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Abstract

Significant progress has been made over recent years in improving the accuracy of
density functional approximations for electronic structure simulations. The ad-
vent of the so called “meta generalised gradient approximations” (meta-GGAs)
has significantly improved the chemical accuracy possible using density functional
theory methods, with minor additional computational cost. However, the intro-
duction of meta-GGAs poses additional challenges that need to be overcome.
Much work has been done to develop the formalism of density functional pertur-
bation theory as an accurate and efficient method to calculate material proper-
ties; however, the formalism must be extended to enable such calculations using
meta-GGA functionals. In addition to this, following the development of the first
successful meta-GGAs, it was quickly observed that many meta-GGA function-
als suffer from severe numerical instability, which can have significant effects on
the physical properties predicted by electronic structure simulations. This thesis
gives details of the necessary steps to extend the framework of density functional
perturbation theory calculations of material properties with meta-GGA func-
tionals, as well as approaches to quantify and address the numerical instability
present in calculations using meta-GGAs. This is then applied to the calculation
of commonly calculated material response functions, phonon modes and elastic
constants tensors. The developed methods are verified against finite difference
calculations.
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units of eV/Å2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Comparison of the elements of the Dynamical matrix at q =
(
0, 1

3 ,0
)

of silicon calculated using of finite displacement and DFPT using
PBE, rSCAN and r2SCAN functionals. All calculations have been
performed using an FFT grid for the XC contributions that is 4
times as dense as the density grid. The finite difference calculation
in this case has been performed using the bare Hellman-Feynman
forces of the system. The dynamical matrix elements are given in
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Glossary of terms and common symbols

• Notation

V A vector is designated by being in bold font.

Vα, V α The particular component of a vector is designated by a subscript
or superscript, Greek letters are used to denote the Cartesian direction,
x, y and z.

Mαβ, Mαβ The particular component of a matrix or rank-2 tensor is des-
ignated by a double subscript or superscript, Greek letters are used to
denote a Cartesian direction, x, y and z.

|V | The euclidean norm of a vector.

∇ The gradient operator. Takes the derivative of a function with respect
to position, r.

∇2 The Laplacian operator.

The Einstein summation convention will be used for the tensor notation
throughout.

• Constants

kB The Boltzmann constant.

me The mass of an electron.

ℏ Reduced Plank’s constant, Plank’s constant divided by 2π.

• Variables

Ω The volume of the unit cell.

MI Mass of an atom with the label I.

RI Position in the unit cell of an atom with the label I.

• Abbreviations

FFT Fast Fourier Transform

DFT Density Functional Theory

KED Kinetic Energy Density

LDA Local Density Approximation

GGA Generalised Gradient Approximation

mGGA meta Generalised Gradient Approximation
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Chapter 1

Introduction

1.1 Material Simulation

World energy consumption is increasing each year, resulting in the burning of
more fossil fuels, releasing more CO2 into the atmosphere and causing steadily
larger contributions to climate change [8]. It is of vital importance that we reduce
this contribution in several ways; reducing our power consumption and improving
the efficiency of power generation and usage [9]. By finding new materials, and
improving the properties of the materials we currently use, these goals can be
accomplished. One class of materials that may play an important role in achieving
the goal of improving energy efficiency are thermoelectric materials [10].

As our requirements and material designs become increasingly complex, testing
these materials also becomes more challenging, requiring more time and greater
financial investment. In contrast to this, as time goes on, computers become more
powerful and cheaper to produce and run. Eventually, it becomes a far more vi-
able option to run simulations of materials and use computational experiments
rather than physical experiments. Computer simulations can be used to perform
a detailed study of extreme conditions where experiments are very difficult or
impossible to replicate [11]. Simulations can also be used to make cheap predic-
tions about the properties of materials without having to physically make them.
The downside is that the simulations require accurate physical theories that must
then be translated correctly into software.

Density Functional Theory (DFT) is a quantum-mechanical modelling method
used to study the electronic structure of materials. It is widely used in predict-
ing material properties such as electronic band structure, density of states, mag-
netism, and mechanical properties [12]. DFT simplifies the many-body Schrödinger
equation by expressing the system’s energy as a functional of the electron density,
making it computationally feasible for large systems [13].
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DFT strikes a balance between accuracy and computational efficiency. It can
provide reliable predictions for a wide range of materials at a fraction of the com-
putational cost of more accurate wavefunction-based methods (e.g. Quantum
Monte Carlo [14] or Coupled Cluster [15] simulations). However, the accuracy
of DFT depends on the choice of approximation for the exchange-correlation
functional. The commonly used Generalised Gradient Approximation (GGA) [2]
and Local Density Approximation (LDA) [16] offer reasonable results for many
materials but struggle with strongly correlated systems and van der Waals in-
teractions. Hybrid functionals which mix DFT with wavefunction methods like
Hartree-Fock theory and more advanced methods such as many-body perturba-
tion theory can improve accuracy but at a far higher computational cost. Despite
these limitations, DFT remains a powerful and widely used tool in materials sci-
ence because of its ability to predict material properties with reasonable accuracy
at a manageable computational cost.

1.1.1 Thermoelectric Materials

Thermoelectric materials are materials that can convert a temperature gradi-
ent across the material into a potential difference, which can be used to drive
a current. Simply put, anywhere heat is generated, a thermoelectric device can
convert that thermal energy into useful energy. Since all waste energy is even-
tually lost as heat, thermoelectric materials offer the capability to reclaim some
of this lost energy and greatly improve the efficiency of these devices [17]. The
ability of a thermoelectric material to convert heat to electrical energy is judged
by the dimensionless figure of merit, ZT [18]. The thermoelectric efficiency, η, is
a function of ZT and the temperatures at each side of the thermal gradient,

η = TH −TC
TH

·

√
1 +ZT̄ − 1√

1 +ZT̄ + TC
TH

, (1.1)

where TH & TC are the hot and cold sides of the temperature gradient and T̄ is
the average of these temperatures. The Carnot efficiency is the first term on the
right-hand side of the above expression and is the maximum possible efficiency
that can be achieved by an ideal heat engine. In the limit of ZT tending to
infinity, an ideal heat engine is achieved.

The ZT of a material is calculated from several material properties,

ZT = S2σ

κelec +κlat
T̄ (1.2)

where σ is the electrical conductivity of the material; κelec and κlat are the ther-
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Figure 1.1: Comparison of thermoelectric materials with particular ZT values
against other forms of energy generation [1].

mal conductivity of the material due to the electrons and the lattice vibrations
(phonons) respectively, and S is the Seebeck coefficient of the material. The
Seebeck coefficient is defined as S = −∆V

∆T , where ∆V is the voltage between the
two ends of the material due to a temperature difference of ∆T . The Seebeck
coefficient can be considered as a measure of the asymmetry of the density of
states around the Fermi level, high asymmetry giving a high Seebeck coefficient.
For a material to have high thermoelectric efficiency, it must have a large ZT
value and therefore requires low thermal conductivity, a high Seebeck coefficient
and high electrical conductivity.

Figure 1.1 shows a comparison of the efficiency of various power generation meth-
ods with an ideal Carnot engine and the thermoelectric efficiency of various values
for ZT . A stable, reliable and inexpensive thermoelectric material with ZT ≥ 2
would be efficient and cost effective enough to be considered a viable method of
recovering waste heat. With a ZT ≥ 4, a thermoelectric device would be efficient
enough to compete with other methods of energy generation, for example, it could
be used to make geothermal power generation more viable.

Current thermoelectric materials that are easily manufacturable have ZT values
of around 0.5−1.0. and are made of materials such as bismuth telluride (Bi2Te3)
[19, 20]. One major problem with these materials is that they further increase
our dependence on rare materials which are becoming increasingly scarce. From
an economic perspective, the cost reduction resulting from the efficiency gained
from introducing thermoelectric materials into devices is not yet enough to offset
the expense of sourcing the raw materials required. In order for thermoelectric
materials to become practically useful for reclaiming wasted heat, they first need
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to become more efficient at doing so, this requires the condensed matter physics
community to research ways to improve our existing materials or discover other
materials with improved thermoelectric properties [1].

One set of materials that has shown promise in the development of thermoelectric
materials is half-Heusler alloys [21, 22, 23, 24, 25, 26]. In particular, simulations
employing DFT and perturbation theory have predicted TaFeSb to have a very
high value for ZT at high temperatures, ZT = 1.5 at T = 1000 K [23, 24], which
makes this material of particular interest for future research. The experimental
synthesis of high-quality, single-crystal TaFeSb has proved to be difficult so far
[27]; therefore, the predictions from DFT and perturbation theory remain uncon-
firmed for now. However, robust predictions of ZT are particularly difficult to
make.

As shown in equation 1.2, a calculation of ZT is dependent on several physical
properties of the material, none of them being trivial to determine. Each of these
properties requires careful calculation and a sufficient theoretical treatment so
that all the dominant effects are accurately captured. However, for many materi-
als, the computational cost of these calculations can be immense and prohibitive,
requiring a huge amount of time and energy to be performed accurately using
our existing methods.

Even when performed at a high level of precision, existing methods are often
not accurate due to assumptions made when constructing the supporting theory.
Therefore, the calculation of each property allows inaccuracies to be introduced
in the final predicted value of ZT and reduces the confidence of any predictions
made. The reduced confidence in the theoretical predictions means that it is
obviously less likely that the material exhibits the predicted ZT , but also a de-
creased likelihood that experimental efforts will be directed towards synthesising,
characterising and testing the material. This compounds the likelihood that pre-
dictions of this nature will continue to go unconfirmed. Improving the robustness
of theoretical predictions, whilst still maintaining relatively low computational
costs, will enable theoretical methods to lead the way in material discovery.

In order to make robust predictions, work must be done to address areas where
the computational cost is prohibitive or where our theory is not sufficiently accu-
rate. Recent progress has been made in the development of more accurate den-
sity functional approximations for electronic structure simulations. The Strongly
Constrained and Appropriately Normed (SCAN) functional was the first meta-
Generalised-Gradient Approximation (mGGA) to adhere to all known constraints
for a mGGA functional [28]. This was a major achievement for chemical accu-
racy; however, it was quickly observed that SCAN, as with many other meta-GGA
functionals, suffered from severe numerical instability [29, 30, 31, 32, 33, 34, 35].
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This led to the creation of several related functionals [29, 36, 37, 38], which
attempted to regularise the numerical behaviour of SCAN, while maintaining
SCAN’s physical accuracy. These attempts have been mostly successful, lead-
ing to many recent publications displaying the accuracy of these functionals
[31, 39, 40, 41, 42, 43, 44, 45, 46].

When considering half-Heusler materials, almost all research in the literature has
used GGA functionals rather than the more chemically accurate mGGA function-
als. In fact, there have been cases where the GGA level of theory has completely
failed to accurately describe the electronic structure of materials, and researchers
have had to resort to empirically fitting corrections to their theory [25]. This
displays a clear need for more accurate theoretical frameworks when modelling
the thermoelectric properties of half-Heuslers. The sparse usage of mGGAs for
the investigation of half-Heuslers is hardly surprising, since the development of
accurate mGGAs only occurred relatively recently; however, when mGGAs have
been employed, they have been used successfully [22, 26]. One of the reasons that
limits the usage of the more accurate mGGA functionals is that they have not
been integrated into the perturbation theory formalism of DFT. This makes the
prediction of several material properties significantly more expensive and highly
subject to the aforementioned numerical issues, which can make the calculations
even more expensive.

Considering one of the most promising half-Heusler materials, TaFeSb, it can be
seen that a change in the XC functional can make some differences in the physical
and electronic structure properties. When the crystal structure of TaFeSb is
found using a GGA functional and a mGGA functional, PBE [2] and r2SCAN [36]
respectively, the lattice constants are found to be aPBE = 4.22 and ar2SCAN = 4.19,
which only differ by ∼ 0.6%. It can be seen from Figures 1.2 and 1.3 that there
is also no dramatic change in the predicted electronic structure of TaFeSb when
switching to a higher level of theory. The main features of both the band structure
and the DOS remain largely similar when compared between the two functionals;
however, when r2SCAN is used, the band gap opens up a bit wider, from a gap
of 0.813 eV when using PBE, to a gap of 1.05 eV, a change of around 20%, which
is more significant.

The BoltzTraP2 software package [47] can be used to predict several of the trans-
port coefficients relevant to calculating the thermoelectric figure of merit, ZT .
The transport coefficients are calculated from the band energies produced by an
electronic structure package and are calculated as functions of temperature and
chemical potential, which is related to the doping of the material. This is done
by solving the Boltzmann transport equation for electrons in the Constant Re-
laxation Time Approximation (CRTA) [48]. In the CRTA, the Seebeck coefficient
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Figure 1.2: Electronic band-structure of TaFeSb computed using DFT with a
GGA functional (PBE) and a mGGA functional (r2SCAN), where the energies
of both calculations have been shifted so that the valence band maximum is at
0 eV.

Figure 1.3: Electronic density of states (DOS) of TaFeSb computed using DFT
with a GGA functional (PBE) and a mGGA functional (r2SCAN), where the
energies of both calculations have been shifted so that the Fermi level is at 0 eV.
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can be calculated explicitly; however, the values for the electrical conductivity,
σ, and the thermal conductivity due to the electrons, κelec, are calculated per
charge carrier relaxation time, τ , which is not determined by BoltzTraP2.

Figures 1.4 and 1.5 show comparisons of the BoltzTraP2 predicted values for
the “Power Factor” and thermal conductivity due to electrons per charge carrier
relaxation time, S2σ

τ and κelec
τ , as a function of the doped Fermi energy. From

these plots it can be seen that besides the obvious change in the band gap, the
predictions of the GGA functional and meta-GGA functional are very similar in
features under doping. Therefore, any change in the predicted values of ZT be-
tween the two functionals will likely come from changes in the properties involved
in the calculation of ZT , τ and κlat.

Calculations of τ and κlat can be achieved by various methods, all of which depend
in some way on calculating the response of the electrons to some perturbation.
Methods of calculating this response are discussed at greater length in Chapter 3,
currently however, calculations of materials responses using mGGAs are limited
due to the numerical stability of the mGGA functionals and the absence of the
proper incorporation of the mGGAs into the more efficient Density Functional
Perturbation Theory (DFPT) methods. The work in this thesis addresses each
of these limitations.
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Figure 1.4: Power Factor (S2σ) per charge carrier relaxation time (τ) of TaFeSb
computed using DFT with a GGA functional (PBE) and a mGGA functional
(r2SCAN), at 300 K as a function of the doped chemical potential µ.

Figure 1.5: Thermal Conductivity due to electrons (κelec) per charge carrier re-
laxation time (τ) of TaFeSb computed using DFT with a GGA functional (PBE)
and a mGGA functional (r2SCAN), at 300 K as a function of the doped chemical
potential µ.
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1.2 Layout of Thesis

The over-arching aim of this thesis is to extend the framework of density func-
tional perturbation theory to enable linear response calculations of material prop-
erties with mGGA functionals. This will mean that calculations of thermoelectric
materials can be performed more efficiently and with a more accurate description
of the electronic states, which will strongly influence the prediction of material
properties.

The thesis is set out as follows:

• Chapter 2 sets out the fundamentals of DFT and details the formalism of the
local and semi-local density functional approximations, in particular noting
additional terms that must be included when using mGGA functionals.

• Chapter 3 describes how particular material properties can be understood
as derivatives of a system’s total energy, and how the approach of density
functional perturbation theory can be used to access these energy deriva-
tives. Expressions are derived for the energy derivatives with respect to
general perturbations for the mGGA formalism.

• Chapter 4 focuses on the specifics of calculating the phonon modes of a
material in the harmonic approximation using perturbation theory, expres-
sions for the energy derivatives required for this are given within the mGGA
formalism. The derivations are implemented in a DFT simulation software
and verified using silicon as a test case.

• Chapter 5 concentrates on the numerical issues that arise when using mGGA
functionals. An uncertainty quantification technique for these numerical er-
rors is proposed as well as a more efficient technique to address them.

• Chapter 6 focusses on the method of determining the elastic constants of
a material using perturbation theory, providing the energy derivative ex-
pressions necessary within the mGGA framework. These derivations are
incorporated into a DFT simulation program and validated again using sil-
icon as a test case. Then a comparison is made between the prediction of
the elastic constants for several materials obtained using different theoreti-
cal approaches, each of which is compared to experimental results.

• Chapter 7 summarises the work carried out in this thesis and combines the
results on the future work to be carried out. To illustrate the methods
developed in this thesis, they are applied to the case of TaFeSb. A com-
parison is then made between the prediction of the phonon band structure
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and density of states for TaFeSb obtained using a GGA functional and a
more accurate mGGA functional. Finally, elastic response calculations are
used to compute values for τ and κlat, which are then used to calculate
predictions of ZT for TaFeSb in using both the PBE functional and the
r2SCAN functional.

The aim of this thesis is not to make any grand predictions of previously unknown
thermoelectric materials, nor is it to take a study from recent years and dupli-
cate their work with the latest exchange-correlation approximation. Rather, the
aim is to make a significant extension to our current capabilities within density
functional perturbation theory, enabling more efficient and more accurate calcu-
lation of material properties using higher levels of theory, as well as addressing
the challenges of using said theories in practical simulations.

1.3 Software

In this work, we will be using a number of software packages to simulate these
materials and subsequently analyse the results using methods described below.
These packages include:

• CASTEP [49] - CASTEP is a leading software package for calculating the
properties of materials from first principles using density functional the-
ory. It enables the simulation of a wide range of material properties, in-
cluding energetics, atomic-level structures, vibrational characteristics, and
electronic responses. Notably, CASTEP offers extensive spectroscopic fea-
tures that directly correlate with experimental techniques, such as infrared
and Raman spectroscopy. A Sternheimer solver underpins the calculation
of a variety of such response functions and its performance characteristics
are the limiting factor in studying various spectroscopic phenomena such
as phonons. All DFT calculations will be performed using CASTEP and
all derived extensions to theory will be implemented as functionality within
CASTEP.

• LibXC [50] - A library of exchange, correlation and kinetic energy func-
tionals for DFT. LibXC includes various types of functionals (LDA, GGA,
and meta-GGA (mGGA) functionals) and for each can evaluate the energy
density and its derivatives in a correct fashion. LibXC is based on the use
of computer algebra and automatic code generation to enable the genera-
tion of bug-free code. LibXC can calculate both the functional itself and its
first- through fourth derivatives. The second order derivatives in particular
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are utilised in this work for calculating the response of the exchange and
correlation potential.

• BoltzTraP2 [47] - A software package for predicting several material trans-
port coefficients for extended systems using the linearized Boltzmann trans-
port equation. It uses only the band energies calculated across the 1st
Brillouin zone. Its use in this thesis has already been demonstrated in the
figures above, calculating the power factor and thermal conductivity per
relaxation time of the charge carriers for TaFeSb.
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Density Functional Theory

This chapter outlines the fundamental principles of density functional theory
(DFT), which is the theory that underpins all subsequent work in this thesis.
Particular attention is given to distinguishing among various types of density
functional approximations, especially the “meta generalised gradient approxima-
tion” (mGGA) functionals. Following a discussion of the essential theoretical
framework, details are given for the practical application of DFT, describing the
specifics of the “plane-wave pseudopotential DFT” approach and the implemen-
tation of mGGA functionals therein. These sections will serve as an essential
reference in the following chapters, as this work aims to extend the framework of
perturbation theory to include these more advanced approximations.

2.1 Introduction

The properties of materials are governed by interactions of electrons with nu-
clei and electrons with electrons, occurring at the atomic scale (length scale
O
(
10−10

)
m). If we wish to use theory and simulation to understand and pre-

dict material properties, we must use quantum mechanics. Our starting place is
many-body Schrödinger equation (MBSE); in this work, we focus on the time-
independent form, which assumes that any external fields are static. By applying
the Hamiltonian operator, Ĥ, to wavefunction, Φ, of a material or system of
electrons and nuclei the energy of the system, E, can be calculated,

Ĥ |Φs ({ri} ,{RI})⟩ = Es |Φs ({ri} ,{RI})⟩ , (2.1)

where the position of the ith electron is ri, the position of the Ith nuclei is denoted
by RI and s labels the states of the system. In this form, it is not feasible to
attempt to solve the MBSE, since the size of the problem scales exponentially with
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number of electrons and nuclei, such that beyond 3 or 4 particles, a satisfactory
solution becomes unfeasible. Density functional theory is an approach that can
circumvent this scaling problem which has become more popular over the last 30−
40 years due to its accurate reproduction of experimental results, e.g. material
lattice constants to within an error of a few percent [51].

2.2 Solving the Many Body Schrödinger Equa-
tion

In the many-body Schrödinger equation we calculate the energy of a many-body
system of nuclei and electrons by applying the Hamiltonian of the system. The
Hamiltonian can be split up into the different energy contributions,

Ĥ = T̂ nuc + T̂ elec + V̂ nuc-nuc + V̂ nuc-elec + V̂ elec-elec, (2.2)

where T̂ nuc and T̂ elec are the kinetic energy operators for the nuclei and electrons
respectively, V̂ nuc-nuc, V̂ nuc-elec and V̂ elec-elec denote the operators for the nuclear-
nuclear, nuclear-electron and electron-electron interactions respectively. We are
neglecting spin effects and magnetism.

By “solving” the MBSE, we mean finding the eigenstates of the coupled system,
|Φs⟩, that satisfy 2.1. Except in certain very specific scenarios, the MBSE cannot
be solved analytically, and therefore we turn to numerical methods. Again, solv-
ing the MBSE numerically poses it’s own challenges. Consider a coupled state
of the system: |Φs⟩ is a 3Nelec + 3Nnuc dimensional object, as it depends on the
electron and nuclei states at all positions throughout the system. For a 3 di-
mensional system broken up onto a very coarse 10 × 10 × 10 grid, the number of
values, Nval, that are require to store a state |Φs⟩ scales exponentially with the
number of particles,

O (Nval) = (10)3Nelec+3Nnuc . (2.3)

For a system of 8 electrons and 1 nucleus, the number of values required to store
a single state is of the order 1027, even on a very coarse grid. This is vastly
greater than any storage available to us. For systems of more than few particles,
the storage of such a single state is the immediate problem, as opposed to any
attempts to actually solve the MBSE.

Clearly, it is impractical to consider directly solving the MBSE for real materials.
We must therefore look to make approximations.
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2.2.1 The Born-Oppenheimer Approximation

The first thing that we can consider is that there is a large mass difference between
the nuclei and electrons, even for a hydrogen nucleus the ratio is around 2000 : 1.
If we consider the expression for the kinetic energy operator for the nuclei,

T̂ nuc = −
∑
I

ℏ2

2MI
∇2
I (2.4)

we can see that the kinetic energy of the nuclei will be much smaller in comparison
to other terms in the Hamiltonian due to its dependence on the inverse nuclear
mass.

We can therefore very reasonably approximate the nuclei as “slow-moving parti-
cles” when compared to the electrons. Mathematically, we are approximating the
nuclei as having infinite mass and, therefore, zero kinetic energy, removing that
term from the Hamiltonian. This allows us to approximate the system wavefunc-
tion, Φ, by separating it into the product of an electron wavefunction, Ψelec, and
a nuclear wavefunction, Ψnuc,

Φ ≈ Ψelec · Ψnuc. (2.5)

Compared to the electrons, the nuclei are massive enough that their wave func-
tions are very localised, such that the electron wavefunction depends on the nu-
clear positions parametrically, but not on full nuclear wavefunctions. In other
words, when the nuclei move, the electrons respond to the change instantaneously
and remain in their ground state. This is the Born-Oppenheimer approximation
first put forward in 1927 [52]. In this approximation there is no coupling of the
electron states and nuclear motion, i.e. nuclear motion cannot lead to the excita-
tion of electrons. The coupling can be reintroduced by a perturbative approach,
provided that the nuclear motion is slow, i.e. the kinetic energy term is still small
enough to be neglected.

The nuclei can be treated classically and have no effect in the quantum regime
on the electron properties. By treating the nuclei classically as point charges,
the calculation of the nucleus-nucleus interactions is also simplified and can be
handled very efficiently and accurately through numerical methods.

This assumption only breaks down when simulating systems with very light nuclei
and when simulating systems at very low temperatures; even at these extremes
there are specialised techniques to incorporate the quantum effects of the nuclei
with significantly less cost than full quantum-nuclei + electron treatment.

Having successfully simplified the handling of the nuclei, we can now turn our
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attention to addressing the pure electron problem.

2.2.2 The MBSE for electrons

Applying the Born-Oppenheimer approximation leads to a somewhat simplified
Hamiltonian for the system. The nuclear kinetic energy term can be neglected
and the nuclear-nuclear interaction is handled by treating the nuclei as classical
point charges. This leads to a Hamiltonian for the system that only acts on the
electron wavefunction,

Ĥ = T̂ elec + V̂ nuc-elec + V̂ elec-elec +Enuc-nuc

= − ℏ2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

4πϵ0|ri−RI |
+ 1

2
∑
i ̸=j

e2

4πϵ0|ri−rj |
+Enuc-nuc

= − ℏ2

2me

∑
i

∇2
i +

∑
i

V ext(ri) + 1
2
∑
i̸=j

e2

4πϵ0|ri−rj |
+Enuc-nuc, (2.6)

where Enuc-nuc is the energy of the nuclear-nuclear interaction, going from the
second line to the third line we have also abstracted the interaction between the
electrons and all nuclei into a single external potential, V ext. However, solving
the MBSE just for the electrons is no more a tangible task than solving for the
full coupled system of electrons and nuclei. The exponential scaling with the
number of particles still applies, limiting any calculations to no more than 3 or 4
electrons.

The Hamiltonian above is given with no assumed units. From here on in, unless
otherwise explicitly stated all expressions will be now be given in atomic units,
where me = ℏ = 4πϵ0 = e = 1. In atomic units the Hamiltonian of the many-
electron systems becomes somewhat clearer to read,

Ĥ = −1
2
∑
i

∇2
i +

∑
i

V ext(ri) + 1
2
∑
i ̸=j

1
|ri−rj |

+Enuc-nuc. (2.7)

2.3 Density Functional Theory

There have been several approaches to tackling the MBSE for electrons through
various reformulations of the problem. This work focusses on the methods of
Density Functional Theory, first introduced in 1964 by Hohenberg and Kohn
[13].
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2.3.1 Hohenberg-Kohn Theorems

In their 1964 paper Hohenberg and Kohn (HK) put forward two theorems,

1. For a system of interacting particles under an external potential V ext (r),
there is a unique mapping (except for a constant shift) between the ground
state particle density, ρ0 (r) and V ext (r).

2. There exists a universal functional for the system’s total energy E [ρ] in
terms of the density ρ(r). The density function ρ(r) that minimises this
functional is the exact ground state, ρ0 (r).

The significance of the first theorem is that if ρ0 (r) uniquely defines a particular
V ext, when we consider 2.6 we can see that the Hamiltonian is also uniquely de-
fined. From this it follows that the many-body wavefunction Ψelec is also uniquely
defined, and therefore in principle, every observable is completely determined
from only the ground state density, ρ0 (r).

The universal functional of the energy posited in the second theorem follows from
the first theorem, energy being an observable of the system. HK then show that
by varying density function to minimise the energy functional one can find the
exact ground state energy. By definition, the density function that produces the
minimum energy is the ground state density, ρ0 (r).

The first proof tells us that if we know ground state density of a system of
interacting particles, in principle we have all the information that we need to
calculate any observable of the system. The second proof tells us that if we
know the universal energy functional of the density, we can find the ground state
density of the system and hence from the first proof, all observables for the system.
Together, these theorems and their proofs are sufficient to allow us to completely
avoid the need to determine the many-body electron wavefunction. This avoids
the requirement for a mathematical object that scales exponentially with the
number of particles. Provided we know the exact universal energy functional of
course . . . which we do not.

It is, however, instructive to have a go at writing down the different contributions
to the exact functional and take our approach from there. To begin, we can
separate out the interaction of the density and the external potential,

E [ρ(r)] =
∫
V ext (r)ρ(r) d3r +F [ρ(r)] , (2.8)

where F [ρ(r)] denotes the unknown universal functional of HK. From here we can
split the unknown functional into the different contributions to the total energy,
the kinetic energy of the particle and the interactions of the particles with each
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other,
F [ρ(r)] = T [ρ(r)] +U [ρ(r)] (2.9)

where T [ρ(r)] is the functional of the kinetic energy and U [ρ(r)] is the functional
of the energy of the interaction between the particles. Both of these functionals
are unknown, however in the case of the interaction between particles we can
again separate out terms that we do know,

U [ρ(r)] = 1
2

∫∫ ρ(r)ρ(r′)
|r −r′|

d3rd3r′ +EXC
HK [ρ(r)] . (2.10)

The first term here is the classical electrostatic energy for a charge distribution,
often known as the Hartree energy EH, and the second term EXC

HK [ρ(r)] must
account for the so-called exchange and correlation interactions, which shall be
discussed in due course.

Thomas-Fermi theory [53, 54] predates the introduction of DFT, but it is an
attempt is made to formulate a functional for the kinetic energy under certain
approximations. Generally, Thomas-Fermi is not accurate enough to make ro-
bust theoretical predictions, and the lack of an accurate kinetic energy functional
restricts approaches that rely solely on the density as the basic variable.

2.3.2 Kohn-Sham Theory

The next advance for DFT approaches came a year later from Kohn and Sham
[55]. They proposed to replace the MBSE for N strongly interacting particles with
an auxiliary system of N non-interacting, independent particles. The ground-
state density of the fictitious auxiliary system is assumed to be the same as
that of the original many-body problem. They take the universal functional of
equation 2.8 and separate out the kinetic energy of fictitious Kohn-Sham system,
TKS, which is the functional of the ground state density,

F [ρ(r)] ≡ TKS [ρ(r)] +G [ρ(r)] . (2.11)

The Kohn-Sham formulation for the energy can therefore be written as,

EKS = TKS [ρ(r)] +G [ρ(r)] (2.12)

= TKS [ρ(r)] +
∫
V ext (r)ρ(r) d3r +EH [ρ(r)] +EXC [ρ(r)] . (2.13)

In this case the exact exchange and correlation energy functional, EXC is

EXC [ρ(r)] = TMB [ρ(r)] −TKS +Eelec-elec
MB −EH [ρ(r)] , (2.14)
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where TMB is the exact kinetic energy of the many body system and Eelec-elec
MB is

the exact electron-electron interaction energy of the many body system. Note
that EXC of equation 2.14 and EXC

HK of equation 2.10 subtly differ in definition. In
the Hohenberg-Kohn definition, it is assumed that the exact density functional of
the many-body kinetic energy, TMB [ρ(r)], is known and determined separately.
For the Hohenberg-Kohn definition of EXC

HK, only the last two terms of equation
2.14 are required.

If the exact EXC functional is known, then the ground state density and energy
can be found using the Kohn-Sham density. The density of the Kohn-Sham
system can be calculated from the Kohn-Sham states

ρ(r) = 2Ω−1
occ∑
i

|ψi (r)|2 , (2.15)

where Ω is the volume of the system, i is the label for each of the Kohn-Sham
states and the sum only over occupied states which for N electrons, will be the
N
2 lowest energy states since we are assuming spin degeneracy for now.

So, how exactly does this help? With a sleight of hand, we have replaced two
unknowns, TMB [ρ(r)] and Eelec-elec

MB [ρ(r)], with a single unknown, EXC. The key
to the success of Kohn-Sham theory comes from introducing the fictitious non-
interacting electrons, ψs (r), for which the kinetic energy, TKS, is known and can
be calculated very straight forwardly using the usual kinetic energy operator,

TKS = −1
2

occ∑
i

⟨ψi|∇2 |ψi⟩ . (2.16)

Any discrepancy between the many-body kinetic energy and kinetic energy of
the Kohn-Sham states is accounted for by the unknown exchange and correlation
functional, so in principle the theory is exact. Therefore, without having to make
any of the coarse approximations, we have reduced the unknown components
from the full kinetic energy to a correction to the Kohn-Sham kinetic energy.
This turns out to be a far better approximation of the kinetic energy of the
many-body system than the approach of Thomas-Fermi theory.

The set of states that minimise the total energy functional are the self-consistent
solutions to the Kohn-Sham equations,

ĤKS |ψi⟩ =
[
T̂ +V KS (r)

]
|ψi⟩ = ϵi |ψi⟩ , (2.17)

where ϵi are the Kohn-Sham eigenvalues and ĤKS is the effective Hamiltonian
operator, comprised of the kinetic energy operator and the Kohn-Sham potential
V KS (r). The Kohn-Sham potential is chosen to ensure that the Kohn-Sham
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density is identical to the density of the exact many-body system and is explicitly
defined as local and multiplicative. The potential consists of the external potential
and the functional derivatives of the Hartree energy and the XC energy,

V KS (r) = V ext (r) +V H (r) +V XC (r) , (2.18)

where V H = δEH

δρ(r) is the Hartree potential and V XC = δEXC

δρ(r) is the XC potential.

The fictitious Kohn-Sham electrons, ψs (r) are the eigenvectors of the effective
Hamiltonian, subject to an orthonormality constraint of

⟨ψi|ψj⟩ = δi,j . (2.19)

2.3.3 Exchange and Correlation Functionals

The final component of the Kohn-Sham formalism is the exchange and correlation
functional. “Exchange” here refers to the energy contributions arising from the
requirement of the many-body electron wavefunction to be antisymmetric, since
electrons are fermions. In the many-body interacting system, if two electrons
exchange position, the sign of the overall wavefunction would change, e.g. in a
two-electron system Ψ(r1,r2) = −Ψ(r2,r1). The antisymmetry of the wavefunc-
tion enforces the Pauli exclusion principle and causes a repulsion between the
electrons. Slater determinants are objects that obey this antisymmetry rule, by
using them to represent the electron wavefunction the antisymmetry can be di-
rectly incorporated into the model. This is the basis of the Hartree-Fock method;
however, the added computational expense of calculating the Fock operator limits
the applicability of this method.

“Correlation” has a rather vague definition. Broadly, correlation refers to any
interaction between electrons, but of course the Hartree and exchange energies
are both interaction energies. So what is meant by a “correlation functional” in
DFT formalism, is all the parts of the exact energy that are not accounted for by
the Hartree and exchange energy. A system can lower its total energy dynami-
cally through Coulomb repulsions, which cannot be captured in the Hartree-Fock
method and would require a sum over all possible Slater determinants. The
degrees of freedom that the additional Slater determinants permit enables the
energy to be lowered. The amount of energy that the total energy is lowered by
is the correlation energy. In essence, if the Hartree and exchange energies are
accounted for, e.g. by the Hartree-Fock method with a single Slater determinant,
“correlation” refers to the other energy contributions.

The exact Exchange and Correlation functional is unknown, we must therefore
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approximate. There are various approaches to approximate the XC energy func-
tional that are often classified as different rungs on a Jacob’s ladder [56] of ac-
curacy, based on the information required for each functional. In general, it is
observed that each step up the Jacob’s ladder results in an step towards increased
physical accuracy at the cost of increased calculation time.

2.3.3.1 Local Density Approximation

The simplest approximations are Local Density Approximations (LDA) [16, 3]
which describe the contribution to the XC energy at a specific point r using
only the density at that specific point, ρ(r). The LDA suggested by Perdew
and Zunger in 1981 [16] is based on the exchange and correlation energies of
the homogeneous electron gas, a system in which the electron density is uniform
throughout. The PZ LDA functional is written in the form,

EXC
LDA = F [ρ] =

∫
Ω
ρ(r)ϵXC

LDA (ρ(r)) d3r =
∫

Ω
fXC

LDA (ρ(r)) d3r, (2.20)

where ρ is the electron density and ϵXC
LDA is the exchange and correlation energy

density per particle at point r. The functional form of LDAs shown above means
that LDAs are therefore purely local functionals. The functional derivative and
therefore the XC potential is straight forward to derive and compute,

δEXC

δρ(r) = ∂fXC
LDA

∂ρ(r) . (2.21)

The LDA of PZ approximates ϵXC
LDA as the exchange and correlation energy per

particle of a uniform electron density that has a density the same as the real
density at that point in the system. The value of the exact exchange energy for
the homogenous electron gas can be calculated analytically, and values can be
calculated for the correlation energy using more advanced theoretical methods
such as Quantum Monte Carlo [14] and the Random Phase Approximation [57]
and a functional fit to this data. The Perdew-Zunger LDA functional is a simple
and surprisingly effective functional, enabling “accurate enough 1” simulations
for the first time, marking a turning point in DFT development.

Vosko, Wilk, and Nusair (VWN) developed several functionals that varied in the
theoretical data sets used to parameterise the functionals and the function that
was used to interpolate the correlation energy between the fully spin-polarised
electron gas and the non-spin-polarised electron gas. Perdew and Wang pub-

1The definition of accurate enough obviously varies between use cases, but the PZ LDA
functional was a simple and general implementation that was deemed “accurate enough” for
many use cases.
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lished an LDA functional in 1992 [3] that used the most successful of the VWN
interpolation functions and used more theoretical data to make the fit of the final
functional. The PW LDA improved upon the numerical stability of the PZ LDA
by choosing a functional form that was not a piecewise function but avoided some
of the overly complicated forms of the VWN functionals. The PW LDA has since
been used as the starting point for more advanced approximations of the XC
functional.

2.3.3.2 Generalised Gradient Approximation

The next class of approximation are the Generalised Gradient Approximations
(GGAs) [2] which include additional information about the surrounding electron
density via the gradient of the density |∇ρ| at each point. GGAs are often referred
to as semi-local functionals, in general they are of the following form,

EXC
GGA = F [ρ, |∇ρ|] =

∫
Ω
ρ(r)ϵXC

GGA (ρ(r) , |∇ρ(r)|)d3 r

=
∫

Ω
fXC

GGA (ρ(r) , |∇ρ(r)|)d3 r. (2.22)

fXC
GGA now also depends on the local gradient, so there are additional terms to

the functional derivative. We shall use the form for the functional derivative put
forward by White and Bird [58] which they showed to be more numerically stable,

δEXC

δρ(r) = ∂fXC
GGA

∂ρ(r) −∇
(

∂fXC
GGA

∂|∇ρ(r) |
∇ρ(r)

|∇ρ(r) |

)
. (2.23)

Several attempts were made to construct gradient expansion approximations for
the XC functional, but they failed to improve upon the general behaviour of the
LDA functionals. This was until the functional of Perdew and Wang in 1991
(PW91) which satisfied certain constraints of the exact functional in particular
limits. The numerical behaviour of the PW91 functional meant that it was su-
perseded by a functional published by Perdew Burke and Enzerhof in 1996 [2]
(PBE) which has by far been the most widely used approximation to date.

2.3.3.3 Meta Generalised Gradient Approximation

Next are so called “meta-GGAs” (mGGAs), which will also depend on the Lapla-
cian of the density, ∇2ρ, and/or the orbital kinetic energy density, τ computed
from the Kohn-Sham states,

τ (r) = 1
2Ω−1

occ∑
i

|∇ψi (r) |2. (2.24)
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The general expression for the mGGA functionals is

EXC
mGGA = F

[
ρ, |∇ρ| ,∇2ρ,τ

]
=
∫

Ω
ρ(r)ϵXC

mGGA
(
ρ(r) , |∇ρ(r)| ,∇2ρ(r) , τ (r)

)
d3r.

(2.25)
They are still semi-local functionals, but the inclusion of the Kinetic Energy
Density (KED) allows further information to be included, particularly giving an
indication of the electron localisation. The functionals that adopt the use of τ
have so far been far more successful than the approaches involving the Laplacian
of the density, since τ can be found in Taylor expansions of exact exchange [59]
and correlation expressions [60]. In this thesis, the focus is on perturbation theory
as applied to functionals that do not depend on the Laplacian of the density but
those that depend on the KED. Those functionals are of the form,

EXC
mGGA = F [ρ, |∇ρ| , τ ] =

∫
Ω
ρ(r)ϵXC

mGGA (ρ(r) , |∇ρ(r)| , τ (r)) d3r

=
∫

Ω
fXC

mGGA (ρ(r) , |∇ρ(r)| , τ (r)) d3r. (2.26)

Inclusion of τ means that the XC potential can no longer be expressed in a truly
multiplicative form, as was done for the LDA and GGA functionals. In fact,
it is no longer well defined as the functional derivative of the XC energy with
respect to the density, since it is not known how to directly calculate τ from the
density. There are two options for how to proceed from here [61], the first is to
use the Optimised Effective Potential (OEP) method [62, 63] which produces an
XC potential that is a local and multiplicative operator, which is the same for all
orbitals; however, this is computationally expensive and difficult to use beyond
total energy calculations. The second option is to instead take the approach that
we are minimising the total energy with respect to variations in the orbitals,
not the density. We therefore take the functional derivative with respect to the
Kohn-Sham orbitals [64], such that the potential now includes gradient operator
terms that are applied to the Kohn-Sham states,

δEXC

δ ⟨ψ|
=
[
∂fXC

mGGA
∂ρ(r) −∇

(
∂fXC

mGGA
∂ |∇ρ(r)|

∇ρ(r)
|∇ρ(r)|

)
− 1

2∇·
(
∂fXC

mGGA
∂τ (r) ∇

)]
|ψ⟩ , (2.27)

where the terms in the square brackets are considered to be the XC potential.
Since the potential is no longer multiplicative and each orbital experiences a
different effective potential, this approach is generally considered to be a form
of generalised Kohn-Sham theory [65]. These additional terms in the potential
require careful handling when considering perturbation theory.

Similar to the gradient expansion functionals, several attempts were made to con-
struct mGGA functionals; however, they failed to provide consistent and general
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improvements on the GGA functionals. Again, the key seems to lie in approxi-
mate functionals that correctly adhere to the exact constraints of the true func-
tional. The Strongly Constrained and Appropriately Normed (SCAN) functional
was the first mGGA to adhere to all known constraints for a mGGA functional
[28]. This was a major achievement for chemical accuracy; however, it was quickly
observed that SCAN, as with many other meta-GGA functionals, suffered from
severe numerical instability [29, 30, 31, 32, 33, 34, 35]. This led to the cre-
ation of several related functionals [29, 36, 37, 38], which attempted to regularise
the numerical behaviour of SCAN, while maintaining SCAN’s physical accuracy.
Considerable improvements have been achieved with respect to SCAN, but, as
recent work has shown, many modern XC functionals including the SCAN family
are numerically ill behaved [35].

The numerical behaviour of these recent functionals can cause severe problems
when performing practical calculations for material properties, as we shall see in
chapter 4. Understanding the cause of these numerical issues is tackled in chap-
ter 5 where I put forward a method that can be used within plane-wave DFT to
estimate the numerical errors and address the errors in a minimal additional com-
putation (§5.3). The methods set out in chapter 5 allow us to better understand
the numerical instabilities for a chosen XC functional “in situ”, for the particular
system being considered, and adapt our approach to minimise errors occurring
for numerical integration.

2.3.3.4 A library of Exchange and Correlation

Since the publication of PBE there has been an explosion of XC functionals,
mostly of the GGA variety. LibXC, a library of exchange and correlation func-
tionals [50], contains more than 400. The variety comes from the choice of which
exact constraints are obeyed and the systems used to parametrise the function-
als. LibXC is of particular importance to the work described in this thesis as
it not only provides a general interface allowing use of all included function-
als, it also uses algorithmic differentiation to enable computation of up to the
4th derivatives for all the functionals. This additional point is key for the work
presented in this thesis as the 2nd derivatives are required for constructing the
first-order response potential when performing perturbation theory calculations.
The functional forms of XC functionals are inherently complicated, making ana-
lytical derivation and computational implementation of their derivatives a time-
consuming and error-prone process. The automatic calculation of these deriva-
tives greatly reduces the overhead involved in attempting to implement perturba-
tion theory calculations and helps avoid sources of noise that would be introduced
from numerical differentiation approaches.
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2.4 DFT For Materials

We now have all the ingredients to make an ‘accurate enough’ attempt atmaterial
simulations however, we still face practical challenges. For an N electron system,
the time to compute the solution to the Kohn-Sham equations scales to O

(
N3
)

which means simulations are quickly limited by the number of electrons that are
included. How then can we attempt to perform simulations of systems larger
than the smallest of molecules, considering that the number of electrons in a few
grammes of a material is of the order 1023?

2.4.1 Bloch’s Theorem

The alternative approach is to recognise that in most materials the atoms are
positioned at regular distances apart and form a highly periodic crystal. When
we are interested in a large-scale material, we can approximate the material as a
perfect crystal using a small unit cell that is repeated periodically across space.
The unit cell is defined by a set of primitive vectors, a, and the types and relative
positions of the atoms in the unit cell. Integer multiples of the vectors are used to
define a set of translations of the unit cell, which generates the rest of the crystal,
the translations also form a set of points known as the Bravais lattice.

The unit cell and the position of the atoms therein is perfectly periodic; therefore,
the external potential from the nuclei is also periodic. The effective Hamiltonian
and electron density are therefore also guaranteed to be periodic; however, the
electron wavefunctions themselves are not. An electron wavefunction can vary
from one unit cell to another by a complex phase factor and still have the same
electron density in each cell. Using Bloch’s theorem, we therefore write a partic-
ular Kohn-Sham state ψb as the product of a cell-periodic function, uk (r) and a
wavelike function,

ψbk (r) = eik·rubk (r) , (2.28)

where we have introduced an additional free parameter k, into the problem, which
defines the complex phase of the electron state. In order to accurately capture
the contributions to the total energy of a system, changes in the complex phase
need to be accounted for. This is done by sampling the Kohn-Sham states at all
possible values for the complex phase as defined by k, i.e. across a k-space.

Bloch’s theorem allows us to change the problem from having to calculate the
Kohn-Sham states for the whole material to having to calculate the Kohn-Sham
states in a small section of real space, but over infinite k-space. In fact, the prob-
lem is not quite that bad; beyond the 1st Brillouin zone the states are repeated;
therefore, to get a complete sampling only this region of k-space needs to be
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sampled. Points next to each other in k-space will have very similar Kohn-Sham
states, and we can therefore represent the states over a region of k-space using
the states at a single point. This means that we can sample the 1st Brillouin zone
with a relatively coarse numerical integration grid and still make good predictions
of the total energy. For the integration grid sampling, we use an unbiased grid of
evenly spaced points in a 3 dimensional grid, called a Monkhorst-Pack grid [66],
which can be defined in terms of the spacing between the points and an offset
from the origin.

2.4.1.1 Symmetry

The number of k-points required to sample the 1st Brillouin zone can be signif-
icantly reduced by using the crystallographic symmetry of the material under
study. The choice of a Monkhorst-Pack grid allows us to fold the grid into a
symmetric, irreducible set under the symmetry operations, since the solutions of
the Kohn-Sham equations at symmetry-related k-points will also be related by
symmetry. The symmetry operations can also be used to restrict further degrees
of freedom in the calculation, such as by symmetrising atomic forces and the cell
stress. Not having the solutions of the Kohn-Sham equations at every k-point
means that the calculated density must also be symmetrised using the crystal
symmetry operations.

2.4.2 The Plane-Wave Basis Set

The cell-periodic part of the Kohn-Sham states, ubk (r), must also be considered.
Since this function must have the periodicity of the unit cell, a natural choice is to
expand this function as a Fourier series of plane-waves that have the periodicity
of the unit cell

ubk(r) =
∑
G

cbGe
iG·r. (2.29)

The wave vectors, G, are reciprocal lattice vectors of the Bravais lattice, defined
as G · L = 2πm for all L where L is a primitive vector of the unit cell and m

is an integer. cbG in equation 2.29 is the Fourier expansion coefficient, for the
plane-wave with wave-vector G.

The Kohn-Sham wavefunctions can therefore be written as an infinite sum of plane
waves; however, this must necessarily be truncated to allow practical calculations.
The infinite expansion is restricted such that only plane-waves that have a kinetic
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energy less than some cut-off energy, Ecut, are considered,

ψbk (r) =
|k+G|≤Gcut∑

G

cbkGe
i(k+G)·r, (2.30)

where ψbk is the wavefunction for a particular k-point k and state labelled b,
Gcut =

√
2meEcut

ℏ2 , and cbkG is the Fourier expansion coefficient for that particular
plane-wave labelled G. The truncation of the basis set can be done without loss
of accuracy, as the neglected plane waves vary very quickly in real space, and
therefore their contribution to the wave function and the total energy can safely
be assumed to be small, provided a large enough cut-off is chosen. The use of
the plane-wave basis set means that Fast Fourier Transforms (FFTs) can be used
to quickly move between reciprocal space and real space representations of the
Kohn-Sham wavefunctions.

When calculating the total energy of a system, it is found that the total energy
converges as the number of plane waves used and as the number of sampling
points in k-space is increased. These are important convergence parameters of
our simulation. With well converged calculations the plane-wave representation
allows us to accurately solve the Kohn-Sham equations for a material.

2.4.2.1 Representation of the Density

The Kohn-Sham wavefunctions are used to calculate the electron density, the
analytic expression involves an integrating with respect to k over the 1st Brillouin
zone,

ρ(r) = Ω−1∑
b

∫
BZ
fbk |ψbk (r)|2 d3k, (2.31)

however, the numerical expression is a sum over discrete sampling points in k-
space, the k-points,

ρ(r) = Ω−1∑
b,k

wkfbk |ψbk (r)|2 , (2.32)

where fbk is the occupancy of the state labelled b, at the k-point k labelled k and
wk is the weighting of that k-point in the calculation which is determined by the
number of symmetry equivalent points to the kth k-point.

The calculation of the density must be carried out using a real space representa-
tion of the Kohn-Sham wavefunctions, i.e. the plane-wave expansion of the states
must be Fourier-transformed from their natural reciprocal space representation
into a real space representation. This is most efficiently carried out using FFTs,
which must be carried out using a regular mesh of points, an FFT grid. If the
representation of the wavefunctions is restricted to wave-vectors with magnitude
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|G| ≤ Gcut then the Fourier components of the charge density are restricted to
|G| ≤ 2Gcut such that:

ρ(r) =
|G|≤2Gcut∑

G

aGe
iG·r (2.33)

where aG is the coefficient in the Fourier expansion of the charge density. This
means that for a particular cut-off for the wavefunction states, Gcut, there is a
minimum FFT grid size required to compute the exact Fourier expansion rep-
resentation of the resultant density (and the orbital kinetic energy density, τ).
The minimum FFT grid required to represent all Fourier components of the den-
sity is a grid that is twice as dense as that of the plane-wave basis used for the
wavefunctions.

Since there is a potential efficiency gain from neglecting the contributions from
the largest frequency components of the density, many simulation codes allow the
scale of the grid used for the density to be slightly reduced. CASTEP uses the
GRID SCALE parameter to control the scale of the density grid compared to the
wavefunction basis. For the entirety of this thesis, unless otherwise stated, it can
be assumed that any CASTEP calculations were performed with the GRID SCALE
parameter set to 2, that is, the density and orbital kinetic energy density are
exactly represented.

There can be other terms that contribute to the total density that arise from the
use of pseudopotentials (§2.4.4). These contributions may have non-negligible
terms in their Fourier expansion, which require finer grids to represent, meaning
that another FFT grid has to be used with more points than the density grid.
In CASTEP, this is called the “fine grid”, and it’s scale relative to the plane-
wave grid used for the Kohn-Sham states is controlled by the FINE GRID SCALE
parameter. The fine grid is the grid used for calculating the contributions to the
energy and potential that are derived from the density.

2.4.3 A note on Localised Basis Sets

When simulating single atoms or molecules, it is more natural to expand the
Kohn-Sham states in terms of a localised basis set, such as a Gaussian set [67, 68]
or combinations of atomic orbitals. These basis sets are generally centred around
a particular point, usually the position of an atom, and decay quickly over space
to zero. The advantages of these methods are that the basis sets are generally
much smaller than a plane-wave basis set and that the Hamiltonian matrix can
more easily be constructed for the system. The downsides are that they do not
tend to describe delocalised (spread out over space) electrons very well, making
simulation of metallic systems difficult. The basis functions also depend on the

42



Chapter 2 Density Functional Theory

atomic positions, which can make it difficult to compare systems in which the
atoms have been moved relative to each other, and introduces so called “Pulay”
forces and stresses [69].

2.4.4 Pseudopotentials

The external potential from the nuclei that acts on the electrons is due to the
electrostatic attraction of their opposite charges. We are treating the nuclei as
point particles, so the external potential takes the form,

V ext (r) =
Nnuc∑
I

−ZI
|r −RI |

, (2.34)

where Nnuc is the number of nuclei in the system, ZI is the charge of the nucleus
labelled I and RI is it’s position. The dependence on |r|−1 causes the potential
to go to infinity asymptotically as r → RI . This poses a major challenge in plane-
wave calculations as the kinetic energy of states localised around the nucleus has
to be very high, which means that a large number of plane-waves are required
to represent those states. This is particularly galling, since the states localised
around the nucleus are usually inconsequential to most properties in the material,
whereas the valence states are of much greater importance. These localised states,
or core states, generally remain unchanged when the nuclei are moved between
different environments.

To exploit this fact and gain faster computation, pseudopotentials are often used.
In place of the bare nuclear potential, a different, weaker potential is used that
combines the effects of the nucleus and the core electrons into a potential for the
ion. The pseudopotential only differs from the nuclear potential in the region
close to the nucleus, the “core region”. The pseudopotential and the bare nuclear
potential for an iron atom is shown in figure 2.1.

By construction, the pseudopotential will provide pseudo wavefunctions for the
valence electrons which are identical outside the core region. The pseudopotential
is much weaker; therefore, the pseudo wavefunction vary more smoothly within
the core region. The difference between the wavefunctions calculated using the
pseudopotential and the “all electron” wavefunctions (calculated using the bare
nuclear potential) are shown in figure 2.2. The advantage of the pseudopotential
approach is that it reduces the number of Kohn-Sham equations that have to
be solved by pre-computing the behaviour of the core electrons. Therefore, we
only explicitly compute the valence states in the main calculation. Due to the
pseudopotential being weaker than the nuclear potential, the pseudo wavefunction
of the valence states are smoother and can therefore be represented with fewer
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Figure 2.1: The bare nuclear potential is compared to the pseudopotential em-
ployed for iron atoms. The potentials differ in the core region where r < 1.3 Bohr,
but are identical outside the core region.

Figure 2.2: Pseudo wavefunctions for an iron pseudopotential for different angular
momentum channels. The solid lines show the pseudo wavefunctions and the
dashed lines show the all electron wavefunctions. Outside of the core region,
r > 1.3 Bohr the all electron wavefunctions and the pseudo wavefunctions are in
exact agreement.
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plane waves. This reduces the computational expense of the calculation with, in
principle, little or no compromise in accuracy.

Major efforts have recently been made to improve the accuracy of pseudopotential
methods. The ”Delta Project” [70] took several of the most popular methods for
generating pseudopotentials and the DFT codes that use them and made a care-
ful comparison of the physical properties calculated in these approaches. They
made further comparisons of the pseudopotentials methods and equivalent all-
electron calculations. In some cases, large discrepancies were found. By making
several changes to the parametrisations used to generate the pseudopotentials,
e.g. the core radius used, most of these discrepancies could be eliminated, vastly
improving the reproducibility across DFT codes and pseudopotential methods.

2.4.4.1 Norm-conserving Pseudopotentials

There are a few different types of pseudopotentials that can be devised. In norm-
conserving pseudopotentials (NCPs) [71], it is required that the normalisation of
the wavefunctions within the core region should be preserved, i.e. the integral of
the square amplitude of the valence pseudo wavefunctions should be equal to that
of the all-electron wavefunctions, this helps to ensure the scattering properties of
the ion are reproduced correctly. Kleinman and Bylander [72] showed that it was
possible to construct separable pseudopotentials with a local part and non-local
part which projects onto angular momentum states. The Kleinman and Bylander
pseudopotentials are of the form,

V̂ ext = V local (r) +
∑
i,j

|βi⟩Di,j ⟨βj | , (2.35)

where Di,j is a matrix parametrized by reference to the all electron result and βi is
a projector onto an angular momentum state, i. For pseudopotentials constructed
using a mGGA functional[73, 74, 75], there is an additional term in the local
potential such that the pseudopotentials take the form,

V̂ ext = V̂ ext
loc + V̂ ext

τ + V̂ ext
nl (2.36)

= V local (r) − 1
2∇·

(
V local
τ (r)∇

)
+
∑
i,j

|βi⟩Di,j ⟨βj | . (2.37)

The pseudopotentials generated and used by CASTEP are of this form.

Both the projector augmented wave method (PAW) [76] and the ultrasoft pseu-
dopotential method (USP) [77] relax the norm-conserving constraint and com-
pensate by introducing additional “augmentation charge” terms to the valence
density. This allows the potential to be made smoother, affording additional
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computational savings by reducing the number of plane-waves required to rep-
resent the valence states. CASTEP can produce and use USPs for several local
and semi-local functional approximations, including mGGA functionals. Unfortu-
nately, the additional complexity of the implementation for PAW or USP methods
means that when performing perturbative methods, speed gain from reducing the
number of plane-waves required is quickly lost. For this reason, this thesis shall
confine itself to considering only the norm-conserving scheme described above.

2.4.4.2 Non-Linear Core corrections

Many pseudopotentials also make use of nonlinear core corrections (NLCCs) [78]
when computing the XC energy integral for a better representation of the XC
interaction between the core electrons and the valence electrons. The correction
is done by adding the ”pseudised” electron density of the core electrons to the
electron density of the valence electrons for a total electron density which is then
used to calculate the XC energy. This is more accurate than trying to incorporate
these effects into the pseudopotential since XC functionals are nearly always non-
linear, therefore the interaction is significantly different when the core charge is
not included. In the case of mGGA functionals, we require not only a core charge,
but also a core kinetic energy density when calculating the XC energy. The NLCC
terms do, however, cause additional complexity when considering perturbations
to the system.

2.5 Total Energy Functional in Plane-Wave DFT

We have now defined the major components involved in the plane-wave pseu-
dopotential approach to DFT calculations. In this section, we shall summarise
the total energy functional and explicitly describe how the additional terms that
appear when using mGGA functionals are calculated in the plane-wave DFT.

In plane-wave DFT we generally employ periodic boundary conditions; therefore,
we are interested in the total energy per unit cell. The ground state energy for
the system is found by minimising the total energy functional for the system.
The total energy functional can be written in term of a set of states, |ψkb⟩, the
electron density of those states, ρ, and the kinetic energy density of those states,
τ ,

Etot =
∑
b,k

wkfbk
〈
ψbk

∣∣∣T̂ + V̂ ext
∣∣∣ψbk〉 +EH [ρ] +EXC [ρt, |∇ρt| , τt] +EIon-Ion,

(2.38)
where the sum is weighted by wk when a symmetry reduced set of k-points is used
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(see 2.4.1.1), and fbk are the wavefunction occupancies. The states at the same
k-point and in the same spin channel are subject to the orthogonality constraint〈
ψik|ψjk

〉
= δij . Here, T̂ and V̂ ext are the kinetic energy and external potential

operators, respectively, EH and EXC are the Hartree and XC energy functionals,
respectively. The EIon-Ion term is the interaction energy of the ions, which for
periodic systems must be computed by Ewald summations [79].

The set of states that minimise the total energy functional are the self-consistent
solutions to the Kohn-Sham equations,

Ĥ |ψbk⟩ =
[
T̂ + V̂ ext + V̂ H + V̂ XC

]
|ψbk⟩ = ϵbk |ψbk⟩ , (2.39)

where Ĥ is the effective Hamiltonian operator, V̂ H and V̂ XC are the Hartree and
XC potential operators (although the Hartree potential is purely local potential).

2.5.1 Wavefunctions and Densities

The Kohn-Sham wavefunctions are expressed as a sum over plane waves,

ψbk (G) =
|k+G|≤Gcut∑

G

cbkGe
i(k+G)·r (2.40)

where cbkG is the coefficient for that plane-wave in the expansion of that state.

The charge density due to the valence electrons is calculated from the Kohn Sham
states in the following way,

ρ(r) = Ω−1
occ∑
b,k

wkfbk|ψbk (r) |2, (2.41)

and the orbital kinetic energy density of the valence electrons is calculated as,

τ (r) = Ω−1 1
2

occ∑
b,k

wkfbk |∇ψbk (r)|2 . (2.42)

Integration by parts can be used to derive an equivalent expression for τ which
requires fewer FFTs to compute [75],

τ (r) = 1
4∇2ρ(r) − Ω−1 1

2

occ∑
b,k

wkfbk
(
∇2ψ∗

bk (r)
)
ψbk (r) . (2.43)

When the choice of pseudopotential requires the use of NLCCs (see 2.4.4.2), the
XC energy functional requires the “total” charge and kinetic energy density, ρt (r)
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and τt (r), including contributions from the core electrons, ρc (r) and τc (r).

ρt (r) = ρ(r) +ρc (r) , (2.44)
τt (r) = τ (r) + τc (r) . (2.45)

Once computed in real space on a regular FFT grid, densities and the KEDs can
be expressed as a sum over plane-waves,

ρ(r) =
|G|≤2Gcut∑

G

aGe
iG·r, (2.46)

τ (r) =
|G|≤2Gcut∑

G

bGe
iG·r. (2.47)

2.5.2 Gradient and Laplacian Operators

Gradient operators and Laplacian operators take the derivative of a function
with respect to the position vector, r. This is straightforward to compute for any
function that can be represented in the plane-wave expansion, for instance the
gradient and Laplacian of the density can be calculated in reciprocal space as,

∇αρ(G) = iGαaGe
iG·r, (2.48)

∇2ρ(G) = −|G|2aGe
iG·r, (2.49)

where α is an index representing the Cartesian directions. The gradient and
Laplacian of real space functions can therefore be found by Fourier transforming
the function to reciprocal space, multiplying by the appropriate components of
the reciprocal lattice vector, and Fourier transforming the function back. This can
be carried out efficiently with the use of FFTs, provided that the representation
of the real space function forms a regular grid in the unit cell.

2.5.3 Kinetic Energy

The kinetic energy operator is just the Laplacian operator with a prefactor,

T̂ = −1
2∇2. (2.50)

The kinetic energy of a state, ϵTbk, can therefore easily be computed using the
reciprocal space representation of the wavefunctions,

⟨ψbk| T̂ |ψbk⟩ = ϵTbk ⟨ψbk|ψbk⟩ =
∑
G

|k + G|2 c∗bkGcbkG. (2.51)
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2.5.4 Hartree Energy

In real space, the Hartree energy can be expressed as a convolution of the density
with itself,

EH [ρ] = 1
2

∫∫
Ω

4π ρ(r)ρ(r′)
|r −r′|

d3rd3r′ (2.52)

where the integrals are over the volume of the unit cell. In Fourier space, this
convolution can neatly be expressed as a product of the density with its complex
conjugate,

EH [ρ] = 1
2

|G|̸=0∑
G

4π ρ∗ (G)ρ(G)
|G|2

. (2.53)

The Hartree potential at a point, V H (r) is the functional derivative of EH with
respect to ρ(r), expressed as,

V H (r) = δEH

δρ(r) =
|G|̸=0∑

G

4π ρ(G)
|G|2

eiG·r. (2.54)

2.5.5 External Potential

Pseudopotentials are often used to replace the bare nuclear potential and the core
electrons that contribute little to the properties of the material (§2.4.4). Common
practice for generating pseudopotentials is to compute the pseudopotential from
an all-electron calculation of the isolated atom using a spherically symmetric
localised basis set. In this basis, the pseudopotential and its projectors onto
each angular momentum state are calculated on a radial grid and then Fourier
transformed to reciprocal space. A pseudopotential that is of the Kleinman-
Bylander form in equation 2.35, is defined by a set of spherically symmetric,
reciprocal space functions for the local part of the potential and the angular
momentum projectors.

First, we shall focus on the local part of the external potential operator. The
pseudopotential for an ion, I, is stored as a spherically symmetric function in
reciprocal space, vI (|G|), which can then be interpolated onto the plane-wave
basis,

VI (G) = Ω−1vI (|G|)eiG·r, (2.55)

The conventional prefactor of 4π has be absorbed into the vI (|G|) function. The
expression given above describes an ion that is positioned at the origin. To
position the pseudopotential so that is centred around the ion’s position, RI , we
must apply a “structure factor”,

VI (G) = Ω−1vI (|G|)e−iG·RIeiG·r, (2.56)
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which can be transformed from reciprocal-space to real-space via a Fourier trans-
form,

VI (r) = Ω−1∑
G

vI (|G|)e−iG·RIeiG·r. (2.57)

The total local part of the external potential, V local (r), can therefore be computed
as the sum of the contributions from each ion,

V local (r) =
∑
I

VI (r) = Ω−1∑
I

∑
G

vI (|G|)e−iG·RIeiG·r. (2.58)

Equation 2.37 is the expression for the external potential operator that is con-
structed using a mGGA functional. This expression contains the V local (r) term
and two more terms, a differential part of the operator due to the dependence
on τ and the non-local part of the operator. The non-local projectors are also
stored in a radially symmetric reciprocal space representation and are handled in
a similar manner to the local part of the pseudopotential, whilst also applying the
appropriate spherical harmonic. The full expression for the non-local potential
operator is superfluous to the remainder of this thesis and is therefore omitted.

The non-linear core corrections are handled in a similar way to the local part
of the operator, the contribution from each ion is stored in the radial reciprocal
space representation which is then interpolated onto the plane-wave basis and the
appropriate structure factor applied,

ρc (r) =
∑
I

ρc,I (r) = Ω−1∑
I

∑
G

ρc,I (|G|)e−iG·RIeiG·r, (2.59)

τc (r) =
∑
I

τc,I (r) = Ω−1∑
I

∑
G

τc,I (|G|)e−iG·RIeiG·r. (2.60)

The differential part of the operator contains a V local
τ (r) that can be extracted

for each pseudopotential and stored in the radial reciprocal space representation.
The total V local

τ (r) can then be computed in the same manner as the local part,

V local
τ (r) =

∑
I

Vτ,I (r) = Ω−1∑
I

∑
G

vτ,I (|G|)e−iG·RIeiG·r, (2.61)

and then applied to the states in combination with the gradient operator. Again,
the expression above has incorporated the conventional prefactor of 4π into the
function vτ,I (|G|).

The contribution to the energy arising from the local part of the external poten-
tial, Eext

loc , can be computed from a simple integral over the density multiplied by
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the potential and does not require a summation of the occupied states.

Eext
loc =

occ∑
i

∫
ψ∗
i (r)V local (r)ψi (r) d3r = Ω

∫
V local (r)ρ(r) d3r. (2.62)

Using integration by parts, a similar expression can be derived for the energy
contribution arising from the differential part of the operator, Eext

τ .

Eext
τ =

occ∑
i

∫
−1

2ψ
∗
i (r)∇

(
V local
τ (r)∇ψi (r)

)
d3r = Ω

∫
V local
τ (r)τ (r) d3r.

(2.63)
These integrals can then be handled as a sum over the product of the two functions
in real space.

2.5.6 XC energy

Expressions for the XC energy and XC potential when using a mGGA functional
are given in equations 2.26 and 2.27 (§2.3.3.3) but are repeated below for conve-
nience.

EXC
mGGA = F [ρ, |∇ρ| , τ ] =

∫
Ω
fXC

mGGA (ρ(r) , |∇ρ(r)| , τ (r)) d3r. (2.64)

V XC (r) = ∂fXC

∂ρ(r) −∇
(

∂fXC

∂ |∇ρ(r)|
∇ρ(r)
|∇ρ(r)|

)
− 1

2∇·
(
∂fXC

∂τ (r)∇
)
. (2.65)

It is often convenient to separate the expression for the XC potential above into
the local terms and the differential terms. To do this we define two new local
potentials which can be combined to make the full XC potential,

V XC
ρ (r) = ∂fXC

∂ρ(r) −∇
(

∂fXC

∂ |∇ρ(r)|
∇ρ(r)
|∇ρ(r)|

)
(2.66)

V XC
τ (r) = ∂fXC

∂τ (r) (2.67)

This notation makes a few derivatives much easier to express.

Strictly speaking, equations 2.64 and 2.65 only consider the case of a non-spin-
polarised system, where the up and down spin channels are degenerate in energy
and there is an even number of electrons such that the spin channels can be
equally occupied.

Equation 2.64 shows EXC evaluated as a continuous integral of fXC. However,
there is no convenient way to express this functional in the plane wave basis,
therefore, in practice, the evaluation of EXC is performed as a sum over a discrete
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set of Np points in real space, {ri}, for example in the spin degenerate case
equation 2.64 becomes

EXC = Ω
Np

Np∑
i

fXC (ρ(ri) , |∇ρ(ri)| , τ (ri)) . (2.68)

In this expression, the XC energy is assumed to be constant across the volume
of the ith grid point. In plane-wave DFT, the set {ri} is defined by the choice
of FFT grid used to represent the density. The value of the density (and other
ingredients to fXC) varies between the sampled points according to the plane-wave
expansion, and so the contribution to the XC energy will also vary between the
sampled points, in a highly non-linear fashion. The grid is chosen to accurately
represent all the non-negligible components of the density, not the function fXC

and its derivatives.

The errors associated from numerically integrating the XC energy are generally
assumed to be small enough to be negligible, however, as shown by Lehtola and
Marques [35], this is highly-dependent on the numerical behaviour of the XC
functional, and for many published XC functionals, the errors can be far from
small. Numerical errors can be avoided by increasing the fineness of the grid
used in the calculation, in CASTEP this means increasing FINE GRID SCALE.
The downside to this approach is that all the other energy contributions such
as the Hartree energy, the local and differential parts of the external potential
operator must now be represented and computed on a unnecessarily fine grid.
Chapter 5 covers some of the issues that can arise from the numerical behaviour
of the XC functional. In that chapter a practical method to quantify errors
related to XC energy integration is put forward, as well as an approach to the
XC energy integration that avoids increasing the scale of the grid for every part
of the calculation.

2.5.7 Solving the Kohn-Sham equations

The Kohn-Sham equations must be solved iteratively until a self-consistent solu-
tion is achieved. A self-consistent solution is found when the density produced
from a set of Kohn-Sham states, can be used to compute the Kohn-Sham poten-
tial, which forms part of the effective Hamiltonian, the eigenstates of which are
the original Kohn-Sham states that were used to compute the density.

The iterative process begins with a trial guess for the Kohn-Sham states, from
these trial states an electron density can be computed and a total energy for the
system calculated using the functional. The Kohn-Sham potential is also com-
puted from the density, giving us all the ingredients for the Hamiltonian. A new
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set of states of states is found by diagonalising the Hamiltonian. Explicit diago-
nalisation of the Hamiltonian is a very computationally expensive operation and
generates far more eigenvectors than are required. Therefore, iterative diagonali-
sation and conjugate-gradient methods are most often used to minimise the total
energy functional [80]. This is done until the total energy of the system stops
decreasing to within a certain tolerance, indicating that the minimum energy and
therefore ground state density has been found.

2.6 Application to this work

The purpose of this work is to extend the framework of density functional per-
turbation theory (DFPT) to allow more accurate and efficient calculations of
material properties using mGGA functionals. The framework of DFPT focusses
on computing derivatives of the total energy with respect to sets of perturbations.

In practice, this requires a careful understanding of the total energy functional and
how those perturbations relate to it. It was therefore important in this chapter
to set out the contributions in gory detail so that when we come to taking the
derivative of, for example, the XC potential with respect to a perturbation, we
already have a clear understanding of what the XC potential is and the derivation
is a straightforward process. The framework of DFPT will be discussed in the
following chapter.
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Density Functional Perturbation
Theory

This chapter covers some of the key principles of density functional perturbation
theory (DFPT) as it relates to the remainder of the work in this thesis. Pertur-
bation theory allows us to access quantities beyond the ground state energy in
the form of its derivatives, where first order derivatives such as atomic forces,
or higher order derivatives such as elastic constants, phonon modes or other re-
sponse functions. A brief description of the response functions we are interested
in is given before a description of density functional perturbation theory.

3.1 Introduction

Density Functional Theory (DFT) has developed over the last 50 years to be
very powerful and efficient tool for predicting ground-state properties of mate-
rials. DFT is limited to determining the ground state density and total energy,
often falling short when it comes to accurately depicting electronic excited states.
However, if the ground state undergoes a slight perturbation, generally keeping
the system near its electronic ground state, traditional perturbation theory meth-
ods can be employed. This leads to the Density Functional Perturbation Theory
(DFPT) approach. Developed in the late 1980s, this method has been notably
effective in anticipating numerous quantities observable through experiments.

The focus of much of the work on DFPT has been on quantities obtained as
derivatives of the total energy with respect to a small change of the external
potential. For example, the force exerted on a nucleus is equal to minus the
derivative of the total energy of the system with respect to the displacement of
the atom. Successful approaches have also been proposed for derivatives of the
total energy with respect to an infinitesimal strain; this can be used to compute
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the stress tensor for a material [81, 82]. The examples given above describe only
first-order derivatives of the energy, which are extremely useful as they enable
geometry optimisation techniques [83, 84], which allow us to compute the relaxed
structure of the atoms, and molecular dynamics simulations. However, when
comparing experimental results, we are often interested in the system’s response
to an external perturbation, i.e. if an atom moves, how will the other atoms
move. This can be calculated from 2nd, 3rd and higher-order derivatives of the
total energy with respect to perturbations.

The calculation of such higher-order energy derivatives can be done using the
finite-difference method. For instance, this method can be used to calculate the
second derivative of the energy with respect to two atomic displacements by ob-
taining the ground state and calculating the forces for atomic configurations that
have been slightly shifted from their equilibrium positions. Then, the derivative of
the forces with respect to the small displacement is extracted numerically, which
is equal to minus the second derivative of the energy with respect to two atomic
displacements. Whilst the finite-difference method is very convenient (since vir-
tually no extra coding effort is required to specifically deal with derivatives), the
numeric nature of the derivatives limits their accuracy. The DFPT techniques
are quickly seen to be much more powerful, as they can be used to compute the
derivatives with respect to certain perturbations far more efficiently.

3.2 Response Functions

The response function of a material describes how the material responds to a
perturbation. Experimentally, the response functions of a material are much
more accessible than most ground-state properties; measuring the ground-state
density requires careful spectroscopy experiments, measuring the elastic constants
of a material requires applying a stress and measuring the resultant strain, which
is far easier. The response functions of a material tell us how effective a particular
material might be for any specific application.

Our aim as theorists is to be able to make accurate but crucially useful predictions
about material properties; being able to directly calculate response functions is
therefore important since it allows us to make predictions of the effectiveness of a
particular material for a set of applications. Provided an accurate model is used
to do this, it can be done without having to physically make and test the material,
which can be time-consuming and expensive. In order to do this, we first need
to formulate the response functions in a manner that they can be computed, the
focus here shall be on response functions that can be written as derivatives of the
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total energy.

3.2.1 Lattice Dynamics

Lattice dynamics is the movement of the nuclei in a material around their equilib-
rium positions in the lattice. The dynamics takes the form of quantised vibrations
in the lattice, phonons. The phonon modes are of importance to material prop-
erties as they can carry thermal energy to transport heat, they can be excited
by external stimuli such as photons, neutrons etc, and they can interact with the
electron states in material via electron-phonon coupling.

The Born-Oppenheimer (BO) approximation explicitly decouples the nuclear (vi-
brational) and electronic degrees of freedom in the Hamiltonian. This treatment
of the nuclei means that the energy of the system depends parametrically on the
atomic positions. The atomic positions of a system, Rc

I , can be written as,

Rc
I = Rc + τI + uc

I , (3.1)

where c is a vector of integers which are the linear combination of the Bravais
lattice vectors which gives the position origin of the unit cell containing the atom
of interest, Rc, τI is the equilibrium position of the atom I in a single cell and
uc
I denotes the displacement vector from the equilibrium position of atom I in

the unit cell denoted by c.

Using this definition of the atomic displacements we can perform a Taylor se-
ries expansion of the energy as a function of the atomic displacements from the
equilibrium configuration with energy E0,

E = E0 +
∑
I,c

dE
duc

I

uc
I + 1

2
∑

I,c,J,c′

d2E

duc
Iduc′

J

uc
Iu

c′
J

+ 1
6

∑
I,c,J,c′,K,c′′

d3E

duc
Iduc′

J duc′′
K

uc
Iu

c′
J uc′′

K + · · · . (3.2)

The second term in the expansion contains the 1st derivative of the energy with
respect to the atomic displacement, which are equal to the minus the atomic
forces. At equilibrium, the forces are of course zero; therefore, the second term
disappears and we are left with the higher-order derivatives.

A major simplification is to assume that we can work in the harmonic approx-
imation, i.e. that the 3rd order derivatives and higher are all negligible. This
allows for the separation of phonons into well-defined modes that add linearly.
These second derivatives of the energy are called the interatomic force constants
(IFCs), analogous to the spring constant of a simple harmonic oscillator. They
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are defined as,

Φαβ
I,c,J,c′ = d2E

duc
I,αduc′

J,β

, (3.3)

where α and β are indices referring to Cartesian directions of the vectors uc
I and

uc′
J .

Although the harmonic approximation vastly reduces the number of derivatives
that are required for our model of the phonon modes, it still requires knowing the
IFCs for every pair of atoms in the material. To make this problem tractable, we
can again apply Bloch’s theorem.

First, we assume that the material is large enough that the displacements in
an arbitrary origin unit cell, uc

I , are likely to repeat over some large number of
unit cells so that another unit cell denoted by the vector c′ has the exact same
displacements. Applying Bloch’s theorem, the displacements in cell c′ are of the
form

uc
′
I,α = eiq·rµq

I,α, (3.4)

where r = Rc −Rc′ is the distance between the origins of the two unit cells (be-
tween two points on the Bravais lattice), q is the wave-vector of the periodic
displacement, and µq

I,α is the displacement of atom I, in unit cell c, along di-
rection α. In other words, µq

I,α is the cell-periodic part of the function for the
displacement.

The periodicity of the displacements means that we can take the Fourier trans-
form of the IFCs. This is related to the Dynamical Matrix, Dαβ

q,IJ , which is also
expressed as the second-order energy derivative with respect to periodic displace-
ments, √

MIMJD
αβ
q,IJ =

∑
c′
e−iq·rΦαβ

I,c,J,c′ = ∂2E

∂
(
µq
I,α

)∗
∂µq

J,β

(3.5)

where MI is the mass of atom labelled I.

If the dynamical matrix is known for a particular wave-vector q, the phonon
modes at that wave-vector can be found by solving the following eigenvalue prob-
lem,

Dαβ
q,IJεq,p = ω2

q,pεq,p (3.6)

where ωq,p is the frequency of the phonon mode labelled p and εq,p are the cell-
periodic functions of the phonon mode describing the displacements of the atoms.

3.2.1.1 Electron-Phonon Coupling

The decoupling of nuclear and electronic degrees of freedom in the BO approxi-
mation means that under this approximation, there is no interaction between the
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electron and phonon states and there is zero electron-phonon coupling. The pro-
cess of electron-phonon coupling is important since the interaction between the
two causes the electrons and phonons to scatter, impeding both the phononic and
electronic transport in the material. This is of particular importance to theories
of superconducting and thermoelectric materials.

The electron-phonon coupling can be recovered through the treatment of the
Eliashberg equations [85]. The important quantity in the Eliashberg equations
is the electron-phonon scattering matrix. The elements of the electron-phonon
matrix determine the probability of the scattering occurring. The matrix element,
g, for scattering an electron from state b,k to state b′,k + q while emitting or
absorbing a phonon labelled p, with frequency ωq,p and wave-vector q, is given
by,

gpb,k;b′k+q =
√√√√ ℏ

2ωq,p

〈
ψb′,k+q

∣∣∣∣δVq,p

∣∣∣∣ψb,k〉 . (3.7)

δVq,p is the change in the potential that the electrons experience under the per-
turbation of the phonon mode p. The matrix elements are valid for any arbitrary
pair of states and phonon mode; however, only those close to the Fermi surface of
the material affect the transport properties. In order to capture the total electron-
phonon coupling of the system, the matrix elements must be determined across
the whole Fermi surface, which can be an extremely large number of calculations.

3.2.2 Stress and Strain

Stress is a system’s response to a deformation. There are several ways of defining
the deformation; however, the practical choice for perturbation theory is a homo-
geneous strain ηαβ. The strain tensor defines a deformation as a “stretching” of
space that transforms a point in the system to another point via a scaling of the
strain tensor,

rα → rα =
(
δαβ +ηαβ

)
rβ, (3.8)

where the strain tensor is symmetric, i.e. ηαβ = ηβα.

The stress tensor is defined as the derivative of the energy with respect to strain,
per unit volume,

σαβ = Ω−1 dE
dηαβ

. (3.9)

The system stress tells us how the energy will change under the system deforming,
such as a change in the lattice vector length, this can be very useful when trying
to calculate the ground state structure as we can search for a structure where the
stress is zero.
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3.2.3 Elastic Constants

The elastic constants are a measure of the “stiffness” of the material, describing
how an applied strain ηγδ, results in a stress σαβ. Among the basic mechanical
properties that can be obtained from the elastic constants are the bulk modulus,
Young’s modulus, the shear modulus, and Poisson’s ratio, which tells us about
the materials hardness and other properties such as the speed of sound in the
material, the constant of thermal expansion and the Debye temperature [86].
The elastic constants can also be used as input to other simulation software, such
as finite element modelling, which can allow the simulation of materials on a
much larger scale than is available from DFT. This can enable approaches such as
digital twinning of real-world devices. In short, knowledge of the elastic constants
tensor of a material can be sufficient to determine a wide variety of other material
properties and can be utilised in other predictive models. Accurate predictions
of the elastic constants is therefore a powerful theoretical tool.

The elastic constants tensor, Cαβγδ, is a rank-4 tensor that relates the deformation
or strain ηγδ to the resultant stress, σαβ,

σαβ = Cαβγδηγδ (3.10)

This can be expressed as a derivative of the total energy,

Cαβγδ = Ω−1 d2E

dηαβdηγδ
. (3.11)

provided the system is at equilibrium, i.e. the atomic forces and stress are zero.
Much like the approach described for the phonon modes, this assumes a harmonic
model for the elasticity. The are higher order terms which cause non-linear elastic
properties in a material, however, in many approximations they are considered
to have negligible effect.

3.2.3.1 Frozen- versus Relaxed-Ion Tensors

There is some subtlety to the above definition, since the energy of the system is
dependent on the deformation and the displacement of atoms from their equilib-
rium positions, E

(
uI ,ηαβ

)
. Expanding this function of the energy around the

relaxed ground-state configuration, which has energy E0 and the atomic forces
and stress that are zero, one finds,

E
(
RI ,ηαβ

)
= E0 + 1

2Ω0C̄
αβγδηαβηγδ + 1

2
∑
I

ΛαβγI ηαβu
I
γ + 1

2
∑
I,J

Φαβ
I,Ju

I
αu

J
β + · · · ,

(3.12)
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where Ω0 is the volume of the unperturbed unit cell, uI is the displacement of
atom labelled I, Φαβ

I,J = ∂2E
∂RI

α∂R
J
β

is again the interatomic force constant matrix,

ΛαβγI = ∂2E
∂ηαβ∂R

I
γ

is the force-response internal-strain tensor i.e. the change in

the atomic forces under a strain, C̄αβγδ = Ω−1
0

∂2E
∂ηαβ∂ηγδ

is the frozen-ion elastic
constant tensor. The frozen-ion elastic constant tensor is the second derivative
of the energy assuming the atomic positions remain fixed.

In general, we must take into account atomic relaxations as the deformations are
slow enough to allow the atoms to move according to the change in the atomic
forces; therefore, we are interested in the relaxed-ion elastic constant tensor. The
relaxed-ion elastic constants can be found from a combination of the frozen-ion
tensor, the force-response internal-strain tensor and the displacement-response
internal-strain tensor, Γαβγ , which are the change in atomic positions under strain,
these can be calculated from ΛαβγI and the phonon modes at q = 0, which are the
inverse of Dαβ

0,I,J ,
Γαβγ,J = ΛαβµI

(
D−1

0,I,J
)
γµ
. (3.13)

From this we can write an expression for the relaxed-ion elastic constants tensor
using the following definition,

Cαβγδ = C̄αβγδ − Ω−1∑
I,J

ΛαβµI

(
D−1

0,I,J
)
µν

ΛγδνI . (3.14)

From this expression we can see that to determine the elastic constant tensor for
a material, we require 3 ingredients; the frozen-ion elastic constants, the phonon
modes and the force-response internal-strain tensor [87].

3.2.3.2 Deformation Potential

The description of the electron-phonon coupling given in 3.2.1.1 is cumbersome
to make predictions of transport properties, as it requires the calculation of many
matrix elements across the Fermi surface for all phonon modes. For small systems
with low numbers of atoms and electrons, this calculation remains possible, but
for larger simulations with more complex structures, the required computational
cost becomes unfeasible. An alternative approach for larger systems is to estimate
the electron-phonon coupling using the deformation potential.

The deformation potential theory dates back to the 1950s [88] and approximates
the relaxation times due to the coupling of the electrons and the acoustic phonons
by considering the acoustic phonons in the long wavelength limit. In the long-
wavelength limit the acoustic phonons can be considered as a localised strain
on the system, either as a compression or a relaxation of the lattice. From this
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approximation we can calculate the effect this has on the electronic states by
determining the change in the band edge of the material due to the strain. This
change in the band edge due to the strain is the Acoustical Deformation Potential
(ADP),

λADP = dϵBE

dηαβ
, (3.15)

where λADP is the acoustic deformation potential, ϵBE is the energy of the band
edge, which will be either the band energies of the Conduction or Valence Band
Minimum or Maximum respectively (CBM, VBM), ϵCBM and ϵVBM. The ADP
can then be used to calculate an estimate for scattering times of the electrons
and holes (using the VBM and CBM respectively) due to the electron-phonon
interactions with acoustic phonons using the expression derived by Bardeen and
Shockley,

1
τe-ph

= λ2
ADPπN (ϵF)kBT

ℏCαβαβ
, (3.16)

where τe-ph is the average time between electron-phonon/hole-phonon scattering
events, N (ϵF) is the density of states at the Fermi level, kBT is the temperature
times the Boltzmann constant and Cαβαβ is a diagonal element of the elastic
constants tensor.

It can often be the case that the band edges are degenerate, i.e. there are mul-
tiple states with the energy of the band edge, or there are multiple (symmetry
equivalent) places in the 1st Brillouin zone that also form the band edge. Under
the deformation of the phonon, i.e. strain, the degeneracy can be lifted, and the
degenerate bands can have different derivatives. Under a positive applied strain,
the largest derivatives will be the observed change in the band edge, whereas un-
der a negative strain, the smallest derivatives will be the observed change in the
band edge. If we consider the change in band edge under positive and negative
strains as two different scattering processes, the scattering rates of each process
can then simply be combined via Matthiessen’s rule as,

1
τtot

= 1
τ+

+ 1
τ−
. (3.17)

Acoustic deformation potential theory is most relevant to semiconductors and
insulators, since acoustic phonons serve as the primary thermal carriers within
the phonon spectrum at low temperatures. This model of charge-carrier scattering
might be a sufficient approximation for modelling electron-phonon interactions.
At higher temperatures, the ADP can serve as a proxy calculation to show how
important the effects of electron-phonon coupling are. The deformation potential
can be used to make several predictions of transport properties [23, 89]. Since
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the deformation potential does not require the integration of many elements of
the electron-phonon coupling matrix across the Fermi surface, it is more efficient
than the full treatment of electron-phonon coupling via the Eliashberg equations.
This makes it much more tractable for high-throughput studies in which many
materials are screened for desirable properties [90].

3.3 Perturbation Theory

Let us start with a generic quantum system, a generic perturbation associated
with the parameter λ and a generic physical quantity X. When the pertur-
bation is applied, it causes a change to the physical quantity compared to the
unperturbed system, ∆X. The physical quantity can be written in the perturbed
system as a function of λ and then expressed in terms of a series expansion,

X+ ∆X =X (λ) =X+λX(1) +λ2X(2) +λ3X(3) + . . . , (3.18)

where each term in the expansion is related to the derivative of X with respect
to λ,

X̂(n) = 1
n!

dnX̂
dλn , (3.19)

when n= 0 this is the physical quantity in the unperturbed system.

All quantities can be treated as perturbative expansions, for instance, we can
write the single electron Schrödinger equation where all the terms are now func-
tions of some perturbation,

Ĥ (λ) |ψi (λ)⟩ = ϵi (λ) |ψi (λ)⟩ . (3.20)

Now if we expand the Hamiltonian, Ĥ , the wavefunction states |ψi⟩ and their
eigenvalues, ϵi, in the same way as was done in equation 3.18,

Ĥ + ∆Ĥ = Ĥ (λ) = Ĥ(0) +λĤ(1) +λ2Ĥ(2) + . . . (3.21)

|ψi⟩ + |∆ψi⟩ = |ψi (λ)⟩ =
∣∣∣∣ψ(0)
i

〉
+λ

∣∣∣∣ψ(1)
i

〉
+λ2

∣∣∣∣ψ(2)
i

〉
+ . . . (3.22)

ϵi+ ∆ϵi = ϵi (λ) = ϵ
(0)
i +λϵ

(1)
i +λ2ϵ

(2)
i + . . . . (3.23)

Substituting these expressions into the original Schrödinger equation and sep-
arating the resulting equations into powers of λ leads to a series of equations,
one equation per order of lambda. At the zeroth order of λ, we recover the
Schrödinger equation,

Ĥ(0)
∣∣∣∣ψ(0)
i

〉
= ϵ

(0)
i

∣∣∣∣ψ(0)
i

〉
, (3.24)

62



Chapter 3 Density Functional Perturbation Theory

and at the first order we get,

Ĥ(1)
∣∣∣∣ψ(0)
i

〉
+ Ĥ(0)

∣∣∣∣ψ(1)
i

〉
= ϵ

(1)
i

∣∣∣∣ψ(0)
i

〉
+ ϵ

(0)
i

∣∣∣∣ψ(1)
i

〉
. (3.25)

This can straightforwardly be rearranged to give us the Sternheimer equation,(
Ĥ(0) − ϵ

(0)
i

)∣∣∣∣ψ(1)
i

〉
= −

(
Ĥ(1) − ϵ

(1)
i

)∣∣∣∣ψ(0)
i

〉
. (3.26)

In this manner, we can find relations between derivatives of the physical quantities
with respect to perturbations to determine ways to compute energy derivatives
and therefore material properties.

3.3.1 Density Functional Perturbation Theory

Above we applied the idea of perturbations to a generic quantum system, and
the single electron Schrödinger equation. Here we shall apply these ideas to the
DFT total energy functional and the Kohn-Sham system. Applying the same
method as was used for the single electron system, Taylor expanding quantities
as functions of the perturbation and separating the resultant equations by powers
of λ we can determine relations between the derivatives.

By substituting the expansion of the Kohn-Sham wavefunctions into the expres-
sion for the density one can derive an expression for the first order density,

ρ(1) (r) = Ω−1
occ∑
b

∫
BZ
ψ

(1)∗
b (r)ψ(0)

b (r) +ψ
(0)∗
b (r)ψ(1)

b (r) d3k, (3.27)

and a similar expression can be derived for the first order KED,

τ (1) (r) = Ω−1
occ∑
b

∫
BZ

∇ψ(1)∗
b (r) ·∇ψ(0)

b (r) + ∇ψ(0)∗
b (r) ·∇ψ(1)

b (r) d3k. (3.28)

The expressions for ρ(1) and τ (1) do not take into account possible changes in oc-
cupancies of the states around the Fermi energy. Therefore, these expressions are
valid only for insulators and wide-band-gap semiconductors. For metals, further
terms have been derived that take into account these changes have be derived
for the density [91]. These terms only require derivatives of the occupancies and
zeroth-order wavefunctions; the additional terms for the first-order KED can be
obtained by substituting wavefunctions for the gradient of wavefunction in these
expressions.

By substituting the expanded wavefunctions into the expression of the orthogo-
nality constraint, ⟨ψi|ψj⟩ = δij , constraints can be found for the first-order wave-

63



Chapter 3 Density Functional Perturbation Theory

functions, 〈
ψ

(1)
i |ψ(0)

i

〉
= 0 (3.29)

A Sternheimer equation for the Kohn-Sham Hamiltonian can also be derived,(
Ĥ

(0)
KS − ϵ

(0)
i

)∣∣∣∣ψ(1)
i

〉
= −

(
Ĥ

(1)
KS − ϵ

(1)
i

)∣∣∣∣ψ(0)
i

〉
. (3.30)

3.4 Energy Derivatives

Derivatives of the total energy functional with respect to perturbations can be
calculated, provided that we know how the perturbation relates to the energy
functional. This allows us to calculate the systems response to a perturbation,
i.e. response functions.

3.4.1 First-order Energy Derivatives

First-order derivatives of the energy are very straightforward to compute since
the total energy functional has been minimised with respect to any variation in
the states. If the total energy has an explicit dependence on a perturbation λ,
the first order energy derivative is therefore,

dEtot [{ψi} ,λ]
dλ = ∂Etot

∂λ

∣∣∣∣∣
ψi

+
∑
i

δEtot

δψi

dψi
dλ , (3.31)

where the second term in this equation is the change in energy due to variation
in the states. For the ground state, the energy has been minimised with respect
to these states, therefore, the first-order change in the energy with respect to any
variation due to a change in the states has to be zero

(
δEtot

δψi
= 0

)
This is the

Hellmann-Feynman theorem [92] for DFT and means that provided the ground
state has been found, any change to the wavefunction states or density can be
assumed to have negligible contribution to the first-order energy derivatives. To
compute the first derivatives of the total energy functional with respect to per-
turbations, we need only consider the total energy’s explicit dependence on the
perturbations, not the implicit dependence through changing of the wavefunctions
and density.

Above I have used partial derivatives to denote derivatives which include only
contributions from explicit dependence, and full derivatives to denote derivatives
which include the implicit dependence and the relaxation of the states and wave-
function. I shall continue this practice for the remainder of the thesis.
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3.4.1.1 Forces

The atomic forces, FI , are easy to express as a derivative of the total energy,
being minus the derivative with respect to atomic positions,

−FI = ∂Etot

∂RI
= ∂Etot

∂RI

∣∣∣∣∣
ψi

. (3.32)

The atomic positions explicitly appear in the energy functional in only a few
terms, the derivative of the total energy can therefore be computed as the deriva-
tive of these terms,

dEtot

dRI
= ∂

∂RI

(
Eext

loc +Eext
τ +Eext

nl +EXC +EIon-Ion
)
. (3.33)

3.4.1.2 Stress

Stress is a systems response to strain, ηαβ. Although the strain tensor never
explicitly appears in the total energy functionals, a strain perturbation causes
changes to real- and reciprocal-space vectors rγ , Gγ , and the volume of the unit
cell Ω. The derivatives of these quantities under strain are,

∂rγ
∂ηαβ

= δαγrβ, (3.34)

∂Gγ

∂ηαβ
= −δαγGβ, (3.35)

∂Ω
∂ηαβ

= δαβΩ, (3.36)

where δαβ or δαγ are the Kronecker delta’s. The change of these quantities causes
changes throughout every term in the total energy expression which may be
derived by application of the chain rule. There is a conceptual difficulty with
a strain perturbation in a system with periodic boundary conditions. When
an infinitesimal strain is applied to a single unit cell, there is a corresponding
infinitesimal change in the other physical quantities; however, when one considers
the infinite periodic system, two problems arise.

• The scaling of space will always be a large perturbation. This can be seen
in equation 3.8, although ηαβ is infinitesimally small, in the infinite system
rβ can be infinity large.

• There is a change in boundary conditions, therefore, perturbation theory is
no longer applicable.

This difficulty can be avoided by redefining the total energy expression in “re-
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duced coordinates”, by introducing real- and reciprocal-space metric tensors into
every term in this expression [93]. The advantage of the reduced coordinates
formulation is that the boundary conditions never change, and perturbations of
the metric remain small. There is very little practical difference from how one
has to approach deriving the derivatives, but it does place the calculations on
firmer conceptual ground.

3.4.1.3 Band energy derivatives

Changes in the band energies due to a perturbation are not as straightforward as
changes to the total energy. The band energies derivatives

ϵ
(1)
b = dϵb

dλ = d
dλ

(
⟨ψb|Ĥ |ψb⟩

)
=
〈
ψ

(1)
b

∣∣∣∣Ĥ(0)
∣∣∣∣ψ(0)
b

〉
+
〈
ψ

(0)
b

∣∣∣∣Ĥ(1)
∣∣∣∣ψ(0)
b

〉
+
〈
ψ

(0)
b

∣∣∣∣Ĥ(0)
∣∣∣∣ψ(1)
b

〉
. (3.37)

The first and third terms are zero from the requirement that
〈
ψ

(0)
b

∣∣∣∣ψ(1)
b

〉
= 0,

leaving,

ϵ
(1)
b =

〈
ψ

(0)
b

∣∣∣∣Ĥ(1)
∣∣∣∣ψ(0)
b

〉
=
〈
ψ

(0)
b

∣∣∣∣ dĤdλ
∣∣∣∣ψ(0)
b

〉
. (3.38)

Note the use of the full derivative rather than a partial derivative on the Hamilto-
nian operator. The perturbation will cause a change in the states, and therefore
the density which alters the Kohn-Sham Hamiltonian via the Hartree and XC
potentials. These changes cannot be ignored as can be done with the energy,
since the band energy is not at a variational minimum with respect to the wave-
functions. The full change in the Hamiltonian under the perturbation must be
computed.

3.4.2 Second-order Energy Derivatives

Second-order derivatives of the energy are more complicated than the first-order
derivatives. Several expressions for the second order energy derivatives can be
derived depending on how the perturbation changes each term in the Hamiltonian.
This is a general expression for second order derivatives with respect to the same
perturbation,

d2Etot

dλ2 =
occ∑
b

〈
ψ

(0)
b

∣∣∣∣∣ ∂2

∂λ2

(
T̂ + V̂ ext

)∣∣∣∣∣ψ(0)
b

〉
+

occ∑
b

〈
ψ

(1)
b

∣∣∣∣∣∂Ĥ∂λ
∣∣∣∣∣ψ(0)
b

〉
+ c.c.

+ ∂2EH

∂λ2

∣∣∣∣∣
ρ(0)

+ ∂2EXC

∂λ2

∣∣∣∣∣
ρ(0),τ (0)

+ ∂2EIon-Ion

∂λ2 , (3.39)
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where c.c. denotes the complex conjugate of the previous term. Note that the
second term and its complex conjugate are dependent on the first-order wave-
functions, but no where else are the derivatives of the wavefunctions required.
Only the first-order derivatives of the wavefunction are required to calculate the
second-order energy derivative. This is a consequence of the 2N + 1 theorem for
DFT [94]. The 2N+1 theorem states that the response of the total energy can be
calculated up to the order 2N+1 with knowledge of only up to the N th derivative
of the electronic wavefunctions.

The expression above relies on the correct first-order wavefunctions being known.
To find them, an alternate expression to equation 3.39 can be derived for the
second-order energies which can be minimised relative to variations in the first-
order wavefunctions,

d2Etot

dλ2 =
occ∑
b

〈
ψ

(1)
b

∣∣∣∣∣(Ĥ(0) − ϵ(0)
)∣∣∣∣∣ψ(1)

b

〉
+

occ∑
b

〈
ψ

(0)
b

∣∣∣∣∣ ∂2

∂λ2

(
T̂ + V̂ ext

)∣∣∣∣∣ψ(0)
b

〉
+

occ∑
b

〈
ψ

(1)
b

∣∣∣∣∣dĤdλ
∣∣∣∣∣ψ(0)
b

〉
+

occ∑
b

〈
ψ

(0)
b

∣∣∣∣∣dĤdλ
∣∣∣∣∣ψ(1)
b

〉

+ ∂2EH

∂λ2

∣∣∣∣∣
ρ(0)

+ ∂2EXC

∂λ2

∣∣∣∣∣
ρ(0),τ (0)

+ ∂2EIon-Ion

∂λ2 . (3.40)

The additional terms in this expression compared to the expression of 3.39 should
vanish when the first-order wavefunctions which minimise the above expression
are found. Equation 3.39 is a non-variational expression and equation 3.40 is
the variational expression. Using the variational expression, conjugate gradient
algorithms can be devised that minimise the second-order energy and thus find
the first-order wavefunctions.[95, 96]. However, the variational approach can be
quite a slow method for finding the first-order wavefunction and has only been
implemented in CASTEP for systems with a wide band-gap (insulating systems).
An alternative approach is to use the Sternheimer equations to find ψ

(1)
b .

3.4.2.1 Sternheimer Equation

Calculating the second-order energy derivatives requires the first-order wavefunc-
tion

∣∣∣∣ψ(1)
i

〉
. In order to compute this, we start with the Sternheimer equation,

(
Ĥ(0) − ϵ

(0)
i

)∣∣∣∣ψ(1)
i

〉
= −

(
Ĥ(1) − ϵ

(1)
i

)∣∣∣∣ψ(0)
i

〉
, (3.41)

where in this case the Hamiltonian and states are the Kohn-Sham Hamiltonian
and states.

The set of eigenstates to the unperturbed Hamiltonian,
∣∣∣∣ψ(0)
i

〉
, form a complete
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and orthogonal set for this system, making it a natural basis to expand other
functions in, such as the first order wavefunctions,∣∣∣∣ψ(1)

i

〉
=
∑
j

cij

∣∣∣∣ψ(0)
j

〉
. (3.42)

Following some algebra, it can be shown that
∣∣∣∣ψ(1)
i

〉
can be expressed as a sum

over the zeroth order wavefunction states,

∣∣∣∣ψ(1)
i

〉
=
∑
j ̸=i

∣∣∣∣ψ(0)
j

〉 〈ψ(0)
i

∣∣∣∣Ĥ(1)
∣∣∣∣ψ(0)
j

〉
ϵi− ϵj

. (3.43)

If we substitute this expression into the expression for the first-order density
(equation 3.27), yielding,

ρ(1) (r) = Ω−1
occ∑
b

∑
j ̸=b

〈
ψ

(0)
b

∣∣∣∣Ĥ(1)
∣∣∣∣ψ(0)
j

〉
ϵb− ϵj

ψ
(0)
j (r)


∗

·ψ(0)
b (r)+

(
ψ

(0)
b (r)

)∗
·
∑
j ̸=b

〈
ψ

(0)
b

∣∣∣∣Ĥ(1)
∣∣∣∣ψ(0)
j

〉
ϵb− ϵj

ψ
(0)
j (r) . (3.44)

Due to the orthogonality conditions on the zeroth order wavefunctions, the con-
tributions from pairs of occupied bands cancel and the first-order densities are
only affected by coupling to unoccupied bands. The value of the index j is thus
restricted to the conduction bands. We can modify the Sternheimer equation by
projecting the first-order wavefunctions onto the conduction subset of the con-
duction states using a projection operator,

Pc =
unocc∑
k

∣∣∣∣ψ(0)
k

〉〈
ψ

(0)
k

∣∣∣∣= 1−
occ∑
l

∣∣∣∣ψ(0)
l

〉〈
ψ

(0)
l

∣∣∣∣ , (3.45)

where 1 is the identity matrix. The second form of this equation is used in
practice as the occupied subspace is much smaller than the unoccupied subspace.

The Sternheimer equation is then written as,

Pc

(
Ĥ(0) − ϵ

(0)
i

)
Pc

∣∣∣∣ψ(1)
i

〉
= −PcĤ(1)

∣∣∣∣ψ(0)
i

〉
, (3.46)

which projects the first order wavefunction states onto the correct subspace, this
can be solved by using a Green’s function technique [97].

The difficulty in solving this equation comes from another problem of self-consistency,
to find the first-order Hamiltonian one needs the first-order wavefunctions for
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which one needs the first-order Hamiltonian. This can be solved by using a
Green’s function technique [97], where the above equation is iteratively solved.
Starting by using ∂Ĥ

∂λ for Ĥ(1) on the RHS of the above equation and finding
the states ψ(1)

b that solves this equation, then using these solutions to calculate a
trial first-order density and first-order Hamiltonian, for which new solutions are
found. This continues until the energy derivative of equation 3.39 is converged
to an acceptable level, at which point ψ(1)

b are considered converged.

3.4.2.2 Mixed Derivatives

For mixed second derivatives of the energy with respect to two different pertur-
bations, λ and µ, a further expression can be derived,

d2Etot

dλdµ =
occ∑
b

〈
ψ

(0)
b

∣∣∣∣∣ ∂2

∂λ∂µ

(
T̂ + V̂ ext

)∣∣∣∣∣ψ(0)
b

〉
+

occ∑
b

〈
ψ

(λ1)
b

∣∣∣∣∣∂Ĥ∂µ
∣∣∣∣∣ψ(0)
b

〉
+

occ∑
b

〈
ψ

(0)
b

∣∣∣∣∣∂Ĥ∂µ
∣∣∣∣∣ψ(λ1)
b

〉
+ ∂2EH

∂λ∂µ

∣∣∣∣∣
ρ(0)

+ ∂2EXC

∂λ∂µ

∣∣∣∣∣
ρ(0),τ (0)

+ ∂2EIon-Ion

∂λ∂µ
.

(3.47)

Here ψ(λ1)
b denotes the first-order wavefunction with respect to the perturbation

λ. This is again a non-variational expression for the mixed derivative. What
is convenient about this expression is that it only depends on the first-order
wavefunctions for one of the perturbations, λ. Therefore, if the first-order wave-
functions with respect to λ can be found, either by a variational approach or by
solving the Sternheimer equations, many mixed second order energy derivatives
can be calculated that involve λ.

3.4.2.3 Incommensurate Perturbations

So far the perturbation theory formalism has been constrained to perturbations
that follow the exact periodic boundary conditions of the unit cell, commensurate
perturbations. DFPT can also allow us to consider incommensurate perturba-
tions, provided they can be expressed as a Bloch function, with a cell periodic
part, uλ, and a wave-like part, eiq·r where q is the wave-vector of the perturbation.
This is particularly useful in the case of atomic perturbations and calculating the
dynamical matrix for phonons with arbitrary wave-vectors q.

Physical quantities can be written as a function of the perturbation strength, λ
and Taylor expanded in a similar manner to commensurate perturbations, with
some subtle differences. Again, taking a generic physical quantity X, it can be
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expanded as

X (λ) =X(0) +
(
λX(1)

q +λ∗X
(1)
−q

)
+
(
λ2X(2)

q,q + 2λλ∗X
(2)
q,−q +λ∗2X

(2)
−q,−q

)
+ · · · .
(3.48)

Bloch Factorisation
Under the perturbation the response of wavefunction ψbk (r) must now be ex-
pressed as a Bloch function where the wave-like part has periodicity k + q,

ψ
(1)
bk,q (r) = ei(k+q)·ru

(1)
bk,q (r) , (3.49)

where u(1)
bk,q (r) is a cell-periodic function.

The first-order density and the KED can also be expressed in a Bloch function
fashion, with a wave-like part and a cell periodic part,

ρ(1)
q (r) = eiq·rρ̄(1)

q (r) , (3.50)

τ (1)
q (r) = eiq·r τ̄ (1)

q (r) , (3.51)

where ρ̄(1)
q and τ̄

(1)
q are the cell-periodic functions, these are the functions that

are calculated and handled directly. The cell periodic functions for the density
and KED are used to calculate the cell periodic functions for the change in local
potentials, for example, which are similarly expressed in the Bloch function form.

Incommensurate Response Density
Expanding ψbk as a function of the perturbation, and substituting into the ex-
pressions for the density and the KED, one finds the following expressions,

ρ̄(1)
q (r) = Ω−1

occ∑
i

∫
BZ

(
u

(0)
i,k (r)

)∗
u

(1)
i,k,q (r) +

(
u

(1)
i,k,−q (r)

)∗
u

(0)
i,k (r) d3k, (3.52)

τ̄ (1)
q (r) = Ω−1

occ∑
i

∫
BZ

(
∇u(0)

i,k (r)
)∗

∇u(1)
i,k,q (r) +

(
∇u(1)

i,k,−q (r)
)∗

∇u(0)
i,k (r) d3k.

(3.53)
These expressions are inconvenient, as they involve a first-order wavefunction in
both q and −q. However, due to time-reversal symmetry, wavefunctions and
the first-order response wavefunctions at k and −k are related by a phase [95].
Therefore we can rewrite the above expressions as,

ρ̄(1)
q (r) = Ω−1

occ∑
i

∫
BZ

2
(
u

(0)
i,k (r)

)∗
u

(1)
i,k,q (r) d3k, (3.54)
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τ̄ (1)
q (r) = Ω−1

occ∑
i

∫
BZ

2
(

∇u(0)
i,k (r)

)∗
∇u(1)

i,k,q (r) d3k, (3.55)

which can be computed much more conveniently. For incommensurate perturba-
tions, equations 3.54 and 3.55 must be used to calculate the first-order response
densities, not equations 3.27 and 3.28.

Modified Sternheimer Equation
The first order wavefunction can be found by solving a set of Sternheimer equa-
tions which for incommensurate perturbations take the form,

Pc

(
Ĥ

(0)
k+q − ϵ

(0)
i,k

)
Pc

∣∣∣∣ψ(1)
i,k,q

〉
= −PcĤ(1)

k,q

∣∣∣∣ψ(0)
ik

〉
, (3.56)

where the projection operator is now,

Pc = 1−
occ∑
l

∣∣∣∣ψ(0)
l,k+q

〉〈
ψ

(0)
l,k+q

∣∣∣∣ . (3.57)

The first-order wavefunctions ψ(1)
i,k,q are now subject to a constraint with zeroth-

order wavefunctions at k + q, 〈
ψ

(0)
i,k+q

∣∣∣∣ψ(1)
j,k,q

〉
= 0. (3.58)

The Sternheimer equations are solved iteratively using a Green’s function tech-
nique [59].

Energy Derivatives
The first-order response to the energy to such perturbations must be zero to
conserve translational symmetry, unless q is a reciprocal lattice vector, in which
case the perturbation can be treated as commensurate [95]. The calculation of
the element E(2)

q,−q is required for phonon modes. This value can be calculated
according to the following variational expression,

d2Etot

dλ∗dλ =
∫

BZ

 occ∑
b

〈
ψ

(1)
b,k,q

∣∣∣∣∣
(
Ĥ

(0)
k+q − ϵ

(0)
k

)∣∣∣∣∣ψ(1)
b,k,q

〉
+

occ∑
b

〈
ψ

(1)
b,k,q

∣∣∣∣∣dĤk,q

dλ

∣∣∣∣∣ψ(0)
b,k

〉
+

occ∑
b

〈
ψ

(0)
b,k

∣∣∣∣∣dĤk,q

dλ

∣∣∣∣∣ψ(1)
b,k,q

〉
+

occ∑
b

〈
ψ

(0)
b,k

∣∣∣∣∣ ∂2

∂λ∗∂λ

(
T̂ + V̂ ext

)∣∣∣∣∣ψ(0)
b,k

〉 d3k

+ ∂2EH

∂λ∗∂λ

∣∣∣∣∣
ρ(0)

+ ∂2EXC

∂λ∗∂λ

∣∣∣∣∣
ρ(0),τ (0)

+ ∂2EIon-Ion

∂λ∗∂λ
. (3.59)

A non-variational expression can also be constructed for the mixed derivative of
the energy with respect to a pair of incommensurate perturbations that both have
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wave-vector q,

d2Etot

dµ∗dλ =
∫

BZ

 occ∑
b

〈
ψ

(µ1)
b,k,q

∣∣∣∣∣∂Ĥk,q

∂λ

∣∣∣∣∣ψ(0)
b,k

〉
+

occ∑
b

〈
ψ

(0)
b,k

∣∣∣∣∣∂Ĥk,q

∂λ

∣∣∣∣∣ψ(µ1)
b,k,q

〉
+

+
occ∑
b

〈
ψ

(0)
b,k

∣∣∣∣∣ ∂2

∂µ∗∂λ

(
T̂ + V̂ ext

)∣∣∣∣∣ψ(0)
b,k

〉 d3k

+ ∂2EH

∂µ∗∂λ

∣∣∣∣∣
ρ(0)

+ ∂2EXC

∂µ∗∂λ

∣∣∣∣∣
ρ(0),τ (0)

+ ∂2EIon-Ion

∂µ∗∂λ
. (3.60)

where,
∣∣∣∣ψ(µ1)
b,k,q

〉
is the 1st order response wavefunction with respect to µ. Note

that in both expressions the second partial derivatives of quantities are not in-
commensurate, as the q and −q wave-vectors of the two perturbations cancel.

3.4.3 Derivatives of the mGGA Quantities

There are additional terms in the Kohn-Sham Hamiltonian and the total energy
expression when using mGGA functionals. The additional contributions must
also be considered under perturbations. Here we shall again only consider the
definitions for non-spin-polarised systems, as they are directly relevant to the
practical calculations in the remainder of the thesis.

3.4.3.1 First-Order mGGA Hamiltonian

When using mGGA functionals the Hamiltonian becomes,

Ĥ = T̂ +V H + V̂ ext
loc + V̂ ext

nl + V̂ ext
τ + V̂ XC. (3.61)

with the extra terms that arise in two places, the differential part of the external
potential, V̂ ext

τ and the exchange and correlation potential operator, V̂ XC. The
handling of the other terms is well understood; here we shall devote our attention
to the new terms.

First-Order External Potential
Starting with V̂ ext

τ , the expression for this operator is shown in Equation 2.37.
Taking the derivative of the operator must be done with care, if the perturbation
causes any changes to the gradient operator, e.g. a strain perturbation, those
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changes must also be taken into account,

dV̂ ext
τ (r)
dλ = d

dλ

(
−1

2∇·
(
V local
τ (r)∇

))

= − 1
2

d∇
dλ ·

(
V local
τ (r)∇

)
+ ∇·

(
dV local

τ (r)
dλ ∇

)
+

∇·
(
V local
τ (r) d∇

dλ

). (3.62)

First-Order mGGA XC potential
Now we shall consider the XC potential operator, V̂ XC. The operator is defined
in equation 2.65, however, it is more convenient to work in terms of the local
potentials defined in equations 2.66 and 2.67,

V̂ XC (r) = V XC
ρ (r) − 1

2∇·
(
V XC
τ (r)∇

)
. (3.63)

The first-order XC potential can then be calculated as the derivative of this
expression with respect to λ, again handling any changes to the gradient operator
under the perturbation,

dV̂ XC (r)
dλ = d

dλ

(
V XC
ρ (r) − 1

2∇·
(
V XC
τ (r)∇

))

=
dV XC

ρ (r)
dλ − 1

2

d∇
dλ ·

(
V XC
τ (r)∇

)
+

∇·
(

dV XC
τ (r)
dλ ∇

)
+ ∇·

(
V XC
τ (r) d∇

dλ

). (3.64)

Each of the local potentials have derivatives arising from the changes in the den-
sity, the gradient of the density, and the KED under the perturbation. Starting
with V XC

ρ (r),

dV XC
ρ (r)
dλ = d

dλ

(
∂fXC

∂ρ
−∇ν

(
∂fXC

∂ |∇ρ|
∇νρ

|∇ρ|

))

= ∂2fXC

∂ρ2
dρ
dλ + ∂2fXC

∂ρ∂ |∇ρ|
d |∇ρ|

dλ + ∂2fXC

∂ρ∂τ

dτ
dλ − d∇ν

dλ

(
∂fXC

∂ |∇ρ|
∇νρ

|∇ρ|

)

−∇ν

( ∂2fXC

∂ |∇ρ|∂ρ
dρ
dλ + ∂2fXC

∂ |∇ρ|2
d |∇ρ|

dλ + ∂2fXC

∂ |∇ρ|∂τ
dτ
dλ

)
∇νρ

|∇ρ|

+ ∂fXC

∂ |∇ρ|

(
1

|∇ρ|
d(∇νρ)

dλ − ∇νρ

|∇ρ|2
d |∇ρ|

dλ

). (3.65)
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Applying the chain rule to d(|∇ρ|)
dλ we get,

d(|∇ρ|)
dλ = ∇ζρ

|∇ρ|
d
(
∇ζρ

)
dλ , (3.66)

which we can then substitute into the expression above and with some rearrang-
ing, we get,

dV XC
ρ (r)
dλ = ∂2fXC

∂ρ2
dρ
dλ + ∂2fXC

∂ρ∂ |∇ρ|
∇ζρ

|∇ρ|
d
(
∇ζρ

)
dλ + ∂2fXC

∂ρ∂τ

dτ
dλ − d∇ν

dλ

(
∂fXC

∂ |∇ρ|
∇νρ

|∇ρ|

)

−∇ν

( ∂2fXC

∂ |∇ρ|∂ρ
dρ
dλ + ∂2fXC

∂ |∇ρ|∂τ
dτ
dλ

)
∇νρ

|∇ρ|
+ ∂fXC

∂ |∇ρ|
1

|∇ρ|
d(∇νρ)

dλ

+
(
∂2fXC

∂ |∇ρ|2
∇ζρ∇νρ

|∇ρ|2
− ∂fXC

∂ |∇ρ|
∇ζρ∇νρ

|∇ρ|3

) d
(
∇ζρ

)
dλ

, (3.67)

where the expressions ∇ζρ∇νρ on the last line are interpreted as the outer product
of the gradient of the density at point r. This creates a rank-2 tensor-like object
with indices ζ and ν, which is multiplied by the vector, the derivative of the
gradient of the density with respect to µ, which has the index ζ, resulting in an
object with an ν index, which can safely have the gradient operator outside the
square brackets applied to it.

Now we consider the far simpler V XC
ρ (r),

dV XC
τ (r)
dλ = ∂2fXC

∂τ∂ρ

dρ
dλ + ∂2fXC

∂τ∂ |∇ρ|
∇ζρ

|∇ρ|
d
(
∇ζρ

)
dλ + ∂2fXC

∂τ2
dτ
dλ. (3.68)

These equations define the first-order response XC potential for a mGGA func-
tional under a perturbation λ. For brevity, ρ(r), τ (r), and fXC (ρ(r) , |∇ρ(r)| , τ (r))
have not been shown as functions. ρ and τ are also the total density and KED,
including contributions from the non-linear core corrections. In the case of incom-
mensurate perturbations, we calculate the cell periodic function of the potential,
using the cell-periodic function for the density and KED as described in [96].

Analytical derivation of the second-order partial derivatives of fXC by hand would
be cumbersome and error-prone. Instead of deriving these derivatives by hand,
we have two options:

1. Numerical derivatives - efficient for programmer but are obviously prone to
numerical errors.

2. Algorithmic differentiation and automatic code generation - requires rewrit-
ing the XC functional in a computer algebra system which is less efficient for
the programmer but should provide “error-free” code. Thankfully, LibXC,
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a library of XC functionals, has already implemented many XC functionals
in computer algebra and can provide functions to calculate up to the 4th

order derivatives.

Numerical derivatives and an interface to LibXC to calculate the 2nd order partial
derivatives of fXC have been implemented in CASTEP and are trialled in this
work.

3.4.3.2 Total Energy derivatives

Expressions for the second derivatives of the total energy are given in equations
3.40, 3.39, 3.47 and 3.59. We shall consider equation 3.47, the non-variational
expression for a mixed second derivative of the energy,

d2Etot

dλdµ =
occ∑
b

〈
ψ

(0)
b

∣∣∣∣∣ ∂2

∂λ∂µ

(
T̂ + V̂ ext

loc + V̂ ext
nl
)∣∣∣∣∣ψ(0)

b

〉
+

occ∑
b

〈
ψ

(λ1)
b

∣∣∣∣∣∂Ĥ∂µ
∣∣∣∣∣ψ(0)
b

〉
+

occ∑
b

〈
ψ

(0)
b

∣∣∣∣∣∂Ĥ∂µ
∣∣∣∣∣ψ(λ1)
b

〉
+ ∂2EH

∂λ∂µ

∣∣∣∣∣
ρ(0)

+ ∂2EIon-Ion

∂λ∂µ
,

+ ∂2Eext
τ

∂λ∂µ

∣∣∣∣∣
τ (0)

+ ∂2EXC

∂λ∂µ

∣∣∣∣∣
ρ(0),τ (0)

(3.69)

This is a rewriting of equation 3.47, such that the external potential operator
has been separated into its different contributions and contribution to the energy
from the differential operator Eextτ has been moved from the first term to its own
expression. This makes the following derivations more straightforward. Now, the
last line of this expression contains the only two terms that are different in the
meta-GGA formalism.

External Potential Energy
Recall from equation 2.63 that Eext

τ can be more conveniently computed as an
integral over the product of the local potential part of V̂ ext

τ and the KED,

Eext
τ = Ω

∫
Ω
V ext
τ (r)τ (r) d3r. (3.70)

The energy derivatives are also far more straightforward to derive from this ex-
pression.

Starting from the first derivative of Eext
τ with respect to λ,

∂Eext
τ

∂λ
= ∂Ω
∂λ

∫
Ω
V ext
τ (r)τ (r) d3r + Ω

∫
Ω

(
∂V ext

τ (r)
∂λ

τ (r) +V ext
τ (r) ∂τ (r)

∂λ

)
d3r.

(3.71)
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We can then obtain the mixed derivative by differentiating again, this time with
respect to the other perturbation µ,

∂2Eext
τ

∂λ∂µ
= ∂2Ω
∂λ∂µ

∫
Ω
V ext
τ (r)τ (r) d3r

+∂Ω
∂µ

∫
Ω

(
∂V ext

τ (r)
∂λ

τ (r) +V ext
τ (r) ∂τ (r)

∂λ

)
d3r

+∂Ω
∂λ

∫
Ω

(
∂V ext

τ (r)
∂µ

τ (r) +V ext
τ (r) ∂τ (r)

∂µ

)
d3r

+Ω
∫

Ω

[
∂2V ext

τ (r)
∂µ∂λ

τ (r) + ∂V ext
τ (r)
∂µ

∂τ (r)
∂λ

+ ∂V ext
τ (r)
∂λ

∂τ (r)
∂µ

+V ext
τ (r) ∂

2τ (r)
∂µ∂λ

]
d3r. (3.72)

For many cases the full detail of this expression is unnecessary. For a pair of
volume preserving perturbations that also do not change the definition of τ the
expression is far simpler,

∂2Eext
τ

∂λ∂µ
= Ω

∫
Ω

∂2V ext
τ (r)
∂µ∂λ

τ (r) d3r, (3.73)

however, the full expression given in 3.72 is required when considering pairs of
strain perturbations.

XC Energy
For the XC energy, we shall take follow the approach of Hamman et al in [98]
and start from the numerical expression for the XC energy given in equation 2.68
rather than the analytic expression given in equation 2.64,

EXC = Ω
Np

Np∑
i

fXC (ρt (ri) , |∇ρt (ri)| , τt (ri)) (3.74)

where the integral of the fXC is instead expressed as it is computed as a sum over
points.

Taking the derivative of this expression with respect to λ we get,

∂EXC

∂λ
= ∂Ω
∂λ

1
Np

Np∑
i

fXC (ρ(ri) , |∇ρ(ri)| , τ (ri))

+ Ω
Np

Np∑
i

[
∂fXC

∂ρ

∂ρ

∂λ
+ ∂fXC

∂ |∇ρ|
∇νρ

|∇ρ|
∂ (∇νρ)
∂λ

+ ∂fXC

∂τ

∂τ

∂λ

]
(3.75)

An alternate expression can be derived which instead uses the local potentials
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defined in equations 2.66 and 2.67,

∂EXC

∂λ
= ∂Ω
∂λ

1
Np

Np∑
i

fXC (ρ(ri) , |∇ρ(ri)| , τ (ri))

+ Ω
Np

Np∑
i

[
V XC
ρ

∂ρ

∂λ
+V XC

τ
∂τ

∂λ
+ ∂fXC

∂ |∇ρ|
∇νρ

|∇ρ|
∂∇ν

∂λ
(ρ)

]
, (3.76)

which can be obtained by expanding from the application of the chain rule to
∂|∇ρ|
∂λ and then the product rule to ∇νρ.

Taking the derivative of this second expression with respect to the second per-
turbation µ gives,

∂2EXC

∂λ∂µ
= ∂2Ω
∂λ∂µ

1
Np

Np∑
i

fXC (ρ(ri) , |∇ρ(ri)| , τ (ri))

+ ∂Ω
∂µ

1
Np

Np∑
i

[
V XC
ρ

∂ρ

∂λ
+V XC

τ
∂τ

∂λ
+ ∂fXC

∂ |∇ρ|
∇νρ

|∇ρ|
∂∇ν

∂λ
(ρ)

]

+ ∂Ω
∂λ

1
Np

Np∑
i

[
V XC
ρ

∂ρ

∂µ
+V XC

τ
∂τ

∂µ
+ ∂fXC

∂ |∇ρ|
∇νρ

|∇ρ|
∂∇ν

∂µ
(ρ)

]

+ Ω
Np

Np∑
i

V XC
ρ

∂2ρ

∂λ∂µ
+V XC

τ
∂2τ

∂λ∂µ
+
∂V XC

ρ

∂µ

∂ρ

∂λ
+ ∂V XC

τ

∂µ

∂τ

∂λ

+
{

∂2fXC

∂ |∇ρ|∂ρ
∂ρ

∂µ
+ ∂2fXC

∂ |∇ρ|∂τ
∂τ

∂µ

}
∇νρ

|∇ρ|
∂∇ν

∂λ
(ρ)

+
(
∂2fXC

∂ |∇ρ|2
∇νρ∇ζρ

|∇ρ|2
− ∂fXC

∂ |∇ρ|
∇νρ∇ζρ

|∇ρ|3

)
∂
(
∇ζρ

)
∂µ

∂ (∇ν)
∂λ

(ρ)

+ ∂fXC

∂ |∇ρ|

 1
|∇ρ|

∂ (∇νρ)
∂µ

∂∇ν

∂λ
(ρ)

+ ∇νρ

|∇ρ|2
∂2∇ν

∂λ∂µ
(ρ) + ∇νρ

|∇ρ|2
∂∇ν

∂λ

(
∂ρ

∂µ

)
, (3.77)

where we again have terms that are outer products of the gradient of the density
at r.

The Reader can now appreciate the choice of using the local potentials V XC
ρ and

V XC
τ , whose derivatives have already been derived above, making the current ex-

pression slightly simpler. The above expression is by choice as general as possible
hence leading to a disproportionate number of terms. In most cases, the majority
of these terms can be neglected as perturbations cause no changes to the volume
and the gradient operators, however as shall be seen, for strain derivatives, the
unholy mess above is required. I can only apologise to the Reader.
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3.5 Application to this work

In this chapter, we discuss the common response functions of material systems
that we shall consider in the rest of this thesis, the phonon modes and elastic
properties. A description of how the response functions are related to the deriva-
tives of the total energy of the system was given. We then discussed perturbation
theory as it is applied to the DFT formalism resulting in Density Functional Per-
turbation Theory formalism, which enables us to compute response properties
directly by calculating the derivative of the total energy. General expressions
have been given for the second-order derivatives of the total energy, and the ad-
ditional terms that must be considered when using a meta-generalised-gradient
approximation have been derived (and I apologise for inflicting them on you,
Reader). The expressions derived for these additional terms are key results for
this thesis and will be used in the subsequent chapters to calculate material re-
sponse functions using the meta-GGA functionals.
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Calculating Dynamical Matrices
using meta-GGAs

This chapter covers the implementation of the necessary additional terms to cal-
culate the Dynamical matrix from DFPT using a meta-GGA functional. The
Dynamical matrix is the response function of a system that is required to calcu-
late the phonon modes in the Harmonic approximation and was defined in Sec-
tion 3.2.1 of the previous chapter. First, we cover the derivation of the additional
terms required for a meta-GGA functional, then the implementation is verified by
performing a comparison between dynamical matrices and phonon-mode energies
calculated from DFPT, and those computed from the finite displacement method.
It is found that the well-known grid sensitivity of meta-GGA functionals causes
severe issues when calculating the dynamical matrix in both methods, leading
to major disagreement. The two approaches can only be reconciled by turning
off some of the symmetry-preserving features or by using very dense grids for
the density representation calculation. A more intelligent approach to the grid
sensitivity issue is discussed in the following chapter.

4.1 Introduction

The accuracy of the SCAN family of meta-GGA functionals has been widely
studied, showing a significant improvement in the calculation of material and
molecular properties over the commonly used LDA and GGA functionals. The
accuracy of the SCAN family is often found to be comparable to methods be-
yond semi-local DFT methods, such as hybrid functionals. In particular, the
accuracy of SCAN and r2SCAN for structural properties such as; lattice param-
eters, interlayer separation, and phonon spectra has been across a wide range
of materials and molecules [28, 29, 36, 38, 41, 42, 44, 45, 99]. A key finding in
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many of these studies was that the SCAN functional, and sometimes r2SCAN,
is particularly sensitive to the real-space grid sampling used, which causes sig-
nificant systematic errors when calculating relaxed structures, often leading to
the phonon modes calculated having imaginary frequencies, suggesting spurious
instability in the relaxed ground-state structure.

Those studies looking at the accuracy of phonon modes when using meta-GGAs
make use of the finite-displacement method to calculate the dynamical matrices
for materials. The finite displacement method; a) suffers particularly from the
grid sensitivity since it requires moving atoms and the use of supercells which can
significantly alter the grid sampling, and b) is an expensive method of calculating
the phonon modes since the use of supercells necessitates including more electrons
in the calculations. However, a density functional perturbation theory method
would avoid the change in grid sampling and the use of supercells, which would
eliminate any changes to the real-space sampling and keep the computational
cost to a minimum. The work in this chapter is devoted to the novel derivation
of the necessary additional terms to be computed in the meta-GGA formalism.
The verification of the derivation of the additional meta-GGA terms and their
implementation in CASTEP is confirmed by careful comparison with finite dis-
placement calculations for a test system. This work has yet to be published.

4.2 Calculating the Dynamical Matrix

The phonon modes of a material can be computed as the eigenvectors of the
dynamical matrix. The dynamical matrix is related to the derivative of the total
energy with respect to periodic atomic perturbations, as previously discussed
(§3.2.1). Equation 3.5 defines the relation between the dynamical matrix and the
total energy derivative,

Dαβ
q,IJ = 1√

MIMJ

∂2E

∂
(
µq
I,α

)∗
∂µq

J,β

, (4.1)

where Dαβ
q,IJ is an element of the dynamical matrix, MI is the mass of atom

labelled I in the primitive cell and µq
I,α is the periodic displacement of atom

labelled I along Cartesian direction α which has wave-vector of q. To determine
the phonon modes of a material for any q, we therefore require the set of mixed
second energy derivatives with respect to an incommensurate perturbation of all
pairs of atoms in the unit cell.

As a reminder, the second derivative of the energy with respect to a pair of in-
commensurate perturbations λ1,q and λ2,q can be computed using the expression
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given in equation 3.60, which is repeated here,

d2Etot

d(λ1,q)∗ dλ2,q =
∫

BZ

 occ∑
b

〈
ψ

(λ1)
b,k,q

∣∣∣∣∣∂Ĥk,q

∂λ2,q

∣∣∣∣∣ψ(0)
b,k

〉
+

occ∑
b

〈
ψ

(0)
b,k

∣∣∣∣∣∂Ĥk,q

∂λ2,q

∣∣∣∣∣ψ(λ1)
b,k,q

〉
+

+
occ∑
b

〈
ψ

(0)
b,k

∣∣∣∣∣ ∂2

∂ (λ1,q)∗∂λ2,q

(
T̂ + V̂ ext

)∣∣∣∣∣ψ(0)
b,k

〉 d3k

+ ∂2EH

∂ (λ1,q)∗∂λ2,q

∣∣∣∣∣
n(0)

+ ∂2EXC

∂ (λ1,q)∗∂λ2,q

∣∣∣∣∣
n(0),τ (0)

+ ∂2EIon-Ion

∂ (λ1,q)∗∂λ2,q .

(4.2)

Each element of the dynamical matrix for a particular q can be computed using
this expression by setting λ1,q and λ2,q equal to µq

I,α and µq
J,β. In order to be

able to compute these elements when using mGGA functionals, we will therefore
need to derive:

• The change in the Hamiltonian under the other perturbation, ∂Ĥk
∂λq

.

• The first order wavefunction with respect to one incommensurate perturba-
tions,

∣∣∣∣ψ(λ1)
b,k,q

〉
. This can be obtained by solving the Sternheimer equation

(equation 3.56) or varying the first-order wavefunction to minimise the ex-
pression given in equation 3.59. Both methods requires the initial change
to the Hamiltonian, ∂Ĥk

∂µq .

• The mixed second derivative of the differential part of the external potential
under both perturbations ∂2Eext

τ
∂λ∗∂µ .

• The mixed second derivative of the XC energy under both perturbations
∂2EXC

∂λ∗∂µ .

4.2.1 Change in Hamiltonian under atomic perturbation

As a reminder the Hamiltonian of the unperturbed system is,

Ĥ = T̂ + V̂ H + V̂ ext
loc + V̂ ext

nl + V̂ ext
τ + V̂ XC. (4.3)

The terms that are different for the mGGA functional from the GGA functional
are the additional term in the external potential V̂ ext

τ and the XC potential V̂ XC.
Expressions for the derivatives of these terms under generic perturbations are
derived in the previous chapter; here we shall use these generic expressions to
generate specific expressions for atomic perturbation µq

I,α.
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4.2.1.1 External potential

The expression for the derivative of V̂ ext
τ under a generic perturbation λ is re-

peated below,

dV̂ ext
τ (r)
dλ = − 1

2

d∇
dλ ·

(
V local
τ (r)∇

)
+ ∇·

(
dV local

τ (r)
dλ ∇

)
+

∇·
(
V local
τ (r) d∇

dλ

). (4.4)

Immediately, we can simplify this expression by recognising that the perturbation
µq
I,α does not change the gradient operator. The change in the operator therefore

only depends on the change in the local potential part of this operator,

dV̂ ext
τ (r)

dµq
I,α

= −1
2∇·

(
dV local

τ (r)
dµq

I,α

∇
)
. (4.5)

The expression for V local
τ (r) is given in equation 2.61, repeated below,

V loc
τ (r) = Ω−1∑

J

V τ
J (r) = Ω−1∑

J

∑
G

vτJ (|G|)e−iG·RJ eiG·r, (4.6)

The perturbation is incommensurate with the unit cell, therefore we Bloch fac-
torise the potential into a cell-periodic function and wave-like part,

dV local
τ (r)
dµq

I,α

= V loc(1)
τ,I,α,q (r) = V̄ loc(1)

τ,I,α,q (r)eiq·r (4.7)

where V̄ loc(1)
τ,I,α,q (r) is the cell-periodic part of the function which can then be cal-

culated on the FFT grid of the unit cell. As was done in the previous chapter,
the overbar denotes that this is the cell-periodic part of the function. A similar
procedure is used to calculate the local part of the external potential operator,
V̂ ext

loc , as expressed by Gonze in equation 50 of Ref [95]. The expression for the
cell-periodic part of the derivative of V local

τ is analogous to the expression derived
by Gonze, which is given as the derivative of each G−vector component of the
potential,

V̄ loc(1)
τ,I,α,q (G) =Ω−1vτI (|G + q|) d

dRαI
ei(G+q)·(r−RI)

= − i(Gα+ qα)Ω−1vτI (|G + q|)ei(G+q)·(r−RI). (4.8)

From this expression of the derivative for each G−vector component, we can
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construct the total cell-periodic part of the potential,

V̄ loc(1)
τ,I,α,q (r) = Ω−1∑

G

−i(Gα+ qα)vτI (|G + q|)ei(G+q)·(r−RI). (4.9)

In the case when q = 0 and the perturbation is commensurate, the expression
becomes,

V loc(1)
τ,I,α (r) = Ω−1∑

G

−i(Gα)vτI (|G|)ei(G)·(r−RI). (4.10)

4.2.1.2 XC potential

Here we consider the derivative of the XC potential under the perturbation of
µq
I,α. Taking the expression for the derivative of the operator under a generic

perturbation from the previous chapter (equation 3.64), we can immediately sim-
plify the expression by again recognising that the perturbation does not change
the gradient operator leading to,

dV̂ XC (r)
dµq

I,α

= d
dµq

I,α

(
V XC
ρ (r) − 1

2∇·
(
V XC
τ (r)∇

))

=
dV XC

ρ (r)
dµq

I,α

− 1
2∇·

(
dV XC

τ (r)
dµq

I,α

∇
)
. (4.11)

Now we must consider how each of the local potentials, V XC
ρ (r) and V XC

τ (r),
change under the perturbation. Equations 3.67 and 3.68 give the expression for
a generic perturbation, each depending on changes in the density, the gradient of
the density, and the KED. In this case we are also considering the total density
and KED, i.e. with non-linear core corrections, not just the density and KED
due to the valence electrons,

ρt (r) =ρ(r) +ρc (r) , (4.12)
τt (r) =τ (r) + τc (r) . (4.13)

Under the perturbation µq
I,α the total density and KED change as

dρt (r)
dµq

I,α

=ρ(1)
q (r) + ∂ρc (r)

∂µq
I,α

, (4.14)

dτt (r)
dµq

I,α

=τ (1)
q (r) + ∂τc (r)

∂µq
I,α

, (4.15)

where the first term in both equations ρ(1)
q (r) and τ

(1)
q (r) are the first order

response density and KED that results from the response of the wavefunction.
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These are calculated according to equations 3.27 and 3.28 in the case of commen-
surate perturbations, and equations 3.54 and 3.55 in the case of incommensurate
perturbations.

The expressions for the derivatives of the core charge and KED derivatives are
very similar to each other and to the derivative of the local part of the external
potential. Again, we shall follow the example of Gonze, who gives an expres-
sion for the derivative of the core charge density in equation 56 of Ref [95]. The
derivatives of the core charge density for the case of a commensurate and incom-
mensurate atomic perturbation are given by,

∂ρc (r)
∂µI,α

= ρ
(1)
c,I,α (r) =Ω−1∑

G

−iGαρc
I (|G|)eiG·(r−RI), (4.16)

e−iq·r ∂ρc (r)
∂µq

I,α

= ρ̄
(1)
c,I,α,q (r) =Ω−1∑

G

−i(Gα+ qα)ρc
I (|G + q|)ei(G+q)·(r−RI),

(4.17)

In the case of incommensurate perturbations we again calculate the cell-periodic
part of a Bloch factorised function, where the cell-periodic function is denoted by
over-bar. The derivatives of the core KED are given by,

∂τc (r)
∂µI,α

= τ
(1)
c,I,α (r) =Ω−1∑

G

−iGατ c
I (|G|)eiG·(r−RI), (4.18)

e−iq·r ∂τc (r)
∂µq

I,α

= τ̄
(1)
c,I,α,q (r) =Ω−1∑

G

−i(Gα+ qα)τ c
I (|G + q|)ei(G+q)·(r−RI).

(4.19)

Now that we have defined how the total charge density and KED change under
atomic perturbation, we can now write how the potentials V XC

ρ (r) and V XC
τ (r)

change. First, we shall address the commensurate case, where the derivatives of
the potentials are expressed as

dV XC
ρ (r)

dµI,α
=∂

2fXC

∂ρ2
dρt

dµI,α
+ ∂2fXC

∂ρ∂ |∇ρ|
∇νρt
|∇ρt|

d(∇νρt)
dµI,α

+ ∂2fXC

∂ρ∂τ

dτt
dµI,α

−∇ν

( ∂2fXC

∂ |∇ρ|∂ρ
dρt

dµI,α
+ ∂2fXC

∂ |∇ρ|∂τ
dτt

dµI,α

)
∇νρt
|∇ρt|

+ ∂fXC

∂ |∇ρ|
1

|∇ρt|
d(∇νρt)

dµI,α

+
(
∂2fXC

∂ |∇ρ|2
∇ζρt∇νρt

|∇ρt|2
− ∂fXC

∂ |∇ρ|
∇ζρt∇νρt

|∇ρt|3

) d
(
∇ζρt

)
dµI,α

, (4.20)
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and

dV XC
τ (r)

dµI,α
= ∂2fXC

∂τ∂ρ

dρt
dµI,α

+ ∂2fXC

∂τ∂ |∇ρ|
∇νρt
|∇ρt|

d(∇νρt)
dµI,α

+ ∂2fXC

∂τ2
dτt

dµI,α
. (4.21)

Since the gradient operator is unchanged by the perturbation, d(∇νρt)
dµI,α

can be
found by the applying the gradient operator to the terms in equation 4.14,

d(∇νρt)
dµI,α

= ∇ν

(
dρt

dµI,α

)
. (4.22)

Now for the incommensurate case. The first-order XC potential can be calcu-
lated using the same expression as the commensurate, only now the change in
density and KED and the resultant first-order potential are all incommensurate
quantities,

dV XC
ρ (r)

dµq
I,α

=∂
2fXC

∂ρ2
dρt

dµq
I,α

+ ∂2fXC

∂ρ∂ |∇ρ|
∇νρt
|∇ρt|

∇ν

(
dρt

dµq
I,α

)
+ ∂2fXC

∂ρ∂τ

dτt
dµq

I,α

−∇ν

( ∂2fXC

∂ |∇ρ|∂ρ
dρt

dµq
I,α

+ ∂2fXC

∂ |∇ρ|∂τ
dτt

dµq
I,α

)
∇νρt
|∇ρt|

+ ∂fXC

∂ |∇ρ|
1

|∇ρt|
∇ν

(
dρt

dµq
I,α

)

+
(
∂2fXC

∂ |∇ρ|2
∇ζρt∇νρt

|∇ρt|2
− ∂fXC

∂ |∇ρ|
∇ζρt∇νρt

|∇ρt|3

)
∇ζ

(
dρt

dµq
I,α

), (4.23)

and

dV XC
τ (r)

dµq
I,α

= ∂2fXC

∂τ∂ρ

dρt
dµI,α

+ ∂2fXC

∂τ∂ |∇ρ|
∇νρt
|∇ρt|

∇ν

(
dρt

dµq
I,α

)
+ ∂2fXC

∂τ2
dτt

dµI,α
. (4.24)

We again Bloch-factorise the incommensurate properties into a wave-like part
and cell-periodic functions, where

dρt (r)
dµq

= ρ
(1)
t,q (r) = eiq·rρ̄

(1)
t,q (r) (4.25)

dτt (r)
dµq

= τ
(1)
t,q (r) = eiq·r τ̄

(1)
t,q (r) (4.26)

dV XC
ρ (r)
dµq

= V XC(1)
ρ,q (r) = eiq·rV̄ XC(1)

ρ,q (r) (4.27)

dV XC
τ (r)
dµq

= V XC(1)
τ,q (r) = eiq·rV̄ XC(1)

τ,q (r) (4.28)

where we have dropped the I and α subscripts for brevity. The gradient of the
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change in the density can be written in terms of the Bloch factorised function,

∇νρ
(1)
t,q (r) = ∇ν

(
eiq·rρ̄

(1)
t,q (r)

)
= eiq·r

(
iqν ρ̄

(1)
t,q (r) + ∇ν ρ̄

(1)
t,q (r)

)
(4.29)

The cell periodic functions of the change in density and KED can then be used
to calculate the first-order changes in the XC potentials,

eiq·rV̄ XC(1)
ρ,q (r) =eiq·r

∂2fXC

∂ρ2 ρ̄
(1)
t,q + ∂2fXC

∂ρ∂ |∇ρ|
∇νρt
|∇ρt|

(
iqν ρ̄

(1)
t,q + ∇ν ρ̄

(1)
t,q

)
+ ∂2fXC

∂ρ∂τ
τ̄

(1)
t,q

− (iqν + ∇ν)
( ∂2fXC

∂ |∇ρ|∂ρ
ρ̄

(1)
t,q + ∂2fXC

∂ |∇ρ|∂τ
τ̄

(1)
t,q

)
∇νρt
|∇ρt|

+
(
∂2fXC

∂ |∇ρ|2
∇ζρt∇νρt

|∇ρt|2
− ∂fXC

∂ |∇ρ|
∇ζρt∇νρt

|∇ρt|3

)(
iqζ ρ̄

(1)
t,q + ∇ζ ρ̄

(1)
t,q

)

+ ∂fXC

∂ |∇ρ|
1

|∇ρt|

(
iqγ ρ̄

(1)
t,q + ∇ν ρ̄

(1)
t,q

), (4.30)

where eiq·r has been factorised out of every term on the right hand side of the
equation. When factorising eiq·r out of the gradient term applied to the square
brackets, the gradient operator then gains a +iqν term. The other part of the
first-order XC potential, V XC(1)

τ,q , is computed as

eiq·rV̄ XC(1)
τ,q = eiq·r

∂2fXC

∂τ∂ρ
ρ̄

(1)
t,q + ∂2fXC

∂τ∂ |∇ρ|
∇νρt
|∇ρt|

(
iqν ρ̄

(1)
t,q + ∇ν ρ̄

(1)
t,q

)

+ ∂2fXC

∂τ2 τ̄
(1)
t,q

. (4.31)

In the expressions for both parts of the first-order XC potential, the factors of eiq·r

on either side of the equations can be cancelled and we are left with expressions
that are only comprised of cell-periodic functions, meaning they can be computed
and stored on regular FFT grids. We have followed the same procedure applied
to GGA potentials as presented in Ref [96].

Now we must draw a distinction between two different quantities that must be
computed. The correct first-order wavefunctions can be obtained by solving the
Sternheimer equation (equations 3.41 and 3.56), which includes the total deriva-
tive of the Hamiltonian,

Ĥ
(1)
k = dĤ(0)

k

dλ , (4.32)

whereas, the expressions for the second derivatives of the total energy (equations
3.39, 3.60, 3.47 and 3.69) include the partial derivative of the Hamiltonian ∂Ĥ

(0)
k

∂λ .
The difference between the total derivative and the partial derivative is the in-
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clusion of the first-order response of the wavefunctions in the Hartree and XC
terms through the change in density and KED. In the case of atomic perturba-
tions, the partial derivative of the XC potential, ∂V̂

XC

∂µq
I,α

only includes the changes
from the non-linear core corrections and does not include contributions from the
first-order response of the density and KED. However, the total derivative of the
XC potential, dV̂ XC

dµq
I,α

, does include the contribution from the first-order response
of the density and the KED.

4.2.2 Second derivative of External Potential

The energy contribution due to the differential part of the external potential can
be computed according to equation 2.63,

Eext
τ = Ω

∫
Ω
V ext
τ (r)τ (r) d3r. (4.33)

The derivative of the expression with respect to a pair of generic perturbations is
derived in 3.72. Thankfully, since we are considering only atomic perturbations
for now, there is no perturbation which causes a change in cell volume or a change
to the definition of τ , and so we can use the far simpler expression

∂2Eext
τ

∂
(
µq
I,α

)∗
∂µq

J,β

= Ω
∫

Ω

∂2V ext
τ (r)

∂
(
µq
I,α

)∗
∂µq

J,β

τ (r) d3r, (4.34)

therefore all that need to be derived is ∂2V ext
τ (r)

∂
(
µq

I,α

)∗
∂µq

J,β

, where µq
I,α and µq

J,β are the

pair of incommensurate atomic perturbations with the same wave-vector q.

An expression for V ext
τ (r) is given in equation 2.61, repeated again here,

V local
τ (r) = Ω−1∑

I

∑
G

vτI (|G|)e−iG·RIeiG·r. (4.35)

Once more we can follow the lead of Gonze, who showed how to compute the
derivative of the local part of the external potential in equation 52 of Ref. [95].
Since we are taking the derivative with respect to a perturbation with wave-
vector q and the complex conjugate of a perturbation with wave-vector q, the
wave-vector cancel and the derivative is always commensurate. Additionally, it
is clear that the mixed derivative is only non-zero if the two perturbations, µq

I,α

and µq
J,β, are applied to the same atom, i.e. I = J . In which case the derivative

87



Chapter 4 Calculating Dynamical Matrices using meta-GGAs

of the potential can be expressed as,

∂2V ext
τ (r)

∂
(
µq
I,α

)∗
∂µq

J,β

= d2

dRI,αdRJ,β
Ω−1∑

I

∑
G

vτI (|G|)e−iG·RIeiG·r

= Ω−1δIJ
∑
G

−GαGβvτI (|G|)e−iG·RIeiG·r. (4.36)

4.2.3 Second derivative of XC energy

The numerical expression for the XC energy given in equation 2.68 repeated here,

EXC = Ω
Np

Np∑
i

fXC (ρt (ri) , |∇ρt (ri)| , τt (ri)) , (4.37)

where again ρt (r) and τt (r) are the total charge density and total KED respec-
tively, which both include contributions from the non-linear core corrections.

The second derivative of the XC energy is derived for a pair of generic perturba-
tions in equation 3.77. For a pair of incommensurate atomic perturbations, we
can simplify the expression of equation 3.77 greatly since there is no change to
the volume or the gradient operator, as was done for the first-order XC potential.
In this case the energy derivative becomes,

∂2EXC

∂
(
µq
I,α

)∗
∂µq

J,β

= Ω
Np

Np∑
i

V XC
ρ (ri)

∂2ρt (ri)
∂
(
µq
I,α

)∗
∂µq

J,β

+V XC
τ (ri)

∂2τt (ri)
∂
(
µq
I,α

)∗
∂µq

J,β

+

∂V XC
ρ (ri)

∂
(
µq
I,α

)∗

∣∣∣∣∣∣
ρ0,τ0

∂ρt (ri)
∂µq

J,β

+ ∂V XC
τ (ri)

∂
(
µq
I,α

)∗

∣∣∣∣∣∣
ρ0,τ0

∂τt (ri)
∂µq

J,β

.
(4.38)

The first line includes mixed second derivatives of the total density and the total
KED with respect to the two atomic perturbations. These perturbations only
cause changes in the core correction terms and are only when the two perturba-
tions, µI,qα and µJ,qβ , are applied to the same atom, i.e. I = J . The derivatives
can be derived in very similar ways to the second derivative of external potential
terms,

∂2ρc (r)
∂
(
µq
I,α

)∗
∂µq

J,β

= Ω−1δIJ
∑
G

−GαGβρIc (|G|)e−iG·RIeiG·r, (4.39)

∂2τc (r)
∂
(
µq
I,α

)∗
∂µq

J,β

= Ω−1δIJ
∑
G

−GαGβτ Ic (|G|)e−iG·RIeiG·r. (4.40)

The second line of the expression for the energy derivative includes quantities
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that are incommensurate with the unit cell. Substituting in the Bloch factorised
definitions of these quantities reveals how these quantities be straightforwardly
calculated from the cell-periodic functions,

∂V XC
τ (r)

∂
(
µq
I,α

)∗

∣∣∣∣∣∣
ρ0,τ0

∂τt (r)
∂µq

J,β

=

∂V XC
τ (r)
∂µq

I,α

∣∣∣∣∣∣
ρ0,τ0


∗
∂τt (r)
∂µq

J,β

(4.41)

=
(
eiq·rV̄ XC(1)

τ,q,I,α (r)
)∗
eiq·r τ̄

(1)
t,q,J,β (r) (4.42)

=
(
V̄ XC(1)
τ,q,I,α (r)

)∗
τ̄

(1)
t,q,J,β (r) . (4.43)

Interestingly, equation 4.38 differs from the equivalent expression derived by
Gonze and Lee (equation 20 of Ref [100]). Their expression of course does not
include the mGGA terms, but does include a delta function which precludes
terms from two different atoms arising. There does not seem to be any motiva-
tion for the delta function to appear in this expression, therefore we consider the
expression derived in equation 4.38 to be the correct one.

4.2.4 Implementation

The expressions derived above were implemented in a development branch of
CASTEP. The derivations and their implementations were then verified by com-
paring the phonon modes calculated from this implementation, to the phonon
modes calculated using finite displacement with a non-diagonal supercell method.
This is presented in the following section.

4.3 Verification: Diamond Silicon

To verify the implementation of the additional terms required for mGGA func-
tionals, we shall pick a simple test case to compute the dynamical matrix and
phonon modes for. If the above derivations and the implementation of the re-
sultant terms are correct, the dynamical matrix and phonon modes computed
using two different methods, DFPT using the additional terms above and finite
displacement, should agree with each other. The level of agreement will depend
on the convergence parameters used, but decreasing the convergence tolerances
should result in better agreement.

Silicon is ideal for these benchmarking purposes because;

• silicon is a semiconductor, therefore we can fix the occupancies of the elec-
trons and the sampling of k-space does not need to be as fine.
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• the silicon pseudopotential is relatively soft therefore the benchmarking
calculations can be performed with minimal numbers of plane-waves

• the diamond crystal structure has symmetry (space group Fd-3m) means
that only one perturbation has to be performed to get the full dynamical
matrix.

• the crystal structure symmetry also means that the forces on the atoms are
guaranteed to be zero before being perturbed.

4.3.1 DFPT vs. Finite Difference

When computing the phonon modes, DFPT can be used to compute the energy
derivatives with respect to incommensurate perturbations of the atomic positions.
These energy derivatives are related to the elements of dynamical matrix,

Dαβ
q,IJ = 1√

MIMJ

∂2E

∂
(
µq
I,α

)∗
∂µq

J,β

. (4.44)

With all the elements of the dynamical matrix, the matrix can then be diago-
nalised to give us the phonon energies and modes.

The finite-displacement method works slightly differently. In the case of q = 0,
the finite displacement method works by moving one atom in the unit cell by
a small amount in one direction from its equilibrium position, calculating the
ground-state energy and forces in the displaced configuration, then the atom
is displaced from its equilibrium position by an equal amount in the opposite
direction, and the ground-state energy and forces for this configuration are recal-
culated. The derivative of the forces with respect to the atom being moved can
then be calculated numerically as,

dF cJ,β
dµcI,α

= 1
2µcI,α

(
F c,+J,β −F c,−J,β

)
, (4.45)

where F J,c,+β and F J,c,−β are the forces on atom J in cell c along direction β in
the two displaced configurations and µI,cα is the displacement of atom I in cell
c along direction α. The force, F J,cβ , is minus the derivative of the energy with
respect to a displacement of atom J in cell c along direction β therefore the force
derivative is related to minus the dynamical matrix at q = 0,

Dαβ
q=0,IJ = 1√

MIMJ

d2E

dµcI,αdµcJ,β
= − 1

2µcI,α

(
F c,+J,β −F c,−J,β

)
(4.46)

where the atoms are both confined to the unit cell c. This is equivalent to the
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dynamical matrix because of the use of periodic boundary conditions. If an atom
is moved in the unit cell then it is also moved in the same way in all the periodic
images of the unit cell, which is equivalent to perturbing the atom with a wave
vector q = 0.

In order to compute the phonon modes at general values of q from finite displace-
ment, there are two methods, the supercell method [101] and the non-diagonal
supercell method [4]. In the supercell method, we attempt to compute the inter-
atomic force constant matrix directly, rather than the dynamical matrix.

Φαβ
I,c,J,c′ = d2E

dµI,cα dµJ,c
′

β

. (4.47)

where Φαβ
I,c,J,c′ is the IFC matrix. In order for the IFCs to be correct, the supercell

has to be large enough that the displaced atom and its periodic images have
minor or no effects. This relies on the decay of the IFCs with distance between
the atoms; however, the size of supercells required can often be prohibitive, e.g.
a 4 × 4 × 4 supercell of primitive silicon already contains 128 atoms, making the
supercell calculations very expensive. Once the IFCs have been calculated using
the supercell method, the dynamical matrix can be calculated at a general q by
taking the Fourier transform of the IFCs.

The non-diagonal supercell method works slightly differently and allows for di-
rect calculation of the dynamical matrix by generating a supercell that is com-
mensurate with the perturbation wave vector, such that the lattice vectors are
scaled by a matrix with non-zero elements on the off-diagonal elements. The
dynamical matrix of the supercell at q = 0 can then be calculated using finite
difference. This can be used to calculate dynamical matrices of primitive cell at
non-commensurate wave-vectors; for more details, see Ref. [4]. The downside
to this approach is that the construction of such supercells means that it can
be impossible to generate grid samplings in the supercell that are equivalent to
sampling of the primitive cell. This has a particularly disastrous effect for XC
functionals that are particularly sensitive to grid sampling, such as meta-GGAs
[33, 102]. We address the cause of these problems in the following chapter (§5).

The comparison of the DFPT method and the supercell method is therefore
slightly subtle for the case where q ̸= 0. We cannot compare values that are
directly computed by both methods, since in DFPT we calculate the dynamical
matrix and in finite displacement we calculate either the interatomic force con-
stants, which may not be sufficiently converged, or a dynamical matrix at q = 0
for a non-diagonal supercell. At q = 0 we can compare the values calculated
for the dynamical matrix directly, but at non-zero q, we must compare other

91



Chapter 4 Calculating Dynamical Matrices using meta-GGAs

quantities. The easiest comparison to make is of phonon dispersions, plots of the
phonon energies at different values of q calculated by each method.

4.3.2 Dynamical Matrix at q=0

We shall begin by comparing the dynamical matrix at q = 0 of the silicon prim-
itive cell calculated from finite displacement (FD) and density functional per-
turbation theory (DFPT). The ground-state was found for the silicon primitive
cell, see figure 4.1, using a cut-off energy of 350eV which corresponds to the set-
ting basis precision being set to extreme. The Brillouin zone was sampled
using a Monkhorst-Pack grid with a mesh of 8 × 8 × 8 k-points (equivalent to
a k-point spacing of 0.04 2πÅ−1. The crystal structure symmetry was used to
reduce the number of k-points required to only those in the irreducible wedge of
the Brillouin zone, and was used to symmetrise the forces and stresses. The grids
used for the density and KED were the minimum needed to represent the density
of the wave functions, i.e. using grid scale of 2 and using the same grid for
the so-called “fine grid”. The system was tested using the rSCAN and r2SCAN
functionals [29, 36], which are both mGGA functionals, and PBE, a GGA func-
tional. The PBE calculations were performed so that the agreement between the
DFPT and the FD calculations could be compared between the different families
of functionals.

The SCF procedure to find the ground state was continued until the ground
state energy converged to 10−10 eV per atom and the unsymmetrised ground
state forces converged to 10−7 eV/Å. This is excessively well-converged for most
calculations; however, it was done here to minimise the error in the ground-state,
such that we can exclude under-convergence of the ground-state as the cause of
any disagreement between the DFPT calculations and the FD calculations. FD

Figure 4.1: Crystal structure of diamond silicon show in both the primitive unit
cell (left) and in a 4 × 4 × 4 supercell of the primitive cell (right). The fractional
co-ordinates of the two atoms in the primitive unit cell are at the origin, (0,0,0),
and at

(
1
4 ,

1
4 ,

1
4

)
.

92



Chapter 4 Calculating Dynamical Matrices using meta-GGAs

PBE rSCAN r2SCAN
Dαα

q=0,I,I Dαα
q=0,I,J Dαα

q=0,I,I Dαα
q=0,I,J Dαα

q=0,I,I Dαα
q=0,I,J

DFPT
10−5 eV/Å2 14.073258 -13.536081 12.241833 -14.046137 22.777230 -13.666064

DFPT
10−7 eV/Å2 14.073220 -13.534816 12.241785 -14.046119 22.777200 -13.666032

FD
∆µ= 0.01 Å 13.802298 -13.802298 13.139783 -13.139783 18.187188 -18.187188

FD
∆µ= 0.001 Å 13.803997 -13.803997 13.143897 -13.143897 18.220542 -18.220542

Table 4.1: Comparison of the elements of the Dynamical matrix at q = 0 of silicon
calculated using of finite displacement and DFPT using the PBE, rSCAN and
r2SCAN functionals at different convergence tolerances. The dynamical matrix
elements are given in units of eV/Å2.

calculations were performed using the same convergence criteria as the ground-
state calculation, and were performed using two values for the displacement of
the atoms, 0.01 Å and 0.001 Å.

DFPT calculations were performed using CASTEPs variational minimiser which
uses a conjugate gradient algorithm [96] to vary the first-order wavefunctions
to minimise the energy derivative calculated according to equation 3.40. The
convergence criterion for the variational solver is that the second-order energy
derivative varies less than a convergence tolerance between successive steps of
the conjugate gradient algorithm. Two calculations were performed in which the
convergence tolerance was set to 10−5 and 10−7 eV/Å2. To calculate the off-
diagonal elements of the dynamical matrix, Dα,β

I,J , where α ̸= β or I ̸= J , the
expression of equation 3.47 was used.

In the case of the diamond silicon primitive cell, there are only two unique ele-
ments of the dynamical matrix at q = 0. The diagonal elements (Dα,α

I,I ) must all
be the same, and in each row of the dynamical matrix there is only one non-zero
off-diagonal element, which corresponds to the other atom in the primitive cell
moving in the same direction as the first perturbed atom, i.e. Dα,α

I,J . Dα,α
I,J is the

same for all the off-diagonal elements. Therefore, the first-order wavefunctions
of only one of the perturbations are required to compute all the elements of the
dynamical matrix at q = 0. For the FD calculations, this means that only one of
the atoms has to be perturbed, which yields a full row of the dynamical matrix,
and the values in this row can then be used to complete the rest of dynamical
matrix by symmetry.

The results for the elements of the dynamical matrix from these calculations
are shown in Table 4.1. The results in Table 4.1 show that for there is severe
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disagreement between the FD and DFPT calculations for the mGGA functionals,
a difference of ∼ 0.9 eV/Å2 for rSCAN and ∼ 4.5 eV/Å2 for r2SCAN. Clearly
something has gone very wrong; however, even the PBE results also disagree
with a difference between the DFPT and FD calculations of ∼ 0.25 eV/Å2, when
the PBE implementation has long since been verified for correctness [96]. The
discrepancy can be explained by a hitherto unmentioned correction that is being
applied to the forces to preserve translational symmetry. The direct derivatives
of the energy with respect to the atomic positions calculated using the Hellman-
Feynman approach may not respect translational symmetry in that there can be
a net force acting on the centre of mass. This occurs because of the discrete
sampling of the XC energy, which is discussed in detail in the next chapter.
The centre-of-mass force effectively corresponds to the entire periodic crystal
spontaneously drifting in the direction of the force, which is completely non-
physical.

In order to stop the forces breaking of translational symmetry, a correction is
applied to all the forces which removes the average force from the system,

F J,corrα = F Jα − 1
Nat

Nat∑
I

F Iα (4.48)

where F J,corr is the corrected force. When the numerical derivatives of the forces
are taken, it is the corrected forces that are being used, whereas the DFPT
derivatives evaluate the direct derivatives of the uncorrected Hellman-Feynman
forces. To make a fair comparison between the DFPT and FD calculations,
we must use the bare, uncorrected, Hellman-Feynman forces to calculate the
numerical derivative.

The finite displacement calculations were repeated, but modified to use the deriva-
tives of the uncorrected Hellman-Feynman forces when computing the elements
of the dynamical matrix. The results of these calculations are presented with
the DFPT results in Table 4.2. These results are now in much better agreement.
For rSCAN and r2SCAN the discrepancies in diagonal elements between the
best converged DFPT result and the FD result using a displacement of 0.001 Å
is reduced to ∼ 1 × 10−3 eV/Å2 and ∼ 2 × 10−3 eV/Å2 respectively. For off-
diagonal elements the disagreement has reduced to ∼ 8×10−4 eV/Å2 for rSCAN
and ∼ 9×10−5 eV/Å2 for r2SCAN. For the PBE calculations, the discrepancy is
slightly smaller, for both the diagonal and the off-diagonal elements, the disagree-
ment is around 1 × 10−5 eV/Å2. Comparing the FD calculations for the same
functional using different displacement lengths, in the case of all functionals,
there is disagreement between the values calculated for the dynamical matrix.
For PBE the disagreements are in the diagonal and off-diagonal elements are
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PBE rSCAN r2SCAN
Dαα

q=0,I,I Dαα
q=0,I ̸=J Dαα

q=0,I,I Dαα
q=0,I ̸=J Dαα

q=0,I,I Dαα
q=0,I ̸=J

DFPT
10−5 eV/Å2 14.073258 -13.536081 12.241833 -14.046137 22.777230 -13.666064

DFPT
10−7 eV/Å2 14.073220 -13.534816 12.241785 -14.046119 22.777200 -13.666032

FD
∆µ= 0.01 Å
(Uncorrected

forces)

14.069967 -13.534626 12.233224 -14.046343 22.708047 -13.666325

FD
∆µ= 0.001 Å
(Uncorrected

forces)

14.073094 -13.534930 12.240823 -14.046933 22.774887 -13.666123

Table 4.2: Comparison of the elements of the Dynamical matrix at q = 0 of
silicon calculated using of finite displacement and DFPT using PBE, rSCAN
and r2SCAN functionals at different convergence tolerances. The finite difference
calculation in this case has been performed using the bare Hellman-Feynman
forces of the system, rather than the forces corrected to give net zero average
force. The dynamical matrix elements are given in units of eV/Å2.

∼ 3 × 10−3 eV/Å2 and ∼ 3 × 10−4 eV/Å2, respectively, while for r2SCAN the
differences are ∼ 7 × 10−2 eV/Å2 and ∼ 2 × 10−4 eV/Å2. For all functionals, the
discrepancy between the DFPT and FD calculations is smaller than the discrep-
ancy between the FD calculations done with different step sizes. Considering the
level of noise that is therefore present in the FD calculations, we can consider
this excellent agreement between the DFPT and the FD calculations in the case
where q = 0.

The system having translational symmetry means that moving the entire system
by a displacement should lead to zero energy change, equivalently, the net force
acting on the system should be zero. Moving one atom will lead to a force on that
atom, and by Newtons 3rd law there should be an equal and opposite force acting
on all the other atoms in the system, the consequence of this on the dynamical
matrix is that a sum over each row should be equal to zero,

∑
J

Dαα
q=0,I ̸=J = dFCoMα

dµ = 0 (4.49)

where F av is the force acting on the systems centre of mass, which if translational
symmetry is preserved should be zero, therefore its derivative should be zero too.

Apart from drastically improving the agreement between the DFPT and FD
calculations, working with the uncorrected Hellman-Feynman forces in the FD
calculations breaks this translational symmetry law. In Table 4.1, the diagonal
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PBE rSCAN r2SCAN
Dαα

q=0,I,I Dαα
q=0,I ̸=J Dαα

q=0,I,I Dαα
q=0,I ̸=J Dαα

q=0,I,I Dαα
q=0,I ̸=J

DFPT
10−7 eV/Å2 13.569470 -13.569402 13.898610 -13.905472 13.911367 -13.942388

FD
∆µ= 0.001 Å
(Uncorrected

forces)

13.569494 -13.569500 13.898680 -13.905478 13.911545 -13.942480

Table 4.3: Comparison of the elements of the Dynamical matrix at q = 0 of
silicon calculated using of finite displacement and DFPT using PBE, rSCAN and
r2SCAN functionals. All calculations have been performed using an FFT grid
for the XC contributions that is 4 times as dense as the density grid. The finite
difference calculation in this case has been performed using the bare Hellman-
Feynman forces of the system. The dynamical matrix elements are given in units
of eV/Å2.

and off-diagonal elements of the dynamical matrix calculated in the same FD
calculations are always equal and opposite, whereas in table 4.2 they are very dif-
ferent. This is because to calculate the results in Table 4.1 the forces in the FD
calculations have been ‘corrected’ such that there is net-zero force in the calcula-
tion, enforcing translational symmetry in the forces. By removing this correction,
translational symmetry is no longer enforced, and the dynamical matrix no longer
respects it.

The Hellman-Feynman forces do not respect the translational symmetry because
the integral for the XC energy is calculated using a discrete set of points in
real-space, the reasons for this are discussed in greater detail in the following
chapter. In DFPT phonon calculations we are computing the derivatives of the
Hellman-Feynman forces, therefore, it is common practice to apply a correction to
the dynamical matrix to enforce translational symmetry and fix other numerical
discrepancies. These corrections are often referred to as acoustic sum-rule cor-
rections since the acoustic modes of a material at q = 0 should have zero energy,
which is enforced by the corrections. The corrections are designed to fix minor
numerical discrepancies due to the translational symmetry breaking in XC energy
and numerical errors in under-converged forces. However, they do not work well
when there are large numerical errors or the XC functional is particularly sensi-
tive to the grid used. No acoustic sum rule correction has been applied to the
dynamical matrices reported in Tables 4.1 and 4.2. Considering the discrepan-
cies between the diagonal and off-diagonal elements, and the difference between
the FD calculations with different step sizes, the rSCAN and r2SCAN calcula-
tions clearly have a much higher level of noise compared to PBE, which can be
attributed to the aforementioned grid sensitivity of the mGGA functionals [35].
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In order to address the grid sensitivity of the mGGA functionals, the dynamical
matrix at q = 0 was recomputed for all functionals using both the DFPT and FD
methods. For these calculations a different real-space grid was used to compute
the XC contributions, the FFT grid used to compute the density and KED was a
24×24×24 grid, for the XC contributions a 96×96×96 FFT grid was used. For
the DFPT calculations a convergence tolerance of 10−7 eV/Å2 was used and for
the FD calculations a step size of ∆µ = 0.001 Å was used. The results of these
calculations are presented in Table 4.3. The agreement between the FD and
the DFPT calculations has improved for the diagonal terms by at least an order
of magnitude for all functionals, for the off-diagonal elements, the two methods
agree for all functionals up to ∼ 10−4 eV/Å2. There is also a large improvement
in the sum of the dynamical matrix row which should be zero, for PBE the sum
has decreased from 0.54 eV/Å2 to 6.8 × 10−5 eV/Å2, for rSCAN the sum has
decreased from 1.8 eV/Å2 to 6.8 × 10−3 eV/Å2, and for r2SCAN the sum has
decreased from 9.1 eV/Å2 to 3.1 × 10−2 eV/Å2. The results shown in Table 4.3
show that the DFPT and FD methods are in agreement with each other, which
shows that the DFPT method has been derived and implemented correctly.

4.3.3 Dynamical Matrices at q̸=0

Now we can try test the implementation for incommensurate perturbations. The
general method for phonon calculations is to calculate the dynamical matrix at
a set of q-points that samples the 1st Brillouin zone in a manner similar to the
sampling of k-points using a Monkhorst-Pack grid [66]. As is done for the k-point
sampling, an irreducible set of q-points can be found that samples the symmetry-
reduced BZ. Once the dynamical matrix is found at all q-points on the grid,
Fourier interpolation can then be used to calculate the dynamical matrix at any
value of q. The precision of the dynamical matrix at a general value of q will
depend on the sampling grid of q-points used.

Since we must calculate the dynamical matrix at several values of q, where each
q-point requires several perturbations to be computed, it would therefore be un-
manageable to perform a direct comparison of all the values calculated for the
dynamical matrix at every q-point. We shall compare the values of the dynamical
matrix calculated for one particular q-point and to verify the other dynamical ma-
trices are also correct, we shall instead compare the phonon band-structure com-
puted using the two methods. The phonon band-structure is the phonon mode
energies, which are the eigenvalues of the dynamical matrices, plotted against
the value of q along the high symmetry lines of the BZ. If the dynamical matri-
ces from the DFPT and FD methods are in agreement, so too will the phonon
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Figure 4.2: One of the supercells used to compute the dynamical matrix of silicon
for perturbations which are incommensurate with the primitive cell. In this case
this supercell is used to compute the dynamical matrix at q =

(
0, 1

3 ,0
)

band-structures. The dynamical matrices at the value of q along these lines are
calculated using DFPT and the non-diagonal supercell methods using comparable
q-point grids.

The dynamical matrix at q =
(
0, 1

3 ,0
)

(in fractional co-ordinates) was computed
for the silicon system used previously with the same basis set parameters as be-
fore, using the larger grid for the XC contributions. Again, three XC functionals
were used, PBE, rSCAN and r2SCAN and for all functionals a DFPT calcula-
tion and an FD calculation was performed. The supercell used to calculate the
dynamical matrix at q =

(
0, 1

3 ,0
)

via the non-diagonal supercell method is shown
in figure 4.2 and a finite displacement step of 0.001 Å was used to compute the
force derivatives. For the DFPT calculations the variational solver was used to
calculate again to minimised the second order energy derivative, and convergence
tolerance was set to 10−7 eV/Å2.

A comparison of the computed values for the dynamical matrix is shown in table
4.4, which shows that the mGGA functionals are in at least as good agreement
as the PBE calculations. There is some slight disagreement between the DFPT
and the FD calculations, more than was found in the q = 0 calculations, how-
ever the level of disagreement is consistent across all the functionals used. The
cause of this change can be attributed to the change in sampling that comes from
switching from the primitive cell to the non-diagonal supercell for the finite dif-
ference calculation. The lattice vectors of the supercell are rotated compared to
the primitive cell; this changes the real-space grid point sampling and the k-point
sampling so that no exactly equivalent sampling between the unit cells can be
devised. We have already seen how a change in the real-space grid sampling can
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PBE rSCAN r2SCAN
Dαα

q,I,I Dαα
q,I ̸=J Dαα

q,I,I Dαα
q,I ̸=J Dαα

q,I,I Dαα
q,I ̸=J

DFPT
10−7 eV/Å2 13.758029 −8.654210

±i2.443053 14.163394 −8.870874
±i2.501634 14.176732 −8.899422

±i2.506065
FD

∆µ= 0.001 Å
(Uncorrected

forces)

13.734871 −8.642118
±i2.440427 14.150085 −8.860668

±i2.501686 14.196317 −8.888152
±i2.502124

Table 4.4: Comparison of the elements of the Dynamical matrix at q =
(
0, 1

3 ,0
)

of
silicon calculated using of finite displacement and DFPT using PBE, rSCAN and
r2SCAN functionals. All calculations have been performed using an FFT grid
for the XC contributions that is 4 times as dense as the density grid. The finite
difference calculation in this case has been performed using the bare Hellman-
Feynman forces of the system. The dynamical matrix elements are given in units
of eV/Å2. The ± before the imaginary part of the dynamical matrix elements
denotes the Hermitian nature of the dynamical matrix, i.e. Dαβ

q,I,J =
(
Dβα

q,J,I

)∗
.

significantly affect XC contribution, necessitating a finer grid sampling, changing
the k-point sampling will also affect the ground-state. The supercell is obviously
larger, therefore in reciprocal space the first BZ is smaller, but the rotated lattice
vectors means that even if a Monkhorst-Pack sampling grid of the same sam-
pling density is used, it will not sample equivalent points in k-space. This change
in sampling means that there will be a difference between the ground state in
the primitive cell and the supercell, the better converged the calculation is with
respect to the k-point sampling, the smaller the difference is likely to be.

Since the disagreement is fairly consistent across all XC functionals, and we are
already using a much finer grid for the XC contributions, we can attribute this to
the discrepancy to the change in the k-point sampling in the supercell which will
be the same for all functionals. There may, however, be a cancellation of errors
that is hiding some error in the implementation. A more conclusive test therefore
is to compute the dynamical matrices for a grid of q-points and computing the
phonon band-structure as described above. Phonon calculations were therefore
performed for all 3 functionals with a q-point sampling grid of 3×3×3 using both
DFPT and the non-diagonal supercell FD method, using the same convergence
parameters as before. The dynamical matrices computed at the points of the
3×3×3 q-point grid were then used to find dynamical matrices at q-points along
the high symmetry lines in the BZ via interpolation. No acoustic sum-rule was
applied to the dynamical matrices.

The phonon band structures calculated shown in figure 4.3. For all functionals
the DFPT and FD calculations can be seen to be in excellent agreement across
the BZ. The only exception to this is for r2SCAN at Γ (q = 0), where there is
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Figure 4.3: Comparison of phonon band structures calculated using DFPT and
FD for silicon using a 3×3×3 q-point grid for 3 XC functionals. Each sub-figure
shows the comparison for each functional (a) PBE, (b) rSCAN, (c) r2SCAN.
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a slight difference between the DFPT and FD phonon energies. In addition to
being different from the FD modes, the DFPT modes are noticeable negative,
denoting imaginary phonon modes. Imaginary modes mean that there is a mode
of the system that lowers the system energy, the fact that these modes are at Γ
means that these modes describe the system moving in a particular direction and
the energy being lowered, i.e. the breaking of translational symmetry. Looking
again at the dynamical matrix computed at q = 0 in table 4.3, it can be seen that
the values computed using r2SCAN have the the largest sum across a row of the
dynamical matrix, i.e. the largest violation of the rule expressed in equation 4.49.
It is this violation of translation symmetry that causes the imaginary modes in
the r2SCAN phonon band-structure. The reason for the difference between the
FD results and the DFPT is that, in the case of the FD calculation, the dynamical
matrix at q = 0 is not computed using the primitive cell, it is instead constructed
from the finite displacement calculations in the non-diagonal supercells. The
aforementioned change in sampling in the supercell, will change the nature of the
breaking of translational symmetry causing changes in the dynamical matrix at
Γ. There are also subtle differences at Γ in the PBE and rSCAN phonon band
structures but they are small enough that they are difficult to see on these plots.
An acoustic sum rule correction would be sufficient to address the imaginary
modes here.

The comparison of phonon band structures shown in figure 4.3 satisfactorily shows
that the derivations described in previous sections and the implementation of the
derived terms is correct.

4.3.3.1 Alternative Methods

As has been described previously, there are some alternative choices that can
be made for the calculations and the implementation of some of the derivatives.
Specifically, in CASTEP there are two methods of determining the first-order
wavefunctions that are implemented, a variational minimiser of the second deriva-
tive of the energy and a Greens functions solver for the Sternheimer equations.
As discussed in the previous chapter (§3.4.3.1), there is also the calculation of
the partial derivatives of the XC energy density function, for which two methods
of calculating these derivatives were implemented, numerical differentiation via
finite difference and algorithmic differentiation as implemented in LibXC. Finally,
there is a discrepancy in the expression for the second order derivative derived
in equation 4.38 when compared to the equivalent expression for LDA and GGA
functionals, as derived by Gonze and Lee (equation 20 of Ref. [100]). Additional
calculations of the dynamical matrix for the silicon system were performed, using
the Greens function solver to obtain the first-order wave functions, using numer-
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ical differentiation to compute the partial derivatives of the XC energy density
function, and one where the additional off-diagonal terms derived in equation
4.38 were not included.

We shall first compare the results of the two different solvers, and of the two
methods of evaluating the XC partial derivatives since in principle these methods
should give the same answer. The change in phonon energies when switching
from the variational solver to the Greens function solver is of the order 10−9 eV
across the phonon spectrum, which is around the order of convergence tolerances
used. The difference in phonon energies when computing the partial derivatives
of the XC energy density using the LibXC implementation and using a finite dif-
ference method is of the order of 10−7 eV, which shows the derivatives must be
in reasonable agreement, and some noise is expected in the derivatives calculated
via the finite difference method. At this point, the Reader may expect a compar-
ison of the phonon band structures produced from each of the different methods;
however, they would make for some particularly boring plots since the phonon
band-structures produced are indistinguishable from those plotted in Figure 4.3.

In equation 4.38, the expression for the second derivative of the XC energy with
respect to two atomic perturbations is given. There are additional terms in the
expression compared to the equivalent expression derived by Gonze and Lee for
LDA and GGA functionals. Computing the additional terms makes very little
qualitative difference in the results of the calculation, the difference between the
calculated phonon energies in the silicon system is of the order of 10−8 eV which is
well below the threshold of noise in the calculation. The quantitative difference is
very small, of the order of 10−4 eV/Å2, for all the dynamical matrices computed,
which is not unexpected. The additional terms are the overlap of the change
in the XC potential under the movement of the core density of one atom with
the derivative of the core density of a different atom with respect to that atom
being moved. In the silicon system tested, the atoms are reasonably far apart,
much further apart than the core radius of the pseudopotential, meaning that
there will be very little overlap in the core charges and thus these additional
terms are expected to be very small. A system could be devised for which these
terms may be far more significant, one where the overlap between the non-linear
core correction densities from two atoms is larger e.g. a high-pressure phase of
a material. Therefore, this will require further study, beyond the scope of this
thesis.

102



Chapter 4 Calculating Dynamical Matrices using meta-GGAs

4.4 Perspectives

In this chapter, the necessary terms to compute the components of dynamical
matrices within the meta-generalised gradient approximation using Density Func-
tional Perturbation Theory (DFPT) are derived. The derived terms were imple-
mented into CASTEP and the implementation was verified by comparing the
calculations to equivalent Finite Displacement (FD) calculations using the non-
diagonal supercell method to calculate the dynamical matrices. The two methods
produce phonon band-structures that are in mostly excellent agreement, the mi-
nor differences between the DFPT and FD results are attributed to the change
in sampling in both the real-space sampling grid and the k-point sampling grid.

The method of computing phonon band-structures via DFPT has significant ad-
vantages over the FD method since only the primitive cell is required when com-
puting the dynamical matrix for phonon modes that are incommensurate with
the primitive unit cell. Whereas the FD method must use a supercell when either
computing the interatomic forces constants, in which case one very large super-
cell is required, or when computing the dynamical matrices directly, in which
case several modest sized supercells are required. The supercell and non-diagonal
supercell approaches always take much longer than the DFPT approach since
the supercells include far more electrons, which means many operations such as
applying the Hamiltonian and orthonormalization of the states are much more
expensive operations.

The results reported in this chapter show how the sensitivity of the functional to
the real-space grid sampling is of particular importance when performing phonon
calculations. Large violations of translational symmetry can cause dramatically
wrong results, for instance comparing the results for r2SCAN in table 4.2 and
table 4.3. The same system is being tested in both cases, but a much larger grid
was used to compute the XC contributions in the case of table 4.3, which causes
the value calculated for the diagonal elements of the dynamical matrix to differ
between the two calculations by over 60%!. This leads us to the next aim of this
thesis, to develop a method to understand the grid sensitivity of different XC
functionals and to provide users of electronic structure codes a cheap and simple
method of determining whether there is a significant grid sensitivity issue for any
particular system and basis set. The choice of increasing the grid for the XC
contributions is informed by the findings of the next chapter.
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Chapter 5

Cracking The Egg-Box Effect

Note that the main work in this chapter has been published as a paper [103].

In this chapter, an approach to quantifying the error in EXC due to the effect
of the violation of translational symmetry in XC integration is presented. The
method is demonstrated to accurately estimate the change in EXC as the dis-
crete grid is translated relative to the system. Importantly, this method of error
estimation is efficient to compute, relies on no other data than the ground state
density, and is general to all XC functionals.

Further, it is shown that the integration of the XC energy contributions can be
performed more accurately by computing only the XC contribution on a finer grid
to correctly sample the energy and potential. By then truncating the XC potential
(V XC) in Fourier space, the method reduces the aliasing of high-frequency com-
ponents into the potential. This can greatly reduce the computational expense
compared to computing every contribution to the total energy on this finer grid,
and hence allows properties to be calculated more accurately and more efficiently
than would otherwise be possible.

This chapter is set out as follows; in Section 5.1 a brief description is provided of
how the numerical integration error arises in the XC energy, particularly in the
plane-wave basis set, and the consequences this can have for computed properties.
The uncertainty quantification method is described in Section 5.3 and finally in
Section 5.4 its utility as an indication that the calculations are under-converged
and likely to produce inaccurate results is demonstrated.

5.1 Introduction

Significant progress has been made over recent years in improving the accuracy of
Density Functional Approximations (DFAs) for electronic structure simulations.
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The Strongly Constrained and Appropriately Normed (SCAN) functional was the
first meta-Generalised-Gradient Approximation (meta-GGA) to adhere to all the
known constraints for a meta-GGA functional [28]. This was a major achievement
for chemical accuracy; however, it was quickly observed that SCAN, as with many
other meta-GGA functionals, suffered from severe numerical instability [29, 30,
31, 32, 33, 34, 35]. This led to the creation of several related functionals [29, 36,
37, 38], which attempted to regularise the numerical behaviour of SCAN, while
maintaining SCAN’s physical accuracy. Considerable improvements have been
achieved with respect to SCAN, but, as recent work has shown, many modern
DFAs including the SCAN family are numerically ill behaved [35].

The root of this poor numerical behaviour is in the integration of the contributions
to the exchange and correlation (XC) energy, EXC. The choice of basis set, the
number of sampling points, and the position of those sampling points can greatly
affect the calculated value of EXC. This can lead to simulations which violate
translational symmetry, with the energy of the system oscillating if the system
is translated relative to the discrete sampling points. This is sometimes referred
to as the egg-box effect, due to the characteristic shape of the energy landscape
(see Figure 5.1). The numerical integration of the contributions to EXC in real
space will almost always cause some violation of the translational symmetry.
However, the choice of basis set functions or representation of potentials can lead
to additional causes of the violation of translational symmetry [69, 104, 105].

The numerical integration of the contributions to EXC is highly dependent on
the choice of numerical sampling and can have significant effects on the physical
properties predicted by simulation packages. Sitkiewicz et al. [106, 107] have
made several studies of how this numerical ill-behaviour can lead to spurious
oscillations in the energy as the atoms are displaced with respect to the grid, due
to numerical integration errors. These spurious oscillations have been shown to
cause particular difficulty in calculating vibrational spectra [42], particularly for
molecules that have low energy vibrational modes, where these oscillations cause
significant noise in the spectrum.

For users of electronic structure software, it can be difficult to find a balance
between the desire for high physical accuracy and the need for good numerical
behaviour. Users have very little indication that there may be numerical problems
arising from the combination of their choice of system, XC functional and basis
set parameters. The work of Sitkiewicz et al [106, 107] provides useful insight
into the relative size of these errors in physical properties for different DFAs on
the specific molecular data set tested. The lack of any efficient and transferable
method for quantifying errors related to EXC means that, in general, users must
perform careful and expensive testing for their system and functional choice.
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Figure 5.1: Change in the total energy of an isolated Helium atom as the atom is
moved around a (10 Å)3 cubic unit cell. An (80)3 FFT grid was used to represent
the density and a single k-point at the Gamma point was used for Brillouin zone
integration. The calculation was performed with the PBE functional [2].

5.2 XC energy integration

The expression for the XC energy of the system calculated from a local/semi-local
functional is,

EXC = F
[
ρ(r) , |∇ρ(r) |,∇2ρ(r) , τ (r)

]
=
∫

Ω
fXC

(
ρ(r) , |∇ρ(r) |,∇2ρ(r) , τ (r)

)
dr, (5.1)

where ϵXC is the XC energy density function and Ω is the volume of the system.
Equation 5.1 shows EXC evaluated as a continuous integral of the density and
other ingredients. However, in practice, the evaluation of EXC is performed
as a sum over a discrete set of Np points. The value of the density (and other
ingredients to the XC energy density) varies between the sampled points according
to the basis functions, and therefore the contribution to the XC energy will also
vary between the sampled points. The errors are generally assumed to be small
enough to be negligible; however, as shown by Lehtola and Marques [35], this
depends on the numerical behaviour of the XC functional. For many published
XC functionals, the errors can be far from small.
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5.2.1 “Direct” vs. “indirect” integration errors

A change in sampling affects the calculated energy in two ways. The first is
as described above, a change in the real-space sampling, changes the values of
the ingredients for fXC which will change the final integrated value for EXC,
hence it has a direct effect on the systems total energy. The second effect comes
via the XC potential, V XC, through the minimisation of the total energy. The
change in sampling leads to different values for V XC, so that as the density and
wavefunction states are varied to minimise the energy, a different ground-state
density will be found, leading to different total energies. Here, the change in
sampling indirectly affects the total energy through the other energy contributions
in the Hamiltonian.

The calculated V XC (r) is the derivative of EXC with respect to a change in
the density at that specific point r. In order to calculate the sampling-error-
free ground state, what is really required is the derivative of the contributions
to EXC across the volume of a grid point with respect to the change of the
density across the volume of the grid point. With a sufficiently fine grid point
sampling, the difference between the continuous integral and the discrete would
be negligible, but with the default grids in most codes, this is not usually the case.
An alternative but equivalent interpretation is that discretised V XC includes high-
frequency elements that cannot be represented on the grid, resulting in aliasing.
The change in V XC due to the sampling will lead to a change in the final converged
density, and so will result in the other energy components of the Hamiltonian
changing as well.

Sitkiewicz et al show that the choice of sampling in atomic basis set calculations
can cause spurious oscillations in the total energy and its derivative as atoms are
moved relative to each other [106]. The size of the oscillations is entirely depen-
dent on the choice of XC functional, and for some functionals, the oscillations
can only be mitigated by using grid sizes that are very expensive and far exceed
those used in most routine calculations [107]. They show how this can lead to dif-
ficulties in calculating accurate molecular properties such as vibrational spectra.
Similar issues occur in a plane-wave basis set.

5.2.2 XC integration errors in the plane-wave basis

The plane-wave basis set has a more straightforward expression for the evaluation
of the XC energy than some of the schemes in atom-centred basis sets. Each of
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the Np grid points are given equal weight and the sum is calculated as,

EXC = Ω
Np

Np∑
i

fXC (ρ(ri) , · · ·) (5.2)

The value of fXC is evaluated at point (ri) and is assumed to be constant across
the volume of the grid point. This is inaccurate since the calculation involves non-
linear functions of the density that must introduce Fourier components with wave-
vectors that have a magnitude greater than the maximum frequency representable
on the default FFT grid, i.e. |G| > 2Gcut. The higher frequencies are therefore
aliased to lower frequencies. A different choice of sampling points, that is, a
constant offset applied to the position of all points in the grid, would lead to a
different EXC and V XC due to a change in the sampling of the aliased frequencies
[58]. As a result, the calculation of the energy can depend on the position of the
real-space grid, and therefore translational invariance is lost.

This is illustrated in Figure 5.1 which shows the change in the energy of an isolated
helium atom in a periodic box as it is moved around the unit cell. The results
were obtained with the CASTEP code using the “on the fly” norm-conserving
pseudo-potentials generated using the descriptors in the CASTEP database. The
density and wavefunctions were converged until the change in the forces between
successive iterations was less 1 × 10−8 eV/Å. This is excessive for most routine
calculations, but was done to ensure the accuracy of the change in forces under
displacement.

A change in sampling points by adding a constant offset to the grid positions is
equivalent to each atom in the cell having the opposite shift applied while the grid
remains stationary. It can be seen from Figure 5.1 that the energy is not constant
as might be expected. Figures 5.2 and 5.3 show how the energy and force on the
helium atom change as the atom is moved relative to the grid for different XC
functionals. When no XC functional is used (or the XC contribution is zeroed),
then there is no change in energy, i.e. the simulations are translationally invariant.
However, when an XC functional is used, the energy changes and translational
invariance is lost. This spurious change in energy gives rise to the rather odd
predicted result of an isolated helium atom in its ground state experiencing a
small, spontaneous, position-dependent force.

The results shown in Figure 5.2 are in line with the investigation of Lehtola and
Marques[35] into the numerical behaviour of different functionals. The change in
energy of the Perdew-Wang paramaterisation of LDA [3] is practically negligible,
but for PBE [2] and r2SCAN[36], GGA and meta-GGA functionals respectively,
the energy change is much greater. Lehtola and Marques also found the Perdew-
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Figure 5.2: Change in the total energy of an isolated Helium atom as the atom is
displaced along the (111) direction of an (10 Å)3 cubic unit cell. A 803 FFT grid
to represent the density and a single k-point at the Gamma point was used for
Brillouin zone integration. Sub-figure b) is the same plot with the y-axis scaled
to allow the LDA (PW) [3] result to be seen.

Zunger (PZ) parameterisation of the LDA functional [16] to have large numerical
instability [35], failing to converge the energy with respect to grid resolution
below ≈ 10 µeV. The results shown in Figure 5.2 supports their findings as the
LDA-PZ parameterisation has the largest variation in energy of all the functionals
tested and is seen to be the most non-linear in behaviour. This ill-behaviour is
attributed to the functional form of LDA-PZ, which is a piecewise function of the
density with a cusp.

There have been various methods of dealing with the consequences of the integra-
tion errors that have developed over the years, perhaps without it always being
clear why these corrective schemes are necessary. The most obvious consequence
is the violation of translational symmetry leading, as seen above, to net forces on
the system. The spurious net force is clearly of concern in both isolated systems
and crystal structures. This is often assumed to be the result of numerical noise
and under-converged calculations. However, as shown in Figure 5.3, even very
well converged systems can still have forces on the Centre of Mass (CoM). This
force on the CoM is consistent with the energy change resulting from a change in
sampling as the system moves relative to the discrete grid.

Permitting forces on the CoM mean that in a geometry optimisation or a Molec-
ular Dynamics (MD) calculation, the entire system can spontaneously begin to
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Figure 5.3: Change in the spurious force on an isolated Helium atom as the atom
is displaced along the (111) direction of an (10 Å)3 cubic unit cell. A 803 FFT
grid to represent the density and a single k-point at the Gamma point was used
for Brillouin zone integration. Sub-figure b is the same plot with the y-axis scaled
to allow the LDA (PW) result to be seen.

drift which is non-physical. In most cases, this is corrected by determining the
average force acting on all atoms and removing it from each individual atomic
force, which therefore zeros the net force on the CoM. Although this fixes the
CoM position, it fails to address the cause of the force on the CoM.

This spurious position-dependent effect is caused by the existence of preferred
low-energy locations relative to the grid for each atom. This introduces system-
atic errors in the energy landscape, in turn creating systematic errors in forces
and stresses, which in turn leads to complications in molecular dynamics and/or
geometry optimisation calculations. For example, the preferred low-energy loca-
tions might not respect crystal symmetry, leading to difficulties in finding the
correct geometries. Enforcing the crystal symmetry for known structures can
aid in geometry optimisation, but if there is little symmetry or the symmetry is
unknown, then the systematic errors must be overcome in some other way.

When performing lattice dynamics (phonon) calculations, further issues are caused
by numerical errors in EXC. Phonon calculations are calculating the derivative
of the atomic forces due to an atomic displacement in the system, from which
the dynamical matrix can be constructed and diagonalized, yielding the phonon
modes. The necessity for an Acoustic Sum Rule (ASR) correction in almost all
DFT phonon calculations to force the acoustic modes to have zero energy at
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Figure 5.4: Phonon spectra calculated for a silicon primitive cell using the PBE
and r2SCAN functionals. Calculated via finite displacement using the non-
diagonal supercell method, equivalent to a 3 × 3 × 3 q-point sampling grid.

Γ, is due to the discretisation of the contributions to EXC on a real-space grid.
This was noted by Gonze et al [100] when they first suggested their original ASR
correction.

ASR corrections are similar to zeroing the CoM force, and some ASR corrections
can be interpreted as accounting for the CoM force contribution to the force
derivatives. An ASR correction is useful when there is slight numerical noise in the
forces but does not adequately address the cause of the discrepancies [102]. When
the error due to the XC integration is large, the energy landscape becomes very
complicated, leading to severe problems when trying to take numerical derivatives
of the forces. An ASR correction can still be applied to force the acoustic modes
to zero at Γ, but the correction cannot account for the modes away from the
point Γ, as seen in Figure 5.4. Figure 5.4 shows the phonon band structure
calculated for silicon using the PBE functional and the r2SCAN functional using
the nondiagonal supercell method [4] equivalent to a 3 × 3 × 3 q-point sampling
grid. Note that unlike in the previous chapter when changes were made to the
grids to compensate for numerical instability, these phonon calculations used the
default grid. Clearly the default grid is sufficient for the PBE calculations, but
for r2SCAN, the numerical instability rears its head causing severe instabilities.

It is often found that phonon calculations require higher cut-off energies or finer
grid sampling for the density, but the reason for this is not always properly appre-
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ciated. Finite difference schemes that make use of supercells suffer particularly
from the density sampling problem as the different discretisation in different su-
percells can lead to large changes in the XC integration error in each supercell,
such that the overall error no longer cancels. For example, consider a system
where the ground-state of the primitive cell is found using a particular cut-off
wave-vector Gcut of the wavefunction, for which the corresponding FFT grid
spacing would require a 9.2 × 9.2 × 9.2 grid. Since every grid must have an inte-
ger number of points, the dimensions of the FFT grid for the wavefunction are
rounded up to give a 10 × 10 × 10 grid. The density grid is twice the size, so
will require a 20 × 20 × 20 FFT grid. For a 3 × 3 × 3 supercell constructed from
the primitive cell using the same wavefunction cut-off Gcut, the grid spacing now
corresponds to a 27.6×27.6×27.6 FFT grid. This is again rounded up, this time
to a 28 × 28 × 28 grid for the wavefunction and a 56 × 56 × 56 FFT grid for the
density. The rounding of the grids means the supercell’s grid is not simply three
times the original cell’s grid dimensions (which would have been 30×30×30), and
the spacing between points will be different between the two cases. This change
in grid spacing causes all real-space energy contributions to be altered slightly.
However, because the XC energy is particularly sensitive to the real space grid
used, there can be a very large change in EXC. These changes can mean that
the ground-state structure found for the primitive cell may not be equivalent to
the ground-state structure in the supercell. This is particularly a problem for
the non-diagonal supercell method as this method can generate supercells that
involve rotations of the lattice vectors, which can therefore produce supercells
where constructing an identical grid sampling to the primitive cell is impossible.
In the case of diagonal supercells, the change in sampling can be avoided by en-
suring that the same scaling is applied to the density grid as is applied to the
lattice vectors. However, this does not avoid the systematic errors in the energy
landscape that are induced by computing EXC on a discrete grid. Displacing
the atoms to perform a finite difference in the forces will mean that the finite
derivative includes the error due to the sampling of EXC. Simply increasing the
cut-off energy and density grid may mask this issue, but at the cost of making
phonon calculations even more computationally expensive.

The nature of phonon calculations involves perturbing the ground state structure,
which will break some of the crystal symmetries. If symmetry has been enforced
during geometry optimisation, the structure will have been optimised until the
symmetry-constrained forces are zero, regardless of whether these symmetries
are obeyed by the underlying density grid. Turning off the symmetry-constraints
may therefore lead to non-zero forces even in the unperturbed system, meaning
that the “relaxed” geometry is not in fact the ground state structure. This issue
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is exacerbated if the CoM force is also zeroed, which is equivalent to enforcing
continuous translational symmetry for the overall system.

Ordinarily, if the energy of the system decreases under an atomic perturbation,
this indicates an imaginary phonon frequency and that the system is mechan-
ically unstable under this perturbation. However, if the perturbation breaks
symmetries, thus removing constraints on the energy landscape, this can allow
the perturbed energy to be lowered due to numerical artefacts from the XC en-
ergy integration, regardless of the physical stability. This can lead to spurious
imaginary phonon modes appearing in the calculated spectrum. This effect can
clearly be seen in Figure 5.4.

These are relatively näıve calculations in terms of the basis set used, yet the PBE
calculation still managed to produce physically reasonable results. However, the
r2SCAN calculation returns a phonon spectrum with several imaginary modes
(plotted as negative modes for convenience), suggesting that the FCC primitive
cell for silicon is unstable, which is known to be physically incorrect. In this
case the apparently unstable modes are not caused by structural instability, they
are caused by a change in discretisation between primitive cell and super-cell
and breaking of the crystal symmetry from the perturbation. Note that the
only reason the modes are zeroed at the gamma point is because the force are
“corrected” to remove a CoM force. In this case, applying an ASR correction has
no effect on the modes.

In most cases, the errors due to the numerical integration error in EXC are small
enough to be negligible, particularly with a more simple XC functional such as the
PW parametrisation of the LDA. When the XC integration error is large enough
to cause issues, it can be mitigated by using higher cut-off energies or finer grids
to represent the electron density. As noted in the literature [32, 33, 35], several
modern density functionals have particular numerical pathologies. This means
that it can be very difficult to eliminate numerical errors by increasing the basis
set until results converge.

It is rarely obvious that a particular combination of system, functional, and ba-
sis set will cause numerical issues due to XC energy integration until after long
dynamical or structural calculations have been run. This is especially true when
the CoM force has been zeroed and crystal symmetry enforced, which can easily
hide such problems until dynamical calculations of the system are performed or
the crystal symmetry is broken by some perturbation, as in a phonon calcula-
tion. Clearly, it would be advantageous to know the uncertainty that might be
introduced from the numerical integration error before running computationally
expensive simulations.
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5.3 Uncertainty Quantification

In this section the approach for quantifying the error related to the integration
of the contributions to the XC energy is presented. As already demonstrated,
these errors have important implications for the calculation of material proper-
ties. Therefore, it would be useful for a user of an ab inito material simulation
software to have an indication of the level of error in the calculation of the total
energy due to XC energy integration before performing long structural, dynam-
ical, or phonon calculations. The aim is to provide an “on the fly” Uncertainty
Quantification (UQ) method that is; (i) highly accurate, (ii) general to all XC
functional approximations and all systems, i.e. requires little to no fine tun-
ing, (iii) computationally cheap enough to allow the method to be used in live
MD calculations and phonon calculations, warning a user when results may be
affected.

The approach taken for the UQ method is to focus on the breaking of translation
invariance, i.e. change in EXC with the position of the FFT grid. Using pertur-
bation theory, a method can be devised to compute the energy due to the change
in the real-space grid position. To illustrate how this is done we shall start with
a generic quantum system that obeys the following equation,

E0 = ⟨ψ0|Ĥ |ψ0⟩ , (5.3)

where Ĥ is the Hamiltonian of the system, |ψ0⟩ is the ground-state wavefunction
of the system and E0 is the ground state energy. Under a perturbation of strength
λ, the energy will change. The change in states ∆ψ can be expressed as a Taylor
expansion and truncated, in the usual fashion of perturbation theory (§3.3). The
energy of the perturbed system, Eλ can therefore be expressed as,

Eλ = ⟨ψλ|Ĥλ |ψλ⟩ = ⟨ψ0 + ∆ψ|Ĥ+ ∆Ĥ |ψ0 + ∆ψ⟩

≈
〈
ψ0 +λ

dψ
dλ

∣∣∣∣∣Ĥ+ ∆Ĥ
∣∣∣∣∣ψ0 +λ

dψ
dλ

〉
. (5.4)

At the ground state of the unperturbed system, the energy is minimised with
respect to all possible variations of the wavefunctions. Therefore, provided there
is no explicit dependence of ψ on λ and the perturbation is small, using the same
arguments as in Hellmann-Feynman [92], the dψ

dλ terms can be eliminated from
both the state vectors, and any contributions to the Hamiltonian of the perturbed
system. The Hamiltonian of the perturbed system can therefore be known exactly
to all orders, and a Taylor expansion of the Hamiltonian is unnecessary. This
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leaves us with,
Eλ ≈ ⟨ψ|Ĥ+ ∆Ĥ |ψ⟩ = ⟨ψ|Ĥλ |ψ⟩ . (5.5)

In order to determine the energy of the perturbed system, we only have to apply
the perturbed Hamiltonian to the unperturbed ground state. This argument
can be applied in a very similar way to DFT, the change in energy due to a
perturbation that changes the energy functional in a way that is known to all
orders can be computed without having to find the minimised set of Kohn-Sham
states and density under the perturbation, provided the perturbation is small.
By “known to all orders”, we mean that the change in the energy functional due
to explicit dependence on the perturbation can be computed to all orders, not
including any contributions from changes to the wavefunctions and density.

The perturbation we are interested in this case is a change in the position of
real-space FFT sampling points. In plane-wave DFT, almost all the energy con-
tributions are handled in reciprocal space. The XC energy contribution is the
only contribution that must be evaluated explicitly at the real space grid points,
and therefore is sensitive to the relative position of the grid. The energy change
due to the real space position of the FFT grid being shifted by an offset ∆r can
therefore be calculated by Fourier interpolating the ground-state charge density
onto an FFT grid offset by ∆r and recalculating the XC energy. The change in
XC energy between the shifted grid positions will be the same as the change in
total energy were all the atoms in the system moved relative to the real space
grid.

The charge density is transformed from the original FFT grid to the offset FFT
grid by applying a phase factor to the terms of the Fourier expansion of the charge
density and then performing an inverse transform. The value of the charge density
at a particular point, r + ∆r can be written in terms of the original FFT grid
expansion as follows:

ρ(r + ∆r) =
NG∑
G

(
aGe

iG·r
)
eiG·∆r. (5.6)

This displaced density is then used to compute EXC
∆ , the XC energy of the system

with a displaced grid,

EXC
∆ = Ω

Np

∑
ri

fXC
(
ρ(ri+ ∆r) , |∇ρ(ri+ ∆r) |,∇2ρ(ri+ ∆r) , τ (ri+ ∆r)

)
.

(5.7)
If the theory described above is valid, the change in XC energy under this trans-
lation of the density will be the change in the total energy of the system under
an equivalent rigid shift of the atoms.
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Figure 5.5: The change in energy, ∆E, calculated for various systems as the atoms
are uniformly displaced by ∆r along the (111) direction the width of a grid point.
Each column shows results for the different systems tested; an isolated Helium
atom (graphs a and e), a primitive silicon unit cell(graphs b and f ), a Benzene
molecule (graphs c and g) and aluminium (graphs d and h). For each system two
XC functionals were tested, the top row shows the PBE results and the bottom
row shows the r2SCAN results. Calculations for the same systems used consistent
basis-sets and the norm-conserving pseudopotentials obtained using the same XC
functional. The solid black line denotes values the change in the total energy post
minimisation. The red dashed lines denotes change in XC energy from applying
the offset to the density via interpolation as shown in equation 5.6 and non-self
consistently recalculating the XC energy.

In Figure 5.5 there is a comparison of the change in energy found from rigidly
shifting the atoms of various systems by ∆r and reminimising the total energy,
and the change in EXC found from interpolating the density to an FFT grid that
has had a −∆r rigid shift applied (which is an equivalent transformation). It
can be clearly seen that the calculated changes in energy from both approaches
are in excellent agreement across a range of different systems. This result means
that we are able to probe the precision of the XC integration grid and provide an
estimate of the uncertainty.

The interpolation method is general to all XC functionals, as all that is required
is the translation of the density (and KED if necessary) to an offset FFT grid,
from which any gradient terms can be calculated and EXC re-evaluated. The
interpolation method comes at the cost of a few additional Fourier transforms
and the evaluation of the XC energy over the grid, but this is significantly cheaper
than reminimising calculation with the atoms at different positions. As shown in
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Figure 5.6: The convergence of the estimated uncertainty due to the XC energy
integration as the sampling of each grid point volume is increase. The test system
was a primitive unit cell of silicon using the r2SCAN functional with a cut-off
energy of 350 eV, a k-point spacing of 0.04 and density grid scale of 2.

Figure 5.5, the method has been tested on a variety of systems, and in all cases
the agreement between the methods is excellent.

So far, the methods described are not a complete UQ method. The issues from
numerical errors in EXC arise when an offset is applied to either the atoms or the
real-space grid, violating translational symmetry. A useful heuristic test would
therefore be the size of this violation, i.e. an estimation of the maximum change
in energy under translation. With periodic boundary conditions, applying a grid
offset that translates the grid points exactly so that they sit on another grid point
will give the same discretisation of the density and therefore the same energy. It
can be seen in Figure 5.1 that the oscillations in energy as the grids/atoms are
moved have periodicity of the distance between grid points. Therefore, to sample
the possible changes in energy under any arbitrary translation, only translations
that span the volume of a single grid point must be considered. By sampling
across the volume of the grid point using a regular grid mesh, we can sample the
oscillations in energy, i.e. the violation of translational symmetry.

In Figure 5.6, this approach is used to estimate the maximum violation of trans-
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lational symmetry found when using UQ sampling grids of different sizes. The
same test system is used as in Figure 5.5(f), where the difference between the
peak and the trough in that graph is approximately 41 meV, which is also the
value at which the UQ test converges. It can also be seen from Figure 5.6 that the
UQ sampling grid does not have to be very fine to give a reasonable estimate for
the violation of translational symmetry and therefore the error in EXC. Knowing
the order of magnitude of the error is useful in deciding whether the error is at an
acceptable level. Although the cost of determining the energy change from a par-
ticular translation is relatively inexpensive, using a very fine sampling for the UQ
sampling grid can quickly become prohibitively expensive, involving hundreds of
FFTs and evaluations of the XC energy. In practice, a 4 × 4 × 4 UQ sampling
grid was found to be sufficient to obtain a useful idea for the magnitude of the
violation of translational symmetry, while keeping the computational cost low.
Each sampling offset is independent of the others, meaning that the calculation
of the full grid of offsets can be naturally parallelised. This allows the UQ test
to remain inexpensive whilst still giving useful heuristic information.

5.4 Correcting the XC energy error

The Uncertainty Quantification (UQ) test described in the previous section can
be used to provide the user of a plane-wave DFT software with information on
how large the violation of translation symmetry is for the given calculation. The
advantage of the UQ test is that the user now has a single metric from a relatively
cheap test, which can then be used to tune their choice of basis set and XC
functional without needing to run expensive calculations, which may eventually
fail and need to be repeated. Different material properties of interest may require
different levels of accuracy, and it is not always obvious whether that level of
accuracy can be achieved. For example, the magnetic anisotropy energy is often
O(10−6) eV for weakly anisotropic magnetic materials, and we have already seen
(e.g. Figure 5.6) that the errors due to the egg-box effect can be four orders
of magnitude greater than this. This UQ can inform the user if such a level of
accuracy has been achieved, and if not, then the user can then take action to
address the cause of the error in the XC energy integral and thus reduce the
violation of translational invariance.

Since in this thesis the focus has been on the plane-wave approach, and therefore
periodic boundary conditions, the XC energy integral is performed by Fourier-
expanding the XC energy density, and the integral over the simulation cell is
simply the zeroth order term of this Fourier expansion. Increasing the order of
the expansion simply requires increasing the number of points in the Fourier-space
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sampling grid, which is equivalent to using a finer real-space sampling. As finer
and finer sampling is used, the numerical evaluation of the integral, and hence the
value of EXC, approaches the exact result. Moreover, V XC (r) at each point will
be more accurate and better represent the change in energy with respect to the
density, as more high-frequency components of V XC (r) will be correctly sampled,
with correspondingly reduced aliasing in lower frequencies. The combination of
these effects should lead to improved representation of the ground state and the
physics of the system. It will reduce the magnitude of symmetry violations,
including both crystal symmetry and translational symmetry, generating more
accurate results.

In plane wave codes, there are a couple of common approaches that can be used
to increase the sampling resolution of EXC, neither of which is ideal, as will be ex-
plained. The first common approach is to increase the plane-wave cut-off energy,
i.e. increase the number of basis functions in the Fourier expansion of the wave-
function. This has the side effect of significantly increasing the computational
cost of every operation in the Hamiltonian, increasing the memory requirements
for the calculation, and adding additional Fourier components to the density, and
therefore to the XC integral. These extra components will add higher frequency
terms, which should reduce in magnitude, but may also make the reduction of
numerical artefacts more difficult.

The other common approach is to increase the fineness of the grid used for the
density, leaving the basis functions for the wavefunctions untouched. This only
increases the cost of operations involving the density and the construction of local
potentials, which is computationally cheaper in both number of operations and
the memory required. The caveat is that, although this will improve the XC
terms, it costs a considerable amount of wasted effort/memory for many of the
other terms in the Hamiltonian. There are also issues with this approach arising
from using pseudo-potentials.

Both the Projector Augmented Wave method (PAW) [76] and Ultrasoft pseudo-
potential method (USP) [77] add additional “augmentation charge” terms to the
valence density which can require the density grid to be more than twice as
fine as the wavefunction basis in order to be accurately represented (traditional
norm-conserving pseudo-potentials [71] do not have these augmentation terms).
Many pseudo-potentials also make use of nonlinear core corrections (NLCC) [78]
when computing the XC energy integral for a better representation of the XC
interaction between the core charges and the electrons treated as valence. The
core charges are interpolated from a spherically symmetric radial function onto
the density grid. Both of these pseudo-potential features can mean that increasing
the scale of the density grid will have a similar effect to increasing the cut-off
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Figure 5.7: The change in the estimated uncertainty of the XC energy integration
as the grid is altered in different ways. The base system is the primitive unit cell
of silicon using; a cut-off energy of 350 eV, a density grid scale of 2 and a XC
grid scale of 2. Each of the subplots shows the change in estimated uncertainty
as; a) the cut-off energy is increased; b) the density grid scale is increased; c) the
XC grid scale is increased. In each case the other parameters have been fixed at
those used for the first data point.

energy, i.e. increasing the number of terms in the density expansion and therefore
the XC energy, making the reduction of numerical artefacts harder.

The alternative approach proposed here, is to increase only the fineness of the
grid for the XC part of the calculation. Every other term in the Hamiltonian can
be handled on a grid which will accurately represent the density (including any
augmentation from the PAW/USP methods). When computing the XC terms,
the NLCC terms should be interpolated onto the density grid, and then we can
use Fourier extrapolation to move the real-space density to a much finer grid, i.e.
Fourier transform the density to reciprocal space, pad the Fourier expansion with
extra zeros up to the highest frequency we want to use in the EXC computation,
and then back transform the density to real space on a much finer grid. The
contributions to EXC and V XC are then computed on this finer grid in real-
space, transformed to Fourier space where the potential is truncated beyond the
highest frequency components representable on the original density grid, and then
back transformed to real space on the original density grid. This truncation has
no effect on the XC energy integral computed by multiplying the density and
the potential compared to when they are computed on the finer XC grid, but it
removes any aliasing of high-frequency components represented on the XC grid
into the potential on the original density grid.

A comparison of these approaches is shown in Figure 5.7 where it is shown how
the error estimated by the UQ test, ∆EUQ, changes with the fineness of the
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grid when increased by each of the methods described above. For the UQ tests
a 4 × 4 × 4 UQ sampling grid was used to estimate the error. All approaches
were found to be effective in reducing the estimated uncertainty. The approaches
of increasing the density grid scale and the XC grid scale are equally and highly
effective in reducing the estimated uncertainty. Increasing the cut-off energy does
cause a reduction in the estimated error; however, Figure 5.7(a) shows that the
cut-off energy must be quadrupled to reduce the error by one order of magnitude.
The cut-off wave vector for the plane-waves, Gcut, scales as the root of the cut-
off energy, Ecut, therefore quadrupling the cut-off energy doubles the size of the
density grid. The calculation with a cut-off energy of 1400 eV with a density
grid scale of 2 will use the same actual density grid for the XC calculation as
that used with a cut-off energy of 350 eV but with a density grid scale or XC
grid scale of 4. The estimated uncertainty in these calculations is very similar,
but increasing the cut-off energy by a factor of 4 causes the calculation to take
∼ 8 times as long to complete. Increasing the density grid or the XC grid scale
by an extra factor of 2 only increased the cost by a factor of ∼ 40% and ∼ 20%
respectively, and so clearly these are much more efficient approaches at reducing
the uncertainty compared to the cut-off energy. Figure 5.7(a) only shows the
estimated uncertainty for cut-off energies in the range of 350 − 1400 eV. Further
increases in the cut-off energy would further reduce the uncertainty; however, the
additional computational cost is dramatic and unjustified.

Increasing the density grid scale compared to increasing the XC grid scale has a
comparable effect in terms of accuracy but also comes with additional computa-
tional cost. It has already been shown in Section 5.3 Figure 5.6 that the effect of
the violation of translation symmetry was ≈ 41 meV in the original calculation
without a change in the grid scaling. In Figure 5.7, it can be seen that a grid scale
of 8 reduces the error to O(10−5) eV for both the density grid scale calculation
and the XC grid scale. Increasing the scale of the density grid to 8 increased
the time required for the energy minimisation calculation by a factor of ∼ 5.5×,
whilst increasing the scale of the XC grid to 8 increased the time required by only
a factor of ∼ 2.4×.

Increasing either the cut-off energy, the density grid scale or the XC grid scale
leads to the total energy, forces and stresses converging to different values. Ini-
tially, this might seem worrying, but it is to be expected. As explained above,
increasing the XC grid scale only improves the representation of the XC energy
contributions and the XC potential. Increasing the density grid scale improves
the representation of all the density and potential terms in the calculation, in-
cluding the NLCC and augmentation charge terms, which will include additional
contributions to the energy. Increasing the cut-off energy introduces additional
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Figure 5.8: Phonon band structure calculated for a silicon primitive cell with the
r2SCAN functional. Calculated via finite displacement using the non-diagonal
supercell method [4] equivalent to a 3 × 3 × 3 q-point sampling grid. All other
parameters are the same as those used in Figure 5.4.

plane-waves into the wavefunction and the density, waves which were previously
assumed to have zero weighting. This will add extra contributions to every term
in the Hamiltonian and will therefore change the total energy calculated.

To illustrate the benefit of using a separate XC grid, the calculation of the phonon
band structure presented in Figure 5.4 was repeated using a density grid scale
of 6 and also with an XC grid scale of 6. Without increasing the fineness of
the grid, the r2SCAN calculation gives imaginary phonon modes with maximum
energy of ∼ −40 meV, which is the same magnitude as the energy error the
UQ test estimates. Increasing the grid scales to 6 can be seen in Figure 5.7
to reduce the estimated error of the energy to be below 10−4 eV, i.e., an order
of magnitude smaller than the tolerance in the energies of the phonon modes.
In both calculations, these imaginary modes are now real, and the difference
between the phonon band structure calculated with either approach is negligible;
see Figure 5.8. The UQ test allows an informed decision to be made on how fine a
grid is needed, in order to reduce the numerical XC integration artefacts enough
for accurate phonon calculations.

It is worth noting again that the UQ test relies only on the ground-state density
for a particular atomic configuration. Thus, it can be used to tune the fineness
of the XC grid for the desired accuracy before before performing any dynamical
or structural calculations. This step requires multiple energy minimisation cal-
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culations, with the atoms in a specific configuration, to get the ground state at
different XC grid scales, but this is no worse than the convergence calculations
required for the choice of cut-off energy and k-point sampling.

It is clear from the uncertainty estimates presented in Figure 5.6 that the use of
the finer grid, only to calculate EXC and V XC is an effective method to improve
the numerical accuracy of the calculations while minimising the additional com-
putational cost. It has also been shown that when comparing the phonon band
structure presented in Figure 5.8, there is no noticeable difference in the physical
predictions compared to the existing approach of increasing the grid scale of the
density grid for every energy contribution, while the XC grid method is cheaper
to compute. The method of increasing the scale of the XC grid was used in the
previous chapter with great effect when comparing phonon modes calculated via
density functional perturbation theory and finite displacement.

5.5 Conclusions

A new Uncertainty Quantification (UQ) approach has been developed and pre-
sented for plane-wave DFT calculations that allows an estimation of the viola-
tion of translation symmetry due to the numerical integration of the exchange-
correlation (XC) energy, sometimes referred to as “the egg-box effect”. The novel
UQ method fulfils all of the desired requirements of being an accurate, efficient
and general purpose for all systems and exchange-correlation functionals. This
is done by Fourier interpolating the ground state density to a set of shifted grid
positions and re-evaluating the change in XC energy at these grid offsets. This
is found to be in near-exact agreement with the change in total energy from an
equivalent displacement of the entire system.

The results of using our UQ approach are in keeping with those seen elsewhere
in the literature, i.e. the size of the integration error is highly dependent on;
the system of interest, the choice and size of the basis set, the choice of XC
functional. Performing this analysis at an early stage of a workflow can inform
on the expected accuracy of subsequent calculations.

Further, a slightly different approach to improving the XC energy integration
is suggested. By selectively computing the XC energy and its corresponding
potential on a finer grid, via Fourier extrapolation, the energy integration error
can be reduced to a level deemed appropriate by the user, without all of the
additional overhead of increasing the cut-off energy and the fineness of the density
grid. Coupled with the uncertainty quantification method, inaccuracies related
to the XC integration error (or the egg-box effect) can confidently be avoided
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with minor additional computational cost. This work offers a promising pathway
towards improving accuracy in a diverse range of materials modelling applications.
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Chapter 6

Elastic Constants from DFPT
using meta-GGAs

This chapter covers the implementation of the necessary additional terms to cal-
culate the Elastic constants tensor from DFPT using a meta-GGA functional.
The elastic constants tensor being a response function of a system to strain, re-
lating the internal stress in a material to an applied deformation, or strain. The
chapter follows a very similar structure to Chapter 4, first, the derivation of the
additional terms required for a meta-GGA functional is covered, and then the im-
plementation is verified by calculating the elastic constants via DFPT and finite
displacement calculations for a test system. The method is used to examine the
accuracy of the predictions for elastic constants made using mGGA functionals
and is compared to other functionals and other theoretical methods. The mGGA
functional r2SCAN is found to provide predictions in excellent agreement with
experimental results in the literature, far exceeding the accuracy of the tested
LDA and GGA functionals.

6.1 Introduction

Elastic constant tensors are fundamental properties that describe a material’s
response to mechanical stress, providing insights into its stiffness and stability.
Accurately predicting these tensors is crucial for designing materials with desired
mechanical properties. DFT particularly within the LDA and GGA frameworks,
has been extensively used for such predictions [108, 109]. However, these approx-
imations often yield elastic constants that deviate from experimental values, for
instance, LDA tends to overbind atoms, which can lead to overestimated elastic
constants, while GGA, though a theoretical improvement, tends to underbind,
leading to underestimated elastic constants. Both formalisms lack the precision
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required for materials design, more advanced theoretical methods can yield more
accurate results but at far greater computational cost [110, 111, 112].

The theoretical foundation for calculating elastic constants within a quantum
mechanical framework was significantly advanced by Nielsen and Martin in the
1970s [81, 82]. They developed a comprehensive theory of stress within DFT,
enabling the computation of stress tensors and, subsequently, elastic constants
from first principles. In 2005, Hamann et al. introduced a novel approach to cal-
culating elastic constants using Density Functional Perturbation Theory (DFPT)
[93, 98]. This method reformulated the problem by introducing a reduced coordi-
nate metric tensor, allowing for the efficient and accurate determination of elastic
constants without relying solely on finite strain techniques. This work provides
a more robust framework which is less sensitive to numerical noise.

Furthermore, the development of meta-Generalised Gradient Approximation (meta-
GGA) functionals has shown promise in enhancing the accuracy of elastic con-
stant predictions. Studies have demonstrated that meta-GGA functionals can
provide more reliable elastic constants compared to traditional LDA and GGA
approaches, [110, 111]. However, one of the limitations of these studies is that
they have been forced to use finite strain techniques to calculate the elastic con-
stants, which, as has been mentioned, are particularly sensitive to numerical
noise.

As has become a theme of this thesis, there can be significantly more numerical
noise in mGGA calculations than those based in lower levels of theory. The aim
of this chapter is therefore to derive the additional terms required to perdict
the elastic constants of a material within the mGGA formalism using DFPT. A
comparison will then be made for a limited set of materials against predicted
values from other levels of theory in the literature and to experimental results.
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6.2 Calculating the Elastic Constants

A description of the formalism for the elastic constant tensor was given in section
3.2.3. There, the elastic constants tensor, Cαβγδ, is defined as the tensor that
gives the linear relation between a deformation or strain, ηγδ applied to a material
and the resultant stress, σαβ,

σαβ = Cαβγδηγδ. (6.1)

Expressed as derivative of the total energy the elastic constants tensor can be
written as,

Cαβγδ = Ω−1 d2E

dηαβdηγδ
. (6.2)

As was explained in section 3.2.3, the total derivative of the energy with respect
to strain includes contributions from atomic relaxations under strain, expressed
as partial derivatives of the total energy, which are computable by DFPT, the
elastic constants tensor is,

Cαβγδ = C̄αβγδ − Ω−1∑
I,J

ΛαβµI

(
D−1

q=0,,I,J
)
µν

ΛγδνI (6.3)

where, Dq=0,I,J = ∂2E
∂RI,µ∂RJ,ν

is dynamical matrix at q = 0, ΛαβγI = ∂2E
∂ηαβ∂RI,γ

is the
force-response internal-strain tensor i.e. the change in the atomic forces under a
strain, C̄αβγδ = Ω−1

0
∂2E

∂ηαβ∂ηγδ
is the frozen ion elastic constants tensor. To compute

the elastic constant tensor, these 3 sets of partial derivatives of the energy are
required to computed the elastic constants from DFPT.

The dynamical matrix we have already shown how to compute in Chapter 4.
The remaining two partial derivatives are the subject of this section. Expressions
for these partial derivatives can be derived from the non-variational expression
for second-order derivatives given in equation 3.69. The frozen-ion elastic con-
stants are obtained by substituting a pair of strain perturbations for µ and λ into
equation 3.69, giving

∂2Etot

∂ηαβ∂ηγδ
=

occ∑
b

〈
ψ

(0)
b

∣∣∣∣∣ ∂2

∂ηαβ∂ηγδ

(
T̂ + V̂ ext

loc + V̂ ext
nl
)∣∣∣∣∣ψ(0)

b

〉
+

occ∑
b

〈
ψ

(ηαβ)
b

∣∣∣∣∣ ∂Ĥ∂ηγδ
∣∣∣∣∣ψ(0)
b

〉
+

occ∑
b

〈
ψ

(0)
b

∣∣∣∣∣ ∂Ĥ∂ηγδ
∣∣∣∣∣ψ(ηαβ)
b

〉
+ ∂2EH

∂ηαβ∂ηγδ

∣∣∣∣∣
ρ(0)

+ ∂2EIon-Ion

∂ηαβ∂ηγδ
+ ∂2Eext

τ

∂ηαβ∂ηγδ

∣∣∣∣∣
τ (0)

+ ∂2EXC

∂ηαβ∂ηγδ

∣∣∣∣∣
ρ(0),τ (0)

, (6.4)

where ψ
ηαβ

b is the first order response of the wavefunction to the strain ηαβ.
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An expression for the force-response internal strain tensor can be derived by
substituting a strain perturbation and an atomic displacement for µ and λ, giving

∂2Etot

∂ηαβ∂RI,γ
=

occ∑
b

〈
ψ

(0)
b

∣∣∣∣∣ ∂2

∂ηαβ∂RI,γ

(
T̂ + V̂ ext

loc + V̂ ext
nl
)∣∣∣∣∣ψ(0)

b

〉
+

occ∑
b

〈
ψ

(ηαβ)
b

∣∣∣∣∣ ∂Ĥ∂RI,γ

∣∣∣∣∣ψ(0)
b

〉
+

occ∑
b

〈
ψ

(0)
b

∣∣∣∣∣ ∂Ĥ∂RI,γ

∣∣∣∣∣ψ(ηαβ)
b

〉
+ ∂2EH

∂ηαβ∂RI,γ

∣∣∣∣∣
ρ(0)

+ ∂2EIon-Ion

∂ηαβ∂RI,γ
+ ∂2Eext

τ

∂ηαβ∂RI,γ

∣∣∣∣∣
τ (0)

+ ∂2EXC

∂ηαβ∂RI,γ

∣∣∣∣∣
ρ(0),τ (0)

. (6.5)

Thankfully, the terms needed to compute these partial derivatives in the LDA and
GGA schemes have already been derived and published by Hamman et al [93, 98].
Due to the complexity of the necessary derivatives, the only implementation of
this method was that of the original publication until the work carried out in
this thesis, where the method was implemented in CASTEP for LDA and GGA
functionals.

The aim of this chapter is to enable the computation of elastic constants via
DFPT using mGGA functionals, for which the only unknown contributions are
the derivatives of the additional terms in the mGGA formalism. Specifically, the
derivatives of the energy arising from the differential part of the external potential
operator, Eext

τ , and the XC energy EXC. Also required is the partial derivative
of the Hamiltonian under strain, ∂Ĥ

∂ηαβ
, the partial derivative of the Hamiltonian

under a commensurate atomic displacement has already been derived in the pre-
vious chapter. The first-order response of the wavefunction to the strain, ψ(ηαβ)

b ,
can be determined using the variational solver of the Green’s function solver for
the Sternheimer equations.

We shall proceed with this chapter’s aim by defining the derivative of general
system parameters, such as the cell volume, or the reciprocal lattice vectors,
which we can then refer back to when deriving derivatives of the more complicated
objects, like the KED or the XC potentials.

6.2.1 System Parameters Under Strain

The strain tensor, ηαβ, defines a deformation as a “stretching” of space that
transforms a point in the system to another point,

rα → rα =
(
δαβ +ηαβ

)
rβ, (6.6)

where δαβ is the Kronecker delta. For the purposes of perturbation theory, we
enforce that the strain tensor is symmetric, i.e. ηαβ = ηβα = 1

2

(
ηαβ +ηβα

)
. The
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strain tensor is a dimensionless quantity; therefore, one useful property of the
derivatives with respect to strain is that the derivatives of an object with respect
to strain must have the same dimensionality as the original object, making it
easier to spot when an error has occurred.

Under this stretching of space, we can derive the derivatives of various system
parameters. Here, the first and second derivatives under strain are given for:

• Real-space vectors, Rµ:

dRµ
dηαβ

= 1
2
(
δµαRβ + δµβRα

)
, (6.7)

d2Rµ
dηαβdηγδ

= 1
4
(
δµα

(
δβγRδ + δβδRγ

)
+ δµβ

(
δαγRδ + δαδRγ

))
. (6.8)

• Reciprocal-space vector, Gµ:

dGµ
dηαβ

= −1
2
(
δµαGβ + δµβGα

)
, (6.9)

d2Gµ

dηαβdηγδ
= 1

4
(
δµα

(
δβγGδ + δβδGγ

)
+ δµβ

(
δαγGδ + δαδGγ

))
. (6.10)

• Modulus of Reciprocal-space vector, |G|:

d |G|
dηαβ

= d
√
GµGµ

dηαβ
= −1

2
Gµ

|G|
(
δµαGβ + δµβGα

)
(6.11)

= −GαGβ

|G|
, (6.12)

where the final expression is found by summing over the µ index. For future
quantities this will be done when possible, without explanation to give the
simplified expressions for the derivatives. The second derivative can then
be found as,

d2 |G|
dηαβdηγδ

= 1
2 |G|

((
δαγGδ + δαδGγ

)
Gβ +Gα

(
δβγGδ + δβδGγ

))
− GαGβGγGδ

|G3|
. (6.13)

• Unit cell volume, Ω,

dΩ
dηαβ

= δαβΩ, (6.14)

d2Ω
dηαβdηγδ

= δαβδγδΩ. (6.15)
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• Basis functions and structure factors are invariant under strain:

deiG·R

dηαβ
= iGγ

(
δαγRβ + δβγRα

)
eiG·R − i

(
δαγGβ + δβγGα

)
Rγe

iG·R

(6.16)

= i
(
GαRβ +GβRα

)
eiG·R − i

(
GαRβ +GβRα

)
eiG·R = 0. (6.17)

6.2.2 Change of Operators and Physical Quantities under
strain

Above we have shown how strain perturbations change the system parameters,
these then have a knock-on affect on the operators such as the gradient operator,
and the construction of various physical quantities such as the density and the
KED. Using the definition of these first and second derivatives of:

• Gradient operator, ∇µ: The real-space gradient of a function can be calcu-
lated by transforming the function to reciprocal-space, multiplying each the
functions in the plane-wave expansion by i times the reciprocal-space lat-
tice vector of that basis function, as shown in Equation 2.48, and then back
transforming to real-space. The derivatives of the gradient operator under
strain are therefore very similar to the derivatives of the reciprocal-space
lattice vectors,

d∇µ

dηαβ
= −1

2
(
δµα∇β + δµβ∇α

)
, (6.18)

d2∇µ

dηαβdηγδ
= 1

4
(
δµα

(
δβγ∇δ + δβδ∇γ

)
+ δµβ

(
δαγ∇δ + δαδ∇γ

))
. (6.19)

• Total charge density, ρt: The total charge density is defined in equation
2.44, which includes the charge density of the valence electrons and the
core correction charge density. Both terms involve a prefactor of inverse
volume, which has a derivative under strain, but the core charges also have
extra contributions since they are interpolated from a radial function in
reciprocal space. It is more straightforward to treat the derivatives of the
inverse volume factors together and to separately handle the derivative of
the core charge density multiplied by the volume, Ωρc.

dρt (r)
dηαβ

= −δαβρt (r) + Ω−1 d(Ωρc (r))
dηαβ

, (6.20)

130



Chapter 6 Elastic Constants from DFPT using meta-GGAs

d2ρt (r)
dηαβdηγδ

=δαβδγδρt (r) − δαβΩ−1 d(Ωρc (r))
dηγδ

− δγδΩ−1 d(Ωρc (r))
dηαβ

+ Ω−1 d2 (Ωρc (r))
dηαβdηγδ

. (6.21)

The core charge density is defined in equation 2.59, which we have then
multiplied by the unit cell volume, the derivatives of this quantity are then
found to be,

Ωρc (r) =
∑
I

∑
G

ρIc (|G|)e−iG·RI

eiG·r, (6.22)

d(Ωρc (r))
dηαβ

=
∑
I

∑
G

dρIc (|G|)
d |G|

d |G|
dηαβ

eiG·(r−RI), (6.23)

d2 (Ωρc (r))
dηαβdηγδ

=
∑
I

∑
G

(
d2ρIc (|G|)

d |G|2
d |G|
dηαβ

d |G|
dηγδ

+ dρIc (|G|)
d |G|

d2 |G|
dηαβdηγδ

)
eiG·(r−RI). (6.24)

The derivatives of the |G| can then be substituted in to this equation.
We will also require the second derivative of the total charge density un-
der a strain perturbation, and an atomic displacement perturbation, this
becomes,

d2ρt (r)
dηαβdRI,γ

= −δαβ dρc (r)
dRI,γ

+ Ω−1 d2 (Ωρc (r))
dηαβdRI,γ

(6.25)

where the first derivative in the first term is defined in 4.16 and the second
derivative can be calculated as,

d2 (Ωρc (r))
dηαβdRI,γ

=
∑
I

∑
G

−iGγ
dρIc (|G|)

d |G|
d |G|
dηαβ

eiG·(r−RI) (6.26)

• Gradient of the density, ∇µρt (r):

d(∇µρt (r))
dηαβ

= ∇µ

(
dρt (r)
dηαβ

)
− 1

2
(
δµα∇βρ(r) + δµβ∇αρ(r)

)
(6.27)

d2 (∇µρt (r))
dηαβdηγδ

=∇µ

(
d2ρt (r)
dηαβηγδ

)
+ d∇µ

dηδγ
dρt (r)
dηαβ

+ d∇µ

dηαβ
dρt (r)
dηδγ

+ d2∇µ

dηαβdηδγ
ρt (r) . (6.28)

• Total KED, τt (r) : In same the way as the charge density, the total KED
includes core corrections from the pseudopotential which have very similar
derivatives to the core corrections to the charge density. The derivative
of the KED with respect to strain also has contributions from the change
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in the gradient operators applied to the valence electrons. Starting with
the definition of equation 2.42 we will follow the same process used for the
charge density, collecting all the volume derivatives together and separating
the remaining terms as derivatives of the unit cell volume multiplied by
the valence electron contribution to the KED, Ωτv and the core electron
contribution, Ωτv

τt (r) =τv (r) + τc (r) = Ω−1
occ∑
b

1
2 |∇ψb (r)|2 + τc (r) , (6.29)

dτt (r)
dηαβ

= − δαβτt (r) + Ω−1 d(Ωτv (r))
dηαβ

+ Ω−1 d(Ωτc (r))
dηαβ

, (6.30)

d2τt (r)
dηαβdηγδ

=δαβδγδτt (r) − δαβΩ−1
(

d(Ωτv (r))
dηγδ

+ d(Ωτc (r))
dηγδ

)

− δγδΩ−1
(

d(Ωτv (r))
dηαβ

+ d(Ωτc (r))
dηαβ

)

+ Ω−1
(

d2 (Ωτv (r))
dηαβdηγδ

+ d2 (Ωτc (r))
dηαβdηγδ

)
. (6.31)

We can then write expressions for the derivatives of the Ωτv,

Ωτv (r) =
occ∑
b

1
2 |∇ψb (r)|2 , (6.32)

d(Ωτv (r))
dηαβ

= −
occ∑
b

∇αψb (r)∇βψb (r) , (6.33)

d2 (Ωτv (r))
dηαβdηγδ

=
occ∑
b

(
1
2
(
δαγ∇δψb (r) + δαδ∇γψb (r)

)
∇βψb (r)

+ 1
2∇αψb (r)

(
δβγ∇δψb (r) + δβδ∇γψb (r)

))
. (6.34)

Taking this expression for the second derivative, by multiplying out the
brackets we find the second derivative can be written as a combination
the first order derivatives with respect to different strains, leading to this
expression,

d2 (Ωτv (r))
dηαβdηγδ

= − 1
2

(
δαγ

d(Ωτv (r))
dηδβ

+ δαδ
d(Ωτv (r))

dηγβ
+

δβγ
d(Ωτv (r))

dηαδ
+ δβδ

d(Ωτv (r))
dηαγ

)
. (6.35)

This second expression means that by computing and storing the first
derivatives of Ωτv with respect to all possible strain directions, we can
also very easily compute the second derivatives without having to do a sum
over the occupied electron states in the wavefunction. When calculating the
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first derivatives of Ωτv using the symmetry reduced set of k-points for the
Brillouin zone sampling, the derivatives calculated must be symmetrised to
obtain the correct value for Ωτv. When performing this symmetrisation,
each of the Fourier components of dΩτv(r)

dηαβ
must be treated as a rank-2 ten-

sor which also transforms under the symmetry operation, unlike the charge
density and KED which are scalars and do not change under the symmetry
transformation.

The contributions from the core electrons to the derivatives of the total
KED are very similar in form to those from the core charge density,

Ωτc (r) =
∑
I

∑
G

τ Ic (|G|)e−iG·RI

eiG·r, (6.36)

d(Ωτc (r))
dηαβ

=
∑
I

∑
G

dτ Ic (|G|)
d |G|

d |G|
dηαβ

eiG·(r−RI), (6.37)

d2 (Ωτc (r))
dηαβdηγδ

=
∑
I

∑
G

(
d2τ Ic (|G|)

d |G|2
d |G|
dηαβ

d |G|
dηγδ

+ dτ Ic (|G|)
d |G|

d2 |G|
dηαβdηγδ

)
eiG·(r−RI). (6.38)

The derivatives of the |G| can then be substituted in to the above equations.
We will also require the second derivative of the total kinetic energy density
under a strain perturbation, and an atomic displacement perturbation, this
becomes,

d2τt (r)
dηαβdRIγ

= −δαβ dτc (r)
dRIγ

+ Ω−1 d2 (Ωτc (r))
dηαβdRIγ

(6.39)

where the first derivative in the first term is defined in 4.18 and the second
derivative can be calculated as,

d2 (Ωτc (r))
dηαβdRIγ

=
∑
I

∑
G

−iGγ
dτ Ic (|G|)

d |G|
d |G|
dηαβ

eiG·(r−RI). (6.40)

• Local part of the differential part of the external potential, V loc
τ (r): The

differential part of the external potential operator includes a local potential
term that has derivatives under strain. The local potential part is obtained
in a similar fashion to the core corrections to the charge density and KED,
via interpolating a radial function in reciprocal space onto the FFT grid.
The expression for V local

τ (r) is given in equation 2.61, repeated below,

V loc
τ (r) = Ω−1∑

J

∑
G

vτJ (|G|)eiG·(r−RJ ). (6.41)
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The derivatives of the local potential part are therefore found to be,

dV loc
τ (r)
dηαβ

= − δαβV loc
τ (r) + Ω−1∑

J

∑
G

dvτJ (|G|)
d |G|

d |G|
dηαβ

eiG·(r−RJ ), (6.42)

d2V loc
τ (r)

dηαβdηγδ
=δαβδγδV loc

τ (r) − δαβΩ−1∑
J

∑
G

dvτJ (|G|)
d |G|

d |G|
dηγδ

eiG·(r−RJ )

− δγδΩ−1∑
J

∑
G

dvτJ (|G|)
d |G|

d |G|
dηαβ

eiG·(r−RJ )

+ Ω−1∑
J

∑
G

(
d2vτJ (|G|)
(d |G|)2

d |G|
dηαβ

d |G|
dηγδ

+ dvτJ (|G|)
d |G|

d2 |G|
dηαβdηγδ

)
eiG·(r−RJ ). (6.43)

The expression derived above can now be used to derive the derivatives of the
contributions to the Hamiltonian operator and the total energy.

6.2.3 Change of the mGGA Hamiltonian Under Strain

The Hamiltonian of a system using an mGGA functional differs from the Hamil-
tonian of system using an LDA or GGA functional in two ways, the differential
part of the external pseudopotential, and the XC potential operator.

6.2.3.1 External Potential Operator

The derivatives of the local part and the non-local parts of the external poten-
tial operator with respect to strain perturbations have already been derived by
Hamman et al [93], the derivative of the additional differential part of external
potential is all that needs to be derived here. The differential part of the exter-
nal pseudopotential, V̂ ext

τ is defined in equation 2.37, and an expression for the
derivative of this operator under a general perturbation is given in equation 3.62.
Using these expressions, we can find the derivative of this operator under strain,

V̂ ext
τ = −1

2∇·
(
V loc
τ (r)∇

)
, (6.44)

dV̂ ext
τ

dηαβ
= 1

2

(
∇αV loc

τ (r)∇β + ∇·
(
dV loc

τ (r)
dηαβ

(r)∇
)

+ ∇βV loc
τ (r)∇α

)
(6.45)

where an expression for dV loc
τ (r)
dηαβ

has been derived above in equation 6.42.
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6.2.3.2 XC Potential Operator

Now we shall consider the XC potential operator, V̂ XC. The operator is defined in
equation 2.65, however, it is more convenient work in terms of the local potentials
defined in equations 2.66 and 2.67,

V̂ XC (r) = V XC
ρ (r) − 1

2∇·
(
V XC
τ (r)∇

)
. (6.46)

A general expression for first-order mGGA XC potential is given in 3.64. By
substituting ηαβ for λ in that expression we can get the change first-order mGGA
XC potential under strain,

∂V̂ XC (r)
∂ηαβ

=
∂V XC

ρ (r)
∂ηαβ

− 1
2

∇α
(
V XC
τ (r)∇β

)
+

∇·
(
∂V XC

τ (r)
∂ηαβ

∇
)

+ ∇β
(
V XC
τ (r)∇α

). (6.47)

Partial derivatives have been used here to signify that this is the non-self con-
sistent response of the XC potential operator, and does not include first-order
density and KED contributions. The self-consistent response can be calculated
separately and linearly added in as part of the self-consistent work-flow.

Each of the local potentials has derivatives arising from the changes in the density,
the gradient of the density, and the KED under the strain perturbation. Starting
with V XC

ρ (r),

∂V XC
ρ (r)
∂ηαβ

= ∂2fXC

∂ρ2
dρt

dηαβ
+ ∂2fXC

∂ρ∂ |∇ρ|
∇µρt
|∇ρt|

d(∇µρt)
dηαβ

+ ∂2fXC

∂ρ∂τ

dτt
dηαβ

− d∇γ

dηαβ

(
∂fXC

∂ |∇ρ|
∇γρt
|∇ρt|

)

−∇γ

( ∂2fXC

∂ |∇ρ|∂ρ
dρt

dηαβ
+ ∂2fXC

∂ |∇ρ|∂τ
dτt

dηαβ

)
∇γρt
|∇ρt|

+ ∂fXC

∂ |∇ρt|
1

|∇ρt|
d(∇γρt)

dηαβ

+
(
∂2fXC

∂ |∇ρt|2
∇µρt∇γρt

|∇ρt|2
− ∂fXC

∂ |∇ρt|
∇µρt∇γρt

|∇ρt|3

)
d(∇µρt)

dηαβ

, (6.48)

where the expressions ∇µρt∇γρt on the last line are interpreted as the outer
product of the vector, the gradient of the density at point r. This creates a
rank-2 tensor like object with indices µ and γ, which is multiplied by the vector,
the derivative of the gradient of the density, which has the index µ, resulting in
an object with an γ index, which can safely have the gradient operator outside
the square brackets applied to it.
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Now we consider the far simpler derivative of V XC
τ (r),

dV XC
τ (r)
dηαβ

= ∂2fXC

∂τ∂ρ

dρt
dηαβ

+ ∂2fXC

∂τ∂ |∇ρ|
∇µρt
|∇ρ|

d(∇µρt)
dηαβ

+ ∂2fXC

∂τ2
dτt

dηαβ
. (6.49)

These equations define the first-order response XC potential for a mGGA func-
tional under a strain perturbation ηαβ. For brevity, ρt (r), τt (r), have not been
shown as functions of position, they should all be taken to be at position r, fXC

and its derivatives have not been shown as functions of the charge density, its
gradient, and the KED.

Together with the existing derivation of Hamann et al [93, 98], the response of the
Hamiltonian under strain, ∂Ĥ

∂ηαβ
, has been derived for mGGA systems. Derivation

of the energy terms is all that remains now.

6.2.4 Second order energy derivatives

Now we shall turn our attention to the contributions to the second-order energy
derivatives arising from the differential part of the external potential operator,
Eext
τ , and the XC energy EXC. To compute the elastic constants of a material,

there are three sets of energy derivatives required, the dynamical matrix at q = 0
which has already been derived in Chapter 4, the frozen-ion elastic constants, and
the force-response internal-strain tensor. We shall start with the contributions
from Eext

τ .

6.2.4.1 External Potential

Again, the derivatives of the local part and the non-local parts of the external
potential energy contributions with respect to strain perturbations are already
defined in the literature [93]. Only the energy contribution from the differen-
tial part of the external potential must therefore be derived here. The relevant
expression for this energy contribution Eext

τ , is given in equation 2.63, repeated
here,

Eext
τ = Ω

∫
Ω
V ext
τ (r)τ (r) d3r, (6.50)

where in this case τ is the KED arising from the valence electrons, with no core
electron contribution, i.e. τv. The derivative of this expression for a general pair
of perturbations is given in equation 3.72.

Frozen-Ion Elastic Constants
We can obtain the expression for the Eext

τ contribution to the frozen-ion elastic
constants by substituting a pair of strain perturbations ηαβ and ηγδ for the general
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perturbations λ and µ in equation 3.72. The derivative can be simplified to the
following expression,

∂2Eext
τ

∂ηαβ∂ηγδ
= δαβδγδEext

τ

−δγδΩ
∫

Ω

(
∂V ext

τ (r)
∂ηαβ

τv (r) +V ext
τ (r) ∂τv (r)

∂ηαβ

)
d3r

−δαβΩ
∫

Ω

(
∂V ext

τ (r)
∂ηγδ

τv (r) +V ext
τ (r) ∂τv (r)

∂ηγδ

)
d3r

+Ω
∫

Ω

∂2V ext
τ (r)

∂ηγδ∂ηαβ
τv (r) + ∂V ext

τ (r)
∂ηγδ

∂τv (r)
∂ηαβ

+ ∂V ext
τ (r)
∂ηαβ

∂τv (r)
∂ηγδ

+V ext
τ (r) ∂2τv (r)

∂ηγδ∂ηαβ

 d3r. (6.51)

Internal Strain
We can obtain the expression for the Eext

τ contribution to the force response
internal strain tensor by substituting a strain perturbation ηαβ and an atomic
displacement perturbation RI,γ for the general perturbations λ and µ in equation
3.72. The derivative can be simplified to the following expression,

∂2Eext
τ

∂ηαβ∂RI,γ
= −δαβΩ

∫
Ω

∂V ext
τ (r)
∂RI,γ

τv (r) d3r

+Ω
∫

Ω

[
∂2V ext

τ (r)
∂RI,γ∂ηαβ

τv (r) + ∂V ext
τ (r)
∂RI,γ

∂τv (r)
∂ηαβ

]
d3r. (6.52)

6.2.4.2 XC energy terms

The expression for the XC energy in the mGGA formalism is given in equation
2.68. Expression for the derivatives of the energy contribution in the LDA for-
malism and GGA formalism are given in [93] and [98] respectively. Here, we shall
follow the approach taken in the second reference, which starts with the energy
expression as a sum of discrete points,

EXC = Ω
Np

Np∑
i

fXC (ρ(ri) , |∇ρ(ri)| , τ (ri)) . (6.53)

An expression is given in equation 3.77 for the second derivative of this energy
contribution with respect to a pair of general perturbations λ and µ. Using that
expression, we can find the contribution from the XC energy to the frozen-ion
elastic constants and the force-response internal-strain tensor.
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Frozen-Ion Elastic Constants
We can obtain the expression for the XC energy contribution to the frozen-ion
elastic constants by substituting a pair of strain perturbations ηαβ and ηγδ for
the general perturbations λ and µ in equation 3.77. This gives,

∂2EXC

∂ηαβ∂ηγδ
=δαβδγδEXC

+ δγδ
Ω
Np

Np∑
i

[
V XC
ρ

∂ρt
∂ηαβ

+V XC
τ

∂τt
∂ηαβ

+ ∂fXC

∂ |∇ρ|
∇νρ

|∇ρ|
∂∇ν

∂ηαβ
(ρ)

]

+ δαβ
Ω
Np

Np∑
i

[
V XC
ρ

∂ρ

∂ηγδ
+V XC

τ
∂τ

∂ηγδ
+ ∂fXC

∂ |∇ρ|
∇νρ

|∇ρ|
∂∇ν

∂ηγδ
(ρ)

]

+ Ω
Np

Np∑
i

V XC
ρ

∂2ρ

∂ηαβ∂ηγδ
+V XC

τ
∂2τ

∂ηαβ∂ηγδ

+
∂V XC

ρ

∂ηγδ

∂ρ

∂ηαβ
+ ∂V XC

τ

∂ηγδ

∂τ

∂ηαβ

+
{

∂2fXC

∂ |∇ρ|∂ρ
∂ρ

∂ηγδ
+ ∂2fXC

∂ |∇ρ|∂τ
∂τ

∂ηγδ

}
∇νρ

|∇ρ|
∂∇ν

∂ηαβ
(ρ)

+
(
∂2fXC

∂ |∇ρ|2
∇νρ∇ζρ

|∇ρ|2
− ∂fXC

∂ |∇ρ|
∇νρ∇ζρ

|∇ρ|3

)
∂
(
∇ζρ

)
∂ηγδ

∂ (∇ν)
∂ηαβ

(ρ)

+ ∂fXC

∂ |∇ρ|

 1
|∇ρ|

∂ (∇νρ)
∂ηγδ

∂∇ν

∂ηαβ
(ρ)

+ ∇νρ

|∇ρ|2
∂2∇ν

∂ηαβ∂ηγδ
(ρ) + ∇νρ

|∇ρ|2
∂∇ν

∂ηαβ

(
∂ρ

∂ηγδ

)
. (6.54)

This expression is less than ideal! It does not appear symmetric under the inter-
change of αβ and γδ indices, and includes a large number of terms which have
to be computed separately from straightforward XC potentials. However, as was
found for the GGA expression in Ref [98], this expression can be simplified. The
exact process of this simplification involves many steps, too many to be shown
in full, however it is achieved by substituting in the derivatives of each quantity
under strain derived above, at which point, it can be found that there are some
terms that cancel and some terms that appear multiple times, which we can use
to simplify our expression.

The approach here follows the same process as Ref [98]. Instead of using the
expressions for the strain derivatives of the local potentials that were derived
above, i.e. ∂V XC

ρ

∂ηαβ
and ∂V XC

τ
∂ηαβ

, we use modified versions of these expressions, where
some of the terms are doubled. Specifically, we double every derivative of the
gradient operator with respect to strain, such that we have a modified derivative
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of the gradient of the charge density,

d(∇µρt (r))
dηαβ

∗
= ∇µ

(
dρt (r)
dηαβ

)
−
(
δµα∇βρ(r) + δµβ∇αρ(r)

)
(6.55)

where the factor of a half in front of the second set of brackets cancelled when
compared to the unmodified expression in equation 6.27.

The expressions for the modified potentials become,
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and,
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By using these modified potentials, many of the terms become incorporated into
the potentials and the complexity of the expression can be reduced, such that
resultant expression is,
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While this expression may not seem particularly simple, it has the advantage of
being mostly comprised of already derived quantities, with some small modifica-
tions. Indeed, in this expression some terms themselves contain terms, subterms,
which will cancel with subterms from other terms, however attempting to do this
results in an expression which is more ugly. This expression can more straightfor-
wardly be extended to spin-polarised systems, with the first 4 lines only gaining
an extra sum over spin channels. The final three lines of this expression which
are not comprised of potentials and density derivatives can be understood as the
terms that arise solely from the change of the gradient operator under strain.
These additional terms also have the advantage of being unchanged from the
expression for GGA functionals, as shown in equation 12 of Ref [98] although
in subtly different notation. If all the τ dependent terms are dropped from this
expression, we do recover the GGA expression of equation 12 of Ref [98], how-
ever that expression is missing the very first term, δαβδγδEXC. Given what they
undoubtedly went through to get that expression, they can perhaps be forgiven
this minor slip.

Internal Strain terms
For the XC energy contribution to the force-response internal-strain tensor, we
can obtain the expression by substituting a pair of strain perturbations ηαβ and
RI,γ for the general perturbations λ and µ in equation 3.77. This gives,
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where it can be seen that many of the terms of the general expression cancel due
to the fact that there is zero change to the cell volume and gradient operator
under an atomic displacement perturbation.

6.2.5 Implementation

The expressions derived above were implemented in a development branch of
CASTEP. The derivations and their implementations were then verified by com-
paring the elastic constant tensor calculated from this implementation to the
elastic constants tensor calculated using a finite-displacement (FD) method. The
FD method is performed by applying a small strain to the unit cell lattice, re-
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calculating the ground-state density, and calculating the stress and forces in the
strained configuration. By performing forward and backward steps of strain, the
second-order energy derivatives can be calculated from the displaced stress and
forces using the centred difference formula. Provided both the DFPT and FD
calculations are well-converged, the derivatives obtained should be in excellent
agreement. The results of this comparison are presented in the following section.

6.3 Verification: Silicon

For a verification test, silicon was again chosen as our test system. First, we
shall compare the explicit energy derivatives, the frozen-ion elastic constants,
and the force-response internal-strain, tensor computed using the DFPT and FD
methods for silicon. Then, we shall move on to comparing the values calculated
for the relaxed-ion elastic constant tensor against experiment and against different
theoretical methods for silicon and other materials.

6.3.1 Energy Derivatives

Due to the symmetry of silicon’s crystal structure, the frozen-ion elastic constants
has only 3 unique, non-zero values and the force-response internal-strain tensors
have only 1 unique, non-zero values. The relaxed-ion elastic constant tensor also
has only 3 unique, non-zero values. Using Voigt notation to denote the different
strain directions, where 1 = xx, 2 = yy, 3 = zz, 4 = yz , 5 = zx, 6 = yx, the elastic
constant tensor can be reduced from a rank-4 tensor to a 6 × 6 matrix with no
loss of information, i.e. Cαβγδ = Cij , the 6 × 6 matrix is sometimes referred to
as the compliance matrix. In Voigt notation, the 3 unique values of the elastic
constant tensor for silicon are C11, C21 and C44, other non-zero elements of the
tensor will be equal to the value of one of these 3 elements.

The force-response internal-strain tensors, ΛαβγI , can also be reduced from a rank-
3 tensor to a 6×3 matrix using Voigt notation for the strain directions, ΛiγI . For
the silicon primitive cell, the only non-zero values of ΛαβγI are when each of the
3 indices in the rank-3 tensor notation are different, i.e. α ̸= β ̸= γ, and the two
different ions should have equal and opposite values ΛαβγI = −ΛαβγJ to preserve
translational symmetry.

The ground-state was found for the silicon primitive cell, see figure 4.1, however
this time using a cut-off energy which was slightly higher. The cut-off was in-
creased until the value computed for stress converged to 0.01 GPa, this was found
to be 600 eV. The Brillouin zone was sampled using a Monkhorst-Pack grid with
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a mesh of 8 × 8 × 8 k-points (equivalent to a k-point spacing of 0.04 2πÅ). The
crystal structure symmetry was used to reduce the number k-points required to
only those in the irreducible wedge of the Brillouin zone and to symmetrise the
forces and stresses. This level of k-point sampling was found to be well con-
verged. The grids used for the density and KED were the minimum needed to
represent the density of the wave functions, i.e. using grid scale of 2 and using
the same grid for the so-called “fine grid”. The system was tested using the PBE
and r2SCAN functionals, a GGA and a mGGA functional respectively. The PBE
calculations were performed so that the agreement between the DFPT and the
FD calculations could be compared between the different families of functionals.
An XC grid was used to bring the XC integration error below 1 µeV per cell,
for the PBE calculations, this corresponds to an XC grid scale of 4, and for the
r2SCAN calculations this corresponds to an XC grid scale of 10.

The SCF procedure to find the ground state was continued until the ground state
energy converged to 10−10 eV per atom and the unsymmetrised ground state
forces converged to 10−8 eV/Å. The ground-state structure of the silicon primitive
cell was also computed for both functionals. In the case of both functionals, the
geometry optimisation procedure was continued until the stress was found to be
less than 10−3 GPa. For the PBE calculation the lattice vectors of the primitive
cell were found to be a = 3.865 Å whereas the r2SCAN structure was found to
have lattice vectors of a = 3.817 Å. This is excessively well converged for most
calculations; however, it was done here to minimise the error in the ground-state,
such that we can exclude under convergence of the ground-state as the cause of
any disagreement between the DFPT calculations and the FD calculations.

DFPT calculations were performed using CASTEP’s variational minimiser which
uses a conjugate gradient algorithm [96] to vary the first-order wavefunctions to
minimise the energy derivative calculated according to equation 3.40. The conver-
gence criterion for the variational solver is that the second-order energy derivative
varies less than a convergence tolerance between successive steps of the conjugate
gradient algorithm, this tolerance was set to 10−7 eV. To calculate the off-diagonal
elements of the elastic constant tensor, and the force-response internal-strain ten-
sor, the expressions given in equations 6.4 and 6.5 were used. FD calculations
were performed using the same convergence criteria as the ground-state calcula-
tion and were performed using a finite strain of 0.001, corresponding to a 0.1%
stretching of the lattice vectors.

Table 6.1 shows the results of these calculations, which show the DFPT and FD
methods to be in excellent agreement, with the largest discrepancy in the r2SCAN
results for Cij being 8 × 10−4 GPa which is the same order of magnitude as the
largest error in the PBE results of 5×10−4 GPa. The discrepancy in the mGGA
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PBE r2SCAN
DFPT FD Difference DFPT FD Difference

C11 153.175247 153.175286 0.000039 168.849882 168.850593 0.000711
C12 56.080631 56.081199 0.000568 61.101629 61.102407 0.000778
C44 99.762010 99.762156 0.000146 108.816242 108.816474 0.000232

Λαβγ 9.065613 9.065604 0.000009 9.516626 9.516705 0.000079

Table 6.1: Comparison of the elements of the elastic constants tensor, Cij , and
the force-response internal-strain tensors, Λαβγ , of silicon calculated using finite
displacement and DFPT using the PBE and r2SCAN functionals. The Cij el-
ements are given in units of GPa and the Λαβγ elements are given in units of
eV/Å.

results for Λαβγ is 8 × 10−4 eV/ Å which although an order of magnitude larger
than the discrepancy in the PBE results, is still very small. These results are
comparable to the agreement between DFPT and FD achieved by Hamann et al
in their original publication of the method of calculating the elastic constants.
This is sufficient evidence for the derivations described in the previous section
and their implementation into CASTEP to be considered correct.

6.4 Comparison With Experiment

Now that the method has been verified as correct, we can start drawing a compar-
ison between the values computed for the elastic constants tensor using r2SCAN,
the values computed using other theoretical methods and those found experimen-
tally. There are various different theoretical methods that can be used to model
the exchange and correlation interaction; local and semi-local DFT methods are
more simple and computationally efficient methods with reasonable yet limited
accuracy, wavefunction methods or “hybrid functionals” which include some frac-
tion of Hartree-Fock exchange can be more accurate, however the computational
cost is significantly higher, and further there are many-body perturbation theory
methods, which are yet more accurate, but suffer from enormous computational
cost when compared to semi-local DFT. One recent publication, [5], makes a com-
parison of the elastic constants of silicon and diamond carbon calculated using a
range of theoretical methods against experiment, including HSE, a hybrid func-
tional, and the Random Phase Approximation (RPA), a many-body perturbation
theory method.

In tables 6.2 and 6.3 the results of Ref [5] are shown. The Mean Average Error
(MAE) is calculated from the difference between the predicted result and the
average of the experimental values. The results of Ref [5] show that among the
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LDA PBE HSE RPA r2SCAN
(this work)

Expt
[113]

Expt
[114]

Expt
[115]

C11 160.4 152.64 169.7 166.08 168.850 165.64 165.77 165.7
C12 64.8 56.66 63.01 65.82 61.102 63.94 63.92 63.9
C44 75.45 74.79 82 89.58 82.936 79.51 79.62 79.5

MAE 3.43 8.35 2.45 4.10 3.12 - - -

Table 6.2: Comparison of experimental and theoretical elastic constants of silicon.
The values given for the elements of the elastic constants tensor are in units of
GPa. The values quoted for the LDA, PBE, HSE and RPA results were found by
[5], the different experimental values are quoted with their reference, the r2SCAN
result is derived from this work.

LDA PBE HSE RPA r2SCAN
(this work)

Expt
[116]

Expt
[117]

Expt
[118]

C11 1105.6 1053 1141.6 1074.4 1099.850 1079 1076.4 1080.4
C12 129.4 125 140.2 128.6 118.730 124 125.2 127
C44 592.6 560.2 620 576.9 579.833 578 577.4 578.16

MAE 15.24 14.55 39.98 2.78 9.97 - - -

Table 6.3: Comparison of experimental and theoretical elastic constants of dia-
mond carbon. The values given for the elements of the elastic constants tensor
are in units of GPa. The values quoted for the LDA, PBE, HSE and RPA results
were found by [5], the different experimental values are quoted with their refer-
ence, the r2SCAN result is derived from this work.

LDA
(this work)

PBE
(this work)

PBE
[109]

HSE
[119]

r2SCAN
(this work)

Expt
[6, 7]

C11 397.16 372.69 379 413.0 409.08 411 ±10
C12 143.10 126.61 128 142.1 137.31 149 ±10
C33 375.65 356.79 355 380.8 390.29 389 ±10
C31 111.07 96.09 96 110.2 103.36 99 ±4
C44 115.26 111.01 112 123.5 123.04 125 ±5
C66 127.03 123.04 125 135.45 135.88 131±10

MAE 9.81 19.62 18.16 5.76 4.23 -

Table 6.4: Comparison of experimental and theoretical elastic constants of AlN.
The values given for the elements of the elastic constants tensor are in units of
GPa. The experimental values are those recommended by Ref [6] which reviewed
several experimental techniques and suggests the results of Ref [7] to be most
accurate.
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theoretical methods tested, the RPA consistently performs well in both systems;
however, HSE is the most accurate for silicon, but for diamond it is by far the
least accurate of the methods tested. Of the local and semi-local functionals
tested, LDA performs better than PBE for silicon, and their performance is fairly
comparable for diamond, despite the significantly stronger theoretical grounding
of PBE. This is not an unexpected result given the LDA tendency to “overbind”
and the GGA tendency to “underbind”. However, their chosen methods do not
include any mGGA functionals in their comparisons.

DFPT calculations were performed for the elastic constants of silicon and dia-
mond carbon using the r2SCAN functional to draw a comparison with each of
the theoretical methods used in Ref [5]. For the silicon calculations a cut-off
energy of 600 eV was used with an 8×8×8 k-point grid for sampling of the first
Brillouin zone, with a grid scale and a fine grid scale of 2. An XC grid scale of
10 was used, which was found to reduce the translational energy variance to less
than 1 µeV. For the diamond calculations a cut-off energy of 1500 eV was used
with an 14 × 14 × 14 k-point grid for sampling of the first Brillouin zone, with
a grid scale and a fine grid scale of 2. An XC grid scale of 8 was used, which
was found to reduce the translational energy variance to less than 1 µeV per cell.
For each system, the convergence tolerance for energy in the SCF procedure was
10−10 eV and for geometry relaxation, the convergence tolerance was a stress less
than 5 × 10−4 GPa. The lattice parameter of the silicon and diamond carbon
primitive cell was found to be a = 3.817 Å and a = 2.5238 Å, respectively. The
DFPT calculations used the variational solver and the second derivatives of the
energy converged to a change of less than 10−7 eV between each step of the solver.

The results for the elastic constants of silicon and diamond carbon are also pre-
sented in 6.2 and 6.3 together with the results of Ref [5]. Compared to the results
of the LDA and PBE, r2SCAN is clearly much closer to the experimental results,
with a much smaller MAE compared LDA and PBE in both silicon and diamond.

Aluminium Nitride, AlN, is a very wide band-gap semiconductor with a strong
piezoelectric response and can be used to make LEDs in the ultra-violet wave-
length [120]. An advantage of AlN for the purposes of this study is that the stable
phase of AlN at ambient conditions is a wurtzite structure which has hexagonal
symmetry, which is significantly different from the crystal structure of the mate-
rials discussed so far. Materials with a wurtzite crystal structure have 6 unique
values in their elastic constants tensor, however only 5 of those values are inde-
pendent, C11, C21, C33, C31 & C44, the final value, C66 is a linear combination
of the independent values, such that C66 = C11−C21

2 . A further advantage is that
there are also a number of experimental and theoretical predictions of elastic con-
stants in the literature against which we can compare the values calculated using
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the methods developed in this thesis [6, 7, 109, 119].

The calculations of the AlN elastic properties were performed using a selection
of XC functionals, the LDA (PW parametrisation [3]), PBE [2], and r2SCAN
[36]. A cut-off energy of 1500 eV was used for all functionals, with a 13 × 13 × 7
Monkhorst-pack grid of k-points, which corresponds to a reciprocal space sam-
pling of 0.03 2πÅ−1. The default grids were used for density and potentials,
except for when computing the XC components of the energy, where the grid size
was chosen to reduce the translational symmetry breaking to below 1 µeV, which
was found to be an XC grid scale of 4 for LDA, 6 for PBE, and 10 for r2SCAN.
The SCF procedure in the ground-state calculations converged the total energy
per atom to 10−10 eV, the geometry relaxations the atomic forces and cell stress
were minimised to be smaller than 10−3 eV/Å and 10−3 GPa respectively. In the
self-consistent calculation of the first order wavefunctions, the diagonal elements
of the dynamical matrix and elastic constants were converged using the Green’s
function solver to 10−6 eV/Å2 and 10−6 eV respectively.

The results of each calculation of the AlN elastic constants are shown in table 6.4,
also shown in table 6.4 are previous theoretical predictions and experimental re-
sults. Comparing the results of this work to previous theoretical predictions, the
results of PBE calculation performed in this work is in reasonable agreement with
the PBE calculation of Ref [109], with the slight discrepancies being attributable
to different code bases and different pseudopotentials, coming before the work
of the Delta project, which significantly improved reproducibility across DFT
simulation packages [70]. Comparing each of the methods shown against the ex-
perimental result, it can be seen that r2SCAN has the smallest MAE, marginally
smaller than the MAE of HSE, a significantly more expensive theoretical method,
and the r2SCAN MAE is almost a quarter the MAE of the PBE calculations and
is half that of the LDA calculation. r2SCAN and HSE are both with in the error
bars of all the experimental results bar one, the C31 element for HSE and the
C12 element for r2SCAN.

6.5 Conclusion

In this chapter the derivation of the necessary additional terms to calculate the
Elastic constants tensor from DFPT using a meta-GGA functional has been pre-
sented. Results from the presented DFPT method are found to be in excellent
agreement with finite difference calculations, verifying the derivations and their
implementation within CASTEP. Comparison was then made between the predic-
tions of a selection of XC functionals, including the mGGA functional r2SCAN,
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and wavefunction methods where available in the literature. These predictions
are compared against the experimentally measured values and it was found that
the LDA and GGA functional tested were far less accurate than r2SCAN in all
cases. When compared against the wavefunction methods r2SCAN is either found
to be fairly comparable in accuracy, but as a semi-local XC approximation, is far
less computationally demanding.

These results again demonstrate that DFT calculations using r2SCAN are a pow-
erful theoretical technique, with an accuracy comparable to that of high-level
theoretical methods, at a fraction of the computational cost. A larger study in-
cluding a wider variety of materials is needed to determine the extent of r2SCAN’s
accuracy for elastic constants across the material landscape with the enhanced
accuracy that DFPT provides; however, these initial results are very promising.
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Conclusions

The aim of this thesis was to extend the theoretical framework of DFPT to include
meta-GGA functionals. Having covered the necessary details of the theoretical
framework in previous chapters, this chapter attempts to bring the need for this
work into focus by using the methods developed throughout the thesis to make
a coarse prediction of the thermoelectric properties of TaFeSb using the meta-
GGA functional r2SCAN. Recall from chapter 1 that the change from a GGA
functional, PBE, to r2SCAN had a very small effect on the relaxed lattice param-
eters and most of the features of the electronic structure, other than the band
gap which increased by 20%. Therefore, it could be expected that there would
be similarly small changes in qualitative behaviour in the predicted values of the
thermoelectric figure of merit, ZT . However, as illustrated in this chapter, this
is not necessarily the case.

To conclude, the work presented in the thesis is summarised, and the outlook on
future work is discussed.

7.1 ZT of TaFeSb : a meta-GGA Prediction

As a promising thermoelectric material, there have been several publications in-
vestigating the various properties of TaFeSb, both experimental and theoretical
[23, 24, 27]. These results tend to focus on the electronic structure and change of
the thermoelectric figure of merit, ZT , under the effect of doping. Here, we shall
use the methods developed in the thesis to explore the change in the prediction of
ZT under a change of the XC functional, going from the GGA functional PBE, to
the meta-GGA functional r2SCAN. The presented results are intended to show
that a change in XC functional can make a significant difference to predicted
material properties. In the case of TaFeSb, this is despite the fact that beyond
the band gap there is very little change in the electronic structure. The results
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in this section should not be interpreted as an earnest prediction of the ZT of
TaFeSb since the choice of transport models is not necessarily applicable. With
that in mind, we shall continue.

As discussed in the introductory chapter, the expression for ZT is,

ZT = S2σ

κelec +κlat
T, (7.1)

where σ is the electrical conductivity of the material; κelec and κlat are the ther-
mal conductivity of the material due to the electrons and the lattice vibrations
(phonons) respectively, and S is the Seebeck coefficient of the material. Boltz-
TraP2 [47] can take the electronic density of states from a DFT simulation and
determine values for S2σ

τ and κelec
τ where τ is the scattering time of the charge

carriers. In order to make a prediction of the thermoelectric efficiency for TaFeSb,
two additional quantities are required, the scattering time of the charge carriers,
τ , and the thermal conductivity due to the lattice, κlat.

7.1.1 Charge Carrier Scattering Time, τ

At low temperatures and low doping levels, τ is dominated by electron-phonon
interactions and therefore can be approximated as purely the electron-phonon
contribution, τ = τe-ph. We shall discuss two approaches of calculating τe-ph here,
direct calculation of the electron-phonon coupling matrix elements, and the de-
formation potential approximation.

Direct calculation of the electron-phonon coupling matrix elements requires the
first-order change in Hamiltonian under the perturbation of a phonon mode, see
Section 3.2.1.1 equation 3.7. This can be obtained from the sum over the first-
order changes in the Hamiltonian under the movement of each atom in the phonon
mode, weighted by their contribution to the phonon eigenvector. The first-order
change of the Hamiltonian under the movement of each atom can be obtained
via the methods set out in Chapter 4 of this thesis, thus the work set out there
enables direct calculation of the electron-phonon coupling matrix elements within
the meta-GGA formalism. The electron-phonon coupling matrix elements have
wider applicability, beyond just thermoelectric materials, to any material prop-
erty involving transport, including superconductivity [121, 122]. The number of
calculations necessary to predict a value for τe-ph using the electron-phonon cou-
pling matrix elements is still vast, so for the illustrative purposes of this section,
we instead turn to a far less computationally intense method.

The acoustic deformation potential approximation is often applied to semicon-
ductors, and assumes that the long wavelength acoustic phonon modes are the
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dominant modes involved in the electron-phonon scattering process (§3.2.3.2).
The predictions of ZT for TaFeSb in the literature [23, 24] have all made use of
the deformation potential theory to calculate τe-ph. The expression for τe-ph is
given in 3.16 but is repeated here,

1
τe-ph

= λ2
ADPπN (ϵF)kBT

ℏCαβαβ
, (7.2)

which involves several material properties, the diagonal element of the elastic
constants tensor, Cαβαβ, the density of states at the Fermi level, N (ϵF), which is
a function of both material doping and temperature. The elastic constants tensor
can be straightforwardly be obtained using the methods described in Chapter 6,
and N (ϵF) is determined by BoltzTraP2.

Finally, recall that λADP is the acoustic deformation potential, which can be
expressed as the derivative of the band edge energies, ϵBE, with respect to a
strain,

λADP = dϵBE
dηαβ

, (7.3)

where the derivative of the valence band maximum is used to determine the
scattering rate of the p-doped material and the derivative of the conduction band
minimum is used to determine the scattering rate of the n-doped material. The
derivatives of the band energies with respect to a perturbation can be obtained
directly from DFPT calculations as described in 3.4.1.3.

7.1.2 Lattice Thermal Conductivity, κlat

Prediction of the lattice thermal conductivity, κlat, can be done in several ways.
The work set out in this thesis should be impactful when using any of the exist-
ing methods in combination with meta-GGA functionals. For molecular dynamics
based methods such as the Green-Kubo approach [123], the work presented in
chapter 5 will remove the numerical noise from the energy landscape and im-
prove their accuracy. The work presented in chapter 4 allows the calculation of
the phonon density of states and group velocities to be used with the Callaway-
Holland model [124, 125]. This work enables far more efficient calculation of the
harmonic interatomic force constants via DFPT, which can then be used to solve
the Boltzmann transport equation for phonons [126, 127, 128]. However, the nec-
essary additional terms to calculate the anharmonic interatomic force constants,
which are required to go beyond the constant relaxation-time approximation,
have not yet been handled. The anharmonic interatomic force constants must
still be calculated by finite difference calculation, where the work of Chapter 5
again becomes useful in removing the numerical noise from the energy landscape.
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Again, for the illustrative purposes of this section, we shall choose to use a less
computationally intense method. The Slack model [129] is an empirically fitted
model that has limited applicability beyond the materials for which it was orig-
inally fitted. However, it has the advantage that it depends only on a handful
of material constants. It should be made clear that there is little to no expecta-
tion that the values for κlat obtained from Slack’s model are in any way accurate
predictions; it merely serves a purpose here to show how the predictions from a
GGA and a meta-GGA functional can vary.

It is a somewhat convoluted journey from the elastic constants to the lattice
thermal conductivity, which here we shall follow in reverse, starting with the
expression for the lattice thermal conductivity. In Slack’s model, κlat can be
computed as follows,

κlat = 2.61 × 10−6

1 − 0.514
γ + 0.288

γ2

Θ3
DV

1
3
atmav

γ2n
2
3
atT

, (7.4)

where, ΘD is the Debye temperature and γ is the Gruneisen parameter. The other
quantities in the equation are Vat, the volume per atom in units of angstroms,
mav, the average atomic mass in atomic mass units, nat, the number of atoms
per unit cell, and T the temperature [129]. Both ΘD and γ can be determined
from the elastic constant tensor through vav, the average velocity of sound in the
material [86]. This can be done using the following relations; the longitudinal
sound velocity vL and the transverse sound velocity vT can be determined from
the density of the material, ρ, and the Bulk (B) and Shear (G) moduli,

vL =

√√√√B+ 4
3G

ρ
, (7.5)

vT =
√
G

ρ
, (7.6)

note that the Bulk and Shear moduli can be determined directly from the elastic
constants tensor. The longitudinal and transverse sound velocity can then be
combined to produce the average sound velocity, vav,

vav =
[

1
3

(
1
v3

L
+ 2
v3

T

)]− 1
3
. (7.7)

The Debye temperature is calculated from the average velocity of sound using
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the following expression,

ΘD = ℏ
kB
vav

(
6π2nat

Ω

) 1
3
, (7.8)

where nat is again the number of atoms per unit cell and Ω is the volume of the
unit cell. The acoustic Gruneisen parameter can be determined from the Poisson
ratio, ν, which can be calculated from the transverse and longitudinal velocities
of sound,

ν =
1 − 2

(
v2

T/v
2
L
)

2 − 2
(
v2

T/v
2
L
) , γ = 3

2

( 1 +ν

2 − 3ν

)
. (7.9)

7.1.3 TaFeSb calculations

The calculations of the TaFeSb properties were performed using two XC func-
tionals, PBE [2], and r2SCAN [36]. A cut-off energy of 2000 eV was used for all
functionals, with a 9×9×9 Monkhorst-pack grid of k-points, which corresponds
to a reciprocal space sampling of 0.021 2πÅ−1.

The default grids were used for the density and potentials, except for when com-
puting the XC components of the energy, where the grid size was chosen to reduce
the translational symmetry breaking to below 1 µeV, which was found to be an
XC grid scale of 4 for LDA (Perdew-Wang parametrisation), 6 for PBE and 10
for r2SCAN. The SCF procedure in the ground-state calculations converged the
total energy per atom to 10−10 eV, the geometry relaxations the atomic forces
and cell stress were minimised to be smaller than 10−3 eV/Å and 10−3 GPa re-
spectively. In the self-consistent calculation of the first-order wavefunctions, the
diagonal elements of the dynamical matrix and elastic constants were converged
using the Green’s function solver to 10−6 eV/Å2 and 10−6 eV respectively.

The values determined for the elastic constants and the deformation potentials in
the case of each functional are presented in Table 7.1 and Table 7.2, respectively.
Also presented are the results reported in Ref [23]. The results of Ref [23] are
in reasonable agreement with the prediction made in this work using the PBE
functional. The difference could be ascribed to a change in the method used to
calculate the elastic constants or a change in the pseudopotential library used.
The calculations of Ref [23] used a finite difference method to calculate the elas-
tic constants and the “C9” library, while the calculations in this work used the
“NCP19” set. In the intervening time between the development of the ‘C9” and
“NCP19” pseudopotential libraries, significant work was undertaken to ensure the
accuracy and transferability of pseudopotentials as part of the Delta project [70].
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PBE
[23]

PBE
(this work)

r2SCAN
(this work)

C11 326.8 329.38 363.68
C12 100.3 97.77 103.81
C44 77.6 76.56 80.14

Table 7.1: Comparison of theoretical predictions of the elastic constants of
TaFeSb. The values given for the elements of the elastic constants tensor are
in units of GPa.

PBE
[23]

PBE
(this work)

r2SCAN
(this work)

λVBM
[eV] 11.06 12.69 12.92

λCBM
[eV] 11.81 13.85 14.164

Table 7.2: Comparison of the values obtained for the deformation potentials of
the valence band maximum and conduction band minimum of TaFeSb.

This is most likely to account for the differences in the predicted values for the
elastic constants, and suggests that the values predicted in this work are likely
to be marginally more accurate.

The change in value predicted by the elastic constants when switching from PBE
to r2SCAN is more significant, for the C12 and C44 elements the difference in
values is only a few GPa, a percentage change of ∼ 4%. However, for the C11

element, the difference is over 30 GPa, or a percentage change of ∼ 10%. When
comparing the deformation potentials obtained from the two functionals, they
only differ by ∼ 2%. Once again, the values obtained from the meta-GGA func-
tional do not appear to differ dramatically from the values obtained from the
GGA functional.

The elastic constants tensors found using each functional can then be used to
determine values for the Debye temperature and Gruneisen parameter to then be
used in Slack’s model for κlat. The values of the deformation potential can then
be combined with the elastic constant tensor to determine the values for τe-ph.
The values determined for κlat and τe-ph can then be combined with the values
for S2σ

τ and κelec
τ produced by BoltzTrap2.

We can now finally arrive at our predictions of ZT for TaFeSb, with the results of
the PBE and r2SCAN calculations presented in Figures 7.1 and 7.2 respectively.
Although there have only been quite modest changes when switching XC func-
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Figure 7.1: ZT of TaFeSb calculated using PBE, plotted as a function of the
shifted Fermi energy under doping. Each line represents the calculation at a
different temperature.

Figure 7.2: ZT of TaFeSb calculated using r2SCAN, plotted as a function of
the shifted Fermi energy under doping. Each line represents the calculation at a
different temperature.
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tional in the majority of the properties directly discussed so far, it can be seen
that the predicted values of ZT from the r2SCAN calculations are significantly
higher than those predicted by PBE, particularly at higher temperatures. For
p-doping, the behaviour of ZT is very similar between the two functionals, ex-
cept the maximum ZT obtained is ∼ 1.5 for PBE, and ∼ 2.15 for r2SCAN, both
at 1000 K and with the Fermi energy shifted down by 0.125 eV. Interestingly,
r2SCAN calculations predict a much higher ZT for n-doped TaFeSb showing a
qualitative difference in the behaviour of ZT under doping compared to PBE,
with a maximum ZT above 2.5 predicted by r2SCAN compared to the maximum
ZT just below 1.5 predicted by PBE, both at 800 K and the Fermi energy in-
creased by ∼ 0.25 eV. It should not be forgotten that these results are obtained
using a very crude model for κlat, and it is likely that these results are far from
accurate. However, the qualitative difference in the doping behaviour between
functionals is likely to persist were more accurate method used to calculate values
for κlat, as the effects on κlat from such minor doping of the material are likely
to be minimal.

7.2 Summary and Future Work

The topic of this thesis has been to build the theoretical framework necessary
to simultaneously utilise the chemical accuracy of the recently introduced meta-
GGA functionals and the computational efficiency of DFPT. However, of the
material response functions that can be obtained via DFPT, only the dynamical
matrix, the internal-strain force-response matrix, and the frozen-ion elastic con-
stants tensor have been directly touched upon in this thesis. As has been seen,
this is sufficient to calculate many interesting and useful material properties, but
it is by no means the limit of what is possible using DFPT.

One obvious example of something that has not been touched upon in this the-
sis is a materials response to applied electric and magnetic fields. The former
can be used to calculate the dielectric permittivity of a material [95, 100], the
latter can be used to predict the chemical shifts of molecules/materials in Nu-
clear Magnetic Resonance (NMR) spectroscopy experiments [130]. Both of these
applications yield yet more interesting and important materials properties, at po-
tentially increased accuracy with the meta-GGAs. Chapter 3 presents the general
derivations of the meta-GGA + DFPT theoretical framework, this should mean
that future work to incorporate more response functions should be relatively more
straightforward.

The work described in Chapter 5 also has significant and interesting implications.
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In that chapter a method was presented for estimating the uncertainty in the
calculated energy introduced by a numerical sampling of the XC energy integral,
as well as a more efficient method of avoiding the numerical issues. The cut-off
energy and k-point mesh are other examples where it would be useful to determine
an energy uncertainty related to numerical sampling parameters.

This is becoming more relevant as it becomes increasingly common to automate
DFT calculations for a wide range of materials using a predetermined best guess
at the appropriate cut-off energy and k-point mesh for the materials under study.
This usually leads to one of three possibilities, either, the researcher chooses a
set of parameters which are overkill for the majority of materials under study
and wastes a considerable amount of compute power, the researcher chooses a set
of parameters which are significantly under-converged for most materials under
study and generates inaccurate results of little use, or, some mixture of these
possibilities with few ways to tell which results fall into which category. Clearly,
a methodology which could provide some estimate of the accuracy of the chosen
numerical parameters would be of immense use in these applications and others.
There is a possibility that the work described in Chapter 5 could be the foundation
of such a methodology.
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José A. Flores-Livas, Kevin F. Garrity, Luigi Genovese, Paolo Giannozzi,
Matteo Giantomassi, Stefan Goedecker, Xavier Gonze, Oscar Gr̊anäs,
E. K. U. Gross, Andris Gulans, François Gygi, D. R. Hamann, Phil J.
Hasnip, N. A. W. Holzwarth, Diana Iuşan, Dominik B. Jochym, François
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