
A Methodology for Intentional
Specification and User-Centered

Documentation of Object-Oriented APIs

Seham Abdulrahman A Alharbi

Doctor of Philosophy

University of York

Computer Science

March 2025

Abstract

The ideal companion to any application programming interface (API) is its

documentation, which can take various forms, such as API reference doc-

umentation, user guides, and tutorials. One of the essential resources for

learning APIs, commonly found in many types of API documentation, is

code examples that demonstrate common API usage. However, writing and

maintaining effective API usage examples is often a demanding and repet-

itive process for API developers. This is because API users ideally expect

these examples to be simple, standalone, and linear. This PhD research

addresses this challenge by providing an approach to assist API developers

in producing and maintaining effective API usage examples. The approach

also aims to support the development of code examples that align with API

users’ expectations, thereby promoting API learnability.

Additionally, this research proposes a method to assess coverage of API

code examples. The proposed approach provides API developers with a

dedicated API description language that enables them to concisely describe

intended APIs. This API description is then utilised to report code example

coverage both textually and visually.

The evaluation conducted in this research demonstrates that the pro-

posed techniques can reduce the effort required to write and maintain API

code examples by minimising repetition in example code and generating lin-

ear code. A controlled user study further shows that linear code examples

are easier to comprehend and are preferred by API users. The findings also

indicate that the proposed code example coverage tool and its accompany-

ing API description language can simplify the process of describing intended

APIs for API developers by providing features that facilitate formal and

concise API specifications.

List of Contents

Abstract 3

List of Contents 8

List of Tables 10

List of Figures 13

List of Listings 15

List of Algorithms 16

Acknowledgments 18

Author Declaration 19

1 Introduction 20

1.1 Thesis Contributions . 22

1.2 Thesis Structure . 23

2 Background 25

2.1 Application Programming Interfaces (APIs) 25

2.2 API Documentation . 27

2.3 Code Examples in API Documentation 29

2.3.1 Characteristics of Effective API Code Examples 30

2.3.2 Coverage of API Code Examples 31

4

List of Contents

2.4 API Code Example Generation Approaches 33

2.5 Program Comprehension . 35

2.5.1 Attributes Influencing the Comprehension of Source

Code . 37

2.5.2 API Code Example Comprehension 38

2.6 Source Code Metrics . 38

2.6.1 Size . 39

2.6.2 Maintainability . 39

2.6.3 Complexity . 41

2.6.4 Comprehension . 42

2.6.5 Source Code Linearity 42

2.7 Code Refactoring . 44

2.8 Domain-specific Languages (DSLs) 46

2.9 Summary . 49

3 Analysis and Hypothesis 51

3.1 Analysis . 51

3.2 Research Objectives . 53

3.3 Research Questions . 54

3.4 Research Hypothesis . 56

3.5 Research Scope . 57

3.6 Summary . 60

4 Impact of Source Code Linearity on the Programmers’

Comprehension of API Code Examples 61

4.1 Methodology . 62

4.1.1 Research Questions . 62

4.1.2 Study Design . 63

4.1.3 Independent Variables 63

4.1.4 Dependent Variables 65

5

List of Contents

4.1.5 Participants . 65

4.1.6 Material . 67

4.1.7 Experiment Procedure 73

4.1.8 Data Analysis . 73

4.2 Results and Discussion . 75

4.3 Threats to Validity . 79

4.3.1 Construct Validity . 79

4.3.2 Internal Validity . 82

4.3.3 External Validity . 82

4.4 Summary . 83

5 Linear API Usage Example Synthesis 84

5.1 Linear Code Synthesiser’s Features 85

5.1.1 Code Analysis . 88

5.1.2 Code Transformation 90

5.1.3 Code Processor and Generator 91

5.2 Synthesiser’s Constraints . 96

5.3 Evaluation . 97

5.3.1 Data Collection . 97

5.3.2 Data Cleaning . 102

5.3.3 Data Analysis and Similarity Detection 102

5.3.4 API Code Examples Rewriting 103

5.3.5 API Code Examples Evaluation 104

5.4 Results and Discussion . 104

5.5 Limitations and Observations 110

5.5.1 Template-based Code Synthesis 111

5.5.2 Interactive API Usage Example Generation 112

5.6 Threats to Validity . 113

5.6.1 Construct Validity . 113

5.6.2 Internal Validity . 114

6

List of Contents

5.6.3 External Validity . 114

5.7 Summary . 114

6 Coverage of API Code Examples 116

6.1 APIExCov’s Features . 117

6.1.1 Intended-API Description Language 118

The API Description Language ANTLR-based Cus-

tom Grammar 124

6.1.2 Static Analysis and Parsing 127

6.1.3 Intended-API Description Validation 128

6.1.4 Coverage Analysis . 133

6.1.5 Textual Coverage Report 138

6.1.6 Visual Coverage Report 141

6.2 Constraints . 146

6.3 Evaluation . 146

6.4 Results and Discussion . 152

6.4.1 Qualitative Comparison of APIExCov and Code Cov-

erage Tools . 155

6.5 Limitations and Observations 157

6.6 Threats to Validity . 158

6.6.1 Construct Validity . 158

6.6.2 Internal Validity . 159

6.6.3 External Validity . 159

6.7 Summary . 160

7 Conclusions and Future Work 162

7.1 Summary . 163

7.2 Thesis Contributions . 163

7.3 Research Results . 164

7.4 Future Work . 168

7

List of Contents

Appendices 171

Appendix A 172

Appendix B 177

Bibliography 202

8

List of Tables

4.1 API code examples and their variants and metric values. Vari-

ants sharing the same colour belong to the same treatment

category. 64

4.2 Participant demographics. 67

4.3 The study results. Variants sharing the same colour belong to

the same treatment category. The imbalance in the number

of responses (N) between two variants of the same example is

due to our exclusion of responses with inaccurately reported

break times. 78

4.4 Study results for the linear API code examples. 79

4.5 Study results for the non-linear API code examples. 79

5.1 Statistics of the selected Java libraries and packages. 101

5.2 Summary of the evaluation results. 106

5.3 Number of API code examples with template-suitable code

similarity patterns. 113

6.1 Usage information for two API elements, extracted from an

API code example. 135

6.2 Overview of key statistics for the subject Java libraries, re-

trieved from GitHub on October 30, 2023 by Monce et al.[1]

and December 9, 2024. 148

9

List of Tables

6.3 Comparison of API element counts, character totals, and per-

centage decreases in full and shortened API descriptions for

the evaluated Java libraries and frameworks. 154

10

List of Figures

1.1 Workflow illustrating the main contributions of the thesis. . . 24

2.1 The architecture of Docio [2]. 34

2.2 Casdoc [3] document, with (1) block, (2) anchors to additional

explanations, (3) pop-up annotations, (4) navigation aids, and

(5) injected API documentation. 35

3.1 A concept map illustrating the thesis’s scope within the field

of Software Engineering. 58

4.1 Study design (between-subjects) and the distribution of par-

ticipants. 64

4.2 Example of a code comprehension task given to participants. 74

4.3 Example of a code reuse task given to participants. 74

4.4 The time spent on (a) comprehending, and (b) reusing the

API code examples used in the study. Each boxplot represents

the responses for one version (linear or non-linear) of a single

example. 80

4.5 Participants’ subjective ratings of API code example compre-

hension (a) and reusability difficulty (b). 81

5.1 Linear code synthesiser architecture. 90

5.2 API code examples collection method. 98

11

List of Figures

5.3 Distributions of the evaluated API code examples and the per-

centage decrease in their Lines of Code (LOC). Each boxplot

aggregates the API examples of each Java library. 108

5.4 The extracted utility methods and their calls stacked by each

Java library. Each stacked bar represents a single utility

method and is labelled with its number of calls. 110

5.5 A scatter plot showing the relationship between the number

of extracted utility methods and the number of API code ex-

amples containing an applicable code similarity. 111

6.1 Architecture of API code example coverage tool. 118

6.2 Class diagram of the Java classes representing API elements.

These classes are used to create an in-memory representation

of the API and its coverage details. 137

6.3 An example of a textual report showing a subset of API code

example coverage information for the Jsoup Java library. . . . 139

6.4 Coverage filtering options in generated textual reports. 141

6.5 Code city metaphor metrics for the API code example cover-

age visual report. 144

6.6 Hover information displayed over buildings in the visual API

coverage report. 145

6.7 Hover information displayed over connecting lines in the visual

API coverage report. 145

6.8 A visual report (code city) illustrating the API coverage for

the Jsoup Java library. The coverage information is based

on the API code examples available in the library’s GitHub

repository. 147

6.9 Workflow of the approach proposed by Monce et al. [1]. It

illustrates the analysis of client sources to generate a syntactic

usage footprint (SUF) of a library. 149

12

List of Figures

6.10 Comparison of API elements in full and shortened API de-

scriptions for the evaluated Java libraries and frameworks.

Percentages represent the proportion of shortened descriptions

relative to full descriptions for each Java project. 154

6.11 Comparison of API element character counts in full and short-

ened API descriptions for the evaluated Java libraries and

frameworks. Percentages indicate the proportion of shortened

descriptions relative to full descriptions for each Java project. 155

13

List of Listings

2.1 A semi-linear API code example showing one use of the Chronol-

ogy API. Programmers are required to jump once when fol-

lowing the execution flow. 43

4.1 A linear code example using the Joda-Time API (DateExam-

ple.java). 68

4.2 A non-linear code example using the Joda-Time API (Date-

Example.java). 69

4.3 A linear code example using the Joda-Time API (Chronolo-

gyExample.java). 70

5.1 Vonage API code example (1) - SendDtmfToCall.java 85

5.2 Vonage API code example (2) - SendTalkToCall.java 85

5.3 Utility method - Vonage API. 86

5.4 Documentation method - Vonage API - SendDtmfToCall.java 88

5.5 Jackson API code example (1) - DisableDateAsTimestamps.java 93

5.6 Jackson API code example (2) - DisableFailOnEmptyBeans.java 94

5.7 Utility method - Jackson API. 94

5.8 Rewritten Jackson API code example (1) - DisableDateAsT-

imestamps.java . 95

5.9 Rewritten Jackson API code example (2) - DisableFailOnEmp-

tyBeans.java . 96

5.10 PDFBox code example (1) - FieldTriggers.java. 112

5.11 PDFBox code example (2) - FieldTriggers.java. 112

14

List of Listings

6.1 A subset of an API description that defines the API of the

Jsoup Java library. 122

6.2 ANTLR-based custom grammar for the intended API descrip-

tion language. 125

6.3 Java method for processing and validating method signatures

extracted from the intended API description YAML file. . . . 129

6.4 An example of an API description with errors. This descrip-

tion defines a subset of the API of the Apache Commons CLI

Java library. 132

6.5 Examples of the API description language validation error

messages. 132

6.6 API Code Example from the Jsoup Java Library (ListLinks.java).135

6.7 A subset of the full API description for the Jsoup Java library. 151

6.8 A subset of the shortened API description for the Jsoup Java

library. 152

B.1 Full intended API description of the Jsoup Java library. . . . 177

B.2 Shortened intended API description of the Jsoup Java library. 194

15

List of Algorithms

1 Algorithm for linear code synthesis 89

2 Algorithm for measuring and reporting API code example cov-

erage . 119

16

To my Mum – my first teacher, my role model, and the guiding light of my

life.

Acknowledgements

First and foremost, I would like to begin by expressing my deepest gratitude

to Almighty God, whose blessings and guidance have enabled me to under-

take this PhD journey. I would also like to thank my supervisor, Professor

Dimitris Kolovos, for his invaluable support, thoughtful guidance, construc-

tive feedback, and for always being approachable. I am deeply grateful to

have worked with such an extraordinary supervisor and researcher, from

whom I have learned so much, not only academically but also personally.

My thanks also go to Dr Simos Gerasimou, my assessor, for his valuable

insights and fruitful discussions during our TAP meetings.

A big thanks to all the ASE research group members at the University

of York for the wonderful time we shared and for their feedback during the

seminars. I appreciate and thank Dr Sondess Missaoui for motivating me

during challenging times and for our delightful conversations over coffee.

A special thank you to my husband, Abdulmajeed, for leaving everything

behind and sharing this journey with me. Thank you for always cheering

me up. Thank you for being the calm in the storm of my PhD. I am also

grateful to my son, Maher, the love of my life, for all the laughter and joyful

moments that nourished me. I am truly sorry for all the playtimes I missed.

I am thankful to my family and friends for their prayers, motivation, and

support in every aspect of my life. Thanks to my Mum for our long Sunday

calls, which have always been the fuel that kept me going throughout the

week. A special thanks to my brothers, Dr Meshari Alharbi and Dr Basil

Alharbi, for their unforgettable care and kindness during the health difficul-

ties I faced in my final year. Your continuous check-ins and encouragement

were the wind beneath my wings, helping me complete this work.

Finally, I thank Qassim University for funding my PhD studies and my

beloved country, Saudi Arabia, for this enriching opportunity.

Author Declaration

I declare that this thesis is a presentation of original work and I am the sole

author. This work has not previously been presented for an award at this,

or any other, University. All sources are acknowledged as References.

Parts of this thesis have been previously published by the author. The

following research papers have been primarily written by the PhD candidate.

[1] S. Alharbi and D. Kolovos, “Exploring the Impact of Source Code Linear-

ity on the Programmers Comprehension of API Code Examples”, In Proceed-

ings of the 32nd IEEE/ACM International Conference on Program Compre-

hension (ICPC), 2024, pp. 236-240.

[2] S. Alharbi, D. Kolovos, and N. Matragkas, “Towards Generating Main-

tainable and Comprehensible API Code Examples”, In Proceedings of the

IEEE International Conference on Software Analysis, Evolution and Reengi-

neering (SANER), 2024, pp. 830-834.

[3] S. Alharbi, D. Kolovos, and N. Matragkas, “Synthesising Linear API

Usage Examples for API Documentation”, In Proceedings of the 38th IEEE

International Conference on Software Maintenance and Evolution (ICSME),

2022, pp. 607–611.

Chapter 1

Introduction

An Application Programming Interface (API) serves as an abstraction layer

that enables developers to access the core components of a library or frame-

work to perform development tasks while hiding internal complexity [4].

Although the use of APIs can improve the quality and efficiency of software

systems, their size and complexity can make them difficult to learn and use

even for expert programmers [5, 6]. For instance, the Java Platform, Stan-

dard Edition API Specification contains over 4,000 classes and more than

35,000 methods, and Microsoft’s .NET Framework provides approximately

140,000 classes, methods, properties, and fields [7]. In addition to the size

and complexity of APIs, the effectiveness of using an API depends signifi-

cantly on the availability of adequate resources for learning it; thus, APIs

come with documentation. API documentation can take many forms, such as

API code examples, user guides, tutorials and API reference documentation

[8]. However, as API documentation is a product in itself and thus requires

effort to develop and maintain, its quality cannot be taken for granted [9, 10].

Recent work on best practices for API code examples [11] emphasises the

effort put into creating API documentation and the importance of its up-to-

dateness and maintenance.

Several studies on the quality of API documentation have reported a

20

number of issues such as incompleteness, ambiguity, and the need for more

complex usage examples [9, 5, 12, 4]. In particular, the shortage of code

examples in API documentation has been shown to be a major obstacle

commonly faced by users when learning a new API [4]. This is because API

code examples play important roles in a variety of learning tasks, and most

API users consider working through code examples as the first step to take

[8, 11].

When official API documentation lacks examples, API users often spend

considerable time searching for code snippets on the web. They typically turn

to sources such as code search engines or AI-powered tools to get assistance.

While these sources can be useful, they also pose risks, as the generated

code may introduce API usage violations, contain incorrect patterns, or fail

to follow best practices for API usage. For instance, one of the popular

online sites that users usually extract code examples from is StackOverflow,

which in turn could be a source of buggy and outdated code snippets [13].

Such risks can negatively impact the quality and maintainability of software.

Although the reason behind the shortage of API usage examples in of-

ficial API documentation is not entirely clear, it has been shown that API

developers have remarkably little tool support that could help them properly

document their APIs [14, 2]. The lack of such support could be a reason for

the shortage of code examples in API documentation. Another reason is

possibly the repetitive and demanding process of writing effective API code

examples [15, 16]. Also, maintaining and updating those code examples and

matching the actual use of APIs are considered significant challenges for API

developers [15].

To mitigate the issue of the shortage of code examples, several systems

have been proposed for mining different types of resources, such as online

sites and test code, and extracting API usage examples [17, 18]. However, to

the best of our knowledge, little attention has been given by previous research

21

Chapter 1. Introduction

to the root causes of the shortage of code examples in API documentation.

Similarly, only a few approaches have directly addressed the challenges that

make the task of writing and maintaining code examples unappealing for

API developers [19, 20]. In addition, existing research does not seem to

have fully explored the impact of several source code structures on users’

comprehension in the context of API code examples. Also, it is not entirely

clear how much of an API should be covered in usage examples, nor how

many examples are enough.

This thesis contributes to addressing the problem of the shortage of code

examples in API documentation by investigating its underlying causes and

understanding the barriers that prevent API developers from producing more

code examples for their API documentation. It also explores the API users’

expectations and preferences regarding various structures of these API usage

examples. In short, the main goal of this thesis is to support API developers

with tools and techniques for writing and maintaining API code examples

that meet the API users’ preferences and needs. This goal is achieved by

enabling API developers to reduce the repetition involved in documenting

APIs by providing them with suitable techniques for creating API code ex-

amples that comprehensively cover their intended API. In turn, this would

minimise the effort required to create and maintain the API documentation

materials that meet the users’ expectations.

1.1 Thesis Contributions

The main contributions of this thesis are outlined below and illustrated in

Figure 1.1, which presents them as a workflow.

• A controlled code comprehension experiment designed to exam-

ine how various structural characteristics of source code; specifically,

its level of linearity and length, affect API users’ comprehension of

22

1.2. Thesis Structure

API code examples. The aim of this user experiment was to provide

API developers with insights into the effective structuring of API code

examples.

• A linear API code example synthesis approach tailored for the

Java programming language. This approach aimed at alleviating the

effort required by API developers to write lengthy, repetitive, and

costly-to-maintain API code examples. This, in turn, enables them

to produce more code examples, thus, enhancing API learnability for

API users.

• A domain-specific language for intended API specification,

which enables API developers to formally and precisely define the

source code elements, such as classes and methods, that comprise their

intended APIs. This DSL offers a range of features designed to facili-

tate the process of describing an API, making it more efficient.

• A coverage tool for API code examples built on top of the pro-

posed API description DSL. This API code example coverage tool mea-

sures the extent to which a given set of code examples covers an in-

tended API. Coverage reports are generated in two formats, textual

and visual.

1.2 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 presents

a comprehensive overview of the background on the main topics related to

this PhD research, including the role of APIs and API documentation in

the field of software engineering. It also discusses the current state-of-the-

art API code example generation approaches and highlights challenges in

creating API documentation.

23

Chapter 1. Introduction

Figure 1.1: Workflow illustrating the main contributions of the thesis.

Chapter 3 provides an analysis of the main research problem and states

the objectives, questions, hypotheses, and scope of this PhD research.

Chapter 4 presents novel results from a controlled user experiment con-

ducted to examine the impact of various levels of source code linearity and

other source code structures on the comprehensibility and reusability of API

code examples.

Chapter 5 presents the architecture, features, implementation, and eval-

uation of a linear code synthesiser; a novel approach for transforming non-

linear, less repetitive API code examples into linear, easy-to-comprehend

ones.

Chapter 6 presents a novel API description language for specifying the

intended surface of an API and a tool for reporting the coverage of API code

examples based on the specified API elements. This chapter also includes

an evaluation of the proposed tool and a discussion of its limitations.

Chapter 7 summarises the thesis contributions and highlights its notable

results. It also proposes possible future directions and discusses areas that

could benefit from further investigation.

24

Chapter 2

Background

This chapter provides some definitions and background material for the re-

search context. It also provides a review of relevant literature and related

studies that have been conducted to solve similar problems. The chapter is

structured as follows: Section 2.1 describes the background required to un-

derstand the concept of Application Programming Interfaces (APIs). Section

2.2 provides an explanation of API documentation and its purpose. Section

2.3 presents the roles and characteristics of API code examples. Section 2.4

outlines the existing approaches that have been proposed to help document

APIs with code examples. Section 2.5 explains the concept of program com-

prehension. Finally, Sections 2.6, 2.7, and 2.8 describe some key concepts

that contribute to the implementation and evaluation of this PhD research.

2.1 Application Programming Interfaces (APIs)

Reuse-based software development is a major concept in the field of software

engineering. Reuse is fundamental in many software projects because it helps

to effectively and accurately build desired functionalities, facilitate program-

ming tasks, and save developers’ time. Software reuse can take many forms,

such as copying and pasting code, or using external software libraries or

25

Chapter 2. Background

frameworks by integrating their application programming interfaces (APIs)

[21, 22]. An API is an interface that provides high-level abstractions and al-

lows developers to use its internal functionality to implement some software

development tasks [4]. For example, the java.util.List interface in the

Java standard library exposes methods like add(), remove(), and get() to

manipulate collections. Furthermore, APIs have been used for a long time,

most likely since the advent of computers, and they were initially used to

exchange data between two or more programs [23].

There are many benefits of using APIs in software development. In ad-

dition to their easy and predictable use, APIs increase the productivity of

software developers and save time by allowing them to perform a particu-

lar task by only writing client code instead of creating the entire required

functionality from scratch [24, 6]. However, in practice, correctly using and

accessing APIs requires understanding and following their usage patterns

and rules [21]. Ignoring such rules can be the reason behind many software

crashes, bugs, flaws or even significant security problems [25, 7]. In addi-

tion, some APIs can grow extremely large, causing some complications and

challenges to software developers when trying to use them.

According to Stylos et al. [26], developers occasionally find APIs tedious

and difficult to learn, and as a result, they often spend significant time try-

ing to properly apply them. A multi-phased study that was conducted on

over 440 professional Microsoft developers to analyse the obstacles they faced

when learning new APIs has shown that some of the serious obstacles are re-

lated to poor API documentation [5]. In addition, some API documentation

is incomplete, inconveniently organised, and lacking high-quality and com-

plex usage examples or a consistent visual design that can ease the process

of the navigation [27, 28]. As a result, software developers often prefer to

use informal learning resources, such as community forums like StackOver-

flow, although they contain some incorrect API uses [29]. Furthermore, the

26

2.2. API Documentation

misleading naming convention of some API methods and classes can place a

barrier in terms of the correct use of APIs. For example, the correct way to

create a new thread in Java is to call a Thread.start() method, however,

developers often misuse this approach by calling a Thread.run() method,

which should not be used to create a new thread [30].

All of the above-mentioned API learning obstacles can impact the usabil-

ity of APIs and increase the chance of incorrect use, which, in turn, could be

mitigated by providing API users with rich API documentation and effective

API code examples. The following sections shed more light on this topic and

discuss some existing techniques and approaches proposed to improve API

learnability.

2.2 API Documentation

As with any other complex technical tool, the effective and correct use of

an API relies significantly on the appropriate support for learning and using

it, and in order to fulfil this goal, APIs come with documentation. This

documentation acts as a reference guide for any developer who wants to use

the API. It gives developers guidance on how to use it, what to expect from

using it, and any other assistance they may need [9, 31]. It also provides

some details on the methods, classes, return types, arguments, and more,

sometimes supported by concise tutorials and usage examples. However, an

API document is a product in itself, and as such its quality cannot always

be guaranteed. In light of this, it could be said that high-quality documen-

tation can help to increase the efficiency of a developer’s work, and their

interest in using an API, while also reducing the chances of misusing it. By

contrast, APIs with poor-quality documentation can affect the quality of the

software built on them and are usually abandoned because of the difficulty

in understanding them [9].

High-quality API documentation helps prevent common mistakes users

27

Chapter 2. Background

make when using APIs. However, for API documentation to succeed in this

way, they should meet the users’ expectations by providing the information

they need to easily, correctly, and effectively use the API [8, 9]. This can

be achieved by ensuring that the API document contains an explanation of

all the assumptions and constraints of using the API. A good illustration of

this is the documentation of the Java standard library API and the useful

examples, usage scenarios, and contexts that it provides [31].

There are a number of methods and tools used to automate the process

of generating API documentation and make their future updates and main-

tenance much easier. For instance, in Java, the JavaDoc1 tool is used as a

document-generator tool for producing API documentation. It parses the

declaration and special documentation comments found in Java source files

and produces a set of HTML pages that describe all the classes, interfaces,

constructors, fields, and methods [32, 33]. Similarly, Sphinx,2 which is used

by the Python community, generates documentation for the APIs written in

Python by converting the reStructuredText sources into HTML, PDF, and

many other formats [34].

Since API documentation plays an important role in understanding and

correctly using APIs, several approaches have been proposed to improve the

quality of this documentation, Dekel et al. [35], for instance, have proposed

eMoose, an Eclipse plug-in that allows developers to be aware of any direc-

tives associated with the targets of the method invocations that appear in

their code. It highlights these method calls by surrounding them with a box

and marking their lines with an icon. This plug-in is useful for the develop-

ers because the rules or caveats of APIs are usually lost within the lengthy

documentation. Similarly, Treude and Robillard [36] have proposed SISE,

a machine-learning approach that enhances the API documentation by aug-

menting them with useful information extracted from StackOverflow. This

1https://www.oracle.com/java/technologies/javase/javadoc-tool.html
2https://www.sphinx-doc.org/en/master/

28

https://www.oracle.com/java/technologies/javase/javadoc-tool.html
https://www.sphinx-doc.org/en/master/

2.3. Code Examples in API Documentation

information is not found in the API documentation and is highly related to

the targeted API.

2.3 Code Examples in API Documentation

According to Robillard and DeLine [5], listings of varying lengths that demon-

strate the use of an API are called API usage code examples. Furthermore,

it is evident that API code examples are an essential learning resource. The

results of the survey conducted by Robillard [4] have revealed that around

55% of the respondents prefer turning to code examples when learning a

new API. Generally, API code examples can be categorised into four main

groups: small code snippets, which are often written to demonstrate a certain

feature of the API; tutorials, which are a series of combined and short code

examples that explain the implementation of a small but complex API func-

tionality; sample applications that are usually small in size but complete and

independent; finally, the production code of the API itself, which can also be

used to illustrate an API usage [5].

It has been demonstrated that API code examples are an essential and

popular learning resource, as they can be more informative and easier to un-

derstand than the descriptive text found in documentation [8]. This stems

from the possibility that text in documentation could be outdated or inac-

curate compared to code [37]. This can also be associated with the fact that

code examples are usually easy to adjust when assembling code, thus serv-

ing the programming needs of API users [38]. In addition, most API users

consider code examples as the first step to take when learning a new API.

On average, around 20% of their time is spent online searching for usage

examples [39].

29

Chapter 2. Background

2.3.1 Characteristics of Effective API Code Examples

For API code examples to be effective, they need to meet certain charac-

teristics that align with the users’ expectations. Based on the qualitative

analysis conducted by Nasehi et al. [40], users often prefer concise code ex-

amples that do not contain irrelevant details or code that is easy to figure

out. This is because most concise examples where the unnecessary parts are

left as either comments or ellipses tend to have a better structure, which

makes them a good skeleton for a solution. In addition, highlighting the key

code elements in the usage examples or hyperlinking them to other useful

resources, such as the Javadoc of a certain API element, seems to be desired

by the users. However, beginners usually prefer code examples that use a

well-known domain and are divided into small parts where each part demon-

strates a certain detail. Additionally, it is preferable for code examples to

provide information about the possible alternative solutions that use a dif-

ferent class, API, or API version. Meng et al. [41] suggested that API code

examples should clearly demonstrate the intended use of the API. Also, API

users generally prefer complete code examples as they are more convenient

to work with; for instance, via copy and paste.

Another way of exploring the characteristics of effective code examples is

to study the extraction metrics that are used by the existing API code search

approaches and websites, such as ProgramCreek,3 and Tabnine,4 which au-

tomatically mine, rank, and recommend API usage examples for API users.

For example, in APISonar [42], some of the metrics that have been used to

assess the relevance and usefulness of the extracted code examples are code

readability, which refers to how easily the code is to be read and under-

stood by users, while, code reusability assesses the potential for reusing the

functionality provided by a specific piece of code.

3https://www.programcreek.com
4https://www.tabnine.com

30

https://www.programcreek.com
https://www.tabnine.com

2.3. Code Examples in API Documentation

To the best of our knowledge, very little work has been done to develop a

set of quality metrics that are made specifically for API code examples and

that API developers could refer to during the process of creating their API

documentation. Moreover, it could be argued that the lack of such metrics

could be one of the reasons behind the shortage of usage examples in API

documentation, since the API developers do not have enough information

on what is considered a good example, or on how many examples are gen-

erally enough. However, Radevski et al. [43] have worked on investigating

the quality of several existing and publicly available API usage examples

and have given an initial knowledge base for developing an automated API

usage example metrics analysis tool. Furthermore, this work has suggested

some plausible metrics for code examples, such as example coverage, age,

usefulness, and repeated calls to the same methods.

2.3.2 Coverage of API Code Examples

Several approaches and tools for Java and many other programming lan-

guages5,6 have been proposed to report the degree of code coverage and to

measure how much of the source code has been tested. These tools offer a

variety of types and levels of coverage, such as function coverage and state-

ment coverage, and can integrate seamlessly with many IDEs (Integrated

Development Environments). However, to the extent of our knowledge, lit-

tle progress has been made in developing tools that specifically measure how

much of an API is covered by a set of examples.

An example of research in this area is the work proposed by Radevski et

al. [43] to investigate the API code examples coverage by examining a set of

usage examples provided by seven popular API libraries for Java. The exam-

ples were first turned into unit tests and then run using a test code coverage

tool, i.e. Atlassian Clover tool. The results show that the average coverage of
5https://www.jacoco.org/jacoco/
6https://www.atlassian.com/software/clover

31

https://www.jacoco.org/jacoco/
https://www.atlassian.com/software/clover

Chapter 2. Background

the analysed examples is only 30%. Moreover, the large number of examples

provided by a certain library does not necessarily indicate good coverage of

the API, since code examples can include a lot of repetition and many API

functionalities can be left out. In addition, Radevski et al. [43] highlight that

unit test coverage tools might not be the ideal technique for retrieving cov-

erage of code examples. It could be said that test cases are designed to sys-

tematically validate program behaviour against expected outputs, whereas

code examples are illustrative and intended to demonstrate usage patterns,

typical workflows, or best practices for API users. Furthermore, usage exam-

ples do not define assertions, inputs, outputs, or error conditions, which are

essential for applying conventional testing metrics. Therefore, API example

coverage is best assessed differently, with a focus on the representativeness

of API usage rather than the correctness of functionality.

In addition, Monce et al. [1, 44] proposed a conceptual framework con-

sisting of two syntactic models that aim to help API developers and main-

tainers understand the boundaries of their APIs and the real-world uses of

these APIs in client code. These models were implemented in a tool called

UCov (Usage COVerage) which utilises static analysis to extract them from

Java source code. One of these models is called Syntactic Usage Footprint

(SUF), which as its name indicates, reports the coverage and all the actual

uses of all the API elements that are found in client code including API

code examples. These reported API elements are given and defined via an-

other model called Syntactic Usage Model (SUM) which consists not of the

intended API uses as envisioned by the API developers but rather all the

legal, programmatically possible, and allowed uses of the API.

While the optimal number of API code examples and the ideal percentage

of API coverage they should provide is still not clear and further research on

this topic is required, it is undoubted that code examples are crucial learning

material and any inadequateness of coverage or shortage in them can place

32

2.4. API Code Example Generation Approaches

a significant obstacle for API users [4].

2.4 API Code Example Generation Approaches

As mentioned in Section 2.3, API code examples are a key resource for

reusing and learning APIs, since they can save the users’ time and increase

productivity. However, the practice of explicitly documenting APIs with ef-

fective and working code examples is not ubiquitous in software development

[45, 46, 47], and not all software libraries and frameworks provide adequate

code examples in their official documentation [18, 48]. Consequently, there is

a significant shortage of effective API usage examples in API documentation,

which forces API users to seek other online resources like StackOverflow to

learn new APIs. Although such websites can be very valuable for both API

users and researchers, the code snippets available on them can be toxic, out-

dated, and contain some vulnerabilities and violations of software licenses

[13, 49].

To compensate for the shortage of API code examples in API documen-

tation, several approaches have been proposed to generate them. Further-

more, a recent systematic mapping study on API documentation generation

approaches [14] has found that the most popular approaches are those that

generate API usage examples or templates for using APIs. For example, Buse

and Weimer [15] have proposed an approach that automatically mines and

synthesises well-typed representative API usage examples. This approach

incorporates techniques such as data-flow analysis and clustering to extract

and discover the necessary details for constructing usage examples before

using them as API documentation. In addition, to supplement formal API

documentation, other approaches benefit from publicly available API unit

tests [18, 19, 50]. Using unit tests as API usage examples has been shown

to be efficient for supplementing formal API documentation, particularly for

newly released APIs that lack the availability of client code.

33

Chapter 2. Background

Some success has been achieved in filling in the gap between reference

and example-based API documentation. This was achieved by using various

API code examples found on various online sites, such as Stack Overflow and

GitHub Gists, and embedding them into formal API documentation [17, 51].

These approaches typically employ various mining, clustering, and ranking

techniques to extract API code examples that best satisfy the intent of the

user when browsing API documentation.

Other approaches have focused on helping API users construct their code.

For example, Jadeite [52] allowed API users to share their aggregate experi-

ence and collaboratively add placeholders to API documentation to indicate

the expected classes and methods. In addition, Docio [2] is a system that

helps API users understand the actual/dynamic input and output values of

API functions. It also helps API developers who use the C programming lan-

guage to write and add API examples into API documentation with actual

and concrete input and output values. The architecture of Docio is shown

in Figure 2.1.

Figure 2.1: The architecture of Docio [2].

Recommending source code examples by submitting queries against API

calls was also proposed to help both API developers [53] and users [54, 55].

34

2.5. Program Comprehension

In addition, some work has focused on improving the format in which code

examples are viewed and read by API users [3]. This was achieved by nest-

ing textual explanations linked to specific code elements within the usage

example. The rationale behind the implementation of this documentation

format (Casdoc) is that the plain text explanations that usually accompany

the code examples are as necessary to API users as the code itself. However,

writing explanations that are brief but comprehensive is a tricky balancing

act for API developers. An example of a code snippet generated using this

documentation format is shown in Figure 2.2.

Figure 2.2: Casdoc [3] document, with (1) block, (2) anchors to additional
explanations, (3) pop-up annotations, (4) navigation aids, and
(5) injected API documentation.

2.5 Program Comprehension

Code comprehension can be defined as the activity through which software

engineers understand how a software system or a part of it works [37]. This

activity involves developing mental models of the software’s structure, func-

35

Chapter 2. Background

tionality, behaviour, rationale, and construction [56]. Furthermore, the pro-

cess of comprehending code is highly impacted by several attributes of the

code itself, such as its complexity and readability. Consequently, the major-

ity of existing IDEs incorporate a large number of functionalities to facilitate

code comprehension including references finder, and multiple files view [57].

Another approach that is commonly used to simplify comprehension

of source code is employing visualisation techniques. Several studies have

demonstrated that visualisation approaches, especially in large software sys-

tems, can indeed help developers in many software engineering activities

and in understanding, exploring, and maintaining source code generally

[58, 59, 60]. This is true since code visualisation gives great levels of ab-

straction, viewpoints, and filters that can facilitate the comprehension of

complex software architecture. In addition to understanding software ar-

chitecture, visualising code can be done for many other purposes, such as

seeking knowledge about software evolution and behaviour.

Visualisation techniques can come in many forms; however, the most

predominant ones are those that are either hierarchical or graph-based [60].

Another common type of visualisation that is used to represent software

artefacts in a non-abstract way is the code city metaphor [61, 62]. This visu-

alisation technique is a 3D representation of software components in a city-

like metaphor, where classes are shown as buildings, packages as districts,

and other software metrics, such as size and number of methods, are repre-

sented by the colour and height of the buildings. Unlike other techniques,

the code city metaphor provides developers with a visual representation that

is easier to understand since it uses a familiar concept and is more navigable

[61, 63, 64].

36

2.5. Program Comprehension

2.5.1 Attributes Influencing the Comprehension of Source

Code

A large number of studies investigated the impact of various source code

characteristics on programmers’ comprehension of code. For instance, one of

these characteristics is the use of intermediate variables which are proven to

help comprehend code, especially in cases where they are given meaningful

names [65]. Moreover, certain syntactic structures such as for loops, partic-

ularly those counting down or with unusual bounds, are considerably more

difficult to understand than ifs [66]. Also, different identifier names [67] as

well as naming conventions [68, 69], length [70, 71], and style can improve

code comprehension. For example, using single letters or abbreviations for

identifier names is likely to make the code harder to comprehend compared

to using full short words [72, 70, 71]. Also, developers, particularly novices,

tend to prefer and better understand code that uses the camelCase identifier

style, i.e. firstName, compared to the snake-case style, i.e. first_name

[69]. Some research has found that indentation and style can significantly

influence the comprehensibility of source code. According to Miara et al.

[73], an indentation of two to four spaces is considered optimal for enhanc-

ing code comprehensibility, while six or more spaces may potentially reduce

readability.

Not only can the content and structure of source code influence its un-

derstandability, but some studies have also explored the effects of more

global factors, such as the order of methods and code regularity. For in-

stance, one study showed that a class that conforms to the CLCT (Call-

ing+Connectivity) method ordering strategy, i.e. related methods are grouped

together and within each group, invoking methods come before invoked meth-

ods, tends to require less time to read and comprehend [74]. Similarly, re-

search has found that code regularity; characterised by the repeated use

of the same structures, reduces code complexity, making it easier to under-

37

Chapter 2. Background

stand, even if the code is lengthy or has a higher MCC (McCabe’s Cyclomatic

Complexity) [75]. Lastly, source code linearity,7 which refers to the use of in-

terdependent methods or classes that force programmers to regularly jump

to their definitions, has a significant impact on the programmers’ reading

order and comprehension of code [76]. Also, this study showed that novice

programmers tend to read code more linearly; as natural text, whereas ex-

perts prefer to follow its execution order.

2.5.2 API Code Example Comprehension

There are no comprehension factors that are specific to the source code of

API code examples. All the attributes discussed in Section 2.5.1 and Section

2.3.1 also apply to API code examples. All in all, to boost the comprehensi-

bility of these examples, they should be accompanied by well-structured and

comprehensive documentation. Also, effective API learning requires adding

some precise explanations of the example’s purpose, constraints, anticipated

results, and potential errors.

2.6 Source Code Metrics

“You Cannot Manage What You Cannot Measure.”

- Peter Drucker

One of the aims of this PhD project is to ensure that the API code examples

that are generated from the proposed approaches are of good quality. How-

ever, as mentioned in Section 2.3.1, there are no existing metrics concerning

the quality of API code examples, neither those written manually by API de-

velopers nor generated automatically by tools [43]. As such, it is essential to

shed some light on the standard source code metrics, their measurement, and
7Peitek et al. [76] define source code linearity as how closely the reading order of code

matches its written, top-to-bottom order, without many jumps between different parts of
the code. Further details are provided in Section 2.6.5.

38

2.6. Source Code Metrics

their role in assessing several aspects of software quality, since such metrics

are used in the evaluation phase of this project. In addition, the selection

of the following quality attributes is based on the code characteristics we

target in this research, which we believe are of principal concern for both

API developers (e.g. source code complexity and maintainability) and API

users (e.g. source code size and comprehension).

2.6.1 Size

Program-size oriented metrics are one of the static code metrics and are of-

ten used to measure certain aspects of software development, such as code

complexity, code maintainability, software reliability, and developer produc-

tivity and effort [77]. For example, line of code (LOC), which can also be

referred to as source lines of code (SLOC), is a software metric that is used

to measure the size of a software program by calculating the number of lines

in the program’s source code. There are two main types of the SLOC metric:

physical SLOC, which is commonly defined as the count of all lines in source

code excluding comments and blanks, and logical SLOC, which only com-

putes the lines of the executed statements [78]. Therefore, physical SLOC

tends to be more sensitive to various formatting and style conventions.

2.6.2 Maintainability

Software maintenance is a broad activity that often refers to the processes

of modifying, optimising, correcting, or updating a software product after it

has been launched [79]. On the other hand, software maintainability refers

to the ease with which a software product can be maintained [77]. More-

over, software engineers have long considered software maintenance to be

a challenging task [80], and maintenance expenses usually go beyond the

initial development costs [81]. As such, several code metrics and indicators

have been used to estimate and predict future software maintenance efforts

39

Chapter 2. Background

and costs. For example, the change-proneness and bug-proneness of various

source code components, such as classes and methods, can indicate their

future cost of maintenance [82]. However, the use of these indicators has

been subject to debate, since they are not usually obtainable until after the

software system is released. As a result, other static source-code metrics like

program size (Section 2.6.1) and McCabe Complexity (Section 2.6.3) have

been used to estimate software maintainability.

It is crucial to understand that measuring software maintainability is not

a trivial task, as software engineers cannot always rely on a single metric

to evaluate whether a piece of software is more maintainable than another.

This is because maintainable software has been recognised to have a com-

bination of several characteristics including modifiability, understandability,

and testability [83]. Therefore, the well-known maintainability metric (Main-

tainability Index), proposed by Oman and Hagemeister in 1994 [84], reuses

other existing source-code metrics, namely Halstead Volume, Cyclomatic

Complexity, SLOC, and Comments Ratio, to calculate the overall maintain-

ability of the software. The Maintainability Index (MI) is calculated using

the following formula:

MI = max[0, 100
171− 5.2lnV − 0.23G− 16.2lnL+ 50sin

√
(2.4C)

171
] (2.1)

Where V is the average Halstead Volume per module, G is the average

Cyclomatic Complexity per module, L is the average number of Source Lines

of Code (SLOC) per module, and C is the average number of comment lines

per module [84].

40

2.6. Source Code Metrics

2.6.3 Complexity

Several code complexity metrics have been proposed in the field of soft-

ware engineering to predict certain aspects like software quality, defects, and

understandability. Moreover, the effectiveness of a software project is signif-

icantly impacted by the complexity of its code. As such, measuring it can

bring many significant benefits including reducing the risk of introducing

more bugs, and lowering maintenance costs. One of the well-known metrics

for calculating code complexity is Cyclomatic Complexity [85], which is a

quantitative measure of linear independent paths in the source code. The

fewer and less complex the paths in the code, the lower and better the Cy-

clomatic Complexity. This metric was proposed by Thomas J. McCabe in

1976 and is computed using the Control Flow Graph of the program. Once

the graph is produced, its Cyclomatic Complexity is calculated using the

following formula, where E is the total number of edges, and N is the total

number of nodes:

V (G) = E −N + 2 (2.2)

Another complexity metric introduced by Thomas J. McCabe is Essential

Complexity [85], which measures the structure and quality of the code by

calculating three values: the number of entry points, termination points, and

nondeductible nodes [86]. The program is considered well-structured if the

value of its Essential Complexity is closer to 1. Furthermore, this metric is

often used to estimate the effort required for software maintenance.

One of the well-known metrics for measuring code complexity was de-

veloped by Maurice Halstead [87]. This metric works by breaking down the

source code into a sequence of tokens, which are later identified as operators

or operands. The number of these operators or operands is primarily used

to calculate several measures and aspects of the code complexity, such as

41

Chapter 2. Background

effort, difficulty, vocabulary, and volume [88].

2.6.4 Comprehension

There is a large body of work on finding and analysing the correlations be-

tween existing code complexity metrics and code understandability [89, 90].

As a result, new control-flow complexity metrics like Cognitive Complexity

were introduced to provide fairer relative evaluations of code comprehension,

and to remedy the shortcomings of Cyclomatic Complexity in measuring code

understandability [91]. In addition, Beyer and Fararooy [92] have developed

a complexity measure called DepDegree, which considers the low-level data

flow of the program by calculating the number of dependency edges in its

UseDef graph. The value resulting from this DepDegree measure can be used

as an indicator for code readability and comprehension.

2.6.5 Source Code Linearity

As presented in Section 2.5.1, several source code factors can impact the

way programmers read and comprehend source code. One of these factors

is the linearity of the structure of the source code itself and whether the

developers are likely to read it more sequentially and linearly as a natural

text or not. According to Peitek et al. [76], source code linearity (i) can be

defined using the following metric that measures the order in which source

code is executed:

i =
∆

Λ̄
, where ∆ =

|M |∑
i=1

δmi and Λ̄ =
1

|M |

|M |∑
i=1

λmi , for mi ∈ M

(2.3)

42

2.6. Source Code Metrics

With
λm := length of a method

M := {m | m ∈ P,m is a method)

δm := |Cm −Dm|

Dm := le for e := Declaration(m)

Cm := le for e := Call(m)

le := index(e) for e ∈ P

P := ΩProgram

This formula shows that the linearity i of any piece of code is the relation-

ship between the distances of jumps ∆ and the average length of methods Λ̄.

Furthermore, a method’s m jump δmi is defined by calculating the distance

between the method call (Cm) and the method declaration (Dm)[76]. To

illustrate this, let us consider the code snippet in Listing 2.1 which shows a

use of the Chronology API8 of Joda-Time Java library.

1 public class ChronologyExample {

2 public static String getDateWithChronology(DateTime date ,

Chronology chronology) {

3 DateTime dt = date.withChronology(chronology);

4 int year = dt.getYear ();

5 int month = dt.getMonthOfYear ();

6 int day = dt.getDayOfMonth ();

7 return year + "-" + month + "-" + day;

8 }

9

10 public static void main(String [] args) {

11 DateTime currentDate = new DateTime ();

12 System.out.print("Date in Buddhist chronology: ");

13 System.out.println(getDateWithChronology(currentDate ,

BuddhistChronology.getInstance ()));

14 }

8https://www.joda.org/joda-time/apidocs/org/joda/time/Chronology.html

43

https://www.joda.org/joda-time/apidocs/org/joda/time/Chronology.html

Chapter 2. Background

15 }

Listing 2.1: A semi-linear API code example showing one use of the

Chronology API. Programmers are required to jump once when following

the execution flow.

This API code example is mostly readable in a more linear way as

developers are expected to follow its execution flow starting from line 10

and then jumping up only once from line 13 to line 2 where the method

getDateWithChronology() is declared. As this piece of code contains only

two methods, one is 7 lines and one is 5 lines long, its average method length

Λ̄ is 6. Moreover, the calculated distance of jumps ∆ is 11 since the code

example involves only one jump from a method call to its declaration. There-

fore, the result of dividing this jump distance ∆ by the average of method

lengths Λ̄ is i=1.83, which indicates that this piece of code is relatively linear

since its calculated linearity value is fairly lower.

Furthermore, in line with Peitek et al. [76], linearity scores are best un-

derstood on a relative rather than an absolute scale; lower values indicate

more linear and, therefore, more easily readable code. However, there is

no empirically established threshold distinguishing ‘good’ from ‘bad’ linear-

ity; instead, scores are intended for comparative analysis between different

pieces of code. In addition, the definition of linearity provided in Equation

2.3 does not account for invocation depth or nested method calls, as each

call–declaration pair is treated independently.

2.7 Code Refactoring

Since the implementation of the proposed approaches in this research project

requires reusing some code refactoring techniques to reduce duplication/repet-

itiveness in API code examples and increase their maintainability, this sec-

tion provides a brief overview of software refactoring, its purpose, and its

44

2.7. Code Refactoring

types.

What is Refactoring? The maintenance of a large software system

can be a challenging task for many software developers. However, one of

the ways that can reduce the technical costs of software maintenance is code

refactoring, which is, as defined by Fowler [93], the process of altering soft-

ware code to improve its internal structure without changing its function or

behaviour. In other words, refactoring means cleaning up previously written

software code to make it more efficient and maintainable and to reduce the

possibility of introducing future bugs. Other purposes of code refactoring can

be to improve the design of software, make it easier to read and understand,

and help developers write code more quickly [93, 94].

Code Smells. Code smells are one of the source code surface indications

that developers usually face when working with large and complex systems.

These visible and tangible indications usually correspond to deeper issues in

the underlying code of the systems, that could eventually result in severe

breakdowns. Furthermore, while code smells are not necessarily bugs; they

are often the result of poor programming. As such, they can significantly

decrease software maintainability [95].

Smelly code can be complex, inefficient, and difficult to maintain. Code

smells can therefore be an indicator that refactoring is needed. For example,

duplicated code that has similar structure and functionality but appears

in more than one place is one type of code smell [93]. Such duplication

can be eliminated by the Extract Method refactoring that works by unifying

similar/duplicated bits of code in a single method and then replacing the

exacted code with a call to the newly created method. There are so many

other refactoring techniques that have their own motivation and can fall

under one of the major refactoring categories, such as Composing Methods,

Moving Features Between Objects, and Simplifying Methods [93].

45

Chapter 2. Background

Refactoring in Java. Most of the refactoring techniques that Fowler

extensively explained in his book [93] have been implemented by the Eclipse

Java development tools (JDT)9 for the Java programming language. The

Eclipse JDT is an Eclipse project that provides Java developers with a vari-

ety of plug-ins that support Java code parsing, analysis, validation, manip-

ulation, and several refactoring operations. Moreover, these JDT plug-ins

provide a set of refactoring APIs that can facilitate their extension and reuse

by other plug-in developers [96, 94].

When Not to Refactor? Having described all the benefits that refac-

toring can bring to software systems, it is worth mentioning that code refac-

toring is not advisable in some situations. For example, in the case of messy

code, it could be much more efficient and less costly if it was entirely rewrit-

ten from the start, rather than refactored [93]. Beyond this, the results of a

recent study on object-oriented code refactoring [97] have shown that some

refactoring techniques, such as Extract Method, could have a negative impact

on some software quality attributes, e.g. cohesion and coupling.

2.8 Domain-specific Languages (DSLs)

According to Tomassetti [98], a Domain-specific Language (DSL) is a lan-

guage that is built to fulfil a single and specific purpose. Unlike general-

purpose languages (GPLs) (e.g. Java, Python, and C) that are used to

build all types of applications, a DSL can only solve one type of problem.

One good example of a DSL is the DOT language, which is a language that

is designed to describe graphs. Another example is the Structured Query

Language (SQL), which is used to conduct certain operations (e.g. insert,

select, or delete) on relational databases. Finally, a very successful example

of a DSL is HTML, which is a language that is mainly used to define web

documents.
9https://www.eclipse.org/jdt/

46

https://www.eclipse.org/jdt/

2.8. Domain-specific Languages (DSLs)

Given the wide variety of GPLs and the high development costs that

were involved in building them, one may wonder why a limited and specific

language should be developed and used instead of a generic and strong one.

Below is a summary of common arguments regarding the motivations and

advantages behind the development of DSLs, as outlined by Tomassetti [98]

and Mernik [99].

Analysis. Because DSLs are limited in the type of tasks that they can

conduct, they are easier to analyse compared to GPLs. For instance, one

cannot guarantee the expected full behaviour of a program written in Java

or C, and whether it will terminate or end in an infinite loop, whereas, with

DSLs, it is much easier to analyse such behaviours.

Productivity. DSLs are easy to learn because they are designed to

tackle problems in a particular domain, and many users spend less time and

training in learning them. Moreover, DSLs can enhance the maintenance of

the programs written in them because it is easy for the domain engineers to

understand the specific domain errors produced by the DSL programs and

fix them.

Readability. In certain domains, it is not possible to use a GPL to define

some domain-specific notations and special keywords. One good example

of that is the difficulty in defining an infix mathematical notation using

a programming language. Therefore, using a DSL for such a domain can

increase the readability of the programs written to solve problems in that

domain.

Safety. Unlike GPLs, DSLs can be safer to use because they are less

likely to produce complex errors. This is crucial, particularly when working

with critical systems, such as health or financial software.

Given all of these advantages of using a DSL, it is evident that designing

47

Chapter 2. Background

a DSL in a proper way can be extremely useful and sometimes essential for

certain domains. This is because DSLs give expression capabilities targeted

directly to users’ domains, and this makes them much easier to understand

and use. However, DSLs also present certain weaknesses and challenges,

such as limited applicability to broader or cross-domain tasks, and high

maintenance costs as they evolve to reflect changes in their domain.

DSLs can come in two main forms: external and internal. As defined

by Fowler [100], an external DSL is a standalone language and can have

either its own custom syntax or the syntax of another format such as XML.

On the flip side, an internal DSL is a language that is built on top of an-

other general-purpose host language, such as Java. This means that internal

DSLs are always constrained by the valid syntax and expressions of the host

language. An internal DSL is usually referred to as the stylised use of a

general-purpose language for a domain-specific purpose, or an embedded

DSL. One of the main advantages of internal DSLs is the availability of tools

and features, such as error handling and reporting, because they follow the

same syntax rules of the host language. An internal DSL can easily inte-

grate with the projects that are developed using the same host language

[101]. Moreover, it is evident that using an internal DSL by some domain

users (e.g. programmers) is easier than using an external one since they use

a syntax of a GPL that they are already familiar with [100].

The approaches used to design a DSL can be categorised based on the

type of DSL that one wants to build. A DSL can have different concrete

syntaxes: textual, graphical, or projectional editors. Textual DSLs are the

most common type of DSLs. They are easier to support and can be used

in a variety of contexts [98]. One of the frameworks that is used to develop

tooling for textual DSLs is Xtext10. Starting with the grammar definition,

Xtext generates not only a parser but also a smart editor for the language.

10https://www.eclipse.org/Xtext/

48

https://www.eclipse.org/Xtext/

2.9. Summary

Xtext greatly utilises the Eclipse Modelling Framework (EMF)11. In fact,

the model produced by the Xtext parser is an EMF model. Graphical DSLs,

on the other hand, use nodes and edges in order to express intent.

According to Kolovos [102] and Paige et al. [103], there are three main

components of a DSL, abstract syntax, concrete syntax, and semantics. An

abstract syntax is the expression of the concepts and relationships offered

by the language. The abstract syntax is also known as “metamodel” because

a metamodel is simply a description of the abstract syntax of the language,

and is built using modelling infrastructure [103]. The concrete syntax of a

DSL can be graphical or textual. The former is represented using visual

symbols of the language concepts, and the latter uses textual grammar and

rules. Finally, the semantics of the language are the meanings of its concepts.

To the best of our knowledge, no proposal has been made for building

a DSL to describe an API as intended by its developers in the same way

as the one proposed in this PhD thesis. However, several DSLs have been

proposed as solutions to certain issues in the field of software engineering,

such as defining traceability metamodels [104] and improving the process of

developing and deploying applications in the Cloud [105].

2.9 Summary

Section 2.1 and 2.2 of this chapter introduced the key concepts of Applica-

tion Programming Interfaces (APIs) and explained their role in reuse-based

software engineering. They also highlighted the importance of including code

examples in API documentation to assist developers in understanding and

using APIs effectively. Later, Section 2.3 explored the main characteristics

of effective API code examples and provided a brief overview of the litera-

ture on the notion of code example coverage. Section 2.4 concluded with a

discussion of the available tools and approaches proposed for generating API
11https://projects.eclipse.org/projects/modeling.emf.emf

49

https://projects.eclipse.org/projects/modeling.emf.emf

Chapter 2. Background

code examples and templates for API documentation.

Section 2.5 of this chapter focused on the concept of program compre-

hension and the factors that influence the understandability of source code,

such as its structure and regularity. Furthermore, it examined these com-

prehension attributes specifically in the context of API code examples.

Section 2.6 of this chapter began with an overview of various standard

source code metrics commonly used to measure different aspects of source

code and ensure software quality. Section 2.7 provided a discussion on the

notion of code refactoring, a distinct yet closely related topic to this PhD

research. Finally, the chapter concluded in Section 2.8 with an overview of

domain-specific languages (DSLs) and their advantages.

50

Chapter 3

Analysis and Hypothesis

This chapter summarises existing API documentation approaches reviewed

in Chapter 2 and discusses their limitations. Section 3.1 highlights chal-

lenges identified in related literature, which contributed to formulating the

hypotheses of this work. The research objectives, questions, hypotheses, and

scope are discussed in Sections 3.2, 3.3, 3.4, and 3.5.

3.1 Analysis

One of the most effective resources for learning application programming in-

terfaces (APIs) is code examples, which can take various forms such as short

code snippets, tutorials, or self-contained sample applications [5]. API users

often prefer these code examples over traditional reference documentation,

as they tend to be more informative and practical [8]. However, research

indicates that explicitly documenting APIs with adequate code examples is

not common practice in software development [45, 46, 47] and that not all

software projects provide effective API code examples in their documenta-

tion [18, 48]. Furthermore, writing API code examples that cover most of

an API’s essential functions is a challenging and demanding task for doc-

umentation writers [19, 20]. This difficulty is often due to the significant

51

Chapter 3. Analysis and Hypothesis

amount of code repetition and structural similarity commonly found in API

code examples, making them burdensome to write. These observations help

explain the notable shortage of API code examples in API documentation.

Repetitiveness and duplication are undesirable source code characteris-

tics for API developers. This is because duplicated code, a common type of

code smell, can significantly reduce software maintainability [95]. However,

while eliminating duplication is generally desirable in software development,

it may not always be beneficial when writing API code examples. This is

because repeating certain code, e.g. boilerplate code, can help ensure that

each code example remains self-contained and independent. In turn, this can

enhance the comprehensibility and usability of code examples for API users.

In addition, there may be a general belief that non-linear code (i.e. code

consisting of multiple interdependent methods or classes) is more compre-

hensible, as it is split into shorter methods whose names help abstract and

convey the semantics of the underlying code. However, to the best of our

knowledge, no studies have investigated whether this is true in the context

of API code examples, nor whether the length and linearity of an API code

example impact its understandability.

In general, existing approaches for API code example generation do not

appear to have addressed the shortage of API code examples by directly tack-

ling the underlying challenges of writing them. Nybom et al. [14] highlight

the need for ‘tools to create and maintain API documentation’ and empha-

sise that such tools ‘help API users produce better software more quickly.’

In addition, a substantial body of research has examined API users’ learning

experiences [4], including the role of API documentation as a key resource

[9] and how documentation can be enhanced to provide more guidelines and

support for API users [106]. Other studies have explored API users’ pref-

erences regarding the types of information provided in API documentation

[8, 107]. However, existing literature on API documentation does not appear

52

3.2. Research Objectives

to have thoroughly investigated the preferred characteristics of effective API

code examples from the perspective of API users.

Furthermore, API developers need a set of quality metrics to assess the

effectiveness and coverage of API code examples, whether generated by doc-

umentation tools or manually written. Radevski et al. [43] explicitly state

that ‘if API developers have access to example metrics, they can get feed-

back on the information they provide to potential users’ and suggest an

initial knowledge base for developing an automated API code example met-

rics analysis tool. The availability of such metrics could improve the quality

of code examples in API documentation, thus, positively impacting users’

comprehension of code examples.

The gaps and challenges highlighted above have contributed to defining

the research objectives outlined in Section 3.2 and formulating the research

questions and hypotheses presented in Sections 3.3 and 3.4.

In summary, this thesis aims to provide a middle-ground solution for

the automatic generation of API code examples that are both easy to write

and maintain for API developers and highly comprehensible and easy-to-use

for API users. It also seeks to offer insights that introduce a new layer of

thinking on how API code examples can be well-structured and cover most

of an API’s surface.

3.2 Research Objectives

The first aim of this research is to alleviate the burden for API developers and

documentation writers of writing and maintaining repetitive and lengthy API

code examples for API documentation, thereby empowering them to produce

more API usage examples. The second aim is to ensure that these API code

examples are not only easy to understand but also comprehensively cover the

intended API. This can facilitate API learning and code comprehension for

API users, which in turn can significantly reduce API misuse and increase

53

Chapter 3. Analysis and Hypothesis

the users’ productivity.

The above aims can be subdivided into more specific and detailed objec-

tives as follows:

(RO1) Conduct a controlled user-based experiment to assess the impact of

different source code structures on API users’ performance and com-

prehension of API code examples.

(RO2) Create a dataset of API code examples extracted from multiple open-

source Java projects to help understand and specify the extent and

nature of code repetition in API code examples.

(RO3) Develop a code synthesis prototype for the Java programming language

that enables API developers to write less repetitive, more maintainable,

and comprehensible API code examples for API documentation.

(RO4) Develop a Domain-Specific Language (DSL) that allows API developers

to concisely describe API elements intended for external use.

(RO5) Develop a static code analysis tool, built on top of the proposed DSL,

to help API developers assess the coverage of their API code examples.

3.3 Research Questions

The research questions outlined below have been formulated to achieve the

research objectives (ROs) presented in Section 3.2.

(RQ1) How does the linearity of an API code example impact a programmer’s

performance in terms of correctness and time spent in tasks that require

code comprehension?

(RQ2) What effects does the length of a linear API code example have on its

comprehensibility and reusability?

54

3.3. Research Questions

(RQ3) Does the degree of linearity in a non-linear API example affect its com-

prehensibility and reusability?

Answering the three research questions above will help achieve RO1,

i.e. understanding the impact of certain source code structures (linear-

ity and length) on API users’ comprehension of code. Also, addressing

this question will contribute to motivating the achievement of RO3,

which aims to develop a linear code synthesis prototype.

(RQ4) How often do API code examples contain duplicate or near-duplicate1

code that can be eliminated using the proposed linear code synthesis

approach?

(RQ5) How often are duplicate code fragments repeated across different API

code examples?

Answering RQ4 and RQ5 will help achieve RO2 by creating a dataset

of API code examples and analysing it for code duplication and rep-

etition. Furthermore, understanding the extent and nature of such

code repetition will contribute to both motivating and evaluating the

benefits of RO3, i.e. the development of a linear code synthesiser.

In addition, as explained in Section 2.7, duplicated code may present

challenges for API developers and documentation writers from a main-

tenance perspective; however, duplication in API examples may not be

inherently negative for API users, as repeating the same setup across

multiple scenarios can reinforce consistency and lower the learning

curve. Nonetheless, this topic requires further empirical investigation.

(RQ6) How much reduction of duplicate code is achieved by the proposed lin-

ear code synthesis approach?

RO3 will be achieved by answering this research question, as it will

1Unlike duplicate code, which is identical, near-duplicate code has minor changes like
renamed variables or small edits but keeps the same structure and logic.

55

Chapter 3. Analysis and Hypothesis

help assess the usefulness of the proposed linear code synthesis proto-

type in reducing code repetition and enhancing the maintainability of

API code examples.

(RQ7) How can an intended API be specified in a formal and concise manner?

RO4, i.e. developing an API description language, will be achieved by

addressing this research question.

(RQ8) What insights can be extracted by using a formal intended API speci-

fication and the proposed API code example coverage tool?

Answering this research question will help achieve RO5 by developing

a static code analysis tool to assess the coverage of API code examples

and present the results using user-friendly representations.

3.4 Research Hypothesis

This research has two hypotheses. The first hypothesis (H1) is stated as

follows:

H1: API users prefer code examples to be linear. Conversely, linear API

code examples contain significant code repetition which makes them

challenging for API developers to write and maintain. This gap can be

bridged by a code synthesis tool that automatically transforms non-linear

example code into linear code.

The terms in bold are defined as follows:

Non-linear code: Source code that is less repetitive and more maintain-

able due to its reliance on multiple reusable methods. Such code is typically

read in a non-linear manner by following its execution flow.

Linear code: Source code that is primarily read in a linear order, as it

does not rely on interdependent methods or classes, which would otherwise

56

3.5. Research Scope

force API users to frequently jump between definitions to fully comprehend

the API code example.

The second hypothesis (H2) is stated as follows:

H2: A domain-specific language (DSL) for API specification can enable

API developers to concisely describe the intended surface of their

APIs. An API description written using this DSL can serve as the

foundation for an API code example coverage tool that provides useful

insights specifically tailored to API code example coverage.

The terms in bold are defined as follows:

Intended surface of APIs: Unlike a factual API, which includes all

publicly accessible code elements, an intended API consists only of the API

elements that are deliberately designed for external use. However, it is im-

portant to note that there are different types of API users, such as clients,

extenders, and maintainers, each of whom may have different skills and ex-

pectations. This hypothesis primarily concerns API clients and the quality

of the API code examples written specifically for their use. By contrast, API

extenders or maintainers may require deeper insights into the factual API

and therefore different forms of documentation.

Insights: Coverage information that may be of interest to an API devel-

oper, such as the frequency of different API element usages and the number

of API elements covered by a single API code example.

3.5 Research Scope

As the thesis title indicates, this research focuses on enhancing the learn-

ability and discoverability of object-oriented APIs by proposing automated

techniques for user-centred API documentation. It aims to improve the ex-

periences of both API developers and users in documenting and utilising

APIs. However, as illustrated in Figure 3.1, this research does not examine

57

Chapter 3. Analysis and Hypothesis

all aspects of API documentation but rather focuses on a specific component,

i.e. code examples.

Figure 3.1: A concept map illustrating the thesis’s scope within the field of
Software Engineering.

Moreover, all proposed approaches, the API specification DSL, and the

conducted code comprehension user study, are limited to Java-based APIs

and do not extend to APIs of other general-purpose programming languages.

Supporting multiple programming languages would be a highly unrealistic

task given the time constraints of this research project. However, due to the

syntactic and semantic similarities between Java and other general-purpose

programming languages such as Python and C, the proposed approaches are

expected to be highly portable and adaptable. To fully validate this porta-

bility, confirm the generalisability of the findings, and address any language-

specific challenges that may arise, further investigation and research is re-

quired.

In addition, as shown in Figure 3.1, this research focuses only on three

58

3.5. Research Scope

main aspects of API code examples: their structure, comprehension, and

coverage. Only two structural factors are examined, i.e. the linearity and

length of code examples. Other source code factors, such as code complexity

and formatting, fall outside the scope of this thesis. Furthermore, while

one of the objectives is to assess users’ comprehension of linear and non-

linear API code examples using specific tasks and metrics, it is not within

the research scope to evaluate users’ long-term retention or learning curves

when working with linear API code examples or vice versa.

In the context of API usage, this research considers only direct method

invocations when investigating linearity; transitive invocations across mul-

tiple levels of method calls are not included. Furthermore, hierarchical re-

lationships such as inheritance and polymorphism fall outside the scope of

the proposed approaches. In the intended API specification language, each

concrete type and its members must be explicitly described. Specifying a

superclass does not automatically include its subclasses or their members;

these must also be explicitly declared if needed.

All datasets of API code examples, both newly created and reused in

this research, are derived from open-source Java projects available in public

repositories such as GitHub.2 Proprietary and closed-source APIs also fall

outside the scope of this research project.

Finally, the proposed static code analysis tool, built on top of the pro-

posed API description language, is designed to evaluate API code example

coverage. It is not intended to serve as a general-purpose code quality as-

sessment tool; rather, it focuses only on measuring the extent to which code

examples cover a described intended API.

2https://github.com

59

https://github.com

Chapter 3. Analysis and Hypothesis

3.6 Summary

This chapter provided a comprehensive overview of the research and outlined

its main challenges. After discussing the research background and related

literature in Chapter 2, the analysis of the research problem domain was pre-

sented in Section 3.1. Furthermore, the research objectives were presented

in Section 3.2. Section 3.3 introduced a detailed list of the main research

questions and explained how addressing them aligns with the research ob-

jectives. The research hypotheses were stated in Section 3.4. Finally, the

chapter concluded with a discussion of the research scope in Section 3.5.

60

Chapter 4

Impact of Source Code

Linearity on the Programmers’

Comprehension of API Code

Examples

Working through Application Programming Interface (API) code examples

has been proven to be the most preferred learning strategy for both beginner

and experienced API users [8]. Surprisingly, little is known about how the

different source code structures in these examples affect their comprehensi-

bility and reusability. Furthermore, existing work appears to be focused on

examining the impact of several source code characteristics on comprehen-

sion only in the context of generic software. Therefore, to fill this gap, the

study presented in this chapter focuses specifically on API code examples.

Moreover, unlike existing studies, different source code constructs that il-

lustrate the same API usage and functionality are examined, narrowing the

evaluation focus to the constructs’ impact on comprehension. Also, an addi-

tional concept is assessed, which is the impact of the examined source code

61

Chapter 4. Impact of Source Code Linearity on the Programmers’
Comprehension of API Code Examples

structures on the reusability of API code examples.

In this study, the interest is particularly on exploring the impact of two

source code aspects: the degree of linearity and length. Linear source code

refers to code that can be read primarily in a sequential order without in-

terference from interdependent methods or classes. Considering the absence

of jumps between method definitions in such a code, it is hypothesised that

comprehension may be easier. In addition, linear API code examples may

be easier to reuse and adapt into one’s codebase, as they typically contain

a single self-contained method that can be copied and edited, as opposed to

non-linear code examples that involve multiple methods.

Through this study, the aim is to help API developers understand how to

structure their API code examples more effectively, thereby enhancing the

examples’ comprehensibility and reusability. This, in turn, is expected to

promote the learnability of their APIs.

The work discussed in this chapter has been published under the title:

“Exploring the Impact of Source Code Linearity on the Programmers’ Com-

prehension of API Code Examples” in the 32nd IEEE/ACM International

Conference on Program Comprehension (ICPC), 2024.

All data collected or used in this chapter is available in the replication

package.1

4.1 Methodology

4.1.1 Research Questions

The aim is to answer the following research questions:

RQ1: How does the linearity of an API code example impact a program-

mer’s performance in terms of correctness and time spent in tasks that

require code comprehension?
1Replication package: https://figshare.com/s/52e11ece2f39bac64bcb

62

https://figshare.com/s/52e11ece2f39bac64bcb

4.1. Methodology

RQ2: What effects does the length of a linear API code example2 have on

its comprehensibility and reusability?

RQ3: Does the degree of linearity in a non-linear API example affect its

comprehensibility and reusability?

4.1.2 Study Design

This study was conducted online to allow access to a large and more di-

verse pool of participants. The Gorilla platform [108] was utilised, a widely

used online experiment builder, which provided all the features that were

needed in the study (randomisation, counterbalancing presentation of for-

matted source code, accurate reaction times and integration with participant

recruitment platforms). Java developers were recruited through Prolific3 –

a participant recruitment platform for online research – and assigned to two

main groups: linear vs non-linear (between-subjects) as shown in Figure 4.1.

Each group consisted of two sub-groups that correspond to the treatment

categories shown in Table 4.1. Participant assignment to groups was fully

randomised and balanced, with a 1:1 ratio. Each participant completed two

code comprehension and reuse tasks from the same treatment category (high-

lighted in the same colour in Table 4.1). The order in which each participant

received tasks was also randomised to eliminate any potential order effects.

Ethical approval was obtained before the study was conducted.

4.1.3 Independent Variables

A single independent variable was considered i.e. the source code structure

of API code examples. Two primary source code factors were systemat-

ically varied: code linearity, which is manipulated using the source code

linearity metric (i) proposed by Peitek et al. [76] and explained in Section
2Please refer to (replication package → examples) for some more sample code illustrat-

ing linear and non-linear API code examples.
3https://www.prolific.com

63

https://www.prolific.com

Chapter 4. Impact of Source Code Linearity on the Programmers’
Comprehension of API Code Examples

Figure 4.1: Study design (between-subjects) and the distribution of partici-
pants.

Table 4.1: API code examples and their variants and metric values. Variants
sharing the same colour belong to the same treatment category.

API
Code Example Variant Metrics

LOC Complexity Linearity (i) # Method
Calls

Date Example Linear 31 7 0.00 0
Non-linear 14 1 12.95 5

Chronology Example Linear 25 4 0.00 0
Non-linear 11 1 11.41 4

Duration Example Linear 35 7 0.00 0
Non-linear 21 2 19.47 6

Interval Example Linear 46 7 0.00 0
Non-linear 33 5 19.43 6

2.6.5; and code length, which is varied by adjusting the number of lines

of code (LOC). As shown in Table 4.1, these two factors were combined

to generate four treatment categories: linear-short, linear-long, and non-

linear with varying levels of linearity (i), ranging from (10.00 < i ≤ 15.00)

to (15.00 < i ≤ 20.00). These selected values reflect a diverse spectrum of

64

4.1. Methodology

code linearity.

4.1.4 Dependent Variables

Three dependent variables were measured: reaction time, correctness and

subjective rating.

Time Duration Marking. For the comprehension phase, reaction time was

defined as the amount of time that elapsed between a participant’s initial

view of an API code example and submission of their overall comprehension

rating. Similarly, for the code-reuse phase, reaction time was defined as the

duration between a participant’s first view of the required code-reuse task

(in which they were asked to modify the given API code examples to solve

a specific programming problem and then optimise the code by deleting any

unnecessary statements) and the submission of their solution.

Judging Correctness. Marking consistency was ensured by defining a

set of correctness categories and criteria: correct (A), almost correct (B),

partially correct (C), incorrect (D) and absent (F). Detailed criteria are

available in Appendix A.

4.1.5 Participants

Pilot. To validate the study design, a pilot with four participants (average

age 28.5 ± 9.5; average years of Java programming 3.2 ± 1.5) was conducted.

Based on the results of this pilot study, the number of tasks assigned to each

participant was reduced from four to two to minimise the experiment’s over-

all duration. Participants also noted that the online IDE, Replit,4 used in

the pilot study, had a slow execution time. As a result, it was replaced with

JDoodle5 in the official version of the experiment. However, it is worth not-

ing that, at the time of the study (October 2023), JDoodle, unlike desktop

4https://replit.com
5https://www.jdoodle.com

65

https://replit.com
https://www.jdoodle.com

Chapter 4. Impact of Source Code Linearity on the Programmers’
Comprehension of API Code Examples

IDEs such as Eclipse or IntelliJ IDEA, only provided basic features such as

syntax highlighting, code execution, and code sharing. It did not support ad-

vanced capabilities commonly found in full IDEs, including code navigation,

integrated API documentation lookup, and code completion.

In addition, the wording of the code optimisation question was improved.

The data collected in the pilot study was not used in the final analysis.

Pre-screening survey. In addition to the pre-screeners provided by Pro-

lific, a separate programming knowledge survey was created to assess partic-

ipants’ programming knowledge before participating in the study. This was

essential since recent research revealed that, while recruitment platforms,

such as Prolific, greatly mitigate self-selection bias and some security issues,

their pre-screeners may not always be reliable [109, 110, 111]. Furthermore,

in this survey, the basic knowledge questions and time limit recommended

by Danilova et al. [109] were used. Participants who correctly answered all

the questions within the time limit were manually invited to participate in

the study.

Study. 61 Java developers from 14 countries with varying levels of pro-

gramming experience were recruited. Only 19 (31%) participants stated that

they previously used the Joda-Time Java library (a detailed discussion of

the rationale for selecting this particular Java library is provided in Section

4.1.6). Among them, only eight (42%) said that they used it more than once,

and none of them reported regular usage. The participants’ prior program-

ming experience was assessed using a validated questionnaire that is based

on self-estimates [112, 113]. Each participant was compensated £10 for their

time and effort. Additional information about the participant demographics

is shown in Table 4.2.

66

4.1. Methodology

Table 4.2: Participant demographics.
Category n=61

Student 43 (70%)
Professional Developer 18 (30%)
Programming Experience (in Years) 5.9 ± 3.3
Java Programming Experience (in Years) 3.2 ± 2.2
Familiarity with Joda-Time 19 (31%)
Male 54 (89%)
Female 7 (11%)
Age (in Years) 25.4 ± 6.1

4.1.6 Material

API code examples. We required the code example to be from a Java library

that met our selection criteria, which were as follows:

1. The library must not require prior domain knowledge that would pose

an unnecessary challenge to participants;

2. It should be well-documented; and

3. It should not be so popular that an average Java developer would

already be familiar with it.

All of these criteria were satisfied by the Joda-Time Java library,6 which

addresses a well-known concept, i.e. date and time handling. Furthermore,

the intention was to utilise the code examples available on the Joda-Time

documentation page.6 However, these examples were not complex enough.

Thus, custom code examples were created.

As shown in Table 4.1, four API code examples were developed, each of

which demonstrated a distinct usage of Joda-Time. This variation of ex-

amples was important to minimise the risk of any potential learning effect

arising from within the examples. Then, linear and non-linear versions of

each example were created. Efforts were made to ensure that these examples

appeared as natural as possible by: 1) properly documenting them and 2)
6https://www.joda.org/joda-time/

67

https://www.joda.org/joda-time/

Chapter 4. Impact of Source Code Linearity on the Programmers’
Comprehension of API Code Examples

making them depict real-world scenarios such as data manipulation or meet-

ing scheduling. For the non-linear versions of the examples, the linear version

was refactored by extracting some functionalities into a set of utility meth-

ods and replacing the extracted code with method calls using the extract

method refactoring technique. The extracted utility methods were collected

into a single utility class, i.e. Util.java. This class contained only public

static methods and was imported into the non-linear examples via static

imports, ensuring that no object instantiation was required. For example,

the non-linear version of the DateExample shown in Listing 4.1 is presented in

Listing 4.2.

In addition, examples within the same treatment category were relatively

comparable in terms of length, complexity, degree of linearity, and the num-

ber of utility method calls. For instance, two of the API code examples used

in this study are shown in Listings 4.1 and 4.3. The first example com-

putes future and past dates by skipping weekends starting from a given date

and demonstrates date mutation using Joda-Time. The second example il-

lustrates how to convert a date to the Buddhist calendar and calculate a

period.

1 public class DateExample {

2

3 public static void main(String [] args) {

4 String dateString = "2023 -07 -04";

5 String pattern = "yyyy -MM -dd";

6

7 DateTimeFormatter formatter = DateTimeFormat.forPattern(pattern);

8

9 // Parse the input date string to create a LocalDate object

10 LocalDate date = formatter.parseDateTime(dateString).toLocalDate ()

;

11 LocalDate futureDate = date;

12 int addedDays = 0;

13

14 // Find the future date

15 while (addedDays < 10) {

68

4.1. Methodology

16 futureDate = futureDate.plusDays (1);

17 if (!(futureDate.getDayOfWeek () == DateTimeConstants.SATURDAY

18 || futureDate.getDayOfWeek () == DateTimeConstants.SUNDAY)) {

19 ++ addedDays;

20 }

21 }

22

23 // Find the past date

24 LocalDate pastDate = date;

25 int subtractedDays = 0;

26 while (subtractedDays < 5) {

27 pastDate = pastDate.minusDays (1);

28 if (!(pastDate.getDayOfWeek () == DateTimeConstants.SATURDAY

29 || pastDate.getDayOfWeek () == DateTimeConstants.SUNDAY)) {

30 ++ subtractedDays;

31 }

32 }

33

34 System.out.println("Future date: " + futureDate + "\nPast date: "

+ pastDate);

35

36 // Demonstrate how to mutate a date

37 System.out.println("Mutate the future date: ");

38 DateTime immutable = futureDate.toDateTimeAtStartOfDay ();

39 MutableDateTime mutableDateTime = immutable.toMutableDateTime ();

40 mutableDateTime.setDayOfMonth (3);

41 immutable = mutableDateTime.toDateTime ();

42 System.out.println(immutable);

43 }

44 }

Listing 4.1: A linear code example using the Joda-Time API

(DateExample.java).

1 import static code.comprehension.experiment.tasks.joda.created.

nonlinearExternal.Util.parse;

2 import static code.comprehension.experiment.tasks.joda.created.

nonlinearExternal.Util.add;

3 import static code.comprehension.experiment.tasks.joda.created.

nonlinearExternal.Util.subtract;

4

5 import org.joda.time.DateTime;

69

Chapter 4. Impact of Source Code Linearity on the Programmers’
Comprehension of API Code Examples

6 import org.joda.time.LocalDate;

7 import org.joda.time.MutableDateTime;

8

9 public class DateExample {

10 public static void main(String [] args) {

11

12 String dateString = "2023 -07 -04";

13 String pattern = "yyyy -MM -dd";

14

15 // Parse the input date string to create a LocalDate object

16 LocalDate date = parse(dateString , pattern).toLocalDate ();

17

18 // Find the future date

19 LocalDate futureDate = add(date , 10);

20

21 // Find the past date

22 LocalDate pastDate = subtract(date , 5);

23

24 System.out.println("Future date: " + futureDate + "\nPast date: "

+ pastDate);

25

26 // Demonstrate how to mutate a date

27 System.out.println("Mutate the future date: ");

28 DateTime immutable = futureDate.toDateTimeAtStartOfDay ();

29 MutableDateTime mutableDateTime = immutable.toMutableDateTime ();

30 mutableDateTime.setDayOfMonth (3);

31 immutable = mutableDateTime.toDateTime ();

32 System.out.println(immutable);

33 }

34 }

Listing 4.2: A non-linear code example using the Joda-Time API

(DateExample.java).

1 public class ChronologyExample {

2 public static void main(String [] args) {

3 // Create a DateTime object with default chronology i.e. ISO

Chronology

4 DateTime date = new DateTime (2023 , 8, 15, 10, 30, 0, 0);

5 System.out.println("Date in default ISO chronology: " + date);

6

7 // Convert the date to the Buddhist chronology

70

4.1. Methodology

8 DateTime buddhistDate = date.withChronology(BuddhistChronology.

getInstance ());

9 int year = buddhistDate.getYear ();

10 int month = buddhistDate.getMonthOfYear ();

11 int day = buddhistDate.getDayOfMonth ();

12 System.out.println("Date in Buddhist chronology: " + year + "-" +

month + "-" + day);

13

14 // Calculate a period using a date with default chronology and

excluding weekend days

15 System.out.println("Period while skipping weekend days: ");

16 DurationFieldType [] types = { DurationFieldType.years(),

DurationFieldType.months (), DurationFieldType.days() };

17 PeriodType periodType = PeriodType.forFields(types);

18 LocalDate startDate = date.toLocalDate ();

19 int subtractedDays = 0;

20

21 // Loop to subtract an arbitrary number of days (e.g. 450) while

excluding weekend days

22 while (subtractedDays < 450) {

23 startDate = startDate.minusDays (1);

24 int dayOfWeek = startDate.getDayOfWeek ();

25 if (!(dayOfWeek == DateTimeConstants.SATURDAY || dayOfWeek ==

DateTimeConstants.SUNDAY)) {

26 ++ subtractedDays;

27 }

28 }

29

30 // Format and print the period

31 Period period = new Interval(startDate.toDateTimeAtStartOfDay (),

date).toPeriod(periodType);

32 PeriodFormatter formatter = new PeriodFormatterBuilder ()

33 .appendYears ().appendSeparator(" years ")

34 .appendMonths ().appendSeparator(" months ")

35 .appendDays ().appendSeparatorIfFieldsBefore(" days ")

36 .toFormatter ();

37 System.out.println(period.toString(formatter));

38 }

39 }

Listing 4.3: A linear code example using the Joda-Time API

(ChronologyExample.java).

71

Chapter 4. Impact of Source Code Linearity on the Programmers’
Comprehension of API Code Examples

Tasks. Oftentimes, when API users turn to code examples to learn a

new API, they have a specific problem in mind. They are hoping that the

code in the example they are reviewing will be reusable. If this is possible,

they copy and paste the example, then modify its source code by adding

or deleting statements to match their needs [8, 114]. In this study, the aim

was to simulate this behaviour. Therefore, each code-reuse task had two

parts: 1) code modification, in which participants were required to make

changes to address a specific problem; and 2) code optimisation, in which

participants were asked to remove any unnecessary code that did not directly

contribute to their task solution. The tasks7 were generally easy and designed

to be solved with a few edits. Each API code example had a unique task

that remained the same for both versions (i.e. linear and non-linear) of the

example. For instance, the code-reuse task for the API code example shown

in Listing 4.1 was defined as follows:

Code-reuse Task: Once you have reviewed the code below and devel-

oped a thorough understanding of its functionality, please proceed with

the following tasks:

1. Using the Joda-Time Java library, modify the code to retrieve a

future date that is 20 days ahead and a past date that is 10 days

ago while skipping weekend days and Mondays.

2. Identify and remove any unnecessary code from your solution.

Keep only the code parts that directly pertain to your solution.

3. Make a copy of your code solution and paste it back into the survey

system.

7All tasks used in this study are available in the replication package.

72

4.1. Methodology

4.1.7 Experiment Procedure

After obtaining their consent, the participants were asked to complete a

demographics questionnaire. Subsequently, each of them was randomly as-

signed two code examples from the same treatment category. This means

that each participant completed two distinct code-reuse tasks.

Each task was designed to be completed in four sequential parts. The

first was the comprehension part (shown in Figure 4.2), in which participants

were asked to review the example and rate their own understanding. The

next part pertained to instructions, in which participants were given a link

to an online IDE8 that contained a Java project of the example, with Joda-

Time imported and ready to use. Participants were also instructed on how

to download the example if they preferred using their own IDE. The third

part was the code-reuse task (shown in Figure 4.3), in which participants

answered a two-part question (as explained in Section 4.1.6) and pasted

their solution code in a given text box. The final part involved post-task

questions, in which participants were asked to rate how difficult it was to

reuse the code, whether they employed the provided online IDE or their own,

and report any break time (if any was taken).

The time spent on two of the four parts i.e. comprehension time (part 1)

and reuse time (part 3), was only measured. The rationale for separating the

comprehension and reuse of the same code example was to reduce partici-

pants’ use of the ‘as-needed’ program comprehension strategy [115, 116, 117].

4.1.8 Data Analysis

The correctness of responses for each task was manually analysed. First,

the categories mentioned in Section 4.1.4 were converted to numerical values

(correct (A) = 100%, almost correct (B) = 70%, partially correct (C) = 40%;

both incorrect (D) and absent (F) = 0%). The same scale was applied to both

8https://www.jdoodle.com

73

https://www.jdoodle.com

Chapter 4. Impact of Source Code Linearity on the Programmers’
Comprehension of API Code Examples

Figure 4.2: Example of a code comprehension task given to participants.

Figure 4.3: Example of a code reuse task given to participants.

74

4.2. Results and Discussion

parts of the code-reuse task (i.e. code modification and code optimisation).

In the code modification part, participants were required to reason about

a programming problem, adapt the provided code, and produce a working

solution. By contrast, the code optimisation part only required simplify-

ing the code by removing unnecessary statements. Because the first part

demanded considerably greater cognitive effort and problem-solving ability,

it was assigned a higher weight (90%) in the overall task score, while the

second part accounted for only 10%. Responses with an overall score of 60%

or higher were considered correct. This overall correctness threshold ensures

that participants achieve at least 70% in the first part of the task.

When analysing reaction times automatically captured by Gorilla [108],

only correct responses were considered. The Shapiro-Wilk test [118] was used

to assess the normality of reaction times and correctness, as well as Levene’s

test [119] to evaluate variance homogeneity. The findings indicated non-

normality and unequal variances for both correctness and reaction times.

Therefore, to test for statistically significant differences, a non-parametric

test, the Mann–Whitney U test (Wilcoxon rank-sum test), was used with a

significance level of α = 0.05.

4.2 Results and Discussion

As shown in Tables 4.3, 4.4, 4.5 and Figure 4.4, participants generally spent

less time comprehending and reusing linear code examples (both in mean

and median reaction times). This observation suggests that the source code

linearity in an API code example may affect a programmer’s performance.

This influence has a greater impact on comprehension and is statistically

significant when the linear API code example is also short (e.g. date and

chronology examples). Moreover, in terms of reusability, there appears to be

a trend towards significance in two of the API code examples (chronology

and interval examples), as reflected by their moderate p-values of 0.10 and

75

Chapter 4. Impact of Source Code Linearity on the Programmers’
Comprehension of API Code Examples

0.06, respectively. However, the impact on correctness (Mann–Whitney U

test, W = 1690, p = 0.428) and subjective rating (as shown in Figure 4.5)

was not substantial (RQ1).

The Mann–Whitney U test revealed a significant difference in both com-

prehension (W = 125, p = 0.004) and reusability (W = 99, p = 0.000)

between the groups that received linear-short and linear-long API code ex-

amples (RQ2). Similarly, participants spent less time reusing the non-linear

code examples when the linearity value (i) was lower (i < 15.00, Mann–

Whitney U test: W = 68, p = 0.003). Notably, unlike the comparison in

RQ1, this comparison is based on code examples illustrating different API

usage; thus, the significant differences in participants’ performance could be

due to variations in the implemented API functionality and required tasks

(RQ3).

In addition, while some comparisons yielded statistically significant dif-

ferences in comprehension times (e.g., Date and Chronology examples), other

cases showed non-significant results in both the comprehension and reuse

phases of the study. One possible explanation is that the effect of code exam-

ples’ linearity on their comprehensibility and reusability may be influenced

by factors beyond linearity itself, such as familiarity with the API or indi-

vidual problem-solving strategies, which could reduce the sensitivity of the

study’s metrics. Furthermore, the cognitive demands of switching between

code fragments in the non-linear versions may not have been substantial

enough to noticeably affect performance, particularly when the overall task

or code was relatively simple. Thus, the non-significant findings suggest that

while linearity can matter, its impact may be context-dependent rather than

universal.

Overall, the results of this study suggest that API users perform better

and understand API code examples more effectively when they are structured

and presented in a linear order. Also, it may be more beneficial for API

76

4.2. Results and Discussion

developers to avoid making their code examples overly lengthy, as this can

negatively impact their comprehensibility and reusability.

77

C
hapter

4.
Im

pact
of

Source
C

ode
Linearity

on
the

P
rogram

m
ers’

C
om

prehension
of

A
P

I
C

ode
E

xam
ples

Table 4.3: The study results. Variants sharing the same colour belong to the same treatment category. The imbalance in
the number of responses (N) between two variants of the same example is due to our exclusion of responses with inaccurately
reported break times.

API
Code Example Variant N Correctness Comprehension Reuse

Median
Reaction Time p-value∗ Median

Reaction Time p-value∗

Date Example Linear 17 15 (88%) 44s 0.01 6m 11s 0.36Non-linear 13 8 (62%) 1m 38s 7m 14s
Chronology Example Linear 18 10 (56%) 43s 0.03 3m 37s 0.10Non-linear 14 13 (93%) 1m 49s 6m 15s
Duration Example Linear 16 9 (56%) 3m 31s 0.60 16m 18s 0.40Non-linear 12 5 (42%) 2m 17s 24m 59s
Interval Example Linear 14 10 (71%) 1m 14s 0.33 9m 21s 0.06Non-linear 12 9 (75%) 2m 49s 12m 56s

Overall Linear 65 44 (68%) 58s 7m 17s
Non-linear 51 35 (69%) 1m 50s 10m 13s

∗ Mann–Whitney U test.

78

4.3. Threats to Validity

Table 4.4: Study results for the linear API code examples.

API
Code Example Variant N Correctness Comprehension Reuse

Median
Reaction Time

Median
Reaction Time

Date Example Linear 17 15 (88%) 44s 6m 11s
Chronology Example Linear 18 10 (56%) 43s 3m 37s
Duration Example Linear 16 9 (56%) 3m 31s 16m 18s
Interval Example Linear 14 10 (71%) 1m 14s 9m 21s

Overall Linear 65 44 (68%) 58s 7m 17s

Table 4.5: Study results for the non-linear API code examples.

API
Code Example Variant N Correctness Comprehension Reuse

Median
Reaction Time

Median
Reaction Time

Date Example Non-linear 13 8 (62%) 1m 38s 7m 14s
Chronology Example Non-linear 14 13 (93%) 1m 49s 6m 15s
Duration Example Non-linear 12 5 (42%) 2m 17s 24m 59s
Interval Example Non-linear 12 9 (75%) 2m 49s 12m 56s

Overall Non-linear 51 35 (69%) 1m 50s 10m 13s

4.3 Threats to Validity

A number of validity threats may have arisen from decisions made during

the design and implementation of the user study discussed in this chapter.

The following sections outline these threats and describe the steps taken to

minimise them.

4.3.1 Construct Validity

To mitigate construct validity threats, specific metrics were used to ma-

nipulate the independent variables. Several API code examples and tasks

were created to reflect common real-world programming scenarios, such as

duration calculations and date/time manipulations. Additionally, a consis-

tent correctness evaluation was followed. However, since the experiment was

79

Chapter 4. Impact of Source Code Linearity on the Programmers’
Comprehension of API Code Examples

Chronology Example

Date Example

Duration Example

Interval Example

0 2 4 6 8

Time [in minutes]

Linear Non−Linear

(a) Comprehension time

Chronology Example

Date Example

Duration Example

Interval Example

0 20 40 60 80

Time [in minutes]

Linear Non−Linear

(b) Reuse time

Figure 4.4: The time spent on (a) comprehending, and (b) reusing the API
code examples used in the study. Each boxplot represents the responses for
one version (linear or non-linear) of a single example.

80

4.3. Threats to Validity

Linear
N

on−
Linear

Chr
on

olo
gy

 E
xa

m
ple

Dat
e

Exa
m

ple

Dur
at

ion
 E

xa
m

ple

In
te

rv
al

Exa
m

ple

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
ar

tic
ip

an
t R

es
po

ns
es

 (
%

)

Very poor Poor Average Good Excellent

(a) Comprehension Ratings

Linear
N

on−
Linear

Chr
on

olo
gy

 E
xa

m
ple

Dat
e

Exa
m

ple

Dur
at

ion
 E

xa
m

ple

In
te

rv
al

Exa
m

ple

0%

20%

40%

60%

0%

20%

40%

60%

P
ar

tic
ip

an
t R

es
po

ns
es

 (
%

)

Very difficult Difficult Neutral Easy Very easy

(b) Reusability Difficulty Ratings

Figure 4.5: Participants’ subjective ratings of API code example compre-
hension (a) and reusability difficulty (b).

81

Chapter 4. Impact of Source Code Linearity on the Programmers’
Comprehension of API Code Examples

conducted online, there was limited control over some participants’ activ-

ities. To address this, participants were asked to self-report break times,

which were subtracted from the time spent on solving the task, and disclose

whether they used their own IDEs. While this approach provided insights

into participants’ behaviour, it was not entirely conclusive.

In addition, the weighting scheme of 90% for code modification and 10%

for code optimisation was chosen based on the anticipated cognitive effort

required for each part of the code-reuse task. However, this choice is subjec-

tive, and alternative weighting schemes could potentially affect the overall

correctness scores and, consequently, the significance of the findings. A more

comprehensive evaluation would require additional statistical testing.

4.3.2 Internal Validity

Internal validity threats in this study primarily included selection bias and

learning effects. These threats were reduced by randomly assigning partici-

pants to treatment groups and randomising the order in which they viewed

tasks. In addition, a validated programming experience questionnaire was

administered; and the participants were also pre-screened for their program-

ming knowledge.

4.3.3 External Validity

One potential threat to external validity was the study’s limited scope. This

study focused solely on the API of one Java library and included only a

few code examples. Also, 70% of the participants were students, which

limited the generalisability of the study’s findings. Moreover, the study’s

virtual setting and the use of an online IDE, which lacks features such as

auto-completion and error checking, may not fully reflect the conditions of a

traditional coding environment. Furthermore, participants who worked with

non-linear API code examples, in particular, and used the provided online

82

4.4. Summary

IDE rather than their own full-featured IDE, may have found it more difficult

to navigate between different parts of the code, as JDoodle did not support

advanced code navigation capabilities at the time of the study. However,

study data indicated that the proportions of participants who used their

own IDEs in both main study groups (linear and non-linear) were relatively

similar; therefore, the potential impact of this threat on the study’s results

was likely minimal.

4.4 Summary

The first part of this chapter described the methodology used to conduct a

controlled user study aimed at exploring the impact of two main source code

aspects: code linearity and length, on the comprehensibility and reusability

of API code examples. It then provided an overview of the study procedure,

including the steps and instructions followed by the participants during the

study. This section concluded with a brief presentation of the key data

analysis decisions and the statistical tests utilised to obtain the study results.

The second part of this chapter discussed the study results and concluded

by addressing the main threats to the validity of the acquired results and

the measures taken to mitigate them.

83

Chapter 5

Linear API Usage Example

Synthesis

As explained in Chapter 4, API users tend to prefer linear API code exam-

ples, as they are generally easier to reuse and comprehend. However, such

examples can be tedious to write and maintain for API developers, as they

often contain repetitive code and structural patterns. Therefore, the linear

code synthesiser proposed in this chapter aims at helping API developers

with writing and maintaining less repetitive and more maintainable code ex-

amples while also keeping the examples linear and thus easy to follow for API

users. It is implemented in a prototype for the Java programming language.

It automatically synthesises linear API code examples from less repetitive

and more maintainable versions by refactoring and inlining reusable meth-

ods.

The work discussed in this chapter has been published under the titles:

“Towards Generating Maintainable and Comprehensible API Code Exam-

ples” in the IEEE International Conference on Software Analysis, Evolution

and Reengineering (SANER), 2024, and “Synthesising Linear API Usage Ex-

amples for API Documentation” in the 38th IEEE International Conference

on Software Maintenance and Evolution (ICSME), 2022.

84

5.1. Linear Code Synthesiser’s Features

All implementation code, data, results, and R scripts discussed or used

in this chapter are available in the replication package.1

5.1 Linear Code Synthesiser’s Features

To better illustrate the proposed Synthesis approach, let us consider the

two real-world code examples shown in Listings 5.1 and 5.2. These two

code snippets are extracted from the quickstart Java examples of the open-

source Vonage Voice API2 and are available on GitHub [120]. This API

provides a simple means of constructing and manipulating cloud-based voice

applications. For example, the code snippet in Listing 5.1 demonstrates

to API users how to send dual-tone multi-frequency (DTMF) tones to an

active call, and the example in Listing 5.2 shows how to play a text-to-speech

message to a specified phone call.

1 final String ANSWER_URL = "https://nexmo-community.../long-tts.json";

2 CallEvent call = client

3 .getVoiceClient ()

4 .createCall(new Call(TO_NUMBER ,VONAGE_NUMBER ,ANSWER_URL));

5

6 Thread.sleep(20000);

7

8 final String UUID = call.getUuid ();

9 final String DIGITS = "332393";

10 client.getVoiceClient ().sendDtmf(UUID, DIGITS);

Listing 5.1: Vonage API code example (1) - SendDtmfToCall.java

1 final String ANSWER_URL = "https://nexmo-community.../silent-loop.json";

2 CallEvent call = client

3 .getVoiceClient ()

4 .createCall(new Call(TO_NUMBER , VONAGE_NUMBER , ANSWER_URL));

5

6 Thread.sleep(5000);

7

1Replication package: https://figshare.com/s/ac8128c17420fa9c5d2e
2https://www.vonage.co.uk/communications-apis/

85

https://figshare.com/s/ac8128c17420fa9c5d2e
https://www.vonage.co.uk/communications-apis/

Chapter 5. Linear API Usage Example Synthesis

8 final String UUID = call.getUuid ();

9 final String TEXT = "Hello ... ";

10 client.getVoiceClient ().startTalk(UUID, TEXT, var);

Listing 5.2: Vonage API code example (2) - SendTalkToCall.java

While the above code snippets illustrate two distinct API usages, they

are very similar in structure and contain duplicate code. The only code

statements that differ are those highlighted in the same colour in both ex-

amples.3 Duplicated code can present several challenges in the context of

software maintenance and evolution [121, 122]. Furthermore, the process

of manually writing such repetitive usage examples can be a laborious task

for API developers, especially when dealing with large APIs. Thus, moving

repetitive code to a set of reusable/utility methods (e.g. createCallEvent

method in Listing 5.3) that can be invoked as needed would be less repetitive

and more maintainable.

1 public void createCallEvent(String URL , long threadMillis , String

string , boolean isTalk) {

2 final String ANSWER_URL = URL;

3 CallEvent call = client

4 .getVoiceClient ()

5 .createCall(new Call(TO_NUMBER , VONAGE_NUMBER , ANSWER_URL)

);

6

7 Thread.sleep(threadMillis);

8

9 final String UUID = call.getUuid ();

10 final String STRING = string;

11

12 if (isTalk) {

13 client.getVoiceClient ().startTalk(UUID , STRING ,

TextToSpeechLanguage.AMERICAN_ENGLISH);

14 } else {

15 client.getVoiceClient ().sendDtmf(UUID , STRING);

16 }

3Similar code also appears in further examples that show other different usages of the
Vonage Voice API [120], such as muting or transferring a call.

86

5.1. Linear Code Synthesiser’s Features

17 }

Listing 5.3: Utility method - Vonage API.

Making use of utility methods when writing API code examples can im-

prove their maintainability and make them more modular and reusable; how-

ever, following and understanding such code examples might not be straight-

forward for API users, particularly newcomers. This is because API users

will frequently need to jump between different utility method definitions to

fully comprehend the illustrated API usage. In addition, users will have to

copy and paste multiple methods (instead of a single, linear, self-contained

snippet) to adapt the whole API usage into their codebases. Also, as dis-

cussed in Section 2.6.3, an increase in the number of independent paths,

such as method calls, leads to higher code complexity, as measured by the

Cyclomatic Complexity metric. Thus, as assessed in Chapter 4, the number

of method calls or jumps that API users make has a direct impact on their

comprehension and reuse of a given code example. Although linearising code

involves inlining utility methods and can reduce modularity, this approach

reflects the linear code principle, which favours code examples that can be

read sequentially and reused without navigating between separate method

definitions.

The objective of the proposed linear code synthesiser is to empower API

developers to minimise the amount of repetition when writing API usage

examples by allowing them to encapsulate shared behaviours into modular

and reusable utility methods, and then automatically refactor and inline the

calls to these utility methods to produce simple, linear and clean API code

examples for API users.

The linear code synthesiser comes in the form of an Eclipse plug-in to

facilitate its use. As described in detail in Algorithm 1, this synthesiser takes

as input a single non-linear API code example, then, as shown in Figure 5.1,

the code example (i.e. the Java source code file) passes through four main

87

Chapter 5. Linear API Usage Example Synthesis

stages: (1) code analysis, (2) code transformation, (3) code processing and

(4) code generation. The following explains each of these stages in more

detail.

5.1.1 Code Analysis

The proposed linear code synthesiser is based on the static analysis of anno-

tated source code examples and abstract syntax tree (AST) parsing; thus,

API developers are required to use two main Java annotations when writing

non-linear usage examples, i.e. @Documentation to the methods that demon-

strate a certain API usage and contain non-linear code (line 2 in Listing 5.4)

and @Utility to the methods that encapsulate reusable code intended to be

linearised (e.g. Listing 5.3). These Java annotations assist the static code

analyser in distinguishing between the code segments (methods) that serve

as documentation for specific API usage and those that are reusable and can

be called in many API usage scenarios.

1 public class SendDtmfToCall {

2 @Documentation

3 public static void main(String [] args) {

4 configureLogging ();

5 // ... some code

6 createCallEvent("https ://nexmo -community .../long -tts.json",

20000, "332393", false);

7 }

8 }

Listing 5.4: Documentation method - Vonage API - SendDtmfToCall.java

First, the selected API code example (a single .java file) is parsed to

retrieve its type-resolved AST. Next, this AST is passed to a visitor i.e.

MethodDeclarationVisitor that analyses and marks all the methods that

are annotated with @Documentation or @Utility (e.g. line 3 in Listing 5.4

and line 1 in Listing 5.3), and it locates all the calls to utility methods, along

with their bindings, that are found in the definitions of the marked methods.

88

5.1. Linear Code Synthesiser’s Features

Algorithm 1 Algorithm for linear code synthesis
1: Input: NonLinearJavaSourceCode
2: Output: LinearisedJavaSourceCode
3: Initialize ASTParser, MethodDeclarationVisitor, MethodDeclara-

tionTransformer
4: procedure LineariseJavaSourceCode(NonLinearJavaSourceCode)
5: DocumentationMethods ← ParseJava-

Source(NonLinearJavaSourceCode)
6: UpdatedASTs ← InlineUtilityMeth-

ods(DocumentationMethods)
7: CleanedCode ← PolishLinearCode(UpdatedASTs)
8: LinearisedJavaSourceCode ← GenerateLin-

earCode(CleanedCode)
9: return LinearisedJavaSourceCode

10: end procedure
11: procedure ParseJavaSource(NonLinearJavaSourceCode)
12: Use ASTParser to parse the NonLinearJavaSourceCode to generate

a type-resolved AST.
13: Use MethodDeclarationVisitor to locate methods annotated with

@Documentation.
14: return DocumentationMethods
15: end procedure
16: procedure InlineUtilityMethods(DocumentationMethods)
17: for each docMethod in DocumentationMethods do
18: Traverse the method using MethodDeclarationTransformer to lo-

cate utilityMethodCall annotated with @Utility.
19: for each utilityMethodCall in docMethod do
20: if utilityMethodCall contains nestedUtilityMethodCalls then
21: Inline the nestedUtilityMethodCalls first.
22: end if
23: Inline the utilityMethodCall into the docMethod.
24: end for
25: end for
26: return UpdatedASTs
27: end procedure
28: procedure PolishLinearCode(ASTs)
29: Detect redundant or dead code generated by the inlining process.
30: Eliminate temporary or intermediate variables created during the

refactoring.
31: Update the ASTs.
32: return CleanedCode
33: end procedure
34: procedure GenerateLinearCode(CleanedCode)
35: Remove unnecessary import statements and annotations from

CleanedCode.
36: Generate the final LinearisedJavaSourceCode from CleanedCode.
37: Store LinearisedJavaSourceCode in a separate package.
38: return LinearisedJavaSourceCode
39: end procedure

89

Chapter 5. Linear API Usage Example Synthesis

This Java source code parsing and analysis is done using Eclipse JDT.

Figure 5.1: Linear code synthesiser architecture.

5.1.2 Code Transformation

The linear code synthesis is done by a MethodDeclarationTransformer,

which takes each documentation method found in the received CompilationUnit

and automatically inlines all the calls to utility methods found in its defini-

tion. The transformer works recursively, which means that it programmati-

cally does the following:

1. It traverses the received documentation method.

2. Inlines the first encountered instance of a utility MethodInvocation.

3. Once the inlining is complete, it updates the MethodDeclaration AST

node of the being-processed documentation method.

4. Updates the whole compilation unit since the offset positions of the

next utility invocations (if any exist) have changed as a result of the

newly inserted/inlined code.

90

5.1. Linear Code Synthesiser’s Features

5. It repeats all previous steps for the next encountered utility method

call, but this time on the updated version of the compilation unit.

During step 2, the transformer also checks whether the body of the called

utility method contains any nested calls to other utility methods that need

to be in-lined and processed first. All of these steps are done on a copy of

the original CompilationUnit.

The transformer utilises the refactoring capabilities of Eclipse JDT (i.e.

InlineMethodRefactoring) to inline utility method calls. This inline method

refactoring technique works by replacing a method call with its body. The

rationale for choosing JDT is that it is capable of ensuring that no syntax

errors will result from this code transformation process. For example, if the

definitions of the documentation and utility methods contain variables with

identical names that would clash with each other after the inlining process

is complete, it automatically renames one of them.

In addition, since the transformer reuses one of JDT’s automated refac-

torings, it complies with several constraints imposed by JDT, such as pre-

venting calls to recursive utility methods from being inlined, as this can

result in an infinite loop or a stack overflow error. More on these constraints

is discussed in the following sub-sections.

5.1.3 Code Processor and Generator

The main purpose of the code processor is to polish the resulting linear code

by detecting and eliminating any redundant or dead code (i.e. source code

that is never executed). This is necessary since the inlining process done

by the code transformer can generate some pieces of unreachable code that

would negatively impact the readability of the generated API usage example.

For example, consider inlining the method call in line 6 in Listing 5.4; this

will result in the body of the if-statement in the createCallEvent method

(lines 12–14) in Listing 5.3 being dead since the received boolean value is

91

Chapter 5. Linear API Usage Example Synthesis

‘false’. Similarly, if the passed boolean value were ‘true’, the body of the

else-statement would be unreachable.

Since detecting and eliminating dead code is a common compiler op-

timisation process, the linear code synthesiser utilises the problem reports

noted by JDT’s compiler, which include a rich description of all the standard

Java problems, to retrieve the locations of all dead/unreachable code prob-

lems. Then, to eliminate the code causing these problems, the code processor

replicates the JDT’s implementation of the dead code removal quick-fix and

rewrites the whole AST after the problems are resolved.

To improve the readability of the generated linear usage examples, the

code processor also discards all unnecessary code statements. This is es-

sential because in some cases, JDT’s inline method refactoring may create

temporary/intermediate variables to hold the return value of the inlined

method call when it is assigned to another variable. For example, consider

the following simple getFullName utility method that takes two string pa-

rameters representing a person’s first and last name and returns their full

name:

1 @Utility

2 public static String getFullName(String firstName , String lastName) {

3 String fullName = firstName + " " + lastName;

4 return fullName;

5 }

If the return value of this method is assigned to a variable named myName:

1 String myName = getFullName("John", "Smith");

Then, applying the inline method refactoring to replace the above method

call with the actual body of the method will generate the following:

1 String fullName = "John" + " " + "Smith";

2 String myName = fullName;

The variable fullName in the above code snippet is not needed and can be

eliminated altogether, and the concatenated string can be used directly. This

92

5.1. Linear Code Synthesiser’s Features

removal can make the code more concise and easy to read, especially in more

lengthy and complex API usage examples. Furthermore, this code readability

enhancement can be done by analysing the code example to identify any

variables that are assigned but never used or variables that are used only

once and can be replaced with the value they hold.

Once all documentation methods are inlined and polished, including the

removal of no-longer-needed import statements and annotations, the entire

example is forwarded to a linear code generator (code generation stage in

Figure 5.1) that generates and stores the linear API code example in a sep-

arate package under the source folder of the active Java project.

Another set of real-world API code examples from the collected corpus

of usage examples4, restructured using the proposed linear code synthesis

approach is shown in Listings 5.5 and 5.6.

1 public class DisableDateAsTimestamps {

2 public static void main(String [] args) throws IOException {

3 defaultOutput ();

4 disableDateAsTimestamps ();

5 }

6

7 private static void defaultOutput () throws IOException {

8 Date date = new Date();

9 ObjectMapper om = new ObjectMapper ();

10 String s = om.writeValueAsString(Map.of("myDate", date));

11 System.out.println(s);

12 }

13

14 private static void disableDateAsTimestamps () throws IOException {

15 Date date = new Date();

16 ObjectMapper om = new ObjectMapper ();

17 om.disable(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS);

18 String s = om.writeValueAsString(Map.of("myDate", date));

19 System.out.println(s);

20 }

4This dataset was created from real-world API code examples to evaluate the proposed
approach and is available in the replication package. More details are provided in Section
5.3.

93

https://figshare.com/s/ac8128c17420fa9c5d2e

Chapter 5. Linear API Usage Example Synthesis

21 }

Listing 5.5: Jackson API code example (1) - DisableDateAsTimestamps.java

1 public class DisableFailOnEmptyBeans {

2 public static void main(String [] args) throws IOException {

3 defaultOutput ();

4 disableFailOnEmptyBeans ();

5 }

6

7 private static void defaultOutput () throws IOException {

8 MyEmptyObject myObject = new MyEmptyObject ();

9 ObjectMapper om = new ObjectMapper ();

10 String s = om.writeValueAsString(myObject);

11 System.out.println(s);

12 }

13

14 private static void disableFailOnEmptyBeans () throws IOException {

15 MyEmptyObject myObject = new MyEmptyObject ();

16 ObjectMapper om = new ObjectMapper ();

17 om.disable(SerializationFeature.FAIL_ON_EMPTY_BEANS);

18 String s = om.writeValueAsString(myObject);

19 System.out.println(s);

20 }

21 }

Listing 5.6: Jackson API code example (2) - DisableFailOnEmptyBeans.java

The two examples shown above are from the Jackson Java API5 and are

very similar in both structure and logic, containing duplicated code (i.e.,

lines 9–11 and 16–19 in both Listings 5.5 and 5.6). By applying the linear

code synthesis approach, the duplicated code was extracted into a single

utility method, as shown in Listing 5.7, and the examples were rewritten

and shortened, as presented in Listings 5.8 and 5.9.

1 @Utility

2 public static void serialize(Object value , boolean withfeature ,

SerializationFeature sFeature , boolean withJsonInclude , boolean

withFilter , SimpleFilterProvider filterProvider) throws

JsonProcessingException {

5https://github.com/FasterXML/jackson

94

https://github.com/FasterXML/jackson

5.1. Linear Code Synthesiser’s Features

3 ObjectMapper om = new ObjectMapper ();

4 if (withfeature && sFeature != null) {

5 om.disable(sFeature);

6 }

7 else if (withJsonInclude) {

8 om.setDefaultPropertyInclusion(JsonInclude.Include.NON_DEFAULT);

9 }

10 else if (withFilter) {

11 om.setFilterProvider(filterProvider);

12 }

13 String jsonString = om.writeValueAsString(value);

14 System.out.println("-- after serialization --");

15 System.out.println(jsonString);

16 }

Listing 5.7: Utility method - Jackson API.

1 public class DisableDateAsTimestamps {

2

3 public static void main(String [] args) throws IOException {

4 defaultOutput ();

5 disableDateAsTimestamps ();

6 }

7

8 @Documentation

9 private static void defaultOutput () throws IOException {

10 Date date = new Date();

11 serialize(Map.of("myDate", date), false , null , false , false ,

null);

12

13 }

14

15 @Documentation

16 private static void disableDateAsTimestamps () throws IOException {

17 Date date = new Date();

18 serialize(Map.of("myDate", date), true , SerializationFeature.

WRITE_DATES_AS_TIMESTAMPS , false , false , null);

19

20 }

95

Chapter 5. Linear API Usage Example Synthesis

21 }

Listing 5.8: Rewritten Jackson API code example (1) -

DisableDateAsTimestamps.java

1 public class DisableFailOnEmptyBeans {

2

3 public static void main(String [] args) throws IOException {

4 defaultOutput ();

5 disableFailOnEmptyBeans ();

6 }

7

8 @Documentation

9 private static void defaultOutput () throws IOException {

10 MyEmptyObject myObject = new MyEmptyObject ();

11 serialize(myObject , false , null , false , false , null);

12 }

13

14 @Documentation

15 private static void disableFailOnEmptyBeans () throws IOException {

16 MyEmptyObject myObject = new MyEmptyObject ();

17 serialize(myObject , true , SerializationFeature.

FAIL_ON_EMPTY_BEANS , false , false , null);

18

19 }

20 }

Listing 5.9: Rewritten Jackson API code example (2) -

DisableFailOnEmptyBeans.java

5.2 Synthesiser’s Constraints

When writing or calling utility methods, API developers should keep in mind

a few cases where the inlining and generation of linear code examples may not

be possible due to some constraints imposed by the reused JDT refactoring

technique (i.e. inline method). These cases include inlining recursive meth-

ods (e.g., factorial(n)), which JDT automatically and internally detects

by analysing the selected method body and resolves by aborting the inlining

96

5.3. Evaluation

process, leaving the invocation unchanged and producing the error message

‘Method declaration contains recursive call’. Similarly, nested method invo-

cations (e.g., printSum(calculate(x,y))) and invocations of methods that

have multiple return statements cannot be inlined. This is because inlin-

ing such methods would be complicated or could lead to an infinite inlining

process.

5.3 Evaluation

The linear code synthesiser was evaluated on two aspects: (1) its effectiveness

in reducing repetition in API code examples; and (2) the benefits of the

proposed approach for API developers, assessed by analysing the extent of

duplicate code in the evaluated API code examples. Particularly, the aim

was to answer the following research questions (RQs):

RQ1: How often do API code examples contain duplicate or near-duplicate

code that can be eliminated using the proposed linear code synthesis

approach?

RQ2: How much reduction of duplicate code is achieved by the proposed

linear code synthesis approach?

RQ3: How often are duplicate code fragments repeated across different API

code examples?

To answer these RQs, the five-step evaluation process shown in Figure

5.2 and explained in more detail below was followed.

5.3.1 Data Collection

To evaluate the linear code synthesis approach, a dataset of API code exam-

ples was required. These examples needed to be self-contained, compilable

and grouped based on the Java library to which they belonged. Additionally,

97

Chapter 5. Linear API Usage Example Synthesis

Popularity and Availability of Code Examples Manual and Tool-based Inspection

Duplicate Files, Model Classes, etc Based on the Proposed Synthesis Approach

2. Cleaning

3. Analysis

4. Rewriting

5. Evaluation
Based on Source Code Metrics

1. Collection

Figure 5.2: API code examples collection method.

these examples needed to be explicitly provided or referenced by the devel-

opers of the API to demonstrate certain API usages. This is because the

evaluation aimed at understanding the current state of API code examples

and measuring the amount of code repetition found in them. By doing so,

some insight could be gained into the effort required to create and maintain

such examples, as well as into assessing how the proposed approach could

contribute to mitigating this effort.

Existing code example datasets (e.g. CodeSearchNet[123]), however, did

not meet the evaluation criteria because they were extracted either from

client applications available on public repositories or from online sites, such

as Stack Overflow[49, 124], and not solely from code examples that are specif-

ically written to document an API. Therefore, these datasets were unsuitable,

since the evaluation aimed at exploring the state of API code examples only.

For the same reasons, the code examples extracted from code search en-

gines, such as SearchCode [125], were not used. Therefore, a new evaluation

dataset was built.

To build a suitable dataset, API code examples from several popular

98

5.3. Evaluation

and open-source Java projects available on GitHub [126], as well as other

similar documentation sources were collected. As GitHub contains a large

number of inactive/personal projects, which cannot be an adequate data

source for software engineering studies [127], the library selection and the

example retrieval were based on the following criteria: (1) the popularity

and activity level of the library, (2) the availability of complete/compilable

code examples in its repository and (3) its domain.

The popularity of a library can be measured by the number of stars on its

GitHub repository or the number of artefacts that use it on Maven Central

Repository; therefore, only Java projects with at least 50 stars or those used

by at least 30 other projects were considered. Moreover, to select only the

Java projects likely to be active, only those with a commit within the past

three months (prior to this study) and with at least five contributors were

extracted. The code examples were extracted from three sources: (1) the

official website of the library, (2) the ‘samples’ or ‘examples’ folder found in-

side the library’s source code directory on GitHub or (3) the external usage

tutorials listed in the description of the library’s GitHub page. This en-

sured that the selected libraries were mature and well-established with good

documentation and usage information. Finally, the diversity of the selected

libraries was ensured by targeting different domains, such as database access,

web development, and data processing.

To facilitate the search for GitHub projects and due to the limitations

of GitHub search API [128], such as the limited number of requests and

search results, the GitHub Search (GHS)[129], a recently published and well-

known search engine6 and dataset for mining GitHub repositories, was used.

GHS contains 735,669 repositories written in 10 programming languages and

provides a set of 25 characteristics, such as the number of stars, commits and

contributors and whether the project has a wiki, all of which can be used

6https://seart-ghs.si.usi.ch

99

https://seart-ghs.si.usi.ch

Chapter 5. Linear API Usage Example Synthesis

as search filters. After applying the evaluation selection criteria on GHS,

the resulting projects for any code example folders or tutorial links were

inspected. Finally, 7 Java libraries from different domains were randomly

selected from the resulting corpus. Also, two more standard Java APIs

(i.e. JDBC and Java Applets),7 which are widely recognised as popular Java

APIs and frequently used in existing literature [130, 36], were selected. Some

information and statistics about the selected Java libraries and packages are

summarised in Table 5.1.

7Despite the fact that Java Applets are an obsolete technology, it can still be considered
an extensively documented API.

100

5.3.
E

valuation
Table 5.1: Statistics of the selected Java libraries and packages.

Library Source of Examples Stars Used by # of Examples
(raw)

of Examples
(after cleaning)

≈ Median Example Size
(in LOC)∗

Vonage GitHub 82 - 98 98 29
Jackson GitHub and LogicBig 8.1k 25.4k 179 81 20
JAXB GitHub 165 5.5k 80 49 23
Eclipse Epsilon GitHub - 256 18 16 32
JavaParser GitHub 4.6k 558 29 20 22
Java Applet Oracle Java Documentation - - 20 17 40
JDBC Oracle Java Documentation - - 19 19 113
gRPC GitHub 10.4k 3.9k 56 45 70
PDFBox GitHub 1.9k 646 101 84 86

Total 600 429

∗ Lines of code (LOC).

101

https://github.com/Vonage/vonage-java-code-snippets/tree/master/src/main/java/com/vonage/quickstart
https://github.com/FasterXML/jackson
https://www.logicbig.com/tutorials/misc/jackson.html
https://github.com/eclipse-ee4j/jaxb-ri/tree/master/jaxb-ri/samples
https://github.com/eclipse/epsilon
https://github.com/javaparser/javaparser-visited
https://docs.oracle.com/javase/tutorial/deployment/applet/examplesIndex.html#HelloWorld
https://docs.oracle.com/javase/tutorial/jdbc/basics/gettingstarted.html#step6
https://github.com/grpc/grpc-java
https://github.com/apache/pdfbox/tree/trunk/examples

Chapter 5. Linear API Usage Example Synthesis

5.3.2 Data Cleaning

Through the cleaning process, the aim was to reduce noise in each subset

(Java library) of the dataset and focus the analysis on relevant API usage

examples only. Thus, unnecessary testing code and identical copies, as well

as all the Java source code files that had no behaviour or did not demonstrate

a certain usage of an API were removed. For example, model classes, inter-

faces, package-info files, class files with minimal code (e.g. a toString()

method) and class files that were only created to be parsed or manipulated

were all excluded. Furthermore, since some libraries provided examples in

the form of Java projects, some Java file names were recurrent; thus, re-

naming or labelling such files made them more easily identified. All of these

actions were essential to ensure that the dataset was clean and consistent,

which was important for facilitating the subsequent analysis and evaluation

steps.

5.3.3 Data Analysis and Similarity Detection

In this step, each subset was individually inspected. The aim was to look

for duplicate and near-duplicate code that was similar in structure, and

functionality and could benefit from the proposed synthesis approach. This

means that only the code instances/fragments that might have been copied,

modified and reused in more than one API code example were detected. To

facilitate this similarity detection step, a code similarity detector (JPlag),8

which compares sets of source code files to find similarities between them

(pairwise comparison), was used. JPlag [131, 132] is an open-source token-

based similarity detector for Java and many other programming languages.

It can detect exact and modified code clones at various levels of granularity

and provides a web-based interface for viewing and navigating the generated

results. Moreover, to reduce the probability of getting false positives, a

8https://github.com/jplag/JPlag

102

https://github.com/jplag/JPlag

5.3. Evaluation

similarity threshold of 60% was used, as it is one of JPlag’s cutoff threshold

values that can yield the best results [131]. Experimentation with different

threshold values revealed that high values (e.g. 100%) can yield only exact

copies rather than adapted ones, while those between 70% and 90% can miss

some genuine clones. Also, JPlag’s default minimum token match value for

Java (i.e. 9) was kept. After running JPlag on the selected subset, a manual

inspection of the resulting clones was completed to determine if they could

be refactored and used as input for the proposed linear code synthesiser.

5.3.4 API Code Examples Rewriting

After analysing and inspecting the API code examples for similarities, copies

of those examples containing applicable similarities9 were taken and manu-

ally rewritten based on the structure of the code synthesis approach. This

means that the repetitive/similar code was factored out in a set of reusable/u-

tility methods (in a standalone utility class) which were then called wherever

needed. The required Java annotations (i.e. @Documentation and @Utility)

were also added.

During the rewriting process, the same coding style used in the original

examples was maintained. This is important because once the examples are

linearised again (when passed as input and automatically linearised using

the proposed code synthesiser), they should match the original versions as

closely as possible. However, some examples within the same subset used dif-

ferent coding flavours interchangeably (e.g. creating objects using builders,

factories or direct construction). In such cases, the most dominant coding

style was chosen when similar code was factored out to a utility method, as

long as the code functionality remained unaltered.

9The phrase ‘applicable similarity’ is used to refer to the type of code similarity that
can be eliminated using the API code example synthesis approach.

103

Chapter 5. Linear API Usage Example Synthesis

5.3.5 API Code Examples Evaluation

In this step, the conciseness of the rewritten versions of the examples was

evaluated. This was achieved by comparing the rewritten examples to the

original ones. This comparison was based on computing the relative per-

centage decrease (Formula 5.1) in the non-comment, non-blank lines of code

(LOC) in each API code example. LOC (also known as SLOC) is a com-

mon metric for measuring the size of a software program [78], which was

calculated using cloc,10 an open-source command-line tool for counting the

physical LOC in software projects.

PercentageDecrease =
LOCOriginal −LOC Rewritten

LOCOriginal
(5.1)

This evaluation can indicate the amount of repetition in API code exam-

ples that has been eliminated as a result of applying the API code example

synthesis approach, while still retaining the examples’ functionality.

5.4 Results and Discussion

As discussed in Section 5.3, the evaluation was based on three main research

questions. RQ1 is mainly concerned with identifying the number of API code

examples that include the type of similarity that can be eliminated by the

proposed linear example synthesiser. This means that only the API code

examples with similar code fragments that had been slightly modified by

API developers to adapt and document new usage examples were searched

for. Furthermore, it was also important to notice whether the values of the

code elements that differ between these code fragments can either be passed

as arguments to methods in Java, such as primitive data types and String

10https://github.com/AlDanial/cloc

104

https://github.com/AlDanial/cloc

5.4. Results and Discussion

(more on this in Section 5.5) are controllable using a conditional statement.11

As listed in Table 5.2, four out of the nine scanned Java projects contained

over 40% API code examples with duplicate/near-duplicate code that could

be factored out and reduced using the proposed synthesis approach. The

duplicate code manifested several patterns, such as similar interface imple-

mentation and type instantiation. The mean percentage of such examples

(across all the evaluated Java libraries) is 36.33% and the median percent-

age is 36%. These results show that the percentage of examples containing

applicable similarity varied across the evaluated Java libraries, thus making

it difficult to draw a definitive conclusion about which characteristics make

a library more likely to benefit from the proposed synthesis approach. This

is true since the repetitiveness in code examples is highly impacted by the

coding style/flavour API developers prefer when writing code examples. It

is also worth mentioning that four of the selected Java libraries (Epsilon,

Vonage, PDFBox and JDBC) already contained a set of utility methods12,

13 for some repetitive functionalities, which could indicate API developers’

desire for reducing repetitiveness in API code examples.

Answer to RQ1: The percentages of the API code examples that

contained duplicate code that could be eliminated using the proposed

approach ranged between 18% and 56% in the selected Java libraries.

11As shown in the code example in Section 5.1.
12http://bit.ly/43nwQlO
13http://bit.ly/4kVmGz4

105

http://bit.ly/43nwQlO
http://bit.ly/4kVmGz4

C
hapter

5.
Linear

A
P

I
U

sage
E

xam
ple

Synthesis

Table 5.2: Summary of the evaluation results.

Library % Applicable∗ % Median Decrease
(in LOC)

of Extracted
Utility Methods

of Utility Method Calls
(Total)

Vonage 18 (18%) 15% 9 22
Jackson 29 (35%) 19% 4 34
JAXB 18 (36%) 14% 2 28
Eclipse Epsilon 9 (56%) 26% 3 11
JavaParser 4 (20%) 8% 3 6
Java Applet 8 (47%) 11% 5 28
JDBC 8 (42%) 9% 4 18
gRPC 15 (33%) 3% 4 19
PDFBox 34 (40%) 7% 9 60

∗ Linear examples with repetitive code.

106

5.4. Results and Discussion

For RQ2, the interest was in measuring the decrease in duplicate code

that is achieved by the code synthesis approach. After obtaining all the API

code examples that can benefit from the approach, each subset (i.e. each

Java library set of examples) was inspected to calculate the reduction in

the size of each of its code examples which resulted from applying the code

synthesis approach. As shown in Table 5.2 and illustrated in Figure 5.3,

the percentages of decrease in the LOC of many of the evaluated API code

examples are scattered between 15% and 37% in four of the selected Java

projects (Eclipse Epsilon, JAXB, Vonage and Jackson). Precisely, over 50%

of the evaluated API code examples in three of these Java libraries (Eclipse

Epsilon, Vonage, and Jackson) had their LOC reduced by more than 15%,

while only 33% of the examples in JAXB showed a similar reduction.

Answer to RQ2: The proposed linear code synthesis approach brought

more than a 30% decrease in LOC in five of the nine evaluated Java

projects.

It is not only the amount of reduction of duplicate code in a single code

example that matters but also the frequency of that duplicate code within

the set of examples. In some cases (e.g. code examples in the JDBC subset),

the elimination of some duplicate code fragments resulted in a low amount

of reduction in the size of the examples, but those code fragments were

extensively recurrent across the whole subset. Thus, the aim for RQ3 was to

understand the number of times a single repetitive code fragment is repeated

across the other API code examples within the same set of examples (i.e.

across the API code examples of the same Java library). This information is

important since it can partially indicate the effort the API developers made

and the number of times they changed those code fragments to make them

107

Chapter 5. Linear API Usage Example Synthesis

10

20

30

Eclipse Epsilon JavaParser JDBC

%
 D

ec
re

as
e

in
 L

O
C

(a)

0

10

20

30

gRPC Java Applet JAXB

%
 D

ec
re

as
e

in
 L

O
C

(b)

0

10

20

30

Jackson PDFBox Vonage

%
 D

ec
re

as
e

in
 L

O
C

(c)

Figure 5.3: Distributions of the evaluated API code examples and the per-
centage decrease in their Lines of Code (LOC). Each boxplot aggregates the
API examples of each Java library.

108

5.4. Results and Discussion

fit a new API code example. It could also provide more granular indicators

of the need for these examples to be refactored and made more modular and

maintainable as well as easy to modify when the API evolves over time. This

information can in turn reinforce the significance of the API code example

synthesis approach.

As presented in Table 5.2 (column four) and illustrated in Figure 5.4,

a considerable number of repetitive code fragments (i.e. utility methods)

were extracted from the subsets of API code examples. For example, nine

duplicate code fragments were extracted from Vonage, five from Java Applet

and nine from PDFBox. However, the number of extracted utility methods

does not necessarily indicate that the library example subset contains a large

amount of repetitive code. For example, seven out of the nine extracted

utility methods in Vonage API were only called twice; whereas, in JDBC for

instance, the four extracted utility methods were called six, five, four and

three times respectively. It is also worth mentioning that in some cases, the

large number of calls to a single utility method (e.g. the utility method called

26 times in the Jackson example subset shown in Figure 5.4) is expected since

the utility method encapsulates a main functionality of the library itself (i.e.

serialising an object into a JSON string). In addition, as shown in Figure 5.5,

it seems like there was no clear correlation between the number of extracted

API code examples that contain applicable code similarities and the number

of extracted utility methods.

Answer to RQ3: Overall, a substantial number of duplicate code frag-

ments were recurrent in many of the API code examples subsets.

While no hard rules can be established regarding when to apply the trans-

formation, some tentative guidelines can be drawn. In practice, the decision

may rest with API developers. Based on the results, transformations appear

more beneficial for relatively simple code examples, where linearisation can

109

Chapter 5. Linear API Usage Example Synthesis

improve readability and comprehension. However, when the body of a utility

method is complex and involves multiple invocations, linearising these calls

may reduce readability and increase the overall complexity of the code. In

such cases, preserving the original non-linear structure may be preferable.

Eclipse Epsilon gRPC Jackson Java Applet java.sql JavaParser JAXB PDFBox Vonage

of

 M
et

ho
d

C
al

ls

0
10

20
30

40
50

60

2
5

10

10

2
2

5

4

2
6 2

2
2
2

2

4

2

2

4

5

22
2

2

18

2
2

4

25

9

3

26

4

3

3

14

3

3

2
2

6

4

10

Figure 5.4: The extracted utility methods and their calls stacked by each
Java library. Each stacked bar represents a single utility method and is
labelled with its number of calls.

5.5 Limitations and Observations

Besides the JDT-imposed constraints discussed in Section 5.2, it was found

that the current version of the proposed prototype is not fit for all the types

of code similarity found in the evaluated API code examples, and that further

110

5.5. Limitations and Observations

5 10 15 20 25 30 35

2
3

4
5

6
7

8
9

of API Code Examples

of

 U
til

ity
 M

et
ho

ds

Eclipse Epsilon
gRPC
Jackson
Java Applet
Java Parser
JAXB
JDBC
PDFBox
Vonage

Figure 5.5: A scatter plot showing the relationship between the number of
extracted utility methods and the number of API code examples containing
an applicable code similarity.

extensions are needed to cover these types. The following sections explain

these limitations in more detail and suggest suitable solutions.

5.5.1 Template-based Code Synthesis

The proposed prototype was designed to reduce any type of code repetition.

Additionally, the more condensed examples (i.e. non-linear examples) used

in the proposed approach were intended to be valid Java code, allowing API

developers to benefit from error checking, code completion, and other similar

features. However, due to constraints imposed by the syntax of Java, it was

not possible for the proposed prototype to accommodate all the detected

patterns of code similarity/repetition. For example, if we consider the two

real-world code snippets shown in Listings 5.10 and 5.11, we can see that

111

Chapter 5. Linear API Usage Example Synthesis

they share a very similar pattern of code14 and could benefit from some kind

of encapsulation; however, the elements that differ between them (other than

the strings passed at line 3 in both Listings) are the variable types and names

as well as the method calls at line 4 in both listings.

1 // Create an action when exiting

2 PDActionJavaScript jsAction = new PDActionJavaScript ();

3 jsAction.setAction("app.alert (\"On 'exit' ...\")");

4 annotationActions.setX(jsAction);

Listing 5.10: PDFBox code example (1) - FieldTriggers.java.

1 // Create an action when the field value changes

2 PDActionJavaScript jsAction = new PDActionJavaScript ();

3 jsAction.setAction("app.alert (\"On 'recalculate ' ..\")");

4 fieldActions.setC(jsAction);

Listing 5.11: PDFBox code example (2) - FieldTriggers.java.

These types of code elements can neither be controlled nor passed as

arguments to a utility method; thus, it is not feasible for the proposed syn-

thesis prototype to reduce such repetitive patterns. Therefore, an extension

that allows a template-based linear example code synthesis is required to

address this challenge and reduce this type of code repetition. More details

are provided in Section 7.4.

A list of the evaluated API code examples that contained some patterns

of a template-suitable code similarity is shown in Table 5.3.

5.5.2 Interactive API Usage Example Generation

Another direction for exploration would be to allow API users to interactively

specify some values against which they want to run the API code example

generator. The assumption behind this interactive approach is that having a

set of many pre-generated and static API code examples can make it difficult
14This code pattern appears ten times in the same code example (i.e. FieldTriggers.java

in the PDFBox library example subset). Other types of template-suitable code patterns
from the other evaluated Java libraries are available in the replication package.

112

5.6. Threats to Validity

Table 5.3: Number of API code examples with template-suitable code simi-
larity patterns.

Library # of API Code Examples

Vonage 25 (25%)
Jackson 16 (19%)
JAXB 7 (14%)
Eclipse Epsilon 6 (37%)
JavaParser 4 (20%)
Java Applet 4 (23%)
JDBC 5 (26%)
gRPC 17 (37%)
PDFBox 6 (7%)

for API users to find and reuse the examples that suit their needs. Having

this interactive way of generating examples could facilitate this process, thus

promoting API learnability. Further details are provided in Section 7.4.

5.6 Threats to Validity

Several threats to validity were identified during the evaluation of the pro-

posed linear code synthesis prototype. The following sections discuss these

threats and outline the steps taken to mitigate them.

5.6.1 Construct Validity

One potential threat to the construct validity is the possibility that the cho-

sen similarity detector (JPlag) may have missed some instances of similarity

(false negatives) between the API code examples. To mitigate this threat, a

manual review of the detection results was conducted to identify any other

instances of undetected similarity. Additionally, a common and widely ac-

cepted measure of program size (LOC) was used, which was clearly defined

and consistently applied to measure the size of both original and rewritten

API code examples. Also, the risk of subjective bias and human error was

reduced by using an automated tool to perform the calculation of LOC in

API code examples.

113

Chapter 5. Linear API Usage Example Synthesis

5.6.2 Internal Validity

One potential threat to internal validity arises from inconsistencies in coding

and formatting styles between the two versions of the API code examples (i.e.

original and rewritten), which could significantly influence the program size

metric used in this study. This threat was mitigated by ensuring consistent

coding and formatting styles across both versions of the API code examples.

5.6.3 External Validity

A possible threat to the external validity is the limited diversity of the

dataset. To reduce this validity threat, API code examples were selected

based on specific criteria and different domains in Java were targeted. This

can help to promote the representativeness of the dataset and the general-

isability of the findings. However, to gain more confidence in the generalis-

ability of the results, the linear code synthesiser would benefit from further

evaluation using a larger and more diverse dataset of API code examples.

Additionally, more investigation is required to establish the applicability of

the proposed synthesis approach to programming languages beyond Java.

5.7 Summary

This chapter introduced the main features of the proposed linear code synthe-

sis approach, which aims to address the repetitiveness of API code examples.

Key features, such as code transformation and linear code generation, along

with the technologies used, were presented in Section 5.1 with real-world

API code examples. The main constraints of the proposed approach were

then briefly discussed in Section 5.2. Subsequently, the chapter outlined the

key steps followed during the evaluation process of the proposed synthesis

approach in Section 5.3, followed by a detailed discussion of the evaluation

results in Section 5.4. Finally, the chapter concluded with an overview of

114

5.7. Summary

key observations and limitations, along with suggested solutions to overcome

them, in Section 5.5.

115

Chapter 6

Coverage of API Code

Examples

Since one of the aims of this PhD research is to alleviate the API developers’

burden of writing API code examples for API documentation and empower

them to produce more usage examples that can promote API learnability,

we propose a method for defining what constitutes an intended API, along

with an approach for measuring and reporting the coverage of this intended

API by code examples. In a similar manner to unit test coverage, e.g. Java

code coverage library (JaCoCo),1 this coverage analysis tool measures the

percentage of the API elements (e.g. methods and classes) that are illus-

trated in examples and highlights any instances that are not yet used in any

examples. The main aim of these methods is to help API developers define

their intended APIs using a proposed custom API description language and

to ensure that most of the described API components are demonstrated in

examples. This is particularly crucial because research [43] shows that pro-

ducing a large number of API code examples does not necessarily ensure

high API coverage, as these examples may contain significant repetition as

explained in Section 2.3.2.
1https://www.jacoco.org/jacoco/

116

https://www.jacoco.org/jacoco/

6.1. APIExCov’s Features

All implementation code, data, results, and R scripts discussed or used

in this chapter are in a publicly-available replication package.2

6.1 APIExCov’s Features

As illustrated in Figure 6.1 and described in Algorithm 2, the proposed

API code example coverage approach (APIExCov) requires a structured and

concise description and representation of the intended API. It then needs

a mechanism to verify the intended API specification against the actual

codebase of the library to ensure that the specification is valid and consistent.

Finally, it needs to measure and report coverage. Thus, the implemented

tool takes as input three main components, which API developers wishing

to check their API’s code example coverage are expected to provide. The

first component is the path of the API description, which is a YAML (YAML

Ain’t Markup Language) file containing all the API elements that are part of

the intended API for a Java library or framework. These API elements are

defined using a custom API description language developed specifically for

this purpose. YAML was chosen as the data format for this API description

due to its human readability and popularity as a commonly used format

for writing configuration files and data exchange. The second and third

components required as input for the APIExCov tool are the path to the

source code of the Java library of interest, and the name of the package

that contains the library’s API code examples. Through all of these three

components, API coverage is measured and reported.

After both the API description content and the Java project’s source code

are parsed and analysed, they are passed to another part of the APIExCov

tool which is the API Validator. This important part is responsible for

checking whether all described API elements in the YAML file of the API

description are valid and actually exist in the actual source code of the
2Replication package: https://figshare.com/s/f5eda91fedf91762b21c

117

https://figshare.com/s/f5eda91fedf91762b21c

Chapter 6. Coverage of API Code Examples

Java library of interest. It also ensures that the syntax used to describe

the intended API adheres to the proposed custom API description language.

Furthermore, once the API description is validated, an Intended API Store is

generated and retained in memory to be later analysed and used, along with

the API code examples, by a Coverage Analyser. As a final step, two types of

coverage reports (i.e. textual and visual) are generated from an in-memory

store of all the API code example coverage and detailed usage information.

The following sections explain all of the APIExCov’s components in more

detail.

Java Project

Parsing & Analysis Validation Model & Storage Comparison Reporting

Coverage Reports

!

API
Description
 Analyser

Codebase
Analyser

API
Code Example

 Analyser

API Validator

Intended API
 Store

API
Code Example

 Coverage Store

Coverage
 Analyser

Visual Report
 Generator

Textual Report
 Generator

API Code
 Examples

Figure 6.1: Architecture of API code example coverage tool.

6.1.1 Intended-API Description Language

One of the key challenges in this work is finding a way to define the source

code elements, i.e. types, fields, constructors, and methods, that constitute

118

6.1. APIExCov’s Features

Algorithm 2 Algorithm for measuring and reporting API code example
coverage
1: Input: ProjectCodebase, APIDescription, APICodeExamples
2: Output: Textual and visual coverage reports
3: Initialize intendedAPIStore
4: procedure ValidateAPIElements(APIDescription,ProjectCodebase)
5: Initialize logger
6: for each apiElement in APIDescription do
7: if apiElement syntax is valid according to custom ANTLR4 gram-

mar then
8: if apiElement exists in ProjectCodebase then
9: Add apiElement to intendedAPIStore

10: else
11: Log error: ‘apiElement not found in codebase’ to logger
12: end if
13: else
14: Log syntax error: ‘invalid apiElement name’ to logger
15: end if
16: end for
17: end procedure
18: Initialize apiCodeExampleAnalyser
19: for each code_example in APICodeExamples do
20: apiCodeExampleAnalyser.parseAndAnalyse(code_example)
21: end for
22: Initialize coverageAnalyser
23: Initialize APICodeExampleUsageStore
24: coverageAnalyser.execute(intendedAPIStore, APICodeExamples)
25: for each apiElement in intendedAPIStore do
26: for each code_example in APICodeExamples do
27: if apiElement is found in code_example then
28: APICodeExampleUsageStore.addUsageInfo()
29: end if
30: end for
31: end for
32: Generate a textual report based on APICodeExampleUsageStore
33: Generate a visual report based on APICodeExampleUsageStore

119

Chapter 6. Coverage of API Code Examples

the API as intended by its developers. Moreover, differentiating between

the “factual API", which includes all the publicly accessible parts of a Java

library, and the “intended API", which refers to all the library components

that are specifically created and documented for external use by the library’s

clients, is not a straightforward task as they both can share some character-

istics, e.g. being public. Therefore, a custom API description and specifica-

tion language was developed to enable API developers to define the elements

that comprise their APIs precisely. For this language, ANTLR4 (ANother

Tool for Language Recognition)3 is used as a parser generator. ANTLR is

a robust tool that is widely used for creating parsers and interpreters for

a variety of programming languages and structured text formats [133]. It

allows developers to write a grammar that defines the structure and rules of

their languages. Then, it generates code, i.e. a lexer, parser, and listener,

that is based on the created grammar file (.g4), and that can read, analyse,

and process any text written in the developed language. The reasons behind

choosing ANTLR among the other parser generators available for Java are its

popularity, flexibility in processing the parse tree, intuitive and easy-to-read

grammar, and detailed documentation.

Unlike the internal DSL discussed in Chapter 5, an external DSL was cho-

sen for this proposed API specification language. This decision was made

to avoid polluting the API codebase with secondary, non-functional anno-

tations. The aim was to keep production API source code clean and free

from auxiliary metadata, while still enabling coverage descriptions through

a separate specification artefact. In contrast, the use of an internal DSL

for code generation directives in Chapter 5 was considered appropriate be-

cause these directives are embedded only in API code examples, which are

relatively few in number and are already intended to include comments and

explanatory content. Embedding annotations in examples was therefore re-

3https://www.antlr.org

120

https://www.antlr.org

6.1. APIExCov’s Features

garded as natural and not disruptive, whereas doing so in production API

code would have unnecessarily cluttered the codebase.

In addition, this API specification language offers developers a concise

syntax and a set of features designed to simplify the process of describing

an API, making it less time-consuming. These features include wildcard

matching, pattern matching, and inclusion and exclusion filtering with or

without conditions. Moreover, these patterns and conditions are primarily

used to describe API elements, such as methods and constructors, that can be

difficult to identify and describe by name alone. This is because constructors

and methods in Java are often overloaded and can have complex signatures

that are tedious to specify manually. Java Types on the other hand are

usually easy to refer to directly since their fully qualified names are singular,

unique, and lack repetition.

As an example, Listing 6.1 shows a subset of the API description of the

JSoup4 Java library. This description contains the names of two packages

(lines 2 and 26), one with two types (lines 4 and 18) and one with only one

type (line 28). Names of methods and constructors that belong to each type

are listed under their corresponding keys as list items. Furthermore, several

items contain the asterisk symbol (*) in their names (lines 8, 11, and 14),

which serves as a wildcard, representing any sequence of characters. This

wildcard can appear as a prefix (e.g. *foo), postfix (e.g. foo*), or even

within the item name as an infix (e.g. foo*bar). Also, this asterisk symbol

(*) is used to indicate that all the methods or contractors that belong to a

particular type are included in the API description (e.g. line 20).

In addition, there are three descriptive options to distinguish between

various versions of the same method or constructor (i.e. when an API ele-

ment is overloaded). Firstly, the number of parameters can be represented

using parentheses with comma-separated underscores, each denoting a single

4https://jsoup.org

121

https://jsoup.org

Chapter 6. Coverage of API Code Examples

parameter (e.g. Attribute (_,_,_) at line 6). If the method to be described

has no parameters, the parentheses can be left empty. Alternatively, if all

versions of the same method are to be included in the description, listing

the method name without parentheses is sufficient. Secondly, if the number

of parameters is not enough to distinguish between two versions of the same

API element, the parameter type can be used (e.g. traverse(_,Node) at line

31). Both simple and fully qualified parameter type names are supported.

Finally, parameter types must be placed in the correct order to identify the

right API element version and to distinguish between versions that have the

same parameter types in a different order.

Listing the API element name, as explained above, indicates that it

should be included in the API description. However, to exclude an API

element, the minus sign (−) must be used as a prefix to the element’s name

(e.g. line 13). Moreover, if all the list items, i.e. all API element names, in a

list start with a minus sign, it indicates that all the other API elements that

belong to the described Java type, apart from those explicitly excluded, are

included (e.g. lines 22-25). Another way to include or exclude API elements

is through the use of special JavaScript-based conditions. These conditions

are listed in the API description under a top-level key called conditions,

which can contain a list of nested keys such as excMethods, incMethods,

incConstructors, and excConstructors. The values of these keys are lists

of JavaScript strings that describe the conditions to be applied (e.g., line

17).

1 packages:

2 - name: org.jsoup.nodes

3 types:

4 - name: Attribute

5 constructors:

6 - -Attribute(_,_,_)

7 methods:

8 - get*

122

6.1. APIExCov’s Features

9 - hasDeclaredValue

10 - isBooleanAttribute

11 - set*

12 - toString

13 - -getValidKey

14 - html*

15 conditions:

16 - excMethods:

17 - name === 'html' && accessModifier === 'protected '

18 - name: Element

19 constructors:

20 - "*"

21 methods:

22 - -getElementsMatchingText(Pattern)

23 - -forEachNode

24 - -doClone

25 - -ensureChildNodes

26 - name: org.jsoup.select

27 types:

28 - name: NodeTraversor

29 methods:

30 - filter(_,Elements)

31 - traverse(_,Node)

Listing 6.1: A subset of an API description that defines the API of the Jsoup

Java library.

The conditions explained above are particularly useful in cases where the

order and type of parameters are not sufficient to identify the API element

of interest; thus, additional attributes, such as the access modifier, can be

used. For example, the method described on line 14 (i.e. html*) in Listing

6.1 indicates that all methods whose names start with ‘html’ will be in-

cluded. However, the JavaScript-based condition specified on line 17 refines

this inclusion and excludes the method with the protected access modifier

from the list of included methods. The reasons behind choosing JavaScript

as a format for these conditions are its simplicity, readability, and dynamic

runtime evaluation.

123

Chapter 6. Coverage of API Code Examples

In addition, API specifications written in the intended-API description

language are validated at multiple levels. Since the language is YAML-based,

its structure is enforced by the YAML parser. Semantic inconsistencies are

also checked, for example when a method is declared under an omitted type,

and vice versa. Moreover, invalid API element names that do not exist in

the actual codebase are automatically flagged and reported. Further details

are provided in Section 6.1.3.

Finally, it is important to note that the proposed API description lan-

guage does not enforce a single description style. API developers may choose

to specify either a common supertype or individual concrete types. There is

no automatic expansion to ‘all subtypes’. Moreover, in the current design,

method declarations are associated only with the exact type under which

they are specified. During validation and coverage analysis, a method call

is considered valid if and only if the method is declared in that type itself.

Methods inherited from supertypes are not automatically included.

The API Description Language ANTLR-based Custom Grammar

As presented in Listing 6.2, the API specification language grammar is par-

ticularly concerned with how Java method/constructor signatures should be

described. It first declares the name of the grammar i.e. APIDescription

followed by the start rule, which specifies that a valid description of an API

should consist of a valid methodSignature. This method signature can take

three forms, either a single method name e.g. foo, a method name followed

by empty parentheses e.g. foo(), or a method name followed by parentheses

with an optional parameter list e.g. foo(int, String). The parameterList

rule specifies that the method parameters are a comma-separated list of Java

types or underscore symbols (_), which acts as a placeholder for any Java

type. A valid parameter type is defined by the rule javaType (line 20), which

states that it must be a simpleType followed by an optional array suffix ([]).

124

6.1. APIExCov’s Features

This simpleType is defined to be either a reference type typeName with op-

tional arguments for generic types (e.g. List<T>), or a (primitiveType)

e.g. byte, short, or char.

In addition, this grammar defines generic type arguments, array suffixes,

and type arguments based on their valid syntax in Java. Furthermore, the

rule typeName states that a valid type name can be written in two ways; as a

simple name e.g. String or a fully qualified name e.g. java.lang.String.

This type name, as well as the method/constructor names, can include cap-

ital and small letters, numbers, and certain special characters i.e. an un-

derscore (_) and an asterisk (*). Also, the dollar sign ($) is supported to

allow the definition of nested classes, following Java’s convention where inner

classes are referenced as OuterClass$InnerClass in bytecode.

1 grammar APIDescription;

2 start

3 : methodSignature EOF

4 ;

5 methodSignature

6 :

7 IDENTIFIER

8 |

9 IDENTIFIER '(' ')'

10 |

11 IDENTIFIER '(' parameterList? ')'

12 ;

13 parameterList

14 : parameter (',' parameter)*

15 | parameter (',' parameter)* ','? varargsParameter

16 | varargsParameter

17 ;

18 varargsParameter

19 : javaType '...'

20 ;

21 parameter

22 : javaType

23 | '_'

24 ;

25 javaType

125

Chapter 6. Coverage of API Code Examples

26 : simpleType arraySuffix*

27 ;

28 simpleType

29 : typeName genericTypeArguments?

30 |

31 primitiveType

32 ;

33 primitiveType

34 : 'byte'

35 | 'short '

36 | 'int'

37 | 'long'

38 | 'float '

39 | 'double '

40 | 'boolean '

41 | 'char'

42 ;

43 arraySuffix

44 : '[' ']'

45 ;

46 genericTypeArguments

47 : '<' typeArgument (',' typeArgument)* '>'

48 ;

49 typeArgument

50 : wildcard

51 | javaType

52 ;

53 wildcard

54 : '?'

55 | '? extends ' javaType

56 | '? super ' javaType

57 ;

58 typeName

59 : IDENTIFIER ('.' IDENTIFIER)*

60 ;

61 IDENTIFIER

62 : '-'? [a-zA-Z_0 -9*$]+

63 ;

64 WS

65 : [\t\r\n]+ -> skip

126

6.1. APIExCov’s Features

66 ;

Listing 6.2: ANTLR-based custom grammar for the intended API

description language.

It is important to mention that the development of APIExCov was in-

spired by the work proposed by Monce et al. [1], which is described in more

detail in Section 2.3.2. However, this work is particularly concerned with

the factual API elements, i.e. all the public parts of a Java library. It also

focuses on extracting API uses from client code to understand how APIs are

used in the wild, which can help API maintainers improve their APIs’ tests

and documentation [1, 44]. APIExCov, on the other hand, focuses on the

intended API elements that can be described through the novel API speci-

fication language described above. This is crucial since public elements of a

Java library may represent utility classes and internal functionality that is

not meant to be part of the library’s API. Also, APIExCov only considers

API code examples, making it particularly useful for newly released APIs

that lack client code. Finally, APIExCov provides API developers with a

comprehensive visual coverage report that can be easier to interpret than

textual reports, which are also generated.

6.1.2 Static Analysis and Parsing

Static source code analysis plays a significant role in the implementation of

APIEXCov. To validate a described API, the source code of the given Java

library, as well as the API specification YAML file, must first be parsed and

analysed. To handle YAML, the SnakeYAML5 Java library was used. This

lightweight and popular open-source library provides an API for serialisa-

tion and deserialisation of YAML documents and is ideal for parsing both

simple key-value pairs and complex nested YAML structures. In APIExCov,

SnakeYAML was employed to deserialise the API description YAML content
5https://github.com/snakeyaml/snakeyaml

127

https://github.com/snakeyaml/snakeyaml

Chapter 6. Coverage of API Code Examples

into an in-memory representation (as shown in Figure 6.2) of the intended

API, such as API, JavaPackage, JavaType, etc. This is done through a

YamlReader, which stores the deserialised API object and exposes it through

accessor methods, specifically getApi() and setApi(API api).

To work with the source code of the Java project of interest, the Eclipse

JDT (Java Development Tools)6 was utilised. This Eclipse project offers

a range of plug-ins to parse, analyse, validate, and manipulate Java source

code. Through JDT, the Abstract Syntax Tree (AST) is created for each

individual source file (.java) within the Java project. This process is man-

aged by a custom CodebaseParser, which was implemented to also create a

Map<String, List<CompilationUnit» for storing all parsed Java files. In

this map, the key represents a package name, and the value is a list of all

the parsed CompilationUnit objects, which are AST representations of the

Java source files within the corresponding package. Each CompilationUnit

stored in this map is later accessed and analysed by a CodebaseVisitor,

which uses JDT’s ASTVisitor to traverse each node in the AST. The visitor

extracts and stores detailed information about various Java source code ele-

ments, such as classes, methods, and fields. It also handles nested types and

separately identifies their associated members using a set of helper methods.

6.1.3 Intended-API Description Validation

Before reporting on how the intended API elements are covered and used

in code examples, it is crucial to validate that these elements actually exist,

are syntactically correct, and are properly structured. To achieve this, the

described API elements are passed to an APIValidator which checks them

against the actual elements parsed and extracted from the Java library’s

source code. Moreover, the validator processes each package found in the

API specification YAML file, including its types, methods, constructors, and

6https://www.eclipse.org/jdt/

128

https://www.eclipse.org/jdt/

6.1. APIExCov’s Features

fields, one at a time. It also ensures that types belong to their corresponding

packages and that methods, constructors, and fields are correctly associated

with their respective types. It tracks every step of the validation process and

logs issues it encounters, such as invalid element names or packages with no

specified types, using the logger.info() method.

In addition, it is important to note that the basic file format for the in-

tended API specification is YAML, as it allows the overall API description

to be expressed in a clear and structured way. However, certain API ele-

ments, particularly method and constructor signatures, are more difficult to

describe in YAML due to their parameter lists and modifiers. To address

this, ANTLR was introduced specifically to parse method and constructor

signatures embedded within the YAML specification. In this way, the YAML

parser captures the general structure of the intended API, while the ANTLR

parser complements it by accurately processing the syntactically rich com-

ponents of the specification.

Validating package and type names can be done directly by check-

ing them against the library’s source code; however, validating meth-

ods and constructors requires an additional step to interpret the pat-

terns and wildcards in their names before proceeding with validation.

This is done with the help of a custom PatternInterpreter and a

listener class, MethodSignatureListener, which extends the ANTLR

auto-generated APIDescriptionBaseListener and overrides the method

enterMethodSignature() as shown in Listing 6.3. Each method signature

passed to this method is processed to extract information such as method

name, parameter list, whether the method is excluded, and any patterns

included in its name. The processed method signatures are then saved in a

list of JavaMethod objects.

1 @Override

2 public void enterMethodSignature(APIDescriptionParser.

MethodSignatureContext ctx) {

129

Chapter 6. Coverage of API Code Examples

3

4 if (ctx.IDENTIFIER () == null) {

5 logger.warn("No valid identifier found for method signature.");

6 return;

7 }

8

9 JavaMethod method = new JavaMethod(ctx.IDENTIFIER ().getText ());

10 processExcludedMethods(method);

11

12 if (ctx.parameterList () != null) {

13 List <String > parameters = new ArrayList <>();

14 for (APIDescriptionParser.ParameterContext paramCtx : ctx.

parameterList ().parameter ()) {

15 parameters.add(paramCtx.getText ());

16 }

17 method.setParameters(parameters);

18 }

19

20 processNameContent(ctx.getText (), method);

21 methods.add(method);

22 }

Listing 6.3: Java method for processing and validating method signatures

extracted from the intended API description YAML file.

This list of interpreted method signatures is later processed and checked

against the methods belonging to the same type but are extracted from

the library’s source code. This process involves interpreting wildcards in

the method names using java.util.regex.Pattern to match their equiv-

alents from the source code. Furthermore, a group of helper methods,

such as doParametersMatch(), is used to compare parameter lists against

each other. Once the matched methods are extracted, they are stored in a

Map<MethodDeclaration, Boolean> matchedMethods, where the key rep-

resents the matched method, and the value is a boolean indicating whether

the method should be included in the final IntendedAPIStore. The methods

included in this IntendedAPIStore are those for which the coverage will be

reported.

130

6.1. APIExCov’s Features

In addition, the extracted matched methods are processed for inclusion

or exclusion. As explained in Section 6.1.1, this process is carried out in two

steps. First, the boolean value attached to each extracted method is checked,

and the method is excluded if the value is true. However, if all the extracted

methods belonging to the same Java type must be excluded, this indicates

that every other method belonging to that Java type will be included in the

final IntendedAPIStore. Second, the exclusion is also performed by inspect-

ing the JavaScript conditions extracted from the API description YAML file.

To work with the conditions written in JavaScript and execute them

within Java code, the GraalVM Polyglot API7 was used. This API al-

lows developers to embed, run, and seamlessly pass values between dif-

ferent languages, such as Java, JavaScript, Python, Ruby, and R. Specifi-

cally, two classes of this API were used; org.graalvm.polyglot.Context

to create a context to execute JavaScript and manage bindings, and

org.graalvm.polyglot.Value to hold the result of the evaluated script and

convert the data type from JavaScript to Java.

To illustrate how this API description language validator works, let us

consider the short API description example shown in Listing 6.4. This spec-

ification defines the API of the Apache Commons CLI Java library and

contains four errors (highlighted in red in Listing 6.4). These errors must be

detected by the validator and are as follows:

1. The method parse() at line 6 has only one parameter in its signature.

No such method exists in the Apache Commons CLI codebase. All

overloads of the parse() method in the Parser class have either two,

three, or four parameters.

2. The type ParseExceptions at line 10 has an inaccurate name. The

correct name is ParseException.

7https://www.graalvm.org/latest/reference-manual/polyglot-programming/

131

https://www.graalvm.org/latest/reference-manual/polyglot-programming/

Chapter 6. Coverage of API Code Examples

3. The constructor at line 15 is missing a closing parenthesis in its declara-

tion. This kind of syntax error is automatically detected and reported

by the ANTLR-generated parser.

4. The method hasArg() at line 20 has an incorrect parameter type. It

should be boolean instead of String.

1 packages:

2 - name: org.apache.commons.cli

3 types:

4 - name: Parser

5 methods:

6 - -parse(_)

7 - parse*

8 - processOption

9 - getOptions

10 - name: ParseExceptions

11 constructors:

12 - ParseException(String)

13 - name: MissingOptionException

14 constructors:

15 - MissingOptionException(String

16 methods:

17 - "*"

18 - name: OptionBuilder

19 methods:

20 - -hasArg(String)

Listing 6.4: An example of an API description with errors. This description

defines a subset of the API of the Apache Commons CLI Java library.

When the above API description is processed by the validator, all the

errors it contains are detected and reported as shown in Listing 6.5. The

error message provides all the information needed to identify the exact error

location, and explains exactly what the problem was. It also informs the

user when none of the methods or constructors defined under a particular

Java class matches the expected signatures.

132

6.1. APIExCov’s Features

14:59:56.274 [main] ERROR uk.ac.york.cs.apiexcov.validation.

PatternInterpreter -- Invalid method name OR parameter list does

not match: parse in type: Parser in package: org.apache.commons.

cli

14:59:56.307 [main] ERROR uk.ac.york.cs.apiexcov.validation.

APIValidator -- Invalid type name: ParseExceptions in package: org

.apache.commons.cli

line 1:29 missing ')' at '<EOF >'

14:59:56.380 [main] ERROR uk.ac.york.cs.apiexcov.validation.

PatternInterpreter -- Invalid method name OR parameter list does

not match: hasArg in type: OptionBuilder in package: org.apache.

commons.cli

14:59:56.380 [main] INFO uk.ac.york.cs.apiexcov.validation.

PatternInterpreter -- All methods in type: OptionBuilder in API

package: org.apache.commons.cli in the API description file (.yaml

) were not matched

Listing 6.5: Examples of the API description language validation error

messages.

Finally, once all the API elements described in the API description

YAML file are validated, they are stored in an in-memory representation

of the intended API, i.e. IntendedAPIStore, which contains classes such as

IntendedAPIPackage, IntendedAPIType, etc., as shown in the class diagram

in Figure 6.2. This intended API is later used to detect API usages found

in API code examples. The following sections explain how these API usages

are extracted, how coverage analysis is performed, and what information the

textual and visual reports contain.

6.1.4 Coverage Analysis

This part of APIExCov focuses on analysing API code examples to extract

usage information. It works with two main components: the intended API

store (described in Section 6.1.3) and API code examples provided by API

developers. The first step in identifying usage information is to specify the

type of API element for which coverage is being extracted.

133

Chapter 6. Coverage of API Code Examples

As shown in Figure 6.2, five types of API elements are defined; TYPE,

METHOD, CONSTRUCTOR, FIELD, and ENUM. Based on these element types,

a corresponding set of suitable usage types is defined. For example, an

API element of type METHOD may have usage types such as INVOCATION

or OVERRIDING. Similarly, a TYPE can have several usage types, including

INSTANTIATION, REFERENCE, and INHERITANCE. This classification of API

usages is based on the interactions allowed by the Java programming lan-

guage. It captures the most common ways in which an API user interacts

with the exposed and described API elements.

Furthermore, the usage frequency, such as the number of times a method

is invoked across all code examples, is also captured for each usage type. An-

other important piece of information that is extracted from code examples

is the context in which an API element usage is found. This includes details

such as the Java file name and line number. Providing this kind of informa-

tion is crucial for helping API developers easily locate usage instances.

The coverage analysis process begins with a CoverageAnalyser, which

iterates over each API element in the intended API store (described in Sec-

tion 6.1.3) and extracts all its usage types from the provided set of API code

examples, along with their contexts. This process is performed iteratively;

the analysis starts with an IntendedAPIPackage, processes all its API ele-

ments of type TYPE one at a time, extracts their usage information, and then

moves on to analyse the usage details of all the other API elements that

belong to this type, such as elements of type METHOD or CONSTRUCTOR.

To further illustrate this coverage analysis, let us consider the API code

example in Listing 6.6, which is one of the code examples provided by the

developers of the Jsoup Java library and is available in the library’s GitHub

repository.8 Furthermore, let us assume that we wish to report the cover-

age details of the Jsoup’s class org.jsoup.nodes.Element and its method

8https://github.com/jhy/jsoup

134

https://github.com/jhy/jsoup

6.1. APIExCov’s Features

public String text(), both of which are part of Jsoup’s intended API as

described in the API specification in Listing 6.1, and are used in the given

code example. The usage information that the CoverageAnalyser would

extract from the API code example in Listing 6.6 for the API elements de-

scribed above is shown in Table 6.1.

Table 6.1: Usage information for two API elements, extracted from an API
code example.

API Element Type Usage Type Frequency Context
File Name Line Number

org.jsoup.nodes.Element Type Reference 3 ListLinks.java 23, 33, 38
text() Method Invocation 1 ListLinks.java 39

1 package org.jsoup.examples;

2

3 import org.jsoup.Jsoup;

4 import org.jsoup.helper.Validate;

5 import org.jsoup.nodes.Document;

6 import org.jsoup.nodes.Element;

7 import org.jsoup.select.Elements;

8

9 import java.io.IOException;

10

11 public class ListLinks {

12 public static void main(String [] args) throws IOException {

13 Validate.isTrue(args.length == 1, "usage: supply url to fetch"

);

14 String url = args [0];

15 print("Fetching %s...", url);

16

17 Document doc = Jsoup.connect(url).get();

18 Elements links = doc.select("a[href]");

19 Elements media = doc.select("[src]");

20 Elements imports = doc.select("link[href]");

21

22 print("\nMedia: (%d)", media.size());

23 for (Element src: media) {

24 if (src.nameIs("img"))

25 print(" * %s: <%s> %sx%s (%s)",

26 src.tagName (), src.attr("abs:src"), src.attr("

135

Chapter 6. Coverage of API Code Examples

width"), src.attr("height"),

27 trim(src.attr("alt"), 20));

28 else

29 print(" * %s: <%s>", src.tagName (), src.attr("abs:src"

));

30 }

31

32 print("\nImports: (%d)", imports.size());

33 for (Element link: imports) {

34 print(" * %s <%s> (%s)", link.tagName (), link.attr("abs:

href"), link.attr("rel"));

35 }

36

37 print("\nLinks: (%d)", links.size());

38 for (Element link: links) {

39 print(" * a: <%s> (%s)", link.attr("abs:href"), trim(link

.text(), 35));

40 }

41 }

42

43 private static void print(String msg , Object ... args) {

44 System.out.println(String.format(msg , args));

45 }

46

47 private static String trim(String s, int width) {

48 if (s.length () > width)

49 return s.substring(0, width - 1) + ".";

50 else

51 return s;

52 }

53 }

Listing 6.6: API Code Example from the Jsoup Java Library

(ListLinks.java).

Finally, all the usage information is stored in an in-memory represen-

tation called APICodeExampleStore, which is then used to generate both

textual and visual coverage reports. This is explained in more detail in the

following sections.

136

6.1.
A

P
IE

xC
ov’s

Features

UsageInfo

frequency: int
UsageInfo(usageType: UsageType, frequency: int, contexts: List<ContextInfo>)
setUsageType(usageType: UsageType): void
getFrequency(): int
setFrequency(frequency: int): void
setContexts(contexts: List<ContextInfo>): void
toString(): String

UsageType

INSTANTIATION
REFERENCE
INHERITANCE
IMPLEMENTATION
EXTENSION
INVOCATION
OVERRIDING
READ
WRITE

ContextInfo

fileName: String
lineNumber: int
value: ASTNode
ContextInfo(fileName: String, lineNumber: int, value: ASTNode)
getFileName(): String
setFileName(fileName: String): void
getLineNumber(): int
setLineNumber(lineNumber: int): void
getValue(): ASTNode
setValue(value: ASTNode): void
toString(): String

IntendedAPIPackage

name: String
IntendedAPIPackage()
getName(): String
setName(name: String): void
setTypes(types: List<IntendedAPIType>): void
setEnums(enums: List<IntendedAPIEnum>): void
toString(): String

IntendedAPIType

name: String
fields: List<VariableDeclarationFragment>
methods: List<MethodDeclaration>
constructors: List<MethodDeclaration>
IntendedAPIType()
getName(): String
setName(name: String): void
getFields(): List<VariableDeclarationFragment>
setFields(fields: List<VariableDeclarationFragment>): void
getMethods(): List<MethodDeclaration>
setMethods(methods: List<MethodDeclaration>): void
getConstructors(): List<MethodDeclaration>
setConstructors(constructors: List<MethodDeclaration>): void
toString(): String

IntendedAPIEnum

name: String
constants: List<EnumConstantDeclaration>
IntendedAPIEnum()
getName(): String
setName(name: String): void
getConstants(): List<EnumConstantDeclaration>
setConstants(constants: List<EnumConstantDeclaration>): void
toString(): String

JavaMethod

name: String
excluded: boolean
parameters: List<String>
hasParentheses: boolean
hasAsterisk: boolean
JavaMethod()
JavaMethod(name: String)
getName(): String
setName(name: String): void
isExcluded(): boolean
setExcluded(excluded: boolean): void
getParameters(): List<String>
setParameters(parameters: List<String>): void
hasParentheses(): boolean
setHasParentheses(hasParentheses: boolean): void
hasAsterisk(): boolean
setHasAsterisk(hasAsterisk: boolean): void
toString(): String

APIElementInfo

name: String
belongsTo: String
APIElementInfo()
APIElementInfo(name: String, elementType: APIElementType, belongsTo: String, usages: List<UsageInfo>)
setElementType(elementType: APIElementType): void
setUsages(usages: List<UsageInfo>): void
getName(): String
setName(name: String): void
getBelongsTo(): String
setBelongsTo(belongsTo: String): void
toString(): String

APIElementType

TYPE
METHOD
CONSTRUCTOR
FIELD
ENUM
UNKNOWN

Condition

incMethods: List<String>
excMethods: List<String>
incConstructors: List<String>
excConstructors: List<String>
Condition()
getIncMethods(): List<String>
setIncMethods(incMethods: List<String>): void
getExcMethods(): List<String>
setExcMethods(excMethods: List<String>): void
getIncConstructors(): List<String>
setIncConstructors(incConstructors: List<String>): void
getExcConstructors(): List<String>
setExcConstructors(excConstructors: List<String>): void
toString(): String

JavaPackage

name: String
JavaPackage()
getName(): String
setName(name: String): void
setTypes(types: List<JavaType>): void
setEnums(enums: List<JavaEnum>): void
toString(): String

JavaType

name: String
fields: List<String>
JavaType()
getName(): String
setName(name: String): void
setMethods(methods: List<JavaMethod>): void
setConstructors(constructors: List<JavaMethod>): void
setConditions(conditions: List<Condition>): void
getFields(): List<String>
setFields(fields: List<String>): void
toString(): String

JavaEnum

name: String
constants: List<String>
JavaEnum()
getName(): String
setName(name: String): void
getConstants(): List<String>
setConstants(constants: List<String>): void
toString(): String

API

API()
setPackages(packages: List<JavaPackage>): void
toString(): String

IntendedAPIStore

IntendedAPIStore()
setPackages(packages: List<IntendedAPIPackage>): void
toString(): String

APICodeExampleStore

APICodeExampleStore(elements: List<APIElementInfo>)
setApiElements(apiElements: List<APIElementInfo>): void
toString(): String

usageType

1

getUsageType()

1

contexts

*

getContexts()

*

types
*

getTypes()
*

enums

*

getEnums()

*

elementType

1

getElementType()

1

usages

*

getUsages()

*

types

*

getTypes()

*

enums

*

getEnums()

*

packages

*

getPackages()

*

methods
*

constructors
*

getMethods()
*

getConstructors()
*

conditions

*

getConditions()

*

packages

*

getPackages()

*

apiElements
*

getApiElements()
*

Figure 6.2: Class diagram of the Java classes representing API elements. These classes are used to create an in-memory
representation of the API and its coverage details.

137

Chapter 6. Coverage of API Code Examples

6.1.5 Textual Coverage Report

The proposed API code example coverage tool generates two main coverage

report formats, both as static HTML files. These two formats show the same

coverage information but with different levels of granularity. Furthermore,

providing a textual coverage report was necessary because it provides more

detailed and numerical information than a visual one. It presents information

in a more structured and sorted way, which allows API developers to view

fine-grained coverage details. Also, this kind of presentation includes some

features, such as information filtering, that can facilitate navigation for API

developers.

To explain the features of the generated textual report further, let us

consider the report shown in Figure 6.3, which presents a subset of API code

example coverage information for the Jsoup Java library. This textual report

is presented in a tabular form and consists of six columns. The first column

lists all the API elements for which coverage is being reported. The elements

are sorted by the Java packages and types they belong to and are listed with

indentation to improve the overall report’s readability. Furthermore, special

icons representing each API element type are listed next to the element’s

name. The use of these icons provides API developers with an intuitive

visual cue that helps them immediately distinguish between different types

of API elements. The second column shows the API element type such as

packages, types, or methods.

138

6.1.
A

P
IE

xC
ov’s

Features

Figure 6.3: An example of a textual report showing a subset of API code example coverage information for the Jsoup Java
library.139

Chapter 6. Coverage of API Code Examples

Moreover, to effectively represent API example coverage, two types of

visual percentage indicators are used, as shown in the third column in Figure

6.3. The first indicator is a percentage bar, which is used only for package

and type coverage. The coverage percentage of a package is based on how

many Java types within that package are covered with API code examples,

regardless of the coverage of the other API elements within these types.

Similarly, the coverage percentage of a Java type is determined by the number

of API elements, such as methods, constructors, and fields, within that type

that are covered. For example, if a Java type has ten described methods in

the intended API description and only five of these methods are exercised in

code examples, then its coverage percentage is 50%, assuming no other API

elements within this type are described in the intended API specification.

Furthermore, the second type of visual indicator consists of two symbols

representing the coverage of individual API elements. A red cross mark (✗)

indicates that an element is not covered in API code examples, while a green

check mark (✓) signifies that the element is covered and used at least once

in the examples.

The textual report also shows other important pieces of information, such

as the type of usage and its frequency across all API code examples, in the

fourth and fifth columns, respectively. The last column provides some con-

textual coverage information, such as the file name and line number. These

pieces of information are presented in an expandable list to enhance the

textual report’s overall readability and organisation. Moreover, the textual

report provides a filtering feature with different options, as shown in Fig-

ure 6.4, which enhances the report’s usability and allows API developers to

easily identify coverage issues, locate API elements that need to be covered

with code examples, and navigate lengthy reports.

140

6.1. APIExCov’s Features

Figure 6.4: Coverage filtering options in generated textual reports.

6.1.6 Visual Coverage Report

Unlike the textual version of the API code example coverage report, the

visual report provides greater insight into the overall status of API coverage

at a glance. This is because visual representations make it easier to spot

patterns, outliers, and coverage issues that may not always be apparent in

tables filled with numerical values. Furthermore, research has demonstrated

that visual representations often communicate information more effectively

[134, 135] and more precisely [136, 137] than text. This may be attributed

to the Picture Superiority Effect (PSE),9 as visually presented information

is more likely to be remembered [138, 139]. In addition, visual API coverage

reports can be more engaging and dynamic than static textual reports, since

they allow API developers to navigate and zoom into specific API elements.

However, providing both textual and visual reports offers complementary

insights into the API coverage.

To visually represent API code example coverage information, the city

metaphor visualisation technique was chosen. This form of representation is

navigable, three-dimensional, and intuitive, as it depicts real-world objects,

with software packages represented as districts and classes as buildings. It

was first proposed by Wettel and Lanza [61, 63, 62] to facilitate large-scale

analysis and comprehension of complex software systems. This visualisation

technique has since been employed in various areas in the software engineer-

ing field. For example, it has been utilised to understand system evolution

9A well-known phenomenon in cognitive psychology and neuroscience.

141

Chapter 6. Coverage of API Code Examples

[140] and analyse memory behaviour [141].

To better illustrate API code example coverage, a new visual element,

i.e. a set of connecting lines, was added to the code city visualisation, as

shown in Figure 6.5. Each connecting line represents a single type of API

usage and extends from the Java class or type where the API element is

defined to the API code example in which it is used. Other metrics used in

this visualisation (also shown in Figure 6.5) are explained as follows:

- Height: This metric represents the extent to which a Java type (or class)

and all its associated API elements (e.g. methods) are covered in API

code examples. A taller building indicates that a larger proportion of

the API elements described in the intended API specification under

that Java type are exercised in code examples. If a type has 100%

coverage, its building height is set to 100, which is the upper limit for

all buildings. The lower limit is 0.5, as setting a building’s height to 0

would make it invisible to users.

- Width: A building’s width represents the frequency of API element us-

age. The more frequently a Java type and its associated API elements

appear in code examples, the wider the building. Furthermore, after

calculating the width values for all buildings, they are rescaled to a

fixed range [1–10] using the Min-Max Normalisation technique (shown

in Formula 6.1). This ensures a consistent and relative comparison

between all buildings’ widths.

X ′ = a+
(X −Xmin)(b− a)

Xmax −Xmin
(6.1)

where:

X is the original value

Xmin is the minimum value

142

6.1. APIExCov’s Features

Xmax is the maximum value

X ′ is the normalised value

a is the lower bound of the new range

b is the upper bound of the new range

- Depth: This metric represents the number of API code examples in which

a Java type or its API elements appear. If the usages of an API element

are spread across multiple API code example Java files rather than

being concentrated in just one or a few, the building’s depth is higher.

Depth values are also rescaled to a fixed range [1–10] using Formula

6.1.

- Colour: This metric represents the same information as the height metric

but is used to help instantly differentiate between Java types with no

coverage and those with minimal coverage. Java types with no coverage

are illustrated as short red buildings, while those with minimal coverage

appear as short green buildings. Several shades of green are used to

indicate the percentage of coverage; the darker the shade (and the taller

the building), the higher the coverage. Connecting lines have the same

colour as their source building (Java class).

The metrics explained above apply to all buildings except those in the

‘examples’ district (Java package), which represent API code examples (Java

files). For these buildings, height indicates the diversity of API element usage

in the code example. In other words, the building is taller if the code example

contains usages of many different API elements. In addition, the width and

depth of these buildings are set to fixed values, meaning they do not convey

any additional information. However, the colour metric remains the same as

in the buildings from other districts, as it only reinforces the height metric.

The API coverage visual report also provides additional information, such

as the fully qualified names of Java types and other contextual details, includ-

143

Chapter 6. Coverage of API Code Examples

height metric

depth metricwidth metric

colour metric

connecting lines

Figure 6.5: Code city metaphor metrics for the API code example coverage
visual report.

ing the type of usage and its location (i.e., Java file name and line number).

As shown in Figures 6.6 and 6.7, the former appears when API developers

hover over buildings, and the latter appears when they hover over connecting

lines.

A complete example of an API coverage visual report is shown in Figure

6.8. This report presents the API coverage information for the Jsoup Java

library, based on the API code examples from Jsoup’s GitHub repository.8

The API coverage visual report was implemented in the JavaScript

programming language using the Three.js library.10 This lightweight and

efficient JavaScript library is designed for creating and animating three-

10https://threejs.org

144

https://threejs.org

6.1. APIExCov’s Features

Figure 6.6: Hover information displayed over buildings in the visual API
coverage report.

Figure 6.7: Hover information displayed over connecting lines in the visual
API coverage report.

dimensional graphics. It uses Web Graphics Library (WebGL), which is a

JavaScript API for graphics rendering in a web browser. Moreover, Three.js

consists of several core components, including a scene, camera, and renderer.

145

Chapter 6. Coverage of API Code Examples

The scene acts as a container for all the created three-dimensional objects,

while the camera functions like human vision, determining which parts of the

scene are visible. The renderer, as its name suggests, is responsible for dis-

playing the scene in the web browser from the camera’s perspective. Other

components, such as lights and materials, define the overall look and feel of

the scene and its objects.

In addition, several other modules were used for animation and format-

ting purposes. These include utilities such as OrbitControls,11 TextGeome-

try,12 and FontLoader.13

6.2 Constraints

Effort was made to ensure that the grammar of the proposed API description

language captures a wide range of method signatures. This includes support

for key Java features, such as varargs (...) and generic types (<T>). How-

ever, since the proposed language was tested and evaluated against only a

small selection of APIs (see Section 6.3) and given the complexity of Java

syntax, some corner cases may still not be fully supported.

Future work could extend the evaluation of the API description language

by testing it with a more diverse range of APIs to identify edge cases and

assess its constraints.

6.3 Evaluation

During the evaluation phase of this work, the primary goal was to assess

the benefits of the features and mechanisms provided by the proposed API

description language. It was essential to determine how this language is par-

ticularly useful in simplifying API specifications and making them concise.
11https://threejs.org/docs/examples/en/controls/OrbitControls
12https://threejs.org/docs/examples/en/geometries/TextGeometry
13https://threejs.org/docs/examples/en/loaders/FontLoader

146

https://threejs.org/docs/examples/en/controls/OrbitControls
https://threejs.org/docs/examples/en/geometries/TextGeometry
https://threejs.org/docs/examples/en/loaders/FontLoader

6.3. Evaluation

Figure 6.8: A visual report (code city) illustrating the API coverage for
the Jsoup Java library. The coverage information is based on the API code
examples available in the library’s GitHub repository.

As explained in Section 6.1, the language achieves conciseness through

features such as wildcard matching, pattern matching, and inclusion/exclu-

sion filtering (with or without conditions). These constructs allow developers

to capture multiple related API elements, such as overloaded methods or con-

structors, with a single, compact expression rather than enumerating each

signature manually. This is particularly beneficial in Java, where construc-

tors and methods are often overloaded and have long, complex parameter

lists that are tedious to specify individually.

Specifically, the aim was to answer the following research question (RQ):

147

Chapter 6. Coverage of API Code Examples

RQ1: How significant is the reduction in the number of API elements and

their character count achieved by applying the features of the proposed

API description language?

To answer this research question, the evaluation required a set of API

descriptions for well-known Java libraries. Therefore, it utilised three subject

libraries selected by Monce et al. [1], based on shared selection criteria, and

extracted a fourth library from the same dataset, i.e. the Duets dataset

[142].14 This dataset was created to help software engineers and researchers

gain deeper insights into APIs and their usage. It comprises 395 Java libraries

and 2,874 clients, all of which are compilable and extracted from GitHub

repositories with at least five stars.

The subject libraries used in this evaluation were: Jsoup, a Java library

for working with HTML; Spark, a lightweight and expressive web frame-

work for Java; Commons-CLI, which provides a simple API for parsing

command-line arguments; and Javassist, a library for bytecode manipula-

tion. An overview of key statistics for these libraries is presented in Table

6.2.

Table 6.2: Overview of key statistics for the subject Java libraries, retrieved
from GitHub on October 30, 2023 by Monce et al.[1] and December 9, 2024.

Commons-CLI∗ Jsoup∗ Spark∗ Javassist

Last release date 2021/10/29 2023/04/29 2020/10/08 2023/12/24
Version 1.5.0 1.16.1 2.9.3 3.30.2-GA
Since 2002 2010 2011 2003
Stars 309 10.4k 9.5k 4.1k
Commits 1,374 1,889 1,067 1,036
Size (LoC) 6,307 27,817 11,298 88,985
Contributors 46 97 100 43
Clients 49k 131k 30k 87k
Source GitHub GitHub GitHub GitHub

∗ As retrieved and analysed by Monce et al. [1]

14https://github.com/ASSERT-KTH/Duets/blob/master/dataset/dataset-info.
json

148

https://github.com/apache/commons-cli
https://github.com/jhy/jsoup
https://github.com/perwendel/spark
https://github.com/jboss-javassist/javassist
https://github.com/ASSERT-KTH/Duets/blob/master/dataset/dataset-info.json
https://github.com/ASSERT-KTH/Duets/blob/master/dataset/dataset-info.json

6.3. Evaluation

To ensure that the subject libraries were representative, they were se-

lected from various domains. In addition, steps were taken to ensure they

met specific criteria [1], such as the availability of sufficient client code and

API code examples. The client code of these libraries was particularly im-

portant for the work of Monce et al. [1], as it enabled the generation of

syntactic usage footprint (SUF) models, as shown in Figure 6.9.

As explained in Section 2.3.2, a SUF model captures all actual usages

of an API extracted from the source code of collected third-party clients.

Moreover, these SUFs were used in the evaluation of our proposed API de-

scription language to generate what we called ‘full API descriptions’, which

served as a baseline for assessing the usability of the language.

Figure 6.9: Workflow of the approach proposed by Monce et al. [1]. It
illustrates the analysis of client sources to generate a syntactic usage footprint
(SUF) of a library.

Since the dataset used, i.e. Duets [142], contains only a handful of client

projects (15 clients) for the fourth subject library that we selected (Javassist),

additional clients were collected following an approach similar to that used by

Monce et al. [1] for collecting extra client projects for the other three subject

libraries. This step was crucial to ensure that all four subject libraries were

relatively comparable in terms of the number of clients, selection criteria,

and client collection methodology.

149

Chapter 6. Coverage of API Code Examples

The additional clients for Javassist were extracted from GitHub based on

their explicit declaration of a dependency on Javassist, e.g. in pom.xml or

build.gradle files. This extraction yielded a total of 17,088 repositories, which

was reduced using the Cochran formula15 with a conservative proportion of

p = 0.5, a confidence level of c = 95%, and a margin of error of e = 5%.

This resulted in a sample size of 375, which was randomly selected from the

extracted Javassist client repositories.

Furthermore, steps were taken to ensure that the selected repositories

were retrievable and active, i.e. having at least two contributors and more

than ten recent commits [127]. These Javassist clients, along with those

provided by Monce et al. [1] for the other three Java libraries (372 for

Jsoup, 372 for Commons-CLI, and 373 for Spark), were used to generate the

syntactic usage footprints (SUFs) for all four subject libraries. The SUFs

were automatically generated using the tool proposed by Monce et al. [1],

as shown in Figure 6.9.

As mentioned above, the auto-generated syntactic usage footprints

(SUFs) of each subject Java library were used to create the evaluation base-

line, i.e. ‘full API descriptions’. These API descriptions are YAML-based

and contain all the API elements found in the SUFs. They are structured

and described according to the proposed API description language format,

where types are listed under packages, and other API elements, such as

methods and fields, are listed under their corresponding Java types. How-

ever, at this stage, the API description language’s features and patterns are

not yet applied. Later, each full API description for each Java library was

analysed and compared against the library’s source code. The goal of this

analysis was to manually apply the proposed language’s shortening features

where applicable and save the modifications in a new version of the API

description, referred to as the ‘shortened/compact API description’.

15A formula for computing the required sample size for a desired level of precision.

150

6.3. Evaluation

For example, if the analysis of the library’s source code found that all

methods in a specific Java type were used by clients and were therefore listed

under that type in the full API description YAML file, then the list of meth-

ods was replaced with an asterisk (*). An illustrated example is provided in

Listings 6.7 and 6.8, which compare the full and shortened versions of the

same subset of an API description.

Finally, after applying the features and patterns of the proposed API

specification language to shorten the full API descriptions of the four subject

Java libraries, the two versions (full and shortened) of each library were

compared and evaluated based on the reduction in the number of API

elements and their overall character count.

1 packages:

2 - name: org.jsoup

3 types:

4 - name: HttpStatusException

5 methods:

6 - getStatusCode ()

7 - getUrl ()

8 - name: Jsoup

9 methods:

10 - clean(java.lang.String ,java.lang.String ,org.jsoup.safety.

Safelist ,org.jsoup.nodes.Document$OutputSettings)

11 - clean(java.lang.String ,java.lang.String ,org.jsoup.safety.

Safelist)

12 - clean(java.lang.String ,org.jsoup.safety.Safelist)

13 - connect(java.lang.String)

14 - isValid(java.lang.String ,org.jsoup.safety.Safelist)

15 - newSession ()

16 - parse(java.io.File ,java.lang.String ,java.lang.String ,org.

jsoup.parser.Parser)

17 - parse(java.io.File ,java.lang.String ,java.lang.String)

18 - parse(java.io.File ,java.lang.String)

19 - parse(java.io.File)

20 - parse(java.io.InputStream ,java.lang.String ,java.lang.

String ,org.jsoup.parser.Parser)

21 - parse(java.io.InputStream ,java.lang.String ,java.lang.

String)

151

Chapter 6. Coverage of API Code Examples

22 - parse(java.lang.String ,java.lang.String ,org.jsoup.parser.

Parser)

23 - parse(java.lang.String ,java.lang.String)

24 - parse(java.lang.String ,org.jsoup.parser.Parser)

25 - parse(java.lang.String)

26 - parse(java.net.URL ,int)

27 - parseBodyFragment(java.lang.String ,java.lang.String)

28 - parseBodyFragment(java.lang.String)

Listing 6.7: A subset of the full API description for the Jsoup Java library.

1 packages:

2 - name: org.jsoup

3 types:

4 - name: HttpStatusException

5 methods:

6 - get*

7 - name: Jsoup

8 methods:

9 - connect

10 - isValid

11 - newSession

12 - parseBodyFragment*

13 - clean*

14 - parse*

Listing 6.8: A subset of the shortened API description for the Jsoup Java

library.

6.4 Results and Discussion

As explained in Section 6.3, the evaluation primarily focused on assessing the

benefits of the proposed language in making API descriptions more concise

and easier for API developers to write. As shown in Table 6.3 and Figure

6.10, the results of this evaluation demonstrated that applying the features

and patterns of the proposed API specification language reduced the number

of API elements in the shortened versions of the API descriptions. However,

the extent of this reduction varied across the evaluated Java projects.

152

6.4. Results and Discussion

The percentage decrease in the number of API elements ranged from

16% (Javassist) to 77% (Commons-CLI). Specifically, the number of API

elements was reduced from 553 to 174 elements in Jsoup (a 69% decrease);

from 184 to 42 elements in Commons-CLI (77% decrease); from 271 to 139

elements in Spark (49% decrease); and from 285 to 238 elements in Javassist

(16% decrease).

This variation in reduction could be attributed to differences in naming

conventions and coding styles across the four evaluated APIs. Moreover,

APIs with consistent and repetitive API element names are more likely to

benefit from the proposed API description language, whereas APIs with

inherently concise and unique API element names, such as Javassist, retain

most of their original full names.

Similarly, the proposed language significantly reduces the character count

of the described API elements, as illustrated in Table 6.3 and Figure 6.11.

The percentage reduction in character count ranged from 64% in Javassist

to 91% in Commons-CLI. Once again, this variation in reduction suggests

that Java projects, such as Jsoup and Commons-CLI, may contain longer,

more verbose API element names, resulting in greater character reduction

when applying the features of the proposed API description language.

While Table 6.3 presents the percentage reduction achieved by writing

API descriptions using the proposed language, Figures 6.10 and 6.11 depict

the proportion (size) of the shortened API descriptions relative to the full

versions for each evaluated Java project. Both the shortened and full versions

of the API descriptions for the Jsoup Java library are presented in Appendix

B. API descriptions for the other evaluated Java libraries are available in the

replication package.

Answer to RQ1: The proposed API specification language can reduce

the number of API elements by up to 77% and their character count by

up to 91% in shortened API descriptions compared to their full versions.

153

Chapter 6. Coverage of API Code Examples

Table 6.3: Comparison of API element counts, character totals, and percent-
age decreases in full and shortened API descriptions for the evaluated Java
libraries and frameworks.

Java Project # of API Elements∗ % # of Characters∗∗ %

Full Shortened Full Shortened

Jsoup 553 174 69% 13247 1508 89%
Commons CLI 184 42 77% 5562 484 91%
Spark 271 139 49% 8615 1152 87%
Javassist 285 238 16% 8483 3065 64%

∗ The fields, constructors, methods, and enum constants of the described Java types.
∗∗ The characters of the described API elements.

31%

23%

51%

84%

0

200

400

Com
m

on
s C

LI

Ja
va

ss
ist

Js
ou

p

Spa
rk

Java Project

N
um

be
r

of
 A

P
I E

le
m

en
ts

Full API Description

Shortened API Description

Figure 6.10: Comparison of API elements in full and shortened API descrip-
tions for the evaluated Java libraries and frameworks. Percentages represent
the proportion of shortened descriptions relative to full descriptions for each
Java project.

154

6.4. Results and Discussion

11%

9%
13%

36%

0

5,000

10,000

Com
m

on
s C

LI

Ja
va

ss
ist

Js
ou

p

Spa
rk

Java Project

A
P

I E
le

m
en

t C
ha

ra
ct

er
 C

ou
nt

Full API Description

Shortened API Description

Figure 6.11: Comparison of API element character counts in full and short-
ened API descriptions for the evaluated Java libraries and frameworks. Per-
centages indicate the proportion of shortened descriptions relative to full
descriptions for each Java project.

6.4.1 Qualitative Comparison of APIExCov and Code Cov-

erage Tools

This part of the discussion is interested in qualitatively comparing between

the proposed API code example coverage tool (APIExCov) and some widely-

used Java code coverage tools, such as JaCoCo (Java Code Coverage Li-

brary),16 Cobertura,17 and OpenClover.18 The purpose of this evaluation is

not treating APIExCov as a direct competitor but rather as a complemen-

tary tool to these existing code coverage tools. This is because the purpose
16https://www.eclemma.org/jacoco/
17http://cobertura.github.io/cobertura/
18https://openclover.org

155

https://www.eclemma.org/jacoco/
http://cobertura.github.io/cobertura/
https://openclover.org

Chapter 6. Coverage of API Code Examples

and scope of these code coverage tools differ significantly from APIExCov,

although both play a crucial role in the overall software quality, i.e. the

quality of its tests and the comprehensiveness of its documentation code

examples.

Code coverage tools, such as those mentioned above, are used to assess

the thoroughness of a test suite. They help determine whether all code

has been satisfactorily tested, which can contribute to deciding whether the

software being built is ready for release. In contrast, APIExCov evaluates

whether specific pre-specified API elements are included and exercised

in API code examples. Furthermore, unlike traditional code coverage tools,

which work at the execution level to ensure that source code is executed

during tests, APIExCov performs static analysis on API source code and

documentation examples.

Another key difference between the proposed API coverage tool and test

coverage tools is coverage granularity. APIExCov reports coverage at the

level of individual API element usage, e.g. method calls, whereas traditional

test coverage tools measure coverage across multiple granularity levels, such

as code branches, lines, and methods. This distinction is inherent because,

in software testing, ideally, all code should be fully tested, which means

coverage must be reported for the entire codebase. In contrast, API code

examples are typically expected to cover only the parts of the code intended

for external use.

In addition, APIExCov generates two types of coverage reports (textual

and visual) both in HTML format, which is a common approach among many

widely used test coverage tools. However, tools such as JaCoCo also produce

reports in other formats, such as XML and CSV, which are well-suited for

integration with various software development tools.

Finally, although the two types of coverage tools discussed above serve

distinct purposes, they ultimately target the same audience, i.e. software

156

6.5. Limitations and Observations

developers.

6.5 Limitations and Observations

Although the proposed intended API specification language and its accompa-

nying example coverage tool are practical and beneficial to both API devel-

opers and users, they do have some limitations. For instance, the proposed

language requires API developers to manually define their intended APIs in a

YAML-based API description. While this approach is effective for relatively

small APIs, it could become burdensome for large libraries and frameworks

that contain thousands of API elements. Therefore, reducing this effort by

automating the generation of such an API description would be more effi-

cient. This could be achieved by developing automated tools to generate an

initial API description based on some source code annotations or comments.

API developers could then manually edit and refine this initial version of the

API description as needed.

In addition, the proposed API description language does not currently

account for API versions, which could be problematic as APIs evolve over

time. This limitation means that API developers must manually update

the API description file whenever new features are introduced (e.g. adding

new methods) or when certain API elements are removed in a new version.

Tracking API versions and ensuring that API code examples remain valid

across all versions would provide significant benefits. Moreover, incorporat-

ing metadata and enabling the description of the API behaviour, such as

method call preconditions and recommended usage patterns, would enhance

the expressiveness of the language.

Another aspect that requires further investigation and research is the

portability of the proposed API description language to other general-

purpose programming languages beyond Java. The clear, hierarchical struc-

ture of the proposed API specification language makes it adaptable for de-

157

Chapter 6. Coverage of API Code Examples

scribing APIs in other programming languages. However, its portability de-

pends on various factors, such as the target language’s paradigms and API

design conventions. For example, C# is a programming language that is sim-

ilar to Java, sharing very similar syntax, static typing, and object-oriented

features, which makes the proposed API description language highly portable

to it. Adaptation for C# may only require incorporating C#-specific fea-

tures, such as the use of properties. In contrast, adapting the proposed

API description language for programming languages that differ significantly

from Java would require more extensions and modifications to its grammar

to support the target language-specific features. For instance, porting the

proposed API specification language to Python would require changes, such

as support for module-based APIs and dynamic typing.

6.6 Threats to Validity

Several threats to validity that may have affected the accuracy or general-

isability of the obtained results have been identified. The following sections

discuss these threats in more detail and explain the steps taken to mitigate

them.

6.6.1 Construct Validity

The results reported in this chapter were based on a direct comparison be-

tween ‘full API descriptions’, which were auto-generated and acted as a

baseline, and ‘shortened API descriptions’, which showed how the proposed

API specification language’s features can reduce verbosity when describing

API elements. For example, instead of using fully qualified names for meth-

ods’ and constructors’ parameter types, users can use an underscore symbol,

simple type names, or even the API element name alone if it is enough to

identify the API element. However, this may have affected the results re-

158

6.6. Threats to Validity

trieved using the character count reduction metric since all the parameter

types of methods and constructors in the full API descriptions were pre-

sented with fully qualified names. To mitigate this, an additional metric,

i.e. element count reduction, was used, as it is not impacted by the omission

of fully qualified names of parameters’ types. Furthermore, to ensure a fair

comparison, the content structure remained consistent across both versions

of the API descriptions. However, an additional evaluation, e.g. a usabil-

ity study or qualitative feedback from API developers, could give further

insights into the benefits of the language’s features.

6.6.2 Internal Validity

The internal validity threats in this study may arise from various factors,

such as API size and the naming conventions used for API elements. This is

particularly relevant since the metrics used, i.e. the number of API elements

and character count, in this evaluation are highly sensitive to factors like

code style and formatting. These types of threats were mitigated by applying

strict and repeatable shortening techniques and rules across both versions

of the API description (full and shortened). For example, effort was made

to ensure that both the full and shortened API descriptions have the same

structure, the same number of listed Java packages and types, and that

the number of listed methods and constructors remains the same before the

shortening rules were applied. Furthermore, these rules also helped reduce

subjectivity that could arise from manually shortening API descriptions.

Also, selecting four subject Java libraries from the same dataset using clear

extraction criteria has reduced potential selection bias.

6.6.3 External Validity

The external validity threats may stem from the fact that only four Java

libraries were selected as subject candidates in this evaluation. This could

159

Chapter 6. Coverage of API Code Examples

limit the generalisability of the achieved results to libraries from other do-

mains or programming languages. However, to mitigate such threats, steps

were taken to ensure that the dataset from which the evaluated libraries were

retrieved is representative and includes a diverse collection of Java libraries.

Furthermore, the four selected Java libraries were from different domains and

are, to some extent, comparable in terms of the number of clients and size.

These selection criteria helped enhance the reliability of the results in provid-

ing a better understanding of the feasibility of the proposed API specification

language and its accompanying example coverage tool. Nonetheless, these

proposed approaches would benefit from further investigation and evaluation

with a larger set of libraries.

6.7 Summary

This chapter discussed the key features and evaluation of a proposed API

code example coverage tool. The main purpose of this tool is to analyse API

code examples and report coverage information for a set of API elements that

are given by API developers. These API elements are described in advance

by API developers using a proposed intended API description language. The

functionality of the proposed coverage tool, as well as its architecture, was

explained in Section 6.1. A detailed discussion of the grammar and use of

the proposed API specification language was given in Section 6.1.1. This

discussion was supported with an example of an API description to show

the key features that the language offers. Later, the implementation of the

coverage tool was explained, starting with the analysis and parsing processes

in Section 6.1.2. Then, an overview of how the described API elements

are validated was presented in Section 6.1.3. The way the tool analyses

and extracts coverage information from API code examples was discussed in

Section 6.1.4.

The proposed API code example coverage tool produces two main for-

160

6.7. Summary

mats of coverage reports, textual and visual. The reasons for choosing these

formats, along with the technologies used to implement them, were explained

in Sections 6.1.5 and 6.1.6. The constraints that the proposed coverage tool

imposes are outlined in Section 6.2. Subsequently, a detailed explanation of

the steps that were followed to evaluate the tool was presented in Section

6.3. This was followed by a discussion on the evaluation results in Section

6.4. Finally, the chapter concludes with key observations on the usability of

the proposed tool and highlights some of its limitations in Section 6.5.

161

Chapter 7

Conclusions and Future Work

This thesis has proposed novel approaches for assisting API developers in

producing effective API code examples. The overarching goal of these ap-

proaches is to improve the availability and maintainability of code examples

in API documentation. The thesis has examined the two research hypotheses

defined in Section 3.4.

H1: API users prefer code examples to be linear. Conversely, linear API

code examples contain significant code repetition which makes them

challenging for API developers to write and maintain. This gap can be

bridged by a code synthesis tool that automatically transforms non-linear

example code into linear code.

H2: A domain-specific language (DSL) for API specification can enable

API developers to concisely describe the intended surface of their APIs. An

API description written using this DSL can serve as the foundation for an

API code example coverage tool that provides useful insights specifically

tailored to API code example coverage.

The remainder of this chapter is structured as follows. Section 7.1 sum-

marises the content of each chapter of the thesis. Section 7.2 outlines its

162

7.1. Summary

contributions to the field of software engineering. Section 7.3 presents the

key results, while Section 7.4 suggests potential directions for future research.

7.1 Summary

In this thesis, we presented a set of approaches aimed at mitigating the prob-

lem of the shortage of API code examples in official API documentation. This

aim was achieved by first conducting an extensive literature review to inves-

tigate the possible underlying causes of such shortage, followed by defining

the research objectives, hypotheses, and questions that shaped the direction

of this research. Chapter 2 provided a comprehensive background for this

research. It discussed the importance of APIs and API documentation in

software development. It also presented the capabilities and limitations of

several state-of-the-art tools used for API code example generation. Chap-

ter 3 provided an analysis of the literature review presented in Chapter 2 and

outlined the research framework, including the research objectives, questions,

hypotheses, and scope. Chapter 4 presented the methodology and results

of a user study conducted to evaluate the impact of source code linearity

and length on the comprehensibility and reusability of API code examples.

Chapter 5 presented the architecture, implementation, and evaluation of

the proposed linear code synthesis approach. It also discussed its constraints,

current limitations, and several potential optimisation techniques. Chapter

6 presented the grammar and features of a DSL for intended API specifi-

cation. It also discussed the evaluation results, limitations, and constraints

of the DSL. Moreover, it introduced the implementation of a static code

analysis tool for measuring API code example coverage.

7.2 Thesis Contributions

The key contributions of this thesis are as follows:

163

Chapter 7. Conclusions and Future Work

• A controlled code comprehension user study to investigate how

different structural aspects of source code; specifically, the degree of

linearity and length, affect API users’ comprehension of API code ex-

amples. The aim of this user experiment was to provide API developers

with insights into the effective structuring of API code examples.

• A linear code synthesis approach for the Java programming lan-

guage designed to reduce the burden on API developers of writing

lengthy, repetitive, and costly-to-maintain API code examples. This,

in turn, enables them to produce more API code examples, thus, en-

hancing API learnability for API users.

• A domain-specific language for intended API specification,

which enables API developers to formally and precisely define the ele-

ments that comprise their intended APIs. This DSL includes a set of

features designed to facilitate the API description process, making it

more efficient.

• An API code example coverage tool built on top of the proposed

API description DSL. This tool measures the extent to which a given

set of code examples covers an intended API. Coverage information is

generated in both textual and visual formats.

7.3 Research Results

The results presented in this thesis were achieved by first breaking down the

overall research goal into more specific objectives, as outlined below:

(RO1) Conduct a controlled user-based experiment to assess the im-

pact of different source code structures on API users’ perfor-

mance and comprehension of API code examples.

This research objective was achieved by conducting a user study with

164

7.3. Research Results

61 Java programmers to evaluate the impact of source code linearity

and length on API users’ comprehension of code examples. The results

of this user experiment are detailed in Chapter 4.

(RO2) Create a dataset of API code examples extracted from multi-

ple open-source Java projects to help understand and specify

the extent and nature of code repetition in API code exam-

ples.

This research objective was achieved by collecting API code examples

from nine popular open-source Java libraries and analysing them for

code repetition. This process is described in detail in Sections 5.3 and

5.4.

(RO3) Develop a code synthesis prototype for the Java programming

language that enables API developers to write less repetitive,

more maintainable, and comprehensible API code examples

for API documentation.

This was accomplished by contributing an approach for linear source

code synthesis, which is explained and evaluated in Chapter 5.

(RO4) Develop a Domain-Specific Language (DSL) that allows API

developers to concisely describe API elements intended for

external use.

To achieve this research objective, a DSL was developed to provide

formal and concise specifications of intended APIs. Further details on

this language and its evaluation are provided in Sections 6.1.1, 6.3, and

6.4.

(RO5) Develop a static code analysis tool, built on top of the pro-

posed DSL, to help API developers assess the coverage of

their API code examples.

This research objective was achieved by contributing an API code ex-

165

Chapter 7. Conclusions and Future Work

ample coverage tool that provides insights into how a described in-

tended API is covered by code examples. More details on the imple-

mentation of this static code analysis tool are provided in Chapter

6.

The research questions outlined below have been formulated to achieve

the above-stated research objectives.

(RQ1) How does the linearity of an API code example impact a

programmer’s performance in terms of correctness and time

spent in tasks that require code comprehension?

API users generally spent less time comprehending and reusing linear

code examples; however, the impact on correctness was not substantial.

(RQ2) What effects does the length of a linear API code example

have on its comprehensibility and reusability?

Study results revealed a significant difference in both comprehension

and reusability. Linear code is easier to comprehend and reuse, partic-

ularly when it is short.

(RQ3) Does the degree of linearity in a non-linear API example af-

fect its comprehensibility and reusability?

Yes, participants spent less time reusing the non-linear code examples

when the linearity value was lower. However, the differences in par-

ticipants’ performance here may be attributed to the variations in the

implemented API functionality and the tasks required. Further details

are in Section 4.2.

(RQ4) How often do API code examples contain duplicate or near-

duplicate code that can be eliminated using the proposed lin-

ear code synthesis approach?

The percentages of the API code examples that contained duplicate

code ranged between 18% and 56% in the selected Java libraries.

166

7.3. Research Results

(RQ5) How often are duplicate code fragments repeated across dif-

ferent API code examples?

A substantial number of duplicate code fragments were recurrent in

many of the API code examples subsets. Further details are in Section

5.4.

(RQ6) How much reduction of duplicate code is achieved by the pro-

posed linear code synthesis approach?

The proposed linear code synthesis approach brought more than a 30%

decrease in LOC in five of the nine evaluated Java projects.

(RQ7) How can an intended API be specified in a formal and concise

manner?

The proposed API specification language can reduce the number of

API elements by up to 77% and their character count by up to 91%

in shortened API descriptions compared to their full versions. Further

details on how this reduction is achieved are provided in Section 6.4.

(RQ8) What insights can be extracted by using a formal intended

API specification and the proposed API code example cover-

age tool?

APIExCov reports coverage information and highlights areas of the

API that would benefit from additional illustrative code examples.

Further extracted insights are detailed in Sections 6.1.5, 6.1.6, and

6.4.1.

All proposed tools, techniques, and study results in this thesis have con-

firmed the two main research hypotheses defined in Section 3.2.

167

Chapter 7. Conclusions and Future Work

7.4 Future Work

As with any piece of work, there is always room for optimisation and the

addition of more features. The following aspects have been identified as part

of the future work for this research, as outlined below:

• Template-based linear code synthesis: As discussed in Section

5.5.1, the current version of the proposed linear code synthesiser does

not eliminate all types of code repetition found in API code examples

due to constraints imposed by Java syntax. This limitation can be ad-

dressed by incorporating a template language such as Apache Velocity1

to create code templates that serve as skeletons for the unsupported

repetitive code patterns. In these templates, the values of the elements

that differ will be put as placeholders. Subsequently, the linear code

examples will be synthesised based on the invoked template. However,

while this extension could further improve the flexibility and usability

of the proposed linear code synthesis approach, it may also introduce

additional complexity and readability issues into the synthesis work-

flow.

• Interactive generation of linear API code examples: Another

extension of the current version of the proposed linear code synthesis

approach is to enable API users to interactively specify the values

with which the linear API code examples are generated. This can be

achieved by introducing a new Java annotation (i.e. @DocGen), through

which API users would be prompted to enter some values as command-

line arguments. These values would then be used to expand/inline

the documentation methods provided by API developers beforehand.

The concept behind this approach is similar to the concept of JUnit

1https://velocity.apache.org

168

https://velocity.apache.org

7.4. Future Work

Theories,2 and those command line values passed by API users can be

equivalent to the values of the data points in JUnit Theories.

• Expansion of the code comprehension user study: As presented

in Chapter 4, the controlled experiment used to evaluate the hypothesis

in this thesis was conducted online with a small number of API code

examples from a single Java library, i.e. Joda-Time. We recommend

expanding this study by incorporating a larger set of code examples

from more diverse APIs and increasing the number of participants.

Also, conducting the experiment in a controlled physical setting could

enhance experimental validity. Furthermore, it would be interesting

to investigate whether the participants’ activities, as they work with

code examples of different linearity levels, align with those reported in

existing studies on the COIL3 model [114, 143]. In addition, further

insights can be gained by involving Large Language Models (LLMs)

to examine whether they show similar comprehension and reusability

results for both linear and non-linear API code examples, compared to

those obtained from human participants.

• Optimisation of the API specification language: The proposed

DSL for intended API descriptions can be further enhanced to include

features that provide more customised coverage information. For in-

stance, it would be more practical if API developers could define, in

advance within the API description YAML file, the usage type of in-

terest, e.g. INHERITANCE for an API element of type Type, to be only

reported in the coverage results. This feature would ensure that the re-

ported coverage information is better aligned with the API developers’

specific goals of creating API code examples.

2https://junit.org/junit4/javadoc/4.12/org/junit/experimental/theories/
Theories.html

3Collection and Organization of Information for Learning.

169

https://junit.org/junit4/javadoc/4.12/org/junit/experimental/theories/Theories.html
https://junit.org/junit4/javadoc/4.12/org/junit/experimental/theories/Theories.html

Chapter 7. Conclusions and Future Work

• Automatic generation of intended API specifications: Cur-

rently, the API description language requires API developers to manu-

ally define their intended APIs, which can be tedious, particularly for

large APIs. Enabling the automatic generation of such API descrip-

tions (as discussed in Section 6.5) would further enhance the usability

of the proposed DSL.

170

Appendices

171

Appendix A

172

Code Reuse Task Scoring Rubrics 1

Code Reuse Task Scoring
Rubrics

Category Letter
Numerical Value
(%)

Description

Correct A 100%
Answers that are correct completely
and accurately address the task.

Almost Correct B 70%
Answers that are largely correct but
have minor errors or omissions.

Partially Correct C 40%
Answers that address only half of the
task.

Incorrect D 0%
Answers that are largely incorrect or
don't address the task's requirements.

No answer F 0% No response to the task

Criteria - part 1 of the task 1

Criteria - part 1 of the task

Correct Almost Correct
Partially
Correct

Incorrect No answer

ChronologyExample

Integrates an
additional
chronology
alongside the
Buddhist
chronology.
Displays the
year, month, and
day from both
chronologies. no
errors or issues
in the code.

Same as
(Correct) but
some errors or
issues in the
code are
present but do
not significantly
affect
functionality.

Display the year,
month, and day
from one
chronology
correctly but not
the other.
Display some of
the elements but
not the rest (e.g.
month but not
year).

Attempts to
provide a
solution but is
fundamentally
incorrect or
incomplete. The
code does not
work with major
errors.

Response
provides no
code.

DateExample

The code
successfully
retrieves future
and past dates.
It accurately
skips weekend
days and
Mondays. There
are no errors or
issues.

Same as
(Correct) but
some errors or
issues in the
code are
present but do
not significantly
affect
functionality.

Display one date
accurately but
not the other. It
skips weekend
days but not
Mondays and
vice versa.

Attempts to
provide a
solution but is
fundamentally
incorrect or
incomplete. The
code does not
work with major
errors.

Response
provides no
code.

DurationExample

The code
successfully
excludes the
specified holiday
(Summer Bank
Holiday) from
the date
calculations.
accurately
updates the
relevant
variables and
output to reflect
the modified
calculation.
There are no
errors.

Same as
(Correct) but
some errors or
issues in the
code are
present but do
not significantly
affect
functionality.

Excludes the
specified holiday
but might have
issues with the
update of
variables or
output. Defines
a day for the
bank holiday but
does not
correctly use it.
There are
notable errors or
issues in the
code, but some
elements are
functional.

Attempts to
provide a
solution but is
fundamentally
incorrect or
incomplete. The
code does not
work with major
errors.

Response
provides no
code.

IntervalExample The code
successfully
prevents

Same as
(Correct) but
some errors or

The code
partially adds a
feature to

Attempts to
provide a
solution but is

Response
provides no
code.

Criteria - part 1 of the task 2

meeting
scheduling if a
clash with a
previously
scheduled
meeting is
detected using
the overlap()
API method. It
accurately
checks for
clashes and
cancels or
reschedules
meetings
accordingly.
There are no
errors.

issues in the
code are
present but do
not significantly
affect
functionality.

prevent meeting
clashes but
might have
issues with the
implementation.
Checks for
clashes but
does not use
them to prevent
meeting
scheduling.

fundamentally
incorrect or
incomplete. The
code does not
work with major
errors.

Criteria - part 2 of the task 1

Criteria - part 2 of the task
Correct

ChronologyExample Removed LOC: 40, 51-71 - code in Util.java is not counted.

DateExample Removed LOC: 70-75 - code in Util.java is not counted.

DurationExample Removed LOC: 73-86 - code in Util.java is not counted.

IntervalExample Removed LOC: 82-89, 97-104 - code in Util.java is not counted.

Appendix B

1 packages:

2 - name: org.jsoup

3 types:

4 - name: HttpStatusException

5 methods:

6 - getStatusCode ()

7 - getUrl ()

8 - name: Jsoup

9 methods:

10 - clean(java.lang.String ,java.lang.String ,org.jsoup.safety.

Safelist ,org.jsoup.nodes.Document$OutputSettings)

11 - clean(java.lang.String ,java.lang.String ,org.jsoup.safety.

Safelist)

12 - clean(java.lang.String ,org.jsoup.safety.Safelist)

13 - connect(java.lang.String)

14 - isValid(java.lang.String ,org.jsoup.safety.Safelist)

15 - newSession ()

16 - parse(java.io.File ,java.lang.String ,java.lang.String ,org.

jsoup.parser.Parser)

17 - parse(java.io.File ,java.lang.String ,java.lang.String)

18 - parse(java.io.File ,java.lang.String)

19 - parse(java.io.File)

20 - parse(java.io.InputStream ,java.lang.String ,java.lang.

String ,org.jsoup.parser.Parser)

21 - parse(java.io.InputStream ,java.lang.String ,java.lang.

String)

22 - parse(java.lang.String ,java.lang.String ,org.jsoup.parser.

Parser)

23 - parse(java.lang.String ,java.lang.String)

24 - parse(java.lang.String ,org.jsoup.parser.Parser)

177

Appendix B.

25 - parse(java.lang.String)

26 - parse(java.net.URL ,int)

27 - parseBodyFragment(java.lang.String ,java.lang.String)

28 - parseBodyFragment(java.lang.String)

29 - name: UncheckedIOException

30 constructors:

31 - UncheckedIOException(IOException)

32 methods:

33 - getMimeType ()

34 - getUrl ()

35 - toString ()

36 - name: Connection

37 methods:

38 - cookie(java.lang.String ,java.lang.String)

39 - cookies(java.util.Map)

40 - data(java.lang.String ,java.lang.String ,java.io.InputStream

,java.lang.String)

41 - data(java.lang.String ,java.lang.String ,java.io.InputStream

)

42 - data(java.lang.String ,java.lang.String)

43 - data(java.lang.String)

44 - data(java.lang.String [])

45 - data(java.util.Map)

46 - execute ()

47 - followRedirects(boolean)

48 - get()

49 - header(java.lang.String ,java.lang.String)

50 - headers(java.util.Map)

51 - ignoreContentType(boolean)

52 - ignoreHttpErrors(boolean)

53 - maxBodySize(int)

54 - method(org.jsoup.Connection$Method)

55 - newRequest ()

56 - parser(org.jsoup.parser.Parser)

57 - post()

58 - postDataCharset(java.lang.String)

59 - proxy(java.lang.String ,int)

60 - proxy(java.net.Proxy)

61 - referrer(java.lang.String)

62 - request ()

63 - requestBody(java.lang.String)

64 - response ()

178

65 - timeout(int)

66 - url(java.lang.String)

67 - userAgent(java.lang.String)

68 - name: Base

69 methods:

70 - addHeader(java.lang.String ,java.lang.String)

71 - cookie(java.lang.String ,java.lang.String)

72 - cookie(java.lang.String)

73 - cookies ()

74 - hasCookie(java.lang.String)

75 - hasHeader(java.lang.String)

76 - hasHeaderWithValue(java.lang.String ,java.lang.String)

77 - header(java.lang.String ,java.lang.String)

78 - header(java.lang.String)

79 - headers ()

80 - headers(java.lang.String)

81 - method ()

82 - method(org.jsoup.Connection$Method)

83 - multiHeaders ()

84 - removeCookie(java.lang.String)

85 - removeHeader(java.lang.String)

86 - url()

87 - url(java.net.URL)

88 - name: Request

89 methods:

90 - data()

91 - parser ()

92 - proxy ()

93 - proxy(java.net.Proxy)

94 - requestBody ()

95 - timeout ()

96 - name: KeyVal

97 methods:

98 - hasInputStream ()

99 - inputStream(java.io.InputStream)

100 - key()

101 - value ()

102 - value(java.lang.String)

103 - name: Response

104 methods:

105 - body()

106 - bodyAsBytes ()

179

Appendix B.

107 - bodyStream ()

108 - bufferUp ()

109 - charset ()

110 - charset(java.lang.String)

111 - contentType ()

112 - parse()

113 - statusCode ()

114 - statusMessage ()

115 enums:

116 - name: Method

117 - name: org.jsoup.helper

118 types:

119 - name: DataUtil

120 methods:

121 - readToByteBuffer(java.io.InputStream ,int)

122 - name: HttpConnection

123 constructors:

124 - HttpConnection ()

125 methods:

126 - connect(java.lang.String)

127 - connect(java.net.URL)

128 - execute ()

129 - request ()

130 - name: HttpConnection$KeyVal

131 methods:

132 - create(java.lang.String ,java.lang.String ,java.io.

InputStream)

133 - create(java.lang.String ,java.lang.String)

134 - name: HttpConnection$Request

135 - name: HttpConnection$Response

136 - name: Validate

137 methods:

138 - isTrue(boolean ,java.lang.String)

139 - notNull(java.lang.Object)

140 - notNullParam(java.lang.Object ,java.lang.String)

141 - name: W3CDom

142 constructors:

143 - W3CDom ()

144 methods:

145 - asString(org.w3c.dom.Document ,java.util.Map)

146 - asString(org.w3c.dom.Document)

147 - contextNode(org.w3c.dom.Document)

180

148 - convert(org.jsoup.nodes.Document)

149 - fromJsoup(org.jsoup.nodes.Document)

150 - fromJsoup(org.jsoup.nodes.Element)

151 - namespaceAware ()

152 - namespaceAware(boolean)

153 - OutputHtml ()

154 - OutputXml ()

155 - name: org.jsoup.internal

156 types:

157 - name: ConstrainableInputStream

158 methods:

159 - readToByteBuffer(int)

160 - reset ()

161 - name: StringUtil

162 methods:

163 - in(java.lang.String ,java.lang.String [])

164 - inSorted(java.lang.String ,java.lang.String [])

165 - isAscii(java.lang.String)

166 - isBlank(java.lang.String)

167 - isNumeric(java.lang.String)

168 - isWhitespace(int)

169 - join(java.lang.String[],java.lang.String)

170 - join(java.util.Collection ,java.lang.String)

171 - normaliseWhitespace(java.lang.String)

172 - padding(int ,int)

173 - padding(int)

174 - resolve(java.lang.String ,java.lang.String)

175 - name: org.jsoup.nodes

176 types:

177 - name: Attribute

178 constructors:

179 - Attribute ()

180 - Attribute(java.lang.String ,java.lang.String)

181 methods:

182 - getKey ()

183 - getValue ()

184 - hasDeclaredValue ()

185 - html()

186 - isBooleanAttribute(java.lang.String)

187 - setKey(java.lang.String)

188 - setValue(java.lang.String)

189 - toString ()

181

Appendix B.

190 - name: Attributes

191 methods:

192 - add(java.lang.String ,java.lang.String)

193 - asList ()

194 - clone()

195 - dataset ()

196 - get(java.lang.String)

197 - getIgnoreCase(java.lang.String)

198 - hasDeclaredValueForKey(java.lang.String)

199 - hasDeclaredValueForKeyIgnoreCase(java.lang.String)

200 - hasKey(java.lang.String)

201 - hasKeyIgnoreCase(java.lang.String)

202 - html()

203 - iterator ()

204 - put(java.lang.String ,java.lang.String)

205 - put(org.jsoup.nodes.Attribute)

206 - remove(java.lang.String)

207 - size()

208 - toString ()

209 - name: CDataNode

210 methods:

211 - text()

212 - name: Comment

213 methods:

214 - asXmlDeclaration ()

215 - clone()

216 - getData ()

217 - isXmlDeclaration ()

218 - nodeName ()

219 - setData(java.lang.String)

220 - toString ()

221 - name: DataNode

222 constructors:

223 - DataNode(java.lang.String)

224 methods:

225 - getWholeData ()

226 - setWholeData(java.lang.String)

227 - toString ()

228 - name: Document

229 constructors:

230 - Document(java.lang.String)

231 methods:

182

232 - body()

233 - charset ()

234 - charset(java.nio.charset.Charset)

235 - clone ()

236 - connection ()

237 - createElement(java.lang.String)

238 - createShell(java.lang.String)

239 - documentType ()

240 - expectForm(java.lang.String)

241 - forms ()

242 - head()

243 - location ()

244 - normalise ()

245 - outerHtml ()

246 - outputSettings ()

247 - outputSettings(org.jsoup.nodes.Document$OutputSettings)

248 - parser ()

249 - text(java.lang.String)

250 - title ()

251 - title(java.lang.String)

252 - updateMetaCharsetElement ()

253 - updateMetaCharsetElement(boolean)

254 - name: DocumentType

255 constructors:

256 - DocumentType(java.lang.String ,java.lang.String ,java.lang.

String)

257 methods:

258 - publicId ()

259 - systemId ()

260 - name: Document$OutputSettings

261 constructors:

262 - OutputSettings ()

263 methods:

264 - charset ()

265 - charset(java.lang.String)

266 - charset(java.nio.charset.Charset)

267 - escapeMode ()

268 - escapeMode(org.jsoup.nodes.Entities$EscapeMode)

269 - indentAmount(int)

270 - maxPaddingWidth ()

271 - maxPaddingWidth(int)

272 - outline(boolean)

183

Appendix B.

273 - prettyPrint ()

274 - prettyPrint(boolean)

275 - syntax ()

276 - syntax(org.jsoup.nodes.Document$OutputSettings$Syntax)

277 - name: Element

278 constructors:

279 - Element(java.lang.String)

280 - Element(org.jsoup.parser.Tag ,java.lang.String)

281 - Element(org.jsoup.parser.Tag ,java.lang.String ,org.jsoup.

nodes.Attributes)

282 - Elements(org.jsoup.nodes.Element [])

283 - Elements ()

284 methods:

285 - addClass(java.lang.String)

286 - after(java.lang.String)

287 - after(org.jsoup.nodes.Node)

288 - append(java.lang.String)

289 - appendChild(org.jsoup.nodes.Node)

290 - appendChildren(java.util.Collection)

291 - appendElement(java.lang.String)

292 - appendText(java.lang.String)

293 - appendTo(org.jsoup.nodes.Element)

294 - attr(java.lang.String ,boolean)

295 - attr(java.lang.String ,java.lang.String)

296 - attributes ()

297 - baseUri ()

298 - before(java.lang.String)

299 - before(org.jsoup.nodes.Node)

300 - child(int)

301 - childNodeSize ()

302 - children ()

303 - childrenSize ()

304 - className ()

305 - classNames ()

306 - classNames(java.util.Set)

307 - clearAttributes ()

308 - clone()

309 - closest(java.lang.String)

310 - closest(org.jsoup.select.Evaluator)

311 - cssSelector ()

312 - data()

313 - dataNodes ()

184

314 - dataset ()

315 - doSetBaseUri(java.lang.String)

316 - elementSiblingIndex ()

317 - empty ()

318 - endSourceRange ()

319 - expectFirst(java.lang.String)

320 - filter(org.jsoup.select.NodeFilter)

321 - firstElementChild ()

322 - firstElementSibling ()

323 - forEach(org.jsoup.helper.Consumer)

324 - getAllElements ()

325 - getElementById(java.lang.String)

326 - getElementsByAttribute(java.lang.String)

327 - getElementsByAttributeStarting(java.lang.String)

328 - getElementsByAttributeValue(java.lang.String ,java.lang.

String)

329 - getElementsByAttributeValueContaining(java.lang.String ,

java.lang.String)

330 - getElementsByAttributeValueEnding(java.lang.String ,java.

lang.String)

331 - getElementsByAttributeValueMatching(java.lang.String ,java.

lang.String)

332 - getElementsByAttributeValueMatching(java.lang.String ,java.

util.regex.Pattern)

333 - getElementsByAttributeValueNot(java.lang.String ,java.lang.

String)

334 - getElementsByAttributeValueStarting(java.lang.String ,java.

lang.String)

335 - getElementsByClass(java.lang.String)

336 - getElementsByIndexEquals(int)

337 - getElementsByIndexGreaterThan(int)

338 - getElementsByIndexLessThan(int)

339 - getElementsByTag(java.lang.String)

340 - getElementsContainingOwnText(java.lang.String)

341 - getElementsContainingText(java.lang.String)

342 - getElementsMatchingOwnText(java.lang.String)

343 - getElementsMatchingOwnText(java.util.regex.Pattern)

344 - getElementsMatchingText(java.lang.String)

345 - hasAttributes ()

346 - hasChildNodes ()

347 - hasClass(java.lang.String)

348 - hasText ()

185

Appendix B.

349 - html()

350 - html(java.lang.Appendable)

351 - html(java.lang.String)

352 - id()

353 - id(java.lang.String)

354 - insertChildren(int ,java.util.Collection)

355 - insertChildren(int ,org.jsoup.nodes.Node [])

356 - is(java.lang.String)

357 - is(org.jsoup.select.Evaluator)

358 - isBlock ()

359 - lastElementChild ()

360 - lastElementSibling ()

361 - nextElementSibling ()

362 - nextElementSiblings ()

363 - nodeName ()

364 - normalName ()

365 - ownText ()

366 - parent ()

367 - parents ()

368 - prepend(java.lang.String)

369 - prependChild(org.jsoup.nodes.Node)

370 - prependChildren(java.util.Collection)

371 - prependElement(java.lang.String)

372 - prependText(java.lang.String)

373 - previousElementSibling ()

374 - previousElementSiblings ()

375 - removeAttr(java.lang.String)

376 - removeClass(java.lang.String)

377 - root()

378 - select(java.lang.String)

379 - select(org.jsoup.select.Evaluator)

380 - selectFirst(java.lang.String)

381 - selectFirst(org.jsoup.select.Evaluator)

382 - selectXpath(java.lang.String ,java.lang.Class)

383 - selectXpath(java.lang.String)

384 - shallowClone ()

385 - siblingElements ()

386 - tag()

387 - tagName ()

388 - tagName(java.lang.String)

389 - text()

390 - text(java.lang.String)

186

391 - textNodes ()

392 - toggleClass(java.lang.String)

393 - traverse(org.jsoup.select.NodeVisitor)

394 - val()

395 - val(java.lang.String)

396 - wholeOwnText ()

397 - wholeText ()

398 - wrap(java.lang.String)

399 - name: Entities

400 methods:

401 - escape(java.lang.String ,org.jsoup.nodes.

Document$OutputSettings)

402 - escape(java.lang.String)

403 - getByName(java.lang.String)

404 - unescape(java.lang.String)

405 - name: FormElement

406 methods:

407 - elements ()

408 - formData ()

409 - submit ()

410 - name: Node

411 methods:

412 - absUrl(java.lang.String)

413 - addChildren(int ,org.jsoup.nodes.Node [])

414 - addChildren(org.jsoup.nodes.Node [])

415 - after(java.lang.String)

416 - after(org.jsoup.nodes.Node)

417 - attr(java.lang.String ,java.lang.String)

418 - attr(java.lang.String)

419 - attributes ()

420 - attributesSize ()

421 - baseUri ()

422 - before(java.lang.String)

423 - before(org.jsoup.nodes.Node)

424 - childNode(int)

425 - childNodes ()

426 - childNodesCopy ()

427 - childNodeSize ()

428 - clearAttributes ()

429 - clone ()

430 - doSetBaseUri(java.lang.String)

431 - empty ()

187

Appendix B.

432 - ensureChildNodes ()

433 - equals(java.lang.Object)

434 - filter(org.jsoup.select.NodeFilter)

435 - firstChild ()

436 - forEachNode(org.jsoup.helper.Consumer)

437 - hasAttr(java.lang.String)

438 - hasAttributes ()

439 - hashCode ()

440 - hasParent ()

441 - hasSameValue(java.lang.Object)

442 - html(java.lang.Appendable)

443 - lastChild ()

444 - nextSibling ()

445 - nodeName ()

446 - normalName ()

447 - outerHtml ()

448 - outerHtml(java.lang.Appendable)

449 - ownerDocument ()

450 - parent ()

451 - parentNode ()

452 - previousSibling ()

453 - remove ()

454 - removeAttr(java.lang.String)

455 - replaceWith(org.jsoup.nodes.Node)

456 - root()

457 - setBaseUri(java.lang.String)

458 - shallowClone ()

459 - siblingIndex ()

460 - siblingNodes ()

461 - sourceRange ()

462 - toString ()

463 - traverse(org.jsoup.select.NodeVisitor)

464 - unwrap ()

465 - wrap(java.lang.String)

466 - name: CDataNode

467 constructors:

468 - CDataNode(java.lang.String)

469 methods:

470 - text

471 - name: Range

472 methods:

473 - end()

188

474 - isTracked ()

475 - start ()

476 - toString ()

477 - name: Range$Position

478 methods:

479 - columnNumber ()

480 - isTracked ()

481 - lineNumber ()

482 - pos()

483 - toString ()

484 - name: TextNode

485 constructors:

486 - TextNode(java.lang.String)

487 methods:

488 - clone ()

489 - createFromEncoded(java.lang.String)

490 - getWholeText ()

491 - isBlank ()

492 - nodeName ()

493 - splitText(int)

494 - text()

495 - text(java.lang.String)

496 - toString ()

497 - name: XmlDeclaration

498 constructors:

499 - XmlDeclaration(java.lang.String ,boolean)

500 methods:

501 - getWholeDeclaration ()

502 - name()

503 - name: org.jsoup.parser

504 types:

505 - name: CharacterReader

506 constructors:

507 - CharacterReader(java.lang.String)

508 - CharacterReader(java.io.Reader ,int)

509 - CharacterReader(java.io.Reader)

510 methods:

511 - advance ()

512 - columnNumber ()

513 - consumeTo(char)

514 - consumeToAny(char [])

515 - current ()

189

Appendix B.

516 - isEmpty ()

517 - isTrackNewlines ()

518 - lineNumber ()

519 - pos()

520 - trackNewlines(boolean)

521 - name: ParseError

522 methods:

523 - getErrorMessage ()

524 - getPosition ()

525 - toString ()

526 - name: Parser

527 constructors:

528 - Parser(org.jsoup.parser.TreeBuilder)

529 methods:

530 - getErrors ()

531 - getTreeBuilder ()

532 - htmlParser ()

533 - isTrackPosition ()

534 - parseBodyFragment(java.lang.String ,java.lang.String)

535 - parseFragment(java.lang.String ,org.jsoup.nodes.Element ,

java.lang.String ,org.jsoup.parser.ParseErrorList)

536 - parseFragment(java.lang.String ,org.jsoup.nodes.Element ,

java.lang.String)

537 - parseFragmentInput(java.lang.String ,org.jsoup.nodes.

Element ,java.lang.String)

538 - parseInput(java.lang.String ,java.lang.String)

539 - parseXmlFragment(java.lang.String ,java.lang.String)

540 - settings(org.jsoup.parser.ParseSettings)

541 - setTrackErrors(int)

542 - setTrackPosition(boolean)

543 - unescapeEntities(java.lang.String ,boolean)

544 - xmlParser ()

545 - name: ParseSettings

546 constructors:

547 - ParseSettings(boolean ,boolean)

548 methods:

549 - normalizeAttribute(java.lang.String)

550 - normalizeTag(java.lang.String)

551 - name: Tag

552 methods:

553 - formatAsBlock ()

554 - getName ()

190

555 - isBlock ()

556 - isEmpty ()

557 - isInline ()

558 - isKnownTag(java.lang.String)

559 - isSelfClosing ()

560 - toString ()

561 - valueOf(java.lang.String ,org.jsoup.parser.ParseSettings)

562 - valueOf(java.lang.String)

563 - name: TokenQueue

564 constructors:

565 - TokenQueue(java.lang.String)

566 methods:

567 - addFirst(java.lang.String)

568 - chompBalanced(char ,char)

569 - chompToIgnoreCase(java.lang.String)

570 - consumeCssIdentifier ()

571 - consumeElementSelector ()

572 - consumeTo(java.lang.String)

573 - consumeWhitespace ()

574 - consumeWord ()

575 - escapeCssIdentifier(java.lang.String)

576 - isEmpty ()

577 - remainder ()

578 - unescape(java.lang.String)

579 - name: XmlTreeBuilder

580 - name: HtmlTreeBuilder

581 - name: ParseErrorList

582 methods:

583 - tracking

584 - name: org.jsoup.safety

585 types:

586 - name: Cleaner

587 constructors:

588 - Cleaner(org.jsoup.safety.Safelist)

589 methods:

590 - clean(org.jsoup.nodes.Document)

591 - isValid(org.jsoup.nodes.Document)

592 - name: Safelist

593 constructors:

594 - Safelist ()

595 - Safelist(org.jsoup.safety.Safelist)

596 methods:

191

Appendix B.

597 - addAttributes(java.lang.String ,java.lang.String [])

598 - addEnforcedAttribute(java.lang.String ,java.lang.String ,

java.lang.String)

599 - addProtocols(java.lang.String ,java.lang.String ,java.lang.

String [])

600 - addTags(java.lang.String [])

601 - basic()

602 - basicWithImages ()

603 - isSafeAttribute(java.lang.String ,org.jsoup.nodes.Element ,

org.jsoup.nodes.Attribute)

604 - isSafeTag(java.lang.String)

605 - none()

606 - preserveRelativeLinks(boolean)

607 - relaxed ()

608 - removeAttributes(java.lang.String ,java.lang.String [])

609 - removeEnforcedAttribute(java.lang.String ,java.lang.String)

610 - removeProtocols(java.lang.String ,java.lang.String ,java.

lang.String [])

611 - removeTags(java.lang.String [])

612 - simpleText ()

613 - name: org.jsoup.select

614 types:

615 - name: Elements

616 constructors:

617 - Elements(org.jsoup.nodes.Element [])

618 - Elements ()

619 methods:

620 - addClass(java.lang.String)

621 - after(java.lang.String)

622 - append(java.lang.String)

623 - attr(java.lang.String ,java.lang.String)

624 - attr(java.lang.String)

625 - before(java.lang.String)

626 - clone()

627 - comments ()

628 - dataNodes ()

629 - eachAttr(java.lang.String)

630 - eachText ()

631 - empty()

632 - eq(int)

633 - first()

634 - forms()

192

635 - hasAttr(java.lang.String)

636 - hasClass(java.lang.String)

637 - hasText ()

638 - html()

639 - html(java.lang.String)

640 - is(java.lang.String)

641 - last()

642 - next()

643 - next(java.lang.String)

644 - nextAll ()

645 - nextAll(java.lang.String)

646 - not(java.lang.String)

647 - outerHtml ()

648 - parents ()

649 - prepend(java.lang.String)

650 - prev()

651 - prev(java.lang.String)

652 - prevAll ()

653 - prevAll(java.lang.String)

654 - remove ()

655 - removeAttr(java.lang.String)

656 - removeClass(java.lang.String)

657 - select(java.lang.String)

658 - tagName(java.lang.String)

659 - text()

660 - textNodes ()

661 - toggleClass(java.lang.String)

662 - toString ()

663 - traverse(org.jsoup.select.NodeVisitor)

664 - unwrap ()

665 - val()

666 - val(java.lang.String)

667 - wrap(java.lang.String)

668 - name: NodeTraversor

669 methods:

670 - filter(org.jsoup.select.NodeFilter ,org.jsoup.select.

Elements)

671 - traverse(org.jsoup.select.NodeVisitor ,org.jsoup.nodes.Node

)

672 - name: QueryParser

673 methods:

674 - parse(java.lang.String)

193

Appendix B.

675 - name: CombiningEvaluator

676 - name: CombiningEvaluator$And

677 methods:

678 - toString ()

679 - name: Or

680 - name: Evaluator

681 - name: Tag

682 constructors:

683 - Tag(java.lang.String)

684 - name: Selector

685 - name: SelectorParseException

686 constructors:

687 - SelectorParseException(java.lang.String)

688 - name: NodeVisitor

689 methods:

690 - head(org.jsoup.nodes.Node ,int)

691 - tail(org.jsoup.nodes.Node ,int)

692 - name: NodeFilter

693 methods:

694 - head(org.jsoup.nodes.Node ,int)

695 - tail(org.jsoup.nodes.Node ,int)

696 enums:

697 - name: FilterResult

Listing B.1: Full intended API description of the Jsoup Java library.

1 packages:

2 - name: org.jsoup

3 types:

4 - name: HttpStatusException

5 methods:

6 - get*

7 - name: Jsoup

8 methods:

9 - connect

10 - isValid

11 - newSession

12 - parseBodyFragment*

13 - clean*

14 - parse*

15 - name: UncheckedIOException

16 constructors:

194

17 - UncheckedIOException(IOException)

18 - name: UnsupportedMimeTypeException

19 methods:

20 - getMimeType

21 - getUrl

22 - toString

23 - name: Connection

24 methods:

25 - -url(_)

26 - -sslSocketFactory

27 - -data(Collection <KeyVal >)

28 - -cookieStore

29 - -request(_)

30 - -response(_)

31 - name: Base

32 methods:

33 - "*"

34 - name: Request

35 methods:

36 - -proxy(_,_)

37 - proxy*

38 - parser ()

39 - requestBody ()

40 - data()

41 - timeout ()

42 - name: KeyVal

43 methods:

44 - -key(_)

45 - -inputStream ()

46 - name: Response

47 methods:

48 - "*"

49 enums:

50 - name: Method

51 - name: org.jsoup.helper

52 types:

53 - name: DataUtil

54 methods:

55 - readToByteBuffer

56 - name: HttpConnection

57 constructors:

58 - HttpConnection ()

195

Appendix B.

59 methods:

60 - connect*

61 - execute

62 - request*

63 - name: KeyVal

64 methods:

65 - create*

66 - name: Request

67 - name: Response

68 - name: Validate

69 methods:

70 - notNullParam

71 - isTrue(_,_)

72 - notNull(_)

73 - name: ValidationException

74 - name: W3CDom

75 constructors:

76 - "*"

77 methods:

78 - asString

79 - contextNode

80 - Output*

81 - fromJsoup*

82 - namespaceAware*

83 - convert(_)

84 - name: Consumer

85 methods:

86 - "*"

87 - name: org.jsoup.internal

88 types:

89 - name: ConstrainableInputStream

90 methods:

91 - readToByteBuffer

92 - reset

93 - name: StringUtil

94 methods:

95 - in

96 - inSorted

97 - isAscii

98 - isBlank

99 - isNumeric

100 - isWhitespace

196

101 - normaliseWhitespace

102 - padding

103 - join*

104 - resolve*

105 - -join(Iterator <?>,_)

106 - -resolve(URL ,_)

107 - name: org.jsoup.nodes

108 types:

109 - name: Attribute

110 constructors:

111 - - Attribute(_,_,_)

112 methods:

113 - get*

114 - hasDeclaredValue

115 - isBooleanAttribute

116 - set*

117 - toString

118 - -getValidKey

119 - html*

120 conditions:

121 - excMethods:

122 - "name === 'html' && accessModifier === 'protected '"

123 - name: Attributes

124 methods:

125 - add

126 - asList

127 - clone

128 - dataset

129 - remove

130 - hasDeclared*

131 - hasKey*

132 - iterator

133 - size

134 - toString

135 - get*

136 - put*

137 - -put(_,boolean)

138 - html

139 - name: CDataNode

140 methods:

141 - text

142 - name: Comment

197

Appendix B.

143 constructors:

144 - "*"

145 methods:

146 - "*"

147 - name: DataNode

148 constructors:

149 - "*"

150 methods:

151 - "*WholeData"

152 - toString

153 - name: Document

154 constructors:

155 - "*"

156 methods:

157 - -shallowClone

158 - -quirksMode*

159 - -parser(_)

160 - -connection(_)

161 - name: DocumentType

162 constructors:

163 - "*"

164 methods:

165 - name

166 - "*Id"

167 - name: OutputSettings

168 constructors:

169 - "*"

170 methods:

171 - -outline ()

172 - -indentAmount ()

173 - name: Element

174 constructors:

175 - "*"

176 methods:

177 - -getElementsMatchingText(Pattern)

178 - -forEachNode

179 - -doClone

180 - -ensureChildNodes

181 - name: Entities

182 methods:

183 - escape*

184 - getByName

198

185 - unescape

186 - name: FormElement

187 methods:

188 - elements

189 - formData

190 - submit

191 - name: Node

192 methods:

193 - "*"

194 conditions:

195 - excMethods:

196 - "(accessModifier === 'protected ') && (name ==

’hasAttributes’ name == 'ensureChildNodes ' || name ==

’addChildren’ name ==

197 'outerHtml ')"

198 - name: CDataNode

199 constructors:

200 - "*"

201 methods:

202 - text

203 - name: Range

204 methods:

205 - end

206 - isTracked

207 - start

208 - toString

209 - name: Position

210 methods:

211 - -equals

212 - -hashCode

213 - name: TextNode

214 constructors:

215 - "*"

216 methods:

217 - "*"

218 - name: XmlDeclaration

219 constructors:

220 - "*"

221 methods:

222 - getWholeDeclaration

223 - name

224 - name: org.jsoup.parser

199

Appendix B.

225 types:

226 - name: CharacterReader

227 constructors:

228 - "*"

229 methods:

230 - -close

231 - -toString

232 - name: ParseError

233 methods:

234 - -getCursorPos

235 - name: Parser

236 constructors:

237 - "*"

238 methods:

239 - get*

240 - "*Parser"

241 - isTrackPosition

242 - parse*

243 - settings(_)

244 - setTrack*

245 - unescapeEntities

246 - -parseInput(Reader ,_)

247 - -parse

248 - name: ParseSettings

249 constructors:

250 - "*"

251 methods:

252 - normalize*

253 - name: Tag

254 methods:

255 - formatAsBlock

256 - getName

257 - is*

258 - toString

259 - valueOf*

260 - -isKnownTag ()

261 - -isForm*

262 - name: TokenQueue

263 constructors:

264 - "*"

265 methods:

266 - addFirst

200

267 - chompBalanced

268 - chompToIgnoreCase

269 - consume*

270 - escapeCssIdentifier

271 - isEmpty

272 - remainder

273 - unescape

274 - -consume

275 - -consumeToIgnoreCase

276 - -consumeToAny

277 - name: XmlTreeBuilder

278 - name: HtmlTreeBuilder

279 - name: ParseErrorList

280 methods:

281 - tracking

282 - name: org.jsoup.safety

283 types:

284 - name: Cleaner

285 constructors:

286 - "*"

287 methods:

288 - clean

289 - isValid

290 - name: Safelist

291 constructors:

292 - "*"

293 methods:

294 - "*"

295 - name: org.jsoup.select

296 types:

297 - name: Elements

298 constructors:

299 - Elements ()

300 - Elements(Element)

301 methods:

302 - -filter

303 - name: NodeTraversor

304 methods:

305 - filter(_,Elements)

306 - traverse(_,Node)

307 - name: QueryParser

308 methods:

201

Appendix B.

309 - parse

310 - name: CombiningEvaluator

311 - name: And

312 methods:

313 - toString

314 - name: Or

315 - name: Evaluator

316 - name: Tag

317 constructors:

318 - "*"

319 - name: Selector

320 - name: SelectorParseException

321 constructors:

322 - SelectorParseException(_)

323 - name: NodeVisitor

324 methods:

325 - "*"

326 - name: NodeFilter

327 methods:

328 - "*"

329 enums:

330 - name: FilterResult

Listing B.2: Shortened intended API description of the Jsoup Java library.

202

Bibliography

[1] G. Monce, T. Couturou, Y. Hamdaoui, T. Degueule, and J.-R. Fall-

eri, “Lightweight Syntactic API Usage Analysis with UCov,” in 32nd

IEEE/ACM International Conference on Program Compre- hension

(ICPC ’24), 2024, pp. 426–437.

[2] S. Jiang, A. Armaly, C. McMillan, Q. Zhi, and R. Metoyer, “Docio:

Documenting API Input/Output Examples,” in IEEE International

Conference on Program Comprehension (ICPC). IEEE Computer

Society, 6 2017, pp. 364–367.

[3] M. Nassif, Z. Horlacher, and M. P. Robillard, “Casdoc: Unobtrusive

Explanations in Code Examples,” in 30th International Conferenceon

Program Comprehension (ICPC ’22). Virtual Event, USA. ACM,

2022, pp. 631–635.

[4] M. P. Robillard, “What makes APIs hard to learn? answers from

developers,” IEEE Software, vol. 26, no. 6, pp. 27–34, 2009.

[5] M. P. Robillard and R. Deline, “A field study of API learning obsta-

cles,” Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 12

2011.

[6] M. Zibran, F. Eishita, and C. Roy, “Useful, but usable? factors af-

fecting the usability of APIs,” in 2011 18th Working Conference on

Reverse Engineering. IEEE, 2011, pp. 151–155.

203

Bibliography

[7] B. A. Myers and J. Stylos, “Human-centered design can make appli-

cation programming interfaces easier for developers to use,” COMMU-

NICATIONS OF THE ACM, vol. 59, no. 6, 2016.

[8] M. Meng, S. Steinhardt, and A. Schubert, “Application Program-

ming Interface Documentation: What Do Software Developers Want?”

Journal of Technical Writing and Communication, vol. 48, no. 3, pp.

295–330, 2018.

[9] G. Uddin and M. P. Robillard, “How API Documentation Fails,” IEEE

Software, vol. 32, no. 4, pp. 68–75, 7 2015.

[10] D. M. Arya, J. L. Guo, and M. P. Robillard, “Information correspon-

dence between types of documentation for APIs,” Empirical Software

Engineering, vol. 25, no. 5, pp. 4069–4096, 9 2020.

[11] G. Bondel, A. Cerit, and F. Matthes, “Challenges of API Documen-

tation from a Provider Perspective and Best Practices for Examples

in Public Web API Documentation,” in International Conference on

Enterprise Information Systems, ICEIS - Proceedings, vol. 2. Science

and Technology Publications, Lda, 2022, pp. 268–279.

[12] P. T. Nguyen, J. Di Rocco, C. Di Sipio, D. Diruscio, and M. Di Penta,

“Recommending API Function Calls and Code Snippets to Support

Software Development,” IEEE Transactions on Software Engineering,

pp. 2417–2438, 2021.

[13] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,

“Toxic Code Snippets on Stack Overflow,” IEEE Transactions on Soft-

ware Engineering, vol. 47, no. 3, pp. 560–581, 3 2021.

[14] K. Nybom, A. Ashraf, and I. Porres, “A systematic mapping study on

API documentation generation approaches,” in 44th Euromicro Con-

204

Bibliography

ference on Software Engineering and Advanced Applications, SEAA,

2018, pp. 462–469.

[15] R. P. Buse and W. Weimer, “Synthesizing API usage examples,” in

Proceedings - International Conference on Software Engineering, 2012,

pp. 782–792.

[16] M. Ghafari, K. Rubinov, and M. M. Pourhashem K, “Mining unit

test cases to synthesize API usage examples,” Journal of Software:

Evolution and Process, vol. 29, no. 12, 12 2017.

[17] J. Kim, S. Lee, S. W. Hwang, and S. Kim, “Enriching documents

with examples: A corpus mining approach,” ACM Transactions on

Information Systems, vol. 31, no. 1, 1 2013.

[18] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang, “Mining API

usage examples from test code,” in 30th International Conference on

Software Maintenance and Evolution, 2014, pp. 301–310.

[19] S. M. Nasehi and F. Maurer, “Unit tests as API usage examples,” in

26th IEEE International Conference on Sofware Maintenance, 2010,

pp. 1–10.

[20] M. Kajko-Mattsson, “A Survey of Documentation Practice within Cor-

rective Maintenance,” Empirical Software Engineering, vol. 10, pp. 31–

55, 2005.

[21] E. Raelijohn, M. Famelis, and H. Sahraoui, “Checking temporal pat-

terns of API usage without code execution,” in 2021 IEEE/ACM 9th

International Conference on Formal Methods in Software Engineering.

IEEE, 2021, pp. 86–96.

205

Bibliography

[22] S. Nielebock, P. Blockhaus, J. Krüger, and F. Ortmeier, “An Exper-

imental Analysis of Graph-Distance Algorithms for Comparing API

Usages,” arxiv.org, 2021.

[23] J. Ofoeda, R. Boateng, and J. Effah, “Application programming inter-

face (API) research: A review of the past to inform the future,” pp.

76–95, 7 2019.

[24] E. Moritz, L.-V. Mario, P. Denys, and G. Mark, “ExPort: Detect-

ing and Visualizing API Usages in Large Source Code Repositories,”

in 28th IEEE/ACM International Conference on Automated Software

Engineering (ASE)., 2013, pp. 646–651.

[25] W. Liu, B. Chen, X. Peng, Q. Sun, and W. Zhao, “Identifying change

patterns of API misuses from code changes,” Science China Informa-

tion Sciences, vol. 64, no. 3, pp. 1–19, 2021.

[26] J. Stylos, B. Graf, D. K. Busse, C. Ziegler, R. Ehret, and J. Karstens,

“A case study of API redesign for improved usability,” Proceedings -

2008 IEEE Symposium on Visual Languages and Human-Centric Com-

puting, VL/HCC 2008, pp. 189–192, 2008.

[27] J. Sae Young, X. Yingyu, B. Jack, A. M. Brad, S. Jeff, E. Ralf, K. Jan,

E. Arkin, and K. B. Daniela, “Improving documentation for esoa apis

through user studies,” in End-User Development, V. Pipek, M. B.

Rosson, B. de Ruyter, and V. Wulf, Eds, 2009, pp. 86–105.

[28] W. G. Lutters and C. B. Seaman, “Revealing actual documentation

usage in software maintenance through war stories,” Information and

Software Technology, vol. 49, no. 6, pp. 576–587, 6 2007.

[29] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stran-

sky, “You Get Where You’re Looking for: The Impact of Information

206

Bibliography

Sources on Code Security,” in Proceedings - 2016 IEEE Symposium on

Security and Privacy, SP 2016. Institute of Electrical and Electronics

Engineers Inc., 8 2016, pp. 289–305.

[30] X. Li, J. Jiang, S. Benton, Y. Xiong, and L. Zhang, “A Large-scale

Study on API Misuses in the Wild,” Proceedings - 2021 IEEE 14th

International Conference on Software Testing, Verification and Vali-

dation, ICST 2021, pp. 241–252, 4 2021.

[31] Y. Zhou, C. Wang, X. Yan, T. Chen, S. Panichella, and H. Gall, “Au-

tomatic Detection and Repair Recommendation of Directive Defects

in Java API Documentation,” IEEE Transactions on Software Engi-

neering, vol. 46, no. 9, pp. 1004–1023, 9 2020.

[32] Jan, “javadoc,” 2016. [Online]. Available: https://docs.oracle.com/

javase/8/docs/technotes/tools/windows/javadoc.html

[33] “What is JavaDoc tool and how to use it?”

2020. [Online]. Available: https://www.geeksforgeeks.org/

what-is-javadoc-tool-and-how-to-use-it/

[34] “Sphinx,” 2022. [Online]. Available: https://www.sphinx-doc.org/en/

master/

[35] U. Dekel and J. D. Herbsleb, “Improving API Documentation Usability

with Knowledge Pushing,” Institute for Software Research, School of

Computer Science, p. 632, 2009.

[36] C. Treude and M. P. Robillard, “Augmenting API documentation with

insights from stack overflow,” in International Conference on Software

Engineering, vol. 14-22-May-, 2016, pp. 392–403.

207

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://www.geeksforgeeks.org/what-is-javadoc-tool-and-how-to-use-it/
https://www.geeksforgeeks.org/what-is-javadoc-tool-and-how-to-use-it/
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/

Bibliography

[37] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the compre-

hension of program comprehension,” ACM Transactions on Software

Engineering and Methodology, vol. 23, no. 4, 2014.

[38] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An Ethnographic Study

of Copy and Paste Programming Practices in OOPL,” in The Inter-

national Symposium on Empirical Software Engineering (ISESE’04),

2004.

[39] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,

“Two Studies of Opportunistic Programming: Interleaving Web For-

aging, Learning, and Writing Code,” CHI 2009 Software Development,

2009.

[40] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good

code example?: A study of programming Q&A in StackOverflow,” in

IEEE International Conference on Software Maintenance, ICSM, 2012,

pp. 25–34.

[41] M. Meng, S. Steinhardt, and A. Schubert, “How developers use API

documentation: an observation study,” Communication Design Quar-

terly Review, vol. 2, no. 7, pp. 40–49, 2019.

[42] A. Hora, “APISonar: Mining API usage examples,” Software - Practice

and Experience, vol. 51, no. 2, pp. 319–352, 2 2021.

[43] S. Radevski, H. Hata, and K. Matsumoto, “Towards Building API

Usage Example Metrics,” in IEEE 23rd International Conference on

Software Analysis, Evolution, and Reengineering. IEEE, 2016, pp.

619–623.

[44] T. Couturou, “UCov: A Static Analysis Tool for API Usage Cover-

age Validation,” Ph.D. dissertation, Bordeaux university, LaBRI, Bor-

deaux, France, 2023.

208

Bibliography

[45] J. Singer, “Practices of Software Maintenance,” in Proceedings. Inter-

national Conference on Software Maintenance (Cat. No. 98CB36272),

1998, pp. 139–145.

[46] R. Holmes, R. J. Walker, and G. C. Murphy, “Strathcona Example

Recommendation Tool,” in Proceedings of the 10th European software

engineering conference held jointly with 13th ACM SIGSOFT interna-

tional symposium on Foundations of software engineering, 2005, pp.

237–240.

[47] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang, “Mining

succinct and high-coverage API usage patterns from source code,” in

IEEE International Working Conference on Mining Software Reposi-

tories, 2013, pp. 319–328.

[48] E. Aghajani, C. Nagy, O. L. Vega-Marquez, M. Linares-Vasquez,

L. Moreno, G. Bavota, and M. Lanza, “Software Documentation Issues

Unveiled,” in IEEE/ACM 41st International Conference on Software

Engineering, vol. 2019-May. IEEE Computer Society, 5 2019, pp.

1199–1210.

[49] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are

code examples on an online Q&A forum reliable?: A study of API

misuse on stack overflow,” in ACM/IEEE International Conference on

Software Engineering, 2018, pp. 886–896.

[50] D. Hoffman and P. Strooper, “API documentation with executable

examples,” Journal of Systems and Software, vol. 66, no. 2, pp. 143–

156, 5 2003.

[51] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documen-

tation,” in Proceedings - International Conference on Software Engi-

neering. IEEE Computer Society, 5 2014, pp. 643–652.

209

Bibliography

[52] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers, “Improving API doc-

umentation using API usage information,” in 2009 IEEE Symposium

on Visual Languages and Human-Centric Computing, VL/HCC, 2009,

pp. 119–126.

[53] L. Wei Mar, Y.-C. Wu, and H. Christine Jiau, “Recommending Proper

API Code Examples for Documentation Purpose,” in 18th Asia-Pacific

Software Engineering Conference, 2011, pp. –338.

[54] C. McMillan, D. Poshyvanyk, and M. Grechanik, “Recommending

Source Code Examples via API Call Usages and Documentation,” in

The 2nd International Workshop on Recommendation Systems for Soft-

ware Engineering, 2010, p. 83.

[55] J. Jiang, J. Koskinen, A. Ruokonen, and T. Systä, “Constructing Us-

age Scenarios for API Redocumentation,” in 15th IEEE International

Conference on Program Comperhension(ICPC’07), 2007.

[56] M. Ward, “Program Comprehension,” Software Technology Research

Lab, De Montfort University., Tech. Rep.

[57] A. Fekete and Z. Porkoláb, “A comprehensive review on software com-

prehension models,” Annales Mathematicae et Informaticae, vol. 51,

pp. 103–111, 2020.

[58] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner, and J. Laviola,

“Code Park: A New 3D Code Visualization Tool,” in 2017 IEEE Work-

ing Conference on Software Visualization, vol. 2017-October. Institute

of Electrical and Electronics Engineers Inc., 10 2017, pp. 43–53.

[59] A. L. Mattila, P. Ihantola, T. Kilamo, A. Luoto, M. Nurminen, and

H. Väätäjä, “Software visualization today - Systematic literature re-

view,” in The 20th International Academic Mindtrek Conference. As-

sociation for Computing Machinery, Inc, 10 2016, pp. 262–271.

210

Bibliography

[60] L. Bedu, O. Tinh, and F. Petrillo, “A tertiary systematic literature

review on software visualization,” in 7th IEEE Working Conference on

Software Visualization. Institute of Electrical and Electronics Engi-

neers Inc., 9 2019, pp. 33–44.

[61] R. Wettel and M. Lanza, “Visualizing Software Systems as Cities,” in

4th IEEE International workshop on visualizing software for under-

standing and analysis, 2007, pp. 92–99.

[62] W. Richard and L. Michele, “CodeCity 3D Visualization of Large-

Scale Software,” in Companion of the 30th international conference on

Software engineering. ACM Digital Library, 2013, pp. 921–922.

[63] R. Wettel and M. Lanza, “Program Comprehension through Soft-

ware Habitability,” in 15th IEEE International Conference on Program

Comprehension (ICPC’07). IEEE, 2007, pp. 231–240.

[64] S. Romano, N. Capece, U. Erra, G. Scanniello, and M. Lanza, “The

City Metaphor in Software Visualization: Feelings, Emotions, and

Thinking,” Multimedia Tools and Applications, vol. 23, no. 78, 2019.

[65] R. Cates, N. Yunik, and D. G. Feitelson, “Does Code Structure Affect

Comprehension? On Using and Naming Intermediate Variables,” in

IEEE International Conference on Program Comprehension, vol. 2021-

May. IEEE Computer Society, 5 2021, pp. 118–126.

[66] S. Ajami, Y. Woodbridge, and D. G. Feitelson, “Syntax, predicates,

idioms — what really affects code complexity?” Empirical Software

Engineering, vol. 24, no. 1, pp. 287–328, 2 2019.

[67] E. Avidan and D. G. Feitelson, “Effects of Variable Names on Compre-

hension: An Empirical Study,” in IEEE 25th International Conference

on Program Comprehension. IEEE Computer Society, 6 2017, pp.

55–65.

211

Bibliography

[68] B. Sharif and J. I. Maletic, “An eye tracking study on camelcase and

under-score identifier styles,” in IEEE 18th International Conference

on Program Comprehension, 2010, pp. 196–205.

[69] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and

B. Sharif, “The impact of identifier style on effort and comprehen-

sion,” Empirical Software Engineering, vol. 18, no. 2, pp. 219–276, 4

2013.

[70] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier

names for comprehension and memory,” Innovations in Systems and

Software Engineering, vol. 3, no. 4, pp. 303–318, 12 2007.

[71] T. Vieira Ribeiro and G. Horta Travassos, “Attributes Influencing the

Reading and Comprehension of Source Code-Discussing Contradictory

Evidence,” CLEI Electronic Journal, vol. 21, no. 1, 2018.

[72] J. C. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier

names take longer to comprehend,” Empirical Software Engineering,

vol. 24, no. 1, pp. 417–443, 2 2019.

[73] R. J. Miara, E. Ct, J. A. Musselman, J. A. Musse, J. A. Navarro, and

B. Shneiderman, “PROGRAM INDENTATION AND COMPREHEN-

SIBILITY,” Communications of the ACM, vol. 26, no. 11, 1983.

[74] Y. Geffen and S. Maoz, “On method ordering,” in IEEE International

Conference on Program Comprehension, vol. 2016-July. IEEE Com-

puter Society, 7 2016, pp. 1–10.

[75] A. Jbara and D. G. Feitelson, “On the effect of code regularity on

comprehension,” in 22nd International Conference on Program Com-

prehension (ICPC 2014). Association for Computing Machinery, 6

2014, pp. 189–200.

212

Bibliography

[76] N. Peitek, J. Siegmund, and S. Apel, “What drives the reading order

of programmers? an eye tracking study,” in 28th International Con-

ference on Program Comprehension (ICPC ’20). ACM, 10 2020, pp.

342–353.

[77] B. El-Haik and A. Shaout, SOFTWARE DESIGN FOR SIX SIGMA

A Roadmap for Excellence. Hoboken, New Jersey: A JOHN WILEY

& SONS, INC., 2010.

[78] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm, “A SLOC Count-

ing Standard,” in The 22nd Annual Forum on COCOMO and System-

s/Software Cost Modeling. Center for Systems and Software Engi-

neering, University of Southern California., 2007, pp. 1–16.

[79] S. K. Chang, Handbook of software engineering and knowledge engi-

neering. World Scientific, 2001, vol. 1.

[80] D. Kafura and G. R. Reddy, “The Use of Software Complexity Metrics

in Software Maintenance,” IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, vol. 13, no. 3, 1987.

[81] J. Borstler and B. Paech, “The Role of Method Chains and Comments

in Software Readability and Comprehension-An Experiment,” IEEE

Transactions on Software Engineering, vol. 42, no. 9, pp. 886–898, 9

2016.

[82] S. A. Chowdhury, G. Uddin, and R. Holmes, “An Empirical Study on

Maintainable Method Size in Java,” in 2022 Mining Software Reposi-

tories Conference, MSR 2022. Institute of Electrical and Electronics

Engineers Inc., 2022, pp. 252–264.

[83] N. Kukreja, “Measuring Software Maintainability,” Quandary

Peak Research, Los Angeles, California, Tech. Rep., 2

213

Bibliography

2015. [Online]. Available: https://quandarypeak.com/2015/02/

measuring-software-maintainability/

[84] P. Oman and J. Hagemeister, “Construction and testing of polynomials

predicting software maintainability,” Journal of Systems and Software,

vol. 24, no. 3, pp. 251–266, 1994.

[85] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Soft-

ware Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[86] “Essential complexity,” 3 2021. [Online]. Available: https://www.ibm.

com/docs/en/raa/6.1?topic=metrics-essential-complexity

[87] M. H. Halstead, “Natural laws controlling algorithm structure?” ACM

Sigplan Notices, vol. 7, no. 2, pp. 19–26, 1979.

[88] Kurt Heckman, “Halstead Software Complexity,” 12 2020. [On-

line]. Available: https://www.vcalc.com/wiki/halstead%20software%

20complexity

[89] N. Peitek, S. Apel, C. Parnin, A. Brechmann, and J. Siegmund, “Pro-

gram Comprehension and Code Complexity Metrics: An fMRI Study,”

in 2021 IEEE/ACM 43rd International Conference on Software Engi-

neering (ICSE). IEEE, 5 2021, pp. 524–536.

[90] S. Scalabrino, G. Bavota, V. Christopher, L.-V. Mario, P. Denys, and

O. Rocco, “Automatically Assessing Code Understandability:How Far

Are We?” in International Conference on Automated Software Engi-

neering (ASE). IEEE, 2017, pp. 417–427.

[91] A. Campbell, “Cognitive Complexity: A New Way of Measuring Un-

derstandability,” SonarSource S.A., Tech. Rep., 2018.

[92] D. Beyer, A. F. . I. t. I. Conference, and u. 2010, “A simple and ef-

fective measure for complex low-level dependencies,” in 18th IEEE In-

214

https://quandarypeak.com/2015/02/measuring-software-maintainability/
https://quandarypeak.com/2015/02/measuring-software-maintainability/
https://www.ibm.com/docs/en/raa/6.1?topic=metrics-essential-complexity
https://www.ibm.com/docs/en/raa/6.1?topic=metrics-essential-complexity
https://www.vcalc.com/wiki/halstead%20software%20complexity
https://www.vcalc.com/wiki/halstead%20software%20complexity

Bibliography

ternational Conference on Program Comprehension. IEEE, 2010, pp.

80–83.

[93] Martin Fowler, Refactoring: Improving the Design of Existing Code.

Berkeley, CA, USA: Addison-Wesley Professional, 1999.

[94] A. O’connor, M. Shonle, and W. Griswold, “Star Diagram with Au-

tomated Refactorings for Eclipse,” eclipse’05, San Diego, CA, Tech.

Rep., 10 2005.

[95] N. Lambaria and T. Cerny, “A Data Analysis Study of Code Smells

within Java Repositories,” in 17th Conference on Computer Science

and Intelligence Systems, 2022, pp. 313–318.

[96] “Eclipse Java development tools (JDT),” 2022. [Online]. Available:

https://www.eclipse.org/jdt/

[97] J. Al Dallal and A. Abdin, “Empirical Evaluation of the Impact of

Object-Oriented Code Refactoring on Quality Attributes: A System-

atic Literature Review,” IEEE Transactions on Software Engineering,

vol. 44, no. 1, pp. 44–69, 2018.

[98] F. Tomassetti, “How to create pragmatic, lightweight languages Learn

the process to create DSLs and GPLs,” Tech. Rep., 2016. [Online].

Available: http://leanpub.com/create_languages

[99] M. Mernik, J. H. Cwi, A. M. Sloane, J. H. Nl, and . A. M. Sloane,

“When and How to Develop Domain-Specific Languages When and

How to Develop Domain-Specific Languages 317,” Tech. Rep. 4, 2005.

[100] M. Fowler, Domain-specific languages. Addison-Wesley, 2011.

[101] R. D. Kelker, Clojure for domain-specific languages. Packt Publishing,

2013.

215

https://www.eclipse.org/jdt/
http://leanpub.com/create_languages

Bibliography

[102] D. Kolovos, “The eclipse modeling framework (emf),” 2021.

[103] R. F. Paige, D. S. Kolovos, and F. A. Polack, “A tutorial on metamod-

elling for grammar researchers,” in Science of Computer Programming,

vol. 96, no. P4. Elsevier, 12 2014, pp. 396–416.

[104] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fernandes, “Engi-

neering a DSL for software traceability,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 5452, pp. 151–167, 2009.

[105] K. Sledziewski, B. Bordbar, and R. Anane, “A DSL-based approach

to software development and deployment on cloud,” in Proceedings

- International Conference on Advanced Information Networking and

Applications, AINA, 2010, pp. 414–421.

[106] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini, “What should

developers be aware of? An empirical study on the directives of API

documentation,” Empirical Software Engineering, vol. 17, no. 6, pp.

703–737, 12 2012.

[107] E. Aghajani, C. Nagy, M. Linares-Vasquez, L. Moreno, G. Bavota,

M. Lanza, and D. C. Shepherd, “Software documentation: The prac-

titioners’ perspective,” in Proceedings - International Conference on

Software Engineering. IEEE Computer Society, 6 2020, pp. 590–601.

[108] “Gorilla Experiment Builder,” 2023. [Online]. Available: https:

//gorilla.sc

[109] A. Danilova, A. Naiakshina, S. Horstmann, and M. Smith, “Do you

really code? Designing and evaluating screening questions for online

surveys with programmers,” in Proceedings - International Conference

on Software Engineering. IEEE Computer Society, 5 2021, pp. 537–

548.

216

https://gorilla.sc
https://gorilla.sc

Bibliography

[110] D. Russo, “Recruiting Software Engineers on Prolific,” in the1st Inter-

national Workshop on Recruiting Participants for Empirical Software

Engineering (RoPES 2022), vol. 5, no. CSCW1. Association for Com-

puting Machinery, 4 2022.

[111] B. Reid, M. Wagner, M. d’Amorim, and C. Treude, “Software Engi-

neering User Study Recruitment on Prolific: An Experience Report,”

in International Workshop on Recruiting Participants for Empirical

Software Engineering (RoPES’22), vol. 5, no. CSCW1. Association

for Computing Machinery, 4 2022.

[112] J. Feigenspan, C. K¨astner, J. Liebig, S. Apel, and S. Hanenberg,

“Measuring Programming Experience,” in 2012 20th IEEE Interna-

tional Conference on Program Comprehension. IEEE, 2012, pp. 73–

82.

[113] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg, “Mea-

suring and modeling programming experience,” Empirical Software En-

gineering, vol. 19, no. 5, pp. 1299–1334, 2014.

[114] G. Gao, F. Vpichick, M. Ichinco, and C. Kelleher, “Exploring Program-

mers’ API Learning Processes: Collecting Web Resources as External

Memory,” in 2020 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), 2020, pp. 1–10.

[115] D. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models

and software maintenance,” Journal of Systems and Software, vol. 7,

no. 4, pp. 341–355, 1987.

[116] A. Von Mayrhauser and A. M. Vans, “Program Understanding Be-

havior During Adaptation of Large Scale Software,” in the 6th Inter-

national Workshop on Program Comprehension (IWPC’98), 1998, pp.

164–172.

217

Bibliography

[117] D. G. Feitelson, “Considerations and Pitfalls in Controlled Experi-

ments on Code Comprehension,” in IEEE/ACM 29th International

Conference on Program Comprehension (ICPC), 3 2021, pp. 106–117.

[118] S. Shapiro and M. Wilk, “An analysis of variance test for normality

(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[119] L. Howard, “Robust tests for equality of variances,” Contributions to

probability and statistics, pp. 278–292, 1960.

[120] “Vonage Quickstart Examples for Java,” 2023. [Online]. Available:

https://github.com/Vonage/vonage-java-code-snippets

[121] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation

of code clone detection techniques and tools: A qualitative approach,”

Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 5 2009.

[122] B. Hu, Y. Wu, X. Peng, J. Sun, N. Zhan, and J. Wu, “Assessing

Code Clone Harmfulness: Indicators,Factors, and Counter Measures,”

in 2021 IEEE International Conference on Software Analysis, Evolu-

tion and Reengineering (SANER), 2021, pp. 225–236.

[123] H. Husain, H.-H. Wu, T. Gazit, G. Miltiadis, and A. M. Brockschmidt,

“CodeSearchNet Challenge Evaluating the State of Semantic Code

Search,” preprint arXiv:1909.09436., 2019.

[124] T. Zhang, D. Yang, C. Lopes, and M. Kim, “Analyzing and Supporting

Adaptation of Online Code Examples,” in Proceedings - International

Conference on Software Engineering, vol. 2019-May. IEEE Computer

Society, 5 2019, pp. 316–327.

[125] “SearchCode,” 2022. [Online]. Available: https://searchcode.com

[126] “GitHub,” 2023. [Online]. Available: https://www.github.com

218

https://github.com/Vonage/vonage-java-code-snippets
https://searchcode.com
https://www.github.com

Bibliography

[127] E. Kalliamvakou, G. Gousios, t. Kelly Blincoe, L. Singer, D. M. Ger-

man, and D. Damian, “The Promises and Perils of Mining GitHub,”

in In Proceedings of the 11th working conference on mining software

repositories, 2014, pp. 92–101.

[128] “GitHub REST API,” 2023. [Online]. Available: https://docs.github.

com/en/rest?apiVersion=2022-11-28

[129] O. Dabic, E. Aghajani, and G. Bavota, “Sampling Projects in GitHub

for MSR Studies,” in 2021 IEEE/ACM 18th International Conference

on Mining Software Repositories, MSR 2021. Institute of Electrical

and Electronics Engineers Inc., 5 2021, pp. 560–564.

[130] D. Eisenberg, J. Stylos, and B. Myers, “Apatite: A New Interface for

Exploring APIs,” CHI 2010: Interaction Techniques, pp. 1331–1334,

2010.

[131] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding Plagiarisms

among a Set of Programs with JPlag,” Journal of Universal Computer

Science, vol. 8, no. 11, 2002.

[132] T. Saǧlam, S. Hahner, J. W. Wittler, and T. Kühn, “Token-based

plagiarism detection for metamodels,” in Proceedings - ACM/IEEE

25th International Conference on Model Driven Engineering Languages

and Systems, MODELS 2022: Companion Proceedings. Association

for Computing Machinery, Inc, 10 2022, pp. 138–141.

[133] P. Terence, “ANTLR (ANother Tool for Language Recognition),”

2025. [Online]. Available: https://www.antlr.org/

[134] D. Moody, “The physics of notations: Toward a scientific basis for con-

structing visual notations in software engineering,” IEEE Transactions

on Software Engineering, vol. 35, no. 6, pp. 756–779, 2009.

219

https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://www.antlr.org/

Bibliography

[135] D. Avison and G. Fitzgerald, Information Systems Development:

Methodologies, Techniques and Tools, 3rd ed. Blackwell Scientific,

2003.

[136] J. Bertin, Semiology of Graphics: Diagrams, Networks, Maps. Univ.

of Wisconsin Press, 1983.

[137] J. H. Larkin and H. A. Simon, “Why a Diagram is (Sometimes) Worth

Ten Thousand Words,” Cognitive Science, vol. 11, no. 1, pp. 65–100, 1

1987.

[138] W. Lidwell, K. Holden, and J. Butler, Universal Principles of Design:

A Cross-Disciplinary Reference. Rockport Publishers, 2003.

[139] P. Goolkasian, “Pictures, Words, and Sounds: From Which Format

Are We Best Able to Reason?” The Journal of General Psychology,

vol. 127, no. 4, 2000.

[140] A. Bacchelli, F. Rigotti, L. Hattori, and M. Lanza, “Manhattan-3D

City Visualizations in Eclipse,” in ECLIPSE IT, 2011, pp. 307–310.

[141] M. Weninger, L. Makor, and H. Mossenbock, “Memory Cities: Visual-

izing Heap Memory Evolution Using the Software City Metaphor,” in

Proceedings - 8th IEEE Working Conference on Software Visualization,

VISSOFT 2020. Institute of Electrical and Electronics Engineers Inc.,

9 2020, pp. 110–121.

[142] T. Durieux, C. Soto-Valero, and B. Baudry, “Duets: A dataset of repro-

ducible pairs of java library-clients,” in Proceedings - 2021 IEEE/ACM

18th International Conference on Mining Software Repositories, MSR

2021. Institute of Electrical and Electronics Engineers Inc., 5 2021,

pp. 545–549.

220

Bibliography

[143] S. Sparman and C. Schulte, “Analysing the API learning process

through the use of eye tracking,” in the 2023 Symposium on Eye Track-

ing Research and Applications (ETRA), 2023, pp. 1–6.

221

	Abstract
	List of Contents
	List of Tables
	List of Figures
	List of Listings
	List of Algorithms
	Acknowledgments
	Author Declaration
	Introduction
	Thesis Contributions
	Thesis Structure

	Background
	Application Programming Interfaces (APIs)
	API Documentation
	Code Examples in API Documentation
	Characteristics of Effective API Code Examples
	Coverage of API Code Examples

	API Code Example Generation Approaches
	Program Comprehension
	Attributes Influencing the Comprehension of Source Code
	API Code Example Comprehension

	Source Code Metrics
	Size
	Maintainability
	Complexity
	Comprehension
	Source Code Linearity

	Code Refactoring
	Domain-specific Languages (DSLs)
	Summary

	Analysis and Hypothesis
	Analysis
	Research Objectives
	Research Questions
	Research Hypothesis
	Research Scope
	Summary

	Impact of Source Code Linearity on the Programmers’ Comprehension of API Code Examples
	Methodology
	Research Questions
	Study Design
	Independent Variables
	Dependent Variables
	Participants
	Material
	Experiment Procedure
	Data Analysis

	Results and Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Summary

	Linear API Usage Example Synthesis
	Linear Code Synthesiser’s Features
	Code Analysis
	Code Transformation
	Code Processor and Generator

	Synthesiser’s Constraints
	Evaluation
	Data Collection
	Data Cleaning
	Data Analysis and Similarity Detection
	API Code Examples Rewriting
	API Code Examples Evaluation

	Results and Discussion
	Limitations and Observations
	Template-based Code Synthesis
	Interactive API Usage Example Generation

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Summary

	Coverage of API Code Examples
	APIExCov's Features
	Intended-API Description Language
	The API Description Language ANTLR-based Custom Grammar

	Static Analysis and Parsing
	Intended-API Description Validation
	Coverage Analysis
	Textual Coverage Report
	Visual Coverage Report

	Constraints
	Evaluation
	Results and Discussion
	Qualitative Comparison of APIExCov and Code Coverage Tools

	Limitations and Observations
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Summary

	Conclusions and Future Work
	Summary
	Thesis Contributions
	Research Results
	Future Work

	Appendices
	Appendix
	Appendix
	Bibliography

