96 1.15 + 1.0 0.80 + 0.20 

 

Table 6-6 –Results expressed as ratios between analysis regimens (mean + 

standard deviation).  i) The ratio of pre-bolus to dual-bolus results, ii) the ratio 

of pre-bolus to bolus results and iii) the ratio of bolus to dual-bolus results. 

 

Table 6-5 summarizes the MBF results from the larger, patient based data 

set, with the ratios shown in Table 6-6.  Two patients were excluded 

because the pre-bolus myocardial curves were too noisy to conduct a 

meaningful analysis.  There was a significant difference between the pre-

bolus and dual-bolus MBF values at stress (p=0.02) and rest (p=0.002) but 

not in the MPR (p=0.50).  The bolus MBFs were significantly different to the 

dual-bolus MBFs at stress (p<0.0001), rest (p=0.0001) and MPR (p=0.04). 
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6.5.4. Discussion 

 

Reference Pulse 

Sequence 

Quantitative 

perfusion 

method 

No. of 

cases 

REST STRESS 

MBF 

[ml/g/min] 

SD 

[ml/g/min 

MBF 

[ml/g/min] 

SD 

[ml/g/min 

Vallee 

1999(140) 

SR-

FLASH 

1-cmpt 

model 10 0.72 0.22 No data No data 

Kostler 

2004(141) SR-SSFP Fermi 11 0.75 0.25 No data No data 

Pack 

2008(6) 

SR-

FLASH 

Model 

independent 5 1.09 0.8 3.14 1.69 

Pack2009(4) 

SR-

FLASH Fermi 14 0.93 0.24 2.84 0.63 

Case weighted average 0.85 0.31 2.92 0.91 

Table 6-7 - Average of a selection of healthy subject, single-bolus, myocardial 

perfusion quantitation papers from the literature.  All studies were carried out 

with a single bolus dose of <= 0.02 mmol/kg. 

  



137 

 

Reference Pulse 

Sequence 

Bolus 

dosage 

pre/main 

[mmol/kg] 

No. of 

cases 

REST STRESS 

MBF 

[ml/g/min] 

SD 

[ml/g/min 

MBF 

[ml/g/min] 

SD 

[ml/g/min] 

Hsu 

2006(142) 

SR-EPI 0.005/0.1 10 1.02 0.22 3.39 0.59 

Hsu 

2008(27) 

SR-SSFP 0.005/0.05 10 0.64 0.1 0.91 0.21 

Icihara 

2009(126) 

SR-TFE 

(Patlak) 

0.005/0.05 10 0.86 0.25 No data No data 

Kostler 

2004(141) 

SR-SSFP 0.004/0.17* 11 0.73 0.15 No data No data 

Ritter 

2006(5) 

SR-SSFP 0.004/0.057 12 0.52 0.11 1.78 0.53 

Morton 

2012(85) 

kt turbo 

GRE 

0.0045/0.045 16 0.6 0.1 2.5 0.5 

Case weighted average 0.71 0.15 2.17 0.47 

* assuming a patient weight of 70kg 

Table 6-8 – Average of a selection of healthy subject, dual-bolus, myocardial 

perfusion quantitation papers from the literature.  All quantitative analyses 

were carried out using Fermi-constrained deconvolution except Icihara 2009, 

which used Patlak. 

 

Table 6-7 and Table 6-8 give a summary of MBF estimates in the literature 

for pre-bolus and dual-bolus protocols.  Only studies of healthy humans 

reporting MBF (as opposed to MPR), and without a concentration 

conversion, were included.  Table 6-7 gives average MBFs, weighted for 

study population, at rest and stress for published pre-bolus studies.  For the 

purposes of this analysis a pre-bolus was defined as a single bolus study 

using a bolus concentration <0.02 mmol/kg.  Table 6-8 gives corresponding 

average values for dual-bolus studies.  The results in Table 6-7 and Table 

6-8 provide evidence for the validity of the dual-bolus method in general.  

The average MBFs for rest and stress for the two methods in the literature 

agree with the standard deviation being larger for the pre-bolus method due 

to poorer SNR at lower contrast doses, in agreement with the single study 
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results of (141).   

 

Considering the results of the volunteer and patient studies presented in 

Table 6-3 to  Table 6-5 respectively, neither pre-bolus nor dual-bolus results 

agree well with these literature values.  The rest MBFs for the dual-bolus 

patient dataset do agree with the literature, however the stress MBFs are 

much lower.  This could be due to genuinely lower MBFs in this patient 

cohort but such a reduction in MBF would be surprising due to rheumatoid 

arthritis alone.  These patients were not known to be suffering from 

myocardial ischaemia. 

 

The results from the main bolus only should overestimate MBFs due to non-

linearity effects.  In the patient dataset this holds true and the bolus MBFs 

are greater than either pre-bolus or dual-bolus results in all cases.  However, 

in the volunteer dataset the pre-bolus results are greater.  The volunteer 

dataset was very small (n=4) and had a significant number of excluded 

slices due to noisy data in the pre-bolus curves and so this discrepancy is 

probably due to insufficient numbers. 

 

The philosophy of the dual-bolus method is to only use data where a linear 

relationship between SI and concentration can be reasonably assumed.  It 

has been shown that this assumption is valid for doses <0.01mmol/kg in the 

AIF and <0.05mmol/kg in the myocardium (105).  Thus the pre-bolus AIF 

and bolus myocardial uptake curves in this investigation should not be 

affected by non-linearity effects and should, in principle, generate the same 

MBF values, as has been shown previously (141) using a different injection 

scheme.  In both the volunteer and the patient study there was a significant 

difference between dual-pulse and pre-bolus based MBF estimates (see 

Table 6-4 and Table 6-6).  Dual-bolus MBFs were at least 2 times lower than 

pre-bolus MBFs in all cases.  This suggests that there are differences 

between the pre-bolus and bolus uptake curves other than the planned 
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tenfold change in concentration.    No significant difference was found 

between pre-bolus and dual-bolus MPRs implying that the differences in 

MBF are constant and proportional.   

Power 
injector Bolus 

syringe

3-way 
connector

bottle

saline

contrast 
agent

a)

b)

c)

 

Figure 6-15 – Diagram illustrating the bolus evaluation experiment.  The 

apparatus is set up as for a human study except the line is injected into a 

plastic bottle.  The bolus syringe is dyed using blue food colouring enabling 

the bolus to be qualitatively assessed visually for dispersion and clearance 

from the line. 

 

As the results of this study question the 1:10 ratio of bolus concentrations 

between the pre-bolus and bolus, a small qualitative experiment was 

conducted in order to assess the transit and clearance of the bolus through 

the line and into the patient.  The saline power injector, lines, 3-way tap and 

bolus syringe were set up as for patient injection, but the line was injected 

into a plastic bottle half filled with water.  The pre-bolus and bolus syringes 

were prepared with Gd-DTPA which was dyed with blue food colouring.  The 

dual-bolus injection protocol was carried out as normal but the, now visible, 
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bolus was inspected for dispersion in the line when stationary and for 

remnants in the line after injection of the saline flush (Figure 6-15). 

 

This qualitative experiment to try and visually assess bolus dispersion and 

clearance was conducted multiple times.  After initial injection the bolus 

stayed in the line for a few seconds, typically whilst patient breathing 

instructions or adenosine infusions were being given.  Very little dispersion 

of the bolus could be observed during this interval, which is evidence against 

the theory that different rates of diffusion (due to different bolus 

concentrations) in the line might be responsible for the MBF results.  During 

the saline flush the bolus disperses rapidly.  After the saline flush there was 

still a noticeable amount of dye in the line showing that the full bolus had not 

been injected.  This suggested that a larger flush volume should be used.  

However it was not possible to perceive a difference in the remnant volume 

left by the pre-bolus compared with that of the bolus, and so this does not 

explain the mismatch between the pre-bolus and dual-bolus results. 

 

6.5.5. Conclusion 

The results of the investigations into the dual-bolus protocol show that the 

version of the protocol used in these studies is inadequate as a reference 

standard against which to test the non-linearity correction algorithm 

presented in this chapter.  The reasons for the mismatch between the pre-

bolus and dual-bolus MBF estimates have not been found.  The mostly likely 

explanation would be that some aspect of the, relatively new, three-way tap 

method of administering the two boluses causes extra dispersion or dilution 

of the second bolus.  However, preliminary qualitative experiments using 

dyed boluses have not produced evidence to support this theory. 

 

6.6. Summary 

A method for converting cardiac perfusion DCE-MRI datasets from SI into 
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CA concentrations has been presented.  The method uses the imaging 

pulse-sequence equation, a pre-contrast signal measurement and an 

assumed T1 value for blood to calculate the concentration curve.  A detailed 

mathematical description of the imaging sequence used for studies in this 

thesis has been presented, incorporating the Philips, flip angle sweep.  The 

errors due to neglecting this flip angle sweep, neglecting T2* effects and due 

to errors in the assumed blood T1 have been investigated using simulations.  

A T1 phantom has then been used to assess the accuracy of the model and 

to investigate the likely magnitude of signal change that can be expected 

due to flip angle errors.  The conversion method has not been validated on 

in-vivo data, due to concerns about the dual-bolus data intended for this 

purpose.  An investigation into the dual-bolus protocol is presented showing 

that pre-bolus and dual-bolus MBF estimates do not match.  This suggests 

that differences are present between the pre-bolus and bolus other than the 

known ten-fold change in concentration.  Preliminary investigations into the 

source of these differences are reported. 

 

6.7. Limitations and future work 

The main limitation in this work is that an evidence based conclusion has not 

been provided to explain why the dual-bolus results do not match the pre-

bolus results.  This will be an area of further investigation.  The experiments 

to investigate bolus dispersion and clearance were qualitative and 

superficial.  The lack of ability to make quantitative measurements of the 

remnant dye in the line limits the usefulness of the experiment, particularly 

as the observed data can only be explained if one bolus concentration is 

changed by a different amount to the other.  The fact that the dye and Gd-

DTPA contrast agent are not bound chemically and may have different 

transit properties is a further limitation.  These weaknesses could be 

overcome by repeating the experiment using radioactively labelled DTPA 

(Tc99m-DTPA).  This would mimic much more closely the properties of Gd-

DTPA and quantitative measurements of the remnant tracer in the line could 

be made using a gamma counter. 
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The assessment of the plateau region in the SI vs. concentration plots is 

subjective.  A quantitative limit for when this curve plateaus could be 

achieved by applying simulated noise to these curves and establishing at 

what point a given SI yields multiple T1 values.  This would be a more 

objective way of assessing these curves. 

 

Both the volunteer (n=4) and the patient (n=8) dual-bolus studies are small 

cohorts.  The conclusions would be strengthened by larger study numbers.
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7. Evaluation of the effect of myocardial 

segmentation errors on myocardial blood 

flow estimates from DCE-MRI1 

7.1. Introduction 

To estimate myocardial blood flow (MBF) from dynamic contrast enhanced 

MRI (DCE-MRI) cardiac perfusion datasets, contours depicting the 

myocardium and arterial input function (AIF) must be drawn for each frame 

in the DCE-MRI series (See section 5.3). Manual contour drawing is time 

consuming and is a significant factor hindering the acceptance of 

quantitative perfusion into clinical practice (143). Understanding the level of 

accuracy required in the drawing of these contours is a key step in 

addressing this problem.  How much a given error is likely to affect MBF 

measurements will dictate how carefully, and thus how quickly, a human 

contour drawer can perform their task. Such insights are also important in 

the evaluation of automated segmentation algorithms, which tend to be 

evaluated with a wide range of segmentation error metrics making it difficult 

to cross compare algorithm performance, e.g. (144–146). The focus of such 

algorithms tends to be on the accuracy of segmentation of the myocardial 

region of interest in high quality datasets, with poorer quality images being 

discarded as outliers (145). However, poor quality images are a clinical 

reality and these algorithms may be aiming to achieve an unnecessary level 

of segmentation accuracy.  Given the wide variety of sources of error in MBF 

estimates, it may be the case that sacrificing segmentation accuracy in order 

to maintain robustness to poor image quality will have an insignificant effect 

on MBF estimates.  The purpose of this study was to investigate the 

relationship between geometrical errors in myocardial segmentation and 

error in MBF by imposing computationally simulated contour errors onto 17 

healthy volunteer cardiac perfusion datasets.  This relationship will provide a 

                                            

1 The investigation presented in this chapter has been previously published 
(159) 
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basis on which to decide acceptable error limits for myocardial contours, 

whether manually or automatically generated. It is also important for 

understanding whether automated segmentation algorithms evaluated in 

terms of segmentation metrics, e.g. (144), can be meaningfully compared 

with algorithms evaluated using MBF error, e.g. (146), and may be 

instructive in deciding how best to evaluate such algorithms in the future. 

 

7.2. Method 

7.2.1.  Datasets 

The study was carried out on the dual-phase data set described in section 

5.2.2 and contoured as described in section 5.3.  After contouring, the 

myocardium was divided into six circumferentially equidistant regions 

according to the model proposed by the American Heart Association (AHA) 

(106) for the mid ventricular slice. These regions were then further divided 

circumferentially into endocardial and epicardial compartments resulting in a 

total of 12 partitions as illustrated in Figure 7-2 (b). 

 

7.2.2. Inter and Intra-observer variability to validate contour error 

simulations 

To ascertain whether the contour errors simulated in this study were 

representative of human contour errors a subset of 11 patients were 

contoured a second time by the same person to assess intra-observer 

variability. A second observer also contoured the dataset to assess inter-

observer variability. To measure the error between each contour and the 

reference contour the Euclidean distance between each point on the 

reference contour and the nearest point on the contour being investigated 

was calculated. The distribution of these errors was then compared to the 

corresponding distribution between the reference contour and the random 

contour errors simulated in this paper.  This was tested using the 

Kolmogorov–Smirnoff test (147), which calculates the probability that two 

samples have been drawn from the same underlying continuous population. 

The inter/intra-observer variability data were analyzed considering stress 
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and rest and endo- and epicontours separately and then finally analyzed 

considering all cases together.  

 

7.2.3. Random contour errors  

a) b)  

Figure 7-1 - a) Example of generated contour errors. The thin line shows the 

manual contour and the bold line shows the generated erroneous contour 

generated with a maximum deviation (MD) of 0.1MW. b) A single frame of a 

cardiac perfusion sequence showing manual contouring. The left ventricular 

cavity is filled with Gd-DTPA and appears bright against the surrounding 

myocardium. 

 

Random contour errors were generated by introducing random radial 

deviations into the manual contour. The manual contour was represented as 

a circular spline by automatically placing equally spaced knot points along 

the defined contour. The knot points of the spline were offset by a random 

radial displacement allowed to range between ±MD, where MD is the 

maximum deviation, being the maximum distance the contour may deviate 

from the „true‟ contour. MD was expressed as a fraction of the mean 

myocardial width (MW) so that the degree of contour error was normalized to 

the size of the heart.  A new contour was generated from these offset knot 

values to represent the erroneous curve. Figure 7-1 (a) shows an example of 

a generated erroneous contour with MD = 0.1MW. Ten knot points were 

chosen to represent the contour to maintain a realistically smooth contour. 

Each randomly generated set of offset values was applied to contours at all 

time points in all patients. This process was repeated over 30 iterations of 

the random offset value generation. The process was repeated using MD = 
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0.1MW, 0.2MW, 0.3MW, 0.4MW and 0.5MW. F-tests and t-tests between 

the „true‟ and erroneous contour datasets were performed to test for 

significant differences in the variances and means of the distributions 

respectively.  

 

7.2.4. Systematic contour errors 

Systematic underestimates and overestimates of the myocardial region of 

interest were generated by setting the MD to a constant offset value over all 

the knot points. For each frame of the cardiac DCE-MRI perfusion dataset 

the myocardial contours were modified by systematic MD values ranging 

from −0.5MW to +0.5MW.  Figure 7-2 (a) illustrates the directions of positive 

and negative errors.  Differences were calculated, at rest and stress, 

between the MBFs estimated from modified and unmodified contours and 

the difference in the means of the resulting distributions was assessed using 

a statistical t-test. 

a) b)

Endocardium

Epicardium

1. Anterior 

2. Anterolateral

3. Inferolateral

4. Inferior

5. Inferoseptal

6. Anteroseptal

Left ventricle
Right ventricle

 

Figure 7-2 - (a) A representation of the systematic contour errors illustrating 

the directions of the positive and negative errors.    (b) Partitioning of the 

myocardial ROI. 

 

7.2.5. Segmentation metrics 

Segmentation errors were evaluated with two well recognised geometric 

segmentation metrics, Hausdorff distance (HD) (148), based on the distance 

between the two contours and Dice‟s similarity coefficient (DSC) (149,150), 

based on the overlapping areas of the two contours and in terms of error in 
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myocardial blood flow (MBF).  Maximum deviation (MD) as defined above 

was also used as a segmentation metric.  Pearson‟s correlation between 

each segmentation metric and the MBF estimate was carried out to test 

whether the measures were well correlated. 

 

7.2.6. Quantitation of MBF 

Both AIF and myocardial uptake signal curves were converted to 

concentrations using the method described in chapter 6 using an assumed 

T1 value of 1393 ms. The conversion from signal intensity to concentration 

was successful in 16/17 volunteers, with one dataset being excluded 

because the concentration conversion yielded erroneously high peak AIF 

concentrations, as described in section 6.3.4.  The MBF was quantified from 

the left ventricular blood pool and myocardial tissue concentration versus 

time curves using a Fermi-constrained deconvolution method (120), (section 

4.3.3).  Prior to MBF estimation the curves were interpolated, baseline 

corrected and temporally shifted for the difference between AIF and 

myocardial bolus arrival times using the automated methods described in 

section 5.4. 

 

7.2.7. Units of contour error 

The data in this study are expressed in terms of the maximum deviation 

(MD) that a contour is allowed to deviate from its „true‟ value. This is no less  

meaningful a measure of contour error than recognised segmentation 

metrics as we will show that these do not correlate with MBF error (section 

7.3.1).  Furthermore, it is consistent with the concept behind our philosophy 

of simulating contour errors and can be directly interpreted as a contour 

error tolerance. Expressing MD in terms of voxels would be inadequate 

because voxel sizes change between MRI acquisitions. Converting results 

into absolute spatial measures (mm or mm2) is not appropriate either, as any 

cohort of cardiac MR images will contain a range of heart sizes; thus, a 

given absolute contour error will have a more profound effect on a smaller 

heart than on a large one. For these reasons, contour errors in this study are 

expressed as a fraction of the mean myocardial width (MW) of the specific 
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heart being considered. Expressing contours this way ensures that a given 

contour error has the same effect across the entire dataset in terms of its 

relative geometric change to the myocardial contour with respect to the 

myocardium. 

 

7.3. Results 

Using the manual contours the mean (± standard deviation) MBF at rest was 

1.24 ± 0.35 ml g−1 min−1 and at stress was 3.48 ± 0.67 ml g−1 min−1. The 

mean myocardial width (MW) in the reconstructed images was 5.8 voxels 

(range: 3.3–8.6 voxels) and 6.9 mm (range: 4.2–10.3 mm). 

 

7.3.1. Segmentation metrics 

Table 7-1 shows Pearson‟s correlation scores between MBF error and 

maximum deviation (MD), Dice‟s similarity coefficient (DSC) and Hausdorff 

distance (HD) for endo- and epicardial modification at rest and stress 

considered separately and as one dataset.  Contour errors were generated 

using the random contour error simulator.  None of the segmentation metrics 

correlated with MBF error with the most significant correlation at 

r = −0.32. 

Contour Error  MD DSC HD (mm) 

Rest endocardium 0.03 0.03 0.02 

Rest epicardium -0.14 0.15 -0.17 

Stress endocardium 0.07 -0.10 0.04 

Stress epicardium -0.22 0.26 -0.32 

Rest and stress, endo- and epicontour -0.08 0.17 -0.13 

 

Table 7-1 - Table of the Pearson’s correlation r-value between MBF error 

(ml/g/min) and each of the three segmentation error metrics: maximum 

deviation (MD) expressed as a fraction of the mean myocardial width (MW), 

Dice’s similarity coefficient (DSC) (no units) and Hausdorff distance (HD) 

(mm). Results are shown considering errors in rest/stress and 

endocontour/epicontour separately and finally over all data. 
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7.3.2. Systematic contour errors 

 

Figure 7-3 - Global MBF errors versus MD (expressed as a fraction of the 

mean myocardial width) for systematic contour errors in the rest endocardial 

contour (top left) rest epicardial contour (top right), stress endocardial 

contour (bottom left) and stress epicardial contour (bottom right). Error bars 

show the standard deviations. 

 

Figure 7-3 shows the spread of MBF errors for each MD for the endocardium 

and epicardium at rest and stress over the entire myocardium. Positive MD 

values correspond to contours modified circumferentially outwards (moving 

away from the centre of the myocardial circle) and negative contours 

correspond to contours modified circumferentially inwards (see Figure 7-2 

(a)).  Errors in MBF were calculated as the difference between the MBF 

estimated with the modified contours and the MBF estimated with the 

manual contours. Student‟s t-test between the modified and unmodified MBF 

error populations yielded non-significant p-values for all MD values.   
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Figure 7-4 -  Regional MBF error versus MD (expressed as a fraction of the 

mean myocardial width) for systematic contour errors in the rest endocardial 

contour (top left) rest epicardial contour (top right), stress endocardial 

contour (bottom left) and stress epicardial contour (bottom right). 

 

Figure 7-4 shows the MBF errors for the six separate myocardial regions. 

Individual t-tests for each segment showed no significant difference in mean 

MBF except for the inferoseptal segment, where a resting epicardial MD of 

0.5MW gave (p = 0.05) and a stress endocardial MD of −0.5MW gave (p = 

0.02).  Figure 7-5 shows the corresponding analysis when the endocardium 

and epicardium were considered separately. When the epicardial contour is 

modified only the signal from the epicardium is incorporated in the analysis 

and when the endocardial contour is modified only the endocardial tissue is 

considered. The t-test for sub-myocardial segments showed generally more 

statistically significant results than for transmural segments. Significant 



151 

differences were seen in the endocardial inferospetal segment for MD = 

−0.5MW at rest (p < 0.05) and stress (p < 0.03), the epicardial inferoseptal 

segment at stress for MD = 0.5MW (p = 0.01) and MD = 0.4MW (p = 0.04), 

the epicardial inferior segment at rest for MD = 0.5MW (p = 0.03), the 

epicardial anterior segment for MD = 0.5MW at rest (p = 0.04) and stress  (p 

= 0.03) and in the epicardial inferior segment for MD = 0.5MW at rest (p = 

0.02) and stress (p = 0.02). 

 

 

Figure 7-5 - Regional MBF errors divided into endocardial and epicardial 

segments versus MD (expressed as a fraction of the mean myocardial width) 

for systematic contour errors in the rest endocardial contour (top left), rest 

epicardial contour (top right), stress endocardial contour (bottom left) and 

stress epicardial contour (bottom right). 
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7.3.3. Random contour errors 

 

Figure 7-6 - Box-plots of MBF errors versus MD (expressed as a fraction of 

the mean myocardial width) for random contour errors in the rest endocardial 

contour (top left), rest epicardial contour (top right), stress endocardial 

contour (bottom left) and stress epicardial contour (bottom right). Lines, box 

edges and whiskers of each box-plot correspond to the median, inter-quartile 

range and 95% percentile range of MBF errors respectively. The dashed black 

lines depict ± one standard deviation of the MBF values obtained with the 

manual contours. 

 

Mean myocardium. Figure 7-6 shows the effect of the random contour errors 

on MBFs estimated over the entire myocardium. Each box-plot represents 

MBF errors incurred using contours whose random deviations were limited 

to the given MD on the x-axis. The central line, box and whiskers correspond 

to the median, interquartile range and 95% percentile range respectively. F-

tests and t-test for differences in variance and mean MBF error between 
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manual and modified contours were non-significant (p > 0.05) in all cases 

except a MD of 0.5MW in the resting epicardium (t-test: p = 0.03). At stress 

an MD of 0.5MW in the myocardium approached statistical significance (t-

test: p = 0.07). 

 

Region 

(corresponding 

artery) 

Rest / 

Stress 

Endo / 

Epi 

MD (MW) Test p-value 

Anterior (LAD) Stress Endo 0.5 F-test 0.04 

Anterior (LAD) Stress Epi 0.5 t-test 0.04 

Inferolateral (LCX) Stress  Endo 0.5 F-test <0.01 

Inferior (RCA) Rest Endo 0.5 F-test 0.05 

Inferior (RCA) Rest Epi 0.4 t-test 0.04 

Inferior (RCA) Stress Epi 0.5 t-test 0.02 

Inferoseptal (RCA) Stress Epi 0.5 t-test 0.02 

Anteroseptal (LAD) Rest Epi 0.5 t-test 0.02 

Anteroseptal (LAD) Rest Epi 0.2 F-test <0.01 

 

Table 7-2 - Table of statistically significant MBF errors generated by random 

contour errors considering the six myocardial regions. MD corresponds to 

the maximum deviation at which MBF errors became significant. Cases where 

significant (p <0.05) differences were not observed are not shown. 

 

Regional myocardium. The effects of random contour errors on MBF in the 

six separate myocardial regions showed similar trends to Figure 7-6, with the 

spread of MBF errors increasing with MD.  Figure 7-7 shows the interquartile 

ranges for each region at each MD value for all the contours.  Statistically 

significant results are shown in  

Table 7-2. 
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Figure 7-7 – Interquartile range of MBF error for each myocardial region 

plotted against MD (expressed as a fraction of the mean myocardial width) for 

random contour errors in the rest endocardial contour (top left), rest 

epicardial contour (top right), stress endocardial contour (bottom left) and 

stress epicardial contour (bottom right). 

 

Endo- and epicardium. Considering the endocardium and epicardium as two 

separate regions showed similar trends with a more dramatic increase in the 

spread of MBF values with increasing MD. The corresponding interquartile 

range plots are shown in Figure 7-8 and all statistically significant differences 

in mean (t-test) and variance (F-test) of MBF errors are reported in Table 

7-3. 
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Figure 7-8 - Interquartile range of MBF error for each myocardial region 

divided into endocardial and epicardial segments versus MD (expressed as a 

fraction of the mean myocardial width) for random contour errors in the rest 

endocardial contour (top left), rest epicardial contour (top right), stress 

endocardial contour (bottom left) and stress epicardial contour (bottom right). 
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Region Rest / 

Stress 

Endo / 

Epi 

MD (MW) Test p-value 

Anterior(LAD) Stress Epi 0.5 t-test <0.01 

Anterior(LAD) Rest Epi  0.4 F-test 0.02 

Anterior(LAD) Stress Endo 0.4 F-test 0.02 

Anterior(LAD) Rest Endo 0.5 F-test 0.03 

Anterolateral (LCX) Rest Endo 0.4 F-test 0.02 

Anterolateral (LCX) Stress Epi 0.4 F-test 0.04 

Inferolateral (LCX) Rest Endo 0.3 t-test 0.04 

Inferolateral (LCX) Rest Endo 0.3 F-test 0.05 

Inferolateral (LCX) Stress Endo 0.4 F-test <0.01 

Inferior (RCA) Stress Epi 0.4 t-test 0.02 

Inferior (RCA) Rest Endo 0.5 t-test 0.01 

Inferior (RCA) Rest Epi 0.5 t-test 0.05 

Inferior (RCA) Stress Endo 0.5 t-test 0.01 

Inferior (RCA) Stress Endo 0.4 F-test 0.04 

Inferior (RCA) Rest Endo 0.5 F-test <0.01 

Inferoseptal (RCA) Stress Endo 0.3 t-test 0.05 

Inferoseptal (RCA) Stress Endo 0.4 F-test 0.04 

Anteroseptal (LAD) Rest Epi 0.2 t-test 0.02 

Anteroseptal (LAD) Stress Endo 0.5 t-test 0.01 

Anteroseptal (LAD) Rest Epi 0.1 F-test 0.01 

Anteroseptal (LAD) Stress Endo 0.3 F-test 0.01 

Mean Rest Epi 0.5 t-test 0.03 

Mean Stress Endo 0.5 t-test 0.05 

Mean Stress Endo 0.4 F-test 0.04 

Mean Rest Endo 0.5 F-test 0.01 

 

Table 7-3 - Table of statistically significant MBF errors generated by random 

contour errors considering the endocardium and epicardium separately. MD 

corresponds to the maximum deviation at which MBF errors became 

significant. Cases where significant (p <0.05) differences were not observed 

are not shown. 
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7.3.4. Inter- and intra-observer variability to validate contour error 

simulations 

a) b)
 

Figure 7-9 - Distribution of inter-(a) and intra-(b) observer contour errors 

(thick black lines). The corresponding distributions of contour errors between 

manual and simulated contours at each MD setting are also shown (thin 

coloured lines). 

 

Figure 7-9(a) shows the distribution of contour errors between the manually 

drawn contours of the first and second observers (inter-observer) and the 

distribution of random contour errors between the simulated and manual 

contours for each MD. Kolmogorov–Smirnoff tests between each simulated 

distribution and the inter-observer distribution yielded the following p-values: 

0.1MW(p = 0.01), 0.2MW(p = 0.08), 0.3MW(p = 0.08), 0.4MW(p = 0.38) 

and 0.5MW(p = 0.93). Figure 7-9 (b) shows the corresponding distribution for 

the repeated manually drawn contours (intra-observer). Kolmogorov–

Smirnoff tests between the simulated distributions and the intra-observer 

distribution yielded the following p-values: 0.1MW(p = 0.03), 0.2MW(p = 

0.19), 0.3MW(p = 0.19), 0.4MW(p = 0.67) and 0.5MW(p = 0.93). Figure 7-9 

includes contour errors from stress and rest, and endo- and epicontours all 

together. The separate analyses of each of these four cases for inter and 

intra-observer distributions are shown in Figure 7-10 and Figure 7-11 

respectively yielding non-significant (p < 0.05) Kolmogorov–Smirnoff tests in 

all cases. 
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Figure 7-10 - Distribution of inter observer contour errors (thick lines) for the 

rest endocardial contour (top left), rest epicardial contour (top right), stress 

endocardial contour (bottom left) and stress epicardial contour (bottom right). 

The corresponding distributions of contour errors between manual and 

simulated contours at each MD setting are also shown (thin lines). 
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Figure 7-11 - Distribution of intra observer contour errors (thick lines) for the 

rest endocardial contour (top left), rest epicardial contour (top right), stress 

endocardial contour (bottom left) and stress epicardial contour (bottom right). 

The corresponding distributions of contour errors between manual and 

simulated contours at each MD setting are also shown (thin lines). 

 

7.4.  Discussion 

Using the manual contours the mean (± standard deviation) MBF at rest was 

1.24 ± 0.35 ml/g/min and at stress was 3.48 ± 0.67 ml/g/min, which is 

consistent with other studies measuring MBF in healthy volunteers, e.g (4). 
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7.4.1.  Segmentation metrics 

None of the segmentation metrics considered correlated with MBF error for 

the random contour error simulation.  In the light of the results from the 

systematic contour error simulations this result is not surprising. A given 

contour error may correspond to a movement of either the endocardial or 

epicardial contour into any of a variety of surrounding tissues, depending on 

the position of the error along the myocardial circumference, with conflicting 

effects on MBF. The conclusion is that neither MBF error nor segmentation 

alone is an adequate measure of contour error as there are too many 

conflicting factors affecting the relationship between these two measures. 

Thus, if contour errors are random in nature then analysis in terms of MBF 

error may only show an increase in the variance of the MBF errors, with 

insignificant changes in the mean MBF. This could lead to misleading claims 

about the accuracy of an automated algorithm. If the algorithm produces 

contour errors of a systematic nature then measures of MBF error may be 

correlated with segmentation error, as described in Figure 7-3.  However the 

relationships between contour error and MBF shown are not linear and it is 

unlikely that an algorithm would induce systematic errors as uniformly as 

those simulated here. Therefore, contouring algorithms for DCE-MRI 

myocardial perfusion should ideally be evaluated by both geometric 

segmentation metrics and in terms of MBF. 

 

7.4.2.  Systematic contour errors 

The application of systematic contour errors to the dataset is useful for 

understanding how MBF errors vary depending on which contour 

(endocontour/epicontour) has moved and which direction it has moved in. 

They also serve to simulate systematic conservative or generous contouring. 

A given contourer may be overly concerned with avoiding non-myocardial 

voxels or conversely including all myocardial voxels thereby making this type 

of systematic error.  Indeed the inter-observer contour error distribution 

reported in this study Figure 7-9 (a) suggests a systematic difference in 

contours between observers of this type. It is conceivable that such global 

contour errors could occur with automated contouring algorithms as well. For 

example, active contour-based methods with non-ideal stopping functions 
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may generate consistent global over or underestimates in the contour, and 

an active appearance model driven method such as (144) will be as 

conservative as the manual dataset on which it is trained.   

 

Global myocardium, systematic errors 

Considering the whole myocardial region systematic contour errors of up to 

half the mean myocardial width did not yield statistically significant errors in 

MBF, Figure 7-3.  Systematic trends in MBF error were seen as the contours 

were modified. These trends can be explained in the light of previously 

observed physiological flow properties of the myocardium. Animal studies 

have measured the presence of a transmural MBF gradient across the 

resting myocardium favouring the endocardium, which was no longer 

observed under stress conditions (77,151,152) and these observations have 

been confirmed in humans (79) including work based on the dataset used in 

this study (108). In the light of these observations the trends in Figure 7-3 

can be explained as follows: 

 

Variation of endocardial contour at rest. The MBF error increases with 

negative contour error (as defined in Figure 7-2 a)) as the endocardial 

contour encroaches on the voxels within the left ventricular blood pool. 

Rapid signal enhancement in the left ventricular blood pool causes MBF 

overestimation (i.e. positive MBF error) when blood voxels are incorporated 

into the myocardial ROI.  With positive contour error, endocardial voxels, 

with high MBF relative to the epicardium are excluded; thus, the relative flow 

decreases and the MBF error becomes negative. 

 

Variation of epicardial contour at rest. Negative contour errors cause an 

increase in MBF error as the relatively low MBF epicardial voxels are 

excluded from the myocardial region.  Positive contour errors will incorporate 

non-myocardial voxels of zero signal enhancement (thus zero MBF) into the 

region, thus reducing MBF and causing negative MBF errors. 

 

Variation of endocardial contour at stress. As seen at rest the negative 

contour errors increase the MBF error due to the incorporation of blood 
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voxels into the myocardial ROI. At MD values greater than −0.2MW this 

effect is not apparent, which may be due to conservative contouring by the 

manual contourer. There is a clear increase in MBF error with positive 

endocontour errors which implies a reverse transmural MBF gradient (with 

the epicardium more highly perfused than the endocardium).  As the 

endocardial contour encroaches on the myocardium, the low MBF voxels in 

the endocardium are excluded, thus increasing the MBF error. 

 

Variation of the epicardial contour at stress. As at rest positive contour errors 

reduce MBF error.  There is also a reduction in MBF error with negative 

contour error which is further evidence for a reverse transmural MBF 

gradient at stress causing negative MBF errors as the higher MBF voxels in 

the epicardium are excluded. 

 

Whereas the presence of a resting transmural MBF gradient is accepted, 

there is conflicting evidence for the presence of a transmural flow gradient at 

stress. Lee et al. (79) observed no such gradient in healthy myocardial 

tissue at stress, but Christian et al. (77) observed a transmural (epi > endo) 

gradient at stress that was statistically significant in canines.  Such a reverse 

MBF gradient may be a genuine physiological phenomenon or may be due 

to measurement errors inherent in the acquisition or analysis. A possible 

explanation might be the inclusion of endocardial dark rim artifacts in the 

myocardial region of interest, which could null the endocardial MBF values 

thereby generating the observed gradient.   

 

Regional myocardium, systematic errors  

A measurement of the global MBF is of limited use in investigating coronary 

artery disease, which induces localized flow defects. The American Heart 

Association (AHA) model (106) partitions the mid-myocardial slice into six 

circumferentially equidistant regions that are associated with specific 

coronary arteries, enabling the link between the perfusion imaging result and 

the required intervention (see section 8.5). The transmural variation in MBF 

between endocardial and epicardial tissue has also been shown to be 

related to arterial stenosis (79); therefore, it is important to consider the 
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effect of contour errors on this further partitioning of the myocardium.  For 

these reasons the myocardial regions were also divided into the 12 partitions 

illustrated in Figure 7-2(b).  In general the six region curves followed the 

same general trends as those for the whole myocardium with some notable 

exceptions. At rest positive epicardial contour errors for the anteroseptal 

segment yielded positive MBF errors, opposing the general trend across the 

rest of the myocardium of negative errors.  This is due to the inclusion of 

blood voxels in the right ventricle directly adjacent to this myocardial 

segment, which exhibit rapid signal enhancement.  The effect is less 

apparent on the corresponding stress plot because the relative effect of the 

right ventricular voxels is reduced with respect to the higher genuine 

myocardial MBF at stress. At stress, the contour errors pushing the contours 

inside the myocardium (i.e. negative epicontour errors and positive 

endocontour errors) appear to effect the anterior segments more profoundly 

than the remaining segments. There is no reason to expect a stronger 

transmural gradient in the anterior myocardium so this observation is 

unexplained. In general, the trends observed in the mean myocardial data 

are somewhat obscured, either by errors in the measurement process, which 

is to be expected due to poorer SNR in the smaller segments, or by genuine 

heterogeneity of MBF gradients around the myocardium. Regional analysis 

of systematic errors, Figure 7-4, showed non-significant MBF errors except 

for the inferoseptal segment where a resting epicardial MD of 0.5MW gave 

(p = 0.05) and a stress endocardial MD of −0.5MW gave (p = 0.02); thus, a 

tolerance level of MD = 0.4MW would avoid significant errors in MBF when 

regional subdivisions are employed. 

 

 Endo and epicardium, systematic errors 

After further subdivision into endocardial and epicardial layers was made 

(Figure 7-1 (b)), significant errors in more segments at MD = ±0.5MW were 

seen. This is due to the greater percentage effect of a given voxel offset on 

the ROI. A tolerance of MD = 0.3MW was required to avoid all significant 

MBF errors with the most susceptible region being the epicardial inferior 

segment at rest which exhibited significant MBF errors at MD = 0.4MW 

(p = 0.04).  
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Recommendations, systematic errors 

These results suggest that systematic errors limited to an MD of 0.3 times 

the mean myocardial width will not incur a statistically significant MBF error, 

even with a 12 partition myocardium.  Generally, the largest MBF errors 

were seen when the contours passed outside of the myocardium, either 

epicardially or endocardially; thus, conservative contouring is preferable to 

generous contouring for healthy volunteers. Where possible, segmentation 

algorithms should err on the side of placing the endocardial contour within 

the myocardium. However, in ischaemic patients with subendocardial 

abnormalities, the placement of the subendocardial contour may be more 

critical than these volunteer based results suggest for diagnosing ischaemia. 

 

7.4.3. Random contour errors 

Global myocardium, random errors 

The box-plots in Figure 7-6 illustrate how the spread of MBF errors 

increases with MD.  For a random contour error applied to a linear MBF error 

space, one would expect the median MBF error to remain at zero 

independent of the size of the contour error. However, as the MBF is not 

linear (Figure 7-3), the median MBF error deviates from zero with increasing 

MD (Figure 7-6).  This  did not cause a statistical shift in mean MBF up to 

contour errors of 0.4MW.  The increase in spread of MBF values with 

contour error is expected but F-tests did not show this to be significant even 

at 0.5 of the mean myocardial width and the 95% confidence interval for 

MBF errors did not exceed the one standard deviation line of „true‟ MBFs up 

to MD = 0.5MW. This shows that the simulated contour errors did not induce 

a statistically significant change in the distribution of MBFs implying that the 

variance induced in MBF estimates from the simulated contour errors is not 

significant compared to the natural variance of MBF within the healthy 

population. A statistically significant effect was seen for MD = 0.5MW in the 

resting epicardium (t-test: p = 0.03).  This is predominantly caused by the 

effect of the epicardial contour bleeding into the right ventricular blood pool 

as is clarified by the segmental analysis. These results suggest that a safety 

tolerance of MD = 0.4MW would be acceptable for the analysis of MBF in the 
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global myocardium. 

 

Regional myocardium, random errors 

Regional analysis of the myocardium (Figure 7-7) yielded similar trends in 

the spread of MBF errors to Figure 7-6 with the spread in MBF error 

increasing more severely with MD than in the mean myocardium due to the 

more profound effect a given contour error has on smaller ROIs.  In general, 

statistically significant MBF errors were avoided by setting a tolerance of MD 

< 0.3MW ( 

Table 7-2). The exception was the anteroseptal segment for which 

statistically significant changes in the variance of the MBF error distributions 

were seen for the resting epicardium for MD = 0.2MW (F-test: p < 0.01). 

Bleeding of the epicardial contour into the right ventricular blood pool 

incorporates voxels with rapid signal enhancement (due to fast flowing blood 

in the right ventricle) into the myocardial ROI incurring severe changes in 

estimated MBF. At stress, the genuinely higher MBF obscures the effect of 

the right ventricular voxels and a significant effect is not observed. These 

results suggest that a safety tolerance of MD = 0.3MW would be acceptable 

for regional analysis of MBF in the healthy myocardium, excluding the 

anteroseptal segment of the resting epicardium, which requires an accuracy 

of MD = 0.1MW. 

 

 Endo and epicardium, random errors 

Considering the endo- and epicardium as separate regions the spread of 

MBF error increases more rapidly again with increasing MD due to the 

further decrease in ROI size (Figure 7-8). A tolerance of MD < 0.2MW is now 

required to avoid significant MBF errors, excepting the anteroseptal segment 

which sees significant effects even at MD = 0.1MW in the resting epicardium 

(F-test p = 0.01). Considering the mean endocardium and mean epicardium, 

a tolerance of MD < 0.3MW is sufficient to avoid significant MBF errors. 

 

Recommendations, random errors 

For a global analysis a tolerance of 0.4MW is adequate.  For regional 

analysis MD < 0.3MW is required and if further subdivision into endocardial 



166 

and epicardial regions is to be carried out MD < 0.2MW is required.  For any 

of the regional analyses the epicardium in the septal regions requires an 

even higher accuracy (<0.1MW) and conservative contouring is 

recommended to avoid the right ventricular blood pool.  

 

7.4.4. Inter- and intra-observer variability to validate contour error 

simulations 

Contour errors were required to be random, in the absence of knowledge of 

any more systematic form of error population, whilst maintaining a smooth 

circular form, as one would not expect a manual contourer to deliberately 

generate sharp corners or high frequency oscillations in the contour. To 

assess whether the simulated contour errors were representative of human 

contour errors, the simulated error distributions were compared with inter- 

and intra-observer contour error distributions as shown in Figure 7-9 (a) and 

(b) respectively.  The simulated distributions of contour errors were similar to 

both the inter- and intra-observer empirically observed distributions.  Visually 

the 0.4MW and 0.5MW MD simulations best matched the inter-observer 

variability , with the closest agreement to the intra-observer distribution being 

the 0.2MW and 0.3MW MD simulations.  The Kolmogorov–Smirnoff test 

results confirmed this observation showing that there is insufficient evidence 

to reject the null hypothesis that the inter/intra-observer contour errors were 

drawn from the same underlying distribution as the simulated contour errors 

for all MD values except in the MD = 0.1MW case. This result was 

maintained when the separate stress, rest, endocontour and epicontour 

distributions were analysed (Figure 7-10 and Figure 7-11).   

 

The inter-observer variation in contour errors was broader than that of intra-

observer variation.  This is unremarkable as one would expect separate 

observers to disagree more than a single observer reproducing his/her 

contours. The bimodal shape of the inter-observer contour error distribution 

was due to one of the observers being consistently more conservative in 

their contouring. This is evident when the endo- and epicontour distributions 

are considered separately.  Figure 7-10 shows a negative bias in the 

endocardial inter-observer distribution and a corresponding positive bias in 
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the epicardial distribution, consistent with a systematic difference between 

the two contourers. 

 

7.4.5.  Limitations 

This study has been carried out on healthy volunteers only. The inclusion of 

ischaemic patients, whose MBF is compromised, would incorporate a 

confounding factor into the data. Contour error limits have been 

recommended under which healthy MBF estimates do not vary significantly. 

The effect of such errors on ischaemic patients has not been investigated 

and the tolerances required there may differ.   

 

MBF varies between systole and diastole (128). To exclude this complicating 

factor from the study, only systolic images were analyzed. The systolic 

myocardium is thicker and thus easier to contour, thus providing a more 

trustworthy contour reference standard. The contour accuracy required for 

analyzing diastolic data, where the myocardial wall is thinner, may be higher.  

Thus, strictly speaking, the conclusions of this investigation should only be 

applied to systolic data. However, the contour errors and recommended 

tolerances in this study have been expressed as a fraction of the mean 

myocardial width (MW).  There is no reason why such tolerances may not be 

applied to diastolic data if the distribution of myocardial widths around the 

myocardial circumference can be assumed to be similar in diastole and 

systole.   

 

Manual contouring allowed only for rigid translations in the motion correction 

step, which is consistent with clinical practice at the institution where the 

data was acquired. The inherent assumption here is that there is no 

rotational or in-plane motion of the heart, which may not be true during 

breathing motion. However, as breathing motion has been minimized over 

the first-pass by the adopted breath-holding strategy, the errors induced due 

to this assumption should be minimal. The alternative approach of manually 

contouring each image in the dynamic series is much more time consuming 

and is difficult in low contrast images, where the myocardium and 

surrounding  tissues can be indistinguishable. There is no reason therefore 
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to suppose that the method used in this study incurs worse errors than a 

method incorporating an independent contour for each time step.   

 

Contour errors have been simulated by allowing random variations evenly 

around the contour and it has been shown that these simulations generate a 

similar distribution of contour errors to inter- and intra-observer variability 

distributions. It may be the case that contour errors are more likely over 

certain regions (e.g. where there are more poorly defined edges) than 

others; thus, an even distribution of random contours is not the best 

simulation.  

 

The implementation presented here of the method proposed by (30,31) to 

convert signal intensities to concentrations has two important limitations. 

Firstly, the method was originally validated for an inversion recovery 

sequence (29,30). Although the adaptation of the method to a saturation 

recovery sequence is mathematically simple, the method has not been 

separately validated for this sequence. Secondly, the method was originally 

based on measured T1 values.  The use of an assumed T1 for blood may 

introduce errors in to the MBF estimation process.  Extensive phantom work 

to validate this method has been undertaken in (chapter 6).  However in-vivo 

validation has not been performed.  Nevertheless, as this study is interested 

in relative changes in MBF due to contour errors it is unlikely that any errors 

in the conversion to concentration would modify the conclusions of this 

study. 

 

7.5. Conclusion 

Myocardial contour errors have been simulated for estimation of MBF.  The 

relationships between segmentation error and MBF error have been 

described and explained in terms of cardiac physiology in healthy 

volunteers.  Based on the simulated errors in MBF, contour error tolerance 

limits have been recommended as guidance limits for manual and 

automated myocardial contouring protocols. 
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The contour error evaluation metrics considered did not correlate with 

random MBF errors; thus, neither measure fully evaluates whether the 

contours are fit for purpose. Ideally, contouring algorithms for DCE-MRI 

myocardial perfusion should be evaluated by both geometric segmentation 

metrics and in terms of MBF error.  Comparisons between segmentation 

algorithms evaluated with segmentation evaluation metrics and those 

evaluated in terms of MBF error are not possible unless the segmentation 

errors are systematic in nature.   
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8. Comparisons of methods for diagnosing 

coronary artery disease using quantitative 

perfusion myocardial blood flow estimates 

8.1. Introduction 

The overarching aim of this thesis is to provide clinically persuasive evidence 

for a standard methodology for quantitative analysis of cardiac MR perfusion 

datasets.  To this end chapter 9 asks the important question of which perfusion 

model performs best in terms of diagnosing ischaemic heart disease, and 

chapter 7 has contributed towards understanding the necessary accuracy of 

myocardial contours.  This chapter is dedicated to the steps between generating 

the uptake curve and deducing a final diagnosis.  These steps are usually 

simply stated in the methods sections of diagnostic performance CMR papers 

but the rationale behind them is by no means certain.  This chapter aims to 

provide an evidence base for the analysis protocol utilised in chapter 9. 

 

The dataset used for this and the following chapter is a carefully selected sub-

set of the CE-MARC dataset.  The rationale behind choosing this sub-set is 

described in section 8.2.  Some uptake curves have been excluded from these 

investigations.  The criteria for exclusion and the characteristics of the excluded 

cases are described in section 8.3.  Non-linearity between signal and contrast 

concentration is of considerable concern to the DCE-MRI community and a 

method for correcting for these effects has been presented in this thesis 

(chapter 6).  The impact on diagnostic performance of non-linearity effects is not 

often reported, although one study has been performed showing no 

improvement with linear over non-linear data (25).  Section 8.4 investigates the 

effect of the non-linearity correction presented in chapter 6 on diagnostic 

performance.  The correct methodology for interpreting the AHA segmentation 

described in section 3.4.11 is then considered.  Should the AHA myocardial 

region to coronary artery mapping be used to provide a coronary artery specific 

diagnosis?  What is the best way to summarize multiple regional myocardial 
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territory MBF scores into a single value for the ROC curve?  Does regional 

analysis add to the diagnosis?  What diagnostic power is added by considering 

multiple slices over a single slice investigation?  These questions are 

considered in section 8.5 before final recommendations for the analysis 

methodology to be used in the next chapter are made in section 8.6. 

 

8.2. The CE-MARC sub dataset 

In 2012 Greenwood et al. published the results of the CE-MARC trial (2), which 

is, at the time of writing, the largest, prospective evaluation of CMR for 

diagnosis of coronary heart disease.  752 patients underwent stress and rest 

CMR, as well as SPECT nuclear medicine imaging and X-ray angiography.  The 

following investigations were conducted on a 50 patient subset of the CE-MARC 

cohort.  This cohort was selected to have the same proportion of risk factors 

and disease states as the full CE-MARC dataset.  The identified risk factors 

were hypertension, diabetes, smoking and age and the disease states were 

normal, single vessel disease, double vessel disease and triple vessel disease. 

 

The reference standard against which CMR measurements were compared in 

this study was the consensus diagnosis (ischaemic or healthy) from quantitative 

X-ray angiography and nuclear medicine.  Both of these methods are imperfect 

(see chapter 3) and there is ambiguity over the ideal cut-off for quantitative X-

ray with some publications using a 50% stenosis cut-off (25,104) and others 

using a higher cut-off value (91,103,153).  This generates an ambiguous range 

of cases (between 50% and 70% stenosis where the true diagnosis is uncertain.  

Some studies treat these cases as a separate stratification (91,103).  These 

ambiguous cases are part of clinical reality and should be included in any 

investigation into the diagnostic capabilities of a measurement technique.  

However the purpose of this investigation was not to report the diagnostic 

accuracy of quantitative CMR but to compare different diagnostic 

methodologies.  For this reason ambiguities were removed from the dataset to 

create as pure a reference standard as possible.  A vessel was classed as 

healthy if quantitative X-ray angiography failed to find a stenosis >50% and the 
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nuclear report was negative for a perfusion defect.  A vessel was classified as 

ischaemic if quantitative X-ray angiography reported a stenosis >70% and the 

nuclear report was positive for a defect.  Cases where there was disagreement 

between X-ray and nuclear medicine results and cases were the X-ray score 

was between 50% and 70% were excluded.     

Healthy No instance of stenosis 

>50% 

Nuclear report negative 

for defect 

Ischaemic Any instance of 

stenosis >70% 

Nuclear report positive 

for defect 

     Table 8-1 – Classification criteria for the 50 patient subset 

 

8.3. The exclusion process for the CE-MARC sub-set 

8.3.1. Method 

The MR acquisition and manual contouring process for the CE-MARC dataset 

are described in sections 5.2.1 and 5.3 respectively.  After manual contouring of 

the maximum contrast slice the contours were copied to all frames in the 

dynamic series and manually translated for each frame.  Motion correction was 

limited to rigid translation for pragmatic reasons (in that drawing individual 

contours on each frame made an already time-consuming task prohibitively so), 

but also because the difficulty of drawing myocardial contours on the early and 

late low signal contrast frames may well have generated worse contour errors 

than those encountered using rigid translation only.   

 

Rigid translation inherently assumes that all motion is in-plane motion, i.e. that 

there is no component of movement perpendicular to the imaging plane, which 

would alter the apparent size of the heart.  It also assumes that the breathing 

responsible for the cardiac movement in the image is translational not rotational.  

Neither of these assumptions are consistently valid in CMR perfusion. These 

issues were not dealt with by the automated analysis software and in some 

cases uptake curves were generated that were clearly non-diagnostic, in the 

sense that the uptake curves were so badly affected by the resulting artifacts 



173 
 

that they could not be expected to generate representative MBF values.  For 

this reason every region in the study was viewed manually and uptake curves 

that were visually assessed to be non-diagnostic were manually excluded.  In 

order to carry out this step a graphical user interface (GUI) called Perfusion was 

developed that enabled the image contours and uptake curve to be 

simultaneously evaluated and allowed manual adjustment of AIF and 

myocardial baseline, bolus arrival time and first-pass cut-off when necessary 

(Figure 8-1). 

Image with contours 
overlaid

Concentration curves 
with pre-processing 
parameters overlaid

Pre-processed 
concentration curves

Slice 
slider

Frame 
slider

Contour 
overlay 
toggles

Stress/rest selector

Region selector Pre-processing slider

Model fitMBF 
estimates

Exclude region 
from dataset

 

Figure 8-1 – GUI allowing simultaneous viewing of stress and rest images, 

contrast uptake curves and estimated MBFs as well as manual adjustment of 

pre-processing parameters and an exclusion button to exclude the region if 

necessary 

 

Regions were only excluded where the uptake curves that they generated were 

clearly non-diagnostic i.e. they could be confidently classified as not 

representing the uptake of contrast in the myocardium.  Exclusions were 

categorized into the following categories: 

- Thin myocardium (Figure 8-2). 

- Left ventricular blood pool in the myocardial region (Figure 8-4). 
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- Right ventricular blood pool in the myocardial region. 

- Other tissue (epicardial fat, lung) in the myocardial region (Figure 8-5). 

- Severe change in apparent heart slice (Due to ECG-gating failure or 

breath-hold failure) (Figure 8-3). 

- Dark rim artifact (DRA). 

 

After contouring, the myocardium was divided into 16 regions according to the 

AHA guidelines (106) resulting in 32 regions per patient (rest and stress) giving 

a total of 1600 uptake curves for analysis in the study.  Each of these curves 

were pre-processed before quantitative analysis was performed.  All pre-

processing was done using the automated algorithms described in section 5.4.  

 

8.3.2. Results 

A total of 164 out of the 1600 regions were excluded (10.3%).  The reasons for 

exclusions are summarized in Table 8-2, classified as thin myocardium, LV in 

myocardial region, RV in myocardial region, other tissue in myocardial region, 

severe change in apparent heart size and dark rim artifact.  The origins of the 

excluded regions, in terms of rest and stress scan and which slice are shown in 

Table 8-3. 
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Reason Thin 

myo 

LV in 

myo 

region 

RV in 

myo 

region 

Other 

tissue in 

myo region 

Severe 

change 

in 

apparent 

heart size  

Dark rim 

artifact 

Total 

No. of 

regions 

excluded 

(%) 

97  

(6.1%) 

32  

(2%) 

1  

(0.06%) 

4  

(0.25%) 

28 (1.8%) 2 

(0.1%) 

164 

(10.3%) 

Table 8-2 – Table of reasons for exclusion from the CE-MARC subset 

 

 STRESS REST Total 

Slice 1(apical) 2(mid) 3(basal) 1(apical) 2(mid) 3(basal) 

No. of 

regions 

excluded 

(%) 

19  

(1.2%) 

12 

(0.75%) 

52 

(3.25%) 

12  

(0.75%) 

10 

(0.6%) 

59 

(3.7%) 

164 

(10.3%) 

Table 8-3 – Table of exclusion positions from the CE-MARC subset. 

 

8.3.3. Discussion 

An exclusion rate of 10% is high, and the necessity for visual assessment of 

every region is a significant obstacle to the practicality of quantitative perfusion 

imaging.  Considerable effort in the research community has been expended in 

attempting to automate the steps for quantitative myocardial perfusion, 

myocardial segmentation, curve pre-processing and tracer-kinetic modelling.  

This result highlights the need for a further area requiring automation.  That of 

highlighting myocardial regions whose uptake curves are not valid.   
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Figure 8-2 – Example of an exclusion as displayed in the Perfusion GUI.  

Segments 5 (selected in the GUI) and 6 were excluded because the myocardium 

was so thin that the uptake curves were deemed non-myocardial. 

 

The largest contribution to exclusions was a thin myocardium, which occurred 

most commonly in the basal slice.  This is not surprising as the myocardium 

thins naturally in the basal region.  The high number of exclusions here might 

be taken as an argument against imaging in the basal region however it is 

important to note that ~90% of the basal regions were not excluded.  Continuing 

improvements in imaging resolution in myocardial perfusion (154) have the 

potential to reduce the impact of thin myocardial walls in quantitative perfusion 

in the future. 
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Figure 8-3 – Example of severe change in apparent heart size.  A sequence of 

four contiguous dynamic frames show that these four images have been imaged 

at different cardiac phases due to an ECG-gating fault.  No contour can 

satisfactorily be applied to all these images via translation only.  The resulting 

affect on the myocardial uptake curves and perfusion model fit are illustrated 

below in the Perfusion GUI. 

 

The next largest contributions were from LV blood volume bleed into the   

defined myocardial region and severe change in apparent heart size.  Severe 

changes in apparent heart size are caused either by ECG triggering artifacts or 

by complete failure of patient breath-holding during the first pass.  In the former 

case the scanning algorithm misreads the R-wave so that the image is acquired 

in a different cardiac phase and the shape of the heart is radically different.  

Within the „translation only‟ contour regimen prescribed this renders it 
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impossible for the contourer to satisfactorily contour the myocardium in every 

image and a saw tooth pattern emerges in the myocardial uptake curve, which 

generates significant errors in the model fit (Figure 8-3).  In the case of 

breathing during the first-pass the patient‟s diaphragm moves relative to the 

imaging plane so that a different area of the heart is imaged.  Similarly to ECG-

triggering faults this renders images that are not possible to contour 

satisfactorily. 

 

Figure 8-4 – Example of the LV bleed.  The highlighted region in the image shows 

blood pool enhancement bleeding into the myocardial region.  The simultaneous 

enhancement in the AIF and myocardial uptake curves is unusual (usually AIF 

enhances first) and is probably due to LV blood in the myocardial region. 

 

LV volume bleed occurs when the contours are allowed to encroach too far into 

the LV blood pool and the AIF „bleeds‟ into the myocardial region.  Figure 8-4 

shows an example case.  In the lateral posterior wall of the heart it is very 

difficult to distinguish any myocardial wall at all.  Instead of allowing a very thin 

myocardium (as in Figure 8-2) this contourer has encroached on the LV blood 

pool in order to maintain a significant myocardial region.  The resulting region is 

contaminated by the AIF, as evidenced by the early uptake in the myocardial 

uptake curve (simultaneous with the AIF enhancement point).  Whichever 

choice the contourer had made this region would need to have been excluded 
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from the study. 

 

Figure 8-5 – Poor contouring over the first pass placing segment 3 more in the 

epicardial fat than the myocardium.  This segment did not represent the 

myocardium and was therefore excluded 

 

Much less common was the inclusion of another tissue such as epicardial fat in 

the myocardium (Figure 8-5).  This was due to contour errors which were 

generally forced by the contourer having to strike a compromise between the 

shape of the heart at the beginning and the end of the sequence. 

 

The distribution of exclusions across the three slices was similar at rest and 

stress implying that there is no fundamental difference in exclusions between 

rest and stress.  The high exclusion rate may be criticised in terms of the 

manual contouring method used and the qualitative nature of the exclusion 

process.  The contouring method is imperfect in that it does not allow for 

through plane motion, or in-plane rotation, both of which occur in the dataset. 

However it is questionable whether a bespoke frame specific contouring would 

improve the contours, due to poor contrast to noise ratio at points during the 

dynamic sequence.  Furthermore, in some cases it is apparent that, at this 

resolution, there is no possible contour that would give a meaningful uptake 

curve (e.g. Figure 8-2).  
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The qualitative nature of the exclusion method used here may be susceptible to 

poor reproducibility due to human error.  The investigation would be improved if 

an automated basis for exclusion could be developed.  The largest contribution 

to the exclusions is thin myocardium.  This could be objectively calculated from 

the contours.  Automating this exclusion criterion is therefore possible and will 

be included in future work.  Other forms of error are more difficult to address 

and may be best approached by applying automated segmentation algorithms 

to reduce contouring error.  However, existing segmentation algorithms tend to 

also present high exclusion rates so applying such algorithms may not 

ultimately reduce the exclusion rate. 

 

8.4. Diagnostic evaluation of non-linearity correction 

8.4.1. Introduction 

Chapter 6 describes a method for converting CMR perfusion signal intensity 

values to concentrations.  The CE-MARC sub-set described in section 8.2 

provides an opportunity to assess this conversion in terms of the affect it has on 

the ability of a quantitative myocardial perfusion to diagnose ischaemic heart 

disease. 

 

8.4.2. Method 

Conversion to concentration 

For this study the non-linear conversion method described in chapter 6 was 

compared to a conversion based on an assumed linear relationship between 

signal intensity and contrast agent concentration.  Ignoring the effect of the 

image read-out RF pulses the signal S for the SR-TFE pulse sequence is: 

               

Equation 8-1 

Where Ψ is the calibration constant, TS is the saturation time and R1 is the 



181 
 

inverse of the longitudinal relaxation time, T1, of the tissue.  If TS.R1 is small 

then                   thus: 

          

Equation 8-2 

The contrast agent concentration at the measurement point i, can be calculated 

from the change in R1 due to the presence of contrast agent if the relaxivity r1 is 

known: 

   
 

  
           

Equation 8-3 

Where R1o is the pre-contrast R1 value and R1i is the value at some 

measurement point after contrast.  Using Equation 8-2 to represent this in terms 

of MR signal: 

   
 

       
        

Equation 8-4 

And dividing both sides by So: 

    
   
  

 
     
  

  

Equation 8-5 

Equation 8-4 holds that            so long as the coil gain remains constant, 

whereas Equation 8-5 holds that    
     

  
, so long as the native tissue R1o 

remains constant.  In this study AIFs from the basal slice were applied to all 

three slices in order to avoid more profound non-linearity and longer TS values 

in the other slices.  As the coil gain (an element of the constant ψ) may change 

between slices, Equation 8-5 was used to generate the linear assumption 

concentration curves.  Both rest and stress curves were converted to 

concentrations using So from the stress curve pre-contrast region as the rest 

curve „pre-contrast‟ region contains remnant contrast agent from the preceding 

stress study.  After concentration conversion the stress pre-contrast region had 

Co=0.  However, due to the remnant contrast agent the resting pre-contrast 
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region required further baseline correction using the rest pre-contrast region: 

             

Non-linear conversion to concentration was carried out using the method 

described in chapter 6 with the same additional baseline subtraction used in the 

rest curve analysis. 

 

Analysis 

Regional quantitative MBF estimates for all patients in the CE-MARC sub-set 

(section 8.2) were calculated using Fermi-constrained deconvolution, as it is the 

most widely used method.  For every slice the AIF was taken from the basal 

slice as it exhibits the least non-linearity and is less susceptible to absolute 

saturation (plateauing).  As the CE-MARC acquisition protocol uses a shared 

pre-pulse each slice has a different saturation time (TS).  Therefore each slice 

has a different T1-weighting, which effects the enhancement response and thus 

the MBF.  This effect should be corrected for by the non-linear conversion to 

concentration.  To remove this TS factor (which is only relevant for shared pre-

pulse sequences) from the comparison, the concentration conversion 

comparison was carried out on data from the middle slice only. The exclusion 

protocol is described in section 8.3.  Regional MBF values at stress and rest 

were converted to myocardial perfusion reserve (MPR) scores.  The method 

used for relating each MPR to the coronary artery diagnosis is described in 

section 8.5. Receiver operator curves (ROC) between the quantitative perfusion 

results and the reference standard diagnosis were generated.  The experiment 

was carried out twice; once assuming a linear relationship between MR signal 

intensity and contrast agent concentration and once using the non-linear 

conversion to concentration described in chapter 6.  The ROC curves generated 

from the two methods were compared using the DeLong DeLong Clarke-

Pearson method (155). 

 

8.4.3. Results 

The mean (+sd) MBF and MPR at rest and stress and MPR using linear and 

non-linear concentration conversions are shown in Table 8-4. 
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Concentration Conversion Stress MBF  

(mean + SD)  

[ml/g/min] 

Rest MBF  

(mean + SD) 

[ml/g/min] 

MPR  

(mean + SD) 

Linear 2.38 + 0.91 1.08 + 0.44 2.36 + 0.95 

Non-linear 1.55 + 0.86 0.70 + 0.41 2.33 + 0.88 

Table 8-4 – Table showing the mean + SD MBFs at stress and rest and the 

corresponding MPRs using linear and non-linear correction. 

 

Figure 8-6 shows the ROC curves diagnosis using concentration curves 

generated using linear and non-linear concentration conversion methods.  The 

area under the curve, with associated confidence interval and the optimal cut-off 

MPR are shown in Table 8-5. 
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Figure 8-6 - ROC curves for MPRs generated using linear and non-linear 

concentration conversion regimens p=0.16. 
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Concentration 

Conversion 

AUC (CI) Optimal MPR cut-off 

Linear 0.88 (0.79, 0.98) 1.58 

Non-linear 0.93 (0.86, 1.00) 1.30 

Table 8-5 – Area under the curve (and associated confidence interval) for the two 

concentration conversion methods, with optimal MPR cut-off values derived 

from the ROC curve. 

 

8.4.4. Discussion 

The ROC curves for MPRs generated from concentration curves derived using 

a linear assumption did not differ significantly from those derived using the non-

linear model (p=0.16), thus there is insufficient evidence to favour a non-linear 

conversion over a linear one.  However it is notable that the AUC for the non-

linear ROC curve was larger than that for the linear curve (0.93 vs 0.88), and 

the p-value, though >0.05, is still small and consistent with an 84% probability 

that the difference between the curves is not a chance observation.  The mean 

MBF values were lower with the non-linear conversion for stress MBF (p<0.001) 

and rest MBF (p<0.001), Table 8-4.  The non-linear conversion resting MBFs 

were consistent with literature values (See Table 6-7 and Table 6-8).  The mean 

stress MBF with non-linear conversion was lower than literature values, 

however the literature surveyed in Table 6-7 and Table 6-8 were taken from 

healthy volunteers and lower stress MBFs from patient data are to be expected.  

The differences between MBFs acquired using linear and non-linear 

conversions did not propagate to MPR values, where there was not a significant 

difference between the two methods (p=0.26).  The changes in MBF are 

consistent with an underestimate in MBF with linear conversion due to non-

linearity effects in the AIF.  However these effects cancel in the MPR (stress 

MBF / rest MBF) and become non-significant as has been previously shown 

(156).  This implies that, if the MPR is the final outcome measure used, then 

non-linearity effects should not prove detrimental to diagnosis.  However care 

should still be taken to avoid saturation (plateauing in the signal vs. 

concentration plot) in the AIF as this may still impact MPR based results.  The 

coefficient of variation (sd/mean) of the MPR was decreased from 0.40, with the 
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linear conversion, to 0.38, with the non-linear conversion, implying that the non-

linear conversion reduced the variability of the MPR measurement by a small 

degree.  Although the non-linear correction did not have statistically significant 

impact on the diagnostic power of the test the results do suggest some 

improvement over a linear conversion and some reduction in variability.  For 

these reasons the remaining investigations will use the non-linear concentration 

conversion method. 

 

8.4.5. Conclusion 

The non-linear conversion has been shown to make a significant difference to 

stress and rest MBF values, but these are cancelled out in the MPR 

measurement.  A small but statistically insignificant improvement in diagnostic 

power has been shown in the ROC curves when using the non-linear 

conversion.  The non-linear correction has shown a small decrease in the 

variability of the MPR measurement.  For these reasons the non-linearity 

correction will be used in the remaining sections of this chapter.   

 

8.5. A comparison of approaches for using regional 

quantitative MPR to diagnose ischaemic heart disease 

8.5.1. Introduction 

The AHA recommendations for coverage of the heart and assigning myocardial 

regions to specific coronary arteries is illustrated in Figure 8-7 (c & d) (106).  

The AHA recommendations are helpful for standardizing analysis methods 

across imaging modalities.  However they do not go so far as to specify how 

quantitative measurements for each of the regions described in Figure 8-7 

should be used to generate a final diagnosis of ischaemic heart disease.  In this 

section the aim is to use the CE-MARC subset to compare and contrast 

different methods for diagnosing CAD based on quantitative myocardial 

perfusion estimates.  Each of the questions posed in this section must be 

answered before any researcher can reduce their AHA segmented quantitative 

MBF measurements to a single diagnosis.  They are usually just stated as steps 

in the methods section, but each choice may have an affect on diagnostic 
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performance.  The questions posed are as follows:  

 

1) Does using the AHA mapping to assign regions to separate coronary arteries 

before analysis improve the diagnostic power of the test? 

The assumption that the ischaemic/non-ischaemic cut-off value is equal across 

the heart may not be valid.  Changes in myocardial wall thickness, proximity to 

coronary arteries and proximity to the right ventricle might all conceivably affect 

the „normal‟ MPR.  The AHA recommendations provide a method for assigning 

myocardial regions to coronary arteries.  A comparison between coronary artery 

specific diagnosis (with a coronary specific MPR cut-off) and a whole heart 

diagnosis (with a global MPR cut-off) was undertaken to assess whether the 

AHA coronary artery mapping improved the diagnostic power of the test. 

 

 2) Is the mean or minimum regional MPR a more powerful diagnostic indicator? 

Given a number of regional MPR scores that may or may not correspond to an 

ischaemic coronary artery what is the best way of grouping the MPR values into 

a single number for diagnosis?  Taking the minimum value could be expected to 

make the test more sensitive as it only takes a single region to fall below the 

MPR cut-off value for the diagnosis to become ischaemic.  However, the 

process by which quantitative perfusion estimates are calculated is complicated 

and each of the analysis steps is associated with a probability of error.  MR 

image artifacts, low SNR, contouring errors, curve pre-processing malfunctions 

and perfusion model fitting errors may all be responsible for outliers.  Taking the 

minimum of a group of regional MPR scores will be inherently susceptible to 

such outliers as it discards the majority of the data for the smallest value.  The 

mean MPR may be a better diagnostic measure due to its increased robustness 

against such outliers.  Although a single perfusion defect score would be 

increased by the surrounding non-ischaemic scores the mean regional MPR will 

be less susceptible to errors.  Fundamentally the choice reduces to one of 

resolution.  Is the presence of erroneous MPR scores sufficient to warrant an 

effective decrease of the spatial resolution (taking the mean MPR of all regions) 

or would the resulting reduction in resolution reduce the diagnostic power of the 
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test?   

 

3) What is the power of the test if only the middle slice is used? 

As mentioned repeatedly in this thesis the quantitative myocardial perfusion 

pathway is susceptible to errors.  However, some slices are more prone to 

errors than others.  The myocardium in the basal slice is more likely to be too 

thin for analysis (section 8.3).  The apical slice has a smaller diameter (due to 

the apical narrowing of the heart shape).  Therefore it has a smaller number of 

myocardial regions assigned to it and can also be more difficult to contour, 

especially in the endocardium in slices where the blood pool can be small.  The 

aim of this investigation was to compare the diagnostic performance of the test 

when using all slices vs. the middle slice alone.  One would hope that the 

problems were not so severe so as to expect an increase in diagnostic power if 

only middle slice data were used.  However, if the fall in diagnostic power were 

small then there might be justification for investing the limited MR acquisition 

time available in increasing image resolution on this middle slice, as opposed to 

three slice coverage. 

 

4) What is the power of the test using a global MPR? 

Following a similar argument to 2), abandoning regional analysis altogether and 

considering the whole ring of the myocardium as a single region might be a 

more robust measurement than regional analysis, with a corresponding loss in 

image resolution.  It was the aim of this study to compare global versus regional 

analysis methods for diagnostic power. 

 

8.5.2. Method 

The CE-MARC sub-set (section 8.2) with the exclusions described in section 

8.3 was used for all studies.  Based on the conclusions of section 8.4 the non-

linear conversion to concentration was applied to all of the curves before 

analysis.  Fermi-constrained deconvolution was used to generate the MBF 

estimates.  This choice was not based on any superiority of Fermi over the 
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other models but rather on its widely accepted status in the literature.  All 

analyses were carried out in MATLAB ®, using purpose specific software 

developed by the author.  After exclusions all regions were analysed in a batch 

file and regional, as well as global,  MBFs at stress and rest were stored and 

converted into MPRs.  All of the investigations described below were conducted 

on this dataset. 

 

1) Does using the AHA mapping to assign regions to separate coronary arteries 

before analysis improve the diagnostic power of the test? 

For whole heart analysis the reference standard was classed as ischaemic if 

any of the quantitative X-ray regions were >70%.  The minimum (see section 

8.5.3 part 2) of all the regional MPR values was taken as the MPR 

measurement for the patient.  A single ROC curve was then generated using 

these MPR and reference standard diagnosis values. 
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Figure 8-7 – Mapping between coronary artery stenoses and MRI segments.  

Coronary stenoses were quantified using X-ray angiography at the labelled sites 

in a).  Each artery was classed as ischaemic if any of the sites listed in b) were 

found to have >70% narrowing.  The myocardial slices imaged as illustrated in c) 

were subdivided and rearranged into the bullseye plot d) where they were 

assigned to a corresponding coronary artery according to the AHA 

recommendations. 

 

For coronary artery specific analysis the reference standard for a given 

coronary artery (LAD, RCA, LCX) was classed as ischaemic if a quantitative X-

ray stenosis >70% was identified within that coronary artery.  Lesions in the left 

main stem (LMS) were classed as ischaemia in both LCX and LAD.  This 

generated three sets of diagnoses, one per coronary artery.  To generate the 
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corresponding MPR values the AHA mapping was used to assign each 

myocardial region to a coronary artery.  The minimum MPR value for each 

group was then assigned as the MPR measurement for that patient for that 

artery.  The process is illustrated in Figure 8-7. 

 

ROC curves were generated for each case. The DeLong, DeLong, Clarke-

Pearson ROC curve comparison compares curves whose diagnostic outcomes 

are identical.  As the diagnosis for the ROC coronary artery specific and whole 

heart were different this comparison was not possible.  Therefore areas under 

the curve with confidence intervals were compared in terms of whether their 

confidence interval overlapped or not. 

 

2) Is the mean or minimum regional MPR a more powerful diagnostic indicator? 

The methodology for whole heart analysis in 1) was repeated, but two ROC 

curves were generated in each case.  One generated taking the minimum of all 

the regions as the MPR value and the other taking the mean.  DeLong, DeLong, 

Clarke-Pearson comparison of ROC curves was used to test for a statistically 

significant difference between the curves. 

 

3) What is the power of the test if only the middle slice is used? 

Analysis limited only to regions from the middle slice for each patient was used 

to generate a ROC curve.  Based on the results of part 2) the minimum MPR 

was chosen from values generated using non-linear concentration conversion.  

The resulting ROC curve was compared to the methodology using all the heart 

regions described in 1) using DeLong, Delong, Clarke-Pearson analysis. 

 

4) What is the power of the test using a global MPR? 

ROC curves were generated using the MPRs taken from the whole myocardium 

from the three slices.  The minimum MPR was taken as the value for 
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comparison against the diagnosis to generate a ROC curve.  The resulting ROC 

curve was compared against the whole heart regional analysis described in 1) 

Using DeLong, DeLong, Clarke-Pearson analysis. 

 

8.5.3. Results 

1) Does using the AHA mapping to assign regions to separate coronary arteries 

before analysis improve the diagnostic power of the test? 

Figure 8-8 shows the four ROC curves generated using all regions and using 

the three separate coronary arteries.  The associated area under the curve 

(AUC), optimal MPR cut-off value and number of ischaemic cases (out of 50) in 

each case are shown in Table 8-6. 
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Figure 8-8 – ROC curves for a) all regions and stenoses included in the analysis, 

b) only LCX stenoses, c) only LAD stenoses, d) only RCA stenoses included in 

the analysis. 
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 a) All regions b) LCX c) LAD  d) RCA  

AUC (CI)  0.95  

(0.89, 1.00)  

0.79  

(0.57, 1.00)  

0.90  

(0.80, 1.00)  

0.85  

(0.70, 1.00)  

MPR cut-off  1.30  1.30  1.29  1.30  

Number of 

Ischaemic 

cases  

19  7  12  7  

Table 8-6 – Table of area under ROC curve (AUC), MPR cut-off values and 

number of ischaemic cases in dataset for analysis from each coronary artery and 

when all regions are considered in the analysis. 

 

2) Is the mean or minimum regional MPR a more powerful diagnostic indicator? 

Figure 8-9 shows the ROC curves generated when the mean and minimum of 

all the regions are taken as the MPR for diagnosis.  The AUCs were 

significantly different (p=0.02) with the mean AUC (CI) at 0.85 (0.74, 0.96) and 

the minimum AUC at 0.95 (0.89, 1.00), with optimal MPR cut-offs at 2.17 and 

1.30 respectively. 
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Figure 8-9 – ROC curves generated using the mean and the minimum of all the 

regions as the MPR for diagnosis. 

 

3) What is the power of the test if slice 2 only is used? 

Figure 8-10 shows the ROC curves generated using data from all the slices and 

that obtained using only MPR data from the middle slice.  The AUC values 

considering all slices was 0.95(0.89, 1.00) and using the mid-slice only was 

0.93 (0.86, 1.00).  The optimal MPR cut-off was 1.30 in both cases.  The curves 

were not significantly different (p=0.44). 
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Figure 8-10 – ROC curves generated using data from all three slices versus data 

from the middle slice (slice 2) only. 

 

4) What is the power of the test using a global MPR? 

Figure 8-11 shows the ROC curves generated using the AHA regional MPR 

analysis and using only the global MPR value for each slice.  The curves are 

significantly different (p=0.02), with the regional AUC at 0.95 (0.89, 1.00) and 

the global AUC at 0.84 (0.73, 0.95) with optimal MPR cut-offs of 1.30 and 2.12 

respectively.   
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Figure 8-11 – ROC curves generated using AHA regions versus those generated 

using only the global myocardial MPR  

 

8.5.4. Discussion 

1) Does using the AHA mapping to assign regions to separate coronary arteries 

before analysis improve the diagnostic power of the test? 

The ROC curve generated using all regions obtained the best AUC value and 

the narrowest confidence interval.  Of the coronary specific analyses the LAD 

ROC curve achieved the best AUC, however this may well be due to the fact 

that there were more coronary stenoses attributed to the LAD than the other two 

arteries.  The confidence intervals for all the AUCs overlapped suggesting that 

there was no difference between the diagnostic performances.  However, it is 

interesting that the MPR cut-off values generated independently for the four 

curves were almost identical.  This suggests that assuming a single MPR cut-off 

across the heart is a valid assumption and that subdividing the myocardium into 

coronary territories will not improve diagnosis.  The LCX had a lower AUC than 

the RCA or LAD, though not significantly different.  As the LCX is more likely to 

be the shortest reaching artery this might suggest that stenoses in the LCX 

cause less profound perfusion defects (due to a higher compensatory ability in 

the other two, larger arteries) but a larger study would be required to see if this 
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were a significant observation. 

 

2) Is the mean or minimum regional MPR a more powerful diagnostic indicator? 

The analysis method using the minimum MPR of all the regions is significantly 

more powerful than the mean method.  This is clear evidence for using the 

minimum regional MPR value for quantitative diagnosis of coronary artery 

disease. 

 

3) What is the power of the test if only the middle slice is used? 

There was not a statistically significant difference between the ROC curve 

generated using the middle slice only and the ROC curve generated using all 

three slices.  50 patients (with 19 classed as ischaemic) is only a moderate 

sized dataset and this investigation could be criticised for being underpowered.  

However the fact that the AUCs and their confidence intervals were so similar 

implies that the basal and apical slices are adding little to the diagnostic power 

of the test.  This result could have significant implications for pulse sequence 

design for cardiac MR perfusion imaging.  If a comparable diagnostic 

performance can be obtained from a single imaging slice then more imaging 

time can be dedicated to improving image resolution, or perhaps imaging a 

more reliable AIF.  This should be an area of further investigation. 

 

The choice of the middle slice as the single slice was based on the higher rate 

of imaging and analysis problems with the apical and basal slices.  Setting 

these aside there may be reasons to consider these slices as the single slice 

instead of the middle slice.  For instance, the apical slice is at the end of the 

coronary tree so might be most sensitive to stenoses, whereas the middle slice 

may not manifest defects with stenoses far down the coronary pathway.  For 

this reason the investigation should be repeated using the basal and apical 

slices as the single slice. 
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4) What is the power of the test using a global MPR? 

Regional analysis is significantly better at diagnosing coronary artery disease 

than global analysis.  This implies that the coarse resolution measure of 

considering the whole myocardium as a single segment discards important 

information.  In corroboration with 2) this implies that the SNR for the AHA 

regions is adequate for diagnosing ischaemia. 

 

8.6. Conclusion 

The recommendations, based on the studies presented in this chapter, are that 

analysis should be done on uptake curves after applying non-linear correction 

(Section 8.4).  The regional territories recommended by the AHA should be 

used (Section 8.5 Qu4) and interpreted by taking the minimum MPR value from 

all the regions (Section 8.5 Qu2).  A global (all arteries) rather than artery 

specific MPR cut-off should be used (Section 8.5 Qu1).  Further evidence has 

been presented suggesting that a middle slice only analysis may have 

comparative diagnostic power to a three slice investigation (Section 8.5 Qu3), 

but further work is necessary to confirm this finding. 
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9. Comparisons of tracer kinetic models applied 

to cardiac magnetic resonance perfusion data 

9.1. Introduction 

The primary clinical motivation for quantifying MBF is to assist in the diagnosis 

of coronary artery disease.  However, there are a range of methods for 

quantifying myocardial blood flow (MBF) from dynamic contrast enhanced 

cardiac perfusion MRI datasets, with no consensus on which is the best method 

to use.  The methods vary in complexity and in the strength of their underlying 

assumptions.  They have all been validated in terms of the resulting MBF values 

against other measurements of MBF, such as radiolabelled microspheres 

(77,81,157) in animals, or PET measurements in humans (6,29).  Furthermore, 

a comparison of quantitative analysis methods has been performed on data 

from 14 healthy human subjects (4), finding non-significant differences between 

the methods in terms of MBF value.  However, to provide a persuasive 

evidence base for choosing one method over another, evaluation of these 

methods should be carried out in terms of their diagnostic capabilities.  It was 

the aim of this study to compare the diagnostic performance of four perfusion 

quantitation methods on a 50 patient cohort selected from the CE-MARC 

dataset (section 8.2). 

 

9.2. Method 

9.2.1. Patient imaging 

A 50 patient subset, with patient risk factors and disease characteristics 

representative of the whole trial dataset was taken from the CE-MARC trial (2).  

The selection criteria are described in section 8.2 and the imaging methodology 

is described in section 5.2.1.  The selected subset consisted of clear healthy, 

and ischaemic, cases with ambiguous diagnoses removed in order to create the 

cleanest reference standard possible. 
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9.2.2. Data analysis 

The myocardium, and a region in the left blood pool representing the AIF, were 

manually contoured and manual correction for breathing motion, limited to rigid 

translation, was performed using the method described in section 5.3.  The 

Fermi-constrained deconvolution (Fermi), model-Independent deconvolution 

(ModI), uptake analysis (Uptake) and the one compartment model (OneCP) 

algorithms described in chapter 4 for quantifying MBF were implemented in 

Matlab®.  The methods differ in terms of how much of the full dynamic series 

they utilise.  These differences may be significant in the final performance of the 

methods, as a method that can incorporate more data in the analysis may be 

more robust to noise.  Therefore each analysis method functioned on a bespoke 

curve preparation scheme.  The full curve analysis scheme is outlined as 

follows: 

1. The AIF was taken from the blood pool of the basal slice, where the 

saturation time was shortest in order to minimise signal saturation (see 

Figure 5-1), whilst myocardial uptake curves were taken from each 

individual slice. 

2. The myocardium was subdivided into regions according to the AHA 

recommendations as described in chapter 8. 

3. The stress curve pre-contrast baseline signal (So) was calculated as 

described in section 5.4.1. 

4. Signals were converted to concentrations using the non-linear 

conversion process described in chapter 6.  The stress So was used in 

both stress and rest conversions as the rest time series is contaminated 

by remnant Gd from the stress bolus. 

5. The rest data series was baseline corrected for remnant contrast agent 

(Ci - Co). 

6. All data were interpolated by a factor of four using piecewise hermitian 

interpolation (pchip MATLAB®) in order to increase the apparent 

temporal resolution (see section 5.4.3). 

7.  The AIF curve was temporally shifted so that the bolus arrival times of 

the two curves matched as described in section 5.4.3. 
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8. Method specific curve preparation was applied before estimating the 

MBF as follows: 

1. Fermi-Constrained deconvolution: 

1. The pre-contrast baseline data points were cropped from 

the dataset as described in section 5.4.1. 

2. The dataset was cropped after the first pass, defined as the 

first valley following the largest peak in the AIF as 

described in section 5.4.2. 

2. Model Independent deconvolution: 

1. No further preparation necessary 

3. Uptake model: 

1. The pre-contrast baseline data points were cropped from 

the dataset. 

2. All data after the AIF peak were cropped from the dataset. 

4. One compartment model: 

1. The pre-contrast baseline data points were cropped from 

the dataset. 

 

Although the pre-contrast baseline data is essential for non-linearity correction it 

is irrelevant to the perfusion model, which considers only signal changes due to 

contrast agent.  Therefore, once the curve is converted to concentration, the 

baseline data points will not aid the model fitting.  Conversely, if there are large 

variations in signal in the baseline due to noise or artifacts these will adversely 

affect the model fitting, which tries to generate a response function for all the 

data.  For these reasons the pre-contrast baseline data was cropped from the 

curves before model fitting. 

 

Further to the exclusions based on image artifacts and contouring problems 

described in section 8.3 exclusions were made based on extreme MBF or MPR 

values.  All results with a value less than 0 were excluded from the analysis.  

The upper tolerance was set at twice the maximum expected value: stress MBF 

= 8 ml/g/min, rest MBF = 4 ml/g/min and MPR = 8.  The reasons for these 
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extreme outliers are explained later (Section 9.3.2).  In most cases the errors 

causing these outliers could have been addressed by modifying the pre-curve 

analysis.  However, it is important to evaluate the methods in terms of a fully 

automated analysis, as this must be in place before these methods could hope 

to be accepted in clinical practice, given the already heavy time-expenditure 

necessary for manual contouring.  As the outliers are easy to detect based on 

the specified criteria the decision was taken to exclude them from the analysis 

so that the results reflect what might be achieved with a fully automated 

analysis. 

 

9.2.3. Generation of diagnostic results 

Based on the findings of section 8.5 regional MPRs were mapped to SPECT 

and quantitative X-ray consensus diagnosis by taking the minimum regional 

MPR from all slices as the MPR measure.  ROC curves were generated for 

each method.   

 

9.2.4. Statistical analysis of results 

Each method was compared with every other method using Bland-Altman 

analysis to assess the agreement between methods in stress MBF, rest MBF 

and MPR.  Paired t-test and Pearson‟s correlation were also performed 

between each model to look for significant differences in results and 

correlations in results.   

ROC curves from all of the methods were compared using the DeLong, 

DeLong, Pearson method (155).   

 

9.3. Results 

9.3.1. Exclusions 

Table 9-1 records the number of exclusions for each model.  Note MPR 

exclusions are only counted where both rest and stress MBF values were within 

tolerance but produced an out of tolerance MBF. 
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Method Rest MBF Stress MBF MPR 

Fermi 1 0 0 

Uptake 7 0 19 

One CP 0 0 0 

ModI 9 6 7 

Table 9-1 – Number of exclusions for stress, rest MBF and MPR for each of the 

quantitation models.  The exclusion criterion was 0 < x < 8 for stress MBF and 

MPR and 0 < x < 4 for rest MBF. 

Method Diagnosis Stress MBF (mean + SD) 
[ml/g/min]

Rest MBF (mean + SD) 
[ml/g/min]

MPR 
(mean + SD)

Fermi Healthy 1.77 + 0.88 0.76 + 0.36 2.45 + 0.72

Ischemic 1.56 + 0.89 0.97 + 0.51 1.59 + 0.58

Uptake Healthy 1.57 + 0.81 0.64 + 0.33 2.66 + 0.94

Ischemic 1.41 + 0.82 0.88 + 0.42 1.77 + 0.82

OneCP Healthy 1.70 + 0.86 0.78 + 0.38 2.25 + 0.64

Ischemic 1.60 +0.83 1.07 + 0.56 1.57 + 0.50

ModI Healthy 1.53 + 0.74 0.68 + 0.31 2.26 + 0.64

Ischemic 1.32 + 0.73 0.82 + 0.39 1.70 + 0.56

 

Table 9-2 – Mean + standard deviation stress and rest MBFs and MPR values for 

the four methods in the healthy and ischaemic patient populations as diagnosed 

by X-ray angiography and the AHA mapping. 

r Fermi Uptake OneCP ModI

Fermi 1 0.87 (0.78, 0.93) 0.97 (0.94, 0.98) 0.86 (0.76, 0.92)

Uptake 1 0.90 (0.84, 0.94) 0.75 (0.60, 0.85)

OneCP 1 0.84 (0.73, 0.91)

ModI 1
 

Table 9-3 – Pearson’s correlation r-values for comparisons between the four 

models.  In all comparisons p<0.0001. 

 

Table 9-2 shows the mean and standard deviation (SD) MBF at rest and stress 

and the MPR for each of the four models over all of the healthy and all of the 
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ischaemic patients.    

 

Table 9-3 shows the Pearson‟s correlation scores between all of the models, 

with all models having a highly significant correlation (p<0.0001).  Table 9-4 

shows the Bland-Altman bias scores for the comparisons between each of the 

models, with confidence intervals for the biases in brackets.  Paired t-test p-

values were all highly significant (p<0.001) except uptake versus model 

independent MPR (p=0.08).  The corresponding standard deviations of the 

differences are shown in Table 9-5.     

Stress Fermi Uptake OneCP ModI

Fermi 0 0.19 (-0.41, 0.79) 0.04 (-0.37, 0.44) 0.22 (-0.20, 0.64)

Uptake 0 -0.15 (-0.82, 0.51) 0.03 (-0.59, 0.65)

OneCP 0 0.19 (-0.29, 0.67)

ModI 0

Rest Fermi Uptake OneCP ModI

Fermi 0 0.11 (-0.43, 0.65) -0.04 (-0.23, 0.14) 0.07 (-0.24, 0.37)

Uptake 0 -0.15 (-0.70, 0.40) -0.04 (-0.57, 0.50)

OneCP 0 0.11 (-0.24, 0.46)

ModI 0

MPR Fermi Uptake OneCP ModI

Fermi 0 -0.18 (-1.80, 1.43) 0.17 (-0.43, 0.77) 0.14 (-0.86, 1.13)

Uptake 0 0.36 (-1.37, 2.05) 0.31 (-1.60, 2.23)

OneCP 0 -0.03 (-1.05, 0.99)

ModI 0
 

Table 9-4 – Bland-Altman bias values with confidence intervals when different 

models are compared in terms of stress MBF [ml/g/min], rest MBF [ml/g/min] and 

MPR. 
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Stress Fermi Uptake OneCP ModI

Fermi 0 0.31 0.21 0.22

Uptake 0 0.34 0.32

OneCP 0 0.24

ModI 0

Rest Fermi Uptake OneCP ModI

Fermi 0 0.28 0.09 0.16

Uptake 0 0.28 0.27

OneCP 0 0.18

ModI 0

MPR Fermi Uptake OneCP ModI

Fermi 0 0.83 0.30 0.51

Uptake 0 0.88 0.98

OneCP 0 0.52

ModI 0
 

Table 9-5 – Standard deviation of differences between models for all model 

comparisons in terms of stress MBF [ml/g/min], rest MBF [ml/g/min] and MPR. 
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Figure 9-1 – Bland-Altman comparison plots for rest MBF for all models.  Solid 

line shows mean bias, dashed lines show confidence intervals. (axes scales 

locked for comparison). 
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Figure 9-2 – Bland-Altman comparison plots for stress MBF for all models.  Solid 

line shows mean bias, dashed lines show confidence intervals (axes scales 

locked for comparison). 
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Figure 9-3 – Bland-Altman comparison plots for MPR for all models.  Solid line 

shows mean bias, dashed lines show confidence intervals (axes scales locked 

for comparison). 



208 
 

 

Aggregate, flow-weighted response functions from the Fermi, one compartment 

and model independent models are shown in Figure 9-7 along with the point 

wise standard deviation.  In order to generate these plots each plot was 

interpolated to a standard set of time points before a point wise average of the 

response functions was performed.  Figure 9-4 shows the ROC curves for 

MPRs generated with the four models as curve to curve comparisons.  The 

corresponding DeLong, DeLong, Pearson p-values are shown in  

Table 9-6.  The descriptive parameters for the ROC curves are shown in Table 

9-7. 

MPR Fermi Uptake OneCP ModI

Fermi 1 0.11 0.05 0.91

Uptake 1 0.54 0.29

OneCP 1 0.41

ModI 1
 

Table 9-6 - ROC curve comparison p-values (curves shown in Figure 9-4) 

 

MPR Fermi Uptake OneCP ModI

AUC 0.93 (0.84, 1.00) 0.86 (0.73, 0.98) 0.88 (0.77, 0.99) 0.92 (0.85, 0.99)

Optimal MPR
cut-off

1.34 1.18 1.43 1.32

Sensitivity [%] 89.5 (0.67, 0.99) 0.84 (0.60, 0.97) 0.90 (0.67, 0.99) 0.95 (0.74, 1.00)

Specificity [%] 90.0 (0.74, 0.98) 0.83 (0.65, 0.94) 0.77 (0.58, 0.90) 0.80 (0.61, 0.92)
 

Table 9-7 – ROC curve descriptive parameters for the four models, Area under 

the curve (AUC), optimal MPR cut-off value, sensitivity and specificity at the 

optimal cut-off, confidence intervals in brackets. 
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Figure 9-4 - ROC curve comparisons between each of the models (p-values 

shown in  
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Table 9-6. 

9.3.2. Discussion 

Exclusions 

a)

b) d)

c)

 

Figure 9-5 – Example of a failure in the uptake curve processing.  The red dotted 

curves are the AIFs, the green are the myocardial uptake curves, black solid 

lines are the model fit lines.  The blue dotted curve is the uptake plot (tissue vs. 

sum of AIF).  The red cross marks the cut-off point dictated by the peak of the 

AIF.  A shallow uptake curve results in a poor choice of delay time shift dt (a).  

When the uptake curve (b) is plotted, noise in the AIF coupled with an early cut-

off point results in a negative fit to the data (up to the cut-off point) giving a 

negative MBF.  For illustration purposes the problem has been corrected by 

manually correcting the delay time shift dt in panes (c) and (d).   

 

No MPR values had to be excluded from the one-compartment model results 

and only a single exclusion was made from Fermi model results.  The number 

of exclusions for the uptake model and the model independent method were 

small (a total of 4% and 3% respectively).  The exclusions for the uptake model 
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were due to very small or even negative rest MBFs.  The reasons for this are 

illustrated in Figure 9-5.  A shallow uptake curve makes the bolus arrival time in 

the myocardium difficult to detect resulting in a poor estimate of dt (the delay 

time between bolus arrival in the myocardium and AIF).  This results in baseline 

data points being included in the analysis resulting in a very shallow uptake 

curve, thus a low MBF.  Coupled with noise spikes in the baseline this scenario 

can actually generate negative MBFs. 

 

Excluded MPR values from the model-independent dataset were due to high 

frequency oscillations in the response function generating very high MBFs.  An 

example is illustrated in Figure 9-6.  In this example high frequency spikes in 

the latter part of the tissue curve meant that a smooth impulse response 

function was not able to fit all of the data well.  The L-curve analysis in this case 

had two „L-corners‟.  The maximum curvature was identified at the left most 

corner corresponding to a small value for λ so the smoothness constraint was 

minimised.  This resulted in high frequency, high amplitude oscillations in the 

response function that generated very large, erroneous flow estimates.  For 

illustration purposes only the curves after manually correcting the λ value are 

also shown. 

 

All of these errors could be dealt with by simple manual interventions.  They are 

also easy to detect and exclude post-hoc as described in the methods section.  

Section 8.5 recommends that regional analysis of the heart yields the best 

diagnostic power and such a diagnosis requires a large number of quantitations 

per patient (32 using the AHA recommendation on three slices).  Manual 

analysis on this number of curves would be prohibitively time consuming for 

clinical practice in a field that already has the large time penalty of manual 

contouring to contend with.  For these reasons the methodology in this study is 

restricted to a fully automated analysis with post-hoc exclusions based on 

outlying MBF values as described. 
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a)

b)

c)

d)

e)

f)

 

Figure 9-6 – Example of a model independent deconvolution failure. Due to the 

high frequency ‘spikes’ in the latter portion of the tissue curve (a) the L-curve 

analysis has a double corner (b).  Thus a small λ value has been chosen (red 

cross) causing insufficient smoothing in the response function (c) and a 

subsequent high, and incorrect, MBF.  For illustration purposes the 

corresponding plots when the λ value has been manually corrected to the 

second L-curve point are also shown (d-f). 

 

9.3.3. MBF Estimates   

The MPR values for all the methods shown in Table 9-2 are comparable with 

healthy and ischaemic MPRs based on quantitative MBFs reported previously 
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(91,104).  Healthy and ischaemic resting MBFs are comparable with those 

previously published when non-linearity effects have been excluded (see Table 

6-7 and Table 6-8).  The healthy stress MBFs are smaller than the average 

MBFs reported in these tables.  However, considering specific studies, they 

agree with the values found by (5) and exceed those of (27) emphasising the 

large variation in the „normal‟ MBF values between studies.  Stress MBFs are 

reduced in response to ischaemia, although the effect here is less significant 

than the effect observed in terms of MPR.   

 

The aggregate response functions shown in Figure 9-7 reflect the nature of the 

different models.  The one compartment model is a single exponential whereas 

the Fermi function, with the addition of an early shoulder has more flexibility, 

although on aggregate this appears as a flattening of the response function 

rather than a clear shoulder.  The model-independent function shows clear 

shoulders in both rest and stress curves.  
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Figure 9-7 – Aggregate flow-weighted impulse response functions for Fermi-

constrained deconvolution, one compartment model and model-independent 

deconvolution.  The solid line is the mean Rf at the given time with standard 

deviations shown as dashed lines. 

 

9.3.4. Comparison of perfusion models 

The four models were highly correlated (Table 9-3).  Small but significant 

differences were found between the models at rest MBF, stress MBF and at 

MPR.  These  results differs from those of (4) who found significant differences 

only at stress MBF and no significant differences in MPR using similar 
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quantitation models.  The differences in the results presented here may be due 

to the much larger dataset in this study, 50 subjects, rest and stress vs. 20  rest 

and 14 stress in Pack et al. (4) , and the fact that ischaemic patients are 

included in this.  The differences observed are small with the largest bias in 

MBF at 0.22 ml/g/min between Fermi and model-independent at stress and 

biases in MPR not exceeding the 0.36 difference found between the uptake 

model and the one compartment model.  Furthermore the 95% confidence 

interval in each case encompasses the zero difference point, thus there is 

insufficient evidence to favour any method over the others based on these 

differences.  The width of these confidence intervals in all cases is similar to 

those in (4) suggesting that any differences in implementations between the 

studies have not increased variations between methods.  Considering the 

variations of the comparisons (Table 9-5) the uptake model tends to be 

associated with larger variations in comparison with all models (an observation 

also noted by Pack et al.).  This may be due to the fact that the uptake model 

uses less data than the other models and is thus more susceptible to noise and 

artifacts in the curves.  It could also be due to the occurrence of similar, but less 

dramatic and so not excluded, errors to those illustrated in Figure 9-5.  Pack et 

al. observed a larger positive MBF bias using Fermi-deconvolution (even after 

limiting analysis to the first pass) than with the other two methods.  The data 

presented here does not corroborate this observation. 

 

9.3.5. Comparison of diagnostic power of the tests 

All of the models had a good diagnostic power with the poorest AUC from the 

uptake model still achieving an area under ROC curve of 0.86, associated with 

a sensitivity and specificity of 0.84 and 0.83 respectively.  It is not the aim of this 

study to establish the power of the tests clinically as ambiguous cases have 

been removed from the dataset, however it is encouraging that the tests 

perform well.  There were no statistically significant differences (p<0.05) 

between ROC curves of the different models, however Fermi vs. uptake 

(p=0.11) and Fermi vs. One compartment model (p=0.05), approached a 

statistically significant result, with the Fermi model performing better in both 

cases.  The poorer diagnostic performance of the uptake model might be 

explained in terms of the larger variability and susceptibility to underestimates of 
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MBF described earlier.  The stronger difference observed between Fermi and 

the one compartment model is surprising.  The main difference between these 

models is the shoulder in the Fermi function.  The model-independent response 

functions tend to incorporate this shoulder as can be seen in the aggregate 

response function in Figure 9-7.  This implies that the „true‟ response function 

should have such a shoulder.   Indeed this appearance was the original 

motivation for utilising the Fermi function in CMR perfusion.  Furthermore, the 

AUC scores and MPR-cut-off values for Fermi and model-independent are 

almost identical, whereas the other two models have lower AUCs and different 

MPR-cut-offs.  It may be then that the Fermi function‟s ability to mimic this 

shoulder shape has made it a closer approximation to the true response 

function in this dataset.  It should be stressed however that the differences 

observed here are only borderline significant and further work should be done 

before making an absolute recommendation for clinical practice. 

 

9.4. Conclusion 

All of the models generated MPRs and quantitative MBF estimates that were 

consistent with the literature.  Numbers of exclusions (based on MBF and MPR 

figures) were small enabling a fully automated analysis (post-contouring).  This 

important point means that the analysis methods described here do not place 

any extra time-processing pressure on the acceptance of such methods into 

clinical practice.   

 

Corroborating the work of (4) this study has shown that there is a strong 

correlation between the MBFs measured using four different models.  Due to 

the increased power of this investigation over (4) significant differences in the 

MBF estimates have been found, although the magnitudes of these differences 

are small.  Importantly it has been shown that these small differences do not 

have a significant impact on the diagnostic power of the MPR estimates.  In 

conclusion any of the methods described are equally capable of generating 

MPR figures for diagnosing CAD. 



217 
 

 

In the absence of an overriding winner in terms of diagnostic power the decision 

about which model to use might be made based on the simplicity of 

implementation.  Model-independent deconvolution is the most difficult 

algorithm to implement.  However, Fermi-deconvolution and the uptake model, 

although simple implementations in principle, become more difficult when 

automated curve processing is required as they both require a cut-off point, 

after which perfusion data is discarded.  In the case of the uptake model this 

was the reason for a number of exclusions in this study.  For the Fermi model 

only one exclusion was required.  The simplest model, taking into account the 

pre-processing steps, was the one compartment model.  The only pre-

processing steps required were baseline correction and delay time estimation 

and the deconvolution step is a simple exponential fit.  The simplicity of this 

analysis meant that no one-compartment model data was excluded.   

 

On the basis of robustness then the one-compartment and Fermi-models were 

superior.  However, although a statistically significant difference in diagnostic 

performance was not observed between these models on this dataset, it is 

interesting to note that the Fermi model achieved a specificity of 90% whereas 

the one-compartment model achieved only 77%, with comparable sensitivities.  

On this dataset there is insufficient evidence to know whether this is a chance 

observation or a genuine difference in the models, at the 95% confidence level.  

However, the borderline significance of this difference (p=0.05) suggests that a 

larger investigation might provide evidence in favour of the Fermi model in 

terms of both accuracy and robustness. 
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10. Conclusions, limitations and future direction 

10.1. Limitations and future work 

The aim of this research has been to provide an evidence basis upon which 

decisions about a standard protocol for quantitative analysis of cardiac DCE-

MRI perfusion might be made.  The philosophy has been to use diagnostic 

accuracy as the evaluation tool as diagnosis is the ultimate purpose of the 

quantitative MBF measurements.  This has been achieved regarding the 

question of the perfusion model in chapter 9.  The conclusion reached was that, 

for the data considered, there was insufficient evidence to favour one method 

above another in terms of diagnostic accuracy.  There were observable, though 

not statistically significant, differences between the diagnostic performances of 

the models which should motivate still larger studies to be conducted in future.  

However, based on the evidence presented here the decision concerning which 

is the „best‟ method should be made on robustness, i.e. how many exclusions 

were necessary?  Based on this criterion the Fermi-constrained and one-

compartment models are superior.  However, robustness was not the planned 

primary outcome measure in this work and the way in which it has been 

assessed could be improved.  The use of a simple cut-off MBF or MPR to 

exclude measurements is simplistic.  Better assessments might be devised by 

taking into account the shape of the derived response function and the model 

fit.  Ultimately any measure will have to be reduced to a cut-off value but taking 

account of these more fundamental factors might be a fairer test of whether a 

model has „failed‟.   

 

The conclusions could also be criticised in terms of the pre-processing steps 

(section 5.4).  Perhaps, the automated pre-processing used was inadequate 

and better algorithms would have yielded different results?  The methods used 

in this thesis have only been evaluated qualitatively.  In fact these methods are 

typically not evaluated at all in quantitative DCE-MRI publications and are 

sometimes not even described.  Nevertheless, they can have a profound effect 

on MBF estimates and so an objective analysis of these methods would be 

beneficial.  This could be achieved using simulated data, with different delay 



219 
 

time and baseline noise levels etc.  It would also be interesting to establish what 

impact different automated pre-processing algorithms had on the final 

diagnostic performance using the methodology set out in chapter 9. 

 

Exclusion of data from the dataset prior to analysis was also performed 

qualitatively (section 8.3).  Clearly an objective method for excluding datasets 

would be preferable as it aids generalisation of the results.  For problems such 

as LV bleed and dark rim artefact this could prove to be a research project in 

itself.  However the largest contributor to excluding data was a thin myocardium, 

which is simple to measure and this should be assessed automatically in future 

work.     

 

Given the impetus within the DCE-MRI cardiac perfusion community for 

avoiding non-linearity in the AIF it is perhaps surprising that correcting for these 

effects did not have a significant impact on diagnostic performance (section 

8.4).  Indeed, the results shown in this thesis agree with those of Groothius et 

al. (25), who compared non-linear with linear dual-bolus MR data and found no 

difference in diagnostic performance.  The results are not generalisable, as 

more profound non-linearity in other datasets could have more severe effects.  

However, they do demonstrate that non-linearity does not have a significant 

effect on diagnostic accuracy for the CE-MARC dataset.  The non-linearity 

conversion algorithm has been tested on phantom data to show that it is 

accurately modelling the signal intensities generated by the imaging system.  

However, further validation against PET measurements or animal studies would 

have provided more reassurance that the method is indeed correcting for these 

effects. 

 

The evaluation of contour errors study (chapter 7) has shown that standard 

measures of contour errors do not correlate with MBFs, which is relevant for the 

evaluation of automated contouring algorithms applied to cardiac perfusion 

DCE-MRI.   This research has also provided a framework for investigating the 

effects of contour errors using simulated contour errors, which have been 
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shown to be representative of human contourer errors.  The study is currently 

limited in applicability as it was carried out on healthy volunteers only.  As it 

stands the method could not be extended to ischaemic patients as it would not 

be possible to separate MBF changes due to contour errors and those due to 

ischaemia.  However, using the methodologies outlined in chapters 8 and 9 

diagnostic performance could be used as an outcome measure to evaluate 

contour errors on ischaemic patients.  This would provide much more clinically 

relevant information about the required accuracies in contour errors across the 

heart. 

 

Although 50 patients would be considered large in most quantitative perfusion 

publications it represents only 6.5% of the CE-MARC dataset.  To repeat these 

studies on the full CE-MARC dataset would greatly increase the evidence basis 

for driving forward a consensus opinion on analysis methods.  The wealth of 

questions that could be answered using such a dataset is substantial.  Consider 

again Figure 1-1, representing the quantitation pathway with which this thesis 

commenced.  It is apparent that the depth of focus of the research represented 

in this thesis is not uniform across the steps of the analysis pathway.  The 

choice of perfusion model has been investigated thoroughly, however only one 

of many concentration conversion methods has been assessed.   Some aspects 

of mapping regions to arteries have been considered and localisation errors 

have been characterised but not related to diagnostic performance.  A 

comprehensive analysis of each of these steps in terms of diagnostic 

performance would provide a much needed evidence base for standardising 

quantitative cardiac perfusion analysis.  Such a standard would be a significant 

step towards the clinical acceptance of quantitative MBF estimates and the 

benefits they bring to the patient population and should therefore be a focus of 

research effort in the future. 

10.2. Conclusion 

Considering the quantitation pathway illustrated in Figure 1-1, the research 

presented in this thesis has made contributions to each step in the pathway.  In 

the area of myocardial contouring a novel methodology has been described for 



221 
 

investigating the relationship between contour errors and MBF.  This has been 

used to show that established segmentation metrics such as Dice‟s similarity 

coefficient and Hausdorff distance are insufficient evaluators of contour errors.  

A set of contour error limits, based on volunteer datasets, has then been 

presented.  This approach highlights what level of contour accuracy is actually 

required; focusing researcher‟s efforts on potentially more important areas such 

as robustness in automated localisation algorithms. 

 

Regarding the mapping of AHA regions to the final diagnosis, the novel use of 

diagnostic performance to evaluate the methodology has produced a number of 

insights.  The fact that the AHA regional analysis performs better than simply 

averaging the myocardium is perhaps not surprising but, to the author‟s 

knowledge, this is the first time that it has been evidenced with this method.  

The insight that the middle slice alone performs almost as well as all three 

slices is interesting and could be the basis of an argument for focussing scan 

time on a single slice for quantitation allowing better resolution.  Again, to the 

author‟s knowledge this has not been shown before in terms of diagnostic 

performance using quantitative MBF estimates.  The result that DCE-MRI data 

in the linear concentration to signal intensity regime do not perform better than 

those in a non-linear regime has been shown before in the context of dual-bolus 

imaging (25), on a similar sized dataset (n=49).  However, the results presented 

in this thesis are the first time that this has been shown using a non-linear 

correction method. 

 

The non-linear conversion of signal intensities to concentrations presented in 

this thesis is closely based on methods that have been previously published 

(30,31).  To the author‟s knowledge, the use of an assumed T1 for blood in this 

method is novel in cardiac DCE-MRI.  The use of the full signal equation, 

incorporating flip angle sweep is also novel in this context.  The conversion has 

been tested in simulations and on T1-gel phantoms.  The method has not been 

tested in-vivo because of doubts about the validity of the dual-bolus protocol 

used and the evidence for these doubts has been described in detail.  
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A comparison of perfusion models has been presented previously, and 

evaluated in terms of the estimated MBF values (4).  Besides using a much 

larger patient cohort than that of Pack et al., the perfusion model comparison 

presented in this thesis is novel in that it has compared the models in terms of 

diagnostic performance.  The results are therefore directly applicable to clinical 

practice.  Although the performances did not differ significantly there was 

evidence for favouring Fermi-constrained deconvolution or the one-

compartment model due to their increased robustness and ease of 

implementation. 

 

Every innovation in a complicated process such as quantitative DCE-MRI 

analysis must, of course, be initially evaluated in terms of its primary outcome, 

be it a measure of contrast agent concentration, contour accuracy or MBF.  

Ultimately, however, the entire methodological pathway must be linked and 

evaluated in terms of the decision it was designed to make.  In this case this is 

the diagnosis of myocardial ischaemia.  This thesis has proposed methods for 

making this link for each step of the analysis pathway for quantitative cardiac 

DCE-MRI perfusion.  For some steps a full diagnostic performance evaluation 

has been performed and it is to be hoped that these data will contribute towards 

the evidence base upon which a consensus methodology will be agreed upon.  

For other steps only the initial evaluations have been performed.  However, the 

methods for relating each step to a final evaluation in terms of diagnostic 

performance are now clear.  It is hoped that these methods will be used in 

future to evaluate the entire pathway and help to provide an evidence based 

consensus methodology for quantitative cardiac perfusion DCE-MRI. 
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