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Abstract

The increasing availability of vast amounts of data in electronic health records (EHR) offers
immense opportunities to extract valuable insights, particularly through the application of
machine learning techniques like clustering. This thesis focuses on clustering time-series data
extracted from medical records, with the aim of identifying meaningful clusters of patient
sequences. While clustering methods are well-established for static datasets, clustering time-
series data presents unique challenges, especially when it comes to selecting the most relevant
solution from many valid clustering outputs.

In this work, we develop a two-stage methodology for clustering time-series data. The first
stage simplifies high-dimensional sequence data, while the second stage focuses on identifying
clusters within these sequences. We also address the issue of comparing multiple clustering
solutions by introducing a novel approach that combines a graphical user interface (GUI) with
a graph-based representation of the relationships between different clustering solutions. This
framework allows for intuitive, simultaneous exploration and comparison of multiple valid
solutions, helping to reduce the space of possible results and aiding in the interpretation of
alternative outcomes.

Our methodology is applied to the domain of multimorbidity, a significant healthcare
challenge characterised by the coexistence of multiple chronic conditions. By applying our
tools to multimorbidity datasets, we gain insights into the progression of chronic illnesses and
their interactions.
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Notation

Symbols and notation

The notation provided below is used throughout this thesis to represent various aspects of
multivariate time series datasets and their matrix representations.

X
Xt
D

Lt

.

ed

=

NI 2K

= (81,62,...,€T)

O

C={Cy,Cs,...,Cy}
Cy ={51,52,..-,5c,/}

By = {x1,x2, ..., X|g,|}

EGS%,

w = acg + (1 — a)sg

Multivariate time series.

Observation at time ¢, a binary vector of length D.
Number of possible events in X.

Value of the d-th variable at time t.

Total number of observations in X.

Dataset containing multiple multivariate time series.
t-th time series in the dataset.

Total number of time series in X.

Multivariate time series data of reduced dimensionality.
Size of lower dimensional dataset Xpeq.

Redefined multivariate time series using timepoint clus-
ter labels.

Number of HMM states.

Sequence clustering solution.

Sequence cluster.

Timepoint cluster or Event Group k.

Event group score for event D in timepoint cluster k.
Loss value optimized during hyperparameter optimiza-
tion.

r Number of iterations in hyperparameter optimisation.

Csil Silhouette index for timepoint clusters.

Ssil Silhouette index for sequence clusters.

« Mixing coefficient, representing the weight assigned to
either the timepoint or sequence silhouette index.

G(C,E) Graph of clustering solutions, nodes are C clustering
solutions, E edges, distances between solutions.

0 Similarity threshold for defining edges in the graph.

A Adjacency matrix of the graph, where A;; represents the
weight of the edge between nodes ¢ and j.

F={Cy,Cy,...,C,} Set of clustering solutions.

S(Ci, Cj) Similarity function quantifying the similarity between

clustering solutions.
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eijEE

wij = S(CZ, Cj)

& = (V,E')

E' = {eij | wi; = 0}
Ci

56i1(Cy, Ci)

P; = argmaxc;,eg, 55i1(Cy, Ci)

Graph constructed from clustering solutions.

Node in the graph corresponding to a clustering solu-
tion.

Edge in the graph between nodes v; and v; with weight
Wij .

Weight of the edge between nodes v; and v;.

Subgraph formed by retaining edges with weights w;; >
0.

Edge set of the thresholded graph G’.

Cohort of solutions in G'.

Silhouette index of solution C; within cohort C;.
Prototype solution for cohort C;.
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Clustering Validation Indices

The table below details various clustering quality measures used in the thesis.

Table 1: Common clustering validation indices: definition, type, and interpreta-

tion.

Index

Type

Scale (direction)

What it measures / Notes

Adjusted Rand In-
dex (ARI)

External

[—1,1] (higher bet-
ter)

Chance-adjusted pairwise agreement between
predicted and ground-truth labels; 1 = per-
fect match, ~ 0 = chance-level, negative =
worse than chance. Invariant to label permu-
tations; sensitive to pair-count imbalance.

Normalised  Mu-
tual Information
(NMI)

External

[0,1] (higher bet-
ter)

Mutual information between labelings, nor-
malised (e.g., by mean or max entropy). In-
variant to label permutations; compares solu-
tions with different k; can be optimistic with
many small clusters.

Fowlkes—Mallows
Index (FMI)

External

[0,1] (higher bet-
ter)

Geometric mean of precision and recall of
pair co-assignment. Simple and interpretable;
does not correct for chance; can be influenced
by class imbalance.

Silhouette index

Internal

[—1,1] (higher bet-
ter)

Mean over points of (b — a)/ max(a,b) where
a is the average intra-cluster dissimilarity and
b is the lowest average dissimilarity to any
other cluster. Higher indicates compact, well-
separated clusters; it depends on the chosen
distance; less reliable for highly non-convex
shapes.

Davies—Bouldin
(DB) index

Internal

[0,00) (lower bet-
ter)

Average, over clusters, of the ratio (within-
cluster scatter)/(between-centroid separa-
tion) with the most similar other cluster.
Lower indicates compact, well-separated clus-
ters; it depends on the metric and cluster
shape.

Software Dependencies

This section lists the software used for model development and analysis. The full pipeline
and reproducible notebooks are available in the online appendix at GitHub (Thesis_code).

e numpy, pandas: array and DataFrame operations; data manipulation.

e scikit-learn (KMeans, DBSCAN, silhouette_score, davies_bouldin_score): cluster-
ing and internal validation metrics.
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e prince: Multiple Correspondence Analysis (MCA) for dimensionality reduction of cat-
egorical data.

e hmmlearn, pomegranate: Hidden Markov Model training and probabilistic modelling
for sequence analysis.

e scipy (spatial.distance.squareform): distance transformations and utilities.
e hyperopt (tpe, hp, fmin, Trials): hyperparameter optimisation.

e networkx: similarity-graph construction, connected components, layouts.

e matplotlib: static plots (graphs, histograms, density plots) and figure export.
e seaborn: statistical visualisation for distributions and demographics.

e plotly (graph-objects, express; kaleido for export): Sankey diagrams and interac-
tive figures.

e ipywidgets: sliders and controls for thresholds, filters, and selections.
e IPython.display (display, clear_output, HTML): inline outputs in notebooks.

e tgdm.notebook: progress bars for batch computations and exports.

e distinctipy: distinct colour palettes for components and Event Groups.
e dataframe_image: rendering DataFrame summaries and metadata as images.

e Pillow (PIL): image composition and saving combined figures.

os, pathlib, shutil, fnmatch, random, time, math, collections, itertools.
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Chapter 1

Introduction

The rapid expansion of electronic health records (EHR) offers unprecedented opportunities
to advance healthcare through the analysis of real-world clinical data. These datasets contain
rich information about diagnoses, treatments, comorbidities, and patient outcomes. However,
this information is often complex, high-dimensional, and temporally structured, requiring ad-
vanced analytical tools to extract meaningful insights. Among such tools, clustering methods
are widely used to detect patterns, identify subgroups of patients, and understand disease
trajectories. Clustering has become an essential part of healthcare analytics, with applica-
tions including disease phenotyping, treatment stratification, and multimorbidity analysis [1],
2], [3].

A particularly important application of clustering in healthcare is the study of multimor-
bidity—the co-occurrence of multiple chronic conditions in a single individual. Multimorbid-
ity is commonly defined as the presence of two or more chronic diseases [4], and is becoming
increasingly prevalent as populations age and chronic conditions become more widespread.
Understanding how multimorbidity develops and progresses over time remains a significant
public health challenge. A clearer view of these trajectories can support healthcare systems
in planning timely interventions, anticipating care demands, and allocating resources more
efficiently [5, 6].

This thesis focuses on clustering time-series representations of patient histories, with a
specific emphasis on multimorbidity progression. Patient histories can be viewed as sequences
or time series of diagnostic events across several observation periods. In this thesis, the term
time series is used to refer to sequences of patient-level health observations ordered over
time. Specifically, we focus on categorical event sequences—diagnosis groups recorded at
discrete, regular intervals—rather than continuous-valued time series. While the broader
literature on time-series analysis includes methods for regularly sampled numerical data, our
focus is on sequence-based representations, where the timing is implicit and structured by
fixed observation windows. Therefore, our methods and analyses are more accurately aligned
with sequence clustering, although we use the term “time series” at times for consistency
with broader terminology in healthcare analytics. Unlike static data clustering, clustering
time-series data poses additional challenges: time dependencies, temporal alignment, variable
sequence lengths, and high dimensionality all complicate traditional approaches. Moreover,
clustering algorithms can produce many valid solutions depending on hyperparameters and
initialisation—making it difficult to interpret results and choose a “best” clustering.



The core motivation behind this work is to develop a robust, interpretable methodology
for identifying meaningful patient clusters over time, particularly in multimorbid populations.
Clustering these time-ordered events can help uncover important trends in patient care, such
as common patterns of disease progression or early indicators of high-risk health trajectories.
This is particularly useful in identifying subgroups for preventive care or targeted interven-
tions.

However, there are several challenges in applying clustering to longitudinal health data:

1. High dimensionality: Patient time series often contain dozens or hundreds of vari-
ables (diagnoses, treatments), many of which are sparse.

2. Multiple valid clusterings: Due to algorithmic sensitivity and different similarity
measures, there is often no unique best clustering.

3. Interpretability: Clinical stakeholders need results that are both statistically robust
and clinically meaningful.

4. Irregularities: Healthcare data can be noisy, incomplete, or unevenly sampled in time,
which complicates model assumptions.

To address these challenges, this thesis introduces a two-stage clustering methodology for
time-series data. The method involves:

1. Dimensionality reduction and clustering of individual timepoints using a technique like
Multiple Correspondence Analysis (MCA) to form ”event groups” that reduce the com-
plexity of raw input.

2. Clustering full sequences of these timepoint groupings to identify trajectories of multi-
morbidity progression among patients.

In addition, a novel graph-based framework for comparing multiple clustering solutions
is presented, alongside an interactive GUI (ClusterView) for visual exploration. This tool
is designed to help analysts and clinical researchers evaluate clustering solutions not only
quantitatively, but visually and comparatively. This tool is application-independent and is
valid for any area of clustering analysis.

The methodology is validated on two large, real-world datasets: the SNAC-K study from
Sweden and the CARET75+ study from the UK. These datasets represent older populations
with diverse multimorbidity patterns and longitudinal follow-up.

Taken together, the methods developed in this thesis aim to support the exploration and
interpretation of complex, temporally structured health data—particularly in the context
of multimorbidity progression. By combining a sequence-based clustering framework with
tools for comparing and visualising alternative solutions, this work offers a scalable and
interpretable approach for uncovering meaningful patterns in patient trajectories. These
contributions enable analysts and clinicians to identify common pathways through which
chronic conditions co-occur and evolve, improving the capacity to extract actionable insights
from longitudinal datasets. Ultimately, this thesis provides both methodological and practical
advancements that strengthen the use of clustering in real-world healthcare applications and
contribute to a deeper understanding of how disease patterns unfold over time.



Chapter 2

Literature review

2.1 Cluster Analysis

Clustering is a fundamental unsupervised machine learning technique used to group data
points or objects so that those within the same group (cluster) are more similar to each other
than to those in different groups [7, 8]. The primary aim is to uncover inherent patterns
or structures in the data without predefined labels. Similarity between data points can be
defined in various ways, depending on the nature of the data and the intended application.
Different clustering algorithms use this idea in distinct ways, and not all methods optimise
a single global objective function. For example, k-means clustering explicitly minimises the
within-cluster sum of squared distances to cluster centroids, while hierarchical clustering
builds a nested sequence of partitions based on a linkage criterion without optimising a single
overarching objective.

Clustering algorithms can be broadly categorised into several types. In partitional clus-
tering, such as k-means [9] or Gaussian Mixture Models (GMMs) [10], the dataset is divided
into a fixed number of non-overlapping clusters, often guided by an optimisation criterion.
In hierarchical clustering [11], clusters are formed in a nested manner, either through
successive merging of smaller clusters (agglomerative) or successive splitting of larger clus-
ters (divisive). In density-based clustering, such as DBSCAN [12], clusters are defined
as regions of high point density separated by areas of lower density, enabling the discovery
of arbitrarily shaped clusters and noise points. Model-based clustering approaches, in-
cluding the Expectation-Maximisation (EM) algorithm applied to GMMs, assume that the
data are generated from a mixture of underlying probability distributions, with each cluster
corresponding to one distribution component.

Clustering can also be categorised based on whether membership is hard or soft. In
hard clustering, each data point belongs to exactly one cluster, as is the case for standard
k-means or agglomerative hierarchical clustering. In soft (or fuzzy) clustering, points can
belong to multiple clusters with varying degrees of membership, as in Fuzzy C-Means [13].
Soft clustering is particularly useful when cluster boundaries are not well-defined or when
overlapping group structures are expected.

Given the diversity of clustering techniques, the choice of method should be informed by
the characteristics of the dataset, the definition of similarity relevant to the problem, and
the interpretability needs of the analysis. The following sections provide more detail on the



main categories of clustering methods.

2.1.1 Distance Measures

Distance and similarity measures are fundamental components of clustering algorithms, as
they quantify the degree of resemblance or dissimilarity between data points [14]. The choice
of measure directly influences the shape, size, and separation of clusters, and is often as
important as the choice of the clustering algorithm itself. Inappropriate selection can lead to
misleading results, particularly in high-dimensional or noisy datasets [15]. A distance measure
(or metric) assigns a non-negative value to represent how far apart two objects are, satisfying
properties such as non-negativity, symmetry, and the triangle inequality [16]. A similarity
measure, in contrast, assigns higher values to pairs of objects that are more alike. Many
similarity measures can be transformed into distances, and vice versa, through appropriate
scaling or complement operations.
Commonly used distance measures include:

e FEuclidean distance: the straight-line distance between two points in a multidimen-
sional space. It is computationally efficient (O(n) for vectors of length n) but can be
sensitive to scaling and irrelevant features.

e Manhattan distance (L1 norm): the sum of absolute differences across dimensions.
It can be more robust to outliers in certain contexts.

e Cosine distance: derived from cosine similarity, it measures the angle between two
vectors and is particularly useful when the magnitude of vectors is less important than
their orientation, such as in text analysis.

e Jaccard distance: used for binary or set-valued data, defined as one minus the ratio
of the intersection size to the union size of two sets.

For time-series data, elastic measures such as Dynamic Time Warping (DTW) [17] and

Longest Common Subsequence (LCSS) [18] allow for non-linear alignment of sequences, ac-
commodating phase shifts and local time distortions. Model-based measures, such as those de-
rived from autoregressive models or hidden Markov models, represent each sequence through
fitted model parameters and compare these lower-dimensional representations [19].
The appropriateness of a distance measure depends on the nature of the data, the scale
of features, and the clustering objectives. In high-dimensional spaces, the phenomenon of
distance concentration can make all points appear nearly equidistant under certain metrics,
necessitating either dimensionality reduction or the use of alternative similarity measures [15].
Careful consideration of these factors is critical to achieving meaningful and interpretable
clustering results.

2.1.2 Partition Clustering

Partition clustering, also known as partitional clustering, is a fundamental approach to clus-
tering in which the dataset is partitioned into a set of disjoint clusters, with each data point
belonging to exactly one cluster. Unlike hierarchical clustering, which produces a hierarchical
decomposition of the data, partition clustering directly assigns each data point to a specific
cluster. One of the most popular algorithms for partition clustering is the k-means algorithm.
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2.1.2.1 K-means Algorithm

The k-means algorithm is a widely used partition clustering technique that aims to partition
n observations into k clusters, where each observation belongs to the cluster with the nearest
mean. It follows these steps:

1. Initialisation : Choose k initial cluster centroids randomly from the data points.
2. Assignment: Assign each data point to the nearest centroid, forming k clusters.

3. Update Centroids: Recalculate the centroid of each cluster based on the mean of the
data points assigned to it.

4. Repeat: Repeat steps 2 and 3 until convergence, i.e., until the centroids no longer
change significantly or until a maximum number of iterations is reached.

The algorithm aims to minimise the within-cluster sum of squares, which measures the
compactness of the clusters. However, k-means is sensitive to the initial choice of centroids
and may converge to a local minimum, leading to different clustering results for different
initialisations. Partition clustering techniques like k-means are computationally efficient and
can handle large datasets, making them suitable for a wide range of applications. However,
they require the number of clusters (k) to be specified in advance and may not perform well
with non-linear or non-convex clusters.

2.1.3 Hierarchical Clustering

Hierarchical clustering is a family of clustering techniques that builds a hierarchy of nested
clusters without requiring the number of clusters to be specified in advance [7, 20]. The result
is often visualised as a dendrogram, a tree-like diagram that shows the sequence of merges (in
agglomerative clustering) or splits (in divisive clustering) and the distances at which these
changes occur. The dendrogram enables the exploration of the data structure at multiple
resolutions: by cutting the tree at different levels, one can obtain different clusterings of the
same dataset. This property makes hierarchical clustering particularly useful in exploratory
data analysis when the number of natural groupings is not known a priori.

Two main strategies exist: agglomerative (bottom-up) and divisive (top-down) clustering.
In agglomerative clustering, each observation begins in its own singleton cluster, and pairs
of clusters are iteratively merged according to a chosen proximity measure until a single
cluster remains or a stopping criterion is met. This approach is the most common due
to its conceptual simplicity and straightforward implementation. In divisive clustering, all
points start in a single cluster, which is then recursively split into smaller clusters until each
observation stands alone or a threshold is reached. Divisive approaches can reveal high-
level structure before refining to smaller groups, but they are generally less computationally
efficient for large datasets.

The proximity between clusters can be calculated using various linkage criteria:

e Single linkage (nearest neighbour): the distance between two clusters is defined as
the shortest distance between any pair of points in the two clusters [21]. This method
can produce “chained” clusters, especially in noisy datasets.



e Complete linkage (farthest neighbour): the distance is the largest distance between
any pair of points in the two clusters [22]. This produces more compact, spherical
clusters.

e Average linkage: the distance is the mean of all pairwise distances between points in
the two clusters. It balances the chaining effect of single linkage with the compactness
of complete linkage.

e Centroid linkage: the distance is the Euclidean distance between the centroids (mean
vectors) of the two clusters.

The choice of linkage criterion affects the shape and separation of the resulting clusters,
and is therefore an important methodological decision. In high-dimensional spaces, distance
concentration effects can also influence cluster formation, making the choice of distance metric
equally important.

In terms of computational complexity, agglomerative methods typically run in O(n?) time
for n objects because they require computing and updating a full pairwise distance matrix [23].
Divisive methods can be more computationally demanding in theory, sometimes approaching
O(2™) in the worst case, although practical algorithms employ heuristics or approximation
strategies to make them feasible on real-world datasets.

Hierarchical clustering has the advantage of producing a complete multi-scale representa-
tion of the data without assuming a fixed number of clusters, and the dendrogram allows for
flexible post-hoc decisions about the desired granularity of the clustering solution. However,
the method can be sensitive to noise and outliers, and early incorrect merges or splits cannot
be undone, making it less robust in some cases compared to partitional or density-based
approaches. As such, it is often used in combination with other methods for validation or as
an exploratory step in the analysis pipeline.

2.1.4 Fuzzy Clustering

Fuzzy clustering, also known as soft clustering, allows for the possibility of overlap between
clusters, providing a more nuanced approach to data partitioning [7]. One of the most
prominent algorithms in fuzzy clustering is the c-means algorithm, originally introduced by
Dunn [24] and later refined by Bezdek [25]. Unlike traditional crisp clustering methods like
k-means, c-means assigns a degree of membership to each object, indicating the extent to
which it belongs to each cluster. The key steps of the c-means algorithm are as follows:

1. Choose the Number of Clusters (k): Determine the desired number of clusters to
be formed.

2. Initialise Membership Coefficients: Assign initial fuzzy membership coefficients
randomly to each object in the dataset.

3. Compute Cluster Centroids: Calculate the centroids of the clusters based on the
fuzzy membership coefficients.

4. Update Membership Coefficients: Update the fuzzy membership coefficients based
on the new cluster centroids.



5. Check Convergence: Verify whether the variance of the fuzzy coeflicients falls below
a predefined sensitivity threshold.

6. Iterate Until Convergence: If the convergence criterion is not met, repeat steps 3,
4, and 5 until convergence.

However, like many clustering algorithms, c-means is sensitive to noise and outliers, and

its performance may be affected by the need for prior knowledge of the number of clusters
[24].

2.1.5 Clustering Evaluation

Evaluating clustering quality is inherently challenging, as there are no labels to directly
assess clustering accuracy in an unsupervised setting. Different algorithms, combined with
different similarity measures, can produce a wide range of alternative clustering solutions.
The quality of the final clustering depends not only on the dataset but also on the subjective
interpretation of the specific problem.

To provide a systematic assessment, clustering evaluation metrics are typically divided
into two categories: internal measures and external measures. Internal measures assess the
quality of a clustering using only the data and the resulting assignments, quantifying aspects
such as compactness within clusters and separation between clusters. External measures,
in contrast, compare the clustering output to an external set of ground truth labels. The
following subsections describe these two categories in more detail.

2.1.5.1 Internal Measures

Internal validation measures, such as the Silhouette index [26], Davies-Bouldin index [27], and
Calinski-Harabasz score [28], assess clustering quality solely from the data and assignments,
without requiring ground truth. These indices evaluate properties such as intra-cluster sim-
ilarity and inter-cluster dissimilarity. Because they are functions of both the dataset and
the clustering result, they can be used to compare results from different algorithms applied
to the same dataset with the same feature representation and similarity metric. However, if
algorithms use different data transformations, distance metrics, or operate in non-comparable
feature spaces, the scores may not be directly comparable.

2.1.5.2 External Measures

External measures, on the other hand, rely on predefined ground truth labels to assess clus-
tering performance. These metrics compare the clustering output to the known labels to
determine how well the clustering algorithm has performed. Common external measures
include Adjusted Rand Index (ARI), Normalised Mutual Information (NMI), and Fowlkes-
Mallows Index (FMI), each providing a different perspective on the clustering quality by
evaluating different aspects of the clustering result against the ground truth. By applying
these quality metrics, we can objectively compare different clustering approaches and identify
the most appropriate solution for a given dataset. This thorough evaluation ensures that the
selected clustering algorithm not only produces distinct clusters but also aligns well with the
inherent structure of the data, ultimately leading to more reliable and insightful conclusions.



2.1.6 Clustering Ensembles

Consensus clustering, also known as clustering ensembles or cluster aggregation, combines
multiple individual clustering results into a single consensus solution, thereby enhancing the
robustness and stability of the final clustering outcome. This approach addresses the limi-
tations of individual clustering methods, such as sensitivity to initial settings and difficulty
in determining the number of clusters (k) [29]. By aggregating results from multiple runs
of a clustering algorithm with different initial conditions or parameters, consensus clustering
compensates for errors in individual solutions. The process typically involves subsampling
the dataset multiple times, running a chosen clustering algorithm on each subsample, and
calculating pairwise consensus values stored in a symmetrical consensus matrix, which can be
visualised in heatmaps to assess cluster membership stability and determine the appropriate
number of clusters [30]. Various methods have been proposed for clustering ensembles, includ-
ing meta-clustering, cluster merging, and cluster-based ensemble selection. Meta-clustering
clusters the data multiple times with different algorithms and combines the results into a sin-
gle solution, while cluster merging consolidates the solutions from different algorithms, and
cluster-based ensemble selection picks the best solutions based on their similarity to others
in the ensemble.

Hypergraph partitioning is a technique that has recently been proposed for clustering
ensembles. A hypergraph is a generalisation of a graph where an edge can connect any
number of vertices. Hypergraph partitioning aims to partition a hypergraph into several
disjoint clusters based on its connectivity structure. In the context of clustering ensembles,
each clustering solution can be represented as a hypergraph, where each vertex represents a
data point and each hyperedge represents a cluster. Hypergraph partitioning can be used
to find a consensus clustering by partitioning the ensemble hypergraph into a set of disjoint
clusters [31].

2.1.7 Visualising Clustering Solutions

Visualising clustering solutions is a crucial step in understanding the structure and validity of
the clusters obtained from different algorithms. Effective visualisation helps in interpreting
the results and validating the performance of the clustering method. Common techniques in-
clude scatter plots, heatmaps, and dimensionality reduction methods such as PCA and t-SNE.
These methods enable the display of high-dimensional data in a two- or three-dimensional
space, making it easier to comprehend the clustering patterns and the relationships between
different data points.

Alternative clustering visualisations can provide additional insights into the data struc-
ture. Examples include silhouette plots, which assess cluster cohesion and separation, and
cluster heatmaps, which visualise the cluster centres and data distribution within clusters.
These visualisations help in determining the quality and distinctiveness of the clusters, en-
suring that the chosen clustering method is effective.

This section introduces the concept of Cluster Sankeys and demonstrates their utility in
depicting the flow of data points across different clusters. By leveraging these visual tools,
we can gain deeper insights into the structure and dynamics of our data, facilitating more



informed decisions in clustering analysis.

For algorithms such as k-means, where the number of clusters k must be specified, a
common heuristic is the elbow method. In this procedure, k-means is run for a range
of candidate values (e.g., &k = 1,...,K). For each k, the within-cluster sum of squares
(WCSS)—the total intra~cluster variance—is computed. Plotting WCSS against k typically
yields a monotonically decreasing curve that drops steeply before beginning to level off. The
elbow is the point at which the marginal gain from increasing k diminishes significantly;
selecting k at or near this kink balances model complexity against compactness.

In the example shown in Figure 2.1, a dataset was generated containing three isotropic
Gaussian blobs. We applied k-means over multiple values of k, computed the WCSS for each
fit, and plotted the results in Figure 2.2.

Synthetic Data
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Figure 2.1: An example of a dataset comprised of 3 clouds of points.

The elbow is visible at £ = 3, which we then selected for the final clustering visualisation
shown in Figure 2.3.
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Figure 2.2: Elbow plot for the cloud of points.

This workflow demonstrates the correct sequence: obtain clustering solutions across can-
didate k, derive the elbow from the WCSS curve, and finally visualise the chosen partition
to verify that it aligns with the data’s structure.

Clustering of Synthetic Data with k=3
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Figure 2.3: Synthetic data clustering results.

A dendrogram is a tree-like diagram that records the sequences of merges or splits in
hierarchical clustering. It helps in understanding the arrangement of the clusters and the dis-
tances between them. Dendrograms are particularly useful for hierarchical clustering meth-
ods, as they provide a clear visualisation of the nested clusters. This visualisation technique
is essential for interpreting the hierarchical relationships between data points and for identi-
fying the most significant clusters. An example is presented in Figure 2.4, in the plot there
are 6 data samples clustered using agglomerative hierarchical clustering. At the bottom of
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the plot, all samples are in distinct clusters. Moving up the plot, the clusters are merged,
which is visualised via the dendrogram.

Dendrogram of Clustering Solutions

Figure 2.4: Dendrogram of clustering results.
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2.2 Time series Analysis

Time series analysis deals with the study of data points collected, observed, or recorded se-
quentially over time. Time series data exhibits temporal dependence, where the value of a
variable at a given time point is influenced by its past values. This field encompasses vari-
ous statistical techniques and models to understand, interpret, and forecast time-dependent
data patterns. Time series data typically comprises a sequence of observations indexed by
time intervals. These observations can represent various phenomena, such as stock prices,
temperature readings, sales figures, or sensor measurements, recorded at regular or irregular
intervals. Time series data can exhibit trends, seasonality, cyclical patterns, and irregular
fluctuations, making it essential to apply specialised analysis techniques to extract meaningful
insights.

2.2.1 Modelling Time series Data

Various methods are employed to model time series data, each catering to different aspects
of the temporal dependencies and patterns inherent in the data. Hidden Markov Models
(HMMs) are a prominent approach used for modelling time series data, particularly in sce-
narios where the underlying system can be represented as a sequence of latent states [32].
HMDMs are probabilistic models that capture both observed data and unobserved states, al-
lowing for the representation of complex temporal dynamics [33]. By estimating transition
probabilities between states and emission probabilities for observed data, HMMs can effec-
tively model sequential data with hidden underlying structures. Additionally, autoregressive
integrated moving average (ARIMA) models are widely used for modelling stationary time
series data, capturing trends and seasonality through autoregressive and moving average com-
ponents [34]. Machine learning algorithms, such as recurrent neural networks (RNNs) and
Long Short-Term Memory (LSTM) networks, offer powerful capabilities for capturing long-
range dependencies and temporal patterns in time series data [35, 36]. These diverse methods
provide a toolkit for analysts and researchers to effectively model and extract insights from
time series datasets across various domains.

2.2.2 Hidden Markov Models

Hidden Markov Models (HMMSs) are probabilistic models widely used in various fields, in-
cluding speech recognition [37], bioinformatics [38], financial market analysis [39], robotics
[thrun2005probabilistic], and natural language processing [40]. The HMM assumes an
underlying Markov process with hidden states, where each state generates an observable
outcome based on a probability distribution. Formally, let @ = {qi1,q2,...,qn} be the set
of hidden states, O = {o01,02,...,0p7} be the set of possible observations, A be the state
transition probability matrix with a;; representing the probability of transitioning from state
i to state j, and B be the observation probability matrix with b;(o;) denoting the prob-
ability of observing o; given the system is in state j. The initial state probabilities are
represented by m = {my, w9, ..., 7y }. The probability of a particular sequence of observations
O = {o01,09, ...,0r} given the model parameters A = (A, B, 7) is computed using the Forward
algorithm:
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N
P(OIN) = ar(i),
i=1

where «4(7) is the forward variable representing the probability of being in state i after
observing the sequence up to time . While the Forward algorithm evaluates likelihoods, the
Forward—Backward algorithm extends this by computing posterior state probabilities. It
combines forward probabilities a;(i) with backward probabilities f;(i), where £;(i) denotes
the probability of the partial observation sequence from t+ 1 to T, given the model is in state
i at time t. The posterior probability of being in state ¢ at time ¢ is then expressed as:
P(q =0, \) = O‘;((’Z)ﬁ;(;).

This enables estimation of the probability distribution over hidden states at each time step,
which is critical for tasks such as parameter re-estimation in the Baum—-Welch algorithm.
The Viterbi algorithm, in contrast, identifies the single most likely sequence of hidden
states (the Viterbi path) that explains the observed sequence. It uses dynamic programming
to recursively compute:

0i(i) = max P(qi,...,q—1,qt = 1,01,...,0¢|\),
q1,--qt—1

where d; (i) represents the highest probability along a single path ending in state 7 at time ¢t. By
backtracking from the final state with maximum probability, the Viterbi algorithm yields the
optimal state sequence. Together, the Forward, Forward—Backward, and Viterbi algorithms
provide complementary tools: evaluating sequence likelihoods, inferring state posteriors, and
decoding most likely state paths, respectively [37, 41]. A diagram which visualises the latent
state transitions and emitted observations is presented in Figure 2.5.
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Figure 2.5: Diagram illustrating a Hidden Markov Model.

2.2.3 Time series Clustering

Given a dataset of time-series data D = {T1,Ts,...,Tn}, where T, is a time series de-
fined as a sequence of time events x; of variable length, D can be partitioned into clusters
C = {C1,0y,..Ck}, where Cy represents the cluster k. This partitioning process is called
time-series clustering and it requires the definition of a similarity measure, which will
attempt to group together homogeneous time-series.

There are three families of approaches to time-series clustering:

1. Whole time-series clustering: treating each time-series as a separate object and
assigning them all to distinct clusters

2. Subsequence clustering: extracting segments of a time-series and clustering these
subsequences.

3. Time point clustering: time-series clustering based on a combination of time point
values as well as their proximity in time.

This section will only focus on whole time series clustering (other families are seldom used
in EHR data analysis), which can be further categorised into:

1. Shape-based methods can be described as raw-data clustering since they involve
matching 2 time-series by stretching or contracting along the time axes.
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2. Feature-based methods involve converting the time-series into a lower-dimensional
vector which can then be compared using Euclidean distance and clustered using con-
ventional clustering algorithms [42].

3. Model-based clustering involves converting raw time series data into model parame-
ters, which are then compared and clustered [43].

In this section, the existing works related to clustering of time-series data are concentrated
and discussed. Some of them are using raw time-series and some try to use reduction methods
before clustering of time-series data. Generally, clustering can be broadly classified into six
groups: Partitioning, Hierarchical, Grid-based, Model-based, Density-based clustering and
Multi-step clustering algorithms.

Similarity measures play a pivotal role in clustering time-series data. This aspect of
clustering is notably challenging due to the inherent variability in time-series, which can
differ not only in length but also in sampling intervals. For instance, two time-series of
varying lengths may exhibit similar shapes at different points along the time axis, making
it crucial to employ similarity measures that can account for such temporal variations. The
choice of an appropriate similarity measure depends on several factors, including the type of
dimensionality reduction applied to the time-series data.

Traditional distance measures such as Euclidean distance are widely used for comparing fixed-
length static vectors and can be computed in O(n) time for two series of length n. However,
in the context of time-series analysis, Euclidean distance is sensitive to misalignments in
time and may fail to recognise similar patterns that are phase-shifted or occur at different
speeds [44]. To address this, elastic measures such as Dynamic Time Warping (DTW) [17]
and Longest Common Subsequence (LCSS) [18] allow for non-linear alignments, enabling the
detection of similarities even when patterns are out of phase.

An alternative approach is model-based similarity, where each time series is represented via
parameters from a fitted model (e.g., autoregressive models, hidden Markov models), and
similarity is computed between these parameter sets [19]. Model-based methods can be
advantageous for long sequences as they compress temporal patterns into lower-dimensional
representations, reducing comparison costs.

The choice between these approaches depends on the dataset characteristics and task re-
quirements. Shape-based measures are often effective for short, well-aligned sequences, while
elastic and model-based methods are more robust to temporal distortions and varying se-
quence lengths [19, 44].
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Type

Definition

Example Methods

Whole Time Series Clustering

Clustering of individual time
series based on their similarity

k-Means, k-Medoids, Hier-
archical Clustering, Spectral
Clustering, etc.

Subsequence Clustering

Clustering of segments from a
single long time series

Symbolic ~ Aggregate  Ap-
proximation (SAX), Sliding
Window Average Binning
(SWAB), Bag-of-Patterns
(BOP), etc.

Time Point Clustering

Clustering of time points
based on their temporal prox-
imity and value similarity

Density-Based Spatial Clus-
tering of Applications with
Noise (DBSCAN), Ordering
Points To Identify the Clus-
tering Structure (OPTICS),
Statistical Information Grid

(STING), etc.

Shape-Based Clustering Clustering of time series based | Dynamic  Time  Warping
on their shape similarity, re- | (DTW), Longest Common
gardless of time points Subsequence (LCSS), Edit

Distance with Real Penalty
(EDR), Elastic ReCovery
Phase (ERP), etc.

Feature-Based Clustering Clustering of time series based | Discrete Fourier Transform

on their extracted features (DFT), Discrete Wavelet
Transform (DWT), Piecewise
Aggregate Approximation

(PAA), Singular Value De-
composition (SVD), etc.

Model-Based Clustering

Clustering of time series based
on their fitted models

Autoregressive  (AR), Au-
toregressive Moving Average
(ARMA), Hidden Markov
Models (HMM), etc.

Table 2.1: Summary of Time Series Clustering Methods
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Method Description

Euclidean Distance Measures the straight-line distance between two points
Dynamic Time Warping (DTW) Aligns two time series to find the optimal match
Longest Common Subsequence Finds the longest subsequence common to two sequences

(LCSS)

Cosine Similarity Measures the cosine of the angle between two vectors
Pearson Correlation Coefficient Measures the linear correlation between two variables
Edit Distance Measures the minimum number of operations to transform

one string into another
SAX (Symbolic Aggregate Ap- Converts time series into a sequence of symbols for com-
proximation) parison

Table 2.2: Different Similarity Measures for Time Series Data

2.3 Multimorbidity

Multimorbidity refers to the presence of two or more chronic conditions in the same indi-
vidual. Due to an increasingly aging population and increased life expectancy, the rates of
multimorbidity are expected to rise throughout the 21st century [45]. In high-income coun-
tries, around 20% of people have multiple chronic conditions before the age of 40, and this
percentage rises to nearly 70% for those above the age of 60 [46]. In the UK, it is projected
that by 2035 around 17% of the population will have complex multimorbidity, defined as four
or more co-occurring chronic conditions. This increasing prevalence will impact both indi-
viduals and healthcare services, as multimorbidity is predictive of increased mortality [47],
greater functional decline [48], and a substantial economic burden on healthcare systems [49].

Several risk factors have been identified for developing multimorbidity, including increas-
ing age [50], poor socioeconomic status [51], high body mass index, and smoking [52]. Since
multimorbidity develops over a long period of time, cross-sectional studies have limited util-
ity in analysing it. Conditions often influence the occurrence of other diseases, and these
complex interactions are rarely captured in cross-sectional analysis.

Various techniques have been implemented to identify clusters of multimorbidity condi-
tions and patient trajectories. This section presents studies on multimorbidity, its risk factors,
methodologies, and the most common results. The focus is also on studies that investigate
the long-term progression of multimorbidity.

Clustering, as a technique to identify trends in patients with multimorbidity, helps find
groups of diseases or patients with similar conditions or trajectories. Cluster analysis can re-
veal important associations between conditions, such as in [2], where clusters were identified
based on Yule’s Q measure of association. These results provided insights into which con-
ditions co-occurred at higher rates than expected, suggesting potential interactions between
diseases.

Multiple studies have applied different clustering algorithms to multimorbidity datasets.
For instance, [53] and [54] used multiple correspondence analysis (MCA) followed by k-means
clustering to identify patient groups based on co-occurring conditions. Another approach was
taken by [55], who used fuzzy c-means clustering on the Swedish SNAC-K cohort to allow
individuals to belong to multiple clusters, reflecting the complexity of clinical presentations.
Unlike k-means clustering, which assigns each data point to a single cluster, fuzzy c-means
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Figure 2.6: Image from [3] showing the progression of participants between
clusters for 3 time points.

is more suitable in clinical contexts where patients may exhibit characteristics that span
multiple disease clusters [56].

Other studies have applied fuzzy c-means clustering to investigate the SNAC-K dataset
specifically for analysing multimorbidity progression over time. For example, [3] examined
the progression of multimorbidity over 12 years, with clusters identified at baseline, 6 years,
and 12 years. Subjects were categorised based on how they transitioned between these clus-
ters, providing insights into disease progression dynamics. The clusters and their transitions
are presented in Figure 2.6.

In contrast to patient clustering, some studies have focused on clustering conditions. [57]
used agglomerative hierarchical clustering to find clusters of diseases among elderly patients
in the REPOSI study, while in [58] researchers employed hierarchical clustering on Austrian
EHR data to investigate the transitions between disease clusters.

To explore longitudinal multimorbidity clusters, recent studies such as [6] have reviewed
multimorbidity trajectories. In [59], finite mixture modelling was used to identify six distinct
clusters of comorbidity trajectories among approximately 41,000 patients. Similarly, other
longitudinal studies have used techniques like growth mixture modelling [60] and group-based
trajectory modelling [61] to capture changes in multimorbidity over time.

Latent Class Analysis (LCA) is a statistical method used to uncover unobserved subgroups
(latent classes) within a population based on patterns of categorical or binary variables. In
the context of multimorbidity, these variables often represent the presence or absence of
chronic conditions in individual patients. LCA assumes that the co-occurrence of conditions
can be explained by membership in a finite number of latent classes, with the conditions being
statistically independent within each class. A strength of LCA in multimorbidity research
is its ability to work directly with categorical diagnosis data without the need for distance
metrics, making it well-suited for EHR-based studies. LCA was used in [62] to identify
multimorbidity trajectories among U.S. veterans, providing valuable insights into the co-
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occurrence of conditions over time. Latent class growth analysis (LCGA) [63] has been applied
to UK longitudinal patient data to identify subpopulations with distinct multimorbidity
trajectories, revealing differences in both baseline disease burden and the subsequent rate
and pattern of condition accumulation over time [64]. LCGA is a statistical method that
extends latent class analysis to longitudinal settings, grouping individuals into latent classes
based on similarities in their trajectory shapes over repeated measurements.

2.4 Application of Machine Learning to Multimorbidity and
Healthcare

Structured data, such as that stored in electronic health records (EHR), is essential for its
primary purpose — accurately recording, storing, and retrieving patient information in a
consistent format for clinical and administrative use. However, when such data is used for
secondary purposes, such as advanced longitudinal research into multimorbidity progression,
certain limitations can arise. For example, structured formats may encode diagnoses as
isolated events without explicitly capturing temporal relationships, disease trajectories, or
the context of comorbidity development. While structured data excels at supporting point-
of-care decisions and standardised reporting, its design can make it challenging to directly
extract the sequential patterns and complex dependencies needed for trajectory modelling
without substantial preprocessing and transformation. EHR data can be categorised in the
following way:

1. Structured Data is comprised of database tables where information such as demo-
graphic data (e.g., birth date, race, ethnicity, education), admissions and discharges to
hospitals, diagnosis codes, medications, laboratory results, and allergies are stored.

(a) Downsides of structured data While this type of structured tables are ideal
for machine learning and data analysis, they are impractical. This type of data
storage required anticipating all possible types of data and also results in sparse
tables where most data categories are not present for patients.

2. Unstructured data Unstructured data refers to clinical notes. These are mostly in
the form of free text. There is a wide range of uses for this type of free text data
(radiology report, surgical note, discharge note). Unstructured textual data represents
around 80% of data in EHRs [65]. This type of patient data is most flexible as it is
simple to represent a wide range of information, such as medical history, family history,
lifestyle data, risk factors, and treatment results.

(a) Downsides of unstructured data Although clinical notes provide flexibility
in representing patient data, they also have their own unique challenges. The
structure of these notes is up to the doctors or nurses who are writing them. This
results in clinical notes that lack structure or a systematic framework, and in turn
makes them difficult to process and use for research purposes. In addition to
potential misspellings, these notes can also have short phrases, abbreviations, and
local dialects, thus making them even harder to process [66]. More details about
NLP applications to clinical decision support are presented in [67].
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EHR data poses significant research problems as it is often incomplete, irregular in time,
heterogeneous, and fragmented over multiple institutions [1]. These problems arise from the
fact that EHRs are used both for clinical records as well as billing purposes.

2.4.1 Mining Patterns in EHR

This section presents different classes of methods applied to EHR data analysis. For each
class of methods, studies implementing these methodologies are explained.

2.4.1.1 Pairwise Correlation

Pairwise correlation studies investigate the ”connection” between diseases. If 2 conditions
co-occur at higher frequencies than their individual rates of occurrence, then they are con-
sidered ”connected”. In [68], these correlations were used to construct graphs where nodes
represented diseases and their edges - ” connectivity” between diseases.

This approach was extended in [69], where the authors included time difference between the
incidence of diseases and the connectivity between diseases in the edges. [70] also used co-
occurrence frequency as well as dynamic time-warping to find the similarity measure to find
clusters of multimorbidity. In a later study, the same authors extended their method to also
include genetic information [71]. Pairwise associations and network elements were also used
in [72] to design MORBINET: a publicly available visual network of type 2 diabetes mellitus
comorbidities.

However, pairwise methods are limited, due to them being unable to represent conditional
probabilities between multiple diseases. [73].

2.4.1.2 Factorization methods

In multimorbidity research, patient health records can often be represented as a patient—condition
matrix X, where each row corresponds to a patient, each column corresponds to a clinical
feature (e.g., a diagnosis, laboratory measurement, or medication), and each entry represents
the presence, absence, or severity of that feature for the patient. This matrix can be binary
(e.g., 1 for presence, 0 for absence) or contain weighted values (e.g., frequency counts, test re-
sults). Such a representation provides a compact yet comprehensive way to store and analyse
complex health data [74].

Phenotyping in this context refers to identifying latent, clinically meaningful subgroups of
patients based on co-occurring patterns in their health data. These phenotypes are not pre-
defined but emerge from statistical analysis, often representing multimorbidity clusters such
as “cardiometabolic profile” (e.g., diabetes, hypertension, obesity) or “respiratory multimor-
bidity” (e.g., COPD, asthma, recurrent pneumonia) [75, 76]. Matrix factorization methods
aim to uncover such latent structures by decomposing the original patient—condition matrix
into two lower-dimensional matrices:

X ~WH,
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where W is the patient—factor matriz (indicating how strongly each patient expresses each
phenotype) and H is the factor—condition matriz (indicating which conditions are associated
with each phenotype).

Matrix and tensor factorisation techniques have been widely applied to Electronic Health
Record (EHR) data to investigate multimorbidity patterns. In [75], a non-negative matrix
factorisation technique called Limestone was introduced to produce clusters of patients, each
corresponding to shared disease patterns. Later, [76] extended this model to include med-
ications as an additional dimension, and further enhancements incorporated procedures as
well.

Granite [77] was a further improvement on the Marble framework, which allowed for the
discovery of phenotypes that had less overlap and would be more informative to clinicians.

Temporal EHR data has also been addressed in factorization methods. For example, [78]
introduced a matrix factorization technique where one dimension of the EHR matrix was the
time-axis. The derived phenotypes however, were only used to investigate Congestive Heart
Failure prediction and not multimorbidity.

Another study [79] involved tensor factorization PARAFAC2, where the authors found tem-
poral phenotypes from medically complex children. In [80], the researchers created a tensor
with time being one of the dimensions and extracted phenotypes that helped predict the onset
of cardiovascular diseases. [81] has recently introduced another factorization method based
on PARAFAC2 that accounts for both dynamic information within EHR as well as the static
demographic information. These techniques could be applied to investigate multimorbidity
phenotypes. Furthermore, [82] constructed matrices of patient information and concatenated
them along the time dimension. This technique was shown to be useful in generating new
multimorbidity phenotypes.

While factorization techniques offer tools to find latent factors for patients, the resulting latent
factors are not easily interpretable. Additionally sequential datasets must be introduced by
significantly altering the original factorization methods.

2.4.1.3 Probabilistic Models

In [83], the authors highlight the advantages of using probabilistic machine learning models
in healthcare, particularly their ability to estimate full predictive distributions over possi-
ble medical outcomes rather than providing only a single point estimate. For instance, a
survival model may predict that two patients have the same expected survival time (i.e.,
identical predicted means), but with significantly different uncertainties (variances) around
those predictions. This difference reflects the model’s confidence in each prediction and can
substantially influence clinical decision-making. For example, a treatment plan might differ if
one patient’s prognosis is highly uncertain while the other’s is relatively precise. In addition,
probabilistic models can naturally handle common challenges in EHR data such as missing
values [84] and censoring [85]. A number of probabilistic approaches have been applied to
study EHR data.

For example, [86] used free-text notes, medication orders, diagnosis codes, and laboratory
tests to find probabilistic disease phenotypes. However, each data type is treated as a bag of
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words; therefore, all potential temporal information is not utilised.

In a related work, [87] introduces a composite mixture model, which allowed to model dif-
ferent types of variables using different appropriate distributions. Using this approach, the
authors were able to identify distinct 20 clusters of high mortality risk sepsis patients. The
authors did not use time-variable features in their modelling; instead, they opted to use rep-
resentative statistics of the time series.

[88] cluster pediatric ICU time-series by first discretising time into hour-long intervals us-
ing Piecewise Aggregate Approximation (PAA). PAA first splits a time series into non-
overlapping intervals, then computes the mean values for each frame. The PAA approxi-
mation is then assembled from these mean values. A Gaussian mixture model was then used
to cluster time series with an informative prior distribution placed on the mean parameters
to deal with sparseness in the dataset. The resulting posterior distribution represented the
cluster memberships for each patient.

[89] developed an unsupervised Bayesian framework titled MixEHR to find meaningful dis-
ease topics. Their approach is related to the LDA [90] as well as the matrix factorization
techniques discussed in the previous section. The contribution of their method is modelling
multiple types of EHR data simultaneously. The inferred phenotypes are also used for missing
data imputation, a common problem in EHR data mining [66]. However, the model does not
take into account the sequence of EHR data, treating each data type as a bag of words. The
optimal number of clusters was identified using cross-validation and the predictive likelihood.

Selecting the number of clusters or phenotypes is commonly done by finding the optimal
value of some metric (purity, predictive likelihood [89], Bayesian information criteria (BIC)
[87]) and then choosing the number of clusters that produces the optimal value of the chosen
metric. The Dirichlet Process, a Bayesian non-parametric method, is a stochastic process that
updates the number of clusters as more data is gathered. Applying this to EHR phenotyping
would allow us to investigate how the number of clusters differs based on the current sample.

2.4.1.4 Hidden Markov Models

Modelling longitudinal electronic health record (EHR) data is essential for understanding
disease progression, supporting prediction, and enabling clustering of patient trajectories.
While recent deep learning models can capture complex temporal dependencies, they typically
require large, diverse datasets to avoid overfitting [91-93]. In many healthcare settings,
such data are scarce, noisy, and irregularly sampled, making more data-efficient probabilistic
approaches attractive.

State-space models (SSMs) are a family of probabilistic models that describe sequential
data by introducing latent (unobservable) states, which evolve over time and emit observable
measurements according to a probabilistic distribution. When these latent states are discrete,
the model is referred to as a Hidden Markov Model (HMM). An HMM extends the concept
of a Markov chain—which models transitions between observed states—by allowing the un-
derlying state sequence to be hidden, with only indirect, noisy observations available. This
makes HMMs particularly well-suited for disease modelling, where the true disease state is not

22



€2 - Eye Impairment
and Mental Diseases
60000

o
2000 C3 - Minority Metabolic
@ Autoimmune-Inflamatory

€4 - cardio-Circulatory
0
and Renal

()] , C5 - Cardiocirculatory Mental,

- | Respiratory and Genitourinary

Q » €6 - Nervous, Digestive

wd " and Circulatory

: © €7 - Respiratory and Ear
—

(6] = C8 - Digestive
—

o © €9 - Nervous,

Muskuloskeletal

c and Minor Diseases
'I- W ° c10 - Multisystem
€10 - Multisystem -4

€9 - Nervous,
Muskuloskeletal
and Minor Diseases

C8 - Digestive -
€7 - Respiratory and Ear
@

€6 - Nervous, Digestive
and Circulatory

sl193sn|d auljaseg

Figure 2.7: Image from [94] showing the patient transitions from baseline to
final clusters. Clusters are characterised by the most prominent conditions within
a cluster.

directly observable, but related clinical signals (e.g., biomarkers, diagnoses) can be measured.
In [94], an HMM model was used to model the longitudinal trajectories of participants over
the course of 5 years. Their process involved first reducing the dimensionality of the data.
Then apply k-means to the reduced dataset to set the initial HMM parameters. The latent
states of the HMM were treated as clusters of diseases, characterised by the most prominent
disease in a cluster. Resulting transitions from baseline to final clusters from [94] are dis-
played in Figure 2.7. The authors found that close to half of the subjects at baseline were
part of a non-specific cluster, where no single disease was over-represented.

Weighted Association Rule Mining (WARM) is an extension of traditional association rule
mining (ARM) that incorporates item-specific weights to better reflect their relative impor-
tance in the domain of interest [ma2014weighted]. Standard ARM techniques, such as the
Apriori algorithm, treat all items equally when computing support and confidence, mean-
ing that frequent but clinically trivial itemsets can dominate the results. WARM addresses
this limitation by assigning each item (diagnosis, medication, or symptom) a weight that
represents its significance, which may be derived from clinical impact, prevalence, cost, or
other domain-specific considerations. In the healthcare context, this allows rare but clini-
cally critical conditions to contribute more strongly to rule generation than common but less
consequential conditions.

In [95], WARM was applied after estimating disease transition probabilities using first-order
Markov chains. Here, WARM was used to discover clusters of chronic conditions that fre-
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quently co-occurred, with weights reflecting the relative clinical importance of each condition.
This dual-step approach combined temporal modelling (via Markov chains) with weighted
co-occurrence mining (via WARM), resulting in a richer characterisation of multimorbidity
patterns than would be possible with either method alone. The authors note, however, that
although their model takes into account the progression of diseases, it is limited in multiple
ways. First, they only use first-order Markov chains, meaning that the probability of a future
condition is only dependent on the previous time step and not the entire history. The solution
for this would be to include higher order Markov chains; however, the authors chose not to
do this as interpreting all combinations of 103 chronic conditions would be too complicated.
Secondly, although this approach uses the sequences of events to find clusters of diseases, the
time intervals between diagnoses are not taken into account.

A continuous-time hidden Markov model (CT-HMM) was introduced in [96] to model patient
disease trajectories through hidden states. Using this model, the likelihood of a given journey
can be calculated, which can be used to find a similarity between different patient trajecto-
ries. A mixture model was then used to cluster patients and found subtypes of progression of
hemodynamic instability. However, the distance was only calculated using the likelihood of a
particular trajectory. The distance between the HMM models themselves was not identified.
Identifying the distance between models would give a more thorough method of comparing
patient trajectories, based on their latent state sequence.

Another study used Bayesian HMMs (B-HMM) to find clusters of patients from Chinese
EMR data spanning 9 years [97]. They first segmented each patient’s health records into
sets of epochs of treatment events. Then their approach involved finding latent treatment
topics for each epoch and transitions between topics. They used a B-HMM to represent
patient trajectories with Dirichlet priors placed on the transition parameters and emissions
distributions. Agglomerative hierarchical clustering was used with the likelihood of patient
journeys being used as a similarity measure.

HMDMs were also used to cluster patient medical trajectories in [98]. In their approach, they
used both categorical variables (diagnosis codes) and continuous variables (vitals and labo-
ratory test results) for clustering. They first mapped each medical trajectory to an HMM
and then used KL divergence to compute the distances between HMMs.

In [99], the longest common sub-sequence was used as a distance metric to cluster patients.
A first order HMM was then trained to find the most probable trajectories using time-series
of multiple laboratory test observations and other patients’ characteristics. They were able
to identify the most probable clinical trajectories from chronic kidney disease patients.

The authors of [100] used an autoregressive HMM to learn shared dynamics from time series
measurements in several studies, [101], [102]. The aim was to find recurring time-series seg-
ments across the patients. Their model was able to improve mortality prediction and sepsis

detection.

An example time-series clustering using HMMs not related to EHR data is presented in [103].
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The authors first used Dynamical Time Warping to calculate distances between driver time
series. These distances are then clustered using hierarchical clustering to identify subsets of
driver behaviour. These subsets of driver data are used as a sequence of inputs into an HMM.
This HMM is then used to iteratively optimise the procedure until convergence is achieved
and the optimal clustering of drivers is found.

A method of efficiently training Continuous-Time HMM was introduced in [104]. Traditional
HMMs assume that measurements are observed at regular discrete intervals, which is not
the case for EHR data, due to missed visits and other complications. The authors modelled
disease progression using CT-HMMs.

There have been recent adaptations of the traditional HMM model to complex health data.
In [105], a coupling between conditions is introduced. In the paper, the authors present a
coupling between diabetes and liver disease, which is represented by a modified transition
matrix. Additionally, the authors differentiate between the severity of conditions by using dif-
ferent states for acute and stable disease states. The authors show that including coupling,
having static patient attributes influence the transitions and introducing different disease
states produced better results than a regular HMM model.

One important limitation of Hidden Markov Models is their assumption that a patient’s
future disease trajectory is determined solely by their current state. This “memoryless”
property prevents HMMs from capturing the heterogeneity in patient trajectories that often
arises from complex and varying clinical histories [106]. In such models, all patients in the
same latent state share identical transition probabilities to other states, regardless of their
previous conditions or other influencing factors. This can be particularly problematic in
multimorbidity research, where disease progression is frequently shaped by earlier chronic
conditions. To overcome this issue, [106] introduces an attentive state space model that
incorporates a patient’s entire history into the state transition process, allowing for more
nuanced modelling of individual disease pathways.
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Chapter 3

Sequence Clustering Pipeline

This chapter presents the sequence clustering pipeline developed for clustering multivari-
ate time-series data. The pipeline is comprised of two stages to identify complex patterns
within the data Figure 3.1. Multivariate time-series data refers to observations of multiple
variables recorded simultaneously at regular intervals over time. This pipeline specifically
requires that these observations be made at equally spaced time intervals. Stage 1 of the
pipeline first clusters individual timepoints, grouping together those that exhibit similar pat-
terns across all sequences. This reduces the high-dimensional multivariate sequences into
simplified univariate sequences based on cluster memberships. In Stage 2, these relabelled
sequences are clustered using the DBSCAN algorithm, which relies on a distance measure
called State Space Dynamic distance. This distance between sequences is computed with
the aid of a Hidden Markov Model (HMM), which helps capture the temporal dependencies
and transitions between different states within the sequences. While the clustering itself is
performed by DBSCAN, the use of the HMM to compute the distance ensures that the tem-
poral structure of the sequences is taken into account, allowing for more accurate clustering
of sequences based on their underlying dynamics. The pipeline, along with the optimization
of the various hyperparameters involved, is displayed in Figure 3.2.

Solution
Graph

Clustering
Solutions

Prototype

Dataset Solutions

Clustering Pipeline

Event Groups Sequence Clusters

Figure 3.1: Computation diagram for this chapter, the final outcome of this
chapter being event groups and the sequence clusters.
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Figure 3.2: Part A) of the diagram is a visual representation of Stage 1 and 2 of
the pipeline, where in Stage 1, the dataset of multivariate time series timepoints
is converted to sequences of cluster memberships. Stage 2 of the pipeline then
clusters the sequences using a state-space model. Part B) of the diagram is a
representation of the hyperparameter optimisation operation, where A and « are
initialization parameters for the optimisation, and the output consists of a total
of G solutions.

3.1 Stage 1 - Timepoint Clustering

To tackle the problem of clustering multivariate time-series we use a strategy of first sim-
plifying the dataset by introducing the concept of Event Groups. Multivariate time-series
are often difficult to interpret due to their high-dimensional nature [107]. The aim of Stage 1
of the pipeline is to reduce the dimensionality of the dataset, while maintaining the relevant
information stored.

Each timepoint in the dataset is assigned to an event group during Stage 1 of the pipeline.
An Event group represents a collection of commonly co-occurring events within the dataset.
In addition to simplifying the dataset for further clustering, this method also aids in the
interpretation of later sequence clusters. At the end of this first step, a multivariate time-
series is represented as a sequence of event group memberships, which in turn correspond to
trends of events within the original dataset.

In this section, we describe each step of Stage 1 of the Sequence Clustering pipeline.
These steps involve converting a multivariate time series dataset into a sequence of Event
Group memberships, later clustered in Stage 2 of the pipeline. This procedure is visualized
in Figure 3.3.

3.1.1 Event Groups

Let X = [x1,X9,...,X7] represent the multivariate time series of 7' timepoints. Each time-
point x; at time ¢ is a binary column vector of length D, where D corresponds to the number
of possible events in the time series. Timepoint x; is defined as:
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Figure 3.3: Diagram of Stage 1 of the clustering pipeline. Part A) is the original
dataset of multivariate sequences. Part B) shows the process of reducing the
dimensionality of the dataset using MCA. Part C) is the next step in Stage 1 of
the pipeline where individual timepoints are clustered into Event Groups. Lastly,
Part D) are the redefined multivariate sequences of Event Group memberships.

Xt = ({1;‘17,5, 332,7&, . ,.CCD7t) (31)

where x4, represents the value of the d-th variable at time ¢, and d = 1,2,..., D. A single
time series consists of a total of T observations. In the case of multiple time series, let X
represent the dataset containing N multivariate time series,

X:[X17X27"'7XN]7 (32)

where X € {0,1}P*NT and where each column corresponds to a different timepoint from
a different time series, and each row corresponds to a different event. Individual entries of X’
are binary values in a matrix form,
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where n = 1,2,..., N and N is the total number of time series in the dataset. d =

1,2,..., D, where is D the total number of unique events and ¢t = 1,2,...,7T are the total
timepoints in the dataset. An example of a multivariate time series matrix is presented in
Figure 3.4. We use this matrix format of columns of individual observations to organise the
sequences for the following clustering stages.

Sequence 1 Sequence 2

Event 1

Event 2

Event 3

Event 4

Figure 3.4: An example showing how multivariate time series data is ordered in
a single matrix. The matrix consists of 2 sequences along with 4 possible events
and 5 timepoints.

After this initial reordering of the dataset, we proceed to clustering each column to identify
similar groups of timepoints. These clusters of timepoints are defined as Event Groups.

First, Multiple Correspondence Analysis (MCA) [108] is used to transform the high-
dimensional multivariate time series data into a condensed, lower-dimensional representation,
effectively capturing the timepoints of sequences. The procedure begins by transforming the
original categorical data into a complete disjunctive (indicator) matrix, where each possible
category of each variable is represented as a binary column. MCA then compares the observed
indicator matrix to what would be expected under the independence model, where all variables
are assumed statistically independent and joint category frequencies equal the product of
their marginal frequencies. This centering step ensures that MCA captures deviations from
independence (genuine associations between categories, rather than random co-occurrence).
MCA then performs a singular value decomposition (SVD) on the centered and normalized
matrix (or equivalently on the Burt matrix) to identify the principal dimensions that best
explain the variance, or inertia, in the dataset.

MCA is particularly well-suited to our pipeline because it simultaneously handles multi-
ple categorical variables and maps these into the same low-dimensional space. This preserves
interpretability: timepoints that share many events will be mapped close together. By re-
ducing the dimensionality, MCA removes noise and highlights latent structures that aid in
subsequent clustering.
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The dimensionality reduction changes the data from a binary matrix to a matrix of scalar
values Xyeq € R™NT wwhere m < D. Subsequently, the reduced-dimensional data undergoes
K-means clustering, a popular unsupervised learning algorithm, to delineate distinct clusters
of timepoints. For instance, if two timepoints share a significant portion of the same events,
they are considered similar and are likely to be part of the same timepoint cluster.

After applying MCA, all timepoints in X, are clustered using K-means to find event
groups. We chose K-means for its simplicity and efficiency in partitioning the data into dis-
tinct clusters based on their similarity. Given the dataset of sequences X,.4, K-means clus-
tering aims to partition the dataset of size N into k < N clusters E = {Ey, F1,..., Ex}. The
clusters of timepoints, denoted Fj, are composed of timepoint vectors indexed by their origi-
nal time positions. If cluster Ej, contains the timepoints with original indices ¢1,12, ..., g,|,
then:

E, = {x(tl),x(tQ), .. ,x(t|Ek|)},

where x(®) is the timepoint vector at original time index ¢, Ej, is the k-th timepoint cluster,
and |Ej| is the total number of timepoints in that cluster. Groups of timepoints represent
sets of similar events occurring at different positions in the sequence. After clustering, each
timepoint vector x(*) is redefined in terms of the membership of the cluster Ejy to which it
was assigned.

Let X = [x1,X2,...,x7| be the original sequence of timepoint vectors. After timepoint
clustering, each timepoint vector x; is assigned to a cluster Ej. Let e; denote the cluster
membership of x®, where e; = k if x® € Ej,. The sequence of cluster memberships is:

=k if xep, for t=1,2,...,T,

and the final output is the sequence of cluster memberships:

S = (e1,ea,...,e7).

An example of a multivariate time series matrix after clustering timepoints into event
groups is shown in Figure 3.5.

Sequence 1 Sequence 2

Event 1
Event 2
Event 3
Event 4

EG

Figure 3.5: An example showing how multivariate time series data is ordered in
a single matrix along with the Event Group memberships (EG).
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The multivariate time series were transformed from a difficult-to-interpret, high-dimensional
dataset into a univariate sequence of Event Group memberships. In high-dimensional datasets,
many timepoints often exhibit very similar or even identical event patterns, leading to sub-
stantial redundancy [107]. Clustering these redundant timepoints into aggregated Event
Groups helps suppress noise, reduce dimensionality, and emphasize more meaningful tempo-
ral transitions.

3.1.2 Stage 1 Output

The aim of the Event groups is to first reduce the complexity of multivariate time-series data
and enable easier interpretation. To understand the composition and trends captured in the
Event groups, we introduce an Event Group Score to measure the importance of each unique
event in the dataset. This score measures which events occur most frequently within an event
group and the events they are paired with, providing an intuitive description of the trends
within the partition of timepoints.

3.1.2.1 Event Group Score

To better understand the specific events present in each timepoint cluster, we developed an
Event Group Score. This measure provides a quantitative measure of which events are most
frequent within a cluster of timepoints. After the K-means clustering of M,.4 the resulting
clusters E; are groups of timepoints x;. Since the total occurrence of events in a single
timepoint cluster depends on the distribution of event frequency in the entire database M.
Every value of x; contains up to D total events; however, some of these event types may be
overrepresented in M, so counting how many occur in the time-point clusters will introduce
bias towards the most prominent ones. The clusters are instead interpreted by introducing
an Event Group Score (EGS) for event type D in timepoint cluster k:

Bk:
EGSy = -2, (3-4)
B
tot
k
where Bf, is defined as :kD (b%): number of occurrences of event D in cluster k,bf,: total
tot
tot
number of timepoints in timepoint cluster k), and B, is defined as ZL (b1S" number of
tot

occurrences of event D in entire dataset M and by, is the total number of timepoints in the
dataset). The purpose of this measure is to balance the number of occurrences of events in
the timepoint clusters with the occurrences in the entire dataset. A larger EGS for event
type D in timepoint cluster k£ that event D occurs at a higher rate in the timepoint cluster
than the entire dataset M. Whereas if an event occurs many times in a timepoint cluster,
but also many times in the entire dataset, it is not unique to that particular timepoint
cluster. This would then be reflected by a lower EGS. The use of EGS helps understand
what event types are more prominent in each timepoint cluster. For comparability across
clusters, the EGS for each timepoint cluster was L2-normalised before further use, treating

EGS" = (EGSF,...,EGSY) as a vector and computing E/G\Sk = EGS*/|EGS¥||5; this
preserves relative weights while scaling the overall magnitude to 1.

After performing the timepoint clustering described in the previous section, we rank
the importance of individual events based on the event group score. The event group score
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measures the relative importance of each condition in a timepoint cluster based on the number
of occurrences in the entire dataset and the specific timepoint cluster. This score simplifies
the interpretation of the timepoint clusters and facilitates understanding which conditions
tend to co occur in the timepoints which are clustered together. An example of a single
timepoint cluster is shown in Figure 3.6. Part A of the figure shows a table of the toy dataset
with 2 sequences and their respective observations, along with the timepoint clusters.

A Sequence 1 Sequence 2

Event 1
Event 2
Event 3

Event 4

B EG

Timepoints: 5 EG 0: Event 1 Timepoints: 3 EG 1: Event 4 Timepoints: 2 EG 2: Event 2

Event 3 . 4/5 - Event 3 I 1/5 . Event 4 0/8

Event 1 4/4

Event 1 0/4 Event 3 0/5

Event 2 I 2/3
Event 4 - 5/8
0 0.0 05 0 0 1

5 . 5
Ccfunts EGS Counts EGS Counts EGS

Event 2 0/3 Event 1 0/4

Figure 3.6: Example of the data configuration and the corresponding. Part A)
Shows a table of timepoints in each row, while the columns show which event
occurred at each timepoint. After the timepoint clustering stage of the pipeline,
each timepoint is assigned to a timepoint cluster. Part B) shows the bar chart
of timepoint clusters and their Event Group Score (EGS). On the left side, the
red section of the bar shows how many counts of the specific condition are in that
Disease Group, while the grey and red parts show how many observations of the
specific condition were present in the entire dataset. The right-hand side shows
the Event Group Score (EGS) of the event in a timepoint cluster.

An example of using the event group score to understand the Event Groups is showcased
in Part B of Figure 3.6. The bar charts show the number of observations of a specific event
in a timepoint cluster in red, while the entire length of the left bar chart shows how many
observations of a specific event there were across the entire dataset. The right part of the
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bar chart shows the EGS of a specific event in a timepoint cluster. In Figure 3.6, a high EGS
score reflects the higher frequency of different events in different timepoint clusters, while
taking into account how frequent these conditions were across all timepoints. For clarity in
later chapters, each Event Group (EG) is referred to by the label of the event with the highest
EGS.

3.2 Stage 2 - Sequence Clustering

The next stage pipeline involves clustering the sequences of Event group memberships. To
accomplish this, first we chose a distance measure, the State-space dynamics distance, based
on a Hidden Markov Model. This measure was chosen as it is suited for short sequences and
additionally provides a probabilistic model of the sequence data, providing further insight
into the trends of the dataset. The distances calculated using this measure are used as the
input for the DBSCAN clustering algorithm, which is used to cluster the sequences. The final
output of this pipeline are a combination of the Event Groups from Stage 1 alongside the
sequence clusters from Stage 2, an example of the output of the pipeline is provided at the
end of this section.

3.2.1 Choice of Distance Measure

The first step in clustering is choosing a distance measure. Time series are particularly diffi-
cult to cluster as the usual distance measures, such as euclidean distance, are not applicable.
Distance measures between time series are discussed in further detail in the literature review.
In this subsection, the details of the distance measure used in Stage 2 of the clustering
pipeline are described. Specifically, we used the State Space Dynamics distance, a distance
measure for time-series, based on a probabilistic model proposed in [109]. Calculating the
distance between sequences using this method involves first training a single Hidden Markov
Model using all sequences in a dataset, which represents a common state-space for the dataset.
The distance between sequences is then found by calculating the distances between induced
transition matrices for each sequence. This distance measure addresses common problems in
probabilistic modelling, such as overfitting and computational scalability. In the context of
HMMs, overfitting can happen if too many states are used or if the model is trained on a
limited amount of data. Previously proposed methods of sequence clustering using HMMs
[110] train a single HMM on each sequence in the dataset to find a distance matrix between
each element. As discussed in [109], this leads to several disadvantages, including overfitting
and computational complexity, as the number of likelihoods needed to be computed is N2.
The State Space Dynamics distance addresses these issues by constraining the complexity of
the HMM. The State Space Dynamics distance method uses an HMM to create a probabilistic
representation of the dataset.
Let © be an HMM with total states ) trained using all the sequences in the dataset S.
After © is fitted using the Viterbi algorithm [111], each sequence in S is fed through © using
the forward-backward algorithm [37]. Each sequence S,, in S is linked to the common state
space through the transition matrix that it induced when fed into the model © using the
forward-backward algorithm. This induced transition matrix is denoted as:
Ap = {ay}? (3.5)

i,j=1
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where a;i = p(qiy = sj | ¢i' = si,Sn, ©) and @ is the total states in the HMM.
Using the transition matrix A = {a;;} the sequence-specific transition probabilities are
obtained using:

Z a;' (t) aij (i1 | @1 = 55) B;‘(t + 1), (3.6)

where aj'(t) and B} (t + ) are the forward and backward variables for S,,.

After obtaining A,, we can view the matrix as a collection Q discrete probability functions:
i T
A" =lan1,...Qni,...AnQl ,

where a,,; is a discrete probability function in each row. Each row a,; corresponds to
the induced transition probabilities for sequence n from state 1 to state Q).

The next step in the process is using each row of these transition matrices to find the
distances between all sequences.

The distance between sequences S; and S; is found by calculating the distance between
the induced transition matrices A; and A;. For this we use the Bhattacharyya affinity [112]
defined as:

B(p1,p2) Z Vp1(x), pa(x (3.7)

where p1, po are arbitrary discrete probability distributions. The distance between the
transition matrices A; and A; is found by calculating the mean affinity for each row a,,, where
the rows correspond to the transition probabilities between each state and every other state.
The distance between the sequences S; and S; can then be defined as:

Q
e g ZDB (pit, pi1) (3.8)
=1

where (@ is the total number of states in the HMM ©.

3.2.2 Clustering Sequences Using DBSCAN

Once the distances between all sequences in S are calculated, they are used as inputs in the
DBSCAN clustering algorithm. The principle of DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) is to find regions of high density that are separated from regions of
low density. The DBSCAN clustering algorithm is used with 2 input parameters: € (maximum
distance between two samples for one sample to be considered being in the neighbourhood of
the other sample) and min_points (number of samples in a neighbourhood for a point to be
treated as a core point). The advantage of using DBSCAN is that the number of clusters does
not need to be predefined as it does in K-means. An additional advantage of the DSBSCAN
algorithm is that a precomputed distance matrix can be used to find clusters. Although
DBSCAN is a powerful algorithm, there are several disadvantages to this method. Determining
the parameter € and min_points is challenging and, if chosen poorly, can lead to poor results.
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Another disadvantage is the computational complexity. The time complexity for DBSCAN is
O(nlogn), which makes calculating clusters for large datasets slow. Methods such as mini-
batch k-means, which achieves near -linear passes over the data by using small stochastic
batches [113], or BIRCH [114], require Euclidean embeddings and typically a user-specified
k for the final partitioning [20]. They also do not detect noise or arbitrarily shaped clusters
by design (in contrast to density-based methods) [115].

The final output of the DBSCAN clustering is sequence clusters, defined as follows:

C={C1,Cy...,C0), (3.9)

where the sequence cluster is defined as C,, v denoting the total number of sequence
clusters. Each cluster C, contains a set of sequences, indexed locally within that cluster, as
follows:

Co = {Su.1, 502+ S et} (3.10)

where S, ; denotes the j-th sequence in cluster C,, and |C,| is the number of sequences in
that cluster. This double-index notation avoids ambiguity by explicitly linking each sequence
to its corresponding cluster. A diagram of Stage 2 of the pipeline is detailed in Figure 3.7.

A SieSe )

At AV
Induced
5'1 "'SN Forward-backward Transition i e i
algorithm Matri
atrices
Bhattacharyya
affinity

€1 G sue —
b

C ot
Cy G -SuieD v

Distance
Matrix

Figure 3.7: Diagram of Stage 2 of the clustering pipeline. In section A) se-
quences are used to train a single HMM model. In section B) sequences are passed
through the HMM model, the distance between transition matrices is calculated,
and DBSCAN is used to cluster the distance matrix to find clusters of sequences.

3.2.3 Stage 2 Output

The final output of the pipeline is the Event groups and the sequence clusters. This section
introduces measures and visualisation tools used to understand and interpret the output of

35



both stages of the pipeline.

After completing the initial timepoint clustering process, the dataset is redefined in terms
of the timepoint cluster memberships. The redefined sequences are used in Stage 2 of the
pipeline to cluster the time series data. This redefining step improves the pipeline in several
ways. First, it enables a more interpretable and less complex representation of the original
data. Instead of reading the dataset as a multivariate time series, which makes spotting trends
and tendencies difficult to non-experts, after the redefining, we are left with a univariate
sequence, which is easier to read and understand. Secondly, the clustering procedure is easier
to perform with a univariate time series dataset.

To visualise univariate time series of Event Group clustering labels, we use Sankey Di-
agrams [116]. Sankey diagrams are a useful visualization tool used to represent flows and
their transformations within a system. Sankey diagrams excel in showing how data points
move across timepoint. This helps in understanding the trends of cluster memberships across
several time series.

An example of this using a toy dataset is presented in section A of Figure 3.8. The
table shows an example of sequences with 5 timepoints and 4 possible events, either 1 or
0, corresponding to the event either occurring or not, respectively. The EG (event group)
row of the table shows the results of the 1st stage of the clustering pipeline. These integers
denote which timepoint cluster or event group the specific observations were clustered in
using K-means. In this example, there are 3 separate timepoint clusters. The sequence data
is then reorganised based on the sequence of EG memberships. This reorganisation is shown
in the EG row of the table of part A in Figure 3.8. We visualise the redefined sequences and
clusters of sequences using Sankey diagrams in section B.

In this example, they show the progression of the sequence timepoint cluster memberships
across the 5 observations. The Sankey diagram uses distinct colours to distinguish between
the different timepoint clusters. The 2 sequences can also be visualised using a Sankey
diagram, shown in part B of Figure 3.8. There the individual sequences are presented using
Sankey diagrams on top, along with the combined dataset of 2 sequences in a single Sankey
diagram. This visualisation allows for easier interpretation of a large number of sequences,
which will be shown in later sections. The height of the arrows in the sankey diagram
corresponds to the total number of occurrences of a specific Event Group.
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l\ Sequence 1 Sequence 2

Event 1

Event 2

Event 3

Event 4

EG
B
Sequence Cluster 0 Size: 1 Sequence Cluster 1 Size: 1
EG O EG O EG 0 EGO EG1 EG 2 EG 2 EG 1 EG1 EGO

All Sequences: 2

HEG 2 HEG 2 IEG 1 IEG 1 EG OI
IEG 0 IEG 0 IEG 0 I I

Figure 3.8: The figure shows how the EGs of the timepoints are turned into
Sankey diagrams. Part A) shows a matrix of the time series dataset of Sequences
1 and 2 and their corresponding Event Group assignments (EG). Part B) shows
the Sankey diagrams of the individual sequences and both sequences together.

EGO EG1

3.3 Pipeline Optimization

Hyperparameter optimisation is a crucial aspect of refining machine learning models for op-
timal performance. Hyperparameters, which are set prior to training, play a pivotal role in
influencing a model’s learning process. Several techniques of identifying optimal hyperpa-
rameters exist, such as grid search, random search, and Bayesian optimization, which are
commonly employed for this purpose [117, 118].

In clustering algorithms, the adjustment of parameters like the number of clusters or
distance metrics can significantly impact the final clustering results. Efficient hyperparameter
optimization ensures that models are well-suited to the specific characteristics of the data,
leading to improved performance and enhanced generalization on unseen data instances.

The 2-stage clustering model contains 5 parameters: MCA dimensions (m), number of
K-means clusters, number of states in the HMM, and DBSCAN parameters (¢ and minimum
samples). To find the best set of parameters, we used Bayesian hyperparameter optimisation,
with the Tree of Parzen Estimators (TPE) hyperparameter optimisation algorithm [119] from
the Hyperopt package [120]. In evaluating the quality of our clustering results, we employ
the Silhouette index [26].
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The silhouette index is a metric used to evaluate the quality of clustering in a dataset. It
quantifies how well each data point fits into its assigned cluster relative to other clusters. The
silhouette index ranges from -1 to 1, where a higher value indicates that the data point is well-
clustered, with a tight cluster and good separation from neighbouring clusters. Conversely,
a negative value suggests that the data point may have been assigned to the wrong cluster,
while values close to zero indicate overlapping clusters. The value optimised was the sum of
the silhouette indices from the timepoint clusters and final sequence clusters.

We define this combination of 2 silhouette indices as w and introduce a mixing coefficient
« which prioritises either timepoint clusters or sequence clusters. This is defined in the
equation below:

w = acg; + (1 — a)sg, (3.11)

where the ¢y and sg; are the silhouette indices for the timepoint clusters and sequence
clusters, respectively. The hyperparameters were selected by minimising the negative of w,
i.e., setting the loss to L = —w, which is equivalent to maximising the combined Silhouette
scores; thus, the lowest loss corresponds to the highest Silhouette combination (best cluster
separation/compactness).

During our experiments, hyperparameter optimisation was run several times with different
initialisation parameters A: different numbers of rare events removed and different mixing
coefficient « values. We use the combination of 2 silhouette index values from the 2 stages
because we are looking for solutions which produce high-quality results across both stages of
the pipeline. Optimising each stage individually was tested but resulted in subpar outputs
(details in the Appendix). Tuning a single DBSCAN parameter while holding the other fixed
(e.g., choose € with min samples=>5, then tune min _samples). Because ¢ and min_samples
are coupled, step-wise tuning can become trapped on ridges of the objective surface and
produce weaker solutions. The solutions ofthen fail basic internal checks on the precomputed
distance matrix: poor separation/compactness (low Silhouette), degeneracy (one giant cluster
or extreme fragmentation), excessive noise fraction, or instability under small parameter
perturbations. This simultaneous way of optimising both silhouette indices ensures that
both the timepoint clusters as well as the sequence clusters are of high quality. Although this
optimisation provided high-quality results in terms of the combined silhouette indices, there
was a large amount of overlapping solutions. The sets of parameters which resulted in the
best loss values in some cases provided largely similar solutions.

3.4 Pipeline validation

Validation is a critical step in the development and assessment of any clustering algorithm,
as it ensures that the algorithm performs reliably and produces meaningful results. In this
section, we focus on the validation of our sequence clustering pipeline. The validation process
is designed to test the robustness, accuracy, and effectiveness of our clustering approach in
identifying the underlying structure of the data.

To rigorously evaluate the performance of Stage 2 of the pipeline, we apply it to a series
of artificially generated datasets. These datasets are constructed using predefined HMMs,
allowing us to control the complexity and characteristics of the sequences. By using synthetic
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data, we can create scenarios where the true underlying models are known, providing a clear
benchmark against which to measure the success of our clustering procedure.

The primary objective of this validation process is to determine whether our sequence
clustering pipeline can accurately recover the number of HMMSs used to generate the arti-
ficial sequences. This involves not only identifying the correct number of clusters but also
ensuring that the sequences within each cluster are associated with the same HMM model.
Success in this validation task would demonstrate that our methodology is capable of captur-
ing the essential temporal dynamics and state transitions that define each sequence, thereby
validating its applicability to real-world data. Additionally, we explore how different pa-
rameters of the HMMs impact the results of the pipeline, to gain an understanding of the
sensitivity of the clustering procedure to changes in data complexity. By varying the HMM
parameters used to generate the sequences, we were able to create diverse sets of sequences
for clustering. The generated sequences were of fixed lengths and sampled multiple times
from each HMM to ensure variability within the datasets.

To select the hyperparameters of DBSCAN, we employ the same hyperparameter optimisa-
tion strategy that we intend to use on real-world datasets.

The first step of the process involves defining distinct HMM models which generate unique
sequences of integer values. Next, we follow the process of clustering the sequences similarly
to how we use the 2-stage clustering pipeline. We fit a single HMM model using all sequences,
then find the distance between the induced transition matrices from each sequence. This step
is described in further detail in subsection 3.2.1.

The resulting distance matrix is clustered using the DBSCAN algorithm. The DBSCAN pa-
rameters € and minimum samples are found using hyperparameter optimisation by setting
the silhouette value to be maximised during the optimisation.

For each experiment, we generate 50 sequences each of length 10. We used a length of
10 as this length reflects the real-world datasets. A total of 50 sequences were selected as a
sample size, for computational efficiency and time constraints. We tested the performance
of the HMM by fitting models with varying numbers of states, ranging from 2 to 5, for each
experiment to determine the best performance for clustering. After obtaining the distance
matrix, we use the hyperparameter optimisation to determine the DBSCAN parameters. The
search space for the parameters is defined in the table below and will be used for all further
experiments unless stated otherwise.

Hyperparameter Search Space
DBSCAN (¢) Uniform [0.1, max(dists)]
DBSCAN (min samples) Int Uniform [2, 50]

Table 3.1: The Hyperopt search space we used for hyperparameter optimisation.
The distributions are noted in pseudocode corresponding to the distribution in
the Hyperopt package. The Uniform distribution is a probability distribution
where all the values within the specified range are have the same probability to
occur. Whereas the Int Uniform distribution is a probability distribution where
all integer values within the specified range have equal probability to occur.

The space of parameters was chosen to limit the search within a reasonable range of
values of € and minimum samples. The optimisation was run for 600 was enough to converge
iterations after which the distance matrix was clustered with the parameters which resulted
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in the highest silhouette score. In addition to the silhouette index calculated during the
optimisation, we calculate internal measures for the final clustering: Adjusted Rand Index
(ARI) [121], Normalized Mutual Information (NMI) [29], Fowlkes-Mallows Index (FMI) [122],
high values of these measures reflect that the clustering matches the true labels from which
the sequences were generated.

3.4.1 Single HMM Model

For the first experiment, we created a single HMM with 3 hidden states and 2 possible
values to emit, with the following start probabilities (7), transition matrix (A) and emission
probabilities (B):

0.8 0.1 0.1 0.6 0.4
m=[03 0.3 0.4] A=101 08 0.1 B= 03 0.7/.
0.1 0.1 0.8 0.8 0.2

The sequences are characterised by emitting almost exclusively values based on their
respective state value.

Clustering Results

Since the silhouette index is undefined for a single cluster, we assigned a loss value of 0
during the optimisation step whenever a single cluster was detected. This approach was
consistently applied in subsequent experiments and throughout the pipeline when tested
with real-world datasets. This was a limitation in this specific experiment as the sequences
are originating from a single HMM model; therefore, they should all be part of a single
cluster. This is discussed in more detail in the result evaluation section. After performing
the hyperparameter optimisation to identify the DBSCAN parameters, we use internal metrics
to measure the quality of the resulting clustering. The hyperparameter optimisation was
tested with different numbers of HMM states, the results of this is presented in Table 3.2.

Number of States ARI NMI FMI € Min Samples Silhouette Score
2 0.0 0.0 0.835928 0.005913 27 0.669908
3 0.0 0.0 0.921844 0.000490 19 0.580835
4 0.0 0.0 0.851889 0.008133 29 0.581771
5 0.0 0.0 0.851889 0.007732 27 0.583195

Table 3.2: Cluster evaluation metrics for different numbers of states.

In addition to this, we also present the cluster labels from the clustering results of different
numbers of hidden states Figure 3.9.
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Figure 3.9: Results of a single HMM model.

Discussion of results

When there is only a single cluster present in the true labels, the interpretation of cluster-
ing performance metrics like Adjusted Rand Index (ARI), Normalised Mutual Information
(NMI), and Fowlkes-Mallows Index (FMI) can be different to when there are more than one
cluster. If the true labels consist of a single cluster, ARI is not well-defined for evaluating
multiple clusters. Typically, the ARI will be close to zero if the predicted clustering has
more than one cluster, indicating no agreement beyond chance. With a single cluster in the
true labels, NMI can also be problematic because mutual information requires variability in
both clusterings to provide meaningful information. The FMI measure is different to other
measures in this case. If the true labels have a single cluster, the precision and recall are
defined in relation to how well the predicted clustering identifies the single cluster. If the
predicted clustering also assigns all points to one cluster, FMI will be high. This explains the
values of ARI and NMI across the different numbers of states for this specific experiment.
When looking at the results of the clustering in Table 3.2 the FMI value is consistently high
across all numbers of states. Additionally, the cluster label distribution in Figure 3.9 can
be seen to largely cluster the sequences into a single cluster with several outliers across the
different tests. Despite the limitation of the silhouette index in the hyperparameter optimi-
sation, the results were still mostly accurate, as can be seen in Figure 3.9 as most sequences
were correctly identified to be originating from a single cluster.

41



3.4.2 Experiment with two HMMs

For this experiment, we tested the clustering performance with 2 separate HMM models,
each generating distinct sequences. The HMM model parameters are listed below:

m = [0.9 0.05 0.05]

m = [0.05 0.9 0.05]

Ay =

0.8 0.1 0.1
0.1 08 0.1 By
0.1 0.1 0.8

0.06 0.9 0.05
Ay = 10.056 0.05 0.9 By

0.9 0.05 0.05

[0.05
— 10.05
0.05

0.05
= 10.05
0.05

0.9 0.05]
0.9 0.05
0.9 0.05)

0.05 0.9]
0.05 0.9
0.05 0.9

The sequences generated by the 1¢ HMM model are largely composed of the second value
from the emission matrix, while the sequences 2"¢ HMM are primarily the third value from
its respective emission matrix. The HMM models were defined in such a way as to lead to
distinct sequences to test the capabilities of the clustering method.

Clustering Results

Results of the hyperparameter optimisation are presented in Table 3.3.

Number of States ARI NMI FMI € Min Samples Silhouette Score
2 0.851885 0.833952 0.922286 0.010611 4 0.976185
3 0.849468 0.805798 0.920973 0.023196 9 0.944519
4 0.959996 0.929125 0.979800 0.045167 14 0.947073
5 0.849576 0.798824 0.921930 0.077352 18 0.925119

Table 3.3: Cluster evaluation metrics for different numbers of states.

The cluster label distributions are presented in Figure 3.10.
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Figure 3.10: Results after cluster of distribution between clusters. All the se-
quences were correctly separated into 2 clusters.

Discussion of results

The results are summarised in Table 3.3. The Adjusted Rand Index (ARI) measures the
similarity between the true cluster assignments and the clusters obtained from the DBSCAN
clustering. For the configurations tested, ARI values indicate high agreement between the
true labels and the clustering results, ranging from 0.849468 to 0.959996. Normalised Mutual
Information (NMI) assesses the amount of mutual information shared between the true and
predicted clusterings. NMI values range from 0.805798 to 0.929125 across different numbers
of states, indicating substantial information sharing. The Fowlkes-Mallows Index (FMI)
combines precision and recall to evaluate clustering performance. The consistently high
FMI values across different configurations reflect strong precision and recall for the clusters
obtained. The Silhouette Score measures the quality of clustering based on how similar
each sample is to its own cluster compared to other clusters. Across different configurations,
Silhouette Scores range from 0.925119 to 0.976185, indicating well-defined clusters with high
cohesion and separation. Looking at the cluster label distributions in Figure 3.10, across all 4
tests, most sequences were separated into 2 separate clusters with only several cases of outliers
or supplementary clusters. Overall, the performance of this test was largely successful, as
evidenced by high ARI, NMI, FMI, and Silhouette Score values as well as accurate separation
of sequences into the correct number of clusters. The choice of 4 states stands out with
particularly high scores across multiple metrics, suggesting that this configuration captures
the underlying structure of the data effectively.
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3.4.3 Experiment with 3 HMMs

To further test the capabilities of the clustering performance, we created 3 distinct HMM
models, the matrices for which are listed below:

0.8 0.1 0.1 [0.05 0.9 0.05]

m =1[0.8 0.1 0.] Ay =101 08 0.1 By ={0.05 0.9 0.05
0.1 0.1 0.8 10.05 0.9 0.05

[0.05 0.9 0.05] [0.05 0.05 0.9]

m=[0.1 0.8 0.1] Ay = [0.05 0.05 0.9 By = [0.05 0.05 0.9
0.9 0.05 0.05] 10.05 0.05 0.9

[0.05 0.9 0.05] [0.9 0.05 0.05]

m3=[0.1 0.1 0.8] A3 =10.05 0.05 0.9 Bz =09 0.05 0.05
0.9 0.05 0.05] 0.9 0.05 0.05

The HMM models were defined similarly to the ones in the experiment, with 2 HMM
models, where each model primarily emits a single value. This was so that all sequences were
largely distinct from one another.

3.4.3.1 Clustering Results

The results of the optimisation are listed below in Table 3.4.

Number of States ARI NMI FMI EPS Min Samples Silhouette Score
2 0.362520 0.522375 0.574969 0.004117 2 0.935057
3 0.851544 0.878823 0.900189 0.036672 15 0.852330
4 0.792581 0.822921 0.859860 0.014311 6 0.876012
5 0.979932 0.970191 0.986532 0.084041 33 0.853197

Table 3.4: Cluster evaluation metrics for different numbers of states.

The cluster label distributions are presented in Figure 3.11.
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Figure 3.11: Results after cluster of distribution between clusters. All the se-
quences were correctly separated into 2 clusters.

Discussion of results

The performance of the clustering was evaluated using several metrics: Adjusted Rand In-
dex (ARI), Normalised Mutual Information (NMI), Fowlkes-Mallows Index (FMI), and Best
Silhouette Score. The results are summarised in Table Table 3.4. The ARI values show
an increasing trend with the number of states. The ARI starts at 0.362520 for 2 states and
reaches 0.979932 for 5 states. This indicates that the clustering becomes more consistent with
the true labels as the number of states increases. Similarly, the NMI values also demonstrate
an improvement with an increasing number of states. For 2 states, the NMI is 0.522375, and
it increases to 0.970191 for 5 states. Higher NMI values suggest that the mutual informa-
tion shared between the predicted clusters and the true labels is higher, indicating better
clustering performance. The FMI values follow the same trend as ARI and NMI. Starting at
0.574969 for 2 states, the FMI increases to 0.986532 for 5 states. This index combines the pre-
cision and recall of the clustering, and higher values indicate better clustering performance.
The results of the cluster analysis indicate that increasing the number of states in the HMM
generally improves the clustering performance, as evidenced by higher ARI, NMI, and FMI
values. The optimal parameters for the DBSCAN algorithm (e and minimum samples) vary
with the number of states, reflecting the different clustering resolutions needed for different
state configurations. When looking at the cluster label distribution in Figure 3.11, the per-
formance of the test with 2 states was the worst. This is perhaps due to the model with only
2 states not being able to capture the variety of distinct sequences originating from 3 distinct
models. On the other hand, as the number of states increases, the performance increases.
The tests with 2 and 3 states identified 4 clusters, where 2 clusters were approximately of the
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same size as the number of sequences generated from each HMM model (50); however, the
other 2 clusters seem to have split the sequences from a single HMM into 2 separate clusters.
Overall, the analysis shows robust clustering performance across most tested state numbers,
with particularly high silhouette scores indicating well-defined clusters.

3.4.4 Conclusions

In this section, we demonstrated the application of HMM-based clustering on artificially gen-
erated datasets created using Hidden Markov Models (HMMs). Our primary objective was
to evaluate whether the clustering procedure could accurately identify the number of HMM
models from which the artificial sequences were generated. Although the clustering did not
recover the underlying latent-state structure of the generative HMMs (i.e., it did not infer
the true number of states), the pipeline did reliably group sequences with similar dynam-
ics, even when they were generated by HMMs with different state counts. In this study,
the object of interest is the partition of sequences into comparable trajectory clusters and
not the identification of HMMs’ state numbers. The process began with the definition of
distinct HMM models, each generating unique sequences of integer values. We then applied
a clustering approach similar to our two-stage clustering pipeline. Initially, a single HMM
model was fitted using all sequences. Subsequently, we calculated the distances between the
induced transition matrices of each sequence. This distance matrix was then clustered using
the DBSCAN algorithm, with the parameters ¢ and minimum samples optimised through hy-
perparameter tuning to maximise the silhouette value. By using multiple HMMSs to generate
artificial sequences, we simulated systems with varying temporal dependencies. Each HMM
was defined by specific start probabilities, transition matrices, and emission probabilities,
allowing us to produce diverse sets of sequences for clustering. The sequences were of fixed
lengths and were sampled multiple times from each HMM to ensure variability within the
datasets. The clustering results confirmed that our methodology could successfully iden-
tify the distinct HMM models from which the sequences were derived. This validation of
Stage 2 of our clustering pipeline underscores its ability to discern the number of underlying
HMM models, thereby demonstrating its effectiveness in capturing the inherent structure and
temporal dependencies within the data.
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Chapter 4

Optimising Clustering Analysis:
Grouping and Visualising
Equivalent Solutions

During hyperparameter optimisation of clustering analysis, it is common to encounter mul-
tiple equivalent solutions, especially in scenarios where the optimisation landscape exhibits
symmetry or redundancy. In this context, equivalent solutions refer to distinct sets of hyper-
parameters that produce nearly identical clustering outputs. These equivalent solutions can
create challenges in hyperparameter tuning, leading to ambiguity in selecting the optimal
clustering solution.

In this chapter, we introduce a comprehensive methodology for grouping and analysing
clustering solutions based on their similarity. This approach is supported by a graphical user
interface (GUI) designed for visualising and interpreting these relationships. The chapter
addresses the challenges of evaluating and distinguishing between numerous clustering so-
lutions that arise during hyperparameter optimisation, where multiple equivalent solutions
complicate the selection process.

To address these challenges, we propose a similarity-based graph approach for comparing
and categorising clustering solutions. In this graph, each node represents a unique clustering
solution, while edges indicate the similarity between pairs of solutions. This representation
allows us to systematically identify distinct solutions while filtering out redundant or equiv-
alent ones, simplifying the analysis of optimisation results. We also introduce prototype
solutions, which act as representatives of similar groups of clustering solutions, thus reducing
the number of solutions to analyse without losing meaningful diversity. Figure 4.1 presents
an overview of the process for obtaining these prototype solutions.

The chapter also details the development of a GUI designed for exploring and analysing
these similarity graphs. This tool provides a user-friendly interface, allowing researchers to
interactively visualise relationships between clustering solutions and enhance interpretability.
Additionally, we introduce the use of Sankey diagrams to illustrate how different clustering
solutions relate to one another, providing deeper insights into the equivalence and distinctions
between solutions.
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Figure 4.1: General overview of how to obtain a subset of prototype solutions
from the original dataset. A dataset is first clustered using an arbitrary cluster-
ing pipeline, next the clustering solutions are analysed by constructing a graph
using distances between solutions as. Prototype solutions are extracted from the
Solution graph and represent unique ways of partitioning the dataset.

4.1 Graph of Clustering Solutions

This section introduces the graph of clustering solutions and the process of extracting unique
solutions from the graph. Starting with a large space of possible clustering solutions, our
goal is to extract distinct solutions by measuring similarity between them. Measuring the
similarity between clustering solutions enables us to visualise their relationships in a two-
dimensional graph representation. Using this graph, we set a similarity threshold to identify
clusters of similar solutions, from which we select a single representative solution—referred to
as the prototype solution. These prototype solutions provide a simplified yet representative
overview of the entire solution space.

Given a set of clustering solutions F = {C;, Cay,...,C,}, we aim to compute the pairwise
similarity between each pair of solutions and construct a graph where each node represents a
clustering solution and each edge represents the similarity between two solutions. The steps
of this are described as follows.

The similarity measure S(C;, C;) quantifies how similar two clustering solutions C; and

C; are to one another. Specifically we use the element-centric clustering comparison
[123] a similarity function S : Cx C — R such that S(C;, C;) quantifies the similarity between
clustering solutions C; and C;.
Given two clusterings C; and Cy of the same n elements, we follow [123]. For a clustering
C, let B(®) € R™F* he the element-cluster membership matrix (hard or soft), and S =
diag(si,...,sk) with sc = >0, B&S). Projecting the bipartite affiliation graph yields the
cluster-induced element graph with

w (€ — B(C) g-1 (B(C))T.
Let P(©) = D=1W(C) be the row stochastic transition matrix (D is the degree diagonal).

For each element u, the personalised PageRank (PPR) vector is the solution of

79 = ae, + (1-a) (PO 7O, ac(01),

u u

which serves as the element-centric association profile for element u. The per—element agree-
ment between C; and Cs is the corrected L1 agreement between PPR distributions,

Sy = 1 —El(ﬂ'(cl), 77(02)),

u
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and the element—centric similarity is
1 n
S(Cl, CQ) = E Zl Su-
—

This formulation was used as it is label-free, size-aware, and accommodates overlapping and
hierarchical clusterings [123].

F = {Cl, Cl’ "'FC‘U.} S G = (V, E)

Solution
Graph

Clustering
Solutions

Prototype
Solutions

Clustering Pipeline

Figure 4.2: The dataset is first clustered using an arbitrary clustering pipeline,
and the resulting clustering solutions are analysed by constructing a similarity
graph. Prototype solutions are then extracted from the solution graph, represent-
ing unique ways of partitioning the dataset.

S:CxC—=R
(Ci,Cj) — S(Cl,Cj)

After computing the similarities between all clustering solutions in F, we use S to denote the
similarity matrix between the solutions. Next, to construct an undirected graph G = (V, E)
where each node v; € V represents to a clustering solution C; € F. The edge set F is defined
such that an edge e;; € F exists between nodes v; and v; with weight w;; corresponding to
the similarity S(C;, C;) between the 2 solutions.

G = (V,E)
V ={v1,v9,...,0y}
E ={e;j | vi,v; € V and e;; = (v;,vj,ws5)}
wij = S(Ci, Cj)

The graph G corresponds to all clustering solutions in the dataset F and how similar these
solutions are to each other. However, depending on the size of F, the graph G can still be
difficult to interpret. The graph of solutions, as shown in Figure 4.2, can be inspected to
relate the width of the edges to the magnitude of the similarity between specific connections;
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however, more insight into the clustering solutions can be extracted.

To identify unique groups of clustering solutions from G we introduce a method of re-
taining connections between solutions that are similar only within a specified threshold.
Introducing a similarity threshold removes connections between solutions that barely share
any clustering information with each other. After this threshold is applied, the previous fully
connected graph is split into several connected components or, as we define them, clusters
of solutions. The clusters of solutions are connected nodes with edge weights above the
specified threshold and represent groups of solutions that share a significant amount of over-
lap between the memberships of the elements in the clustering. If there are only a limited
number of unique ways of clustering the dataset present in F', these unique clusterings will
be represented by the clusters of solutions after setting this threshold value. Details of this
process are specified next.

Let 6 be a similarity threshold. To find clusters within the graph G, we apply a
similarity threshold 6 to the edge weights S. Retaining only the edges e;; with weights
w;; > 6. Form a subgraph G’ = (V, E’) where:

E' = {eij | wi; > 0}
The connected components in the new graph G’ can be identified next. Each connected
component C; represents a cluster of similar clustering solutions.

In summary, the process can be encapsulated as:

F={Cy,Cy,...,C,}
S:CxC—=R
G = (V,E) with V = {v1,v2,...,v,} and E = {e;; = (v;,vj,wsj) | wi; = S(Cy,Cj)}
G' = (V,E') with E' = {e;; | w;; > 6}
After this process, the resulting groups of solutions C; are the connected components of

G’. This is represented in a diagram in Figure 4.3.

Using this methodology, we have identified groups of distinct clustering results from a
large set of clustering solutions. This process is visualised in Figure 4.3. This method of
identifying clusters of solutions is further expanded on in the next section by only selecting
a single solution as the representative prototype solution.
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Figure 4.3: Diagram of the identifying prototype clustering solutions.

4.2 Prototype Solutions

A longstanding challenge in cluster analysis is selecting the most appropriate clustering so-
lution, as different disciplines and applications may require alternative solutions [124]. In
the previous section, we introduced a methodology for constructing a graph where nodes
correspond to clustering solutions and edges correspond to the similarity between them. By
applying a threshold to this graph, we can partition it into clusters of solutions, each repre-
senting a distinct way of clustering the same dataset. This approach offers a clear overview of
the number of unique clustering solutions present within the solution set and the frequency
of their occurrence.

In this section, we introduce the concept of a prototype solution, a single clustering
solution from each group of solutions identified from the graph. The prototype solution rep-
resents a unique way of clustering the dataset. This allows for the condensing of a large
set of possible clustering solutions with many overlapping and similar solutions into several
prototype solutions, each corresponding to a unique partition of the dataset. This proto-
type solution is determined by identifying the solution with the highest internal or external
measure. The details of this are described below.

Let C; be the connected components of the solution graph G’ after applying a threshold of
similarity, described in detail in the previous section. The solution with the highest internal
or external validation measure in C is the prototype solution P. This can be formalised as:

P= «l(C,0), 4.1
arg max svai(C, C) (4.1)

where sy, is the validation measure of solution C; in cluster of solutions C;. This is
visualised in Figure 4.4.
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Figure 4.4: Diagram of the selecting prototype solutions from clusters of solutions
C; and C; from Figure 4.3. The values in the centre of each node are the validation
indices for the specific solution.

Many clustering results are equivalent across a large space of possible clustering solutions.
Our goal in this section is to remove redundant solutions and only select distinct and unique
solutions. We define prototype solutions to be these unique solutions, which represent unique
partitions. A further, more intuitive explanation of this is depicted in Figure 4.5. In the
figure, 4 different clustering solutions of the same dataset are shown. Some of these clustering
solutions are more similar to one another, where the differences between solutions are minimal;
we refer to these solutions as equivalent or redundant. From the 4 solutions, it can be seen
that the space of solutions can be cut in half, as only 2 solutions are actually distinct from
one another. In cases where some solutions are not found to be similar to any other solutions
in the dataset, these are also considered prototype solutions, as they represent a unique
partition of the dataset.
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Figure 4.5: An example showing how 4 solutions can be simplified into 2 unique
solutions. Solutions 1 and 2 both have 2 clusters with only 2 elements changing
memberships between the solutions. Solutions 3 and 4, on the other hand, have
3 clusters and would intuitively be considered different from solutions 1 and 2.
Out of the 4 possible clustering solutions, we can identify solutions 1 and 3 as

the prototype solutions for this specific example, as they represent unique ways of
partitioning the dataset.

4.2.1 Visualising Prototype and Solution Clusters

The most common technique of visualising clustering solutions is by colour coding points in

a 2-d space to represent different cluster memberships. An example of this is presented in
Figure 4.6.

Clustering of Synthetic Data with k=3

Cluster 1
o %ss = Cluster2

o gule 3= ..
10 s DN L (PR Cluster 3
5‘.‘:“: 8 Centroids

Feature 2

-10.0 -75 -5.0 -25 0.0 25 5.0 75
Feature 1

Figure 4.6: Clusters represented as clouds in a 2-d space.
This visualisation is a useful technique; however, when several possible clustering solutions
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exist, presenting these becomes difficult. Presenting several plots in the style of Figure 4.6
with different memberships can become overwhelming with increasing numbers of solutions.
Additionally, differences between element memberships across clustering solutions are not as
easy to identify. To address this, we introduce a method of visualising clustering solutions
using Sankey Diagrams. Sankey Diagrams were introduced in Chapter 3 to present the
sequence clusters.

Here, we introduce the use of Sankey diagrams to visualise the flow of element member-
ships across different clustering solutions. The nodes in these Sankey diagrams are scaled
based on the size of the clusters, and the thickness of the connections in the Sankey plots re-
flects the number of samples which change cluster memberships across the different solutions.
An example case of this with 2 clustering solutions from Figure 4.5 is shown in Figure 4.7.

s
i

 e— Y — | —
I — Y —|

LI

Figure 4.7: Example of using sankey diagrams to represent changes in clustering
solutions. In section A) 2 clusters change in size in different solutions. In section
B) there are 3 clusters in each solution and 2 objects shift to different clusters.

In Figure 4.7 part A) shows 2 solutions, each with 2 clusters. The solutions only differ by
2 elements, represented by the flow from the left to the right side. Part B) of the Figure 4.7
has 3 clusters, where 2 elements of the yellow cluster on the left-hand side move to the pink
and mint colored clusters. Instead of having to search for differences between the solutions,
the Sankey diagram shows what proportion of elements moved to another cluster.

4.3 Application to Simulated Dataset

To test the approach introduced in the previous sections, we unified the solution graph and
selection of prototype solutions in a single example case. We present a scenario with 9
simulated clustering solutions of the same dataset and test our methodology of constructing
a graph using the element-centric similarity score as the edges and clustering solutions as
nodes. We then introduce a threshold value to find connected components of clusters of
similar solutions. The aim of this is to show a use case of identifying unique clustering
solutions from a dataset of several clustering solutions.

The set of 9 clustering solutions is presented in Figure 4.8, with 14 elements ordered in
a clockwork pattern and colored based on cluster memberships. We construct a convex hull
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to represent the shape of the cluster formed by connecting elements in the same cluster,
providing a minimal bounding region that encompasses all the points.

Clustering Solution 1 Clustering Solution 2 Clustering Solution 3

N

Clustering Solution 4 Clustering Solution 5 Clustering Solution 6

»

Clustering Solution 7 Clustering Solution 8 Clustering Solution 9

o

Figure 4.8: Different clustering solutions.

To illustrate a wide range of clustering examples, the partitions in Figure 4.8 vary from
2 clusters to 5 clusters and memberships are shifted across the different clustering solutions.

To visualise these solutions in a graph as described in Section 4.2, the similarity matrix
is calculated between all 9 solutions and used to construct a weighted graph displayed in
Figure 4.9. The similarity between each solution is displayed atop the edges in the graph.
The graph is fully connected as each solution has a similarity to another solution.
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Figure 4.9: Fully connected graph of solutions.

This graph representation can be useful to inspect the similarity between solutions. To
further the understanding of how the solutions are related, it is useful to filter more and less
connected solutions and group the more connected solutions together. For this purpose, we
introduce the threshold similarity value and remove connections that fall below the threshold.

To understand how the graph changes with different threshold values, the threshold is
increased from 0 to 1 in increments of 0.01. The solution graph with a threshold of 0.35
is presented in Figure 4.10. Edges in the graph below the threshold value are plotted in a
transparent grey, while the connections above the threshold maintain the original grey from
the fully connected graph. The threshold of 0.35 was chosen as this was the first value where
a solution was separated from the rest of the graph. Solution 8 can be seen as the most
distinct from the rest of the solution set. This can be seen in Figure 4.8, where the cluster
memberships of elements in Solution 8 are not shared with any other clustering solution.
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Figure 4.10: Graph of solutions with a similarity threshold of 0.35. The connec-
tions below the threshold have been changed to a transparent grey colour.
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To illustrate Solution 8 and how different it is from the rest of the solution set, a sankey
diagram of clustering memberships is shown in Figure 4.11. Solution 8 is the least similar
to the other solutions in the result dataset, as it has a very unique cluster composition, and
this partition of elements does not resemble the other solutions. This does not imply that
solution 8 is not worth inspecting or analysing further, only that compared to other solutions
among the results, it stands out as unique.
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Figure 4.11: Sankey diagrams for Solution 8 with Solutions 1 and 9. Solution
8 was found to be the least similar to any of the other clustering results in the
dataset. This image illustrates this using the previously introduced Sankey visual-
isation for clustering solutions. Memberships from solution 8 share little similarity
to the 2 solutions presented here.

If the similarity threshold is further increased to 0.5, the solutions form 4 clusters of
solutions, displayed in Figure 4.12. The only solution not clustered with any other solution
is Solution 8.
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Figure 4.12: Graph of solutions with a similarity threshold of 0.5.
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To understand how the solution clusters are related, we use the Sankey cluster diagrams.
The first step is to investigate the intra-cluster relationship between solutions. In Fig-
ure 4.13 and Figure 4.14, the sankey diagrams are displayed from the Solution clusters of
Figure 4.12. The figures highlight how the memberships of solutions in the same solution
cluster are largely overlapping.
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Figure 4.13: Connected components with the respective sankey diagrams.

59



Solution 7 Solution 9
ICIuster < Cluster 1I
ICIuster 5
Cluster ZI
ICIuster 1 I
Cluster 3I
ICIuster 2
™ Cluster 4] ®
ICIuster 3 Cluster 5.

Solution Cluster 1
Solution Cluster 2
3

,. or 4
.—‘ 05102 on Cluster 5

._ 07286 ‘.

a0
[

._ 0.7714 “

Solution 4 Solution 5

ICIuster 1 Cluster 1I
ICIuster > Cluster 2I

Cluster 3'

ICIuster 3 lusiar 4I

Figure 4.14: Connected components with the respective sankey diagrams.

Part B) of Figure 4.13 shows solution cluster 2, comprised of solutions 1 and 3. Both
solutions have grouped elements 6 through 14 into the same cluster, although element 5 in
Solution 1 is part of a different cluster. The large proportion of elements belonging to the
same cluster across different solution is largely the reason why the element-centric similarity
measure is high between these 2 specific solutions. Similar trends of elements belonging to
the same clusters across different partitions are displayed in part D) of Figure 4.14.
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In addition to intra-cluster sankey diagrams for solutions, we also present sankey diagrams
for inter-cluster solutions in Figure 4.15. A single solution from each solution cluster
is selected along with Solution 8 as the unique solutions from the entire dataset. This is
equivalent to the methodology of selecting a prototype solution based on the highest validation
index, even though in this simulated example, we have made the solution selection arbitrarily.
The sankey diagram in Figure 4.15 is a representation of the 5 unique partitions from the 9
possible clustering solutions.

Solution 1 Solution 2 Solution 4 Solution 8 Solution 9

Cluster 5I
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Figure 4.15: Connected components with the respective sankey diagrams.

In this section, we have described a series of steps taken to analyse a set of possible
clustering results for the same dataset or partitions. From a dataset of 9 partitions, we first
constructed a graph based on the similarity between all solutions, and later created groups
of similar solutions. This methodology has provided a way of reducing the space of possible
solutions and a visualisation tool for understanding relationships between different solutions.

To use this methodology with other datasets and produce sankey diagrams for intra and
inter-cluster comparisons, we developed a Graphical User Interface (GUI).

4.4 ClusterView: A GUI for Exploring Clustering Solutions

To effectively analyse and interpret clustering solution results, it is essential to have a user-
friendly interface that integrates all the methods and plotting techniques introduced in the
previous sections. The goal of this section is to discuss the development of such an inter-
face—a unified graphical user interface (GUI)—designed to be utilised with other datasets of
clustering solutions.

A broad literature supports visual interpretation and comparison of clustering. Sur-
veys cover interactive and graph-centric approaches [125, 126]. Core techniques include dy-
namic evaluation via parallel cluster views and interactive dendrograms [127], hybrids such as
dendrogram-table views [128], multilevel navigation (SnakeTrees) [129], heatmaps with par-
allel coordinates [130], and force-directed layouts for multi-component graphs [131]. These
ideas are integrated into systems like XCluSim [132], Clustervision [133], Clustrophile 2 [134],
and VICTOR [135], spanning applications from bioinformatics and medical records to large-
scale networks [134, 136, 137]. Despite this progress, several challenges remain. One common
limitation across systems is the difficulty of comparing large collections of clustering solutions,
particularly when only a few are meaningfully distinct and many are redundant. While tools
like Clustrophile 2 and VICTOR allow for user-driven exploration and ranking of results, they
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often rely on limited visual summaries or require iterative manual inspection. This creates
a need for more systematic techniques to structure the space of clustering solutions, reduce
redundancy, and highlight patterns across different solutions.

The creation of a GUI serves several critical purposes in the context of clustering solution
analysis using the graph of solutions methodology. Firstly, clustering analysis often involves
working with large, complex datasets where manual inspection and analysis of individual
solutions can be time-consuming and prone to errors. It is often necessary to filter the
solutions to only select a specific subset based on certain criteria. A well-designed GUI can
streamline this process by providing a cohesive platform that allows users to efficiently explore
and interpret the results.

CluterView is developed within the Jupyter Notebook platform, a widely used environ-
ment for data analysis, which offers an interactive interface for writing and running code.
Since Jupyter Notebooks are a common workspace for data scientists and researchers, incor-
porating the GUI into this platform allows users to seamlessly transition from data analysis
to visualisation and interpretation without leaving the environment they are accustomed to.
This integration enhances workflow efficiency and makes the tool more accessible to users
already familiar with Jupyter.

4.4.1 User Requirements and Features

e Selection of Solution Dataset: The GUI should allow users to easily select the
dataset containing the clustering solutions they wish to analyse. This feature is crucial
for handling multiple datasets and enabling comparisons between different clustering
methods or parameter settings.

e Threshold Selection: Manually changing the similarity threshold is useful as certain
datasets may present different patterns of cluster similarity. Having the ability to adjust
this value can give insight into the partitioning of the graph.

e Parameter Selection for Data filtering: The ability to filter and select subsets
of the dataset based on specific parameters is essential. This feature allows users to
focus on particular aspects of the data, such as specific clustering solutions or ranges
of similarity scores, making the analysis more targeted and manageable.

¢ Plots of Selected Parameters: Visualisation is a key component of clustering anal-
ysis. The GUI should provide options to generate plots of the selected parameters,
enabling users to quickly identify patterns, outliers, or other notable features within
the data.

e Graph of Solutions: A visual representation of the clustering solutions in the form
of a graph helps users understand the relationships between different clusters. This
feature is for visualising how solutions are connected based on similarity measures.

The development of a GUI for clustering solution analysis is driven by the need for a
user-friendly, efficient, and integrated tool that can handle the complexities of large datasets.
By incorporating all necessary features within the familiar Jupyter Notebook environment,
this GUI will significantly enhance the ability of researchers and data scientists to interpret,
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understand, and visualise clustering results, ultimately leading to more informed decision-
making and deeper insights into the data.

4.4.2 Design and Functionality of the GUI

To address the challenges inherent in evaluating and comparing clustering solutions, we have
developed a specialised graphical user interface (GUI). This section presents the background,
design, and functionality of the GUI, which integrates advanced visualisation techniques,
similarity measures, and quality metrics to provide a comprehensive tool for clustering eval-
uation.

Our approach to solving this problem involved the development of a GUI that transforms
multiple clustering solutions into an interactive graph-based representation. In this graph,
each node represents a distinct clustering solution, while edges between nodes represent the
similarity between these solutions. This visualisation not only aids in comparing different
solutions but also enhances the interpretability of the results, making it easier for users to
identify patterns, trends, and insights within the data.

The GUI consists of several interactive elements designed to facilitate the analysis of
clustering solutions. The interface is divided into segments that correspond to different
stages of the analysis process, each providing specific functionalities and addressing the user’s
requirements.

e Dataset Selection and Parameter Adjustment: As shown in Figure 4.16, the first
segment of the GUI allows users to select the dataset they wish to analyse. Section A of
the interface provides a dropdown menu for dataset selection, while Section B includes
sliders and input fields for adjusting various clustering parameters. Users can filter
solutions based on these parameters, ensuring that only relevant solutions are included
in the analysis. Section C provides options for plotting the graph and saving the images
directly to the local machine.

e Clustering Solution Analysis: The second segment, illustrated in Figure 4.17, fo-
cuses on the analysis of the selected clustering solutions. Section A displays the number
of solutions that remain after applying the filters, providing an overview of the dataset’s
characteristics. Histogram plots in this segment (shown in red) depict the distribution
of various parameters such as Event Group (EG) values, outlier ranges, and the num-
ber of hidden Markov model (HMM) states. These visualisations help users to quickly
assess the spread and characteristics of the solutions under consideration.

e Graph Visualization and Component Analysis: The final segment of the GUI,
presented in Figure 4.18, showcases the graph of clustering solutions. In this visual-
isation, each node represents a clustering solution, and the edges between nodes in-
dicate the similarity between the solutions. Nodes are colour-coded based on their
connected components, making it easier to identify groups of similar solutions. Section
A highlights the previously selected parameters of the solution dataset, while Section
B provides a visual representation which allows users to intuitively understand the re-
lationships between different clustering solutions and to identify clusters of solutions
that share significant similarities.
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e Producing Sankey diagrams for Comparisons of Solutions: In addition to
producing plots for the original clustering solutions, Sankey diagrams for comparing
connected clustering solutions (as discussed in Section 4.3) are also produced. In Fig-
ure 4.19, Sankey diagrams are produced for solutions within the same connected com-
ponent, while in Figure 4.20 the diagrams are produced to compare solutions from
separate connected components.

A

[Da(ase( SNACK v Select Dataset ]

B [ Threshold: 0.90 Solutions: 40 EGs: (e ) 5.00 - 15.00 Outliers (me—— )0.00 - 1121.C ]

Subject Clus... (E—— 4-174 HMM States: — 2-7

C Plot Save Graph Plot All Solutions Plot No Graph ]

Figure 4.16: Parameter selection section for the Graph GUI.

The GUI is designed to be a comprehensive and intuitive tool for clustering solution
analysis, offering several key features that enhance its usability and effectiveness. One of the
primary capabilities of the GUI is its interactive dataset and parameter selection. This feature
allows users to easily choose different datasets and adjust key parameters that influence the
clustering process. Such flexibility is essential for tailoring the analysis to specific datasets and
research questions, enabling a more focused and effective exploration of clustering solutions.

The core functionality of the GUI is its graph-based visualisation of clustering solutions.
This feature transforms clustering solutions into a network of nodes and edges, making it
easier for users to compare and contrast different solutions. By visualising the similarities
and groupings within the dataset, users can more readily identify which solutions are most
similar to each other and how they are grouped.

Furthermore, the GUI enhances the understanding of solution similarity by representing
clustering solutions as nodes connected by similarity-based edges. This intuitive represen-
tation helps users grasp the relationships between different solutions, making it particularly
useful for identifying clusters of solutions that may represent alternative interpretations of
the same data.

Lastly, the GUI automatically divides the graph into components, where each component
contains solutions that are more similar to each other than to those in other components.
This component-based solution analysis facilitates the identification of groups of solutions
that share significant similarities, offering deeper insights into the structure of the data.

In conclusion, the GUI developed in this project serves as a powerful tool for clustering
solution analysis. It offers a user-friendly platform that integrates advanced visualisation
techniques with robust analytical capabilities. By providing a visual, interactive means to
explore and compare clustering solutions, this GUI enhances the interpretability of clustering
results and supports more informed decision-making in data analysis.
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Number of solutions before filtering: 2600
Solutions after CDG filtering: 2600
Solutions after outlier filtering: 2600
Solutions after HMM filtering: 2600
Sclutions after subject filtering: 2600
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Figure 4.17: Output of the GUI after parameter selection.
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Figure 4.18: Output of the GUI after parameter selection.
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Figure 4.19: Output of the GUI after parameter selection.
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4.5 Procedure for Selecting and Analysing Clustering Solu-
tions Using the GUI

Analysing clustering solutions using the GUI involves several steps that are implemented
in the next chapter. The first step is to select a subset of the solution dataset. For our
experiments, we select the top 5" percentile of solutions based on the internal clustering
validation measures from the dataset of all available solutions. Next, using the GUIL, one can
specify the desired range of parameters for the clustering solutions. This filtering process
reduces the dataset, allowing the selection of a specific subset of high-quality clustering
solutions. After filtering, the graph is plotted for the selected solutions using a similarity
threshold, which can be adjusted based on the required level of similarity for the task.

The GUI is designed for an analyst exploring many heterogeneous collections of clustering
solutions to identify equivalence and redundancy. In this descriptive setting, a single auto-
matic threshold does not generalise due to the edge-weight distribution in the solution graph,
depending on dataset size, the diversity of solutions in F, and the scale of the similarity
measure. Allowing the analyst to choose 6 “by eye” leverages domain context (e.g., favour-
ing conservative equivalence classes vs. broader groupings) and adapts to known families of
solutions that should or should not be merged. Manual selection introduces subjectivity and
may reduce reproducibility. Analysts using the tool should record each run as a reproducible
snapshot, saving the the chosen threshold # and any preprocessing choices, together with a
brief rationale for 6 and a stability range [fin, Omax] over which components persist.

Higher threshold values mean that clustering solutions need to be extremely similar to
belong to the same connected component. Lower threshold values produce fewer connected
components, grouping solutions with greater variation together. The choice of threshold,
however, depends on the dataset’s distribution of similarities. If most solutions are dissimilar,
a higher threshold may be needed to reveal structure in the graph. On the other hand, in
datasets with more similar solutions, a lower threshold may be enough.

It is recommended to experiment with different threshold values until the desired level
of connectivity is achieved. Once the appropriate threshold is identified, the results can be
visualised. This includes both the original clustering solutions and the Sankey diagrams
for comparing clustering solutions within the same connected component and across different
components. This step is crucial for understanding the relationships between different groups
of solutions, as well as the changes that occur between specific clusters in different solutions.

The next step in the process is to select prototype solutions from each identified connected
component. The prototype solution is the clustering result with the highest internal validation
index within its component. Certain solutions with lower internal validation indices may
remain unconnected. The solutions from each component are plotted against their respective
validation indices, allowing for the inspection of disparities between different components.
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4.6 Example Case of GUI

To understand the SNACk dataset clustering solutions, we used the Graph GUI. In this
graph, nodes are colour-coded to represent different components: Component 0 in grey and
Component 1 in cyan. The edges, representing similarity, are thicker and more solid for highly
similar solutions. Notably, nodes 50, 51, 52, and 55 form a tightly connected subgraph in
Component 0, indicating these solutions are highly similar and suggesting a stable clustering
region with robust patterns. In contrast, nodes 550 and 2350 are isolated within Component
1, signifying these solutions are distinct from each other and from those in Component 0. The
visualisation includes key parameters such as the threshold for clustering similarity set at 0.7,
and ranges for EG, outliers, HMM states, and subjects, providing context for the solutions
being analysed. The total number of solutions visualised is 5. This graphical representation
effectively highlights both groups of similar solutions and distinct outlier solutions, facilitating
the assessment of clustering stability and diversity.

All solutions in the graph of 5 solutions are presented in the graph below Figure 4.22, atop
the nodes in the graph, we add the Sankey diagram of all sequences for the corresponding
solution.

EG range:[5:15], Outlier range: [0:1121], HMM states: [2:7], Subject range: [4:174], Threshold: 0.7 Total Solutions: 5

® Component 0
Component 1

550

2350

Figure 4.21: Solution graph from the SNACk dataset using 5 solutions and a
threshold of 0.7.
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Figure 4.22: Graph with all solutions.
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1. Sankey of all 5 solutions Figure 4.23
2. Connected Component

(a) Subject Clusters Sankey comparisons Figure 4.24
(b) Event Group Sankey comparisons Figure 4.25

3. Unconnected Solutions

(a) Subject Clusters Sankey comparisons Figure 4.26
(b) Event Group Sankey comparisons Figure 4.27

The sankey diagrams represent the relationship across different clustering solutions, sim-
ilarly to how they were presented in Figure 4.7. In the figure below, we show how the 5
solutions from this graph differ in terms of their subject clusters. Along with this, we also
present the same type of Sankey diagram for the Event groups across different clustering
solutions.

Different Components
Sol: 550

Sol: 2350 Sol: 551 Sol: 50 Sol: 552
C\usterOI
Clusteram
Cluster22=
ICIusterO Clusteri2m
IC\ustero Glusterg=
Joustero BClusterd BClusterd Elsreri=
ICIusterO e _ HEClusters Elus erldm
: =Cluster7, Z——Clusterts—
. [Cluster-1 = -glusgerﬁ ~Cluster17m
- — Cluster-1 U - — mCluster: ;
IC'”Ster L BT mCluster1a= y C[ustsrll
= e Cluster2im
ICIusterl o IC\uscerl S IC\usterl . ICIusterl S\ e e
— — A T e — Clusters =S\ . mCluster? S i Cluster-1m
WCluster5 — — — — M|Cluster ———
~ Jouseer < — T custerz]]
. uster. % > X .
2 : - IC“‘Sterz P ICIusterZ
Cluster2 e BClustera N I § Clustersf]
£ = Bciusters o — ICIuster3 Clusterell
Pciusters = > ~ - N _ Clustersll
WCiusters ECluster6 WClusters ~ oo
Pcisstere Roiuster [ - Cluster7]]
= Cluster] 5=
— Cluster1omW
Clustera IC\usterG IC\usterlD WClusteris
CIuster13I
MCluster? MClusteril Cluster10
MClusters MClustero MCluster12 Cluster19M

Figure 4.23: Sankey for subject clusters in all 5 solutions.
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Figure 4.24: Sankey for subject clusters in the connected component.

All sequences: 3363 All Sequences: 3363 Al Sequences: 3363

Figure 4.25: Similarly to the Subject Cluster Sankey diagrams, we also compare
the Event Groups between different solutions in the connected components.
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4.6.1 Unconnected Solutions

Unconnected solutions refer to clustering solutions that do not belong to any connected
component in the graph. These solutions are significantly different from others, indicating
unique groupings or patterns that are not shared with other solutions. Analysing unconnected
solutions can provide insights into outlier behaviours or alternative structures within the data.
The Sankey diagram for subject clusters within the unconnected component is presented in
Figure 4.26.
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Figure 4.26: Sankey for subject clusters in the unconnected solutions.

4.6.2 Event Group Sankeys for Different Solutions

We can also present the Event Groups as a Sankey diagram between different solutions. In
Figure 4.27, we can see that the Event groups EG 1 and EG 4 are largely the same in the
different solutions.

The graphical representation, enhanced by Sankey diagrams that illustrate transitions
across different clusters, enabled an intuitive exploration of the solution space, highlighting
both the consistency and diversity present within the clustering outcomes. This approach
is instrumental in guiding informed decisions on which clustering solutions to investigate
further, ultimately contributing to a deeper understanding of patient health trajectories and
multimorbidity patterns.
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Figure 4.27: Sankey for Event Groups in the unconnected solutions.
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Chapter 5

Application to Multimorbidity Data

Having developed a model for clustering multivariate sequence data as well as analysing and
extracting distinct, unique solutions, we apply this methodology to two sets of real-world
medical datasets of patient observations. Both datasets record the conditions patients were
diagnosed with throughout the observation period. Using these datasets, we show that our
model is able to capture relevant sets of timepoint clusters of similar observations of condi-
tions. These clusters of timepoints within the context of the medical datasets provide insight
into the types of conditions occurring to different subjects throughout their respective ob-
servation periods. This allows us to then describe real-world subjects using our derived
timepoint clusters and analyse the progression of their health using commonly occurring sets
of conditions within the timepoint clusters. The sequence clustering stage groups subjects
into subgroups of disease progression. We aim to show that these subgroups reflect their
common underlying state, which was previously unintelligible if looking directly at the raw
observation data. We believe that these subgroups of subjects and their common health
trajectories can, in the future, be used to investigate hidden insights into disease progression,
treatment efficacy, and patient outcomes, informing evidence-based decision-making in clini-
cal practice.

We applied our 2-Stage Clustering pipeline to the SNAC-k and CARE75+ datasets. The
hyperparameter optimisation for the pipeline was run with a preselected range of hyper-
parameters and initialisation parameters. After selecting high-quality solutions from the
hyperparameter optimisation results, we applied our ClusterView graphical user interface
(GUI) methodology to better understand the variety of clustering solutions. Using the tools
described in Chapter 4, we select several prototype solutions from the results of the 2 datasets
and analyse these in detail in the remainder of the chapter. All supplementary figures and
result images are provided in the online appendix GitHub (Thesis_appendix).

5.1 Datasets

The two datasets used in our case studies were both longitudinal cohort studies, tracking
repeated measures of condition diagnoses over multiple timepoints. This structure allows for
the examination of multimorbidity progression in elderly populations. The datasets provide
valuable insights into trends and patterns over time, particularly useful for understanding
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long-term health changes. Both datasets focused on elderly individuals with multimorbidity,
enabling us to investigate whether these individuals could be grouped into distinct subpop-
ulations based on their health trajectories. The number of subjects, timepoints, and unique
conditions recorded in these datasets is shown in Table 5.1.

Dataset | Number of Subjects | Total Timepoints | Diagnoses Recorded
SNAC-K 3363 5 60
Care 75+ 1278 6 35

Table 5.1: Description of 2 real-world datasets used in the case studies of the
2-stage clustering pipeline.

5.1.1 SNAC-K dataset

The Swedish National Study on Ageing and Care in Kungsholmen (SNAC-K) is a longitudi-
nal research project focused on understanding the ageing process and the various factors that
influence health and well-being in older adults https://www.snac-k.se/. Conducted in the
Kungsholmen district of Stockholm, Sweden, SNAC-K is part of a larger national initiative,
the Swedish National Study on Ageing and Care (SNAC), which includes several regions
across Sweden. The primary objectives of SNAC-K are to examine the ageing process by
investigating the physiological, psychological, and social changes that occur as people age;
identify risk and protective factors to understand what contributes to healthy ageing and the
development of age-related diseases; promote public health by providing insights that can
inform strategies and policies aimed at improving the quality of life for older adults; and ad-
vance scientific knowledge by contributing to the global body of knowledge on ageing through
high-quality research and data sharing. The study involves collaboration among researchers
from various disciplines, including gerontology, neurology, psychiatry, epidemiology, and so-
cial sciences. This multidisciplinary approach ensures a holistic understanding of the ageing
process.

5.1.1.1 Study Design

SNAC-K employs a longitudinal cohort design, which involves repeated observations of the
same individuals over an extended period. This design allows researchers to track changes
over time and identify trends and patterns related to ageing. Participants are randomly
selected from the population of older adults living in Kungsholmen. The study includes
several cohorts, each representing different age groups, ranging from those in their 60s to
those over 100. Participants who were under the age of 78 were assessed every 6 years, while
those who were aged 78 or older were assessed every 3 years. During each follow up the
participants undergo a 5 hour-long clinical and functional assessment. The information col-
lected includes: diagnoses via physical examination, medical history, examination of medical
charts, self-reported information, drug information, and inpatient and outpatient care data.
Some subjects died before completing the study, while others quit the study early for personal
reasons. All diagnosed conditions were categorised into 60 chronic conditions categories [138].
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Figure 5.1: SNAC-K Total initial diagnoses.

In addition to information about what conditions the subjects were diagnosed with, we
were also given access to age and gender information. The age-pyramid of the SNAC-K
dataset is shown in Figure 5.2.

Age Pyramid by Sex (CARE75+) Age Pyramid by Sex (SNAC-K)
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Figure 5.2: SNAC-k and CARE75+ age pyramids.

5.1.2 The Community Ageing Research Study (CARET75+)

The Community Ageing Research Study (CARE75+) is a longitudinal study designed to
enhance the management of frailty through an integrated approach that spans primary care,
secondary care, and social services. Frailty is characterised by a heightened vulnerability
to poor health outcomes following stressor events. Effective management of frailty neces-
sitates integrated care pathways supported by evidence-based interventions. However, the
recruitment of frail older adults into clinical trials has been challenging, leading to a lack of
robust evidence from clinical trials. CARE75+ addresses this gap by providing a compre-
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hensive recruitment platform and observational data on older adults, aiming to recruit 2,500
participants.

5.1.2.1 Study Design

Participants are recruited via their GP practices and undergo cognitive, physical, and psy-
chosocial assessments at baseline, 6, 12, 24, and 48 months. These assessments are conducted
in participants’ homes or optionally via telephone or the internet. Detailed demographic
data, along with measures of frailty, quality of life, cognition, mood, daily living activities,
resilience, loneliness, and comorbidities, are collected. Blood samples are taken at baseline
and 12 months to support basic science research at the CARE754 bio-bank. The study
includes community-dwelling older adults aged 75 and above, while exclusion criteria en-
compass care home residents, bedbound individuals, those with terminal cancer, individuals
with an estimated life expectancy of three months or less, and those receiving palliative care
services [139].

For the purposes of our research, we extracted the sequences of conditions from the
CARET75+ dataset. The sequences included 6 total time-points.The figures in Appendix C
detail the total conditions diagnosed for each patient as well as how many instances of each
specific condition were diagnosed at each timepoint across the entire dataset. Additionally,
an age pyramid of the subject population in the CARE75+ dataset is presented in Figure 5.2.

5.1.3 Data preprocessing

Each dataset contains N subjects observed on a common discrete time grid of length T'. At
each timepoint, the subject’s state is encoded as a binary row vector of length D (one indicator
per condition). Observations are aligned to this grid and aggregated within each interval to
produce presence/absence per condition. Missing timepoints are handled by forward filling

per subject and condition: if xﬁlnt) is missing, set :zglnt) — xglt)_l.
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5.2 Application of 2-Stage Clustering pipeline to real-world
datasets

The clustering of medical datasets is a critical task in healthcare analytics, enabling the identi-
fication of patterns and subgroups within patient populations. Effective clustering algorithms
play a pivotal role in uncovering meaningful insights from large-scale medical data, contribut-
ing to improved diagnosis, treatment, and patient care. In this section, we present the results
of hyperparameter optimisation for the clustering of two real-world medical datasets: SNAC-
K and CARE754+. We apply our 2-stage pipeline to the 2 real-world datasets and present
the results of the hyperparameter optimisation. By using hyperparameter optimisation, we
aim to identify clustering solutions with meaningful subgroups that represent distinct phe-
notypes or clinical profiles within each dataset. To find the optimal solutions, we use the
methodology described in Chapter 3, where we apply our 2-stage clustering pipeline using
multiple initialisation parameters as described in Section 3.5.

In this section, we describe the datasets used for the analysis and present the results of
applying the pipeline to both datasets. We highlight the solutions from the hyperparameter
optimisation that achieved the best loss values during training. In the following sections, we
present the timepoint clusters and the Sankey diagrams of subject clusters for both datasets.
We consistently found common timepoint clusters across the two datasets, suggesting that
the first stage of the pipeline identifies similarly organised conditions in both populations.

5.2.1 Dataset Imbalance

We were also interested in how the number of unique observations in a dataset would impact
the results across different parameters of the pipeline. The frequency of events was highly
imbalanced in the two datasets. Some conditions, such as hypertension and dyslipidemia,
were observed in almost every individual at all timepoints, whereas other conditions, like
chromosomal abnormalities, were rarely observed. Details of the number of occurrences of
each condition in both datasets are presented in Appendix 6.1. We introduced an initialisation
parameter, A, which represents how many least occurring unique events are to be removed
from the dataset. Conditions were ordered based on the frequency of their occurrence during
the first observation period. We then set A as the number of the least frequent events
observed at the start of the observation period. For example, in the SNAC-K dataset, which
includes 60 unique observations, a single hyperparameter optimisation run with initialisation
parameter A = 5 would involve performing the optimisation on the dataset after removing
the five least frequent events. Removing the least frequent events helps in simplifying the
dataset by reducing noise, allowing us to focus on more commonly occurring conditions that
are likely to have a larger impact on clustering results. By varying A, we can analyse how
the presence or absence of rare conditions affects the overall clustering and identify patterns
that might be overshadowed by less significant data points. Varying the A can also allow for
clustering analysis at different levels of granularity.

5.2.2 Results of Hyperparameter Optimisation

After preprocessing the data to match the appropriate format for the pipeline (as described
in Section 3.4), we ran the pipeline on the Sheffield SHARC HPC using the hyperopt
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python module. The goal of the hyperparameter optimisation is to enhance the clustering
quality by identifying the parameter values that produce meaningful and distinct patient and
timepoint clusters.

To achieve this, we optimised several parameters of the pipeline: the dimensionality of the
data (number of MCA dimensions), the number of timepoint clusters (number of centroids in
K-means), the total number of states in the HMM model, and the two DBSCAN parameters
(e and min_samples). This process is detailed in Section 3.3.

The search space for the hyperparameters is summarised in Table 5.2, showing the param-
eter distributions used for the hyperparameter optimisation. The Uniform distribution en-
sures that all values within the specified range have equal probability, while the Int Uniform
distribution ensures equal probability for integer values.

Table 5.2: The Hyperopt search space we used for hyperparameter optimisation.
The distributions are noted in pseudocode corresponding to the distribution in the
Hyperopt package.

Hyperparameter Search Space
MCA (m) Int Uniform [1, 10]
K-means centroids (k) | Int Uniform [2, 20]
HMM States (Q) Int Uniform [3, 15]
DBSCAN (¢) Uniform [0.1, 1.0]
DBSCAN (min samples) | Int Uniform [5, 20]

In addition to optimising the hyperparameters, we also explored different initialisation
parameters, such as o and A, as detailed in Section 3.5. Table 5.3 presents the values used for
these initialisation parameters. Each hyperparameter optimisation was conducted using the
same ranges for the hyperparameter distributions, but with all possible combinations of the
initialisation parameters. The parameter A controls the number of the least frequent events
that are removed from the dataset, which helps reduce noise and focus on more commonly
occurring conditions, and the o parameter is used to control whether the timepoint cluster
or sequence cluster quality is emphasised during optimisation.

Parameter Values
« 0.3, 0.4, 0.5, 0.6, 0.7
A 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Table 5.3: Settings used for the different initialisations of the hyperparameter
optimisation.

Early Stopping Condition

To further enhance the efficiency of the hyperparameter optimisation process, we implemented
an early stopping condition. The optimisation stops if there is no improvement greater than
0.01 in the combined loss value (w) for 200 consecutive evaluations. This threshold ensures
that only meaningful improvements are taken into account, which prevents the optimiser
from continuing when further gains are negligible. The early stopping condition plays a
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crucial role in balancing the trade-off between finding the optimal solution and conserving
computational resources. Without early stopping, the optimisation process might continue
indefinitely, attempting to make small improvements that do not significantly enhance the
quality of the clustering. By terminating the search when no substantial progress is observed,
we prevent overfitting, reduce computation time, and make the entire optimisation process
more practical. The results of the loss optimisation for all sets of initialisation parameters
are shown in Figure 5.3.
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Figure 5.3: The loss results of the SNAC-k optimisation of each set of initialisa-
tion parameters.

After running the hyperparameter optimisation with all possible combinations of initial-
isation parameters, we selected the top 50 solutions with the highest w value from each
initialisation run. These selected solutions were then combined and sorted based on the com-
bined loss value w, which represents the overall quality of both the timepoint and sequence
clusters. The loss value quantifies the performance of the clustering pipeline, incorporating
both aspects of clustering quality. By focusing our analysis on the top solutions, we ensure
that only the most effective clustering configurations, with the highest combined silhouette
indices across all initialisation parameter sets, are considered.

5.2.3 Top SNAC-k results

After the optimisation of the SNAC-k dataset, and selection of the top 50 solutions with the
highest w values, the final set of solutions had a total of 2600 solutions.

The top 5 solutions with the lowest loss values (w) across the entire dataset are presented.
These 5 solutions, according to the w value, are the optimal clustering configurations. Table
5.4 summarises the hyperparameters for each of these 5 solutions, including the initialisation
parameters A and . The top configurations in Table 5.4 vary in HMM states (@), the number
of k-means centroids (k), and MCA dimensions (m), yet achieve nearly identical loss. This
indicates a relatively flat objective surface, where small changes in representational capacity
(m,Q) or EG granularity (k) yield equivalent subject partitions. In the hyperparameter
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search, k and m exhibited the most stable optima (k = 5 and m = 5): neighbouring settings

produced highly similar partitions that met our quality criteria.

In this section, we focus on presenting Solution 2350, which had one of the best loss

values, along with its associated event groups and Sankey diagrams.

Solution 2350 was

chosen for detailed presentation because it demonstrated a good balance between cluster
separation (as indicated by the silhouette scores ¢ and sg;) and meaningful clustering of

patient trajectories.

Index Loss ID | EPS.SUBJ | HMM_S | KM | MCA | MIN_S_SUBJ Csil Seil A«
550 | -0.807381 | 351 0.000194 3.0 5.0 5.0 105.0 0.358016 | 0.999966 | 0 | 0.3
551 -0.807353 | 460 0.000998 4.0 5.0 5.0 86.0 0.358016 | 0.999925 | 0 | 0.3
50 -0.807107 | 22 0.000936 3.0 5.0 5.0 11.0 0.357040 | 0.999993 | 2 | 0.3
552 -0.799205 | 217 0.000838 4.0 5.0 6.0 24.0 0.330733 | 0.999979 | 0 | 0.3
2350 | -0.798465 | 264 0.000354 4.0 5.0 5.0 123.0 0.335342 | 0.996946 | 20 | 0.3

Table 5.4:

Solution 2350

Event Groups

Table of 5 solutions with the best loss from the hyperparameter
optimisation of the SNAC-k dataset. The table details the hyperparameters along
with the initialisation parameters A and .

The solution 2350 has 5 timepoint clusters as listed under the KM column in the table.
Timepoint cluster 3 is shown in Figure 5.4. The format for the figure is the same as in Figure
3.6. In this example, the condition with the highest EGS score was Dementia; therefore, this
timepoint cluster was named EG 3: Dementia.
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Figure 5.4: Barchart for EG 3 and 4 from solutions 2350.
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The Sankey diagram for this solution is presented in Figure 5.5. This shows how all
subjects in the dataset transitioned between the different EGs across the 5 observations.
During the first observation of the dataset, more than half of the patients can be seen to
be a part of EG: 4, and later split into different disease groups during later observations.
Alongside the 5 event groups, the Sankey diagram shows that some patients either died or
exited the study during the observation period.

All Sequences: 3363

Figure 5.5: Sankey diagram showing all subjects in the SNAC-k dataset, reor-
ganised using their EG assignments.

Sequence Cluster 0 Size: 334

Sequence Cluster 1 Size: 363

Figure 5.6: Sankey diagram showing sequence clusters 0 and 1. These clusters
were mostly comprised of sequences that remained in the timepoint cluster 4.
Sequence cluster 1 was different, as in the last timepoint, the sequences split into
different timepoint clusters.
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In Figure 5.6, we can see that all timepoints in sequence cluster 0 are Event Group 4

timepoints.
Counts:6577 EG 4: Dyslipiden
Dyslipidemia — 3665/6317 |—
Hypertension | mmm—— 4490/8442 —
Obesity W (856/1769 |—
Migraine_facial_pain_syndr 11171/388 —
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Thyroid_dis u1588/1377
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Dorsopathies 1355/1214 |
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Deafness_hearing_loss 1 1422/1868  |jmm——
Inflammatory_arthropathies 11157/698 —
Colitis_related_dis B 1495/2242  pm—
Ischemic_heart_dis 11389/1800
Anemia B [369/1711 e
Other_genitourinary_dis 11202/964 —
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Cerebrovascular_dis 11233/1140 s
Other_psychia_behavioral_dis 1183/476 —
Cataract_lens_dis 1 1337/2064 =
Atrial_fibrillation 111209/1295 s
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Other_cardiovascular_dis 1166/627 -
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Counts EGS

Figure 5.7: Barchart for Event Group 4 from solutions 2350.
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Sequence Cluster 7 Size: 152

Death|

Figure 5.8: Sankey diagram showing sequence clusters 7 and 8. The sankey
diagrams presented in this figure are much more varied compared to the sequence
clusters shown in Figure 5.6. The sequences transitioned between many different
timepoint clusters throughout the observation period.

The sequences were clustered into 9 clusters, several of which are shown in Figure 5.6 and
Figure 5.8. The full details of this specific solution (2350), along with the other solutions
from Table 5.4, are detailed in the Appendix.

SNAC-k Cohorts

Recruitment for the SNAC-k study occurred in multiple waves or cohorts, with each cohort
being assessed five times. Since each cohort had a different initial age, we can categorise each
cluster based on the respective cohort. An example of splitting the sankey diagram based on
the age of the cohort is presented in Figure 5.9.
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Cluster: 0 Size: 334 [Wave 1: 213, Wave 2: 91, Wave 3: 23, Wave 4: 4, Wave
Age:60.0 Age:63.0 Age:66.0 Age:69.0 Age:72.0 Age:75.0 Age:78.0 Age:81.0 Age:84.0 Age:87.0 Age:90.0 Age:93.0

ks kel R . cem

Age:60.0 Age:63.0 Age:66.0 Age:69.0 Age:72.0 Age:75.0 Age:78.0 Age:81.0 Age:84.0 Age:87.0 Age:90.0 Age:93.0

Figure 5.9: Cluster 0 of Solution 2350 from the SNAC-k dataset. The subjects
from the cluster are separated based on their age at the beginning of the study.

The all-subjects Sankey (Figure 5.5) shows that over half of participants begin in EG 4
and subsequently disperse into other event groups—consistent with a broadly cardiometabolic
entry state that branches as additional conditions accrue. The bar chart for EG 4 (Figure 5.4)
confirms its composition is dominated by dyslipidemia and hypertension. Sankeys of indi-
vidual clusters reveal trajectory heterogeneity: sequence cluster 0 remains entirely in EG 4
across all waves (persistence in a stable, low-complexity profile), whereas sequence cluster
1 starts in EG 4 but splits at the final wave (a late divergence into a more complex state),
see (Figure 5.8). More varied clusters (e.g., clusters 7 and 8) cycle through multiple EGs
(Figure 5.8). Age-stratified sankeys (Figure 5.9) show that clusters with long residence in
EG 4 skew younger at baseline, while earlier branching clusters include older cohorts.

5.2.4 CARET75+ results

In this section, we present the results from the hyperparameter optimisation of the CARE75+
dataset, focusing on the solutions with the highest combined loss values. These results reflect
the most effective configurations for capturing meaningful patterns and subgroups within
the dataset. Table 5.5 provides the details of the top 5 solutions, including their respective
hyperparameters and initialisation parameters.

In Figure 5.10 we show the sankey diagram for all sequences from solution 1900. One of
the largest event groups, EGs 4, is detailed in Figure 5.11.
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Index Loss ID | EPS.SUBJ | HMM_S | KM | MCA | MIN_S_SUBJ Csil Seil A«
1900 | -0.788474 | 385 0.000176 6.0 5.0 5.0 17.0 0.294943 | 0.999987 | 14 | 0.3
1901 | -0.788463 | 417 0.000461 7.0 5.0 5.0 29.0 0.294943 | 0.999972 | 14 | 0.3
1902 | -0.788383 | 490 0.000026 5.0 5.0 5.0 15.0 0.294943 | 0.999857 | 14 | 0.3
1903 | -0.787875 | 257 0.002150 6.0 5.0 5.0 50.0 0.294943 | 0.999132 | 14 | 0.3
1904 | -0.787480 | 138 0.005277 2.0 8.0 5.0 147.0 0.295338 | 0.998397 | 14 | 0.3

Table 5.5: Table of the 5 solutions from the CARE75+ optimisation with the
best final loss values. The table details the hyperparameters along with the ini-
tialisation parameters A and a.

All Sequences: 1278

IEG 1 IEG 1 IEG L

EG 1 i =
EG 1 —les \\\\ Iiz Z \\\ IEZ Z \\ IEG 2 =P |

l:Z \8\/': 'IZ:;: [Exit AN LE:;h ’ - Exit Exit

e e —

IEG 4

IEG 4

IEG 4

IEG 4

EG 4I

Figure 5.10: Sankey diagram showing all subjects in Solution 1900 of the
CARET75+ dataset, reorganised using their event group assignments.

Counts:792  EG 3: Any atheroscleroti Counts:1397 EG 4: CataractSur¢

Any atherosclerotic disease 457/886 CataractSurgery 1264/2097
Cerebrovascular 358/806 Cataract 1367/2568
AtrialFibrillation 346/948 FracturedHipWristBackbone 293/910
Ischaemic 522/1433 DiabetesMellitus 404/1271
WHOHaemoglobinConcCriteria 568/2809 Osteoporosis 292/1031
Joint 186/951 Joint 257/951
DiabetesMellitus 230/1271 Hypothyroidism 167/674
Hypertension 703/3910 Osteoarthritis 691/2910
Spondylosis 166/954 Spondylosis 218/954
Osteoarthritis 461/2910 Hypertension 873/3910
FracturedHipWristBackbone 114/910 RespiratoryAsthma 153/709
Osteoporosis 129/1031 WHOHaemoglobinConcCriteria 604/2809
RespiratoryAsthma 88/709 Cerebrovascular 145/806
Cataract I216/2568 Ischaemic B254/1433
Hypothyroidism 56/674 AtrialFibrillation 150/948
CataractSurgery 123/2097 Depression 123/861
AnyCancer 90/1615 Any atherosclerotic disease 80/886
Depression 37/861 AnyCancer 81/1615
ExcludingNonmelanoma 42/1233 Anxiety 29/663
Lessthan5Years 14/698 ExcludingNonmelanoma 11/1233
Anxiety 10/663 Lessthan5Years 0/698
" “Counts’ " EGS " Counts’ T Ees

Figure 5.11: Barchart for Event Groups 3 and 4 from solution 2350.
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5.2.5 Interpretation

Across both datasets, we observed recurrent timepoint clusters with closely matching con-
dition profiles. In particular, each cohort contains an Event Group dominated by ocular
disorders (SNAC-K: EG 4 with cataract/cataract surgery; CARE75+: EG 0 with cataract—
lens disease, other eye disease, and glaucoma), indicating a shared multimorbidity structure
despite differences in data source and parameterisation (see Figure 5.12). These cross-cohort
recurrences suggest that a subset of EGs is reproducible across the two populations, provid-
ing a stable basis for subsequent trajectory comparison and interpretation. A recurrent car-
diometabolic EG (dominated by dyslipidaemia and hypertension) represents a low-complexity
profile commonly occupied early and often. An “ocular” EG (cataract, glaucoma, other eye
disease) appears in both cohorts, consistent with age-related ophthalmic burden. Trajectories
that persist within a single EG over multiple waves (e.g., cardiometabolic) are consistent with
chronic disease; trajectories that diverge from a broadly cardiometabolic EG into more com-
plex EGs (ocular, cardiac, cancer-related) are plausible with ageing. Common multimorbidity
motifs in older adults include cardiometabolic combinations (hypertension with dyslipidaemia
and/or diabetes) and sensory/musculoskeletal patterns (e.g., arthritis with cataract/visual
impairment); our EGs align with these patterns [5, 51, 140, 141].

The all subject Sankey for Solution 1900 (Figure 5.10) similarly exhibits a one-to-many
pattern from an initial large EG into diverse trajectories, with more prominent ocular and
cancer-related branches in later waves Figure 5.11.

A
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Figure 5.12: Event groups sharing similiar distributions of conditions, left
(CARE75+) and right (SNAC-K).
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5.3 Results of ClusterView Application

The analysis of clustering solutions for the SNAC-k and CARET75+ datasets follows a struc-
tured methodology using the ClusterView GUI, enabling us to effectively group and explore
multiple equivalent clustering outcomes. During hyperparameter optimisation, it is common
to encounter numerous equivalent solutions—distinct hyperparameter sets that yield nearly
identical clustering results. This equivalence can lead to redundancy and challenges in identi-
fying unique and informative solutions. The methodology introduced in the previous chapter
aims to address these challenges through the use of ClusterView and prototype selection.

5.3.1 SNAC-k ClusterView Analysis

First, we selected the top 5th percentile of clustering solutions based on the internal validation
measures. This selection ensured that only the highest-quality solutions were included in
the analysis. Additionally, the number of individuals classified as outliers was restricted
to a maximum of 30%, thereby excluding solutions with excessive outliers. The parameter
selection process is illustrated in Figure 5.13.

Dataset: | SNACK v Select Dataset
Threshold: 0.75 Solutions: 40 EGs: I 5.00 - 15.00 Outliers (m— 0.00 - 390.0C
Subject Clus. - 4-50 HMM States: O — 2-7
Plot Save Graph Plot All Solutions Plot No Graph

graph k: 0.10

Figure 5.13: Parameters for the selection of results

The similarity threshold 6 was selected manually by inspecting the solution graph Gy
(retaining edges with S;; > #). At each step of 6, the following were examined: (i) the
number of connected components and the size of the largest component, (ii) the edge density
to avoid trivial fully connected or overly fragmented regimes, and (iii) the interpretability
of components. We chose the smallest 6 for which components were both interpretable and
stable under a small perturbation of # (component memberships persisted when 6 was nudged
up/down). This was an ad-hoc decision (no automatic optimiser); discussion on the threshold
choice is discussed in Chapter 4. Once the optimal threshold value was identified, we used
it to construct and plot the similarity graph, as shown in Figure Figure 5.14. This graph
visualises the connected components, each representing a group of similar clustering solutions.

After constructing the graph, each connected component was further analysed to identify
the clustering solution with the highest internal validation index. These highest-scoring
solutions, known as prototype solutions, were plotted for each connected component, as
depicted in Figure Figure 5.15.

Finally, we compared the prototype solutions across different components using Sankey
diagrams to gain insights into the relationships between clustering solutions. This comparison
is presented in Figure Figure 5.16, allowing us to visualise how different solutions relate to
one another within the SNAC-k dataset and understand the equivalence and distinctions
between them.
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5.3.2 Discussion of Graph

The graph constructed using the SNAC-K dataset has 7 components of varying sizes. Compo-
nent 3 has the fewest number of subject clusters, while component 6 has the highest number
of clusters. This can be seen from Figure 5.16, where the Sankey diagrams of the highest loss
values from each component are combined in a single solution Sankey diagram. The Sankey
for solutions in Component 3, with the least number of clusters, is shown in Figure 5.17. The
remainder of clustering solutions and Sankey diagrams between all components are in the
Supplementary materials GitHub repository.

The highest number of subject clusters is Component 1 shown in Figure 5.18.

The Event groups across the different components are shown in Figure 5.19. The Event
groups across all solutions from the graph appear to be largely similar, with slight variations
across different solutions. The total number of Event Groups (EG) across all solutions is
5, while only 3 solutions had 6 EGs. The stability of the Event groups indicates that an
optimal value of k£ was identified during optimisation to be between 5 and 6. The largest
event group in each solution was the Event Group, comprised of occurrences of dyslipidemia
and hypertension. This EG was primarily the first event in most sequences, indicating a
general state of multimorbidity with few complications. When viewing the age distribution
of subjects from different cohorts, the subject clusters which remained in the EG, consisting
of dyslipidemia and hypertension, were significantly younger than subjects in clusters with
more varied and complicated transitions between different EGs.

From all the selected solutions, we select solutions with the highest loss values as the
prototype solutions. The diagram of this is shown in Figure 5.16. The selected solutions
are analysed in detail in the following section.
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Figure 5.15: Loss of the different Components
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Figure 5.16: Loss of the different Components
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Figure 5.17: Sankey for Component 3 from SNAC-K graph.
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Figure 5.19: Sankeys for the EGs, across all prototype solutions and unconnected
solutions (total of 13) from SNAC-K graph.
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5.4 SNAC-K Prototypes
The 4 selected prototypes are largely distinct from one another as can be seen in the solution

sankey diagram at the bottom of Figure 5.16.

Solution 552
Solution 552 has the highest number of subject clusters among all the prototype solutions
i . As dis-

The solution contains five Event Groups shown in Figure 5.20 and Figure 5.21
cussed previously, the largest event group is the one containing most of the observations of

dyslipidemia and hypertension.
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Figure 5.20: Event Groups 1 and 2 for Solution 552.

Solution 550
Solution 550 only contains 7 subject clusters and 5 event groups.
almost entirely transitions between the largest event group (EG 1) (containing most of the

observations of dyslipidemia and hypertension) Figure 5.22.

Sequence clusters 2 and 3 are comprised of subjects that during the first 2 observations
remained in the stable EG 1, but later either left the study, transitioned to more complex
event groups or, in the case of Sequence Cluster 2, died.

For sequence cluster 4, the starting point is one of several possible EGs; however, the

cluster appears to capture subjects that died early in the study, as seen in Figure 5.24. By

Two clusters contain
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Figure 5.21: Event Groups 3, 4, 5 for Solution 552.

Sequence Cluster 0 Size: 342 Sequence Cluster 1 Size: 438

Figure 5.22: Sequence clusters 0 and 1 for Solution 550.

the end of the observation period, a large part of the cluster had died. As can be seen from
the Sankey diagram separated based on different cohorts Figure 5.25, the cluster is mostly

comprised of the oldest subjects in the study.

Solution 50

Solution 50 has a total of 5 event groups and 16 subject clusters. Subject clusters 0, 1 and 4
contain subjects that, for the majority observation period, remained in the EG 0 (containing
most of the observations of dyslipidemia and hypertension). Other subject clusters also
largely contained transitions between EG 0 at the early stages of the study and later splitting

among the different EGs.

Solution 51

Solution 50 has a total of 5 event groups and 11 subject clusters. This solution contains a
much higher variety of subject clusters. Only subject cluster 0 contains transitions between
the largest event group, EG 2 (again characterised by mostly containing dyslipidemia and
hypertension observations). Unlike previous sequence clusters from other prototype solutions,
sequence cluster 8 Figure 5.26 starts with a majority of the subjects part of EG 3 Figure 5.27.
Event group 3 appears to be composed primarily of cardiac-related conditions. The age profile
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Sequence Cluster 2 Size: 630 Sequence Cluster 3 Size: 245

Figure 5.23: Sequence cluster 2 and 3 for Solution 550.

Sequence Cluster 4 Size: 1084 Sequence Cluster 5 Size: 150

Figure 5.24: Sequence cluster 4 and 5 for Solution 550.

for this specific cluster is shown in Figure 5.28.
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Cluster: 4 Size: 1084 [Wave 1: 12, Wave 2: 32, Wave 3: 61, Wave 4: 210, Wave 5: 769]
Age:60.0 Age:63.0 Age:66.0 Age:69.0 Age:72.0 Age:75.0 Age:78.0 Age:81.0 Age:84.0 Age:87.0 Age:90.0 Age:93.0

Age:60.0 Age:63.0 Age:66.0 Age:69.0 Age:72.0 Age:75.0 Age:78.0 Age:81.0 Age:84.0 Age:87.0 Age:90.0 Age:93.0

Figure 5.25: Age profile of Cluster 4 for Solution 550.

Sequence Cluster 8 Size: 111

Figure 5.26: Sequence cluster 8 from Solution 51.
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Figure 5.27: EG 3 from Solution 51.
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Cluster: 8 Size: 111 [Wave 1: 3, Wave 2: 6, Wave 3: 15, Wave 4: 26, Wave 5: 61]
Age:60.0 Age:63.0 Age:66.0 Age:69.0 Age:72.0 Age:75.0 Age:78.0 Age:81.0 Age:84.0 Age:87.0 Age:90.0 Age:93.0

—EGO —EGO —EG3
D 2 —— L)

[[Jeso

Age:60.0 Age:63.0 Age:66.0 Age:69.0 Age:72.0 Age:75.0 Age:78.0 Age:81.0 Age:84.0 Age:87.0 Age:90.0 Age:93.0

Figure 5.28: Age profile of Sequence cluster 8 from Solution 51.
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5.5 CARET75+ ClusterView Analysis

The total count of solutions after the hyperparameter optimisation was 2000. Selecting the
5% percentile of loss values, meant that 100 solutions were selected, and a threshold of 0.8
was used. The full parameters are shown in Figure 5.29. The graph of solutions is shown in
Figure 5.30.

Dataset: | CARE7S v Select Dataset
Threshold: 0.80 Solutions: 100 EGs: I ) 5.00 - 15.00 Outliers _— 0.00 - 140.0C
Subject Clus... (_X 4-20 HMM States: (T — 2-7

Plot Save Graph Plot All Solutions Plot No Graph

graph k 0.10

Figure 5.29: Parameters of the CARE75+ in the ClusterView GUI

5.5.1 CARET75+ Prototype solutions
1940

Solution 1940 has 4 total Event groups ( 2 of these are displayed in Figure 5.33, while the
rest can be found in the online appendix), and 10 subject clusters. Similar to the EGs from
the SNAC-k results, there is also a large EG which contains occurrences of Hypothyroidism,
Osteoarthritis and the most common condition in the data: Hypertension. Subject cluster
1 contains only transitions between EG 1, while Clusters 7,8 and 9 start in EG 1, before
progressing to different EGs. Sequence clusters 3, 4 and 5 Figure 5.35, Figure 5.36 mostly
contain transitions between EG 4 Figure 5.34, which contains various conditions, and a large
portion related to cataract conditions.

1947

Solution 1947 is composed of 7 EGs and 10 sequence clusters. Once again, the largest Event
Group (EG 1) is the one containing the Hypothyroidism and Hypertension Figure 5.39. There
is a large variety of different conditions represented in the 7 Event groups. EG 0 is mostly
composed of cataract-related conditions, while the most prominent conditions in EG 2 and 6
are cancer-related. The sequence clusters again most often start with EG 1 and later progress
to other event groups, such as sequence clusters 1, 6, 8 and 9.

1569

Solution 1569 is quite different from the rest of the prototype solutions. Only containing 4
sequence clusters and 8 Event groups. The sequence clusters in this solution are also distinct
from other prototypes Figure 5.40. Sequence clusters 0 and 3 are familiar to previous solu-
tions, as there is a large proportion of subjects in EG 7, which is the largest EG characterised
by hypothyroidism and hypertension. Clusters 1 and 2 are rather dissimilar to any previously
encountered subject cluster, as the trajectory of EG is quite varied. It appears that due to
the low resolution, the resulting subject clusters combined previously separated subjects into
a single cluster. This splitting of clusters in other solutions can be seen in the solution sankey
diagram Figure 5.32.
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EG range:[5:15], Outlier range: [0:140], HMM states: [2:7], Subject range: [4:20], Threshold: 0.8 Total Solutions: 100
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Figure 5.30: Graph of the CARET75+ in the ClusterView GUI

152

Similar to the previous Solution 1569, Solution 152 also has a low number of sequence clusters
- 5, and 6 Event groups. Again, as in previous solutions, sequence clusters 0, 4 and 3
mostly contain transitions between the hypothyroidism and hypertension event group (EG
1) Figure 5.41. This prototype solution also has a low resolution of the subject clusters and
groups subjects together that in other prototype solutions are in separate sequence clusters.

5.6 Discussion

In addition to identifying similarities, the ClusterView GUI allowed for a detailed comparison
of clustering solutions across both datasets. By leveraging the similarity graph and examining
prototype solutions, we could reduce the redundancy inherent in the clustering solutions and
focus on unique and meaningful results. The presence of multiple equivalent solutions during
hyperparameter optimisation, with slight variations in clustering parameters, demonstrated
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Scatter Plot of Components vs Loss Values Scatter Plot of Unconnected Nodes vs Loss Values
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Figure 5.31: Loss values per component of the CARE75+ in the ClusterView
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Figure 5.32: Sankey solution diagram of the 4 prototypes from the CARE75+
dataset.

the importance of systematically analysing these solutions to extract the most representative
ones.

Moreover, comparing Event Groups and subject clusters across different components us-
ing Sankey diagrams provided a powerful way to visualise the relationships between different
solutions. In both datasets, there were consistently stable event groups, such as those pri-
marily consisting of dyslipidemia and hypertension. These stable clusters could indicate
common early signs of multimorbidity, while variations in more complex clusters reflected
the divergence in health outcomes among different individuals. This type of analysis helps in
understanding the different stages of chronic disease progression and identifying which factors
may contribute to a patient’s transition from one health state to another.

The analysis also showed that certain event groups are highly dependent on the age
distribution of subjects. The SNAC-k dataset indicated that younger subjects tended to
remain in the less complicated clusters, such as the event group comprising dyslipidemia and
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Counts:657 EG 0: Anxiety Counts:2253 EG 1: Hypothyroit

Anxiety 502/663 | Hypothyroidism 218/674 |
Depression 542/861 | Osteoarthritis| 843/2910 [N
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AnyCancer 130/1615 | ExcludingNonmelanoma 13/1233 ]
LessthanSYears 30/698 | LessthanSYears 1/698
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Figure 5.33: EG 0 and 1 from Solution 1940.

hypertension, while older cohorts were more likely to transition into more varied and complex
event groups. Such findings provide insights into how age plays a critical role in the evolution
of multimorbidity and highlight the need for tailored interventions at different stages of life.

By analysing the prototype solutions from both datasets, we observed variations in cluster
sizes and the number of event groups between different solutions. This variability highlights
the complexity of multimorbidity clustering and the need for a flexible approach to explore
different solutions, each representing different aspects of multimorbidity progression. Under-
standing these variations provides a more comprehensive understanding of multimorbidity,
allowing for the identification of common patterns while still accounting for unique individual
trajectories.
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Figure 5.34: EG 4 from Solution 1940.

Sequence Cluster 3 Size: 134

Figure 5.35: Sequence cluster 3 from solution 1940.
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Sequence Cluster 4 Size: 58 Sequence Cluster 5 Size: 47

Figure 5.36: Sequence cluster 4 and 5 from solution 1940.
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Figure 5.37: EG 1 from solution 1947.

Sequence Cluster 1 Size: 193 Sequence Cluster 6 Size: 55

EG 1 EG1 EG 1 EG 1 EG 1 EG 1‘ |EG 1 EG 1

Figure 5.38: Sequence clusters 1 and 6 from solution 1947.
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Sequence Cluster 8 Size: 58 Sequence Cluster 9 Size: 85

Figure 5.39: Sequence Clusters 8 and 9 from solution 1947.

Sequence Cluster 0 Size: 491 Sequence Cluster 2 Size: 115

Sequence Cluster 3 Size: 170

Figure 5.40: Sequence Clusters 0, 1, 2 and 3 from solution 1569.

Sequence Cluster 0 Size: 442

EG 1 EG1

EG 1 EG 1 EG 1 EGK]

Sequence Cluster 4 Size: 84

Sequence Cluster 3 Size: 93

Figure 5.41: Sequence Clusters 0, 4 and 3 from solution 152.
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Chapter 6

Conclusions

The primary goal of this thesis was to develop and apply a novel methodology for clus-
tering multivariate time-series data, with a focus on analysing medical datasets to extract
meaningful patterns and insights. The main contributions of this thesis are:

1. Sequence Clustering Pipeline for Multivariate Data: In Chapter 3, we intro-
duced the sequence clustering pipeline designed to cluster multivariate time-series data
in two stages. By employing an approach that first reduces the dimensionality of the
data and then applies clustering using dynamic distances, we effectively captured the
underlying temporal dependencies within the sequences. This two-stage method allowed
for both a reduction in complexity and a more accurate representation of temporal re-
lationships, facilitating more meaningful clustering outcomes.

2. Methodology to Analyse Large Sets of Clustering Solutions: Chapter 4 ad-
dressed the problem of multiple equivalent clustering solutions arising during hyperpa-
rameter optimisation. We introduced a methodology to group, visualise, and interpret
these solutions using a similarity-based graph approach. This approach not only re-
duced the number of solutions needing detailed analysis but also provided a clearer
understanding of the similarities and distinctions between clustering results. Sankey
diagrams were implemented to visualise clustering solutions and provide an intuitive
understanding of the clustering solution landscape.

3. ClusterView GUI for Analysing Clustering Solutions: In Chapter 4, we also pre-
sented the ClusterView graphical user interface (GUI), which facilitates the exploration
and analysis of clustering solutions. This GUI enabled users to visualise the similari-
ties and differences between various clustering approaches, providing an accessible and
user-friendly platform for selecting optimal solutions. The graph-based representation
and visual tools made the methodology suitable for both technical and non-technical
users, enhancing its flexibility and accessibility.

In Chapter 5, we applied the developed methodology to real-world medical datasets—the
SNAC-k and CARE75+ datasets. We demonstrated how our pipeline successfully identified
relevant clusters of timepoints and grouped subjects based on disease progression. This
application showcased the potential of our methods to reveal hidden trends in patient health
trajectories, providing new insights into the progression of chronic conditions and highlighting
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the potential impact of clustering in healthcare decision-making. The prototype solutions
derived from these analyses captured meaningful subgroups of patients and their health paths,
emphasising the practical implications of our approach in clinical contexts.

Despite being demonstrated only on clinically focused cohorts, the pipeline is problem—
agnostic and applicable to any multivariate time—series in which each timepoint can be
represented by categorical features or by discretising continuous variables into events. This
contribution distinguishes itself from existing approaches in several important ways. Un-
like traditional Latent Class Analysis (LCA) methods commonly used in multimorbidity
research, which assume independence between observations and impose parametric forms,
our two-stage approach separates the modelling of cross-sectional co-occurrence patterns
from temporal progression dynamics. This separation allows for more flexible modelling of
complex temporal relationships while maintaining interpretability at both the timepoint and
sequence levels. Compared to matrix factorisation and tensor decomposition methods, this
approach preserves interpretability by producing event groups that correspond to distinct
combinations of events and sequence clusters that map to plausible progression pathways
between event groups. As presented in Chapter 5, the resulting EGs (e.g., cardiometabolic,
ocular) from both clinical datasets were reproducible across cohorts and formed a compact
representation of clinical states for further temporal analysis.

The second contribution addresses a critical but often overlooked problem in clustering
analysis: the systematic comparison and interpretation of multiple valid clustering solutions
that arise during hyperparameter optimisation. This work introduces a novel graph-based
methodology that transforms the space of clustering solutions into a network structure, en-
abling systematic analysis of solution relationships and identification of prototype solutions.
These tools have also successfully been implemented in ClusterView, presented in Section 4.4
of Chapter 4. By providing an accessible interface to complex analytical methods, the tool
reduces barriers to entry for analysing and comparing clustering solutions. This addresses a
significant gap in clustering methodology literature. While consensus clustering and ensemble
methods exist, they typically focus on combining multiple solutions into a single result rather
than systematically analysing the structure of the solution space. Existing clustering valida-
tion frameworks, such as those implemented in tools like Clustrophile-2 and VICTOR [134,
135], provide individual solution evaluation but lack systematic approaches for organising and
reducing large collections of solutions. The graph-based approach provides the first compre-
hensive framework for mapping the landscape of clustering solutions, identifying redundant
results, and focusing on meaningfully distinct alternatives. By providing a systematic way to
navigate the space of clustering solutions, this framework reduces the burden on analysts and
increases confidence in selected results. The identification of prototype solutions enables more
efficient use of expert time and resources, as stakeholders can focus their interpretation efforts
on a small number of representative solutions rather than attempting to evaluate dozens of
potentially redundant alternatives. This is particularly valuable in healthcare applications,
where clinical expert time is limited and the stakes of model selection are high.

The methodology’s effectiveness was demonstrated on two real-world longitudinal cohorts
drawn from different healthcare systems and sampling frames, providing complementary val-
idation contexts. The Swedish National Study on Ageing and Care (SNAC-K) and the UK
CARET5+ cohort captured data on older adults under distinct service arrangements, allowing
an assessment of generalisability across populations. In both datasets, the timepoint rep-
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resentation yielded recurrent Event Groups (EGs). Most prominently, a cardiometabolic
EG (hypertension/dyslipidaemia, often with diabetes) and an ocular EG (cataract/glaucoma
and related codes), that map closely onto well-described multimorbidity motifs in older adults
[5, 51, 140, 141].

At the sequence level, the HMM-based distance and DBSCAN recovered trajectory fam-
ilies that are consistent with prior longitudinal evidence: many individuals persist in low-
complexity cardiometabolic states, while others diverge towards more complex profiles (e.g.,
ocular or neoplastic) over time [6, 64]. The replication of these patterns across SNAC-K and
CARET75+ supports the practical utility and portability of this integrated approach.

6.1 Future work

Several avenues for future research emerge from the limitations and extensions identified in
this work. Development of distributed computing approaches and approximation methods
could extend the framework’s applicability to population-scale healthcare databases. Integra-
tion with existing electronic health record systems and clinical workflows represents another
important direction for practical implementation. Sankey diagrams in this thesis are useful
as a high-level summary of aggregate flows between Event Groups (EGs), but they are not
suited to tracing individual trajectories across more than two time points. Because ribbons
of the sankeys necessarily bifurcate and merge, person-level paths are not identifiable, and in-
formation about ordering, recurrence is partially lost—particularly when many EGs or waves
are shown. To mitigate this, the Sankeys were interpreted alongside complementary views
(EG composition bar charts).

Other limitations of the method include reliance on a fixed, evenly spaced time grid and
forward filling, sensitivity to distance choice (non-metric Bhattacharyya vs. metric alterna-
tives) scalability limits due to pairwise distances and density-based clustering. Specifically,
the Bhattacharyya distance can be non-metric and infinite under disjoint support, which can
cause issues in further clustering. While DBSCAN only requires a symmetric, non-negative
dissimilarity to define e—neighbourhoods, non-metric behaviour can yield inconsistent neigh-
bourhoods (e.g., d(A, B) and d(B,C) small but d(A, C) large), distorting local density and
complicating € selection. A potential improvement to this would be to implement alternative
metric distances.

Furthermore, the fact that a first-order Markov model can assign comparable probability
to multiple orderings of the same states is problematic. In the limit of an (approximately)
uniform transition matrix, sequences such as A —+ B — C and C — B — A are nearly
equiprobable under the same HMM. Our distance summarises each sequence by its induced
one-step transition matrix; thus, trajectories with similar transition counts (and emissions)
can appear very close even if their order differs. This representation is order-insensitive
beyond first-order transitions: it captures how often states follow one another, rather than
the global ordering.

The ClusterView interface could be extended with additional visualisation modalities, ad-
vanced statistical testing capabilities, and integration with clinical decision support systems.
Development of mobile and web-based versions could increase accessibility and adoption in
diverse healthcare settings. The threshold selection process should also be considered for fur-
ther improvement; a more systematic selection methodology would lead to more consistent
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and robust results.

Lastly, more extensive clinical validation studies are needed to establish the clinical utility
of identified patterns and their impact on patient outcomes. Extension to other healthcare
domains beyond multimorbidity, such as treatment response prediction and adverse event
detection, could broaden the methodology’s impact.

These future directions represent natural extensions of the current work and offer oppor-
tunities to further enhance the methodology’s clinical impact and practical utility.
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Appendix A: Similarity Calculation

Calculating the Similarity between all solutions presented a challenge due to the large number
of solutions involved. To speed up this process, we utilized the Sheffield High-Performance
Computing (HPC) facility. By distributing the calculations across multiple jobs, each section
of the final distance matrix was computed independently. This approach significantly accel-
erated the computation, allowing for an efficient analysis of the clustering solutions within a
reasonable timeframe.

Appendix B: High-Performance Computing Resources

To perform the hyperparameter optimisation we utilised The University of Sheffield’s High
Performance Computing (HPC) clusters ShARC. The HPC cluster used in this research
comprises 98 publicly available nodes, which are shared across various research groups. Each
node is based on the Dell PowerEdge C6320 machine. Each node is equipped with 2 Intel
Xeon E5-2630 v3 processors. Each node is equipped with 64 GB of DDR4 RAM, clocked at
1866 MHz. This amounts to 4 GB of memory per CPU core

For the hyperparameter optimisation each initialisation we used a total of 4 cores with
8GB of total memory. https://docs.hpc.shef.ac.uk/en/latest/decommissioned/sharc/
cluster_specs.html#sharc-specs&gsc.tab=0.

Appendix C: SNAC-K and CARE 75+ Condition Counts

We ranked the frequency of diagnosed conditions across all timepoints to visualise which
conditions were the most prominent in the dataset. This is shown in Figure 1.
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