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Abstract

The purpose of this thesis was to develop hyperpolarised '?°Xe magnetic resonance
imaging and spectroscopy (MRI/S) methodology for the assessment of pulmonary gas
exchange and haemodynamics. This was accomplished through the following five sub-
projects:

1.

Validation and development of models to estimate the transfer factor of the lung for
carbon monoxide (TLco) from '2°Xe metrics. Applying regression modelling on a
voxel-wise level to create parametric TLco maps provides a useful tool for regional
visualisation and clinical interpretation of 12°Xe gas exchange MRI.

. Assessment of compressed sensing (CS)-accelerated dissolved-phase 2°Xe imag-

ing. CS reconstruction enabled acquisition time to be halved, and reduced back-
ground noise, whilst preserving key gas exchange metrics.

Development of a keyhole reconstruction technique to map the amplitude and
phase of dissolved '?°Xe red blood cell (RBC) signal oscillations in the lung vas-
culature from dissolved '?°Xe MRI data. This may provide a means to probe the
effects of the cardiac pulse wave in the pulmonary microvasculature.

Evaluation of RBC oscillation amplitude and phase mapping in post-COVID-19
and chronic thromboembolic pulmonary hypertension (CTEPH) patients and ini-
tial attempts to validate against established imaging methods and a computational
model. >Xe RBC oscillation amplitude and phase mapping showed potential sen-
sitivity to lung damage at the microvascular level, and agreement with dynamic
contrast enhanced MRI and numerical modelling in a small number of CTEPH pa-
tients.

Development of chemical shift saturation recovery (CSSR) spectroscopy, imaging
and analysis techniques to assess pulmonary gas exchange and measure alveo-
lar septal thickness (h) in healthy volunteers and patients with systemic sclerosis
and/or pulmonary arterial hypertension. h was significantly greater for the patients
than the healthy volunteers. Dynamic CSSR gas uptake imaging allowed for re-
gional quantification of alveolar septal thickness, which could help identify fibrosis
in heterogeneous lung disease.
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Chapter 1

Introduction

Respiratory disease poses an enormous burden to global health and is a leading
cause of death and disability. The World Health Organisation estimates that more
than 8 million deaths a year are caused by lung disease [1]. This is likely to grow
in the future as a result of the rising temperatures, increased air pollution and
wildfire risk which are consequences of the climate crisis. The vital importance
of lung health was highlighted by the COVID-19 pandemic that emerged in 2019.
More than 8 million lives were lost, mostly as a result of lung involvement [1]. In
addition to deaths, the pandemic caused widespread and long-lasting social and
economic effects and millions of people have been left with debilitating ongoing
symptoms, known as ‘long-Covid’.

A 2016 report from the British Lung Foundation stated that, in the UK, more than
12 million people have a lung disease diagnosis and 115,000 people die from
lung disease every year [2]. This is equivalent to one person every five minutes.
This places an immense strain on the NHS, accounting for over 700,000 hospital
admissions a year and an estimated financial burden of £11.1 billion [3]. Lung dis-
ease is strongly associated with social deprivation, and diseases such as Chronic
Obstructive Pulmonary Disease (COPD) and lung cancer are far more common in
underserved communities. The prevention, diagnosis and management of lung
disease is therefore crucial to reduce disease prevalence, mortality and health
inequalities. More research is urgently needed to increase our understanding of
lung disease mechanisms and to provide better biomarkers of lung health in order
to ameliorate patient management and treatment.

Respiratory diseases can be divided into several categories, depending on the
affected region and on the disease aetiology. These include: obstructive lung dis-
ease, restrictive lung disease, pulmonary vascular disease, infectious diseases,
inflammatory diseases, lung cancer and pleural cavity disease. This thesis is
focused on obstructive, restrictive and vascular lung diseases.

Obstructive lung disease is caused by the blockage or narrowing of airways which
increases resistance to air flow. The most common forms of obstructive lung dis-
ease are asthma, which affects more than 350 million people globally [4], and
COPD, which is the fourth-leading cause of death worldwide [1]. Both asthma
and COPD cause symptoms of cough, wheezing and breathlessness. COPD is
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characterised by the destruction of alveolar tissue (emphysema) and obstruction
of small airways from mucus (bronchitis) and inflammation. This causes a pro-
gressive decline in lung function along with acute exacerbations [5]. There is a
demand for better diagnostic and phenotyping strategies for COPD and asthma,
including for patients who have both diseases. Improved methods for monitor-
ing and staging COPD and assessing the impact of treatments and interventions
such as endobronchial valves [6] are also needed.

Restrictive lung diseases cause reduced distensibility of the lungs, restricting
lung expansion and leading to diminished total lung capacity (TLC). They orig-
inate from the destruction or inflammation of lung tissue (intrinsic causes) or from
extra-pulmonary conditions which restrict pulmonary mechanisms, such as neu-
romuscular disease or obesity (extrinsic causes) [7]. Interstitial Lung Disease
(ILD) is a term used to describe a group of more than 100 restrictive diseases
affecting the lung parenchyma, especially the interstitial space within the alveolar
walls [8, 9]. ILD is characterised by interstitial thickening, due to either inflam-
mation or fibrosis or both, which can result in impaired oxygen transfer to the
bloodstream. Prognosis can often be very poor and progression unpredictable,
particularly for Idiopathic Pulmonary Fibrosis (IPF), one of the most common ILDs
[10]. ILD-like pulmonary fibrosis can develop as a sequelae of COVID-19 infec-
tion [11] and is also a frequent complication and cause of morbidity in systemic
sclerosis (SSc) [12]. Currently there is a shortage of robust, sensitive biomarkers
of gas exchange impairment, which makes monitoring disease progression and
developing novel treatments for ILD challenging [13].

Lung disease which affects the pulmonary circulation is known as pulmonary vas-
cular disease (PVD). This is often associated with other diseases such as ILD
and COPD and is linked to a worsened prognosis in these groups [14]. There are
two main types of PVD: pulmonary embolism (PE) and pulmonary hypertension
(PH). PE is the obstruction of pulmonary arteries by a blood clot, generally a re-
sult of deep vein thrombosis in the lower limbs. PH is a condition where the blood
pressure in the pulmonary arteries is elevated, causing right heart strain. PH di-
agnosis can often be difficult, because the most common symptoms of dyspnoea
and fatigue are similar to other respiratory and cardiac disorder symptoms [15].
It can also be challenging to differentiate between different PH subtypes, such
as pre-capillary and post-capillary PH. Consequently, the time between the onset
of PH symptoms and diagnosis often exceeds two years, which is detrimental to
patient outcomes and delays the initiation of treatment [16]. PH evaluation in-
cludes multiple steps such as blood testing, electrocardiogram (ECG), pulmonary
function testing (PFT), echocardiogram and Computed Tomography (CT). Right
heart catheterisation (RHC) can confirm a PH diagnosis, however this is a highly
invasive procedure with a risk of complications such as pulmonary arterial rupture
[17, 14]. Hence, more sensitive, non-invasive measures of pulmonary vascular
function are needed to aid PH diagnosis.

The gold standard of pulmonary imaging is CT, but this method is not well-suited
for long-term disease monitoring, due to its use of ionising radiation, and can only
provide limited functional information. Functional lung measurements are clini-
cally vital and are typically acquired through PFT, such as the transfer factor of the
lungs for carbon monoxide (TLco) test used to measure gas exchange. However,
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PFT lacks the regional specificity that CT can provide, which is especially needed
in heterogeneous disease. In contrast, MRI does not require ionising radiation
or invasive processes and is remarkably versatile, providing both structural and
functional images of the body. Traditionally, imaging the lungs with conventional
'H MRI has been challenging, primarily due to their low proton density (~0.1 g
cm~3 in healthy lungs [18]). The MR signal is directly proportional to proton den-
sity, so this results in weak signals and low signal-to-noise ratio (SNR). Moreover,
the large magnetic susceptibility differences resulting from multiple air-tissue in-
terfaces and the effects of cardiac and respiratory motion further degrade the
MR signal. The development of ultra-short and zero echo time (UTE/ZTE) MRI
sequences for the lungs has overcome some of these barriers and enabled im-
proved structural lung imaging [19, 20], but this does not satisfy the clinical need
for functional, non-ionising lung imaging.

Hyperpolarised xenon-129 ('2°Xe) MRI/S uses inhaled '**Xe gas - a safe and
inert contrast agent - to yield a myriad of information about lung ventilation, mi-
crostructure and gas exchange. ‘Hyperpolarised’ refers to the increased nuclear
polarisation that is achieved via spin exchange optical pumping. This is neces-
sary to increase the MR signal by 4 - 5 orders of magnitude, counteracting the
low spin density and thermal polarisation of '29Xe gas.

The mainstay of hyperpolarised '2°Xe lung MRI is ventilation imaging, whereby
the distribution of gas-phase '?°Xe in the lungs is measured. Areas of low or no
signal in the ventilation images represent a lack of '2°Xe signal, signifying air-
way obstruction or restriction. The first hyperpolarised 12°Xe ventilation images
were obtained in 1994 in excised mouse lungs [21] and in vivo lung imaging in
humans was demonstrated soon after in 1997 [22]. Since then, progress in polar-
isation and imaging techniques has helped establish 12°Xe ventilation imaging as
a robust technique which can provide high sensitivity to ventilation defects in ob-
structive lung diseases such as COPD [23], asthma [24] and cystic fibrosis (CF)
[25].

129%e MRI can also be used to make measurements of lung microstructure [26,
27]. When inhaled, the '>*Xe gas molecules diffuse through the alveolar airspaces
with random Brownian motion. Reflections occur at the alveolar walls, restricting
the diffusion and leading to a reduced apparent diffusion coefficient (ADC) which
is reflective of the alveolar dimensions. By fitting the diffusion-weighted (DW) MRI
signal to theoretical models of gas diffusion [28, 29], measurements of morpho-
logical parameters analogous to those from histology can be extracted. DW '2°Xe
MRI is particularly sensitive to emphysema, where loss of alveolar tissue causes
less restricted diffusion and therefore increased ADC [30].

One of the most novel and unique aspects of hyperpolarised 12°Xe MRl is its abil-
ity to quantify the transfer of gas from the alveoli into the bloodstream. 2°Xe is
mildly soluble in the parenchymal tissue, pulmonary capillary blood plasma and
red blood cells (RBCs). Different chemical shifts are exhibited for 2°Xe in the
alveolar airspaces, the lung tissue and blood plasma (collectively referred to as
‘membrane’, M), and the RBCs. This means that >*Xe can act as a surrogate
for oxygen and be used to probe gas exchange by measuring the MR signal
from each environment [31]. The ratios of these signals (RBC:M, RBC:Gas and
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M:Gas) provide sensitivity to gas exchange function, tissue thickening and perfu-
sion limitation in diseases such as ILD, asthma, and COPD [32, 33, 34, 35, 36, 37,
38, 39]. Time-resolved '?°Xe spectroscopy measurements can be used in con-
junction with analytical diffusion models to estimate clinically relevant parameters
such as the alveolar septal wall thickness [40, 41]. Recently, measurement of os-
cillations in the 2°Xe RBC signal has emerged as a way to assess microvascular
function [37].

1.1 Thesis Aims and Objectives

The overarching aim of this thesis was to develop hyperpolarised '2°Xe MRI/S
methodology for the assessment of pulmonary gas exchange and haemodynam-
ics.

To achieve this goal, the following specific objectives were set:

1. Investigate the relationship between '2°Xe MRI metrics and standard clini-
cal measures of gas exchange and to validate and expand on a model which
links the two.

2. Develop a compressed sensing reconstruction for non-Cartesian '2°Xe gas
exchange imaging data in order to reduce scan time and increase image
SNR.

3. Implement a post-acquisition keyhole reconstruction to spatially resolve the
amplitude and phase of cardiogenic oscillations in the 12°Xe RBC signal and
compare with previous methodology which does not account for oscillation
phase.

4. Develop MR pulse sequences and analysis protocols for time-resolved 12°Xe
spectroscopy and imaging and use these to quantify gas exchange in healthy
volunteers and patients with SSc and/or pulmonary arterial hypertension
(PAH).

1.2 Thesis Overview and Author Contributions

The thesis is organised into ten chapters, including this introductory chapter.

Chapter 2 provides an overview of the essential theoretical principles which form
the foundations of this thesis, covering MR physics, image reconstruction and an
introduction to hyperpolarised 2°Xe MRI.

Chapter 3 begins with a description of lung anatomy and physiology and some
conventional methods for measuring pulmonary gas exchange. This is followed
by a review of alternative techniques to quantify gas exchange using hyperpo-
larised 129Xe MRI/S.

Chapter 4 recounts the methodology used throughout this thesis, including an
overview of the MRI hardware and some of the pulse sequences used.
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Chapter 5 is the first chapter of original research and compares three models for
predicting TLco from '°Xe MRI metrics. This includes validation of a previously
published physiology-based model and the development of two machine learning
models, using data from patients with asthma and/or COPD. A regional model is
implemented, which allows for the creation of TLgo maps. This chapter is based
on the following publication: ‘A framework for modelling whole-lung and regional
TLco using hyperpolarised '2°Xe lung MRI’, JH Pilgrim-Morris, LJ Smith, H Mar-
shall, BA Tahir, GJ Collier, NJ Stewart, JM Wild, European Respiratory Journal
Open Research, 2025; 11 (1): 00442-2024. doi: 10.1183/23120541.00442-2024
Author contributions:

« Study design: JHP-M, LJS, BAT, NJS, JMW

 Data acquisition: LJS, HM, GJC

+ Data analysis/model development: JHP-M

» Manuscript preparation: JHP-M, LJS, HM, BAT, GJC, NJS, JMW

Chapter 6 describes the development and assessment of a compressed sens-
ing 2%Xe gas exchange imaging reconstruction which permits a 50% reduction
in scan time. This chapter is based on the following publication: ‘Compressed
sensing reconstruction for high-SNR, rapid dissolved '2°Xe gas exchange MRI,
JH Pilgrim-Morris, GJ Collier, RS Munro, G Norquay, NJ Stewart, JM Wild. Mag-
netic Resonance in Medicine, 2025; 93: 741-750. doi: 10.1002/mrm.30312. Au-
thor contributions:

« Study design: JHP-M, GJC, NJS, JMW

» Data acquisition: JHP-M, GJC, RSM, GN, NJS

» Data analysis: JHP-M

« Manuscript preparation: JHP-M, GJC, NJS, JMW

Chapter 7 reports a novel reconstruction method for dissolved-phase '>*Xe lung
spectroscopic images, which is capable of spatially resolving the amplitude and
phase of oscillations in the signal from 12°Xe dissolved in the pulmonary capillary
RBCs.

Chapter 8 builds on Chapter 7, by applying the RBC oscillation mapping method
to data from two patient groups: COVID-19 and chronic thromboembolic pul-
monary hypertension (CTEPH). Also included in this chapter is preliminary work
to validate the oscillation mapping method against other imaging modalities and
numerical simulations.

Both Chapter 7 and 8 are partially based on the following publication: ‘Mapping
the amplitude and phase of dissolved 2°Xe red blood cell signal oscillations with
keyhole spectroscopic lung imaging’, JH Pilgrim-Morris, GJ Collier, M Takigawa,
S Strickland, R Thompson, G Norquay, NJ Stewart, JM Wild. Magnetic Reso-
nance in Medicine, 2025; 93: 584-596. doi: 10.1002/mrm.30296. Author contri-
butions:

 Study design: JHP-M, GJC, NJS, JMW
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» Data acquisition: JHP-M, GJC, SS, RT, GN, NJS
» Data analysis: JHP-M, MT
» Manuscript preparation: JHP-M, GJC, NJS, JMW

Additionally, the dynamic-contrast enhanced MRI data included in Chapter 8 were
acquired and analysed using techniques developed by Dr Paul Hughes and Dr
Laura Saunders from POLARIS, University of Sheffield. The patient-specific pul-
monary blood flow simulations were performed by Dr Behdad Shaarbaf Ebrahimi
from the University of Auckland Bioengineering Institute.

Chapter 9 presents methods for measuring temporal gas exchange using CSSR
spectroscopy and an analysis method which uses bootstrapping to estimate the
uncertainty on model-derived parameters. This technique is applied to investigate
gas exchange in patients with SSc and/or PAH. Initial work towards a regional
CSSR imaging sequence is reported, including evaluation in a small number of
healthy volunteers. The CSSR pulse sequences were developed by JHP-M and
NJS and all data analyses were performed by JHP-M.

Chapter 10 summarises the conclusions of the previous five chapters of research
and the future research opportunities stemming from this PhD project.




Chapter 2

Theoretical Background

This chapter covers the theoretical background relevant to the experimental work
in this thesis, covering MR Physics, image reconstruction and an introduction to
hyperpolarised **Xe MRI. The following textbooks were used as a reference:
[42, 43].

2.1 Principles of Nuclear Magnetic Resonance

MRI has been used clinically since the early 1980s, following a series of important
discoveries by pioneers in the fields of Physics, Chemistry and Medicine, many
of whom were awarded a Nobel Prize for their work. The nuclear magnetic res-
onance (NMR) phenomenon was first observed by Isidor Rabi [44] in 1938, who
measured the spin of a proton and its interaction with a magnetic field, earning
him the 1944 Nobel Prize in Physics. Felix Bloch [45, 46] and Edward Purcell
[47] were, independently, the first to measure magnetic resonance in solids and
liquids. For this discovery, they shared the 1952 Nobel Physics Prize. Another
Nobel Prize, this time for Chemistry, was won by Richard Ernst in 1991 for his
development of Fourier transform NMR spectroscopy [48] in 1966.

In 1971, NMR was first used for biomedical applications by Raymond Damadian,
who found increased relaxation times in mouse tumours in comparison to healthy
tissues [49]. Paul Lauterbur and Peter Mansfield were awarded the 2003 Nobel
Prize in Physiology/Medicine for independently demonstrating the use of mag-
netic field gradients to localise NMR signals in 1973 [50].

In this section, the phenomenon of NMR is reviewed, using both classical and
quantum mechanics descriptions.

2.1.1 Spin

Spin angular momentum, or ‘spin’, is the intrinsic angular momentum that is a
property of fundamental particles. In the presence of a magnetic field, the spin of
a proton precesses about the field direction and the foundation of MRl is based on
manipulating and detecting the bulk precession of spins within organic molecules
in the body.
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2.1.1.1 Classical Mechanics Description

In the classical picture of a proton in a magnetic field, we treat the proton as an
electric charge rotating with motion which is analogous to that of a spinning top
or gyroscope, as shown in Figure 2.1.1.

(A) (B)
: .
do @
¢
J M
0 0

Figure 2.1.1: Angular momentum diagrams illustrating the precession of (A) a gyroscope
with angular momentum J in a gravitational field and (B) a proton with magnetic moment
u in a magnetic field, where the torque, and therefore the precession, are in the opposite
direction.

The gyroscopic motion of a spinning top is a consequence of a gravitational
torque, which is perpendicular to the spin axis. For a proton in a static mag-
netic field, By, the interaction of the spin with the field results in a torque, which
causes it to precess about the field direction with a frequency proportional to the
magnetic field strength, called the Larmor frequency. The rotation of charge pro-
duces an effective electric current loop around the spin axis, which both interacts
with the static magnetic field and produces its own magnetic field, with magnetic
moment p. The change in u in time dt is given by:

|du| = v|u x B|dt = yuBsinédt, (2.1.1)

where 7y is the gyromagnetic ratio, which is a constant that is unique to each
nuclei. Using the geometric representation in Figure 2.1.1, du can also be written
as:

|du| = usinB|de| (2.1.2)

Combining Equations 2.1.1 and 2.1.2 and using w = ‘%‘, we arrive at the Larmor
precession frequency:
wo = 7YBo (2.1.3)
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Figure 2.1.2: The energy levels of spin-% nuclei (with a positive gyromagnetic ratio) in a
magnetic field Bg. Spins which are aligned with the direction of Bg have a lower energy
and therefore there is a larger population of spins in this state.

N|

2.1.1.2 Quantum Mechanics Description

Spin is a quantum property and therefore can only take discrete values. Electrons,
protons and neutrons each have a spin of % and the overall spin of a nucleus is
determined by its number of protons and neutrons. For MRI, nuclei must have a
non-zero total spin. The magnetic moment of nuclei with non-zero spin is given
by:

p=n (2.1.4)

whereAi is the spin angular momentum quantum operator. To ‘observe’ the nuclear
spin, | is projected along one an axis (chosen here to be the z-axis) onto the
eigenstates |m):

i,J/m) = m|m) (2.1.5)

m is the spin angular momentum quantum number, which can take 2I+1 possible
values, in the range -I to +I, where I is the absolute value of the nuclear spin.
In the absence of a magnetic field, the eigenstates are degenerate and exist in
a linear superposition, but this degeneracy is lifted when the nuclei are placed in
an external magnetic field (Bg). The energy levels are separated according to the
Zeeman splitting Hamiltonian:

H = —yhABol, (2.1.6)

where A is the reduced Plank’s constant (h/2 ). The eigenenergies of this Hamil-
tonian are:

E=—u-B=—yYhBym (2.1.7)

For a spin—% nucleus, m = d:% and so this corresponds to two energy levels,

shown in Figure 2.1.2. The |%) state is referred to as ‘spin-up’ and the | — %)
state is referred to as ‘spin-down’ and these correspond to the spin vectors being
aligned and anti-aligned with the magnetic field, respectively.
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The energy difference between the spin-up and spin-down states is given by:

AE = ! ! hBo = yhB 2.1.8
_(5—(—5))7 0 =¥hBo 2.1.8)

which has an associated frequency:

AE = hw (2.1.9)
Equating Equations 2.1.8 and 2.1.9:

hwo = YhBg (2.1.10)

Therefore, the Larmor frequency is the frequency of the transition between the
two energy levels.

For an ensemble of nuclei in a magnetic field, the number of nuclei in each energy
level (N1/)) is given by the thermal Boltzmann distribution:

Ny AE
—=exp(— , (2.1.11)
N, kgT

where kg is the Boltzmann constant (1.38 x 10723 J K™') and T is temperature. At
body temperature and clinical field strengths, AE = yhBg < kgT, and Equation
2.1.11 can be simplified by taking the Taylor series expansion:

Ny YhBo
— =1+
N, kgT

Assuming a body temperature of 37° and a 1.5 T field strength, this fraction is
approximately equal to 1.000004, or in other words, for every million protons in
the spin-down state, there are a million and four protons in the spin-up state.
The difference between the number of nuclei in each state is defined as the spin
excess:

(2.1.12)

N'YﬁBo
2 kgT

where N is the total number of spins per unit volume. The polarisation P is the
ratio of the spin excess to the total number of nuclei:

Ny — N, (2.1.13)

Ny—N
P=| 1 — Nyl

v (2.1.14)

This creates the net magnetisation, Mg, which is the vector sum of all spins.
Assuming that By is acting along the z-axis:

Y?h2Bo
4kgT '

Mo = NuzP = N (2.1.15)

10
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where L is the projection of u along the z-axis, equal to 77’7 for a spin-% system.
Although at thermal equilibrium, proton polarisation is small (P ~ 5 x 10~9), the
large spin density of protons within the body compensates for this and results in
a measurable net magnetisation.

2.1.2 Excitation and Relaxation

The net magnetisation is described by a vector M, the sum of all magnetic mo-
ments per unit volume. To understand the effects of excitation and relaxation, it is
useful to consider a rotating frame of reference, which rotates around the z-axis
(the direction of Bg) at frequency wo. In this frame, spins which precess with
frequency wqo are stationary. The magnetisation in the rotating frame, denoted
(x’,y’,Z’) can be expressed in terms of the magnetisation in the fixed frame

(X, y, 2):
dm aMm
(—) = (—) —wxM (2.1.16)
dt rot dt fixed

where w is the frequency of the rotating frame.

(dM) Mx B (2.1.17)
R = ’Y X .
dt fixed
and so:
dM w
(—) =yYMx B+ — (2.1.18)
dt rot Y

At the Larmor frequency, w = wo = ¥/Bo. Therefore, for a static magnetic field
in the z direction, (‘Zj—“f)mt = 0 and the magnetisation is constant. M precesses
at the Larmor frequency with respect to the fixed frame.

The net magnetisation vector can be perturbed from its thermal equilibrium state
by inputting energy in the form of a secondary magnetic field, B1, which rotates
at the Larmor frequency. This frequency corresponds to the radiofrequency (RF)
energy on the electromagnetic spectrum and so this excitation is referred to as
the RF excitation or RF pulse. Applying an oscillating RF excitation of frequency
w for time t displaces M from the z-axis by a flip angle 6:

0 = wt = yBt (2.1.19)

B is the strength of the RF magnetic field, which is applied in the direction per-
pendicular to Bg. In the rotating frame, Equation 2.1.18 becomes:

am Wy, N
(E) = YM x Befr = YM x [(Bo—?)z’+le’] (2.1.20)

rot

11
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In the fixed frame, the magnetisation precesses about both the static By field
and the rotating B field. At w = wo, Befr = B1X’ and M precesses about B
with frequency w1 ; the RF pulse is described as ‘on-resonance’. When w # wo,
M precesses around Befr with a frequency weryr; this is called ‘off-resonance’
behaviour.

The precession of M around the B field as a result of RF pulse application is
finite, and eventually M will return to its equilibrium state of alignment with Bg
through longitudinal relaxation. This is analogous to damping and is caused by
energy lost through interactions of the spin system with the surrounding nuclei.
The change in magnetisation in the z direction is given by:

aM, 1
dt T

(Mo — M), (2.1.21)

where T is the characteristic time-scale of longitudinal relaxation. The solution
to Equation 2.1.21 describes the exponential regrowth of the longitudinal mag-
netisation from an initial value, M;(0), to the equilibrium value, Mq:

M,(t) = M,(0)e~ T 4+ Mg(1 — e~ ¥T1) (2.1.22)

T1 is the exponential time constant, representing the time after which the initial
longitudinal magnetisation has recovered ~63% of the equilibrium value. Figure
2.1.3A shows the relaxation of the longitudinal magnetisation back to its initial
value after excitation with 90° and 180° RF pulses.

In additional to longitudinal magnetisation relaxation, spin dephasing processes
result in a reduction in net transverse magnetisation. Each spin experiences a
slightly different magnetic field due to the effect of local magnetic fields created
by neighbouring spins. This leads to different precessional frequencies and thus,
in the rotating frame, the spin vectors disperse over time, as shown in Figure
2.1.3B.

The rate equation for transverse relaxation in the rotating frame is:

My _ My (2.1.23)
dt Ty’ o
which is solved by:
Mxy (t) = Mxy(0)e™¥T2, (2.1.24)

where T> is the transverse relaxation time constant, equivalent to the time after
which My, has decayed to ~37% of its initial value. By field inhomogeneities and
susceptibility differences also affect the effective magnetic field experienced by
each spin and cause additional transverse relaxation with relaxation time Té. The
effective relaxation time T2* is a combination of these two time constants:

1 1 1

+ = 2.1.25
TS5 T2 Té ( )

12
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T, Time T, Time

Figure 2.1.3: (A) The regrowth of the longitudinal magnetisation, M, from initial values
of 0 (after the application of a 90° RF pulse) and -Mgq (after the application of a 180° RF
pulse) back to the equilibrium value, Mg. T is the time taken for M, to reach 63% of
Moy. (B) The decay of the transverse magnetisation, My, from an initial value. T is the
time taken for My, to decay to 37% of its initial value. The transverse decay is due to
the spin dephasing: over time, the spin vectors fan out, due to their different precessional
frequencies.

Magnetic field induced dephasing is reversible through rephasing RF pulses, how-
ever the loss of coherence from spin-spin interactions is irreversible, because this
is related to random, time-dependent field variations.

The magnetisation evolution can be described by a set of differential equations,
known as the Bloch equations, which have the following form in the rotating frame:

i ( M 1IVI 2.1.26
= (wo — W)Mys — — My A.
dt 0 Y T> x ( )
My ( M M 1M (2.1.27)
= (—wo + WMy + WMy — — M, A,
dt 0 X 1z T> d
Mz M 1(M M) (2.1.28)
= wiMy + — (Mo — My 1.
dt 1y T1 0 z

where wq is the Larmor frequency, w1 is the RF field spin frequency and w is the
RF oscillation frequency. Assuming that the system was originally in equilibrium
and was excited by a 90° pulse applied along the x-axis, such that M,(0) =
Mx(0) = 0 and My (0) = Mo, the Bloch equations can be solved by the following
functions:

My (t) = Mge~T2sin((wo — w1)t) (2.1.29)

My (t) = Moe™Y"2cos((wo — w1)t) (2.1.30)

13
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My (t)=Mo(1l—e™ V") (2.1.31)

2.1.3 Signal Detection

Signal detection in MRI can be understood using the principles of electromag-
netism and reciprocity [51]. The precession of the transverse magnetisation after
the application of RF excitation creates a time-varying magnetic flux & through
the receive coil of the MR machine:

<1>=J B-ds (2.1.32)
area

where B is the field generated by the magnetisation M of the sample and dS is
a vector which is perpendicular to the coil area. According to Faraday’s law, this
will induce an electromotive force € which is proportional to the rate of change of
® but, in accordance with Lenz’s law, in the opposite direction:

dd
£=——0 (2.1.33)
dt

Equation 2.1.33 can also be used to describe the magnetic field produced by
current I flowing through a coil. Using this principle of reciprocity, ¢ can be derived
from the magnetic field per unit current that would be produced by the receive coil.
This current normalised receive field is defined as:

Breceive(r)

Breceve(ry = ———— (2.1.34)

The electromotive force induced in the MRI receive coil is given by:

M(r, t)-B"éeVe(r)d3r (2.1.35)

dt sample

This force induces motion in the electrons in the coil, creating a current known as
the free induction decay (FID). This current oscillates at frequency wo and decays
at a rate controlled by 7.

The FID signal is demodulated to remove the oscillations at the Larmor frequency,
because these are typically too high for accurate conversion to digital form. This
is done by multiplying the signal by a sinusoid or cosinusoid function with a fre-
quency at or near the Larmor frequency, such that the resulting FID oscillates at
Aw = wo — wref. The FID signal after excitation by an RF pulse is given by:

S(t) = Sgelbwte=VT; (2.1.36)

where S is the initial signal amplitude attime t = 0. The real and imaginary com-
ponents of the signal are detected separately, by two different receiver channels.

14
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Figure 2.1.4: (A) An example time-domain free induction decay signal and (B) the Fourier
transform (FT) of the signal, which gives the frequency domain spectrum, shown for both
the real and imaginary parts.

Figure 2.1.4 shows the real and imaginary components of an example FID and
its corresponding frequency-domain spectrum. These are related by the Fourier
transform.

2.1.4 Chemical Shift

When a nucleus is placed in an external magnetic field, an electric current is
induced in its surrounding electron cloud. This generates a magnetic field within
the electron cloud which, in accordance with Lenz’s law, opposes the direction
of the external magnetic field. Therefore, the nucleus is ‘shielded’ from the full
strength of the external field and experiences a reduced field, Bo¢:

Bioc = Bo + Binduced = Bo(1 —0) (2.1.37)

where 0 is the shielding tensor. Shielding depends on the electronic configura-
tion and therefore, B¢ is dependent on the local molecular environment of the
nucleus. This leads to different resonant frequencies for the same nucleus in dif-
ferent chemical environments, which allows identification of nuclei and chemical
configurations through MRS.

15
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2.2 Spatial Encoding and Image Reconstruction

Applying magnetic field gradients along each axis introduces a spatially-dependent
frequency and phase of the precessing nuclear spins. This allows spatial locali-

sation by encoding this information into ‘k-space’, an empty matrix which is pop-

ulated with the acquired data according to the gradient trajectory. The k-space

data are then reconstructed using the inverse Fourier transform to obtain the MR

image. In this section, we discuss the concepts of k-space, spatial encoding and

image reconstruction.

2.2.1 Gradients and Echoes

In addition to the static By field, magnetic field gradients are used in MRI for spa-
tial localisation. The application of these gradients results in a position-dependent
magnetic field strength and Larmor frequency. For example, for a gradient applied
in the x direction:

Bz(x) = Bg + GxXx (2.2.1)
Wo(Xx) =YBo + YGxX (2.2.2)
where Gx = % is the gradient strength in the x direction. This is illustrated in
Figure 2.2.1.
w < Wo w > Wy
s \/\y !
a
Wo
BO ____________ r=—==-=-=====--=
1 > X
0

Figure 2.2.1: The application of a magnetic field gradient means that the spins experience
a position-dependent magnetic field, which in turn induces a spatially varying resonant
frequency.

When a gradient is applied, phase is accumulated by the transverse magnetisa-
tion:

t

d(x, t) = yrj G(r, t')dt’ (2.2.3)
0
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The phase accumulation remains encoded when the gradient is switched off. If
the gradient polarity is reversed, this reverses the magnetic field gradient and
spins which were previously precessing at a frequency w < wgo will start to pre-
cess at a higher frequency w > wo and vice versa. This causes the spins to
rephase and after a certain time called the echo time (TE), they are refocused,
creating a signal ‘echo’ known as a gradient echo:

TE
Sge = Spexp (——*) (2.2.4)
T2

Echoes can also be formulated by RF pulses. After the application of a 90° RF
pulse, the spins undergo transverse relaxation. Applying a 180° pulse on the
+y axis flips the spins by 180°, reversing their phases. The spins continue to
dephase, but the direction of dephasing has been reversed. After a time TE, the
spins refocus, creating a spin echo, with a signal given by:

TE
Sse = Spexp (——) (2.2.5)
T2

The spin echo signal depends on the inherent transverse relaxation time, T>,
instead of T2*, because the 180° rephasing pulse compensates for magnetic field
inhomogeneities.

2.2.2 k-Space

k-Space refers to the spatial frequency domain of a Fourier transform, and is the
reciprocal of the spatial domain. Each location in k-space corresponds to a spa-
tial frequency; a periodic variation in signal spatial distribution. The magnitude of
each k-space point determines how much that spatial frequency is represented
in the image. Figure 2.2.2A shows an MRI image of the brain and its correspond-
ing 2D k-space representation. In MR images, low spatial frequencies contribute
most to the signal and relate to the bulk structures, whereas high spatial frequen-
cies relate to fine details and edges. The centre of k-space, k = 0, represents the
average image intensity. These concepts are illustrated in Figure 2.2.2B and C.

To show how the MR signals are represented in k-space, we start by modifying
the Blgch ecluations to include the effect of a magnetic field gradient G(t) =
Gx(t)i+ Gyj+ G 2. In matrix form:

dMy 1
ddt 0 YG-r —vBiy My T 0 0 My 0
M= |—yG-r 0 YBix | [My|+]| O =& o0 ||M, |+ fl) Mo

t
% YB1, —vyBix O M, M,

T1
(2.2.6)
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k-space

Figure 2.2.2: Example MR images of the brain (top row) and the corresponding k-space
(bottom row). (A) Image reconstructed from all k-space data. (B) Reconstructing only the
low-frequency k-space data results in an image which contains the gross structure of the
image but lacks detail. (C) The high-frequency k-space data contains the fine structure
of the image. This figure was created using the ‘k-Space Explorer’ app [52].

The Bloch equation for the transverse magnetisation, My, = My + (M, becomes:

My _ (_l — iYG - r) My (2.2.7)
dt T>

which has the solution:

t
My (r, t) = Mxy(r, 0)exp (_T_tz) exp (—iyr . fo G(t’)dt’) (2.2.8)

Defining the k-space vector as:

Y t
K(t) = — J G(t')dt, (2.2.9)
2T 0

Equation 2.2.8 can be rewritten:

Myxy (r, t) = Mxy(r, 0)exp (—T—tz) exp(—i2nk(t)-r) (2.2.10)

Integrating the transverse magnetisation over the sample volume gives the MR
signal:

18
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St = J Mxy (r, 0)exp (_TL) exp(—i2nk(t)-r)d3r (2.2.11)
sample 2

Equation 2.2.11 is the Fourier transform of My ,(r, 0) with an additional relax-
t

ation term e T2, which acts like a damping term and imposes a convolutional k-
space filter on the MR signal. This term does not affect the phase evolution or the
frequency dispersion imparted to the spins with phase and frequency encoding.
Hence, the inverse Fourier transform can be used to reconstruct the magnetisa-
tion from the MR signal that is nevertheless T>-weighted. Upon Fourier transfor-
mation to the spatial frequency domain, the T, k-space filter is manifested as a
broadening of the point spread function in the frequency direction (and also in the
phase direction for single-shot sequences), following the convolution theorem.

2.2.2.1 Discrete Sampling

Although the Fourier transform of the k-space vector is a continuous function, in
practise it can only be sampled discretely, with a sampling interval Ak between
measurements. In the time domain, the spacing between samples is called the
dwell time, ty. The rate at which the samples are acquired is the receiver band-
width (BW):

1
BW = — (2.2.12)
tg

The bandwidth is the full range of frequencies across an image (on GE Health-
care systems; other MRI machine manufacturers use the bandwidth per pixel)
in the frequency encoding direction. The acquired signal is the product of the
continuous signal (S(k)) and a comb function:

Sacq(k) = S(k) - comb(k), (2.2.13)

where the comb function is equal to the sum of Dirac delta functions (&) multiplied
by the sampling interval:

comb(k) = Ak > 86(k — nAk) (2.2.14)

An example of discrete sampling of a sinc function is shown in Figure 2.2.3. For a
continuous function to be accurately represented by the discrete sampling func-
tion, there exists a minimum sampling rate, called the Nyquist sampling rate. This
is equal to twice the highest frequency of the continuous function. Sampling be-
low this rate results in signal misrepresentation and ‘aliasing’ in image space: the
parts of the image corresponding to the pixels near the edge of the object are
‘folded back’ inside of the field of view (FOV).

To reconstruct the discretised k-space data, the inverse fast Fourier transform is
used, which is an algorithm for computing the inverse discrete Fourier transform.
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Figure 2.2.3: Discrete sampling of a sinc function: (A) with a sampling rate which is
sufficient to reconstruct the continuous function and (B) with a sampling rate that is too
low and leads to misrepresentation of the continuous function.

2.2.3 Cartesian k-Space Encoding

The most common way to acquire k-space data in MRI is with a Cartesian trajec-
tory, which acquires the data row-by-row to fill a regularly spaced grid.

2.2.3.1 Frequency Encoding

Spatial localisation along one dimension (conventionally the x-axis) is achieved
by ‘frequency encoding’. A constant gradient is applied such that the Larmor
frequency of the nuclei is linearly proportional to the location along the gradient
direction. Figure 2.2.4 shows a typical pulse sequence diagram for frequency
encoding in a gradient echo sequence. The gradient waveform has two lobes; a
prephasing lobe and a readout lobe. The prephasing lobe initially dephases the
spins such that an echo will form when the readout gradient is played out. In a
gradient echo sequence, the lobes have opposite polarity, whereas in a spin echo
sequence the lobes have the same polarity but are separated by a 180° pulse as
was described in Section 2.2.1.

Data are acquired during an acquisition time Tqcq, Which is determined by the
number of sampling points Nx and the dwell time:

Tocg = Nty = % 2.2.15
acq = Nxld = o (2.2.15)
The k-space spacing is given by:
Gty
Ak, = 12X (2.2.16)
2T

for a constant readout gradient.
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Figure 2.2.4: Pulse sequence diagram for frequency encoding. The RF pulse is used to
excite the magnetisation and is followed by a frequency encoding gradient applied along
the x axis (Gx). DAQ represents the data acquisition window, which has a duration Tqcq.

This is equivalent to the maximum spatial extent in the spatial domain, otherwise
known as the FOV, Ly:

1
— (2.2.17)

Akx == =
NxAx Ly

where Ax is the image resolution in the x direction. Therefore, by combining
Equations 2.2.16 and 2.2.17, the amplitude of the readout gradient is found to be:

2nBW
Gx = (2.2.18)
YLx

2.2.3.2 Phase Encoding

Spatial encoding along the direction orthogonal to the frequency direction (typi-
cally the y direction) is achieved using phase encoding, whereby position-dependent
phase differences are induced by a gradient. Unlike frequency encoding, where
the spins return to their original precession frequency after the frequency encod-
ing gradient is switched off, the phase differences accumulated over the duration
of the phase encoding gradient are permanent. Additionally, whereas frequency
encoding is able to sample the entire kx k-space with one readout gradient, phase
encoding must be repeated for each ky data point. The Fourier transform can-
not distinguish components with different phase but the same frequency and so
to resolve N, phase components, the same number of phase encoding steps
are required. The amplitude of the phase encoding gradient is varied between
each sequence repetition time (TR) and so the total time required to acquire 2D
k-space data is N, TR. Figure 2.2.5 shows a pulse sequence diagram for phase
encoding in a gradient echo sequence.
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Figure 2.2.5: Pulse sequence diagram for frequency and phase encoding, which is
achieved by repeating the k-space acquisition for several different phase encoding gradi-
ent amplitudes. Each repetition takes place over a time TR.

Phase encoding is symmetric about k, = 0 and can either be performed sequen-
tially, from —ky, max t0 Ky,max, Or in a centric pattern, starting from k, = 0 and
moving outwards in each direction by alternating the polarity of the gradients. The
k-space spacing is given by

1 1
— (2.2.19)

N,Ay L,

The maximum area of the phase encoding gradient is:

t o ., 2m m(Ny — 1)
Ay,max = Gy(t )dt’ = _ky,max = (2.2.20)
0 Y TLy

To reduce TR and therefore the total sequence time, the time period of the phase
encoding gradient should be minimised, which is achieved by using the maximum
gradient amplitude and slew rate for Ay, max. For 3D acquisitions, phase encoding
can be applied in both the y and z axes, however this increases the required time
to NyN,TR. Alternatively, spatial localisation in the z direction can be achieved
using slice selection.

2.2.3.3 Slice Selection

Instead of exciting the entire sample, a specific section or ‘slice’ can be excited by

using a frequency-selective RF pulse in addition to a slice selection gradient. The

simplest frequency-selective RF pulse is the sinc pulse (sinc(t) = Si”t(t)), which
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has a rectangular profile after Fourier transforming to the frequency domain. By
applying this pulse at the same time as the plateau of a slice selection gradient,
the range of frequencies excited (bandwidth) Af, corresponds to a range of spatial
locations Az, which form the image slice (Figure 2.2.6). The plane of the slice is
orthogonal to the gradient direction.

(A) (B)
B, ¢t
<A_f>
! :
B, . Wq
RF , i
.E IE Bo z

Figure 2.2.6: Slice selection: applying an RF pulse at the same time as a magnetic
field gradient, as depicted in (A) results in the excitation of a slice of the body (B). The
frequency bandwidth of the RF pulse (Af) and the strength of the slice selective gradient
determine the width of the image slice (Az).

The position-dependent Larmor frequency can be expressed as:

f(z)= lez (2.2.21)
27
and the spatial range excited by the RF pulse is given by:
2TAf
Az = (2.2.22)
YG:

for a slice located at the gradient iso-centre. If the slice centre is offset by a
distance 6z from the iso-centre, the RF pulse frequency must also be offset from
the Larmor frequency, by a factor of 6f:

2modf

G
Therefore, the slice thickness is controlled by the strength of G, and the band-
width of the RF pulse.

6z (2.2.23)

The slice selection gradient is followed by a rephasing gradient lobe with an oppo-
site polarity. This is needed to compensate for the dephasing that occurs across
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the image slice during the slice select gradient and causes signal losses. The
area of the rephasing lobe is equal to half the area of the slice selecting lobe.

Full spatial coverage can be achieved using a combination of frequency, phase
and slice selection encoding. This is referred to as a 2D sequence; 3D imaging
involves phase encoding in two directions, with or without slice selection. The
slice thickness is limited by the maximum gradient amplitude and RF bandwidth
(Equation 2.2.22) in a 2D imaging acquisition. 3D acquisitions allow for thinner
slices and better slice resolution because they avoid problems caused by imper-
fect frequency-selective RF pulse excitation profiles. However, 3D sequences
tend to have increased acquisition time.

2.2.4 Signal-to-Noise Ratio

In MRI, noise arises from random variations in electrical currents originating from
the MR hardware and conducting tissues of the body. The SNR is related to
the image resolution (Ax, Ay and Az), number of k-space samples (Nx, Ny, and
N_), number of signal averages (NSA; the number of times each k-space point is
sampled) and the bandwidth. In 2D, the SNR per imaging volume (‘voxel’) is:

AxAyAz/NxNy,NSA

SNR3p i (2.2.24)

In 3D, the SNR is increased by a factor of v/ N :

AxAyAz/NxNyN.NSA
vBW

SNR3p (2.2.25)

2.2.5 Non-Cartesian k-Space Encoding

In Section 2.2.3.2, the notion that k-space can be traversed in different ways was
introduced, by comparing sequential (Figure 2.2.7A) and centric (Figure 2.2.7B)
trajectories. The entire k-space grid can be acquired following one RF pulse by
using a ‘zig-zag’ trajectory (Figure 2.2.7C), which is used in echo planar imaging
(EPI) and is achieved with a frequency encoding gradient of alternating polar-
ity and intermittent low-amplitude phase encoding gradient pulses, which provide
a step-wise increase along the k, axis. More efficient k-space sampling can
be achieved with non-Cartesian encoding trajectories; trajectories where the ac-
quired k-space points do not lie on a rectangular matrix. In this section we discuss
two of the most popular non-Cartesian encoding schemes, radial (Figure 2.2.7D)
and spiral (Figure 2.2.7E), and the procedure for reconstructing the resulting k-
space data.
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Figure 2.2.7: (A-C) Cartesian and (D-E) non-Cartesian k-space encoding trajectories.
For the Cartesian trajectories, the numbers indicate the order of acquisition.
2.2.5.1 Radial Imaging

In radial encoding, frequency encoding gradients are applied along multiple di-
rections simultaneously (x and y for 2D, x, y and z for 3D). A pulse sequence
diagram for 3D radial imaging is shown in Figure 2.2.8A. For 2D radial imaging,
this results in a gradient vector G which has strength:

G= ,/Gf{ + G)Z/ (2.2.26)

and points along an angle 6:

G
6 =tan! (G—y) (2.2.27)

X

Using the definition of the k-space vector in Equation 2.2.9, analogous equations
can be used for k:

k = ,/k)f + /<§ (2.2.28)

k
6 =tan~! (k—y) (2.2.29)

X

25



Chapter 2

such that

kx = kcos@ (2.2.30)
ky = ksin6 (2.2.31)

The vector k can be thought of as a radial ‘spoke’ which originates at either the
k-space origin (centre-out) or edge of k-space (diameter) and terminates at the
opposing edge of k-space. The centre of k-space is inherently oversampled,
which make radial sequences robust to motion artefacts.

The angular separation between two consecutive k-space spokes (A8) and the
separation between the samples along the spokes (Ak,) are limited by the Nyquist
sampling limit. The maximum angular separation to fulfil this condition is:

1
AB = (2.2.32)
KmaxL
where L is the FOV. Similarly, the maximum sample separation is:
1
Ak, = i (2.2.33)

Therefore, the minimum required number of radial spokes and samples are:

A
Ng = — = MKmaxL 2.2.34
[} A max ( )
2kmax
n,= > 2k L 2.2.35
r A/(r max ( )

Whereas for Cartesian imaging, sampling at a rate below the Nyquist limit results
in aliasing, for radial imaging, this manifests as radial streaking artefacts.

2.2.5.2 Spiral Imaging

Time-varying gradients can be applied in the x and y directions to create a spiral
trajectory (Figure 2.2.8B). A popular choice is the Archimedean spiral, where the
radius is defined by:

r=ab (2.2.36)

in polar coordinates, where a is a constant. Spiral encoding provides efficient
k-space coverage and short echo times. It can be implemented in a single-shot
or interleaved multi-shot fashion. For multi-shot acquisitions, several spiral inter-
leaves are acquired, with each shot rotated by an angle of £2m/Nspot from the
previous shot, where Nspot is the number of interleaves.
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Figure 2.2.8: Pulse sequence diagrams for (A) 3D radial and (B) stack-of-spirals (2D
spiral with slice selection) imaging. The gradients in the radial pulse sequence diagram
have been drawn to represent their varying amplitudes (not phase-encoding).

The spirals originate from the centre of k-space and trace out a path defined by:

N
ky = — 9sing (2.2.37)
21L
Nsh
ky = —9cos6 (2.2.38)
2TL
The gradient waveforms are:
N do
Gx = "7 (5in6 + 8c0sH) (2.2.39)
YL dt
Nshot dO
y = > Ot—(cose + 6sin0) (2.2.40)
YL dt

A limitation of spiral acquisitions is that they are susceptible to image blurring
as a result of off-resonance effects. Bg inhomogeneities, susceptibility effects
and chemical shifts cause variations in the Larmor frequency. Whilst for Carte-
sian imaging, these frequency offsets result in a chemical shift artefact, in spiral
imaging this causes blurring because the trajectory is changing in both the x and
y directions simultaneously. It is possible to correct for some of this effect by
mapping the Bo inhomogeneity prior to imaging and incorporating this into the
reconstruction algorithm.

27



Chapter 2

2.2.6 Spectral Encoding

In Section 2.1.4, the concept of chemical shift was introduced. Nuclei in differ-
ent chemical environments resonate at different frequencies, which are superim-
posed in the FID signal and can be decoded using the Fourier transform. The
spectral peaks revealed in the Fourier transformed signal allow for quantification
of chemical concentrations. Spatial localisation of the spectral signals can be
achieved using phase encoding. In conventional chemical shift imaging (CSI),
phase encoding gradients are used to modulate the signal phase and amplitude
before detecting the FID. Frequency encoding is generally not used during the sig-
nal detection period so that there is complete separation of spatial and spectral
encoding; otherwise it becomes difficult to disentangle the spatial and chemical
shift information [53]. CSI can be implemented using different excitation and sig-
nal generation methods, for example FID or spin echo sampling. A limitation of
CSl is the long imaging time. For 3D CSI, phase encoding is required in three
directions, resulting in an scan time of TR - NxNyN_, where N is the matrix size
in each direction.

2.2.6.1 Echo Planar Spectroscopic Imaging

An alternative method for performing both spectral and spatial encoding is echo
planar spectroscopic imaging (EPSI) [53]. In this technique, spectral information
and one spatial dimension are encoded simultaneously in a single readout, re-
ducing the imaging time. Conventional phase encoding can be used in the other
two spatial dimensions. An example of an EPSI pulse sequence is shown in Fig-
ure 2.2.9. A frequency encoding readout gradient with rapidly alternating polarity
is used, which results in the zig-zag k-space trajectory shown in Figure 2.2.7C
and creates a train of gradient echoes. The signal is sampled at the gradient
plateaus, which are separated by the dwell time, ty. This was defined in Equation
2.2.12 and determines the spectral bandwidth. ty must be short enough to cap-
ture the full spectral bandwidth and avoid aliasing. The spectral resolution (Af) is
determined by the inverse of the acquisition time, which must be long enough to
resolve all spectral peaks, whilst also minimising Tz* signal decay [54]. The spec-
tral and spatial information are convolved and so EPSI reconstruction involves
unfolding the chemical shift aliasing using chemical shift modelling.

In practise, the echoes from the positive and negative gradients are not equiv-
alent, because of asymmetries in gradient switching and signal distortions from
eddy currents. To avoid ghosting artefacts, the odd and even echoes should
be reconstructed separately, or these issues can be avoided by using a flyback
gradient scheme, where data are only acquired for the positive gradients. Short
gradient pulses with negative polarity and high slew rate are used for refocusing.

The decrease in scan time achieved with EPSI comes at the cost of decreased
SNR compared to CSlI, because the increase in the acquisition bandwidth intro-
duces noise which is proportional to ~ ¥BW. The SNR of an EPSI experiment
can be improved by using signal averaging [53].
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Figure 2.2.9: EPSI pulse sequence diagram: an oscillating trapezoid readout gradient
(Gx) with a period of ty is used to produce a train of gradient echoes. Phase encoding is
applied in the y and z directions. Data is acquired during the readout gradient plateaus.

2.2.7 Reconstruction of Non-Cartesian k-Space Data

In conventional Cartesian MRI, images are reconstructed using the inverse dis-
crete Fourier transform. However, non-Cartesian data are non-uniform and so
must first be resampled to a Cartesian grid prior to Fourier transformation. The
most popular way to resample the data is with a ‘gridding’ algorithm [55]. The
principle of gridding is presented in Figure 2.2.10; each data point on the non-
Cartesian k-space trajectory is convolved with a gridding kernel, then mapped
onto a Cartesian grid, before being reconstructed with an inverse discrete Fourier
transform.

Cartesian grid

k-space
data points

o

Figure 2.2.10: Schematic to illustrate the principle of gridding. The dashed line shows the
k-space trajectory on which the data (circles) are sampled. Each data point is convolved
with a gridding kernel (blue cone), which is shown here for the pink data point, and the
convolution evaluated at the adjacent Cartesian grid points (green arrows).

7,

k-space
trajectory
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Mathematically, this process can be written:

Mc(kx, ky) = [(M(kx, ky)S(kx, ky)) ® C(kx, ky)] x R(Kx, ky) (2.2.41)

where ® represents convolution, Mc(kx, ky) is the regridded Cartesian data,
M(kx, ky) is the original non-Cartesian data, S(kx, ky) is a sampling function:

S(kx, ky) = > 6(kx — kx,is ky — ky,i) (2.2.42)
i

C(kx, ky) is the gridding kernel and R(kx, ky) is the Cartesian grid:

L

Rikx, ky) = D> 6(kx—i, ky =) (2.2.43)
J
The Fourier transform of Equation 2.2.41 is:

mc(x, y) =[(m(x, y) ® s(x, y))c(x, y)] ® r(x, y) (2.2.44)

The gridding kernel acts as an apodization function in the spatial domain. The
ideal c(x, y) apodization function would be a rectangular function, with extents
:I:%, where L is the FOV. However, the Fourier transform of a rectangular func-
tion is a sinc function with infinite extents, which is not computationally possible.
Instead, a windowed sinc function can be used for the gridding kernel, but this
will result in some loss of FOV from increased apodization and side lobes that
are aliased back into the image. Another possibility is the Kaiser-Bessel grid-
ding kernel, which was found to be preferable by Jackson et al [56] because it
is easy to compute and minimises aliasing [57]. Both apodization and aliasing
can be reduced significantly by choosing to resample to a Cartesian grid with
greater density than the underlying k-space data (in other words, by oversam-
pling). Apodization can also be corrected for by dividing the image by c(x, y).

Non-Cartesian sampling schemes use non-uniform sampling density, which must
be compensated for before gridding to achieve accurate interpolation and reduce
reconstruction error. This is corrected for by multiplying the sampling function,
S(kx, ky) by a density compensation function (DCF). For simple k-space trajec-
tories the DCF can be calculated analytically using the pattern’s geometry. For
example, for uniform radial sampling with N spokes, the DCF is given by:

2N (Ak)?%  if (kx, ky) =0

2.2.45
2W”(Akr)zn otherwise ( )

DCF = {
where n is an integer, denoting the number of Ak, intervals that a sample lies
from the origin.

For more complicated trajectories, numerical approaches can be used to estimate
the DCF by calculating the area associated with each data sample, for example
with the Voronoi algorithm [58].
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2.2.8 Compressed Sensing

In this section, an alternative image reconstruction method is described: ‘com-
pressed sensing’ (CS). Most natural images are compressible, meaning that they
can be described using far fewer samples than their number of pixels, without
significant loss of information. The principle of CS is that, since accurate image
reconstruction can be achieved without these additional data, they do not need to
be acquired. In MRI, CS can be used to reconstruct images using a small subset
of k-space, making it possible to decrease image acquisition time and reduce the
number of RF pulses needed. This is useful for a wide range of MRI applica-
tions, such as dynamic contrast enhanced (DCE) MRI, angiography and cardiac
imaging [59]. CS is well-suited to hyperpolarised gas lung imaging, where image
acceleration techniques are particularly useful since most imaging takes place
during breath hold.

There are three main conditions for CS reconstruction, which are described in
more detail in the following sections. The first condition is that the image data
must be sparse in the image domain or a known transform domain. Secondly, in
the sparse domain, the artefacts from undersampling must be incoherent; this is
achieved with random undersampling. Finally, a non-linear reconstruction must
be used to impose sparsity and data consistency. Figure 2.2.11 illustrates these
concepts.

2.2.8.1 Sparsity

A sparse image is one which has relatively few non-zero coefficients in a mathe-
matical transform domain. Some MR images, such as angiograms, are naturally
sparse in the image domain, i.e. they have few non-zero valued pixels. More
complicated images may not be sparse in the image domain but can be made
sparse by applying a sparsifying transform. Examples of such transforms include
the discrete cosine transform, which is used in JPEG compression of natural im-
ages, the wavelet transformation and the finite-difference transform. In Figure
2.2.11, a wavelet transform is used as the sparse transform.

2.2.8.2 Random Undersampling

Reconstructing undersampled k-space data leads to undersampling artefacts which
impair image quality. Uniform undersampling can lead to coherent artefacts, such
as aliasing, but with random undersampling, the artefacts are incoherent and re-
semble random noise. These can be removed using thresholding or smoothing
algorithms. Truly random k-space sampling is difficult to implement and may be
impractical due to hardware limitations (since it requires rapid gradient switching).
Also, since most of the image contrast is contained within the low-frequency k-
space data, it can be beneficial to acquire more samples from the central portion
of k-space, in order to improve the image SNR. Variable density pseudo-random
trajectories which undersample the edges of k-space more than the centre can
be used to maximise incoherence and SNR [60].
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sparse transform partial k-space

Figure 2.2.11: lllustration of the main concepts of CS. Reconstructing the randomly un-
dersampled k-space data using the inverse Fourier transform (F*) results in incoherent
undersampling artefacts. Transforming these data to a sparse representation and then
applying a non-linear reconstruction yields an image which has good agreement with the
fully-sampled image and does not contain undersampling artefacts. Copyright 2007 Wi-
ley, reproduced with permission from [60].

2.2.8.3 Non-Linear Reconstruction

The final component of CS is the non-linear reconstruction. After transforming
the image to the sparse representation and applying a denoising algorithm, the
image is transformed back to k-space and compared to the original acquired k-
space with a cost function. This iterative process is repeated until the final image
is reached, which should have good fidelity with the original but minimal under-
sampling artefacts.

This reconstruction can be written as the following constrained optimisation prob-
lem:

minimise ||Wx||1 (2.2.46)

subjectto ||Fux—Yyll2 <€ (2.2.47)

where W is the sparsifying transform, x is the reconstructed image, F is the un-
dersampled Fourier transform, y is the acquired k-space data and € is a parame-
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ter that controls the fidelity of the reconstructed image to the acquired data. The
objective function (minimising ||Wx||1) promotes sparsity by using the (3 norm,
because this places a larger penalty on having many small coefficients than
having a few large coefficients. Data consistency is enforced by the condition
[IFux — y||2 < €, with € usually set to below the expected noise level.

Equation 2.2.46 can also be expressed as an unconstrained problem:

x =argmin,||Fux—yll2 + A1]|¥x]|1 (2.2.48)

where A1 is the regularisation weighting, which balances data sparsity and fidelity.
Other sparsifying transforms can be used for further regularisation by adding ad-
ditional A||Wx||1 terms. There are several methods for solving Equation 2.2.48.
Two of the most common methods are the Alternating Direction Method of Mul-
tipliers (ADMM) algorithm [61] and the Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA) [62].

2.3 Principles of Hyperpolarised '?°Xe Lung MRI

2.3.1 Properties of 12°Xe

Xe is a noble gas occurring naturally in air at 0.087 ppm, with a '**Xe isotope
abundance of 26.44% [63]. 12°Xe is suitable as an MRI contrast media for several
reasons; it is inert, non-toxic, well-tolerated by healthy and diseased subjects [64]
and has a nuclear spin of % [65]. These features are also shared by helium-3
(3He), which used to be more commonly used for MRI than '2°Xe [66], but has
become prohibitively expensive to acquire leading to an almost complete shift to
129X e for in vivo applications in the last decade [67]. Some magnetic properties
of 29Xe and 3He are given in Table 2.3.1, in comparison to 'H.

Table 2.3.1: Properties of 'H, *He and '2°Xe. Data from [68].

Property "™H [ SHe [ ™Xe
Gyromagnetic ratio, ¥ (MHzT—1) | 42.58 | -32.43 | -11.78
Nuclear spin, I z >
Magnetic moment, 1/ 4.84 | -3.69 | -0.78

=

oo NIH

A further advantage of '?°Xe over 3He, which is particularly advantageous for
functional MR, is its solubility in various somatic compounds. '?°Xe dissolves in
the pulmonary parenchymal tissue, blood plasma and RBCs, with Ostwald sol-
ubility coefficients ~ 0.1, 0.09 and 0.2 respectively [63]. Due to its large and
easily distorted electron cloud, 2°Xe is a sensitive probe of its local chemical
environment and displays different chemical shifts depending on its surround-
ings. A summary of 2°Xe Ostwald solubility coefficients and chemical shifts in
biologically-relevant solvents is given in Table 2.3.2.

When 29Xe gas is inhaled, a small amount passes from the alveolus through the
tissue barrier, dissolving into the capillary plasma and entering the RBCs (Figure
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Table 2.3.2: 1?°Xe Ostwald solubility coefficients and corresponding chemical shifts (ex-
pressed in parts per million (ppm) from the gas-phase resonance at 0 ppm) in somatic
substances. Perfluorooctyl bromide emulsion is used as a blood substitute.

Solvent Ostwald Solubility Coefficient | Chemical Shift (ppm)
Blood plasma 0.103 [69] 194 [70]
0.091 [71] 197 [72]
0.094 [73]
Distilled water 0.083 [74, 71] 190 [70]
Erythrocytes (RBCs) 0.20 [69] 216 [70]
0.19 [71] 222 [72]
0.27 [73]
Olive oil 1.83 [73] 198 [75]
1.79 [71]
Perfluorooctyl bromide 1.20 [76] 106 [76]
emulsion
Rat adipose tissue 1.715[73] 191 [76] [77]
Saline (0.9% NaCl) 0.093 [69] 194 [78]
0.078 [74]

2.3.1A). This process is driven by diffusion, from the concentration gradient be-
tween the gas space and capillary blood [79]. The different 2°Xe environments in
the lung lead to a number of separate spectral peaks, as shown in Figure 2.3.1B.
The large gas-phase peak is used as the reference, at a chemical shift of 0 ppm
by definition. The other two peaks are from 12°Xe dissolved in the lung tissue
and blood plasma compartments at 197 ppm (the membrane resonance) and
the RBC compartment at 218 ppm. There is a continuous chemical exchange
of 12°Xe between the RBCs and the capillary plasma, with a chemical exchange
rate constant of ~12 ms [80], which leads to exchange-broadened peaks.

129%e has a T1 which is of the order of hours in a stable magnetic field and
oxygen-free environment, but around 20 s in the lungs due to dipole-dipole cou-
pling between the 12°Xe and paramagnetic oxygen [81]. In the blood, 2°Xe has
a T1 of a few seconds; the value of which is dependent on the blood oxygenation.
Norquay et al. measured T1 = 2.2 s in deoxygenated blood (oxygen saturation,
sO;, = 0.06) and T1 = 7.8 s in fully oxygenated blood (sO2 = 1.00) [82]. This rel-
atively long T1 has allowed inhaled 2°Xe which has dissolved into the circulating
blood to be imaged in the brain [83, 84, 85] and kidneys [86]. The susceptibil-
ity gradients that occur as a result of the many air-tissue boundaries in the lung
result in a very short 29Xe T values. For '#*Xe in the alveolar airspaces, T
is ~25 ms for partially inflated lungs and ~50 ms at total lung capacity at 1.5 T
[87]. The T is even shorter for dissolved-phase 2°Xe, as a result of chemical
exchange broadening: T2* ~2.2msat1.5T[36] and ~1.1 ms at 3 T [88].

The 12°Xe atoms form weak Van der Waals bonds with haemoglobin when dis-
solved in blood. The level of blood oxygenation affects the chemical shift of the
129Xe RBC peak, which has been shown to increase non-linearly with sO> level
by Wolber et al. [89] and by Norquay et al. [90]. Norquay et al. observed a
~ 5 ppm difference in 12°Xe chemical shift between fully deoxygenated and fully
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Figure 2.3.1: (A) Inhaled '>*Xe atoms (green) enter the alveoli, where they diffuse with
random Brownian motion. A small proportion of 2°Xe atoms dissolve into the alveolar
tissue membrane and capillary blood plasma (purple) and RBCs (blue). (B) This results
in three distinct spectroscopic peaks, from the 2°Xe in the alveolar airspace (0 ppm),
membrane and plasma (197 ppm) and RBCs (218 ppm). This image was partly gener-
ated using Biorender.

oxygenated blood and have demonstrated the feasibility of using this shift to mea-
sure pulmonary blood oxygenation. The non-linear relationship between chem-
ical shift and sO> has been postulated to be because of an oxygen-dependent
haemoglobin affinity, driven by conformational changes brought about by oxygen
binding [89].

129%e has a self-diffusion coefficient of Do = 0.06 cm2s~! [91], a diffusion co-
efficient in air of Dg = 0.14 cm?s~1 [92] and of Dg = 0.03 - 0.04 cm?s~! in the
airspace of a healthy lung [30, 27], but the diffusion coefficient in lung tissue and
blood is not well known. The currently accepted value of the diffusion coefficient
of 129Xe dissolved in lung tissue and blood is 3.3 x 107® cm?s~1. However, this
comes from a single animal study [93] which has not yet been validated either in
humans or in vitro.

2.3.2 Spin Exchange Optical Pumping

The low gyromagnetic ratio and spin density of Xe make the NMR signal of ther-
mally polarised '2°Xe too low for in vivo lung imaging at clinical field strengths. To
overcome this, a process called spin exchange optical pumping (SEOP) can be
used to increase the '2°Xe nuclear spin polarisation (and MR signal) by up to five
orders of magnitude compared to the thermal Boltzmann polarisation defined in
Equation 2.1.11.

Although other methods exist for generating hyperpolarised '2°Xe, such as Dy-
namic Nuclear Polarisation (DNP) [94], here we focus solely on SEOP, which is
the most commonly used technique. In the first stage of SEOP, vaporised alkali
metal atoms are optically pumped with resonant laser light to polarise the valence
electron spins. Figure 2.3.2A shows the atomic energy level diagram for rubid-

35



Chapter 2

ium (Rb), the alkali metal typically used for 2°Xe SEOP, due to its high vapour
pressure which allows for lower operating temperatures [95]. Alkali metals have
a single valence electron which occupies the 28% energy sublevel, with orbital

angular momentum [ = 0. When in the presence of a magnetic field, the energy
levels undergo Zeeman splitting, whereby the S and P energy levels are addi-
tionally split into two sublevels with spin angular momentum m = :I:% (S) and
m = :I:% (P). By exciting the ground state electrons with left-circularly (o%) po-
larised photons resonant with the D4 transition (281 to the lowest 2P1 excited
state), spin angular momentum is transferred to thezvalence electrons.2 For Rb,
a laser wavelength of 794.77 nm is used to drive this transition, which leads to a

change in the spin angular momentum quantum number of one unit, Am = +1.
According to quantum selection rules, the excited electrons can only relax into the

m = +% energy sublevel, leading to an accumulation of electrons in this ground
state quantum level. This process is illustrated in Figure 2.3.2B.

(A) (B)
Bohr Fine Hyperfine  Zeeman Collisional
model structure  structure  splitting mixing
P Py
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zP1/2
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=2 +1
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m;=-1/2 m;=+1/2

Figure 2.3.2: (A) 8Rb energy levels, including the Zeeman splitting that occurs in the
presence of a magnetic field. (B) Optical pumping of Rb with circularly polarised reso-
nant light. ‘Collisional mixing’ refers to the process whereby spin angular momentum is
redistributed between the ground state energy levels as a result of collisions between the
excited Rb atoms.

The second stage of SEOP is spin exchange, whereby the electronic Rb spin
polarisation is transferred to the '2*Xe nuclei through collisional spin exchange.
At the high pressures typically used for SEOP, Rb-Xe binary collisions dominate
over van der Waals collisions (Figure 2.3.3). Using pressures of more than one
atmosphere also serves to broaden the narrow Rb D4 transition and increase the
optical pumping efficiency.

SEOP takes place in an optical pumping cell, which contains a pool of Rb, a
low density Xe gas mix, and a buffer gas mix of *He and N, which is needed
to reduce the probability of Rb-Xe collisions which destroy the Rb electron po-
larisation. N2 is also acts as a quenching gas, reducing Rb depolarisation from
radiation trapping - the reabsorption of unpolarised light radiated from Rb during
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relaxation.

(A)

o & 940
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Figure 2.3.3: Spin exchange between Xe and Rb atoms occurs through two mechanisms:
(A) binary collision, where the spin polarisation is transferred via the Fermi-contact hy-
perfine interaction and (B) the formation of temporary Rb-Xe van der Waals molecules
from three-body collisions between Xe, Rb and N, molecules.

129%e SEOP can be performed in either ‘stopped-flow’ (SF) or ‘continuous-flow’
(CF) mode. In SF-SEOP, also known as ‘batch mode’, the hyperpolarised '2°Xe
dose is dispensed directly from the optical pumping cell. Higher hyperpolarised
Xe production rates can typically be achieved by using SF mode, although there
may be a trade-off between production rate and the '>®Xe polarisation level [96].
CF-SEOP involves continuously flowing '2°Xe through the optical pumping cell at
a low rate, such that sufficient polarisation occurs whilst the nuclei are within the
cell. The freezing temperature of Xe is greater than that of the buffer gases, so
by passing the gases through a ‘cold finger’ (a glass spiral submerged in liquid
nitrogen) after they exit the optical pumping cell, the >*Xe can be cryogenically
separated from the buffer gases. Once the desired volume of hyperpolarised
129X e has been accumulated (approximately 18 minutes for 1 L), the frozen '2°Xe
is sublimated by submerging the cold finger in warm water and the acquired gas
dispensed into a plastic Tedlar bag for delivery to a patient.

Specific technical details of the polariser system used for the experiments de-
scribed in this thesis are provided in Section 4.1 of Chapter 4.

2.3.3 Considerations for Hyperpolarised '>°Xe MRI

Hyperpolarised '2°Xe lung MRI has several unique properties which differ from
standard proton MRI and lead to some additional considerations, which are dis-
cussed in this section.

One of the principle distinctions between hyperpolarised gas MRI and 'H MRl is
that, whereas for 'TH MRI, the MR signal can undergo excitation and relaxation
perpetually, for 29Xe, the signal enhancement is non-renewable. The 2°Xe hy-
perpolarisation is finite and will undergo longitudinal relaxation back to thermal
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polarisation, which is insufficient for MR imaging, as discussed in the previous
section. Therefore, for hyperpolarised '2°Xe MRI, T represents the time constant
of polarisation decay. This decay is accelerated by the application of RF pulses.
To conserve the non-renewable hyperpolarisation, low flip angle spoiled gradient
echo (SPGR) and balanced steady-state free precession sequences (bSSFP) are
typically used for gas-phase imaging.

The longitudinal magnetisation after the nt” RF pulse of flip angle 6 in an SPGR
acquisition is given by the following equation:

M,(n) = Mgcos"~16 (2.3.1)

and the transverse magnetisation after the nt"" RF pulse is given by:

(n—1)TR
Mxy(n) = Moexp (——
1

The dependence of the magnetisation decay on the RF pulse number imposes
a k-space filter, the shape of which is determined by the ordering of the phase
encoding. Higher SNR can be achieved using a centric rather than sequential
Cartesian trajectory, because less filtering is applied to the low frequency k-space
data. However, the high frequency data experience more signal decay, so this
comes at the expense of loss of fine structure detail.

)sinecos”_le (2.3.2)

Most hyperpolarised lung MRI is performed at breath hold, to avoid motion arte-
facts from respiratory movement. This has the added benefit of minimising the
amount of O3 in the lungs, and therefore the T7 signal decay.

The numerous air-tissue interfaces within the lungs introduce magnetic field inho-
mogeneities related to the susceptibility difference between the lung tissue (dia-
magnetic) and oxygen (paramagnetic). This can lead to susceptibility artefacts
and image degradation, but can be corrected for in **Xe gas-phase images by
acquiring Bp maps [97].

2.3.3.1 Dissolved-phase '2°Xe MRI

Imaging the 2°Xe dissolved in the lung tissue and blood poses several additional
challenges. The transverse relaxation time, T, is very short for dissolved '2Xe,
which necessitates imaging with a short TE to limit signal loss during readout.
Imaging the dissolved 12°Xe requires specialised frequency-selective RF pulses
such that only the dissolved-phase '?°Xe resonance is excited and off-resonance
excitations are minimised. The dissolved-phase signal makes up only ~2% of
the gas-phase signal, due to the smaller volume of the tissue and blood com-
partments compared to the airspace and low solubility, so even a small excitation
of the gas resonance can result in a relatively large signal [98]. To avoid gas-
phase signal contamination, narrow bandwidth pulses are used, but these must
be designed carefully to balance frequency selectivity with a short pulse width
due to the short T [88]. The small proportion of dissolved-phase '*Xe when
compared to the gas-phase means that dissolved-phase imaging suffers from in-
herently low SNR [99]. To boost this, a high flip-angle can be applied selectively to
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the dissolved-phase resonance. The depleted hyperpolarisation after excitation
is replenished by gas exchange from '2°Xe in the alveolar airspace.

2.3.3.2 Radio-frequency coils

Specialised RF coils tuned to the ?®Xe Larmor frequency are required for hyper-
polarised 2°Xe MRI. Either rigid birdcage or flexible vest coils can be used for
this purpose. Birdcage coils tend to have better By homogeneity but vest coils
are more sensitive and efficient due to their higher filling factor [100]. For clinical
lung imaging, it is often necessary to acquire both 12°Xe and proton images at the
same lung inflation state, which can be achieved using multi-tuned RF coils or us-
ing a dedicated 2°Xe coil in conjunction with the proton body coil of the scanner.
The 22Xe coil must be electrically isolated from the proton resonance. Increased
sensitivity and accelerated acquisition are possible by using a birdcage transmit
coil with a multi-channel receiver array, which allows for parallel imaging [101].
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Lung Physiology and Gas
Exchange Measurement

The primary function of the lungs is gas exchange: the diffusion of oxygen (O3)
from the air into the blood and the removal of carbon dioxide (CO>). This chapter
starts with an introduction to lung anatomy and physiology, which also covers
some common tests of pulmonary function. The majority of this chapter is then
focused on reviewing hyperpolarised '2°Xe MRI/S techniques for measuring gas
exchange.

3.1 Lung Anatomy and Physiology

The lungs have a lobar anatomical structure; the right lung consists of three lobes
(superior, middle and inferior) whereas the left lung only has two lobes (superior
and inferior), because of the presence of the heart. The airways are formed from
a series of branching tubes which start from the trachea. The trachea divides
into the left and right bronchi, which in turn bifurcate. This subdivision of airways
continues for 23 generations (Figure 3.1.1). The first 14 airway generations are
called the conducting airways, which lead inspired air into the transitional bron-
chioles and respiratory airways, which make up the majority of the lung volume
(~3 L at rest).

The volume of gas in the lungs during normal (tidal) breathing and at maximum
inspiration/expiration can be measured by PFT. These are important functional
measurements for the diagnosis and monitoring of lung disease, including differ-
entiating between restrictive and obstructive disease [102]. Figure 3.1.2 depicts
the lung volumes and capacities which can be measured by PFT. The volumes
written in blue can be measured using spirometry. There are two different types
of spirometry equipment: closed-circuit spirometers, which collect and measure
the volume of exhaled air, and open-circuit spirometers, which do not collect the
air and measure airflow instead, for example with a turbine flow meter [103]. In a
spirometry exam, the patient starts by breathing normally, allowing the tidal vol-
ume to be measured. Then, they are instructed to inhale to maximal inspiration
and exhale to maximum exhalation. The volume of exhaled gas is called the vi-

40



Chapter 3

tal capacity, which is not equivalent to TLC, because some gas remains in the
conducting airways. This residual volume (RV) of gas cannot be measured with
spirometry and is instead calculated from the functional residual capacity (FRC).
This is the volume of air which remains in the lungs after a normal expiration and
can be measured using body plethysmography or gas dilution methods [102].
TLC is calculated from the sum of FRC and the inspiratory capacity. Spirometry
is also used to measure the forced expiratory volume in one second (FEV1). Itis
typical for PFT results to be reported as predicted values or z-scores, which are
derived from reference equations based on subject demographics such as age

and sex.
G Diameter (cm) | Length (cm) | Number | Surface area (cm?)
Trachea 0 1.80 12.0 1 2.54
Bronchi 1 1.22 4.76 2 2.33
g 2 0.83 1.90 4 2.13
[ 3 0.56 0.76 8 2.00
@ |
*§ Bronchloles 4 0.45 1.27 16 2.48
€ 5 0.35 1.07 32 3.11
(&) b :
Y Terminal | - : = = o
| bronchioles | 14 0.074 0.23 1.6x10% 69.4
Transitional | 15 0.066 0.20 3.3x10* 113.0
2 Respiratory | 16 - N ) ) 5 )
g bronchioles | 18 0.050 0.117 2.6x10 534.0
© -
- 19 0.047 0.099 | 5.2x10° 944.0
= AIveoIar . ) . ) }
= ducts
2 22 0.041 0.059 4.2x108 5880.0
L L
Alveolar sacs | 23 0.041 0.050 | 8.4x10° 1.2x10*

Figure 3.1.1: The Weibel model of the airways in the human lung, adapted from [104],
along with morphometric data from Weibel [105]. ‘G’ refers to the airway generation.

The lungs are highly specialised to maximise the diffusion of inspired oxygen into
the bloodstream. This is achieved by the division of the lung into about 500 million
acinar structures called alveoli, which provides a very large surface area (~100
m?2) for gas exchange to take place [102]. Beyond the 16" airway generation
(respiratory bronchioles), where the alveoli first appear, the number of alveoli in-
creases with each generation until the final generation, which is entirely made up
of alveolar sacs. The alveoli have a mean diameter of ~250 um and a volume
of ~4 x 10® um3 [106]. They are wrapped with capillaries, which form a dense
network of blood vessels, equivalent to an almost continuous sheet of blood. This
is very efficient for gas exchange. The alveolar airspace is segregated from the
capillaries by a tissue barrier which is around 1 um thick in the healthy lung,
made of epithelial and endothelial cells, separated by an interstitial space [104].
For inspired gas to enter the blood, it must travel through the tissue barrier, which
occurs by passive diffusion along the partial pressure gradient. Once the gas has
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crossed the blood-gas barrier, it dissolves in the blood and is transported through
the pulmonary circulation, which also has a branching structure. Starting at the
main pulmonary artery (MPA), the blood vessels split into smaller and smaller
branches until they join the pulmonary capillary bed. The diameter of the capil-
laries in the capillary bed network range between 7 - 10 um, which is around the
size of an RBC [102]. The capillary bed is connected to the smallest veins, known
as venules, which converge to form larger vessels and eventually join the main
pulmonary vein (MPV).
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Figure 3.1.2: Diagram of the different lung volumes and capacities. The red curve shows
the change in lung volume over time during tidal breathing, forced inhalation to total lung
capacity and exhalation to expiratory reserve volume, as would take place in a typical
spirometry exam. This manoeuvrer allows the lung volumes and capacities shown in blue
to be measured. Residual volume, functional residual capacity and total lung capacity can
be measured using alternative techniques, such as body plethysmography.

3.2 Conventional Measures of Gas Exchange

3.2.1 Transfer Factor of the Lung for Carbon Monoxide (TLc¢o)

The amount of gas which diffuses across a tissue barrier is directly proportional
to the area of the tissue and inversely proportional to its thickness, from Fick’s law
[102]. The combined effect of surface area and thickness, as well as the diffusion
of the gas involved, can be described by the diffusing capacity of the lungs, D.
This is related to the amount of gas transferred, V, and the difference in partial
pressure between the alveolar (Pa) and capillary blood (Pc):

Vv

= — 3.2.1
S (3.2.1)

D,

The carbon monoxide (CO) transfer factor (TLgo), also called the diffusing ca-
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pacity for carbon monoxide (DLgo), represents the whole-lung average efficiency
of gas transfer from the alveoli to the bloodstream. TL;, can be measured in
a common non-invasive test of gas transfer, first described by Ogilvie et al. in
1956 [107]. CO is used for this purpose because it is diffusion-limited: the strong
bonds that it forms with haemoglobin mean that the CO alveolar capillary partial
pressure gradient increases only very slightly with CO uptake by the RBCs. In-
stead, CO uptake is limited by the diffusion rate across the tissue barrier [102].
The change in capillary partial pressure for a diffusion-limited gas such as CO is
shown against that for a perfusion-limited gas in Figure 3.2.1. For a perfusion-
limited gas, there is a large partial pressure gradient at the beginning of the alve-
olar capillary which drives the gas into the capillary. Due to the low affinity for
haemoglobin, the gas remains in the capillary blood plasma producing a partial
pressure and an equilibrium is quickly reached. There is no longer a partial pres-
sure gradient so there is no more net diffusion and the only way to increase the
amount of gas dissolved is to increase perfusion.

Start of End of
capillary capillary

Perfusion-limited

Partial pressure

Diffusion-limited

0.00 0.25 0.50 0.75
Time along capillary (s)

Figure 3.2.1: Capillary partial pressure as a function of time along the capillary for a
perfusion-limited gas (red) such as nitric oxide and a diffusion-limited gas (blue) such as
CO or NO.

TLco is found using Equation 3.2.1, where Pc co can be neglected due to its high
affinity for haemoglobin [102], giving:

VCO

TiLco = (3.2.2)

Pa,co

To measure TLco, the inspired and expired concentrations of CO are measured
for a single breath hold and the amount of gas diffused found from the difference
between the concentrations [108]. The patient inhales a test gas containing 0.3%
CO and 0.3% tracer gas, such as helium, and holds their breath at TLC for ten
seconds [109]. The dilution of the tracer gas is used to calculate the number
of accessible alveolar units (Va), and the rate of disappearance of CO from the
alveolar gas gives the gas exchange efficiency per unit (Kco). The product of
these measurements yield TLco.
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TLco is used as a clinical measure of gas exchange in the diagnosis and assess-
ment of lung disease [109, 110, 111], as well as a marker in drug trials [112].
Despite its widespread use, there are several limitations to using TLco to mea-
sure gas exchange function. It is a global measure with no regional information
and is dependent on several other factors such as patient effort, testing condi-
tions, anaemia, and body weight [113]. TLco is reduced by the presence of PVD,
emphysema and ILD, and so interpreting a low TLco can sometimes be challeng-
ing [114].

Using nitric oxide (NO) as an alternative to CO may avoid some of the technical
problems surrounding TLco measurement; for example it is much less affected
by haemoglobin concentration and ambient pressure [115]. Like CO, NO is a
diffusion-limited gas, but NO reacts with haemoglobin at a much faster rate than
CO (around 300 times faster in vitro [116]). This means that TLyo is more sen-
sitive to the diffusive properties of the tissue barrier than TLgo and so might be
more representative of gas exchange impairment from tissue thickening. Recent
works have explored the use of the TLyo/TLgo ratio to distinguish between PVD
and ILD. Where both TLyo and TLgo are reduced, an increase in their ratio sig-
nifies pulmonary vascular disease, whereas a decrease indicates fibrosis or ILD
[116]. However, this method has not been fully validated and Degano et al. found
that the TLno/TLco ratio did not improve the identification of PH in patients with
SSc [117].

3.2.2 Ventilation-Perfusion Imaging

How efficient a lung is at exchanging gas is determined by the ratio of alveolar
ventilation to the perfusion of deoxygenated blood in the capillary (Va/Q) [118].
Optimal efficiency for a single gas exchange unit is at Va/Q = 1 and Va/Q mis-
matches can be characteristic of disease, for example reduced V4/Q ratio in ILD
patients [119, 120]. Several methods exist to measure the Va/Q ratio, includ-
ing the Multiple Inert Gas Elimination technique (MIGET) [121], nuclear medicine
[122, 123, 124, 125], CT [126], and more recently, H MRI and MRI with hyper-
polarised noble gas [118]. Each method comes with its own limitations, such as
the lack of spatial localisation in MIGET, the use of ionising radiation in nuclear
methods and gadolinium in DCE-MRI for imaging perfusion [127].

3.3 Measuring Gas Exchange with Hyperpolarised
129Xe MRI/S

In this section, we review the literature on dissolved-phase *°Xe MRI/S tech-
niques used for measuring pulmonary gas transfer. For an overview of '°Xe
ventilation imaging and '2°Xe DW-MRI, the reader is referred to the following re-
view papers: [63, 128].
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3.3.1 Spectroscopy

Hyperpolarised 2°Xe MRS was first carried out in human blood [129, 80] and
rodents [130, 131, 132], before advances in polarisation technology enabled the
first human results in the chest and brain in 1997 [133]. These early results
were hampered by low spectral resolution due to the limited polarisation levels
achievable at the time, but were nonetheless able to resolve the two dissolved-
phase peaks in the lungs.

Nowadays, '2°Xe gas exchange is generally measured using imaging techniques,
which provide insight into the regional gas transfer distribution and heterogeneity.
Whole-lung '2°Xe spectroscopy is often incorporated into imaging sequences, in
order to measure spectral parameters such as the '**Xe resonant frequencies,
needed in the imaging reconstruction. However, 12°Xe spectroscopy is also an in-
teresting technique in its own right, and can be used to derive whole-lung gas ex-
change ratios. For example, Kaushik et al. used 2°Xe spectroscopy to measure
RBC:M in patients with IPF, finding reduced values which were strongly correlated
with TLco [134]. This is a useful tool for particular clinical applications where
dissolved-phase imaging may be challenging or infeasible, such as in neonatal
studies. Stewart et al. used '2°Xe spectroscopy to detect reduced RBC:M in nine
neonates with bronchopulmonary dysplasia recruited from a neonatal intensive
care unit [135].

Several useful spectral parameters can be inferred from '29Xe spectroscopy, which
are sensitive to different aspects of lung physiology. The chemical shift of the RBC
peak is dependent on blood oxygenation level [90] and has been found to be re-
duced in patients with ILD and COPD [136, 134, 137, 138, 139]. The full-width at
half-maximum (FWHM) of the peaks is equivalent to the inverse of the T2* of each
signal. This has been proposed to be sensitive to the rate of chemical exchange
of 129Xe between the tissue, blood plasma and RBCs [140].

129X e spectra can be acquired dynamically, typically by repeatedly acquiring FIDs
with a short TR of ~20 ms [137]. This offers insight to temporal variations in the
spectral parameters and has revealed periodic fluctuations in the amplitude of the
RBC peak. The amplitude of these oscillations has been shown to be sensitive
to the presence of cardiopulmonary disease, and is reviewed in more detail in
Section 3.5. Oscillations have also been observed in the RBC frequency shift of
patients with IPF [37]. Time-resolved '>*Xe spectroscopy with a variable TR can
be used to characterise uptake into the alveolar septa; this is discussed in the
next section.

3.3.1.1 Chemical Shift Saturation Recovery

To measure the '29Xe exchange dynamics, a spectroscopy technique called chem-
ical shift saturation recovery (CSSR) can be used. This was pioneered by Rup-
pert et al. [40] and initial human results were reported in 2008 by Patz et al. [41].
CSSR provides a means to sensitise >*Xe MRS to gas exchange. Unlike CO
and NO, the gases used to measure gas exchange in PFT, '2°Xe is not diffusion-
limited and instead is limited by perfusion. This is due to the weak interaction
between '2°Xe and haemoglobin which allows '?°Xe to quickly saturate the alve-
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olar septum and eliminates the alveolar-capillary partial pressure gradient [134].
The CSSR sequence involves acquiring consecutive FIDs following repeated 90°
RF pulses, which selectively excite the dissolved-phase, applied with a varying
time delay. A spoiler gradient is used such that the dissolved-phase magneti-
sation is destroyed at the start of each TR. This is replenished by 2°Xe in the
gas-phase, which first crosses the tissue barrier and then enters the pulmonary
capillary plasma and RBCs. This allows 2°Xe to measure diffusion limitation; the
dissolved-phase signal depends on how much gas diffuses into the dissolved-
phase over the delay time and if there is interstitial thickening, the RBC signal
will decrease whilst the M signal will increase. A typical CSSR pulse sequence
is shown in Figure 3.3.1A. Examples of '29Xe uptake curves are shown in Figure
3.3.1B along with the MRI signal, where F(TR), which is the dissolved-phase sig-
nal normalised by the gas-phase signal, is plotted against TR. Clinically relevant
parameters, such as the alveolar septal thickness (h), alveolar surface area to
volume ratio (S/V) and capillary transit time (T), can be estimated by fitting the
gas uptake data to mathematical models. The most common models are the Patz
model and MOXE, which are described in Section 3.4.
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Figure 3.3.1: (A) A typical CSSR pulse sequence, where the first 90° pulse saturates
the dissolved-phase magnetisation and the second generates the FID after a time tge(qy-
This is repeated with increasing tgeiay. Tread iS the readout time. (B) Representative
129Xe uptake curves for (i) a healthy volunteer, (i) a SSc patient, (iii) an IPF patient.
The signal first increases exponentially because of the increasing amount of gaseous
129X e which can diffuse into the dissolved-phase as the delay time is increased [63], then
plateaus as the blood is saturated and increases with time due to the effect of blood flow
effect (see Figure 3.4.2). The solid black lines represent a fit to the MOXE. The right
panel shows the corresponding spectra, where differences in the dissolved-phase signal
between the healthy and ILD subjects are apparent. Copyright 2014 Wiley, reproduced
with permission from [39].

The clinical applications of CSSR have been demonstrated in several different
lung diseases and it has been shown to be a reproducible method for quantifying
h [141]. Patz et al. were the first to show that CSSR could detect septal thickening
in ILD patients, even in mild disease, in 2011 [142]. A shortcoming of this work
is that the low field strength used (0.2 T) meant that the dissolved-phase signal
could not be separated into the M and RBC spectral peaks, potentially causing
errors in the subsequent analysis. Stewart et al. found evidence of alveolar septal
tissue thickening in IPF and SSc patients using CSSR at 1.5 T [39]. This work also
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offered the first comparison of CSSR metrics to gold standard clinical methods;
TLco and DCE-MRI. A significant negative correlation was found between h and
TLco, although no significant correlation was found between T and similar metrics
from DCE-MRI.

CSSR-derived h has been shown to be sensitive to tissue damage in COPD
[38]. Another study found increased age-corrected h in both patients with COPD
and healthy smokers, compared to healthy never-smokers [143]. The relationship
between age and h was found using ordinary least-squares regression for the
group of 21 healthy volunteers and this was used to derive a reference equation.
None of the metrics from the other methods examined (PFT, six minute walk
test and '29Xe DW-MRI) were able to differentiate the healthy smokers from the
healthy non-smokers.

Recently, CSSR was used to help elucidate the disease mechanisms in the so-
called ‘lung phenotype’ of idiopathic PAH [144]. This phenotype is characterised
by a reduced TLco and predominantly affects male patients with a significant
smoking history. RBC:M and CSSR-derived S/V were reduced in this patient
group when compared to idiopathic PAH patients with preserved TLco. This is
consistent with the hypothesis that idiopathic PAH with reduced TLco is caused
by pulmonary capillary loss, along with early diffuse emphysema.

Another application of CSSR is to study the effects of air pollution on the lung mi-
crostructure and function. An increased h was detected in six rats who had been
exposed to fine particulate matter (PM; 5) in comparison to six healthy control
rats [145]. The measurements of h correlated well with those from histology. This
demonstrates the potential of CSSR to detect early lung changes resulting from
air pollution exposure, which may prove useful for future human studies.

CSSR and *Xe DW-MRI can be performed within the same breath hold, which
reduces cost, scanning time and errors resulting from lung inflation differences
between different acquisitions [146]. Xie et al. developed a combined sequential
CSSR and DW imaging sequence [147]. This consisted of a CSSR data acqui-
sition, followed by 2D multi-slice DW-MRI and finally a short spectral acquisition
to obtain FIDs for correcting gas/dissolved-phase flip angle differences. Com-
pressed sensing was used to reduce the scan time of the DW-MRI sequence
block, resulting in a total scan duration of 10 s. This method was tested in healthy
volunteers and patients with COPD and was able to detect alveolar tissue loss
in the COPD patients. Alternatively, diffusion-weighted CSSR (DWCSSR) [146]
takes advantage of the multiple delay times in CSSR, utilising these empty se-
quence blocks to perform DW imaging repetitions. So far, this method has only
been assessed in healthy rats. In comparison to acquiring CSSR and DW-MRI
sequentially, DWCSSR required a shorter scan time (4 s vs 6 s) and the gaseous
129X e signals of both CSSR and DW-MRI were relatively higher.

Standard CSSR sequences do not feature any spatial encoding, which limits their
regional sensitivity because any parameters extracted are global averages. Both
regional and temporal gas exchange information can be obtained by perform-
ing spatial encoding after each CSSR delay time. However, to maintain a tol-
erable breath hold time, fewer delay times can be used, resulting in fewer data
points and potentially less accurate fitting. Following their previous work in rats
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[99, 148], Doganay et al. used three-point IDEAL imaging (lterative Decomposi-
tion of Water and Fat with Echo Asymmetry and Least-Squares Estimation; see
Section 3.3.2.3) and a multi-interleave spiral k-space sampling scheme to ac-
quire 2D images of the gas, RBC and M signals at seven different time points in
humans [149]. They found evidence of decreased gas transfer surface area in
patients with emphysema in comparison to healthy individuals. Zanette et al. de-
veloped a 2D four-point multi-interleave spiral-IDEAL sequence for measuring gas
exchange at five different time points in healthy volunteers [150]. The RBC and M
signals were fit to a theoretical diffusion model (see Section 3.4) on a voxelwise
basis to yield maps of the derived parameters. Using two-fold undersampling and
parallel imaging, Zanette et al. were able reduce the length of the required breath
hold from 11 s to only 6 s. However, the accelerated sequence resulted in worse
agreement between the data and the diffusion model. A four-point spiral-IDEAL
sequence has also been reported to measure the time-course of '2Xe RBC and
brain tissue signals the rat brain [151].

Kern et al. used a multi-channel coil and the SPectral Localization Achieved by
Sensitivity Heterogeneity (SPLASH) method [152, 153] to perform regional CSSR
in a small study of healthy volunteers and COPD patients [154]. Ventilation im-
ages were taken within the CSSR breath hold and used to section the lung into
eight regions of interest (ROI) and 16 sub-ROI, to match the 16 receive elements
of the coil. The spatial heterogeneity of the receiver coil elements were then
used to resolve the signals from different compartments. The CSSR parame-
ters showed good reproducibility (except for T in the COPD patients), and were
in the expected range from literature. A significant difference was found for the
S/V and RBC:M ratios between the anterior and posterior of the lung in healthy
volunteers, which is most likely a gravitational effect due to the patients’ supine
position. This was not observed in COPD patients, possibly due to hyperinflation
of the lung tissue. However, these results may be biased due to the exclusion
of very small delay times (and therefore sensitisation to the very thin lung tissue
which saturates in this time), because of hardware limitations. SPLASH also as-
sumes a homogeneous signal from each region of interest, which might not be
true in diseased lungs.

Another paper from Kern et al. uses a different approach for regional CSSR [155].
They utilised the CSSR delay time by adding low-flip angle acquisitions which
do not significantly alter the overall magnetisation, in a Look-Locker-like scheme
[156]. Therefore, multiple measurements could be made before the dissolved-
phase magnetisation is destroyed by the 90° RF pulse. To further accelerate the
imaging time, an undersampled stack-of-stars trajectory was used with low-rank
sparse matrix decomposition to reduce artefacts [157]. The images were sep-
arated into M and RBC compartments using the 1-point Dixon method (Section
3.3.2.2) and the M compartment of each voxel was then fitted to the Patz model
to create regional parameter maps. A strong correlation was found between the
global average of the parameters found from regional CSSR and the parameters
found from spectroscopic CSSR. However, one limitation of this research is that
the two spectroscopic measurements were carried out with different lung inflation,
meaning that they cannot be compared directly, and there was no age-matching.

Regional CSSR can also be performed by repeating the CSSR sequence block
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several times, acquiring one line of k-space at each repeat. This approach is
known as CSI-CSSR because it combines CSSR gas exchange measurement
with CSI spatial localisation. A limitation of this method is that repeating the se-
quence for several frequency encodes and delay times is time-consuming and
restricts the achievable image resolution. CSI-CSSR with spatial encoding in one
dimension (15 s breath hold time) has been employed to assess regional varia-
tions in gas exchange dynamics in the anterior to posterior direction in humans
[158]. Ruppert et al. implemented a 2D CSI-CSSR sequence, but this necessi-
tated the use of multiple breath holds and, for this reason, has only been tested in
rats [159]. Acquiring spectra at each phase encode, rather than absolute signals,
allows additional parameters such as the T2* to be mapped regionally. Ruppert
et al. found that, whereas in healthy rats all metrics were comparable in both
lungs, there were several differences between the lungs of a rat with radiation
induced lung injury (RILI) in the right lung [159]. CSI-CSSR was able to detect
increased h, M:Gas, M T and RBC T and decreased RBC:Gas and RBC:M in
the irradiated lung.

3.3.2 Imaging

Regional gas exchange information can be provided by spectroscopic MRI tech-
niques. As mentioned in Section 2.3.3.1, the dissolved-phase '2°Xe signal is
inherently low, but can be maximised by imaging with a short TR and reasonably
large flip angle (compared to the gas-phase, where a small flip angle is used to
conserve the longitudinal magnetisation). Using a high flip angle to excite the
dissolved-phase is possible because the dissolved-phase magnetisation is be-
ing constantly replenished by gaseous '?°Xe diffusing through the tissue barrier.
Early '29Xe dissolved-phase imaging results were reported in 2010. Cleveland
et al. used a radially encoded imaging sequence to acquire regional dissolved-
phase images of the healthy human lung [160]. Mugler et al. simultaneously
imaged gas and dissolved-phase ?°Xe using a Cartesian-encoded sequence
which exploited the chemical shift artefact [161]. However, neither of these works
separated the dissolved-phase signal into the RBC and M compartments.

3.3.2.1 Chemical Shift Imaging

The simplest dissolved-phase imaging technique which separates the dissolved-
phase signal into its two compartments is CSI (described in Section 2.2.6), a FID
based approach which repeats spectroscopy measurements at each Cartesian
phase encoding step [162]. CSI has been used to show reduced RBC:M in the
IPF lung compared to healthy volunteers, which correlated well with TLgo [138].

Although slower than other imaging methods, an advantage of CSl is that it allows
full characterisation of the '2°Xe spectral peaks, and therefore provides valuable
additional information. As mentioned in Section 3.3.1, the chemical shift of the
RBC spectral peak is correlated with blood oxygenation and is reduced in some
patient groups. Using CSI, regional maps of the dissolved-phase '>*Xe chemical
shifts and T2* can be generated [138, 139]. Figure 3.3.2 shows an example of
the RBC chemical shift maps for a healthy volunteer, an IPF patient, a CF patient
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Figure 3.3.2: Maps of RBC chemical shift (top) and boxplots of the whole-lung CSI aver-
ages (bottom) for each patient group. (p < 0.001 = ***, p < 0.01 = **). Copyright Guan
et al. 2022, licensed under Creative Commons Attribution CC-BY, reproduced with per-
mission from [139].

and a COPD patient from Ref. [139]. The whole-lung averages of these maps
were significantly different; RBC chemical shift was reduced in patients with IPF
and COPD, when compared to healthy volunteers. Changes in the M and RBC
T2* relative to healthy values were also observed in this group of patients. The M
T2* was longer in IPF patients, but shorter in CF patients, and the RBC T2* was
increased in both IPF and COPD patients. The physiological reason for these
changes is not well-understood, but has been hypothesised to be related to the
rate of >*Xe chemical exchange between the capillary blood plasma and RBCs
[140].

3.3.2.2 Dixon Method

The Dixon spectroscopic imaging method was developed for separating fat and
water signals. This is done by introducing a 90° phase difference between the
fat and water signals to produce in-phase and out-of-phase images, from which
fat-only and water-only images can be constructed [163]. This approach can be
adapted to separate the RBC and M signals from '2°Xe MRI and to produce 3D
images and image-derived gas exchange ratios, which correlate well with results
from spectroscopy [31]. Early pre-clinical work was limited by the assumption of
Bo homogeneity across the lungs [31], but this has since been corrected for with
gas-phase image acquired phase maps [32].

The Dixon method is the most widely-used technique for dissolved-phase '>°Xe
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MRI, and is typically implemented with radial k-space encoding and a single TE
value (‘1-point Dixon’) to introduce a 90° phase difference between the RBC and
M peaks [164]. Phase-shifting the acquired image therefore restricts the RBC and
M signals to the real and imaginary receiver channels respectively, allowing their
separation. A pulse sequence diagram for radial 1-point Dixon imaging is shown
in Figure 3.3.3.

Dissolved
H Gas

RF ——— B

TEop! TEop!
G, [\ [\
G [\ [\

y

A A

TR

Figure 3.3.3: 3D radial 1-point Dixon pulse sequence diagram: an interleaved acquisition
of dissolved and gas signal is achieved using frequency-selective RF pulses, with typical
flip angles of <1° on the gas-phase resonance and 20° on the dissolved-phase reso-
nance. The TE is chosen such that a 90° phase shift is introduced between the RBC and
M signals (TEgg-). Gradients are applied in each direction for 3D radial k-space encoding
and a spoiler gradient is applied in the z-direction at the end of each interleaf.

Dissolved '2°Xe Dixon imaging is repeatable [165] and sensitive to gas exchange
impairment in a range of lung diseases, including post-COVID-19 lung disease
[166, 167], COPD [37] and pulmonary vascular disease [17, 37]. In ILD patients,
Dixon imaging can reveal RBC signal deficits, such as in Figure 3.3.4, which cor-
respond to fibrosis seen with CT [32]. In Ref. [33], a poor correlation was found
between RBC:M and CT fibrosis score but a strong correlation was found with
TLco, suggesting that >*Xe MRI may be able to detect early fibrosis not visi-
ble with CT. Significant differences have been detected in mean M uptake and
RBC:M ratio in patients with IPF [168, 33], Non-Specific Interstitial Pneumonia
(NSIP) [169] and chronic hypersensitivity pneumonitis [136], compared to healthy
volunteers. Dixon-based gas exchange imaging has been used to assess longi-
tudinal changes in lung function in patients with IPF [170]. Reduced RBC:M at
baseline was associated with disease progression one year later.

This method is well-tolerated by paediatric patients and its feasibility has been
demonstrated in healthy children and children with bone marrow transplantation,
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bronchopulmonary dysplasia, CF and childhood interstitial lung disease [171,
172]. A novel application of '*®Xe Dixon imaging is to use the gas exchange
maps to guide functional avoidance treatment planning in radiation therapy [173].
Rankine et al. demonstrated the potential of 12°Xe ventilation and gas exchange
imaging to reduce radiation dose to high gas exchanging regions of the lung.

Healthy Volunteer IPF Subject
Coronal Sagittal Axial Coronal Sagittal Axial

Figure 3.3.4: Gas, M and RBC ratio images from a healthy volunteer and a person with
IPF. The IPF patient shows reduced '?°Xe RBC uptake. Copyright 2015 Wiley, repro-
duced with permission from [32].

Dixon imaging has been combined with ventilation imaging in a single breath
hold. Niedbalski et al. interleaved radial 1-point Dixon imaging with 3D spiral
encoding of the gas-phase '?°Xe signal [174]. The VDP and gas exchange ratios
from the single breath method showed good agreement with those from dedicated
ventilation and gas exchange imaging.

The 1-point Dixon method is beneficial for reducing scan time but suffers from
gas-phase signal contamination, from imperfect frequency selection [175]. Con-
tamination can lead to errors in separating the dissolved-phase resonances which
in turn leads to image artefacts [176]. However, methods have been developed
to remove the gas-phase contamination retrospectively using the gas-phase im-
ages, either using a second echo [176] or, more recently, requiring no additional
echoes [175]. Another limitation comes from the assumption that the phase shift
between the RBC and M signals during the acquisition time is negligible; however
Collier et al. estimate this phase shift to be ~10° [35] and a non-negligible phase
shift during readout was observed in Ref. [32]. This phase evolution limits the im-
age quality, causing blurring. A solution to this problem is to use multi-point Dixon
imaging [177, 178] or multi-echo spectroscopic imaging, which is described in the
next section.

3.3.2.3 Multi-Echo Spectroscopic Imaging

Similar to the Dixon method, multi-echo spectroscopic imaging (MESI) was orig-
inally developed as a fat-water separation method [179], but can be applied to
separate other chemical species, such as the three '?°Xe resonances. Figure
3.3.5 shows a pulse sequence diagram for this technique. Several echoes are
acquired, which induces time-dependent phase shifts due to the chemical shift
between the '?°Xe gas, M and RBC signals. This creates a system of linear
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equations which are solved to return the signal distribution of each of the three
resonances. As there are three unknowns, a minimum of three linear equations,
and therefore three echoes, is required to separate the gas, M and RBC signals.
A fourth echo is sometimes acquired, which is favourable for improving SNR and
can be used to remove gas-phase signal contamination from the dissolved-phase
images [35]. The system of linear equations is solved using iterative model-based
reconstruction, such as IDEAL [179, 180]. An early challenge of multi-point 12°Xe
imaging was the need to obtain at least three images per TR, whilst minimising
signal decays arising as a result of the very short T of dissolved-phase '#*Xe
[32]. This was solved by using centre-out radial [36] or spiral k-space encoding
[99, 181, 150] which are more efficient than Cartesian encoding.
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Figure 3.3.5: 3D radial MESI pulse sequence diagram: after excitation with a frequency-
selective RF pulse (applied to the dissolved-phase '2°Xe resonance, with minimal excita-
tion of the gas-phase '2°Xe resonance), k-space data are acquired at four different TEs,
which are separated by an echo time spacing ATE. The gradient waveforms (not drawn
to scale) vary in amplitude each TR to encode the full 3D radial k-space.

The noise performance of MESI is dependent on the proportion of each species
in a given voxel and the position of the echoes [179]. Therefore, the choice of
TEs is important to maximise the SNR, whilst minimising T; decay [150]. Equally
spaced echoes are generally used for practical reasons, because implementing
a variable TE is more challenging on most MRI systems. The echo spacing,
ATE, can be optimised using the NSA approach, which describes the SNR per-
formance of the given ATE [180]. This is described in more detail in Section
4.2.3.

Qing et al. developed a 3D radial multi-point dissolved-phase '2°Xe spectroscopic
imaging method which acquired three echoes following an RF pulse centred on
the dissolved-phase resonance and two echoes following RF excitation of the
gas-phase, to permit calculation of a reference Bg map [36]. They used a hierar-
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chical IDEAL reconstruction, which is a multi-resolution approach that allows for
T2* decay estimation in the spectral decomposition [182, 183]. Using this tech-
nique, significantly lower M:Gas and RBC:Gas ratios were found for smokers and
asthmatics than for healthy volunteers and the gas exchange ratios correlated
with global spectroscopy measurements [36]. It has also been used to probe
lung physiology changes in patients with COPD [184, 185]. A significant cor-
relation between RBC:Gas from multi-point imaging and % predicted TLco was
found, as well as between M:Gas and the % emphysema quantified by CT [185].

Qing’s method has shown potential sensitivity to early interstitial lung abnormali-
ties in healthy young electronic-cigarette users [186]. In a pilot study of five sub-
jects, M:Gas was reduced and RBC:M was increased, compared to age-matched
healthy controls, whereas RBC:Gas and TLgo were preserved. Interestingly, sim-
ilar results were found in a group of young asthma patients [187]. This seems to
indicate tissue loss combined with increased perfusion, which may be due to air-
way remodelling or hyperemic capillaries.

Kammerman et al. used an interleaved 3D radial acquisition to perform 12°Xe
gas exchange imaging, in which the RF transmit and receive frequencies were
alternated between the RBC and gas resonances every TR/2 [188]. Four echoes
were acquired following each excitation. An iterative model-based reconstruction
was used, which was based on the IDEAL method and included estimates of T2*,
frequency shifts and field inhomogeneity maps. A decrease in the transverse re-
laxation rate of the M and RBC compartments was measured in IPF patients, pos-
sibly indicating reduced rates of >*Xe exchange between the airspaces, mem-
brane and blood as a result of decreased diffusion and/or perfusion.

A four-point 3D radial dissolved-phase spectroscopic imaging sequence has been
developed by Collier et al. from our research group [35, 189], which is used
throughout this thesis and is described in more detail in Section 4.2.3. This se-
quence uses a flyback radial acquisition, which means that data were acquired
from the centre of k-space along the radii, but not from the edge of k-space back to
the centre. Whereas other multi-point methods relied on a low flip angle to avoid
gas-phase contamination, Collier et al. used the additional fourth echo to remove
the gas-phase contamination. Prior knowledge of the '2°Xe resonant frequency
shifts obtained from calibration spectra is used with a least-squares algorithm to
reconstruct the M, RBC and gas images and ratio maps. This method has been
used to detect gas exchange impairment in patients with IPF, asthma, COPD and
COVID-19 [35, 190, 191, 192, 193, 194].

As mentioned in Section 3.3.1.1, regional and temporal measurements of 1>°Xe
gas exchange dynamics can be made using time-series CSSR MESI [99, 148,
149, 151, 150].

3.3.2.4 Xenon Polarisation Transfer Contrast

The Xenon Polarisation Transfer Contrast (XTC) method overcomes the challenge
of the small proportion of dissolved-phase 2°Xe by using the much larger gas-
phase signal to indirectly image gas exchange [79]. In the basic XTC sequence,
the gas-phase is imaged twice in one breath-hold with a gradient echo pulse
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sequence. In between the two acquisitions, a series of either saturation (90°)
or inversion (180°) RF pulses centred on the dissolved-phase are applied. In a
separate breath-hold, the sequence is repeated with the RF pulses centred off-
resonance to control for T relaxation, perfusion effects and depolarisation due to
the RF pulses. The difference in depolarisation between the two images is then
due to '29Xe transfer between the gas space and lung parenchyma. Ruppert et
al. used animal models to optimise the pulse sequences and improve sensitivity,
allowing quantitative information to be extracted [195, 196]. XTC has also been
implemented with a 3D acquisition and temporal resolution by repeating with mul-
tiple delay times (MXTC) [197, 198]. Two lung function parameters can be derived
from MXTC, relating to tissue to alveolar-volume ratio and alveolar septal thick-
ness. The alveolar septal thickness parameter has been found to be elevated in
a small number of asthma and COPD patients [197].

The need for multiple breaths in XTC can introduce errors. To address this lim-
itation, a single-breath technique has since been developed [41, 199]. When a
90° saturation pulse is used, XTC yields very similar results to CSSR, allowing
regional measurement of S/V [199]. XTC and CSSR show good agreement at
0.2 T, although the information available from XTC is limited because it does not
resolve the dissolved-phase signal into its RBC and M compartments [41]. Amza-
jerdian et al. adapted the XTC method by using narrow bandwidth RF pulses to
only image one of the compartments, generating RBC or M specific depolarisa-
tion maps [200]. This increases the scanning time, but allows ratio maps to be
made and significant differences were found between healthy and diseased lungs.
However, the XTC results are flip angle and delay time dependent, so cannot be
easily compared with ratios calculated from other imaging techniques. Another
avenue explored in Ref. [200] is a free-breathing modification of XTC. This may be
better tolerated by diseased patients and reduce the anaesthetic effects of 12°Xe
gas, but also involves a more complicated gas delivery and analysis. Recently,
the capability of MXTC to simultaneously evaluate ventilation and gas exchange
was demonstrated [201].

3.4 Analytical Models of Gas Exchange

Modelling pulmonary gas exchange allows quantitative information regarding gas
transfer and lung morphometry to be extracted from experimental data acquired
with CSSR. Currently, analytical models utilising the 1D diffusion equation (3.4.1)
are most widely used for modelling gas exchange imaging, although some nu-
merical models have been developed (see Appendix B).

oMq(x, t) DaZMd(x, t)

3.4.1
ot 32X ( )
where Mgy and D are the dissolved-phase '2°Xe magnetisation density and diffu-
sion coefficient respectively. The magnetisation density can be treated as equiv-
alent to '®®Xe concentration, if complete saturation of the dissolved-phase is
achieved at t = 0 and the only process affecting the dissolved-phase magneti-
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sation is assumed to be the diffusion of >°Xe into the dissolved-phase from the
gas-phase, i.e. Mg[Xe] — [Xe].
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Figure 3.4.1: The geometries for the analytical models of gas exchange: (A) Mansson
model, (B) Patz model and (C) MOXE, where rq is the alveolar radius, L+ and L. are the
tissue and capillary compartment thicknesses respectively, h is the septal thickness and
¢ is the thickness of the tissue compartment.

3.4.1 Mansson Model

Hyperpolarised 2°Xe gas transfer was first modelled by Mansson et al. using
a radially-symmetric model which included three compartments: gas, tissue and
capillary blood [202], as shown in Figure 3.4.1A. The dissolved-phase magneti-
sation increases with time as gaseous '29Xe diffuses across the tissue barrier,
then plateaus as the capillary blood is saturated. If the blood was stationary, the
magnetisation and hence signal would remain constant, as demonstrated by the
dashed line in Figure 3.4.2A; instead it continues to increase due to perfusion
(solid line in Figure 3.4.2A) [40, 63]. This is referred to as the ‘blood flow effect’.
The flow of fresh blood into the gas exchange region means that more '2°Xe can
dissolve, which increases the total signal because blood outside and downstream
of the gas exchange region contributes to the signal as long as it is still within the
129X e coil and TR < T1. The Mansson model captures this behaviour with the
following equation, which is fit to the RBC and M signals separately:

s(t) =50(1—e—%)+51t, (3.4.2)

where S is the value of the linear component att = 0, T is the time constant of
the exponential component and S is the gradient of the linear component. From
the values of Sg and Si, the tissue thickness, capillary thickness, haematocrit,
perfusion and mean transit time can be found.

3.4.2 Patz Model

A 1D slab geometry can also be used to model the gas transfer [203, 142]. The
Patz model [142], shown in Figure 3.4.1B, treats the septum between two alveoli
as consisting of a capillary compartment with plug blood flow perpendicular to the
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Figure 3.4.2: (A) The dissolved-phase signal simulated using the Mansson model, which
first increases exponentially and then linearly with time, because of the blood flow effect:
(B)(i) Att = 0, '®Xe dissolves in the blood plasma and RBCs in regions 1 and 2. Region
3 contains no 2°Xe. (ii) At time T, blood in region 1 still contains '2°Xe, but flows out of
the gas exchange region. Region 2 is saturated, so no more 2°Xe dissolves here. Fresh
blood in region 3 flows into the gas exchange region and more 2°Xe can dissolve in this
region. Adapted from Ref. [142].

diffusion direction. An alternative method is used to deal with the dissolved '2°Xe
which flows out of the gas exchange region to the method used in the Mansson
model. The blood is separated into the three regions shown in Figure 3.4.2B and
the signal contribution from each found separately. This model can be used to
extract three clinically relevant parameters; S/V, h and T, the latter of which is
the average time a RBC spends in the gas exchange region. The set of equations
defining the Patz model are:

)= F )\hS(T—t) @ )\hs t 8h? @ 543
=Fot+—v\ +Ah—| =+ , 4.
TVt US| Vit Dn“’rgq ( )
where o
f@=1- 3, —exp(—qn’n?), (3.4.4)
nodd TN
1 2,2
9(q) = Y, —(exp(—qm?n?)—1) (3.4.5)
n,oddn
and
Dt
q=h—2- (3.4.6)

Fo is an offset term, which accounts for imperfect dissolved-phase saturation, A
is the xenon Ostwald solubility and D is the dissolved 12°Xe diffusion coefficient.
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3.4.3 MOXE

Chang’s Model of Xenon Exchange (MOXE) builds upon the Patz model to sepa-
rate the dissolved-phase into the RBC and tissue compartments (Figure 3.4.1C)
[204]. Two coupled equations are used to model the M and RBC '2°Xe signal
(see [204]), from which S/V, h, T and haematocrit can be estimated. The MOXE
improves on the Mansson model by including the S/V ratio and treating the M
and RBC signals as being correlated.

Stewart et al. used the three models described above to estimate S/V, h and
T from 129Xe CSSR data [39]. The goodness of fit to the experimental data was
found to be better for the Patz model and MOXE, while the Mansson model was
hampered by its mono-exponential nature, resulting in less accurate fitting. The
MOXE model appeared to be the most accurate, although the high number of fit
parameters that are dependent on one another sometimes resulted in unrealistic
fit parameters.

3.4.4 Other Models of Gas Exchange

The Patz model and MOXE are the most widely used analytical models of 12°Xe
gas exchange, however, other models have been explored in recent years. Kern
et al. have used a generalisation of the Patz model, which allows for a different
diffusivity in the membrane and blood compartments, to assess membrane per-
meability (k) [205]. This model enabled the detection of reduced k in patients with
PH when compared to healthy volunteers. In principle, Kern’s model can also be
used to estimate the capillary diameter, however in practise, noise in the CSSR
uptake data meant that to determine k, the capillary diameter had to be fixed.

A kinetic model of ?®Xe exchange has been developed by Taylor et al., which
uses a similar approach to tracer kinetic modelling of DCE-MRI [206]. This model
treats the lung as consisting of three compartments: alveolar, tissue and blood,
which have ?®Xe concentrations Cq, Ct and Cp, respectively. '29Xe diffuses from
the tissue and blood compartments from the alveolus with rate constants k1 and
k>. A venous exit function is used to model the blood concentration leaving the
lung. An advantage of this model is that blind estimation techniques are used
to extract the kinetic parameters, without requiring separate M and RBC spectro-
scopic peaks. This is useful for characterising gas exchange in mice and rabbits
in pre-clinical research, because these species generally do not exhibit separate
M and RBC peaks, and for low-field MRI, where the frequency shift between the
peaks is reduced [207].

3.5 Cardiogenic Oscillations of the '?°Xe Red Blood
Cell Resonance

It is possible to extract information about pulmonary microvascular function from
the 12Xe dissolved in the RBCs using dynamic spectroscopy and gas exchange
imaging. Periodic oscillations in the >®Xe RBC signal were first observed by
Venkatesh et al. [208] and have since been demonstrated to be a potential
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biomarker of cardiopulmonary disease [209]. Comparison to pulse oximetry and
ECG has demonstrated that the frequency of the oscillations matches the heart
rate [37, 90, 137] and that the RBC signal maxima and minima occur at ventric-
ular systole and diastole respectively [210]. The '2°Xe RBC signal is localised to
129X e dissolved in the RBCs in the pulmonary capillary bed, due to the choice
of TR and flip angle. A short (~15 ms) TR is used, which is much smaller than
the ~750 ms RBC transit time, and a relatively large (~20°) flip angle ensures
that magnetisation from 2°Xe that has travelled into the larger vasculature is de-
stroyed (and is not replenished by gas transfer from the alveoli). Therefore, the
source of the oscillations has been ascribed to fluctuations in capillary blood vol-
ume over the cardiac cycle, related to the propagation of the cardiac pulse wave
to the pulmonary capillaries, as illustrated in Figure 3.5.1.
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Figure 3.5.1: lllustration of the proposed origins of the 2°Xe RBC signal oscillations. (A)
The pumping motion of the heart generates compression and relaxation pressure waves,
which superimpose to create the cardiac pulse wave [211]. The pulse wave propagates
through the arterial network to the pulmonary capillaries, driving changes in blood pres-
sure, flow and volume. (B) At systole (S), the heart muscles contract and deoxygenated
blood is pushed into the pulmonary capillaries. The increase in the volume of capillary
blood means that there are more RBCs available for the dissolved '2°Xe atoms to form
bonds with, and hence the 2°Xe RBC signal increases, reaching a maximum at end-
systole. At diastole (D), the heart muscles relax, and the capillary blood volume, and
therefore the '>*Xe RBC signal, reach a minimum. Waveforms not drawn to scale.

The RBC oscillations can be detected with whole lung dynamic spectroscopy, by
acquiring FIDs at ~ 15 ms intervals, characterising the Fourier transformed time-
domain data with spectral lineshapes, and quantifying the temporal variation in
the amplitude of the RBC peak [137]. Signal oscillations have also been observed
in CSSR uptake curves [212] and can be extracted from the RBC signal from
the centre of 3D radial k-space (ko) from gas exchange imaging [35, 213]. This
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process (illustrated in Figure 3.5.2) is advantageous because it does not require
a separate dedicated scan.
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M 1.1
RBC

4500 4000 3500 3000
Frequency (Hz)

apnyjdwy

0 5 10 15 0 5 10 15
Time (s) Time (s)

Figure 3.5.2: The RBC oscillations are encoded in radial dissolved-phase '2°Xe imaging:
(A) the RBC signal from the centre of 3D radial k-space (kp) is (B) normalised and (C)
corrected for T1 and RF pulse induced decay, to isolate the signal oscillations. The
oscillation amplitude is defined as the peak-to-peak difference.

The amplitude of the RBC signal oscillations is influenced by both pre-capillary
and post-capillary vessel impedance, and changes in capillary blood volume. In
diseases affecting the pre-capillary bed vasculature, such as PAH, oscillation am-
plitude is decreased, whereas in diseases affecting the post-capillary bed net-
work, oscillation amplitude is increased. Table 3.5.1 summarises some of the
cardiopulmonary diseases for which RBC oscillation mapping has been able de-
tect amplitude changes.

A physiological model was recently proposed, using an electric circuit analogy,
to help better understand the competing contributions of vessel impedance and
blood volume to the oscillation amplitude [214]. The electric circuit model is shown
in Figure 3.5.3. The heart was modelled as a current source driving blood flow
Q through the pulmonary vasculature. Pulmonary vascular resistance (PVR) was
modelled as a series of three impedances, each with a resistance and compli-
ance; these represent the arterial, capillary and venous contributions. Including
vessel compliance in the model allows for the variation in capillary blood volume
that drives the RBC signal oscillations. In Costelle et al’s framework, the oscilla-
tion amplitude, a is given by:

Cc
a=—AO(Zc+2Zv), (3.5.1)
Ve

where Cc is the capillary compliance, V¢ is the mean capillary blood volume, AQ
is the change in blood flow between systole and diastole, and Z¢ and Zy are
the capillary and venous impedances respectively. This model was applied to a
group of 129 non-PH lung disease patients and used to estimate the contributions
to PVR from the arterial, capillary and venous circulation, which were found to
be 70%, 11% and 19%, respectively. In a second group of subjects who were
being evaluated for PH, RBC oscillation amplitude was corrected for estimated
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pulmonary blood volume and the corrected amplitude was found to correlate with
RHC-measured PVR.

Table 3.5.1: Summary of how the RBC oscillation amplitude is affected by different pul-
monary disorders. LHF = left heart failure.

Dis- Oscillation Explanation Reference(s)

ease amplitude

IPF Increased A preserved cardiac Wang et al. [37], Bier et
stroke volume is al. [137]

delivered to a reduced
capillary bed, causing
larger relative changes
in blood volume.
NSIP Increased A preserved cardiac Mummy et al. [169]
stroke volume is
delivered to a reduced
capillary bed, causing
larger relative changes
in blood volume.
LHF Increased High post-capillary Wang et al. [37]
impedance increases
the capillary blood
volume and causes
pooling in the capillary

bed.
COPD | Decreased Emphysematous lung Wang et al. [37]
tissue destruction.
PAH Decreased High pre-capillary Wang et al. [37]
impedance.
CTEPH | Decreased High pre-capillary Lu et al. [215]

impedance as a result
of vessel occlusion.

A limitation of the whole-lung RBC oscillation amplitude as a potential biomarker
of cardiopulmonary disease is that it lacks spatial sensitivity. This makes it dif-
ficult to detect oscillation abnormalities in patients with combined pre- and post-
capillary PH and patients with both pre-capillary PH and RBC transfer defects
[215]. To measure the RBC oscillations regionally, a technique was developed by
Niedbalski et al. which uses a keyhole reconstruction [216] to spatially resolve
the oscillation amplitude [213]. This method is discussed in detail in Chapter 7.
The mean oscillation amplitude obtained from the maps was significantly higher
in patients with IPF and lower in patients with PAH in comparison to healthy vol-
unteers.

This work has since been followed up by Lu et al., who used digital phantom
simulations to optimise Niedbalski’s method [215]. They evaluated their method
in healthy volunteers to establish healthy reference values and in patients with
CTEPH to assess microvascular function both before and after pulmonary en-
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darterectomy (PEA). No significant differences were found in the average oscilla-
tion amplitude before and after PEA, but the number of lung voxels which were
classified as low oscillation amplitude decreased following PEA.

Figure 3.5.3: Costelle et al’s electric circuit model of the pulmonary circulation. The heart
is modelled as a current source with variable blood flow rate Q, which is higher at systole
than diastole. The PVR is divided into arterial, capillary and venous impedances (Za, Zc¢
and Zy, respectively) connected in series. The capillary bed has a resistance R¢ and
a capacitance Cc, which represents compliance and allows for blood storage between
systole and diastole. Cc is proportional to the pressure drop across the capacitor, which
is the difference between the capillary bed pressure Pc and the alveolar pressure Pqpy,
which acts as ‘ground’. The pressure the other side of the capillary bed is the venous
pressure, Py. Copyright Costelle et al. 2025, licensed under Creative Commons Attribu-
tion CC-BY 4.0, adapted with permission from [214].
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Overview of Experimental Methods

This chapter consists of an overview of the MRI hardware and both the theoretical
background and methodological details for the lung imaging pulse sequences
used throughout this thesis.

4.1 MRI Hardware

All experiments described in this thesis were performed on either a 1.5 T GE
HDx or Artist whole-body clinical scanner with a flexible transmit-receive vest coil
(Clinical MR Solutions) tuned to the 29Xe Larmor frequency.

129X e doses were hyperpolarised to 10 - 30% polarisation using a SEOP polariser
(POLARIS, University of Sheffield), which is described in [217] and shown in Fig-
ure 4.1.1. SEOP took place within a 3530 mL (7.5 cm diameter, 80 cm length)
glass optical pumping cell, pressurised to 2 bar. The cell is contained within a
ceramic oven, which was heated to 125°C to vaporise the Rb, and a Helmholtz
coil pair, which generated the magnetic field which induces Zeeman splitting. A
gas mixture of 3% Xe, 10% N2 and 87% “He was flowed through the cell at a rate
of 2000 sccm. Rb optical pumping was achieved using a 150 W laser (BrightLock
200 W, QPC, CA, USA) and a wavelength of 794.77 nm.

Unless stated otherwise, subjects inhaled doses of 86% enriched hyperpolarised
129Xe from a Tedlar bag, starting from FRC. The 2°Xe dose volumes for ven-
tilation and gas exchange imaging were generally chosen based on participant
height, according to the dose chart shown in Table 4.1.1. The rationale for these
volumes is described in Smith et al. [218]: literature values of predicted FRC and
TLC volumes in children and adults were used to calculate the FRC volumes such
that patients would not be near their TLC when they inhaled the FRC dose. The
FRC dose was chosen such that the total lung volume (FRC + bag volume) would
be approximately 60% of TLC. This approach of adjusting the dose volume is
more simplistic than the currently recommended approach [164] of using subject-
specific measured or predicted TLC or FRC volumes to calculate the individual
dose volume, but was consistent across all data used in this thesis.
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Figure 4.1.1: (A) Photo of the 2°Xe SEOP polariser used in this work. (1) Helmholtz
coils, (2) laser diode array, (3) Tedlar bag, (4) gas manifold, (5) oven. (B) The oven with
the lid off, showing the (6) SEOP cell enclosed within and (7) the pool of rubidium.

Table 4.1.1: ®*Xe dose chart for ventilation and gas exchange xenon imaging according
to patient height.

Height (cm) Ventilation Imaging Gas Exchange Imaging

> 160 500 ml 2%Xe 1000 ml 129Xe
500ml Nz Oml N2

150 - 160 450 ml 2%Xe 800 ml 2°Xe
350mI N» Oml N2

140 - 150 400 ml 2°Xe 650 ml 129Xe
250ml N2 Ooml N2

130 - 140 350 ml "#9Xe 500 ml "#9Xe
150ml N2 Ooml N2

120 - 130 300 ml 2°Xe 400 ml 2%Xe
100ml N2 Oml N2

4.2 MR Pulse Sequences for Hyperpolarised %°Xe
Lung Imaging

4.2.1 Calibration

Prior to 129Xe imaging or spectroscopy, it is necessary to calibrate both the trans-
mit gain (TG), so that the desired flip angles are reached, and the transmit/receive
RF frequency. These are dependent on the subject’s coil loading and the local
magnetic environment in the lungs. Whereas for proton imaging, an automatic
prescan procedure can be used to do this, for multi-nuclear MRI, a separate cal-
ibration scan is usually required. Schulte et al. devised a calibration method
based on the Bloch-Siegert effect [219]: where an off-resonant RF field induces a
phase shift proportional to the square of the RF field amplitude in spins but does
not cause them to precess [220]. An on-resonance excitation pulse excites the
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Excitation  Off-resonance

RF

A
U

DAQ

Figure 4.2.1: The pulse sequence used for Bloch-Siegert transmit gain calibration. A
slice-selective excitation pulse and gradient are followed by an off-resonance pulse. Slice-
refocusing is performed with a second gradient of opposite polarity to the first.

spins into the transverse plane and is followed by an off-resonance pulse which
induces the Bloch-Siegert phase shift:

T T [vB+(t)]2
¢BS=J wBS(t)dt=f Y5, (0] dt (4.2.1)

0 o 2(wWrF+ waso)

where wpgs, WrrF and wpo are the frequencies of the Bloch-Siegert precession,
the off-resonance excitation pulse and the By inhomogeneity-induced precession,
respectively. T is the time period of the off-resonance pulse and 7 is the gyro-
magnetic ratio of the nucleus. ¢gs is dependent on the magnitude of the transmit
RF field, B1*. To rule out any other phase deviation, for example from eddy cur-
rents, the off-resonance excitation is repeated at £ wgrr and wps is half the phase
difference between the two acquisitions.

The pulse-acquire sequence used to measure ¢gs is shown in Figure 4.2.1. This
sequence was repeated for £wgr. 32 FIDs were acquired, with TR = 75 ms, flip
angle = 10°, 1024 spectral points, bandwidth = 20 kHz and initial guesses TG
= 150 and on-resonant frequency = 17,676,450 Hz were used. A dose of ~700
ml gas acquired straight from the optical pumping cell (i.e. the ?°Xe was not
cryogenically separated from the buffer gases) was used.

¢Bs was then calculated from the time-domain FID data (d) acquired from the
+WRF scans:

(4.2.2)

2

¢$ps = —arctan
ER(dinF : d+wRF)

where d* is the complex conjugate of d. The required change in TG for an
excitation of flip angle 8 is then given by:

B+
ATG = —20l0g10 (f;‘*ak) (4.2.3)

1,desired
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where B-{,desired is the peak RF amplitude for an excitation of flip angle & and

BIpeak is the peak off-resonance transmit RF field, defined as:

g+ PBs

1,peal< = K_Bs (424)

where Kps is a phase shift constant which is dependent on the RF pulse shape,
wRrrFand T.

The centre frequency, fo, can be calculated from the same data using the centre-
of-gravity around the 2°Xe spectral peak.

4.2.2 Ventilation Imaging

No prospective ventilation imaging was performed as part of this thesis, however,
ventilation images and metrics were analysed retrospectively in Chapters 5 and
8. These were acquired using a 3D bSSFP sequence [97]. Briefly, bSSFP uses
phase encoding along the y and z directions with balanced gradients and a short
TR such that TR < T of the gaseous '#*Xe (~25 ms in partially-inflated lungs

[87]), such that some '2°Xe magnetisation remains at the end of each phase
encode. This magnetisation is not destroyed by spoiling, as in SPGR, but instead
is ‘recycled’ at the next phase encode, permitting a higher SNR. This leads to the
generation of a steady-state transverse magnetisation.

SSFP imaging was performed at end-inspiratory tidal volume with a maximum
dose of 0.5L '?°Xe and 0.5L nitrogen (volume adjusted according to height; see
Table 4.1.1), FOV = 40 cm, phase FOV = 0.8 or 1.0, 22 - 26 coronal slices with
10 mm slice thickness in the anterior-posterior direction, 256 x 256 reconstructed
matrix size (except for the CTEPH patients in Chapter 8, for whom a 512 x 512
reconstructed matrix size was used), flip angle = 10°, TE/TR ~ 1.4/4 ms. In
Chapter 5, the patients with asthma and/or COPD were scanned with TE/TR =
2.1/6.5 ms.

Co-registered 'H anatomical images were acquired in order to derive the total
lung volume (TLV). Imaging was performed at breath hold following the inhalation
of a bag of room air, in order to achieve the same lung inflation as the '2°Xe imag-
ing. An SPGR sequence was used, with the same FOV as the '29Xe sequence,
but double the number of slices, TE/TR = 0.6/1.4 ms and flip angle = 5°.

From these two images, the ventilation defect percentage (VDP) and ventilated
volume (VV) were derived, which are defined as:

4%
VDP=1——x100% (4.2.5)
TLV

4.2.3 Gas Exchange Imaging

As discussed in Section 3.3.2, there are several methods for >*Xe gas exchange
imaging. In this thesis, a 3D radial MESI sequence with four echoes [35, 189],
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was used to acquire gas exchange images. This technique is based on a previous
method for chemical shift '3C metabolic imaging [221].

4.2.3.1 Spectroscopic Image Encoding

The spectral encoding of the '?*Xe gas, M and RBC resonances is achieved
using an acquisition scheme with four gradient echoes. The time between the
mth excitation and the acquisition of the nt" k-space data point at position kp, is
different for each echo, and is defined as:

Tm'n = mATE + tn, (426)

for the mt" echo, where ATE is the echo time spacing. After discretisation of the
spatial resonance frequencies of the g compartments, wq, and spatial dimension
Irp, the signal acquired at time Tm,» can be written:

1
Ym,n = Z exp(iknrp)exp (iwq — TTTm,n)xq(rp) (4.2.7)
p.q 2,9

where xq4(rp) is the image space distribution of the qth resonance. The effects
of magnetic field inhomogeneities and T1 and RF pulse induced decay are not
included in this model. Neglecting the T2* decay during the acquisition time of
each echo, the signal can be represented as:

Ymn = Em,qe®iEy(kn) (4.2.8)
q

where §q(kn) represents the k-space distribution of the qth resonance:
Eq(kn) = Z eknex,(rp) (4.2.9)
p

and Em,q is the chemical shift encoding matrix:
— (0 — —L
Em,q = exp (twq Tz*,qTEm)'

¥m,n can be described as a linear combination of the §4(kn) for each resonance,
each with a weighting given by Em q. To reconstruct the k-space data, the first
step is matrix inversion of Em, ¢ to reconstruct each §q(kn):

Eq(kn) = e~ @Waln(ETy)q (4.2.10)

where t represents the Moore-Penrose pseudo-inverse. Then, the Eq(kn) for
each resonance are reconstructed spatially using gridding (see Image Recon-
struction below). More accurate estimation of the spectral signals can be achieved
by pre-conditioning E using prior knowledge of of the resonant frequencies wq
and T2*,q of the resonances obtained from calibration spectra. The matrix E needs
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to be well-conditioned to minimise noise amplification resulting from the chemi-
cal shift inversion in Equation 4.2.10 [180]. This can be done by optimising the
choice of ATE such that the system of equations are as independent as possible
(i.e. the matrix condition number is minimised). As mentioned in Section 3.3.2.3,
the optimisation is typically performed using the NSA approach, which describes
the SNR as a function of ATE. The NSA is calculated as:

NSA (4.2.11)

el rrp—"
(E E)q,q

for each resonance, where H denotes the complex conjugate transpose. The
optimal ATE is determined by maximising the combination of NSA4 values, whilst
taking into account T2* signal decay.

4.2.3.2 Image Acquisition

In this thesis, '2°Xe gas exchange imaging data were both retrospectively anal-
ysed and prospectively acquired. Some of the retrospective data were acquired
with different imaging parameters because an older version of the sequence was
used. The original implementation of the sequence is described in Ref. [35]. The
updated sequence, used for most of the retrospective data and all prospective
data in this thesis, is described in Ref. [189]. As well as the differences in some
parameters, which are listed in Table 4.2.1, there were some other changes be-
tween the two versions. The MESI pulse sequence diagram shown in Figure 3.3.5
represents the newer version.

In the first version of the sequence, a spoiled interleaved RF excitation of gas-
phase and dissolved-phase '2°Xe was used. The RF pulse was an amplitude-
modulated composite pulse, designed to selectively excite the dissolved-phase
with minimal excitation of the gas-phase magnetisation [98]. This was replaced by
a frequency-tailored RF pulse with 1% excitation of the gas-phase in the updated
sequence, which removed the need for interleaved gas and dissolved-phase ex-
citation. Another difference between the two versions was that, whereas the orig-
inal sequence necessitated a separate acquisition to collect calibration spectra,
these were integrated into the start of the updated sequence. In version one of
the sequence, a whole-lung spectrum was acquired using a separate breath hold
and 600 ml of 1>*Xe. The other sequence parameters were: bandwidth = 8 kHz,
512 points, 200 averages, TR = 74 ms, flip angle = 22°. At the beginning of the
sequence, 20 dummy RF pulses were implemented to deplete the downstream
signal from '2°Xe in the pulmonary veins. In version two, FIDs were acquired
for the 20 dummy pulses and used as the calibration spectra to precondition the
chemical shift encoding matrix.

Both sequences used a 3D radial k-space trajectory and had a total scan time
of ~14 s. Fewer radial spokes were acquired within this time for the original
sequence in comparison to the updated sequence, because of the interleaved
acquisition scheme.
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Table 4.2.1: Comparison of imaging parameters between the two versions of the MESI
gas exchange imaging sequence.

Version 1 [35] | Version 2 [189]
FOV (cm) 40
Acquired (reconstructed) matrix size 20x20x20 (32x32x32)
Bandwidth (kHz) 31.25
ATE (ms) 0.7
TE71 (ms) 0.571
Dissolved-phase flip angle (°) 40 22
Gas-phase flip angle (°) 0.7 0.2
RF pulse width (ms) 0.8 1.2
TR (ms) 40 15
TR90°,equiv (ms) 171 206
Nspokes 332 934
Nsamples 11 13
Scan time (s) 14

TRgo° equiv is @ parameter derived from the principle of flip angle/TR equivalence,
which is the idea that different combinations of TR and flip angle can sample the
same part of the dissolved '?°Xe uptake curve [222]. For any TR and flip angle
combination, TRgge equiv is the TR which would result in an equivalent measure-
ment for a 90° dissolved-phase flip angle, and is defined as:

TR R 4.2.12)
90°,equiv = 1 — cosO ( 2.

where 0 is the dissolved-phase flip angle. This relationship was derived empiri-
cally from experiments in rabbits [223].

4.2.3.3 Image Reconstruction

The calibration spectra were used to estimate subject-specific resonant frequen-
cies and T; of the 1*Xe dissolved in the alveolar airspace, membrane, and cap-
illaries. This was done with a triple Lorentzian fit in the frequency domain [134].
The gas, RBC and M resonances were separated in k-space using the matrix
inversion described in Equation 4.2.10 and prior knowledge of the chemical shifts
and T; of the resonances obtained from the calibration spectra [35, 54]. The
3D radial reconstruction was performed using gridding, with an analytical density
compensation function to correct for the non-uniform sampling density of the ra-
dial trajectory (Section 2.2.7). The gridding kernel was chosen using the optimal
Kaiser-Bessel convolution formula [57]. The kernel had an oversampling ratio of
1.2 and width of 8.

69



Chapter 4

4.3 Clinical Studies

Data from several clinical studies were analysed as part of this thesis, which are

summarised in Table 4.3.1.

Table 4.3.1: Details of the clinical studies which feature in this thesis.

Study Name Disease(s) REC Chapters
Number/Ethics featured in
ADPro Asthma, COPD 16/EM/0439 5
Clinical Referral CTEPH STH18877 8
EXPLAIN Long-Covid and 21/SC/0398 57,8
healthy
HRUK SSc, SSc-PAH 12/NE/0355 9
MICHAL Healthy 17/LO/0725 6,7,8
MURCO/PC- Post-COVID-19 9/LO/1115 5,6,8
XMAS lung disease
SUMMER COPD 22/NW/0009 6
PHOENIX PAH 23/NE/0067, 9
12/NE/0355
UoS Healthy Healthy UOS030529, 6,7,8,9
Volunteers UOS052024
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A Framework for Modelling
Whole-Lung and Regional TLco
Using Hyperpolarised 12°Xe Lung
MRI

5.1 Introduction

Pulmonary gas exchange function is usually evaluated using the TLco PFT, which
was described in Section 3.2.1. Although widely used [110], TLco measurement
is a breathing test, measured at the mouth, and therefore lacks regional gas ex-
change information. Hyperpolarised '2°Xe lung MRI is an alternative method to
quantify pulmonary gas transfer and the sensitivity of the ?°Xe gas exchange
ratios, RBC:M, RBC:Gas and M:Gas has been demonstrated in COPD [38, 37,
212], ILD [35, 169, 33] and post-COVID-19 lung disease [193, 194, 190]. How-
ever, these gas exchange ratios lack a well-defined conventional physiological
interpretation.

There are parallels between the measurements made with 2°Xe MRI and the
constituent components of TLco, illustrated in Figure 5.1.1. A model has been
proposed by Wang et al. to exploit these similarities by using features derived
from 2°Xe ventilation and gas exchange imaging, along with Va and Kco from
PFT, to predict TLco using linear regression [224]. In this model, M:Gas and
RBC:Gas are used to estimate Kcgo via linear regression coefficients. To convert
Kco to TLco, Va is estimated from its linear regression with VV. This approach
allows the underlying components of TLgo to be estimated, which may clarify
the interpretation of a reduced TLgo and reveal signatures of different cardiopul-
monary diseases. However, the generalisability of this model is not clear, be-
cause the same data (from 41 healthy subjects and 101 lung disease patients)
were used to both train the model and test its performance, leading to poten-
tially biased results. Most commonly-used TLgo prediction models are based on
participant demographics such as age and sex [225, 226, 227, 228]. Indeed,
the model-based prediction of TLco from 2°Xe MRI metrics may be improved
by considering age and sex, as both affect '?°Xe MRI gas exchange metrics
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[229, 230, 189]. Furthermore, previous work [224] used the whole-lung average
metrics from 129Xe imaging to predict whole-lung TLco, which does not utilise the
regional information offered by imaging. Here we propose that inputting the imag-
ing maps to the predictive models instead would allow for regional visualisation
of TLco. Prediction of TLco may be further improved by using machine learning
regression algorithms instead of classical least-squares based methods.

The objectives of this work were therefore to: 1) evaluate Wang et al.’'s model [224]
in a large cohort of asthma and COPD patients with a rigorous testing and training
group validation strategy, and 2) build upon this model to predict both whole-lung
and regional maps of TLco using '?°Xe imaging and participant demographic
data with machine learning algorithms.

TL.o Lung Function Test 129%e MRI

Dy = membrane

«— conductance
Keo

\ OV = capillary

blood conductance

V¢ = capillary

blood volume i
0 = reaction

rate of CO
with RBCs

RBC signal

RBC:Gas

Figure 5.1.1: Schematic of the parallels between the underlying physiology measured by
the TLco lung function test and '2°Xe MRI. Like the membrane conductance (D), the
129Xe membrane signal is dependent on the surface area and thickness of the alveolar
membrane. The '?°Xe RBC signal is influenced by both the gas exchange across the
alveolar membrane and the capillary perfusion, so can be linked to the capillary blood
volume, V. RBC:Gas measures the transfer of gas from the alveoli, across the alveolar
membrane and into the RBCs, so is analogous to the transfer coefficient, Kco. VV is the
volume of the lung where '?°Xe signal is detected, which is alike to the alveolar volume,
Va. (This figure was partly generated using Servier Medical Art, provided by Servier,
licensed under a Creative Commons Attribution 3.0 unported license.)

5.2 Theory

TLco represents the overall conductance of CO from the alveolar gas to the pul-
monary capillary blood and is made up of two components:

1 1 1
=—+
TLco Dm 6Vc

(5.2.1)

72



Chapter 5

where Dy is the membrane conductance and 6V is the capillary blood conduc-
tance: 6 is the reaction rate of CO with the RBCs and V¢ is the capillary blood
volume [231]. TLco also depends on the volume of the alveoli available for gas
exchange, Va:

TLco = KcoVa (5.2.2)

where Kco is the CO transfer coefficient [109].

Wang et al’s model [224] uses the following linear regression equations to predict
whole-lung TLco, where ky, ky and kg are coefficients found by fitting the model
to measured data:

Va = kyVV (5.2.3)
Dy = kmyM : GasrelVa (5.2.4)
0V = krRBC : Gasre|Va (5.2.5)

129Xe MRI metrics; VV is the lung ventilated volume from ventilation imaging [232]
and M:Gas,e| and RBC:Gasye| are the dissolved '?2Xe signal ratio values divided
by a healthy reference value (see Methods). Equations 5.2.4 and 5.2.5 are then
substituted into Equation 5.2.1:

1 1 1
- = +
K kMM . GaSre| kR RBC . GaSre|

(5.2.6)

Here, the ‘CO’ has been dropped from Kco to specify that this is the predicted
value from '29Xe MRI metrics. The predicted K and Va values are then multiplied
to give the predicted transfer factor, TL.

5.3 Methods

5.3.1 Subject Details

Models were trained on data from the Advanced Diagnostic Profiling (ADPro) sub-
study of the NOVEL observation longiTudinal studY (NOVELTY; ClinicalTrials.gov
identifier: NCT02760329) of patients with asthma and/or COPD [233, 234]. Pa-
tients were recruited from primary care and had a mix of physician-assigned dis-
ease severity (mild, moderate or severe). The study involved two visits, at which
participants underwent PFTs and MRI, with the second visit 12 & 2 months after
the first. At visit one, *®Xe ventilation and gas exchange imaging and PFTs were
performed post-bronchodilator, whereas at visit two, '?®Xe imaging and PFTs
were carried out both pre- and post-bronchodilator. Models were trained using
the visit one dataset (n = 165; 42 mild, 76 moderate and 47 severe). Participants
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who had missing PFT or imaging data (due to missed appointments or scanner
failure) were excluded and so the final training group consisted of 150 partic-
ipants (Table 5.3.1). 123/150 participants had pre-bronchodilator and 127/150
participants had post-bronchodilator **Xe imaging and PFT data at visit two.

Model validation was carried out on a separate cohort of 42 participants, who
differed from the training group in diagnosis. 19/42 participants were part of the
healthy control group of the Hyperpolarised Xenon Magnetic Resonance PuL-
monary Imaging in PAtleNts with Long-COVID (EXPLAIN) study [235]. The re-
maining 23 participants had been hospitalised due to COVID-19 (the MURCO:
MUIti-nuclear MRI in COVID-19 study [190]) and their PFT and '*®Xe MRI data
was from 1 - 12 months after hospital admission (median 6 months).

In accordance with Ref. [224], RBC:Gas and M:Gas were normalised by healthy
reference values, which were taken from a previous study [35]. The subject de-
mographics for this group are given in Table 5.3.2.

5.3.2 MRI Acquisition and Pulmonary Function Testing

Hyperpolarised '2°Xe ventilation and gas exchange imaging were performed as
described in Chapter 4. The training data and the healthy volunteer data used
for normalisation (Table 5.3.2) were acquired using the original implementation
of our spectroscopic dissolved-phase imaging sequence, which used TR = 40
ms and a flip angle of 40° centred on the dissolved '2°Xe resonance, as in [35].
The validation data were acquired with the updated version of this sequence,
which used TR = 15 ms and dissolved-phase flip angle = 22° [189]. Additional
anatomical imaging was performed using a UTE sequence [20]. Measurement of
TLco, Kco and Va were performed using a Vyaire PFT Pro (Vyaire Medical, Inc.,
Basingstoke, UK) and in accordance with international guidelines [236].
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Table 5.3.1: Subject demographics for the testing and validation groups. Normally dis-
tributed variables are given as mean % standard deviation, whereas non-normally dis-
tributed variables are given as median (range).

All Asthma COPD | Asthma + Post- Healthy
Asthma COPD COVID-
& COPD 19
Hospitali-
sation
Number | 150 (75) 76 (39) 24 (17) 50 (19) 23 (3) 19 (13)
(females)
Age 60.6 542 £ 66.5 + 63.6 + 62 (42 - 409 +
(years) (21.4 - 13.8 8.4 10.5 79) 9.5
82.2)

Weight 80.7 £ 83.7 68.4 + 82.0 + 97.0 76.8
(kg) 17.4 17.0 13.5 17.5 16.0 14.5
Height 168.5 + 169.0 + 162.0 + 170.8 £+ 173.4 + 170.5 +
(cm) 10.4 9.8 10.4 10.3 9.1 11.3
FEV{ -0.65 -0.10 -1.89 + -117 £ -0.70 £+ 0.13
(z-score) | (-4.49 - (-3.84 - 1.60 1.16 1.00 0.75

2.66) 2.66)
TLco 7.56 + 8.48 £ 5.16 + 7.01 6.00 + 8.84 +
(mmol 2.55 2.18 2.46 (3.61 - 1.68 2.19
min-1 13.86)
kPa')
TLco -0.07 0.29 £ -2.01 -0.65 = -2.04 £ 0.33 +
(z-score) | (-6.37 - 1.14 2.28 1.30 1.37 0.84
3.83)
Kco 1.38 £ 1.53 £ 1.10 + 1.27 + 1.30 £ 1.52 £
(mmol 0.32 0.24 0.35 0.28 0.17 0.16
min-!
kPal L)
Kco -0.22 0.30 + -1.63 £ -0.67 £ -0.52 + 0.09 +
(z-score) (-4.83 - 1.07 1.86 1.29 0.78 0.68
3.00)
VA (L) 545 + 555 £ 3.99 572 + 458 £ 5.82 =
1.27 1.16 (2.76 - 1.22 0.87 1.33
7.81)
VV (L) 4.47 + 4.46 4.03 £ 4.60 3.80 £ 439 £
0.86 (2.08 - 0.74 (2.96 - 0.43 0.74
7.28) 7.18)
M:Gas 0.0091 0.0099 + | 0.0076 £ | 0.0090 = | 0.0113 | 0.0087 £
(0.0051 - | 0.0021 0.0017 0.0024 | (0.0089- | 0.0012
0.0157) 0.0125)
RBC:Gas | 0.0028 0.0031 0.0017 0.0025 0.0021 0.0032 +
(0.0012- | (0.0017 - | (0.0012- | (0.0013- | (0.0013- | 0.0006
0.0068) 0.0068) 0.0034) 0.0058) 0.0039)
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Table 5.3.2: Details of the healthy volunteer cohort used to normalise the gas exchange
ratios in Model 1.

Number (females) 10 (2)
Age (years) 38 (25 - 65)
M:Gas 0.0075 £ 0.0018
RBC:Gas 0.0036 £+ 0.0013

5.3.3 TLco Prediction Models

Three TL prediction models were evaluated:

. Physiology-based linear regression: Equations 5.2.3 and 5.2.6 were fitted

on the training data, first using the values of ky, ky and kg from [224]
(model 1a) and separately using values found from a least squares solver
to minimise the mean squared error (MSE) and best fit our training data
(model 1b) in Matlab (version R2022a, Mathworks, Natick, MA). As in [224],
RBC:Gas and M:Gas were normalised by healthy reference values (Table
5.3.2).

. Multivariable linear regression: features were chosen by first identifying cor-

related variables with a Spearman’s correlation matrix of possibilities (VV,
M:Gas, RBC:Gas, age, sex, height and weight). Strongly correlated vari-
ables were removed, to avoid multi-collinearity. Separate prediction equa-
tions were then formed for K and Va by testing the predictive power of linear
combinations of the remaining variables. Model fitting was performed with a
linear regression solver from the scikit-learn Python toolbox (Python 3.9.12)
[237].

. Random forest regression: this is an ensemble machine learning algorithm

which combines predictions from many uncorrelated decision trees to out-
put a prediction or classification [238]. Two regression models were trained
using scikit-learn [237], to predict K and Va separately, using the features
identified from linear regression modelling. Tree splitting was based on min-
imisation of the MSE and model hyperparameters (Table 5.3.3) were tuned
using a grid search.

For both models 2 and 3, RBC:Gas and M:Gas were not normalised by the
healthy reference values. Two other machine learning algorithms, polynomial
regression and support vector machine regression, were also explored in the pre-
liminary stages of this work, but were not pursued because initial results showed
worse performance than linear regression.

Table 5.3.3: Random forest regression model parameters.

Maximum tree depth | Number of estimators
Va 4 500
K 3 200
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5.3.4 Model Training and Validation

The three models were initially trained using five-fold cross-validation: the training
data were split randomly into five folds of 30 participants (stratified such that each
group contained approximately the same proportion of asthma, COPD and com-
bined asthma and COPD patients), and the models were fitted on four of the folds,
with the remaining fold used to test the fit performance. This was repeated five
times so that each fold acted as the testing data once. The model with the low-
est MSE across the cross-validation folds was chosen as the final model and this
was subsequently retrained on the entire training data and evaluated by applying
to the validation set and ADPro visit two data.

5.3.5 Regional TL Mapping

To derive regional maps of TL, the final trained K and Va models were applied to
each voxel of the RBC:Gas map and a ‘relative’ ventilation map determined from
the gas-phase images of the gas exchange acquisition (Figure 5.3.1). The maps
were masked by applying a noise threshold to the M signal images. Ventilation
distribution maps were found using Equation 5.3.1 [239]:

IrN [
V, = W——22 (5.3.1)
Itotal

where V, is the relative ventilation at position r = (X, y, z), I is the gas signal
intensity at position r, Nyoxe( is the total number of ventilated voxels (i.e. voxels
in the lung mask) and I;otq is the total gas signal intensity. This intermediate
step was required so that the input to the VA model (V) had the same units and
order of magnitude as the VV data that the model was trained on. So that the
Va,r maps had a clearer physiological meaning (ventilated volume per voxel), the
initial VA model output was scaled by Ny oxe(- The whole-lung predictions can be
recovered from the regional maps by summing the fractional TL and Va values
(TLr and Va r) and averaging the rate K (K;):

TL=> TL (5.3.2)
r

Va=> Va, (5.3.3)
r

In order to aid the interpretation of parametric maps, it is often helpful to per-
form binning based on a healthy distribution so that regions that are elevated or
reduced relative to the healthy value can be identified. However, the healthy vol-
unteers included in this work were limited in number and not age-matched to the
patients, so it was not appropriate to define a healthy TL, distribution from their
TL maps. PFT results are typically reported as z-scores and/or the percentage of
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predicted values. Therefore, in a regional analogue to this, the Global Lung Initia-
tive (GLI) predicted TLco values [227] were used to perform subject-specific bin-
ning of the TL maps. To do this, the whole-lung GLI predicted value was divided
by Nvoxe( in order to estimate the TL, value for each voxel: TLpreq,r (@assuming
a homogeneous gas exchange distribution). The bin edges were chosen based
on percentiles of TLpreq,r: [0, 0.25, 0.5, 0.75, 1, 1.25, 1.4, 1.75]"TLpreqd,r and
the binning colours were chosen such that bins within the range of normal TLgo
values (75% - 140% predicted [109]) were shown in different shades of green.
Binning was carried out using the Python np.digitize function.

(A) RBC:Gas (B)

. |
L * + Age, Sex
! Random forest regression
4 o
- A

0 2 (1) Multiply
mmol min kPalLl =

(D) Gas (E) (F) V, (G) (H) V,

ervoxel
lmtal + Age, Sex 0 0.007
—_—— mmol min kPa-!
H Random

forest
regression

0 1.5 x10°6 0 10
(+ Nvoxel)

Figure 5.3.1: Regional random forest model: information on regional RBC uptake and gas
signal distribution from dissolved 2°Xe imaging was utilised to produce regional maps of
TL. The K prediction pipeline was applied to every voxel of the RBC:Gas map (A), along
with patient age and sex (B), to output a map of predicted K (C). For the prediction of Va,
an extra step (Equation 5.3.1) was required in order to convert the gas signal map (D)
into a map of ventilation distribution (V,), which had the required units of litres and order
of magnitude. (E) This involved finding the signal intensity of each pixel (I;), dividing this
by the mean signal intensity (Itotai/Nvoxer) @and multiplying this fraction by VV from '2°Xe
ventilation imaging to produce the V, map (F). (G) The Va random forest prediction was
then applied to each voxel of this map, along with patient age and sex. The resulting map
was renormalised by Ny oxe( SO that it represented the ventilation per voxel and summed
to give predicted Va (H). (I) This was then multiplied with the K map to obtain a map of
TL (J).

5.3.6 Statistical Analysis

The predictive power of the models was assessed by calculating the MSE and R?
of the linear fit of predicted and measured TLco, the mean absolute error (MAE)
between the predicted and measured values, and their Bland-Altman bias. Nor-
mality of variables was tested for using Shapiro-Wilks tests. Correlations were
assessed using the Pearson/Spearman correlation coefficient for normally/non-
normally distributed variables. To compare the correlations between different
pairs of variables, Hittner's z [240] and Zou’s confidence interval [241] for de-
pendent, overlapping correlations were calculated using the cocor R package
[242]. All statistical analysis was carried out with RStudio (R version 4.3.0).
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5.4 Resulis

5.4.1
5.4.1.1

Validation of Physiological Model
Model 1a

The model using linear regression coefficients from Wang et al., given in Table
5.4.1, did not fit our training data well (Table 5.4.2; MAE = 2.66 mmol min'! kPa™).

5.4.1.2 Model 1b

The prediction accuracy was improved by refitting the values of ky/, ky and kg on
our dataset, which resulted in a MAE value of 1.24 £ 0.15 mmol min"! kPa™
across the five cross-validation folds. The refitted values are shown in Table
5.4.1. Linear regression and Bland-Altman analysis of the measured and pre-
dicted TLgo values for each model are shown in Figure 5.4.1.

Table 5.4.1: Linear regression coefficients and confidence intervals/standard deviation
from the physiological model.

This work
1.21 £ 0.01
451 + 0.26
2.97 £ 0.13

Wang et al.
ky 1.47 [1.42, 1.52]

kyv (mmol min? kPa L") | 3.55 [2.88, 4.55]

kr (mmol min" kPa''L") | 4.55[3.82, 5.59]

Table 5.4.2: Evaluation of the four transfer factor prediction models on the training data.
Model 1a = physiological model with coefficients from Wang et al. [224], 1b = physiologi-
cal model with refitted coefficients, 2 = multivariable linear regression, 3 = random forest
regression. For models 1b, 2 and 3, the mean and standard deviation across the five
cross-validation folds is given. LOA = limits of agreement.

Model MSE ( mmol R MAE ( mmol Bias [LOA] (

min? kPa?) min"' kPa') mmol min™"!
kPa)

1a 3.49 0.470 2.66 2.41 [-1.56,
6.39]

1b 1.63 + 0.31 0.604 + 0.028 1.24 £ 0.15 -0.14 [-3.25,
2.97]

2 1.16 £ 0.23 0.739 £ 0.069 1.01 £ 0.06 -0.02 [-2.55,
2.52]

3 1.13 £ 0.24 0.744 £ 0.063 0.995 £ 0.129 0.02 [-2.50,
2 54]
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5.4.2 Model Development and Validation
5.4.2.1 Model 2

The correlation matrix showed strong correlations between RBC:Gas and M:Gas
(Spearman’s p = 0.57), age and height (p =-0.75) and VV and height (p = 0.62).
Therefore, M:Gas and height were not included as features in the multivariable
linear regression model because of their dependence on other variables. The
final predictive equations were:

1
al———
RBC: Gas

+ axAge + asSex+ aqy (5.4.1)

and

Va=b1VV + byAge + b3Sex + bg, (5.4.2)

where Sex = 0 for males and 1 for females. The fitted values of ai > 3.4 and
b1,2,3,4 can be found in Table 5.4.3. Including participant age and sex as predic-
tors improved the prediction of TLco compared to model 1b (MAE = 1.01 &+ 0.06
mmol min"'kPa).

Table 5.4.3: The coefficients of the multivariate linear regression model (Equations 5.4.1
and 5.4.2), given as the mean % standard deviation across the five cross-validation train-
ing folds.

K Va
vV N/A b1 = 0.6378 + 0.0281
1/RBC a; =-0.0015 £ 0.0001 N/A
Age a =-0.0018 £ 0.0004 | by =-0.0245 + 0.0038
Sexg asz =0.0740 £ 0.0203 | b3 =-1.3752 £+ 0.0650
constant term | asz =2.0500 + 0.0371 bag =4.75+ 0.35

5.4.2.2 Model 3

The random forest regression model performed slightly better than linear regres-
sion (MAE = 0.995 £ 0.129 mmol min"' kPa'') so was chosen as the final model.
The most significant predictor of K was RBC:Gas, whereas sex was the highest
ranking predictor of Va (Figure 5.4.2). This might be because sex is strongly cor-
related with height, which in turn is a significant predictor of lung volume [37].
The model also performed well when applied to the validation data (Figure 5.4.3:
MAE = 0.840 mmol min™' kPa", MSE = 0.647 mmol min-? kPa?, R? = 0.828). For
completeness, models 1a, 1b and 2 were also evaluated on the validation data
and the performance of model 2 was found to be slightly better than that of model
3: MAE = 0.744 mmol min! kPa™!, MSE = 0.452 mmol min® kPa?, R2=0.877.
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. 63.6%
. 0.7%

0 25 50 75 100
Feature Importance (%)
Figure 5.4.2: Ranked importance of the prediction variables for the random forest re-

gression model. The purple bars represent the contribution of the variables to the Va
prediction and the grey bars represent the contribution to the K prediction.

5.4.2.3 Correlations

Both RBC:Gas and RBC:M were significantly correlated with measured TLco,
with Spearman’s p values of 0.71 and 0.64, respectively. To determine whether
there was a stronger relationship between measured TLco and modelled TL than
there was between measured TLco and RBC:Gas/RBC:M, the correlation coeffi-
cients were compared using statistical tests. The results are summarised in Table
5.4.4. The correlation between measured TLco and predicted TL was stronger
than the correlation between measured TLco and RBC:M for models 1b, 2 and
3. For models 2 and 3, the predicted TL correlation was also stronger than the
RBC:Gas correlation, whereas for model 1b, there was not a significant difference
between the predicted TL and RBC:Gas correlation coefficients.

Table 5.4.4: Comparison of the correlation between measured TlLgo and
RBC:Gas/RBC:M and the correlation between measured TLco and the predicted TL from
each model. A significant z value indicates a significant difference between the correla-
tion coefficients, as does a Zou confidence interval (Cl) which does not include 0 in its
range.

RBC:Gas RBC:M
Model | Pearson’s r | Hittner’s Zhou’s ClI Hittner’s Zhou’s ClI
z z
1b 0.78 -1.18, (p | [-0.13,0.03] | -2.92 (p | [-0.21, -0.04]
=0.24) =0.004)
2 0.86 -4.40 (p |[-0.20,-0.07] | -5.73 (p |[-0.29, -0.13]
<1 <1
x10~4) x10™4)
3 0.86 -5.64 (p |[-0.29,-0.12] | -4.23 (p | [-0.20, -0.07]
<1 <1
x10~4) x10~4)
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Figure 5.4.3: Evaluation of the three prediction models on the validation data: (A) model
1a: physiology-based model with coefficients from Wang et al. [224] and (B) model 1b:
coefficients refitted on our training data, (C) model 2: multivariate linear regression and
(D) model 3: random forest regression, via linear regression and Bland-Altman plots of
the measured and predicted TLgo values. PCH = post-COVID-19 hospitalisation.
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5.4.3 Regional TL Mapping

Example predicted TL maps demonstrating differences between four participants
with different pathology, but similar TLco z-scores, and one healthy volunteer are
shown in Figure 5.4.4. With the addition of regional gas exchange information,
the performance of the random forest model was not improved when compared
to the whole-lung model, but was still reasonably good: MAE = 1.18 mmol min’
kPa'', MSE = 1.26 mmol min? kPa?, R = 0.736. It also performed well when
applied to visit two data from the same study, for both pre -bronchodilator (MAE
= 1.30 mmol min" kPa™', MSE = 1.17 mmol min? kPa?, R? = 0.747) and post-
bronchodilator (MAE = 1.14 mmol min! kPa', MSE = 1.13 mmol min?2 kPa=,
R? = 0.756) data. Linear regression and Bland-Altman plots comparing the mea-
sured, whole-lung random forest predicted and regional random forest predicted
TL values for both visits are shown in Figure 5.4.5. Example TL-constituent Kco
and Va maps for one participant with both asthma and COPD are shown in Figure
5.4.6. This person had normal measured TLco (z-score = 0.48), but their maps
reveal regional heterogeneity in both ventilation and gas transfer.

(i) Healthy: M, 42 (ii) Asthma: F, 71 (iii) Asthma + COPD: F, 57|  (iv) COPD:F, 70 (v) PCH: M, 72

(A) UTE

1kPa? ©
-
=

mmol min

OMoton|  os | am | o am | s | aw

P 1 L [ L e e N e L
-1

" Jw002] 1058|1013 | 412] 620 [ a0 |aso] as2 [ 435 ] 431 ] 443 Jats [539 ] 543 [ 555]

Figure 5.4.4: (A) UTE lung structure images and (B) random forest regression-predicted
TL maps for five participants and their diagnosis, sex, age and (C) TLco z-score at visit
one. The patient shown in (A iv) had a lack of 29Xe signal in the upper right lung due
to underlying structural changes (yellow arrows). (D) The measured and estimated TL
values for each participant are given, where ‘WL-RF’ refers to the value from the whole-
lung random forest model and ‘R-RF’ refers to the value from the sum of TL, from the
regional random forest model over all voxels. PCH: post COVID-19 hospitalisation.
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Figure 5.4.5: Evaluation of the (A) whole-lung random forest regression model and (B)
regional random forest regression model on data from the ADPro asthma and COPD
study for (i) visit 1 (training data), (ii) visit 2, pre-bronchodilator and (iii) visit 2, post-
bronchodilator. The first and third rows show linear regression and the second and fourth
rows show Bland-Altman plots of the measured and predicted TLco values.
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Figure 5.4.6: Random forest regression modelled (A) TL, (B) K and (c) Va maps for a 57-
year-old female patient with both asthma and COPD for six lung slices, plus the modelled
and measured whole-lung values at visit one. Although this patient had a normal TLgo
(as measured by PFT), their TL map indicates reduced gas exchange. The K map shows
a heterogeneous gas transfer rate which does not match the ventilation distribution. (The
TL map is the product of the K, and Va,» maps.)

Figure 5.4.7 shows the predicted TL, K and Va maps for a single slice for a partic-
ipant with both asthma and COPD before and after bronchodilator administration.
The maps show an increase in the lung mask area post-bronchodilator, but the
gas signal intensity per voxel decreases because the same amount of gas is dis-
tributed over more voxels due to the opening of previously unventilated airways.
Changes in the regional distribution of TL, K and Va following bronchodilator can
be assessed by considering the predicted values for each lung slice (Figure 5.4.7
bottom panel).

The binned TL maps for five central lung slices along with the corresponding
maps of RBC:M and TL are shown for a patient with both asthma and COPD
in Figure 5.4.8 and a patient who was hospitalised post-COVID-19 infection in
Figure 5.4.9. Both patients had a % predicted TLgo of ~70%, but there are
differences in the distribution of TL values, which are more stark in the binned TL
maps. For comparison, the binned TL maps for a healthy volunteer (% predicted
TLco = 90%) are shown in Figure 5.4.10.
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Figure 5.4.7: Modelled parametric maps of (A) TL, (B) K and (C) Va for a single lung slice
for a 61-year-old female with both asthma and COPD, (i) pre- and (ii) post-bronchodilator.
In (iii), the sum (mean for K;) for each slice (posterior to anterior) is plotted, showing the
change in distribution following bronchodilator administration. The lung slice shown in
(i) and (i) is indicated with an arrow. These plots show that Va » and TL, increase in
the posterior lung following bronchodilation, whilst slightly decreasing in the central and
anterior slices.
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Figure 5.4.8: TL binning for a 57 year old female patient with both asthma and COPD
and a TL¢o z-score of -1.91. For five central lung slices, maps of (A) RBC:M, (B) TL and
(C) TL binned according to percentage of predicted TL per voxel, are shown. In (D), the
binning edges and colours are shown along with a histogram showing the proportion of
voxels in each bin for this subject.
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Figure 5.4.9: TL binning for a 59 year old male patient who was hospitalised following
COVID-19 infection and had a TL¢o z-score of = -2.23: (A) RBC:M, (B) TL, (C) TL binned
according to percentage of predicted TL per voxel, (D) histogram showing the proportion
of voxels in each bin for this subject.

88



Chapter 5

TR N i
-

A A LA

ok #3 sk A8 A8

60%

(A) RBC:M

(B) TL

—
[
el
[J]
c
=
om
2)

30%

(D)

0.25 050 0.75 1.00 1.25 140 1.75

0%

Figure 5.4.10: TL binning for a 42 year old healthy man who had a TLco z-score of =
-0.68: (A) RBC:M, (B) TL, (C) TL binned according to percentage of predicted TL per
voxel, (D) histogram showing the proportion of voxels in each bin for this subject.

5.5 Discussion

In this work, we have demonstrated that random forest regression modelling im-
proves prediction of TL from 2°Xe MRI metrics when compared to a physiology-
based model. We then go on to apply this model voxelwise to create maps of TL,
K and Va. This approach provides a valuable means to visualise these clinical
lung physiology metrics at a regional level, allowing the contributions from the
ventilation distribution and gas uptake rate to be examined, and links measures
from 129Xe gas exchange imaging to well-established physiological quantities.

5.5.1 Model Development and Performance

Three models for predicting TL from >*Xe MRI data were evaluated. The co-
efficients from the previously proposed physiology-based model [224] did not fit
our data well, likely due to differences in MRI acquisition strategies/parameters
and participant disease aetiologies. The previous model was trained on data ac-
quired with a 1-point Dixon method dissolved-phase imaging sequence at both
1.5 T and 3 T from healthy participants and those with obstructive, restrictive,
and pulmonary vascular lung disease. It is also possible that, by not using sepa-
rate testing and training groups or cross-validation, the coefficients in [224] were
reached by finding a sub-optimal local minimum of MSE. In contrast to [224], we
found ky > kg, which suggests a greater contribution to the total impedance from
the membrane than the capillary blood, or ventilation-perfusion mismatch. For a
healthy individual, RBC:Gasre; ~ M:Gasre; ~ 1, thus, Dy = ky Va and OV¢ = kg
Va. For the coefficients found in this work, this gives a ratio of ﬁ : 6_\1/c of 2:3.
The membrane conductance contributes ~ 40% to the total impedance and the
capillary blood volume contributes ~ 60%. Although different to Ref. [224], which
found a ~ 44 % contribution from the capillary blood volume, our result of 60% is
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more similar to estimates from reference equations, which are around 75% [228].

In models 2 and 3, machine learning was used to try and improve prediction
accuracy. The model features were a combination of '29Xe MRI and demographic
variables, chosen to minimise multi-collinearity and maximise predictive power.
Where two variables were dependent on one another, a choice had to be made
over which variable to include in the model. RBC:Gas was chosen to be included
over M:Gas because this measurement reflects the 2°Xe pulmonary gas transfer
from alveoli to bloodstream, i.e. RBC:Gas measures '>°Xe transfer across the
membrane barrier, but M:Gas only measures increased membrane signal. As
highlighted in Figure 5.1.1, RBC:Gas is analogous to Kco. Sex was chosen over
height for the following reasons:

1. To follow previous work on the age and sex dependence of **Xe gas ex-
change ratios [189, 230].

2. The '?°Xe dosing was chosen based on height, so some adjustment for
height is already made in the 12°Xe MRI protocol.

3. There are other physiological differences between males and females which
affect gas exchange, such as haemoglobin levels and effects of the men-
strual cycle [243].

4. Height was strongly correlated with both sex and VV.

The features for the random forest model were chosen to be the same as the
features in the linear regression model. However, with random forest there are
no multi-collinearity concerns so model performance with the addition of height
as a feature was also tested. Including height was found to have no improvement
on the model performance (MSE = 1.13 £ 0.24 mmol min'? kPa?, MAE = 0.995
+ 0.129 mmol min" kPa™! without height, MSE = 1.13 £ 0.54 mmol min? kPa?,
MAE = 1.00 £ 0.16 mmol min"' kPa! with height). The standard deviation be-
tween folds was higher when height was included, suggesting that this feature is
unnecessary and is leading to overfitting. Ultimately, there is no definitive answer
about which variables to include in machine learning prediction models such as
ours. Factors that have a significant impact on lung function, such as smoking
history, were not included in our models because they were not available, but
would very likely improve prediction accuracy. With more variables in the predic-
tion models, we would expect to see improved fitting of the training data, however
with these additional degrees of freedom there is also higher risk of overfitting
and the model not performing well on validation data.

The addition of participant age and sex in the multivariable linear and random
forest regression models further improved prediction accuracy when compared
to the physiology-based model. Age appeared in both the K and Va prediction,
suggesting TLco has a second order age dependence. An age? dependence
represents an accelerated loss of lung function with age and is also found in
Munkholm’s TLgo prediction equations [228].

The correlations between measured TLco and TL from models 1b, 2 and 3 were
significantly stronger than the correlation between TLco and RBC:Gas. This
demonstrates the relative insensitivity of >*Xe gas exchange MRI to obstructed
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regions of the lung and the advantage of combining RBC:Gas with information
from ventilation imaging in our models. All models had small standard deviation
across the five cross-validation folds, demonstrating good accuracy and minimal
over-fitting, but the best performing model for the training data was random forest
regression. This may be because the model is able to account for non-linear rela-
tionships [238]; whereas Equations 5.2.3 and 5.4.2 assume a linear relationship
between VV (acquired at FRC + bag volume) and Va (acquired at TLC), the lung
volume dependent pathophysiology in obstructive lung disease means that the
relationship is likely to be more complicated.

5.5.2 Regional TL Mapping

Beyond improved modelling, a further novel aspect of this work is the application
of the random forest prediction model to produce spatially localised TL, K and Va
parametric maps, allowing for regional visualisation of otherwise global metrics.
Combining the information from dissolved-phase and ventilation >*Xe MRI, along
with patient age and sex, into a parametric map with defined units may provide a
way for respiratory physicians to more easily interpret '29Xe gas exchange MRI.
Binning the TL maps according to the patient-specific predicted TLco per voxel
from the GLI reference values [227] further increases their comprehensibility, by
highlighting areas that are outside of the normal range of values. This is a re-
gional analogue to presenting the whole-lung TLco values as a percentage of the
predicted value.

TL mapping could assist in the phenotyping of patients and in assessing longitu-
dinal changes and treatment response, especially for patients with both gas ex-
change limitation and ventilation heterogeneity. One of the key assumptions in the
TLco PFT is that the inspired test gas is homogeneously distributed throughout
the lungs. However, in obstructive lung disease, ventilation is heterogeneous and
so this assumption may not be appropriate and can lead to an underestimation
of TLco [244]. Contrarily, our models use regional gas exchange measurements
from dissolved '?°Xe MRI to estimate TL, which are intrinsically sensitive to the
distribution of 29Xe gas in the alveolar spaces within the lungs. This may ex-
plain why the models consistently overestimated TL for COPD patients with low
measured TLco values and why there is an increase in the percentage difference
between measured and modelled TLgo as the FEVy z-score decreases in Fig-
ure 5.5.1A. It has been suggested that in obstructive lung disease patients with
a heterogeneous ventilation distribution, it is more appropriate to use the TLC
from body plethysmography instead of Vp in the calculation of TLco. As shown
in Figure 5.5.1B, there was a positive correlation between V4 and TLC for the pa-
tients in the training data cohort, although TLC exceeded Va for some COPD and
combined asthma and COPD patients. Replacing the measured TLco value with
the product of Kgpo and TLC for patients where the difference between Va and
TLC was more than 15% lead to less of an overestimation by the random forest
model at low TL¢o values, although overall model performance was not improved
(Figure 5.5.1C, MAE = 1.25 = 0.28 mmol min'! kPa™').
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Figure 5.5.1: (A) As the FEV z-score decreases and therefore the amount of obstruction
increases, the random forest model overestimates TLgo to a greater degree, possibly
because measured TLco is underestimated due to the inhomogeneous ventilation distri-
bution. (B) The relationship between TLC and Va. (C) Linear regression of the measured
and random forest predicted TLgo values, where measured TLco was calculated from
the product of Kco and TLC.

TL was often underestimated for participants with high measured TLco. This
may be due to the larger error on predicted TL (6TL) for higher TLgo values. TL

was found from the product of the predicted Va and K values/maps and so the
error on these components was propagated through to TL according to the error

propagation formula:
Va2 [ 6K\?
STL=TL\|| — | +| —
Va K

5.5.3 Model Generalisability and Limitations

(5.5.1)

The models in this work were trained solely on patients with obstructive lung dis-
ease. Although we validated the models using data from healthy people and
post-COVID-19 patients, their application to patients with restrictive lung disease,
PVD and patients from a different site has not been explored. There are sitill
considerable differences between the >*Xe MRI sequences and acquisition pa-
rameters used between sites, which may limit the application of our models to
external data, however efforts towards harmonisation are being made through
the 12°Xe MRI Clinical Trials Consortium ('2°Xe-CTC) [164]. Hence, it is possible
that some retraining could be required to tune the model parameters for external
data, but we anticipate that the models themselves and the principle of using re-
gression modelling to map TL should be generalisable. It would be interesting to
test the performance of our models on Wang’s dataset, to test their generalisabil-
ity, however this is not possible without access to their data. Since their model
did not fit our data well, we could speculate that the same might be true of our
models on their data, because of the differences in dissolved '?°Xe imaging se-
quence (MESI vs 1-point Dixon) and patient cohorts used. However, we made
efforts to reduce overfitting and increase the generalisability of our models by us-
ing a rigorous five-fold cross-validation training strategy with training data from a
heterogeneous population with a large range of TLgo values (1.60 - 13.86 mmol
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min"' kPa''). Therefore, we might expect that our models are more generalisable
than Wang’s model, which did not separate the patient data into testing, training
and validation groups.

Although at present we do not have access to a complete dataset from a different
site with which to test our models (we hope that this may be possible in the future
through our involvement in the >®Xe-CTC), the models performed well on the val-
idation data, suggesting generalisability to other lung diseases. These data were
from two different clinical studies, with different patient groups and acquisition pa-
rameters to the training data. The differences in TR and flip angle used mean that
there is likely to be some bias between the datasets, because the combination of
these two parameters determines where on the dissolved '2°Xe uptake curve
the measurement samples [223]. When the dissolved '2°Xe imaging sequence
was updated, the impact of the new sequence parameters was evaluated in six
healthy volunteers. The average difference in mean RBC:Gas between the two
sequences was ~15%. This variability is similar to the repeatability of RBC:Gas
and does not seem to have limited the applicability of our models to the validation
data.

Inherent differences between 2°Xe MRI and TLco measurement, such as the
diffusivity and solubility of the gases used, lung volumes and body positions, may
limit the predictive power of the models. Both the TLco PFT and '29Xe MRI have
their own limitations, such as the dependence of TLgo on several factors such as
patient effort, testing conditions, anaemia and body weight [113]. Gas exchange
129%e MR ratio values have quite poor reproducibility and are dependent on fac-
tors such as lung inflation [245] and haematocrit [246].

Although the random forest and linear regression models improved the prediction
of TL, with these models the ability to estimate the membrane and capillary blood
conductances is lost. Another limitation of our work is the requirement for both
ventilation and gas exchange '?°Xe imaging, which necessitates two separate
acquisitions with up to 1.5 L of xenon. At present it is not practical to calculate VV
from the gas exchange imaging gas-phase image, because the image resolution
(1.25 cm3 voxel size) is too low for accurate co-registration with the anatomical
'H image. However, image acceleration techniques such as compressed sens-
ing (see Chapter 6) and rapid spiral k-space encoding gradients may make a
combined ventilation and gas exchange imaging sequence feasible [174]. As
the mainstay of 2°Xe MRI, ventilation imaging is part of the vast majority of our
129X e protocols so this data is usually available alongside gas exchange imaging.
The ability to combine information from two different 1>®Xe scans into one easily
interpreted TL map is a strength of our model.

5.6 Conclusions

TLco can be modelled from 12°Xe MRI metrics for patients with obstructive lung
disease. Prediction accuracy was improved compared to previous work by using
which used patient age, sex and '2°Xe MRI-derived VV and RBC:Gas as predic-
tion variables. For the training data, the best performing model was a random
forest regression model, although linear regression performed better for the val-

93



Chapter 5

idation data consisting of healthy volunteers and post-COVID-19 hospitalisation
patients. The ability of the random forest model to generate TL maps presents a
useful tool for visualisation and interpretation of regional TL limitation and should
help facilitate the clinical translation of '29Xe gas exchange MRI.
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Compressed Sensing
Reconstruction for High-SNR, Rapid
Dissolved 12°Xe Gas Exchange MRI

6.1 Introduction

Dissolved '2°Xe MRI provides sensitivity to gas transfer limitation in lung diseases
such as ILD, asthma, and COPD [32, 33, 34, 35, 36, 37, 38, 39]. However, the
technique is limited by low signal (~2% that of the gaseous-phase '29Xe signal
in the lungs), resulting from the low solubility of xenon in the alveolar membrane
and the small volume of the dissolved-phase compartment when compared to the
alveolar airspace [63]. This is in part overcome by using large dissolved-phase flip
angles, which is possible because of the rapid exchange of the dissolved-phase
magnetisation with the gaseous '2°Xe reservoir. Despite the above, achieving
sufficient dissolved-phase '2°Xe SNR can still be challenging, especially in lung
disease patients who have inherently lower RBC signal due to decreased gas
transfer and/or reduced capillary perfusion, and those who may also struggle to
complete the ~15 s duration breath-hold [174].

Compressed sensing (CS) was described in Section 2.2.8 and involves using the
transform sparsity of images and non-linear optimisation to reconstruct randomly
undersampled k-space data [60]. The denoising properties of CS can also help
improve apparent image SNR and enable reduced scan time for both Cartesian
[26, 27, 247, 248, 249] and non-Cartesian [250] '2°Xe imaging. CS reconstruction
has recently been explored for radial gas exchange imaging data [250], but its
effect on the key clinical metrics of gas exchange imaging; the RBC:M, RBC:Gas
and M:Gas signal ratios, has yet to be studied.

129Xe imaging is typically performed with enriched Xe (>85% '?°Xe isotopic
abundance), due to its increased concentration of the spin-% isotope of interest

when compared to natural abundance (NA, 26% '29Xe) [97]. NA Xe is typically
an order of magnitude cheaper than enriched [164] and, together with recent
progress in gas polarisation [217], this provides motivation for NA 12°Xe imaging.
The feasibility of NA 1>°Xe gas-phase ventilation imaging has been established
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[97], but dissolved '2°Xe imaging with NA Xe has yet to be demonstrated.

In this work, the gas exchange ratios from both CS and a conventional gridding
[57] reconstruction are compared retrospectively in healthy volunteers, patients
with COPD and patients hospitalised following COVID-19 infection. We then as-
sess the feasibility of imaging dissolved NA 22Xe with CS reconstruction in four
healthy volunteers.

6.2 Theory

Non-Cartesian k-space data were reconstructed with CS by solving a non-linear
regularised optimisation problem [60]:

x = argmin,||Ax —y|l2 + A1]|Wx|[1 + A2||Tx]|1 (6.2.1)

where x is the reconstructed image, y is the acquired k-space data, A1, are
regularisation weights, W is the sparsity operator and T is the finite difference
transform for image total variation. The ADMM algorithm [61] was used to solve
Equation 6.2.1, with W = I (identity) because hyperpolarised gas lung images
have natural sparsity in the image domain, due to lack of background signal from
surrounding tissue [26, 27]. A is the non-uniform Fourier transform operator:

A = PF (6.2.2)

y=Ax+v (6.2.3)

where P is the sampling density, F is the Fourier transform and v represents
measurement noise. In non-Cartesian gridding reconstruction, x is calculated
by convolving the radial k-space data with a gridding kernel to resample to a
Cartesian grid, then applying the inverse fast Fourier transform [35, 57, 54].

6.3 Methods

One dissolved 2°Xe spectroscopic imaging dataset (healthy female, 41 years)
was retrospectively analysed to optimise the CS reconstruction parameters, as in
previous work [26, 247]. Images were acquired with the 3D radial MESI sequence
described in Section 4.2.3 and in [189].

Image reconstruction and analyses were carried out in Matlab (version 2022a,
Mathworks, Natick, MA) on a Windows PC (Intel® Core™ i7-4790 processor).
Conventional gridding reconstruction was carried out as described in Section
4.2.3. CS reconstruction was performed using the Berkeley Advanced Recon-
struction Toolbox (BART) [251] pics function to solve Equation 6.2.1 for each
129X e signal. The values of A1, A> and the acceleration factor (AF) for random
undersampling were chosen empirically using a grid search. Specifically, the
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CS reconstruction was performed many times with different combinations of A
(ranging from 0.001 - 0.01), A2 (ranging from 0.0001 - 0.001) and AF (ranging
from 1 - 4). The fully sampled data consisted of 934 angularly-equidistant radial
spokes which were acquired in a random order. Retrospective CS reconstruc-
tions were performed using all data (AF = 1) and with AFs of 2, 3 and 4 by using
only the first 467, 311 and 234 radial spokes respectively. Figure 6.3.1 shows
the radial k-space spokes for each undersampling factor. The CS-reconstructed
dissolved '2°Xe ratio maps were compared with the gridding-reconstructed maps
and the final parameters were chosen based on the combination that minimised
the normalised mean absolute error (NMAE) between the ratio maps. NMAE was
calculated from the masked images, where masking was carried out by applying
a noise threshold to the membrane image from gridding reconstruction, and was
defined as:

1 <<n ~
2. lyi— il
NMAE = 72 T X100% (6.3.1)
y

where n is the number of voxels within the lung mask, y; and y; are the ratio map
value for the it" voxel from gridding and CS reconstruction respectively, and y is
the mean of the gridding ratio map.

(A)AF=1 B) AF=2 (C) AF =3 (D) AF =4
Figure 6.3.1: Radial k-space trajectories with different acceleration factors (AF): (A) fully-

sampled, (B-D) AF = 2 - 4.

To evaluate the fidelity of the CS reconstruction, metrics including the NMAE,
coefficient of variation (CV) and the pixelwise linear regression of both the ratio
maps and the raw images were assessed. SNR was calculated as the ratio of the
mean absolute signal within the lung mask to the standard deviation of the real
signal from the first three and last three slices (outside of the lung).

The optimised CS and conventional gridding reconstructions were both evaluated
retrospectively for a cohort of 41 subjects: 13 healthy volunteers, 5 COPD pa-
tients and 23 patients hospitalised post-COVID-19 infection (PCH), 14 of whom
had residual lung abnormalities on CT or structural lung MRI three months af-
ter hospital admission (PCH-RLA). These participants were imaged using the
same parameters as described above and in Section 4.2.3, and data were retro-
spectively undersampled. The mean ratio and CV values from both reconstruc-
tions were compared using linear regression and Bland-Altman analysis. Im-
age fidelity was evaluated with NMAE and pixelwise linear regression of the ratio
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maps. To compare the regional trends in the ratio maps from gridding and CS,
the mean and standard deviation of RBC:M, RBC:Gas and M:Gas in each slice
in the anterior-posterior direction were calculated.

Four healthy volunteers were then prospectively imaged (with the fully-sampled
sequence) with 0.8 - 1 L hyperpolarised NA '2Xe (dose equivalent volume (DEV)
[164] of ~80 ml for the 1 L dose, with 30% polarisation) on a 1.5T GE Artist scan-
ner to assess the feasibility of NA dissolved '29Xe CS imaging. 3/4 participants
additionally underwent dissolved imaging with the same volume of enriched 12°Xe
(DEV =260 ml) in the same scanning session and these data were added to the
healthy volunteer retrospective cohort for the subsequent analysis.

6.4 Results

6.4.1 CS Optimisation

To balance image fidelity and noise suppression, A1 = 0.003 and A = 0.0003
were chosen for the optimised CS implementation via grid search. These pa-
rameters provided good agreement between the gridding and CS-reconstructed
mean ratio values at each AF (Figure 6.4.1, Table 6.4.1) and worked well over
a range of other lung images tested. As the AF increased from 1 to 4, NMAE
increased (RBC:M: 3.5% - 6.9%, RBC:Gas: 5.2% - 8.3%, M:Gas: 4.2% - 4.8%)
and CV decreased (RBC:M: 0.17 - 0.16, RBC:Gas: 0.29 - 0.22, M:Gas: 0.28 -
0.20), as expected from the effect of CS smoothing and loss of information. Lin-
ear regression of the normalised pixelwise signal showed high R? values, which
decreased with increasing AF (RBC: 0.99 - 0.91, M: 0.98 - 0.90, Gas: 0.98 -
0.87). As a compromise between image fidelity and scan time reduction, AF = 2
was chosen for the optimised CS implementation. With these optimised parame-
ters, the distribution of the gas exchange ratios was preserved, resulting in similar
maps and histograms (Figure 6.4.2). The CS reconstruction time was similar to
that of gridding (<5 minutes).
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Figure 6.4.1: (A) RBC signal and (B) RBC:M from conventional gridding reconstruction
(100% sampling) and CS reconstruction with AF = 1 - 4 and (C) the corresponding linear
regression of the normalised pixelwise RBC signal within the lung mask. The absolute
difference between the RBC:M maps from gridding and CS reconstruction are shown for
each AF, for (D) inside and (E) outside the lung mask.
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Table 6.4.1: CS reconstruction parameters for the healthy volunteer dataset used in the
optimisation process for AF = 1, 2, 3 and 4. The mean ratio values and CV from conven-
tional gridding reconstruction are included for comparison.

RBC:M RBC:Gas M:Gas
Gridding | 0.42 £ 0.07 | 0.0040 £+ 0.0010 | 0.0098 + 0.0021
CSAF=10.42% 0.07 | 0.0041 £ 0.0012 | 0.0100 * 0.0028
Mean CSAF=20.41 £ 0.07 | 0.0041 £ 0.0011 | 0.0099 * 0.0025
CSAF=30.41 £ 0.06 | 0.0041 £ 0.0010 | 0.0099 * 0.0022
CSAF =4 0.41 £ 0.07 | 0.0041 £ 0.0009 | 0.0099 * 0.0020
Gridding 0.16 0.24 0.22
CSAF =1 0.17 0.29 0.28
CcV CSAF=2 0.17 0.26 0.25
CSAF=3 0.16 0.23 0.22
CSAF=4 0.16 0.22 0.20
CS AF =1 3.5 52 4.2
. CSAF=2 54 6.2 42
NMAE (%) csaF=3 6.4 73 4.4
CSAF=4 6.9 8.3 4.8
CS AF =1 0.92 0.87 0.88
R2 CSAF=2 0.81 0.78 0.82
CSAF=3 0.73 0.83 0.89
CSAF =4 0.69 0.79 0.90
RBC M Gas
CS AF =1 0.99 0.98 0.98
R2 CSAF=2 0.96 0.95 0.95
CSAF=3 0.93 0.92 0.91
CSAF=4 0.91 0.90 0.87
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Figure 6.4.2: (A) Ratio maps from five slices of the lung for the healthy dataset used to
optimise the CS parameters and (B) histograms of the ratio maps from gridding and CS
reconstruction (AF = 2) for RBC:M, RBC:Gas and M:Gas.

6.4.2 Retrospective Analysis

Patient demographics and key results are shown in Table 6.4.2 and example ratio
maps are shown in Figure 6.4.3. The mean gas exchange ratio values were
preserved with the CS reconstruction (Figure 6.4.4A); the R? values for each ratio
were high (0.99) and Bland-Altman analysis showed evenly spread residuals. The
NMAE values between the gridding and CS derived mean ratios were 3.8% for
RBC:M, 3.3% for RBC:Gas and 1.5% for M:Gas. The CV values from gridding and
CS reconstruction were similar for RBC:M, RBC, M and Gas; linear regression
analysis showed high R? values (> 0.91) and the Bland-Altman biases were small
(Figure 6.4.4B). For RBC:Gas and M:Gas, CS CV was significantly higher than
that of gridding (Wilcoxon signed rank exact test: p < 0.001). Lower R? values of
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0.73 and 0.30 for RBC:Gas and M:Gas respectively resulted from a small number
of outliers (driven by low signal pixels at the periphery of the lungs with very high

ratio values).

Table 6.4.2: Subject demographics and the RBC SNR, NMAE and adjusted R? of the
pixelwise linear regression for the CS reconstruction with AF = 2. Normally distributed
variables (as determined with Shapiro-Wilk tests) are given as mean % standard de-
viation, whereas non-normally distributed variables are given as median (range). Gas
exchange ratio values are from gridding reconstruction.

Healthy COPD PCH PCH-RLA
n (female) 16 (5) 5(3) 9(2) 14 (2)
Age (years) 40 £ 13 60 £ 9 57+ 9 66 £ 9
RBC:M 0.41 £0.08 | 0.23+ 0.05| 0.21 (0.17- | 0.19 £ 0.06
0.36)
RBC:Gas 0.0040 £ 0.0019 + 0.0025 + 0.0017 £
0.0011 0.0004 0.0006 0.0005
M:Gas 0.0098 + 0.0084 + 0.0115 0.0097 £
0.0024 0.0025 (0.0088, 0.0016
0.0176)
Gridding | 9.2+ 3.3 2.1(2.0- 49 (3.6 - 3.4(1.9-
RBC SNR 7.4) 8.7) 12.6)
CSAF= | 27.0(10.2 - 2.7 (2.3 - 93+24 53 (2.1 -
2 100.0) 18.9) 28.4)
RBC:M 9.9+ 3.3 27.6 £ 9.6 172+ 3.9 19.5+ 9.8
NMAE (%) RBC:Gas | 10.5+ 3.2 | 33.6(12.7- | 188+4.0 | 21.5+ 9.5
33.9)
M:Gas 56+1.3 89+1.8 58+ 1.0 6.3+ 2.0
RBC:M | 0.71 £0.11 | 0.40(0.30- | 0.61 £ 0.08 | 0.68 + 0.18
R? 0.81)
RBC:Gas | 0.78 (0.56 - | 0.54 +£ 0.18 | 0.62 + 0.06 | 0.61 £ 0.15
0.88)
M:Gas 0.83(0.40- | 0.75+ 0.02 | 0.83 £ 0.07 | 0.72 £ 0.17
0.94)

The pixelwise linear regression between the gridding and CS derived ratio maps
showed good agreement: R? = 0.65 % 0.16 for RBC:M, 0.65 + 0.14 for RBC:Gas
and 0.78 (0.40 - 0.94) for M:Gas, across the 44 subjects. Regional trends in the
signal ratios were also preserved with the CS reconstruction, as shown in Figure
6.4.5 for a healthy participant and a PCH-RLA patient for the anterior-posterior
gravitational gradient.
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Figure 6.4.3: RBC:M maps from gridding and CS reconstruction for five lung slices (pos-
terior to anterior) for (A) a healthy participant (NMAE = 8%), (B) a PCH-RLA patient
(NMAE = 11%) and (C) a patient with COPD (NMAE = 11%). For the two lung disease
patients, regions of RBC transfer defect are preserved in the CS maps.
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Figure 6.4.4: (A) Linear regression and Bland-Altman plots of whole-lung mean for
RBC:M, RBC:Gas, and M:Gas, comparing gridding and CS with AF = 2. (B) Linear re-
gression plots of coefficient of variation (CV) for RBC:M, RBC:Gas, M:Gas, and the RBC,

M, and Gas signals.
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Figure 6.4.5: Comparison of the anterior-posterior regional trends in RBC:M, RBC:Gas
and M:Gas for gridding and CS reconstruction for (A) a 30 year old male healthy volunteer
and (B) a 62 year old male patient who was hospitalised following COVID-19 infection and
had residual lung abnormalities. The points show the mean value over the slice and the
error bars represent the standard deviation. Connecting lines have been drawn to make
the regional trends clearer.

The NMAE values were higher in the retrospective cohort than from the CS simu-
lations, and a median NMAE of 15.0% was found for RBC:M across data from all
subjects. The NMAE values for RBC:M, RBC:Gas and M:Gas were observed to
scale non-linearly with the dissolved 2°Xe gridding SNR values (Figure 6.4.6A-
D). In particular, when gridding RBC SNR dropped below ~5, NMAE increased
sharply; overall the relationship was found to be best explained by a power law:

NMAE = aSNRX (6.4.1)

where a is a scaling constant and k < 0 is the exponent of the power law.

CS suppressed noise such that RBC SNR increased on average by a factor of
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Figure 6.4.6: A non-linear power law relationship was found between the NMAE of the
CS ratio maps, relative to the gridding ratio maps, and the dissolved '2°Xe gridding SNR
(A-D) and the SNR of the RBC image derived from gridding and CS (E). The fitted power
law parameters, a and k, are given along with their 95% confidence intervals. RMSE =
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two for the retrospective analysis cohort. A three-fold SNR increase was found
for the healthy volunteers CS images. The relationship between CS and gridding
RBC SNR was non-linear, and followed a power law with k = 1.82, as shown in
Figure 6.4.6E.

6.4.3 Natural Abundance 2°Xe

Table 6.4.3 shows the subject demographics and CS results for the healthy par-
ticipants who were imaged with NA '2°Xe. As expected from the lower isotopic
concentration, the SNR of the NA dissolved Xe images was worse than those
acquired with enriched '2°Xe (Figure 6.4.7). For the three participants who had
enriched and NA dissolved '2°Xe imaging in the same session, the ratio of en-
riched to NA gridding RBC image signal was 3.0 (compared to a ~3.3 difference
in 129Xe concentration). CS was successful at suppressing noise in the NA 12°Xe
images; at AF = 2, RBC SNR was increased three-fold compared to gridding re-
construction. The mean ratio values were similar between the gridding (RBC:M
= 0.41 £ 0.04, RBC:Gas = 0.0055 + 0.0010, M:Gas = 0.014 + 0.004) and CS
AF = 2 reconstructed maps (RBC:M = 0.41 £ 0.04, RBC:Gas = 0.0056 £ 0.0010,
M:Gas = 0.014 £ 0.004) and the R? and NMAE values were comparable to those
from enriched '?°Xe imaging, although the M:Gas NMAE was higher (see Table
6.4.2).

Table 6.4.3: Subject demographics and metrics for comparing the gridding and CS (AF =
2) reconstructions for the healthy subjects who underwent NA dissolved 2°Xe imaging;
three of these subjects are in common with the healthy group. Normally-distributed data
are displayed as mean %+ standard deviation and non-normally distributed data are dis-
played as median (range).

Healthy NA
n (female) 4 (2)
Age (years) 33+ 8
RBC:M 0.41 £ 0.04
RBC:Gas 0.0055 %+ 0.0010
M:Gas 0.0138 £+ 0.0036
Gridding 59+ 1.7
RBCSNR s 19.8 103
RBC:M 15.0 £ 4.2
NMAE (%) | RBC:Gas 17477
M:Gas 103+ 7.5
RBC:M 0.54 + 0.02
R? RBC:Gas | 0.62 (0.19 - 0.68)
M:Gas | 0.83 (0.29 - 0.88)

The top panel of Figure 6.4.7 shows the enriched and NA RBC images for a
healthy male participant. The NA images exhibited more heterogeneity than the
enriched image, with CV = 0.32 (gridding), 0.37 (CS AF = 1) and 0.35 (CS AF =
2), compared to CV = 0.23 from enriched '*Xe imaging (gridding). In a second
healthy volunteer (Figure 6.4.7 bottom panel), the NA RBC gridding image SNR
(6.9) was higher than that of the first healthy volunteer (4.8) and there was a
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closer resemblance between the enriched and NA xenon spectroscopic images.
The NA images were again more heterogeneous than the enriched image: CV =
0.20 (gridding), 0.26 (CS AF = 1) and 0.23 (CS AF = 2), compared to CV = 0.15
from enriched '2°Xe imaging (gridding).

(A) Enriched (B) Natural Abundance

Gridding | Gridding CS AF=1

~Sd SNA S8 i

SNR=5 SNR =10 SNR=14

E) 5} -

0.44£0.14 0.43 +£0.16 0.43+0.15

SNR =22

‘ﬂl

Mean = 0.39 £ 0.06 0.40 £ 0.08 0.39+0.10 0.39 £0.09

Figure 6.4.7: (A) Enriched and (B) NA dissolved '2°Xe (i and iii) RBC signal and (ii and
iv) RBC:M ratio maps for a central lung slice in two healthy volunteers (HV). The mean
+ standard deviation of the RBC:M ratio maps are given below. The NA signal images
and ratio maps exhibited greater heterogeneity than those from enriched 2°Xe imaging.
For HV1, there are areas of very low/no signal, for example in the lower right lung (white
arrow), which appear as RBC transfer defects in the RBC:M maps and are not present in
the enriched 2°Xe image.

6.5 Discussion

We have presented a CS reconstruction method for dissolved 2°Xe spectro-
scopic imaging data, using the open-source BART software [251]. We chose
to optimise the CS parameters based on the gas exchange ratios maps of one
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healthy dataset, in addition to the RBC, M and gas signals, because it is the
ratios that are ultimately used in current approaches of clinical interpretation. Al-
though the optimal parameters may be subject-dependent, in our experience the
changes are small. We empirically selected AF = 2 for our optimised CS re-
construction because this provided the best balance between image fidelity and
scan time reduction. With this AF, only 467 radial spokes are required and so the
breath hold could be reduced to 7 s in a prospectively undersampled implemen-
tation, compared to the 14 s used in our centre routinely [35, 189]. A shorter scan
time should be more comfortable for dyspnoeic and paediatric patients.

SNR increased with increasing AF for both the optimisation and NA reconstruc-
tions, despite the greater level of undersampling. This is likely related to the
temporal ordering of the undersampled spokes. Figure 6.5.1 compares the SNR
from gridding and CS reconstruction when the spokes are sampled consecutively
and randomly in time. Using consecutive spoke ordering (in time) increased the
SNR relative to that found using random temporal ordering. This is because, with
consecutive ordering, the latter 1/2, 2/3 or 3/4 of the radial spokes which have
undergone more T1 and RF pulse induced depolarisation of the gas-phase signal
reservoir [160], are discarded. As more spokes are discarded, the average signal
of the spokes selected for reconstruction increases and this partly explains why
SNR is seen to increase with AF. The high SNR seen with increased AF also has
a contribution from the nonlinear noise suppression of the compressed sensing
algorithm [60]. However, the high SNR values at AF = 4 are not ‘true’ SNR as per
its standard definition, and may be due to over-smoothing and/or reconstruction
errors from heavy undersampling and from the conventional standard deviation-
based approach to calculate the SNR. This may not be appropriate for highly
accelerated CS images where the noise appears as a ‘flat’ background.

Both the gridding and CS images were masked based on the gridding M image,
however this occasionally led to outliers in the ratio maps. Some low signal voxels
at the periphery of the gridding masks may have been discarded as noise in the
CS reconstruction but were still included in the ratio maps. In a prospective CS
implementation, masking would be performed using the CS M images instead,
alleviating this issue.

CS reconstruction improved SNR by suppressing image noise. Our results are
in agreement with those of Plummer et al. [250], who found an increase in the
overall (RBC + M) dissolved-phase ?°Xe SNR with CS and good preservation
of median dissolved-phase to gas signal ratio in healthy volunteers and patients
who had undergone a hematopoietic stem cell transplant. Here, we have gone
further by separating the dissolved-phase '2°Xe signal into the discrete RBC and
M contributions, and examining the effect of the CS reconstruction on the gas
exchange ratios in healthy participants and patients with lung disease.

Although the increase in RBC SNR was lower for the lung disease patients than
the three-fold increase seen for the healthy volunteers, the healthy participants
had reasonably high gridding SNR, whereas this was low (<5) for many of the pa-
tients. The CS SNR enhancement was dependent on the input (gridding) SNR,
as shown in Figure 6.4.6E . When the input SNR is higher, there is increased
separation between the signal in the lung region and noise in the image domain
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representation, providing a better ground truth for the iterative CS reconstruction
and leading to better denoising performance. There were two potential outliers
in Figure 6.4.6E, where the data points were distanced from the power law curve
(however they still followed the general pattern). The reasons for these outliers
are unclear. The data point where the CS RBC SNR was higher than expected
(gridding SNR = 11.2, CS SNR = 71.2) came from a healthy volunteer with partic-
ularly high mean RBC:M ratio (0.52; mean RBC:M for healthy volunteers = 0.41).
The data point where the CS RBC SNR was lower than expected (gridding SNR
=12.6, CS SNR = 16.5) came from a PC-RLA patient. Although the gridding SNR
was high for this subject, there were some artefacts/non-Gaussian noise in the
image which perhaps the CS denoising algorithm struggled to remove with thresh-
olding. Whilst outside the scope of this work, a comparison of the denoising effect
of CS with novel denoising techniques such as tensor Marchenko-Pastur principle
component analysis [252], Global Local Higher Order Singular Value Decompo-
sition [253] and deep learning [254, 255] would be an interesting future avenue of
research.
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Figure 6.5.1: SNR of the signal from 12°Xe dissolved in the RBCs and the gaseous-phase
129Xe at AF = 1, 2, 3 and 4 for (A-B) a healthy participant and (C-D) a patient with COPD.
Two different sampling patterns were compared for both CS and gridding: consecutive
temporal undersampling of the chosen spokes (taking the first half/third/quarter) and ran-
dom temporal spoke undersampling (taking spokes from throughout the acquisition to
‘average out’ the polarisation decay). Note the logarithmic y-axis scale.

For patients with low dissolved-phase '29Xe signal, although CS reconstruction
provided a beneficial increase in SNR, there was an associated increase in NMAE
between the CS and gridding ratio maps; for RBC gridding image SNR <5, errors
for RBC:M rose above 15%. A similar relationship between SNR and reconstruc-
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tion error was found by Lazarus et al. [256]. Nevertheless, in cases of such low
SNR, it is not appropriate to use the gridding images as the ground truth, be-
cause comparison of signal with noisy images is not reliable. Given the lack of an
alternative ground truth and therefore the uncertainty in the CS algorithm perfor-
mance when signal is low, we cannot reliably conclude that the CS reconstruction
is capable of recovering RBC data with raw SNR <5. This highlights the limi-
tations of retrospective denoising and the importance of techniques to prospec-
tively increase dissolved-phase '>*Xe SNR, such as increasing the polarisation,
dose/'??Xe fraction and using highest sensitivity RF coils where feasible. Even
for higher SNR cases, NMAE values were sometimes reasonably high. For five
subjects with gridding RBC SNR >8, the NMAE of RBC:M was >10%. However,
it is important to consider the NMAE values in the context of the repeatability of
the gas exchange ratio measurements themselves. In a previous work [189], we
evaluated the intra- and inter-session repeatability of these metrics, by scanning
eight healthy volunteers at three time points - two scans ~5 minutes apart and a
third scan ~4 hours earlier or later (see Section 7.2.2). The CV across the three
scans for the mean ratio values were (4.5 £ 0.6)% for RBC:M, (7.0 £ 2.8)% for
RBC:Gas and (5.8 £ 2.1)% for M:Gas respectively for eight healthy volunteers.
The NMAE values between the ratio maps acquired in the same scanning ses-
sion were similar to the NMAE found between the gridding and CS maps: (12.9 £+
2.2)% for RBC:M, (16.1 £ 3.5)% for RBC:Gas and (9.5 £+ 4.0)% for M:Gas. Sim-
ilarly, the inter-session CV values for the mean ratios have been reported to be
11-20% by Hahn et al. [165] in 13 healthy volunteers scanned at two time points
one month apart with the 1-point Dixon method [32, 31]. In a study of 18 healthy
participants and 14 with COPD, Garrison et al. found intra-session CV values of
7-13% [245]. Therefore, here, for SNR >5, the NMAE values of the ratio maps
are similar to their repeatability metrics.

NA dissolved '2°Xe imaging had not previously been explored due to the three-
fold lower signal strength of NA when compared to enriched '>°Xe. Here we have
demonstrated the feasibility of dissolved NA '29Xe imaging for the first time in
healthy subjects. We used advancements in polarisation technology and the de-
noising effect of CS to achieve an acceptable RBC image SNR from the same
volume of NA '2°Xe as was used for enriched dissolved '2°Xe imaging. A limita-
tion of this work is that NA imaging was only acquired in a small number of healthy
participants who did not have any gas exchange limitation. Further prospective
evaluation in increased subject numbers, including patients with lung disease,
is required to fully evaluate the differences between enriched and NA dissolved
129X e imaging and to assess the feasibility of this approach when gas transfer
and/or RBC SNR is low. These initial results suggest that low-cost NA dissolved
Xe imaging is feasible in healthy volunteers, although might be challenging for
lung disease patients who have reduced gas transfer.

This work did not include any prospectively undersampled data, but since the two-
fold radial undersampling was carried out by removing the last half of the spokes,
this is equivalent to a prospective implementation with half the scan duration.
Whilst for gas-phase '*°Xe imaging, the reduction in the required number of RF
pulses achieved with compressed sensing means that the signal strength can be
increased by using higher flip angles [63, 257], this is not applicable for dissolved-
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phase '?®Xe imaging. For dissolved-phase imaging, a change in flip angle needs
to be accompanied by a change in TR in order to maintain the same TRgo° equiv
[223] and hence underlying dissolved 2°Xe magnetisation distribution. There-
fore, SNR would not improve and there would be no change in signal behaviour
upon performing a prospectively undersampled compressed sensing implemen-
tation for our sequence. A benefit of our retrospective approach is that it makes it
possible to retrieve usable images from datasets where the subject failed to hold
their breath for the entire 14 s or where there was motion in the second half of
the scan, which can typically be identified from the data itself. This should help to
reduce the number of failed and repeated scans.

Further improvement to image quality may be possible by incorporating prior
knowledge into the CS reconstruction. T1 and RF pulse-induced decay can result
in image blurring and coherent undersampling artefacts, which can be reduced by
accounting for signal decay in the iterative reconstruction. Plummer et al. incor-
porated global magnetisation decay directly into the Fourier operator in their CS
reconstruction, which resulted in improved image sharpness and SNR for 2D/3D
spiral ventilation and 3D radial gas exchange MRI [250]. Ajraoui et al. found that
incorporating prior knowledge of either magnetisation decay or lung structure (via
the inverse of a registered proton image) allowed for the use of higher under-
sampling factors and reduced image blurring in hyperpolarised He lung imaging
[258].

6.6 Conclusions

CS reconstruction of dissolved '2°Xe spectroscopic imaging improved image SNR
and enabled reduced scan time, whilst preserving mean ratio values. This bene-
fits patients with breathlessness and/or low gas transfer, allowing for faster gas ex-
change imaging. Therefore, CS reconstruction may be suitable as a replacement
for conventional gridding in our dissolved '29Xe image reconstruction pipeline, al-
though caution should be taken with patient groups with very low RBC SNR, such
as COPD and ILD. Preliminary results with NA dissolved '2°Xe imaging in healthy
participants suggest that reduced cost NA gas exchange imaging could be made
feasible using CS.
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Mapping the Amplitude and Phase
of Dissolved %9Xe Red Blood Cell
Signal Oscillations with Keyhole
Spectroscopic Lung Imaging

7.1 Introduction

The 2°Xe RBC signal oscillation was introduced in Section 3.5; here we reiterate
the main concepts.

In dissolved-phase '29Xe spectroscopy of the lungs, the M and RBC signals de-
cay over the 10-15 s duration breath hold, due to RF pulse-induced depolarisation
and T7 relaxation of the gas-phase signal, which acts as a magnetisation ‘reser-
voir’ replenishing dissolved-phase signal (gas-phase T1 ~20 s) [81]. Additionally,
the RBC signal is periodically modulated by the heartbeat [212, 208, 90]; these
RBC oscillations have been suggested to originate from changes in the capillary
blood volume over the cardiac cycle [37]. The underlying 1>*Xe RBC signal is also
dependent upon the diffusion rate of >*Xe across the alveolar membrane and the
haematocrit within the alveolar capillary bed [32, 259]. The cardiogenic RBC os-
cillations revealed in whole-lung '2°Xe spectroscopy provide a potential means to
monitor blood flow in the pulmonary microvasculature, which is often affected by
chronic lung disease [260, 261]. The '29Xe spectroscopy-derived RBC oscillation
has been shown to be sensitive to disease state (see Table 3.5.1): the oscillation
amplitude is increased in IPF, NSIP and LHF patients but decreased in COPD
and PAH patients when compared with healthy subjects [169, 35, 37, 137, 209].
Furthermore, the amplitude of the RBC oscillations may be able to differentiate
between PH subtypes [209].

Imaging microvascular function directly is difficult due to the small vessel size and
the effects of cardiac and respiratory motion. Larger pulmonary blood vessels’
form and function can be imaged using CT, MRI and echocardiography, whilst mi-
crovascular perfusion can be deduced indirectly from DCE-MRI [261, 262, 263].
MRI can also be used to measure cardiac pulse wave signals; the temporal vari-
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ations in blood pressure, flow velocity and volume flow rate through the arte-
rial network, caused by changes in cardiac ejection rate which generate com-
pression and relaxation waves [211]. The pulse wave velocity can be measured
using phase-contrast or velocity-encoded MRI and used to infer artery stiffness
[264, 265]. Pulmonary pulse transit time (pPTT) can be extracted from phase-
resolved functional lung imaging (PREFUL), and measures the time taken for the
pulse wave to travel from the central pulmonary artery to the microvasculature
[266, 267]. However, unlike dissolved 2°Xe spectroscopy, these techniques do
not capture the gas exchange dynamics in the pulmonary capillary bed.

Recently, Niedbalski et al. proposed a technique to spatially resolve the '2°Xe
RBC oscillations from 3D radial dissolved-phase imaging [213]. The authors used
the inherent oversampling at the centre of radial k-space (ko) to obtain dynamic
signal information via a post-acquisition ‘keyhole’ reconstruction [216]. By bin-
ning the ko data according to RBC signal amplitude, reconstructing images from
the radial spokes in ‘low’ and ‘high’ bins and finding the difference between the
resulting ‘low’ and ‘high’ keyhole images, regional RBC signal oscillations were
mapped in a cohort of healthy volunteers, patients with IPF and with PAH. This
method has since been further optimised using digital phantom simulations by Lu
et al. [215] and applied to patients with CTEPH.

In previous work, a 1-point Dixon spectroscopic imaging approach has been used
to separate the RBC and M signals [32, 31]. However, the 90° phase shift be-
tween the RBC and M signals evolves during readout, leading to image blurring.
An alternative spectroscopic imaging method to differentiate the dissolved-phase
signal is a MESI acquisition with [36, 188] or without [35, 189] IDEAL [179].

In this chapter, we adapted the keyhole oscillation mapping method from Nied-
balski et al. to spatially resolve the RBC oscillations in dissolved-phase '2°Xe
lung spectroscopic images acquired using our 3D radial MESI acquisition [189]
in 28 healthy volunteers. In previous work [213, 215], the regional RBC oscilla-
tions were assumed to be in phase across the lung and only two keyhole images,
corresponding to maximum and minimum RBC signal, were reconstructed. We
hypothesise that the phase of the RBC oscillation is also spatially dependent, re-
flecting lung and PVD heterogeneity. We show that the previous assumption of
constant phase leads to a reduced and sometimes negative local RBC oscillation
amplitude. To address this, we introduce a sliding window (SW) technique to re-
construct additional keyhole projections, to map not only the amplitude, but also
the phase of the regional RBC oscillations. We present the quantitative mapping
of this phase as a novel means to probe the effects of the cardiac pulse wave in
the pulmonary capillary bed.

7.2 Methods

7.2.1 Subject Details

Data from 28 healthy volunteers (12 female, 16 male, average age = 38.8 = 11.1
years) were retrospectively analysed in this work.
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7.2.2 MRI Acquisition

Imaging was performed on 1.5 T whole-body GE HDx (n =24) and 1.5 T GE Artist
(n = 4) clinical scanners, with 0.8 - 1L (depending on height; see Table 4.1.1)
doses of enriched hyperpolarised '2°Xe, as described in Chapter 4. Dissolved-
phase images were acquired using the four-echo 3D radial MESI sequence de-
scribed in Section 4.2.3 [189]. To assess the inter- and intra-scan repeatability
of the proposed RBC oscillation phase mapping method, eight of the healthy vol-
unteers (three female, five male, ages 23 - 41) underwent additional imaging:
once in the morning and once in the afternoon, with 3.5 - 5 hours between the
two sessions. In one of the sessions the volunteers were scanned twice, with
approximately five minutes between the scans.

7.2.3 Data Analysis

Image pre-processing, reconstruction and analysis were carried out in MATLAB
(version 2022a, Mathworks, Natick, MA). The 3D radial spectroscopic data were
reconstructed as described in Section 4.2.3 and the global RBC oscillation ampli-
tude was evaluated as follows:

Starting from the kg signals from the spectrally reconstructed M and RBC k-space
(Figure 7.2.1A, B), the M kg signal was normalised by its mean value and fit to a
biexponential decay function (Figure 7.2.1C). To help detect the oscillations, the
RBC ko signal was normalised by its mean value and corrected for RF and T1
decay by multiplying by the inverse of the fit to the M ko signal (Figure 7.2.1D).
A band-pass filter of 0.5 - 2.5 Hz was used to smooth the signal (Figure 7.2.1E)
and a peak detection algorithm was used to identify the minima and maxima (red
triangles and blue squares in Figure 7.2.1F and black triangles in Figure 7.2.2A).
The mean ko peak-to-peak amplitude of the oscillations (ako) was found from
the difference between the mean of the maxima and minima in the first ~7 s of
the breath hold where the SNR was highest, which was then multiplied by 100%.
Heart rate was estimated from the frequency of these oscillations. The first sec-
ond of acquisition (~60 projections) was generally excluded from the analysis due
to transient behaviour of the magnetisation, resulting from RF-induced depolari-
sation of the post-capillary signal from 2°Xe in the pulmonary veins [90]. In some
cases, where SNR decreased at the end of the data acquisition period such that
the final oscillations became indistinguishable from noise, the last second of data
acquisition was also excluded.

We define the RBC signal (after correction for RF and T71 decay) at position r =
(x,y,z) and time t as:

a(r)
S(r, t) = Tf(out+ &(r)), (7.2.1)

where a(r) is the spatially dependent peak-to-peak '2°Xe RBC signal amplitude
and f (wt + ®(r)) is a periodic function with angular frequency w (heartbeat fre-
quency) and spatially dependent phase ®(r).
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Figure 7.2.1: Method to isolate the '>*Xe RBC signal oscillations for oscillation mapping:
the (A) membrane and (B) RBC ko signals were first normalised by their mean values.
The membrane signal was fit to a biexponential decay function (C) and this was used
to detrend the RBC signal (D). The detrended RBC signal was filtered (E) and a peak
detection algorithm used to find the maxima and minima (F).
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To map the RBC oscillations regionally, two keyhole reconstruction methods were
implemented and compared:

7.2.3.1 Method 1: “Two-Key’ RBC Oscillation Mapping

RBC oscillation maps were calculated from the difference in signal amplitude in
the images corresponding to low and high keyhole data, as described in [213].
After pre-processing with the steps described above, the kg projections adjacent
to the minima and maxima were binned into low (purple circles in Figure 7.2.2A)
and high (yellow circles in Figure 7.2.2A). The number of projections in each bin
was approximately 20% of the total number of projections and a keyhole radius
of six points was used, as shown in Figure 7.2.2B. These selection criteria were
chosen to maximise the radius of the key and therefore the oscillation mapping
fidelity, whilst minimising undersampling. The keys were then inserted separately
into the high frequency ‘keyhole’ data using the last seven points from all spokes
(blue in Figure 7.2.2B, C). To account for the fact that the k-space sampling was
no longer uniform, an iterative numerical DCF was used [268]. Chemical shift
separation and image reconstruction were then carried out for both the high and
low keyhole data, resulting in two sets of 129Xe images corresponding to the ‘high’
and ‘low’ RBC signal (Shigh and Siow, respectively). The Two-Key RBC oscillation
amplitude (a2—key) map was calculated from the pixelwise difference between
Shigh and Siow, divided by their mean and multiplied by 100%:

Shigh(r)—5S r
Az—key(r) = hig(1) = Stow(1) 0% (7.2.2)
Shigh(r) + Siow(r)

This normalisation ensures that: the oscillation amplitude is dimensionless, the
amplitude at each pixel is normalised by its mean value and the maps are nor-
malised for regional coil sensitivity that is intrinsic to all signals, S(r), in both
denominator and numerator.
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Figure 7.2.2: “Two-Key’ RBC oscillation mapping. (A) A peak detection algorithm is ap-
plied to the detrended, normalised, and filtered ko RBC signal (black line) to identify the
maxima and minima (black triangles). Each point corresponds to the kg signal for a given
spoke in the 3D radial trajectory. The projections adjacent to the extrema are selected for
the high key (yellow) or low key (purple). (B) The high-frequency data (points seven to
thirteen along the spoke, shown in blue) of every projection are included in the keyhole.
Points one to six are only included for projections that have been selected for the key
(yellow points). (C) The 3D radial k-space data for the keyhole alone and the keyhole
plus the high key, and the low key.

7.2.3.2 Method 2: ‘Sliding Window’ RBC Oscillation Phase Mapping

To account for regional phase differences in the RBC signal oscillation, a SW key-
hole reconstruction was implemented. The kg maxima were the same as with the
Two-Key method and the neighbouring projections binned as before. Then, multi-
ple keyhole reconstructions were performed, with the chosen projections stepped
forward by one projection per reconstruction. Figure 7.2.3A shows the kg projec-
tions chosen for four of the keyhole reconstructions and Figure 7.2.3B shows the
corresponding keyhole images for a central slice of the lung. The total number of
keyhole reconstructions, N, was determined by the mean number of projections
between adjacent maxima, such that one cardiac cycle was sampled. For exam-
ple, for a heart rate of 70 bpm, the duration of each beat/cycle is ~0.9 s and so,
for TR = 15 ms, 60 projections are acquired in this time and therefore 60 keyhole
reconstructions are performed. The RBC signal formed from each keyhole recon-
struction at each voxel (Sr) was smoothed using a Gaussian-weighted moving
average filter with a window length of 10. For each voxel, the maximum and min-
imum signals across the N reconstructed images, referred to as Smax and Smin,
were found (Figure 7.2.3C). The SW oscillation amplitude (asw; Figure 7.2.3D)
was then calculated from the difference between Spax and Smin, normalised by
the mean signal of all N keyhole images (Smean) and multiplied by 100%:

118



Chapter 7

S r)—Smin(r
asw(r) = max(N) = Smin(r) ) 50y (7.2.3)
Smean(r)

The index, J, of the keyhole image where S,qx was found, denoted jmax, provides
information about the regional relative oscillation phase. This phase, denoted ¢,
is not equivalent to the absolute oscillation phase @, defined in Equation 7.2.1.
Instead, it is defined as the difference between the local oscillation phase and the
phase of the ako oscillation:

¢(r) = &(r)— %«o (7.2.4)

If jmax = 1, then the oscillation is in phase with the global kg oscillation and ¢ =
0. ¢ = m signifies that the kg projections selected by the SW are m out of phase
with the ko projections selected for the j = 1 keyhole image. To convert jmqx to ¢
according to these definitions, the following piece-wise equation was used:

jmax_]- H 4 H
L if jmax < Jn
o=1 ey : (7.2.3)
L v — if jmax > Jn

By converting jmax 10 ¢, the regional phase differences of the RBC signal oscil-
lation can be quantified and visualised.

7.2.4 Image Analysis

Reconstructed images were masked by applying a noise threshold to the mem-
brane signal images. Regions of interest were created to analyse RBC oscillation
differences in the left, right, upper, lower, anterior, posterior, central, and periph-
eral lung. To define the central and peripheral lung, an ellipsoid was created at
the centre of the lung mask. The radii of the ellipsoid was 0.79 times the original
mask radii in each dimension, which was chosen such that the central and outer
masks had volumes equal to half the total mask volume (0.79 ~ 0.51/3) [35].
The average a2—key, Asw and ¢ within the whole lung mask and eight regional
masks were calculated for each subject.

7.2.5 Statistical Analysis

Statistical analysis was performed using RStudio (version 2023.03.1, R version
4.3.0). Normality of variables was determined with Shapiro-Wilk normality tests.
Correlations between ako, a2—key, sy and heart rate were assessed using the
Pearson correlation coefficient for normally distributed variables and Spearman’s
correlation coefficient for non-normal variables. Differences between variables
were tested for with paired Student’s t-tests or Wilcoxon signed-rank tests. A
significance level of p < 0.05 was used for all tests. To assess repeatability, the
following metrics were used: bias (mean difference between two scans), % differ-
ence (mean absolute percentage difference between two scans) and CV (across
all three scans).
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Figure 7.2.3: Overview of the ‘Sliding Window’ RBC oscillation phase mapping method.
(A) ko RBC signal maxima are identified using a peak finding algorithm and the adjacent
projections (red) are included in the first key (j = 1), which is combined with the high
frequency k-space data in a keyhole reconstruction. The chosen projections are then
stepped forward by one to form the second key (j = 2) and produce the second keyhole
image, and then again for j = 3 to produce a third image, and so on. j; corresponds to
the key where the chosen projections are approximately in anti-phase with the projec-
tions from j = 1, i.e. distributed around the kg minima. j = N is the final key and should
correspond to the projections from j = 1 shifted by one step to the left, however this is
generally not the case because of the unequal number of projections per wave cycle. (B)
Keyhole images are produced for each key. (C) For every pixel, the minimum (purple
circle) and maximum (yellow circle) RBC signal values as a function of key number (j)
are found. (D) The oscillation amplitude at each pixel (ay) is found from the difference
between the maximum and minimum RBC signal value across all keyhole images (Smax
and Spmin), normalised by the mean value across all keyhole images (Smean) and multi-
plied by 100%. This results in a phase-corrected asyw map.
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7.3 Results

To ensure clear RBC kg oscillations, only subjects with an RBC image SNR of
above 4.5 were selected for this work. Cases with an SNR of between 4.5 and
5.5 (i.e. on the borderline of the Rose criterion [269]) were visually inspected
prior to filtering for discernible RBC kg oscillations before inclusion. This cut-off
was chosen empirically based on preliminary analysis of the relationship between
RBC SNR and the percentage difference between ako and az—key. As a result,
28/42 healthy datasets were included in this work. For each subject, keyhole RBC
images were reconstructed for low and high RBC kg signal and for each key of
the SW method with minimal undersampling; across all subjects the median of the
maximum value of the iterative DCF was 1.46. The total keyhole mapping recon-
struction and processing time was ~5 minutes for both methods on a Windows
PC with an Intel® Core™ i7-4790 processor.

The SW keyhole RBC signal revealed regional variations in oscillation phase as
well as amplitude, whereas the Two-Key method, by definition, only provides in-
formation on oscillation amplitude. Example maps for three healthy volunteers
are shown in Figure 7.3.1. Table 7.3.1 shows the subject demographics and a
summary of the RBC oscillation mapping results. On an individual subject basis,
the a2—key maps were normally distributed, hence the mean was used, whereas
the asy and ¢ maps were not normally distributed, so the median value from the
map was used. Table 7.3.1 summarises the inter-subject means/medians.

2-Key
.

RBC
di &8
M A

.
| i i
T
=
| .
0] 7000 50 O 50

Signal (a.u.) Oa.key (%)

Figure 7.3.1: Maps of RBC signal (reconstructed from all k-space data), a>—key, dsw and
¢ for three healthy volunteers (HV). Colour map limits have been set to aid visualisation.

All of the a;—key maps exhibited some regions of negative oscillation amplitude
(RBC signal greater in the low-key image than the high-key image). These areas
were positive in the asy maps and correspondingly, CVsw was significantly lower
than CVakey (p < 0.001). The distribution of the healthy volunteer az—key, asw
and ¢ values across all pixels and subjects are shown in Figure 7.3.2. a2—key
was normally-distributed, with a mean value of 14%, but asy and ¢ were non-
normally distributed, with distribution parameters shown in Table 7.3.2.
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Table 7.3.1: Subject demographics and inter-subject a mapping results. Normally dis-
tributed variables are given as mean £ standard deviation and non-normally distributed
variables are given as median (range).

n (female) 28 (12)
Age (years) 38.8 + 11.1
RBC:Gas 0.0040 £ 0.0011
RBC:M | 0.41 (0.31 - 0.58)
Oko 15 (10 - 27)
GZKey 14 + 3
asw 29+ 3
¢ 0.27 £ 0.19
CVsw 0.66 £ 0.06
CVy 0.85 + 0.05
A B C
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Figure 7.3.2: Histograms of (A) az2—key, (B) asw and (C) ¢ values across all lung pixels
for all 28 healthy volunteers.

Table 7.3.2: Distribution characteristics for the maps of a>—key, dsw and ¢ in healthy
volunteers.

x2—key (%) | Asw (%) ¢ (rad)
Mean 14 36 0.48
SD 29 24 0.82
Median 13 29 0.27
[Min, Max] | [-178, 183] | [2,252] | [-3.14, 3.14]
IQR 13 21 0.87

The means of the a2—key maps showed significant correlation with the mean
Oko values (Spearman’s p = 0.60, p = 0.001), but they were significantly differ-
ent (p = 2 x 104). Median asy was significantly correlated with both akg (o =
0.50, p = 0.008) and the mean az—key (Pearson’s r = 0.40, p = 0.04). The cor-
relation between asy and a—key was evaluated regionally, by comparing the
amplitude values from each method for each pixel within the lung mask. Plotting
the pixelwise correlation resulted in v-shaped graphs with an inflection point at 0,
for example in Figure 7.3.3A, because negative values of a_gey correspond to
positive asy values. Taking the absolute values of a;_key resulted in a positive
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linear relationship (Figure 7.3.3B). Subjects with higher ¢ values had a weaker
correlation between az—key and asw, possibly because they had an increased
number of voxels with a2_key < 0, and the Spearman’s p of the asw-a2—key
correlation decreased with increasing root mean square (RMS) ¢ (Figure 7.3.3C).
asw and ¢ were both significantly negatively correlated with estimated heart rate
(0 =-0.43, p = 0.02 and p = -0.47, p = 0.01, respectively), but there was no
significant correlation between heart rate and oo or a2—key. The relationships
between heart rate and the oscillation mapping metrics are summarised in Figure
7.3.4. No dependence on age was found for ako (0 = 0.25, p = 0.20), a2—key (0O
=0.14, p=0.47), asw (p =0.18, p=0.37) or ¢ (o =-0.10, p = 0.61). No signifi-
cant differences in oscillation amplitude or phase were found between males and
females.
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Figure 7.3.3: Pixelwise correlation of (A) a2_key and asw and (B) absolute a>_gey and
aswy for a healthy participant, who had RMS ¢ = 0.82 rad. (C) Spearman’s correlation
coefficient for the pixelwise correlation between az_gey, and asy for all healthy partici-
pants, plotted against RMS ¢.

Several significant regional trends were identified for asy, which are shown in
Figure 7.3.5A. In summary, asy was observed to increase from the upper to
lower, left to right, posterior to anterior and central to peripheral lung. ¢ was
significantly greater in the peripheral lung than the central lung region, but no
other significant regional trends were observed (Figure 7.3.5B). Same-session
and same-day repeatability of akxo, mean a—key, median asy and median ¢
were investigated in eight healthy subjects. The RBC oscillation and phase maps
across the three scans for one of the healthy volunteers are shown in Figure
7.3.6. The results are summarised in Table 7.3.3 and Bland-Altman plots for ako
and asw are shown in Figure 7.3.7. One of the intra-session data sets had to
be discarded due to a technical fault at the scanner. The intra-session bias was
smallest for az—key, compared to ako and asy, whereas the inter-session bias
was smallest for ako. To account for the increased value of asy compared to
ako and az_key, the mean absolute percentage difference between a values
was calculated. This was smallest for asy both between sessions and within the
same session, with an average variation of less than 10%. Mean CV across all
three scans was also smallest for asw (0.07 £ 0.04).
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Figure 7.3.4: No significant dependence on heart rate was found for (A) ako or (B)
a2—key. A significant negative correlation was found between heart rate and (C) asw
and (D) ¢. Spearman’s p values and p-values are given in the top right of each plot.
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Figure 7.3.5: Comparison of (A) asw and (B) ¢ between the (i) apical/basal, (ii) left/right,
(iii) anterior/posterior and (iv) central/peripheral regions of the lung, with the correspond-
ing p-values from paired t-tests and Wilcoxon signed-rank tests.
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Figure 7.3.6: The amplitude and phase maps for a 41 year old male volunteer acquired at
different time points: (A) one scan in the morning and (B - C) two scans in the afternoon,
approximately five minutes apart.

Table 7.3.3: Intra- and inter-session repeatability of axg, mean a>_key, median aswy
and RMS ¢. RMS ¢ was used instead of median ¢ to avoid zero division problems in
the calculation of percentage difference. Bias = mean difference, LOA = limits of agree-
ment/95% confidence interval, %Diff = mean absolute percentage difference, CV = co-
efficient of variation across all three scans. For the subject where one scan failed, data
from a previous scan from three months prior was included to calculate 3-scan CV.

Intra-session

Inter-session

Bias [LOA] | %Diff (%) | Bias [LOA] | %Diff (%) | (3-scan)CV
(%) (%)
ako -1.09 133+ 11.8 | 0.07[4.53, | 10.9 + 10.9 | 0.11 £ 0.04
[-5.37, 3.81] 4.66]
O2_key| -0.14 118+ 9.1 -0.48 228+ 12.2 | 0.16 = 0.05
[-4.09, 3.82] [-6.56, 5.60]
asw -0.68 59+ 8.2 -0.65 86+6.3 |0.07%004
[-5.26, 3.91] [-6.24, 4.95]
¢ -0.04 214 %213 0.10[-0.27, | 159+ 10.6 | 0.17 + 0.09
[-0.53, 0.45] 0.46]
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Figure 7.3.7: Bland-Altman plots of the intra- and inter-session repeatability of (A) ako,
(B) median asy and (C) RMS ¢.

7.4 Discussion

Oscillations of the 29Xe RBC signal originating from changes in the capillary
blood volume over the cardiac cycle can be spatially resolved retrospectively from
dissolved '2°Xe spectroscopic imaging using keyhole reconstruction. Adapting
Niedbalski’'s method [213] for our MESI acquisition and data acquired therewith,
we found a mean az_gey Of (14 £ 3)% in 28 healthy subjects. Mean az_key
was correlated with mean ako, although the values tended to be smaller. This
difference may be because the low- and high-key images were generated using
approximately six projections either side of the signal extrema, whereas oo was
calculated as the peak-to-peak amplitude.

We further adapted the previously published method to estimate and correct for
regional phase differences of the RBC oscillation. By adopting a SW approach to
select the kg projections and repeating the keyhole reconstruction for each selec-
tion, we were able to resolve the pixelwise RBC signal evolution with time. The
oscillation amplitudes were calculated individually for each pixel, without the as-
sumption that the oscillation is in phase with the whole lung ko oscillation. Using
this method, areas of physiologically unrealistic negative oscillation amplitude in
the Two-Key maps became positive in the SW maps due to their regional phase
correction. By converting the (key) index of the keyhole from which the first maxi-
mum originated for each pixel (jmax) into phase, it was possible to create oscilla-
tion phase maps. Phase differences relative to the kg oscillation occurred mostly
in the peripheral lung and, furthermore, these regions qualitatively correlated with
areas of negative oscillation amplitude from the Two-Key oscillation maps. This
corroborates our hypothesis that negative oscillation amplitudes produced in the
Two-Key method are caused by phase differences. Phase differences are thought
to originate from effects of the cardiac pulse wave, which will reach regions of the
capillary bed at different times due to different distances from the heart. For a
typical heart rate of 70 bpm, the maximum ¢ value of £ 7 corresponds to a delay
of ~400 ms, which is of the order of the whole-lung average conduction time of
the cardiac pulse from the pulmonary valve to the capillary bed (120 - 180 ms)
[270, 271]. Other regional variations in phase may result from cardiac pulse wave
reflections due to impedance mismatch at bifurcations, ineffective vascular cou-
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pling related to focal lung disease or PVD, or variations in blood flow velocity with
vessel narrowing or change in vessel wall stiffness or compliance.

The replacement of negative oscillation values with positive values in the SW
maps explains why the average regional asy was higher than axo or az—key.
In addition, the distribution of asy values was not normally distributed and was
found to be positively skewed. The range of SW oscillation values was large and
some pixels at the periphery of the lung had oscillations of > 200%, which could
be because of blurring or partial volume effects. These pixels tended to have very
small RBC signal values (used as the denominator in the normalisation process)
and it is possible that the corresponding large oscillation values were partly due
to noise. Across all subjects, median asy was significantly correlated with both
ako and mean az—key. The voxel-wise correlation between asyw and az—gey
showed higher p values for lungs with fewer RBC oscillation phase differences
(lower RMS ¢). This is because, whilst asyy is calculated independently of phase,
a2—key decreases when the local oscillation is out of phase with the whole-lung
ko oscillation.

Several regional trends were observed in asyy in healthy volunteers. The anterior-
posterior, centre-peripheral, and left-right gradients reflect the reverse of the RBC
signal trends, which is explained by the pixelwise normalisation used to calculate
asw. No significant difference was found between the RBC signal at the base
and the apex of the lung; however, a significant decrease was found in asy from
base to apex. Ventilation at the base of the lungs is increased in the supine
position [272]; in healthy volunteers with associated V/Q matching, there may
also be an increase in perfusion which may explain the reduced asyy. To directly
compare with the results of Niedbalski et al. [213] we also evaluated the regional
trends of a>—key When a normalisation by the whole-lung mean RBC signal was
used. A significant increase was observed from the anterior to the posterior of
the lung due to gravitational effects, similar to that work. No significant changes
were found between the base and apex, or the left and right lung, but a significant
decrease was found between the central and peripheral lung, also in agreement
with Ref. [213].

asw exhibited a moderate (p = -0.43) significant (p = 0.02) negative correlation
with the (RBC-signal derived) heart rate for the healthy volunteers. This may be
explained by considering the effect of the heart rate on pulmonary blood flow.
With increased heart rate, the heart spends relatively less time in diastole per
beat if the stroke volume, PVR and compliance remain the same [273]. A higher
blood flow is maintained throughout the cardiac cycle and blood flow pulsatility
is reduced. This effect is propagated to the pulmonary capillaries and so the
relative change in capillary blood volume, and hence asw, is decreased. Signif-
icant correlations were not seen with heart rate and either axo or az—key. As
far as we are aware, a relationship between '?°Xe RBC oscillation amplitude and
heart rate has not been reported previously; this warrants further investigation in
healthy volunteers and patient groups.

No dependence on participant age was found for any of the oscillation mapping
metrics, however, the number of older volunteers included in this work was lim-
ited, with only 5/28 subjects over the age of 50. The inclusion of increased num-
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bers of older healthy volunteers may be necessary to fully evaluate the age rela-
tionship. Costa et al. used Niedbalski’s oscillation mapping method and 1-point
Dixon method data to evaluate the age-dependence of the oscillation amplitude
in healthy volunteers aged 22 to 73 [274]. They did not find a correlation between
amplitude and age, which also follows the observations of Niedbalski [213] and
Lu [215]. Collier et al. found no dependence of axg on age [189], in line with our
findings, but Mummy et al. reported an increase in ako with age [230]. We did not
find any sex differences in the oscillation amplitudes and phase, but Costa et al.
found an increased mean oscillation amplitude in healthy females when compared
with healthy males, using Niedbalski’s oscillation mapping method. Females tend
to have lower levels of haemoglobin than males [275], and hence lower '2°Xe
RBC:M ratios [259]. With our sliding window method and pixelwise normalisation,
the oscillation amplitudes were calculated relative to their ‘equilibrium’ value and
so any baseline differences in RBC signal from reduced haemoglobin concentra-
tion in females are unlikely to have affected the oscillation amplitude. In contrast,
Costa et al. normalised the oscillation amplitudes by the mean whole-lung RBC
signal, therefore a lower mean signal in females from sex-related differences in
haemoglobin levels may be responsible for the higher oscillation amplitude ob-
served in this group.

In a subgroup of eight healthy volunteers, we demonstrated that RBC oscillation
phase mapping is repeatable between scans, with a smaller mean intra-session
bias (-0.68%) for aswy than that of ako (1.09%). The asy bias between separate
examinations on the same day (-0.65%) was similar to the intra-session bias but
greater than that of axo and azkey. However, asw is larger on average than
ako and a2_key and when the mean absolute percentage difference and CV
across all three scans were compared, these were smallest for asy (8.6% and
0.07). This may be because asy is independent of phase, so one source of
variation that might occur between scans was removed. The LOA found for asyy
and ¢ in the Bland-Altman analysis were quite large, which might indicate that
the precision of our method is low. The LOA for asw (~ £ 5%) were similar to
those of ako, but, given the greater values of asy, were relatively smaller (LOA
~ 17% of the mean asyy value, compared to LOA ~ 33% of the mean ag value).
Testing with a larger group of subjects - including patients with a wider range of
pulmonary diseases - is required to fully assess the repeatability and sensitivity
of this method.

7.4.1 Comparison with Previous Work

Our value of az2—key = (14 = 3)% in healthy volunteers was higher than the value
of 8.7% found by Niedbalski et al. [213], although the mean ako was also higher
for our subjects; 15% when compared to 10%. The difference in axo may be be-
cause in Ref. [213], a sinusoidal fit was used to calculate the amplitude whereas
we used a peak detection algorithm, due to the underlying signal being non-
sinusoidal in shape [210]. The latter method was recently shown to return higher
a values using the same acquisition method as Niedbalski [276]. In addition,
the mean a>_key is likely higher due to differences in the normalisation methods
used. We used a pixelwise normalisation whereby the pixelwise difference be-
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tween Shigh and Sjow Were normalised by their mean value, whereas Niedbalski
[213] normalised by the whole-lung mean of the fully-sampled RBC image. We
chose our approach for two reasons: firstly, the RBC signal itself is spatially vary-
ing and subject to regional bias from B¢ inhomogeneity, therefore a regional nor-
malisation is more appropriate to distinguish trends in oscillation amplitude and
phase from the variations in mean RBC signal itself; secondly, the fully-sampled
RBC image includes all acquired spokes and thus has higher signal compared
with the keyhole images, therefore normalisation by the fully-sampled image re-
sults in lower oscillation amplitudes. In other words, we chose the normalisation
image to undergo reconstruction with the same keyhole sampling pattern as the
high and low images so that the SNR was comparable.

Lu et al. found an az—key distribution with a mean of 5 + 3% across 17 healthy
participants [215]. Although the mean value of ako for these subjects is not men-
tioned, in a subsequent work by the same authors [277] mean ako was ~15%
whilst mean az—key Was ~6% for 21 healthy subjects. Therefore, the cause of
this lower ar2—key may be related to the authors’ keyhole reconstruction methods
rather than the participants studied, or preprocessing steps. As in our work, Lu et
al. used a regional normalisation for the a>_key, maps, but they divided the differ-
ence between the keyhole images by the fully-sampled RBC image. As noted in
the previous paragraph and demonstrated in Figure 7.4.1, using the fully-sampled
image rather than a keyhole sampled image can lead to lower oscillation ampli-
tude values. Another reason for this low mean az—xey might be the choice of
key radius. Here, we followed Niedbalski’'s approach and chose a key radius that
led to 50% undersampling at the key edge, whereas Lu et al. used a smaller key
radius to minimise undersampling further. Based on digital phantom simulations,
which showed that a key radius of 0.14 times the maximum k-space radius was
optimal for resolving oscillation defects and minimising heterogeneity, they used
9/64 points from each spoke instead of the 12/64 points which would correspond
to Niedbalski’'s method. Using a reduced key radius reduces the sensitivity to dif-
ferences in the RBC signal between the high and low key images, because more
of image contrast remains the same between the high and low key k-space pat-
terns. To illustrate this, we performed our Two-Key reconstruction with a reduced
key radius for one healthy volunteer and found that the mean a»_key decreased
with decreasing key radius (Figure 7.4.2).

The choice of key radius is a balance between maximising the sensitivity to sig-
nal oscillations and minimising the radial undersampling - it is not clear which
of these should be prioritised. With Lu’s approach, although the healthy vol-
unteer a_key values were reduced, significant differences were still identified
between the volunteers and patients with CTEPH. With less undersampling, Lu’s
approach may be more reliable, however radial sampling is already robust to un-
dersampling and we have not seen any evidence of streaking artefacts in the
low and high key images. A benefit of Niedbalski’s choice of key radius is that
there is better agreement between mean az—key and ako, which is a more well-
established variable and has been reported in several studies and patient groups
[169, 35, 37, 137, 209].
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Figure 7.4.1: Comparison of the effect of normalisation choice on the a_key maps
(shown for one lung slice) and the mean value (across all slices) for a healthy volunteer.
The difference between the high key and low key reconstructed signal was normalised
by (A) the mean of the fully-sampled RBC signal, as in [213] (B) the fully-sampled RBC
signal, as in [215] and (C) the mean of the low and high key RBC signal, as in this work.
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Figure 7.4.2: The value of mean a,_key for one healthy volunteer when the radius of the
high and low keys was decreased from six points (as in this work) to three points.

Both Niedbalski and Lu observed regions of negative amplitude in their a>—gey
maps, which were treated as ‘less healthy’ than positive values in the linear bin-
ning of the healthy volunteer distribution. For example, a voxel with az_key =
-10% is ‘worse’ than az—key = 0%. However, we observed phase differences and
negative a—key values in all of the healthy participants studied, suggesting that
the phase differences are not necessarily always associated with pathology. ¢
was significantly higher in the periphery of the lungs than the centre, suggesting
that the pulse wave becomes out of phase with the wave in the central lung due
to the path difference. Hence, treating areas of the lung with negative a>_key as
‘unhealthy’ may lead to incorrectly considering areas of the lung to be diseased.

7.4.2 Limitations

The primary limitation of our method is the requirement for high SNR (>4.5) RBC
images and clear cardiogenic RBC signal oscillations. This may limit the applica-
tion of the method to lung disease patients who struggle to inhale the full >°Xe
dose or complete the 14 s breath hold due to their symptoms, or who might have
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inherently lower RBC signal due to reduced gas transfer. The minimum SNR con-
dition was not met in a high proportion of the healthy volunteer data inspected,
which was primarily due to a temporary dip in polariser/RF coil performance.

Another limitation is that the frequency and waveform of the RBC kg oscillation
were not constant over the breath hold, because of SNR and heart rate changes.
As j approaches N, different sections of each cardiac cycle waveform are sam-
pled because the projections selected by the SW become ‘out of step’ with each
other. This effect can be seen in the projections chosen for the j = N keyhole in
Figure 7.2.3A. Decreasing the TR of the imaging sequence, whilst maintaining
the TRgo° equiv With @ corresponding change in flip angle [223], may help to miti-
gate this effect by reducing the duration of the breath hold. A shorter TR would
also be advantageous for increasing the temporal resolution of the kg signal, but
this might be unattainable for our four-echo sequence.

Finally, it is challenging to validate our RBC oscillation phase mapping method
because there is a lack of well-established methods imaging methods to quan-
tify the function of the pulmonary microvasculature. In Chapter 8, some initial
attempts to validate our method are made.

7.5 Conclusions

Cardiogenic oscillations of the *®Xe RBC signal can be mapped retrospectively
from 3D radial MESI using a keyhole reconstruction scheme. This work builds
upon previous methodology by sampling regional phase differences in RBC oscil-
lation using a SW keyhole reconstruction. This approach allows for the oscillation
phase to be regionally estimated, which may provide a means to detect the effects
of the cardiac pulse wave in the pulmonary microvasculature and its alteration in
cardiopulmonary disease. The focus of the present chapter was the methodology
of the RBC oscillation phase mapping technique; in the next chapter we apply our
method to patients with lung disease and compare the resulting oscillation maps
with other modalities such as quantitative DCE-MRI.
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Preliminary Evaluation of 12°Xe Red
Blood Cell Signal Oscillation
Amplitude and Phase Mapping in
Patients with Lung Disease

8.1 Introduction

The microvasculature plays a crucial role in the pulmonary circulation and is often
damaged in lung disease, but is challenging to image directly. Vessel destruction,
microthrombi, microemboli, emphysema, and fibrosis can increase morbidity in
pulmonary disorders and eventually lead to progressive right heart failure and
death [278]. For example, patients with end-stage IPF often develop PH and an
elevated pulmonary arterial pressure [279]. In COPD, PH is frequently concomi-
tant and blood flow to the microvasculature has been shown to be reduced by
up to 52% in severe COPD [261]. A significant risk of thrombotic conditions has
been associated with COVID-19, including microvascular thrombosis [280], and
histologic analysis of patients who died from COVID-19-associated respiratory
failure showed widespread alveolar capillary microthrombi [281]. Hyperpolarised
129%e MRI has showed a reduction of RBC:M in post-COVID-19 patients, which
could be explained by micro embolic/thrombolic obstruction of capillaries [282]. In
cases of severe COVID-19 infection, long-term lung damage has been observed,
including fibrotic and non-fibrotic abnormalities and alveolar damage as a result
of viral pneumonia [190].

Persistent dyspnoea is one of the most commonly reported pulmonary symp-
toms of ‘long-Covid’, a chronic condition affecting one or more organ systems
that occurs after COVID-19 infection and is present for at least three months
[283]. The mechanisms responsible for long-Covid breathlessness are not well-
understood and clinical tests often return normal values for non-hospitalised long-
Covid patients [282]. Gas exchange abnormalities have been reported in these
patients, although the evidence is limited. In a study published by Grist et al.,
non-hospitalised long-Covid patients were found to have abnormally low RBC:M
compared to healthy participants at more than six months after infection [194].
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The RBC:M ratio is affected by both capillary perfusion and the diffusion of 12°Xe
across the alveolar membrane, so this reduction may be due to reduced blood
volume resulting from microvascular abnormality, thickening of the alveolar mem-
brane, or a combination of both. There has been some indication of microvascular
damage in long-Covid, for example, in a study of a small group of post-COVID-19
patients, pulmonary microvascular perfusion was significantly reduced compared
to a group of healthy volunteers of a similar age, despite 90% of patients having
normal TLco values [284].

Quantifying the extent of microvascular damage is particularly important in CTEPH.
This disease is a rare complication of pulmonary embolism, which has an inci-
dence of 0.9 - 39 patients per million [285]. CTEPH is characterised by occlusions
in the pulmonary arteries following pulmonary embolism, along with small vessel
disease [286]. It can be fatal if left untreated but is potentially curable through
PEA, which is a complex surgery to remove thromboembolic material from the
proximal vessels [287]. Patient operability is decided by a multidisciplinary team,
and considers multiple factors, such as clot location, haemodynamic measure-
ments and co-morbidities [287]. Obstructive lesions in the main, lobar or seg-
mental arteries are more surgically accessible and easier to remove than distal
thrombi. Widespread distal disease may render the patient unsuitable for surgery,
or be responsible for persistent PH despite successful surgery. Up to 50% of post-
PEA patients experience residual PH, which is associated with increased mor-
bidity and mortality [288, 289, 290]. Assessment of the extent of microvascular
disease is typically based on measurement of PVR, but this does not differentiate
between vessel occlusion and small vessel disease. Clinical decision-making and
prediction of postoperative outcomes could be improved by methods to measure
microvascular damage directly, which are currently limited.

The hyperpolarised 12°Xe RBC oscillation amplitude provides insight to pulmonary
haemodynamics at the capillary level, and oscillation maps obtained using key-
hole reconstruction may help to identify regional microvascular abnormalities.
Niedbalski et al. found a higher mean oscillation amplitude in 12 IPF patients and
a reduced mean oscillation amplitude in 11 PAH patients compared to healthy vol-
unteers, using their implementation of Two-Key oscillation mapping [213]. These
results are in accordance with previous spectroscopy results [37]. Oscillation
mapping was able to identify areas of low oscillation amplitude in CTEPH patients,
which improved after PEA surgery, although there was no statistically significant
change in the mean oscillation amplitude [215]. The CTEPH patients were found
to have lower mean oscillation amplitude than healthy volunteers. Although there
is a lack of literature on RBC oscillation mapping in post-COVID-19 patients, this
method could be useful for identifying fibrotic and microvascular damage which is
difficult to detect otherwise.

In Chapter 7 we adapted Niedbalski’s Two-Key oscillation mapping method for our
dissolved '2°Xe MESI sequence and extended it to map oscillation phase in ad-
dition to amplitude. Our sliding window keyhole reconstruction revealed regional
phase differences in the RBC oscillations which were not captured when perform-
ing Two-Key keyhole reconstruction. This regional phase information may reflect
the haemodynamic effect of the cardiac pulse wave in the pulmonary microvascu-
lature. Alterations in vessel stiffness and compliance, remodelling and the pres-

133



Chapter 8

ence of blood clots all affect pulse wave transmission and blood flow pulsatility,
which may be detectable through RBC oscillation phase mapping. However, fur-
ther work is needed to validate our phase mapping technique and to benchmark
RBC oscillation phase against established methods.

One such method that might serve as a useful benchmark for RBC oscillation
mapping is DCE-MRI, which allows for regional quantification of various param-
eters pertaining to tissue haemodynamics [291]. In DCE-MRI, images are ac-
quired before, during and after the arrival of a Gadolinium-based contrast agent
(CA). Gadolinium ions are strongly paramagnetic, and so shorten the T7 values
in the tissues where the CA is present. When the paramagnetic particles dis-
perse through the tissue, there is an associated change in MR signal intensity,
dependent on the local concentration of CA and factors such as tissue vasculari-
sation, vessel permeability and perfusion. Parametric maps can be derived from
analysis of the temporal signal enhancement after CA administration, by using
the signal-time curves (semi-quantitative analysis [292]) or fitting to mathematical
models (quantitative analysis, which also requires T1 mapping) [293]. Blood vol-
ume, blood flow and mean transit time (the average transit time for a tracer particle
to pass through the pulmonary capillary bed) can be estimated from quantitative
DCE-MRI analysis. From semi-quantitative analysis, characteristics of the signal-
time curve such as time-to-peak (TTP; the time taken for the CA concentration
to reach its maximum value), time of arrival and FWHM (the width of the signal-
time curve at half its maximum signal intensity) can be extracted. In recent years,
the application of DCE-MRI to lung imaging has grown, and pulmonary perfusion
has been measured using DCE-MRI in diseases such as IPF, where a significant
increase in FWHM in comparison to healthy volunteers was found [260].

To further elucidate the physiological meaning of RBC oscillation phase, evalua-
tion of this metric in relevant patient groups is required. In this chapter, we apply
the method of oscillation amplitude and phase mapping to a group of post-COVID-
19 and a small group of CTEPH patients and compare the results to those of the
healthy volunteer group from the previous chapter. We investigate whether RBC
oscillation amplitude and phase mapping can reveal any abnormalities in non-
hospitalised long-Covid patients with dyspnoea. As well as evaluating our method
in these patients, we aim to validate oscillation phase mapping through compari-
son to other imaging modalities such as DCE-MRI. In particular, we compare the
oscillation phase (¢) to the DCE-MRI-derived TTP, which we hypothesise should
show some spatial accordance, because both metrics are dependent on the time
taken for a CA to reach its maximum concentration and so are sensitive to similar
underlying physiology. With the aim of further understanding the origins of RBC
oscillation phase differences in patients with CTEPH, a computational model of
the pulmonary vasculature [294] is used to perform patient-specific modelling of
capillary blood flow.
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8.2 Theory: Computational Model of Pulmonary Cir-
culation

The pulmonary vasculature and its response to pathology associated with pul-
monary hypertension can be simulated using numerical modelling. Such a model
has been developed by Ebrahimi et al. [294, 295, 296], which builds on work
by the research team at the University of Auckland Bioengineering Institute [297,
298, 299]. Here, we summarise the key details of the model; for a full description,
the reader is directed to the aforementioned references.

8.2.1 Model Geometry

The pulmonary circulation model is based on three levels of blood vessel: macrovas-
cular (arteries and veins), acinar (arterioles and venules) and capillary bed. The
macrovascular structure is derived using high-resolution micro-CT lung images
and a volume filling branching algorithm [297, 298]. This algorithm creates branch-
ing artery structures that are represented by a start point, end point and radius
and end at ~ 32,000 terminal blood vessels. For simplicity, the venous structure
is assumed to follow the arterial structure. Below this level, a nine-generation
branching model [300] is used to generate discrete arterioles and venules in a
ladder-like model, with multiple connections to the capillaries, which are modelled
as recruitable sheets [301, 302, 303]. A schematic of the pulmonary circulation
model is shown in Figure 8.2.1.

A B !

~4__1D

3D model

Figure 8.2.1: Pulmonary circulation model: (A) 3D model mesh derived from CT imaging,
(B) depiction of how the 3D model and 1D model are connected at the interface I" and (C)
the whole lung model. Copyright 2022 Ebrahimi et al., reproduced with permission from
[296].

8.2.2 Simulating Blood Flow and Vessel Compliance

The pulmonary circulation model consists of both a steady-state and dynamic
component. An electric circuit analogue model is used to simulate static blood
flow through the branching vessel structure [299]. Ohm’s law defines electric
potential difference as the product of current and resistance. In the electric circuit
analogue, each vessel is represented as an element with a resistance R, flow
Q (analogous to current) and compliance C (analogous to capacitance). The
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pressure drop across the vessel, AP, is analogous to potential difference. Thus,
Ohm’s law becomes:

AP = QR (8.2.1)

The pressure drop in an incompressible and Newtonian fluid in laminar flow through
a cylindrical tube is given by Poiseuille’s law:

8uLQ
ot
where u is the fluid viscosity, L is the length of the tube and r is the radius.
Therefore,

AP

(8.2.2)

8uL

— (8.2.3)

To incorporate vessel compliance into the model, to simulate distensible vessels,
radius becomes a function of pressure:

3r0
4Eh,,

r=ro(1+ Ptm) =ro(1+ CPtm), (8.2.4)

where rg is the unstrained radius, E is the Young’s modulus of the vessel wall,
hy is the vessel wall thickness and Pt is the transmural pressure (the difference
in blood pressure and air pressure in the surrounding alveolar tissue). In the
capillaries, blood flow is simulated using Fung’s sheet flow theory [303], which
allows for a change in capillary diameter across the capillary sheet. To account
for capillary compliance, the capillary sheet height, H, is permitted to vary with
transmural pressure:

where Hyg is the unstrained capillary sheet height and C. is the capillary compli-
ance. Capillary flow is given by

Qc

—_ 3
= J H3dPem, (8.2.6)
C

where SA is the capillary surface area, U is capillary blood viscosity, f is a con-
stant term and (¢ is the average route length between arteriole and venule in the
capillary sheet. The Poiseuille equation is modified for gravity by adding a pleural
pressure term and solved iteratively for every vessel segment’s pressure and flow
using a sparse matrix solver.

The dynamic part of the solution is based on the Navier-Stokes equations, which
give the following equations for position and time-dependent pressure, p(x, t),
and flow, g(x, t):
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%p(x, t 3%p(x, t
p(x, t) -2 p( ), ©.2.7)
ot? ax?

92q(x, t 92q(x, t
q(x, t) _ 2 q( ), 6.2.8)
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where cp is the wave speed constant. The wave equations are solved using
the approach of Duan and Zamir [304], who defined each extra-acinar segment
with an admittance (inverse of impedance). Wave reflections occur when vessels
bifurcate; in the arteries, the vessels diverge, whereas in the veins, the vessels
converge, and so the wave transmission in the pulmonary network consists of
both forward travelling and backward travelling waves.

In the capillary bed sheet, Fung’s theoretical formulation for pulmonary microvas-
cular impedance under dynamic conditions is applied [303]. The local average
sheet thickness is resolved into three components:

hs(x, y, t) = hs s1(x, y) + e“tH(x, y) + (X, y). (8.2.9)

where hs, s is the steady-state sheet thickness, assuming impervious walls,
elwtH(x, y) is a pulsation term describing oscillations of amplitude H(x, y), and
®(x, y) is a permeation term. From this equation, ordinary differential equa-
tions can be derived and either solved analytically (by assuming a constant sheet
height on both the arteriole and venule sides [299]) or, as in this work, numerically,
using a finite difference approach [295].

The final model solution is given by the superposition of the static and dynamic
flow solutions.

8.2.3 Boundary and Initial Conditions

The model inlet is the MPA and the outlet is the pulmonary veins. At the inlet, the
cardiac output is modelled using a cosine Fourier series incident flow wave:

N
q(t)=qo + Z Apcos(wnt + ¢n), (8.2.10)

n=1

where qg is a constant inflow of 4.8 L min~1, w, is the frequency, A, is the
amplitude and ¢, is the phase of the nt"" harmonic. Values of these parameters
for the first eight terms are given in Ref. [294]. A mean left atrium pressure of 5
mm Hg is used as the outlet condition and a boundary condition of zero reflection
at the left atrium is imposed.

8.2.4 Modelling Pathology

The model can be perturbed in order to simulate lung pathology. To implement
the vascular pathology specific to CTEPH, a combination of occlusion and remod-
elling is applied. Occlusions are simulated by reducing the diameter of arteries
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until there is no blood flow through them. Remodelling is simulated according to
the five grades defined by Heath and Edwards through histological analysis of
PAH [305], via the application of three factors to Equation 8.2.4 and a pruning
factor, py:

r=nsro(1+ ChCrCoPtm) (8.2.11)

1. Hypertrophy and hyperplasia (Cp): a reduction in compliance due to hyper-
trophy and hyperplasia of the smooth muscle cells in the pulmonary arteries
is observed in the early stages of remodelling.

2. Fibrosis (Cr): a reduction in compliance due to fibrosis is observed for re-
modelling of grade 3 and above.

3. Proliferation of the intima (ny): narrowing of the vessel lumina resulting from
proliferation of endothelial cells in the intima occurs in grade 2 remodelling
and reaches a limit in grade 4 remodelling.

4. Vessel pruning (pf): in vessels where there is proliferation of the intima,
lumen narrowing leads to occlusion in stage 2 remodelling and beyond.

The diameter range of the vessels affected by these factors is dependent on the
stage of remodelling [305, 295]. The factors are defined according to the following
functions, where RM is a continuous variable in the range 1 - 100, which is based
on interpolating Heath and Edwards’ five remodelling grades:

1 .
1 if RM > 60
RM) = {6 - 8.2.12
Ch(RM) {—%RM+% it RM < 60 (8.2.12)
1 if RM < 20
nf(RM) = { —s2-RM + 1.225 if 20 < RM < 60 (8.2.13)
0.55 if RM > 60
0 if RM < 20
pf(RM)={ 1 1. (8.2.14)
1 if RM < 50
Cs(RM) = = 2.15
r(RM) {—%RM+%=HRM>50 (8.213)

8.3 Methods

8.3.1 Subject Details

As in the previous chapter, an SNR threshold of 4.5 was applied to the RBC
images of patients with non-zero whole-lung oscillations to select the data for
this study. After excluding 22 data sets due to low SNR, the COVID-19 cohort
consisted of 54 patients: 10 subjects who were imaged at either six or twelve
months following hospitalisation due to COVID-19 pneumonia (who were part of
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the MURCO study [190]) and 44 subjects who were not hospitalised but had
ongoing symptoms and were diagnosed with long-Covid (and were part of the
EXPLAIN study [235]). The COVID-19 patients were divided into four sub-groups,
shown in Table 8.3.1.

Table 8.3.1: Definitions and group sizes for the four post-COVID-19 patient cohorts. De-
mographic data are provided in the results (Section 8.4).

Group n Description
PCH 5 Patients hospitalised following COVID-19 pneumonia
PCH-RLA 5 Patients hospitalised following COVID-19 pneumonia
who had residual lung abnormalities
PC 15 Patients not hospitalised with COVID-19 who had

ongoing symptoms post-infection but symptoms did not
include breathlessness

PC-B 29 Patients not hospitalised with COVID-19 who had
ongoing symptoms including breathlessness
post-infection

Five of the patients hospitalised with COVID-19 had residual lung abnormalities
(PCH-RLA) present at 12 weeks after hospital discharge, identified on CT imag-
ing by a chest radiologist. Follow-up CTs (mean time since discharge: 6.6 £ 2.7
months) identified ground glass opacities in 5 of 5 subjects, reticulation in 4 of 5
subjects, and fibrotic-like changes in 2 of 5 subjects. The PC and PC-B patients
did not have any abnormalities identified on CT imaging or prior respiratory dis-
ease. Five CTEPH patients were studied. After excluding one patient due to low
RBC SNR, the CTEPH patient cohort included four patients, all of whom were
identified as having pre-capillary disease via RHC.

8.3.2 Image Acquisition

Dissolved '2°Xe imaging was carried out using a MESI sequence [189], as de-
scribed in Section 4.2.3. The 44 post-COVID-19 patients were imaged on a 1.5
T GE HDx scanner, whereas the four CTEPH patients were scanned using a 1.5
T GE Artist scanner. '2°Xe gas was hyperpolarised and delivered as described
previously. All subjects underwent '2°Xe ventilation imaging and paired anatom-
ical proton imaging, acquired as described in Section 4.2.2, although these im-
ages were only used for image registration purposes and not analysed in this
chapter. Semi-quantitative DCE lung perfusion imaging was performed in two of
the CTEPH patients using a 3D SPGR sequence. Images were obtained at in-
spiratory breath hold (at a lung volume comfortable to the patient) following the
injection of 0.05 mi/kg of Gadovist (Bayer) administered at 4 ml/s with a saline
flush of 20 ml at the same rate. 40 or 44 time-frame images were acquired, with
approximately 0.5 s per volume. Other sequence parameters were: matrix size
= 200 x 80, bandwidth = £125 kHz, TE = 0.6 ms, TR = 1.7 ms and flip angle =
20°. The CT lung images used in this chapter were acquired using an Aquilion
ONE system (Canon Medical Systems) with the following parameters: matrix size
=512 x 512, slice thickness = 0.5 mm (PCH-RLA patients) or 1 mm (CTEPH pa-
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tients), single collimation width = 0.5 mm, spiral pitch factor = 0.813, x-ray tube
current = 280 - 656 mA at peak kilovoltage = 100 kV or 120 kV.

8.3.3 Data Analysis

RBC oscillation mapping was performed using the methods described in Chapter
7. For the COVID-19 cohort, only SW oscillation phase mapping was performed,
whereas the CTEPH patient data were analysed using both the SW and Two-Key
oscillation mapping methods, in order to compare the two.

To quantitatively compare the oscillation amplitude and phase maps with the para-
metric maps from DCE-MRI for the two CTEPH patients who had perfusion imag-
ing, the maps first needed to be co-registered. To do this, the 2°Xe ventilation
images, which were already registered to an anatomical proton image, were used
as an intermediary. The procedure for performing the perfusion registration and
analysis is illustrated in Figure 8.3.1.

All images were preprocessed to ensure that they had the same orientation and
resolution. The 12°Xe-paired anatomical images were resized from a 512 x 512
X 28 matrix to a 256 x 256 x 30 matrix size to match the perfusion images. The
ventilation images were downsampled to a 64 x 64 x 64 matrix, and the gas
exchange and oscillation mapping images were extrapolated to the same reso-
lution. The time-series perfusion images were co-registered to the initial time-
point image (Figure 8.3.1A). The initial time-point image was then masked and
registered to the masked anatomical image (Figure 8.3.1B). This transform was
applied to the rest of the time-series perfusion images and to the perfusion mask
(Figure 8.3.1C). The gas-phase image from dissolved '?°Xe gas exchange imag-
ing was registered to the ventilation image and this transform applied to the M and
RBC images, mask and the a>—key, Asw and ¢ maps. Registrations were per-
formed using the Advanced Normalization Tools (ANTs) C++ library [306]. The
anatomical and ventilation images were the ‘fixed’ images and the perfusion and
gas-phase images were the ‘moving’ images which were warped during regis-
tration. Three registration algorithms were used, applied in the following order:
rigid, affine and SyN. The rigid transformation only rotates and translates the
moving image, whereas the affine step can additionally apply shearing and scal-
ing. SyN is based on a bi-directional diffeomorphism deformation model, which
has been found to be one of the most accurate non-linear registration algorithms
in the brain [307]. For each algorithm, the registration was repeated iteratively at
different resolution levels, from low to high.

Following registration, semi-quantitative perfusion analysis [292] was performed
using the warped perfusion images to create maps of pulmonary blood volume
(PBV), pulmonary blood flow (PBF), mean transit time (MTT) and TTP (Figure
8.3.1D). A linear relationship between the first-pass MR signal intensity and the
CA concentration in the voxel was assumed. A region of interest was drawn in
the MPA in a central lung slice of the the peak perfusion image. From this, the
arterial input function (AIF), representing the passage of the bolus of contrast
agent through the artery, was extracted. MTT was calculated as the first moment
of the MR signal intensity-time curve:
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B [ t(S(t)— So)dt
— [(5(6)—=So)dt

MTT (8.3.1)

where S(t) is the measured signal as a function of time and Sg is the baseline
signal intensity. The regional PBV was calculated from the area of the MR signal
intensity-time curve for a ROI, normalised by the integrated AlF. Using the central
volume principle, PBF was calculated with the following equation:

PBF = —— (8.3.2)

TTP was determined from the time taken for the signal enhancement curve to
reach its maximum value. Only the PBV and TTP maps were considered in the
further analysis.

(A) Co-register perfusion (B) Register the masked 15t time-point perfusion
time-series images image to the masked 'H anatomical image

i

H <«—>  Perfusion
(C) Apply transform to all (D) Perform semi-quantitative perfusion

perfusion images analysis using warped images

(‘n"e) ngd
YT

Figure 8.3.1: Workflow used to produce the semi-quantitative perfusion maps. (A) The
time-series perfusion images were registered to each other. (B) The first time-series per-
fusion image was masked and registered to the masked '2°Xe ventilation paired anatom-
ical image. (C) This transformation was applied to all time-series perfusion images and
(D) the warped images were analysed using tracer kinetic theory to create parametric
maps, for example of pulmonary blood volume (PBV) and time-to-peak (TTP).

The co-registered parameter maps were masked by multiplying the warped masks
from the perfusion and gas exchange image analysis. To evaluate potential dif-
ferences between the '2°Xe gas exchange ratios and RBC oscillation mapping
metrics in poorly-perfused and well-perfused lung regions, an additional mask
representing regions of perfusion defect was created. A threshold was applied
to a map of normalised peak perfusion, Speak,norm, defined as the maximum of
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the normalised difference between the perfusion signal at each time point and the
baseline signal:

S(t)—5So )
So
Perfusion defects were defined as voxels with values of Speak,norm less than
20% of the 75% percentile of all voxels within the lung mask. This thresholding
method is similar to approaches from literature [308], with the choice of threshold
level based on previous empirical results from our group from COVID-19 patients

and visual comparison of the resulting defect mask and PBV maps (as shown in
Figure 8.3.2).

Speak,norm = max( (8.3.3)

(A) Perfusion Defect Mask (B) Pulmonary Blood Volume

l:‘ Well-perfused . Perfusion defect OEZO 20 60 80

Figure 8.3.2: (A) Perfusion defect mask for one lung slice, where yellow represents well-
perfused lung and red represents perfusion defects, and (B) the corresponding PBV map.
The threshold level was set empirically as 20% of the 75% percentile of the peak perfu-
sion.

8.3.4 Statistical Analysis

Normality of variables was tested for with Shapiro-Wilks tests. Due to the small
size of some of the patient groups, non-parametric tests were used to test for
differences between the oscillation mapping metrics. For the COVID-19 cohort,
differences between subgroups and the healthy volunteer group from Chapter 7
were assessed using Kruskal-Wallis tests and post-hoc Dunn tests with a Benjamin-
Hochberg multiple comparisons correction. Other differences were tested for us-
ing Student’s t-test or Wilcoxon rank sum tests for normally/non-normally dis-
tributed variables. Correlations between variables were evaluated using Pear-
son’s correlation coefficient for normally distributed variables and Spearman’s
correlation coefficient for non-normal variables. A significance level of p<0.05
was used for all tests.

8.3.5 Computational Modelling of the Pulmonary Vasculature

Blood flow simulations were carried out in Python by Dr Behdad Shaarbaf Ebrahimi
from the University of Auckland Bioengineering Institute, using the model de-
scribed in Section 8.2, which is implemented as a Fortran library (available at
https://github.com/LungNoodle/lungsim).

The model was modified to reflect patient-specific pathology. The lungs, large
arteries and veins were automatically segmented from the CT images of each
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CTEPH patient and used to create finite element meshes. The 1D arterial tree
models were then generated as described previously, with the MPA and MPV radii
calculated from CT. The locations of proximal occlusions were deduced from the
CT images and corresponding radiological reports. It was assumed that the CT
pixel intensity was proportional to the relative blood flow, in order to identify re-
gions of low perfusion [295]. Occlusions were included in the model by reducing
the diameter of the arteries feeding the under-perfused subsegments until blood
flow through them was negligible. Remodelling was simulated by reducing vessel
compliance and radius and by pruning vessels according to the stages of remod-
elling defined in Section 8.2 until the model returned the mean pulmonary artery
pressure (MPAP) and PVR that matched the measured values from RHC.

The simulation results from Dr Ebrahimi consisted of blood flow values for each
node at 11 timepoints: 0 ms, 8 ms, 16 ms, 24 ms, 32 ms, 40 ms, 48 ms, 56 ms,
64 ms, 72 ms and 80 ms. To convert blood flow into variables comparable to RBC
oscillation amplitude and phase, we used two different methods:

1. Two-Key Method Analogue: the times at which the whole-lung average
blood flow reached its minimum and maximum values were found, denoted
tmin and tmax. For each node, the blood flow amplitude, AF;_key,i, was
calculated as the difference between the blood flow at that node, F;, at tmin
and tmax:

AF2—Key,i = Fi(tmax) - Fi(tmin) (8-3-4)

2. Sliding Window Method Analogue: AFsy ; was found from the difference
between the minimum and maximum blood flow at each node:

AFsw i = max(F;) — min(F;) (8.3.5)

A phase lag time was defined as the difference between tmqx and the time
at which each node reached its maximum value:

tlag = ti,max — tmax (8-3-6)

8.4 Results

8.4.1 RBC Oscillation Mapping in Post-COVID-19 Patients

No significant differences were found between ako or the SW oscillation map-
ping metrics of the healthy volunteer group and the COVID-19 subgroups (Table
8.4.1). There were significant differences in age, RBC:M and RBC:Gas between
the groups; the details of the differences are shown in Table 8.4.2. Boxplots
comparing the key metrics between the groups are shown in Figure 8.4.1. The
overlaid jitter plots expose the distribution of data points, which are quite widely
spread, particularly for the PC and PC-B groups.

Several significant correlations were found between the oscillation mapping met-
rics when all COVID-19 groups were combined. Figures 8.4.2 and 8.4.3 sum-
marise these significant correlations, including the correlation coefficients and
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Table 8.4.1: Subject details and oscillation phase mapping results for the post-COVID-19
patients, along with the healthy volunteer group from Chapter 7. The final column shows

the p-value from the Kruskal-Wallis tests, where an asterisk denotes a significant result.
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Table 8.4.2: Summary of significant differences between the post-COVID-19 patient sub-

groups and healthy volunteers, assessed with post-hoc Dunn’s tests.

0.2

Variable | Group 1 | Group 2 | p-value
Age Healthy PCH 0.006
Healthy | PCH-RLA | 0.0002
PC-B PCH 0.02
PC-B | PCH-RLA | 0.005
RBC:M | Healthy PCH 0.04
Healthy | PCH-RLA | 0.002
PC-B | PCH-RLA | 0.005
RBC:Gas | Healthy | PCH-RLA | 0.01
. (B)
30
! s -
= .
é‘ 20

HV PC-B PC PCH PCH-RLA

(D) o

¢ (rad)

(F) 1o

0.9

v,

0.8

0.7

HV PC-B PC PCH PCH-RLA

Figure 8.4.1: Boxplots comparing the key oscillation phase mapping metrics between the
healthy volunteers, non-hospitalised post-COVID-19 patients with and without breathless-
ness and the hospitalised post-COVID-19 patients with and without residual lung abnor-

malities: (A) RBC:M, (B) ako, (C) asw, (D) ¢, (E) CVsw and (F) CVy.
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Figure 8.4.2: Significant correlations between RBC oscillation mapping metrics, age and
heart rate for the post-COVID-19 patient cohort.

p-values. Both ako and CVsw were significantly correlated with age, but no sig-
nificant correlations were found with age and asw or ¢. As with the healthy
volunteers (see Section 7.3), a negative correlation was observed between asyy
and heart rate, but ¢ and heart rate were not significantly correlated. Also like
the healthy volunteer group, median asy was significantly correlated with ao.
Weak negative correlations were found between axo and RBC:M and RBC:Gas.
Patients with worse gas transfer (lower RBC:M and RBC:Gas) had more het-
erogeneous asy maps. CVsw was significantly correlated with ¢ and patients
with reduced RBC:M also had increased median ¢. Measurements of TLgo and
haemoglobin were available for some, but not all, patients. In the 50 patients who
had TLco measurements, there was only a significant correlation with ako (0 =
-0.39, p = 0.005). 30/44 long-Covid patients had haemoglobin measurements;
no significant correlations between haemoglobin and the oscillation metrics were
found.

Significant regional trends were found for both asy and ¢, which are shown in
Figure 8.4.4. As with the healthy volunteer results in Chapter 7 (see Figure 7.3.5),
asw was higher in the lower lung compared to upper, right compared to left,
anterior compared to posterior and peripheral to central lung. ¢ was significantly
elevated in the peripheral lung compared with the central lung, as was found for
the healthy volunteers, but was also higher in the right lung than the left lung, and
in the anterior than the posterior, whereas no other significant trends in ¢ were
found for the healthy volunteers. Figure 8.4.5 shows the regional trends for just
the PCH and PCH-RLA patients; these were similar to the regional trends found
in the healthy volunteers, except there was not a left-right trend in asy and there
was a left-right trend in ¢.
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Figure 8.4.3: Significant correlations between RBC oscillation mapping and gas ex-
change imaging metrics for the post-COVID-19 patient cohort.
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Figure 8.4.4: Comparison of (A) asyw and (B) ¢ between the (i) apical/basal, (ii) left/right,
(iii) anterior/posterior and (iv) central/peripheral regions of the lung for the COVID-19
patient cohort, with the corresponding p-values from paired t-tests and Wilcoxon signed-
rank tests.
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Figure 8.4.5: Comparison of (A) asy and (B) ¢ between the (i) apical/basal, (ii) left/right,
(iii) anterior/posterior and (iv) central/peripheral regions of the lung for the post-COVID-
19 hospitalisation patient cohort, with the corresponding p-values from paired t-tests and
Wilcoxon signed-rank tests.

8.4.1.1 Comparison with CT

In some of the PCH-RLA patients, regions of increased opacity on CT approx-
imately corresponded to regions of increased ¢ in the oscillation phase maps.
Figure 8.4.6 shows the CT image for two of the PCH-RLA patients and their os-
cillation phase and amplitude maps.

(A)CT (B) ¢ (C) asw

-

(ii)

Figure 8.4.6: (A) CT images and RBC oscillation (B) phase and (C) amplitude maps for
(i) a 59 year old male PCH-RLA patient who had ground glass opacities and reticulation
and (ii) a 54 year old male PCH-RLA patient who had ground glass opacities, reticulation
and fibrosis.
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The CT image of the first patient (top row) shows increased opacity in the upper
left lung, which qualitatively corresponds to a region of increased phase differ-
ence. The second patient (bottom row) has increased opacity in the lower lungs,
which corresponds to increased phase difference and reduced oscillation ampli-
tude in the right lung.

8.4.2 RBC Oscillation Mapping in CTEPH Patients

Patient demographics, haemodynamic measurements and RBC oscillation map-
ping results for each of the four CTEPH patients are shown in Table 8.4.3, along
with their DCE-MRI results where applicable. Two of the patients had received
previous surgical treatment for their disease, but were referred for imaging due
to a worsening of their symptoms on exertion and possible presence of residual
disease.

Table 8.4.3: Demographic data and MRI results for patients with CTEPH. For CTEPHO04,
some clinical information was unknown. BPA = balloon pulmonary angioplasty.

CTEPHO1 CTEPHO02 CTEPHO3 CTEPHO4
Age (years) 54 71 66 61
Sex Male Male Male Male
WHO functional Il /v [ Unknown
class
Comorbidities COPD Type 1 Obstructive | Pneumonia
respiratory sleep (January
failure apnea 2024)
EmPHasis-10 35 40 13 N/A
score [309]
Prior PEA/BPA? PEA No BPA No
mPAP (mm Hg) 32 58 54 36
PVR (WU) 3.2 10.1 10.6 4.1
RBC:Gas 0.0019 0.0023 0.0029 0.0028
RBC:M 0.17 0.28 0.27 0.30
ako (%) 19 8 16 17
a2key (%) 10 7 13 11
asw (%) 36 32 37 28
Median ¢ (rad) 0.14 0.33 0.36 0.12
RMS ¢ (rad) 1.29 1.34 1.24 1.11
CVakey 3.9 3.5 2.0 2.3
CVsw 0.74 0.76 0.76 0.76
CVy 0.94 0.93 0.94 0.88
PBV (a.u.) N/A N/A 16.2 16.5
TTP (s) N/A N/A 13.4 6.3

A comparison of key oscillation mapping metrics from this group with the healthy
volunteer group from Chapter 7 is shown in Table 8.4.4. ako, asw and ¢ were
similar to those of the healthy volunteers, but the a>_key, asw and ¢ maps were
more heterogeneous, with significantly elevated CV values. Mean a_key was
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lower in this patient group than for the healthy volunteers. Figure 8.4.7 shows the
RBC:M, az—key, asw and ¢ maps for six slices of the lung for one of the CTEPH
patients. There is substantial heterogeneity in the phase maps and in slice 6,
the left and right lung appear to be in anti-phase with each other. Areas of RBC

transfer defect corresponded to regions of increased phase difference.

Table 8.4.4: Comparison of RBC oscillation mapping results between healthy participants
and patients with CTEPH. Differences between the groups were tested for using Wilcoxon

rank sum tests.

Healthy CTEPH p value

Age (years) 38.8+ 11.1 63.0+ 7.3 0.0036*
RBC:Gas 0.0040 £ 0.0011 | 0.0025 £ 0.0005 | <0.0001*
RBC:M 0.41 (0.31 - 0.58) 0.25 £ 0.06 <0.0001*
ko (%) 15 (10 - 27) 155 0.8047
a2—key (%) 14+ 3 10+ 3 0.0286*
asw (%) 29 + 3 33+ 4 0.0541
Median ¢ (rad) 0.27 £ 0.19 0.24 £ 0.13 0.8416
CVo_key 1.4+ 0.3 29+ 0.9 0.0001*
CVsw 0.66 + 0.06 0.76 = 0.01 0.0039*
CVy 0.85 + 0.05 0.92 £0.03 0.0134*

Figure 8.4.7: Maps of RBC:M, arz2key, asw and ¢ for patient CTEPH02, shown for six
slices of the lung, where 1 - 6 represents the posterior to anterior direction.
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8.4.2.1 Comparison with DCE-MRI

In the two CTEPH patients who had DCE imaging (CTEPHO03 and CTEPHO04),
areas of reduced perfusion in the PBV maps corresponded to reduced gas trans-
fer and increased phase difference, as demonstrated in Figure 8.4.8. Phase was
also increased in areas without reduced perfusion. There was a significant re-
duction in RBC:M, RBC:Gas and M:Gas within the perfusion defect mask when
compared with the rest of the lung for both patients. asy and abs(¢) were found
to be significantly higher in the areas of reduced perfusion. In one patient, no
difference was found for a>—key between the well-perfused and poorly-perfused
lung regions, and in the second patient a decrease in a>—key Was found in the
perfusion defect mask. Boxplots comparing the gas exchange ratios and oscil-
lation metrics for voxels within the low/well-perfused lung masks for each patient
are shown in Figures 8.4.9 and 8.4.10. There were several outliers in the boxplots
for a2—key and asw, which reflect the long-tailed distributions also seen in the
healthy volunteer oscillation amplitude distributions (Figure 7.3.2).

(E)Cb

£% £% £)) |

Figure 8.4.8: Maps of (A) PBV from DCE-MRI, (B) RBC:M and (C) RBC:Gas from 2°Xe
gas exchange MRI and (D) asw and (E) ¢ from RBC oscillation mapping, shown for
three central lung slices, for patient CTEPHO04. Areas of reduced perfusion corresponded
to decreased RBC:M and RBC:Gas ratios and increased phase, as highlighted by the
blue arrows. Phase was also increased in areas of the lung that did not correspond to
reduced PBV, RBC:M or RBC:Gas (purple arrows).
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Figure 8.4.9: Comparison of (A) RBC:M, (B) RBC:Gas, (C) M:Gas, (D) a2_key, (E) asw
and (F) ¢ between the well-perfused voxels and poorly-perfused voxels (defined based
on thresholding the peak perfusion signal) for patient CTEPHO3. Red circles indicate

outliers.
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Figure 8.4.10: Comparison of (A) RBC:M, (B) RBC:Gas, (C) M:Gas, (D) az—_key, (E)
asw and (F) ¢ between the well-perfused voxels and poorly-perfused voxels for patient
CTEPHO4. Red circles indicate outliers.
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Figure 8.4.11: Comparison of (A) ¢ and (B) TTP from DCE-MRI for two patients with
CTEPH.

Figure 8.4.11 compares the maps of ¢ and TTP for both CTEPH patients. To
facilitate qualitative comparison of the maps, the same colour map was used for
both metrics and absolute ¢ was used so that both parameters had a lower limit
of zero. The periodic nature of ¢ means that voxels with a phase difference of
T and —T are equivalent, and correspond to the maximum phase delay, which
physiologically relates to maximum TTP. In both patients, there were some visual
similarities between the ¢ and TTP maps, with areas of increased ¢ roughly
corresponding to areas of increased TTP.
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8.4.2.2 Comparison with Computational Model

Recent CT scans were not available for two of the four CTEPH patients, so mod-
elling was only performed for CTEPHO2 and CTEPHO04, who had CT imaging
on the same day as MRI. The remodelling stages that replicated the haemody-
namic measurements from RHC were RM = 49 for CTEPHO02 and RM = 41 for
CTEPHO4. The whole-lung average blood flow for one of the simulated data sets
is shown in Figure 8.4.12. From this graph, the times tmin and tmax were identi-
fied and AF>_key, AFsw and tiqg were calculated as defined in Equations 8.3.4,
8.3.5 and 8.3.6. Representative slices for each of the model-derived maps are
shown in Figure 8.4.13 and the mean map values are given in Table 8.4.5, along
with the values of the remodelling factors. As with a>_key, AF2—key exhibited
some negative values resulting from the signal at tyin, exceeding the signal at
tmax-

_1)

3

N
o)
=)

Average flow (mm
N
(9]
(6]

N
U
o

0.0 0.2 0.4 0.6 0.8
Time (s)

Figure 8.4.12: Blood flow at each time point, averaged over all nodes, from the computa-
tional model.
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Figure 8.4.13: Maps of (A) AF2_key, (B) tiag and (C) AFsy found from the computational
model for a patient with CTEPH (CTEPHO4). Regions of the lung with increased tiqqg
heterogeneity correspond to regions with decreased blood flow amplitude.

The simulated phase lag maps showed extensive heterogeneity, with greater CV
values than the 2°Xe RBC phase maps (1.45 and 0.99 compared to 0.93 and
0.88). The simulated phase lag and RBC oscillation phase maps for eight similar
lung slices from patient CTEPHO2 are shown in Figure 8.4.14. There are some
similarities in the regional distribution of phase values, for example the increased
tiag in the right lung compared to the left lung and in the lower left lung in the
second and third slices. However, there are also areas of increased tiqq that do
not correspond to an increased oscillation phase and vice versa.
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Table 8.4.5: Remodelling factors, blood flow amplitude and phase lag map results from
the computational pulmonary circulation model.

CTEPHO02 CTEPHO04
RM 49 41
Ch 0.350 0.483
ny 0.674 0.764
[ 0.181 0.131
Cr 1 1
AF>_key (mm3s—1) [ 0.03 (-1.62 - 5.18) | 0.00 (-9.63 - 7.30)
CVaF,_ye, 1.36 1.54
AFsy (mm3s—1) | 0.09(0.00 - 5.18) | 0.00 (0.00, 13.71]
CVaFey 1.38 1.59
tiag (S) 0.08 (0.00 - 0.72) | 0.08 (0.00 - 0.72)
CViyq 1.45 0.99
CTEPHO2

Figure 8.4.14: Comparison of (A) phase lag from the computational blood flow model and
(B) RBC oscillation phase for eight matched lung slices for patient CTEPHO02.
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Figure 8.4.15: Comparison of (A) t;qg from the computational blood flow model, (B) TTP
from DCE-MRI and (C) RBC oscillation phase for six matched lung slices for patient
CTEPHO04.

Figure 8.4.15 compares the simulated phase lag maps with RBC oscillation phase
and TTP from DCE-MRI. Here, the maps of absolute phase which were registered
to the DCE-MRI images are displayed. All maps show increased phase/phase lag
in the lower right lung. This correlates to the location of occlusions identified in
the patient’s radiology report, which diagnosed a mural thrombus in the distal right
MPA and occluded main and segmental branches of the lower right lobe.

8.5 Discussion

In this chapter, we applied the RBC oscillation mapping method developed in
Chapter 7 to two different patient groups and described the initial progress to-
wards validating our method against DCE-MRI and a numerical model of the pul-
monary circulation.

8.5.1 RBC Oscillation Mapping in Post-COVID-19 Patients

Applying RBC oscillation phase mapping to a large but heterogeneous group of
patients experiencing ongoing symptoms post-COVID-19 infection did not reveal
any significant differences in oscillation amplitude or phase between the sub-
groups and the healthy volunteer group. There is no previous literature on the
RBC oscillation amplitude in COVID-19 patients so it is unclear whether this is
related to a lack of sensitivity of our method or because these patients do not
have significant microvascular damage. The PC and PC-B patients included in
this work were a subset of patients from the EXPLAIN study. We found no ev-
idence of gas exchange impairment in these patients, which is consistent with
the findings of the EXPLAIN study [235], although at odds with a previous study
[194]. The absence of any evidence of microvascular abnormalities in the PC and
PC-B patients is supported by measurements of coagulopathy blood biomarkers
in these patients [310]. Blood testing did not find any difference between lev-
els of prothrombotic blood biomarkers of between the groups, however, levels of
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serum amyloid-A were elevated in the PC and PC-B patients compared to healthy
controls, suggesting ongoing inflammation.

The hospitalised COVID-19 patients had more severe disease than the non-
hospitalised patients, and a significant reduction in gas exchange compared to
the healthy volunteers was seen. This is in line with other literature reports of
abnormally low RBC:M in patients who were hospitalised following COVID-19
infection [311, 193, 166]. Although the group size was small (n = 5), our prelim-
inary observations show that mean ako, asw and CVsy appear elevated in the
PCH-RLA patients when compared with the healthy volunteers, although not sig-
nificantly. However, Figure 8.4.1 shows that the oscillation mapping results were
quite heterogeneous in this patient group and for ako, asw and ¢, the PCH-RLA
data points appear to be clustered into two groups. All five PCH-RLA patients
had ground glass opacities identified on CT, and we have seen evidence of some
concordance between these areas of increased opacity on the CT images with
areas of increased phase difference, such as in Figure 8.4.6. The two PCH-RLA
patients who had pulmonary fibrosis had elevated ako values of 28% and 30%.
Whole-lung oscillation amplitude has been reported to be increased in patients
with IPF [35, 37, 137]. This is because parts of the pulmonary capillary bed are
destroyed by fibrosis but cardiac output is preserved, so the same blood volume
is delivered to a reduced capillary bed causing a larger relative change between
systole and diastole [215]. One of the fibrosis patients also had high median asy
(37%), possibly reflecting regions of ILD-like fibrosis, but the other fibrosis patient
had median asy = 30%, which is more similar to the healthy volunteer values,
and neither of the fibrosis patients showed an increase in median ¢. With only
five PCH-RLA patients, the conclusions that can be drawn from these preliminary
data are limited.

When considered in aggregate, the relatively large number of post-COVID-19 pa-
tients included in this chapter allowed us to assess correlations of the oscillation
mapping metrics with demographic and '2°Xe gas exchange imaging data. A sig-
nificant dependence on age was found for ako in the COVID-19 patients, which
was not found for the healthy volunteers in the previous chapter. This may be
related to the older age of the more severe, hospitalised COVID-19 patients in
comparison to the non-hospitalised patients. Nonetheless, the correlation was
preserved in the subgroup of PC-B patients (p = 0.40, p = 0.03) and the hetero-
geneity of the asyw maps also increased with age, which may suggest that there
is greater disease burden in older people. The negative correlation that we ob-
served between heart rate and asy, can be explained by the reduction in blood
flow pulsatility and hence relative change in capillary blood volume with higher
heart rate, which was discussed in Chapter 7.

The increase in ako with decreasing RBC:M and RBC:Gas alludes to a worsen-
ing of gas exchange related to damage at the capillary bed or post-capillary bed
level, which causes greater relative changes in capillary blood volume over the
cardiac cycle and thus higher oscillation amplitude. asy was not correlated with
either RBC:M or RBC:Gas, but CVsy, was significantly correlated with both ratios,
which suggests that the heterogeneity of the oscillation amplitude maps may be
a more sensitive biomarker of microvascular damage than the median amplitude
values. No correlations were found between TLco and the oscillation mapping
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metrics. This may imply that, although the oscillations are related to the 2°Xe
RBC signal, they are not directly sensitive to diffusing capacity, possibly because
the oscillation amplitudes were defined relative to the baseline RBC signal. This
also explains why oscillation amplitude was not affected by haematocrit, unlike
the 122Xe gas exchange ratios, for which a haematocrit correction has been sug-
gested [259].

The regional trends identified in asy were similar to those found for healthy vol-
unteers and most likely are dominated by the trends in the inverse of RBC sig-
nal, used as the normalisation. Interestingly, further regional trends in ¢ were
observed in addition to the central-peripheral trend detected in the healthy volun-
teers. The increased ¢ values in the right lung when compared to the left lung
might be due to the path difference between the right-side vasculature and the
left-side, where the cardiac pulse wave originates. The cause of the apparent
anterior-posterior trend is less clear and this trend was not present in the sub-
groups of PCH and PCH-RLA patients.

In summary, our results are inconclusive and do not provide any strong evidence
of microvascular abnormalities in post-COVID-19 patients. No previous litera-
ture on oscillation mapping exists for these patient groups and there is still much
that is unknown about the mechanisms of COVID-19 lung disease and, in par-
ticular, long-Covid. Consequently, this patient group is limited as a testbed for
our method. Future opportunities to continue this investigation are discussed in
Section 8.5.3.

8.5.2 RBC Oscillation Mapping in CTEPH Patients

A more appropriate patient group for testing the sensitivity of our method is CTEPH,
a disease with known blood flow impairment resulting from vascular occlusion fol-
lowing pulmonary embolism [288]. Although average ako for the CTEPH group
was the same as that of the healthy group, the oscillation amplitude and phase
maps both revealed significant heterogeneity. This demonstrates the potential of
oscillation mapping to identify microvascular abnormalities which might otherwise
be lost in the whole-lung average oscillation amplitude. The ability of the sliding
window keyhole reconstruction to estimate RBC oscillation phase may be partic-
ularly useful in this patient group. The observed phase differences in the 12°Xe
RBC signal oscillations may represent a haemodynamic response at the capillary
level to impedance to flow from vascular thrombi in the larger vasculature. The
sensitivity of 129Xe RBC oscillation mapping to pulmonary capillary haemodynam-
ics may provide a useful tool for identifying arterial remodelling and indicating the
severity of microvascular disease. This is important for clinical decision making
because patients with extensive microvascular disease do not respond as well
to PEA surgery [312]. PEA is an intense operation that can only be performed
at specialist centres, has a risk of complications and a long recovery time [287],
so there is motivation to develop methods and models which can help predict
post-surgical outcomes in order to select candidates for surgery.

Our results are similar to those of Lu et al., who measured oscillation amplitude
in a group of ten CTEPH patients using their implementation of Two-Key oscil-
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lation mapping [215]. Akin to our finding of normal ako values in the CTEPH
patients but heterogeneous asw, a>—key and ¢ maps, Lu et al. demonstrate
a case where a CTEPH patient had whole lung oscillations which were in the
healthy range, but their oscillation maps revealed regions of both decreased and
increased amplitude. This patient had combined pre-capillary and post-capillary
PH based on their RHC measurements and so this highlights a particular advan-
tage of being able to spatially resolve the oscillations. Six of the CTEPH patients
in that work were scanned both at baseline and following PEA and the propor-
tion of the lung categorised as defect and low oscillation amplitude (based on a
healthy reference population) was found to decrease from 37£13% to 23+14%
in these patients. As discussed in detail in Chapter 7, Lu’s method did not ac-
count for regional variations in oscillation phase. The oscillation amplitudes that
they categorised as defect and low based on the healthy volunteer distribution are
those with values a < 0. We believe that these negative amplitudes are caused
by increased oscillation phase difference, as we reasoned in the previous chap-
ter. As such, the observed decrease in the number of voxels in the low oscillation
and oscillation defect bins may actually reflect an decrease in oscillation phase
rather than an increase in oscillation amplitude. Lu et al. did not find a significant
change in mean RBC oscillation amplitude after PEA, which might be because
they were not measuring amplitude independently of oscillation phase. Pdhler
et al. showed that maps of PREFUL pPTT, which is conceptually similar to ¢,
were more homogeneous in CTEPH patients after PEA [267]. We predict that our
metrics of ¢ and CVy may be sensitive to detecting changes post-PEA, although
currently we do not have any pre- and post-surgery '2°Xe MRI data with which to
test this hypothesis.

Validation of new reconstruction methods and biomarkers through comparison to
clinical gold standards is important to assess their efficacy and reliability. Here
we presented preliminary results comparing RBC oscillation phase mapping to
DCE-MRI which, as far as we are aware, has not been attempted before. Al-
though our results are limited to only two CTEPH patients, these initial data are
promising and the significantly elevated ¢ in regions of the lung with low perfu-
sion increases our confidence that ¢ has a physiological basis and is sensitive to
blood flow limitation. Interestingly, we also saw higher asy values within the per-
fusion defect mask than in the well-perfused regions. All of the CTEPH patients
were diagnosed with pre-capillary disease based on their RHC measurements
and pre-capillary PH has previously been associated with decreased whole-lung
oscillation amplitude due to increased impedance to flow in the arterioles [37].
However, this effect may be obscured by a concomitant increase in oscillation
amplitude resulting from a reduction in mean capillary blood volume [214]. The
RBC signal oscillation is assumed to be caused by variations in capillary blood
volume, and so increases when a preserved cardiac stroke volume is delivered
to a reduced capillary bed. RBC:M, RBC:Gas and M:Gas were also significantly
reduced in areas of perfusion defect and so it seems likely that the increased asy
in these areas is due to a decrease in capillary blood volume, which is related to
the RBC signal that was used as the normalisation in the oscillation amplitude
calculation. Consequently, we expected to see an inverse relationship between
asw and DCE-MRI-derived PBV. No clear relationship between the two maps was
observed, and further work is needed to quantitatively assess this relationship.
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Inspecting the co-registered ¢ and TTP maps showed some spatial similarities,
which was expected because both metrics are detecting the same underlying
process; the delay in a CA reaching its maximum value. Regions of increased ¢
and TTP in the lower right lung of patient CTEPHO04 corresponded to the location
of occlusions identified on CT. Although ¢ was significantly greater in regions of
low lung perfusion, there were regions of the lung that were well-perfused but
corresponded to increased ¢ values. These preliminary results hint at the po-
tential ability of RBC oscillation phase mapping to identify vascular remodelling
in unoccluded lung regions, which is of great clinical importance for patients with
CTEPH.

A limitation in comparing the '?°Xe MRI-derived gas exchange ratio and oscilla-
tion maps is that the image registration was challenging, requiring an intermediate
step where the images were registered to '2°Xe ventilation imaging. Differences
in lung inflation level between the different scans may have lead to mis-registration
at the diaphragm, as shown in Figure 8.5.1A. The low resolution of the gas ex-
change images (1.25 cm?3 voxel size) also made registration less reliable (Figure
8.5.1B). Due to the potential unreliability of the registration, pixelwise correlations
between the maps were avoided. Another limitation to our DCE analysis is the
thresholding method used to define the perfusion defect mask. There are a vari-
ety of methods to threshold perfusion images for this purpose (or for defining per-
fusion defect percentage). Uniform thresholding methods are popular, although
more advanced methods such as Otsu’s method and texture-based methods have
also been employed [308]. We chose our threshold value based on previous lit-
erature values, empirical results based on COVID-19 patient data and by visual
inspection. Our chosen threshold seemed to work well for the CTEPH patients,
however, it did not take into account the known physiological anterior-posterior
gradient which affects perfusion in the supine position. The masking may be im-
proved by using an adaptive threshold which varies slice-by-slice to adjust for this
gradient [313].

(B)

Figure 8.5.1: There were some limitations to the image registration: (A) mis-registration
of the perfusion image to the ventilation anatomical image at the diaphragm. (B) Overlay
of the registered but low-resolution asy map on the anatomical image.

As well as comparing the RBC oscillation maps to imaging data, we used a nu-
merical model to simulate blood flow and phase lag. Patient-specific modelling
of the pulmonary vasculature was achieved by using CT imaging and RHC mea-

160



Chapter 8

surements as the model inputs. The models demonstrated that negative values
arise when AF was calculated based on tmin and tmqx defined based on whole-
lung blood flow values, in a parallel to the Two-Key oscillation mapping method.
They also affirmed the phase heterogeneity we saw in the ¢ maps, and areas
of increased tiqg roughly matched areas of increased ¢ and TTP. The compu-
tational model provided an estimate of the degree of distal remodelling in each
patient, which offers insight to the extent and severity of their microvascular dis-
ease and may assist in the interpretation of the amplitude and phase maps. In
both cases, the best agreement between the model-derived and RHC-derived
PVR and mPAP values was found with grade 2 remodelling. This disease stage
is characterised by medial hypertrophy with cellular intimal proliferation in the
muscular pulmonary arteries of less than 300 um in diameter [305]. This leads to
occlusion of these small vessels, which offers an explanation for increased ¢ in
areas of the lung which did not have sub-segmental blood clots. Patient CTEPHO02
had RM = 49, and therefore was on the cusp of grade 3 remodelling, where at the
earliest stages, fibrous tissue starts to form beneath the endothelium in the arte-
rioles. This patient had higher average ¢ and CV¢ than patient CTEPHO4, which
may be demonstrative of the more advanced remodelling predicted by the com-
putational model. Patient CTEPHO02 also had a high symptom burden, with an
EmPHasis-10 score of 40/50, where a higher score indicates worse quality of life
[309]. Although modelling was only performed for two patients, by comparing the
tiag maps to the ¢ maps we have explored a potentially novel way to validate RBC
oscillation phase mapping. Yet, there are several limitations to the computational
model which may hinder its accuracy. To simplify the simulations, some assump-
tions were made, such as approximating the blood in the extra-acinar vessels as
a Newtonian fluid and neglecting secondary reflections in the wave transmission
model. Cardiac output remained constant in the simulations, although this may
be reduced in disease, and this may have led to an overestimation of mPAP.

8.5.3 Future Work

The small number of lung disease patients included in this work (for the PCH,
PCH-RLA and CTEPH groups) reduced the statistical power of the comparisons
between groups and therefore increased the probability of a false negative. Future
work will include evaluating our method in increased subject numbers, including
additional PH subtypes. The whole-lung oscillation amplitude has previously been
tested in a diagnostic algorithm, to distinguish between patients with different
PH subtypes, patients with ILD and healthy people [209]. Where this algorithm
struggled was in differentiating patients who had combined pre- and post-capillary
disease; oscillation mapping may offer a solution to this by allowing regions of
increased and reduced oscillation amplitude to be visualised and so it would be
worthwhile to test our method in this group. It would also be very interesting
to perform hyperpolarised 12°Xe MRI and oscillation phase mapping in a cohort
of CTEPH patients pre- and post-PEA, to investigate post-surgery changes and,
in particular, whether PEA results in a reduction in phase heterogeneity. This
would help to investigate the role of ¢, asw, CVy and CVsy as biomarkers of
microvascular disease and predicting response to PEA in CTEPH patients.
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An advantage of RBC oscillation mapping is that the oscillation information is
available ‘for free’ from dissolved-phase '2°Xe imaging; it is already encoded in
k-space and so a separate image acquisition is not required. Therefore, RBC
oscillation mapping can be easily applied to analyse retrospectively acquired pa-
tient data and we plan to employ this to the HRUK SSc/SSc-PAH study next (Ta-
ble 4.3.1). A caveat to the applicability of our method is that the data must have
been acquired using the updated of our dissolved-phase imaging sequence (as
in [189]), because the previous version [35] had far fewer radial spokes and so
the temporal resolution is too low for reliable oscillation mapping.

Initial attempts to validate our oscillation mapping method were made in this chap-
ter, however more work is needed to fully substantiate our technique. Although we
investigated inter- and intra-scan repeatability of the oscillation mapping metrics
in healthy volunteers in the previous chapter, it would be worthwhile to evalu-
ate this in patients with lung disease as well. Further comparison to DCE-MRI
metrics, with increased subject numbers, is needed to better understand how os-
cillation amplitude relates to pulmonary perfusion. We only examined the PBV
and TTP maps, because these were most clearly related to asy and ¢, but it
may be useful to compare these with the PBF and MTT maps too. Improving
the image registration would allow for more in-depth regional comparisons to be
made. Comparisons with metrics of the pulse wave from PREFUL MRI may also
be insightful for both healthy subjects and those with pulmonary disease. Oscilla-
tion phase offers a parallel to pPTT, which has been found to be longer in CTEPH
patients than in healthy people, but decreases following PEA [266]. The initial
results presented here for the numerical lung perfusion model will be followed up
with quantitative comparison of the simulated blood flow and phase lag maps with
metrics from DCE-MRI, '>®Xe gas exchange MRI and oscillation phase mapping.

Another valuable aspect of validating novel methodology is cross-site validation.
Our oscillation phase mapping code is freely available on GitHub
(https://github.com/POLARIS-Sheffield/rbc-phase-map) and has been success-
fully implemented by Dr Peter Niedbalski from the University of Kansas Medical
Center for data acquired with 1-point Dixon method 2°Xe gas exchange imag-
ing. It is encouraging that our method seems to work well for data acquired at
a different research facility, with a different MRI scanner, imaging sequence and
parameters. We hope that future work will involve other sites implementing (and
building on) our method and that this will allow us to evaluate cross-site repro-
ducibility.

More work is needed to investigate the relationship between oscillation amplitude
and phase and RHC measurements, such as PVR. RHC is the current gold stan-
dard for diagnosing PH, but is an invasive procedure which lacks regional sensi-
tivity. A possible application of RBC oscillation mapping is the non-invasive detec-
tion of elevated PVR. Costelle et al. have proposed a physiological model based
on an electric circuit analogue of the pulmonary capillaries, which can separate
the competing affects of reduced capillary blood volume, which causes increased
oscillation amplitude, and pre-capillary PH, which decreases oscillation amplitude
[214]. They used Wang’s TLco prediction model [224], which was described in
Chapter 5, to estimate capillary blood volume, V¢, from '2°Xe gas exchange MRI
images. Correcting whole-lung oscillation amplitude for V¢ accounts for reduced
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capillary blood volume in patients with gas exchange defects and allows for pre-
diction of PVR. This is an intriguing application of the TLco model which links
RBC oscillation amplitude to haemodynamic measurements. A limitation to this
work is that the model is based on whole-lung measures of RBC:M, RBC:Gas
and oscillation amplitude; there is potential for improved sensitivity by applying
this model on a regional basis by using RBC oscillation mapping. V¢ could also
be estimated for each voxel by using the framework we presented in Chapter 5.

8.6 Conclusions

No conclusive evidence of microvascular damage was found for non-hospitalised
long-Covid patients, which adds to the general paucity of diagnostic findings
in these patients. Although no significant differences were found between the
PCH-RLA patients and healthy volunteers, oscillation amplitude appeared ele-
vated, which may reflect the fibrosis and ground-glass opacities identified by CT.
In patients with CTEPH, amplitude and phase map heterogeneity were signifi-
cantly greater than in healthy volunteers, despite similar ako values. Areas of
increased phase difference approximately overlapped with regions of low gas
transfer and perfusion and increased TTP, demonstrating the potential sensitivity
of our method to identify lung damage at the microvascular level. By compar-
ing our results to DCE-MRI blood volume maps, we may be able to differentiate
between phase differences resulting from upstream thrombi, which impede down-
stream blood flow, and phase differences resulting from distal vasculopathy. This
could be a useful tool for quantifying microvascular disease in CTEPH, which is
important for predicting postoperative outcomes. Further work, including imple-
mentation of our method by another research group, is underway to continue the
validation of our method and assessment of its utility as a biomarker of microvas-
cular disease.
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Chapter 9

Measuring Pulmonary Gas
Exchange with Chemical Shift
Saturation Recovery Spectroscopy
and Imaging

9.1 Introduction

CSSR measures the temporal uptake of '2°Xe magnetisation into the alveolar
membrane and RBCs [40]. The background literature on CSSR was reviewed in
Section 3.3.1.1; here we briefly recap the main points of the CSSR technique and
introduce the methodological advancements presented in this chapter.

Unlike the dissolved-phase '2°Xe spectroscopic imaging sequences used in pre-
vious chapters [35, 189], which provide a ‘snapshot’ of the dissolved '2°Xe signal
at a single time-point, CSSR measures the time-resolved dissolved '?°Xe uptake.
By selectively destroying the dissolved-phase '??Xe magnetisation and waiting a
fixed time before acquiring an FID, the dissolved-phase signal can be quantified
at different uptake times. Fitting the uptake data to the analytical diffusion models
described in Section 3.4 allows for the quantification of clinically relevant param-
eters such as the alveolar septal wall thickness (h). This is particularly beneficial
for identifying lung fibrosis in ILD [39] and inflammation in COPD [314].

Another potentially interesting clinical application of the CSSR technique is in
SSc, an autoimmune disease characterised by excessive collagen production in
the connective tissue, which affects the skin and internal organs [315, 316]. The
lungs are often involved in SSc, and pulmonary fibrosis and pulmonary hyper-
tension are major causes of morbidity and mortality. ILD is estimated to affect
35% - 75% of SSc patients [317, 318] and is the leading cause of death for this
patient group [12]. Early diagnosis of SSc-associated ILD (SSc-ILD) is there-
fore crucial, as is determining whether the fibrosis is stable or progressive [316].
High-resolution CT is the gold standard for identifying pulmonary fibrosis, how-
ever CT is not well-suited for repeated imaging and so monitoring disease pro-
gression and treatment response in SSc-ILD patients is challenging. The second
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most common cause of death in SSc patients is PAH, which has an estimated
prevalence among SSc patients of between 5% and 15% [319]. Various other
PH subtypes can also affect patients with SSc, such as left heart disease and
chronic thromboembolism, and PH can further complicate SSc-ILD, resulting in
worse outcomes than non-PH SSc-ILD patients [320]. The mechanisms behind
pulmonary disease in SSc are not well-understood and there is a need for novel
lung imaging techniques to assess the structural and functional changes associ-
ated with the disease. Stewart et al. performed CSSR in four SSc patients and
found increased septal thickness in these patients when compared to healthy vol-
unteers, despite these patients having little fibrosis and no PH [39].

To further assist the clinical application and utility of CSSR, it is important to be
able to quantify the uncertainty on the model-derived parameters. The analytical
models used to fit the CSSR data have a high degree of freedom which, cou-
pled with noise in the CSSR uptake curves from low SNR at short delay times
(tgelay) and signal variations from cardiogenic RBC oscillations [212], can lead
to non-optimal curve fitting. However, in most CSSR literature, the uncertainty
on the model-derived parameters is either not reported, or provided with no ex-
planation of the error quantification method. Only one paper, by Stewart et al.,
described their method for deriving the errors on fit parameters [39]. They tested
the model accuracy by re-fitting each data set with different weightings applied to
specific data points and evaluated the effect on the sum of squares. Statistical
methods such as bootstrapping [321] may be able to provide a more efficient way
to estimate the uncertainty on the model parameters.

The standard CSSR sequence requires the use of multiple long temporal delays;
typically this temporal information comes at the expense of spatial encoding. The
CSSR parameters are therefore only available as whole-lung averages, reducing
the sensitivity to early lung disease and to disease heterogeneity. Four imaging
methods have been proposed for assessment of gas uptake dynamics in humans
and small animals, which were described in detail in Section 3.3.1.1 and are
summarised below:

1. Look-Locker CSSR, Kern et al. [155]: multiple excitations were acquired
after one saturation in a Look-Locker-like scheme [156]. Spatial encoding
was achieved using an undersampled stack-of-stars trajectory and low-rank
plus sparse matrix decomposition.

2. SPLASH CSSR, Kern et al. [154]: regional CSSR data were acquired by
using a multi-channel coil and the SPLASH method [152, 153].

3. CSI-CSSR, Stewart [158] and Ruppert at al. [159]: a CSI sequence was
adapted such that CSSR saturation, delay and excitation occurred before
acquiring each line of k-space.

4. Time-series spiral-IDEAL, Doganay et al. [99, 148, 149], Zanette et al. [150]
and Friedlander et al. [151]: images were acquired using interleaved spiral-
IDEAL MESI at different CSSR delay times.

CSI-CSSR is limited by its long scan time; Stewart’s 1D CSI-CSSR method re-
quired a 15 s breath hold and in Ruppert’s 2D implementation, each tgeiqy image
required n breath holds to complete, where n is the matrix size in the phase-
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encoding direction. Hence, the 2D CSI-CSSR technique has only been tested in
rats and is not easily applicable to humans. Kern’s in vivo techniques for breath
hold CSSR imaging use sparse and low-rank reconstruction and/or parallel imag-
ing. These can be difficult to implement reliably, can lead to undersampling arte-
facts and require the use of multi-channel RF coils (not currently available at our
site). Spiral MESI with IDEAL decomposition is advantageous for rapid image ac-
quisition, but the requirement to loop the IDEAL imaging kernel for multiple spiral
interleaves, TEs and CSSR delay times means that spiral-IDEAL CSSR imaging
is still limited by breath hold constraints.

Mugler et al. proposed a method for simultaneously imaging the dissolved-phase
and gas-phase ?°Xe components in 2010 [322]. Since then, more advanced
methods such as the Dixon method and IDEAL have been developed for dissolved-
phase '29Xe imaging, which can further resolve the dissolved-phase signal into
the RBC and M contributions. However, these methods are time-consuming
and incorporating them into a CSSR imaging sequence requires undersampling
and/or parallel imaging with multi-array coils to be feasible within a single breath
hold. The Patz model does not require the dissolved-phase signal to be sep-
arated into the RBC and M contributions so methods for separating the RBC
and M signals are not necessary. Therefore, Mugler’s method offers a fast and
straightforward way to image both the dissolved-phase and gas-phase signal in a
CSSR-type experiment.

In this chapter, we explore different methods for CSSR spectroscopy and imaging.
An improved CSSR analysis pipeline is presented, which uses bootstrapping to
quantify the uncertainty on the Patz model parameters. We demonstrate its use
in healthy participants and patients with SSc and/or PAH. In addition, we propose
a CSSR imaging sequence based on the separation of gas and dissolved peaks
by chemical shift dispersion and evaluate this sequence in four healthy volun-
teers. A Look-Locker CSSR spectroscopy sequence is investigated as a potential
means to allow for an increased number of tgeiqy images in the regional CSSR
sequence. This sequence is tested in four healthy volunteers and compared to
‘standard’ CSSR spectroscopy.

9.2 Theory

In Section 2.1.4, we introduced the concept of the chemical shift. To reiterate,
the chemical shift is the difference in resonant frequency of nuclei in different
chemical environments arising from electron cloud shielding of the magnetic field
felt by the nuclei. If the nuclei are present in different chemical environments
within the same imaging voxel, and if the frequency bandwidth per pixel is less
than the chemical shift, the signal from the two species will be shifted along the
readout direction. This is called the chemical shift artefact. By exploiting the ~200
ppm chemical shift difference between the gas-phase and dissolved-phase '2°Xe,
a careful choice of bandwidth can be used to image both resonances within the
same FOV. To completely separate the dissolved-phase and gas-phase '>°Xe
signals in the frequency encoding direction, the frequency bandwidth must be
less than the chemical shift frequency difference:
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where 7 is the '29Xe gyromagnetic ratio, By is the field strength, Axcp—pp is
the chemical shift between the gas-phase and dissolved-phase '2°Xe spectral
peaks, Ax is the image resolution and W/ is the width of the lungs (~25 cm). If
this condition is met, gradient echo imaging will result in side-by-side dissolved-
phase and gas-phase '2°Xe images, as shown in Figure 9.2.1.

Dissolved-phase Gas-phase

Figure 9.2.1: Combined dissolved-phase/gas-phase '?°Xe imaging of a healthy volunteer,
acquired with a SPGR sequence: BW = 7 kHz, FOV = 50 cm, TR = 40 ms and dissolved-
phase flip angle = 35°.

9.3 Methods

9.3.1 Subject Details

Nine healthy volunteers and six patients with SSc and/or PAH, who were enrolled
on the Heart Research UK (HRUK) or PHoenix studies, were included in this
work. Subject demographics are summarised in Table 9.3.1, along with RHC and
PFT data where available.

9.3.2 CSSR Spectroscopy Pulse Sequences

Our implementation of the CSSR spectroscopy pulse sequence is shown in Fig-
ure 9.3.1A. At the start of each ‘block’, the signal from the dissolved-phase '2°Xe
is destroyed using two frequency-selective 90° RF pulses (described in the fol-
lowing section) and spoiler gradients. After this, there is a fixed delay of length
tgelay, Over which gaseous '2°Xe diffuses from the alveolar airspaces, across the
membrane barrier and into the capillary bloodstream. The dissolved-phase '2°Xe
magnetisation is then excited using the frequency-selective RF pulse and an FID
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Table 9.3.1: Demographic data for the healthy volunteers and SSc and/or PAH patients
included in this chapter. PFT data were not available for the healthy volunteers or PAH
patients.

Healthy | SSc-PAH PAH
n (female) 9 (4) 6 (5) 2 (1)
Age (years) 305 | 60£5 68 £ 8
mPAP (mm Hg) — 389 42 + 4
PVR (WU) — 55+3.0(55+1.8
TLco (% predicted) — 60 £ 25 —
FEV1 (% predicted) — 89 £ 18 —

is acquired. The remaining transverse magnetization is destroyed using a spoiler
gradient. This sequence block is repeated for each value of tge(ay,n-

An accelerated CSSR spectroscopy pulse sequence is shown in Figure 9.3.1B.
This uses a Look-Locker acquisition strategy [156] to acquire FIDs at several
tgelay times simultaneously, as was first suggested by Kern et al. [155] and was
described in Section 3.3.1.1. In this sequence, several excitation pulses are ap-
plied after the 90° dissolved-phase signal saturation pulses, with a small flip angle
(~ 10°) such that the effect on the longitudinal magnetisation is small. Therefore,
rather than sampling the magnetisation at increasing tge(qy in a linear fashion and
resetting with a saturation pulse each time, the Look-Locker approach allows the
different tgeiqy times to run simultaneously. This results in significant time-saving
when compared with the standard CSSR approach. To simulate the effect of the
excitation pulses on the magnetisation evolution, the Look-Locker CSSR acqui-
sition was simulated using a 2D finite difference method model, as in Kern et al.
Simulation details can be found in Appendix A.

In the Look-Locker CSSR sequence, tgeiqy for the nth excitation pulse is given
by:

(n=1)
tagetay,n = tdi+ (N —1)Tmin + Z Xn, (9.3.1)
1

where td; is the time between the last saturation pulse and the start of the first ex-
citation pulse and x, is an optional additional delay which can be added between
two excitation pulses to achieve longer tge(qy times. The minimum tge(qy is lim-
ited by the minimum readout time (Tmin) of the sequence. To sample smaller
tgelay times and to increase the temporal resolution, the saturation-excitation
blocks can be repeated with different values of td;. Figure 9.3.1C shows the
corresponding uptake data points (F(t)) from each excitation block.

Both CSSR sequences were programmed within the GE Healthcare EPIC pulse
sequence programming environment and were based on the fidall pulse sequence
database [323].
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Figure 9.3.1: The pulse sequences used to perform CSSR spectroscopy. (A) Conven-
tional CSSR: the dissolved-phase '2°Xe signal is depolarised with two 90° saturation RF
pulses and spoiler gradients applied along the z direction (G;) of width 1 ms, then is
replenished by the transfer of 2°Xe from the gas-phase into the dissolved-phase over a
time tgelay,n- After this, a third 90° pulse is used to excite the '29Xe signal and acquire an
FID. Treqq is the fixed readout time and DAQ represents the position of the data acquisi-
tion window. The CSSR ‘block’ shown within the brackets is repeated for ntgeiqy values
of tgelay,n- (B) Look-Locker CSSR: multiple FIDs are acquired following each saturation,
with tgeiqy,n defined as the period between saturation and each subsequent small flip
angle excitation (blue, red and yellow rectangles). For simplicity, the spoiler gradients
and DAQ window are not shown here, but were applied as in (A). To increase the number
of short tyeiay times and the temporal resolution, three saturation blocks are used, each
with a different offset (td;) between the last saturation and first excitation pulse. (C) Ex-
ample Look-Locker CSSR uptake curve, with the data points colour-coded to show which
saturation block they were acquired after.

9.3.3 RF Pulse Design

A custom frequency-selective RF pulse was designed to both saturate and excite
the dissolved-phase '22Xe magnetisation, whilst minimising off-resonance exci-
tation. This was done using tools from the GE Healthcare Multi-Nuclear Spec-
troscopy (MNS) research pack in MATLAB. The time and frequency profiles of
this pulse are shown in Figure 9.3.2. The pulse width was 1.5 ms, chosen to be
less than the T of the dissolved-phase '#°Xe (2.2 ms at 1.5 T [36]) to minimise
signal decay. The pulse had a frequency pass-band of width 500 Hz, centred
around 0 Hz. Thus, by setting the centre frequency to the frequency of dissolved-
phase '2°Xe resonance, maximum RF power is delivered to the dissolved-phase
resonance, whilst small side-bands at -3765 Hz to -3565 Hz and 3565 Hz to 3765
Hz deliver a small off-resonance excitation to the gas-phase resonance, which is
needed for normalisation.

The nominal flip angles were 90° on-resonance and < 1° off-resonance to min-
imise the excitation of the gas-phase. However '29Xe’s low 7y and safety require-
ments associated with the specific absorbance rate (SAR) can limit the flip angles
achievable for a given RF amplifier power. At high RF powers, any non-linearity
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of the RF amplifier in the high gain regime may also lead to pulse distortion and
a delivered flip angle which is not equivalent to the desired flip angle [324, 98].
Careful design and testing of the RF pulse prior to in vivo application was there-
fore required. The true delivered on and off-resonance flip angles were investi-
gated using a bag of hyperpolarised '?°Xe gas. To measure the on-resonance
flip angle, 10 FIDs were acquired, with TR = 32 ms, flip angle = 90°, 512 spectral
points and a bandwidth of 25 kHz. For the off-resonance flip angle measurement,
600 FIDs were acquired with the centre frequency off-set from the gas-phase fre-
quency by 3650 Hz and TR = 100 ms. The on-resonance flip angle was also
calibrated in vivo by acquiring 32 FIDs with TR = 75 ms, flip angle = 90° centred
on the gas-phase resonance, 1024 spectral points and a bandwidth of 20 kHz.
The transmit gain and centre frequency required to reach 90° were found using
the Bloch-Siegert calibration sequence described in Section 4.2.1.

The FIDs were converted to spectra via Fourier transform, and the absolute am-
plitudes, S, in each case were fitted to a model of polarisation decay:

S =Spcos™ 1, (9.3.2)

where Sy is the initial signal amplitude, n is the number of RF pulses and 6 is the
measured flip angle.

o (A) (B)
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........ Imaginary
05F * Passband|-
-0.5
6F . . 1 -1 1 1 1 1 1 1 1
0 05 1 1.5 -6000 -4000 -2000 0 2000 4000 6000
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Figure 9.3.2: The frequency-selective CSSR RF pulse profile in (A) the time-domain and
(B) the frequency-domain.

9.3.4 CSSR Spectroscopy Acquisition

All CSSR experiments were performed using a 1.5 T GE Artist clinical scanner
and a transit-receive vest coil. For the healthy volunteers, a dose of 250 - 500 ml
hyperpolarised 12°Xe was used, titrated with nitrogen to a total bag volume of 1 L
(or 800 ml for volunteers who were <160 cm tall). For the patients, the 2°Xe dose
was scaled according to their estimated lung volume. The total bag volume was
1/6 of the patient’s total lung volume, as predicted by the GLI reference equations
[227]. The '29Xe concentration was then scaled based on the bag volume; for a
bag volume of 1 L, 300 ml of ®°Xe was used.
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The RF pulse described in the previous section was used for both saturation and
excitation, with nominal flip angles of 90°/1° on the dissolved/gas-phase reso-
nances respectively. A calibration scan was used to find the patient-specific trans-
mit gain and gas-phase resonance frequency (as described in Section 4.2.1); the
actual centre frequency of the scan was then found by adding 3650 Hz to the
calibrated frequency so that the RF power was delivered to the centre of the
dissolved-phase resonance (i.e. halfway between the RBC and M peaks, at a
chemical shift of 205 ppm from the gas-phase resonance). 25 tgeiqy times were
used for standard CSSR, from 6 - 605 ms, which were acquired in two sequential
time sweeps:

tgelay = [6, 10, 15, 25, 45, 65, 95, 135, 175, 230, 280, 405, 605, 6, 12.5, 20, 35,
55, 75, 115, 155, 195, 255, 305, 505] ms

These values were chosen to accurately sample the gas exchange behaviour,
whilst keeping the breath hold short (5 s). Denser sampling was used at the start
of the sequence, where the gradient of the uptake curve is steeper and where
the curve plateaus, and less dense sampling was used over the linear portion of
the curve, where the tge(qy times are longer and contribute more to the total scan
time. Two time sweeps were used to attempt to average out any fluctuations in
the dissolved-phase signal from cardiogenic oscillations in the RBC signal and
bulk lung motion [325]. 512 spectral points were acquired over a bandwidth of 20
kHz, with Treqq = 35.6 ms.

All participants underwent CSSR spectroscopy. A subset of four healthy volun-
teers were also scanned with the accelerated Look-Locker CSSR sequence (Fig-
ure 9.3.1B), using the same ®Xe dose as was used for standard CSSR. The
bandwidth also remained the same, but the number of spectral points was de-
creased to 256 in order to reduce Tmin, Which was 23 ms. As shown in Figure
9.3.1B, 23 excitation pulses were used and three saturation pulse blocks. The
first ten excitation pulses used Tnin, as did the excitation pulses after the second
and third saturation. An additional delay was added to the final three excitations
after the first saturation; x11,12,13 = (15, 50, 50) ms. The values of td; 2 3 were 5
ms, 8.5 ms and 18.5 ms respectively. The resulting tye(qy values for Look-Locker
CSSR are listed below, which culminated in a total required breath hold time of
<1s.

tgelay = [5, 28, 51, 74, 97, 120, 143, 166, 189, 212, 250, 308, 331, 8.5, 31.5,
54.5,77.5,100.5, 18.5, 41.5, 64.5, 87.5, 110.5] ms

Two different flip angles were needed for the accelerated CSSR sequence: 90°
for dissolved-phase saturation (as in CSSR spectroscopy) and 10° for excitation.
This was achieved by manually scaling the RF pulse amplifier power. The RF
pulse described in Section 9.3.3 was used for both saturation and excitation, and
the nominal flip angle was set to 90° on the scanner user interface as before.
This was done so that all SAR and scaling calculations were performed using the
highest flip angle in the sequence, to ensure patient safety. The 90° pulse used
the maximum RF amplifier power and the 10° pulse was set to be one ninth of
this value, i.e. amplifier linearity was assumed.
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9.3.5 CSSR Spectroscopy Analysis
The CSSR spectroscopy analysis pipeline is shown in Figure 9.3.3.
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Figure 9.3.3: CSSR spectroscopy analysis pipeline: (A) the FIDs acquired at each tgeiay
were (B) fit to a Voigt lineshape. (C) The corresponding frequency domain fit. The inset
shows the fit to the dissolved-phase peaks in more detail. (D) The RBC and M peak
intensities from the Voigt fit were normalised by the gas peak intensity, scaled for flip an-
gle differences and plotted against time as uptake curves. (E) The combined (RBC + M)
dissolved-phase uptake curves were fitted to the Patz model. (F) The final parameters
values and uncertainties were found from the distribution of values over 1000 fitted syn-
thetic datasets.

At each tge(qy, the acquired FID (Figure 9.3.3A) was normalised by its maximum
absolute value and fitted to a time-domain Voigt function to quantify the gas, RBC
and M signal intensities (Figure 9.3.3A). The Voigt lineshape (V/(t)) is the product
of a Lorentian lineshape (L(t)) and a Gaussian lineshape (G(t)), defined by:

3 rGt \?
Re[V(D)] = E Anexp(—nFLt)exp —( " n ) cos[(wo,n— we)t+ ¢nl
= n 2+/1n2 '

(9.3.3)

3 rGt \?
Im[V(t)] = E Anexp(—nFLt)exp —( T n ) sin[(wo,n— W)t + ¢dnl
= n 2+/1n2 '

(9.3.4)
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where n = 1, 2, 3 represents the Gas, M and RBC resonances, A = FID ampli-
tude/spectral peak intensity, wo n — Wt is the frequency difference between the
129X e resonance frequencies and the RF transmit/receive frequency and ¢ is the
peak phase. ' and I"C are the Lorentzian and Gaussian linewidths, from which
the proportion of Gaussian broadening, Fg, can be calculated:

r'G

Figure 9.3.3C shows the corresponding frequency-domain fit. The CSSR up-
take curves (F(t)) for the M and RBC signals were given by Ay (t)/Acas(t) and
Arsc(t)/Acas(t), respectively. Example F(t) curves, plotted against tgelqy, are
shown in Figure 9.3.3. Fy(t) and Frpc(t) were summed and corrected for flip
angle differences between the gas and dissolved-phase, by multiplying F(t) by:

3 sin(0.9)

=— (9.3.6)

sin(90)
For the accelerated CSSR sequence data, an additional correction factor was
required to correct for the systematic bias resulting from the 10° excitation RF
pulse in the Look-Locker acquisition scheme:

1 sin(8) Au(t)+A t
F(t)= — . (8) Am(t) + Arsc( )’ ©9.3.7)
cos™(10)sin(10) AGas

where m is the index of the excitation pulse with respect to the preceding sat-
uration pulse and Aggs is the amplitude of the gas signal from the preceding
saturation. The off-resonance flip angle was not well-characterised when the on-
resonance flip angle of the RF pulse was scaled from 90° to 10°, because the
RF pulse induced signal decay was minimal and the fit to Equation 9.3.2 unre-
liable (the fitted flip angle was dependent on the initial parameter input). The
flip angle scaling was therefore found manually, by finding the value of 6 which
gave the best agreement between Fy; (t) and F(t) from standard CSSR , on a
case-by-case basis.

The corrected F(t) data were then fitted to the Patz model (Figure 9.3.3E). The
Patz model [142], described in Section 3.4, is based on solving the 1D diffusion
equation in a slab geometry with plug flow and is given by the following equation:

FO)=F )\hS(T—t)f( ) )\hs t 8h? @) 038

=Fo+ ——| — +Ah—|—+ , 3.
TS vliT q Vit D7T4Tg 9 ( )

where q = % and f(q) and g(q) were defined in Equations 3.4.4 and 3.4.5. All

parameters were defined in Section 3.4. As a reminder: Fg is an offset term, A
is the xenon Ostwald solubility, D is the dissolved '2°Xe diffusion coefficient, h is
the septal wall thickness, S/V is the alveolar surface area to volume ratio and T
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is the 12°Xe capillary transit time. In this work, A = 0.1 and D = 3.3 x 10% cm?s™’
were used [93], although the true values of these parameters are not well known.

To increase the robustness of the Patz model fit and to reduce the sensitivity to the
initial inputs to the fitting function, a multi-step fitting protocol was implemented,
using a bounded fitting function (fminsearchbnd). To reduce the number of free
parameters per fit, S/V and Fo were found first by fitting the data points from the
first 100 ms to the short-time Butler approximation [142]:

S | 4Dt
F(t)y=Fo+A=\|—, (9.3.9)
"4 T

The initial inputs for S/V and Fg in the fitting functions were found by running
fits with a range of input values and choosing the values at the fit with the lowest
residual sum of squares (RSS). All data points were then fitted to Equation 9.3.8,
using the fitted values for S/V and Fq. The initial inputs for h and T in the fit were
also found by minimising the RSS over a range of input values.

Bootstrapping was used to obtain the final parameters and their uncertainties
(Figure 9.3.3F). The residuals, R of the full Patz model fit were calculated and
used to simulate 1000 synthetic data sets:

Dsynth = f(t, P) + Rsynth, (9.3.10)

where f(t, P) is the Patz model with parameters P = (Fo, S/V, h, T) and Rsynth
are residuals chosen at random (with replacement) from R. Each synthetic data
set was then fit to the Patz model and the fit parameters stored in an array, Ppoot-
According to Central Limit Theorem, Ppoot is normally distributed and hence the
final parameter values and uncertainties were given by the mean and standard
deviation of Ppoot.

9.3.6 CSSR Imaging

CSSR imaging was implemented using a low-bandwidth 2D gradient echo se-
quence, such that dissolved-phase and gas-phase '2°Xe images appeared within
the same FOV due to the chemical shift artefact, as described in Section 9.2.

The 2D gradient echo pulse sequence used for CSSR imaging is shown in Fig-
ure 9.3.4. CSSR with seven tgeiqy values (6 ms, 15 ms, 45 ms, 95 ms, 175 ms,
280 ms and 405 ms) was repeated for every phase-encoding step. This choice of
tgelay values was made based on retrospectively undersampling the CSSR spec-
troscopy uptake curve for one healthy volunteer dataset, fitting to the Patz model
and comparing the agreement with the parameters from the fully-sampled uptake
curve. Using Equation 9.2.1, the bandwidth required for complete separation of
the gas-phase and dissolved-phase components in the frequency-encoding di-
rection was found to be 7 kHz, with a pixel size of 1.25 cm along the frequency-
encoding direction and assuming a lung width of 25 cm. A fully-sampled Carte-
sian k-space trajectory was used, with centric ordering. The gradient waveforms
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were designed using tools from the MNS research pack in MATLAB. The se-
quence parameters were: 1 coronal projection covering the whole lung, FOV =
50 cm x 50 cm, matrix size = 40 x 20, readout direction = right to left, TR/TE = 20
ms/3.1 ms and dissolved-phase/gas-phase flip angle = 90°/0.9°. The 2°Xe dose
was 1 L and the breath hold time was 24 s.
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Figure 9.3.4: Pulse sequence diagram for the CSSR imaging sequence. Each CSSR
‘block’ was repeated for every phase-encoding step; i.e. each tgeiqy Was repeated 20
times. To reduce the number of 90° RF pulses, only one saturation RF pulse was used
per CSSR block. Centric Cartesian phase encoding was used, with a maximum phase-
encoding gradient strength of 10 mTm™. Spoiler gradients were used to destroy the
transverse magnetisation both after the saturation pulse and at the end of each TR.

9.3.7 CSSR Image Analysis

For each tgeiqy, the k-space data were reconstructed using the inverse Fourier
transform. The gas-phase signal was masked via thresholding; this mask was
shifted to the right to mask the dissolved-phase signal. The masked dissolved-
phase image (Spp(X, y, t)) was normalised by the masked gas-phase image
(Sgp(X, y, t)) and corrected for dissolved-phase/gas-phase flip angle differences
and the T2* decay that occurred over the readout time:

Spp(x,y, t) (TE)
——eXp p—

where c is the flip angle scaling factor given in Equation 9.3.6, TE = 3.1 ms (mea-
sured from the end of the excitation pulse to the centre of the read-out gradient)
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and T2* = 2.2 ms for the dissolved-phase signal at 1.5 T [36]. Each pixel of the
normalised image was then fit to the Patz model, using the fitting procedure de-
scribed in Section 9.3.5, to obtain parameter and error maps for h, S/V and T.

9.3.8 Statistical Analysis

Normality of variables was tested for with Shapiro-Wilk tests. Differences between
the CSSR parameters between the healthy volunteers and patients were tested
for using Student’s t-test. Correlations between variables were evaluated using
Pearson correlation coefficient for normally distributed variables and Spearman’s
correlation coefficient for non-normal variables. A significance level of p<0.05
was used for all tests.

9.4 Results

9.4.1 RF Pulse Design

Figure 9.4.1 shows the signal decay when the frequency-selective RF pulse was
repeatedly applied to a bag of hyperpolarised '**Xe gas. Using Equation 9.3.2,
the on-resonance flip angle was found to be 87° and the off-resonance flip angle
was ~0.7° (assuming negligible T1 decay). Very good saturation performance
was also found in vivo. As shown in Figure 9.4.2A, one RF pulse was suffi-
cient to almost entirely destroy the gaseous '>*Xe magnetisation when applied
on-resonance. The calibrated on-resonance flip angle was 89.7°. To ensure
complete dissolved-phase signal saturation, two saturation pulses were used per
CSSR block, in line with previous work [325]. However, when we compared the
results of CSSR spectroscopy results using one and two saturation pulses, there
was no difference in the uptake curves, as demonstrated in Figure 9.4.3.

%1010

T (A) T

12

Signal (a.u.)

Figure 9.4.1: Gaseous '2°Xe signal decay as a function of RF pulse number acquired
from a bag of hyperpolarised '**Xe gas when the RF power was centred (A) on the gas-
phase resonance and (B) 3650 Hz downstream of the gas-phase resonance.
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Figure 9.4.2: On-resonance '2°Xe signal decay as a function of RF pulse number ac-
quired in a healthy volunteer.
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Figure 9.4.3: CSSR uptake curves acquired in the same healthy volunteer using one
saturation pulse per CSSR block (blue) and two saturation pulses per block (red).
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9.4.2 CSSR Spectroscopy

Subject demographics and CSSR results are shown in Table 9.4.1. Due to the
small number of non-SSc PAH patients, these patients were combined with the
SSc-PAH patients in order to make comparisons with the healthy volunteer group.
Boxplots comparing the values of h, S/V, T, and their associated fitting errors be-
tween the two groups are shown in Figure 9.4.4. h was significantly higher (p =
0.01) in the SSc-PAH and PAH patients (h = 17.2 £ 2.2 um) than in the healthy
volunteers (14.5 £ 0.9 um), but no significant differences were found between
the groups for S/V or T. The mean percentage parameter error was higher for T
(28%) than for h (10%) or S/V (8%) and in general, errors were greater for the pa-
tients than for the healthy volunteers, although not significantly. Overall, Gaussian
broadening was found to contribute around 40 - 60% to the gas, membrane and
RBC resonance lineshapes. No differences in the proportion of Gaussian broad-
ening were found between the healthy volunteers and the SSc/PAH patients.

Table 9.4.1: Subject demographics and Patz model metrics from CSSR spectroscopy.

Healthy All Patients | SSc-PAH PAH
n (female) 9 (4) 8 (6) 6 (5) 2 (1)
Age 306 657 64 £ 7 68 = 8
h (um) 145+ 0.9 172+22 | 16622 | 18715
h error (um) 1.2+0.2 20+ 0.9 1.9+ 0.9 22+ 15
S/V (cm™) 278 £ 52 287 = 115 | 281+ 123 | 304 + 128
S/V error (cm™) 22+ 4 19+ 6 19+ 8 19 + 1
T () 1.91 £ 0.59 185+ 0.66 | 1.68 £ 0.45 | 234+ 1.17
T error (s) 0.44 (0.25-1.11) [ 0.56 £ 0.23 | 0.49 £ 0.16 | 0.78 £ 0.35
FG,Gas 61£5 58 + 6 56 £ 7 64 £ 4
FG,m 37 +4 385 40 £ 4 302
FG,rBC 62 £ 7 66 5 665 66 = 9

Figure 9.4.5 shows example CSSR spectra at tgeiqy = 230 ms for a healthy par-
ticipant and three patients and their corresponding uptake curves. The amplitude
of the RBC peak was reduced in all patients; this reduction in signal is particularly
apparent in patient SSc-PAH1 (Figure 9.4.5Aii). Both PAH patients and some of
the SSc-PAH patients also had an increased relative amplitude of the M peak,
reflecting the alveolar septal thickening measured by h. In these subjects, the
F(t) uptake curves had a greater amplitude and saturated at a later time than the
healthy volunteers, as shown in Figure 9.4.5.
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Figure 9.4.4: Comparison of the CSSR parameters derived from the Patz model (A-C)
and their errors (D - F) between healthy volunteers and patients with SSc and/or PAH.
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Figure 9.4.5: (A) CSSR specitra at tgeiqy = 230ms for (i) a healthy volunteer (HV6), (ii) an
SSc-PAH patient (SSc-PAH1), (iii) a second SSc-PAH patient (SSc-PAH2) and (iv) a PAH
patient (PAH2) and (B) their uptake curves.
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9.4.3 CSSR Imaging

Gas-phase and dissolved-phase '>*Xe images acquired simultaneously with the
2D gradient echo sequence at each tgeiqy time are shown for one healthy vol-
unteer in Figure 9.4.6. The SNR decreased with increasing tgeiay, as shown in
Figure 9.4.6H. The final image (tgeiqy = 405 ms) was discarded for two of the
CSSR imaging cases (HV6 and HV7) due to low SNR.

(B) teay = 15 ms, SNR = 11.8

(A) t4e1oy = 6 ms, SNR=9.8
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Gas Dissolved
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Figure 9.4.6: (A-G) Gas-phase and dissolved-phase ?°Xe images acquired with the
CSSR imaging sequence acquired at each tgeiqy for a healthy volunteer and (H) SNR
of the dissolved-phase image plotted against tgeiqy -

The choice of tgeiqy values for CSSR imaging was made based on retrospec-
tively removing F(t) points from the uptake curve of one of the healthy volunteers
(HV6) and comparing the resulting Patz model fit with the fully-sampled Patz fit.
Table 9.4.2 shows the results of this process. With the seven delay times used
in the CSSR imaging sequence there was very good agreement between the pa-
rameters. However, when the data point at tgeiqy = 405 ms was removed, as
was the case for the first implementation of the CSSR imaging sequence due to
the low SNR, there was worse agreement. In particular, T was underestimated
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by ~60%. If instead, six tgeiqy times were used but the data point at 280 ms
was removed rather than the 405 ms data point, better agreement was achieved
and the fitted uptake curve appeared more similar to the uptake curve with seven
taelay values (Figure 9.4.7).

It was not possible to acquire more than six usable tyeiqy images because of the
SNR decrease towards the end of the sequence. For this reason, the tgeiqy = 280
ms images were not acquired for HV8 or HV9, reducing the breath hold time to
17 s. Figure 9.4.8 shows the combined gas-phase and dissolved-phase images
for HV8 and the normalised dissolved-phase signal at each each tge(qy time. The
SNR for the tgeiay = 405 ms image was sufficient (SNR = 6.0) for inclusion in the
Patz model fitting.

Table 9.4.2: Patz model fit parameters for the fully-sampled and retrospectively under-
sampled CSSR uptake curves for one healthy participant. For the CSSR uptake curve
With N¢gelay = 6, two combinations of tgeiqy times were tested, with either 280 ms or 405
ms as the final tyelay-

Ntdelay h(um) [S/V (cm™) T (s)
25 14312 | 274+ 21 |1.26+ 0.25
7 144+14 | 284+22 | 1.30 + 0.38
6(280ms) | 13.0+ 1.7 | 285+ 26 | 0.72 % 0.21
6(405ms) | 13.9+ 1.4 | 283+ 21 | 1.16 = 0.30
0.035 . .

\
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Figure 9.4.7: CSSR uptake curve and Patz model fits found from undersampling the
CSSR data. ntgelay is the number of data points included in the Patz model fit.

The parameter and error maps for one of the healthy volunteers (HV8) are shown
in Figure 9.4.9. The h and S/V maps were relatively uniform for all volunteers,
with mean CV of 0.27 £ 0.07 and 0.17 £ 0.06, respectively. The error maps for h
and S/V exhibited increased heterogeneity when compared with the parameter
maps (CV = 0.49 £+ 0.12 for h error and 0.59 + 0.21 for S/V error). The T
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and T error maps were much less uniform (CV = 1.01 £ 0.29 and 1.09 £ 0.28,
respectively).

tyelay = 405 ms

(A) Signal

Dissolved Dissolved

Yyelay = 15 ms tyeray = 45 ms
| | j—

tyelay = 95 MS tyelay = 175 ms tyelay = 405 ms

BT AR 8

Figure 9.4.8: (A) '?°Xe gas-phase (GP) and dissolved-phase (DP) images for HV8, ac-
quired simultaneously with a 2D gradient echo sequence, for tgeiqy = 6 ms and tgeiqy =
405 ms. (B) Normalised dissolved-phase images at each tgeiqy, showing the uptake of
129X e to the alveolar membrane and RBCs over time.

(B) DP/GP

Table 9.4.3 compares the Patz model parameters from spectroscopy and imaging
for each of the healthy volunteers who underwent both scans. As shown by the
Bland-Altman plot in Figure 9.4.10, CSSR imaging tended to overestimate h but
underestimate S/V and T. The absolute fitting errors were larger for imaging than
spectroscopy for h and S/V/, but smaller for T because the values of T were also
reduced. The percentage error for T was larger for imaging (34% on average
across the four healthy volunteers) than for spectroscopy (23%).

In three out of four of the healthy volunteers who underwent CSSR imaging, the
uptake curves did not show good agreement with those from CSSR spectroscopy
(Figure 9.4.11). With the exception of HV6, the uptake curves from CSSR imaging
diverged from those from spectroscopy as tge(qy increased. However, running the
CSSR imaging sequence with the phase and frequency encoding gradients set
to zero in one healthy volunteer resulted in an uptake curve that showed good
agreement with CSSR spectroscopy, but not imaging (Figure 9.4.12).
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Figure 9.4.9: Parameter and error maps for (A)
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h, (B) S/V and (C) from the regional

CSSR Patz model fit in a healthy participant (HV8). (D) Gas uptake curves derived from
the average normalised DP signal in the left and right lungs.

Table 9.4.3: Comparison of the Patz model parameters between CSSR spectroscopy and
imaging. For imaging, the average values of the parameter and uncertainty maps are
given as mean % standard deviation for normally distributed maps and median (range)
for non-normally distributed maps.

h (um) S/V (cm™) T (S)
Spectroscopy 143+ 1.2 274 + 21 1.26 = 0.25
HV6 Imaging 14.0+ 4.8 254 (77 - 329) | 0.68 (0.04 - 3.29)
Imaging Error | 3.2 (0.3 -6.9) 40 + 20 0.26 (0.01 - 1.47)
Spectroscopy 15.7+ 1.0 401 £ 20 2.02 £ 0.50
HV7 Imaging 17.7 (1.1 -23.2) | 304 (180 - 331) | 0.23 (0.01 - 3.29)
Imaging Error | 5.3 (0.1 - 7.8) 57 £ 22 0.08 (0.00 - 1.47)
Spectroscopy 145+ 1.4 280 £+ 23 1.69 £ 0.44
HV8 Imaging 16.8 £ 3.2 301 (200 - 328) | 0.87 (0.14 - 3.37)
Imaging Error | 3.7 (1.3-7.1) 34 (4 - 85) 0.27 (0.04 - 1.44)
Spectroscopy 147 £ 1.0 235+ 14 1.62 £ 0.36
HV9 Imaging 15.0 (0.8 -21.7) | 241 (97 -328) | 1.01 (0.01 - 3.34)
Imaging Error | 2.5 (0.1 -7.2) 18 (1 -107) 0.31 (0.00 - 1.5)
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Figure 9.4.10: Bland-Altman plots for (A) h, (B) S/V and (C) T, from CSSR spectroscopy
and imaging. The mean bias (black line) and limits of agreement (red lines) are given

above each plot.
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Figure 9.4.11: CSSR uptake curves from spectroscopy and imaging (whole-lung average)
for each of the four healthy volunteers who underwent CSSR imaging.

9.4.4 Accelerated CSS

R Spectroscopy

A solution to some of the problems of the CSSR imaging sequence, namely the
large number of 90° pulses and the limited number of tgeiqy images achievable,
may be found by using a Look-Locker acquisition strategy. Before attempting to
implement a Look-Locker CSSR imaging sequence, an accelerated spectroscopy
sequence was investigated using modelling and was tested in four healthy volun-
teers. The scan time for this sequence was decreased seven-fold compared to
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Figure 9.4.12: CSSR uptake curves obtained from a healthy volunteer using the CSSR
spectroscopy sequence (blue), CSSR imaging (yellow) and the CSSR imaging sequence
with the frequency and phase encoding gradients nulled (purple).

the standard CSSR spectroscopy sequence (from 5 st0 0.7 s).

Simulations using a 2D finite difference model demonstrated a small system-
atic bias of 3% in the magnetisation, resulting from the Look-Locker acquisition
scheme (Figure 9.4.13). This was corrected for in the experimental uptake curves
by dividing the mth data point after each saturation by cos™(10).
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Figure 9.4.13: Finite difference modelling of 12°Xe gas transfer from the alveolar airspace
into the bloodstream under the influence of small flip angle excitation pulses. (A) The
2D slab geometry used for the model: 29Xe diffuses from the airspace and into the
gas exchange region of the capillary, where diffusion takes place. Upstream blood flows
through the gas exchange region and onwards downstream, removing '?°Xe from this
region. (B) '2°Xe magnetisation density within the 2D model at three time points: (i) at
3 ms, '2*Xe has started to diffuse into the capillary, but all magnetisation density is con-
tained within the gas exchange region, (ii) at 10 ms, fresh blood containing no dissolved
129X e magnetisation has begun to flow into the gas exchange region from upstream and,
downstream, some '?°Xe has started to flow out of the gas exchange region, (iii) after
150 ms, the gas exchange region has become saturated with 2®Xe and more 2°Xe has
been transported out of the gas exchange region via the flow of blood. (C) Simulated
magnetisation evolution from the finite difference model with and without small flip angle
excitation pulses.
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Figure 9.4.14A shows the spectra at 250 ms for a healthy volunteer (HV4) from
the Look-Locker CSSR spectroscopy sequence, demonstrating minimal excitation
of the gas-phase peak and good SNR, despite the low flip angle excitation. Good
agreement was found between the Look-Locker CSSR and standard CSSR up-
take curves using an off-resonance flip angle of ~0.035° in the flip angle scaling
(Figure 9.4.14B).

(A) (B)
16 . . . ’ 0.035 . . . ,
14} ° 9
. ]
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Gl .
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Figure 9.4.14: (A) CSSR spectra at 250 ms, acquired with the accelerated Look-Locker
CSSR sequence for a healthy volunteer and (B), their uptake curves from standard CSSR
and Look-Locker CSSR. The Look-Locker CSSR uptake curve was manually scaled to
overlay with the standard CSSR uptake curve.

Table 9.4.4 compares the Patz model parameters from the standard CSSR and
accelerated CSSR sequences for each subject. There was reasonable agree-
ment between h, S/V and T between the two sequences, with Bland-Altman
mean biases of -0.70 um, 21.5 cm™ and 0.38 s respectively. As shown in the
Bland-Altman plots in Figure 9.4.15, the residuals were evenly distributed, al-
though h tended to be overestimated and S/V and T tended to be underestimated
for Look-Locker CSSR.

Table 9.4.4: Comparison of the Patz model parameters between the standard CSSR
spectroscopy sequence and the accelerated Look-Locker sequence for four healthy vol-
unteers.

CSSR Look-Locker CSSR
Sub- h (um) S/V T(S) h (um) S/V T (S)
ject ID (cm™) (cm™)
HV2 13.2 + 266 + 22 247 + 13.6 £ 229 + 24 1.06 £
1.0 0.68 1.6 0.33
HV3 13.3 £ 257 £ 27 1.56 + 14.3 £ 236 + 31 1.09 +
1.4 0.41 2.3 0.40
HV4 15.0 279 £ 25 1.52 £ 14.3 £ 283 £ 22 1.07 £
1.6 0.41 1.3 0.31
HV6 14.3 £ 274 + 21 1.26 £ 16.4 £ 242 £ 18 | 2.06 +
1.2 0.25 1.5 0.85
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Figure 9.4.15: Bland-Altman plots for (A) h, (B) S/V and (C) T, from standard CSSR and
Look-Locker CSSR spectroscopy. The mean bias (black line) and limits of agreement
(red lines) are given above each plot.

9.5 Discussion

In this chapter, we demonstrated several methods for quantifying temporal gas
exchange in the lungs using '>Xe spectroscopy. We developed an improved
analysis pipeline for reconstructing and fitting the CSSR uptake data. In most
previous literature, a Lorentzian lineshape has been used to fit the CSSR spectral
peaks in the frequency-domain. However, the spectral resolution in the frequency-
domain is low for high bandwidths. This can lead to inaccurate fitting, especially
for the gas-phase resonance, which typically has a width which is narrower than
the spectral resolution. Fitting the CSSR data in the time-domain is therefore
advantageous. Additionally, the Voigt line function is easier to implement in the
time-domain, where it is a simple multiplication of the Lorentzian and Gaussian
line functions, in comparison to the frequency-domain, where it is a convolution
of the two functions. Improved fitting of the 1>*Xe spectral peaks can be achieved
with a Voigt lineshape because the lineshapes are not purely Lorentzian. There
is known to be substantial Gaussian broadening to the 2°Xe peaks from the
changes in magnetic susceptibility at the boundaries between the different chem-
ical environments within the lung [137]. We found a Gaussian contribution of
40% and 60% to the '*°Xe M and gas linewidths, respectively, which is in line
with the values of ~45% and ~75% found by Norquay et al. [326]. We also found
~65% Gaussian broadening of the RBC peak, which was assumed to be purely
Lorentzian in [326]. Including a Gaussian component within the spectral fitting
function should improve its accuracy compared to using a triple Lorentzian fit.
However this does also increase the number of degrees of freedom in the fitting
function.

In the CSSR literature, the errors on the parameters derived from diffusion mod-
els are often not quoted. However, knowledge of the uncertainties on the values
of h, S/V and T is important for the clinical translation of the technique, especially
for quantifying fibrosis and/or inflammation in patients with lung disease. Without
this information, we cannot know how much confidence can be placed on the
CSSR metrics. Additionally, the CSSR uptake curves are often noisy and can be
affected by cardiogenic oscillations in the RBC signal [212]. We observed oscil-
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lations in several CSSR uptake curves. In some cases, for example the healthy
volunteer shown in Figure 9.4.14, these oscillations were only present in the RBC
signal (Arec/Acas) and not the membrane signal (Au/Acas), SO are likely to be
related to RBC signal variation over the cardiac cycle. However, in other cases,
for example in Figure 9.3.3, the oscillations are more apparent in the membrane
signal. This may be a result of a systematic offset between the first and second
sweep of tyeiqy values, possibly associated with decay of the gas-phase signal
over the duration of the sequence. Note: the ordering of the tgeiqy values was
given in Section 9.3.4.

In this work, bootstrapping was used to estimate the uncertainty on the Patz
model-derived CSSR parameters. The errors on h and S/V were found to be
<10% over all subjects, whereas T had a greater average error of ~30%. Sensi-
tivity analysis has previously shown that the Patz model is less sensitive to vari-
ations in T than it is to h and S/V [327]. A larger range of T values may yield
similar fitting accuracy, increasing the uncertainty on this parameter.

Table 9.5.1 summarises the values of h, S/V and T from the literature. The values
of h found for the healthy volunteers were similar to micro-CT measurements of
the alveolar septal wall thickness [328], but were higher than previous estimates
from CSSR. S/V was also higher than in previous work, but in line with CT-based
measurements [329]. Discrepancies between our results and the CSSR literature
may be due in part to differences in experimental methodology and analysis pro-
cedure. There is not currently a standardised sequence for CSSR and so results
may be dependent on the acquisition parameters used, such as the choice of de-
lay times. Additionally, the diffusion coefficient and Ostwald solubility for dissolved
129X e used in the Patz and MOXE CSSR fitting models are not well-known. Dif-
ferent values have been used in the literature; for example, we used A = 0.1, but
Chang et al. used A = 0.2 [330]. We used a value of 3.3 x 10'1°m?s" for the 12°Xe
diffusion coefficient, but this value originates from a single animal study [93] which
derived this value using an assumed septal thickness and has not yet been vali-
dated either in humans or in vitro. The diffusion coefficient is assumed to be the
same in the pulmonary tissue and blood, however 2°Xe diffuses faster in liquid
solution than organic polymers by up to three orders of magnitude [331, 332], so
this assumption might not be correct. The development of physiologically realistic
dissolved-phase 12°Xe phantoms by Filkins et al. [333] and Willmering et al. [334]
may facilitate better characterisation of the dissolved '?°Xe diffusion coefficients.

Factors such as lung inflation and participant age also affect CSSR metrics [141].
At TLC, h and S/V are reduced due to alveolar distension and associated stretch-
ing of the membrane layer [335]. h has been found to be increased in older people
due to age-related septal wall thickening [39].

Although the values we found for h were larger than other CSSR estimates, this
parameter was still sensitive to differences between the healthy volunteers and
lung disease patients, for whom h was significantly larger. Our results are sim-
ilar to Stewart et al. [39], who also found septal thickening in patients with SSc
using CSSR spectroscopy. 80% of SSc patients develop lung fibrosis [336], and
so the increase in h could be attributed to fibrosis of the alveolar membrane.
CSSR has not previously been used to assess gas exchange in patients with
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Table 9.5.1: Lung parameters found from the Patz model fits and their comparison with
literature values. In Ref. [330] the parameters were found using the MOXE. S/V and T
were not provided in Ref. [38]. For Ref. [147], the healthy volunteers were separated
into two groups: ‘healthy young’ (HY) and age-matched controls (AMC), and T was not
reported.

Work n Age Lung inflation | h (um) SV T (S)
(years) (cm™1)
Thiswork | 9 | 30+ 6 FRC + bag 145 + 278+ | 1.91 £
0.9 52 0.59
Patz, 2011 3 Un- ‘near FRC’ 125+ 118 + 1.5
[142] known 1.5 58
Chang, 10 | 34+ 18 | FRC + bag 9.2+ 210 + 1.3+
2014 [330] 6.5 50 0.3
Qing, 2014 |13 | 26 £ 9 TLC 71+ - -
[38] 0.9
Stewart, 10 | 45+ 16 | FRC + bag 9.7 128 + 25 %
2015 [39] 1.5 36 0.7
Stewart, 9 | 59+8 FRC + bag 11.6 £ 194 + -
2017 [141] 1.0 70
Xie, 2019 9 | HY:26 FRC + bag HY: 8.8 | HY: 196 -
[147] + 2, + 0.9, + 18,
AMC: AMC: AMC:
66 £ 7 10.6 £+ 133 £
2.3 18

PAH. These preliminary results revealed increased septal thickness in both PAH
patients (19.8 £ 3.2 um and 17.7 £ 1.1 um), which may be due to chronic in-
flammation of the small vessels [337]. There were also differences in the CSSR
spectra between the healthy volunteers and patients. Notably, the RBC peak was
substantially reduced or not visible for the SSc-PAH and PAH patients, probably
because of reduced capillary perfusion as a result of pre-capillary PH. The ability
to detect these changes with CSSR could be highly beneficial for future stud-
ies, in particular those which aim to measure longitudinal changes or treatment
response, because '2°Xe is non-invasive and does not use ionising radiation.
However, in both this work and the work of Stewart et al., the patients were older
than the healthy volunteers. Therefore, further investigation with age-matched
healthy controls is required to assess the impacts of lung disease on the alveolar
septal thickness.

Lung disease is often spatially heterogeneous, so developing methods for map-
ping h using regional CSSR imaging is clinically valuable. Here, we presented
initial results for a low-bandwidth gradient echo CSSR imaging sequence, which
simultaneously imaged the gas-phase and dissolved-phase ?°Xe signal by ex-
ploiting the chemical shift between the two resonances. This allowed for CSSR
images to be acquired at multiple delay times within a reasonable breath hold
time, without the need for undersampling or multi-array coils. By fitting each pixel
of the normalised dissolved-phase signal to the Patz model using the fitting pro-
cedure outlined in Section 9.3.5, maps were generated of not just the Patz model
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parameters but also their uncertainties. Reasonable agreement was found be-
tween spectroscopy and imaging parameters, however there were differences
between the spectroscopy uptake curves and the whole-lung mean uptake from
CSSR imaging. Initially, we thought that the increased F(t) values for CSSR
imaging could be a result of incomplete dissolved-phase signal saturation, since
the imaging sequence only used one RF saturation pulse per block instead of
the two used for spectroscopy. Although we confirmed that one saturation pulse
was able to achieve sufficient saturation, B¢ field inhomogeneities may mean
that the delivered flip angle was reduced in some parts of the lung. However,
if this was the case, we would expect to see higher signal at all tgyeiqy times,
whereas at short tye(qy times there was good agreement between the imaging
and spectroscopy uptake curves. Running the CSSR imaging sequence with
the frequency and phase-encoding gradients switched off resulted in an uptake
curve which showed very good agreement with CSSR spectroscopy, suggesting
that the differences are related to the spatial encoding gradients. To explore the
reason for the discrepancy between CSSR imaging and spectroscopy further, a
future experiment could be to perform CSSR imaging with the phase-encoding
and temporal-encoding interleave ordering reversed. In other words, instead of
repeating each CSSR block with the same tgeiqy at each phase-encoding step
before moving onto the next tgeiqy, €ach line of k-space would be repeated for
each tgeiqy before moving onto the next line. This would mean that the acquisi-
tion of each tgeiay image would be spread out over the entire sequence duration.
Another potential limitation related to the phase-encoding is that we used centric
phase-encode ordering to maximise the SNR, however this can lead to blurring.
With sequential encoding, the SNR may be lower, but initial data points which
were acquired before a steady-state was reached are less important.

Our CSSR imaging method was limited by the lack of longer tgelay images, which
constrains the fit accuracy in the linear section of the F(t) curves, leading to an
underestimation of T. It was not possible to acquire more than six usable tgelay
images because the SNR decreased towards the end of the sequence due to gas
T1 decay and the XTC effect [79]. During the delay time between the saturation
and excitation pulses, there is rapid exchange between the gas-phase and depo-
larised dissolved-phase '2°Xe, which replenishes the dissolved signal, but also
depletes the gas polarisation. To produce each tgeiqy image, the CSSR block
(containing two 90° pulses separated by tqeiqy) Was repeated for each of the 20
phase-encoding steps. Hence, acquiring six tqgeiqy images involves saturating the
dissolved-phase signal 120 times and applying 240 90° RF pulses. Attempting
to acquire a seventh tye(qy image was unsuccessful and the final images did not
satisfy the Rose SNR criterion [269]. The choice of tgelay times was also limited
by the breath hold time. With seven tge(qy times the required breath hold time
was 24 s, which was difficult for healthy volunteers and would be very challenging
for patients with lung disease. With six tgeiqy images, the breath hold was a more
manageable 17 s.

The need to repeat the CSSR block at each phase-encoding step within a rea-
sonable breath hold time placed a limitation on the achievable spatial resolution.
Similar to the work of Ruppert et al. [159], we used 2D coronal projection imag-
ing, so a more detailed regional analysis of the Patz model parameter maps was
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not possible. Kern et al. used 3D radial spatial encoding in their regional CSSR
sequence, allowing them to identify regional trends in the alveolar septal thick-
ness [155]. h was observed to increase in the anterior to posterior direction in
both healthy participants and those with COPD, although the trend was reduced
in the COPD patients. This is likely due to the increased pulmonary blood in
the posterior lung due to gravitational effects related to the subjects’ supine posi-
tion. Another limitation to our work is that the use of a combined dissolved-phase
and gas-phase imaging sequence means that we cannot separate the dissolved-
phase signal into the M and RBC components. Although this is not necessary
for fitting the signals to the Patz model, it means that the MOXE cannot be used.
We also lose potentially interesting spectral information by only acquiring the gas-
phase and dissolved-phase '2°Xe signal magnitudes. Although it is currently too
slow to be practical in humans, CSI-CSSR has the advantage of acquiring '>*Xe
spectra for every imaging voxel, allowing the mapping of the RBC, M and gas
ratios, frequencies and T, which may be affected by lung disease.

One possible solution to some of the issues with our sequence may be found by
using the Look-Locker acquisition approach published by Kern et al. [155]. An
advantage of this method is that the number of 90° RF pulses is greatly reduced,
lessening the depolarisation of the gas-phase signal. Additionally, the ability to
run several tgeiqy times simultaneously means that more tgeiqy images could
be acquired within a breath hold. To confirm the feasibility of the Look-Locker
acquisition strategy and to demonstrate the reproducibility of the method pre-
sented in Ref. [155], 2D finite difference method simulations were performed. A
small percentage difference of 3% was found between the magnetisation from the
Look-Locker acquisition and the unperturbed magnetisation. We tested a Look-
Locker CSSR spectroscopy sequence in four healthy volunteers and found mod-
erate agreement with standard CSSR spectroscopy, although this result may be
slightly biased because the Look-Locker uptake curves were manually scaled to
match those acquired with standard CSSR spectroscopy. This was done instead
of using a scaling factor based on the dissolved-phase/gas-phase flip angles be-
cause the very small gas-phase flip angle was difficult to measure accurately.
The Look-Locker CSSR results were therefore dependent on the standard CSSR
results, however the scaling is only important in the estimation of S/V; it would be
possible to extract h from the Look-Locker uptake curves without this scaling. Fu-
ture work will involve developing a Look-Locker CSSR imaging sequence, similar
to that of Kern et al. [155], but using 2D gradient echo simultaneous gas-phase
and dissolved-phase imaging as in our existing CSSR imaging sequence.

An alternative method for combining spectral and spatial measurements of dis-
solved 29Xe uptake is to perform time-resolved MESI with rapid spiral k-space
encoding [149, 150]. Development of such a sequence and its comparison against
the gradient echo CSSR imaging sequence presented in this chapter would be
an interesting continuation of this project.

It would be valuable to investigate the repeatability of the CSSR imaging maps. h
determined from CSSR spectroscopy has previously been demonstrated to have
good repeatability, with a similar coefficient of variation between scans to that of
PFT [141]. Kern et al. found good reproducibility of h and S/V derived from the
M signal using the SPLASH regional CSSR technique, although T was not repro-
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ducible [154]. The effect of factors such as lung inflation and By field strength
on CSSR spectroscopy and mapping also requires evaluation. Once our CSSR
imaging sequence has been fully validated against CSSR spectroscopy, its repro-
ducibility established and the effects of external factors understood, the goal will
then be to test this sequence in patients with lung disease. In particular, it would
be interesting to see whether the h maps are able to identify regional fibrosis in
patients with ILD. Ruppert et al. found increased h values in the irradiated right
lung of a rat when compared to the non-irradiated left lung, demonstrating the
sensitivity of this parameter to regional lung damage related to pneumonitis and
capillary bed destruction [159].

Another possible area of future work is the improvement of the gas exchange
models used to fit the CSSR uptake data. The Patz model and MOXE are analyt-
ical models which solve the diffusion equation over simplified geometries. More
realistic geometries, which include a non-uniform h, can be modelled using nu-
merical modelling approaches such as the finite element method (FEM). This
could improve the accuracy of modelled-derived parameters especially for ILD,
which is characterised by a spatially heterogeneous tissue thickness. Moreover,
the analytical models are limited by the need for many interrelated fit parameters,
so numerical modelling could act as a validity check for these parameters. Stew-
art et al. developed three FEM gas exchange models; a 3D cylindrical model
and two image-derived models, which used 2D histology images and micro-CT
images respectively [338]. These models, and our initial work to build on them
by developing a combined gas-phase and dissolved-phase FEM model, are de-
scribed in Appendix B.

9.6 Conclusions

Non-invasive measurements of clinically relevant parameters, such as alveolar
septal thickness, can be made using CSSR spectroscopy. We have reported an
error quantification method for estimating the uncertainty on these parameters,
which should aid their clinical interpretation. CSSR was capable of measuring
septal thickening in patients with SSc and/or PAH, although further comparison
with age-matched healthy controls is required to separate age-related changes
from pathologic changes. CSSR imaging with a low-bandwidth gradient echo
sequence allowed for regional measurement of alveolar septal thickness, which
could help quantify fibrosis in heterogeneous lung disease. Further comparison
of this method against CSSR spectroscopy is needed in order to validate our
approach. Future work will involve further optimisation of the CSSR imaging se-
quence, for example by implementing a Look-Locker acquisition strategy to in-
crease the number of tgeiqy images which can be acquired in a breath hold, and
testing the sequence in patients with lung disease.
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Chapter 10

Conclusion

The focus of this thesis has been the development and validation of hyperpo-
larised 12°Xe MRI/S methods for measuring pulmonary gas transfer and haemo-
dynamics. In this chapter, the main findings from each chapter of original re-
search are summarised, along with some proposed future work (more details on
the future work were provided in each experimental chapter). This chapter con-
cludes with a discussion of some of the emerging themes from this PhD project
and potential future research directions.

10.1 Summary

In Chapter 5, the physiological interpretation of '29Xe gas exchange metrics was
investigated by comparing them to standard clinical measures of gas exchange.
Three methods for modelling TLco from '2°Xe MRI metrics were developed and
compared. We applied Wang et al.’s physiology-based model [339] to a large co-
hort of asthma and COPD patients and found different linear coefficient values.
The prediction of TLgo was improved by using a random forest regression ma-
chine learning model, which used patient age, sex and VV and RBC:Gas from
129%e MRI as features. A framework was developed to use the random forest
model to create maps of predicted TLco, Kco and Va, providing additional re-
gional information and aiding the comprehensibility of 12°Xe gas exchange MRI.
The models showed good generalisability to a separate group of post-COVID-19
patients and healthy volunteers, however more work is needed to confirm their
validity in data acquired from different patient groups and research sites. Future
work for this project will include further assessment of our models with different
patient groups, in particular those with PVD, and with data acquired at 3 T to
further evaluate their generalisability.

In Chapter 6, a CS reconstruction for non-Cartesian dissolved '>*Xe MESI was
implemented, with the purpose of reducing scan time. Through the compari-
son of retrospectively analysed patient and healthy volunteer data, we demon-
strated good preservation of the dissolved '>Xe signals and signal ratios using
CS, compared with conventional gridding reconstruction. CS reconstruction al-
lows for the scan time to be halved (7 s instead of 14 s) by acquiring fewer radial
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spokes, which will be more comfortable for patients with breathlessness. Although
a prospectively undersampled sequence has not yet replaced the fully-sampled
sequence in our research protocols, the CS reconstruction is useful for cases of
patient breath hold failure or significant motion in the second half of the scan.
The CS reconstruction only requires the first 7 s of data, which means that im-
ages are salvageable in such cases. Preliminary experiments with NA dissolved
129X e imaging in healthy participants showed that reasonable image SNR could
be achieved using CS reconstruction, despite the lower signal strength in com-
parison to enriched 12°Xe. A possible continuation of this project would be the
further improvement of image quality and SNR by incorporating prior knowledge
of the T1 and RF pulse-induced decay of the gas-phase signal into the CS recon-
struction, as well as further validation in different disease populations.

Over the last few years, the amplitude of cardiogenic oscillations of the 12°Xe
RBC signal has emerged as a potential biomarker of pulmonary microvascular
function. In Chapter 7, we have contributed to the growing body of research
on RBC oscillations by proposing a novel sliding window keyhole reconstruction
technique for mapping the oscillation amplitude and phase. This method can be
applied retrospectively to dissolved-phase '**Xe imaging data, without the need
for additional acquisitions. The work presented in this chapter builds upon previ-
ous methodology: whereas previous methods assumed that the RBC oscillations
remained in phase over the lung, we showed that the phase is in fact spatially
dependent. Regional trends in the RBC oscillation amplitude and phase were
examined, as well as their inter- and intra-scan repeatability, in order to establish
these metrics in healthy volunteers before evaluation in patients with lung disease
in the next chapter.

Chapter 8 builds upon the previous chapter by applying the RBC oscillation map-
ping method to post-COVID-19 and CTEPH patients. No significant differences
were found between hospitalised COVID-19 patients, non-hospitalised long-Covid
patients and healthy volunteers, although the oscillation amplitude and phase
were higher in hospitalised COVID-19 patients who had residual lung abnormal-
ities. Overall, the results in COVID-19 patients did not provide evidence of mi-
crovascular disease in this cohort. In four CTEPH patients, the whole-lung os-
cillation amplitude and phase were similar to those of the healthy volunteers, but
the heterogeneity of both maps were significantly higher. Preliminary attempts
to validate our methodology against DCE-MRI, the gold standard for measuring
perfusion, and 2°Xe gas exchange MRI found that areas of increased phase
difference approximately corresponded to regions of low gas transfer and perfu-
sion and increased TTP. These initial results demonstrate the potential of RBC
oscillation amplitude and phase mapping for identifying microvascular damage,
but evaluation in increased patient numbers, including different PH subtypes, is
required to corroborate this.

In Chapter 9, methods for CSSR spectroscopy, imaging and analysis were pre-
sented. An efficient method for estimating the uncertainty on Patz model param-
eters was developed using bootstrapping. This is important for determining how
much confidence can be placed on the CSSR-derived metrics. A significantly
higher alveolar septal thickness was found in patients with SSc and/or PAH when
compared to healthy volunteers, using CSSR spectroscopy. However, the volun-
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teers were not age-matched and an age correction was not applied. Additionally,
the number of participants included in this chapter was small; the acquisition
of more CSSR data in patients with SSc and/or PAH is underway. A combined
dissolved-phase/gas-phase gradient echo sequence that exploits the chemical
shift artefact was developed for regional CSSR imaging. This allowed for spatial
mapping of the alveolar septal thickness, which will be a useful tool for quantifying
regional fibrosis and emphysema. More work is needed to optimise and validate
this approach against CSSR spectroscopy and Dixon/MESI-type sequences be-
fore it can be used for lung disease patients. Other techniques for CSSR imaging
may be explored in the future, such as a Look-Locker type acquisition strategy.
A 29Xe multi-channel array coil has become available at our site [340], which
may be useful for increasing spatial sensitivity in a CSSR imaging sequence.
Another possible avenue of future research is the investigation of numerical gas
exchange models which could help the interpretation of CSSR data. Preliminary
work towards a 3D geometric model of 1>°Xe diffusion in the alveolar airspaces,
membrane and capillaries is described in Appendix B. This model could allow for
simultaneous prediction of ??Xe diffusion coefficients and CSSR data.

10.2 Conclusions and Outlook

Hyperpolarised '2°Xe functional lung MRI holds huge clinical potential, provid-
ing sensitivity to early lung disease and non-ionising measurement of disease
progression and treatment response. In particular, dissolved-phase '2°Xe MRI
is uniquely poised to probe regional gas exchange and can provide a wealth of
information which is otherwise unavailable from other imaging modalities or lung
function tests. However, despite its many advantages, there are several barriers
to the widespread adoption of this technique and it has mostly been limited as a
research tool. Since 2015, our group has had UK Medicine and Healthcare Reg-
ulatory Authority approval to perform routine clinical lung imaging using hyperpo-
larised gas. In the USA, Polarean Imaging were recently granted FDA approval
for their hyperpolarised '2°Xe contrast agent, which should help to increase ac-
cess to '29Xe lung MRI. One of the most significant hurdles to the expansion of
129%e MRI is the high cost associated with the required infrastructure, particu-
larly for hyperpolarisation. To make hyperpolarised '?°Xe MRI more accessible,
a priority needs to be reducing operational costs.

CS reconstruction can be used to decrease scan time for dissolved-phase ?°Xe
MRI and possibly reduce the required dose, by allowing the use of either lower
cost NA Xe or a lower volume of enriched 122Xe, both of which would make '2°Xe
MRI cheaper. Sequences which combine multiple **Xe measurements into one
scan, such as single-breath ventilation and gas exchange imaging [174] or com-
bined CSSR and DW-MRI sequences [146, 147], are enticing and may be facili-
tated by the use of CS. Low field (<0.5 T) MRI is associated with reduced mate-
rial and operational costs and has additional advantages specific to lung imaging,
namely, improved 'H SNR and longer '#°Xe T [207]. Our group is starting to
investigate '29Xe MRI at 0.5 T. However, performing dissolved-phase '?°Xe imag-
ing at low field strength will be challenging because the '2°Xe resonant frequency
differences are field strength dependent. The frequency shift between the M and
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RBC resonances is 200 Hz at 3 T, but is reduced to only 20 Hz at 0.3 T, which may
prohibit their separation [207]. Another aspect to consider when trying to increase
the accessibility of '?°Xe MRl is the dissemination and interpretation of results by
clinicians, physiologists and patients. Involving these stakeholders in the process
is important and a project is currently underway as part of the MAGNIFY study,
led by our research group, to co-produce a toolkit to support the communication
of 129Xe MRI results [341].

A prominent theme throughout this thesis is the progression from whole-lung met-
rics towards regional mapping. Lung diseases are often heterogeneous in nature,
so spatial encoding of lung function measurements is important for detecting
pathologic changes. In chapters 5, 7, 8 and 9 we described efforts to create
regional maps of metrics that have generally only been measured as global av-
erages. The benefits of this were especially apparent in Chapter 8, where we
found that the coefficient of variation of the RBC oscillation amplitude and phase
maps were more sensitive to differences between healthy people and those with
CTEPH than the average map values.

The purpose of this thesis was the methodological development and initial vali-
dation of dissolved-phase '2°Xe MRI/S techniques, however in future, more em-
phasis needs to be placed on demonstrating their impact. The role of 12°Xe gas
exchange MRI in driving treatment decisions and assisting in the diagnosis and
management of patients needs more substantiation to propel clinical translation.
For example, the CSSR-derived alveolar septal thickness holds potential as a
measure of fibrosis, and could conceivably act as a non-invasive biomarker for
treatment response to anti-fibrotic drugs. RBC oscillation amplitude and phase
mapping have shown potential for measuring pulmonary microvascular function
and a worthwhile continuation of this project would be to investigate post-surgery
changes in CTEPH patients undergoing PEA, to ascertain whether this method
can help predict patient outcomes.

In conclusion, '29Xe MRI is a versatile and sensitive method for measuring pul-
monary gas exchange function, and the work presented in this thesis will hope-
fully contribute towards the wider clinical translation of this technique.
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Appendix A

2D Numerical Gas Exchange
Simulation

129X e gas exchange in the alveoli, including the transport of 1>*Xe magnetisation
out of the gas exchange region via blood flow, was simulated using a 2D finite
difference method (FDM) model. The FDM approximates the spatial derivatives
of a differential equation by dividing the space and time domains into discrete
intervals in a mesh and using the difference between the values at neighbouring
nodes [342].

The model geometry is shown in Figure A.0.1A, where ‘upstream’ denotes blood
flowing into the gas exchange region with no dissolved 2°Xe and ‘downstream’
contains blood with dissolved '2°Xe outside of the gas exchange region. The
width of the slab (h) was 10 um and the length of the gas exchange region was
0.5 mm, which was estimated from the capillary transit time, T ~ 1 s and blood
flow velocity, which was assumed to be a linear (plug) flow of v ~ 0.5 mm s™1
[343, 344]. The upstream and downstream capillary lengths were 0.1 mm, chosen
so that the simulated downstream magnetisation would not reach the end of the
model, avoiding end effects.

To minimise the computational power required, the 2D geometry was divided into
500 horizontal lines so that the finite difference equation only had to be solved
once (in 1D). The 1D diffusion equation (Equation 3.4.1) was solved in Matlab
using the FDM approximation:

oM, 5

where M, is the magnetisation at each node, 6 is the forwards difference operator

and D is the 129Xe diffusion coefficient, taken to be 3.3 x10~% cm2s~1,

The solution, represented in Figure A.0.1B, was found for an arbitrary time period
chosen to be longer than the total time of the 2D model. The horizontal lines
were assumed to be independent of one another, such that if there was no blood
flow, each one would be equivalent to the 1D solution. The total magnetisation
was given by a Y x X x J matrix, where Y was the total number of horizontal lines



(500), X was the number of x points (100) and J was the number of time points
(20,000). Figure A.0.1C demonstrates how an individual line in the 2D geometry
is merely the solution of the 1D simulation.

(A) (B) (€
y 2D Solution

_________ Downstream ®
] o
Gas exchange region! | — %
L Air A — 5]
space t Espace 1D Solution S—
| Blood flow I : g
__________ Upstream vx E

0 h Gas exchange direction

Figure A.0.1: (a) The geometry used for the 2D FDM model. ?°Xe enters from the
airspace into the gas exchange region, where diffusion takes place. Blood flows from
upstream through the gas exchange region and onwards downstream, taking '°Xe out
of this region. To simulate this, the geometry was divided into horizontal lines. The
diffusion equation was solved for a single line (b) and then the 2D solution (c) is made up
of copies of this solution at different times.

To include blood flow, each line was shifted forwards according to the capillary
transit time. The index of these ‘shift times’ was found from %, where Ay and
At are the y and time steps, which were 1.4 um and 10 us respectively. At each
shift time the magnetisation density of a horizontal line was set to the value of
the 1D solution at the next time such that there was an overall flow of velocity
v. This meant that the flow of fresh blood into the gas exchange region and the
magnetisation leaving the gas exchange region downstream were captured in the
simulation.



Appendix B

3D Numerical Gas Exchange
Simulation

B.1 Introduction

In this thesis, CSSR uptake data were fit to the Patz model. However, this is
an analytical model which uses a simple 1D model of an alveolar septum with a
uniform thickness. Gas exchange modelling may be improved by using numeri-
cal methods such as the finite element method (FEM) to simulate more realistic
geometries. FEM analysis involves splitting the domain where the problem is de-
fined into small 2D elements in a mesh and solving the problem in each of these
elements to reach an approximate solution, as illustrated in Figure B.1.1.

L

Figure B.1.1: The FEM involves dividing a geometry into small discrete parts, then ap-
proximating the unknown function for each element. This creates a system of equations
which are recombined to form a global system of equations which give the final solution.

FEM modelling of ?*Xe gas exchange in the lungs has been demonstrated for
several different geometries by Stewart et al. [338]. The first of their models used
a cylinder to represent a pulmonary capillary, surrounded by a tissue shell. The
signal from dissolved-phase 12°Xe transported out of the gas exchange region by
the blood was taken into account by splitting the cylinder in half and removing the
tissue compartment for one of the halves, as shown in Figure B.1.2.

Two image-based models were also presented in Ref. [338], which used 2D his-
tology images and 3D micro-CT images from ex vivo lung tissue biopsies respec-
tively. The 2D histology model was segmented and extruded to make a pseudo-
3D model and the same principle as the cylinder used to deal with the blood flow.
The micro-CT model used 3D volumetric images, which offers the most realis-
tic geometry, but a significantly lower spatial resolution than the histology-based
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Figure B.1.2: The cylindrical geometry from Ref. [338], where Ig and Ic are the lengths
of the gas exchange region and total capillary length, respectively. D and Q represent
diffusion and perfusion. Copyright 2016 Elsevier, reproduced with permission from [338].

model. A limitation of this model is that the images did not include capillaries from
outside of the gas exchange region, so the effects of blood flow could not easily
be included.

A differential diffusion equation was solved over these geometries with Dirichlet
boundary conditions imposed at the air-tissue barrier, representing a constant
inflow of gaseous 12°Xe to the dissolved compartments. This is equivalent to as-
suming an infinite reservoir of gas-phase ?°Xe, which is justified because only
a small (~2%) proportion of the gaseous '2°Xe diffuses into the membrane and
capillary blood. However, by simulating the gas-phase magnetisation in addition
to the dissolved-phase magnetisation, more accurate solutions may be reached.
The entire journey of 12°Xe from inhalation, diffusion and uptake could be simu-
lated, including the Brownian motion of the gas-phase '2°Xe.

In this section, we describe the progress made so far towards the development of
a combined gas-phase/dissolved-phase FEM gas exchange model.

B.2 Methods

FEM modelling was performed using COMSOL Multiphysics (5.6, Burlington,
MA), which was accessed via visualisation nodes on the University of Sheffield
ShARC high performance computer cluster. To represent both the gaseous and
dissolved-phase '29Xe magnetisation, the alveolus was modelled as a sphere of
radius Rq = 0.15 mm surrounded by a thin membrane layer of width h = 10 um
(Figure B.2.1). In the preliminary simulation, this membrane was not further sep-
arated into tissue and capillary compartments and so no blood flow was included.
In the following simulation, the membrane was divided into a tissue layer of width
1 um and a capillary layer of width 10 um. To account for the flow of blood con-
taining dissolved '2°Xe out of the gas exchange region and into the bloodstream,
an outflow tube of radius 35 um was included to simulate a pulmonary venule.
The length of the venule was chosen to be greater than the product of the blood
flow velocity and the total simulation time, such that the magnetisation in the tube
continued to contribute to the total magnetisation for the entire simulation. To
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reduce computation time, the axial symmetry of the spherical geometry was ex-
ploited and simulations were run for a 2D slice of the sphere which was then
rotated around the r = 0 axis to obtain the 3D solution.

The geometries were meshed using triangular elements. The minimum element
size was 0.006 um in the tissue and capillary layers and the maximum element
size was 0.1 um in the tissue layer and 1 um in the capillary layer. These values
were chosen to ensure that the mesh consisted of at least ten elements in the
radial direction for each layer. For the alveolar airspace, predefined mesh size
settings were used (minimum element size = 0.226 um, maximum element size
=67 um).
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Figure B.2.1: Geometries of the CSSR FEM models: (A) a spherical alveolus was con-
sidered, which was surrounded by a membrane layer of width h. (B) To include blood
flow effects in the alveolus model, the membrane layer was divided into a tissue layer of
width & and a capillary layer of width h — §. The contribution from 2°Xe magnetisation
outside of the gas exchange region was incorporated by the addition of an outflow tube,
representing a small blood vessel.

Gas exchange was simulated for an ideal CSSR experiment, assuming perfect
dissolved-phase saturation such that the dissolved-phase magnetisation is ini-
tially zero. Magnetisation evolution was modelled using the partial differential
equation for diffusion:

aM—V DVM B.2.1
~ =V (OvM) (B.2.1)

This equation was solved within the gas-phase compartment and dissolved-phase
compartment. The large difference in diffusion coefficients between the air space
and the dissolved-phase and the low Ostwald solubility lead to a discontinuity at
the tissue-gas boundary. This amounts to a ‘stiff-spring’ boundary condition [338],
given by



(=DVM3) - i = vss(K21M1 — M»), (B.2.2)

where D is the dissolved '2°Xe diffusion coefficient, taken to be 3.3 x 1076 m?
s~1, M; is the magnetisation in region i, A is the unit vector perpendicular to the
boundary, vs;s is the stiff-spring velocity and K> is the ratio of Ostwald solubilities
between the two regions. Vss is a non-physical velocity which must be large
enough that a continuous '2°Xe flux can cross the boundary and that (K21 M1 —
M>) can approach zero [338]. The value used throughout this work was 1000
ms~—L. Zero-flux boundary conditions were enforced at all other boundaries. The
initial conditions used for the simulation were M = 1 mol m—3 within the alveolar
airspace and M = 0 in the dissolved-phase compartment.

To model blood flow, the dissolved-phase was separated into tissue and capillary
compartments and in the capillary, the convection-diffusion equation (Equation
B.2.3) was used to include a blood flow term. There is a linear increase after
~0.1 s in the 12°Xe uptake curve from blood containing dissolved '29Xe flowing
out of the gas exchange region.

oM
— = V.(DVM)—V.(vM) (B.2.3)

The time-dependent magnetisation with and without blood flow was found by in-
tegrating the magnetisation density in each compartment over its volume.

B.3 Results

Figure B.3.1 shows the diffusion of magnetisation from the alveolar airspace and
into the membrane at different time points, without blood flow. With a membrane
thickness of h = 10 um, the dissolved-phase magnetisation saturated at ~0.4 s,
which is later than expected by the Patz model. With the inclusion of blood flow in
the model, the transport of 12°Xe magnetisation into the pulmonary capillary and
out of the gas exchange region can be observed (Figure B.3.2B).

There was good agreement between the FEM and Patz model when the Patz
model septal width was equal to twice the numerical model value. This is due to
geometry differences; in the single alveolus model the dissolved-phase is sourced
with gas on one side, whereas in the Patz model, the dissolved-phase is supplied
with gas from both sides of the septal slab. Figure B.3.3A shows the dissolved-
phase magnetisation over time for the FEM sphere model with no blood flow,
along with the Patz model result. Fitting the simulated dissolved-phase magneti-
sation from the FEM model with blood flow to the Patz model resulted in good
agreement and a fitted septal width of 9.6 um (Figure B.3.3B).
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Figure B.3.1: The diffusion of 12°Xe from the alveolar airspace into the dissolved-phase
in the alveolar sphere model, with no blood flow, shown at four time points. GP = gas-
phase, DP = dissolved-phase.
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Figure B.3.2: The diffusion of 29Xe from the alveolar airspace into the dissolved-phase
in the alveolar sphere model, with blood flow, shown at four time points. This model
separated the dissolved-phase compartment into tissue and capillary, as shown by the
zoomed in images.

B.4 Discussion

We have started to develop a numerical gas exchange model which captures
both the gaseous and dissolved-phase '>°Xe magnetisation, something that has
not been done previously. Instead of Dirichlet boundary conditions, a discon-
tinuous boundary was applied at the gas-dissolved interface, governed by the
Ostwald solubility and the differences in diffusion coefficients between the two
media. Comparison of our modelling results with the Patz model showed that
the dissolved-phase thickness in the alveoli model was equivalent to double this
thickness in the Patz model, due to geometry differences.

Although in its early stages, this model will eventually allow the journey of 2°Xe
to be temporally mapped from the alveolar airspace into the lung tissue and cap-
illaries. Future work will involve using the numerical model to simulate both the
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Figure B.3.3: (A) The dissolved-phase magnetisation simulated with the sphere model for
no blood flow (h = 5 um) and the Patz model results for blood flow and no blood flow (h
=10 um). (B) The dissolved-phase magnetisation simulated with the sphere model with
blood flow (h = 5 um) and the Patz model fit to the simulated data.

Brownian diffusion of the gaseous 2°Xe and the diffusion across the tissue bar-
rier into the bloodstream using the Bloch-Torrey equation. This can then be com-
pared to experimental results from healthy subjects and to results from analytical
modelling. For diseased lungs, the model may be able to offer insight to the under-
lying disease mechanisms by changing parameters such as the tissue thickness,
alveolar radius and perfusion.

There are some limitations to our FEM model. Blood flow was modelled as a
linear flow, but pulmonary capillary blood flow is known to be pulsatile. In healthy
people, the >*Xe RBC signal oscillates with an amplitude of ~15% (see Chap-
ter 7) and this is increased/decreased in lungs with post/pre-capillary disease. A
pulsatile blood flow could be implemented into the FEM model by using an in-
put waveform which is periodic and oscillates at the heart beat frequency. Using
a 2D axially symmetric geometry reduced computation time in comparison to a
fully 3D model, but required the assumption that 2D diffusion can be scaled up to
3D diffusion. Since diffusion is a random process, there may be some differences
between diffusion in the 2D slice and diffusion in the 3D sphere. However, any dif-
ferences would occur on very small time scales and the overall behaviour is likely
to be the same. Although the model presented in this section uses a more realistic
geometry than the 1D analytical models, it is still a simplified representation which
may limit its usefulness in providing information about pulmonary disease. More
realistic geometries which incorporate a heterogeneous tissue thickness can be
modelled using micro-CT lung images, as was done by Stewart et al. [338].

B.5 Conclusions

Initial steps have been made towards a full 3D alveolar airspace model, which
could allow simultaneous prediction of the '2°Xe diffusion coefficients and mi-
crostructural parameters from CSSR spectroscopy.
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