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Abstract

Tokamak operation is plagued by the presence of magnetohydrodyamic instabilities which impose

limitations on their efficiency and can cause early termination of the plasma. Understanding of

many of these instabilities comes from nonlinear numerical simulations of resistive magnetohydro-

dynamics which are challenging to perform owing partly to the timescales that must be resolved.

Fortunately, simplified ordinary differential equations called the ANAC and ANAET models can

be derived using symmetry arguments with bifurcation theory which display qualitative similarities

to observed tokamak instabilities. The qualitative similarity of these models motivates exploring

approaches which allow them to be related quantitatively to experiment.

In this dissertation we implement two data-driven approaches which can be used to either derive

simplified models of tokamak instabilities or be used to match already known simplified models to

experimental diagnostics. The first of these methods is a popular regression framework called the

sparse identification of nonlinear which we validate on a low-dimensional model of magnetocon-

vection behaviour and use to derive low-dimensional models directly from numerically simulated

magnetoconvection PDE data. We suggest that implementation of the weak form and constraints

are almost certainly required in future applications. Results show that models derived from POD

modes of magnetoconvection PDE data can show expected bifurcations present in the PDE.

The second approach is called the ensemble Kalman filter and is applied to two models which

resemble the sawtooth instability in tokamaks. We demonstrate how the ensemble Kalman filter

can be used for parameter estimation of these two models in experiment like conditions, display-

ing robustness to high degrees of noise, low sampling rates and multiscale dynamics. By using a

stochastic integration scheme, we draw parallels between observed sawtooth instabilities in toka-

maks and the ANAET model.
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the coefficient magnitude for b in the ȧ equation denoted ξb. As the coefficient is

varied there is a transition from no convection (top left) to oscillatory convection

which becomes progressively more nonlinear until an eventual transition to steady

convection (bottom right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

83 POD decomposition of ψ, T and A for the chaotic case. . . . . . . . . . . . . . . . 134

84 Reproduction of the full system statistics from the POD decomposition for a) ψ,

b) T, and c) A. The left figure shows the switching times and the right shows the

PDFs of the PDE and POD time series. . . . . . . . . . . . . . . . . . . . . . . . . 134

85 Comparison of the KL, AICc and nλ scoring methods. The diagonal figures indicate

the score being minimised on each row. For each row we also calculated the other

scores, but these are not minimised. . . . . . . . . . . . . . . . . . . . . . . . . . . 137

86 The Pareto front for models evaluating by the average number of Lyapunov times

predicted over the test trajectory. Red crosses represent models which became

unstable under longer integration. The green dots represent the models which obtain

a minimum KL for a given number of coefficients and similarly the yellow obtain a

minimum for the integrated AIC score. . . . . . . . . . . . . . . . . . . . . . . . . . 138

87 A comparison of models along the Pareto front which predict, on average, a maxi-

mum number of Lyapunov times. Each row of the Figure shows a model of different

sparsity with comparison of the switching times, PDF, on attractor dynamics and

the resulting model shown in the right-column. . . . . . . . . . . . . . . . . . . . . 140

12



88 Scores for different models during the model selection process. The blue dots show all

identified models, while the red crosses represents models which became unstable

while finding the average number of predicted Lyapunov times. In this instance,

yellow dots are models which have a maximum number of predicted Lyapunov times

for a given number of coefficients, and green dots have a minimum AIC score. . . . 141

89 A comparison of models along the Pareto front which predict minimal KL scores.

Each row of the Figure shows a model of different sparsity with comparison of the

switching times, PDF, on attractor dynamics and the resulting model shown in the

right-column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

90 Scores for different models during the model selection process. The blue dots show all

identified models, while the red crosses represents models which became unstable

while finding the average number of predicted Lyapunov times. In this instance,

yellow dots are models which have a maximum number of predicted Lyapunov times

for a given number of coefficients, and green dots have a minimal KL score. . . . . 143

91 Comparisons between the POD data (green), SINDy model (red) and Knobloch

model named KDW (blue). The left figure shows histograms of the switching times,

showing how long trajectories typically take to move between a and −a. The right

figure shows PDFs of the different variables. . . . . . . . . . . . . . . . . . . . . . 144

92 Comparison of the integrated trajectories of the POD data (blue), SINDy model

(dashed blue) and the Knobloch model named KDW (dashed red). . . . . . . . . . 145

93 Convergence of the state and parameters for measurements of a and ȧ using filterpy.
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113 Example of resulting downsampled ȧ for different observation rates with additive

noise set to 10% of the signal standard deviation. . . . . . . . . . . . . . . . . . . . 191

114 Counts of the number of diverging runs out of 30 seeds for varying sampling rates

and noise. The results are displayed on a grid and each number corresponds to the

number of diverged run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

115 Mean values over all non-divergent seeds for all parameters for varying noise and

sampling rates. The colourbars are all set to a range of ±100% of the parameter’s

true value except for parameters which should be zero are set to have minimum and

maximum scales ±0.01. The title shows the parameter’s true value, and in each

subplot white indicates means close to true parameter value. . . . . . . . . . . . . 194

116 Boxplots for fixed noise δobs = 0.1σ̃i for varying assimilation time-steps. Medians

are shown as solid red lines and means as green triangles and the dashed blue line

is the true value of the parameter. The results here are for observations of ȧ and b. 195
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1 Introduction

In 2022, the world population reached 8 billion for the first time and is set to continue to rise

until peaking in the 2080s at over 10 billion [176]. During this time, global energy demand will

increase substantially and meeting these needs will become a serious challenge. Currently most of

the world’s energy production is met with fossil fuels with their consumption still increasing [143].

The reliance on fossil fuels to fill this increase in energy demand poses serious issues. The first

issue is that they constitute a finite resource and will eventually run out. The second larger issue

is their contribution to global warming and increase in atmospheric CO2 which has resulted in an

increase in global temperature [78].

Despite the Paris agreement, CO2 emissions have not yet peaked [144] and predictions based on

current policies expect that we will surpass the threshold of 1.5◦C above pre-industrial levels [177,

178]. This has placed an ever-growing emphasis on the need to generate energy from renewables

or non-carbon based energy sources. Within non-carbon sources, nuclear fission is currently the

most viable at present. In the world there are around 440 nuclear power plants, however, due to

negative public opinion new reactors have rarely been built with the last power plant in the UK

constructed one year after the Chernobyl accident in 1986. This event has skewed the perception

of nuclear despite nuclear having an otherwise exceptional safety record compared to fossil fuels

[58][pg. 10]. Another major concern with nuclear fission plants is the long-lived radioactive waste,

an issue which would have to be addressed. Despite these perceptions new sites are set to open to

meet increasing energy needs [181].

Figure 1: Reaction cross-sections denoted by 〈σv〉 for some fusion reactions with temperature. The
most favourable reaction is given by D-T. Figure taken from [78].

An appealing alternative to fission is nuclear fusion. As opposed to splitting apart heavy atoms to

produce neutrons in a self-sustaining reaction fusion binds together light atomic nuclei producing

minimal radioactive waste of different character to fission. Fusion has many advantages: there are

no direct CO2 emissions, fuel sources have a long-time supply, and the radioactive waste produced

is short-lived compared to fission [58][pg. 17]. There are two main approaches for nuclear fusion,

namely inertial confinement fusion and magnetic confinement fusion [88][§7 & §9]. The former

typically uses lasers to cause ablation of the surface of a fuel pellet, causing it to implode and

thus fusion to take place. The latter confines the fuel using magnetic fields at high temperatures.

Unfortunately, economic generation of electricity from fusion through either approach turns out to
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be extremely complex, making fusion a long-term solution to energy generation problems [58][pg.

6].

The most favourable reaction is given by the fusion of the hydrogen isotopes called deuterium (one

neutron) and tritium (two neutrons)

D + T →4 He (3.5MeV ) + n (14.1)MeV (1.1)

where the energy results from a mass-deficit in the reaction and we use D to denote deuterium

and T for tritium. The reaction produces a neutron (n) and a helium nucleus (alpha particle).

For the reaction to take place the two nuclei must collide and overcome the Coulomb repulsion

force. At low energies the reaction has a small cross-section (essentially the probability of reaction).

Figure 1 shows the cross-section of some plausible reactions highlighting that the D-T reaction has

higher cross-sections at lower energies. Classically for this reaction to take place we would need

temperatures more than 3 billion Kelvin (1keV ≈ 11600K), however due to quantum tunneling

and other cross-sectional dependencies on temperature, lower temperatures can be used [19][pg.

5]. In reality, temperatures of around 200 million Kelvin are required for particles to have enough

energy for fusion to occur [88][pg. 43].

Deuterium is an isotope of hydrogen containing one neutron and can be found abundantly in water.

On the other hand, tritium is a radioactive isotope of hydrogen which is not found abundantly in

nature due to its short half-life [58][pg. 27]. However, it can be obtained from lithium

6Li + n →4 He (2.05MeV ) + T (2.73MeV ) (1.2)

and so neutrons from the fusion reaction are used to bombard Lithium breeding blankets and

produce tritium. Lithium is a relatively abundant resource and so the consumable fuels in fusion

are really Li and D [88][pg. 137].

One of the main objectives in fusion is creating net energy output. To create the conditions for

fusion, energy must be supplied to the reactor and eventually we would require that the energy

out exceeds the energy supplied. In the D-T reaction around 80% of the energy is carried by the

neutron and the release of this neutron is how fusion reactors generate energy for thermal heating.

The alpha particle carries around 20% of the energy and is retained in magnetic confinement

devices owing to its charge and this can be used to sustain the fusion reaction. At sufficiently high

temperatures, alpha particle heating alone can be enough to sustain the fusion reaction and this

point is called ignition. The ignition criterion is calculated by finding when alpha particle heating

balances the losses [88]. The condition for ignition is

n× τE > 1.7× 1020m−3s, (1.3)

where n is the plasma density and τE is the energy confinement time. The energy confinement time

expresses the ratio of total plasma energy to the rate at which energy is lost from the plasma [88][pg.

41]. In D-T reactions this corresponds to energies of around 30keV. However, as cross-sections and

other parameters depend on plasma temperature, temperatures of 10-20keV are favourable [88][pg.

43]. This corresponds to temperatures of 100-200 million Kelvin, hotter than the surface of the

Sun. The ignition condition is more commonly written as the fusion-triple product [88][pg. 43]

nTτE = 3× 1021m−3keV s, (1.4)

where T is the plasma temperature.
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Figure 2: a) Schematic diagram of a tokamak showing the general configuration of the magnetic
field coils and plasma. Figure taken from [90]. b) Circular cross-section toroidal co-ordinate system
with minor radius a and major radius R.

Another view of a viable reactor is the case where a self-sustained reaction is not achieved but the

energy return exceeds the energy input. This is expressed as the ratio

Q ≡ fusion power produced

heating power supplied
(1.5)

where the ignited condition corresponds to Q → ∞. A Q value of 5 or more has energy yield

comparable to the external heating, but still remains far from economic energy production [42][pg.

6].

At fusion temperatures the fuel is fully ionized and there are no materials which can withstand

direct contact. A magnetic field must then be used to confine the plasma away from the reactor

walls. This occurs because of the Lorentz force

F = qe (v ×B) , (1.6)

where qe is the particle charge, v the particle velocity and B the magnetic field. Immediately

it can be seen that for a particle of charge qe no force is exerted if they travel parallel to the

magnetic field. Forces are only exerted on motions perpendicular to the magnetic field and as a

result particles gyrate around magnetic field lines.

Early fusion devices were often linear in design resembling long solenoids with an applied axial

field. Particles were therefore confined to travel along the axis of the device, however, end losses

must be dealt with. One solution are so-called magnetic mirrors at each end which reflect particles

through an increasing magnetic gradient. Despite this, end losses in these devices were still too

high [112][§10.2.1.2]. A natural solution to end losses is to join the two ends of the containment

device in a torus shape, thus closing magnetic field lines on themselves in the toroidal direction

(the long way around the torus) with general geometry shown in Figure 2.

It turns out that a toroidal field alone is insufficient for confinement of the plasma in a torus. The

magnetic field in a torus with purely toroidal field is necessarily non-uniform and the magnitude

of the magnetic field varies inversely with major radius [42][pg. 10]. On the inside of the device

closer to the major axis field lines are more crowded, causing the radius of gyration to be larger

on one side of each orbit than the other [112][pg. 370]. This gives rise to what is called a grad-B

vertical drift for electrons and ions in opposite directions. This separation of charge in turn results
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in a vertical electric field, producing an E×B drift which is the same for both particles and causes

a drift radially outward losing confinement shown in Figure 3. It is therefore necessary to include

a poloidal field component (magnetic field the short way around the torus) so that the resulting

field winds helically around the torus. The poloidal field comes from the current in the plasma

itself which is generated by transformer action shown schematically in Figure 2 a). A current is

passed through the inner poloidal field coils which creates a flux change in the torus inducing a

current in the toroidal direction [16]. As the current is generated by transformer action tokamaks

are pulsed devices and do not operate indefinitely.

Figure 3: E ×B resulting from a purely toroidal field in a torus. Figure adapted from [112].

The plasma current also serves the second important function of heating the plasma through

plasma collisions. This is called Ohmic heating, but becomes less effective at heating the plasma

as it becomes hotter. For this reason, plasmas can only reach up to 50 million degrees when heated

Ohmically which still falls short of the requirement for ignition [88]. Secondary heating methods

are therefore employed within tokamaks to reach higher temperatures. One common method is

neutral-beam injection (NBI) where deuterium ions are accelerated to high energies and heat the

plasma by collisions [112][§10]. Before the ions enter the plasma, they must be made neutral

otherwise they will be affected by the magnetic field. A consequence of NBI is that the momentum

transfer can cause the plasma to rotate in the laboratory frame of reference.

During research of the tokamak it was experimentally observed that an increase in plasma current

resulted in an improvement of both confinement times and plasma temperature [88][§10.1]. This

prompted the design of the Joint European Torus (JET) which began operations in 1983. JET

showed significantly improved confinement times versus previous tokamaks, able to reach higher

plasma temperatures than previously achieved. In 1997, during a series of D-T campaigns, JET

achieved a Q value of Q ' 0.67 but has since reached the end of its operational life-span in

December 2023. Since the 2000s, much of JET’s operations have been in support of the design of a

new tokamak named the International Thermonuclear Experimental Reactor (ITER) in Cadarache

in the south of France. ITER is a joint international collaboration which is set to achieve Q values

of Q ≥ 10 with pulse durations of t = 400s, demonstrating a hot plasma mainly heated by alpha

particles [95]. Successful operation of ITER is expected to lead to the development of the first

commercially viable reactor known as DEMO.

A significant amount of work has been dedicated to the developmental challenges remaining for

ITER outlined on the Eurofusion page [180]. One of the primary concerns is the role that instabili-

ties will play in ITER’s operations. For example, the on axis current which is used to both heat the

tokamak and generate the poloidal field is also the driving source of prominent large scale magne-

tohydrodynamic (MHD) instabilities [54]. One such instability is the kink mode which is thought
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to be responsible for the sawtooth instability which produces a periodic rise of the central plasma

temperature followed by a sudden crash and re-organisation of the magnetic field [34]. While the

instability does not necessarily inhibit tokamak operation, other instabilities certainly can result in

termination of the plasma and ultimately damage plasma facing components. There is also further

concern that the sawtooth instability can seed other more deleterious instabilities which will cause

termination of the plasma and loss of confinement, thus limiting the achievable performance [34].

Resistive and ideal MHD play a key role in understanding the cause of such instabilities [139],

but what remains clear is that performing such simulations is challenging [131], with the exact

mechanism behind instabilities in many cases remaining disputed [136]. The complex nature of

these instabilities underpins the need to build simplified models of their behaviour.

The prominence of MHD instabilities during operation is the result of many tokamaks operating

near instability limits because this is where the best performance is achieved [56]. This observation

has led to the application of what is called bifurcation theory [71, 72], which performs a qualitative

study how solution behaviours change as parameters are varied. Close to the onset of instability,

we assume that the system is governed by a small number of ordinary-differential equations that

topologically capture the behaviour of the full system. Bifurcation theory can be viewed as a

generalization of linear stability theory, where higher order terms in the Taylor series expansion of

say partial differential equation variables are retained and nonlinear models are developed. The

derivation of these models can be further constrained by the symmetries present in a tokamak,

namely an invariance of the solutions in the toroidal and poloidal directions or constrained by en-

ergy preservation where ideal magnetohydrodynamics is relevant [72]. However, modern tokamaks

typically feature non-circular cross sections due to plasma shaping and divertors which aid with

plasma exhaust [16][§1.6], so the poloidal symmetry is doubtful. In any case, a number of models

have been derived which stand as candidates for observed tokamak instabilities [71] and provide

at least qualitative information on instability behaviour.

The next question that can be asked is how these qualitative models can be related quantitatively

to either experimental diagnostics or numerical models. If models do perform successful predic-

tion of experiment or numerics, they could yield either methods for control or some insight into

the underlying physics [72]. Equating these models to experiment is, however, far from simple.

Many instabilities are often on the order of millisecond or faster events [16][§7.1], separated by

longer quiescent periods [131]. This behaviour also makes accurate measurement and diagnosis

of instabilities a hard experimental challenge and for this reason tokamaks have a wide range of

diagnostics [68]. Tokamaks are also clearly hostile environments where large plasma temperatures

and neutron fluxes make diagnosing the plasma a major challenge. Observations used to diagnose

the sawtooth instability for example are often both noisy and poorly sampled in time [26, 166].

Fortunately, many of the diagnostics have improved through the years [166] and there are now an

abundance of time series analysis techniques that can be used [48, 97, 155].

In this dissertation, we consider two approaches for relating models of the type listed in ref. [71]

and ref. [72] to either experimental diagnostics or numerics. The first of these approaches is called

the sparse identification of nonlinear dynamics, or SINDy for short [97]. SINDy has emerged as

a popular technique which takes a set of input time series and performs model selection from

a candidate feature library, returning a sparse model (for example a set of ordinary differential

equations) which reproduce the dynamics. The interest in SINDy has been driven by the notion

of producing generalisable, interpretable models, stepping away from other black-box approaches.

The second approach we consider is called the ensemble Kalman filter and falls under the category of

data assimilation [24]. Data assimilation methods have a long history in application with weather
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prediction, and are noted to be noise robust making the approach an appealing candidate [69].

Both of these techniques will be explored in detail.

We begin by discussing the technical context and background of the project given in §2, with a

particular focus on the derivation of simplified bifurcation theory models from ref. [72]. We con-

clude this section by offering a comparison between experimental data and the simplified models

to motivate their similarity. In §3.1 we introduce SINDy and review the literature relevant to

this dissertation, with a focus on noise robustness and conceptual challenges. This is followed by

a benchmarking of SINDy in §4 to a set of ordinary differential equations derived from magne-

tohydrodynamics. Following benchmarking, we then discuss application of SINDy to time series

derived from the numerical simulation of partial differential equations in §5, discussing how SINDy

can be used to find simplified models of high-dimensional systems. In §6 we review the ensemble

Kalman filter, its extensions, and the implementation of the methods discussed in the review as

a Python code. The software is then validated in several cases to address concerns which have

been raised in previous works [106]. The ensemble Kalman filter is then extended in §7 to a more

complicated scenario in which training data is generated from a surrogate model which closely

resembles experimental data. We present a progressive study of several cases which intend to leave

the ensemble Kalman filter in a position to be applied successfully to experimental data. We com-

pare the performance of the ensemble Kalman filter with SINDy in §8 and discuss the comparison

of the two approaches when applied to experimental data. The conclusions of this dissertation and

avenues for future research are presented in §9.
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2 MHD, tokamak stability and equivariant bifurcation the-

ory models

In this chapter we discuss the overall context for this dissertation. The chapter begins by briefly

introducing the MHD equations which are widely applied in understanding tokamak instabilities.

We then introduce some MHD tokamak instabilities with a particular focus on their qualitative be-

haviours. Following this, derivations of equivariant bifurcation theory models which describe their

behaviour are introduced. The relation between these models and observations of the instabilities

on tokamak diagnostics is discussed qualitatively.

2.1 Magnetohydrodynamics

We begin by stating the governing equations for resistive MHD, a derivation of which can be found

in many textbooks [41] [pg 58]. MHD describes the plasma in a single-fluid approximation with

one governing set of equations for both electrons and ions. The equations are

Dρ

Dt
= −ρ∇ · u, Mass Conservation (2.1)

ρ
Du

Dt
= (∇×B)×B/µ0 −∇P + µf∇2u, Momentum balance (2.2)

DP

Dt
= −γP∇ · u+ (γ − 1)

(∇×B)2

σµ2
0

, Energy Equation (2.3)

∂B

∂t
=
∇2B

σµ0
+∇× (u×B), Induction equation (2.4)

where ρ is the plasma density, u the plasma velocity, t is time, B the magnetic field, P the plasma

pressure, γ is ratio of specific heats, µf is the fluid viscosity, σ is the electrical conductivity and µ0

is the permeability of free space. We further define the equation of state for the plasma temperature

T

T =
P

R0ρ
(2.5)

where R0 is the ideal gas constant. For magnetic fields we also have the solenoidal constraint

∇ ·B = 0. (2.6)

We also have two definitions

E =
(∇×B)

σµ0
− u×B Ohm’s Law, (2.7)

j =
(∇×B)

µ0
Ampere’s Law (2.8)

which assume a non-relativistic plasma and j is the current density and E the electric field. In

tokamak applications, a lot of understanding can be gained by neglecting all dissipation in the

resistive equations and considering what are known as the ideal MHD equations. To understand

when this is possible, we look at the balance of the terms in Equation (2.4)

σµ0|∇ × (u×B)|
|∇2B|

∼ µ0σL
2
H

τH
≡ Rm (2.9)
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where Rm is the magnetic Reynolds number. The case where diffusion is negligible is when

Rm →∞. Similarly by balancing force terms in Equation (2.2) we can write

ρ|Du/dt|
µf |∇2u|

∼ ρL2
H

µfτH
≡ R (2.10)

where R is the Reynolds number, τH is the hydrodynamic time and LH the hydrodynamic length.

We can see that from these balances, neglecting all dissipation in the large scale limit where

LH →∞. Similarly, by dimensional analysis of the terms in the Equation (2.3), and applying the

momentum equation (2.2), we arrive at the adiabatic gas law

1

ργ
D

Dt
(Pρ−γ) = 0 =⇒ Pρ−γ = const. (2.11)

One important consequence of the ideal MHD equations is known as Alfvén’s frozen flux theorem

which states that field lines are constrained to move with the fluid. It can be shown from the

induction equation and Ohm’s law that

D

Dt

∫
S

B · dS =

∫
S

(
∂B

∂t
−∇× (u×B

)
· dS = 0 (2.12)

for a surface S moving with the fluid. This implies for any surface moving with the fluid closed by

a bounded contour C, the total flux passing through that surface is conserved in ideal MHD.

In most plasmas, the magnetic Reynolds number is typically very large ∼ 108, and so it might

seem reasonable to neglect resistivity altogether. While we describe ideal MHD as the limit where

LH →∞, there may exist regions in the plasma where there are shortening length scales of interest,

such as near boundaries. Such behaviour is relevant when narrow current sheets form with the

plasma and in these regions resistivity becomes increasingly important. Finite resistivity allows

the field lines to ‘slip’ free from the plasma and reconnect to reach lower energy configurations

in the plasma and is relevant in what are known as tearing mode instabilities. This process is

shown schematically in Figure 4 where oppositely directing field lines form a region with zero

magnetic field along the neutral axis. In this region, a narrow current sheet forms and the length

scale of interest is then significantly shorter. Finite resisitivity becomes important and magnetic

reconnection causes the field lines to change topology. Tension in the magnetic field lines tends

to pull magnetic field lines away from the point of reconnection, resulting in the formation of

magnetic islands with lower magnetic potential energies. While reconnection may take place in

narrow current sheets, the changes to topology of the plasma can affect much larger scales of the

system.
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Figure 4: Reconnection of magnetic field lines in resistive MHD leading to the formation of magnetic
islands and “X-points”.

2.1.1 The Lorentz force

The momentum equation (2.2) includes the Lorentz force which describes the force exerted by the

magnetic field on the fluid given by

F Lor = j ×B = µ−1
0 (∇×B)×B. (2.13)

An intuitive understanding of this force term can be understood by expressing it in terms of

components tangential and normal to the magnetic field. We introduce the unit vector b = B/|B|,
as well as the gradient perpendicular to the magnetic field

∇⊥ = ∇−∇||

and the parallel components

∇|| = b · ∇.

The Lorentz force can be written with these definitions as [42][pg. 85]

j ×B = µ−1
0 B2b · ∇b︸ ︷︷ ︸

magnetic tension

− µ−1
0 B∇⊥B︸ ︷︷ ︸

perp. magnetic pressure

. (2.14)

The Lorentz force has been decomposed in terms of a magnetic tensile force which acts to straighten

field lines when they are bent and a magnetic pressure terms which acts perpendicular to the the

magnetic field and resists compression of the field. This helps guide the basic principle of how we

may begin to confine a plasma.

2.1.2 The safety factor and plasma beta

We now introduce two key parameters used in describing toroidal confinement devices which will

be referred to when discussing tokamak instabilities. These are called the plasma beta β and the

safety factor q, both playing an important role in plasma stability [42][pg. 12]. In an equilibrium

state in a tokamak, the field lines wind around nested surfaces in helical paths. The safety factor

measures the pitch of the field lines as they traverse the tokamak. q can be measured by the

toroidal distance δφ travelled in the time it takes for the field to complete one poloidal rotation
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Figure 5: Nested flux surfaces of constant pressure in a cylindrical tokamak. B and j lie on these
surfaces of constants pressure under an ideal static force balance.

[16]

q =
δφ

2π
. (2.15)

It can be seen that small values of q correspond to a tightly wound helix and higher values of

q less tightly wound. For a specific surface r < a in a tokamak with circular cross-section, the

safety factor is also expressed as q(r) = aBφ/R0Bθ. Rational values of q play an important role in

determining plasma stability [112][pg. 373]. If a perturbation has a wavelength with toroidal mode

number m and poloidal mode number n, then it is resonant on the magnetic flux surface where

q(r) =
m

n
(2.16)

for m,n ∈ Z [42][§3.3]. In tokamak static equilibirum, q(r) increases monotonically from the centre

and the variation of q is called magnetic shear [42][pg. 12]. The plasma beta gives a measure of

the efficiency of magnetic confinement

β ≡ p

B2/2µ0
, (2.17)

describing the ratio of plasma pressure to magnetic pressure [19][§3.5].

2.1.3 Static equilibria

Basic confinement strategies in a tokamak can be understood at a high level from force balances

in ideal MHD. A direct consequence of the frozen flux theorem is that by controlling the magnetic

field, confinement of an ideal plasma is possible as the field is fixed to the fluid. We begin by

considering what are known as equilibrium configurations where the fluid is at rest. Again we

require that the diffusion time τdiff is greater than any other time of interest. That is we assume

that other instabilities will arise before diffusion becomes relevant. By setting the velocity to zero

in the ideal MHD equations, we obtain the static balance MHD equations

j ×B = ∇P, (2.18)

∇ ·B = 0, (2.19)

j = µ−1
0 ∇×B. (2.20)

For a confinement equilibrium, we thus require that the fluid pressure balances the Lorentz force.

It also follows that

B · ∇P = j · ∇P = 0 (2.21)
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and so both j and B lie on surfaces of constant pressure with normal defined by ∇P , as shown

in Figure 5. Simply put, the Lorentz force acts opposite to the pressure toward the central axis of

the plasma and so the plasma can be contained through magnetic confinement.

2.1.4 Pinch fields

Figure 6: The kink instability causes radial displacement of a plasma column (top).

Early fusion experiments relied on this equilibria condition to confine plasmas [112][§10.2.1.1].

First consider a cylindrical polar system (r, θ, z) where the current density j = jẑ and B = B(r)θ̂.

This configuration is known as the z−pinch and was used for early plasma confinement. However,

it turns out that this configuration is highly unstable to the kink instability. This perturbation

forms a kink in the plasma column which results in the field lines being compressed on one side

of the column, shown in Figure 6. This increased density of the field lines produces a magnetic

pressure which further displaces the column creating an unstable configuration [41][pg 118]. The

condition for the kink instability is derived from ideal MHD and requires that q > 1 in the plasma

to prevent kink instabilities. As q can be inversely related to the poloidal field, this places limits

on the current that can be driven through toroidal devices [56].

2.2 Tokamak Disruptions

A clear aim of tokamak operation is to maximise the power output achievable during operation.

One can show from the thermonuclear power in a D-T plasma that the fusion power, Pfus depends

on

Pfus ∝ p2V ∝ β2B4V, (2.22)

so that fusion power depends on the plasma beta, the magnetic field and the volume of the device

[56]. Increasing the size of the device is planned for future tokamaks like ITER, but increasing

the size or magnetic field also increases the cost [56]. Another way to improve performance is by

increasing the plasma pressure. More generally, experimental scaling laws have been derived which

show how performance depends on different engineering or plasma parameters

τE ∝ I0.93B0.15
φ P−0.69n0.41

e M0.19R1.97ε0.58κ0.78 (2.23)

where I is the plasma current, P the applied heating power, ne the line averaged electron density,

M is the isotope mass, ε = a/R is the inverse aspect ratio and κ is the plasma elongation [33].

The plasma elongation refers to the shape of the plasma being longer in the vertical direction
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in a divertor tokamak. This equation highlights how confinement times can be improved, thus

improving the fusion triple product given in Equation 1.4.

In practise, the parameter space for reliable tokamak operation is limited by a variety of constraints

and the listed parameters cannot be increased indefinitely [45]. Increasing plasma parameters can

excite MHD instabilities whose effects can impact performance or in more extreme cases result in

a disruption causing termination of the plasma [19]. One such condition is the ideal beta limit

which states that the maximum achievable plasma beta, βM is given by

βM =
gI

aBφ
(2.24)

where g is the Troyon factor [56]. Plasma betas are normalised by this factor so that

βN =
βaBφ
I

(2.25)

and the stabilised condition is simply βN < g ' 3.5 from ideal MHD [34]. MHD instabilities impose

limits on both the maximum plasma pressure and the maximum plasma current. The current limit

can be expressed in terms of the safety factor which in a cylindrical approximation can be written

qa =
2πa2Bφ
µ0RI

(2.26)

so that a maximum current limit corresponds to a minimum value of the safety factor [45]. The

MHD limit is typically cited as qa < 2 results in the destabilisation of what is known as an

external kink mode [56], though the role of q is debated [136]. The presence of MHD instabilities,

in particular edge-localised modes, tearing modes and sawteeth are expected to play an important

role in the achievable performance of ITER [34].

2.2.1 Edge Localised Modes and Numerical simulations

(a) (b)

Figure 7: a) Illustration of the magnetic topology of a tokamak with an X-point in the poloidal
field with heat flux travelling along the outer most field lines to the divertor, reproduced from [62].
Additionally, the characteristic pressure profile from the core of the plasma to the outer region is
also shown. b) Characteristic pressure profiles for L and H-modes against the plasma from the
centre to edge. Transition from L to H-mode is characterised by large pressure gradients in a
narrow region. Figure reproduced from [93].

Experiments conducted in the ASDEX tokamak at Garching, Germany by [10] showed that above

a given threshold in heating power, a high-confinement mode (H-mode) could be achieved. Plasma
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confinement time in this new H-mode is observed to be a factor of 2 or higher [96]. The high-

confinement mode brought an improved transport barrier in a narrow region at the plasma edge,

resulting in reduced particle and heat transport across the plasma edge. This transport barrier is

typically several centimetres wide, and characterised by steep pressure and density gradients at the

plasma edge [52]. Figure 7 shows a comparison between the previous low confinement (L-mode)

and the H-mode with larger pressure gradients.

However, while this new H-mode brought improved confinement properties, it was also accompanied

by the appearance of instabilities and plasma wall-interactions. These instabilities appeared to have

largest amplitude in these high pressure regions and accordingly given the name edge-localised

modes (ELMs). Such behaviour was found to be characteristic of X-point divertor tokamaks,

shown in Figure 7. In this tokamak configuration, the core of the plasma is characterised by closed

magnetic field lines or flux surfaces while the outer region, or scrape off-layer is separated by an

open magnetic field-line which connects to the divertor. This configuration allows for particle

exhaust from the plasma to the divertors. The Figure also shows the corresponding radial pressure

profile in the tokamak, with large pressure gradients towards the plasma edge [62].

ELMs result in particle emissions at the transport barrier, lowering the pressure gradients and

temperatures in this region. These ejections result in loss of 10 − 15% of energy in the transport

barrier [52]. Following this instability the plasma begins to recover and pressure gradients and

temperatures rise again until the process repeats. The time between these repeat crashes then

gives the frequency of the instability. ELMs can then be thought of as quasi-periodic disturbances

which occur at the plasma edge, on time-scales of the order of µs [28]. The current theoretical

understanding of ELMs comes from ideal magnetohydrodynamics [96].

While the loss of confinement is not ideal, of greater concern is the erosion these ejections can cause

to the tokamak itself. It is thought that the severity of these ejections scale with tokamak size and

will then be detrimental to the operation of large future tokamaks like ITER [93]. Further, these

ejections can cause radial transport toward the main walls of the reactor, and result in liberation

of impurities from the tokamak walls which cause further radiative heat loss. It is important for

future ITER operation to understand not only the causal effects of ELMs, but ways to successfully

control them [96]. Thus, it would seem beneficial to have an ELM free regime, with high pressure

and temperature gradients resulting in good confinement. However, ELMs can offer some benefits

in removing impurities from the plasma and hence there is also interest in regimes with small ELMs

and high confinement properties [62].

ELMs are classified into several distinct types, first owing to Doyle and experiments taken at the

DIII-D tokamak in 1995 [28]. The most commonly observed ELMs are classed as Type I and Type

III. The difference between the two is typically measured by their repetition frequency dependence

on supplied heating power. Type I ELMs show an increasing repetition with increasing heating

power, while Type III ELMs show a decreasing repetition frequency with increased heating power

[96]. In general, it seems that Type I ELMs have better confinement properties, but result in larger

expulsions of energy compared to Type III ELMs. Figure 8 shows the emission of Dα light from

the JT-60U tokamak. This Dα is visible red light which arises from the interaction of emitted

electrons from the plasma with neutral particles [96]. During an ELM, there is an observed peak

of emitted Dα in a small period before it returns to zero.

Another way of classifying ELMs comes from observation of the density (n) and temperature (T ).

Figure 8 shows measurements taken at the DIII-D tokamak at the inner edge of the transport

barrier. The red and blue curves show lines of constant pressure. We can see that Type I ELMs

are clustered along lines where Tene ∼ constant. This line corresponds to a line of pressure at
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the onset of what is known as the ballooning instability, implying that pressure plays some role in

their evolution [62]. Type III ELMs are clustered in two separate regions. The first is found along

a line of constant density, and the second along a line of constant pressure. Both clusters occur in

regions of pressure well below Type I ELMs [96].

(a)

(b)

Figure 8: a) Plot of temperature vs density for different ELM observations showing a separation
of ELM Types in this space, reproduced from [37]. b) the Dα light emission for different ELM
Types recorded at the JT-60U tokamak. This shows large Type-I ELMs, and smaller grassy Type
ELMs, reproduced from [53].

Type I ELMs result in a much greater expulsion of heat and energy than Type III ELMs, but

typically occur at high pressures. It then becomes desirable to find an operational regime where

smaller expulsions similar to Type III ELMs occur at pressures close to Type I ELMs. Several

ELMs like this seem to exist including; Type I, Grassy ELMs and Type V. However, these types

are not as well understood [96].

Another feature of ELMs is an associated filamentary structure, where these filaments are aligned

with the magnetic field, and extend radially up to 5−10 cm showing typical toroidal mode numbers

of n ∼ 10−15. Visual observation of these filamentary structures were taken at MAST [60], shown

in Figure 9, where the plasma surface is viewed through a port [96]. The filaments are aligned

with the magnetic field.
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Figure 9: Filamentary observation of ELMs at the MAST tokamak which demonstrates plasma
ejections shown in white at the scrape-off layer, reproduced from [60].

The Peeling-Ballooning Model

(a)
(b)

Figure 10: a) Stability diagram for the ballooning (red) and peeling (dashed blue). b) A simplified
representation of the peeling-ballooning stability space with current density J and normalised
pressure gradient α. The dashed lines show possible trajectories representing different ELM Types.
Below the red curve are stable parameter values, and above are unstable. Figures reproduced from
[96].

Over the years, there has been increased support that ELMs are the result of the coupling of an

instability in pressure gradients called the ballooning instability, and current density at the plasma

boundary called the peeling instability [52]. This resulted in the so-called peeling-ballooning model,

which combines the effects of these two instabilities. The peeling-ballooning model has mainly been

used to describe the onset of Type I ELMs [86].

The ballooning instability has a long wavelength parallel to magnetic field lines, and a short one

perpendicular. Pressure gradients drive this instability, but it is stabilised by current density. This

can be completely stabilised if the current density is high enough, and is called “second stability

access”. Conversely, the peeling instability is destabilised by current density and stabilised by

pressure gradients. However, at high pressure gradients, the two instabilities can couple forming

the peeling-ballooning instability. It is the coupled instability which is thought to be responsible

for Type I ELMs [96]. The left of Figure 10 shows a qualitative representation of these effects

on stability. The dashed blue line shows the peeling instability threshold, and the solid red curve

represents the threshold for the ballooning instability.
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Right of Figure 10 shows a simplified schematic of the parameter stability for the peeling-ballooning

model. The discussion and Figure are taken from [96]. We can see that for sufficiently high pressure

gradients and low current densities, the model is driven unstable by the ballooning instability.

Similarly at higher current density, the peeling mode can drive instability. The dashed curves

labelled 1,2 and 3 show possible trajectories in this parameter space representing different possible

ELM Types.

Trajectory 1 represents a Type I ELM. While the plasma is stable, the pressure gradients and

current density continually increase until the ballooning stability boundary is reached. The current

then continues to rise until the combination of high pressure gradient and current density crosses

the peeling-ballooning stability boundary. Once this stability limit has been crossed, the instability

grows exponentially, causing significant energy transport from convection or conduction [93]. The

pressure gradients and currents decrease, removing the drive of the instability, until the trajectory

again falls into the stable parameter space where the process repeats. In general it takes longer

for the currents to diffuse than the pressure [62].

Other trajectories have been suggested for explaining different ELM Types. For case 2, the pressure

gradient is high, but only the ballooning instability is destabilised. The comparatively low current

gradient means that the ELM is quickly stabilised without a large loss of pressure. This is intended

to represent smaller ELMs. Finally trajectory 3 is close to the peeling stability boundary, and

results in a larger loss of pressure. The pressure gradient required for this trajectory is much lower

than 1 or 2, and hence could explain Type III ELMs. However, these latter two cases are not as

widely accepted [96].

Several different numerical codes exist for studying the linear and nonlinear behaviour of the

peeling-ballooning model. For the linear stability, the ELITE code [40] is one example. Linear

stability analyses are useful to understand the onset of instability on a plasma. For instance, they

may answer when we expect the instability to appear. However, understanding how much energy

is lost during the evolution is in general not possible. The linear stability of the peeling-ballooning

model has been studied by codes such ELITE, GATO and MISHKA [83]. Other codes have been

developed to study the nonlinear development of the peeling-ballooning model such as JOREK

[131] and BOUT++ [73, 83].
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2.2.2 Sawtooth Instability

Figure 11: a) Schematic diagram of a sawtooth measurement taken in an idealised tokamak with
soft X-ray measurements. Figure reproduced from [79]. b) Evolution of the temperature profile
and q in an idealized tokamak. Figure reproduced from [34].

The sawtooth instability is a large scale plasma instability that causes periodic relaxations in the

core plasma temperature and density. The instability was first observed in 1974 in the ST tokamak

by ref. [4] and has since been observed in every subsequent tokamak. A measure of the plasma

temperature through electron cyclotron emission [16][pg 244] shows a rise in the central plasma

temperature followed by a sudden crash, shown in Figure 11 b). When measured at the plasma

edge, the temperature measurements are inverted meaning a decrease in core temperature results in

a corresponding increase in temperature at the plasma edge. The radius at which the temperature

remains approximately constant is referred to as the inversion radius, rinv [77].

A sawtooth cycle consists of 3 different phases: a ramp up phase which is associated with an

increasing temperature profile in the core, a precursor phase where the plasma becomes unstable to

a kink mode instability and finally a fast crash where the temperature drops rapidly. This behaviour

can be understood in the following way [41][pg 160]. The cycle begins with the temperature profile

being relatively flat and the safety factor q > 1 everywhere. As the current is peaked on-axis, the

plasma experiences a higher degree of Ohmic heating in the core. The higher temperature leads to

an increase in conductivity of the plasma in the core and this in turn leads to higher currents. An

increase in currents generates more poloidal field which results in the safety factor q < 1 allowing

a q = 1 flux surface to form. This surface is then susceptible to an m = 1, n = 1 internal kink

instability whose nonlinear evolution leads to a crash in temperature at the core of the plasma

[136]. Following the sawtooth crash, mixing of the plasma occurs within the radius rmix and the

temperature profiles are flattened. The cycle then repeats itself when q(0) > 1 is restored. While

this is a useful method to understand the sawtooth it should be noted that this is not a complete

description [77]. A comprehensive discussion of different models is given by [158].

As the sawtooth instability involves large-scale movement of the plasma, it can be observed exper-

imentally through many different diagnostics including: soft X-rays, electron cyclotron emission

and density measurements. Due to plasma toroidal plasma rotation, there can be a precursor phase

before a crash shown in Figure 12. As the kink mode grows in amplitude, this appears as a grow-
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ing oscillation in the laboratory frame of reference. It should be noted through that precursorless

sawteeth oscillations have also been observed [14].

Many models exist to explain sawteeth including finite reconnection models, two-fluid models and

kinetic models ([22][pg. 246] and references therein), with the exact mechanism still remaining

disputed many years after the first observations of sawteeth [136]. The first model termed the

Kadomtsev model [5] attempts to explain the process in terms of helical magnetic flux formed by

the q = 1 surface [16][pg176]. The model suggests that magnetic reconnection will occur for the

q = 1 surface until this new island is completely annihilated and a stable equilibrium is formed

again with q > 1. However the model does not explain the quiescent ramp phase observed in the

sawtooth and also does not accurately capture the timescales observed in the sawtooth instability

[30]. Further, the role of magnetic reconnection in causing the sawtooth crash is also debated [136]

and experimentally it has been observed that q(0) < 1 for the duration of a sawtooth crash [22][pg.

247] which has led to modifications of this theory. The work of ref. [136] proposes a novel method

for explanation for the sawtooth instability, but involves complicated long-time MHD simulations

and so we merely note the difficulties involved in formulating a consistent theory.

Sawteeth with an inversion radius less than 40% of the tokamak minor radius and temperature

drops in the order of a fraction of a keV are tolerable in operation [77]. Indeed the instability

can be beneficial for removing impurities in the core which result in energy loss through radiation.

While sawteeth themselves do not typically cause a termination of the plasma, sawteeth with a long

period can couple to more deleterious instabilities such as edge-localised modes and neo-classical

tearing modes which can result in termination of the plasma [77]. Further sawteeth with sufficiently

large amplitude can cause loss of energetic α particles from the core and thus limit the tokamak

performance. In ITER the presence of fusion α particles is expected to lead to long sawtooth

periods [27]. ITER is expected to operate in a so-called “sawtoothing ELMy H-mode” below the

Troyon limit. However, there is concern that the coupling of the sawtooth to other instabilities

will significantly lower this stability boundary and thus the achievable βN [34]. As such there is

much interest in the control of this instability, particularly through the stability of the internal

kink mode, both stabilising and intentionally de-stabilising it.

Figure 12: The left of the figure shows the line-integrated density of a sawtooth oscillation observed
in JET and the right of the figure highlights a typical sawtooth cycle. The sawtooth cycle is
characterised by a slow ramp up phase followed by a sudden crash in temperature which can
sometimes be preceded by a precursor phase. Figure reproduced from [77]
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2.3 Tokamak diagnostics

Figure 13: Mirnov measurement made on the MAST tokamak during a sawtoothing event (shot no.
29880). The top figure shows the Mirnov signal for several sawtooth crashes in core temperature
and the bottom shows the same signal over a shorter window around a single crash.

Tokamaks contain a large suite of diagnostics which measure an impressive range of different

plasma parameters such as density, temperature and magnetic fields. Here we briefly mention

some of the diagnostics relevant this dissertation which measure the local magnetic field or the

core temperature. These measurements are related to the sawtooth instability described in the

previous section. The diagnostics are mentioned to underline both their qualitative features during

discharges and the expectation of noise and sampling rates which will be relevant in later sections

of this dissertation.

A typical MAST/MAST-U magnetic diagnostics time trace is shown in Figure 13 underpinning

a number of challenges. This Mirnov signal shows a sawtoothing event between t ≈ 0.27s and

t ≈ 0.5s, and it can see that spikes in the signal are observed on extremely fast timescales which

correspond to central temperature crashes (the corresponding soft X-ray is shown in Figure 16

later). As such suitable diagnostics must be selected which have sufficient temporal resolution

of these timescales. Further, the data is noisy, and it is far from clear that the noise is simply

Gaussian in nature.
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2.3.1 Magnetic diagnostics

Figure 14: Schematic of a tokamak with some examples of the magnetic diagnostics: poloidal flux
loop, magnetic field probe, saddle loop, diamagnetic loop, and Rogowski coils. Figure taken from
[63].

Magnetic diagnostics are used for measuring currents, magnetic fields and magnetic fluxes in a

tokamak. A general schematic overview of some common diagnostics is shown in Figure 14. Mea-

surements of the magnetic field are important in determining, for example, the equilibrium field of

the plasma or observing oscillations in the plasma and diagnosing MHD instabilities. In our case,

measurements of the magnetic field are of interest and tokamaks typically take many local spatial

measurements of both the toroidal and poloidal magnetic fields.

A Mirnov coil or sometimes called a pickup coil consists of a conductive wire wrapped into a

solenoidal coil measuring the poloidal or toroidal magnetic fields. The changing magnetic field of

the plasma induces a current in the solenoid which gives a measure of the local rate of change of

the magnetic field. As these coils measure high frequency plasma oscillations, they are located on

the internal vessel wall, otherwise conducting materials can attenuate these high frequency signals

[63]. This means that diagnostics are typically shielded with graphite to protect them from particle

flux.

Arrays of these coils are located throughout different toroidal and poloidal locations on the inner

vessel wall. MHD modes can appear as oscillations in the magnetic field, and the mode numbers

of the instabilities can be determined from phase differences between different Mirnov locations.

MHD instabilities can rotate toroidally in the laboratory frame of reference which allows them to

be detected due to the rate of change of magnetic field. However, even modes which are slowly

propagating or stationary with respect to the plasma still show in magnetic measurements due to

the rotation of the plasma with respect to the laboratory frame of reference. This plasma rotation

largely results from the momentum transfer from neutral-beam injection commonly used to heat

the plasma.

In MAST-U, the median error of pickup coils is cited around 6.3% (though many are higher). This

ratio is calculated over all probes from as the ratio of an expected measurement to an observed

measurement in a calibration run and measure at rates of 200kHz [166]. In reality, many other

factors can contribute to error such as quantisation error when recording numeric values. This

tokamak features up to 354 pick-up coil measurements throughout the device, though in most

shots not all of them are used. An example of the pickup coil locations is shown in Figure 15 b).
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(a)
(b)

Figure 15: a) The MAST-U tokamak cross-section and b) example locations of magnetic diagnostics
through a poloidal cross-section (reproduced from [166]).

2.3.2 X-ray measurements

Figure 16: Soft X-ray measurement made on the MAST tokamak (shot no. 29880) with a mea-
surement taken over an entire shot lasting 0.6s. At approximately t = 0.2s, a sawtooth instability
takes place and can be seen by the sawtooth-like teeth shown in the measurement.

A hot plasma consisting of electrons and hydrogen ions emits electromagnetic radiation due to

collisions. This radiation results from braking or bremsstrahlung radiation due to electron-ion

collisions in the plasma [16]. The emission spectrum is continuous for a Maxwellian distribution

of electrons and can be written

ε ∝ n2
eZeff

√
1

Te
exp(−hv/Te) (2.27)

where ε is the emissivity, hv is the photon energy and Zeff is the effective charge of the plasma

[64]. This shows that emissivity is related to the plasma electron temperature.

The plasma also contains a number of impurity ions resulting from plasma-component interactions
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which also radiate power from the plasma. In this case, line emission can be observed from bound

electron transitions where electrons are excited to higher bound energy levels through collisions.

Transitions to lower energies then causes radiative emission of distinct frequencies related to the

energy level of the transitions.

Measurements of both continuum radiation and line radiation can be made using spectroscopic

techniques. These measurements are made by spectroscopic cameras along a line directed into

the plasma, so measurements correspond to the line integration of the emissivity in the observed

volume. We are primarily interested in soft x-rays which are predominantly due to Bremsstrahlung

radiation and so measure the plasma temperature in the core. This makes them suited for mea-

suring the evolution of the equilibrium and sawtooth instability.

In MAST-U there are two soft X-ray cameras with 14 lines of sight each [174]. These cameras

measure the soft X-ray emission in different locations throughout the plasma. There is no clear

description given in the MAST-U diagnostics handbook of the exact details of these daignostics

or their sampling rates. However, they are typically sampled at high frequency and, on occasion,

we have observed that they are sampled as frequently as the Mirnov coils at 200Hz. We typically

refer to the soft X-ray measurements for the temperature of the plasma as the sampling rate is

generally much higher than other diagnostics. An example measurement of the soft X-rays for

a short time is shown in Figure 16. More information is available on the soft X-ray diagnostics

in MAST which consist of cameras measuring upper horizontal, lower horizontal and tangential

plasma. For this report, the tangential camera is the relevant camera which measures between

the core and the plasma edge [151]. These cameras filter line emission below a certain energy

corresponding to impurity radiation. The detected signal is then primarily due to bremsstrahlung

radiation from the plasma core [16].

2.4 A symmetry based view of gross Tokamak behaviour

We now introduce the derivations of the bifurcation theory models discussed in ref. [72] with some

associated extensions. These models will come to be referred to regularly and remain an important

reference for later sections of the dissertation.

2.4.1 Taylor-Couette Flow

Tokamak instabilities are complicated and nonlinear in nature, and there is naturally interest in

developing simplified models of their behaviour [71]. Insight can be gained by drawing parallels

between the tokamak and related fluids experiments, specifically Taylor-Couette flow [72]. Before

discussing the derivation of these nonlinear bifurcation models, we first describe Taylor-Couette

flow, an experiment studied by [1]. The description given here follows closely those given by [85]

and [23].

Taylor-Couette flow consists of a fluid with viscosity ν bound between two concentric cylinders with

radii r0 and r1 where either one or both of the cylindrical surfaces can be made to rotate at angular

velocity Ω0 and Ω1. As the speed of rotation is increased, the flow undergoes a distinct change or

bifurcation with the appearance of rolls named Taylor vortices. These rolls are in counter-rotating

pairs and appear to be stacked on top of one another remaining the same around the annulus.

As the speed further increases these rolls become wavy around the circumference of the device,

forming standing waves. A further increase in speed causes the appearance of modulated wavy

vortices which are no longer steady state as the waves rotates around the device. Finally there is

a transition from modulated wavy vortices to turbulent wavy vortices which ends in a transition

to featureless turbulence. Some of the main sequences are shown in Figure 17.
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Figure 17: Taylour-Couette Experiment showing different behaviours. a) Couette flow or shear
flow, b) Taylor vortices, c) wavy vortices, d) spiral vortices. Adapted from [36].

The exact transitions to these different states can depend on many different factors. For instance,

Figure 17 d) shows a case where the inner and outer cylinders rotate at different speeds. This

allows a completely new type of spiral pattern to form which can also become modulated in the

same way as Taylor vortices. Further, the way in which the final cylinder speed is reached can

also impact the resulting pattern formation. The formation of these patterns can be understood

in terms of the symmetries apparent in the Taylor-Couette experiment and the progressive loss of

these symmetries. We first describe the symmetries of the Taylor-Couette experiment.

If we consider the experimental apparatus as two finite concentric cylinders we can write down

two relevant symmetries. The first is an azimuthal symmetry where rotating the device by some

angle leaves everything unchanged, this is denoted by the group of special orthogonal rotation in

2D, SO(2). The next symmetry is a reflection symmetry in the axial direction denoted by the

parity group Z(2). That is, if the experiment were reflected about the bottom plane, all rotations

would remain in the same direction. However, we can include a further symmetry if we consider the

experiment to consist of an infinite cylinder in the axial direction represented by periodic boundary

conditions. This is given by a further SO(2) group if the cylinder is considered to be a high aspect

ratio torus such that the two ends are joined to one another. The product of the Z(2) group and

the SO(2) groups in the axial direction forms the larger group O(2) having all transformations

with determinant ±1 which preserve angles and distances.

The resulting pattern formation can now be understood in terms of a progressive breaking of these

symmetries, either entirely or with only a subgroup of the original group remaining. Initially, the

first shear state obeys all the outlined symmetries, invariant in the azimuthal and axial directions

and under a parity reflection. The transition from shear flow to Taylor-vortices results in the loss

of the O(2) symmetry in the axial direction. The one symmetry retained in this direction is a

smaller subgroup of the O(2) group given by rotations in the axial direction spanning the height

of a vortex pair, but we retain all other symmetries.

The appearance of wavy vortices results in the further loss of the azimuthal SO(2) symmetry and

the parity symmetry Z(2) while retaining the subgroup of the Taylor-vortices. However, while a

reflection causes the appearance of the wave to change, a combination of reflection and rotation

can return the Taylor-Couette flow to its original state. We can also see from Figure 17 that wavy

flow retains some periodicity in the azimuthal direction and so rotations by a fixed degree still leave

the system invariant. Another symmetry is given by the fact that wavy vortex flow appears to

rotate rigidly. This signifies a time-periodic symmetry which after one period the system returns
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to its original state. The final symmetry is given by a combination of both spatial and temporal

symmetries where if the system is observed in a frame which rotates with wavy vortices, it again

appears steady-state. The transition to modulated wavy vortices results in the loss of these spatio-

temporal symmetries and they become more complicated in their symmetries.

So we can think of the allowable patterns as different solutions to the Navier-Stokes equations

which obey different symmetries. The modes which form stably depend on the rotation rates of

the inner and outer cylinders, with Taylor-vortices forming if the outer cylinder is counterrated

at a speed less than a given critical value. Thus symmetry tells us something fundamental about

the behaviour the solutions must obey, regardless of the model. While the physics may downselect

some of the permissible modes, symmetry plays a key role in the solutions which can appear.

2.4.2 A symmetry based view of gross Tokamak behaviour

We now discuss the application of these ideas to the nonlinear modelling of tokamak behaviour

developed by [71] and [72]. Modeling of tokamak behaviour is challenging for a number of reasons.

We list a few of these given by [71]: tokamaks are by nature nonlinear from the balance of fluid

pressure to the Lorentz force which is quadratic, tokamaks can have sophisticated control mecha-

nisms which shape the plasma and experimental measurements are challenging in fusion conditions.

Despite these set-backs, bifurcation theory could aid in the topological nonlinear study of these

complicated instabilities as tokamaks often operate close to instability boundaries.

The geometry of the Taylor-Couette experiment shares many of the symmetries of a tokamak with

circular cross-section and large aspect ratio. As described in the previous section, the symmetry

of the group of the Taylor-Couette experiment can be written

Gs(T − C) = SO(2)× (SO(2) n Z(2)) = SO(2)×O(2)

where n is the semi-direct product. In analogy to the tokamak, a similar group of symmetries can

be written

Gs(Tok) = (SO(2)× SO(2)) n Z(2),

is the symmetry group of the periodic cylinder model of a tokamak. There are two SO(2) groups,

the first corresponding to rotation in the poloidal direction and the second to rotations in the

toroidal direction. However, in general most tokamak designs have non-circular cross-sections with

the feature of divertors which create X-points in the plasma so we will tend to ignore this symmetry.

The final group can be understood by considering a mirror reflection of the periodic cylinder at

one end. The applied magnetic fields are reversed but the tokamak is invariant to reversal of the

current in the toroidal direction implying the dynamics remain the same. A parity reflection of this

type corresponds to a co-ordinate transform (θ, φ) → (−θ,−φ). The final symmetry we consider

is a time-invariance given by energy conservation from ideal MHD.

It is apparent that the tokamak and Taylor-Couette experiment share similar symmetry groups.

Further, Taylor-Couette flow is a four parameter system characterised by the inner and outer radii

with driving energy coming from the rotation of the outer and inner cylinders. An Ohmically

heated tokamak can also be thought of as a four parameter system where the two radii correspond

to minor and major radii of the torus and the driving energy is given by the imposed magnetic field

and the Ohmic heating from the rate of change of the magnetic field (or the induced current in the

plasma). Possible analogies of the different behaviour in Taylor-Couette flow have been drawn by

[72] and are summarised in Table 1. In particular, between the Taylor-vortices and the sawtooth

both are non-traveling waves with rolls being prevalent in the TC experiment and the sawtooth
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also being ubiquitous [77].

Taylor-Couette Tokamak

Steady sheared flow MHD equilibrium

Rolls (Taylor vortices) Sawtooth oscillation

Rotating wave Mirnov oscillations

Modulated rotating waves Complex Mirnov signal

Table 1: Analogies of flow phenomena in the Taylor-Couette experiment to tokamak observations
and instabilities.

The analogies between the symmetry groups of the Taylor-Couette experiment and the tokamak

lead us to consider the application of equivariant bifurcation theory. This is bifurcation theory

with a downselection of terms which do not obey particular symmetries. Bifurcation theory is

also often used to describe instabilities close to the instability threshold, for example in weakly

nonlinear theory. As already described, tokamaks often operate close to instability boundaries as

this provides optimal performance.

We begin by considering a general modal solution consisting of a superposition of complex wave-like

solutions

y(φ, t) = a(t) exp(inφ) + ā(t) exp(−inφ) (2.28)

where a is the complex amplitude of the solution, ā the complex conjugate and φ the axis of

symmetry. Given a general solution, we must now ask what form an ODE can take which will

obey the outlined symmetry constraint.

If the dynamics are well described by ideal MHD, we will have energy conservation. In this case

we start from an explicitly time-independent Lagrangian L(y, ẏ) = L(a, ȧ) which satisfies only

rotational invariance

2L = T − V = |ȧ|2 + µ|a|2 + σ|a|4, (2.29)

where µ and σ are real valued parameters. T can be considered as the kinetic energy of the system

and V is the potential in the energy-preserving case. Note that it is entirely possible to expand the

potential to higher order, as in [71] the potential is taken to 6th order. We express the complex

amplitude a in terms of its real amplitude r and phase ξ so we can write a(t) = r exp(iξ) and the

Lagrangian becomes

2L = ṙ2 + r2ξ̇2 + µr2 + σr4. (2.30)

The Euler-Lagrange equations give

d

dt

(
∂L
∂ṙ

)
− ∂L
∂r

= r̈ − rξ̇2 − µr − 2σr3 = 0, (2.31)

d

dt

(
∂L
∂ξ̇

)
− ∂L
∂ξ

=
d

dt
(r2ξ̇) = 0. (2.32)

The second equation yields ξ̇ = C/r2 corresponding to conservation of momentum consistent with

rotational symmetry. However, to be consistent with the parity symmetry we must have C = 0

and are left only with the first of the two equations

r̈ = µr + 2σr3. (2.33)
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As ξ = ξ0 for an arbitrary constant phase ξ0, we can set ξ0 = 0 and we can write

ä = µa+ 2σa3, (2.34)

as r = a. This behaviour can be considered as a particle trapped in a potential well. To understand

the general behaviour, we consider the onset of instability when a is small. In this case the solutions

grow exponentially due to the linear term until a3 is sufficiently large causing the system to return

to small amplitude of a thus exhibits bursty behaviour. The potential well for this model is shown

in Figure 18 where the particle can be trapped in the left or right potential wells.

8 6 4 2 0 2 4 6 8
a

400

300

200

100

0

100

200
= 10, = 0.1
= 10, = 0.01

Figure 18: Plot of the ANAC potential well when it is stable with σ < 0 and unstable with σ > 0.
The behaviour of the trajectories can be understood as the a a particle trapped in a well.

Finally we consider the interaction of Equation 2.34 with an unstable equilibrium mode which is

represented by the normal form of a fold bifurcation. To satisfy rotational invariance, interaction

of the equilibrium mode with the non-axisymmetric mode will thus be through a term proportional

to a2. We can then write the equilibrium mode as

ḃ = α− βb2 − a2. (2.35)

The fold bifurcation without the dependence on a2 gives a system with two fixed points at b =

±
√
α/β where −

√
α/β is unstable and

√
α/β is stable. Another choice of the coupling term can

be made

ḃ = α− βb2 − (δrb+ 1)a2 (2.36)

which models the impact at different major radii in the Tokamak depending on the real valued

parameter δr [84]. Evolution of the equilibrium mode shows behaviour consistent with sawtooth

oscillations, with a slow rise and fast crash which will be discussed in the following section in

Figure 25. The coupling of the equilibrium to the oscillator in a is termed the axisymmetric

non-axisymmetric coupled model (ANAC).

There are two final modifications to Equation 2.34 which can be considered as extensions to the

ANAC model. These terms are included also with a view to fitting experimental signals granting

in general a more flexible model [179]. The first is a coupling between the equilibrium mode and

a which destroys and recreates the potential well [87]. The system is modified to

ä = µa+ 2σr3 + µ2ba
3. (2.37)
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The chosen term here satisfies the aforementioned constraints, though its exact form is arbitrarily

selected. We now consider the case where σ = 0 and we consider the case with µ < 0 and µ2 > 0.

The potential well in this case is shown in Figure 19 where for the sake of illustration we treat b as

a constant parameter at a given time. At small values of b the potential well is dominated by the

quadratic term with coefficient µ for a sufficiently small amplitude of a. The behaviour is therefore

a particle trapped in a potential well centred around the origin. As b grows larger, the walls of

the potential well are reduced by the term in µ2 until eventually the particle escapes the potential

well causing a sudden growth in a. This sudden growth in a causes a corresponding decrease in b

from Equation 2.36. While both equations can produce sawtoothing behaviour, the inclusion of a

back-coupling term now means that oscillations on a can be on a faster time-scale than in b.

The final term we include is a high-order nonlinear dissipative term again chosen to the obey

rotational invariance

ä = µa+ 2σa3 + µ2ba
3 − µ6a

6ȧ. (2.38)

This term represent non-ideal effects though the order of the nonlinearity is chosen such that it

is negligible for |a| < 1. This term is important with the new back-coupling term as it prevents

solutions becoming unstable. The expanded model with the additional terms in µ2 and µ6 is

termed the axisymmetric non-axisymmetric coupled extra terms (ANAET) model. When applying

to experimental tokamak data, it may also be important to include small symmetry-breaking terms

to account for control systems [72] or small random terms to model turbulence [17]. In the following

sections some parameters will change in notation to stay in line with other published work, but

the resulting models are the same as described here.

As a final note, it is important to consider that the models written down here describe general

instabilities within a tokamak under the outlined symmetry constraints. While we aim to relate

the behaviour to experimental observations, the mode amplitudes can describe any type of in-

stability behaviour observed. Preliminary fitting of these models to experimental time series for

sawteeth instabilities (electron temperature measurements) and ELM instabilties (magnetic pick

up coils) was performed by [84]. In these case the time series could qualitatively be fit by changing

the parameters in the equations manually due to varying oscillation frequencies observed experi-

mentally. This is important, as it suggests that as well as unknown parameters, these may also

be non-constant. The model has also been used in synthetic evaluation of RNNs when fitting to

experimental ELM measurements [89]. [115] also validated existing EnKF code and performed

fitting of the ANAC model to segments of a Mirnov measurement which showed oscillations in the

magnetic field. These oscillations were fit to partial observations of the ANAC model resulting in

a simple-harmonic oscillator. Alternative approaches using particle filters have been used with the

ANAET model, inferring unseen state variables [162], but purely using the ANAET model as a

surrogate.
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Figure 19: Lowering of the ANAET potential well with varying values of b. The system starts
with the blue potential well and as b grows larger, the walls of the potential well lower shown in
red then green. This causes the particle to escape over the walls of the potential well.

2.4.3 A qualitative comparison to experimental sawtoothing signals

We now compare qualitatively integrations from the ANAC and ANAET models to some exper-

imental signals to motivate research within this dissertation. We will primarily discuss measure-

ments of the sawtooth instability which is typically observed through the electron temperature,

density or soft X-rays. For the sake of data-assimilation against the ANAC or ANAET models, we

are also interested in cases where measurements of magnetic activity, measured by magnetic pick

up coils, may also be present. This section is a purely qualitative comparison to experiment, but

a stricter comparison is described by [17]. In this paper, a bifurcation model is written to describe

Mirnov oscillations which are modulated by a slower sawtooth period. Comparisons are then made

to the bifurcation model and experimental Mirnov signals.

A report from the JET tokamak in 1992 suggests that “each sawtooth is accompanied by a marked

poloidal magnetic field perturbation at the wall” behaviour which is also noted in other Tokamaks

of aspect ratio similar to JET R/a = 2.5 ([20] and references therein). This perturbation is termed

a gong perturbation and was noted to be present in almost all of the sawtooth observations. Figure

20 shows a measurement of the poloidal magnetic field and central temperature taken from the

JET tokamak where a correlated spiking in the poloidal magnetic field is observed alongside the

sawtooth crash. Figure 21 also shows a separate shot from the JET tokamak showing the poloidal

magnetic field and soft X-ray measurements preceding a major disruption in the JET tokamak

where again large oscillations in the poloidal field are observed on the crashing frequency of the

sawtooth. Qualitative comparisons of the equilibrium mode from the ANAET model in Figure

26 to central temperature measurements show that the equilibrium mode grows in time followed

by a rapid crash in a similar fashion to these temperature measurements. The notion of a fast

temperature crash is important to experimental observations and not explained by all existing

models [14]. Additive noise in the state variable integration of the ANAET model also causes

these crashes to occur at different intervals which is also seen in Figure 20.

Of particular note is an observation from the Tokoloshe tokamak which was based in South Africa.

Figure 23 shows the response of the m = 2 poloidal field to the sawtooth instability. The frequency

response shows an increase in frequency of oscillation of the m = 2 mode directly after a sawtooth

crash with a corresponding increase in amplitude at the crash. Comparison to a noisy integration

of the ANAET model in Figure 26 highlights the similarities between the sawtooth instability and
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experimental results. In particular, at the time of a crash in the ANAET model, the particle

escapes the confining potential well causing a sudden crash in b and large amplitude spike in ȧ.

Following this, the frequency of ȧ is also increased as the term in µ2 modifies the shape of the

potential well at larger amplitudes [179].

Finally we also plot the ANAC model at varying values of δ1 in Figure 25. As δ1 is varied the

sawtoothing-like behaviour inverts replicating behaviour seen in the tokamak shown in Figure 22

where the sawtooth inverts at a given radial location in the plasma. As δ1 is increased to δ1 = −10

the behaviour becomes ELM like and resembles observed soft X-ray emissions taken near the

divertor as shown in Figure 24. We do note an important point about the sawtoothing behaviour

in the ANAC model, which is that the sawtoothing period is modulated by a2 and is on the same

period as a. This is distinct from the sawtoothing given by the ANAET model shown in Figure

26, where the slow sawtoothing period is determined by the particle escaping the potential well

when b becomes positive. As shown previously in Figures 13 and 16, the oscillations in the Mirnov

measurements are on a faster time-scale that the sawtoothing period and so attempts to fit both

observations simultaneous would likely imply the need for a back-coupling term. There are, in

fact, a number of beneficial features to the ANAET model when fitting generic Mirnov and soft

X-ray signals:

1. The number of fast oscillations in a per slow modulation of b can be freely controlled essen-

tially by µ and how quickly b grows towards the fixed points. Specific details are given in

[179].

2. Stochastic simulations of the ANAET model generate aperiodic crashing as small perturba-

tions can “push” the particle out of the well earlier / later than in the purely deterministic

case. In many cases the sawtoothing is not strictly periodic [136]. In other cases we must

vary the parameters to produce aperiodic crashing.

3. High-order diffusion helps solutions remain bounded, returning the particle rapidly to the

stable potential well.

With the derivations given in §2.4.2 and comparisons to experiment we have observed that it is

possible to derive simplified models which capture key features of the sawtooth instability. These

observations motivate fitting equivariant-bifurcation models to experimental time-series of the

magnetic field and also soft X-rays. If fits of these surrogate models can be made to experimental

signals, it can help reveal the role of symmetry for tokamak instabilities such as the sawtooth.

We are then principally interested in cases of fitting ȧ to experimental signals or both ȧ and b.

The experimental observations also underpin a further challenge. These observations are often

noisy, non-stationary and poorly sampled. In the remainder of this dissertation we shall discuss

approaches for deriving models of this form or fitting these models to data.
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Figure 20: Spikes in the poloidal magnetic field which are correlated with the crashing frequency
of the sawtooth on JET. The maximum of the Hα pulse occurs later indicating heat reaching the
plasma edge at a later time. Figure taken from [18].

Figure 21: In order: the time behaviour of the plasma current, soft X-ray measurement, at the
edge, poloidal field, radial field. Sawteeth are present at t = 10.2s and t = 10.3 before the shot is
terminated by a major disruption. Figure taken from [19].
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Figure 22: ECE measurements of TEXTOR shot 107906, where measurements on different frequncy
channels represent different radial locations in the plasma. Figure taken from [76].

Figure 23: Response of the m = 2 poloidal magnetic signal amplitude and frequency to the
sawtooth instability. Figure taken from [15].
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Figure 24: ELM-like activity observed from a magnetic probe and corresponding soft X-ray emis-
sion from the wall (near the X-point) following an H-mode. Figure taken from [18].

Figure 25: Behaviour of the ANAC model coupled to the equilibrium mode with varying δr. As
δr is varied the oscillations become inverted and at large δr the behaviour resembles ELMs [71].
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Figure 26: Simulation of the ANAET model with additive noise in the state variables and obser-
vational noise. Additive noise produces aperiodic oscillations in b and a noisy signal.

2.5 Conclusions

We have presented an overview of tokamak instabilities, the derivation of simplified bifurcation

theory models and their qualitative similarity. We paid close attention to how the ANAET model

could reproduce key aspects of the sawtoothing instability from relatively simple arguments. We

then motivated that direct links can be made between the mode amplitudes of the ANAET model

and experimental measurements. Explicitly, the mode amplitude ȧ can be likened to Mirnov

measurements and the mode amplitude b can be likened to soft X-ray measurements. In the

following sections we shall discuss two data-driven approaches which can be used either to identify

models of this form or attempt to match the ANAC or ANAET model directly to data.
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3 SINDy as an approach for sparse equation recovery

In this section we review the sparse identification of nonlinear dynamics (SINDy) [97] as an ap-

proach for deriving ordinary differential equations from data. The application of SINDy is of

interest as it aims to return sparse, interpretable dynamical systems which best describe the data.

SINDy selects a small set of appropriate functions from a library of possible functions to generate

models which fit the data. By enforcing sparsity during model selection, a combinatorically large

selection of candidate models can be narrowed down to a handful of suitable models with fitted

coefficients.

In this chapter, we will introduce the main optimisation method behind SINDy and discuss a

broad selection of extensions relevant to this thesis. We will also discuss the general approach of

model selection and validation with SINDy, and pay particular attention to extensions which help

address weaknesses behind SINDy. Where relevant we also mention some extensions which could

be explored in reference to possible future work.

3.1 SINDy

The field formally begins from the development of symbolic regression developed by refs. [57] and

[74] which allows the physical form of governing equations to be distilled from data. Importantly,

the number of terms appearing in the governing equations is balanced against predictive power

allowing for comprehensible models. In contrast, methods such as deep neural networks provide

future state predictions of dynamical systems, often following a black-box approach, typically focus

on prediction and do not provide interpretable governing equations [123]. This symbolic regression

method has more recently been developed into a sparse regression framework, SINDy [97], which

is the main subject of this review.

The goal of SINDy is to learn the function f in the following type of dynamical systems

dx(t)

dt
= f(x(t)), (3.1)

where x(t) ∈ Rn is the state vector. In this form, f can represent ordinary differential equations

such as the Lorenz equations. The key observation leveraged by this technique is that the function

f is typically sparse in the space of possible functions which could appear on the right-hand side

of equation (3.1). This observation allows for the solution of overdetermined systems, where the

dimensions of the data typically far exceeds the number of unknowns to be determined. The

sparsity constraint also allows for the discovery of interpretable models which avoid overfitting.

To find f , the system given in equation (3.1) is framed as a linear system of form

ẋ = Θ(x)ξ, (3.2)

with the goal to find the matrix Θ containing possible features which are mapped to ẋ via a series

of coefficients denoted ξ. Time series collected at t1, t2, . . . , tm for states x1, x2, . . . , xn are arranged

column-wise in a data matrix

X = time

y

state−−−−−−−−−−−−−−−−−−−−−−−−−−→
x1(t1) x2(t1) . . . xn(t1)

x1(t2) x2(t2) . . . xn(t2)
...

...
. . .

...

x1(tm) x2(tm) . . . xn(tm)

 , (3.3)
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and similarly

Ẋ =


ẋ1(t1) ẋ2(t1) . . . ẋn(t1)

ẋ1(t2) ẋ2(t2) . . . ẋn(t2)
...

...
. . .

...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)

 . (3.4)

The matrix Ẋ is usually not measured and instead is approximated using X with, for example,

a finite difference method. The data matrix representing an approximation of f must then be

formed. We construct the library Θ(X) ∈ Rm×p which contains the space of possible functions

of size p. An example of this library is given for all possible polynomial terms up to quadratic

nonlinearities

Θ(X) =
[
1 X XP2 ,

]
(3.5)

where polynomial libraries are denoted XP2 for quadratic nonlinearities. Explicitly this is written

as

XP2 =


x2

1(t1) x1(t1)x2(t1) . . . x2
2(t1) . . . x2

n(t1)

x2
1(t2) x1(t2)x2(t2) . . . x2

2(t2) . . . x2
n(t2)

...
...

. . .
...

. . .
...

x2
1(tm) x1(tm)x2(tm) . . . x2

2(tm) . . . x2
n(tm)

 . (3.6)

The aim is then to find the sparse matrix of coefficients ξ = [ξ1 ξ2 . . . ξn] which gives the active

functions from the space of possible functions. Each column vector ξ corresponds to one state

variable. The problem is then written as

Ẋ = Θ(X)ξ. (3.7)

All that remains is to solve this overdetermined system of equations to determine Ξ. The simplest

way to view this problem is to define the error between the prediction of the right-hand side,

Θ(X)ξ, depending on some choice of ξ, and the observed data matrix Ẋ

E2(ξ) = ||Ẋ −Θ(X)ξ||22. (3.8)

Here the norm || · ||22 denotes what is known as the least-squares solution, see for example ref

[133][pg. 260]. Our error E then depends on the choice of ξ. We are then interested in minimising

the error, or the difference between the prediction and the observed data. Explicitly we can write

this for each time observation in a column of Ẋ as

min
ξ

1

m

m∑
k=1

(Ẋkl − (Θ(X)ξ)kl)
2 = min

ξ

1

m
||Ẋ −Θ(X)ξ||22, (3.9)

so for each column l (or state vector) we minimise the residual sum of squares between the prediction

and the observed points in the time series. However, we will see that it is important to add what are

called penalisation terms to this solution which may control factors such as how many elements

appear in ξ. If we include penalisation terms, the goal is to find ξ such that the following is

minimised

min
ξ
||Ẋ −Θ(X)ξ||2 + λ1||ξ||1 + α||ξ||2, (3.10)

where || · ||1 is the `1 norm, and the parameters λ1 and α control the strength of the penalisation

terms. The `1 norm is defined

`1 = ||ξ||1 =
1

p

p∑
k=1

|ξp|.
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When α = 0, Equation (3.10) is known as LASSO regression. Similarly when λ1 = 0, it is called

Tikhonov regularisation [119] [pg. 130]. An important aspect of regularisation is the ability to

promote sparsity by minimising the number of elements which appears in ξ. It can be seen that an

increasing number of large non-zero terms causes a larger contribution from the terms in λ1 and

α. As we are attempting to minimises the stated objective, this contribution from the magnitude

of the coefficients therefore aids to promote sparsity. It is worth remembering that SINDy in

this form cannot handle implicit ODEs. If this is relevant the method must be changed as in

[99], however, this adds significant complexity to the method. Extensions to PDEs can also be

considered, described in [108, 109] but with modern applications it is almost always recommended

to use the weak-from for PDE identification, which will be described later.

While the least squares approach can be used, it can be sensitive to noise added to observations.

The addition of any form of noise and numerical differentiation error to the data X means that the

least squares problem can be ill-conditioned [109]. SINDy is effectively a regularised least-squares

regression problem, though there is one distinction. In a linear regression we usually assume a

relationship

y = f(x) + ε

where ε ∼ N (0, δ2
σ) is Gaussian measurement noise with variance δ2

σ and f(x) is a function which

maps variables x to the observation y [133]. This is subtly different to SINDy, where if noise is

added to the state variables the problem becomes

y = f(x+ ε).

The difference is that in a typical linear regression we assume that the features of the regression

have additive noise. Within SINDy, if the measurable states are noisy then when polynomial

terms are formed this noise can be amplified [170]. If the assumption of additive Gaussian noise is

violated (non-Gaussian noise is added), this method will likely have poor performance [132]. This

is because a least-squares solution assumes Gaussian noise, and a missing feature can be viewed as

non-Gaussian noise.

3.1.1 STLSQ Method

1 import numpy as np

2 #solve the initial least squares problem

3 Xi = np.linalg.lstsq(Theta , Xdot)

4

5 #for the number of threshold passes

6 for i in range (10):

7 smallinds=np.where(Xi<Lambda) #find the small indexes

8 Xi[smallinds ]=0 #set coefficients below lambda to zero

9

10 #solve the least squares solution on the remaining coefficients

11 Xi[~smallinds ,:]=np.linalg.lstsq(Theta[:,~ smallinds],Xdot[~smallinds , :])

Listing 1: Implementation of the sequential thresholded least squares algorithm used by [97].

The constants λ1, α are known as hyper-parameters or learning parameters in machine learning.

An optimal value must chosen so that the resulting model predicts accurately, and this optimal

value tends to be specific to the given data-set at hand. Further, the optimal value of these hyper-

parameters is often not clear and instead we are forced to use rules of thumb or model selection

techniques to select them. Model selection techniques have become a staple for validating machine

learning methods, and will described in the following sections. The guiding philosophy for SINDy
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is Occam’s razor: the simplest model successfully describing the data should be favoured over more

complex ones.

In the original publication by [97], an optimisation method termed sequential thresholded least

squares (STLSQ) is used to find sparse solutions. In many ways, STLSQ is almost synonymous

with SINDy and performs feature selection of the candidate library. This process involves solving

an initial least squares solution, followed by explicitly setting all coefficients below a magnitude λ

to zero, and then regressing on to the remaining terms. This process is then repeating until no

new terms are thresholded between iterations, or a maximum number of iterations is performed.

An outline of the code written in Python is shown in Listing 1, and we emphasise that λ is distinct

from λ1. In this thesis, we will only consider the threshold parameter denoted λ and not the

LASSO regularisation denoted λ1. While the performance of STLSQ is generally quite good [163]

compared to other optimisers, one issue is immediately apparent: there is no reason not to expect

small coefficient terms in the resulting equations. Thresholding terms based on their coefficient

magnitude assumes that coefficients of active terms are all of similar magnitude and larger than λ.

Ultimately, the efficiency of the SINDy framework is largely dictated by four aspects [113]:

i. the dimension n of the state vector x(t) of the system and the number of measurements m

in time,

ii. the number of terms, p, in the candidate library Θ,

iii. the optimization method implemented,

iv. the quality of the data itself (for example sampling rates or noise).

The method outlined here has recently been created as a Python package called pysindy which can

be easily imported through conda-forge [132]. This Python implementation allows for standardiza-

tion of results and further several different optimizers are included to solve equation (3.7). While

code was originally developed to perform the SINDy method, pysindy will be used throughout this

thesis as it provides a reproducible framework with large documentation. One important distinc-

tion between the STLSQ algorithm included in pysindy and the original is that, following the final

iteration of thresholding, an unregularised regression is performed with α = 0 on the remaining

active features. This is called an unbiasing step in the documentation, as non-zero regularisation

tends to result in coefficient values which are biased towards the sparsity constraint.

The SINDy method represents a more recent advancement in sparse dynamical model discovery,

with close relationships to nonlinear autoregressive moving average with exogenous inputs (NAR-

MAX) methods (see ref [92]) and Bayesian regression formulations discussed by [49]. The main

difference between SINDy and NARMAX methods lies in the choice of optimiser.

We finally present a classic schematic overview of the SINDy approach, shown in Figure 27. In this

example we consider the reconstruction of a symbolic system of equations from purely time series

data of the Lorenz system. We begin by generating input data from the Lorenz system for x, y and

z which is then used to constructed the matrix Ẋ using finite differencing. The regression problem

is then performed by constructing a candidate feature library Θ of terms that could appear in the

resulting set of equations (such as polynomial terms of the input time series). The role of SINDy

is to select the appropriate coefficients to map the library terms to the derivatives. For this step,

any optimiser can be used but STLSQ is the most common. SINDy then identifies a small number

of non-zero coefficients from the candidate feature library from which a symbolic set of equations

can be formed. In the following section we will give a worked example.
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Figure 27: Classic schematic of the SINDy algorithm. A set of time series data is formed into a
regression problem by constructed a candidate feature library. SINDy then performs selection of the
appropriate coefficients in the columns of ξ from which a set of symbolic equations is constructed.
Figure taken from [97].
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3.1.2 Example - Lorenz System
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Figure 28: a) shows the Lorenz attractor of the original system integrated between t = 0 and
t = 20. b) shows a comparison of the attractor dynamics of the identified system integrated over
the same time range.

To illustrate SINDy and STLSQ, we use an example of the Lorenz equations as considered in the

original SINDy paper [97]. The results here have been reproduced independently using a package

known as pySINDy [132]. We explore the nonlinear coupled set of ODEs

ẋ = σ(y − x), (3.11a)

ẏ = x(ρ− z)− y, (3.11b)

ż = xy − βz, (3.11c)

where σ = 10, β = 8/3 and ρ = 28 with initial conditions [x0, y0, z0] = [−8, 7, 27]. The Lorenz

equations represent a good starting point, as they themselves are a reduced-order model deriving

from Rayleigh-Bénard convection. To form our data matrices X, we must gather a time-series

measurement of the states x, y and z. The time-series are created by integrating the Lorenz

system from t = 0 to t = 100 with time-step ∆t = 0.001. The data matrices X and Ẋ for the

Lorenz system are filled with the time-series measurements

X =


x(t1) y(t1) z(t1)

x(t2) y(t2) z(t2)
...

...
...

x(tm) y(tm) z(tm)

 , and Ẋ =


ẋ(t1) ẏ(t1) ż(t1)

ẋ(t2) ẏ(t2) ż(t2)
...

...
...

ẋ(tm) ẏ(tm) ż(tm)

 ,

where t1 = 0, t2 = 0.001 and so on. The data used to construct these matrices is referred to as

the training data. The data matrix Ẋ is found by using a second order finite difference scheme to

approximate the derivatives. We can then consider construct a space of possible functions Θ for

this example. Here we will consider a library of polynomial terms up to and including third order,
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so explicitly takes the form

Θ =


1 x(t1) y(t1) z(t1) x(t1)2 . . . z(t1)3

1 x(t2) y(t2) z(t2) x(t2)2 . . . z(t2)3

...
...

...
...

...
. . .

...

1 x(tm) y(tm) z(tm) x(tm)2 . . . z(tm)3

 .

We can now solve the regression problem

Ẋ = Θ(X)ξ

to determine the coefficients ξ. The non-zero coefficients in the matrix ξ will then determine which

terms appear in the governing equations. We implement STLSQ, used by [97], with a threshold

parameter λ = 0.1. The identified model is

x = −9.99978x+ 9.99978y,

y = 27.99802x− 0.9996y − 0.99994xz,

z = −2.66659z + 0.99997xy.

So we can see that from time-series generated from the ODE, we are able to reproduce the equa-

tions which generated them to a high degree of accuracy. Figure 28 shows the attractors for the

original system and the identified set of equations. The identified equations are successfully able to

capture the attractor dynamics and events such as lobe-switching of the original equations. Sub-

sequent to this calculation, a full reproduction of the SINDy paper is now available in the pysindy

documentation [132].

3.1.3 Choosing the threshold parameter

Choosing a model threshold λ must be done so with care. If the threshold is chosen too small, then

many terms can appear in the resulting model. While it may initially seem beneficial to include

as many terms as possible in the fitting process, this is actually dangerous and leads to a problem

called over-fitting. This is especially true when there are noisy time-series. Additional terms allow

the model too many degrees of freedom, and the resulting model will be a poor predictor. One

way to avoid this is to include regularisation, for instance the parameter λ. For the following

example, randomly distributed Gaussian noise is added to the data matrix X with zero mean and

standard deviation 1 × 10−2. The data matrix Ẋ is then calculated from this noisy data using

finite differences. No filtering method is applied to the noisy data.

Figure 29 shows the effect of varying the size of the threshold parameter over a range of values.

The left of the figure shows the x equation integrated in time (red) compared to the noisy training

data shown in black. The right column shows a bar chart of the number of non-zero coefficients

appearing in the identified x equation (blue) and the true x equation outlined in red. We can see

that the sparsity of the resulting model is controlled by the magnitude of λ. As λ is increased,

the model becomes increasingly sparse and there are fewer non-zero coefficients. By λ = 0.1, we

reach a solution which is close to the original set of equations. The time series shows that the

best agreement is achieved by this model. This represents the idea of over-fitting, and the ideal of

enforcing sparsity in the resulting models.
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Figure 29: The effect of varying λ with the resulting model. The left column shows a time-series
of the identified model (red) and the true model (black) integrated forward in time. The right
column shows the terms appearing in the x equations. The blue bars are the identified model and
the red outline are the actual parameters.

3.1.4 Choosing the library of possible functions

One of the assumptions in SINDy is that for the given input time series there should be a model

in the library which allows for sparse representation of the data [122]. If a sparse model f is to

be found, then the space of possible functions in equation (3.5) must contain a sparse basis for the

dynamics. Ideally, many functions should be included in the feature library so that this is true.

However, a large function space quickly leads to ill-conditioned problems as there is too much

freedom to choose functions which fit the data.

Problems considered by [97] show that exclusion of the correct fitting terms returns ODEs with

incorrect dynamics which are not sparse. In this way the method is advantageous as it provides

a clear marker for when the sparse regression methodology has failed. Unfortunately, this is not

the only instance whereby resulting models are not sparse and so only indicates that the approach

has failed. The recommended approach to building the feature library is to start from a minimal

low-order library and gradually increase the number of terms until a sparse model is obtained.

Further, if knowledge of the system is known, then this can be used to guide the choice of terms.

However, it is not always required that the exact form of the governing equations is included in the

feature library. In some cases, it is possible for SINDy to provide approximations to the dynamics

it is attempting to identify, e.g., trigonometric functions by polynomials [97]. This has been

used to identify Poincaré maps where analytic maps are not simple polynomials [129]. While an

exact explicit recovery of the true map may not be possible, SINDy can still reproduce qualitative

behaviour of the original maps, such as fixed points and stability. As such, there is not necessarily

a general approach for choosing the library and this may become problem dependent.

Further, as SINDy rests on the assumption that the dynamical system governing the data is sparse,
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it relies on the choice of candidate functions allowing for a sparse representation. This also requires

that measurements have been taken in such a way to allow for a sparse representation. If we instead

measure combinations of the sparse basis features, the model recovered may no longer be sparse.

Extensions to SINDy by [122] implemented a methodology which emphasised both the discovery

of a coordinate system and a sparse dynamical model. While there are existing methods for low-

dimensional representation of data, they either do not necessarily provide the correct basis for

sparse representations of models, or cannot completely capture nonlinearities. An extra step can

be included in SINDy where an autoencoder is used to find intrinsic coordinates which can support

a sparse dynamical model.

3.1.5 Bifurcations

While the dynamical system given in equation (3.1) represents a large class of problems, often we

are additionally interested in a bifurcation parameter µ of the system. The system is extended to

include an equation representing the “dynamics” of the bifurcation parameter

ẋ = f(x;µ), (3.12a)

µ̇ = 0 (3.12b)

where µ is treated as a variable which is constant in time. µ can then be treated the same way

as any other possible function in the library Θ(X;µ). Indeed, this was successfully applied in the

original work of [97] to the logistic map and two-dimensional Hopf normal form. Further work

has used birfucations to identify predator-prey type models of convection in magnetically confined

plasmas [104].

3.2 Model Selection and Information Criterion

A key-stone of machine learning methods is model selection techniques. Model selection techniques

aim to provide a robust method in which to choose data-sets and learning parameters appropriately.

Choosing the data on which a machine learning model is trained on must be done with care. Many

of the validation techniques outlined for NARMAX methods are also applicable to SINDy, see for

example [92]. Within SINDy model evaluation metrics typically fall into one of two approaches:

1. We evaluate the predicted derivatives against the provided or estimated derivatives.

2. We integrate the resulting model and evaluate the trajectories against the provided trajec-

tories.

The distinction between these approaches is important, and not always made explicit. The first

approach effectively measures the quality of model fit in a graph fitting sense. We can use the

training trajectories in our resulting model to get predictions of the derivatives which can be

compared to the provided derivatives. This approach is the simplest, as it is fast to evaluate and

does not require integration of the resulting model. However, there is no guarantee that a model

with a good prediction of the derivatives does not become unstable in finite time [163]. The second

approach of assessing performance requires integrating the resulting model itself. This has some

advantages in that some assessment of the integrability of the model is performed, but is naturally

more expensive to evaluate. Further, for chaotic models this approach can be harder to evaluate as

trajectories will inevitably diverge. Even minor phase differences in oscillatory models can present

issues in this approach and so it is rarely used to assess model performance. It is of course worth

remembering that SINDy minimises the regularised least-squares error of the predicted derivatives

to observed derivatives, and hence all models are generated based on this minimisation anyway.
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Figure 30: Illustration of time series split cross-validation for the x Lorenz equation. At each split,
a larger training set (blue) is used and tested against the red trajectory.

One of the most commonly implemented model selection methods is known as cross-validation.

This involves splitting data into a set which is used to train the model, and a set to test it.

Several different kinds of cross-validation methods can be used, but some care must be taken when

dealing with time-series. When finding models using SINDy, we are interested in the predictive

capability of these models and how they forecast in the future. Time-series cross-validation can

be performed by splitting the data at a number of times into a test and train set, where for each

split, the train set gets progressively longer in time, as shown in Figure 30. For each split, a model

is trained on the blue trajectory. The identified model can then be simulated forward in time and

the mean-squared error calculated on the red test set. This process is then repeated for number of

pre-decided splits. Cross-validating this way is useful to ensure that the length of the training data

does not appreciably alter the result. It is also used when selecting parameters such as λ. For each

value of λ, an average cross-validation residual sum of squares (RSS) can be calculated. The value

of λ which produces the lowest average RSS on the test data can then be used. This approach

is effectively part of the ensembling SINDy package, where average models are constructed from

bagging the data [156].
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AIC

Figure 31: Schematic of the Pareto front showing the error on the left y − axis in green and the
relative AIC error on the right axis in purple. As the AIC score has a penalty of 2k the slope has
gradient 2 past the elbow. Figure taken from [105].

When describing a set of data, we typically aim to describe the majority of the data with the

simplest rule possible. This ethos describes the Pareto front analysis used when selecting the most

suitable model from a number of candidates and is illustrated in Figure 31. The models with the

lowest error for a set number of terms then define what is called the Pareto front [pg142][119].

As the number of terms increases, indicated by the green curve, we minimise the error. Beyond a

certain sparsity, this reduction in error tends to plateau and indicates that the addition of further

terms is fitting noise in the data. Beyond a given point, improving fit to the training is often at

the expense of predictive capabilities of the model. The model will tend to fit noise in the training

data which results in poorer predictions than a simpler model with fewer terms. With Pareto front

analysis, the hope is that the error shows a sharp elbow with the inclusion of more terms in the

model. This is the approach typically used with SINDy [97], but this elbow is not always clear

[105].

One available method to automate model selection is the use of information criterion [119]. The

Akaike information criterion (AIC) has already been used successfully in model selection with

SINDy [105, 127]. Once a subset of suitable models has been chosen using a regularized least

squares solution, AIC can be applied to find the optimal model. The AIC is defined for a given

model i as

AICi = 2k − 2 ln(L(x, ν̂)), (3.13)

where L(x, ν) = P (x|ν) is the likelihood function of observation x given a set of model parameters

ν, k is the number of parameters used by the model and ν̂ the best estimate of the parameter

values [105]. This score then decreases with improving fit to the training data, but features a lower

bound which increases with the number of nonzero terms. An important point to note is that this

is a relative model score and as such always finds a best model. This is shown schematically in

Figure 31 by the purple curve, where addition of more terms beyond the plateau in error causes an

increase in the AIC score. This process does not in itself guarantee the model is suitable, purely

that it is the best of some selection of candidate models and so is a relative scoring method. A

similar model selection criterion is the Bayesian information criterion (BIC) defined as

BIC = log(n)K − 2 log[L(x, ν̂)], (3.14)
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where n is the sample size. The main difference between the two is that the BIC has been shown

to theoretically select the correct model if it is included in the candidates, provided a large enough

set of data X [pg. 152], [119]. The AIC requires a correction for the finite sample sizes, given by

AICc = AIC +
2(k + 1)(k + 2)

(m− k − 2)
, (3.15)

where m is the number of observations. In practise, the log-likelihood is taken to be the residual

sum of squares (RSS) with RSS =
∑ρ
i=1(yi− ŷi(xi;µ))2 with yi the observed outcomes, xi the inde-

pendent variables and ŷ the estimated model [127]. This scoring procedure pairs well with SINDy,

allowing for the possibility of automated model selection. As the AIC score can be arbitrarily

negative, often the relative AIC score is taken instead

AICrel = AIC −AICmin, (3.16)

where AICmin is the AIC score of the minimum scoring model. As such, one model always has a

value of zero in the relative scoring.

Some issues are evident with this model score. In particular, the addition of noise can change the

minimum of the solution to equation (3.2) such that the correct model no longer has strongest

support. Further, as the score is validated on test data using the RSS, chaotic models are still

likely to give large RSS values. Even small errors in the estimation of the coefficients can cause

significant differences in estimations after a characteristic time-scale [105]. The authors showed

that the number of cross-validations could also influence the model score, with insufficient cross-

validation giving strong support to the incorrect model. It is important to note that the authors

calculate the AIC score over several integrated trajectories for deterministic models and different

initial conditions, rather than evaluating the derivatives as done by ref [163].

KL Divergence

The KL divergence estimates the similarity between two distributions, and provides an approach

for comparing the distributions of either the predicted derivatives or the integrated trajectories

[138]. Given the training set data X, we can calculate the variance-covariance matrix denoted Σ,

where the ith row and jth column entry is given by

Σ(X,X)ij =

∑i=n
i

∑j=n
j (Xi − X̄j)(Xi − X̄j)

(n− 1)
, (3.17)

where Xi denotes the columns of X and the barred variables denote the mean. Once a model

has been identified we can then calculate estimates of the states denoted X̂ by integrating the

resulting model and then find the estimated variance-covariance matrix Σ̂. The KL divergence for

multivariate distributions is given by

KL(Σ||Σ̂) =
1

2

(
Tr(Σ̂

−1
Σ)− n+ ln

|Σ̂|
|Σ|

)
. (3.18)

where n is the number of equations. Given that we are comparing variance-covariance matrices,

the underlying assumption is that the compared distributions are Gaussian in deriving this specific

multivariate form. Despite this, it has been used successfully for non Gaussian distributions with

SINDy [138]. We also note that predicted derivatives can equally be used, as opposed to integrated

the resulting models.
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3.3 Noisy data and weak SINDy

In most cases, it is likely that the collected data will be contaminated with some degree of noise.

Often this noise is assumed to be Gaussian with zero mean so that X̃ = X + η gives the noisy

data with η the Gaussian noise. Calculating the derivative Ẋ then introduces significant errors

as a result. For the case of PDE identification, even extremely minor amounts of noise cause

deterioration of the regression [114].

Several different approaches can be used to mitigate noise. In the original work by [97], a total-

variation filtering method is used and demonstrated to perform well on given data-sets [82]. More

general comparisons of taking numerical derivatives from noisy data are given in ref [145]. Without

appealing to more advanced implementations of SINDy, several improvements can be made from

data alone. This can be gained from simply providing more data, multiple trajectories with off

attractor dynamics and transients or including symmetry reflections of the data.

In certain cases, it has been shown that the dynamics may still be recovered from highly corrupt

measurements [102]. Constraints such as symmetry constraints and energy preserving nonlinearities

discussed by [138, 148], globally stable models [149] and other general equality and inequality con-

straints [160] indirectly improve noise robustness by reducing the potential model space. Bayesian

formulations [170] also provide improved robustness to noise, particularly in the low data limit.

Model ensembling approaches also generate more reliable estimates of coefficient values by bagging

the available data [156].

One of the most robust approaches recasts SINDy as an integral formulation, also known as the

weak form [110, 142]. The weak form relies on recasting the SINDy problem in integral form

either by using the fundamental theorem of calculus [110] or by transferring the derivatives to test

functions [142]. Ref. [110] provides the first formulation of the weak problem, while [142] discusses

the performance of this formulation in the context of PDEs which can be generalised to ODEs.

The weak form we describe here is introduced in the context of sparse PDE recovery from data.

The notation used here is of course still applicable to ODEs and is the form used in pysindy. In

this case, for some constant coefficients cn where n = 0, 1, ..., N we assume the PDE has the form

∂tu =

N∑
n=0

cnfn(u, ∂tu, ∂
2
tu,∇u,∇2u, ...) = 0, (3.19)

where u represents the state vector of the PDE. The problem is then cast into the weak formulation

by multiplying by a differentiable test function w and integrating over some subset of the domain

Ωk defined by

Ωk = {(x, y, z, t) : |x− xk| ≤ Hx, |y − yk| ≤ Hy, |z − zk| ≤ Hz, |t− tk| ≤ Ht}, (3.20)

such that the volumes are centred around randomly selected points (xk, yk, zk, tk) in the compu-

tational domain. Hx, Hy, Hz and Ht then represent the total size of the integration window in the

x, y, z and t domains respectively. This process is then repeated a total of K different times for

random choices of sub-domain locations so that the regression problem can be written as

q0 =

N∑
n=1

cnqn = Qc (3.21)

where Q = [q1, ..., qN ] is the collection of column vectors qn ∈ RK of the N different features of
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the PDE where each entry has the form

qkn =

∫
Ωk

w · fndΩk, (3.22)

and

qk0 =

∫
Ωk

w · ∂tudΩk. (3.23)

We can then perform PDE identification by assuming the form of the PDE is not known, and

substituting a selection of candidate functions for fn. This then casts Equation 3.21 as a linear

regression problem, which minimises the residual sum of squared errors of the K different integrals

on each sub-domain. Explicitly, the solution to Equation 3.21 is found by taking the pseudo-inverse

c̃ = Q†q0, (3.24)

where c̃ is the estimate of c given by the pseudo-inverse denoted by Q†. Then to implement

STLSQ we can again iteratively threshold coefficients of c̃ below a given magnitude and repeat

the solution process. The power of the weak form lies in the ability to use integration by parts to

transfer derivatives from the library functions to the test functions. For example we can write

qk0 =

∫
Ωk

w · ∂tudΩk = −
∫

Ωk

∂tω · udΩk, (3.25)

provided the test function is zero on the boundary. This greatly improves the robustness to noise,

as the test function is chosen to be smooth and continuously differentiable.

The weak form has been noted to provide substantial improvements with noise robustness, see

for example refs [128, 171]. The primary limitation of this approach comes from the formation of

integral windows over the data. In cases where we have periodic signals, if the integration domain

spans multiple periods of that signal key features can be averaged over and in this sense can act

like a low-pass filter [152]. Visualisation of this in the low data limit is given in ref [170]. An

advancement of the weak form distinct from SINDy is called the sparse physics-informed discovery

of empirical relations (SPIDER) [171] which augments the library of possible PDE features. By

making use of rotational and translational invariance properties of vectors, substantial reductions

in library terms can be made resulting in significant improvements.

3.3.1 Constraints

Included constraints in SINDy can be an important part of robust model identification. For

example, the Lorenz equations exhibit the symmetry (x, y, z)→ (−x,−y, z) and so any identified

model must remain invariant to this transformation [138]. If we consider a general second order

library, the regression problem can be expressed as finding the unknown coefficients of the following

system of equations

ẋ = γ0 + γ1x+ γ2y + γ3z + γ4x
2 + γ5y

2 + γ6z
2 + γ7xy + γ8xz + γ9yz,

ẏ = β0 + β1x+ β2y + β3z + β4x
2 + β5y

2 + β6z
2 + β7xy + β8xz + β9yz,

ż = ρ0 + ρ1x+ ρ2y + ρ3z + ρ4x
2 + ρ5y

2 + ρ6z
2 + ρ7xy + ρ8xz + ρ9yz,
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where the unknown coefficients are given by γi, βi, ρi for i ∈ 0, 1, . . . 9. Enforcing the invariance in

the resulting model reduces the number of unknown coefficients to

ẋ = γ1x+ γ2y + γ8xz + γ9yz,

ẏ = β1x+ β2y + β8xz + β9yz,

ż = ρ0 + ρ3z + ρ4x
2 + ρ5y

2 + ρ6z
2 + ρ7xy,

which represents a substantial reduction in library size. Hence, different prior information can be

used to inform library selection. This improves both the predictive performance of the models

and their robustness to noise. As such there are at least two optimisers in pysindy that allow

for constraints called: constrained SR3 [116] and mixed-integer optimisation for sparse regression

(MIOSR) [160]. An implementation of constrained SR3 which produces models which are energy-

preserving is given by trapping SINDy [149]. Constrained SR3 implements constraints as part

of the objective which is being minimized, and as such constraints do not need to be obeyed.

Conversely, MIOSR includes constraints as hard constraints which must be obeyed exactly.

3.3.2 Mixed Integer optimisation sparse regression

A comparatively recent addition to the optimisation in SINDy is the MIOSR optimiser [160].

Here we discuss the basic formulism as this optimiser is more involved than STLSQ but has

exceptional performance compared to other optimisers available with SINDy [163]. MIOSR solves

the optimisation problem

min
ξ,z

||Ẋj −Θ(X)ξ||22 + α||ξ||22, (3.26)

s.t. M l
izi ≤ ξi ≤MU

i zi i = 1, . . . , D, (3.27)

D∑
i=1

zi ≤ kj , (3.28)

ξi ∈ R, zi ∈ {0, 1}, i = 1, . . . , D, (3.29)

whereM l
i , M

U
i are lower and upper bounds on the coefficients and kj is the total sparsity (maximum

number of non-zero coefficients) for the jth equation and zi effectively labels which terms are

active in the regression. This is termed a mixed-integer optimisation problem as both inequality

constraints exist and zi is restricted to integer values. In general this makes the problem non-

convex and challenging to solve, so instead linear programming methods using brand-and-bound

approaches are used (see for example ref [6][pg 272]). In the pysindy implementation, solutions are

performed using the optimisation package Gurobi [172]. The MIOSR optimiser can also solve the

entire system of d equations by forming the block diagonal system

min
ξ

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


Ẋ1

Ẋ2

...

Ẋd

−


Θ 0 . . . 0

0 Θ . . . 0
...

...
. . .

...

0 0 . . . Θ



ξ1

ξ2

...

ξd


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

2

. (3.30)

This means that constraints between coefficients of the form Aξ̄ ≤ b where ξ̄ is a Dd length vector

of all coefficients can now be used. HereA ∈ Rl×Dd represents a matrix of l constraints between the

D different features with d dimensions. Rows of this describe linear systems of equations between

the different variables. b ∈ Rl is then a vector of real-numbers representing, for example, upper

65



bounds that the constrained terms must not exceed. When sparsity is enforced on each equation

separately, it is called group sparsity. When sparsity is enforced on all equations at once (the total

allowable number of non-zero coefficients across all equations) it is termed target sparsity.

For the end-user, MIOSR has several favourable qualities:

1. Sparsity is implemented as a hard constraint, rather than a penalty term in the objective.

This is favourable when correlated features are an issue as is often the case with say polyno-

mial features in the regression library [160],

2. Models are provably optimal, as upper and lower coefficient bounds converge as the approach

effectively performs a combinatorically hard search over the feasible solution space,

3. Additional constraints are also hard, and so must be exactly obeyed.

4. The addition of constraints tends to improve computational performance, as the search space

of viable models get smaller.

Compared to STLSQ which requires optimisation of α and λ, MIOSR specifies the total sparsity k

and α. Specifying the total sparsity instead of a threshold now means that small coefficient terms

which could be relevant are not lost during optimisation. In ref [160], stark improvements are

found using MIOSR compared to other available optimisers. Comparisons of 6D systems fit using

STLSQ and MIOSR show that MIOSR greatly outperforms STLSQ where there are correlated

library features and STLSQ can take incorrect intermediate steps (once a library term has been

thresholded, it can never be recovered). In all cases discussed in this thesis we limit attention to

STLSQ or MIOSR. While other optimisers are available, the performance is typically weaker than

these two [163].

3.3.3 Bayesian SINDy/ Bayesian regression

The presence of noise in our measurements will undoubtedly introduce some errors in the estimation

of our models. Several separate sets of measurements for the same dynamics can produce different

resulting models and this would lead us to find a way to quantify uncertainty in model coefficients.

Further, when our measurements are scarce we may also wish our uncertainty to reflect this. In

fact, Bayesian regression pre-dates SINDy, most notably as a MATLAB script called SparseBayes

which is an implementation by [44]. More recently two prominent implementations of Bayesian-

SINDy have appeared, namely [157] and [170], though the former was only recently added to

pysindy despite its relatively earlier publication. The distinct advantage of a Bayesian formulation

comes from a natural quantification of the uncertainty in model coefficients due to observational

errors, limited data and also lists the probability of inclusion of each candidate function. Ensemble

SINDy can also provide inclusion probabilities for candidate functions [156].

3.4 Applications of SINDy in plasma physics

SINDy and its variants have seen some application to MHD and related fields, with a general

recent review of sparse regression in plasma physics given by [164]. One of the earliest applications

of SINDy to a plasma physics problem was by ref [104] where predator-prey type models are

constructed for L-H transition. Simulations are performed of a magnetically conducting fluid in

which there is a pressure source, and SINDy models are fit to 3 computed flow variables. By fitting

dynamical systems sequentially in different solution regimes, the simulations are parameterised

by a predator-prey model through different bifurcating solutions (ranging from different steady

solutions to oscillatory convection). More recently SINDy has been used to fit reduced models to

66



scrape-off layer simulations of divertor flux by ref [165]. Reduced models are derived by considering

the electron density at the outer midplane of the tokamak and the electron temperature at the

outer divertor. Both linear and nonlinear models are constructed that are capable of prediction of

the electron density and electron temperature at the selected locations, and a discussion is given

on control applications for future application to experiment.

Integral formulations have seen applications to the kinetic Vlasov equations for recovery of the

integral form of PDEs from noisy particle in cell simulations [128]. Application of numerical differ-

entiation techniques with noise often require the selection of some parameter, such a polynomial

degree, which can be difficult to choose without prior knowledge of the clean data. As such,

incorrect selection results in poor coefficient estimation of the model parameters. However, the

PDE integral formulation requires some selection of the volume over which terms are integrated

which is likely to require some prior knowledge of the system. This would have to be chosen so

that it smaller than characteristic variations within the system. The use of integral terms with

the Vlasov equations is shown to reduce inferred coefficient error from 20− 30% to approximately

2%. The same approach was also used to extract the Hasegawa-Wakatani model from synthetic

data generated from the equations themselves [153]. Important discussions are given on domain

selection and total length of data with the integral form. Some care should be taken, however, as

the work in refs [128, 153] compute the derivatives first before integrating.

3.5 SINDy with higher dimensional data

The size of the SINDy feature library grows rapidly with an increase in data dimensionality. As such

SINDy is typically limited to analysis of a handful of time-series only. Many realistic applications

might apply to higher dimensional data such as PDE simulations which can have many more

degrees of freedom. If we hope to identify some system of ODEs from the PDE data, we must

first appeal to a dimensionality reduction technique. A corner-stone of data reduction techniques

is the singular-value decomposition (SVD). This method is key in being able to sparsely represent

high-dimensional data-sets with low rank approximations. SVD also forms the backbone of many

other model reduction techniques including dynamic mode decomposition (DMD) [101] and the

Hankel Alternative View of Koopman theory (HAVOK) method [103].

3.5.1 Singular Value Decomposition

Suppose we have a dataset X ∈ Cn×m where again the rows of X could represent temporal

measurements. As a result we typically have n � m. The singular value decomposition, SVD, of

X can be written

X = UΣV ∗ (3.31)

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices with orthonormal columns and Σ ∈ Rn×m

is a diagonal matrix [pg5][98]. The diagonal entries σi = Σii are called the singular values and are

arranged in descending order of magnitude. The columns of the matrices U and V are called the

left and right singular vectors respectively. SVD has two important applications: the calculation of

the pseudo-inverse which can be used to find a least squares solution, and a rank r approximation

to the matrix X.

One of the most important applications of SVD is reducing the size of a matrix. SVD is a powerful

tool which allows many of the following methods to work, and allows large data-sets to be repre-

sented by the product of 3 much smaller matrices. The rank r approximation involves truncating

equation 3.31 at the leading r singular values to create an approximation of the matrixX. As these

singular values are organised in descending order, we can think of them as labelling the importance
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of each of the columns of U and V . The truncated matrix X̃ is given by sum of r rank-1 matrices

X̃ =

r∑
k=1

σkukv
∗
k = σ1u1v

∗
1 + · · ·+ σrurv

∗
r (3.32)

where uk and v∗k are the columns of U and V respectively. Thinking of a truncated SVD as the

sum of columns of the two matrices U and V is key to the intuition behind some the methods

discussed in Koopman theory. The decomposition in equation (3.31) is that the columns of U

form an orthonormal basis for the column space of X and the columns of V form an orthonormal

basis for the row space of X [pg13][98]). If the matrix X has columns of spatial measurements

at fixed times, then the columns of U represent the spatial patterns and the columns of V the

temporal evolution. This idea can be used in proper orthogonal decomposition (POD) to find an

orthonormal basis which reconstructs the time-dynamics of a system [35].

In fluids applications, the eigenvalues of XTX (which turn out to be the square of the singular

values) are related the to the kinetic energy of the fluid [35]. We can therefore think of the SVD as

providing a decomposition which maximizes the energy reconstruction. More generally, an inner

product is defined for MHD problems by [150] which again allows interpretation of the singular

values as representing the total energy when there is also the influence of a magnetic field. Other

relevant modal decompositions are, for example, DMD where the identified spatial modes evolve

like exp(iωt) where ω = ωr + iωi is a complex growth-rate. For applications with SINDy, this

comes with the additional challenge of correlated modes [154].

3.5.2 Proper Orthogonal Decomposition

We now discuss proper orthogonal decomposition which aims to decompose a field by projecting

onto a set of orthogonal basis modes. Consider a system of nonlinear PDEs written

ut = f(u,ux,uxx, . . . ,x, t;β), (3.33)

where β are a set of parameters. If we assume an expansion of the solution u in terms of a set of

optimal spatial modes ψk and corresponding amplitudes ak we can write the separable solution of

the form

u =

n∑
k=1

ak(t)ψk(x). (3.34)

In index notation, this can be written for the state vector u

uj =

n∑
k=1

ajkψk(x). (3.35)

The POD expansion provides a data-driven approach to find an optimal set of basis modes for a

flow (as opposed to a Fourier mode expansion in spectral methods for instance). To apply this

method, we take snapshots of the flow at time tk as uk = [u(x1, tk) u(x2, tk) . . . u(xn, tk)]T and

arrange them in a large data matrix X as follows

X =
[
u1 u2 . . . um

]
, (3.36)

for m different time measurements. We then perform the SVD on the matrix X as described above

to find a set of orthonormal basis modes for the flow.
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3.5.3 Dimensionality reduction with SINDy

One successful example of combining dimensionality reduction with SINDy is given by ref. [138].

The authors consider a modification of Rayleigh-Bénard convection in an annular domain. When

heated from below, the fluid rotates in a clockwise and anti-clockwise directions. By applying

DMD to the temperature and velocity fields separately, the authors are able to create a reduced

order resembling the Lorenz equations which captures statistical properties of the flow such as

rotation of the flow and dominant frequencies of rotation.

However, limitations of using DMD with SINDy are apparent as DMD identifies spatial modes

which evolve as exp(ωt) in time. As such, the only difference in the time series is the amplitude

and frequency of oscillation and while they may be linearly uncorrelated with different frequencies,

nonlinear prodcucts of different modes can be correlated. For model recovery, this creates a highly

correlated library and a challenging identification problem. Work by [154] addresses this issue

by considering two points: there are only a handful of driving DMD modes and the rest are

harmonic combinations of the others and by using the statistical randomized dependence coefficient

to measure nonlinear correlations. A reduced-model is then constructed from only 4 DMD modes

of the original 16 which successfully reproduces the cavity flow.

SINDy has also been used with POD decomposition techniques, such as by ref [148]. In this

application the authors perform POD of a chaotic electroconvection problem. Interestingly here

POD of only one field of the full problem is performed, from which a simplified ODE system

is constructed. Further, in the original SINDy publication the evolution of 3 POD modes are

used to capture flow past a cylinder [97]. Other more advanced applications of SINDy have come

about which use autoencoders to find reduced representations of equations [122]. This is achieved

by introducing a complicated loss function which demands that the dimensionality reduction of

the autoencoder provides a good reconstruction of the data, but also produces a sparse model in

the SINDy regression. This work has been extended in a number of interesting directions, where

Lorenz-like models are discovered from videos of chaotic waterwheels and partial measurements

[159].

3.5.4 SINDy with partial measurements

A particular weakness of the SINDy method is the inability to predict models when measurements

of a given variable have not been made. While autoencoders may be used to find the appropriate

coordinate systems for mixed observations [122], other methods must be used when measurements

are completely absent. One such example follows from DMD, called the Hankel alternative view

of Koopman (HAVOK) method [103]. HAVOK relies on Koopman theory (see [Pg. 7][98]), where

the goal is find a coordinate system which transform nonlinear dynamics into linear dynamics.

Effectively this means using time-delay embeddings to attempt to reconstruct the attractor from

partial measurements of the system, see for example [167]. Other approaches combine a delay-

embedding with an autoencoder, as given in ref [159]. Other approaches simply use POD of a

single PDE variable from which to construct models, as already discussed in ref [148]. In general

though, these problems are challenging as often there is no guarantee that a chosen embedding

admits a sparse solution. Several issues when using partial measurements are outlined by [175].

3.6 Conclusions

We have presented an introduction to SINDy as it was originally published in ref. [97] and discussed

the limitations of this approach. Several extensions for SINDy have been discussed such as the weak

form as an approach for handling noisy signals. We have also given an overview of SINDy applied
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with decomposition methods such as POD, with some relevant applications in plasma physics. In

the following section we will apply SINDy to a system of ODEs which follow a close derivation

to the Lorenz model, but also includes the influence of magnetic field. We will validate some test

cases for SINDy using model selection techniques, and discuss some apparent challenges. We will

primarily explore the weak form extension with these ODEs and assess the noise robustness and

sensitivity to sampling rates.
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4 SINDy with Magnetoconvection

In this section we introduce magnetoconvection theory and the derivation of a low-order model

which qualitatively describes the PDE system [7]. The low-order model facilitates simpler explo-

ration of the full phase-space of solutions and the applicability of the magnetoconvection problem

studied by Chandrasekhar [2] in tokamaks is discussed by ref [80]. Parallels between the mag-

netoconvection problem with a horizontally imposed magnetic field and reduced MHD (RMHD)

problems for tokamaks can be drawn where the buoyancy term driving convection is identified with

a term related to curvature of the magnetic field in tokamaks. These equations are used in the

numerical simulation of ELMs by [83], for example. Here we study the case of a vertically imposed

magnetic field, as we are primarily interested in assessing the performance of SINDy, though similar

reduced models can be found in the case of a horizontal field [11].

The construction of a 5th order system [7] will be discussed below, which importantly allows a

rich description of the solution behaviour. This system provides a suitable test-bed for SINDy

as it displays a wide range of behaviours such as periodic, semi-periodic and chaotic solutions,

the behaviour of which is outlined in ref [13]. Studying this simplified model provides insight

into the bifurcation structure of the PDE system and illuminates cases where we expect nonlinear

contributions to modify conclusions from linear theory.

4.1 Magnetoconvection in 2D

z = 0

z = d

g

x

z

T = T0 +∆T

T = T0

B

Figure 32: Configuration for the magnetoconvection problem of an electrically conducting fluid
with an imposed vertical magnetic field.

We now discuss the derivation of linear and weakly nonlinear theory models for magnetoconvection,

the details of which are adapted from ref. [2][pg. 146] and ref. [9]. The presence of a magnetic field

in an electrically conducting fluid has important effects on the fluid stability. For one, Alfvén’s

frozen flux theorem states that the fluid will be constrained with the motion of the field lines in the

ideal case. This implies that in general the effect of the Lorentz force will be to inhibit convection.

Further, the presence of Alfvén waves suggests the possibility that the onset of convection can
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begin through overstable oscillations in the magnetic field. By using linear theory, we can confirm

that these statements are possible.

We consider an electrically conducting fluid between two boundaries with normal in the ẑ direction

with an applied uniform heating from below and magnetic field imposed in the vertical direction

with value B0 = B0ẑ. The upper and lower boundaries are situated at z = 0, and z = d

respectively with the bottom boundary being held at temperature T = T0 + ∆T and the top at

T = T0, shown in Figure 32. The equations describing thermal convection in a conducting fluid in

the presence of a magnetic field are as follows

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p− ρ

ρ0
gẑ +

1

µ0ρ0
(∇×B)×B + νf∇2u, (4.1)

∂T

∂t
= −∇ · (Tu) + κ∇2T, (4.2)

∂B

∂t
= ∇× (u×B) + η∇2B, (4.3)

∇ ·B = 0, (4.4)

where the additional magnetic force arises from the Lorentz force with a small effect from electric

fields

FB =
1

µ0
j ×B, (4.5)

and equation (4.3) is the induction-diffusion equation. The constants are defined as νf the viscous

diffusivity, κ the thermal diffusivity, η the magnetic diffusivity and µ0 the magnetic permeability.

We assume the Boussinesq approximation holds valid so that ∇ ·u = 0 and ρ/ρ0 = 1−α(T − T0),

where α is the coefficient of volume expansion. The basic state is given when u = 0 and the

temperature gradient is purely conductive. Equation 4.1 then becomes

0 = −∇p
ρ0
− g(1− α(T − T0))ẑ. (4.6)

The pressure gradient is then at most only a function of z, e.g., p(z) and acts to balance the

temperature in the z-direction. As the situation is steady, we have from equation (4.2)

∇2T = 0. (4.7)

In equilibrium, T = T (z) only and hence we have that

T̄ (z) = T0 −
∆Tz

d
, (4.8)

is the vertically averaged temperature profile after applying the temperature boundary conditions

at z = 0, d. As the temperature gradient varies linearly in z in the base state, define β = −dT̄
dz = ∆T

d

so that

T̄ (z) = T0 − βz. (4.9)

To find the pressure use

1

ρ0

∂p

∂z
= −g(1− α(T̄ − T0)) = −g(1− α− βz), (4.10)

=⇒ p̄(z) = p0 − ρ0gz(1 + 1
2αβz), (4.11)

where p0 is the pressure at the centre. This is the full description of the basic state. We now
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expand equation (4.1) and equation (4.2) about the basic states

p = p̄+ δp, T = T̄ + δT, (4.12)

to get

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇δp+ αgδT ẑ +

1

µ0
ρ0(∇×B)×B + νf∇2u, (4.13)

(4.14)

for the momentum equation and

∂δT

∂t
= −∇ · (δTu) + βw + κ∇2δT, (4.15)

for the energy equation. We next non-dimensionalise the problem by the thermal conduction time

d2/κ and layer depth d

x = x̃d, t = t̃d2/κ, u = ũκ/d, B = B̃B0, δT = ∆T T̃ (4.16)

and introduce the dimensionless numbers

Pr =
νf
κ
, ζ =

η

κ
, R =

gα∆Td3

κνf
, Q =

B2
0d

2

µ0ρ0ηνf
(4.17)

whereQ is the Chandrasekhar number, Pr and ζ are the two Prandtl numbers andR is the Rayleigh

number. We now list the dimensionless equations, understanding that the non-tilde variables are

now dimensionless

1

Pr

(
∂u

∂t
+ (u · ∇)u

)
− ζQ(B · ∇)B = −∇

(
Pterm +

ζQ

2
|B ·B|

)
+RT ẑ +∇2u, (4.18)

∂T

∂t
= −∇ · (Tu) + w +∇2T, (4.19)

∂B

∂t
= ∇× (u×B) + ζ∇2B, (4.20)

∇ · u = 0, ∇ ·B = 0. (4.21)

together with the solenoidal constraints for u and B, and the Lorentz force has been expanded

using a vector identity. The pressure scaling has not been chosen as we intend to remove this term

by constructing the vorticity equation. We now consider the case of motion confined in x−z plane

where both the vertical and horizontal are free boundaries. In dimensionless terms x ∈ [0, Lx] and

z ∈ [0, 1] is the extent of the domain. We eliminate the pressure from equation (4.18) by taking

the curl once and introducing the stream and flux functions defined by

u ≡ (u, 0, w) = ∇× ψŷ =

(
−∂ψ
∂z

, 0,
∂ψ

∂x

)
, B ≡ (Bx, 0, Bz) = ∇×Aŷ =

(
−∂A
∂z

, 0,
∂A

∂x

)
,

(4.22)

so that the current density and vorticity can now be defined

j = ∇×B = (∂xyA,−∂xxA−∂zzA, ∂zyA), ω = ∇×u = (∂xyψ,−∂xxψ−∂zzψ, ∂zyψ), (4.23)
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respectively. The full 2D problem can then be written

1

Pr

(
−∂∇

2ψ

∂t
− J(ψ,∇2ψ)

)
= −∇4ψ −R∂T

∂x
− ζQJ(A,∇2A), (4.24)

∂T

∂t
+ J(ψ, T ) = ∇2T, (4.25)

∂A

∂t
+ J(ψ,A) = ζ∇2A, (4.26)

where

J(ψ,∇2ψ) =
∂ψ

∂x

∂∇2ψ

∂z
− ∂ψ

∂z

∂∇2ψ

∂x
, (4.27)

J(A,∇2A) =
∂A

∂x

∂∇2A

∂z
− ∂A

∂z

∂∇2A

∂x
, (4.28)

J(ψ, T ) =
∂ψ

∂x

∂T

∂z
− ∂ψ

∂z

∂T

∂x
. (4.29)

and we have “uncurled” the induction equation. The solenoidal constraints on B and u are

automatically satisfied. We adopt the stress free boundary conditions, requiring

ψ = ω = 0 on all boundaries. (4.30)

The magnetic flux function must satisfy

A = 0, at x = 0, A = 1, at x = Lx,
∂A

∂z
= 0, at z = 0, 1 (4.31)

so the field remains parallel to the imposed field at the boundaries. For temperature, we impose

insulated sidewalls with uniformly heated top and bottom walls

T = 1 at z = 0, T = 0 at z = 1, (4.32)

and at the vertical boundaries we impose no heat flux

∂T

∂x
= 0, x = 0, Lx. (4.33)

4.1.1 Linear Theory

We now discuss the main results of the linear theory of equations (4.24)-(4.26). By linearising

the dimensionless system and seeking solutions of the form ∼ exp st for some complex growth-rate

s ∈ C, we can obtain a dispersion relation

β2(s+ β2)(s+ Prβ2)(s+ ζβ2) + PrζQβ2m2π2(s+ β2)−RPra2(s+ ζβ2) = 0, (4.34)

where β2 = π2(1/L2
x + 1). We further introduce the normalisations

s̃ = β−2s, τ = β2t, q = (π2/β4)Q, r =
π2

Lx2β6
R (4.35)

with which the dispersion relation can be written

s3 + (1 + Pr + ζ)s2 + [Pr(1− r + ζq) + ζ(1 + Pr)]s+ Prζ(1 + q − r) = 0. (4.36)
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From equation (4.36) we can see that a bifurcation to stationary convection at Rayleigh number

r(e) occurring when s = 0

r(e) = 1 + q. (4.37)

The normalisation introduced to the Rayleigh number rescales the Rayleigh number by the critical

onset value in the field free case. If q = 0, we return to Boussinesq convection with no magnetic field,

with r(e) = 1 corresponding to the minimum critical Rayleigh number for the onset of convection.

We can therefore see that the effect of the magnetic field is to increase the onset value of the

Rayleigh number for steady convection. For overstable oscillations we require a Hopf-bifurcation

meaning that s = ±iωo with ω0 ∈ R. Substitution into the dispersion relation in equation (4.36)

and equating real and imaginary parts yields that overstable oscillations occur at the Rayleigh

number r(o)

r(o) = 1 +
ζ

Pr
(1 + Pr + ζ) +

(Pr + ζ)ζq

1 + Pr
(4.38)

provided that the right-hand side of

ω2
o =

Prζ

1 + Pr + ζ
(r(e) − r(o)) = −ζ2 +

1− ζ
1 + Pr

Prζq (4.39)

is positive (otherwise the assumption of a Hopf-bifurcation is violated as ω0 ∈ C and the eigenvalue

is real). An immediate consequence of equation (4.39) is that a Hopf-bifurcation always occurs at

r(o) < r(e) and hence can only precede a bifurcation to stationary convection. Further from the

same equation we also require

ζ < 1, q ≡ qo >
(1 + Pr)ζ

(1− ζ)Pr
(4.40)

to ensure that ω0 ∈ R and we have a Hopf-bifurcation. The full picture is then as follows: if ζ > 1

or q < qo then the first bifurcation to occur is the transition to stationary convection. However,

if ω2
o > 0, ζ < 1 and q > qo then the first bifurcation is a Hopf-bifurcation when two eigenvalues

cross the imaginary axis. As r increases, the real component of s will increase until eventually

there is a bifurcation from overstable oscillations to stationary convection.

4.1.2 Derivation of a simplified nonlinear model

We now discuss the derivation of a simplified model based on physical arguements given by [7]. First

let us recount that in magnetoconvection, the static state can first become unstable to overstable

oscillations at r = r(o). As r is increased, this behaviour eventually transitions to steady convection

but this does not necessarily occur at the linear theory value of r = r(e) but instead at r = r(i).

Subcritical steady convection can occur at r < r(e) because the transition to oscillatory convection

results in magnetic flux expulsion to the edge of the cells. As already noted, the magnetic field is

stabilising and the expulsion of the field to the cell edges results in a field free region for which

the stability properties are different. Thus depending on the values of the different parameters,

convection can occur before or after r(e) (subcritical and supercritical respectively). For this reason

a model is developed which retains higher-order terms in the Fourier series expansion [7]. Further,

it is also possible for large amplitude solutions to transition from oscillatory convection to steady

convection.

To derive the truncated model, we again expand our solution as a truncated Fourier series. The
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expansion can be written for ψ, A and T as follows

ψ = ε2(2p)1/2Lx
π

sin
πx

Lx
sinπza(τ) + . . . , (4.41)

A = x+ ε2(2/p)1/2Lx sin
πx

Lx
cosπzd(τ) + ε2

Lx
π

sin
2πx

Lx
e(τ) + . . . , (4.42)

T = 1− z + ε2(2/p)1/2 cos
πx

Lx
sinπzb(τ)− ε2 1

π
sin 2πzc(τ) + . . . , (4.43)

where

τ = pt, p = π2(1 + 1/L2
x) = β2, (4.44)

and ε is a small expansion parameter. The modes chosen in the expansion are selected to be

consistent with the steady weakly nonlinear problem, details of which are given in [9], though they

can be understood on a physical basis. The term sin 2πx/Lxe(τ) represents the concentration of

magnetic flux sheets at the cell walls. The term − sin 2πzc(τ) represents the formation of thermal

boundary layers at the hot and cold boundaries. Substitution into the governing dimensionless

equations (4.24)-(4.26) and retaining terms up to O(ε2) we obtain

ȧ = Pr[−a+ rb+ ζqd(($ − 3)e− 1))], (4.45)

ḃ = −b+ a(1− c), (4.46)

ċ = $(−c+ ab), (4.47)

ḋ = −ζd+ a(1− e), (4.48)

ė = −(4−$)ζe+$ad, (4.49)

where

r =
π2

L2
xp

3
R, q =

π

p2
Q, $ =

4π2

p
, (4.50)

with 0 ≤ $ ≤ 4. In future sections these will be referred to as the Knobloch model or the weakly

nonlinear model. We will use equations 4.45 - 4.49 to validate SINDy behaviour. However, it is

possible with differentiation of the ODEs to eliminate all variables in favour of only a (see ref. [9])

and so often we consider finite amplitude effects as being interchangable with the mode amplitude

a. These equations have two distinct properties. The first is that

∂ȧ

∂a
+
∂ḃ

∂b
+
∂ċ

∂c
+
∂ḋ

∂d
+
∂ė

∂e
= −[Pr + (1 +$) + ζ(5−$)] < 0 (4.51)

and so solutions may be attracted to a fixed point, limit cycle or a strange attractor. They are

also invariant under the symmetry

a→ −a, b→ −b, c→ c, d→ −d, e→ e. (4.52)

The advantage of this system of ODEs is that it facilitates a much faster investigation of the

results from both linear and weakly nonlinear theory. It can also characterise the behaviour of sub

and supercritical convection which cannot be understood from linear theory alone. The results

of linear theory can be found by neglecting all quadratic terms and searching for solutions of the

form ∼ exp(sτ). In this case we obtain the dispersion relation

s3 + (1 + Pr + ζ)s2 + [Pr(1− r + ζq) + ζ(1 + Pr)]s+ Prζ(1− r + q) = 0 (4.53)

which is exactly (by construction) the dispersion relation already given. So all previous statements
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on the solution behaviour apply in the linear case. Similarly we may consider the finite amplitude

solutions about the bifurcation at r(e) when ω2
o < 0 by expanding

r = r(e) + r
(e)
2 a2 +O(a4) (4.54)

where the expansion is chosen to preserve the symmetry a → −a. By equating powers of a, we

find

r
(e)
2 = 1 + q +

(2−$)$q

(4−$)ζ2
(4.55)

which is the result expected from weakly nonlinear theory. This correction tells us when to expect

subcritical and supercritical behaviour. If ζ is small, then r
(e)
2 is positive if $ < 2 implying tall cells

and negative for flat cells. We can also conclude that as r increases through r(e), finite amplitude

solutions will be unstable (subcritical) if r
(e)
2 < 0 and stable (supercritical) if r

(e)
2 > 0 provided

ω2
o < 0. In total these equations represent a simplified model of the full-order system which

explain the effects of finite amplitude perturbations. The equations can successfully described the

bifurcation structure of the full PDE system [7]. This model will be used to assess the performance

of SINDy as it displays a wide variety of behaviours. We will mainly be interested in cases where

some type of oscillation is present, like with overstability. Instabilities in tokamaks typically exhibit

oscillations in the diagnostics, hence why we primarily limit our interest to this case and not steady

convection (see ref. [16]).
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4.2 SINDy applied to the Knobloch equations

We now assess the performance of SINDy on equations (4.45)-(4.49) to understand where limita-

tions of the method may appear. In general there are several limitations that are given by SINDy

[97] including: optimisation challenge due to increasing library size, quality of derivative estimates

from noisy observations, quality of derivative estimates in poorly sampled signals and correlated

features in the library. We will first discuss some model evaluation metrics which are chosen for

their speed of evaluation. We will then apply SINDy to some parameter cases discussed in ref

[9] and the selection of learning parameters for different optimisers. We will also apply SINDy

across solutions from the oscillatory branch and in general note the sensitivity of SINDy to errors

introduced from finite differencing. As a result we consider the application of weak SINDy and

discuss the selection of optimisation hyper-parameters. We also build a series of constraints for

SINDy in relation to properties of the outlined system of equations which help promote physically

sensible models in noisy, poorly sampled cases.

4.2.1 Model evaluation metrics

To evaluate model performance we consider two different performance metrics. The first is the

mean-squared error

MSQE =
1

nm

i=n−1∑
i=0

j=m−1∑
j=0

(Ẋji − ˆ̇Xji)
2, (4.56)

where Ẋ are the true derivatives and ˆ̇X the predicted derivatives from SINDy. The result is

averaged over all n equations. We calculate the mean-squared error for both the training data and

a reserved set of validation data, though we calculate these on noiseless data. It is also common

to calculate a mean absolute coefficient error on the non-zero coefficients in the identified model

[152]

MACE =
1

nknonzero

n−1∑
j=0

i=knonzero−1∑
i=0

|Ci − Ĉi|
|Ci|

(4.57)

where Ci is the array of true coefficients. The result is again averaged over all equations. In future

this will be referenced to as the coefficient error. In all examples discussed below we limit our

analysis to a second-order polynomial library formed from all input time series, unless explicitly

stated otherwise. The library then consists of a constant term, linear terms in a,b,c,d and e as well

as all quadratic products of the linear terms without repetition.
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4.2.2 Validation of learning parameters for oscillatory convection
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Figure 33: Train (blue) and test (red) data for the parameters Pr = 1, r = 3.6, q = 5, ζ = 0.4
and $ = 2. An initial condition of 0.001 for all variables is used in the training data, and 1 for all
variables in the test data.

For the sequentially-thresholded least squares optimiser, there are two learning parameters which

must be fixed. These are the coefficient threshold λ which controls the maximum allowable coeffi-

cient magnitude and the L2 regularisation α which also controls the sparsity of the final solution

(larger α promoting sparser solutions). To choose these parameters we test SINDy on a fixed set

of data taken at the parameter values ζ = 0.4, P r = 1, r = 3.6, q = 5, $ = 2 with equations

(4.45)-(4.49) with small initial conditions shown in Figure 33, along with the corresponding test

trajectory. The choice of parameters is close to the transition from stable to oscillatory convection

and produces overstable solutions. Both λ and α are varied on a logarithmically spaced scale

between 0.0001 and 1 in 40 steps. At each combination of λ and α the errors are calculated. The

training data is generated at a time-step of dt = 0.001 and then downsampled to a sampling rate

of ν = 200. Limiting the sampling rate is important, as it impacts the quality of the derivative

estimates.

Figure 34 shows the calculation of the three error metrics on a grid with varying α and λ as well

as the total number of non-zero coefficients found at each α and λ. In each figure we also plot a

corresponding colourbar which indicates the value of the error or the total number of coefficients in

the case of the bottom right subplot only. Each plot then represents an error landscape, where the

coefficient threshold increases in magnitude in the positive x direction and the L2 regularisation

increases in the positive y direction with errors calculated at each combination of α and λ. For

identified SINDy models, model selection follows the principle of Occam’s razor: the simplest model

to describe the data is best. This means that as λ is increased, we expect to obtain progressively

sparser models as we progressively remove features which do not describe the and therefore these

models will all obtain low errors. As λ is increased we expect to reach a threshold beyond which a

key feature is removed and the error suddenly rises. The region just preceding this point represents

the sparsest handful of models which best describe the data.
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Starting from the top left of Figure 34, the train MSQE is plotted, and shows a large region of low

error indicated by light blue given that λ . 0.2 which is insensitive to the choice of α. Regions of

low error indicate that SINDy has identified models which faithfully represent the training data.

This behaviour is reasonable as the error increase occurs when λ becomes larger than the smallest

expected coefficient in the underlying ODE system. Comparison of the train MSQE to the test

MSQE shows that not all low error train MSQE regions correspond to low errors region with the

test MSQE. In this case it occurs if either the coefficient threshold λ or the L2 regularisation

becomes too large. The fact that we encounter low error training regions and high error testing

regions indicates that SINDy has identified a model which is not generalisable and is not capable

of reproducing the dynamics from the reserved data-set.

Comparison of the train MSQE to the coefficient error in Figure 34 again shows that just because a

model obtains a low train MSQE, it does not imply we recover the true underlying system. Again

areas which obtain a low train MSQE have a high coefficient error meaning we do not recover the

true underlying system. If we look at the number of non-zero coefficients obtained, we can see that

all models which have a low train MSQE also have the densest models (highest number of active

terms). Inspection of these models indicates that the correct active terms are identified along

with many small non-zero coefficient terms (much smaller than the threshold value). While this

seems to disagree with the STLSQ process, the routine used in pysindy differs from the method

implemented in ref [97]. The final step involves an “unbiasing” step where an unregularised least-

squares fit is performed on the remaining features which can result in coefficients smaller than

the chosen threshold. The unbiasing approach is different to the approach originally used in [97]

and may produce models with small non-zero terms. A fit to the data with α = 0 confirms that

this is the case, as the resulting model has the expected form and the expected number of non-

zero coefficients, with no coefficient values smaller than the threshold. Overall the performance

of SINDy is not clear in this simple test-case. Despite the data being noiseless and there existing

a known true sparse model, SINDy instead recovers the correct system with many accompanying

small non-zero terms.
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Figure 34: Plots of calculated errors while varying the coefficient threshold λ and L2 regularisation
α for training data close to the onset of overstable oscillations. Low error regions in the train
MSQE show models fitting the training data well, but these do not necessarily obtain low MSQE
on test sets or recover the true underlying models.

4.2.3 Variation of learning parameters with sampling rates

One aspect which is often not discussed in SINDy literature is the dependency of the learning

parameters on the sampling rate and errors within the data. Two cases are considered: the first

when the derivatives are estimated from a fine time-step of dt = 0.001 using finite differencing and

subsequently downsampled to a sampling rate of ν ≈ 50 after they have been calculated (we term

this pre-computed derivatives). The second is when the sampling rate is limited to ν ≈ 50 and the

derivatives are estimated using finite differencing on the already downsampled training data. In

the first case we therefore expected fewer identification errors related to errors from estimation in

the derivatives. We then compare the optimal learning parameters identified in each case.

Figure 35 shows the results for pre-computed derivatives at a sampling rate of ν = 50 where the

errors have been calculated on a grid of varying α and λ. Despite the derivatives being calculated

on highly sampled data, the resulting boundary between the low coefficient error region and high

coefficient error region differs from that shown in Figure 34. The only difference in training data in

this comparison comes from the sampling rate used in identification. This creates a challenge, as

usually hyper-parameters are taken at the elbow of the error curve, where we aim for the resulting

model to be as sparse as possible but still attain a low error (corresponding to large λ). However,

selection of optimal parameters in one case does not necessarily carry over to another case in which

the sampling rate of the data is slightly lower, even though the same accuracy of derivatives is

used in both cases.

Results where derivatives are computed from the downsampled data are shown in Figure 36. The
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train MSQE still shows a similar region of successful identification to Figure 35, but the models

now produce much higher errors in both the test MSQE and coefficient error. Such a result shows

that SINDy is capable of easily identifying models which reproduce the training data, but are

not generalisable or good estimates of the true underlying system. We can see that the errors

are reduced closest to the Pareto frontier but these models still have many non-zero coefficient

terms. This simple example demonstrates the challenge SINDy faces on noiseless data even when

sampling rates are arguably high. The difficulty arises due to correlation in the feature library

and input time series and in this case SINDy cannot identify sparse or generalisable models, even

when sparser answers exist. While the correlation is more obvious here, it will certainly be less

obvious in more general examples but can cause a significant deterioration of the SINDy model

identification process.
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Figure 35: Calculated errors for varying L2 regularisation α and coefficient threshold λ where the
derivatives are estimated from finely sampled data at dt = 0.001 and subsequently downsampled
to ν = 50.
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Figure 36: Calculated errors for varying L2 regularisation α and coefficient threshold λ, where the
derivatives are estimated using finite differencing with data already downsampled to ν = 50.

4.2.4 Noise sensitivity

We now assess the performance of SINDy when noise is added to the data. We first consider the

case where additive noise is added to the states and the derivatives are calculated on noiseless data.

We should expect this approach to yield more robust results for two reasons. The first is that finite

differencing amplifies the noise present in the signal, so taking derivatives of noisy series will yield

increased noise levels. The second is that the library terms are nonlinear, and when noise is added

to the library terms, noise can be further amplified when products of the feature terms are taken.

By adding noise to the derivatives after they have been calculated, we avoid both of these issues.

For this test case we add a very small amount of noise with standard deviation δσ = 0.001 and

limit the sampling rate to ν ≈ 50.

The results are shown in Figure 37, where the train MSQE has been calculated on the noiseless

data and not the noisy derivatives. We can see that despite the noise being extremely minor in

this case, there is a substantial increase in the test error and coefficient error. This is largely due

to the identification of many non-zero terms which, due to the presence of a small amount of noise,

no longer have small coefficients following the unbiasing step. For example the model with the
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minimum test MSQE has the form

ȧ = −1.004a+ 3.610b− 2.004d− 0.008ae+ 0.030be− 2.017de, (4.58)

ḃ = 1.007a− 1.017b+ 0.007d− 0.990ac− 0.004ae− 0.015bc+ 0.008de, (4.59)

ċ = −1.980c+−0.013e+ 0.004a2 + 1.983ab+ 0.010d2, (4.60)

ḋ = 1.006a− 0.015b− 0.394d− 1.006ae+ 0.016be− 0.008cd, (4.61)

ė = −0.794e− 0.062a2 + 0.277ab+ 1.877ad− 0.307b2 + 0.275bd− 0.067d2 − 0.013e2 (4.62)

which, alongside the correct feature terms, identifies many small coefficient terms. Some coefficients

are below the threshold value due to the aforementioned unbiasing step. In the overstable case,

STLSQ fails to correctly identify the correct modes due to correlation in the input time-series.

Given the sensitivity of this case to noise, even denoising methods would provide little benefit. It

is also interesting to note that despite sparser models describing the data being available (e.g., the

true one), SINDy does not select these models. Further, while increasing α should promote sparser

solutions, it appears that the additional penalisation causes poor recovery of the true terms. The

case of overstable oscillation therefore seems to present a challenging case for SINDy despite the

apparent simplicity.
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Figure 37: Plots of different error metrics while varying the coefficient threshold λ and L2 regu-
larisation α with noise added to the derivatives with standard deviation δσ = 0.001.

4.2.5 Using large initial conditions to improve model identification

One of the primary issues with robust model identification in the overstable case is using initial

conditions which do not show different mode evolutions. In the case of starting from a small

amplitude perturbation, SINDy struggles to separate the correlated features in the library. One

solution is to start instead at the initial condition given by a0 = (5, 5, 5, 5, 5) where the amplitude
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of the nonlinearities is much larger. We first repeat the previous case with noise added to the

derivatives with value δσ = 0.001 and ν ≈ 50. The results are shown in Figure 38 where we now

see a distinct improvement in all errors. In particular we see that the region corresponding to the

lowest coefficient errors now finds models which have the desired number of non-zero coefficients.

We also show the case with noise added with standard deviation δσ = 0.1 in Figure 39. With this

new initial condition, we can see that the results are substantially more robust to additive noise

which agrees with the assumed form of noise added to the linear regression (only noise on the

calculated derivatives). In this case there is still a band of α and λ which gives models with low

coefficient errors and the correct number of non-zero coefficients. We also see that in this instance,

the regions of low train MSQE and test MSQE agree, as opposed to identifying models which have

low training errors but incorrect active nonlinearities.
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Figure 38: Evaluation of different errors with noise while varying learning parameters when SINDy
is trained on a trajectory with initial condition a0 = (5, 5, 5, 5, 5) with additive noise on the
derivatives with value δσ = 0.001.
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Figure 39: Evaluation of different errors with noise while varying learning parameters when SINDy
is trained on a trajectory with initial condition a0 = (5, 5, 5, 5, 5) with additive noise on the
derivatives with value δσ = 0.1.

4.2.6 Noise robustness with measurements of state

The more relevant case of noise robustness are cases where noise is added to state measurements.

The derivatives are calculated using finite differences which results in the noise being amplified in

the calculation of the derivatives. The issues are two-fold. The first results from the amplification

of the noise due to the finite differencing scheme, the second comes from the composition of the

feature library. Linear terms results in additive Gaussian noise to the library features, but nonlinear

product terms of the state also amplify the noise and can create non-Gaussian noise distributions

clearly violating the Gaussian noise assumption in linear regression.

We start by considering random Gaussian noise added to the states with standard deviations

δσ = 0.001 and δσ = 0.01. For δσ = 0.001 shown in Figure 40, model identification remains good

with both low test and coefficient errors. At higher noise levels shown for δσ = 0.01 in Figure 41,

we can see that model identification is substantially poorer with low coefficient error cases only

appearing on occasion. However, on inspection the low coefficient error solutions contain many

incorrect non-zero terms. For example, one equation for ḋ identified with minimum coefficient

error has the form

ḋ = 2.283b−1.260d−1.001ae+2.251b2−0.673bc−2.602bd−4.698be−0.574c2+5.086cd+0.627ce+0.629d2,

(4.63)

which has fair estimates for the expected terms, but contains many non-zero incorrect terms. While

the coefficient error is reasonably small, many incorrect terms are also identified. This is because

the coefficient error is relative scoring method, and is not calculated on terms which should be zero.

As the calculation involves computation of the relative coefficient error, if the coefficient should be
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zero then the score would not be defined.

If the models with minimum errors are integrated against a validation set, their performance is

poor suggesting that this degree of noise is already too substantial for SINDy to cope with, with

the resulting models being overfit to noise. The issue can be understood simply from Figure 42.

We can see that δσ = 0.01 added to the state constitutes a small amount of noise for this system,

however, when the finite differences are computed the derivatives are extremely noisy. Even for

small degrees of noise signal with δσ = 0.001, the derivatives are again very noisy.
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Figure 40: Comparison of the errors with noise added to the state trajectories (rather than directly
to the derivatives) with standard deviation δσ = 0.001 with initial condition a0 = (5, 5, 5, 5, 5). In
each grid the L2 regularisation α and coefficient threshold λ are varied.
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Figure 41: Comparison of the errors with a larger degree of noise added to the states with standard
deviation δσ = 0.01 and initial condition a0 = (5, 5, 5, 5, 5). In this case noise is amplified by using
finite differencing to estimate the derivatives. In each grid the L2 regularisation α and coefficient
threshold λ are varied.
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4.2.7 Restriction of the modes

For parameters close to the onset of oscillatory convection with initial conditions close to 0, SINDy

does not achieve robust identification of the underlying model. Minor degrees of additive noise

or even lower sampling rates can cause poor identification of the true model. As many of the

input time series are correlated, we can try simply leaving some of the correlated time series out

of the regression. This is also an interesting test-case for SINDy as it typically requires full-state

measurements. Given this, we restrict a SINDy fit to either the components related to ψ and T

(a, b and c), or the components related to ψ and A (a, d and e). In the following regressions we

fix the learning parameters to λ = 0.1 and α = 0.01 and ν = 50. We first begin by fitting a model

with only 3 modes. Fitting a model to a, d and e results in

ȧ = 0.465a− 0.569d− 1.209ae− 0.526de, (4.64)

ḋ = 1.000a− 0.400d− 1.000ae, (4.65)

ė = −0.800e+ 2.000ad (4.66)

which identifies the expected equations for d and e but in a the buoyancy term represented by b has

been replaced by a quadratic term in ae, though all coefficients are different from their expected

values which should be

ȧ = −a+ 3.6b− 2d− 2de. (4.67)

A comparison of the model performance to the test and training data is shown in Figure 43, where

we can see that the data is well reproduced except in the case where the initial condition is small

and the initial growth rates are not correctly estimated. Similarly we can see at larger amplitudes
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of initial conditions, the nonlinearities will have larger amplitudes and this highlights that the

identified model is only generally capable of fitting on attractor dynamics. This model does not

appear to be generalisable to different initial conditions at fixed parameter values.

We also compare this three mode fit to a fit of four modes of a, b, c and d shown in Figure 44. In

this case starting from small initial conditions still produces models which are out of phase with

the true underlying one, but still saturate at the correct amplitudes. The results here suggest that

we can at least, for fixed parameter values, fit SINDy models which are incomplete in state-space

measurements. However there are some important considerations. For example, the model in a, d

and e idenfities no dependence on the temperature for the ȧ equation, and specifically no linear b

term corresponding to the buoyancy. While SINDy aims to provide sparse and generalisable model,

in this case we can identify a model which does not show the influence of temperature gradient on

convection.

Further, it is also not clear how many modes and which combination of modes should be used.

One notion is to simply exclude the modes with the smallest amplitudes. Results for a fit of a, b, d

and e shown in Figure 45 appear to show a better fit than the 4 mode fit given by a, b, c and d. If

a fit is performed with the initial condition a0 = (5, 5, 5, 5, 5) then we do not get sparse models like

those shown above. Instead it is apparent that the restricted selection of modes cannot capture

the initial large amplitude transients and hence the resulting models are non-sparse.
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Figure 43: A comparison of the performance of the identified SINDy model fit to a, d and e on the
a) full training data, b) only a section on the stable attractor in the training set, c) test set with
initial condition a0 = (1, 1, 1, 1, 1) and d) initial condition with a0 = (5, 5, 5, 5, 5).
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Figure 45: A comparison of the performance of the identified SINDy model fit to a, b, d, e on the
a) full training data, b) only a section on the stable attractor in the training set, c) test set with
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4.2.8 Impacts of nonlinearity

0 50 1001.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

a

r = 3.6

0 50 100 1501.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
r = 4.0

0 50 100 1501.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
r = 4.2

0 50 100 1501.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

a

r = 4.4

0 50 100 1501.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
r = 4.6

0 50 100 1501.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
r = 4.8

0 100 200 300
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

a

r = 5.2

0 100 200 300 400
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
r = 5.227

0 25 50 75 100
t

1.5

1.0

0.5

0.0

r = 5.4

Figure 46: Illustration of the training data showing the series generated from a as the normalised
Rayleigh number r is varied. As r increases the oscillations become progressively nonlinear until
there is a transition to steady convection.

As we increase r along the oscillatory branch, eventually we transition from overstable oscillations

to steady convection. As we approach the bifurcation, the oscillations become notably more non-

linear and the period increases, shown in Figure 46. We assess the performance of SINDy in these

conditions while keeping the number of samples per period and the total number of periods fixed.

Training trajectories are generated by varying r and fixing the other parameters to q = 5, Pr = 1,

ζ = 0.4, ω̃ = 2. We set νmax ≈ 200 and the total number of periods NL = 30. For the steady

case, it is no longer possible to define periods of the system and instead we set the maximum

time to T = 500. For each value of r up to the bifurcation, the periods are explicitly found as

[9.43, 9.62, 10.0, 10.42, 11.11, 12.20, 22.73, 26.36], in agreement with those listed in ref [13].

Figure 47 shows the calculated coefficient errors when the derivatives are calculated by finite

difference and Figure 48 shows the coefficient errors for derivatives pre-calculated with a time-step

of dt = 0.001. For r < 4.8, the test error remains relatively consistent with the regions of λ and α

producing low scoring models staying the same. However, at r = 5.2 both the coefficient error and

test error increase substantially. Closer to the bifurcation at r = 5.227, model identification is even

poorer with no learning parameters appearing to give successful identification even at relatively

high sampling rates. Results from pre-calculated derivatives in Figure 48 show that these errors are

entirely to do with the accuracy in the derivative estimation. As we approach the bifurcation point,
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the period increases but this in turn gives poor estimates of the derivatives due to the sharpness

of the oscillations. Aside from errors arising in derivative estimations, the increasing non-linearity

of the signal appears to have no impact on the selection of valid hyper-parameters.

Figure 49 shows the coefficient error calculated while varying the total number of periods of data

and sampling rate, with pre-computed derivatives. In this instance λ = 0.1 and α = 0.0017 as

suitable learning parameters from the α, λ parameter sweeps. Contrary to the previous examples,

increasing r appears to allow successful equation identification at lower sampling rates provided

enough data is supplied. Further, as r increases it is possible to have successful model identification

with fewer total periods of data, provided the sampling rate is high enough. This is because closer

to the onset of oscillatory convection, the transient growth is slower and it takes longer to reach

the attractor. For r = 4.2, this happens after 5 periods for the highest sampling rates which is still

before attractor has been reached, shown in Figure 46. However, in all cases it at least one period

of data is needed for these initial conditions.
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Figure 47: Coefficient errors for varying the L2 regularisation α and the coefficient threshold λ
with fixed sampling rate ν = 200 where derivatives are calculated from finite differences. Each box
shows the errors calculated as the training data changes with varying r.
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Figure 48: Coefficient errors for varying α and λ with fixed sampling rate ν = 200 where derivatives
are pre-calculated from a data-set with t = 0.001. Each box shows the errors calculated along the
oscillatory branch as r varies, highlighting the impact of nonlinear oscillations in the identification
process.
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Figure 49: Sampling requirements with fixed learning parameters at coefficient threshold λ = 0.1
and L2 regularisation α = 0.0017 as the maximum number of periods (NL) and the sampling rate
(ν) vary. Errors calculated on a selection of normalised Rayleigh numbers is shown.
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4.2.9 Period doubling identification
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Figure 50: Example of period doubling with period 4 in the top row with r = 5.29, Pr = 9.5 and
period 8 in the bottom row with r = 5.291, Pr = 9.5.

For different parameter values, the ODE system exhibits period doubling followed by a transition

to chaos. Similar to studying the impact of nonlinearity on successful equation recovery, here

we see if trajectories which take a longer time to return to their starting location in phase space

are more or less challenging for SINDy. For the period doubling parameters considered, all cases

have the same dominant period given by the FFT with period L = 13.45. While variation of the

parameters does make the period double, this does not change the trajectory significantly enough

to alter the dominant frequency, with this time corresponding to approximately one revolution in

the a − d plane, illustrated in Figure 50. To test the sensitivity of SINDy to period doubling, we

compute the coefficient error for varying sampling rates and total numbers of periods of the data.

The coefficient error is shown in Figure 51 for the select parameters which result in period dou-

bling. We can see that there appears to be no benefit to studying either longer period signals or

semiperiodic signals. The error plots in these cases are near-identical despite trajectories taking

a longer time to return to their starting location in the phase-space. When the derivatives are

pre-computed, there are instances where we achieve successful equation recovery when ν ≈ 13 if

the data is long enough.

The results are now shown when the derivatives are computed from finite differencing in Figure

52. We can see that quite a different picture is obtained in this case, and the correct model is only

obtained for the highest sampling rates and with a certain length. At these parameter values the

fastest time-scales of the system require much higher sampling rates to be properly resolved.
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Figure 51: Coefficient error for varying r and Pr which exhibits period doubling as the values are
changed. The derivatives are pre-calculated on dt = 0.001. a) period 4, b) period 8 c) period 12, d)
period 24 e) period 48 and f) semi-periodic. Here the number signifies the number of revolutions
in the ad plane before returning to its original starting location.
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Figure 52: Coefficient error for varying r and Pr which exhibits period doubling as the values are
changed. The derivatives are pre-calculated on dt = 0.001. a) period 4, b) period 8 c) period 12, d)
period 24 e) period 48 and f) semi-periodic. Here the number signifies the number of revolutions
in the ad plane before returning to its original starting location.

4.2.10 Weak SINDy

Two primary issues identified so far are the strong dependence on high sampling rates for SINDy

and a sensitivity to noise. Most of the results from studying this system support the conclusion

that the sensitivity to both sampling rates and noise arise from the computation of the derivatives.

Even in cases with hundreds of samples per period, we have identified several noiseless cases where

model identification is poor. One resolution to both of these issues is to use the weak form of

SINDy which relies on an integral formulation of the library features and objective. With the weak

form, provided there are no implicit terms, the derivatives can be completely transferred from

the library terms to test functions with well defined derivatives given by the coefficients of fitted

polynomials.

In the weak form, there are several additional free parameters that must be chosen. The most

important of these is the integration domain window sized term Hxt which fixes the size of windows

over which integrals are performed. This must be chosen in such a fashion that noise is suitably

averaged over, but also not too large such that periodic signals are averaged over. Most cases

we consider have some degree of periodicity and so windows must be typically taken to be less

than one period of the characteristic time-scale of the system. We perform an assessment of the

coefficient error for a fixed sampling rate of ν = 50 per dominant frequency for Pr = 9.5, r = 5.29,
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$ = 2, ζ = 0.4 and q = 5 while varying the integral window size and the learning parameters α. In

this example, the number of integration domains (K) is fixed to a large value at K = 1000 where

any increase does not change the nature of the results.

The results are shown in Figure 53. It appears that larger α causes a greater importance on smaller

integration domain sizes. However, in this case a smaller α creates a more robust regression problem

producing better results for a much wider choice of Hxt. Unsurprisingly there is an upper limit

to α beyond which model identification is poor for any selection of Hxt meaning that the solution

has too strong a preference to minimisation of the L2 norm. The selection of Hxt appears to have

a strong dependence on the periodicity of the signal. Windows lengths approaching 1 period of

the system begin to produce poor results averaging out the signal itself. Window lengths that are

too short contain insufficient information on the signal and thus produce poorer estimates of the

coefficients.

99



1e-16
4.1e-16
1.7e-15

7e-15
2.9e-14
1.2e-13
4.9e-13

2e-12
8.4e-12
3.5e-11
1.4e-10
5.9e-10
2.4e-09

1e-08
4.1e-08
1.7e-07

7e-07
2.9e-06
1.2e-05
4.9e-05

Train MSQE

1e-16
4.1e-16
1.7e-15

7e-15
2.9e-14
1.2e-13
4.9e-13

2e-12
8.4e-12
3.5e-11
1.4e-10
5.9e-10
2.4e-09

1e-08
4.1e-08
1.7e-07

7e-07
2.9e-06
1.2e-05
4.9e-05

Coefficient Error

10.0
3.3 2.0 1.4 1.1 0.67

0.4 0.29
0.22

0.18
0.15

0.13
0.12

0.11
0.095

0.087
0.08

0.074
0.069

0.065
0.061

0.057
0.054

0.051
Hxt

1e-16
4.1e-16
1.7e-15

7e-15
2.9e-14
1.2e-13
4.9e-13

2e-12
8.4e-12
3.5e-11
1.4e-10
5.9e-10
2.4e-09

1e-08
4.1e-08
1.7e-07

7e-07
2.9e-06
1.2e-05
4.9e-05

No. Nonzero coefficients

10 6

10 5

10 4

10 3

10 2

10 1

10 8

10 6

10 4

10 2

100

0

3

6

9

12

15

18

Figure 53: Different calculated errors for the weak formulation while using STLSQ while varying
the L2 regularisation α and the integration window size Hxt. The training data is taken at a fixed
instance of the period doubling parameters.

We next evaluate the model identification of the weak form by varying the total number of periods

of data and the sampling rate, keeping Hxt = 0.1 period and α = 1 × 10−16 fixed. From the

result of errors in Figure 54 we can see that the coefficient error remains low for ν ≥ 40. As ν

is increased from ν = 40, the coefficient error decreases suggesting a decreasing error from better

approximation of the integrals in the weak form. We note that the weak form is much more robust

at lower sampling rates even though no derivatives are provided here. Even in the best case scenario

100



with provided derivatives in Figure 51 sampling rates could rarely be lower than ν = 20 and suggest

the performance of the weak form is nearly equivalent. For lower sampling rates, the weak form

successfully identifies the model for much shorter lengths of data than conventional SINDy with

pre-computed derivatives. The lack of strong dependence on the length of the training trajectory

is not surprising as the number of integral domain windows and the size of these windows does not

depend on the overall length of the time series. Even over one period there are stillK = 1000 formed

integrals and in the noiseless case no averaging over noise is required. Still, this is remarkable as in

the case with ν ≈ 50 and one period, the weak form successfully identifies the correct model. For

K = 1000 integration domains and Hxt = 0.1 we will almost certainty have overlapping integration

domains and therefore many samples will contain no new information.
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Figure 54: Calculation of different errors with fixed L2 regularisation α and integration window
size Hxt while varying the numbers of periods of training data NL and the sampling rate ν. The
Figure studies the requirements of total data and fidelity of data when using the weak form.

4.2.11 Comparison to the Lorenz system and assessment of noise robustness

A useful case to consider is when the Knobloch system produces chaotic Lorenz type solutions when

the magnetic field is decoupled from the fluid flow (q = 0), for which the remaining parameters are

set to r = 28, $ = 8/3, Pr = 10 and ζ = 0.2. In this case we can compare fits between the first

three equations (a, b, c) which yields the Lorenz system and a higher-dimensional problem for a, b,

c, d, e. We can then compare how increasing the dimension of the optimisation problem impacts

the noise robustness in this case. Increasing the number of equations increases the library size, but

can also introduce correlated features. In this way increasing the number of equations may present

a harder optimisation problem than simply increasing the size of the polynomial library for a fixed

number of equations.

To classify the time-scale in this case, instead of using the dominant time scale from an FFT we

instead use the inverse of the maximal positive Lyapunov exponent ≈ 0.906 as a characteristic

time-scale [43][pg. 431]. We further use a fine time-step at dt = 0.001 for initial assessment of the

integration windows and limit the total length of data to 100 Lyapunov times.

We first discuss the results of fits to a, b, c, d and e with 1% noise added to the training data, shown

in Figure 55. We can see that there is a wide range of Hxt and α which produce low coefficient

errors. Window sizes exceeding one Lyapunov times produce poor estimations of the underlying

model. Window sizes that are substantially smaller than 0.1 Lyapunov times give correct active
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terms in the underlying model (not shown) but produce poorer estimates of the coefficients. This is

likely because the noise is not averaged over. For 10% noise shown in Figure 56 equation recovery

is significantly poorer, though low coefficients regions still persist. In constrast, when only a, b and

c are fit shown in Figure 56 for 10% noise, the correct equation is still recovered for a band of Hxt.
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Figure 55: Variation of the L2 regularisation α and the size of the integration domain Hxt using
the weak form for a complete set of input time series a, b, c, d, e and noise with standard deviation
1% of each variable.
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Figure 56: Variation of the L2 regularisation α and the size of the integration domain Hxt using
the weak form for a complete set of input time series a, b, c, d, e and noise with standard deviation
10% of each variable.
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Figure 57: Variation of the L2 regularisation α and the size of the integration domain Hxt using
the weak form using only the Lorenz time series a, b, c as input with noise with standard deviation
10% of each variable.

Again we repeat the calculations of errors for the cases described above varying the sampling rate

ν and the total number of periods NL over which the entire regression is performed for K = 1000

windows. For this regression we fix Hxt as 0.906/3 determined previously and α = 1 × 10−8.

The results are first shown for a, b, c, d, e for 1% noise in Figure 58. In this case weak SINDy

provides the correct model reliably at sampling rates as low as 100 samples per Lyapunov time

though cases with lower sampling rates still produce good estimates of the true coefficients but

introduces additional non-zero terms which are not in the true model. For lower sampling rates,

the equations are typically poorly recovered regardless of the length of data provided. The fact that

error does not always decrease with increasing NL for low sampling rates implies that the particular

selection of integration domains are not linearly independent at a given seed. In other words, for

lower sampling rates the data must be uniquely sampled with non-overlapping integration domains.

Unsurprisingly the coefficient error reduces with increasing sampling rate. More interestingly, there

appears to be a minimum length of data at around 15 Lyapunov times beyond which increasing

the sampling rate does not reduce this requirement. This is related to the training data itself,

where the first 15 Lyapunov times are located on one lobe of the Lorenz attractor only.

We next compare 10% noise in Figure 59 for all 5 equations and Figure 60 for the Lorenz system.

For the full system of equations the correct model is rarely identified, only at the highest sampling

rates with additional spurious terms. Typically SINDy will correctly identify the active terms for

b, c, d and e equations but the a equation will contain many spurious non-zero terms. This is

because the coefficients for the ȧ equation are much larger than the other equations and so using

one threshold for all equations results in the inclusion of terms that are not in the true model.

Better results are seen by increasing the threshold for this equation. For the Lorenz system with a

second order polynomial library the performance is better, returning models with lower coefficient

error closer to the correct sparsities.

However, if we now compare the Lorenz system with a third-order polynomial library in Figure 61

(which contains 20 unknowns for each equation) to Knobloch system in Figure 59 (which constains

21 unknowns for each equation) we can see that the performance with 5 equations is better than

a 3rd order system with a larger library. For the Lorenz system with a third-order polynomial

library, the correct coefficients are effectively never identified. It appears in this case that either

nonlinear correlations in the cubic terms or increased noise contributions due to cubic terms creates

a harder regression problem than an increased problem dimension.
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Figure 58: Variation of the total number of periods NL of training data supplied against the
sampling rate ν for a complete set of input time series a, b, c, d, e and noise with standard
deviation 1%.

906453302226181151129113100 90 45 30 22 18
1
2
3
4
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

N
L

Train MSQE

906453302226181151129113100 90 45 30 22 18

Coefficient Error

906453302226181151129113100 90 45 30 22 18

No. Nonzero coefficients

10 6

10 5

10 4

10 3

10 2

10 1

10 8

10 6

10 4

10 2

100

0

11

22

33

44

55

66

77

88

99

Figure 59: Variation of the total number of periods NL of training data supplied against the
sampling rate ν for a complete set of input time series a, b, c, d, e with a larger degree of noise
having standard deviation 10%.
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Figure 60: Variation of the total number of periods NL of training data supplied against the
sampling rate ν for a set of input time series restricted to only the Lorenz system a, b, c and noise
with standard deviation 10%.
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Figure 61: Variation of the total number of periods NL of training data supplied against the
sampling rate ν for a set of input time series restricted to only the Lorenz system a, b, c and noise
with standard deviation 10% but with a larger third order polynomial library.

4.2.12 Modelling with prior physical knowledge

The Knobloch system has two properties which can be used generally in model identification [7].

The first is the symmetry

(a, b, c, d, e)→ (−a,−b, c,−d, e) (4.68)

leaves the solutions unchanged. The second property relates to the divergence in the phase space

∂ȧ

∂a
+
∂ḃ

∂b
+
∂ċ

∂c
+
∂ḋ

∂d
+
∂ė

∂e
= −[Pr + (1 +$ + ζ(5−$)] < 0 (4.69)

so that solutions are attracted to a fixed point, limit cycle or strange attractor. The solution

behaviour in Equation 4.68 places a set of equality constraints on the coefficients of the equations

(for example terms linear in c cannot appear in ȧ). The constraints given by equation 4.69 place
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a series of inequality constraints on the sum of several coefficients at once, which can be deduced

by simply constructing a polynomial library and then taking derivatives. For a second-order

polynomial library, we can write a general library

δi0 + δi1a+ δi2b+ δi3c+ δi4d+ δi5e+ δi6a
2 + δi7b

2 + δi8c
2 + δi9d

2 + δi10e
2+

δi11ab+ δi12ac+ δi13ad+ δi14ae+ δi15bc+ δi16bd+ δi17be+ δi18cd+ δi19ce+ δi20de,

where the library is labelled for each equation i. In total we have a library of terms of this form

for each equation. The phase space restriction places the following constraints on the library

coefficients

δa1 + δb2 + δc3 + δd4 + δe5 < 0, (4.70)

2δa6 + δb11 + δc12 + δd13 + δe14 = 0, (4.71)

δa11 + 2δb7 + δc15 + δd16 + δe17 = 0, (4.72)

δa12 + δb15 + 2δc8 + δd18 + δe19 = 0, (4.73)

δa13 + δb16 + δc18 + 2δd9 + δe20 = 0, (4.74)

δa14 + δb17 + δc19 + δd20 + 2δe10 = 0. (4.75)

which are found by taking the derivatives of the library and equating coefficients of common

polynomial terms. The constraint outlined does not represent every possible model obeying this

property and only restricts to a subset of possible models, but could still be beneficial to include.

The symmetry constraints require

δa0 = δa3 = δa5 = δa6 = δa7 = δa8 = δa9 = δa10 = δa11 = δa13 = δa16 = δa19 = 0, (4.76)

δb0 = δb3 = δb5 = δb6 = δb7 = δb8 = δb9 = δb10 = δb11 = δb13 = δb16 = δb19 = 0, (4.77)

δc1 = δc2 = δc4 = δc12 = δc14 = δc15 = δc17 = δc18 = δc20 = 0, (4.78)

δd0 = δd3 = δd5 = δd6 = δd7 = δd8 = δd9 = δd10 = δd11 = δd13 = δd16 = δd19 = 0, (4.79)

δe1 = δe2 = δe4 = δe12 = δe14 = δe15 = δe17 = δe18 = δe20 = 0, (4.80)

Both of these constraints types can be used with the MIOSR optimiser, though the user must alter

the pysindy code for MIOSR to allow inequality constraints. One advantage of using constraints

with MIOSR is that it generally results in a performance increase, as fewer solutions need to be

explored [160]. In the following we set K = 1000 to ensure the series is well sampled and set

Hxt = 0.906/3. We set α = 1 × 10−12 as generally it is observed that small α produces better

results. Finally the target sparsity is set to 12, meaning that the total number of non-zero terms

that will be identified over all equations cannot exceed this. This is the expected number of

non-zero coefficients when q = 0.

The results of three cases are calculated. The first case in Figure 62 we consider the equivalent

situation to STLSQ with 1% noise. With MIOSR, it appears that the coefficient error is actually

higher than STLSQ. On the whole, most terms are correctly identified but solving the system in

block diagonal form makes the system more sensistive to scaling issues of the time series. As the

series for a is larger in amplitude, the derivatives corresponding to ȧ are also larger. Optimisation

methods which solve MSQE residuals are known to be sensitive to scaling issues, and the solution

places emphasis instead on fitting the series with the largest contributions to the objective function.

STLSQ does not suffer this issue as it solves each system iteratively. One solution to this is to

scale the input time series but we then expect a corresponding scaling of the model coefficients.
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Another alternative is to scale the feature library itself, as is done by [104] but this invalidates

the developed inequality constraints. Figure 63 shows the same results for 1% additive noise when

the input time series are scaled by their standard deviation. In this case the coefficient errors are

much lower highlighting general scaling issues that can be encountered.

Figure 64 shows the case with 10% noise and no constraints, and Figure 65 shows the same case

with constraints. We can see that there is comparatively little difference between the constrained

and unconstrained cases in terms of coefficient error with noise. We also see that MIOSR is

relatively insensitive to changes in sampling rates and total data length. Despite the relatively

high coefficient error, we will discuss a practical example of using constraints in the following

section.
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Figure 62: Train error and coefficient error while carrying the total length of training data NL and
the sampling rate ν with the MIOSR optimiser with 1% noise added to the state variables.
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Figure 63: Train error and coefficient error while carrying the total length of training data NL and
the sampling rate ν with the MIOSR optimiser with 1%. In this Figure the input time series have
standard deviations normalised to 1.
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Figure 64: Train error and coefficient error while carrying the total length of training data NL and
the sampling rate ν with the MIOSR optimiser with a larger degree of noise at 10%.
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Figure 65: Train error and coefficient error while carrying the total length of training data NL and
the sampling rate ν with the MIOSR optimiser with 10% additional and also using constraints.

4.2.13 Explicit example

While the coefficient error does not particularly improve with the inclusion of constraints, we can

consider an example where the data is subject to 20% noise with a sampling rate of ν ≈ 20 samples

per Lyapunov time for the full 5 modes of the decoupled Lorenz system. This is a challenging

case as the input data is highly corrupt by both noise and appreciably low sampling rates. We

perform identification over 50 Lyapunov times and set K = 10000 with a target sparsity of 12. In

Figure 67 we compare the phase space of the identified models showing the training data in blue,

the constrained model in red and the non-constrained model in blue. Despite producing similar

coefficients errors, the model found in the constrained case successfully reproduces the on attractor

dynamics whereas the unconstrained model transitions to steady convection. For a test trajectory

shown in blue in Figure 67, we start with larger initial conditions. Again, while the constrained

model incorrectly models the transients, it still identifies a model which eventually converges to

the attractor dynamics. In the unconstrained case this does not happen. This highlights a general

issue with identification metrics: coefficient error may suggest when the true model is recovered,

but other arguably suitable results can be found with terms which do not appear in the underlying

equations.
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Figure 66: Phase space for the training data (blue), constrained model (red) and unconstrained
model (green) found using the MIOSR optimiser.
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Figure 67: Phase space for the test data (blue), constrained model (red) and unconstrained model
(green) found using the MIOSR optimiser.

4.3 Conclusions

We have considered some different cases of the performance of SINDy with different solution be-

haviours of the system given by Equation (4.45) - (4.49). The first case was overstable oscillations

which proved challenging for SINDy. Even minor degrees of noise could prevent successful iden-

tification, the challenge resulting from correlation of the input library. Larger amplitude initial

conditions helped this by separating the role of different nonlinearities, but even small degrees

of noise caused large finite difference errors. If such cases are relevant for system identification,

either constraining the library or the methods outlined by [154] could provide solutions to this.

Generally though we conclude that SINDy is not suited to the overstable case when the dynamics

are simplistic. Even when simpler models exist to explain the data (i.e., sparser models), SINDy

still selects models with many correlated contributions. In this context the model sparsity could be

limited either by increasing α or using the MIOSR optimiser. However, increasing α was already

shown to produce identification of the incorrect model.

We then looked at the role of the nonlinearity of the oscillations themselves by performing identi-

fication over several different trajectories along an overstable branch before a transition to steady

convection. The nonlinearity of the oscillations did not appear to change the suitability of different

learning parameter substantially, and the main differences that arose were again related to errors in
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the derivative estimates. For fixed learning parameters however, increasing Rayleigh number tra-

jectories were more robustly identified at lower sampling rates. When considering period doubling,

SINDy also showed no improvement and almost entirely failed in the noiseless case where sam-

pling rates were still arguably high. Again this is related to the reliance on derivative estimation

from finite differencing. While constraints could be included in these cases, we only considered a

second order polynomial library containing 20 unknown terms for each equation. The expectation

of SINDy is to perform feature selection from a large available model space, and in this case fails

even with noiseless data and a comparatively small library.

While robustness issues due to noise and sampling rates can be addressed with filtering and upscal-

ing the data, the weak formulation of SINDy addresses both of these issues and is seen to perform

better than the traditional formulation even on noiseless data [163]. When using the weak form we

must make a selection of the integration domain size, but this can be related to physical time-scales

of the system under consideration. In general it seems natural to employ a method which avoids

taking derivatives entirely when sampling rates and noise are of concern. Some care must be taken

though as the weak form can act as a high-frequency filter [152] and suitable selection of natural

length-scales must be assessed beforehand. The weak formulation is shown to be substantially

more robust and is effectively recommended to be used in all applications [163].

Applying the weak form, we showed that the performance of weak SINDy was actually better the

conventional SINDy, even when high quality derivatives were provided to SINDy. The weak form

was capable of reaching comparative sampling rates are SINDy, and also identified the underlying

models with less data. In the case of the decoupled Lorenz system, the weak form was also quite

robust to noise with only the Lorenz modes. Implementation of MIOSR in block diagonal form

had some limitations due to scaling issues, but developed constraints improved the physicality of

resulting models in poorly sampled noisy cases, even though the true model was not identified.

The assessment of the different cases considering provides insight into the expected performance of

SINDy with experimental diagnostics on MAST-U. Many of these diagnostics show high degrees

of noise [166, 174] and are typically quoted as having accuracies of ±10% of the signal standard

deviation [111]. Further, while sampling rates can afford approximately 60 samples per period in

the magnetics diagnostics, in other cases sampling rates are appreciably lower than this [26]. For

any application to experimental time-series it therefore seems essential to use the weak form of

SINDy, with the use of constraints also being desirable. One conceptual issue with experimental

signals is not knowing if there are full or partial measurements. We considered one instance here

where SINDy is capable of reproducing on attractor dynamics from incomplete measurements,

however it is certainly not generalisable as it identifies the incorrect modal dependencies.

While weak SINDy provides a resolution to both noise and sampling rates, some consideration must

be given to the possible difficulties faced by multiscale systems such as the ANAET model. As the

ANAET model is a surrogate for expected tokamak behaviour, we can therefore anticipate issues

arising when attempting to fit multiscale data. For conventional SINDy, successful identification

will clearly be limited by the fastest time-scales present in the system. As mentioned, we have

already identified multiple instances in which marginally poorer sampling rates prevent successful

system identification with conventional SINDy. While we may hope to resolve sampling issues and

derivative estimations from conventional SINDy by application of the weak form, we have seen

that selection of an appropriate integration window is key. For multiscale system we will still be

limited by the shortest time-scales in the system and therefore not take full advantage of noise

smoothing from larger windows. We have also seen at least one instance where including a higher-

order polynomial library caused poor system identification with the Lorenz equations compared
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to a comparable second-order library formed from all 5 equations. Given that the ANAET model

captures diffusive effects with a term of the form ȧa6, we may expect to need a 7th order polynomial

library. This will create a challenging regression problem for SINDy. However, consideration of

the imposed symmetries in the ANAET model would at least reduce the library complexity.
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5 SINDy with magnetoconvection PDE data

In this chapter we use SINDy to derive sparse models from PDE simulations of the magnetocon-

vection problem described in § 4.1. In § 4.1, we derived a nonlinear coupled 5th order system

of ODEs given by equations (4.45)-(4.49). One limitation of these equations is that while they

potentially offer a qualitatively valid description of the full PDE system, quantitatively they may

only be valid close to the onset of instability under the assumptions with which they are derived.

This situation presents an interesting testing scenario for SINDy as close to the onset of instability

we know the system of ODEs will be derivable using SINDy. Further from the bifurcation point

the weakly nonlinear theory will likely no longer quantitatively represent the dynamics, but we

might then use SINDy to find alternative sparse models to describe the data.

To construct ODEs from PDE data, the first issue that must be addressed with SINDy is dimen-

sionality reduction. Given that the size of a polynomial feature library grows combinatorically

with the number of input time series, reducing the PDE data to a handful of time series is par-

ticularly important. For this we make use of POD, discussed in § 3.5.2. The reason this is useful

is that POD can be thought of as a separable basis decomposition, where a function of the form

is assumed separable and written in the form f(x, t) = φ(t)ψ(x). This decomposition is the same

general type as the Fourier decomposition which is used to derive the low-order model given by

equations (4.45)-(4.49). However, although close to the onset of instability we should expect the

POD spatial modes to resemble Fourier modes, the spatial modes of the POD are constructed to

optimally represent the data as described in [35], so will likely differ further from the bifurcation

point. Moreover, there is no longer any reason why we should still derive something approaching

the simplicity of the truncated nonlinear system. This makes for a relevant test case, as in many

real applications we would have no guarantee that the input time series admit a sparse model, or

that the choice of library is complete, or that the POD model suitably reproduces key features,

such as for example, boundedness of solution.

5.1 Dedalus Simulations

Simulations of the magnetoconvection PDE system given by equations (4.24)-(4.26) with the stress-

free boundary conditions are carried out using Dedalus [130]. Dedalus is an open-source spectral

solver which allows symbolic equation entry. As we have written the system of equations in

perturbative form, the imposed boundary conditions allow us to make use of a parity basis available

in Dedalus (this was available in Dedalus 2 at time of writing, but not Dedalus 3). For instance,

the boundary condition

T = 0, z = 0, 1 (5.1)

implies that the solution basis for T must be a sine basis in the z direction as the perturbations

are zero at the upper and lower boundaries. Similarly the condition

∂T

∂x
= 0, x = 0, λ (5.2)

implies that we must have a cosine basis as there is constant heat flux across the boundary (where

sine has a non-zero derivative at the boundary). By writing the equations in perturbative form

using a parity basis, we avoid the need to implement a Chebyshev basis in the z direction for

the non-zero boundary conditions which typically results in slower run-times. This also means all

results are computed on a uniform grid. For temporal discretisation we implement a 2nd-order

semi-implicit BDF scheme included in Dedalus [66]. At each time-step Dedalus allows the user to

save different outputs from the simulation. In our case, in addition to saving the state variables we
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also compute the velocities from the stream-function and the magnetic field from the flux function.

Dedalus computes these in Fourier-space and therefore reduces the error in their computation. Each

simulation output is saved at a time-step of dt = 0.001 to a final time of T = 70. All simulations

on the oscillatory branch are carried out using an equally spaced grid of 96 × 96 points in the x

and z directions. For the chaotic solutions, a resolution of 128× 128 is used. The simulations for

this Section were performed on the University of Leeds ARC4 facility, hosted and enabled through

the ARC HPC resources and support team at the University of Leeds.

5.2 SINDy applied to Overstable oscillations

We first discuss applying SINDy to POD modes found from decompositions of magnetoconvection

PDE data when the solutions display overstable oscillations. Each simulation is carried out with

the parameters listed by ref [8], Figure 3b), with Pr = 1, ζ = 0.2 and Q = 500 fixed for which

linear theory predicts the onset of overstable oscillations at the Rayleigh numbers

R(o) = 2306, r(o) = 2.9598 (5.3)

and the transition to steady convection at

R(e) = 10649, r(e) = 13.6651. (5.4)

Ref. [8] finds that along this branch, the transition to steady convection occurs significantly below

r(e).

5.2.1 Normalisations of the POD modes

When comparing the POD temporal modes to the weakly nonlinear model, care must be taken. A

POD decomposition finds modes which satisfy

UTU =
∑
i

UijUij = I (5.5)

and the modes are therefore orthonormal on the discrete inner product. In cases where the weakly

nonlinear model is valid, we expect the identified POD modes to resemble the weakly nonlinear

modes. To compare the modes, we must first consider the normalisation differences between the

two. The modal expansion in the weakly nonlinear model in ref. [7] comprises of orthogonal but

not orthonormal modes. To make comparisons between the POD modes and weakly nonlinear

modes, we must identify the appropriate scalings for the POD modes so that they are normalised

correctly. The inner product is defined

〈φi, φj〉 =

∫ 1

0

∫ λ

0

φiφjdxdz = δij . (5.6)

The modes given by ref [7] are as follows

ψ(x, t) = 23/2p
λ

π
a(τ) sin(πx/λ) sinπz, (5.7)

T (x, t) = 1− z + 2(2/p)1/2b(τ) cos(πx/λ) sinπz − 1

π
c(τ) sin 2πz, (5.8)

A(x, t) = x+ 2(2/p)1/2λd(τ) sin
(πx
λ

)
cosπz +

λ

π
c(τ) sin

(
2πx

λ

)
(5.9)
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where τ = pt and p = π2(1 + 1/λ2). The transformation between the weakly nonlinear modes and

orthonormal modes (denoted by ′) is given by

a′ =

√
λ

4
23/2λ

p1/2

π
a(τ), (5.10)

b′ =

√
λ

4

(
23/2

p1/2

)
b(τ), (5.11)

c′ =

√
λ

2

1

π
c(τ), (5.12)

d′ =

√
λ

4

(
23/2

p1/2

)
d(τ), (5.13)

e′ =

√
λ

2

1

π
e(τ). (5.14)

For all the results, we will work in the normalisations given by ref [7]. In other words, we identify

modes associated to the primed variables and transform to the unprimed variables. The main

advantage is that the series are normalised by the critical Rayleigh number in the field-free case

and therefore many of the coefficients have similar orders of magnitudes. It also allows compar-

isons of the POD decomposition directly with the weakly nonlinear model. There is one further

normalisation that must be considered coming from the difference between the continuous and

discrete inner products. Each POD mode is also multiplied by

N =

√
1

NxNz
, (5.15)

where Nx and Nz are the number of points in the x and z directions respectively.

5.2.2 Equation recovery metrics

We now discuss some chosen model selection metrics, noting complete discussions have already

been given in §3.2. We use two different metrics which are used for benchmarking in ref. [163],

with extensive explanations given by [105] in relation to applications with SINDy. The first metric

is simply the mean-square error of the predicted derivatives, given by

MSQE =
1

nm

m∑
i=1

n∑
j=1

(Ẋij − Ẏij)2 (5.16)

where Ẋ is the matrix of true derivatives and Ẏ is the matrix of predicted derivatives from the

identified SINDy model. The MSQE simply gives a measure of how well the model fits the objective,

but in many cases gives no estimate of overfitting. Cases with low error can be obtained when

models are overfitted, particularly when the series is noisy. The second model selection metric is

the AIC score used by ref. [105]

AIC = m log(||Ẋ − Ẏ ||22) + 2k +
2k

m− k − 1
(5.17)

where || · ||22 is the L2 norm and k is the number of non-zero coefficients over all equations. The

optimal model is then the model which minimises the AIC score. The AIC score favours sparser

models by penalising models with many non-zero coefficients (larger k). As the AIC score can be

arbitrarily negative, often the relative AIC score is calculated instead

AICc = AIC −AICmin. (5.18)
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With the relative AIC score, only one model will have the value 0. We use the definition given by

[163] but note that the chosen likelihood function minimises the L2 norm which is not normalised

by the total number of points. This does not matter in cases where the total number of points is

the same. For each POD data-set, we use the first 80% as a training set, and the final 20% as a

test set.

5.2.3 General POD results

POD is performed over data-sets along the oscillatory branch with fixed Q = 500, ζ = 0.2, Pr = 1

and Rayleigh number varying R ∈ [2400, 2500, 3000, 4000, 5000, 6000, 7000]. POD is performed on

each field and each data-set separately, from which the spatial modes and corresponding time-

series are found. The results for the POD decomposition are shown in Figure 68 along with the

corresponding time series for the evolution of ψ0 which is labelled a in blue, with a comparison of the

weakly nonlinear model integrated at the same parameter values initialised from the first point in

the time series corresponding to the POD decomposition. When R < 4000, the POD decomposition

closely agrees with the weakly nonlinear model, finding spatial modes which resemble Fourier

modes. Further from the bifurcation point, the weakly nonlinear model transitions to steady

convection earlier than predicted by the simulations. After the transition to steady convection the

identified POD modes no longer resemble Fourier modes, so no comparison can be made between

the amplitude of the convection to the weakly nonlinear model.

The corresponding singular values are shown in Figure 69 for each of the simulated Rayleigh

numbers. For R = 2400, most of the energy is captured in the leading mode for ψ, two modes for

T and two modes for A. As R increases, the floor of the singular value spectrum also increases and

the energy in the leading singular value also decreases until the transition to steady convection.

For T and A, close to the transition of steady convection at R = 6000, the two leading singular

values capture similar energy contents. In Figure 68, while the mode structure is qualitatively

similar at each Rayleigh number, for A the leading modes swap after R = 5000. For training data

related to R = 5000 and R = 6000, these two modes corresponding to A0 and A1 are swapped

so that the modal decomposition resembles that of the weakly nonlinear model. This needs to be

considered when enforcing symmetry constraints later.
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Figure 68: Comparison of the modes identified at each Rayleigh number on the oscillatory branch
which transitions to steady convection after R = 6000. The right column shows the time series for
ψ0 in blue compared to the weakly nonlinear model in dashed red. Note that the end time is not
the same and is set for clarity.
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Figure 69: Comparison of the singular value spectrum for ψ (top), T (middle), A (bottom). The
y-scale shows the relative energy captured in each singular value.

5.2.4 POD decomposition at the onset of oscillatory convection

Before discussing SINDy fits to different Rayleigh numbers on the whole, we first consider the

case close to the onset of overstable oscillations where the POD decomposition agrees closely with

integrations from the weakly nonlinear model. We take results from R = 2400 which can be seen

to closely agree with the weakly nonlinear model in Figure 68. The singular value spectrum in

Figure 69 also shows that the majority of the energy is captured within the first mode for ψ, the

first two modes for T and the first two modes for A. For R = 2400, we also plot modes from
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the next singular-values in the spectrum for ψ in Figure 70. It can be seen that modes for other

singular-values still resemble a Fourier basis. Similar results are seen for T and A.
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Figure 70: First three spatial modes for ψ identified from the POD decomposition.

5.2.5 System identification at R = 2400
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Figure 71: Calculated error while varying the L2 regularisation α and the coefficient threshold λ
for R = 2400 close to the onset of overstable oscillations.

We first compute the aforementioned error metrics for R = 2400 while varying α and λ with results

shown in Figure 71. We can see that both the test and train MSQE obtain very small values in

regions of small α and small λ. Use of small α and λ results in cases which are inevitably overfitted

as can be seen from the number of non-zero coefficients in these regions. The test MSQE does not

provide any new information in this case as the test set is reserved from the end of the POD data

when the oscillations are on attractor and hence the data is not novel. The entire region where

the models have the most populated number of non-zero terms yields the same lowest MSQE.
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The minimum test AICc score instead favours a model with small λ and larger α, indicated by

white squares. This in itself is interesting, as the α corresponds to regularisation which improves

regression with correlated features. The models here also have fewer non-zero coefficients, though

they are still significantly less sparse than the intended weakly nonlinear model. In both cases if

data is generated from the weakly nonlinear model at the given simulation time-step and identified

learning parameters here, we can successfully recover the equations with the same active terms

as the weakly nonlinear model. Further, if we constrain the feature library so that we perform

a regression only on the active terms of the weakly nonlinear model, we recover the equations

with the expected coefficient values. However, as mentioned in the previous section it is extremely

sensitive to noise. Close to onset of instability, the modes are correlated and SINDy cannot easily

distinguish between the correct features despite only using a second order polynomial library.

Integration of the resulting models produce good predictions for the on-attractor dynamics given

by the POD modes. Again this is because while the model is not sparse, many terms effectively

cancel out on the attractor (see appendix of ref [163]). The fact that terms effectively cancel out

prevents STLSQ from finding the sparsest solution in this case, as the method thresholds by the

size of coefficient value.

5.2.6 R = 3000 with larger initial conditions
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Figure 72: Calculated error while varying the L2 regularisation α and the coefficient threshold λ
for R = 3000 when simulations are initialised from an R = 8000 steady convection simulation.

In the previous section it was noted that for the weakly nonlinear system, starting at larger

initial conditions off the final attractor gave more information on the correct active nonlinearities.

Including large amplitude transients made model identification more robust, so to assess this we

initialise a simulation from the final time-step of an R = 8000 simulation during steady convection
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and continue the simulation at R = 3000. By doing so we no longer start from a small initial

condition and hope to provide information on off-attractor dynamics which will make correct

identification of the active nonlinearities simpler.

Figure 72 shows the selection of learning parameters for the larger initial condition. We see that

despite starting from a larger initial condition there has been no substantial change in the sparsity

of the model. The minimum AICc score again indicated by the white square still favours a model

with a relatively low sparsity, with many more active terms than the weakly nonlinear model

(14 terms). In this instance there is less dependence on α as the initial condition creates some

decorrelation between modes and thus the problem benefits less from L2 regularisation. Despite

this, it still appears that minor differences between the POD truncation and the Fourier basis in

the weakly nonlinear model prevent successful identification. Indication of poor fitting is also given

by the large training MSQEs which imply that the transient is not well captured by the library.

5.2.7 Model identification at R = 6000

While STLSQ has only been applied to a handful of cases, a principled approach to model selection

is challenging to develop as in many cases non-sparse models are favoured. Further, the presence

of correlation in the input time series at low Rayleigh number makes identifying sparse models

challenging. The main solution is to make use of a large α but this inevitably favours the sparsity

constraint over faithfulness to the data. For the remainder, we instead consider application of the

MIOSR optimiser as we are able to control the allowable sparsity of the final solution. We are also

able to implement developed constraints given in the previous section which may improve model

identification by reducing the potential model space.

Before discussing parameter sweeps for all Rayleigh number cases, we first perform a constrained

regression of the POD decomposition at R = 6000 before an observed bifurcation to steady convec-

tion at R = 7000 observed in the Dedalus simulations. The first regression we perform in this case,

the feature library is restricted to only allow features in the weakly nonlinear model to appear. At

this Rayleigh number, the weakly nonlinear model predicts steady convection contrary to the full

numerical simulations. The weakly nonlinear model has the explicit form

ȧ = −a+ 7.6995b− 2.533d(1 + (2.0− 1)e)], (5.19)

ḃ = −b+ a(1− c), (5.20)

ċ = −2c+ 2ab, (5.21)

ḋ = −0.2d+ a(1− e), (5.22)

ė = −0.4e+ 2ad. (5.23)

A regression on to the POD modes with the exact form stated above gives the model

ȧ = −1.296a+ 7.870b+ 0.536d− 7.163de, (5.24)

ḃ = 1.015a− 1.053b+ 0.980ac, (5.25)

ċ = −2.015c− 1.905ab, (5.26)

ḋ = −1.428a− 0.445d− 1.796ae, (5.27)

ė = −0.429e+ 0.815ad. (5.28)

Many of the identified coefficients are very similar, except coefficients associated with the magnetic

field (d and e). This system still predicts steady convection at the specified Rayleigh number,

showing that the weakly nonlinear model will not be recovered at this Rayleigh number.
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One possible improvement can be made by including high-order terms in the feature library. By

expanding the library to contain cubic feature terms and increasing the total sparsity to 18 we

identify a model of the form

ȧ = 4.098b− 1.059d− 2.091de− 7.767bce, (5.29)

ḃ = 1.015a− 1.053b− 0.980ac, (5.30)

ċ = −1.693c+ 1.938ab− 0.916bcd, (5.31)

ḋ = −0.398e− 0.257ab+ 1.234ad− 0.706abe, (5.32)

ė = 1.525a− 0.851b− 1.408ae− 1.184bce. (5.33)

This model has a similar form to the weakly nonlinear model, with 4 additional cubic terms added,

selected from a total of 56 library terms for each equation. Comparison of the cubic model to the

weakly nonlinear model at the given parameters is shown in Figure 73 which shows good agreement

to the training trajectory when integrated from the same initial condition. If the coefficient for b

is increased by r̃ ≈ 1.28 corresponding to an increase to R = 7000, the identified system predicts

the onset of steady convection at R = 7000 which is seen numerically, shown in Figure 74. Note

that no real comparison of magnitude can be made in this case as the POD decomposition is at a

different Rayleigh number and therefore the identified basis is different for steady convection.
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Figure 73: Comparison of the cubic model identified with the training trajectories and the weakly
nonlinear model.
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Figure 74: Comparison of the cubic library on the original training data (top) and the cubic model
to the POD trajectories found at R = 7000 showing the model bifurcates to steady convection.

5.2.8 Pareto front for MIOSR derived models

Inspection of a model found with MIOSR at k = 18 and R = 6000 suggests that we can use MIOSR

to find sparser solutions than those given by STLSQ. Further, given that there is little dependence

on α, we attempt to reduce the complexity of the problem by fixing α = 1×10−10 and plotting the

error curves for each Rayleigh number with both second and third-order polynomial libraries. For

each of these cases we also consider fits using either no constraints, symmetry constraints, diffusive

constraints or both symmetry and diffusive constraints, the details of which were discussed in

§4.2.12. For the cases of R = 5000 and R = 6000 we recall that the modes for A are swapped as

otherwise the symmetry constraints are not valid.

The results of the analysis are shown in Figure 75 for R = 2400, 2500, 3000 and Figure 76 for

R = 4000, 5000, 6000. Both Figures show the error on the y−axis against an increasing number of

coefficients k on the x−axis when either no constraints or some differing constraints are included.

Considering first the results of Figure 75 we can see that close to onset of overstable oscillations

at R = 2400 and R = 2500, both second and third-order polynomial libraries produce low scoring

models (with MSQE below 10−5) within model sparsities of 10-14. There is an elbow in the error

around these model sparsities, though the error eventually continues to decrease with decreasing

sparsity (increasing k). Again we identified this case in the ODE validation as finding models with

many non-zero terms due to correlated input features. Decreasing sparsity will then continue to

result in reduced error as the inclusion of more correlated features allows closer fit to the training

data. Inclusion of both constraints or either symmetry and diffusive constraints has no appreciable

improvement on the MSQE. However, given the correlated input features at R = 2400 we already

know it is possible to find multiple models with low MSQE and so this is result is not surprising. As

we increase Rayleigh number to R = 3000, the number of terms required to reach similar MSQEs

increases, though slightly sparser models are required in the cubic case.

For higher Rayleigh numbers shown in Figure 76, we again see that higher sparsity models are

favoured to produce MSQEs below 10−4. We also see that third-order polynomial libraries produce

lower scoring models compared to second-order polynomial libraries for the same sparsities. As we

approach R = 5000 and R = 6000 the elbow in error becomes more pronounced as the temporal

POD modes used for training SINDy become less correlated and more nonlinear. Results from the

ODE evaluation suggest that identification should be more robust at higher Rayleigh number at

the given sampling rates trained on here. For R = 4000 in the cubic case, diffusive constraints
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alone produce higher errors than all other cases. This is because diffusive constraints can make a

more challenging optimisation problem and if the allowed regression time is increased then these

errors again decrease to agree with the unconstrained case.

As both constrained and unconstrained models produce similar scores, we consider an exploration

of the constrained models only in Figure 77 for the second-order polynomial library and Figure 78

for the third-order polynomial library. We compare integrations of identified model (in red) against

a section of data reserved at the end of the POD time series (in blue). Models are compared for

each Rayleigh number and varying model sparsities in the vertical. In producing the following

Figure, we restrict the minimum allowable time-step to 10−5 for the integration solver to promote

reasonable model integration times. If this restriction is not made model integration is too time

consuming, especially when we are concerned with deriving simplified models of PDE behaviour.

The restriction on the solver results in certain models growing to large values and this sets the extent

of the plots (each subfigure does not share a common range in the x and y axes). Consequently,

the training data in plots with poorly performing models can appear very small on the plot. We

emphasise that the training data in every column is shared, regardless of appearance.

For the second-order polynomial library in Figure 77 we find promising fits for R ≤ 3000 for

a large choice of sparsities. However, for higher Rayleigh numbers the second-order polynomial

library struggles to reproduce the dynamics for sparsities less than k = 20. While not shown

here, fits with k = 20 do reproduce the dynamics for higher Rayleigh numbers. Conversely for

the third-order polynomial library in Figure 78, the model fits are less consistent for decreasing

sparsity, with some models of a given sparsity fitting well but an increase causing poorer fits.

This is particularly true for lower Rayleigh numbers, with correlation in the input time series

compounded by larger library sizes. However, for higher Rayleigh numbers the third-order library

is capable of reproducing the dynamics at higher sparsities of k = 17 for R = 6000. The results of

integration support the MSQE calculations which showed that denser models were required for the

second-order library at higher Rayleigh numbers compared to those of the third-order polynomial

library.
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Figure 75: Calculated MSQE on the training derivatives for a),b) R = 2400, c), d) R = 2500,
e), d) R = 3000. The left-hand column are results for a second-order polynomial library and the
right-hand column are for a third-order polynomial library.
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Figure 76: Calculated MSQE on the training derivatives for a),b) R = 4000, c), d) R = 5000,
e), d) R = 6000. The left-hand column are results for a second-order polynomial library and the
right-hand column are for a third-order polynomial library.
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Figure 77: Comparison of integrations showing the a − b plane (a on the horizontal and b on
the vertical) for different sparsities and varying Rayleigh numbers with a second-order polynomial
library. The training data is shown in blue and integration of the SINDy model in dashed red.
Multiple revolutions in the a− b plane can make some red dashed lines appear solid.
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Figure 78: Comparison of integrations showing the a − b plane (a on the horizontal and b on
the vertical) for different sparsities and varying Rayleigh numbers with a third-order polynomial
library. The training data is shown in blue and integration of the SINDy model in dashed red.
Multiple revolutions in the a− b plane can make some red dashed lines appear solid.

5.2.9 Closer analysis of select model behaviour

In this section we describe a“refitting” process to assess the suitability that a model derived at

a fixed Rayleigh number can also be used to suitably describe the dynamics at other Rayleigh

numbers, provided the coefficients are changed accordingly. To perform this process, we first take

a model derived at a fixed R and fixed sparsity k (we refer to this as the first model). The

first model identified at fixed R will have k non-zero coefficients corresponding to active terms

in the feature library. We then perform a model fit at a different R with the same k, where the
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only allowed terms in the library are given by the non-zero terms identified in the first model.

Consequently, only the coefficients of the identified original equations are allowed to change.

We first consider the refitting approach applied to the results of the second-order library, shown

in Figure 79. Two different cases are plotted, the first where the model for k = 20 derived at

R = 6000 is used to refit at all lower Rayleigh numbers. In this case, the high Rayleigh number

model is capable of being refit accurately to all Rayleigh numbers. We similarly take the model

derived at k = 14 and R = 2400 and refit this model to all higher Rayleigh numbers. In this case,

the regression is not capable of fitting a model with only the active coefficients of the R = 2400,

k = 14 model.

We similarly repeat the process described above with the third-order library, shown in Figure 80

and observe a similar pattern. The model derived at R = 6000 and k = 17 is capable of being

refit to lower Rayleigh numbers, albeit less accurately than the second-order polynomial case. The

model found at k = 12 and R = 2400 is, however, not capable of reproducing the dynamics at

higher Rayleigh numbers.

Figure 79: Refitting of models derived at R = 6000 and R = 2400 for the second-order polynomial
library. Each row shows the integration of the refitted model from the specified Rayleigh number
(in dashed red) against the reserved test data (in blue).
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Figure 80: Refitting of models derived at R = 6000 and R = 2400 for the third-order polynomial
library. Each row shows the integration of the refitted model from the specified Rayleigh number
(in dashed red) against the reserved test data (in blue).

5.2.10 Extrapolation of a model to different Rayleigh numbers

As the results in the previous section suggest that models derived at R = 6000 are capable of being

refitted to lower Rayleigh numbers, we can attempt to interpolate the solutions by either fitting the

normalised Rayleigh number as an extra equation of motion such that ṙ = 0, or varying coefficients

in the identified equations of motion. Parameterising SINDy models can then help reveal the
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bifurcation structure of the full PDE. The main challenge results from POD not identifying a

common basis across different Rayleigh numbers, so we can expect that the form of the identified

equations does not remain consistent at different Rayleigh numbers. The refitting process in Figure

79 was capable of refitting a model with the same active terms with different coefficients, however,

when refitting coefficients do not appear to vary linearly with r. This is in contrast to the weakly

nonlinear model, where the Rayleigh number drives convection through only the b term in the ȧ

equation. In our case as the basis decomposition varies, the Rayleigh number is bound to enter in

multiple terms.

We first consider parameterising a model by introducing ṙ = 0 in the system of equations. An

unconstrained fit with k = 20 for a quadratic library where k = 20 is chosen from the result that a

model of this sparsity is required to fit to R = 6000. To train the model across different values of R,

we construct a training data set from Dedalus runs forR ∈ [2400, 2500, 2600, 2700, 3000, 3500, 4000].

We restrict the range of R because Figure 68 shows that the identified POD basis modes change

to a larger degree at higher Rayleigh number and in our tests the parameterised models performed

poorly when including these data-sets. Identification of a model then yields the following set of

ODEs

ȧ = −3.010b− 2.027ac+ 2.307ae+ 9.500bc+ 1.172br + 8.693cd− 3.307de+ 0.386dr,

ḃ = 1.001a− 1.005b+ 0.978ac,

ċ = −2.091c− 1.941ab,

ḋ = −1.136a+ 0.384b− 1.070ae,

ė = −0.785ee+ 2.028ad+ 0.699ce− 0.156er,

ṙ = 0.

At this point we can see the identification of three terms in the Rayleigh number associated to

br, dr and er. This suggests that, as the POD basis varies between Rayleigh numbers, we also

have variation in the amplitude of these modes. Comparisons of the model evaluated at different

Rayleigh numbers is presented in Figure 81. This model parameterises trajectories in the range

it is trained on well, growing to the expected amplitudes. It successfully predicts a bifurcation

to no convection at R = 2300 which is expected numerically (ref. [8] lists the expected value as

R(o) ≈ 2306). However, at R = 6000 the oscillations qualitatively match the POD time series,

but the amplitude is incorrect. This undoubtedly arises from the difference in basis modes. At

R = 7000, Dedalus simulations show steady convection which is not predicted by the identified

model. A further increase of r still does not produce a bifurcation to steady convection.
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Figure 81: Comparison of the a − b plane between the parameterised model (red) and the POD
models (blue). The results are R = 2300 are steady and no POD mode is plotted here.

Despite challenges parameterising the models related to the basis decomposition, models derived

at fixed Rayleigh number can still exhibit solution behaviour that they were not trained on. If we

consider the model derived at R = 6000 with both constraints and a fixed sparsity of k = 17, we

obtain the result

ȧ = 4.098b+ 1.059d− 2.091de− 7.767bce,

ḃ = 1.015a− 1.053b+ 0.980ac,

ċ = −1.687c− 1.908ab− 0.579cdd,

ḋ = −1.084a− 1.775be+ 1.562ace,

ė = −0.398e+ 0.257ab+ 1.234ad− 0.706abe.

If we assume as with the weakly nonlinear model that the Rayleigh number features on the coeffi-

cient of b in the ȧ equation (denoted ξb), we can plot integrations of the model for different values

of the coefficient shown in Figure 82. Each integration is given the initial condition 0.01 for all

state variables, so can produce some transient behaviour. We can see that despite being trained

at a fixed Rayleigh number, varying the coefficient of b still produces solutions which are stable at

ξb = −1, with a transition to overstable oscillations that become progressively more nonlinear until

an eventual bifurcation to steady convection between ξb = 4.11 and ξb = 5. The results suggest

that, with a common basis it would be possible to parameterise the resulting models, though this

remains for future work.
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Figure 82: Integration of the constrained cubic model showing the a − b plane while varying the
coefficient magnitude for b in the ȧ equation denoted ξb. As the coefficient is varied there is
a transition from no convection (top left) to oscillatory convection which becomes progressively
more nonlinear until an eventual transition to steady convection (bottom right).
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5.3 Chaotic results
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Figure 83: POD decomposition of ψ, T and A for the chaotic case.

We now study a single case where the convection is chaotic for the simulation parameters

R = 1088340, Q = 85862, ζ = 0.8, P r = 1 (5.34)

and Lx = 0.16, $ = 1 representing a vertical slot given in ref [25]. The training data is limited to

100 Lyapunov times with data sampled at a simulation time-step of 0.001. The singular values of

the POD decomposition are shown in Figure 83. In this instance, we find that 4 modes in total

are sufficient to reproduce the statistics of the flow. Figure 84 shows the original PDFs of the

full order system against the truncated POD reproduction, as well as the corresponding switching

times. The switching times here indicate the time taken for the listed variables to cross from

positive to negative values, hence giving an indication of how long is spent in one lobe of the

attractor. The PDFs for ψ and A exhibit strong symmetry, indicating that cells rotating clockwise

or anti-clockwise are equally likely. For all fields we find that we only need one mode for Ψ and A,

and two for T to successfully capture the steady statistics of the system. We justify construction

of SINDy models from ψ0, T0, T1 and A0 based on singular-value distribution and reconstruction

of the PDFs.
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Figure 84: Reproduction of the full system statistics from the POD decomposition for a) ψ, b) T,
and c) A. The left figure shows the switching times and the right shows the PDFs of the PDE and
POD time series.
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In the chaotic case, some care must be taken when evaluating model performance using integra-

tion of the resulting SINDy model. This is because, as the behaviour is chaotic, we expect that

trajectories will inevitably diverge. For model selection we look for sparse models which are able

to reproduce the PDFs of the full system and predict accurately over a large number of Lyapunov

times. To assess the similarity of the PDFs, we use the multivariate KL divergence score given by

KL(Σ, Σ̂) =
1

2

(
Tr(Σ̂

−1
Σ)− n+ ln

|Σ̂|
|Σ|

)

where Σ is the variance-covariance matrix from the POD data, Σ̂ is the variance-covariance matrix

of the integrated model and n the number of equations in the regression (4 here), as used by [138]

(with definitions in §3.2). For clarity, we emphasise the covariance matrices are calculated on the

state variables and not the derivatives. Integrating the models is more expensive to evaluate as

the resulting model is integrated for a long time. We also calculate the number of Lyapunov times

successfully predicted by the model (given in ref. [134]), defining the normalised error as

E(n) =
||y(n)− ŷ(n)||
〈||y||2〉1/2

(5.35)

where 〈·〉 denotes the time average, y the observed data and ŷ the predicted data from the SINDy

model. We then measure the number of predicted Lyapunov times before the normalized error

exceeds 2. The chosen error threshold worked well for the particular series considered, however

equation (5.35) is still an absolute measure of error and so the tolerance depends on the amplitude

of the series. As a result, when the amplitude of y is small, the error can be large. We finally also

use the corrected Akaike information criterion (AIC)

AICc = m ln(RSS/m) + 2k +
2(k + 1)(k + 2)

m− k − 2
(5.36)

where the RSS is the residual sum of squared errors calculated from the predicted (ẊSINDy) and

true derivatives (ẊTrue), k is the total number of non-zero coefficients and m is the number of

samples. For a given length of training data, the training data is sampled a total of 30 times

in different locations. The corrected AIC score is then computed for each identified model and

averaged over the 30 different fits. This scoring method aims to balance model prediction and

model sparsity and is not evaluated by integrating the identified model.

5.3.1 Tree-Parzen Estimators

An important aspect of successful system identification in SINDy is an appropriate choice of hyper-

parameters. Many aspects such as data sampling rate, data length, off trajectory dynamics and

optimisation parameters can have a strong impact on the quality of the identified model, as has

been seen so far. Tuning of these parameters is often performed using a standard grid-search

approach. However, in most cases we would prefer a systematic approach to model selection which

does not rely on fixing certain parameters. For example, practical advantages lie in using the target

sparsity feature of MIOSR as this helps side-step normalisation issues by regressing each equation

separately. However, this then opens an obvious question as to how to fix the sparsity of each

equation. Further, if we wish to evaluate metrics of model performance which involve integration

of the resulting model, grid search approaches rapidly become too expensive. One solution to

this is the use of Tree-Structured Parzen Estimators (TPEs), developed by ref [81]. TPEs are a

Bayesian optimisation framework which crucially make selection of new promising hyperparameters

to test based on the history of performance of previously tested hyperparameters. This allows for
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optimisation of complex problems of many dimensions. A clear and comprehensive tutorial for

TPEs is given by [168].

Several packages exist to tackle the use of hyper-parameter optimisation such as Optuna [117]

and Hyperopt [94]. Both of these provide modular frameworks for tackling optimisation problems

using a variety of different search algorithms. These methods aim to optimise what is known as the

Expected Improvement (EI), defined as expectation that a function (the loss function) f : χ→ R
will exceed a threshold y∗

EIy∗ =

∫ ∞
−∞

max(y∗ − y, 0)pM (y|x)dy (5.37)

for some surrogate model of f named M . In this case f is expected to be a function which is

expensive to evaluate, such as a loss function and leads us to construct a surrogate of the loss

function. The expected improvement allows for a trade-off between exploration of the parameter-

space and exploitation of previously known promising parameters. In this definition, x can be

regarded as a single hyper-parameter or parameter being optimised, and y is the value of the user-

defined loss function. To model this function, the distribution of pM (y|x) must also be modelled

which can be done through, for example, kernel density estimation [168].

The aim of the optimisation is then to find an x∗ that minimizes the loss function f , which

can be costly to evaluate. TPEs do this by first modelling distributions p(x|y) and p(y) using

the observation history. TPEs then maintain two distributions or surrogate models describing

promising (l(x)) and non-promising (g(x)) hyper-parameters such that

p(x|y) =

{
l(x) if y < y∗

g(x) if y ≥ y∗
(5.38)

where l is formed from the samples of x where the loss was less than y∗ and correspondingly g is

formed from the observations where the loss was greater than y∗. Finally, there remains freedom

to choose y∗ and this is chosen such that l is formed from some quantile γ, i.e., p(y < y∗) = γ.

In the original paper by ref. [81], the authors showed that the EI is proportional to the ratio of

probabilities of these two groups

EIy∗(x) ∝ l(x)

g(x)
(5.39)

so candidates which have high probability in l and low probability in g form valid candidates for

selection. Through this ratio, the algorithm is able to select new hyperparameters for evaluation.

Generally, hyperparameters are modelled independently, though the method can be modified for

joint probabilities [168]. In the following, for each model selection method we use 10 trees initialised

with different random seeds, each performing 300 trials with the optimisation run in parallel on

one CPU. The allowable parameters are shown in Table 2, where we perform fits with MIOSR

allowing the sparsity of each equation to vary independently from the others. The choices made

here are quite restrictive and larger ranges could be used, but are based off of total sparsity fits for

varying k. We also allow the total length of data to vary for a larger model space to be explored.

In general though, if suitable models are not found the ranges can be extended. However, as we

wish for sparse models the total sparsity for each equation is limited. Overall the largest expense

when evaluating the TPEs in this case lie within the integrations of the model.
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α No. Times Eqn 1 Eqn 2 Eqn 3 Eqn 4

Range [0.01, 0.1] 5,10, ... ,100 3,4,5,6 3,4,5,6 2,3,4,5,6 2,3,4

Table 2: Range of different parameters and hyper-parameter values used during TPE testing.
These are chosen based on the general sparsity seen from the total sparsity method. The value of
α varies logarithmically.

5.3.2 Overall performance

Figure 85: Comparison of the KL, AICc and nλ scoring methods. The diagonal figures indicate
the score being minimised on each row. For each row we also calculated the other scores, but these
are not minimised.

We first consider the overall comparison of the different scoring methods when calculated using

TPEs. The results of this process are shown in Figure 85. The diagonal figures (top left, middle

and bottom right) show the scores being minimised for each row of the figure. For each score that

is minimised, we also calculate the other corresponding model scores and plot these on the same

row so comparisons can be made. As we are minimising all scores, we have plotted the negative

of the predicted number of Lyapunov times. As a consequence, all of the best models evaluated

by each metric are in bottom left of each plot. The colour gradient in each plot indicates the total

number of non-zero coefficients for each model.

We now discuss the results of the scores that are minimised in each row. For the KL score, the

lowest scoring models have around 17-19 non-zero coefficients, and models which have more non-

zero coefficients perform worse. This is contrasted to the AICc score which produces the lowest

scores for the lowest sparsity models (highest number of non-zero coefficients). For the Lyapunov
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scoring method, slightly sparser models are favoured compared to the KL scoring method, however

while not visible, denser models also can produce low scoring models.

Comparison of the KL score to other scores calculated during minimisation along the row shows

that models with a low AICc score also have low KL scores in this instance. For nλ, we see

that the lowest scoring KL models don’t necessarily produce the best models for predicting nλ.

Minimisation of the AICc score in the middle row shows that only certain models with higher

sparsity also produce low scoring KL models. Conversely, models with a large number of non-zero

terms can produce models with a minimum nλ. Finally for the minimisation of nλ in the bottom

row, we can see that the lowest scoring models minimised by nλ do not typically produce low scoring

KL models. As the assessment of model performance is only taken over a short time-frame, this

may indicate that these models are not as good at capturing long term statistics. Compared to

the AICc score, the sparser models which produce low nλ do not produce minimal AICc scores.

The lack of correlation between the different metrics can be explained in the following way. The

KL score measures the similarity of the resulting PDFs, and so has no measure of either the short-

term predictive capability of the model or the quality of the derivative prediction given by the

RSS contribution in the AICc score. Similarly for nλ, only the short-term predictive ability of the

model is assessed and, as will be discussed later, many of these models do not integrate favourably

over longer time periods which negatively impacts their associated KL scores. For the AICc score,

it is heavily influenced by the error between the predicted derivatives and the supplied derivatives,

resulting in the AICc score favouring non-sparse models which typically do not perform well under

the other scoring methods. Sparser models are favoured when integration of the resulting model

is required, suggesting that sparser models could produce better predictive results.

5.3.3 Lyapunov Predictions
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Figure 86: The Pareto front for models evaluating by the average number of Lyapunov times
predicted over the test trajectory. Red crosses represent models which became unstable under
longer integration. The green dots represent the models which obtain a minimum KL for a given
number of coefficients and similarly the yellow obtain a minimum for the integrated AIC score.
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We now consider models generated from maximising the number of Lyapunov times predicted by

the models (remembering that the TPE minimises the negative of this). A more detailed view of

the Pareto front is given in Figure 86. We plot all the identified models, integrating models for a

longer time-period and marking models which fail to integrate with a red cross. In this case, we

again limit the minimum time-step of the solver to 10−5. We also mark the models which obtain a

minimum KL score for each number of total coefficients in green, and similarly for the AICc score

marked in yellow.

Results of the longer integrations suggest that many of the best performing sparse models do not

integrate over longer time periods under the specified solver restrictions. After around 17 total

coefficients, there are only a handful of models which no longer integrate for longer time periods.

Above k = 16 the minimum AICc models also lie close to the maximum number of Lyapunov

times predicted, but the KL scores do not.

We now compare the best performing models which also successfully integrate for a long time

period in Figure 87. Several comparisons are made. Each row indicates the best performing model

of a given sparsity, with the identified model being shown in the right-hand column. For each

sparsity, we show a comparison of the switching times, PDF and on attractor dynamics of the

training data (in blue) to the identified model (in red). We can see that beyond k = 13, the

selected models all predict the dynamics well. As k is increased, many of the linear and quadratic

terms remain consistent in the identified models, but the cubic terms tend to vary. For k = 12,

the PDF does not compare well as when calculated the PDF integrations are started from a small

initial condition. In this instance, SINDy has identified a model which does not become unstable

with small initial conditions.
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Figure 87: A comparison of models along the Pareto front which predict, on average, a maximum
number of Lyapunov times. Each row of the Figure shows a model of different sparsity with
comparison of the switching times, PDF, on attractor dynamics and the resulting model shown in
the right-column.
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5.3.4 KL
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Figure 88: Scores for different models during the model selection process. The blue dots show all
identified models, while the red crosses represents models which became unstable while finding the
average number of predicted Lyapunov times. In this instance, yellow dots are models which have
a maximum number of predicted Lyapunov times for a given number of coefficients, and green dots
have a minimum AIC score.

We next compare the models generated from the trees which attempt to minimise the KL score. All

models are shown in Figure 88, where this time we have marked models which become unstable at

some point when calculating the nλ score (again with the minimum solver time-step set to 10−5).

We can see that the KL score obtains a minimum value for around k = 17− 19 coefficients. Also,

KL scores which find a score below a given value also successfully integrate under the nλ scoring

method, even though this is not minimised against. Models with maximum number of Lyapunov

times predicted do not seem to appear in conjunction with minimal KL models. We are, however,

applying the KL score to distributions which are not Gaussian. The KL score in the form used

here only compares the covariance of the distributions and so further minimisation of the score

beyond a given point may not accurately capture non-Gaussian aspects of the distributions.

Figure 89 shows models with a minimal KL score along the Pareto front along with comparisons

of the switching times, PDFs and on attractor dynamics. In the right hand y-label we list the

corresponding nλ which shows that the models selected through the KL score typically predict

fewer nλ than models obtained by optimising for nλ. We can also see that for some sparsities,

models are obtained which show a slight preference for one lobe of the attractor compared to

the other, indicated by a skew in the PDF. Again the KL score is only comparing the covariance

matrices and this difference will not be accounted for. In general, the models identified still produce

reasonable predictions of the on attractor dynamics.
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Figure 89: A comparison of models along the Pareto front which predict minimal KL scores. Each
row of the Figure shows a model of different sparsity with comparison of the switching times, PDF,
on attractor dynamics and the resulting model shown in the right-column.
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5.3.5 AICc
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Figure 90: Scores for different models during the model selection process. The blue dots show all
identified models, while the red crosses represents models which became unstable while finding the
average number of predicted Lyapunov times. In this instance, yellow dots are models which have
a maximum number of predicted Lyapunov times for a given number of coefficients, and green dots
have a minimal KL score.

For the AICc, we show the minimum scoring models in Figure 90. In this instance, we again mark

models which become unstable when calculated nλ by a red cross. Observation of this indicates

that low sparsity models with minimal AICc scores do not typically integrate successfully. As

with many other examples considered until now, the AICc score does not show a clear increase in

error again as k increases. There is an elbow in error around k = 18 which agrees with sparsities

obtained by other methods. However, comparisons of the integrations of the models lying on the

Pareto front shows that the majority of the models perform poorly (not shown). Many of them

fail to reproduce both the PDFs and on attractor dynamics, suggesting that the evaluation of the

derivatives in this case has not led to successful model identification. This observation typically

agrees with previous results where we attempted to use the AICc method. Strangely the score

has seen success in other SINDy applications such as ref. [163] and [105], so we suggest that the

poor performance here must be related to the basis only approximately describing the dynamics.

Comparisons of the predicted derivatives to the supplied derivatives show that the largest errors

come at the largest amplitudes, which will inevitably have the largest contributions in RSS error.
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5.3.6 Comparisons to the weakly nonlinear model
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Figure 91: Comparisons between the POD data (green), SINDy model (red) and Knobloch model
named KDW (blue). The left figure shows histograms of the switching times, showing how long
trajectories typically take to move between a and −a. The right figure shows PDFs of the different
variables.

While many models have been generated which can be argued as suitable, we consider one model

here. We compare the model from the Pareto front for minimising nλ with 15 total coefficients

ȧ = 0.721a+ 0.472d+ 0.824ac+ 0.181bc− 0.021bbb, (5.40)

ḃ = 0.719a+ 0.545d+ 0.265bc+ 0.012bbd, (5.41)

ċ = −0.101c− 0.026aa− 0.006dd, (5.42)

ḋ = −0.996a− 0.797d− 0.003ddd (5.43)

to the performance of the weakly nonlinear model. This model obeys the symmetries

a→ −a, b→ −b, c→ c, d→ −d (5.44)

similar to the weakly nonlinear model, without prior enforcement. This results from the underlying

data exhibiting this symmetry. Comparisons of the reproduced switching times and PDFs are

shown in Figure 91 showing a favourable comparison between the SINDy model and the POD

data. We also compare a single point of integration on the test set of data against the POD and

Knobloch model in Figure 92. While the average number of Lyapunov times predicted by most

models identified is ≤ 2, we can see that in this instance at least the identified model predicts well

for more than 2 Lyapunov times. This is because the error criterion tends to become large when

the amplitude of the time series considered is small. As mentioned, because it is a relative error

measure, errors can become large close to zero.
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Figure 92: Comparison of the integrated trajectories of the POD data (blue), SINDy model (dashed
blue) and the Knobloch model named KDW (dashed red).

5.4 Conclusions

In this chapter we applied SINDy to time series from a POD decomposition of PDE data from

simulations of the magnetoconvection equations given in § 4.1. This represents an interesting test

case for SINDy as close to the onset of overstable oscillations there is a known solution given by

weakly nonlinear theory. Further from the onset of overstable oscillations, the POD modes deviate

from Fourier modes and we then require SINDy to construct different models. We first discussed

issues surrounding the selection of sparse models using STLSQ with SINDy. In all cases examined,

using the AIC score never favoured a sparse model. For STLSQ, this makes selecting a viable

threshold challenging as sparse models give poor model scores, even in cases where we know an

analytical solution exists with smaller k (number of non-zero coefficients). As a result, we instead

use MIOSR as this allows the total number of non-zero coefficients to be controlled explicitly.

With MIOSR we considered the MSQE of model fits at each Rayleigh number using no constraints,

symmetry constraints, diffusive constraints or both symmetry and diffusive constraints. We also

calculated the MSQE for both a second-order and third-order polynomial library. Generally for

low Rayleigh number the second-order library was capable of producing low MSQE models with

few terms, and at higher Rayleigh number the cubic library produced lower MSQE models with

fewer terms. In all cases, the constraints made a minor difference in MSQE but offer the advantage

that models are guaranteed to obey the constraints and also make the regression faster. This is

because inclusion of constraints reduces the number of possible features which can appear in the

resulting equations and therefore reduces the required search time [160].

Integration of models of different sparsities under both constraints showed that for higher Rayleigh

numbers, more terms are required to reproduce the on-attractor dynamics agreeing with the results

suggested by the MSQE Pareto curves. Finally, fixing models to a specific k and parameterising

the models showed some promise for capturing the bifurcation structure, but the results show

that to do so successfully would require a common POD basis. This could either be achieved by

take modes found at a fixed Rayleigh number and projecting them to other Rayleigh numbers,

or performing POD so that a basis mode is found which best represents the data at all Rayleigh
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numbers. This remains for future work.

We also presented an approach for systematic model selection using TPEs and 3 different metrics.

These metrics measured either the short-term predictive capability of identified models, the graph-

ical fit of models balanced against their sparsity and the similarity of the long-term distributions.

By using model selection metrics which require integration (KL and number of predicted Lyapunov

times) we can identify suitably sparse models which compare favourably to the training data in

the chaotic case. We also see that one resulting model is capable of reproducing the dynamics with

one fewer mode that the weakly nonlinear model for fixed parameters.

For future tokamak applications, simulations of type I ELMs rely on the reduced-MHD single

fluid equations which have parallels to the magnetoconvection problem discussed in [80]. Applica-

tions of the methods described here to simulation data from JOREK or BOUT++ could provide

low-dimensional models describing ELMs. Computationally, these problems are very difficult to

simulate as both the short timescales of the ELM crash and the long inter-ELM periods must be

resolved [131]. Low-dimensional models provide a much less computationally demanding means of

possibly exploring this type of behaviour. One aim of this project originally involved application

of SINDy to BOUT++ ELM data, but at the time of study this code was not capable of simulated

repetitive ELMs and so remains for future work.
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6 A data assimilation approach with the ensemble Kalman

filter

In this section we introduce the theory behind the Kalman and ensemble Kalman filters which

are data assimilation approaches as an alternative approach for fitting the ANAC and ANAET

models to experimental signals. A data-assimilation approach means we can take predictions from

a numerical model and observations of a system and attempt to find a corrected state estimation.

In this thesis, the aim is to use the ANAC or ANAET models as numerical models which can then

make predictions of the magnetic field or temperature. By using a data assimilation approach, we

can then take experimental observations from diagnostics on the tokamak and attempt to reconcile

these with numerical predictions from symmetry-based equivariant bifurcation theory models.

We will first introduce the theory behind the ensemble Kalman filter and why this method has

been chosen. We will then discuss several relevant modifications to this method which allow for the

method to be more robust and account for different modelling errors. We then discuss several results

of fitting the ANAC and ANAET models in progressively more challenging scenarios. Eventually

the ANAET model is fitted in a synthetic case which closely resembles experiment.

6.1 Ensemble Kalman Filter Theory

In this section we describe how to construct a basic Kalman filter [3], where the notation will

largely be kept in line with the description given by [24] as opposed to the previous work by CCFE

student Luca Spinicci [115]. We start with a linear Kalman filter as understanding the ensemble

Kalman filter follows directly as an ensemble average of the linear Kalman filter. The notation

introduced here also differs to some extent from the EnKF implementation discussed later and

these will be discussed.

6.1.1 The Gaussian Distribution

Before discussing the Kalman filter, we first define the Gaussian distribution which is relevant to

the Kalman filter. In 1D, this is characterised by mean µ and variance σ2 where σ is called the

standard deviation of the distribution. We can write this as

f(ψ) =
1

σ
√

2π
exp

(
− (ψ − µ)2

2σ2

)
(6.1)

giving the continuous probability density function. The mean of the distribution simply states

where the distribution is centred, and the variance gives some measure of the spread of the samples

around that mean. For a Gaussian distribution, µ ± σ spans approximately 68% of the samples,

µ ± 2σ spans 95% of the samples and so on. The distribution function which represents the

probability that an observation of Ψ can take a value less than or equal to ψ is defined

F (ψ) =

∫ ψ

−∞
f(ψ)dψ. (6.2)

Most relevant for our discussion will be considering the statistics of random fields of variables

ψ(x) ∈ Rn where x ∈ Rm. In our current definitions, we now have a covariance matrix which

describes the variation of each variable with the other. We can write the multivariate Gaussian

distribution as

f(ψ) =
1

(2π)n/2(detΣ)1/2
exp

(
−1

2
(ψ − µ)TΣ−1(ψ − µ)

)
(6.3)
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If we have i = 1, 2, . . . , N statistically independent samples, labeled ψi then the sample mean is

defined

µ = E[ψ] = (E[ψ1],E[ψ2], . . . ,E[ψn])T (6.4)

where

E[ψ1] =
1

N

N∑
i=1

ψi1(x) (6.5)

represents the sample mean of each component of the random vector. The covariance between two

different locations x1 and x2 of the random fields is defined

C(x1,x2) = E[(ψ(x1)− E[ψ(x1)])⊗ (ψ(x2)− E[ψ(x2)])], (6.6)

=
1

N − 1

N∑
i=1

(ψi(x1)− E[ψ(x1)])⊗ (ψi(x2)− E[ψ(x2)]) (6.7)

where ⊗ represents the outer product of two vectors.

6.1.2 The Kalman Filter

We consider a dynamical system where we have, for example, a numerical forecast of the future

represented by vfj ∈ Rn at time j and a set of experimental measurements denoted yj ∈ Rm.

However, we are aware of the fact that one or both of these estimates may be incorrect. Given

these two estimates, we then wish to construct an improved approximation of the true state (vtj).

We first start by writing, in the linear discrete case, a set of equations representing our system

vfj+1 = Mvtj + ξj , (6.8)

yj+1 = Hvtj+1 + ηj+1 (6.9)

where ξj represents Gaussian additive noise in the forecast and η is measurement noise. In each

case the true-state evolved M ∈ Rn×n and the observation operator H ∈ Rm×n. We now wish

to combine vfj+1 and yj+1 in some way to provide some estimate of vtj+1 which we denote vaj+1.

To estimate this problem, we must make some assumptions about the properties of the noise and

errors in our system

ξ = 0, ξξT = Q, (6.10)

η = 0, ηηT = Γ, (6.11)

ξηT = 0 (6.12)

where Q is process noise matrix and Γ is the measurement error covariance matrix. We assume

that the noise for the state forecast and measurement are both Gaussian with zero mean and that

there is no cross-correlation between these errors. We further explicitly define the forecast and

analysis covariance matrices as

Cf = E[(vt − vf )⊗ (vt − vf )] (6.13)

and

Ca = E[(vt − va)⊗ (vt − va)]. (6.14)

These are also assumed to have Gaussian distributions.
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6.1.3 The Bayesian formulation

In this section we describe the Bayesian filter problem, the derivation of which underpins the use

of Bayes’ formula in the ensemble Kalman filter. Understanding this derivation is beneficial in

understanding some of the limitations of EnKF. In the following discussion we follow the outline

by [155].

We are interested in solving the assimilation problem of combining a prediction and observation

at step L given some previous set V = (vT0 ,v
T
1 , . . .v

T
L) of predictions of the system state where vl

may be augmented to include parameters or other uncertain quantities. V is then essentially the

vector or matrix which includes all uncertain quantities in the inference problem. We also define

the collection of measurements by Y = H(V ) + ε where ε describes the measurement error. By

using a Bayesian approach, we can combine the state prediction and measurements to create an

improved estimate of the state.

We start with the prior denoted

f(V )

where f(·) denotes the pdf of a random variable in this instance. This represents our previous

belief in the probability of some values of V . Given this knowledge, we introduce measurements

through the likelihood written as

f(Y|V )

where we note this is a function of V alone as the measurements Y are fixed for some particular

draw. We will then need a way of estimating the likelihood which is found through an expression

in the measurement error f(Y|V ) = f(ε) = f(Y −H(V )). Given assumed knowledge of f(V ) and

f(Y|V ), we use Bayes’ formula to find an expression for f(V |Y)

f(V |Y) =
f(Y|V )f(V )

f(Y)
. (6.15)

The denominator is a normalisation ensuring
∫
f(V |Y)dV = 1. Currently, this description includes

all available measurements and state up to the assimilation window L. We now make an important

simplification by assuming that we can describe this system as a first-order Markov process meaning

that only measurements and states at a previous time-step are required. Mathematically we can

write this as

f(vL|vl−1,vl−2, . . . ,v0) = f(vL|vl−1) (6.16)

implying the future depends only on the present state. We can then write the prior as the product

of independent probability density functions

f(V ) = f(v0)f(v1|v0) . . . f(vL|vl−1),

= f(v0)

L∏
l=1

f(vl|vl−1). (6.17)

Further, given the assumption of uncorrelated measurement error and the expression of the like-

lihood in terms of measurement error, this allows us to write the likelihood as the product of

independent probabilities

f(Y|V ) =

L∏
l=1

f(yl|vl). (6.18)
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Using Equations 6.17 and 6.18, we can write the general Bayesian formula Eqn 6.15 as

f(V |Y) =

∏L
l=1 f(yl|vl)f(vl|vl−1)f(v0)

f(yL)
. (6.19)

This now describes a recursive problem where the solution at l can be expressed in terms of the

prior at l − 1. Explicitly

f(v1,v0|y1) =
f(y1|v1)f(v1|v0)f(v0)

f(y1)
, (6.20)

f(v2,v1,v0|y2,y1) =
f(y2|v2)f(v2|v1)f(v1,v0|y1)

f(y2)
,

... =
...

f(V |D) =
f(yL|vL)f(vL|vL−1)f(vL−1,vL−2, . . .v0|yL−1,yL−2, . . .y1)

f(yL)
. (6.21)

In Equation 6.20, f(v1|v0) represents the integration of v0 to give the pdf of v1 given v0. f(v0)

represents our prior belief in the initial condition v0 and finally f(y1|v1) includes information

on the measurements. This allows us to estimate the posterior represented by the joint PDF

f(v1,v0|y1) conditioned by measurements y1. At the next recursion step, this becomes the prior

in our formula. This solution is known as the smoother solution to the Bayesian filtering problem

[155].

Finally, we can integrate over the previous states and can represent the problem recursively in

terms of marginal pdfs

f(v1,v0|y1) =
f(y1|v1)

∫
f(v1|v0)f(v0)dv0

f(y1)
=
f(y1|v1)f(v1)

f(y1)
, (6.22)

which allows us to derive the sequential formula

f(vL|yL) =
f(yL|vL)

f(yL)
f(vL) (6.23)

which is exactly Bayes’ formula. Our update scheme now only depends the results at the assimi-

lation window L, and all previous states are implicitly held within vL. This relation will be used

in the majority of EnKF implementations.

6.1.4 The Maximum “a Posterior” Estimate

Bayes’ formula is a widely used and powerful expression which allows us to claim something about

f(vL|yL) given that we know about the right-hand side of Equation 6.23. Naturally we wish

to have the most probable prediction given a particular observation and we can achieve this by

maximising f(vL|yL). This means we need only maximise the numerator of the right-hand side of

Equation 6.23. To do this, we need to make some assumptions on f(yL|vL) and f(yL).

To maximise Equation 6.23 we consider the maximum “a posterior” estimate (MAP) as the solution

which maximises

vMAP = arg max
v

(f(v|y)) (6.24)

for a given assimilation window. The can be written as an equivalent minimisation of

vMAP = arg min
v
J (v) (6.25)

150



where J is the cost function in the expression

f(v|y) ∝ exp(−J (v)). (6.26)

We already stated our assumption that the errors in our formulation will be normally distributed,

so we can write these as multivariate Gaussian distributions

f(v) ∝ exp

(
−1

2
(v − vf )T (Cf )−1(v − vf )

)
(6.27)

and

f(y|v) ∝ exp

(
−1

2
(v − y)TΓ−1(v − y)

)
(6.28)

noting that the above expression of the likelihood corresponds to direct measurements which is

true in our case. Thus the cost function is simply

J (v) =
1

2
(v − vf )T (Cf )−1(v − vf ) +

1

2
(v − y)TΓ−1(v − y). (6.29)

The minimum to this equation yields our iterative update scheme. This allows us to construct a

new prediction v given a first-guess vf and an observation y.

6.1.5 Deriving an iterative update

We then minimise the variational functional

J [va] = (vf − va)T (Cf )−1(vf − va) + (y −Hva)TΓ−1(y −Hva) (6.30)

so that we have a weighted contribution from the forecast of the state-space model and the obser-

vations. We recognise that minimising Equation 6.29 with respect to v gives the estimate va with

assumed Gaussian priors. We then minimise the functional by setting the variation in terms linear

in δva to zero. Doing so yields

δJ = δJ [va + δva]− J [δva],

= −(δva)T (Cf )−1(vf − va)− (vf − va)T (Cf )−1δva−

(Hδva)TΓ−1(y −Hva)− (y −Hva)TΓ−1Hδva +O((δva)2).

We now minimise with respect to δva. This gives

−(Cf )−1(vf − va)− (vf − va)T (Cf )−1 −HTΓ−1(y −Hva)− (y −Hva)TΓ−1H = 0

We now note that the error covariance matrices Cf and Γ are symmetric and positive-definite.

Given this, it is possible to show that (Cf )−1 and Γ−1 are also symmetric and positive definite.

We can also deduce that ATB = BA if B is symmetric. So we get

va = vf +CHTΓ−1(y −Hva) (6.31)

We now define r = HCf as the error covariance functions for measurements, and b = Γ−1y−Hva

to give

va = vf + rT b. (6.32)
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Solving for the coefficients b using the definition of b and the above equation gives

b = Γ−1(y −H(vf + rT b))

which can be rearranged for the solvable equation for the coefficients of b

(HCfHT + Γ)b = d−Hvf .

Explicitly, this results in

b = (HCfHT + Γ)−1(d−Hvf )

for b. Substituting this expression for b into Equation 6.32 gives

va = vf +CfHT (HCfHT + Γ)−1(d−Hvf ) (6.33)

where it is more common to define the Kalman gain matrix K such that

K = CfHT (HCfHT + Γ)−1 (6.34)

and the original correction equation becomes

va = vf +K(y −Hvf ). (6.35)

We can also derive an update for the covariance matrix Ca by noting that

Ca = E[(v − va)⊗ (v − va)],

= E[(v − vf −K(y −Hvf ))⊗ (v − vf −K(y −Hvf ))]

Now using that y = Hv + η we can gather like terms and write

Ca = E[((I −KH)(v − vf )−Kη)⊗ ((I −KH)(v − vf )−Kη)],

= (I −KH)E[(v − vf )⊗ (v − vf )](I −KH)T +KE[η ⊗ η]KT ,

= (I −KH)Cf (I −KH)T +KΓKT (6.36)

Now, from the definition of K, use that CfHT = K(HCfHT + Γ) in the above equation to get

Ca = (I −KH)Cf = Cf − rT (HCfMT + Γ)−1r (6.37)

and we obtain an update equation for the improved error covariance matrix in terms of the first

guess error matrix. So we have derived a set of equations which allows for an improved prediction

of va given Cf ,Γ,vf and y. We then must be able to accurately estimate Cf at some time tk.

The sequential Kalman filter described above is suited for linear dynamics, given the assumption

of Gaussian errors in its construction.
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6.1.6 The Recursive Algorithm

Putting all the components together, we are left with the following iterative scheme:

1. Calculate the Kalman Gain Kj = Cf
jH

T (HCf
jH

T + Γ)−1, (6.38)

2. Update State Estimate vaj = vfj +Kj(yj −Hv
f
j ), (6.39)

3. Update Covariance Ca
j = (I−KjH)Cf

j , (6.40)

4. Update to j + 1 vfj+1 = Mvaj , (6.41)

Cf
j+1 = M jC

a
jM

T
j +Q. (6.42)

The iterative scheme for the ensemble Kalman filter will also work in a similar way. The update

for the Kalman gain is sometimes instead written as the solution to the linear system of equations

KjSj = Cf
jH

T (6.43)

where Sj = HCf
jH

T + Γ. This solution is preferred for numerical stability [107].

6.1.7 Nonlinear Extensions of the Kalman Filter

The Kalman filter is derived based on the assumption of a linear system of equations with associated

normally distributed errors. In reality, many systems are nonlinear and the filter will perform

poorly on these problems. This limitation has led to the development of many nonlinear extensions

(see for example [155]). The first nonlinear extension developed is called the extended Kalman filter

(EKF) which involves linearising the now nonlinear space-state model about the assimilation point

and developing a tangent approximation to the nonlinear system. The Kalman update process

is then evaluated with a Taylor expansion of the original nonlinear system. However, for most

problems, there are better alternatives as this requires the linearisation to remain valid between

assimilation time-steps and will inevitably fail for highly nonlinear systems. It also requires labour

intensive evaluations of the Jacobian and analytic derivations of the expanded system of equations

which are infeasible for larger systems of equations [69].

More recently, the unscented Kalman Filter (UKF) was introduced [47] to address nonlinear state-

estimation. While in EKF, the covariance matrices are propagated through linearised forms of

nonlinear update equations, in UKF covariance matrices are estimated by a careful selection of

sigma points which are passed through the nonlinear update equations to estimate the updated co-

variance matrix. By carefully selecting these points, it is possible to accurately estimate the means

and variance despite a nonlinear transformation being applied. These have not seen much appli-

cation when the state-dimension is high as the number of sigma points scales with the dimension

of the problem [69].

Here we primarily consider work following from previous students at CCFE (Luca Spinicci and

Ana Osojnik) which revolved around using the ensemble Kalman filter for applications to nonlinear

systems introduced by [24]. This involves estimations of the covariance matrices by calculating

them as the average of an ensemble of members which are propagated by the nonlinear state

operator. In some ways this allows us to ignore the Gaussian assumption in the prior [69], hence

making it suitable for our applications. However, it’s still worth remembering that the error

statistics are represented by the first and second order moments and so we still use Gaussian

assumption in the estimation of the posterior. Despite this, EnkF has seen much success in cases

where these assumptions are violated [100]. The EnKF method bears a strong resemblance to the

approach in UKF in which a specific selection of ensemble members are also propagated by the
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nonlinear space-state model. We will mention that EnKF is the simpler of the two methods to

implement as we do not need to choose the location and weightings of the sigma points. However,

this will typically mean that we require more ensemble members than UKF to accurately determine

the covariance matrices.

6.1.8 The Ensemble Kalman Filter

While the linear Kalman filter is the provably best linear estimator, the update of the background

covariance matrix Cf scales as O(n3) making this approach unsuitable for large state-space di-

mension n. The ensemble Kalman filtering method (EnKF) overcomes this limitation by using a

random-sampling Kalman filtering approach, where the covariance matrices are approximated from

an ensemble of N state realisations. In this view, we no longer need to propagate the covariance

matrices and instead take the mean of the ensembles as the best estimate and the spread of the

ensemble members represents the error. Further, while the assumptions of Gaussian errors are still

similar to the Kalman filter, practical success can be achieved applying EnKF to nonlinear state-

space models and non-Gaussian noise, precisely because we no longer propagate the covariance

matrix.

The method works by estimating the covariance matrices by evolving N ensemble members in time

where typically N < n. Previously the covariance matrices were calculated as

Cf
j = E[(vt(tj)− vf (tj))⊗ (vt(tj)− vf (tj))],

Ca
j = E[(vt(tj)− va(tj))⊗ (vt(tj)− va(tj))].

We now replace these with Monte-Carlo approximations

Cf
j ≈

1

N − 1

n=N∑
i

(vfi − v̄
f )⊗ (vfi − v̄

f ) (6.44)

Ca
j ≈

1

N − 1

n=N∑
i

(vai − v̄a)⊗ (vai − v̄a) (6.45)

are the unbiased estimates of the correlation matrices and v̄f = 1
N

∑n=N
i vfi is the mean which is

now regarded as our best estimate. If each ensemble member were to see the same observation, the

covariance would be underestimated as all trajectories would be corrected toward the same point.

Following this, the procedure is similar to before, with the calculation of the Kalman gain matrix

Kj = Cf
jH

T
j

(
HjC

f
jH

T
j + Γj

)−1

(6.46)

followed by constructed a linear correction for each ensemble member

vai (tj) = vfi (tj) +Kj

(
y(tj) + ei(tj)−Hjv

f
i (tj)

)
. (6.47)

As discussed by [31], we now perturb the observations yi by some value in ei ∼ N (0,Γ) to account

for known measurements in the ensemble framework. Finally, we can compute outputs based on

the corrected mean

v̄a(tj) =
1

N

n=N∑
i=1

va(tj) (6.48)
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and covariance analysis matrix

Ca
j ≈

1

N − 1

n=N∑
i

(via − v̄a)⊗ (via − v̄a). (6.49)

Like the unscented Kalman filter (see ref [47]), the EnKF method passes a number of ensemble

members through the space-state model. The Monte-Carlo estimate for the covariance matrices

thus often allows us to make accurate predictions of the mean and covariance of the system as we

are using a sampling method, in contrast the regular Kalman filter. As the covariance matrices are

evolved through the space-state model, even when the model is linearised, we often end up with

completely incorrect estimates of the mean and covariance. Explicit calculation of the covariance

matrices can be entirely avoided in Equation 6.46 by instead solving a least-squares problem with

the ensemble discrepancies [107] if computational performance is important.

6.1.9 Parameter and state estimation

In cases where parameter estimation is of interest, we can simply modify vj to include parameters

λ ∈ RL where L = 1, . . . , nλ corresponding to a total of nλ parameters. The state-vector can then

be expressed as xj = [vTj ,λ
T
j ]T . The observation vector on the other hand does not necessarily

need to be modified, though can be if parameter measurements are available. However, given the

increased dimension of xj , the observation operator must be modified to account for this. We

then re-express Mj = [In×n; 0n×nλ ] where ; represents vertical concatenation. As the Kalman

filter progresses, we should improve the estimate of λ. In the majority of parameter estimation

problems it is common to assume that parameters remain approximately constant in time.

6.1.10 Optimisation of the initial conditions

One substantial issue with the current parameter and state estimation using the ensemble Kalman

filter arises from sensitivity to the initial condition in the model. In general dynamical systems can

exhibit starkly different behaviours even due to small changes in initial conditions or parameters.

Previous work by earlier students [111] focused around obtaining better initial estimates for the

state vector used in the Kalman filtering method.

To create a set of estimates for the initial conditions, the mean squared error between the model

forecast yfj and the observations yj between [t0, tJ ] is minimised. In other words we aim to find λ

and x0 such that

arg min
λ,v0

J∑
j=0

||yfj − yj ||
2 = arg min

λ,v0

J∑
j=0

||Hn(Mn
λ (v0))− yj ||2 (6.50)

where n corresponds to the Runge-Kutta timestep. In reality, while we are estimating v0 and λ,

these are expressed as one single state vector or column vector x. Thus the problem is simply a

minimisation in x. To summarise, we aim to construct an estimate of the parameters λ and v0

by minimising the forecast over J observations. We further define the sampling rate per period of

oscillation to be given by ν. The total number of observations is then defined over only one period

of oscillation by J = ν − 1.

Finally, to ensure the system displays stable behaviour, constraints are imposed on the parameter

σ in the ANAC4 system. For this set of ODEs, stable oscillatory behaviour occurs for all x0 when

σ < 0. During the optimisation, an upper bound of σ̂ = 10−16 is placed on this coefficient. Three

different optimisers are compared in the solution to the minimisation problem:
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1. a derivative-free Gauss-newton solver (DFOGN) [121]

2. DFOGN with approximate model interpolation and restarts (DFO-LS) [120]

3. Covariance Matrix Adaption Evolution Strategy (CMA-ES) [125]

Here we will not go into detail how each of the optimisers work, and instead refer the reader to

the relevant papers. We note that while this was implemented in the implementation of EnKF

described in this thesis, it was not used and validation results have already been given by ref [106].

This type of optimisation can be challenging, as by the nature of EnKF we expect the parameters to

eventually converge to their true values and this does not need to necessarily happen with the first

J observations. Further, the specification of the initial state uncertainty is inevitably important

to the convergence of such an optimisation and without any prior knowledge of the parameters we

also have no knowledge of the uncertainty. A large initial uncertainty will then likely not provide

good convergence in the optimisation method. Finally, as will be seen in later examples with the

ANAET model, parameter convergence may be on slow time-scales of the system which would

result in quite an expensive optimisation process. However, it could still be beneficial to explore

this approach in more detail as most of the time we have no real knowledge of expected parameters.

6.1.11 Covariance Inflation and Error Influence

Inflation methods are used to describe a set of approaches designed to mitigate against errors

which are not modelled during filtering. These can come from a wide range of processes such as

sampling error due to finite ensemble sizes, unrepresented errors in the chosen model or incorrect

estimates of measurement noise. In general, sampling errors are important when the prior cannot

sufficiently represent the entirety of the phase space (N � n) and even cases with N > n [107].

Sampling errors like this lead to an underestimation in state uncertainty and spurious correlations

in variables. In our case we generally try to ensure N is sufficiently large that sampling errors are

largely avoided. Another source of error is known as model errors. For example, assimilation can

cause an over-confidence in the space-state model for chaotic systems which effectively ignore future

measurements and eventually diverge from the true solution and model error must be included to

prevent this. In parameter estimation problems it is common to assume that the dominant errors

result from uncertainty in the parameters [69].

Ensembling methods are generally remarked to underestimate uncertainty matrices due to their

sampling based approach. Covariance inflation, first introduced by [32], gives an approach to

mitigate against this for a small number of ensemble members. For each ensemble member we

increase the ensemble spread by multiplying the ensemble discrepancy by a constant c

ṽib = c(vib − v̄b). (6.51)

which is also referred to as multiplicative inflation [155]. We would remark that this inflation is

sometimes applied at different stages to counter different sources of error, and is commonly applied

on assimilation time-steps. When applied on assimilation time-steps regions of dense measurements

will cause more inflation of the ensemble members and may or may not be desirable [67]. Conversely

it may be applied at integration time-steps of the model and thus viewed as a constant source of

model error which does not inflate more if observations are dense. Adaptive schemes have also been

proposed by [70] where the inflation factor is estimated jointly as a state variable. This requires

some modification of covariance calculations to circumvent closure issues.

The point of application of inflation also alters which error it will mitigate against. If inflation is
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applied to the forecast ensemble, this can be viewed as a method of counteracting model error.

If it’s applied to the analysis ensemble then this is an attempt to mitigate errors in the analysis

stage of EnKF [155]. When applied to the analysis members, different approaches exist such as

the relaxation to prior perturbations (RTTP)

via,c = (1− α)via + αvib (6.52)

written as a linear combination of the analysis and prior ensemble members for some constant

0 ≤ α ≤ 1 [50]. This has the effect of reducing the convergence of the ensemble members by

relaxing the analysis members closer to the prior. The relaxation is also proportional to reduction

in variance of the assimilation of an observation. This view of multiplicative inflation is actually a

combination of both additive and multiplicative inflation but does have a reformulation in terms

of a relaxation of the ensemble standard deviation to prior which is purely multiplicative [91]. A

comparison of the two different approaches is given by [91], who suggest that additive inflation is

more important when model error dominates and multiplicative inflation is more relevant when

sampling errors dominate.

An alternative view of inflation is as an additive perturbation to the ensemble forecast which is also

referred to as the process noise. The exact construction of this for the linear Kalman filter depends

on the discrete form of the space-state model. For the ensemble Kalman filter, the appropriate

choice of process noise Q is not particularly clear and there is no one-size fits all argument for

its design. It typically depends on the source of error for the given problem at hand. A more

comprehensive discussion of tuning inflation factors has been discussed by [38] and [51].

Both additive and multiplicative inflation have been used prior in the CCFE code with some reports

of success (see [115]). The additive inflation in this code is referred to as a Gaussian kick to the

ensemble members which is equivalent to process noise. The chosen multiplicative scheme applies

a scaling to the forecast ensemble members and thus can be viewed as having a similar role as the

additive inflation used by the CCFE code.

6.2 EnKF and symmetry-based models of gross tokamak behaviour

We now apply the outlined EnKF approach to create state and parameter estimates of the ANAC

and ANAET models derived in § 2.4.2. These models are intended to match experimentally ob-

served instabilities in a tokamak, in particular sawtooth oscillations. To work towards a future

application to experimental data we first consider the challenges of modelling the simpler ANAC

model which totals 4 unknown predictions; two for the state and two for the parameters. Obser-

vations will be generated from integration of the ANAC model itself with the data subsequently

down-sampled and noise added to each observation. We then consider modelling the ANAET

model with either 9 or 11 state variables which represents a significantly more challenging case.

When working towards experimental data, we note some of the following expected characteristics

to aim for

1. The data contains noise from multiple sources including: additive noise, multiplicative noise

and truncations in recorded data points. The degree of noise is assumed to generally be

±10% of the signal [17]. To simplify the analysis initially we only assume additive noise.

2. we assume that the sampling rate of the signal is sufficient to determine the period of the

signal through a FFT and that there are at least 6 samples per period of the smallest scale

in the measurement
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3. presently we assume that the signals are stationary, though this is not necessarily true however

the signals could be trend filtered to resolve this [89]

4. Only partial observations of system are available but those measurements are direct implying

H = I in the EnKF method.

In the present work we primarily limit ourselves to sparsely sampled data with varying degrees of

observational noise.

EnKF represents a useful tool in dealing with these outlined challenges, in particular because of

how it treats noise. Firstly, EnKF is a derivative free approach as the updated state estimation

comes from the minimisation of Equation 6.30 through the calculation of the Kalman gain. This

provides an excellent robustness to noise. Second, specifying the process noise allows the modelling

of both stochastic processes but to accommodate for unrepresented model errors (provided they

are Gaussian). While the assumptions of Gaussian errors may seem stringent, in practice this can,

and will often be violated in EnKF and the method will still perform well. As discussed this is in

part due to the Monte-Carlo estimation of the covariance matrices.

Further, EnKF also allows us to model unobserved variables as we assumed in the construction

of our system that the observations could be fewer than the number of modelled variables. While

our system will consist of direct observations of the variables, EnKF allows for combinations or

transforms of the observations to be applied. Finally the ensembling approach allows us to consider

nonlinear systems.

6.2.1 Terminology

There are a number of terms which are used throughout use of the code which are documented

here

1. dt the integration time-step of the space-state model

2. dtassim The assimilation time-step which is usually larger than dt

3. δobs the standard deviation of the additive Gaussian noise

6.2.2 Example with previous code

dt dtassim µ σ a0 ȧ0 δobs observed

0.005 0.005*48 10 -0.1 1.5 0 0.1 a, ȧ

Table 3: Table of parameters for the observations.

We reproduce some results of the previous code adapted by [115] to ensure the function of the

pre-existing software. All examples in this reference make use of the ANAC model

ä = µa+ σa3 (6.53)

which is sometimes referred to as the ANAC4 model when both parameters and a states are being

estimated (4 total estimates required of EnKF). As the code is several years old, some functionality

had to be updated. We begin by running example scripts left which reproduce results with the

ANAC model. To run the example, we first begin by generating observations using generate_data.py.

In this instance, we assume that the assimilation occurs at an integer time-step of the integration.

To generate this data, the model is first integrated in a deterministic fashion using the true initial
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conditions x = (a, ȧ, µ, σ) = (1.5, 0, 10,−0.1) at a time-step of dt = 0.005. This time-step is chosen

to ensure sufficient accuracy with the Runge-Kutta solver. Note that the noise is not added at this

stage of the example.

Following this, the initial conditions must be set either by directly specifying from, for example,

the observation parameters in Table 3. Alternatively, the optimisation process described previ-

ously may be used. For this instance we use previously optimised initial conditions and plot a

representative set of results in the following section.

6.2.3 EnKF within external Python packages

While the code used in the work by [115] works, there are some limitations listed below.

1. The code was originally adapted from Matlab code meaning the EnKF class is only used to

saved parameters which are then imported repeatedly at different stages as is often the case

in Matlab codes. This is not the intended use of Python classes.

2. Multiple imports of parameters defined in different places within the code, where it is not

clear that parameters are actually used in certain aspects of the code function.

3. Boolean switches to define methods used are hard to keep track of.

4. Space-state models need to be manually included in separate scripts and parameter files

written.

5. The measurement matrix cannot be easily defined within the parameters script.

6. Read and write function calls within the filter code which save in unclear locations and during

assimilation slowing the function of the code.

7. Two different use cases of the code depending on artificial data and experimental data which

can be consolidated to one base code.

8. In general it has a complicated code structure which make debugging and profiling challenging

as input parameters are read from several different scripts.

Given the above points, we adopt the external python package filterpy and recreate the results

and function of the CCFE EnKF code. This package has multiple Kalman filter flavours which

can all be used within the same shared function calls as EnKF. The package also features an

excellent accompanying book available interactively on Github [137] which makes use of filterpy

to understand Kalman and Bayesian filters from an intuitive standpoint. It should be noted though

that any commits have ended for this textbook and the Ensemble Kalman Filter is mentioned only

in the Appendix as an additional feature. While the code has not been extensively validated,

the assimilation procedure is identical to the process used in the pre-existing CCFE software.

A fully worked example of creating an EnKF method is also available at the GitHub repository

[141]. Benchmarking of different data assimilation methods is available at the repository [140]

with corresponding notes [161]. For applications of the code discussed in this thesis, examples are

given in the Github repository which allow the results to be reproduced https://github.com/

royalasdaircoding/enkf_ANAC.git.

The class structure of filterpy allows us to address all of the issues listed above, making the code

more readable. Further, optimisation is still possible using the publicly available DFO-GN [121]

and DFO-LS [120] Python packages from the same authors as well as many other options available

in packages like NLopt. We have left a number of scripts using a modified version of this package

which leave examples on how to reproduce and extend prior work by CCFE students.
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There are some limitations to the use of filterpy. While in theory parallelisation over ensemble

members should be straightforward and an obvious source of speed up, this is rarely simple in

Python. This is particularly true for a small number of ensemble members. The reason is that

initiating CPU workers (depending on the parallelisation software) can involve copying the instance

of the code several times and results in a large computational expense to begin with. Given

the current structure of the code, the parallelisation would have to occur only one time, with

communication between cores whenever covariance matrices are calculated. However, given the

small dimension of the problem it’s not clear that there are really significant gains to be made.

Really, the best speed ups would come from not using Python entirely or at least making use

of some strict typing through cython. Several issues occur when using Python. One example

which will be relevant later is the use of the scipy [146] package solve ivp to solve differential

equations. When creating this function, this can involve invoking the Python interpreter which

is a slow process. As each ensemble member must be integrated over assimilation time-steps,

constantly invoking the Python interpreter results in a significant impact on performance. This

will be discussed again when looking at stiffer ODEs.

6.2.4 Extensions to EnKF

Feature Code Call Purpose

Gauss Kick (GK) Gauss kick Uniform Gaussian noise correcting for model error

Pre inflation inf Inflates the forecast ensemble members

Analysis inflation inf a Inflates the analysis ensemble members

Constraints constraints Lower and upper bounds to be constrained

Prior type ensemble type Uniform or Gaussian priors

Generator random numbers seed Allows local scoping of random seeds in EnKF class

Table 4: Additional EnKF class attributes that have been added to filterpy

While using the filterpy package, a number of changes were made and listed in Table 4 with their

corresponding function calls in the EnKF class. Some of the features added are previous features

included in the CCFE code such as Gauss kick, pre-inflation and prior type. Of the remaining

features, analysis inflation and constraints are both newly added. Finally the generator random

numbers exist so a seed can be set for reproducibility.

6.2.5 Notational Differences between filterpy and thesis

As we adapt an external package there are some notational differences. These are as follows:

1. P is a running calculation of the state error covariance matrix and can refer to either Cf
j

or Ca
j . When we discuss the calculation of the confidence intervals, when an observation is

assimilated we calculate Ca
j , otherwise we calculate Cf

j .

2. R is the same as Γ representing the measurement noise covariance matrix.

3. x refers to the state variables

6.2.6 Results from the new Kalman software

We first test the new EnKF code on the ANAC4 model at the same parameters as the previous

EnKF software. The structure of the code is simple and readable, we will include an example of

the function of this code. We start with a set of import statements shown in Listing 2.
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1 from filterpy_local.kalman import EnsembleKalmanFilter as EnKF

2 from filterpy_local.common import Q_discrete_white_noise

3

4 import numpy as np

5 import matplotlib.pyplot as plt

6 import matplotlib

7 from scipy.integrate import solve_ivp

8 from numba import jit

Listing 2: Import statements for the Kalman filter code.

To create a space-state model of the EnKF code, we would also like to generate estimates for the

parameters µ and σ. We can essentially include these variables which we expect to be constant in

our dynamical system as follows

ȧ = v,

v̇ = µa+ 2σa3,

µ̇ = 0,

σ̇ = 0.

Here we have assumed the simplest possible form for the parameters, that they are constant in

time with no added noise. To generate a set of observational data we set the parameters to µ = 10

and σ = −0.1 with variables set to a0 = 1.5 and v0 = 0.5. In this example, we also use the ANAC

model as the space-state model for the EnKF routine. This represents an ideal scenario in which

the only errors are those from the observations.

Further, we take the observations to be generated at a sampling rate of approximately ν = 12 and

the generated observations are downsampled accordingly. The period of the system is based on

estimates using an FFT included in the previous CCFE code. The code for this process is shown in

Listing 3. Creating the observational data is now a simple process whereby an integration method

is specified, and noise is added post integration to the observations. Previously generating the clean

observational data is done beforehand, and then noise is added by a separate function call when the

main code is run. There are also different calls for experimental data and toy data. This approach

avoids the need to have separate code function in the main EnKF software as observational data

can be read from a separate file before instantiating the class.
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1 #Define the ANAC model

2 @jit

3 def anac(x, dt):

4 return np.array([x[1], x[2]*x[0] + 2*x[3]*x[0]**3 , 0, 0])

5

6 @jit

7 def runge_fx(x, dt):

8 k1 = anac(x, dt)

9 k2 = anac(x + 0.5*dt*k1, dt)

10 k3 = anac(x + 0.5*dt*k2, dt )

11 k4 = anac(x + dt*k3 , dt)

12 x = x + (dt/6.0) * (k1 + 2*k2 + 2*k3 + k4)

13 return x

14

15 # Generate synthetic data

16 def generate_data(steps , x0 = np.array ([1.5, 1.,10., -0.1]), dt_phase_model =0.005):

17 np.random.seed (1234)

18 observations = np.zeros((steps ,x0.shape [0]))

19 observation_times = []

20 tcounter = 0

21 for i in range(steps):

22 x0 = runge_fx(x0, dt_phase_model)

23 tcounter += dt_phase_model

24 observation_times.append(tcounter)

25 observations[i] = x0 + np.random.normal(0,std , size=x0.shape [0])

26 return observations , np.array(observation_times)

27

28 true_params = [10, -0.1]

29 std = 0.1 #standard deviation of additive noise

30 # Parameters

31 dt_phase_model = 0.005

32 steps = 10000

33

34 # Generate synthetic data

35 observations , observation_times = generate_data(steps , dt_phase_model=

dt_phase_model)

36

37 plt.figure(figsize =(12 ,8))

38 plt.plot(observations [:,0], observations [:,1], "b")

39 plt.xlabel(r"$a$")
40 plt.ylabel(r"$\dot{a}$")
41

42 ########### downsample the data

43 observation_sub = 32

44 period =2.07

45 observations= np.reshape(observations [:: observation_sub ,1],

46 (observations [:: observation_sub ,1]. shape[0], 1))

47 observation_times = observation_times [:: observation_sub]

48 observational_nu =int(period //( dt_phase_model*observation_sub))

49

50 print("Observational data characteristics")

51 print("Period", period)

52 print("Samples per period", observational_nu)

Listing 3: Generate the observational data with added noise. Note this previous section of code

spanned at least 4 separate scripts.

We next instantiate the EnKF class with parameters shown in Listing 4. We also perturb the true

initial conditions with randomly generated noise from a uniform distribution between [−2, 2] on

each state variable mean. The observation function measurement h(x) returns measurements of
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a and v. The main function of the EnKF routine is then defined within the for loop where we

choose to assimilate observations if they are close to the time-step of the integration regime. At

this step, the EnKF routine makes a prediction of the ensemble mean and covariance matrices,

correcting the resulting prediction depending on the observed measurement of ȧ. We also note

that the observational data is sliced so that the observation at t = 0 is not used. There is also

an ability to specify the process noise matrix. For now this is set to zero, but will be discussed in

more detail later.

0

5

10

a

EnKF Estimates
±3 d

Observations

20

10

0

10

20

a

EnKF Estimates
±3 d

Observations

6

8

10
True

±3 d

0 10 20 30 40 50
t

4

2

0 True

±3 d

Figure 93: Convergence of the state and parameters for measurements of a and ȧ using filterpy.
The dashed green lines show the confidence intervals.
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similar observational data-set. Note the initial conditions used in this code are different and come
from optimisation of the software. The green lines here represent the true data, black dots the
observations and red are the ensemble averages. The dashed green lines show the confidence
intervals.

1 #define the observation operator (only adot)

2 def hx(x):

3 return [x[0], x[1]]

4

5 np.random.seed (1)

6 initial_covariance = np.eye(4) * 1

7 initial_covariance [-1, -1] = 1

8 perturb = np.random.uniform(low=-2, high=2, size= 4)

9

10 initial_state = np.array ([1.5 , 0.5, 10, -0.1]) + perturb

11 # perturb initial state and parameters

12 print("True initial condition")

13 print ([1.5, 1,10., -0.1])

14 print("Perturbed initial condition")

15 print(initial_state)

16

17 # Ensemble Kalman Filter setup

18 enkf = EnKF(x=initial_state , #initial mean

19 P=initial_covariance , #initial uncertainty

20 dim_z=2, #number of observations

21 dt=dt_phase_model , #integration time -step (not really used)

22 hx=hx, #observation function

23 N=30, #number of ensemble members

24 fx=runge_fx , #nonlinear SSM

25 ensemble_type="gsn", #initial prior distribution

26 seed = 1, #seed for enkf , you must also set the seed when generating

the observations

27 )

28

29 Q = np.zeros ((4,4)) #set the process noise to zero as in the CCFE code
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30 enkf.Q = Q

31 enkf.R = np.diag([std**2, std **2]) #measuremement uncertainty

32

33 #data stores

34 time_prediction = np.arange(0, observation_times [-1]+ dt_phase_model , dt_phase_model)

35 estimates = np.zeros(( time_prediction.shape[0], initial_state.shape [0]))

36 estimates [0,:] = initial_state

37 Pmat = np.zeros (( time_prediction.shape [0], initial_state.shape[0], initial_state.

shape [0]))

38 Pmat[0,:,:] = initial_covariance

39 update_counter = 0

40

41 #perform filtering

42 for ii, t in enumerate(time_prediction [1:]) :

43

44 #assimilate observations if they are considered contemporary

45 if np.isclose(t, observation_times [1:], rtol =1e-8, atol=dt_phase_model *1e-8).

any():

46 enkf.predict(True)

47 enkf.update(observations[np.isclose(t, observation_times , rtol =1e-8,

48 atol=dt_phase_model *1e-8) ,:][0])

49 update_counter +=1

50

51 #else integrate the ensemble members forward in time

52 else:

53 enkf.predict(False)

54 estimates[ii+1,:] = np.copy(enkf.x) # Extract only state variables from the

state vector

55 Pmat[ii+1,:,:] = np.copy(enkf.P)

56 print("total time", time.time()-start_time)

57 print("updated", update_counter , "times")

58 print("Final covariance P matrix")

59 print(enkf.P)

Listing 4: Perform ensemble Kalman filtering with N = 30, P = I, Q = 0, R = 0.1 ∗ I.

The output of the assimilation process is shown in Figure 93. We see that the EnKF method is

able to quickly converge from a relatively poor guess to the true mean and model parameters.

We also note that the covariance matrix for these parameters quickly converges signified by the

narrowing confidence intervals. The bounds here are determined from the analysis covariance

matrix representing the uncertainty after combining the prior and likelihood. For similar parameter

sets, this compares favourably to the CCFE code shown in Figure 94.

This whole process repeats in bulk the code contained within previous work by CCFE, neglecting

the inclusion of the Gaussian kick as this partly functions like process noise. The advantage here

is that the full class structure of the EnKF routine allows a new space state model or observations

to easily be added and the whole code to generate this requires less interpretation and will only

save diagnostics the user chooses to save. The major downside currently is the need to recursively

call the EnKF class which in its current state would prevent easily parallelising over different

ensemble members as an obvious point of increasing the speed of the code. As we would want to

initiate parallel cores as few times as possible, it would be best to integrate in parallel over the

entire assimilation time-step and not the phase space model time-step. Despite this, the code runs

within ∼ 1s.
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6.2.7 Spread of the initial ensemble uncertainty

When using EnKF, there are several initial assumptions we must make. In particular these are

the noise apparent in our measurements represented by R, the initial uncertainty P 0 from which

our ensemble members are drawn, the initial condition from which to start the EnKF method and

the degree of process noise Q in the system. The performance of EnKF will be dictated by an

appropriate choice of these parameters and we must always consider if we have suggested sensible

choices. In many cases our experimental measurements will have some known errors associated

to them and this can be used to estimate R to a fair degree of accuracy. In this section we will

discuss the impact of choosing these terms in relation to the ANAC model.

The example in the previous section shows the assimilation of two-state measurements for the

ANAC model in an ideal situation. While we perturb the initial conditions for a and v, our

choice of measurement uncertainty R and initial uncertainty P 0 reflect somewhat ideal choices. In

particular when choosing P 0 it is important that the initial uncertainty in our 4 variables gives a

sensible estimate. If this is not the case, we will likely have poor convergence in our parameters. If

R is incorrect, we are either overconfident or underconfident in our measurements and this can also

result in poor estimates. Incorrect estimates for R simply mean that the state-space model can be

slow to respond to measurements if R is too large, and too responsive to measurements if it is too

small over-fitting to the noise. The selection of R will be discussed later in the single-measurement

case.

If we consider the collection of ensemble members as a matrix denoted Af , then details given in

[55][pg 163] list the following conditions on the collection of ensemble members

1. the ensemble realisations should be realistic and physical acceptable.

2. rank(Af ) = min(n,N) meaning that ensemble spans an N dimensional space.

3. The ratio of the smallest to largest eigenvalues of this matrix (the condition number) should

be small. This relates to the linear independence of the different ensemble members.

This highlights that the correct specification of the initial uncertainty cannot be ignored. Future

consideration of the initial ensemble could implement sampling methods given by ref. [46] which

generate ensembles based off the singular value decomposition of a large ensemble.

A particular issue in selecting P 0 with the ANAC model is that we may select initial conditions and

parameters which are non-physical due to assumed Gaussian priors. In particular, if σ is positive

and large we can get rapid divergence of the filter as this no longer acts as a damping term. Work

by [106] remarked that there is divergence of the filter when the parameters are perturbed by

values from a uniform distribution in [−2, 2]. This can largely be attributed to a poor guess in σ

which results in diverging solutions of the space-state model over assimilation time-scales.

There is also mention by [106] that there can be poor convergence of µ depending on the initial

guess for the parameters. The convergence of µ strongly depends on the initial uncertainty in the

ensemble and there is no direct mention of this being selected. For instance, if the perturbation

comes from a uniform distribution [−2, 2], we would like for the initial ensemble to reflect this

uncertainty. While this is a uniform distribution, we could select that 98% of members are within

3 standard deviations 3σ = 2 and so the variance is η = 2
3

2
. Requiring that the initial guess

is this accurate is likely too strict for the method, as any value in x0 + x̃0 is equally likely for

the uniform perturbation, but the tails of our initial ensemble are much less likely if we use a

Gaussian ensemble initially. In general, if poor convergence of the parameters is seen, increasing

this initial uncertainty is important. This behaviour is alleviated by using an ensemble from a
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uniform distribution such that an equal weighting is given to members in the initial ensemble.

This is illustrated in Figure 95, where P 0 = 0.5 ∗ I has been used an initial state uncertainty with

initial condition x0 = [1.5, 1, 8., 1.5]. We can see that while we generate a promising prediction

of the measured outputs, the convergence of µ is not as good. We can see simply from the ±3σ̃d

intervals that the true model parameters sit on the edge of the confidence intervals, implying that

it is quite unlikely for the true parameters to lie in this region. We also see that the initial guess

for σ is positive, which generates poor estimates for ȧ which are unstable. After assimilation, σ is

corrected to be closer to the true value. Given the rapid convergence of the measured variables,

this is a case which may be improved using covariance inflation. This is just one representative

run, and depends on the seed used and the perturbed observations in the EnKF method and the

mean of the initialised ensemble.

If we increase the uncertainty to P = 2 ∗ I as in Figure 96, we can see significantly improved

convergence to the true parameters. While there is certainly use in optimising for initial conditions

as certain selections of parameters can cause divergence of the filter, it is also important to consider

the confidence intervals in the parameters. In our case expanding the uncertainty causes the

ensemble members to take larger positive values of σ.

We can create a more challenging situation if we consider a random uniform perturbation to the

initial condition between [−10, 10] for a, ȧ, µ and [−2, 2] for σ with P = diag(9, 9, 9, 1) we can still

achieve promising convergence of the parameters as shown in Figure 97. We restrict the size of the

perturbation on σ as large values of the cubic term typically cause divergence of the space-state

model before EnKF can correct the initial guesses.
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Figure 95: Convergence of the parameters with P 0 = 0.5 ∗ I and δobs = 0.5. The dashed green
lines show the confidence intervals.
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Figure 96: Convergence of the state variables and parameters with a large initial uncertainty
P 0 = 2 ∗ I and observational noise with standard deviation δobs = 0.5. The dashed green lines
show the confidence intervals.
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Figure 97: Convergence of the parameters with P 0 = diag(9, 9, 9, 1) and δobs = 0.5 demonstrating
good parameter convergence for very incorrect initial guesses. The dashed green lines show the
confidence intervals.

6.2.8 Single measurement

An important extension toward application on experimental data is using EnKF in single measure-

ment cases. The design of ȧ is primarily intended to fit to Mirnov oscillations corresponding to

MHD activity associated to neo-classical tearing modes or edge-localised modes [17, 84]. A genuine

fit to experiment would only consider a single measurement of the rate of change of the poloidal

field which we use to fit a surrogate model, the comparisons of which are made clearer in § 2.4.3.

Here we will consider some challenges posed by fitting from measurements of ȧ alone.

Previous work by [115] and [106] largely remained in the full state measurement case, though

with some fitting to experimental data by [115] in a single-measurement to some filtered Mirnov

signals relating to ELMs highlighting the viability of the method. In the latter case, a section of

an experimental signal is considered and a simple harmonic oscillator is effectively identified with

µ < 0. Here we consider how the fitting performs generally in the single measurement case and

whether the correlation in a and ȧ is sufficient to infer the hidden states. We also consider how

accurate we must be in our estimation of R to achieve this convergence, and discuss an alternative

approach in parameter fitting compared to optimisation of initial conditions.

The code in Listing 4 can easily be modified to consider single measurements of ȧ only. We again

consider a case where we perturb the true initial condition x0 by uniform random distribution

between [−2, 2], setting P = 2 ∗ I. The results are shown in Figure 98 showing good convergence

of the parameters in the single measurement case. Here we have reduced the number of periods

over which prediction results are plotted for clarity.
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We can note that P does converge quite rapidly so this problem may benefit from covariance

inflation. However, it should not be surprising that we see convergence of covariance matrix as

we assume no process noise and so are suggesting our space-state model should be an excellent

predictor. The convergence of the confidence interval for µ is much slower than the other parame-

ters, and this is a result of a small correlation between µ and ȧ. In general the convergence of the

parameters is not as robust as the two state variable case.

In the single measurement case, we also tend to find that higher initial uncertainties can cause

divergence of the filter and incorrect model parameters. We find that this can be resolved by using

a higher number of ensemble members, suggesting that larger initial ensemble spread needs more

ensemble members to accurately capture the mean and correct covariance. However, we emphasise

that these improvements are not robust in the single measurement case and the filter can still often

diverge. With larger initial uncertainties, increasing the number of ensemble members results in a

higher chance of generating an ensemble member with poor initial guess which causes divergence.

That being said, we still achieve promising convergence when the filter does not diverge.

Finally we note that convergence of the parameters takes longer than in the two measurement

as in Figure 97. In the two measurement case, even with large initial uncertainties with high

measurement noise, we can still get good convergence of the parameters within one period of

oscillation. In the single measurement case, the convergence is not only harder, but takes longer

and while the example shown occurs is around one period, often the filter diverges. We can see that

this likely depends on our choice of initial uncertainty in σ shown in Figure 98, as some ensemble

members will be initialised with positive values of σ. Overestimation of the state ȧ can be seen at

some points while the spread of these ensemble members lies within positive values of σ.
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Figure 98: Convergence of EnKF with poor initial guesses with observational noise of standard
deviation δobs = 0.5 and sampling rate ν = 12 in the single measurement case. In this case the
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6.2.9 Consideration of the explicit structure of the Kalman update with single mea-

surements

Here we discuss briefly why we do not expect single measurement cases to perform as well for

parameter convergence. Recall the Kalman gain is defined

Kk = MkS
−1
k (6.54)

where the cross-covariance of the state and measurement matrix is given by

Mk = P kH
T
k . (6.55)

If we consider explicitly the resulting form of this matrix for single measurementsHT = [0, H2, 0, 0]T

then the result is

P kH
T
k =


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44




0

H2

0

0

 =


H2P12

H2P22

H2P32

H2P42

 . (6.56)

The Kalman gain can then be written

Kk =


H2P12

H2P22

H2P32

H2P42

 [H2P22H2 +R]
−1

(6.57)

Should any of these correlations between ȧ and other variables be zero, there will be no corrections

to the associated variable based on the observed measurements. Interestingly, this suggests all

we care about in the single measurement case are correlations within these entries. This is of

particular issue in the convergence of constant parameters µ and σ when incorrect initial guesses

are used.

6.2.10 Incorrect selection of Measurement Uncertainty

So far R has been chosen based exactly on δ2
obs. While this can be estimated beforehand, we would

still like to consider the cases when this is estimated incorrectly. In the case where R is too small

it will result in overconfidence in the measurements and the ensemble members will converge too

quickly possibly resulting in incorrect estimates of the parameters or state variables. For noisier

systems, we will no doubt be fitting to the noise of the system and will not obtain sufficiently

smooth estimates. If R is too large, then slow convergence of the parameters can cause divergence

if σ > 0. In the previous section, Figure 97 highlights an instance where many ensemble members

have a positive value of σ. Despite this we still have convergence of the method. We can attribute

this partly to being fortunate, but also selecting an appropriate R such that the parameters and

state variables are corrected quickly enough to prevent eventual divergence.

To explore the convergence of the parameters, we choose R to be constructed as a diagonal matrix

of elements δ2
est with entries δest ∈ [0.001, 0.01, 0.1, 0.5, 1, 2, 10] to span a range of under and over-

estimations of the measurement noise. We then compute the parameters after T = 20 to estimate

convergence of the method over 200 different random seeds. This amounts to a different selection

of initial conditions and different perturbations to the observations. For each value selected for R

the perturbation to the observations will be the same for a given initial condition. Initially, we set

P = 2 ∗ I.
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For each value of δest we show the collective convergence of the parameters of the different random

initialisations using boxplots. Boxplots are constructed by partitioning the data evenly into quar-

tiles. The first quartile, Q1, is where 25% of data is below this point, the second quartile range, Q2,

is defined where 50% of data lies below this point and finally the third quartile range, Q3 has 75%

of data lying below this point. The upper and lower bounds of each box span from the first, Q1 to

the third, Q3, quartile of the data. The inter-quartile range (IQR) is then defined as the difference

between the third and first quartiles (the top and bottom of the boxes). The lower whisker on the

boxplot extends from Q1−1.5∗ IQR and upper whisker extends from Q3 +1.5∗ IQR. Data outside

of this range is marked as fliers by circles. Finally the median is marked by orange lines in the

box.

The convergence of the parameters is shown as a set of boxplots for varying value of δest in Figure

99. Note that some outliers exist beyond the limits of the plot, but are not shown for the sake

of clarity. We can see for both µ and σ, when the measurement noise is grossly underestimated

we obtain poor convergence of the parameters. For values of δest ∈ [0.1, 0.5, 1, 2] centred around

the true value, the estimates in general show better convergence. In this case the majority of the

results lie in such a small IQR around the true value that the boxplot becomes very narrow. For

overestimations of the noise, the convergence of the parameters again degrades. EnKF appears to

have better success identifying a valid range for σ, however, we have to be aware that results with

positively valued σ will likely diverge.

The convergence of the runs for different initial µ and σ are shown in Figure 100. There is no clear

trend signifying which initial picks will diverge, and a large number of these initial picks diverge

irrespective of δest. However, for estimates of δest closer to the true values, most initial conditions

with σ > 0 can be seen to diverge. For larger values of δest = 10, we can see even more initial

conditions diverge. Increased uncertainty in the measurements prevents correction of ȧ towards

the observations and results in filter divergence.

Reducing the initial uncertainty to P = I reduces the number of diverging runs and as shown in

Figure 101. It is also more evident that divergent runs tend to start within positive initial guesses

for σ. In many ways, as we do not wish for positively valued σ, it does not make sense to use

this as an initial guess. Here we have included it to demonstrate that convergence is still possible

regardless.
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Figure 99: Boxplots for the convergence of µ and σ over 200 randomly seeded runs for different
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median.
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Figure 100: Scatter plot for successful runs (blue) and runs which diverge (red) for varying esti-
mated observational noise δest and initial uncertainty P = 2 ∗ I.
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Figure 101: Boxplots for the convergence of µ and σ over 200 randomly seeded runs for different
estimates of measurement noise with P = I. Only converged results are considered, not all 200
seeds converge. The dashed magenta line shows the true values and the yellow line gives the
median.
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Figure 102: Scatter plot for successful runs (blue) and runs which diverge (red) for varying δest

with P = I.

6.2.11 Constrained EnKF

A general issue encountered when attempting to sequentially fit parameters of the ANAC model is

the tendency of σ to take non-physical values (σ > 0). The resulting model is then unconditionally

unstable and tends to infinity for all initial conditions. A further complication that has been

demonstrated is that even if the ensemble mean does not violate this condition, some of the

members of the distribution may still result in the routine becoming unstable within assimilation

time-steps. This is further compounded when measurement noise and other factors are incorrectly

estimated. One solution to this is to constrain the ensemble members to obey known physical

properties.

When constraining EnKF, there are two main approaches to implementing constraints, each with

their own variants [126]. The first option is to directly constrain the solution for the calculation of

the Kalman gain for each ensemble member. The clear benefits of this are a solution which respects

both the results of an optimal Kalman filter and the constraints, importantly still attempting to

fit the observations at assimilation time-steps. The second approach is to initially perform an

unconstrained EnKF estimate and then constrain the analysis members. This has the benefit of

reduced computational complexity and ease of implementation, i.e., no changes need to be made

to the core EnKF routine.

The first approach, implemented by [65], involves rewriting the minimisation scheme as

vac = arg min
va

((vf − va)T (Cf )−1(vf − va) + (y −Hva)TΓ−1(y −Hva)),

s.t. vlb ≤ va ≤ vub (6.58)

where vlb and vub are the upper and lower bounds respectively, while the calculation of all other

variables remains the same. The state variable vac denotes the now constrained result. When

performed on the prior ensemble members, this now effectively becomes the update step in place

of the Kalman gain. This is not a common approach in EnKF, as it involves solving this system

for each ensemble member. An alternate viewpoint is to perform the unconstrained update of the
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state and then solve the system ([126])

arg min
vac

((vac − va)T (Ca)−1(vaC − va) + (y −Hvac )TΓ−1(y −Hvac )),

s.t. vlb ≤ vac ≤ vub (6.59)

purely on the analysis states. Other authors sometimes only minimise [75]

arg min
vac

((vac − va)T (vac − va)) s.t vlb ≤ vac ≤ vub (6.60)

assuming that the fitting to observations has already been performed in the unconstrained step.

Here we will mainly focus on constraints applied to the analysis states due to their simplicity.

When considering constraints applied to EnKF, we must also clarify applications of constraints to

the ensemble members individually and constraints applied to the means and covariances. One

obvious issue is that constraints applied to the entire distribution do not then necessarily apply

to the mean with the opposite situation also being the case. Nonlinear constraints applied to

Kalman filtering are discussed by [59], where it’s concluded that constraints applied to the ensemble

members only carry over to the mean if the applied equality constraints are linear. Thus in some

cases one must consider both constraints on the distribution and the mean. A general discussion

of these constraints without application specific context has been given by [118] more recently.

Here we largely consider constraints outlined by [75] and while being application specific, these are

relatively easy to generalise.

In total, three different constraint approaches are outlined by [75]

1. The naive constraint method: Ensemble members are simply set to upper or lower bounds

of the constraints if they are violated. The explicit implementation of this is discussed by

[118].

2. The accept/reject method: If ensemble members in either the forecast and analysis (or both)

distributions violate constraints the respective model or measurement errors are reinitialised

with a different seed and the members redrawn until the constraints are satisfied [61]. This

has an obvious downside in that there may be no draw which satisfies the constraints if initial

guesses are poor.

3. A projection based method: the unconstrained estimated states are projected to a new

set of states which minimises the mean-squared error between new states which satisfy the

constraints, and the previous unconstrained estimate of the posterior [39]. In this sense we

attempt to retain the original solution where possible.

All the methods suggested above apply constraints to the estimates of the posterior and do not

directly constrain the calculation of the Kalman gain. The accept/reject method can become

cumbersome to implement if model error (additive noise) is implemented on integration time-

steps. This would involve many more checks per assimilation step and depends highly on finding

draws which satisfy the constraints. The naive constraint method presents an issue that setting

members to some upper or lower bound produces truncated distributions which clearly will not be

represented by a Gaussian. This also weights the calculation of the means to the bounds which

is not necessarily desirable and will depend strongly on the mean of the prior. While success

is suggested for these methods by [75], no direct comparison to an unconstrained situation is

made and so it is not clear if the final convergence of the parameters is any better as a result of

the constraints. We would suggest that an important consideration in approaches which modify
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the ensemble members directly is that they can artificially reduce the ensemble spread and thus

underestimate system uncertainty. In our case, they would principally aid in stopping divergence

of the filter.

Finally, other work does exist for constraining EnKF such as the work by [126]. In this publication,

constraints are again applied to the estimate of the posterior through an optimization of the

predicted distribution to the physical one by minimising the Kullback-Leibler divergence. Given

that the Kullback-Leibler divergence measures the similarity in two multivariate distributions,

this process results in a new reshaped estimate of the posterior distribution which better fits the

constraints. A more extensive comparison of the constrained to unconstrained methods is presented

in this work and may be worth considering in the future as it maintains some spread in the ensemble

members.

6.2.12 ANAC with constraints

We test the naive constraint method where ensemble members are simply reset to the upper or

lower bounds of an interval as an alternative approach to optimising for initial conditions. For the

ANAC model we must set σ < 0 always which involves constraining each ensemble member such

that this condition is true. This must be applied at multiple different instances: when a forecast

is made, when noise is added and when the analysis states are found.

We then repeat the above analysis in the single measurement case for perturbations in [−2, 2] from

the true values. Again this will result in initial guesses with σ > 0 and does not particularly

make sense when we hope to constrain σ < 0. It is included so that the case of many ensemble

members being constrained can be tested as we expect these cases to perform poorly due to a

large artificial reduction in uncertainty. If many members are constrained to the upper bound of

σub = −1× 10−16, the spread of the ensemble members will be small (implying the uncertainty is

small) and we will effectively limit ourselves to a class of simple harmonic oscillators where only µ

is varying and the effect of the a3 term is negligible.

Figure 104 shows the results of the parameter estimation using the simple constraining procedure

for varying estimates of noise. Compared to Figure 101 there appear to be many more cases of µ

diverging from the true value even for correct estimates of the noise. Similarly for the estimates

of σ there are many more estimates lying close to 0. This is hardly surprising, given that the

distributions are artificially truncated at the bounds. Further, after constraining, no initial guesses

become unstable and hence shows all filter divergence previously can be attributed to σ > 0 either

by some of the ensemble members or the mean. As the ANAC model is energy-preserving for

σ < 0, we should expect stable solutions even if the resulting estimates are poor.

An instance of poor parameter convergence is given in Figure 103. We can see that the constraints

cause a rapid collapse of uncertainty in σ at the first assimilation step with the mean centred close

to the upper bound of the constraining interval. The confidence intervals then no longer span the

true values and the routine is unable to correct to a model which has a non-zero cubic nonlinearity.

It is important to realise though that the confidence intervals for sigma are not good estimates

of the covariance as we assume the distribution can be representing by a Gaussian, however, this

is clearly not the case with constraints. In general in cases where many ensemble members are

constrained we can obtain poor convergence as the mean is weighted to the bounds. This can

easily be corrected by including a small degree of process noise for σ, maintaining some ensemble

spread after it has been constrained.
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Figure 103: Case of poor parameter convergence when using constraints. A large initial uncertainty
is given to σ which causes a collapse of ensemble members at the lower bound.
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Figure 104: Boxplots for the constrained parameter estimation over 200 seeded runs for varying
estimates of measurement noise. The left figure shows convergence of µ and the right figure shows
convergence of σ.

Solving the constrained optimisation is substantially faster than solving an optimisation problem

over the first oscillations of a system. However, serious care needs to be taken that the results are

converged and the initial guesses used make sense.
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6.3 Concluding Remarks

In this section we have introduced the theory to EnKF and outlined several important extensions

and additions which have been implemented. EnKF is a Monte-Carlo estimation method which uses

an ensemble of members to represent the state and uncertainty. By making Gaussian assumptions

about the spread of the ensemble members, we showed how several simplifying arguments can be

made. EnKF then essentially reduces to an iterative update model which corrects each ensemble

member based on the calculation of the Kalman gain. The new statistics are then calculated from

an equal weighting of all the particles.

While EnKF code has been used already in similar contexts (see ref. [115]), we highlighted a

number of issues with this code which made it challenging to run. As a result, existing code for

EnKF from the filterpy package was adapted for use here. This code was extended to include

constraints on the ensemble member distributions and the specification of inflation factors.

Application of this code was performed to validate its performance in several different scenarios with

the ANAC model derived in § 2.4.2. The first of these considered cases where both measurements

of ȧ and a were available. We also addressed concerns that incorrect parameter guesses and

initial conditions required an additional optimisation process given in ref. [106]. In the examples

considered here, we found that the convergence of the method was very good in sparsely sampled

noisy signals with the same initial perturbations applied to the initial parameter estimates given

in [106]. Instead we found that the main concerns on robust parameter convergence come from: 1.

how the method is initialised and 2. if certain regions of the ensemble space can generate unstable

models. In the former, it is important to consider sensible initialisation of EnKF which may involve

relying on physical intuition of the parameter space. The general importance of specifying sensible

initial priors is also discussed which is remarked in [55] but surprisingly not mentioned by [106,

115]. It is unclear if this has impacted the results of this work, but it is likely sensible priors were

used without mention. For the latter concern, we added a constraint method which can be used

to keep ensemble members in a sensible region of the potential parameter space.

In the final sections, we began to progress application to more experimental-relevant conditions in

which only partial measurements of the state are available. This means complete inference of all

the parameters must be made with only one observation. EnKF still managed this situation well,

and it even robust to errors in the estimated measurement uncertainty. Even in cases where the

measurement uncertainty is incorrectly estimated, incorrect estimations can be inferred from the

confidence intervals generated by EnKF.

In the following chapter we will consider the important extension of this work to the ANAET

model. This model is more relevant in experimental conditions and we will consider how EnKF

performs in these cases.
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7 EnKF and the ANAET model - progressing to experi-

mental conditions

In this section we implement EnKF with the ANAET model. We will pay particular attention to

the performance of EnKF with respect to the following conditions i) partial observations of the

state variables ii) robust to observational noise iii) errors resulting from initial parameter estimates.

We will conclude this section by introducing cases with non-zero process noise which are expected

to be essential when applying to experiment.

7.1 EnKF and the ANAET model

We now extend the analysis to include the ANAET model which has the form

ȧ = v, (7.1)

v̇ = −γra− (µ1 + µ2b)a
3 − µ6a

6v, (7.2)

ḃ = ν1 − ν2b
2 − (δ0 + δ1b)a

2. (7.3)

where γr, µ1, µ2, µ6, ν1, ν2, δ0 and δ1 are all constant real-valued parameters. The extension from the

ANAC model to the ANAET model is important when matching to experimental data as discussed

in § 2.4.3. However the most salient points in this section are the inclusion of an equilibrium mode

b and the two extra terms. The first of these is −µ2ba
3 where the multiplication of b acts to destroy

and recreate the potential well. The second is high-order diffusion term −µ6a
6v which reduces the

amplitude of ȧ when it grows large causing a crash of the b mode. In relation to experiment, this

creates a signal resembling a sawtooth signal seen in electron temperature measurements and a

gong signal from magnetic measurements. We are therefore interested if this extended model can

be fit using EnKF.

The first challenge in fitting this model is the increase of the number of state variables and free

parameters which must be determined. Extrapolation of arguments in the previous section suggests

that normal distributions representing all parameters presents more opportunities for ensemble

members to lie in unstable regions of phase space. In relation to experiment, we must eventually

consider cases of measurements of only ȧ and b, which means we must infer many parameters and

an unknown state variable from incomplete observations. The second challenge results from the

multiscale nature of the ANAET model. The oscillations of ȧ (equivalently v) are on a much faster

timescale than the equilibrium mode b, a feature which is also typically seen in experiment (see

for example [17]).

In this chapter we will present a progression of work which first implements the ANAET model

with EnKF and assesses the general challenges of doing so. We will then restrict to cases with

partial measurements, attempting to assess how robust EnKF is when only one or two observed

state variables are available. The case of a single state measurement could be relevant if we wish

to only fit a single diagnostic, for example. We will also assess the sensitivity of EnKF at different

sampling rates and degrees of noise so that we can anticipate under what conditions it will function.

Finally we discuss extensions to experiment relevant conditions where either both the noise is high

and sampling rate is low, or the observations do not display regular sawtoothing behaviour. Both

of these are expected challenges when addressing experimental data.
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7.1.1 Computational challenges of the ANAET model

The ANAET model is a stiff problem and requires an integrator which can switch between stiff and

non-stiff solvers. For this we make use of scipy’s LSODA solver which essentially is wrapped code for

the fortran solver ODEPACK from [12]. One limitation to this approach is due to the class structure

of the ENKF solver. At each integration time step, the class calls the function as in Listing 5 which

involves invoking the Python interpreter. If the integration range in t span (between assimilation

time-steps) is large enough, this overhead is not particularly noticeable. However, if we call this

function recursively at integration time-steps, the solver slows substantially. This is an issue when

additive noise or process noise is being used, and also when assimilation points are frequent.

1 observations = solve_ivp(ANAET ,

2 t_span=t_span ,

3 y0 = x0,

4 t_eval=observation_times ,

5 method="LSODA",

6 rtol=1e-6,

7 atol=1e-8, vectorized=False).y.T

Listing 5: Function call for scipy’s LSODA method.
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Figure 105: Phase space for the training data of the ANAET model.

To mitigate this, we implement two different approaches

1. Integration of the ensemble members between assimilation time-steps to reduce the number

of function calls. The priors are then calculated after integration rather than concurrently

which can further speed code and calculation of covariance matrices is only necessary on

assimilation time-steps. If assimilation time-steps are small this will not provide a great

speed up. Further, depending on how process noise is applied this may not be suitable.

2. Implementation of an alternative function call with numbalsoda [169] which avoids invoking

the Python interpreter. This can be used to retain the standard class structure, or in the

same way as scipy to integrate between assimilation time-steps. Integration within the class

structure can still be slow though as vectorisation of these calculations is faster. numbalsoda

also allows for numba compiled functions to be used.
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In general, this can still be a stiff problem to solve which can be slow at particular parameter

values. Using numbalsoda [169] and integrating between assimilation time-steps yields the fastest

performance for this problem. Approximate timings from single runs are shown in Table 5 to

gain an idea of where the overhead exists. Note that these are not benchmarked timings and

are only representative of example times. From this we can see that calling solve ivp LSODA

at integration time-steps is extremely slow, generating a substantial overhead from invoking the

Python interpreter. This usually makes the code a factor of 10 times slower than the numbalsoda

counterpart. The remaining speed-up can be associated with the calculation of the means and

covariance matrices in a vectorised form vs within a recursive call of the class. For these cases, we

calculate the mean of the ensembles at all integration time-steps, but the covariance matrices are

only calculated at assimilation time-steps. While calculation of covariance matrices can be done at

integration time-steps, this is a more-expensive operation as it involves matrix multiplication. The

covariance matrices are not strictly required outside of assimilation time-steps. For this example

40 ensemble members are used so we should expect the ENKF process to run more than 40 times

slower in serial.

Method solve ivp solve ivp tassim numbalsoda numbalsoda tassim observational

Time ∼18 mins ∼11s ∼1 min ∼0.8s 0.04s

Table 5: Table of representative times for each solving method for the time interval t ∈ [0, 120].
The final column lists the time taken to create the entire observational data-set.

Further speed-up could be achieved by either parallelising over ensemble members or vectorising

the integration of ensemble members. Both of these options are not particularly viable in Python

due to the overhead in CPU parallelisation and strict typing of numbalsoda. Other options include

parallelising the calculation of the covariance matrices with numba but this will likely give minor

speed-ups as the covariance matrices are typically small in our case. The main computational

expense comes from evaluating the space-state model. A preferable point of speed up would be

to avoid using an external integration package entirely and make use of user defined integration

methods within Python which could be parallelised. Attempts to do this again resulted in minor

improvements over using numbalsoda alone, highlighting the general poor performance of Python

as a parallelisable language.

In terms of parallelising over ensemble members, we could perform integration of ensemble mem-

bers in parallel which should work well. Some issues with this though are held within the class

definition of EnKF. joblib requires that the parallelised objects can be pickled, which is not pos-

sible with classes so it could only be used within the class if user specified solvers are implemented.

multiprocessing requires if name == main to run correctly and so cannot be written

within the class definition which is the most logical place to include it. Dask may be able to solve

some of these problems however it has not been possible to develop the code to test this within

the remaining time.

7.1.2 Analysis of the ANAET model with ENKF

a0 v0 b0 γr µ1 µ2 µ6 ν1 ν2 δ0 δ1

Value -1.6 -0.0099 0.0086 1 0 -2 1× 10−4 0.001 0.005 1× 10−4 0

Table 6: Initial conditions used with the ENKF method for the ANAET model.
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The ENKF method in all subsequent sections is applied using the parameters and initial conditions

in Table 6 unless otherwise stated. These initial conditions are chosen where the ANAET model

shows sawtoothing behaviour. The noise for (a, v, b) is chosen to be 10% of the standard deviation

of each respective variable as this is the degree of noise expected from experiment [111]. This

corresponds to a selection of Ra ≈ 0.32, Rv = 0.252, Rb = 0.0042. Here b varies on a smaller

scale than the other signals and must have a smaller uncertainty compared to the other variables.

For the parameters, we choose the initial uncertainty to have a standard deviation of ±10% of the

parameter value. In general the approach of validation and benchmarking with covariance diagonal

elements being proportional to the magnitude of true values in not an uncommon assumption [75].

Unless otherwise stated, when the parameter is expected to be zero, the initial uncertainty is set

to zero which prevents EnKF altering the parameter value.

Previously with the ANAC model, sampling rates were based on characteristic timescales from the

FFT of the a equation (equivalently ȧ) equation. In this instance, basing sampling rates from the

FFT is more challenging as the problem spans multiple long and short timescales. As the mean-field

component of b grows larger, the oscillations in a and v slow until this leads to a sudden reduction

in b after which a and v oscillate on a faster timescale. As such we characterise the sampling

rate from the faster oscillations for which we obtain an approximate period of 3.3. Experimentally

speaking, observations of the core temperature (b) are concurrent with the Mirnov measurements

(a) so classifying the sampling rate on the fastest time-scale is a reasonable assumption. We choose

the sampling rate for the fast oscillations initially to be νf ≈ 6 giving tassim = 0.55. As the period

of the system is not fixed, we will typically refer to the assimilation time-step rather than the

sampling rate in later cases.

7.1.3 Case 1: Full-state observations

R Q P δobs N

δ2
obs ∗ I 0 10% of parameter value 10% of signal sd 100

Table 7: EnKF class parameters used for the assimilation of the ANAET model.

We first start by remarking that in the case of no observational noise, we achieve excellent con-

vergence of the parameters even when initial guesses are incorrect in excess of ±10% of their true

values. However, this is only in the case where the measurement noise is correctly estimated at

R = 0. If this is not the case, we obtain extremely poor estimates despite accurate initial guesses.

This can be mitigated by including process noise to offset the impact of artificially perturbing the

measurements. As this is a trivial case, the results are not shown. If we perform this process with

a small inflation factor, no appreciable gain in parameter convergence is found.

We next consider the case of full-state measurements (explicitly a, v, and b observable), perturbing

parameters by a standard deviation of 10% of their magnitude and perturbations with standard

deviation [1, 1, 0.1] for each state variable. The initial conditions and uncertainties are chosen as

described in the previous section with the random seed set to 99. We use a smaller uncertainty in

b as this evolves on a smaller scale compared to a and v. In the case of full-state measurements,

we can be relatively certain of our initial estimates for a, v, b. The settings for the EnKF class are

shown in Table 7 where initially we use correct evaluations of the measurement noise. We use a

larger number of ensemble members here at N = 100. For lower numbers of ensemble members

parameters tend to converge quickly to poorer estimates suggesting that we suffer from sampling

based errors. Given that the dimension of the problem is now up to size 11, it is reasonable to expect

an increase in the number of ensemble members to accurately capture the correct dependencies.
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Speed-up could no doubt be obtained by exploring smaller ensemble sizes and the use of various

inflation factors to counteract sampling errors. For full-state measurements, there are cases where

N = 30 ensemble members produces promising results.

Figure 107 shows the results of the state variable convergence. We can see that the state measure-

ments quickly converge to promising estimates for all variables. For the parameter convergence in

Figure 107 we also see good parameter convergence for all parameters. From the location of the first

crash in amplitude of the b mode at t ≈ 90, we can see that γr, µ2, µ6 and δ0 are poorly determined

until this point. Following this, the confidence intervals on each of these parameters converge sig-

nificantly. For µ2, µ6 and δ0 these all represent coupling terms between the slow equilibrium mode

b and the faster dynamics a. Convergence of γr will then depend heavily on the convergence of

these parameters and thus converges to its true value following correction of the other parameters.

Following this first crash, the uncertainty in these parameters reduces substantially and there is

some stagnation away from the true values.

ν2 is the slowest converging parameter for this model because it is determined by the slow evolution

of b and requires many slow oscillations until it is fully converged. If the coupling to a is ignored

in the equilibrium equation of b, we have the normal form of a fold bifurcation where the solution

should grow to stable fixed point
√
ν1/ν2 ≈ 0.45 which does not happen due to the crashing

behaviour described. It seems likely that only the linear growth of b is well determined before

crashing occurs. Further, as the perturbation to the initial conditions is Gaussian, for this seed

the true value lies further from the confidence intervals for ν2. The same principle also applies to

the convergence of ν1. The convergence of these parameters suggests that optimising over the first

few fast oscillations for better initial conditions as suggested by ref. [106] may not be beneficial

because many parameters converge over multiple slow oscillations.

To test the convergence with different seeds, we fit the observations with 30 randomly selected

initial conditions and compute the largest percentage errors for each parameter over all the runs

with results presented in Table 8. In all runs the parameters converge well, with the largest

absolute percentage error in ν2 at 6.5%. The means over all the seeds are observed to be close to

the expected value suggesting that the convergence is robust. Typically it appears that convergence

of a subset of parameters is more challenging than others, and are parameters which are fixed on a

slow time-scale. Two further cases are tested in Table 8, one with a multiplicative inflation factor

c and the other with an additive inflation factor labelled GK of 1 × 10−8. Here GK refers to the

Gaussian kick introduced in ref. [115] which essentially amounts to an additive inflation factor.

The multiplicative inflation does not appear to help improve poorer converging cases whereas the

additive inflation factor could be beneficial. Given the discussion on inflation factors, there is no

great expectation that they should provide marked improvement in our case.

We then repeat the analysis, allowing for δ1 and µ1 to take non-zero values. We perturb these

parameters from a Gaussian distribution with standard deviation of 10% of each parameter value.

The convergence of the parameters is shown in Figure 108. Despite adding two additional parame-

ters to be determined with arbitrarily chosen perturbations in the parameters, we still achieve good

convergence of the parameters. Both of these parameters are correctly identified as being zero after

a short period. This case is relevant if we wish to consider fitting a more general model which only

obeys the outlined symmetry constraints given in § 2.4.2. Finally, tests with larger perturbations

in the initial conditions of one standard deviation of each parameter still have good parameter

convergence, suggesting that larger uncertainties are possible. We also find that initialisation of

the data assimilation along different points of the trajectory does not change the results presented.
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Figure 106: State convergence of the ANAET model with noise δobs = 0.1σ̃i and sampling rate
νf = 6. The observational error is set to the variance of the added noise.
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Figure 107: Parameter convergence of the ANAET model with noise δobs = 0.1σ̃i and sampling
rate νf = 6. The dashed magenta line represents the approximation location of the first crash in
amplitude of b. In this case only terms which appear in the model which generated the observations
are allowed to take non-zero values.
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Figure 108: Parameter convergence of the ANAET model with noise δobs = 0.1σ̃i and sampling
rate νf = 6. The dashed magenta line represents the approximation location of the first crash in
amplitude of b. In this case all terms are allowed to be non-zero.

c GK γr µ2 µ6 ν1 ν2 δ0

Largest absolute error (%) 1.0 0 0.086 1.15 3.78 0.46 6.55 1.24

Largest absolute error (%) 1.0005 0 0.086 1.29 4.05 0.41 6.47 1.28

Largest absolute error (%) 1.0 1× 10−8 0.063 0.95 2.9 0.433 6.40 0.90

Table 8: Largest absolute percentage errors for the different identified parameters in 30 seeded
runs.

7.1.4 ANAET Single measurement systems

We now consider single measurements of the ANAET model, fitting only measurements of the

a variable. We use the same initial covariances as in the previous example, with the obvious

modification that R is now a 1 × 1 sized matrix. The results of the state variable assimilation

for the single measurement system are shown in Figure 109. The observations for a are shown

as blue dots and the true state for ȧ and b, which are not observed, are shown as black dots.

Note that only a section of the state variable data is plotted here for clarity. We can see despite

only single measurements with incorrect initial state and parameter estimates, we can obtain good

approximations of all state variables. The only exception is in b as it varies on a slow scale initially

and can hence appear as approximately constant until the high order nonlinearity is non-negligible.

The parameter convergence in this example is shown in Figure 110. As can be seen, the convergence

of the parameters is again much slower in the single measurement case. We can see that in all
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fitted variables except γr, convergence to the true value requires more time than the full-state

measurement case. We also note that µ2, ν1 and δ0 appear to be correlated in exactly the same

way as one another for a large section of the data. These all represent terms in some way associated

with the unstable equilibrium mode b. When only measurements of a are available, they are likely

correlated in the same way. Despite slower parameter convergence, there is still a fair convergence

in all parameters for this seed.

Figure 109: State convergence of the ANAET model with noise δobs = 0.1σ̃i and sampling rate
νf = 6. Only observations of a are provided here shown in blue dots.
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Figure 110: Parameter convergence of the ANAET model with noise δobs = 0.1σ̃i and sampling
rate νf = 6. The dashed magenta line represents the approximation location of the first crash in
amplitude of b. Only observations of a are used in assimilation.

We again perform a similar analysis in the single measurement case where convergence of the

parameters is assessed over 30 randomly seeded trials. The convergence in this instance is measured

after a longer time-period at t = 6000. The results are shown in Table 9. We can see that for all

parameters associated to the growth of the slow mode, the maximum observed error is much higher

despite a longer time for convergence. As the perturbation to the true initial condition can result

in initial guesses which lie outwith ±σd of the true parameters, we can obtain poor convergence.

Conversely, γr and µ6 have strong correlations with a and therefore have quite robust identification.

The poor convergence for one seed is shown in Figure 111. We see that the selection of initial

conditions of parameters associated to the slow mode all lie outwith ±σd and converge to local

solutions for the problem. The evolution of the state variables in Figure 112 shows that despite

incorrect growth of b, we still obtain the correct behaviour for a. If we consider a scaling of b which

attempts to leave the dynamics invariant, we can write b = 1/αb̄ where α ∈ R>0 we can write

ȧ = v, (7.4)

v̇ = −γra− (µ1 + µ2

α b̄)a
3 − µ6a

6v, (7.5)

˙̄b = αν1 − ν2
α b̄

2 + (αδ0 + δ1b̄)a
2. (7.6)

Thus we may expect if ν1, δ0 increase, a corresponding decrease in ν2 and µ2 can feasibly leave

the dynamics unchanged. In this example, if we set α ≈ 1.2 then we arrive approximately at the

estimates obtained by EnKF.
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Parameter c GK γr µ2 µ6 ν1 ν2 δ0

Largest absolute percentage error (%) 1.0 0 0.127 17.13 1.47 20.52 23.91 20.3

Table 9: Largest absolute percentage errors for the different identified parameters in 30 seeded
runs for single-measurement cases.

Figure 111: Parameter convergence of the ANAET model with noise δobs = 0.1σ̃i and sampling
rate νf = 6. The dashed magenta line represents the approximation location of the first crash in
amplitude of b.
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Figure 112: Parameter convergence of the ANAET model with noise δ = 0.1σ̃i and sampling
rate νf = 6. The dashed magenta line represents the approximation location of the first crash
in amplitude of b. The parameter convergence here shows a seed which converges to a set of
transformed parameters.
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7.1.5 Step to experimental measurements
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Figure 113: Example of resulting downsampled ȧ for different observation rates with additive noise
set to 10% of the signal standard deviation.

a0 v0 b0 γr µ1 µ2 µ6 ν1 ν2 δ0 δ1

Value 3.983 -5.439 -1.370 1 0 -2 1× 10−4 1× 10−3 5× 10−3 1× 10−4 0

Table 10: Second set of initial conditions used with the ENKF method for the ANAET model.

We now attempt to validate the performance of EnKF on observational data-sets which are de-

signed to resemble experimental measurement. In the best case, this will constitute observations

corresponding to ȧ and b taken from a measurement of the magnetic field and soft X-ray of a

sawtooth instability as discussed in the comparison given in § 2.4.3. As we intend to make this

relevant to experiment, we will use noisy observations in all cases. While we attempt to mimic

experimental conditions as closely as possible, there are some notable caveats when applying to

real experimental data. The first of these is the role of process noise in EnKF when there will

undoubtedly be non-modelled physical effects which will be discussed in more detail later. The

second of these is the correct determination of the type of noise (observational, additive and multi-

plicative) that is present in experimental signals. In this section we shall assess the convergence of

the parameters with different degrees of observational noise and progressively coarser assimilation

time-steps to note the limits of the approach.

To increase difficulty of the problem, we assume that we are relatively uncertain of the initial

conditions in the parameters allowing the initial guesses to be drawn from Gaussian distributions
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with standard deviation equal to the magnitude of the true values given in Table 10. The initial

uncertainty in each state remains fixed at [22, δ2
obs,v, δ

2
obs,b] where δobs,v refers to the observational

noise in b and similarly δobs,b is the observational noise in a. The initial values of [a, v, b] are set to

the first observation for v and b, and a0 = 0. The initial condition and uncertainty in a are chosen

as we expect the behaviour of the ANAET model to be a particle in a symmetric potential well

so it is reasonable to assume that it will be located around the origin. The initial conditions for

the integration of observational data are chosen to start shortly after a crash when the oscillations

are fastest. For a fixed assimilation time-step, this results in the fewest samples per oscillation.

Examples of a section of observational data are shown in Figure 113. Lower sampling rates can

spuriously change the apparent frequency of the trajectory if there are insufficient observations per

oscillation.

Again to integrate the ANAET model we use a time-step of dtphase = 0.001, referring to the time-

stepping of the numerical model between assimilation time-steps. When assimilating observations,

we perform assimilation at time-steps tassim ∈ [0.3, 0.6, 0.9, 1.2, 1.8, 2.4]. Uniformly downsampling

this way produces a poorer resolution in ȧ than b as the time scales in a are faster than b. For

varying degrees of noise we use randomly distributed noise with standard deviation given by a

fraction of the standard deviation of either ȧ or b. We choose the fraction of noise to be within

[0.1, 0.2, 0.3] of the respective signal standard deviation. Given that the observational noise varies,

we also set R to be the true variance of the observational noise added for each case.

Given that the degree of noise varies throughout benchmarking, assessing the quality of fit based

on the agreement to observations is challenging. For this reason we assess only the convergence of

the parameters after a fixed time period for varying degrees of noise and sampling rates, assuming

that identifying invariant systems is less likely in the double measurement case. To improve the

robustness, we also run each of these cases with 30 random seeds which varies the initial guess

given to EnKF as well as the initialisation of the ensemble members. During assimilation of the

different seeds, several runs diverge, shown in Figure 114. At least in this case the divergence of the

filter appears to largely depend on the assimilation time-step and not the degree of noise added.

This is not entirely surprising as the initial ensemble may contain parameter values which cause

divergence of the filter and cannot be corrected until assimilation. Even if those measurements are

noisy they still are able to correct specific parameters to prevent instability. It should be noted

that at coarser sampling rates, fewer runs converge meaning the calculation of the means later are

over fewer seeds.

Figure 115 shows the calculation of the mean parameter values for the different seeds which do

not diverge. The colour scheme is centred around the respective true parameter value with whiter

squares representing final parameter values closer to the true value. We appear to have good

convergence of most parameters for assimilation time-steps ≤ 0.6 and degrees of noise ≤ 0.3. The

main exception to this is ν2 which generally fails to converge to the true value in the majority

of cases. This seems to have little impact in the overall quality of the fit. For higher degrees of

noise and coarser sampling rates there is substantially less consistency in the convergence of the

parameter, though often the means are skewed by runs which diverge far from the true value.

Divergence of the results could be improved by constraining µ6 corresponding to ȧa6 and this

notion will be used in the following sections.

A closer view of the parameter spread is given in Figures 116, 117 and 118 showing the boxplots

for each parameter for fixed noise fractions of 0.1σ̃i, 0.2σ̃i and 0.3σ̃i respectively. In each of these

plots, the y-scale has been limited to ±200% of the true parameter value for clarity. These figures

highlight the tendency for the mean to be skewed by outliers, even at high sampling rates and low
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degrees of noise. In many cases the median, indicated by the horizontal red lines, appears to be

closer to the true parameter than the mean (green triangles). For all degrees of noise, we can see

that oddly tassim = 1.8 has a much higher error than subsequent coarser steps. This is likely an

artifact of the either the smaller number of seeds averaged over or the particular set of seeds that

diverge in this instance.

For δobs = 0.1σ̃i shown in Figure 116 the identification of some parameters appears to remain

robust even for sparser sampling rates. However, for sparser sampling rates it is challenging to

correctly identify true values for µ6 and ν2. This appears to remain the case for higher degrees

of noise shown in Figure 118, where below the assimilation time-step of tassim = 1.2 we still have

promising parameter convergence. This percentage of noise is well in excess of anything that is

likely to be encountered experimentally and provides a promising result for genuine application to

experiment.

Finally, Figures 119 and 120 show the same validation in the single-measurement case when either

ȧ is observable or b. For the case of single measurements for ȧ we still have excellent parameter

convergence for δobs = 10% and this remains the case for higher degrees of noise (not shown),

though the convergence is unsurprisingly not as good as the two-state measurement case. On

the other-hand, even for lower degrees of noise single measurements of b shown in Figure 120 has

poor parameter convergence in every parameter. This is hardly surprising as the noise present in

the observations obscures the small feedback of a in b. The results are re-assuring on the whole,

suggesting that single measurements of the magnetic field alone could be sufficient to fit models,

even when that data is noise and sparsely sampled. Unsurprisingly though EnKF does benefit

when the observations are of the fastest time-scales in the system. Successful fits of the ANAET

model to soft X-ray measurements alone are unlikely to be successful as the high degree of noise

pollutes any of the fast-scale coupling of a into b.
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Figure 114: Counts of the number of diverging runs out of 30 seeds for varying sampling rates and
noise. The results are displayed on a grid and each number corresponds to the number of diverged
run.
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Figure 115: Mean values over all non-divergent seeds for all parameters for varying noise and
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Figure 116: Boxplots for fixed noise δobs = 0.1σ̃i for varying assimilation time-steps. Medians are
shown as solid red lines and means as green triangles and the dashed blue line is the true value of
the parameter. The results here are for observations of ȧ and b.
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Figure 117: Boxplots for fixed noise δobs = 0.2σ̃i for varying assimilation time-steps. Medians are
shown as solid red lines and means as green triangles. The results here are for observations of ȧ
and b.
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Figure 118: Boxplots for fixed noise δobs = 0.3σ̃i for varying assimilation time-steps. Medians are
shown as solid red lines and means as green triangles. The results here are for observations of ȧ
and b.

197



Figure 119: Boxplots for fixed noise δobs = 0.1σ̃i for varying assimilation time-steps with measure-
ments of ȧ only. Medians are shown as solid red lines and means as green triangles. The results
here are for observations of ȧ.
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Figure 120: Boxplots for fixed noise δobs = 0.1σ̃i for varying assimilation time-steps with measure-
ments of b only. Medians are shown as solid red lines and means as green triangles. The results
here are for observations of b.
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7.2 Stochastic Integration for the ANAET model

Figure 121: Comparison of magnetic diagnostics taken from the same probe over 3 different similar
shots within a MAST campaign. a) shows the soft X-ray measurements with similar sawtoothing
events in each shot b) shows the magnetics for shot 29880, c) magnetics for shot 29881, d) magnetics
for shot 29882.

The final consideration when fitting the ANAET model to experimental data comes from unrep-

resented features in the data. Figure 121 shows a comparison of the Mirnov signals and soft X-ray

measurements taken from 3 MAST-U shots which are designed to be as close as possible [135].

For each measurement of the soft X-ray measurement from the core, we plot the corresponding

Mirnov measurements measured from the same probe. To choose a magnetic diagnostic for this

plot, comparisons of all diagnostics are made and we attempt to chose one probe which consistently

yields the least noise and most persistent oscillations. Observations of the soft X-rays show that,

the period of sawtoothing changes throughout the shot. For EnKF this is important as with fixed

parameters, ensemble members will only predict sawteeth on fixed intervals. More importantly,

however, is the spiking observed in the Mirnov measurements. For each shot and for different times
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in the shots, the spiking is similar but can occur at different amplitudes. The ANAET model fur-

ther will only predict spiking at a fixed amplitude. This leads us to consider introducing model

error into assimilation.

Model errors can be incorporated via a discrete stochastic model which evolves every ensemble

member within the initial distribution [55][pg 178]. To integrate the ANAET model we use a simple

Euler-Maruyama scheme. For the Euler-Maruyama scheme we consider the stochastic differential

equation for a system of continuous equations X ∈ Rm

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t) (7.7)

where W ∈ Rn×m represents a Wiener process implying W (t + dt) −Wt ∼ N (0,dt), g ∈ Rm×n

is the diffusion coefficient (degree of Brownian motion in the system) and f : Rm → Rm is the

deterministic component of our system. The numerical discretisation of this problem over the

interval t ∈ [tn, tn+1] is given by

Xn+1 = Xn + f(tn, X(tn))∆t+ g(tn, X(tn))∆W (tn) (7.8)

where ∆W (tn+1−tn) and ∆t = tn+1−tn. The Wiener process essentially boils down to an additive

perturbation sampled from a Gaussian distribution of the form N (0,∆t) where the variance is ∆t

and the magnitude is given by g. More generalised cases are discussed in [55][pg 178].

In a genuine application of EnKF to experimental data, quantifying the model error is far from

clear. The first issue arises in that it is not known beforehand that the chosen ANAC or ANAET

models are actually sufficient to describe experimental signals at any parameter values. The second

issue is that, as mentioned, errors come from multiple different sources which can be challenging

to quantify. For instance, control systems will impact the plasma displacement in a real shot and

there is no way, at the time of writing, to quantify this type of error in relation to the ANAC

or ANAET models. Further, we have also neglected model error related to the numerical scheme

which should arguably be included. Work with the Lorenz model in ref. [29] construct estimates of

model error related to integration schemes by evaluating errors between a high accuracy simulation

(the truth) and lower accuracy simulations. Again while this would be possible when observations

are taken from the numerical model itself, it would not be possible to estimate the model error on

actual experimental data as there is no truth. Despite the unknown nature of the model error, in

this section we briefly perform some benchmarking of these cases as it is expected that in a real

application this will be required.

We now generate observations from stochastic simulations of the ANAET model where we assume

only additive noise in the state variables a, v and b. The scale of the noise is chosen to quali-

tatively alter the period of b to resemble an experimental signal shown in Figure 122. We set

g = [0.05, 0.05, 0.0005] as b varies on a much smaller scale than both a and v. Given that there

is a stochastic element in our equations which modifies the behaviour, we should expect that we

must include some degree of process noise Q.

When applying process noise in EnKF there are two ways to apply it

1. Apply it all at once at assimilation time-steps.

2. Apply it on integration time-steps.

For the results described we use the latter approach as it more closely resembles the generation of

the observational data.
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Figure 122: Soft X-ray measurement of the core temperature taken on the MAST-U Tokamak
(shot 29880) shown in blue with a FFT filtering shown in red, where high-frequency components
have been removed at a cut-off frequency of ωc = 0.2Hz.

7.2.1 Data generation

a0 v0 b0 γr µ1 µ2 µ6 ν1 ν2 δ0 δ1

Value 1 1 0.01 1 0 -2 1× 10−4 1× 10−3 5× 10−3 1× 10−4 0

Table 11: Initial condition used for the stochastic simulations. Parameters listed as zero remain
fixed at zero.

Observations of sawtoothing signals and Mirnov signals discussed in previous chapters, and shown

in Figure 122 highlight some characteristic features of a typical discharge which have not yet been

accounted for in the underlying model. These signals do not often display regular sawtoothing

occurring at the same amplitude at every crash. In an application to experimental data, this

presents challenges for EnKF. For the ANAET model cases considered, parameters are modelled

as constants and therefore converge to fixed values. This means that model predictions will always

predict sawtooth crashing at constant amplitudes and periods. To generate models which predict

non-constant period sawtoothing there are two possible options: additive noise added to the first

three state variables or introducing model errors into the parameters. The latter case is much

more challenging, as we have unknown parameter values and must make some assumption about

the variance increase expected per time-step of these parameters. However, as the parameters can

be sensitive to small changes in values this approach is more difficult. For this reason we only

consider process noise in the observed variables.

To create the observed data-set, we integrate from the initial conditions shown in Table 11. The

additive noise for each variable depends both on the time-step used (dtANAET) = 0.0001) and the

Weiner process coefficient. As b varies on a smaller scale than a and v (this is just a scaling issue

and could be changed) we set g = [0.05, 0.05, 0.0005] as this heuristically gives aperiodic behaviour

in b. Finally, once the stochastic data has been generated we add observational noise with standard
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deviation 10% of each respective signals standard deviation. This produces a result shown in Figure

123 which is similar qualitatively to the measurement in Figure 122 from the MAST-U tokamak.

Physically, introducing process noise causes aperiodic crashing because random perturbations can

cause the particle to be ejected earlier or later from the confining potential well. Comparisons of

the attractors created from a Mirnov and soft X-ray measurement from the MAST tokamak to

the stochastic integration are shown in Figure 124. The solution behaviour is at least qualitatively

similar.

At this point, however, some potential pitfalls of the EnKF approach should be pointed out. As

the underlying model is nonlinear, its evolution from an initial Gaussian distribution will almost

certainly be non-Gaussian. With process noise, certain ensemble members will crash at different

times to other ensemble members. Figure 125 shows an example of N = 10 and N = 100 ensemble

members evolved from the same initial conditions in ȧ0 and b but otherwise drawn from a Gaussian

distribution. It can be seen that initially the mean of the ensemble provides an accurate estimate of

the state, but quickly this breaks when oscillations become out of phase or some ensemble members

crash earlier. With EnKF, this is not strictly an issue as the assumption of Gaussian distributions is

only relevant during the update step where linear corrections are made based of ensemble spreads

[55]. Otherwise the method uses a Monte-Carlo evolution of the ensemble members. However

for future prediction without assimilation, Gaussian statistics of the ensemble will not provide

accurate uncertainty quantification. On a positive note, as only the update step relies on Gaussian

assumptions, joint PDFs could still be constructed from the evolution of the ensemble members

for uncertainty quantification as will be discussed later.
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Figure 123: Observable data from the stochastic integration with 10% observational noise added.
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Figure 124: Left shows a plot of a select Mirnov measurement and core temperature measure-
ment taken from MAST (shot 29880), where a is reconstructed from an integral for the Mirnov
measurements. Right shows a stochastic integration of the ANAET model with noise added.
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Figure 125: Evolution of different observed ensemble members (10 plotted in blue lines of different
shades) with process noise in the state variables for N = 10 and N = 100 ensemble members. The
dashed lines show the ensemble means.

7.2.2 General initialisation of the model

As discussed, sensible initialisation of the priors is an important step in producing physically

reasonable ensembles. This is particularly true with the ANAET model where small changes

in parameters can cause bifurcations in the underlying model creating non-smooth distributions

which have poor Gaussian representations. For a real application to experimental data, we expect

to effectively have observations of both ȧ and b and we are able to make estimates of the underlying

observational error given by the diagnostics benchmarking [166]. For initialisation with non-zero

model error we therefore use the following information.
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1. The variables ȧ and b are observable and these are set to be the first observation at t = 0

which is never used during assimilation. The respective uncertainty in P 0 of these elements

is set to the observational error in each state δ2
obs.

2. a is not known, but we know that the solution is roughly an oscillator centred around a = 0,

v = 0. As such we set the a0 = 0 and let the initial uncertainty by P0 = 22 for this variable.

3. We have no knowledge of the parameters, but arbitrary values cannot be used. For sensitivity

studies we perturb the true parameter values depending on their respective magnitude. For

each parameter we perturb them by a random Gaussian value with standard deviation n

times the value of that parameter listed in Table 11. The initial uncertainty is set to reflect

this so that the confidence intervals at least bound the correct value.

We will now discuss fits with non-zero model error, initialised as described above.

7.2.3 No process noise

We first begin by attempting to fit EnKF with zero model error to a case where observations are

generated with a stochastic integration scheme as described in the previous section. We should ex-

pect this to be extremely challenging for EnKF, as the underlying numerical model cannot produce

aperiodic crashing behaviour. The convergence of the trajectories shown in Figure 126 showing

that while the initial ensemble is spread, EnKF is capable of tracking observations. The parameter

convergence shown in Figure 127 shows that parameter convergence is initially close to the true

values. However, around t = 600 when the ensemble collapses sufficiently, the predictions are

over-confident for the numerical model and no longer track the observations. This is then followed

by an earlier crash predicted by the ensemble which causes parameters to vary substantially. As

there is no error expected in the numerical predictions, the parameters must be varied to match

the observations and EnKF is unable to converge to a reasonable solution.
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Figure 126: Fit of ANAET model with no model error. The trajectories quickly become overcon-
fident leading to poor fitting of the observational data.
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Figure 127: Convergence of ANAET parameters with no model error. Parameter convergence is
poor and not close to the true values.
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7.2.4 Process noise

Figure 128: State convergence with expected increase in variance associated to stochastic simula-
tions.

We now look at a case where the initial condition is perturbed by a random Gaussian perturbation

with standard deviation equal to the parameter magnitude. We now set the model error elements

equal to expected variance increase from the stochastic EM scheme described above. The ensemble

members are integrated on a coarser time-step than generated in the EM scheme with dt = 0.02.

We therefore set the first three diagonal elements of Q to [2.25× 10−6, 2.25× 10−6, 4× 10−8].

The state convergence is shown in Figure 128 showing that with the described initialisation EnKF is

able to successfully track the observations. The inclusion of model error now allows the parameters

to be fit as constants, shown in Figure 129. Previously without model error the parameters had to

vary so that a varying period could be fit by the observations. We can also see that despite most

of the initial guesses being far from their true values, the parameter convergence is still good.
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Figure 129: Parameter convergence with stochastic observations when model error is introduced.
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7.2.5 Computing uncertainty predictions

Figure 130: Propagation of ensemble uncertainties without assimilation. The blue data follows
from the the end of the training data used to fit the ANAET model. The red line shows the
ensemble mean of N = 300 members and the green envelope gives the confidence intervals.

As we are now using model error in EnKF, the state predictions will not converge completely and

the ensemble spread will increase with a standard deviation
√

dtphaseg. Following assimilation,

we can continue to make predictions with EnKF which amounts to a stochastic integration of the

ensemble members. The mean and variance of the ensemble then represent the best estimates.

For the previous fit, we continue to integrate the ensemble members for an additional t = 400

time units and compare the mean predictions against a reserved section of observations from the

stochastic simulation after training. The results are shown in Figure 130 where we can see that

reasonable estimates of the mean and uncertainty are only given for very short time-frames. After

t ≈ 50, the ensemble members gradually become out of phase due to non-zero model error and the

predictions of many oscillators that are out of phase gives means close to zero. For b we note that

the ensemble mean shows a very slow crash between t = 200 and t = 350 as the ensemble members

crash individually implying the mean gives a poor estimate of the ensemble statistics. Also, the

variance of b shows ensemble spread significantly higher than b = 0.5 which is also artificially caused

by the fact that the variance is symmetric around the mean. When some ensemble members crash,

the variance increases around the mean and the confidence intervals can span regions of the phase

space that ensemble members do not actually reach.

However, as each ensemble member is integrated individually, we can plot the different ensemble

members as histograms, shown in Figure 131. The histograms shown correspond to the sampling

of all 300 ensemble members at different times. We can see that between t = 0 and t = 200, many

of the ensemble members increase in amplitude. Then between t = 200 and t = 300 over half of the

ensemble members crash to lower values of b and by t ≈ 400 most members have crashed. Despite
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the Gaussian assumptions in assimilation we can still gain insight into the uncertainties by looking

at the distributions of the ensemble members themselves.

Figure 131: Histograms of the ensemble members taken at different times. As time progressed,
more ensemble members crash given by a flattening of the distributions.

7.2.6 Estimation of observational error with FFT
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Figure 132: Power-spectral density of b equation after stochastic integration and observational
noise added. Only frequencies up to 1Hz are plotted as the noise floor continues.

In most applications discussed so far, the observational error R has been assumed known. How-

ever, while documentation provides errors for general MAST diagnostics (see ref [166]) individual

instrument error can be much higher. It is beneficial to introduce an approach which estimates

the observational error for an actual application to experimental data.

If we assume that the noise is high-frequency, then it is possible to make an estimate of the

observational noise R through a FFT. We can simply observe the power spectrum of the signal

and attenuate frequencies which contribute to the noise floor of the signal. Figure 132 shows the

power-spectral density plot for the b equation, highlighting the noise floor for noise estimations.

By choosing a cut-off frequency of 0.1Hz, the standard deviation of the noise can be estimated.

Estimates of each degree of noise are shown in Table 12 for each signal. Generally the noise
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estimates are very close, with a slight over-estimation in noise of ȧ. This gives a simple and

reliable approach for observational noise estimation.

Variable a ȧ b

Std. Added 0.143 0.103 0.022

Std. Estimate 0.140 0.132 0.021

Table 12: Standard deviations of the random Gaussian noise added to the stochastic integrations of
the ANAET model compared to the estimates from an FFT filtering of high-frequency components.

7.2.7 Larger initial uncertainties

Parameter γr µ2 µ6 ν1 ν2 δ0

True 1 -2 0.01 2× 10−3 1.5× 10−4 1× 10−3

IC 1 -15.2 0.1 -0.39 1.02 0.86

Estimate 0.9991 -2.0579 0.0133 2.1229× 10−3 −3.4272× 10−4 1.0108×−3

Table 13: Table of the true parameters from which observations are generated, the parameters
which are used to initialise EnKF denoted IC and the resulting estimates from EnKF assimilation.
µ1 and δ1 are not fitted and therefore not listed in the Table.

We now consider a challenging case relevant to experimental conditions with non-zero model error.

In a real application of EnKF to experimental data, it is beneficial to use as large uncertainties

as possible as initial parameter values are not known. For this test case, we use the same set of

observations described previously and set the sampling rate per dominant period to ν ≈ 60 which

is close to experimental data which has been studied on the MAST-U tokamak with a sampling

rate of ν ≈ 54 (shots 29880, 29881, 29882). We also add 10% observational noise of each signal

standard deviation.

We assume in this instance that our initial guess for the parameters is extremely poor. The initial

uncertainty in each parameter is therefore large and set to be equal the standard deviation of

the random Gaussian perturbation used for each parameter. The only parameter which is not

perturbed is γr, as this controls the oscillations between spikes. In a genuine fit to experiment it

would be possible to arbitrarily scaling the data in time and amplitude such that γr ≈ 1 with an

appropriate scaling of the experimental data.

We also implement a lower bound on µ6 ≥ 10−16 such that the term in −µ6aȧ
6 is always dissipative.

As we implement constraints on this parameter, we also include a small model-error ofQµ6
= 10−10

(the diagonal element of Q corresponding to µ6) to prevent the ensemble collapsing at the lower

bound. This constraint is important, as this term is seventh order and if ensemble members become

destabilising EnKF tends to fail to converge. Other unstable choices of the parameters are possible,

but ensuring the dissipative term is stabilising at least typically prevents ȧ from becoming unstable.

The results of the parameter convergence are shown in Figure 133, with explicit comparison of the

initial conditions and final estimates shown in Table 13. We can see that despite poor initial guesses

in many of the parameters, we still convergence to very good estimates of the parameters. The

main discrepancy is with ν2 which finds a parameter with the wrong sign. However, integrations

of the resulting model still show sawtoothing behaviour on the correct period.
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Figure 133: Parameter convergence in the stochastic case where the initial parameter guesses are
extremely poor.

7.3 Concluding Remarks

In this chapter we extended EnKF to the more complicated ANAET model in the full-state, double

and single measurement cases. The ANAET model represents a significantly more complicated

test case as the behaviour is both multi-scale and there are more free parameters to estimate. The

ANAET model represents a realistic test-bed for genuine experimental signals with comparisons

between experimental signals and stochastic integrations of the ANAET model show qualitative

similarity. EnKF shows promising results for estimating the parameters in the full-state, double

and single state measurement cases provided that sensible initialisation is provided. Parameter

convergence is still good when comparing to scenarios where the signal is very poorly sampled and

very noisy. Single measurement cases must be restricted to measurements of state variables in ȧ,

as measurements of b alone do not provide enough information to fix ȧ.

Extensions to include stochastic integrations of the ANAET model, while preliminary, are an

important step in comparison to real experiment. As noted, real experiments often show aperiodic

signals and will require the inclusion of model error. A case of attempting to fit EnKF with

no model error to stochastic observations showed the method failed to converge and this would

likely occur with experiment. We showed that when the variance increase is estimated correctly,

EnKF is able to make very good estimates of the parameters even with quite poor initial guesses

of some of the parameters. This is also in a case where the sampling rates are equivalent to an

observed MAST-U shot of the magnetic field and central core temperature. Also a simple approach

using a FFT is outlined to make estimates of the observational noise which will be beneficial on real

signals. Finally, we also gave a discussion of uncertainty quantification within EnKF. For nonlinear

models, the assumption of Gaussian ensembles is quickly violated without assimilation. Despite

this the distribution of the ensemble members themselves still provide information on the number
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of ensemble members that have crashed. This allows us to construct a probabilistic interpretation

of when a sawtooth crash may next appear.

One of the biggest conceptual challenges with EnKF is the choice of initial parameters which

is largely unknown. While the optimisation work described by [106] was reproduced, extending

this to the ANAET case was unclear for a number of reasons. The first is that, no discussion

is given of the ensemble uncertainty when attempting to optimise over the first J observations.

Many of the parameters vary on different scales and sensible initial uncertainties must also be

specified (whereas with the ANAC model using P 0 = I is likely fine). The second issue is that

the ANAET model is multi-scale and many of the parameters associated to the slow-mode do

not converge until approximately one slow-period of the system is assimilated. This would make

the optimisation procedure substantially more expensive, as in [106] optimisation only occurs over

the first approximately J = 12 observations whereas a slow oscillation will easily have hundreds

of samples. Alternatively scaling the data could be explored so that certain parameters, such as

γr, would be approximately 1. This would reduce the complexity of having large uncertainties

in all the parameters. Aside from this it seems that in many cases we can still use large initial

uncertainties and still see successful convergence of EnKF. Other approaches such as particle filters

implemented in Julia by ref [162] have also performed assimilation with the ANAET model, and

could be viable alternatives when parameters are poorly known. This is because particle filters do

not assume Gaussian distributions and perform a re-weighting process for each particle (ensemble

member). This could be be beneficial, as ensemble members drawn from non-physical priors can be

assigned a zero weight. While some attempts were made at using particle filters, time constraints

prevented any substantial comparisons being made.

The next logical step is to use EnKF with experimental data, but estimation of model error re-

mains a significant challenge. This is because both the sufficiency of the ANAET model is not

known, and the accuracy of the model depends on the parameter estimates themselves. Without

any knowledge of the parameters beforehand, it is difficult to anticipate the model error. While

extensive attempts have been made to find good data-sets to test on, finding suitable shot can-

didates from MAST/MAST-U is very difficult and likely requires input from an expert familiar

with the diagnostics. While sawtoothing events may be present in shots, there can often be large

sections of poorly resolved Mirnov signals with only one or two sawteeth apparent. Figure 134

shows a comparison of the magnetic diagnostics from the same location in the MAST tokamak

with the corresponding soft X-ray measurements for 3 different shots in a MAST campaign which

were designed to be as similar as possible [135]. Despite the fact that all shots show a sawtoothing

event, there are many cases where the magnetic signal is effectively just noise preceding a sawtooth

crash, such as shot 29881. Even for shots where the signal is relatively well resolved as in 29880,

this only persists for a short section of the signal shown in Figure 135. Aside from this, the oscil-

lation amplitude between sawtooth crashes, shown in Figure 135 can change throughout the shot

which makes the design of diffusive terms which are negligible for |a| < 1 challenging. Further the

spiking observed can also occur at different amplitudes and some allowance for this would have to

be made in the underlying model.
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Figure 134: Comparison of magnetic diagnostics taken from the same probe over 3 different similar
shots within a MAST campaign. a) shows the soft X-ray measurements with similar sawtoothing
events in each shot b) shows the magnetics for shot 29880, c) magnetics for shot 29881, d) magnetics
for shot 29882.
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Figure 135: Comparison of magnetic diagnostics taken from MAST-U shot 29880 at different
crashes. Each crash number is labeled in the subplot title.
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8 SINDy and the ANAC model

In the previous chapters we discussed applications of EnKF for fitting the ANAC and ANAET

models to experimental data. While this approach shows remarkable robustness to noise, there are

some drawbacks. The first of these is that we typically have no knowledge of an appropriate set of

parameters to initialise EnKF. This is important because large model uncertainties tend to create

unphysical ensembles, negatively impacting convergence. The second issue is that the ANAC and

ANAET models are derived based on general symmetry constraints and observations of tokamak

behaviour [72]. As such, the inclusion of other terms may be relevant. For instance, diffusion is

introduced to represent non-ideal effects in the ANAET model, but the choice of the diffusion term

only requires that the symmetry constraints are satisfied, and it is negligible for small amplitudes.

In this section we briefly explore SINDy applied to noisy, sparsely sampled observations which are

generated from the ANAC model. SINDy has some potential benefits over EnKF, particularly that

we do not require any prior knowledge of the parameters of the model. Further, we can assume a

general function library which obeys the constraints outlined in [72] and therefore does not need

to be as restrictive in the selection of terms appearing in the equations. The main limitation of

SINDy in comparison to EnKF is the requirement of a complete set of measurements.

As we aim to build a comparison of EnKF with SINDy, we will predominantly be interested in

constructing simplified models of the dynamics using SINDy at sampling rates comparable to

the observational data-set used by [115] and those in the previous section with EnKF. For most

purposes, this will be about 12 samples per period, though typically this is quite restrictive given

modern diagnostics on MAST-U [166]. We will then aim to draw comparisons in terms of parameter

estimation and state prediction between the Kalman software and SINDy. It is expected that the

performance of the Kalman software will be superior because SINDy must estimate a larger number

of unknowns in a correlated feature library making for a harder problem to solve. Further, the

addition of noise complicates the fitting process for regular SINDy as we must obtain derivatives.

However, we will find that with a sound choice of optimiser and sampling method, we can obtain

good results from SINDy for arguably harder problems in high-noise regimes.

We therefore aim to answer the follows questions in this section:

1. How does the performance of EnKF compare to SINDy for parameter inversion with the

ANAC model?

2. How robust is SINDy to noisy signals from the ANAC model?

3. How robust is SINDy to poorly sampled signals from the ANAC model?
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8.1 Conventional SINDy

8.1.1 SINDy with noiseless observational data
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Figure 136: Integration of the ANAC model shown in red with observations taken at ν ≈ 12 shown
in blue crosses.

We start with an artificial noiseless observational dataset which is generated from the integration

of the ANAC model

ä = µa+ 2σa3, (8.1)

at dt = 0.005 with σ = −0.1 and µ = 10 and we introduce the variable ȧ = v. The data is then

down-sampled such that there are approximately 12 samples per period and dtassim ≈ 0.16. In the

initial example, we consider only noiseless observational datasets, shown in Figure 136. The first

challenge then is to obtain accurate model identification with SINDy for these sampling rates. As

can be seen, the observations are sparsely sampled in time and thus result in poor approximations

of the derivatives using finite differences. We display all results in terms of the dominant period

of the data which we label Λ and from a FFT is set to Λ ≈ 2.

We start understanding the initial limitations of SINDy by performing parameter sweeps with

the sequential thresholded least squares optimiser. From previous results in §4 we should expect

that the weak form will be required. To evaluate model performance we consider two different

performance metrics. The first is the mean-squared error

MSQE =
1

nm

i=n−1∑
i=0

j=m−1∑
j=0

(Ẋji − ˆ̇Xji)
2, (8.2)

where Ẋ are the true derivatives and ˆ̇X the predicted derivatives from SINDy. The result is

averaged over all n equations. For the ANAC model, this constitutes n = 2 when written as a

first-order system of equations. We calculate the mean-squared error for both the training data and

a reserved set of validation data, though we calculate these on noiseless data. It is also common

to calculate a mean absolute coefficient error on the non-zero coefficients in the identified model

[152]

MCE =
1

nknonzero

n−1∑
j=0

i=knonzero−1∑
i=0

|Ci − Ĉi|
|Ci|

(8.3)

where Ci is the array of true coefficients. The result is again averaged over all equations. Note
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that as SINDy consists of a feature library which contains terms which do not appear in the ANAC

model, inclusion of these terms will negatively impact this score.

8.1.2 Identification with STLSQ
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Figure 137: MSQE of the predicted SINDy model on the noiseless training set while varying the
coefficient threshold λ and L2 regularisation α. Each box represents the errors at different sampling
rates with the total number of samples denoted by N in the subplot title.
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Figure 138: MCE of the predicted SINDy model on the noiseless training set while varying the
coefficient threshold λ and L2 regularisation α. Each box represents the errors at different sampling
rates with the total number of samples denoted by N in the subplot title.

We first assess the performance of the baseline version of SINDy on progressively coarser datasets

to understand the limitations in an optimal case. We begin by generating a dataset from the initial

conditions [a0, v0] = [1.5, 0.1] with σ = −0.1 and µ = 10 which results in generically spiky behaviour

discussed in ref. [179]. For each sampling rate, we vary the learning parameters corresponding to

the hard threshold, λ and the L2 regularisation, α, calculating the aforementioned metrics on the

validation set. α and λ are both varied logarithmically between 10−4 and 1 in a total of 50 steps.

For every SINDy fit we limit ourselves to a third order polynomial library which is a reasonable

choice given description of the construction of these models [72]. Higher-order terms are only

included when either the potential is expanded to a higher order or diffusive terms are included

[179].

Figure 137 shows the calculated MSQE when the sampling rates and learning parameters are

varied. The best performance is obviously obtained on the dataset with the highest sampling

rate. We see a reduced performance for lower sampling rates, eventually obtaining extremely poor
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recovery well before reaching the desired sampling rate of ν = 12. From Figure 138 we can see

that the coefficient error increases continuously with decreasing sampling rate.

To assess the source of the error, we perform the same parameter sweep by first pre-calculating

the derivatives on the data where successful recovery is possible (ν = 413). The pre-calculated

derivatives are then supplied to SINDy to avoid calculation of the derivatives on the sparsely

sampled data. Figures 139 and 140 show the same parameter sweeps with the supplied derivatives.

It can clearly be seen that correct model identification is maintained if high quality derivatives

are given. This suggests that the sampling rate is sufficient to resolve the dynamics and an

improvement must be made on either the approach or the approximation of the derivatives. In

fact, very few periods of data are required for correct identification in this case. This is reasonable,

considering the signal is periodic and without noise. We obtain all required information within a

few oscillations of the signal.
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Figure 139: MSQE of the predicted SINDy model on the validation set for varying sampling rates
with pre-calculated derivatives. Each subplot is taken for a different sampling rate ν and total
number of samples N marked in the subplot title.
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Figure 140: MCE of the predicted SINDy model for varying sampling rates with pre-calculated
derivatives. Each subplot is taken for a different sampling rate ν and total number of samples N
marked in the subplot title.
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8.1.3 MIOSR with convential SINDy
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Figure 141: Calculation of the MCE using MIOSR optimiser for varying target sparsity, α and
sampling rates. Each box signifies a different sampling rate. The sampling rate ν and total number
of samples N are shown in the title of each subplot. The true sparsity of the ANAC model is k = 3.

One possible solution for the issues with low-sampling rates that was explored was to employ a

different optimiser. A recent benchmarking study by ref. [163] suggests that in noisy studies of a

selection of chaotic systems, MIOSR and STLSQ with weak SINDy perform best of the available

optimisers. Here we first consider only implementing the MIOSR optimiser. As discussed in

previous sections, the main advantage on MIOSR is specifying an allowable sparsity of the final

solution (k).

To construct a comparison we implement MIOSR and vary the L2 regularisation and target sparsity

for progressively coarser datasets. Here we only show the results for the MCE while using MIOSR

in Figure 141. We can see that little improvement in the error is found for differing sampling

rates. Regardless, this Figure gives some insight into which parameters provide the best solutions

with MIOSR. For high sampling rates, we see that a wide range of target sparsity solutions are
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possible. While this may be surprising, it is entirely possible for MIOSR to find solutions lower

than the specified target sparsity. On the finely sampled data, this is the case with correct model

identification still occurring at higher target sparsity. We can also see that for low target sparsities,

varying α has little impact on the resulting solution. This is expected, considering for low target

sparsities we will generally have problems which are better conditioned and thus benefit less from

L2 regularisation.

As the sampling rate decreases, we see that higher target sparsities are no longer favoured and

selection of the correct number of terms becomes increasingly important. In some cases, we can

obtain reasonable estimates for a target sparsity of 4 by an appropriate selection of α. From these

conclusions, we can see that even using a solver with fewer numbers of terms appearing in the

solution we still cannot produce accurate results due to the errors from finite differencing.

8.2 Weak SINDy

8.2.1 Weak SINDy as a resolution to sparsely sampled data

The most obvious remedy to poor equation recovery at low sampling rates is to employ a method

which avoids taking derivatives entirely. As we aim to identify ODEs which can be written in the

weak form, we are able to integrate over all polynomial features in the feature library in time and

thus avoid taking derivatives entirely. However, we have found that when using the weak form,

proper selection of the size of the integration domain Hxt is essential for reliable model discovery.

For initial model recovery, we make use of weak SINDy with the STLSQ optimizer.

There have been several remarks in a variety of publications on the selection of the size of the

integration domains, the number of integration domains, and their locations in space or time.

Discussions on the number of integration domains has been given by [171], noting that increasing

the number of integration domains K generally improves the regression ensuring the data is both

more diverse and improving robustness due to averaging in the noisy case [124]. On the flip side,

when using a high K, domains should be selected in such a way to ensure linear independence of

the entries such that integration domains are minimally overlapping. Locations of the sampling

domains is of course relevant, in PDE identification sampling of the boundary layer is typically

important for the recovery of viscous terms [171]. The size of the integration domain is also

important. In the case of periodic signals if the integration domain spans periods of the signal

then weak SINDy can act as a low-pass filter [152]. If signals have low-sampling rates (few samples

per period) then the integral windows will be unavoidably large, and we contend with a trade-off

between noise averaging and high-frequency filtering [170].

Figure 142 shows the calculation of the MSQE over the training data. We see that lower MSQE in

general is obtained for lower values of α. This is not unusual as we are calculating an error based on

a clean training set, and so these models are either overfitted or benefit from small regularisation

due to the clean data. We can see, however, that at the smallest values of α, there are instances

where correlated features result in poorer model identification with this becoming more robust at

increasing values of α. As α continues to increase beyond α = 10−5, the region of acceptable Hxt

reduces substantially.

To understand why this happens, we also need to consider the MCE in Figure 143. This shows

a different result where, even at low values of α, the acceptable region of Hxt cannot reasonably

exceed one period in the data. As α increases we again achieve more robust model identification

with the lowest MCEs centred around Hxt = 0.3Λ for α = 1 × 10−4. This suggests that at a low

α, the problem can be overfitted and still achieve a good MSQE on the training set. Increasing
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the regularisation then reduces the impact of correlated features showing an acceptable selection

for Hxt. As α increases to 0.1, the regularisation is too large and the model favours fitting the L2

constraint over the data.
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Figure 142: MSQE of the formulated integrated feature library for varying size of the integration
domain Hxt, the sampling rate ν and the L2 regularisation α with a fixed number of integration
domains K = 10000. Each box represents a different value of α
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Figure 143: MCE of the formulated integrated feature library for varying size of the integration
domain Hxt, the sampling rate ν and the L2 regularisation α with a fixed number of integration
domains K = 10000. Each subplot represents a different value of α.

We also check the sufficiency of the training data length in the noiseless case. Figure 144 shows

the MCE while varying the sampling rate and total length of the data. We can see that the main

increase in error relates to decreasing the sampling rate in the series, with an upper limit of ν ≈ 10

for successful recovery. However, decreasing the sampling rate still causes an increase in coefficient
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errors possibly related to the loss of high-frequency components in the signal. Little to no benefit

is obtained on coefficient estimates by increasing the total training length. This is a result of the

data being noiseless and oscillatory. Adding additional data does not explore more of the phase

space due to the nature of the system and does not average over any noise in the system.

413 206 103 68 51 41 34 29 25 22 20 18 17 15 14 13 10
3.103
5.172
7.241

9.31
11.379
13.448
15.517
17.586
19.655
21.724
23.793
25.862
27.931

30.0
32.069
34.138
36.207
38.276
40.345

MCE

10 14

10 12

10 10

10 8

10 6

10 4

Figure 144: Comparison of the MCE while varying the total length of training data and sampling
rate. Parameters fixed at: K = 10000, Hxt = 0.3Λ, α = 1× 10−4 and λ = 0.1.

8.2.2 Weak SINDy with Noise

As weak SINDY with STLSQ is capable of recovering accurate estimates of the underlying gov-

erning equations for the desired sampling rates, we now look at recovery of the equations in the

noisy case. Unfortunately with noise added and weak STLSQ SINDy, many of the above results

deteriorate (not shown). This is simply due to correlated input features with periodic signals, as

STLSQ has no way of limiting the resulting sparsity of the final solution. As a consequence, many

non-zero terms can be included which effectively cancel out.

In an attempt to reduce the correlation issue, we make use of the MIOSR optimiser with weak

SINDy, again limiting the total sparsity to 3 (3 non-zero coefficients). The results for the MCE

are shown in Figure 145 for varying α. By restricting the resulting model to be sparse, we vastly

improve the identification of the underlying model in higher levels of noise. For additive noise of

a degree δobs ≤ 0.1, the coefficients are accurately determined for all sampling rates. However, for

higher degrees of noise at δobs = 0.5 and the sampling rates less than ν ≈ 50 we see that incorrect

models have been found.
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Figure 145: MCE when applying weak SINDy with MIOSR optimiser and an ideal fixed target
sparsity of 3. In each subplot the L2 regularisation α and sampling rate ν are varied for varying
degrees of noise, with standard deviations listed in the subplot titles.

8.2.3 Constraints for the ANAC model
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a

10

0

10

v

Kalman

Figure 146: The phase-space of the ANAC4 model for several initial conditions shown in blue with
the training data shown in red. The red data is the equivalent to the data considered by ref. [115].

So far we have only discussed cases where feature selection is based purely on time series data. An

advantage can be gained from considering constrained models which obey some physical principle,

thus reducing the allowable search space. The first case we consider are Hamiltonian constraints

for when the system is energy-preserving. This is relevant in, for example, ideal MHD, and for the

ANAC model which is energy-preserving. For a 2D dynamical system

ȧ = f(a, v), (8.4)

v̇ = g(a, v) (8.5)

to be Hamiltonian, we only require that

∂af(a, v) + ∂vg(a, v) = 0. (8.6)

For a third-order polynomial SINDy library of the form

ȧ = c0 + c1a+ c2v + c3a
2 + c4v

2 + c5av + c6a
3 + c7v

3 + c8av
2 + c9a

2v,

v̇ = d0 + d1a+ d2v + d3a
2 + d4v

2 + d5av + d6a
3 + d7v

3 + d8av
2 + d9a

2v,
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we require the following constraints

c1 = −d2, 2c3 = −d5, c5 = −2d4,

3c6 = −d9 c8 = −3d7, c9 = −d8.

If these constraints are directly implemented, then the resulting models will be energy preserving.

In ref. [72] the model is also derived under the assumption of the symmetry a→ −a and v → −v.

For the third-order polynomial library, this gives many different additional constraints. For ȧ we

have

c0 = 0, c3 = 0, c4 = 0, c5 = 0,

and similarly for v̇

d0 = 0, d3 = 0, d4 = 0, d5 = 0.

The symmetry constraint provides new information if we only have the training data shown in

Figure 146. The training data we have used until now only shows oscillations in one part of the

phase space (one side of the potential well) and so it is possible to fit oscillating models which do

not generalise to the entire phase-space. If all the constraints are applied, the resulting model will

be of the form

ȧ = c1a+ c2v + c6a
3 + c7v

3 + c8av
2 + c9a

2v,

v̇ = d1a− c1v + d6a
3 − 1

3c8v
3 − c9av2 − 3c6a

2v.

This reduces the number of unknowns from 20, to 8.

On occasion, SINDy models have been derived by considering apparent symmetries in the phase

space by looking at plots of the trajectories [148] like those shown in Figure 146. If we followed

such a process here, we would end up considering the symmetry a→ −a and v → v (shown in red

on the training data) which is not the correct symmetry of the entire system.

8.2.4 Applying constraints to the weak form

Given the desired properties of our system, we can reapply the assessment with added noise when

either Hamiltonian or symmetry constraints are applied. Inclusion of the Hamiltonian constraints

in Figure 147 does not appear to lead to any substantial improvement in the resulting model

fits. This is simply because the constraints supply no information about the terms we would

actually hope to retain in our resulting model. That is, when the correct terms are identified

there, any additional terms are set to zero anyway and the Hamiltonian constraints provide no

relation between the resulting non-zero coefficients c2, d1 and c6. As a result of the constraint

on the overall sparsity, the only terms which are actively fitted are terms not related to these

particular set of constraints.

For the symmetry constraints in Figure 148 we instead see a good improvement as these provide

new information to the SINDy model. As the training trajectory is bounded within one side of the

potential well only, there is no information on the full phase space and therefore the full symmetry

of the potential well. For δobs we are able to still identify models with the correct coefficients active

at sampling rates of around ν = 12.
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Figure 147: Applying weak SINDy with MIOSR optimiser and an ideal fixed target sparsity of 3
with Hamiltonian constraints. In each subplot the L2 regularisation α and sampling rate ν are
varied for varying degrees of noise, with standard deviations listed in the subplot titles.
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Figure 148: Applying weak SINDy with MIOSR optimiser and an ideal fixed target sparsity of 3
with symmetry constraints. In each subplot the L2 regularisation α and sampling rate ν are varied
for varying degrees of noise, with standard deviations listed in the subplot titles.

8.2.5 Redundant training trajectories

The trajectories of the ANAC model can be related to the motion of a particle confined to a

potential well, the potential well being plotted in Figure 18. For small enough amplitudes of a, the

motion of the particle is confined in either the left or right potential wells. If the training data is

only taken on one side of these potential wells, we will often identify incorrect models irrespective

of the sampling rates and degrees of noise added. If we train from a trajectory close to the fixed

point at the right potential well with initial conditions (a0, v0) = (7.03, 0.01) with no noise and

only Hamiltonian constraints, the resulting model identified has the form

ȧ = 1.000v, (8.7)

v̇ = 2.828aa− 0.400aaa (8.8)

showing incorrect terms being fitted (no linear a term). We emphasise that symmetry constraints

have not been applied here. The above model estimates the right fixed point of the phase space

as a∗ ≈ 7.07 and the fixed point at a = 0 but not the left fixed point. While this behaviour is

exacerbated for trajectories closer to the fixed point, downsampling and noise can also cause loss
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of information in the phase space and result in solutions like this if the trajectories are trapped on

one side of the potential well. This explicitly shows why the symmetry constraints are beneficial.

Application of the symmetry constraints eliminates this model as a viable candidate.

8.3 Comparison between EnKF and SINDy for parameter inversion

Method µ̄ σ̄ δµ δσ Failed Runs

EnKF 10.05735 -0.09985 0.35824 0.01871 2

Constrained EnKF 10.15952 -0.09775 0.02299 0.00021 0

SINDy 9.942428 -0.098064 0.07866 0.00162 N/A

Table 14: Comparison of identified parameters between EnKF and SINDy in the two-state mea-
surement case.

Comparing both SINDy and EnKF on an equal footing is challenging because many different factors

can impact the performance of each method. For EnKF, correct selection of the measurement noise,

suitable initial guesses and appropriate choice of priors will impact the quality of the resulting fit.

For SINDy the allowed sparsity, numbers of features included in the library, and different learning

parameters can also produce differing answers. We attempt to select values for each of these

methods which represent best case scenarios for both methods.

For the data, we adopt a sampling rate of ν ≈ 12 with additive noise with standard deviation

δobs = 0.5. The data is simulated for 35 total periods with both a and ȧ being treated as observable.

For SINDy, we make use of both Hamiltonian and symmetry constraints with the MIOSR optimiser

and a cubic polynomial library. The optimiser is set to a fixed target sparsity of 3 with a low

regularisation of α = 1 × 10−12, K = 10000 and Hxt = 0.3Λ. In EnKF, we set the perturbations

to the initial true initial conditions to be drawn from uniform distributions with ã0 ∈ [−4, 4],

ṽ0 ∈ [−4, 4], µ̃0 ∈ [0, 20] and σ̃0 ∈ [−2, 0]. The initial covariance matrix is set to roughly reflect

the uncertainty in the initial condition with P = diag[2, 2, 3, 1] and the measurement uncertainty

matrix is set to R = diag[0.52, 0.52]. We set the number of ensemble members to be fixed at

N = 30 throughout.

To compare the results, we compute the means and standard deviations of the estimates of µ and

σ for 100 random initial conditions in the EnKF method. For SINDy, we compute the means

and standard deviations from 100 models which are fit with a different seed generating the noise

distribution each time. We also compute two cases with EnKF, unconstrained and constraining

σ < −1 × 10−16. When using constrained EnKF, we set Q = diag[0, 0, 1 × 10−3, 1 × 10−4] and

Q = 0 otherwise. The choice of Q in the constrained case is based on the previous observation

that constrained σ artificially reduces uncertainty and results in poor parameter convergence. We

therefore generate an uncertainty in σ which prevents collapse of the ensemble members at the

constraint bound.

Table 14 shows the comparison between SINDy and EnKF. For conventional EnKF, we typically

achieve good convergence albeit some runs diverge because σ > 0. The poor convergence of

these runs causes a slightly larger standard deviation in the estimate of the parameter values.

For constrained EnKF, there are no diverging runs, and all runs converge well close to the true

parameter values. There is a markedly lower deviation in σ for this case due to the constraints

reducing the uncertainty. SINDy also produces accurate estimates of the true model coefficients,

identifying the correct active terms in all cases.

All methods compare well with one another in the case where full-state measurements are available.
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Compared to the unconstrained case, SINDy is less likely to converge to incorrect parameter

estimates whereas EnKF on occasion does. However, both methods solve different optimisation

problems. For EnKF the state must also be estimated as well as the parameters and with SINDy,

there are a total of 8 possible unknown coefficients. Even though SINDy has 8 possible coefficients,

the restriction of the total sparsity to be three makes this fitting procedure feasible.

The advantage of SINDy lies in the fact that no knowledge of the parameters is needed beforehand

in the form of an initial guess. For library terms, while some assumption must be made on the

feature library, more general feature libraries can be given as SINDy does not integrate the resulting

models. Further, no estimate of the degree of noise needs to be given to make estimates of the

parameters. However, in reality full-state measurement cases are unlikely or at least not guaranteed

when using tokamak data. With the ANAC model, it is proposed that the mode a can be related

to the magnetic field and therefore fits would be performed to Mirnov signals (see refs. [84, 115]).

Mirnov signals measure the rate of change in the magnetic field and therefore the only observable

variable is ȧ. In this sense, EnKF has a natural extension for single measurement cases which is

not the case for SINDy. Further, to get comparable performance SINDy must be used with quite a

restrictive library with relatively few unknowns. Without this, identification almost totally fails in

cases where EnKF does not struggle at all. In this sense SINDy cannot be used with an arbitrarily

constructed library, some thought must be given to the physical constraints the library must obey.

8.4 Concluding remarks

In this chapter we have outlined an approach for SINDy when applied to the ANAC model.

Similarly to the conclusions drawn with the Knobloch system of equations in §4, we see that to apply

SINDy to noisy, sparsely sampled signals the weak form is essential. While filtering approaches can

be used to reduce noise, avoiding the need to find derivatives of noisy data is the simpler approach.

We also discussed implementation of constraints which have been developed for the ANAC model

by ref. [72] and how they applied to SINDy models. For the applied symmetry constraints,

these offer the most improvement when knowledge of the complete symmetry is not shown in the

training data. Implementations of Hamiltonian constraints do not offer much improvement but at

least offer a guarantee of models obeying physical principles. Hamiltonian constraints would be

relevant where ideal MHD is relevant, as is often the case in understanding instabilities in tokamaks

[34].

Finally, we compared the performance of EnKF to SINDy and attempted to use both methods

in an optimal setting. For full-state measurements, both approaches perform very well, though

creating an equal comparison is challenging as initial estimates of the parameters and priors must

be given to EnKF which is not the case for SINDy. In this sense, SINDy offers an advantage as

no prior knowledge of the parameters is required. It also considers a more general fitting process

where any model that obeys Hamiltonian constraints and the outlined symmetries can be selected.

The main difficulty in using SINDy comes from the lack of full-state measurements for which EnKF

is capable of addressing. In reality, Mirnov coils only measure the change in magnetic field, which

has been likened to the evolution of ȧ in the ANAC and ANAET models. For SINDy, this can be

beneficial as we now only must estimate the derivatives for v̇ = ä. On the other hand, we must

integrate ȧ to obtain a, implying that we will only know a up to a constant. We can regard this

as the change of variables a → ā + a0 where a0 is a constant of integration. Using this change of
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variables in the ANAC model gives the result

˙̄a = v, (8.9)

v̇ = (µa0 + 6σa3
0) + (µ+ 6σa2

0)ā+ 6σa0ā
2 + 2σā3. (8.10)

This is now the system SINDy will attempt to fit and depends on the initial condition a0. We can

further see that the resulting system obeys the symmetry constraint a→ −a and v → −v, but not

the symmetry ā→ −ā and v → −v. While we describe this for a constant of integration, a similar

result will occur for any non-zero constant noise. If constraints are to be applied with SINDy in

tokamak data, a process would have to be developed which could address this.

We also must pay attention to the quality of the reconstruction of a from integration. Figure

149 shows a comparison of the results of using cumulative trapezoidal integration on 3 different

sampling rates with comparisons of the results in the phase space. For the sampling rate of ν = 413,

integration of the trajectory produces the correct orientation of the result in the phase space and

represents the training data used to identify the SINDy model in the previous section. The only

difference here corresponds to a translation from the unknown constant of integration. For higher

sampling rates, we can see that poorer sampling of the right-hand side of the phase space results

in an artificial skew introduced in the phase space. We see that there is a much larger change in

amplitude in this section of the phase space, and thus a poorer approximation of the integral. We

can also note that this skewing of the results has a significant impact on the results at sampling

rates much higher than we aim to reach. The skewing will result of the trajectories in the phase

space then produces a trajectory which no longer exhibits the desired symmetry in the phase space.
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Figure 149: Comparison of the results of cumulative trapezoidal integration for noiseless downsam-
pled trajectories. Each row corresponds to the specified sampling rate, showing the phase space of
the downsampled trajectory in the left column, the comparison of the true and integrated solutions
in the middle column and an example of the downsampled trajectories in the right-hand column.
Each row is titled with the sampling rate ν and we emphasise that this is different from ȧ = v
shown in the y−label.
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9 Conclusions

In this chapter we summarise the work presented in this dissertation, namely the results given in

§4, §5, §6, §7 and §8. We will conclude with a discussion on avenues of future work.

9.1 Summary of results and conclusions

SINDy with magnetoconvection

We first began by benchmarking SINDy to a weakly nonlinear model representative of the mag-

netoconvection PDE given by equations (4.45)-(4.46). The weakly nonlinear model provides a

suitable testing scenario for SINDy because it exhibits a wide variety of behaviours and comes

from resistive MHD, physics commonly incorporated in tokamak models (e.g, ref. [131]). By val-

idating SINDy’s performance on the weakly nonlinear model, we could assess the performance in

a range of cases such as noise robustness, impacts of nonlinearity, choice of optimiser, and sensi-

tivities to data length and sampling rates. It was found that a conventional implementation of

SINDy following the original method outlined in ref. [97] showed several instances of poor noise

robustness. This manifested in multiple scenarios, such as cases with correlated input time series

and poorer sampling rates relative to the fastest scales in the system. Even in cases where the

feature library consists of only second-order polynomial terms, if high quality derivative estimates

are not provided, equation recovery is poor. In this sense, SINDy does not function as a method

capable of equation recovery with exhaustive libraries in highly generalised cases. Instead, much

more care must be taken when constructing the library and it is not an out of the box approach.

Alleviation of issues introduced by both noise and sampling rates is achieved by using the weak

form of SINDy [142]. It was shown that the performance of the weak form far exceeds that of the

conventional approach, particularly with low sampling rates and noise. The major caveat to this

comes from selection of integration domain windows. We find that the window size needs to limited

to less than approximately one characteristic period of the system. Such a timescale could easily

be determined by, for example, a fast-Fourier transform. The weak form would present issues in

multiscale systems where the window size is limited by the fastest scales in the system. Multiscale

systems that are forced to have smaller integration windows will then provide a lower degree of

noise averaging.

We finally considered the application of the weak form of SINDy with constraints derived from

conditions satisfied by the weakly nonlinear model. These constraints were implemented with

the MIOSR optimiser which satisfies specified constraints exactly [160]. While this approach

introduces normalisation issues (which can be easily treated), it ultimately results in models which

are guaranteed to obey the outlined constraints. An example considered with noisy, sparsely

sampled training data showed that the constrained model produced a better representation of the

dynamics than an unconstrained one, despite it not recovering the true underlying system.

SINDy with magnetconvection PDE data

In this section, we considered the application of SINDy with POD modes derived from magnetocon-

vection simulations of the full 2D PDE system. The application with POD modes was considered

because close to bifurcation we expected the derived weakly nonlinear system to be valid and the

POD modes to represent Fourier modes i.e. the basis decomposition used in deriving the weakly

nonlinear model.

We first considered the application of SINDy to POD datasets at different Rayleigh numbers

exhibiting overstable oscillations. We noted that errors introduced by the POD both prevented
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recovery of the weakly nonlinear model close to the onset of overstable oscillations and impeded

selection of sparse models using STLSQ. For this reason, we opted to use MIOSR optimiser as it

restricts the number of non-zero coefficients allowed in the resulting models. By restricting k we

can generate a curve of models for varying numbers of non-zero coefficients and observe the Pareto

front which is not always possible when using STLSQ.

Results were then presented for each Rayleigh number showing the MSQE errors for models which

implemented no constraints, symmetry constraints, diffusive constraints or symmetry and diffusive

constraints for both second and third-order polynomial libraries. For the second-order polynomial

library, these results showed sparsities of k = 10 − 14 were sufficient to obtain low MSQEs for

R ≤ 3000, but at higher Rayleigh numbers, denser models were required to achieve low MSQE.

The same trend was seen with the third-order polynomial library, though for Rayleigh numbers

R > 3000 the third-order polynomial library required fewer terms than the second-order polynomial

library. In either case, close to the onset of overstable oscillations, model sparsities lower than

k = 14 corresponding to the number of non-zero coefficients in the weakly nonlinear model are

favoured. Again, for the second and third-order polynomial library, MSQEs were not appreciably

lower as a result of including constraints. Despite this, the resulting models are guaranteed to obey

the constraints which is not always true in the unconstrained case.

We then considered how models from different Rayleigh numbers could be parameterised. Fitting

a single model over POD time series taken from different Rayleigh numbers successfully param-

eterised trajectories within the training range and predicted a transition to no convection as the

Rayleigh number decreased. However, as R was increased the model failed to predict a bifurca-

tion to steady convection. The issues arose from variation of the POD basis at different Rayleigh

numbers. Study of a fully constrained model derived at fixed Rayleigh number R = 6000 with

k = 17 and a third-order polynomial library showed both a bifurcation to no convection as R was

decreased and bifurcation to steady convection as R increased.

Finally, we considered deriving simplified models from POD time series taken at parameter values

exhibiting chaotic convection. Three different scoring methods were considered: the AICc score,

the KL divergence, and the maximum number of predicted Lyapunov times nλ. By making use of

TPEs, we performed model selection using these metrics while searching over different allowable

sparsities for each equation. TPEs offer an approach for performing a more robust selection

of hyperparameters than standard grid-search methods. We found that model selection metrics

which required integration (the KL and nλ scores) favoured sparser models compared to the AICc

score. Both the KL and nλ scoring methods produced models capable of reproducing both short

and long term dynamics of the system. We then concluded by presenting a model of 15 non-zero

terms which performs as well as the weakly nonlinear model but is constructed only from four

POD modes.

A data assimilation approach with the ensemble Kalman filter

We began by introducing a data assimilation approach called the ensemble Kalman filter. Several

extensions of this method were discussed and their relevance to the ultimate end goal of applying

this method to experimental tokamak time series. We first discussed implementation of a new

code versus an older pre-existing code which was implemented by [115]. We then applied EnKF to

the ANAC model to assess the performance of EnKF with parameter estimation and poor initial

guesses. We addressed concerns raised by ref. [106] which essentially boil down to the performance

of EnKF being sensitive to initial conditions with the ANAC model. We identified two reasons for

this, neither of which appear to be discussed by ref. [106]. Both reasons connect to an appropriate
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choice of the ensemble spread or initial ensemble uncertainty denoted P 0. The initial ensemble

uncertainty must be: 1. reflective of the uncertainty in the initial guesses and 2. contain physically

plausible realisations of ensemble members. While the work of [106] introduces an interesting

optimisation approach for improving initial guesses, we find robust performance of EnKF in the

same range of initial guesses without the need for this optimisation. By adding a simple constraint

method on ensemble members, we also introduced an approach which allows ensemble members to

only be drawn from physically realistic parameter regions. This can, however, cause an artificial

collapse of the ensemble at constraint bounds.

We also extended EnKF to single measurement cases of the ANAC model where only measurements

of ȧ are available. This is more relevant to experiments, where only a single Mirnov measurement

will be considered. This means that EnKF must infer the unobserved variable a, as well as the

unknown parameters of the ANAC model. We showed that EnKF still coped with this case well

and was robust to errors in the estimate of the observational error matrixR. For the ANAC model,

this represents a complete validation that can realistically be performed without the application

to experimental data.

EnKF and that ANAET model - progressing to experimental conditions

Following validation of EnKF against pre-existing work with the ANAC model, we then extended

the application to the ANAET model, which presents a realistic comparison to experiment. The

ANAET model has additional challenges when implemented with EnKF namely: it is a multiscale

system so low sampling rates can produce poor sampling of the fastest timescales, there are now

up to 8 unknown coefficients to be determined, and single-measurement cases would have 2 hidden

states along with unknown parameter. We validated the performance of EnKF in both full-state

measurement cases, double-state measurement cases (with ȧ and b) and single-state measurement

cases (a only). In all cases, EnKF is remarkably robust when initial conditions are reasonably close

to the true values, but we note that arbitrary initial ensembles will often result in divergence of

the filter. One reason for this is that the high-order diffusive term of the ANAET model has the

form µ6a
6ȧ and if µ6 > 0 this becomes destabilising. There are, of course, other ways in which

ensemble members can become unstable.

We finally considered extensions of EnKF with the ANAET model when a stochastic integration

scheme was used to generate the observations. As discussed in §2.4.3, stochastic integrations of

the ANAET model exhibit several features from experiment such as aperiodic sawtooth crashing.

We first showed that if observations are generated from stochastic integrations of the ANAET

model and exhibit aperiodic sawtoothing, EnKF does not successfully converge. This is because

that parameters are modelled as constants with no error, so it is not possible for EnKF to predict

quasiperiodic sawtoothing without varying the parameters. We do suggest that in reality, param-

eters should be allowed to vary but this introduces many further difficulties as we do not know

beforehand what the parameter values should be. By using stochastic observations, we highlight a

case where we restrict the sampling rates to represent an experimental measurement from MAST-

U with comparable degrees of noise and show that despite poor initial estimates of parameters

we still have good convergence. This is achieved by placing constraints on the diffusive term so

that it remains diffusive throughout assimilation. We also introduced a method to estimate the

observational noise by taking the FFT and removing high frequency components. This approach

provided good estimates for the noise variance added to the observational dataset and can be used

to estimate R.

234



SINDy and the ANAC model

Here we presented a brief outline of constraints and extensions required for SINDy to be used

with the ANAC model and under similar conditions to those presented with EnKF in §6. In cases

where low sampling rates and noise are present, the weak form is essential as expected from §4. By

including symmetry and Hamiltonian constraints, we improved the robustness of SINDy to both

noise and low sampling rates, noting that this improvement primarily results from the inclusion of

symmetry constraints. We then compared SINDy and EnKF for estimating parameter values in

the ANAC model when the training data was both noisy and poorly sampled. Both SINDy and

EnKF performed well when estimating the parameters despite the high degrees of noise. In all

cases the mean estimate of the parameter is within 1% of the true parameter value.

While the performance of SINDy compares favourably in the full state measurement case, there are

some considerations. First we are only considering two input variables a and ȧ which substantially

reduces library correlations. Second, following constraints the library of terms only consists of eight

unknowns and is a far cry from the generalised library search of SINDy that was presented originally

in [97]. Finally, MIOSR is restricted to only 3 library terms meaning that the final regression is

only performed on 3 library terms, not the full library of features. We also must consider the

difficulties of applying SINDy with partial measurements. Work presented in this section showed

that downsampling of the input time series resulted in poor estimates of the integrals.

9.2 Future work

Applications to tokamak diagnostics

Regarding EnKF, the next step is the application to experimental time series using the diagnostics

listed in §2.3. Preliminary matching of EnKF to experimental measurements taken on the MAST-

U tokamak was performed using the ANAET model as a space-state model. While this work was

not completed due to time constraints, we briefly discuss some results and their consequences for

future work. Figure 150 presents an overview of the results of using a soft X-ray measurements

as observations for b and Mirnov measurement for observations of ȧ. The Figure shows the entire

range of data trained on, which contains 2 sawtooth crashes located at t1 ≈ 650 and t2 ≈ 1600.

From Figure 150, several issues are immediately apparent. The data used to train here is only

a section of of the entire shot (MAST-U shot 29880), but the chosen Mirnov signal is very noisy

outside of this range and often completely unresolved, an issue that was displayed previously in

Figure 135. Other scaling issues present themselves. During each ramp phase of the sawtooth, the

oscillations often vary substantially in amplitude. The envelope of amplitude of these oscillations

also tends to change after a sawtooth crash. This is not a feature that is currently represented when

using constant parameters in the ANAET model with EnKF. For the results presented here, this is

absorbed by using model error in the observation variables. If the error is allowed to be sufficiently

large, it is possible for EnKF to cope but it is not clear how large the model error is allowed to

be. Other scaling issues manifest with the spiking behaviour in the Mirnov signals themselves. As

was noted previously in Figure 135, the amplitude of the Mirnov signals at many sawtooth crashes

can vary substantially. At the second sawtooth crash in this shot, there is a gradual increase in

the amplitude of the Mirnov signal and correspondingly the temperature has grown larger than

at the previous crash. However, the term in the ANAET model which drives spiking behaviour is

of the form ba3 which grows larger when the amplitude of Mirnov signal grows large, causing the

divergence of EnKF shown in bottom of Figure 150. Finally, as discussed in Figure 135 many of

the observed spikes in Mirnov signals at sawtooth crashes are neither consistent in behaviour nor

occur at the same amplitude. The difference in spiking presents further challenges for a constant
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parameter model, as the amplitude of spiking tends to be fixed within the first sawtooth crash.

Other challenges remain when selecting appropriate measurements as there is a wide selection of

shots available within MAST-U each containing many magnetic field measurements. Choosing

appropriate data is a difficult task which likely requires someone familiar with shot logs.

On a more positive note, the observations in the selected diagnostics are both concurrent and well

sampled, containing around ν ≈ 60 samples per fast oscillation. With a sufficiently large model

error, EnKF is capable of at least tracking the observations shown in Figure 150. A closer view

during a ramp phase in Figure 151 shows that EnKF is performing very well during oscillatory

sections of the data. Further, some hope is given in that the selection of many parameters for the

ANAET model is not arbitrary. For example, the coefficient γ1 corresponding to the frequency

and amplitude of oscillation of the signal during the ramp phase can be chosen so that γ1 ≈ 1

with an appropriate rescaling of the data. We can also remark that EnKF is successfully tracking

observations despite the outlined challenges in the previous paragraph.

Further applications of data assimilation approaches could benefit by instead using a particle filter

approach as has been explored by ref. [162]. In EnKF, each ensemble member or particle is equally

weighted and this causes issues when some ensemble members are either non-physical or become

unstable. For particle filters, weights are assigned to particles depending on their likelihood of

representing the data [147]. For this reason, non-physical members can be assigned zero weights

and may allow particle filters to be used with larger prior uncertainties. For the ANAET model,

we have little knowledge beforehand of what many of the parameters should be and using larger

priors could help combat this.

236



4

2

0

2

4

a

±3 d

EnKF

2

1

0

1

2

a

±3 d

observations

0 250 500 750 1000 1250 1500 1750 2000
t

0.4

0.2

0.0

0.2

0.4

b

±3 d

observations

Figure 150: Reconstruction of the hidden state a and matching of observations over entire saw-
toothing section of data using EnKF. The red dashed lines represent the ensemble mean and σd
represents one standard deviation of uncertainty (posteriors following assimilation). The y scale
for ȧ is limited as the spiking in the Mirnov signal is at a large amplitude and results in the rest
of the signal not being visible.
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Figure 151: Reconstruction of the hidden state a and matching of observations over a short section-
ing of the ramping phase during a sawtooth instability using EnKF. The red dashed lines represent
the ensemble mean and σd represents one standard deviation of uncertainty (posteriors following
assimilation).

For future work with SINDy, the results presented in §4 could be extended to the experimental

data presented in Figure 150. For any application of SINDy to experimental data it would be

highly advisable to implement the weak form given the degree of noise present. Observed sampling

rates of ν ≈ 60 in the Mirnov signal further provide confidence that the weak approach could

cope. Results shown in Figure 60 showed promising recovery of the Lorenz equations with similar

degrees of noise and sampling rates as in the Mirnov signal. However, this is in the restrictive case

where a smaller library is used and extensions to larger libraries caused significant challenges. The

form of the ANAET model does include high-order nonlinearities which imply that we may need to

consider large feature libraries when using SINDy. It would then be required to enforce constraints

such as the symmetry constraints outlined in §2.4.2 to reduce the library complexity. Further,

robustness to noise and sampling rates could be gained by considering constraints of ideal MHD

that require energy conservation. For many instabilities ideal MHD plays a prominent role in their

understanding [34] and could consist of a viable set of constraints for SINDy models. These types

of constraints have already been explored with fluids in refs. [113, 149] and in a plasma context

by ref. [150].

For successful application of SINDy to the data outlined in Figure 150, we would also need to

consider the reconstruction of a by taking the integral of ȧ (corresponding to the integral of the

Mirnov signal). In principle with the sampling rates observed in modern MAST-U shots this
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could be possible, though introduction of a integration constant in a would result in an arbitrary

translation of the model. This would have to be addressed if we wished for the outlined symmetry

constraints to remain valid. We would also need to consider the assumption that a complete

set of measurements are given by the Mirnov signal, the integral of the Mirnov signal and the

corresponding soft X-ray measurements. One solution to this is the use of say, a false-nearest

neighbours approach given in ref. [21] which seeks to estimate the embedding dimension from a

single time series measurement. Consistency of the embedding dimension of the ANAET model

and the experimental data would then provide evidence for (or against) the completeness of the

chosen measurements. The other alternative is to rely on an embedding for reconstruction of

SINDy models [122, 123]. An embedding approach attempts to reconstruct SINDy type models

by only using partial observations of the system by constructing what is known as a delay matrix.

Other more recent work combines an embedding approach with the extended Kalman filter for

partially observed systems [173]. This is particularly interesting as it offers both noise robustness

which is required in our case but also an approach for coping with partial measurements. The

main issue with many of the embedding techniques is whether SINDy is now functioning as more

of a “black-box” approach as the physical meaning of embedded co-ordinates becomes less clear.

Compared to EnKF, SINDy has the advantage that using a constrained polynomial library could

identify which models are relevant for application with experimental data. As shown in Figure

150, there are aspects of the data which are not well represented by the underlying model in

EnKF. Further, SINDy could also be used to address the question of sensible initial parameters

for initialisation with EnKF. An ensembling approach as given in ref. [156] could also quantify

the distributions of the model parameters and allow for a better quantification of what the initial

parameter uncertainties should be when using EnKF. With the ensembling approach, the data can

be bagged and several models fit over sections of the data which allows for parameter distributions

to be constructed. The downsides with SINDy are, however, significant. Translation of input time

series such as a by an arbitrary constant result in different models being discovered. Further,

as the feature library will be at best an approximate basis for the dynamics, it is not clear that

SINDy will be able to recover sparse models. The assumption of Gaussian additive noise in the

regression problem will be violated in cases where the library is an approximation of the dynamics,

and this produces non-sparse models. In the event SINDy does not return a sparse model, there

are no clear approaches to understand why the method has not worked. Reasons such as: poor

data, incomplete libraries, incorrect hyperparameter choices, excessive noise and correlated library

features all result in the discovery of non-sparse models.

Other applications

Other applications could involve applying SINDy to PDE data in the context discussed in §5
where SINDy is applied to POD modes from PDE data. One of the original intentions of this

project was to apply SINDy to BOUT++ data of ELMs discussed by ref. [83], but at the time of

researching BOUT++ code was limited to at most the nonlinear onset of type-I ELMs. In simpler

terms, this meant that only one ELM cycle was ever simulated and not repeated ELMs due to

the inherent difficultly in doing so. Much of this difficult revolves around the need to resolve long

quiescent periods between instabilities and fast ideal MHD timescales at the instability [131]. Even

exploration of the code with completely non-physical diffusivity still did not provide alleviation in

our tests and so this remains for future work. Application of SINDy to these types of problems can

be performed in one of two ways: either we perform some type of modal decomposition like POD,

or we attempt to fit SINDy models to carefully chosen time series measurements of simulations

as in ref. [165]. In any approach, SINDy could be used to construct low-dimensional models of
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the PDE behaviour and if parameterised could provide information on the bifurcation structure

of the PDE system. The effectiveness of models based on a modal decomposition will naturally

be limited by the decomposition method itself. Referring to POD, if the singular value spectrum

decreases slowly it may no longer be feasible to construct a SINDy model as many modes will have

to be included.
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