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Abstract 

Most consumer images serve emotional functions as well as informational 

ones. The impression of an image can be affected not only by physical properties 

e. g. size, colour and media but also by the context of images, aesthetic properties 
and social/personal backgrounds of observers. However in traditional frameworks in 
image quality studies, the impacts of colour-appearance attributes on image quality 
have focused on maximising the informational functions of images, considering an 
image as a reproduced copy of a real scene. Thus, a new approach was adopted in 

this study in an attempt to investigate the emotional aspect of an image. The goal of 
this research is to study the impact of colour-appearance attributes of an image on 

emotional responses, and to develop quantitative models for predicting emotional 

response considering the context of the image. To achieve this goal, three sets of 

psychophysical and physiological experiments have been conducted. 

First, the relationship between colour-appearance attributes and overall 

affective response to images was investigated for four different types of image 

contents. It was found that image colourfulness and lightness contrast had a 

consistent influence on these relationships for all types of images. The relationships 

between emotional responses of image pleasantness and excitement were 

significantly different between positive images and negative images. Accordingly, 

quantitative models of image pleasantness and excitement were developed as a 
function of image colourfulness and contrast separately for the two groups of 
images. Finally, models of image pleasantness and excitement for positive and 

negative images were developed as a linear equation based on models developed 

for each colour attribute. 

The relationships between colour-appearance attributes and responses on 

colour-emotion scales, active-passive, heavy-light and warm-cool, were also 

studied for four different types of image content. Quantitative models of the three 

colour-emotion scales were developed as a function of colour attributes of images 

such as lightness, colourfulness and lightness contrast. As an application of using 
the colour-emotion model developed for images, the relationships between colour- 

emotion scales and image emotion were investigated and quantitative models of 
image pleasantness and excitement were developed as functions of three colour- 

emotion scales for two groups of images: positive and negative. The model 

performance based on the colour-emotion scales was compared with the 

performance of models based on the colour attributes. As a result, the latter model 

performed better than former. 

V 



The impact of image content and colour attributes of an image on emotional 

responses to images was investigated by measuring physiological responses to 

images which were compared with the psychophysical responses. It was found that 

the activities in skin conductance and heart rate showed significantly greater 

responses for the images with personal meanings and significances. For the effect 

of colour attributes in images, it was found that more chromatic images generated 
higher activity in skin conductance responses. It was also found that lower contrast 
images generated higher activity in corrugator EMG responses. 
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Chapter 1 Introduction 



1.1 Background 

Traditional approaches to evaluating the quality of colour image reproduction 

and to studying impact of colour-appearance attributes on image quality have 

focused on maximising the informational content of images, considering an image 

as a reproduced copy of a real scene. From this point of view, a number of 

definitions of image quality have been proposed, which involved concepts such as 

fidelity, naturalness and usefulness. (see Section 2.5.2) Colour plays a critical role 

especially in the evaluation of image naturalness. The most widely-used definition 

of naturalness is the extent to which the reproduced colours match the prototypical 

colours for critical objects such as skin, sky and grass (Yendrikhovskij at al., 1999a). 

Therefore, the role of colour attributes (e. g. hue and colourfulness) in these 

concepts of image quality has been extensively studied (see Section 2.5.4.5) and a 

number of quantitative models (see Section 2.5.4.5). 

Note, however, that most consumer images serve emotional functions as well 

as informational ones. As a copy of the real world, an image can provide a wide 

range of visual information about objects, their colours and the configuration and so 

on. On the other hand, an image also has emotional aspects which may play a 

significant role in quality evaluation, especially for consumer images (Norman 2004). 

As for other products, the impression of an image can be affected by many factors 

such as context, physical properties (e. g. size, colour and media; see section 2.5.4) 

and individual preferences regarding cultural background, gender, or personality. 

Among these factors, one of the most critical factors is the context of images, 

which should be considered for enhancing the emotional impact. The content of a 

photographic image can be anything that exists in the real world, and its usage can 
be extremely wide. With the emotional function, images have long been used as 

emotional stimuli in experimental psychology. To provide a theoretical basis in this 

research area, a set of emotional pictures called the International Affective Picture 

System (aka LAPS; see Section 2.5.3) has been established. Many studies using 
the LAPS images as stimuli have found that the emotional responses largely depend 

on different image contents. 

Moreover, an image can serve as visual records of experiences and 

memories for individuals and for specific groups of people for a moment of life. For 

example, people want to keep pictures of their family members in a frame on their 

desk or in their wallet not because they want to remember what their family 

members look like but because they enjoy the special feelings from looking at them 

and from having them dose by. In other words, subject matter and personal 

aspects of images should be considered in quality estimation of images. 
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Thus, the present study aimed to investigate the role of colour in an image to 
control the emotional quality in association with contextual and personal properties. 
The result can be applied to existing imaging devices to perform affective 
judgement and to make the rendered image the most appropriate colour 
reproduction over the context of the image. To achieve this, the colour attributes of 
images need to be analysed and manipulated in such a way that a specific affective 
response to the images can be obtained. In the present study, the practical 
questions related to this application are: (a) how do we modify an image's colour 
characteristics in order to enhance its emotional impact? (b) are image emotion 
models derived from generic images applicable to personal ones? 

To define and utilise the affective responses in a systematic way, two 
approaches were used to collect and to analyse the experimental data: dimensional 
models of emotions (see Section 2.4.2) and the "colour-emotion" models (see 
Section 2.4.5). Dimensional models of emotions were used to assess the overall 
emotional responses to images in association with context including image content 
and personal attachment to the images. Colour-emotion models help define the 

relationship between colours and reactive-level emotional responses determined by 
the configurations of colour stimuli. According to Ou et al. 's models (Ou, 2004a), all 
colour-emotions can be represented in a three-dimensional space defined by three 
independent axes, "colour activity", "colour weight" and "colour heat"; every single 
colour is located in this colour-emotion space and is defined by these three 

coordinates. It has been shown that the colour-emotion of any colour pair can be 
determined by a simple mean of the two emotion values of the two individual 

colours in that pair, which is called the "additivity of colour-emotion" (Ou, 2004b). 
Whether this additivity principle works for any complex images still remains to be 

seen, as an image includes millions of colour pixels. Nevertheless, having this 

model in relation with overall emotional responses for complex images will help 

modify an image's emotional impact more easily and more systematically. Thus, the 
present work focused on the following aspects: the relationship between overall 
emotional responses and colour-emotion responses, the relationship between the 
three factors of colour-emotion models in complex images, and the effects of colour 
attributes of an image on observer responses. These aspects were dealt with using 
psychophysical methods such as categorical judgement (see Section 2.4.3.1). 

Emotional experiences involve several components including subjective 
feelings and physiological changes (see Section 2.4.3). Thus, physiological 
measurement and psychophysical methods were both used in the present research 
to obtain observer responses of different aspects. Although the results obtained 
from different components can sometimes be contradictory, such data will provide a 
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deeper understanding of the impact of colour on affective responses to images than 
those based on only one component. The two types of measurements, 
psychophysical and physiological measurement, were compared in the present 
study, and the results discussed. 

1.2 Objectives 

The goals of the present study were to investigate the impact of the colour- 
appearance attributes of an image on the observer's emotional responses and to 
develop models for predicting the emotional responses considering the context of 
the image. Note that emotional responses may vary with the context of an image 

which is actually unlimited. In achieving these goals, specific objectives have been 

considered: 

(a) To investigate the relationship between colour-appearance attributes and 
overall affective responses to images. 

(b) To investigate the affective responses to images for different types of 
image contents including images having personal significance. 

(c) To investigate the relationships between colour-appearance attributes and 
"colour-emotion" responses (see Section 2.4.5) for images, and between overall 
emotional responses and "colour-emotion" responses for complex images. 

(d) To develop models for predicting overall affective responses to different 
types of images. The prediction will be based on colour-appearance attributes and 
"colour-emotion" values. 

(d) To measure physiological responses to images and compare these with 
the psychophysical responses to images. 

1.3 Thesis Outline 

This thesis includes eight chapters as described below: 

Chapter 2 Literature Review 

In this chapter, studies in the literature relevant to the present research are 

reviewed, and divided into five subject areas: human visual system, colorimetry, 

colour-appearance models, emotional and affective quality of images. After this 
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review, the scope of the present study is defined and the research hypotheses are 
provided. 

Chapter 3 Experimental Preparation 

The experimental setup for this research are described in five sections: the 

specification of colour-measuring equipment, the colorimetric characteristics and 
characterisation models for the imaging devices used, the characteristics of 
physiological instruments and the experimental setups for the three experiments 
in this work. Statistical methods used for the data analysis are also described. 

Chapter 4 Experiment 1: Impacts of Colour-Appearance Attributes on 
Emotion for Printed Images Based on Psychophysical Method 

This chapter describes the results from the psychophysical part of Experiment 
1, which aimed to reveal the relationships between the colour-appearance attributes 
of images and overall emotional responses to images (also called "image emotion" 
in this thesis), in association with the contents of images. A set of quantitative 
models for predicting such relationships were accordingly developed as functions of 
colorimetric quantities with regards to the effect of image contents. The models are 
presented at the end of the chapter. 

Chapter 5 Experiment 2: Impacts of Colour-Appearance Attributes on 
Emotion for Displayed Images Based on Psychophysical Method 

This chapter describes the results from Experiment 2 which aimed to 
investigate the relationships between the "colour-emotion factors" identified by Ou 

et al. (i. e. activity, weight and heat; see Section 2.4.5.2) for complex images and 
colorimetric quantities of images, and the relationships between the colour-emotion 
factors and overall emotional responses to images. A set of quantitative models for 
the three factors of colour-emotion and for overall image emotion were developed 

as functions of colorimetric quantities of images. Moreover, quantitative models of 
image emotion responses were developed as functions of three colour-emotion 
factors. Predictive performances of these models are compared in this chapter. 

Chapter 6 Comparison of Image-Emotion Models Developed for Different 
Media 
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This chapter compares the image-emotion models for pleasantness and 
excitement, as developed for printed and displayed images. Also presented are the 

combined models as functions of colour attributes of images. 

Chapter 7 Impacts of Colour-Appearance Attributes on Emotion Based on 
Physiological Method 

This chapter describes the results from the physiological part of Experiments 
1 and 3. The aim of these measurements was to investigate the effect of colour 
attributes of images on emotional responses in terms of physiological reactions, 
and to find any differences in the effect of colour according to image content. The 

results described include the following: comparisons of physiological responses 
with the psychophysical data; the effects of image content on the physiological 
responses; and the effects of colour attributes on the physiological responses. 

Chapter 8 Conclusions 

This chapter summarises the major findings of the present study. Future work is 

also discussed. 

1.4 Publications Based on this Work 

The following publications were produced in the course of the present 
research. 

  Joohee Jun, Li-Chen Ou, Boris Oicherman, Shuo-Ting Wei, Ronnier M. 
Luo, Hila Nachilieli, Carl Staelin. (2010) "Psychophysical and 
physiological measurement of image emotion", ISBT's 18th Color 
Imaging Conference, San Antonio, Texas, USA: 121-127. 

  Joohee Jun, Li-Chen Ou, Ronnier M. Luo. (2011) "Extension of Colour- 

emotion Model for Complex Images", AIC 2011 Midterm Meeting, Zurich, 
Switzerland (accepted). 

" Ou, L., Jun, J., Oicherman, B., Wei, S., Luo, M. R., Nachilieli, H., Staelin, 
C. "Affective quality of images assessed by psychophysical and psycho- 

physiological methods", Color Research and Application (under review). 
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Chapter 2 Literature Review 
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The aims of this study are to understand the relationship between the colour 

characteristics of images and the emotional responses elicited by those images and 
to develop quantitative models of image emotion as functions of colorimetric 

quantities. This chapter reviews relevant literatures about colour, emotion, images 

and their relationship. It includes five main topics: an overview of the human visual 

system and colour perception in Section 2.1; an overview of CIE Colorimetry in 
Section 2.2; a discussion of colour-appearance attributes and the CIECAM02 model 
in Section 2.3; an overview of background theories about emotion studies in 

psychology and also studies related to the relationship between visual experiences 
and emotion in Section 2.4; an investigation of earlier studies related to image 

quality and emotional responses to images in order to reveal the important factors 
for affective image quality in Section 2.5. 

2.1 Human Vision 

Three elements of colour perceptions are the light, object and the eye which is 

part of the human visual system. The human visual system is one of the key 

elements required to see the colour of an object together with light and object. In 

this section, the structure of the eye and the procedure of colour perception are 
reviewed. The general reference used in this section is Fairchild's Color- 

appearance Models (Fairchild, 2005) and Lee's Introduction to Color Imaging 
Science (Lee, 2005). 

2.1.1 Human Eye 

The eye is a sensory organ which collects visual information from the outside 

world. Figure 2.1 shows a schematic diagram of the anatomical structure of the eye. 
The structure of the human eye can be analogous to a camera. The cornea and 
lens focus an image of the visual field on the retina. The retina, which is located at 
the back of the eye, acts like the image sensor or film of a camera. The cornea is a 
transparent outer surface which is the most important element for image-forming 

where the largest change in index of refraction in the eye's optical system exists 
between the curved surface and air at the interface. The lens is a flexible and 
layered structure which varies in refractive index. The iris is a sphincter muscle that 

controls pupil size. The retina is where the optical image formed by the eye is 

projected. It is located at the back of the eye and includes photosensitive cells of 

the visual system and circuit structure for initial signal processing and transmission. 

These cells are neurons, part of the central nervous system. The fovea, located on 
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the retina, covers an area that subtends about 2° of visual field from the visual axis. 

The fovea has the best spatial and colour vision. Spatial acuity falls dramatically as 

the stimulus moves away from the fovea. The macular pigment is a yellow filter 

which protects the fovea by blocking short-wavelength light. Thus, together with the 

lens, influence inter-observer variability since their optical densities vary 

significantly from person to person. The optic nerve consists of axons of the 

ganglion cells which are the last level of neural processing in the retina. The 

information generated by photoreceptors is compressed and carried to fibres. 
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Figure 2.1 Cross-sectional drawing of the eye 
(http: //www. 99main. com/-charlief/Blindness. htm) 

2.1.2 The Retina 

The retina includes several layers of neural cells: photoreceptors (rods and 

cones), bipolar cells and ganglion cells. The signals transmitted from the retina to 

higher levels of the brain via the ganglion cells are sophisticated combinations of 
the receptor signals. Each synapse between neural cells can effectively perform a 

mathematical operation such as adding, subtracting, multiplying and dividing 

additionally to the amplification, gain control and non-linearities which can appear 

within the neural cells. 

The photoreceptor has two classes: rods and cones. Rods serve vision at low 

luminance levels while cones serve vision at higher luminance levels. When only 

rods are active, vision is referred to as scotopic. When only cones are active, vision 
is referred to as photopic. When both rods and cones are active, vision is referred 
to as mesopic. 
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While there is only one type of rod cells with a peak sensitivity at 

approximately 510nm, there are three types of cone cells: L, M and S. The LMS 

serve colour vision, whereas the rod system is incapable of colour vision. The S 

cones are relatively sparsely populated throughout the retina and completely absent 
from the most of the central area of the fovea. The relative proportion of the L: M: S 

cones is approximately 12: 6: 1. There are few rods present in the fovea whereas 
cone cells are highly concentrated in the fovea. 

Figure 2.2 Schematic of the cells of the retina 
(http: //faculty. washington. edu/chudler/eyecol. html) 

2.1.3 Colour Perception 

The optical image on the retina is first transformed into chemical and electrical 
signals in the photoreceptors. These signals are then processed though a network 
of retinal neurons which consist of horizontal, bipolar, amacrine and ganglion cells. 
The ganglion cell axons gather to form the optic nerve, which projects to the lateral 

geniculate nucleus (LGN) in the thalamus. The LGN cells project onto visual area in 
the optical lobe of the cortex. In approximately 30 visual areas, cortical processing 
occurs and perception is achieved. 

In the late 19th century, Palmer, Young and von Helmholtz claimed that we 
cannot have many types of colour sensors, one for each spectral composition, and 
they further proposed that we have three (Lee, 2005). Their theory of colour vision, 
based on direct sensor output from the three types of photoreceptor in the retina, is 

called trichromatic theory. Maxwell's demonstration, in which most colours we see 

can be reproduced by additively mixing three primary colours, supported 
trichromatic theory (Lee, 2005). Based on their work, trichromatic theory was 

proposed in which, it was assumed that a colour stimulus gives rise to signals 
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formed by the three sets of receptors are transmitted to the brain to give rise to the 
perception of colour-appearance (see Section 2.3). 

In 1878, Hering proposed an opponent-colours theory of vision as a result of 
many observations of colour-appearance phenomena. Hering reported that certain 
hues were never perceived together, for example reddish-green or yellowish blue. 
This phenomenon cannot be explained by trichromatic theory and led to him 

suggesting the opponent-colour theory. This theory assumes the existence of visual 
processes capable of generating neural signals of two opposite kinds, depending 

on the wavelength (Wyszecki, 1982). 

Jameson (Jameson, et al., 1955) conducted hue-cancellation experiments 
and provided a method of quantifying opponent colours. In the experiments, 
observers were asked if the stimulus was reddish or greenish. Then another colour 
was added to cancel the existing reddish or greenish appearance. The same test 

was conducted using yellow and blue lights. The amount of cancellation colour 

used was taken as an indicator of the strength of the cancelled hue. Poirson et al. 
(1993) proposed three colour pathways determining colour-appearance which are 
white-black, red-green and yellow-blue. It was found that the three visual pathways 
explained well the opponent-colour mechanism based on the results from the hue- 

cancellation experiment. He suggested that the neurons of the retina encode the 

colour into opponent signals. That is the outputs of all three cone types are 

summed (L+M+S) to produce an achromatic response. In addition, (L-M+S) 

produces red-green signals and (L+M-S) produces the yellow-blue signals. This is 
illustrated in Figure 2.3. 
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Figure 2.3 Schematic diagram for encoding cone signals into opponent-colour 
signals. RGB triangles represent LMS cone signals respectively. 

(http: //faculty. washington. edu/chudler/eyecol. html) 
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2.2 CIE Colorimetry 

The CIE colorimetry system (CIE, 2004) provides standard methods for 

specifying colour stimuli under controlled viewing conditions. The key components 
in colour perception, illumination, objects and standard observers are 
recommended by the system. This section describes how these components are 
specified and how they can be used together to specify a colour. 

2.2.1 Light Source 

A light source is defined by measuring its spectral power distribution curve 
(SPD), a function of wavelength across the visible spectrum. Spectral power is 

represented by spectral radiance (W/sr/m2/nm), which is the emitted energy per unit 
time (power) per unit solid angle and per unit area measured in a given direction, at 
a point of a beam at each wavelength. A spectroradiometer is commonly used for 

measuring the SPD of a light source. 

In 1931, the CIE recommended the use of three standard illuminants, known 

as illuminants A, B and C, representing incandescent light, direct sunlight and 
average daylight having the correlated colour temperatures (CCT) of about 2856, 
4874 and 6774 K respectively. In 1963, the CIE recommended a series of D 
illuminants to meet the need of measuring colours that contain the ultra-violet 
region. The most widely-used D illuminants are D65 for surface colour industries 

and D50 for the graphic arts industry having CCT values of 6504 and 5003 K 

respectively. CIE F illuminants represent typical fluorescent light sources having 
CCT values ranging from 3000 K to 6430 K. 

2.2.2 Object 

The second element of colour perception is related to the spectral reflectance 
or transmittance functions of light measured from an object in an interaction with a 
light source specified with a spectral power distribution. The object colour is 
specified not only by the reflectance or transmittance of the surface, but also by the 
geometry of illumination and viewing. The CIE recommended four types of 
illumination and viewing geometries for reflectance measurement which are usually 
adopted in measuring instruments: diffuse/eight degree specular component 
included (di: 8° or 8°: di), diffuse/eight degree specular component excluded (de: 8° 

or 8°: de), diffuse/diffuse (d: d), diffuse/normal (d: 0°), 45 annular/normal (45°a: 0° or 
0°: 45°a), 45 directional/normal (45°x: 0° or 0°: 45°x). Figures 2.4 (a) to (d) show 
some of the measurement geometries. 
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In the di: 8° geometry, the colour sample is illuminated from all angles by 
diffused light using an integrating sphere and viewed along an angle of around 8° 
from the normal direction to the surface. In the 8°: di geometry, the reverse 
geometry of di: 8° which gives identical results, the sample is illuminated from an 
angle of around 8° from the normal direction and the reflected light is collected from 

all angles using an integrating sphere. 

For the 45°x: 0° geometry, the sample is illuminated at an angle of 45°±5° from 

the normal to the sample and measured at the normal direction. The reverse 

geometry 0°: 45°x also gives identical results. The gloss in the sample should be 

excluded in both 45°x: 0° and 0°: 45°x geometries. 

Illumination 

(a) 

Detector 

Detector 

sample sample 
(b) 

Illumination 

Detector 

I' 

(C) 

sample i 
(d) 

I sample 

Figure 2.4(a)-(d) Some of the measurement geometries: (a) 8°: di, (b) di: 8°, (c) 
45°x: 0° and (d) 0°: 45°x 

2.2.3 CIE Standard Colorimetric Observers 

The CIE 1931 standard colorimetric observers shown in Figure 2.5 include 

three functions and were established from experimental results obtained from 17 

observers conducted by Wright (Wright, 1929) and Guild (Guild, 1931). Each curve 
indicates the amount of the three RGB primaries required to match a unit amount of 
monochromatic test stimuli at each wavelength. The negative part of the curves 
indicates that the amount of the primaries had to be added to the monochromatic 
test stimuli for a match in both fields. This means that the wavelength is too 
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saturated to be matched by the particular primaries. The negative tristimulus values 

adding to the test stimulus are to desaturate the test stimulus and bring it within the 

gamut of the primaries. 

The standard colorimetric observer functions were then linearly transformed 
by a3x3 matrix to 2(A) , P(A), 2(Ä) to avoid the negative part. These colour 
matching functions shown by solid lines in Figure 2.6 define the colour-matching 
properties of the CIE 1931 Standard Colorimetric Observer or 2' observer which 
serves for visual field sizes of 1° to 4°. These functions have no negative part and 
the areas under the three curves are equal because the tristimulus values of an 
equi-energy stimulus are the same. The Y tristimulus value is the summation of the 

relative photometric quantities (in unit of cd/m2) of the RGB primaries. 

For samples having a field size greater than 4', the CIE have recommended 
alternative colour-matching functions based on experimental results obtained from 
67 observers, which were conducted by Stiles (Stiles, 1959) and Speranskaya 
(Speranskaya, 1959). These functions, 2 (A), y10(A), 2lo(A), shown as dashed 
lines in Figure 2.6, define the colour matching properties of the CIE 1964 Standard 
Colorimetric Observer or 10' observer (CIE, 2005). 
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Figure 2.5 RGB colour-matching functions of the CIE 1931 standard observers 
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Figure 2.6 The CIE 1931 colorimetric standard observers (solid lines) and the CIE 
1964 standard colorimetric observers (dashed lines) 

2.2.4 Tristimulus Values and Chromaticity Coordinates 

The colour of a stimulus can be specified by three numbers called tristimulus 

values XYZ for a colour stimulus P(A) using the CIE standard colorimetric observer 
z(A), y(A), 2(A). The equations to calculate the XYZ values are given in Equation 
(2-1), where k is a scaling constant, P(A) defines the colour of a stimulus as a 
function of wavelength. To obtain tristimulus values X, oY, 0Z, o, the colour-matching 
functions Trio(A) , yio(A)"zlo(A) for 10° observers need to be used instead of 
1(A), y(A), z(A) in Equation (2-1). 

X=kfP(A)"x(A)dA 

Y=kffP(A)"y(A)d. ý 

Z= kJ P(A) "z(A)dA 

100 
k=f 

P(A) " y(A)dA 

(2-1) 

For a reflecting objects, the property of a colour stimulus, P(A) is defined by 
the product of the spectral reflectance, R(1) (or the spectral transmittance, T(A) for 
transmitting objects) and the spectral power distribution of the light source or 
illuminant S(A). Thus, for reflecting or transmitting objects, the colour property 
function is given in Equation (2-2). 
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P(A) = R(A) - S(A) or P(A) = T(A) - S(A) (2-2) 

For self luminous objects such as colours on displays, P(A) defines the 

spectral radiance of the colour stimulus. 

The amount of radiant power in a stimulus A photometric quantity could be 

calculated from the corresponding radiometric quantity using Equation (2-3), in 

which the maximum luminous efficacy Km was set to 683 Im/W. 

K. Ja)(A)V(A)dA (2-3) 
A 

where 0, is the photometric quantity corresponding to the radiometric quantity, 

(D(A) . The V(A) is the CIE spectral luminous efficiency function for photopic 

vision, which corresponds to a weighted sum of the three cone sensitivity functions. 
The Y tristimulus value is proportional to a photometric quantity as y(A) a V(A) 
The constant k in Equation (2-1) is set equal to Km, and so Y is in photometric units. 
This k value is also used for determining the X and Z tristimulus values in Equation 
(2-1). 

In radiometric measurement, the amount of radiant power is measured using 
detectors which is equally sensitive to all wavelengths. In photometric measurement, 
measured quantity is based on the spectral luminous efficiency functions V(2) and 
V'(2) according to whether photopic or scotopic levels of illumination are involved. 
These functions are applied by filters which modify the spectral sensitivities close to 
the V(A) and V'(2). 

Another way to represent tristimulus values XYZ is to use two-dimensional 
colour space called the CIE 1931 or 1964 chromaticity coordinates. The two 

coordinates in the 1931 CIE chromaticity diagram, x and y, can be calculated from 
the XYZ values using Equation (2-4). 

x= 
X 

X+Y+Z 
Y 

y 
X+Y+Z 

Z 
X+Y+Z 

where x+y+z=1. 

(2-4) 
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Only two of the three numbers (x, y) are used to describe a colour stimulus. 
For chromaticity coordinates of colour stimuli corresponding to a visual field greater 
than 40, the tristimulus values X10Y, 0Z10 need to replace XYZ in Equation (2-4). 

Figure 2.7(a) shows a CIE 1931 chromaticity diagram in a two-dimensional 

space giving the x, y chromaticity coordinates of the XYZ colour specification 
system. In the plot, the chromaticities of an equi-energy stimulus (labelled E) and 
where the location of spectral colours are shown. The RGB primaries used to define 
the CIE 1931 RGB trichromatic system are also indicated by the triangle: 700 nm, 
546.1 nm and 435.8 nm for RGB, respectively. The purple boundary is shown by 

the straight line connecting the two ends of the spectrum locus; the area inside the 
locus and the purple boundary is the domain of all visible colours. The area within 
the triangle formed by the three points of R, G and B primaries on the locus 

represents all colours that can be matched by additive mixtures of these three 

primaries. For the area outside the triangle, the additive mixture of two primaries 
can be matched with the additive mixture of the third primary and the target 

stimulus. 

There is, however a well-known problem with the xy diagram (MacAdam, 
1942): which is the diagram does not well represent the colour differences between 

the two pairs having the same perceived colour difference. In Figure 2.7 (b), each 
line represents perceptually the same proportion of colour difference according to 
the 1931 CIE standard colorimetric observer; however, it can be seen that the 
lengths of the vectors vary. 

In order to reduce the non-uniformity problem of CIE 1931 x, y chromaticity 
coordinates, the CIE recommended a new chromaticity diagram defined by u' and � 

coordinates in 1976: the CIE 1976 UCS diagram, which gives a more perceptually 
uniform space than that of the CIE 1931 x, y chromaticity diagram. Figure 2.8 (a) 

shows the CIE 1976 chromaticity diagram and Figure 2.8 (b) plots vectors 
representing the same perceptual colour difference, which have more or less the 

same lengths. The CIE 1976 chromaticity coordinates, u' and V can be calculated 
from the CIE 1931 tristimulus or chromaticity values as given in Equation (2-5). 

u, = 
4X 4x Iý! 

X+15Y+3Z -2x+12y+3 '- X+15Y+3Z 
9y 

(2-5) 
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(a) (b) 

Figure 2.7(a)-(b) (a) The CIE 1931 x, y chromaticity diagram, (b) equally-perceived 
colour difference. ((a)http: //en. wikipedia. org/wiki/CIE_1931_color_space, 
(b)hftp: //www. mat. univie. ac. aV-kriegl/Skripten/CG/node9. html) 
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Figure 2.8(a)-(b) (a) The CIE 1976 u', v' chromaticity diagram, (b) equally-perceived 
colour difference. ((a) http: //en. wikipedia. org/wiki/CIELUV, (b) 
hftp: //www. mat. univie. ac. at/-kriegl/Skripten/CG/node9. html) 

2.2.5 Uniform Colour Spaces 

The CIELAB and CIELUV systems were the recommended uniform colour 
spaces for colour research and industry by the CIE (CIE, 1978). Both provide 

perceptually uniform spaces. The recommendation of these systems not only 

applies to the CIE 1931 standard calorimetric observer and its corresponding 
chromaticity coordinate system, but also to the CIE 1964 standard colorimetric 
observer and its corresponding chromaticity coordinate system. Both spaces are 
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aimed to be used in comparisons of differences between object colours of the same 
size and shape, viewed in white to middle-grey surroundings, by an observer 
adapted to a field whose chromaticity is not too different from that of average 
daylight. 

The CIELAB system, the most widely-used space, is defined by the three 

orthogonal dimensions of L*, a* and b*. In Figure 2.9, the vertical dimension L* 

represents the lightness, a* and b* represent the redness-greenness and 
yellowness-blueness perceptions of colours respectively. These dimensions are 
determined using Equation (2-6): 

L' =116-f( 
ý 

)-16 
Y. 

a' =500" f([x" )_f( 
y�b 

'= 200 [ff) (-f(? ) 
� 

zi, 3 , x>(241161 
Ax) 841108z+16/116 

ýx< 
(24 
` 

ý16` 

Cob' = a'2 +b"z 

ho,, = arcta4 
b 

a 

(2-6) 
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White 

L" 

-a" 

Black 

Figure 2.9 A three-dimentional representation of the CIELAB space 
(http: //www. colour-joumal. org/2007/l /5/07105article. htm). 

XYZ are the tristimulus values of a colour stimulus of interest and X�Y�Z� are 
the tristimulus values of a reference white object. The reference white should be 

ideally a perfect reflecting diffuser illuminated by the same light source as for the 

colour stimulus of interest. In this case, XnY�Zn are the tristimulus values of the light 

source with Y, equal to 100. However, for practical measurements, the reference 
white stimulus is normally chosen as which has been calibrated against the perfect 
diffuser. The quantity L' in Equation (2-6) serves as the correlate of lightness. The 

quantity C', o serves as the correlate of chroma. The quantity h, b serves as the 

correlate of hue angle, which is useful for the numerical specification of hue. The 

angles are given in units of degrees using the following conventions: 0° < hab < 90° 
ifa*>Oandb*>0; 90°<hsb<180°ifa*<Oandb*>0; 1800 <h, b<2700ifa*<0 
and b* < 0; and 270° < h, < 3600 if a* >0 and b' < 0. The a' and b* values are 
referred to as colour coordinates representing the combined attributes of hue and 
chroma as in Equation (2-6). 
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The reverse transform from L*, a* and b* to XYZ is given in Equation (2-7): 

X. L' 
+ a' 

-- 7.787 116 500 

. L+a. 
<_ 7.787 x 0.008856 

116 500 

.ý 

n 
L+ 16 

+ a. L+ a. > 7.787 x 0.008856 
116 500 116 500 

L'+16 
116 

L" 
<_ 7.787 x 0.008856 

116 

- I> 7.787 x 0.008856 
116 

(2-7) 
7.787 l 116 

Y� ( L' , 

IL' b' 
--<7.787 x 0.008856 
116 200 

IL' b* 
-->7.787 x 0.008856 
116 200 

Euclidean distance in CIELAB colour space represents the approximate 

magnitude of perceived colour difference between colour stimuli. Two equivalent 

equations describing CIELAB colour difference are given in Equation (2-8): 

AEäb = (AL'2 + Aa'2 + Ab`2)1/2 

(2-8) 

AEäb = (IL'2 +A Cab + AHab)1/2 

where AHýb =2 Cabi " Cäb, 2 " sin (° 
tab) 

is the hue difference; the indices 1 and 2 

refer to the two colour stimuli of interest; Q%bb is the hue-angle difference between 

the two colour stimuli compared. 

The CIELUV system also has three orthogonal dimensions. In Figure 2.10, the 

vertical dimension L* represents lightness; the two horizontal dimensions u* and v* 
represent the redness-greenness and yellowness-blueness perceptions of colours. 
The colour attributes of lightness, chroma, hue angle and saturation can be 

predicted by the CIELUV system using following formulae: 

(2-8) 
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L* = 116 "f 
(b-) 

- 16 for x>0.008856, 

L* = 903.3 " 
(f-) for x <_ 0.008856 

n 

u* = 13L* (u' - u'n) 

v* = 13L*(v' - v'n) 

C*v =- u*Z + v*2 
u 

Su� = 134(u uIn)2+ (Vt -v'n)2 

hu� = arctan (v*/u*) 

(2-9) 

where ü v' and u',,, v� are the chromaticity coordinates for the colour stimulus and 
for the reference white, respectively, determined using Equation (2-9). 

h 4, a 

. 
rý+ 

40 

h Jr 

Figure 2.10 A three-dimensional representation of CIELUV space. (Hunt, 2004) 

Colour-difference formulae in CIELUV system are defined similar to those in 

CIELAB system, as follows: 

(AL'Z + Au'Z + , &v'z)1/z 

AE; ýti = (AL'2 + AC,;, ý, + AH,; g)i/z 

(2-10) 
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where EiHüv =2 Cu,,, l - Cuv, a - sin (° 2"") ; the indices I and 2 refer to the two 

colour stimuli of interest; dhv is the hue-angle difference between the two colour 

stimuli. 

2.3 Colour-appearance 

CIE colorimetry has provided effective ways to specify colours and colour 
differences of stimuli. This system works well under given viewing conditions; 
however, this constraint of a certain viewing conditions tends to limit its usage 
because diverse viewing conditions such as media, light sources, background 

colours, and luminance levels of surround lighting are involved when colours are 
applied in the real world. Therefore a colour-appearance model capable of 
predicting the appearance of colours under a wide range of viewing conditions has 

been developed. The CIE has defined the colour-appearance model as (CIE, 1998) 

"A colour-appearance model is any model that includes predictors of at least the 

relative colour-appearance attributes of lightness, chroma and hue. " Many colour- 
appearance models have been proposed such as Hunt (Hunt, 1991), Nayatani 

(Nayatani, et al., 1997), RLAB (Fairchild, 1996), LLAB (Luo, 1996), CIECAM97s 

(CIE, 1998) and CIECAM02 (CIE, 2004). In this section, the important features of a 

colour-appearance model are reviewed based on CIECAM02, which is the latest 

system that the CIE has recommended. 

2.3.1 Colour-Appearance Phenomena 

The limitation of CIE colorimetry is that it only considers colour stimuli under a 

specific viewing condition. Colour-appearance in practice is affected by various 

viewing conditions including illumination, surround condition, background colour, 
size, shape texture and viewing geometry. Some of the colour-appearance 

phenomena are summarised in this section. 

There are two phenomena related to the change of luminance level. The first 

one is the Hunt effect (Hunt, 1952). The Hunt effect can be summarised by the 

statement that the colourfulness of a given stimulus increases with luminance level. 
It implies that a typical outdoor scene appears much more colourful in bright 

sunlight than it does on a dull day. The second is the Stevens effect (Stevens, 
1963). This states that as the luminance level increases, dark colours will appear 
darker and light colours will appear lighter. 
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When the chromaticity of a light source is changed, the colour of an object can 
be recognised with good consistency due to t he chromatic adaptation. This is 

achieved by the contraction of the pupil, changes in photoreceptor (cone and rod) 
responses, retinal pigment bleaching, changes in cellular activity and cortical 
changes (Kaiser, 1996). Several chromatic adaptation transform (CAT) models 
were developed to specify this phenomenon. The CMCCON97 transform, which is 
included in the CIECAM97s colour-appearance model (Luo, 1998) for chromatic 
adaptation transform and a revision of the CMCCAT97 named CMCCAT2000 (Li, 
2002), was proposed by the CMC. But the current most widely-used transform 
CAT02, is included in CIECAM02 (CIE, 2004). 

Colour-appearance can also be changed by different backgrounds. When 
background colour is changed, simultaneous contrast causes stimuli to shift in 

colour-appearance. The effect of simultaneous contrast from complex backgrounds 

on achromatic attributes also has been investigated (Fairchild, 1999; Lee, 2001) 

and the results revealed that the effect from complex backgrounds was very similar 
to that of uniform backgrounds when the latter is a linear integration of the former. 
This also explains why colour-appearance models derived from individual surface 
colour estimations also perform well for complex images. 

Bartleson and Breneman (Bartleson, 1967) found that the perceived image 

contrast in colourfulness and brightness increased with increasing surround 
luminance level from dark, dim and average surrounds. This effect occurs because 
the dark surround of an image makes dark areas appear lighter while having little 

effect on light areas. This is an important colour-appearance phenomenon, 
especially for imaging and graphic arts industries, where it is often required to 
compare different media under quite different viewing conditions (Luo, 1998). 

2.3.2 Colour-Appearance Attributes 

The visual appearance of a colour stimulus can be described using terms 
such as brightness, lightness, colourfulness and hue, which are defined by the CIE 

as listed below (CIE, 1987). 

Brightness is a visual perception according to which an area appears to 

exhibits more or less light. This is an open-ended scale with a zero origin defining 
the black. The brightness of a sample is affected by the luminance level of the light 

source. A surface colour illuminated by a higher luminance would appear brighter 
than the same surface illuminated by a lower luminance. 
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Lightness is the brightness of an area judged relative to the brightness of a 
similarly illuminated reference white. The lightness scale ranges from zero for black 
to 100 for white. The lightness of the background used may cause a change in the 
lightness of the sample. This is called the lightness contrast effect. 

Colourfulness is the attribute of a visual sensation according to which an area 
appears to exhibit more or less chromatic content. This is an open-ended scale with 
a zero origin defining neutral colours. Similar to the brightness attribute, the 

colourfulness of a sample is also affected by luminance. A surface colour 
illuminated by a higher luminance would appear more colourful than the same 
surface illuminated by a lower luminance. This is known as the Hunt effect. 

Chroma is the colourfulness of an area judged in proportion to the brightness 

of a similarly illuminated reference white. This is an open-ended scale with a zero 
origin representing neutral colours. 

Saturation is the colourfulness of an area judged in proportion to its 
brightness. This scales ranges from zero representing neutral colours with an open 
end. 

Hue is the attribute of a visual sensation according to which an area appears 
to be similar to one, or to proportion of two, of the perceived colours red, yellow, 
green and blue. 

2.3.3 The Observing Fields 

Viewing environments adjacent to a test stimulus can influence the 

appearance of the test stimulus. The surrounding area beyond the test stimulus in 
the visual field depends on the viewing distance and the size of the target stimulus. 
The visual angle can represent both the viewing distance and the size of the target 

stimulus. Although viewing environments contributing to colour-appearance 
phenomena are infinitely variable, attempts have been made to define five visual 
areas in the observing field (Hunt, 1991). The purpose was to provide a simplifyied 
definition of the viewing environment sufficient to make it feasible for modelling the 

spatial effects on colour-appearance. In this section, definitions of four visual 
components as shown in Figure 2.11 in the observing field are given, according to 
Hunt (Hunt, 1991; 1998). 
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Surround field 

Figure 2.11 Components of the observing field 
(http: //en. wikipedia. org/wiki/CIECAM02). 

Stimulus is the colour element for which colour-appearance measurement is 

required. Typically a stimulus is a uniform patch of about 2° angular subtense. The 

reason for choosing a 2° visual angle for defining the stimulus can be found from 

the nature of the fovea that comprises approximately the central 1.5° diameter of 
the visual field. 

Proximal field is the immediate environment of the colour element considered, 

extending typically for about 2° from the edge of the stimulus in all or most 

directions. It is normally specified to be equal to the background when the proximal 
field is not known. 

Background is defined as the environment of the colour element considered, 

extending typically for approximately 10° from the edge of the proximal field in all or 

most directions. When the proximal field is the same as the background, the latter is 

regarded as extending from the edge of the colour element considered. The 

background is usually considered to be a neutral grey with 20 % luminance factor. 

For imaging applications, defining the background is difficult when the angular 

subtense of a target image is larger than 10°. In this case, the exact specification of 
the background is dependent on image content and the location of specific objects 
in the image, however, there is no standard guide for this ambiguous case. 

Surround is the field beyond the background. The surround, for practical 

situations, can be considered to be the entire room in which viewing is taking place. 

The surround is referred to in categorical terms such as dark, dim or average for 

practical use of CIECAM02. 
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2.3.4 Colour-Appearance Model: CIECAM02 

CIECAM02 (CIE, 2004), the colour-appearance model recommended by the 
CIE, consists mainly of three parts: a chromatic adaptation transform, a dynamic 

responses function and colour spaces formed by different combinations of colour- 
appearance attributes. 

A chromatic adaptation transform is also to predict the tristimulus values of a 
corresponding colour from a reference viewing condition to another test viewing 
condition. The two colours from corresponding pairs have the same colour- 
appearance under two different illuminants. This transformation allows a colour- 
appearance model to predict the appearance of colours seen in different viewing 
conditions. The dynamic response functions allow prediction of the changes in 

response to stimuli under different lighting conditions across a wide range of 
luminance levels from very dark to very bright. The colour spaces used in the 

models are similar to the CIELAB space where chroma and hue are related to 

orthogonal coordinates of red-green and yellow-blue opponent signals and 
lightness is calculated in a non-linear way from an achromatic signal. 

2.3.4.1 Input and Output Data 

The input data required in order to compute the colour-appearance attributes 
using CIECAM02 are listed in Table 2.2. 

Yb is calculated from the luminance of the reference white in the test viewing 
condition divided by the luminance of the background on a percentage scale. LA is 

obtained by calculating L, rYbh00. For a self-luminous display to present test stimuli, 
20% of the luminance of the reference white of the display can usually be regarded 
as LA. When reflective test stimuli are assessed, 20% of the reference white 
illuminated by the light source in the test viewing condition is generally considered 
as LA. The categorical terms for surround lighting levels- dark, dim and average- 
can be determined by calculating the surround ratio, SR. This is the luminance of 
the surround white divided by the luminance of device white: an average surround 
for 0.2: 5 SR < 1; a dim surround for 0< SR < 0.2 and a dark surround for SR - 0. 

Table 2.1 Parameters for different surround conditions in CIECAM02. 

Surround Condition c Nc F 

Average Surround 0.69 1.0 1.0 

Dim Surround 0.59 0.9 0.9 

Dark Surround 0.525 0.8 0.8 
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Table 2.2 Input data for CIECAM02. 

Input Data 

Relative tristimulus values for the test stimulus in the test viewing XYZ 
conditions 

Relative tristimulus vaues of the reference white in the test XWYWZW 
viewing conditions 

Tristimulus values of the reference white in the reference viewing 
XwrYWrZWr 100 

conditions 

Background luminance factor Yb 

Luminance of the test adapting field (cd/m2) LA=LWYo/100 

Surround parameters c, Nc, F 

2.3.4.2 Forward Model 

The calculation steps to acquire the colour-appearance attribute values using 
CIECAM02 are described below. 

Step 1: Calculate RGB responses using the CAT02 matrix. 
Rw Xw RX 
G. = 

MCAT 
02 Yw ,G= 

MCAT 
02 Y, 

BW Zw BZ 
10 (2-11) 

where the matrix MGTO2 is the CAT02 matrix defined below. 
0.7328 0.4296 -0.1624 

MC A,. 02 = -0.7036 1.6975 0.0061 
0.0030 0.0136 0.9834 

Step 2: Compute the degree of adaptation factor, D, from LA ranging from one for 

complete adaptation to zero for no adaptation. 
( t9242l 

D=F[1- 
(36 

e` ýz Jl 
(2-12) 

Step 3: Apply aD factor to obtain the corresponding cone responses R0GcB, for the 

reference viewing conditions. 
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R, DRR R,,,, DRRW 
G. = DG , G, = DGGw 
B, DBB Bw, DBBW 

D, Q =Y,,. D/R,, +1-D, DG =YwD/Gw+1-D, DB =Yx, D/Bw+1-D 

(2-13) 

Step 4: Calculate luminance level adaptation factor (FL), chromatic background 
induction factor (Nb) and brightness induction factor (Nbb). 

F, = 0.2k4 (5L,, ) + 0.1(1- k4)2 (5L,, )'/3, where k= 1/(5L, 4 + 1). 

n=Yb/Y,,, z=1.48+f, Nbb=0.725(1/n)02, Ncb=Nbb (2-14) 

Step 5: Calculate the adapted RGB responses from the MCATO2 specification to 
Hunt-Pointer-Estevez fundamentals. 

R' Rý Rw Rý 

G' = MHPEMCATO2 Gc 
1 Gw - MHPEMCAT02 Gcw 

B' Bc Bw Bc, 

where 
1.096124 -0.278869 0.182745 

Mcaroz = 0.454369 0.473533 0.072098 

-0.009628 -0.005698 1.015326 

0.38971 0.68898 -0.07868 
MypE _ -0.22981 1.18340 0.04641 

0.00000 0.00000 0.00000 

(2-15) 

Step 6: Calculate post-adaptation non-linearities for the sample R''G'88'e and for 

the adapted white R ',, G 8w88,. 

R. = 400(FLR h/ 100)042 /[(FLR'/ 100)042 + 27.13] + 0.1 

G. = 400(FLG'/ 100)0`2 /[(FLG'I 100)0.42 + 27.13] + 0.1 

B. = 400(FL B'/ 100)042 /[(FL B'/ 100)0'42 + 27.13] + 0.1 (2-16) 
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R. = 400(F, R. / 100)042 /[(F,. R,,. /100)042 +27.131+0.1 
Gý 

.= 
400(F, G�. /100)042 /[(F, GW /100)012 + 27.131+0.1 

B. = 400(F, k/ 100)0 42 /[(F, Bw / 100)0 42 +27.13]+0.1 (2-17) 

Step 7: Calculate the red-green (a) and yellow-blue (b) opponent correlates and 
hue angle (h). 

Redness-Greenness: a= R� -12G� /1I+ B/ II 

Yellowness-Blueness: b= (Ro + G. -2B; /9 

Hue angle: h= tan-(b /a), 0<_ h: 5 360 

(2-18) 

(2-19) 

(2-20) 

Step 8: Calculate hue quadrature (H) and hue composition (He) using the following 

unique hue data. 

Set h, _ 
(h+360 ifh<h, 

ilh 
otherwise 

Choose a proper i (i=1,2,3,4 or 5) so that hi <_ hl :5h, +,. 

e, = 

Ce 
50000 1 

= 13 
N, N" ) e, 

100[(h'-h, )le, ] 
H=H, +i (h'_hi ) [ 

e,., (e, + (h, +, -h ý) 

cos(h'ý80+21+1 
l4 lJ +0.7 =4 cos( h'1a +21+2.8 

(2-21) 

(2-22) 

30 



Table 2.3 Data to convert hue angles to hue quadrature, H 
Red Yellow Green Blue Red 

1 1 2 3 4 5 

20.14 90.00 164.25 237.53 380.14 

e, 0.8 0.7 1.0 1.2 0.8 

Hi 0 100 200 300 400 

Step 9: Calculate the achromatic signal of the stimulus under the reference viewing 
conditions and the reference white under the test viewing conditions. 

A= [2R'a+G'a+ B'a120 -0.305]Nbb 
A. =[2R'aW+G'a, V+B'aW120-0.305]Nbb 

Step 10: Calculate correlates of lightness 

colourfulness (M) and saturation (s). 

J= 100(A / A_)`=, where z=1.48+ nos 

Q= (4.0 / cxJ / 100)°-5 (Aw + 4.0)Fi . zs 

_ 
e(a2 +b2)v2 

t 
R'a+G'a+(21i20)B'a 

C= t09(J/100)°S(1.64-0.29")o. 7s 

1N=CFý. z5 

s =100(M / Q)o. s 

2.3.4.3 Inverse Model 

Rstep 1: 

If starting from Q, then J can be computed from 
2 

J=6.25 cQ 
( 

,, +4)Fi. 25 

If starting from M, then C can be computed from 

(2-23) 

brightness (Q), chroma (C), (M, 

(2-24) 

(2-25) 

(2-26) 

(2-27) 

(2-28) 

(2-29) 

(2-30) 
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C= M/Fý'zs 

If starting from s, then C can be computed from 

Q=(4.0/c)(J/100)O5(A.. +4.0)F, 25 

C=(s/100)2Q/F; 25 

If starting from H or h, 

h'= 
(H - H, )(e; 

+ih, -e, h+, ) -100h, e, +i ý (H-H, )(e, 
+, -e) -100e, +, 

. qat h- 

Rstep 2: 

t=l 

h'- 360 if h'> 360 
h' otherwise h' otherwise 

1/0.9 

C 
J/100(1.64-0.29")0. '3 

cosh-+21+1 
+0.7 

e 
(50000NN) 

ee , 13 

A=A,,, (J/10U)I/c 

p, =elt, ift*0 

p2 =(A/Nhh)+0.305 
p3 -21/20 

=I cost h180+2)+2.8 

Rstep 3: 

If t=0, then a=b=0 and go through to Rstep 4. 

if Isn(h)I ? Icos(hý 
, then 

P4 =P, /sin(h) 

b= A(2+p, x460/1403) 

A +(2+p3)(220 / 1403)[cos(h)/sin( h)]-(27/1403) + P3(630011403) 
a= b[cos(h) / sin( h)] 

(2-31) 

(2-32) 

(2-33) 

(2-34) 

(2-35) 

(2-36) 

(2-37) 

(2-38) 
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If 'sin(h) <Icos(h)1 , then 

p5 = p, /cos(h) 

a_ 
p2(2+p3)(460/1403) 

p5 + (2 + P3)(220/1403) - [(27 /1403) + p3(6300/ 1403)] [cos( h) /sin( h)] (2-39) 

b= a[sin( h) / cos(h)] 

Rstep 4: 

Ra 460 451 288 p2 
Ga =1 460 -891 - 261 a 
Ba 

1403 
460 - 220 - 6300 b 

Rstep 5: 

100 27.131Rp -0.11 R= sign(Ra - 0.1) 
FL 4 

1/0.42 

1/0.42 
I 100[27.131G, -0.1 G= sign(Ga - 0.1)- 

FL 400-`Go -0.1I 

100 27.131B. -0.11] B= sign(Ba - 0.1) - FL 400-1B. -0.11 

lifx>0 

where sign(x) =0 if x=0 

-I if x<0 

1/0.42 

Rstep 6: 

Rý R' 

G, = McAro2MNPE Gý 

1.910197 -1.112124 0.201908 

where M"'NPE = 0.370950 0.629054 -0.000008 
0.00000 0.00000 1.00000 

(2-40) 

(2-41) 

(2-42) 
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Rstep 7: 

R 

G= 
B 

R, IDR 
Gý l D(; 

Bý l D� 
where 

DR 

Dý; = 
ýD+1-D 
G. 

DR = 
YD+1-D 
B. 

(2-43) 

(2-44) 

= 
Y". D+l-D 
R,,, 

Rstep 8: 

XR 

Y= Mc Aroi G 

ZB 

2.3.4.4 Uniform Colour Spaces based on CIECAM02 

The CIE colorimetry system described in Section 2.2 and the colour- 

appearance model described in Section 2.3 have the same purposes in their usage: 
the specification of colours, the evaluation of colour difference and the 

measurement of colour-appearance under various viewing conditions. To establish 
a colour-appearance model which satisfies all the three of these purposes, efforts to 

extend CIECAM02 to include the available colour difference data sets have been 

made (Li, 2003; Luo, 2006). The data sets comprise those for large-magnitude 

colour differences (LCD) and those for small-magnitude colour differences (SCD). 

Three different colour spaces can be constructed by the combination of the 

attributes obtained from CIECAM02: lightness J, hue angle h and three correlates 
of chromatic content (chroma C, colourfulness M and saturation s). 

a) J, a, and b,, 

b) J, am and bM 

c) J, a, and b. 

Among these three colour spaces, that derived using J, am and bM was found 

to give the minimum and uniform error between the experimental and predicted 

colour difference for both the LCD and SCD data sets (Li, 2003). Therefore, J and 

M in CIECAM02 have been modified in order to give the best prediction of colour 

difference values for experimental results for all data sets available. The modified J 

and M are labelled as J" and Win following equations. 
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(1+100c, )J 
1+c, J 

M'= (I/ c2 )Ln(1 + c2 Al) 

DE' _dI' l KL ) 2+ ea' 2+ Abp 2 

(2-45) 

where c, and c2 are constants and KL is a lightness parameter as given in Table 2.4. 

Table 2.4 The three sets of coefficients for the three corresponding colour spaces. 

CAM02-LCD CAM02-SCD CAM02-UCS 

KL, 0.77 1.24 1.00 

cl 0.007 0.007 0.007 

C2 0.0053 0.0363 0.0228 

A set of optimised values for c,, c2 and KL were determined for the three data 

sets: LCD, SCD and a combined set of LCD and SCD. The corresponding three 

colour spaces were constructed using these parameters for J', M' and KL, and were 

named CAM02-LCD, CAM02-SCD and CAM02-UCS respectively. 

The colour-difference formula in CAM02-UCS space showed good 
performance for predicting the LCD and SCD data, however it showed slightly 
worse performance than CAM02-LCD formula in predicting LCD data and CAM02- 

SCD formula in predicting SCD data. Therefore, the colour-difference formula in 
CAM02-UCS was suggested for use in applications involving small and large colour 
differences such as colour reproduction in the graphic arts industry and in 

evaluating colour differences under diverse viewing conditions by Luo (Luo, 2006). 
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2.4 Emotion 

Emotions are complex phenomena as an essential part of our lives, relating to 
how we feel, how we behave and how we think. Emotions typically occur with 
subjective feelings, physiological changes, behavioural expressions and cognitions. 
Due to their multi-faceted nature, emotions have been studied in a number of 
different frameworks which have focused on one of the different components 
among those, however all of them present components comprising emotional 
experiences. Generally, emotions refer to the interaction between a person's 
internal and external world. For example, in the present study interactions between 

people and objects are the focus rather than those between people and people, or 
people to events/situations. Thus, the aim of this section is to investigate the 
theoretical background of relationship between emotion and the visual appearance 
of an image. 

2.4.1 Theoretical Frameworks of Emotion Study 
As mentioned above, emotional experiences accompany several components 

such as behaviour, thoughts, subjective feelings and bodily changes. In the study of 
emotions, different approaches to research have tended to focus on different 
component of emotion among these. Thus in contemporary studies on emotion, 
there are four general frameworks, that is evolutionary based on Darwin's natural 
selection theory, physiological based on the James-Lange theory, the cognitive and 
the social constructs (Cornelius, 1996; Fox, 2008). In this section, general ideas in 
the traditions are introduced. 

One of the traditions of emotion is based on Darwin's theory of evolution and 
assumes that emotions are biologically given. He (Darwin, 1872) proposed that the 
evolution theory by natural selection applies not only to anatomic systems but also 
to the mind and the expressive behaviour of animals. It concluded that emotions are 
adaptive and help to communicate and to survive in the natural environment by 

organising an animal's behaviour. Darwin showed that many of emotional 
expressions were innate, not acquired by learning. His view has influenced many of 
the other theories in the research of emotion. Ekman's basic emotion theory has 
been proposed from this point of view. Ekman (1992) found that the facial 

expressions for six basic emotions are recognised similarly across cultures and 
languages through a set of experiment conducted in preliterate society in New 

Guinea and US. He named these six emotions "basic emotions" and these were 
"joy", distress", "anger", "fear", "surprise" and "disgust". He concluded that these 

basic emotions are universal and innate regardless of culture and language. 
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In this view, it is believed that emotional systems have evolved to help 

animals, including humans, adapt to the complex physical and social environments. 
The function of emotions is to initiate the immediate cooperation of the various 
processes of the body such as motor systems, physiological reactions and cognitive 
processes in order to deal with an urgent problem. 

In addition to the evolutionary framework, there is a physiological framework 

proposed by James and Lange, called James-Lange Theory which assumes that 

emotions are the results of the perception of bodily changes. James and Lange 

(James, 1884; Lange, 1885) proposed that once people notice an event, then 

physiological reactions (called bodily changes) to an event occur, and the 

perception of these bodily changes is the emotion. These bodily changes are 
mostly related to the feedback from the autonomic nervous system (ANS), such as 
heart rate, muscle tension and blood pressure. This point of view on emotions was 
direct opposition to the commonsense viewpoint which considered that subjective 
feeling was the cause of the bodily changes. 

In addition to the original James-Lange theory, Damasio (1999) proposed that 

the perception of various bodily changes can be the cause of emotional experience. 
He identified that these included biochemical and hormonal indicators of the body's 

internal state can be detected by specific parts of the brain. However, he argued 
that these changes in internal bodily state which can be detected by the brain are 

not necessarily accompanied by conscious awareness. This is quite different from 

the view of the original James-Lange theory in which emotions were regarded as 
conscious feeling states. A summary of this point of view is that emotions are 
fundamentally caused by a perception of changes in our internal bodily state. 

Another tradition is the assumption that emotions are the results of cognitive 

appraisals. Cognition refers to internal mental states of the mind such as beliefs, 
desires and intentions which are the results of information processing coming 
through the senses. Arnold and Gasson (1954) proposed that emotion is "a felt 
tendency toward an object judged suitable and away from an object judged 

unsuitable, reinforced by specific bodily changes according to the type of emotion". 
The key idea in this view is that the judgement of the object determines the type of 
emotions and the bodily changes which are elicited. This judgement causing 
emotions links two sides: the object (event) and the person experiencing the object 
(event). Arnold called this judgement an appraisal and she also claimed that without 
appraisal there is no emotion as all emotions are initiated by a person's appraisal of 
the event which is experienced (Arnold 1960). She referred to appraisals as "direct, 
immediate, non-reflective, non-intellectual and automatic" judgements about the 

meaning of events. In this point of view, the key aspect is how to interpret the 
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events rather than how the event itself influences the emotion which is elicited. 
Thus, the primary function of emotions in this view is to adjust the cognitive process 
to promote the priorities of a given emotion. 

For the tradition of social constructs, it is assumed that emotions are socially 

constructed. Averill proposed that emotions are social constructions and can be 

understood only on a social level of analysis rather than as biological phenomena 
(Averill, 1980). From this point of view, emotions are acquired by learning when 

people are exposed to members within a given culture, and the function of emotion 
is to provide people with management ability according to demands of social roles 
in their culture (Averill, 1985). This is a very different approach from the other 

perspectives which gives much more meaning and significance to the social 
interaction between people. 

2.4.2 Structural Models of Emotion 

Many psychologists have accumulated knowledge of the structure of emotion 

and a number of structural models of emotion have been developed, which were 
mainly intended to represent similarities and/or dissimilarities between various 
emotions in a multi-dimensional framework. These models provide simple and 
systematic approaches to human emotions to be investigated related to the impact 

of colour in images. Therefore, some of the important models of emotion are 
reviewed in this section. 

Russell (1980) suggested a two-dimensional model of emotion using a multi- 
dimensional scaling method, in which 28 emotion words were investigated: happy, 
delighted, excited, astonished, aroused, tense, alarmed, angry, afraid, annoyed, 
distressed, frustrated, miserable, sad, gloomy, depressed, bored, droopy, tired, 

sleepy, calm, relaxed, satisfied, at ease, content, serene, glad and pleased. The 

results showed that these terms were classified into two groups along with the two 
dimensions, which were "pleasure-displeasure" and "arousal-sleepiness", or just 

simply "pleasure" and "arousal'. Figure 2.12 shows the two-dimensional structure of 
this model. The four quadrants resulted in by these two axes, the emotion concepts 

excitement, depression, distress and relaxation can be defined as combinations of 

the two dimensions "pleasure" and "arousal". For instance, "distress" can be defined 

as the combination of "low pleasure" and "high arousal" and "depression" as the 

combination of "low pleasure" and "low arousal". This implies that most emotions 

share these two primaries "pleasure" and "arousal". 

38 



Arousal 

Displeasure and arousal Pleasure and ar ousal 
(Distress) ý' (Excitement) 

Displeasure and sleepiness Pleasure and sleepiness 
(Depression) (Relaxation) 

Sleepiness 

Figure 2.12 Two-dimensional emotion model proposed by Russell (1980) in which 
the dimensions are labelled "pleasure" and "arousal". 

Watson and Tellegen (1985) also suggested a two-dimensional model of 
emotion from the results of several studies of the classification of emotion words. 
They claimed that "positive" and "negative" affects are the primary descriptors of 
emotional states rather than "pleasure" and "arousal". The "positive" factor 

represents "the extent to which a person avows a zest for life" and "negative" 

represents "the extent to which a person reports feeling upset or unpleasantly 
aroused. " They emphasised that only the high end of each factor represents a state 
of emotion, whereas the low end of each dimension represents an absence of the 

emotional involvement. Figure 2.13 shows a two-dimensional emotion structure 
consisting of two axes: "positive" and negative" and four quadrants as combinations 
of two dimensions. Although this model based on two primary dimensions has a 
similar structure to Russell's model as pointed out by Watson and Tellegen 
themselves, they believed that their model is specifically useful for clinics as a way 
of describing and understanding psychopathology, especially in distinguishing 

anxiety from depression. 
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High Positive Affect 

ýrý 

Low Negative Affect 

pleasantness Strong Engagement 

ee Affect L. 1_ 
___ 

1 High Negative Affect 

Disengagement Unpleasantness 

Low Positive Affect 

Figure 2.13 Two-dimensional model proposed by Watson and Tellegen (1985) in 
which the two dimensions are labelled as "positive" and "negative" affects. 

Plutchik (2002) developed a three-dimensional model of emotion based on 
the eight primary emotions: fear, anger, sadness, joy, acceptance, disgust, 

anticipation and surprise identified in his study (Plutchik, 1980). He identified three 

characteristics of emotions as follows: 

1) Emotions vary in intensity, 

2) Emotions vary in their degree of similarity to one another and 

3) Emotions express opposite bipolar feelings or actions. 

Figure 2.14 shows the structure of this model with the vertical dimension 

representing for characteristics of intensity. The words adjacent each other in a 

circular plane in Figure 2.14 represent the similarity of the emotion. Bipolarity is 

represented by words located at the opposite point in a circular plane. Eight groups 

of emotions are from the eight primary emotions identified earlier in his study 
(Plutchik, 1980). He believed that the emotional state can be represented by the 

combination of several primary emotions, for example "joy" and "acceptance" could 

produce the mixed emotion of "love". 
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Intensity 

vigilance I ecstasy 
admiration 

loathing . --°" terror 
'«. grief amazement 

disgust , fear 
sadness surprise 

Figure 2.14 A three-dimensional model including eight primary emotions arranged 
as proposed by Plutchik (2002) 

2.4.3 Measuring Emotion 

As an emotional experience involves several components such as subjective 
feelings, physiological changes and behavioural expressions; measuring emotion 
can be performed by determining these correlates. In the present study, two 
different methods of measuring emotions were used: psychophysical methods for 

measuring the description of subjective feelings and the measurement of 
physiological changes. As general references for psychophysical methods, 
Fairchild's Color Appearance Models (Fairchild, 2005) and Engeldrum's 
Psychometric Scaling (Engeldrum, 2002) were used. For psycho-physiological 

methods, Fox's Emotional Science (Fox, 2008) and Stem's Psychophysiologial 
Recording (Stem, 2001) were used. 

2.4.3.1 Psychophysical methods 
Psychophysics is defined as a method to study the relationship between the 

physical measurements of stimuli and the sensation and perceptions that the stimuli 
evoke (Fairchild 2005). Psychophysical experiments can be divided into two broad 

classes: threshold (or matching) experiments to measure visual sensitivity to small 
changes in stimuli and scaling experiments to investigate a relationship between 
the physical and perceptual magnitude of a stimulus (Fairchild 2005). 
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Stevens (1961) classified four types of measurement scales: nominal, ordinal, 
interval and ratio scales. A nominal scale introduces names or numbers to 

distinguish between stimuli. For example, the hue scale, red, yellow, and so on can 
be replaced by numbers corresponding to each hue category. However, those 

number are just labels and do not have any numerical properties. An ordinal scale 
is one in which stimuli are ranked in ascending or descending order regarding a 

particular attribute. However, it includes no distance information in between stimuli 
along the scale. Simple logical operations such as magnitude comparison can only 
be applied to an ordinal scale. For interval scale, the scale defines the difference 
between the amount of property measured by intervals between scale values. In 

this case, equal distances anywhere along the scale indicate the same difference in 

the property measured. In addition to the comparison of magnitude, simple 
arithmetic operations such as addition or subtraction can be performed on interval 

scales. A ratio scale is an interval scale which has a meaningful zero, representing 
no amount measured for the property. 

One of the psychophysical scaling methods extensively used in the field of 
colour science is categorical judgment which measures the sensation magnitude on 
interval scales. 

Categorical judgment is a method assigning test stimuli into pre-defined 
categories corresponding to the perceptual magnitude of the property. This method 
is particularly useful when the number of samples is large. The categories are 
defined assuming an equal interval between them and can be specified by numbers 
or text descriptions. The data collected from this method is an ordinal scale. 
Experimental data can be analysed using the mean category value method 
(Bartleson, 1984) or transferred onto an interval scale using the Law of Categorical 
Judgement (Torgerson, 1954). Torgerson's Law of Categorical Judgement states 
that the difference between a category boundary and the scale value of a stimulus 
is a random variable whose probability density function forms a normal distribution. 
The mean value of this distribution represents the difference between the category 
boundary and the stimulus scale value. This is expressed in Equation (2-46). 

T. - Si = Z1R Uý + Qk - 2/, 4Q, Q, (2-418) 

where Tk is the mean location of the kth category boundary; S, is the mean response 
to stimulus j; ak is the discriminal dispersion of the kth category boundary; a, is the 

discriminal dispersion of stimulus j; r, 4 is the coefficient of correlation between 

momentary positions of stimulus j and category boundary k on the scale; zk is the 
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normal deviate corresponding to the proportion of frequencies that stimulus j is 

placed below boundary k. 

In Condition D of Torgerson's Law of Categorical Judgement, all stimuli are 
assumed to have the same standard deviation among observations, i. e, o; = ak = 0-, 
and that stimulus scale values are independent of category boundaries, i. e. rk = 0. 
Accordingly the value Tk - s; has a standard deviation of which is a 

constant. Thus Equation 2-46 can be simplified to: 

Tk-Sý=ZjkQVG (2-47) 

where a is the common standard deviation for each stimulus and each category 
boundary. 

2.4.3.2 Psycho-physiological Methods 

Emotion also involves a range of physiological reactions such as increased 

heart rate and sweating in the hand when feelings of fear and anxiety are elicited. 
There are also less apparent reactions: internal changes such as various hormones 

may be released into the blood during the emotional experiences. These 

physiological changes are controlled by the autonomic nervous system (ANS), 

which is a complex network of fibres that extends throughout the body and 
transmits signals to the various organs over the body, muscles and glands. The 

ANS is involved with regulating the functioning of the body's internal environment 
through two main sections of the ANS: the sympathetic ANS controlling the effects 
related to arousal and the parasympathetic ANS controlling the effects which occur 

when we are resting. In this section, some of physiological measures of emotional 

reactions are described. 

Facial electromyography (EMG) activity can provide subtle changes in facial 

muscle activity, as reactions to motivationally significant events. The activity of the 

muscles associated with frowning (corrugator supercilir) and smiling (zygomatic) 

have been used as measures of affective engagement in perception, imagery and 

anticipation. 

The corrugator supercilii muscles, located above the eyebrows and between 

the eyes, are responsible for lowering and contraction of the brows. According to 
Ekman (1983), the muscle movements in this area are related to distress. 
According to Lang et a/. (1993), significant contraction of the corrugator muscles 
tend to occur when viewing unpleasant pictures. Bradley et al. (Bradley, 2001) 
found that the corrugator muscle activity varied with the content of the stimulus 
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pictures. They found that some unpleasant pictures, such as those depicting 

mutilation and contamination, elicited slightly larger EMG activity than other 
unpleasant stimuli. In this study, the smallest response from corrugators EMG was 
obtained for pleasant pictures such as of babies and families. These pictures 
tended to be rated quite high in the pleasure scale, but relatively low in the arousal 
scale. However, they found that the most arousing pleasant subjects, such as 
erotica and sports, did not prompt significant activity from the baseline. 

The zygomatic muscles are located from the cheek bone to near to the corner 
of the mouth. These muscle lift the comer of the mouth obliquely upwards and 
laterally to produce a smiling expression. This is important for the smile response 
and is related to happiness. Lang et al. (Lang, 1993; 1995) found that there is a 
strong positive correlation between activity in the zygomatic muscles and ratings of 
pleasure. In other words, activity in zygomatic muscle EMG increases as the ratings 
for pleasantness increases. 

Skin conductance can be measured by applying a small electric current 
across the fingers to measure the resistance of the skin. The electrodermal activity 
(EDA) is closely related to eccrine sweat glands. Eccrine sweat glands are 
concentrated in the palms of the hands and soles of the feet, responding primarily 
to a mentally arousing stimulus, whereas other sweat glands respond mainly to 
increases in temperature (Stem, 2001). 

Bradley et at (2001) and Codispoti et al. (2007) found that images with 
arousing subjects such as erotica, threat or mutilation tended to prompt a large 
increase in skin conductance. Miler et at (Miller, 2002) also found that physiological 
responses were enlarged when personally relevant scenes were involved in the 
imagination. Their results showed that skin conductance increased when people 
imagined pleasant or unpleasant events, compared to neutral images. Their results 
also showed that skin conductance, facial EMG with zygomatic muscle and heart 

rate responses evoke greater activities for personal than standard stimuli; however, 
no difference was found in corrugator EMG between personal and standard stimuli. 
They also found some differences in responses of subjective feelings which 
indicated that imagery of personal experiences were more arousing, vivid and 
interesting than standard imagery. Sabatinelli and Bradley (Sabatinelli, 2001; 
Bradley, 2005) reported that the anticipation of presenting a highly pleasant or 
unpleasant stimulus can also prompt large skin conductance changes. 

Changes in heart rate are known to provide a good measure of changes in 

arousal. Early investigations exploring emotion in perception used heart rate as a 
function of differences in the level of pleasure, as this measure was considered 

critical in eliciting orienting or defence responses (Epstein, 1971; Turpin, 1983). It 
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was consistently found that the heart rate decelerated when people viewed pictures 
of unpleasant events (Klorman, 1977; Hare 1971). 

Lang et a/. (1993) found that pictures rated as unpleasant typically generated 
bigger initial deceleration than pleasant or neutral pictures. Bradley et al. (Bradley, 
2001) found that significant initial deceleration appeared for all kinds of unpleasant 
subjects, including both highly-arousing pictures (e. g. threat, mutilation) and 
relatively low arousing pictures (e. g. pollution and loss). They also found that 
highly-arousing pleasant pictures (e. g. erotica) generated significantly bigger initial 
deceleration than pleasant pictures which were rated lower in arousal. In other 
perceptual contexts such as video and sound, decelerative differences in cardiac 
responses between unpleasant arousing contents and neutral ones were also found 
by Palomba (2000) and Bradley et al. (2000), respectively. 

It is known, however, that there are a number of difficulties in using heart rate 
as a measure of emotional state (Fox, 2008). Several physical factors such as 
posture, height and weight, and on individual's fitness level are known to have a 
significant influence on heart rate as well as the degree of variability in heart rate. 
Lang of al. (Lang 1990) found that heart rate also varies with different mental 
processes. They noted that heart rate tends to decelerate when external stimuli are 
given, it tends to accelerate when attempting to recall a memory. 

Table 2.5 Factor loadings of dependent measures of emotional responses (Lang, 
2000). 

Measure 

Lang et al. 

Valence Arousal 

Cuthbert et al. 

Valence Arousal 

Valence ratings 0.86 0.00 0.89 0.07 

Corrugator EMG -0.85 0.19 -0.83 -0.10 

Heart rate 0.79 -0.14 0.73 -0.02 

Zygomatic EMG 0.58 0.29 - - 
Arousal ratings 0.15 0.83 -0.01 0.89 

Interest ratings 0.45 0.77 - - 
Viewing time -0.27 0.76 - - 
Skin conductance -0.37 0.74 0.19 0.77 

Table 2.5 summarises two main factors: valence and arousal extracted from a 
set of variables, including subjective and physiological responses to affective 
images in two studies by Lang et al. (Lang, 1993) and Curthbert et al. (1998). It 
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shows that valence has high loadings for pleasantness ratings, changes in heart 

rate and facial EMG. It also shows that arousal has high loadings for arousal 
ratings, skin conductance activity and overall viewing time. It should be noted that 
the cross-loading between factors is low, indicating that the two factors are 

significantly different. 

2.4.4 Emotion Models Related to Visual Experience 
Cupchik (1994) has proposed a model of emotion for aesthetic stimuli 

involving two levels of emotional response: reactive and reflective. The two levels of 
processing are associated with James's primary layer of emotion referring to subtle 
feelings such as pleasure and arousal and a secondary layer of emotion referring to 

coarse emotions such as happiness and sadness to aesthetic stimuli, respectively. 

The reactive level represents the emotional response to the "configurations of 
features" in visual stimuli contributing to local visual effects of the aesthetic 
stimulus. The emotional responses are bodily feelings of pleasure and excitement 
or arousal. The reflective level represents the contribution of emotional responses 
to the "contextual meanings" in multilevel arts including syntactic and semantic 
information. The contextual meanings can generate global relations among 
aesthetic stimuli in the artwork. He suggested that the emotional experiences in the 

past may influence how viewers understand the meanings of aesthetic features in 
the artwork. 

Ou et al. (2004a) extended the emotion model for a visual experience based 

on Cupchik's model of aesthetics. He assumed that Cupchik's theory can also apply 
to general visual experience. Thus, he proposed that emotional responses at the 

reactive level are determined directly by visual stimuli including the appearance of 
the object and its surroundings. Emotional responses at the reflective level result 
from a cognitive process the visual stimuli. This cognitive process interprets the 

visual stimuli into contextual meanings according to the appearance of the object 
and the context of the entire visual experience. 

Norman (2004) has proposed three levels of interaction between people and 
products in product experience: visceral, behavioural and reflective. The visceral 
level makes initial judgements of what is good or bad, safe or dangerous, and 
sends appropriate signals to the motor system of the body and alerts the rest of the 
brain. This level of interaction is related to sensory stimuli such as visual 

appearance, touching and feeling as a start of affect ve processing followed by 

immediate emotional impact from conscious experience. The behavioural level is 

related to usability and performance. This level of interaction is not conscious, 
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however it is influenced by the reflective level which involves conscious information, 

such as knowledge, memory and related experience. In other words, the 
behavioural level is influenced by the visceral and the reflective levels of interaction. 
The reflective level is placed at the highest level in the interaction process. This 

level depends on many factors in the various interactions among people, events, 
time and place rather than only between people and objects. This is also affected 
by knowledge, memory, experience, learning and social community. Norman 

suggested that the overall impression of the object is determined by the reflective 
level of interaction overriding the other two levels. 

Sensory 

I 

Reflective 

rBeavioral 

. ý: ý; ýýýýý ý ý`. _ ._ __ _ 

Visceral 
-}ý 

! 

Motor 

Figure 2.15 Norman's three levels of processing: Visceral, Behavioural and 
Reflective (Norman, 2004) 

Desmet (2002; 2007) has proposed that product experience is a multi-faceted 

phenomenon that involves symptoms such as subjective feelings, behavioural 

reactions, expressive reactions and physiological reactions just like an emotional 

experience. He defined "product experience" as a change in core affect that is 

involved to human-product interaction". The core affect is a concept introduced by 

Russell (2003) in which the affect dimension was combined with physiological 

arousal into a circular two-dimensional model. Based on this definition, Desmet 

distinguished the three components of product experience as aesthetic pleasure, 

attribution of meaning and emotional response. The underlying process in product 

experience is that the entire set of affects is elicited by the interaction between user 

and a product. It includes the degree to which all our senses are gratified (aesthetic 

experience), the meanings we attach to the product (experience of meaning) and 
the feelings and emotions that are elicited (emotional experience). He emphasised 
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that the hierarchical relationships between the emotional component and the other 

two are particularly important. 

user-product interaction J 

Figure 2.16 Desmet's three components of product experience (Desmet, 2007). 

2.4.5 Colour-emotion 

Since the introduction of the term "colour-emotion" by colour science 
researchers at the 8th Congress of the Association Internationale de la Coleur (AIC) 
in 1997, the topic of colour-emotion has been grown into a multidisciplinary 
research area focusing on the relationship between colour and emotions. In earlier 
studies, colour-emotion was referred as "colour meaning" (Osgood, 1957; Wright, 
1962; Adams, 1973) and "colour image" (Kobayashi, 1981). The most widely-used 
definition is that colour-emotion is evoked by colours and that it can be expressed 
through words (Nobbs, 1997, Sato, 2001, Xin, 2000). Ou at al. (Ou, 2004a) used a 
more specific definition: "Colour-emotion is the relationship between colour stimuli 
and the reactive-level of emotional responses which are determined by the 
configurations of colour stimuli in an entire visual experience". In this definition, the 
role of colour in the whole visual experience as the configurations of colour stimuli 
was pointed out. He investigated a number of word pairs to describe feelings from 
the configurations of colours such as "warm-cool" and "active-passive". 

2.4.5.1 Colour-emotion Scales 

Most of the colour-emotion studies used pairs of adjective words (such as 
"warm-cool") as colour-emotion scales. Rating on semantic differential scales 
(Osgood, 1957) and accepting the factor analysis methods devised by Spearman 

(1904) are widely-used methods in colour-emotion studies. 
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Wright and Rainwater (1962) identified six principal component categories: 
happiness, showiness, forcefulness, warmth, elegance and calmness for 48 colour- 
emotion scales. They found some links between these components and the colour- 
appearance attributes hue, lightness and chroma. They also found that lightness 

and chroma showed larger influence on colour-emotion than hue. 

Hogg (1969) identified four components -"impact", "usualness", "evaluation" 

and "warmth"- from 12 colour-emotion scales. The results showed that the 
"evaluation" component was closely related to "pleasant-unpleasant". "Impact" and 
"warmth" were related to chroma and hue, respectively. 

Adams and Osgood (Adams, 1973) identified three universal components of 
"evaluation", "potency" and "activity" on colour-emotion from a set of experiments 
conducted in 23 different cultures. They reported that little difference was found 
between different cultures. 

Kobayashi (1981) presented the "colour image scales" including three 

emotional components of "warm-cool", "soft-hard" and "clear-greyish". By using the 

colour imaging scales, each colour could be classified and characterised. The three 

component: "warm-cool", "potency" and "activity" which Sato et a/. (Sato 2000) 

identified seem to agree with the Kobayashi's three components. Sato et al. 's 

components "warm-cool", "potency" and "activity" were found to be related to the 

three colour attributes of hue, lightness and chroma, respectively. 

Ou et al. (2004a) have also identified three components of colour-emotion - 
"activity", "weight" and "heat"- in relation to chroma, lightness and hue, respectively. 

Crozier (1996) suggested a reason for some common scales identified in 

many studies. That is, the colour-emotion scales used in these studies have been 

selected based on the three primary factors of semantic terms proposed by Osgood 

et al. (1957): "evaluative", "potency" and "activity". 

2.4.5.2 Quantitative Models of Colour-emotion 

In this section, quantitative models of colour-emotion for a single colour 
developed by Sato at al. (2000), Xin and Cheng (2000) and Ou et al. (2004a) are 

reviewed and presented in Table 2.6. The aim of these studies was focused on the 
development of quantitative equations to predict colour-emotion scale values using 
colour-appearance attributes such as lightness, chroma and hue. All of these 

models are based on the CIELAB colour space (see Section 2.2.5). 

Sato proposed a set of colour-emotion models (Sato, 2000) to predict colour- 
emotion scale values for each scale (such as warm-cool, heavy-light and weak- 
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strong) with an assumption that there is always a colour which is warmest, heaviest 

and weakest. The idea to express colour-emotion numerically is that two colours 
having a large difference in colour-emotion also show a large colour difference from 

the most extreme colour (i. e. the warmest, heaviest and weakest colours). The 

equation proposed is shown in Equation (2-48): 

CE = kA, + Lkr. (L*-L*o)]ý +[k, (a*-a*o)]ý +[kß(b*-b*o)]Z (2-48) 

where CE is the predicted value of colour-emotion for a test colour; L*, a* and b* 

are the CIELAB coordinates of the test colour; L�*, ao* and bo* are the CIELAB 

coordinates of the reference colour; and k,, ka, kh and kw are constants. Equation (2- 
48) also can be converted to a form comprising two colour-appearance attributes: 
lightness and chroma as shown in Equation (2-49): 

CE = km + Ikc. (L * _L *(, )1 + [kc" (C * -C *o )12 (2-49) 

where L* and C* are the CIELAB lightness and chroma for the test colour; L�* and 
C�* are the CIELAB lightness and chroma for the reference colour; and k,., k,, and kA, 

are constants. 

In order to consider the contribution of hue difference, Sato at al. added a 
hue-related variable, (1-Ih-hod/360°) into C", where h and ho are the CIELAB hue 

angles of the test and the reference colours respect ively. Based on this idea, 

colour-emotion formulae were developed for 12 scales including "active-passive", 
"heavy-light" and "warm-cool". These are given in Table 2.6. 

Xin and Cheng (Xin, 2000) also developed quantitative colour-emotion models 
using a multiple regression method assuming that the V. C* and h colour- 

appearance attributes in CIELAB space were independent of each other. The 

formulae had following form: 

CE= x, t*+y, (C*)° +z, h+c, (2-50) 

where CE is the predicted value of colour-emotion; L*, C* and h are CIELAB 
lightness, chroma and hue angle; a is the exponents of chroma; x,, y,, z, and c, are 
constants. In their models, the entire range of hue angles was divided into two: 0° 

to 1800 and 180° to 360° and equations for each range were proposed. Based on 
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this form of equation, they developed colour-emotion models for 12 scales including 
"active-passive", "heavy-light" and "warm-cool" which are shown in Table 2.6. 

Ou et al. (2004a) proposed a set of colour-emotion models for single colours. 
The main method used for model development was observing bubble charts which 
were useful to see not only the tendency between colour-emotion values and 
colour-appearance attributes in CIELAB space but also the relationship between 

any two attributes. Using these methods, they developed colour-emotion models for 
four colour-emotion scales, including "active-passive", "heavy-light" and "warm-cool", 

which are given in Table 2.6. 

Table 2.6 Quantitative models of colour-emotion for single colour developed by 
Sato et al. (2000), Xin and Cheng (2000) and Ou et al. (2004a) in CIELAB 
space. 

Researcher 
Colour- Models 
emotion 

Warm-cool WC = 3.5[cos(h - 50°) + 1]B - 80 

Heavy-light HL = -3.5L° + 190 

Sato Active-passive 
1/2 

AP = 
{[0.6(L' 

- 50)]2 + (4.6(1- 
360 

)C. )1/21 -115 

AhZ90: hue angle difference from h=290,0< Ah290 <180 

B= 2000 (1 
-60) C'/[L'(100-L')] 

WC0°sh°s190° = 0.154L° + 39.378C°0'372 - 0.303h - 113.855 

Warm-cool WC180°sh°s360° = 0.355L° + 23.476C. 0.429 - 0.159(360° - h) - 105.710 

Xin 
HLO°shs18o° = -3.340L° + 0.476C° + 0.037h + 175.467 

and 
Heavy-light HL180°sh°5360° = -3.477L* - 0.264C* + 0.072(360° - h) + 182.866 

Cheng 

AP0°shs180° '-- -0.296L° + 3.162C'0.931 - 0.073 - 68.835 
Active-passive 

AP180°sh°5360° = -0.120L° + 4.385C"0'864 + 0.032(360° - h) - 84.791 

Warm-cool WC = -0.5 + 0.02C'1'07cos (h - 50°) 

Heavy-light HL = -1.8 + 0.04(100 - L°) + 0.45cos (h - 100°) 
Ou 

Active-passive AP = -2.1 + 0.06 
[(L° 

- 50)2 + (a° - 3)2 + (b° -17)2]1/2 
1.4 
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2.4.5.3 Colour-emotion for Colour Combinations 

Hogg (1969) investigated 12 colour-emotion scales for colour pairs and 
identified four underlying factors: "active-potency", "evaluative", "emotional tone" 

and "usual/obvious". He found that "active-potency" was correlated with both 

lightness and chroma difference. He also found that the "evaluative" factor was 

correlated with hue. "Emotional tone" was found to be correlated with hue difference 

and "usual/obvious" showed a complex correlation with all three colour-appearance 

attributes. In this study, he also investigated the relationship between emotions for 

single colours and colour pairs. He found that colour-emotion values for two colour 

combination for "warm-cool" and "strong-weak" had a high correlation with the 

arithmetic means of the colour-emotion scores for each colour in the pair. This 

suggests an "additive" relationship between single-colour and colour-combination 
emotions which can be described by the following formula: 

E-E, +E2 
2 

(2-51) 

where E is the intensity of a colour-emotion for a colour pair of two colours (1 and 
2); E, and E2 are the intensities for colour-emotions for individual colours. 

As an extension to their colour-emotion models for single colours, Ou at al. 
(2004b) investigated the colour-emotion factors for colour pairs and the relationship 
between emotions for single colour and colour pairs for these factors. They 

identified three colour-emotion factors for colour pairs which were identical for 

single colour-emotions: colour activity comprising "fresh-stale", "clean-dirty", 
"modem-classical" and "active-passive"; colour weight comprising "tense-relaxed", 
"hard-soft" and "heavy-light"; colour heat defined by "warm-cool". They also found 

that the additive relationship between single colours and colour combinations was 

conserved in all the three factors. 

Wang at at. (2007) investigated the additive relationship between colour- 

emotions for three-colour combinations using the three scales "active-passive", 

"heavy-light" and "warm-cool". They also studied the influence of area proportion on 

colour-combination emotions. Thirty colour combinations (each including three 

constituent colours), generated randomly by 35 colours, were used as the stimuli in 

the experiment. For each of the 30 colour combinations, they setup seven different 

area ratios in sizes for each constituent colour as experimental stimuli, including 

(4: 1: 4), (3: 1: 3), (2: 1: 2), (1: 1: 1), (1: 2: 1), (1: 3: 1) and (1: 4: 1). They assumed that the 

additive relationship for two-colour combinations described in Equation (2-51) can 
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be extended for the three-colour combinations where the constituent colours share 
the same size as shown in Equation (2-52). They also assumed that for three- 

colour combinations, the contribution of each constituent colour to the emotion 
value of an entire combination was proportional to the size of that colour area, as 
described in Equation (2-53). 

E-E, +Ez+E3 
3 

E_a, 
E, +a2E2 +a3E3 

a, +a2 +a3 

(2-52) 

(2-53) 

where E represents the colour-emotion value for an entire colour combination; E,, E2 

and E3 represent colour-emotion values for the three constituent colours in that 

combination; at, a2 and a3 represent the area for each of the three colours. They 
found that the additive relationship was also conserved for three-colour 

combinations; however, the effect of area proportion was significant only for specific 
colour combinations exhibiting a high colour-emotion difference value between the 

colour-emotion value for the colour in the middle of the combination and colour- 

emotion values for those on the two sides within that combination. The colour- 

emotion difference is defined in Equation (2-54). 

ACE = E2 
(E, +E3) 

2 
(2-54) 

They also found that this effect was particularly significant for the "heavy-light" 

scale. 

2.5 Affective Quality of Images 

2.5.1 Frameworks in the study of Image Quality 

As imaging devices have become more widespread, understanding image 

appearance and developing image quality models have been one of the main 
research subjects in the colour-imaging field. Thus, many studies have been done 
to understand the perception of image appearance and to develop an empirical 

53 



image appearance model which is applicable to specifying image appearance and 

subjective image quality. 

The present study focuses on an investigation of the relationship between the 

colour characteristics of images and the emotional responses elicited by those 

images. Thus in this section, studies related to identifying important attributes for 

image appearance and models for image preference will be reviewed. 

2.5.2 Definition of Image Quality 

Although image quality has been defined by many researchers, there is no 

unified agreement on this as it cannot be simply defined. This section introduces 

some of the definitions of the quality of image reproductions which are relevant to 

the present study. 

Janssen et al. (1997) proposed a definition of image quality as "the quality of 

an image is the degree to which the image is both useful and natural. The 

usefulness of an image is defined to be the precision of the visual representation of 
the image, and the naturalness of an image is defined as the degree of 

correspondence between the visual representation of the image and knowledge of 

reality as stored in memory. " This concept suggested two important steps 

assessing usefulness and naturalness to determine image quality in the context of 
the human visuo-cognitive system. First, observers obtain visual information from 

the scenes presented on imaging devices and then an internal representation is 

constructed. Second, the information is appraised by referring to internal memory. 
The first step is referring to the usefulness of an image which indicates the extent to 

which the image is representative of the real world. The second step is referring to 

the naturalness of an image. 

Yendrikhovskij (2002) proposed a concept of image quality comprising three 

attributes which adds an additional attribute, fidelity, to Janssen et al. 's concept. He 

proposed that the overall quality of an image can be predicted as the weighted sum 

of the three attributes and different types of image may need different weights on 

each attribute as shown in Figure 2.17. He defined these three attributes as follows: 

Fidelity - the degree of apparent match of the reproduced image to the 

external reference. 

Usefulness - the degree of apparent suitability of the reproduced image to 

satisfy the corresponding task. 

Naturalness - the degree of apparent match between the reproduced image 

and an internal reference. 
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NATURALNESS 

Figure 2.17 Usage of the FUN dimensions on the quality of different image 
applications (Yendrikhovskij, 1999a) 

Keelan et al. (2002) proposed that the nature of the attributes contributing to 
image quality can be classified into four categories: personal, aesthetic, artifactual 
and preferential attributes. The personal attribute refers to the relationship between 
the observer and the subject of the image. The aesthetic attribute refers to the 

artistic characteristics of image. The artifactual attribute indicates a degradation of 
quality when apparent defects are introduced by imaging systems. Finally, the 

preferential attributes, for example contrast and colour tone, are always discernable 
in an image and have an optimal position that usually depends on both the tastes of 
the observer and the contents of the scene. Regarding these four attributes, he 

suggested a working definition of image quality as "The quality of an image is 
defined to be an impression of its merit or excellence, as perceived by an observer 
neither associated with the act of photography, nor closely involved with the subject 
matter depicted. " In this definition, he excluded those attributes related subject 
matter which may be very subjective and so have a great influence when the image 
has personal meaning or attachment to observers. However recently, the general 
usage of images has been extremely wide and is largely expanding toward many 
applications such as personal blogs and personal photo albums. In these 

applications, images definitely include personal values and special meanings to 
those. As the subject matter and personal aspects of images are highly associated 
with emotional responses, the attributes related to subjects and personal meaning 
need to be studied. 

In addition, some other attributes named as preference and image appeal, 
have been studied in elsewhere (Sauakis, 2000; Calabria, 2003a; 2003b, Koh, 
2006) in which the definitions of these attributes were mainly about the quality 
colours in the images. 
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2.5.3 Image and Emotion 

It has long been recognised in experimental psychology that aesthetic and 

emotional responses to images are highly personal and are greatly affected by 

personal preferences (O'hare, 1976). Many researchers have consistently found 

that emotions can be measured and quantified and that relationships can be set up 
between the physical properties of the image and emotion. 

Many studies investigating the emotional responses to images used one of 
the most widely-used stimulus sets, known as the International Affective Picture 

System (TAPS, 2005), which is a set of static images containing various subjects 
including people, animals, nature, various objects, events and scenes. It samples 
as broadly as possible the range of visual representations in the world. This system 
includes calibrated emotional stimuli (956 pictures in 2008 divided into 16 sets of 
pictures) that can serve as a measurement standard analogous to those used in 

physical metrics in research on emotion. The pictures in ZAPS that evoke the most 
emotion depict human agents, activities and events. Over half of the pictures in 
ZAPS depict people engaged in positive, neutral or negative activities. 

By using the stimuli in this system, it has been demonstrated that each of the 
two independent dimensions of emotion- valence (pleasantness) and arousal 
(excitation)- can be characterised by a particular physiological measurement (see 
Section 2.4.3.2). However, there have been only a few attempts to establish a 
relationship between image properties and affective response. Bernat at al. (Bernet 
2006) reported a correlation between image theme and all physiological measures 
of emotion for themes including erotic, adventure, victim and threat. He used the 
term "affective intensity", suggesting that a continuous scale can be established 
between image content and emotion. Another aspect of image emotions studied by 
Codispoti and De Cesarei (Codispoti, 2007) is related to viewing geometry. In their 

result, skin conductance measurements were found to be linearly related to image 

size, suggesting a link between the image size and arousal. 

The term affective imaging was introduced by Fedorovskaya et al. 
(Fedorovskaya, 2001). In the study, they attempted to investigate the use of 

affective characteristics of images. They measured the affective responses to 

selected images in verbal and physiological ways in order to test whether the 

responses could be predicted by selecting an appropriate emotional content. They 

found that the choice of image content can influence affective responses. However, 

no further studies have been done, which adopt the enhancement of image 

characteristics to enable the affective quality of images to meet a pro-defined state. 
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2.5.4 Factors Affecting Image Emotion 

2.5.4.1 Image Content 

In this study, image content mainly refers to the contents of the scene which 
can be described using a range of keywords to illustrate the image such as family, 
picnic and so on. Engeldrum (2002) suggested that the "contextual" factors of 
image content may have a significant effect on perceived image quality and 
preference due to factors such as spatial configuration of the elements and/or 
objects, a few critical colours of skin tones, grass and sky and emotional 
involvement of the observer in the test image. 

Regarding image content and its impact on image appeal, Savakis et al. 
(2000) conducted an experiment on the human estimation of image appeal, where 
11 participants were asked to rank pictures 0 to 100 in 30 groups of images based 

on the relative appeal within their group and comment on the factors that influenced 
their assessments. They defined image appeal as the interest that a picture 
generates when viewed by third-party observers. Based on observers' responses, 
the comments were compiled in terms of attributes which may contribute in a 
positive or negative manner towards the emphasis image score. A frequency index 
is associated with each of the attributes and is incremented or decremented every 
time a positive or negative attribute is mentioned by one of the participants. They 

found that attributes can be divided into four groups: people, composition/subject, 

quality measures and duplicate (or redundant). Amongst these four attributes, more 
emphasis tended to be placed on those related to composition/subject and people 
than on quality measures and duplicate. The study suggested that image appeal 
related to these attributes can be influenced by changing objective measures such 
as image colourfulness, lightness and sharpness. 

Kim et al. (2008) studied changes in the psychological dimensions that 

evaluate the image quality of still images on TV accounting for the various levels of 
the TV's physical controls (e. g. contrast, brightness, hue (tint), saturation (colour), 

correlated colour temperature and gamma). They collected a large number of 
adjectives describing five different categories of scenes shown on TV: news, history 
drama, sports, soap drama, and documentaries. The result of factor analysis on all 
of the psychophysical data showed that there were slight differences in 

psychological dimensions according to each scene as shown in Table 2.7. 
Psychological dimensions can be roughly divided into three categories: SSE 
(scene-specific emotion), Sensation, and Pleasant-Unpleasantness. They also 
performed psychophysical experiments where observers were asked to evaluate 
the image quality of five scenes with variations in their colour characteristics, using 
the scales shown in Table 2.7. The physical controls of a TV having three to five 
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levels were used to produce pictures having various image characteristics. In the 

results, changes in the colour due to changes in the levels of each control showed 
that each scene had different effects on the psychological dimensions. 

Maximisation of dynamic range was, in particular, found also to maximise all of the 

psychological reactions studied for all scenes. Changes in saturation and hue led to 

different reactions in the three psychological dimensions for all scenes. Changes in 

gamma and correlated colour temperature resulted in weak reactions of 

psychological dimensions, and the reaction varied according to the scene. 

Table 2.7 Psychological dimensions & adjectives (Kim, 2008). 

TV Scene News Documentary Sports 
Soap 

Drama 
History 
Drama 

Approaching 
Calm Intense Strong 

Live Active 
Simple Splendid Courageous 

Strong Strong 
SSE Live Sensuous Dynamic 

Intense Live 
Natural Ave Tense 

Cool Dynamic 
Sophisticated Stimulus Live 

Dynamic 

Refined Soft Colourful 
Colourful Bright Colourful Natural Attractive 

Sensation Vivid Vivid 
Bright Abundant Bright 

Bright Refined 
Vivid Vivid Vivid 

Soft Natural Soft 
Pleasant- Stimulus 

Unpleasant Dynamic Natural Soft Natural 

Harmonic Delicate Harmonic 

ZAPS classifies all images in the system into three values based on a three- 
dimensional emotion space. It is theoretically based on the three-dimensional 

structure of emotion proposed by Russell and Mehrabian (Russell, 1977). The two 

primary dimensions were "valence" (i. e. pleas ant vs. unpleasant) and "arousal" 

(calming vs exciting). The third dimension was called "dominance" or "control". 
Several studies (Bradley, 2001; Codispoti, 2007) have shown that the distribution of 

emotions in the space of the first two dimensions (pleasure vs arousal) tends to 

have a "boomerang" shape as shown in Figure 2.18. This graph indicates that If a 

picture is regarded as highly pleasant or as highly unpleasant, its arousal rating Is 

also high; pictures that are rated as neutral (on the pleasantness scale) tend to be 

rated low in arousal. 
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By using the stimuli in this system, physiological measurements have been 

widely-used and many correlations between physiological measures and the 
degree of image pleasantness and level of arousal are observed (Cuthbert, 1998). 
Many other studies have shown that the physiological responses to image stimuli 

are related to a set of specific measures referring to the level of pleasantness and 
arousal (see Section 2.4.3.2). 
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Figure 2.18 Plot of pictures from the International Affective Picture System on the 
basis of their mean pleasure (y-axis) and arousal (x-axis) ratings. Each point 

in the plot represents the ratings for a picture (Bradley, 2001). 

2.5.4.2 Image Size 

Sanchez-Navarro et al. (Sfinchez-Navarro, 2006) studied the influence of both 

the emotional subject and the physical characteristics of affective stimuli on 

physiological and cognitive indices (verbal reactions) of the emotional response. 
They used 54 pictures from ZAPS, including unpleasant, neutral, and pleasant 

subjects, and used two picture sizes as experimental conditions (120 x 90 cm 
(visual angle: 33.4° x 25.4°) and 52 x 42 cm (visual angle: 14.8° x 12.0°)) with a 
2m viewing distance. Sixty-one observers were randomly assigned to each 

experimental condition. The skin conductance response, heart rate, free viewing 
time, and picture valence and arousal ratings were recorded. In their result, the 

affective subject of the image had an effect on all records; however, image size had 

no effect on emotional responses. 

Nevertheless, Codispoti et al. (Codispoti, 2007) obtained experimental results 

showing some size effects on their physiological measurements. In their study, 

changes in emotion were measured while participants viewed pictures presented in 
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small (visual angle: 2.62° x 1.96°), medium (6.99° x 5.22°), and large (20.96° x 
15.66°) sizes and varying in affective picture subject. Emotional modulation of skin 

conductance was absent for the smallest stimuli and increased linearly for the 

medium and largest stimulus sizes. However, the affective modulation of heart rate 
and corrugator muscle (used when frowning- see Section 2.4.3.2) activity were not 
influenced by picture size. 

2.5.4.3 Previous Experience 

As mentioned in Section 2.4.3.2, Miler et al. (2002) found that the personal 
relevance of the emotional stimuli may have influence on emotional response. They 

observed that skin conductance increased when people imagined pleasant or 
unpleasant events, compared to neutral images and also that such responses were 
enlarged when personally relevant scenes were involved in the imagination. 

There are also other studies which found that the relation between two stimuli 
presented may have influence on emotional response. Procter et al. (2003) argued 
that if there was a strong association between two sequential stimuli, the subject 
tended to respond faster than when the previous stimuli was unfamiliar. Codispoti et 
al. (2007) found that measured autonomic responses (skin conductance and heart 

rate change) were more rapid for replicated stimulus. These findings imply that 

observers will react differently to images they have seen before. 

2.5.4.4 Colour 

Bradley et a/. (2001) explored the effect of colour on a viewer's response to 

pictures and examined whether colour can influence the affective responses to 
specific picture subjects such as mutilation. In this experiment, they selected 18 
different contents from ZAPS including 8 pleasant, 2 neutral and 8 unpleasant 
contents and four images for each content. Of the 95 observers, 47 were asked to 

view these pictures displayed in colour, and the rest viewed in grey scale. They 

measured the affective responses obtained in two different ways (verbal reports 
and physiological measurements). These tended to be similar, regardless of 
whether the pictures were presented in colour or greyscale. The results also 
showed that the manipulation of picture colour did not have any significant effect on 

emotions verbally reported in terms of pleasant, neutral and unpleasant contents. 
Thus, they concluded that the colour of an image had no observable impact on the 

pattern of measured affective responses. 
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Nevertheless, other studies have demonstrated that colour had an effect on 
the psychophysical responses of emotion. Hekkert and van Wieringen (Hekkert, 
1996) examined the reactions to paintings which were presented with and without 
colour. They found that removing colour from paintings decreased liking for the 

average viewer. As an extension to this work, Pozella et al. (2005) investigated the 
effects of colours on 20 digitised art paintings which varied in their subject (portraits 

vs. landscapes) and style (modern vs. traditional), selected from the collection of 
the National Gallery of Art in Washington, D. C. In the experiments they conducted, 
30 out of 60 observers viewed these pictures in colour and the rest in grey. 
Observers were asked to rate on twelve seven-point scales: 1. Simple-complex, 2. 
Displeasing-pleasing, 3. Uninteresting-interesting, 4. Ugly-beautiful, 5. Weak- 

powerful, 6. Passive-active, 7. Unbalanced-balanced, 8. Clear-indefinite, 9. No 

pleasure-extreme pleasure, 10. No discomfort-extreme discomfort, 11. Relaxed- 

tense, and 12. Drowsy-alert. The results showed that the two image subjects 
(portraits vs. landscapes) had different effects of image colour on the viewers' 
affective responses. For portraits, removing colour from the image increased the 

perceived pleasantness and beauty. In contrast, removing colour from the 
landscape images reduced perceived beauty. 

2.5.4.5 Image Appearance Attributes 

Many studies have identified important image appearance attributes 
influencing the image quality judgement. In this section, some of these studies are 
reviewed. 

Bech et al. (1996) studied large numbers of attributes which had effects on 
image quality assessment. As a result, they identified eleven attributes as primary 
factors of image quality through a large questionnaire asking engineers working 
Philips and Bang and Olufsen to list all words relevant to image quality. Those were 
sharpness, contrast, transition between areas, rendering of lines, rendering of 
details, movement blur, details in light parts, details in dark parts, ratio between light 

and dark parts, rendering of contours and rendering of depth. 

Yendrikhovskij et al. (1999b) have studied the effect of brightness and chroma 

on image quality assessment. They modelled image quality judgments (IQ) as a 
combination of brightness rendering (B) and chromatic rendering (C) judgments 

with different weights: IQ = wiB + w2C. 

Hirai et al. (2006) used 13 pairs of adjectives to compare image quality 
between two different types of display, LCD and PDP: "soft-hard", * arm-cool", 
"colourful-sober", "light-dark", "fine-coarse", "brilliant-cloudy", "stereoscopic-plane", 
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"real-virtual", "prefer-dislike", "impressive-poor", "heavy-light", "natural-artificial", and 
"smooth-rough". This was a unique attempt that applied a set of word pairs 

representing affective responses to the evaluation of image quality. 

Kwak et a!. (2006) extended the determination of preferred colours for natural 
familiar objects into satisfactory reproduction of point colours, e. g. a sports car with 

a strong red colour. 

Boust et al. (2004) attempted to relate memory colours of familiar objects to 

preferred image reproduction. Eight images were provided to experts who were 

asked to modify the images until the images looked "preferred". They produced 
several intermediate versions of the enhanced image, which were relevant to 
important steps in the improvement of image quality. Generally, the first step for the 

experts was to segment an image into several interesting zones in order to enhance 
them. These zones mainly corresponded to familiar objects, for example skin tones, 

sky, grass and tree. Thus, the colours belonging to skin, sky and grass in the 

enhanced versions of the target images were compared with the memory-colour 
data set of those provided by Yendrikhovskij et al. (1999). The main results from 
this comparison are summarised as follows. 

(1) the experts tended to use the whole dynamic range and gamut available 
for enhancing images. As the experts changed lightness information in the target 
images, the shifts occurring in the colours of skin, sky and grass seldom matched 
the memory-colour data set. 

(2) The colours of skin, sky and grass in the enhanced target images did not 
seem to exactly fall inside the ellipses of the memory-colour data set in the u'v' 
chromaticity domain. 

(3) Some images that were perceived to have degraded image preference 
had a high percentage of memory colours. 

They concluded that one important element used to judge an image was the 

coherence of the whole colour distribution, which should make the whole scene at 
least natural and plausible. 

Based on previous literature, three important attributes - naturalness, contrast 
and colourfulness- are reviewed in next section for the present study. 

2.5.4.5.1 Image Naturalness 

Many researchers (Rider, 1996; Fedorovskaya, 1997; Janssen, 1997; 

Yendrikhovskij, 1999a; Hunt, 2004) have proposed that naturalness is one of the 
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important image appearance attributes for image quality evaluation. Hunt (Hunt 
2004) claimed that naturalness can be assessed by the mental recollection of the 

colour sensations previously experienced - so called memory colour- when looking 

at objects similar to those being appraised. 

Yendrikhovskij et al. (1999a) proposed a process of naturalness judgement 

which assumed that the process was based on two steps of comparison. In the 

process, they assumed three representations of colour: reproduced object colours, 
apparent object colours and prototypical object colours. The reproduced object 

colour is an area of the reproduction corresponding to light coming from an object 

surface and contains points of different colours. The object colour can be 

represented by a statistical description such as mean colour. The apparent colour is 

the perceived version of the reproduced colour and may not be the same due to the 
influence of viewing conditions. They proposed that the key process of the 

naturalness judgement is the comparison between apparent object colour and 

prototypical object colour. In this study, they demonstrated the process using 

memory colours of grass, skin and sky to specify image naturalness. They 

manipulated two test images in terms of hue and chroma. A naturalness index was 
devised and computed by means of a Gaussian function of the differences between 

the average saturation (suv) values of the manipulated images and the saturation of 

a set of natural images for each of the grass, skin and sky areas. They found that 

the images manipulated by such changes led to a systematic reduction in perceived 
image naturalness, i. e. changing hue produces a more unnatural image 

appearance than only varying chroma or lightness. 

Janssen et al. (2000) also used the memory colours of grass, skin and sky to 

predict image naturalness by computing the degree of matches in the three 
dimensions, Y, u' and v' between an image considered and a set of natural images. 

Both researchers demonstrated that the naturalness of an entire image could be 
determined from the naturalness predictions for the grass, skin and sky areas of the 
image. However, the validity of this result is dependent on the characteristics of the 

set of natural images in which the memory colour information for grass, skin and 

sky was extracted. 

Choi et al. (2008) proposed an image quality model in the form of a linear 
function of three attributes: image naturalness, image colourfulness and image 

contrast. The naturalness model was defined as a function of colourfulness, 
sharpness and reproduction of shadow detail. In the naturalness model, the 

colourfulness predictors were calculated as ratios of the colourfulness attributes in 
CAM02-UCS M' for each of the original and manipulated images to that of the 

original image. The scale values for original and manipulated images were also 
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divided by that of the original image. The corresponding trend for image 

naturalness vs. image colourfulness is a skewed bell-shape function given in 
Equation (2-55). 

N,. = exp13.68 - 
3.71 

- 3.70 k( x)1 (2-55) 
zJ 

where x is the compute image colourfulness ratio in CAM02-UCS. The reproduction 
of shadow detail was defined as the ratio of the number of pixels having the 
lightness J' in CAM02-UCS less than 30. The curve also had skewed bell-shaped 
function and was defined by a function given in Equation (2-56). 

NRS� = exp 1.60 - 
0.31 

- 0.331n( x)1 (2-56) 

where x is the ratio of the number of pixels having J' less than 30. Image sharpness 
was defined as the ratio of the pixel-based colour difference computed at 128X96 
image resolution. The proposed function is shown in Equation (2-57). 

N, = exp 28.48 - 
28.54 

- 28.82 k t( x) x 
(2-57) 

where x is the pixel-based colour-difference ratio at 128X96 image resolution 
computed in CAM02-UCS space. Based on these three predictors, they proposed a 
naturalness model as a function of the three as shown in Equation (2-58). 

N=0.53NRS� + 0.83N, + 0.54N, 
v - 0.85 (2-58) 

An image quality model was also proposed as defined in Equation (2-59). This 
is a function of image naturalness, colourfulness and contrast which are collected 
scale values. 
IQ = 0.401Q(contrast) + 0.501Q(colourfulness) + 0.72N - 0.53 (2-59) 

In this equation, IQ(contrast) is defined in Equation (2-60). 

IQ(contrast) = exp[7.73 - 7.80 /x-7.13 k( x)] (2-60) 
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where x is the predicted perceived image contrast. IQ(colourfulness) is defined in 
Equation (2-61). 

IQ(cobu-fub ess) = exp [0.80 
- 0.92 / x- 0.44 hl(x)] (2-61) 

where x is the predicted perceived image colourfulness. 

Koh et al. (2006; 2008) proposed that the perceived quality of a colour image 
has two dimensions: one of preference, i. e. the degree to which the colour of the 
digital videos most pleases the viewer, and one of naturalness, i. e. the degree to 

which the colour of the digital video is considered the most lifelike or natural. They 

studied the relationship between preference and naturalness when the chroma and 
lightness of the colour varied. Preference and naturalness scores increased to a 
maximum and then decreased as the mean chroma and lightness of the videos 
increased. The mean chroma at which preference is at a maximum is greater than 
the mean chroma at which naturalness is at a maximum. Maximum preference and 
naturalness scores, however, occurred at similar mean lightness values. 

2.5.4.5.2 Image Colourfulness 

Fedorovskaya et al. (1997) proposed that the colourfulness of an image is the 

main attribute underlying image quality and naturalness. In this study, the 

relationship between image colourfulness and perceptual quality in terms of image 

quality and naturalness was explored. The variation in colourfulness was generated 
in two different ways: by adding or subtracting the same amount of chroma to or 
from the chroma value of each pixel; by multiplying a constant to the chroma value 
of each pixel. As a result, a perceived colourfulness model was proposed in the 
form given in Equation (2-62). 

Colourfulness = w1-average chroma + w2-standard deviation of chroma + w3 (2-62) 

The three weighting parameters w1, w2 and w3, were dependent on image 

content and four equations corresponding to the four test images used were 
reported in this study. In their study, the four test images manipulated only in the 

chroma domain were assessed by observers in terms of image colourfulness. They 

also found that the colourfulness enhancement (about 1.03 times to the original 
chroma in average for all images) resulted in higher perceived quality, however 
further increase led to a reduction in quality. They concluded that this was due to 
the resulting decrease in naturalness as the result also showed that perceived 
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quality was strongly related to naturalness. The results showed that the optimal 
values of chroma for maximum quality were dependent on image content and that 
the relationship between the colourfulness and perceived quality was also 
dependent on image content. 

2.5.4.5.3 Image Contrast 

Contrast for a simple periodic pattern such as a sinusoidal grating is generally 
defined using the Michelson contrast (Michelson, 1962) equation (2-63). 

C. = 

Lmax 
- 

Lmn 

L�m +Lmn 
(2-63) 

where L. and L.,,, are the maximum and minimum luminance values in the pattern. 
The values range from 0 to 1. This can be also used for a larger area such as an 
image which is the perceived appearance. It has been reported that the changes in 
contrast measured by this definition relate well to the perceived contrast of the 
display (EIA, 1987). Contrast can also be described by contrast ratio (CR), which is 
the ratio of the luminance of the bright area (L,,,, ) to that of the dark area (Lm, ) as 
shown in Equation (2-64) (ANSI, 1977). 

CR = 
Lmn 

L 1180 
(2-64) 

This is a common methods used to describe display contrast which refers to 
dynamic range. It is greater than zero, which represents no visible difference 
between the compared colours. 

Calabria at al. (Calabria, 2003a) found that there tended to be significant 
differences in perceived image contrast between colour images and their 
corresponding achromatic versions. Then, he (Calabria, 2003b) studied the 

perceived contrast in colour images and proposed an empirical model of perceived 
contrast as a function of image lightness, chrome and sharpness Information. He 
found that his model, named Single Image Contrast (SIP) tended to depend on 
image content. The relationship between perceived image contrast and each of the 
three predictors was modelled as a linear function with different weights. For 

lightness and chrome, the standard deviation of lightness (K,, ) and chrome (K(. ) 

values for all pixels in an image were used as modelling parameters. For sharpness 
information, the standard deviation of the lightness in the high-frequency filtered 
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image was used. Then an image-dependent model was developed, as shown in 
Equation (2-65). 

SIPk = -1.505 = 0.131K, + 0.15 IKL + 666.216Ks (2-65) 

ASIPk = SIPK - SIPK (2-66) 

An image-independent model was also proposed as shown in Equation (2-66), 
by defining the contrast difference obtained between two images (i and J) which 
have the same content but are different in lightness, chroma and sharpness. 

2.6 Summary 

The aim of this study is to clarify the relationship between the colour 
characteristics of images and emotional responses to them and to develop 

quantitative models of image emotion as functions of colorimetric quantities. 
According to this aim, this chapter has reviewed topics related to the present study. 

In sections 2.1 to 2.3, basic information in the field of colour science field 

related to the human visual system, colorimetry and CIECAM02 colour-appearance 

model was reviewed. 

As reviewed in Section 2.4, emotion is a complex process which includes 

several components: cognition which interprets the meanings of the emotional 
event, physiological responses which are controlled by ANS system including the 
brain, subjective feelings and behavioural reactions. Structural models of emotion 
which can be used to describe the subjective feelings towards the emotional stimuli 
and methods to measure the emotional responses of subjective feelings and 
physiological responses were reviewed. 

In Section 2.4, emotion models for visual experiences were also reviewed. 
According to Cupchik's aesthetic model (Cupchik, 1994), subjective feelings can be 
divided into two levels: reactive and reflective. These two levels of emotional 
responses seem to correspond to visceral and reflective levels in Norman's model 
(Norman 2004). Ou at al. (2004a) adopted this concept which defines two levels of 
emotional responses to define the responses of colour-emotion. The colour-emotion 
model is related to one of the main focuses of the present study, which describes 
the interaction between colour, which is one of the most important characteristics of 
an image, and emotion. Considering the interaction between images and emotion, 
which is the main focus in the present study, both levels of emotional responses 
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may contribute to the emotional responses as images typically contain not only 
visual properties such as the configuration of colours, various objects, but also 
possess special meaning to observers. Thus, studies related to these properties of 
images were reviewed in Section 2.5. 

Considering the several definitions of image quality described in Section 2.5, 
there is a main difference found between the approaches to defining the subjective 
responses in image quality studies and those in product design studies. The 

approaches in image quality tend to restrict the possible reactions to simply a 
question of good or bad; However, as mentioned above, images typically contain 
not only visual properties such as configuration of colours and various objects, but 

can also possess special meaning to observers. Moreover, several factors of 
images (see Section 2.5.4) can influence the affective responses to images, e. g. 
image content, size, previous experience or personal meaning and image 

appearance attributes including colour characteristics. 

According to the findings from the review, the scope of the present study was 
determined as described below. 

To investigate the affective response to images, Russell's two-dimensional 
model of emotion was to be used (Russell, 2003) using psychophysical methods. 
An alternative method for measuring observer responses would be adopted, 
making use of a number of physiological measuring instruments. The results from 
these two methods would then be compared. 

The relationship between image emotion scales used in the study (including 
pleasantness and excitement) would be examined. Regarding the modelling of 
image emotion scales, this study would focus on the colour characteristics of 
images, image content and personal value. It should be noted, however, that many 
other factors of observer characteristics may also be influential (e. g. cultural 
background, gender or personality). These factors can be considered in future 

work. 

This study would also test the colour-emotion models developed by Ou et at 
(2004a) to see whether they could also be applied to complex images. Then, the 

relationship between overall emotional responses and colour-emotion responses 
and also the relationship between the three factors of the colour-emotion model for 

complex images and colour attributes of images will be investigated. Thus, models 
for the relationship between colour-emotion scales (e. g. warm/cool) and image 

emotion scales (e. g. pleasant/unpleasant) would then be developed. 

On the basis of the literature survey and the scope of this study, a number of 
hypotheses have been set out as described below: 
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(a) Image emotion scales as investigated in this study (i. e. pleasant- 
unpleasant, exciting-calming, like-dislike, natural-unnatural and appealing- 
unappealing) can be divided into two groups in line with Russell's (Russell 2003) 

two-dimensional model of emotion in general terms. 

(b) The affective responses to images will be different for different types of 
image contents. Four types of image contents are to be tested in this study: 
positive, negative, neutral and personal. 

(c) Ou et al. 's (2004a) colour-emotion models (e. g. warm/cool) will work well in 

predicting the affective responses to complex images, making use of the additivity 
theory of colour-emotion (Ou 2004b). 

(d) Psychophysical responses to images will agree well with the 

corresponding physiological responses. 
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Chapter 3 Experimental Preparation 



The aims of the present study were to clarify the relationship between the 

colour characteristics of images and the emotional responses elicited by those 

images and also to develop quantitative models of image emotion as functions of 
colorimetric quantities considering effect of image content. In the present study, the 

emotional responses were investigated using two different approaches. One was 
"image emotion" in which the subjective affective quality of images was described 

using real emotion terms considering overall effect of colour and content. To 

measure the responses of image emotion, not only psychophysical methods but 

also physiological methods were applied as sometimes emotions are presented by 

bodily changes. The other approach was "colour-emotion" (see Section 2.4.5), 

which mainly considered colours in images to describe configurations of colour for 

reactive-level emotional responses. 

To achieve these aims, two psychophysical and two physiological 
experiments were conducted, as summarised in Table 3.1. Experiment 1 

investigated the relationship between the colour-appearance attributes of images 

and emotional responses elicited by those images in order to find any differences in 
these relationships according to image content. In this experiment, semantic 
classification of image contents was considered according to two criteria: the level 

of pleasantness and the level of personal attachment. Five scales were used to 
investigate image emotion including pleasant-unpleasant, exciting-calming, like- 
dislike, natural-unnatural and appealing-unappealing. Physiological signals from 
heart rate, facial muscle movement and skin conductance for physiological 
responses were also taken. Experiment 2 investigated the relationship between the 

colour attributes of images and colour-emotion for complex images and also the 

relationship between colour-emotion of images and image emotion. Six emotion 
scales were used including: pleasant-unpleasant, exciting-calming, like-dislike, 

active-passive, heavy-light and warm-cool. Experiment 3 was designed to 
investigate the effect of colour reproduction in terms of chroma and contrast on 
emotional responses presented through physiological signals. This experiment 
focused on reducing the number of presentations of the some stimuli in order to 

maximise the reactivity of emotional activation to the stimuli. Thus, the experiment 

was divided into two parts to examine the effect of the chromatic characteristics and 

contrast of images on physiological responses separately. Details of specific 

experimental setups such as selection of images, colour rendering of images, 

emotion scales used, observers, viewing condition and procedures will be 

discussed in Section 3.4 in this chapter. 

In this chapter, the general experimental setup for this research are 
described in five sections: the specification of colour-measuring equipment, the 
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colorimetric characteristics and characterisation model of the imaging device 

used, the characteristics of physiological instruments used and experimental 
setups for four experiments in this work. Additionally, the statistical methods used 
for the data analysis will be discussed. 

Table 3.1 Outlines of experimental conditions consisting of methods of 
measurement, imaging device used, number of original test images and their 
aims. 

Method of measuring emotional Imaging 
Experiment Stimuli 

responses Device 

Psychophysics 

5 scales (pleasant-unpleasant, Prints 
10 test images 

exciting-calming, like-dislike, natural- (4 a-priori subjects) 

unnatural and appealing-unappealing) 
1 

Physiology 
10 test images 

Skin conductance, heart rate and facial Prints 
(4 a-priori subjects) 

EMG 

Psychophysics 

2 6 scales (pleasant-unpleasant, exciting- Display 
12 test images 

calming, like-dislike, active-passive, (4 a-priori subjects) 

heavy-light and warm-cool) 

Physiology 
37 test images 

3 Skin conductance, heart rate and facial Display 
(4 a-priori subjects) 

EMG 

3.1 Colour-Measuring Equipments 

In this study, two colour-measuring instruments were mainly used to 
determine the tristimulus values of the stimuli and viewing conditions for the 

experiments: a Minolta CS-1000 tele-spectroradiometer and a GretagMacbeth 

Spectrolino Spectrophotometer. The CS-1000 was used for display evaluation, to 
develop the device characterisation model in Experiments 2,3 and to specify the 

viewing condition in Experiment 1. The Spectrolino spectrophotometer was used to 

measure colour patches for characterising the printer used in Experiment 1. 
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3.1.1 Minolta CS-1000 Tele-Spectroradiometer 

3.1.1.1 Specification 

A Minolta CS-1000 tele-spectroradiometer (TSR), shown in Figure 31, was 
used to measure XYZ tristimulus values for a series of uniform colour patches 
presented on the LCD display used in Experiments 2 and 3. These values were 
used to evaluate display characteristics and to develop the characterisation models 
for the display. The tristimulus values of a white tile under the same lighting 

condition as used in Experiment 1 were measured. It records spectral power 
distribution data in the range of 380-780 nm with 1 nm intervals. The colour- 
matching functions to convert measured SPD to XYZ values used were the CIE 
1931 standard colorimetric observer. The specifications of the CS-1000 TSR used 
are given in Table 3.2. 

Figure 3.1 Colour-measuring instrument: Minolta CS-1000 

Table 3.2 Specification of CS-1000 tele-spectroradiometer (Minolta, 2010) 
(1) Radiance 

(2) With software: 
Measurement Functions 

Chromaticity (2'- and 10' observer), 
Luminance, Colour temperature etc. 

Wavelength Range 380 - 780 nm 

Bandwidth 5 nm 
Wavelength Resolution 0.9 nm/pixel 

Wavelength Precision 10.3 nm (median wavelength: 546.1 nm Hg lamp) 

Angle of measurement 1" 

Measurement Range of Luminance 0.01- 80,000 cd/m (For illuminant A) 

(1) Luminance: ±2% tldigit 
Accuracy (for illuminant A) 

(2) Chromaticity: x: 10.0015, y: 10.001 

(1) Luminance: ±0.1% tldigit 
Repeatability (for illuminant A) 

(2) Chromaticity: 10.0002 
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3.1.1.2 Reliability of CS-1000 Tele-Spectroradiometer 

Physical uncertainty in measurement can be caused by fluctuations in the 

measurements made by the CS-1000 TSR and by the display where stimuli were 
presented. This section reports the performance of the TSR in terms of accuracy 
and repeatability. 

To verify the spectral accuracy of the CS-1000 TSR, a Bentham CL-Hg light 

source was measured using a Bentham tele-spectroradiometer. The CL-Hg lamp 
had peaks at specific wavelengths due to electron transitions inside the mercury 
atom. The most prominent of these include 253.65,296.73,365.02,404.66,435.83, 

546.08,576.96 and 579.07 nm according to "Wavelengths and Transition 
Probabilities for Atoms and Atomic Ions, Part I. Wavelengths" NIST reference 
NSRDS-NBS 68. The measured peaks of the light source were 364.5,403.8,435.3, 
545.5,576.4 and 578.4 nm as shown in Figure 3.2 which suggests that the 

measured data deviate within around 0.5 nm from the corresponding reference 
data. Spectral accuracy of the CS-1000 TSR was examined by measuring red and 
yellow LEDs and comparing the results to those measured by Bentham tele- 

spectroradiometer. The difference of peak values between the two instruments was 
found to be within 2 nm (see Figure 3.3). 

The luminance accuracy was also assessed by measuring a tungsten light 

source in an integrating sphere (Bentham SRS8Q Spectral Radiance/Luminance 

Standard). The results are shown in Figure 3.4. The measured x and y chromaticity 

values were 0.4732 and 0.4172, respectively. Reference data provided by Bentham 
Instruments and traceable to the NPL standard were 0.4718 and 0.4157 for x and y 
values respectively. Chromaticity difference between two instruments was within 
0.015 units. 

The above measurements were carried out in July in 2008 by Dr. Peter 
Rhodes at the Colour and Imaging Group in the Department of Colour Science at 
the University of Leeds. 
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Figure 3.3 Measurement result of red and yellow LEDs using both TSRs 

Figure 3.4 Measurement result of SRS8Q standard using CS-1000 TSR 
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Repeatability of CS-1000 TSR was also examined by measuring the SRS8Q 

standard integrating sphere five times in 30 minutes with a tungsten light source 
inside the sphere. Table 3.3 shows the resulting XYZ data and their colour 
differences (dE*ab) from the mean XYZ. From the table, it can be seen that the TSR 
is highly repeatable, i. e. having very small LE*ab values. 

Table 3.3 Repeatability measurement of the CS-1000 TSR 

Measurement x Y Z AE'ab 

1st 97.81 86.07 24.89 0.10 

2nd 97.83 86.09 24.89 0.13 

3rd 97.81 86.06 24.81 0.06 

4th 97.81 86.06 24.87 0.06 

5th 97.80 86.05 24.81 0.10 

Mean 97.81 86.07 24.85 

3.1.2 GretagMacbeth Spectrolino Spectrophotometer 

A GretagMacbeth Spectrolino spectrophotometer, shown in Figure 3.5, was 
used to measure XYZ tristimulus values of the chart colours used for printer 
characterisation in Experiment 1. It could measure the colours of charts with grid 
layout automatically. Table 3.4 summarises its specification. In the present study, 
the measurement mode was fixed to "Reflection" and the settings for illumination 

and observers were fixed to CIE illuminant D65 and the CIE 1931 standard 
colorimetric observer. 

Figure 3.5 Colour-measuring instrument: GretagMacbeth Spectrolino 
Spectrophotometer 
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Table 3.4 Specification of GretagMacbeth Spectrolino Spectrophotometer 
(www. gain. com. tw/archives/Spectrolino_en pd! ) 

Wavelength Range 380 -730 nm 

Wavelength Resolution 10 nm 

Measurement Modes Reflection, Emission, Transmission 

Measurement 
45/0 ring optic 

Geometry(Reflection) 

Measurement Aperture 4 mm 

Light Source Gas-filled tungsten, type A Illumination 

D65 (approximately daylight) Pol (polarised) and No (neutral, 
Physical Filters 

incandescent lamp light A) 

Illuminant Type D50, D6S, A, C, D30... D300, Fl... F12 

Standard Observers 2°, 10° 

Typically 0.3 dE".. (D50,2°) average based on 12 BCRA tiles 
Inter Instrument Agreement 

Maximally 0.8 AE *, g, (DSO, 2') on 12 BCRA tiles 

0.03 AE*.. (D50,2°) (mean value of 10 experiments referring to 
Short-term Repeatability 

the warm up time and repeatability) 

Table 3.5 The accuracy of Spectrolino in 4E',, unit. 
Colour Spectroiino Measured 

HUE VALUE CHROMA L' a' b' L" a' b' dE. 6 

2.5R 7 8 72.5 35.5 14.0 71.8 34.8 13.9 1.00 
10YR 5 2 51.5 4.2 12.2 51.1 3.7 11.8 0.79 

10YR 9 2 91.6 3.1 15.7 90.5 2.9 15.1 1.27 

5Y 4 4 41.8 1.8 27.5 41.8 0.9 27.9 1.04 

2.5GY 8 8 81.4 -18.5 56.1 80.5 -19.0 54.2 2.16 

5G 6 4 62.4 -22.4 9.0 61.6 -22.4 8.0 1.28 

2.56G 7 6 73.0 -33.1 2.9 71.7 -32.4 1.5 2.01 

2.5BG 8 4 82.0 -18.1 -7.2 80.4 -17.3 -8.4 2.17 

108 4 6 41A -9.8 -22.9 40.7 -8.9 -23.5 1.32 

5P 3 4 30.8 13.8 -14.9 30.7 13.8 -14.7 0.25 

SRP 3 2 30.9 9.6 -2.3 30.6 9.8 -2.2 0.36 

5PB 6 10 62.6 -1.0 -36.9 61.4 0.1 -37.3 1.65 

tRýý 1.28 

max 2.17 

iewdan 1.28 
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Accuracy of measurement of Spectrolino was examined by comparing the 

measured Lab values in CLELAB space for 12 Munsell colour patches with those 

measured by a GretagMacbeth ColorEye Spectrophotometer. The colour difference 
for each colour was calculated in AE*eb and summarised in Table 3.5. The average 
AE*eb was 1.28 and the maximum was 2.17AE*eb. This colour difference may be 
due to the different geometry which is used by the two instruments, however, the 

performance is acceptable which is within 1.3AE*eb. 

3.2 Characteristics of the Imaging Device 

A liquid crystal display (LCD) and an ink jet printer were used to reproduce 
image stimuli throughout this study (see Table 3.1) to compare the emotional 
impact of images regarding rendering of colour properties and image subjects 

obtained from different media. In this section, the characteristics of two imaging 

devices and the way those have been used in this study will be described. 

3.2.1 Characteristics of Display 
A 40" (diagonal screen size) LCD TV screen, SAMSUNG LE4OF71BX, having 

full HD pixel format (1920x1080 pixel resolution) was used as the display for a 

series of experiments using displayed images in this study. It had an aspect ratio of 
16: 9 and is capable of addressing 10 bits of colour depth levels per each channel, 

although only eight bits per channel were used in this study. The light sources in the 
backlight of LCD were cold cathode fluorescent lamps (CCFL). In this section, the 

colorimetric characteristics and development of the characterisation model for the 
display will be illustrated. All measurements were performed on a square colour 

patch (pixel size: 200X200) located in the centre of the display with a grey having 
RGB equal to (128,128,128) background using the TSR in a darkened room. 

3.2.1.1 Four Parameters for Display Setting 

Four controls were adjusted to manually setup the LCD screen and "standard 

mode" was used for measuring display characteristics, as listed in Table 3.6. To 
find the relationship between these controls and the colour reproduction 
characteristics of the display, tone reproduction curves at various settings were 
investigated as described in this section. 
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Table 3.6 Settings parameters for the LCD display and their ranges 

Controls Standard Setting Range 

Contrast 80 0-100 

Brightness 50 0-100 

Colour 50 0-100 

Tone Cool 1 warm2 / warml / normal / cooll / 

cool2 

3.2.1.1.1 Contrast Control 

Figure 3.6 shows the tone reproduction curves for five different grey input 

levels at different contrast settings. In these measurements, brightness, colour and 

tone were fixed at 60,50 and Cool l, respectively. The result showed that as the 

contrast setting value was increased without changing other parameters, gamma 

values of the tone reproduction curve (TRC) are decreased. And it also showed that 

increasing contrast values strongly affects to the slope of the TRC. Thus it was 

verified that the function of the contrast control is to increase the slope between the 

brightest and darkest colours. 
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Figure 3.6 Tone reproduction curves at different values of contrast control 

Table 3.7 Gamma values for neutral TRC and contrast ratio at different contrast 
settings 

Contrast Settings 30 60 90 

Grey y 

Contrast Ratio 

3.67 

50: 1 

2.15 

166: 1 

1.70 

177: 1 
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For each of the three cases, the gamma values for the neutral TRC and 
contrast ratio (white luminance/black luminance) were computed as listed in Table 
3.7. This showed that the contrast ratio increased as with contrast setting. 

3.2.1.1.2 Brightness Control 

Figure 3.7 shows the tone reproduction curves for five different grey input 
levels at different brightness settings. In these measurements, contrast, colour and 
tone were fixed at 60,50 and cooll, respectively. The results showed that as the 

brightness setting was increased without changing other parameters, TRC gamma 

values decreased. It also showed that increasing brightness changed the intercepts, 

not the slope of the TRC. Thus it was verified that the function of the brightness 

control is to adjust the overall luminance of the LCD. 
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Figure 3.7 Tone reproduction curves at different brightness settings 

For each of the three cases, the gamma values for neutral TRC and contrast 
ratio (white luminance/black luminance) were computed as listed in Table 3.8. This 

shows that the contrast ratio increased as brightness settings decreased. It seems 
that the contrast ratio is at its highest between 30 and 60. 

Table 3.8 Gamma values for neutral TRC and contrast ratios at different brightness 
settings 

Brightness Settings 30 60 90 

Grey y 2.80 2.15 1.60 

Contrast Ratio 179: 1 166: 1 80: 1 
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3.2.1.1.3 Colour Control 

Figure 3.8 shows the chromaticity coordinates of the RGB primaries as the 

colour control is changes. As the colour setting is increased, it can be seen that 

colours on the screen become more and more saturated. However, as shown in 

Figure 3.8, there are negligible changes in colour gamut as the colour values were 
increased. In these measurements, contrast, brightness and tone were fixed at 60, 

60 and Cool l, respectively. 

Table 3.9 gives CIE 1976 u'v' values for the maximum red, green, and blue 
input signals and the computed gamut at different colour settings. When 

considering the computed actual gamut area, the gamut was largest at colour 
setting 50. 
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Figure 3.8 Colour gamut at different colour settings 

Table 3.9 Gamma values for neutral TRC and contrast ratio at different colour 
settings 

Colour Setting 30 50 70 

Red 

U' 

0.4729 

v' 

0.523 

V' 

0.4721 

v' 

0.5218 

U' 

0.4605 

v' 

0.5203 

Green 0.0822 0.5639 0.0818 0.5635 0.0928 0.5544 

Blue 0.1362 0.2417 0.1407 0.2305 0.1426 0.2267 

Gamut 0.0525 0.0571 0.0556 
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When changing the colour settings, there were no changes in the gamma 

value for the neutral TRC (it remained at 2.15). However, when considering TRC for 

the red, green and blue channels separately, the gamma values for each channel 
decreased as the colour setting increased. 

Table 3.10 Gamma values for neutral and RGB TRCs at different colour settings. 

Colour Setting 30 50 70 

Grey y 2.15 2.15 2.15 

Ry 2.54 2.16 1.75 

Gy 2.4 2.25 1.9 

By 2.7 2.22 1.56 

3.2.1.1.4 Tone Control 

Changing the tone settings affects correlated the colour temperature of white 

as given in Table 3.11. 

Table 3.11 Correlated colour temperatures for different tone settings 

Tone CCT(K) 

warm2 8812 

warml 9531 

normal 9598 

cool l 12142 

cool2 14985 
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Figure 3.9 Changes in gamma for different tone settings: cooll (left), normal 
(centre) and warml (right); at different contrast settings (top); at different 
brightness (middle); and at different colour settings (bottom). 

At three different tone settings (cooll, normal and warml), gamma variation 
due to changes in the other three parameters were investigated. Figure 3.9 shows 

changes in gamma values for red, green, and blue channels as a result of varying 
three other parameters (contrast, brightness, and colour controls) at three different 

tone settings. As investigated in the preceding sections, gamma values behave in 

exactly the same way when the other three parameters change. Considering 

changes in gamma values for each channel, while gamma for grey TRC does not 

change with the tone setting, gamma for each RGB channel does. These are 

common phenomena as the three parameters change. Thus it can be concluded 
that the tone changes are accomplished by changing the RGB channel gamma, 

mostly the blue channel. 
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3.2.1.2 Temporal Stability 

The CCFL lamps in the backlight of an LCD require a certain period of time to 

stabilise in terms of their luminance. This stabilisation time was examined by 

measuring luminance for the centre position of the screen showing a full white 
pattern. The CS-1000 (see Section 3.1.1) was used to measure continuously over a 
two-hour period at one-minute intervals. The results are given in Figure 3.10 which 
shows the colour difference between the initial and subsequent measurements 

against the time. The result shows that colour change in luminance level increases 

after turning on and then reaches a sufficiently stable level after about 80 minutes. 
Hence, all experiments including instrument measurement and visual assessment 

were carried out after about 80 minutes from turning on. 

0 50 

time(min) 

100 150 

Figure 3.10 Test results of stabilisation time for the LCD used 

3.2.1.3 Repeatability 

Repeatability of the display was examined by measuring 64 test colours with 
the combinations of 0,85,170 and 255 for each RGB channel. These were a set of 
colours used to test performance of the characterisation model for this display 
(section 3.2.1.7). Table 3.12 illustrates measurement results in terms of JE*ab 

computed between the first measurement and the following measurements. The 

overall average colour difference is 0.89dE*ab over the two-week period. This 
difference may be caused by both the display and the measuring device. 
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Table 3.12 Average colour differences of 64 colours for repeatability of colour 
reproduction 

Time interval 4 hours i2 
weeks 

Colour I Average 1 0.42 10 89 
difference 

ý---i Il 1A I n10 

(dE' . o) 

3.2.1.4 Tone Reproduction Curve 

The tone reproduction curve, which represents the relationship between digital 

input and the corresponding output, evaluated by measuring 19 steps of neutral 
colours with RGB values equally divided from 0 to 255. The relationships between 
digital inputs and normalised XYZ values for outputs are shown in Figure 3.11 All 

three curves overlap, which is regarded as an ideal transfer function. The slopes of 
the curves are very gradual in the dark grey region and are relatively steeper in the 
bright region which leads to a high contrast ratio. 

normalised digital input 

Figure 3.11 Tone reproduction curves of the LCD display, normalised XYZ (red, 
green and blue respectively) vs. RGB input values 

3.2.1.5 Colour Gamut 

Colour gamut is the range of colours that can be achieved on a given colour 

reproduction medium under a specified set of viewing conditions The colour 

coordinates of the display RGB primaries were measured under dark surround 

conditions and plotted on the u'v-diagram in Figure 3.12. The gamut of the 40" 

display was found to be larger than sRGB especially in the red and green regions. 
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whereas it was a little smaller in the blue region. This white point of the display was 
used throughout the display evaluation. 
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Figure 3.12 Colour gamut of display (red line) and white point (red triangle in the 
centre) in comparisons with sRGB (blue line and circle) as plotted on a CIE 
1976 u'v' diagram. 

3.2.1.6 Spatial Uniformity 

Spatial uniformity is often lacking in large displays caused by the geometry 

and shape of light sources in the backlight. The spatial uniformity of the display was 

assessed by measuring colours at the centre point and at eight surrounding 

positions for the full white pattern illustrated in Table 3.13. Colour differences in 

terms of JE'ab were then calculated between the centre and eight positions shown 
in Table 3.13. The average colour difference for the eight surrounding points was 
1.55JE*ab. The smallest difference was 0.67JE*ab found in the middle of the vertical 
direction and the maximum was 3.36JE*ab located at upper left corner. 
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Table 3.13 Nine points used for uniformity measurement and result of spatial 
uniformity in terms of JE'ab. 

1 2 3 
(3.36) (2.73) (2.01) 

4 5 6 
(0.67) (0.00) (0.77) 

7 8 9 
(2.57) (0.90) (0.96) 

3.2.1.7 Characterisation Model 

Characterisation models for the LCD were developed and compared using 
three different methods: GOG, 1-D LUT and 3-D LUT. To build the GOG and 1-D 

LUT models, 52 neutral colours with equal intervals from 0 to 255 were measured 

and used as a training set. For the 3-D LUT model, 125 colours (5x5x5 RGB input 

values with 0,64,128,192, and 255 for each RGB channel) were used as the 

training set. 

The performance of each method was compared by computing the colour 
difference between measured and predicted values for 64 test colours (4x4x4 RGB 

input values with 0,75,180, and 255 for each RGB channel) in dE*sb units. The 

resulting dE ;b values are listed in Table 3.14 in terms of mean, median, standard 
deviation, and maximum values. The results showed that the 3D LUT method gave 
the best predictions compared with the other models in terms of mean, and median 
colour difference. However, the 3-D LUT method showed the worst accuracy in 

terms of standard deviation and maximum values. Although the shape of the tone 

reproduction curves appeared very similar to a power function, the GOG model did 

not give the best accuracy. Among GOG and ID LUT, they displayed very similar 

performances although 1D LUT was slightly more accurate than GOG in terms of 

average and median dE', b. Therefore, the 1-D LUT model was selected and used 
for the colour manipulation of image stimuli in subsequent experiments. 

Table 3.14 Predictive performance of characterisation models in terms of ZE". b. 
dE'.. GOG 10 LUT 30 LUT 

Average 4.87 4.71 3.89 

Median 5.07 4.86 3.49 

Std. 2.94 2.94 3.29 

I Max 10.35 10.37 11.17 
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For Experiment 2 using the LCD display, the display setting was changed to 

make the white point of the display from 9000K close to D65 for the convenience of 
making ICC profiles for the printer. The final chromaticity coordinates were (x, y) = 
(0.3121,0.3317). The changed settings for four display controls are given in Table 
3.15. 

Table 3.15 Settings for the LCD display in Experiments 1,2 and 3 and their ranges. 

Controls Standard Setting Range 

Contrast 80 0-100 

Brightness 80 0-100 

Colour 50 0-100 

Tone Warm2 Warm2/ Warml/ Normal/ Cooll/ Cool2 

The characterisation models for this setting of the display were developed 

using 1-D LUT. To build this model, 52 neutral colours from RGB 0 to 255 with 

equal intervals of 5 were measured and used as a training set. The resulting colour 
difference between measured and predicted values for 64 test colours in CIELAB 

t]E`ab units are listed in Table 3.16 in terms of median, standard deviation, and 
maximum values. The 64 test colours were the combinations of 0,85,170 and 255 
for each RGB channel. This model was used for conversion between RGB to XYZ 

during image manipulation in Experiments 1,2 and 3. 

Table 3.16 Performance of characterisation models for Experiments 1,2 and 3 
AE *. b 1D LUT 

Median 

Std. deviation 

Max 

6.49 

3.23 

14.89 
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3.2.2 Printer Characterisation 

3.2.2.1 Specification 

An HP Designjet Z3200 printer was used to reproduce image stimuli for 

Experiment 1, as will be described in Chapter 4. Its specification and performance 
for colour accuracy and repeatability specified by the manufacturer are given in 

Table 3.17. As it uses 12 inks as listed in Table 3.17, this printer has a much larger 

colour gamut compared to typical CMYK printers. A spectrophotometer is built 

inside the printer which enables it easily to calibrate and make an ICC colour 

management profile. From Table 3.17, it can be seen that the printer has good 

colour accuracy, high-quality inks and light fastness. 

Table 3.17 Specification and performance for colour accuracy and repeatability of 
printer used in Experiment 1. (HP, 2010) 

Model HP Designjet Z3200 Photo Printer 

Ink colours 
12: blue, green, magenta, chromatic red, yellow, grey, photo black, matte 
black, light cyan, light grey, light magenta, gloss enhancer 

Print 
Up to 2400 x 1200 dpi 

resolution 

Colour Median < 1.6 AE2000,95% of colours < 2.8 AE2000 
accuracy (ICC absolute colorimetric accuracy on HP Proofing Matte paper) 

Short term Less than 1 AE2000 in less than 5 minutes 
colour stability (with HP Premium Instant Dry Photo Satin media, right after calibration) 

Print-to-print Average < 0.5 AE2W0,95% of colours < 1.4 AE2000 

repeatability (with HP Premium Instant Dry Photo Satin paper, right after calibration) 

Maximum 4L*min/2.5D 
Optical 
Density (with HP premium Instant Dry Photo Gloss Media) 

Light Fastness Approximately 200 years fade resistance 

In the present study, the HP Premium Instant-dry Satin Photo Paper (HP part 

number Q7996A) was used. The reflectance curves of the paper with and without 

UV are shown in Figure 3.13. The two curves are almost the some across the 

visible range from 400nm to 700 nm. This indicates that the paper had very little 

florescent property. 
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Figure 3.13 Reflectance of the paper used for Experiment 1 with UV included and 
excluded. (Guo, 2009) 

Table 3.18 Summary of printer repeatability for 11 colours. 

L* 

Target 

a* b* L* 

Measured 

a* b* AE2000 

dark skin 37.50 16.30 17.65 39.76 16.45 18.95 2.11 

light skin 66.92 18.06 19.64 67.62 18.24 20.13 0.62 

blue sky 50.17 -4.59 -20.97 50.73 -2.43 -21.93 2.08 

foliage 41.82 -15.20 22.71 42.74 -14.86 23.52 1.00 

blue flower 55.87 9.14 -23.29 57.37 8.96 -23.54 1.42 

bluish green 70.32 -31.05 -0.30 71.38 -29.47 -1.91 1.55 

orange 63.96 34.10 62.75 65.27 34.08 64.88 1.32 

purplish blue 39.45 8.50 -40.46 40.20 10.01 -40.64 1.21 

moderate red 52.31 48.53 20.88 54.28 47.90 23.58 2.49 

purple 30.49 22.43 -18.32 31.42 24.09 -18.22 1.18 

yellow green 70.43 -21.60 55.52 70.93 -21.36 53.39 0.75 

orange yellow 72.64 18.44 68.17 73.35 18.78 69.10 0.58 

blue 29.77 14.69 -50.48 30.74 14.94 -50.71 0.76 

green 54.34 -40.10 31.79 54.68 -40.02 31.91 0.33 

red 43.22 56.15 30.80 44.39 56.35 31.81 1.19 

yellow 83.09 3.01 80.77 82.31 3.98 80.31 0.78 

magenta 52.32 49.73 -10.90 54.26 47.59 -11.42 2.04 

cyan 50.42 -28.74 -28.26 50.44 -27.08 -29.46 1.07 

white 94.05 0.17 3.81 92.69 -1.67 1.77 3.35 

neutral 8 80.56 0.08 1.35 81.99 -0.78 -0.15 2.16 

neutral 6.5 66.38 -0.45 1.26 67.76 -0.45 -1.08 2.55 

neutral 5 51.20 -0.69 0.64 52.05 -0.18 -1.31 2.22 

neutral 3.5 35.49 -0.56 0.24 35.97 0.19 -1.56 2.10 

black 20.95 0.52 0.71 21.13 0.69 0.04 0.72 

mean 1.48 

max 3.35 

median 1.27 
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3.2.2.2 Repeatability Test 

The repeatability of the printer was tested by calculating the colour difference 
between two sets of colours given in Table 3.18 on ColorChecker 24 chart: a 

physical chart and a reproduced on HP Premium Instant-dry Satin Photo Paper. 
The colours were measured using the X-Rite 938 spectrophotometer with the CIE 

illuminant D50, the CIE 1931 standard colorimetric observer and 45/0 geometry. 
The results of colour differences between two corresponding colours are 

summarised in Table 3.18. The mean colour difference for 24 colours is 1.93 LE2ooo 

which is a little larger than the median colour accuracy of 1.6 LE2ooo as shown in 

Table 3.17. The maximum colour difference was 3.354E2 w which is a little larger 
than the 95% of colour accuracy of 2.8LE200o. The performance of the profile 
seemed reasonable to typical ICC profile performances in excess of 2.50E eb for 

many printers. The measurements were carried out in April in 2009 by Dr. Peter 
Rhodes at the Colour and Imaging Group in the Department of Colour Science at 
the University of Leeds. 

3.2.2.3 Characterisation of Printer: ICC Profiles 

To match printed stimuli with those shown on the LCD display having a peak 
white close to D65, ICC profiles were generated for the display as input device and 
for the printer as output device using GretagMacbeth ProfileMaker (GretagMacbeth, 
2005) colour management software. For the printer profile, an electronic colour 
chart included in the printer itself was printed out on HP Premium Instant-dry Satin 
Photo Paper (see Section 3.2.2.1). Then all the colours were measured using the 
GretagMacbeth Spectrolino spectrophotometer (see Section 3.1.2). The measured 
XYZ values were used to enter into the profiler software to generate an output 
profile. For the LCD display, 52 measured grey levels from 0 to 255 were input into 

the profiler software to generate an input profile for the LCD display. Finally, the 

generated ICC profiling were applied to images using Adobe Photoshop for all the 

images to be printed. The experimental images were then printed onto the HP 

Premium Instant-dry Satin Photo Paper at a resolution of 200 dpi. 

3.3 Physiological Instrument (Thought Technology, 2007) 

3.3.1 Specification 

For physiological measurement in the experiments, Thought Technology's 

ProComp5 Infinity (SA7525) and Physiology Suite software were used. The 
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instruments for physiological measurement consisted of three parts as shown in 
Figure 3.13: electrodes and sensors, encoder and computer with software. In the 

present study, three different sensors for the measurement of heart rate (BVP/FLEX 
Pro: SA9308M), skin conductance (SC/FLEX Pro: SA9309M) and facial EMG 
(MyoScan-Pro: SA9401 M) were used together with the corresponding electrodes 
were used. For the facial EMG sensor, Single Disposable Electrodes (T3404) was 
used. 

Electrodes (+cable) + Sensor 
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1 
I 
I 
I 
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I 
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1 
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Figure 3.14 Three parts of the physiological instrument for measuring facial EMG. 

The ProComp5 Infiniti encoder is a five-channel, multi-modality device for 

real-time computerised physiological and data acquisition. It has five protected pin 
sensor inputs with two channels sampled at 2048 samples/sec and three channels 
sampled at 256 samples/sec. The sensors pass signals to the host computer via 
the microprocessor-controlled ProComp5 Infiniti encoder unit. 

Facial Electro-Myography (EMG) measures muscle activity by detecting and 
amplifying the small electrical impulses that are generated by muscle fibres when 
they contract. Since all the muscle fibres located in the recording area of the sensor 
contract at different rates, the signal detected by the sensor is a constantly varying 
difference of potential between its positive and negative electrodes. The number of 
muscle fibres that are involved during any given contraction depends on the force 

required to perform the movement. Because of this, the intensity of the resulting 

electrical signal is proportional to the strength of contraction. The MyoScan sensor's 
active range is from 10 to 500 Hz. It can record EMG signals from zero up to 2000 

microvolts (NV). 

Skin conductance is a measure of the skin's ability to conduct electricity. A 
tiny electrical voltage is applied through two electrodes, usually strapped to two 

ý 
_ý" 
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fingers of one hand, in order to establish an electric circuit where the participant 
becomes a variable resistor. The real-time variation in conductance, which is the 

inverse of the resistance, is calculated in the software. SC indicates changes in the 

sympathetic nervous system. As a person becomes more or less stressed, the 

skin's conductance increases or decreases proportionally. The standard 

measurement unit for conductance is called Siemens. Normal readings, for skin 

conductance in a relaxed state are around 2 pS but readings can vary greatly with 

environmental factors and skin type. 

The BVP sensor bounces infra-red light against a skin surface and measures 
the amount of reflected light. This amount varies with the amount of blood present 
in the skin. At each heart beat (pulse), there is more blood in the skin and more light 

is reflected as blood reflects light and absorbs other colours. Between pulses, the 

amount of blood decreases and more light is absorbed. This measure is an 
indication of vasomotor activity and of sympathetic arousal. The BVP signal is a 

relative measure. It does not have a standard unit. From the BVP signal, the 

software can usually calculate heart rate and inter-beat interval. The heart rate in 

units of beats/min can be calculated from the BVP signal and inter-beat interval 

using the Physiology Suite software. 

Three sensors were placed on each observer's body. The sensor recording 
heart rate was placed on the inside of the first joint of the middle finger of the left 

hand or right hand for left-handed observers. The sensor recording skin 

conductance includes two electrodes placed on the inside part of second joint of 
two fingers, the index and ring finger. The sensor recording facial EMG has three 

electrodes (with different cord colours), each corresponding to signal (blue), 

reference (yellow), and ground (black). An extended cable of three electrodes were 

used which made it more convenient to attach the face. Among the three sensors, 
the signal electrode was placed on the forehead right above left eyebrow and the 

reference electrode was placed right next to the signal one. The ground electrode 

was attached to the non-hairy part of skin right below the left ear. Table 3.19 

summarises the placement of sensors. After all sensors had been placed on the 

observer's body, they were connected to the corresponding channel of the encoder 

which links the sensors to the computer. 
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Table 3.19 Guide for the placement of sensors to measure heart rate, skin 
conductance and facial EMG with photos of each sensor worn on the body. 

Sensor Part of body Examples 

Heart Rate 

Skin Conductance 

Facial EMG 

(Corrugator) 

Placed on the inside part of the first joint 

of the middle finger of left hand (right 

hand for left-handed observers). An elastic 

band was used to make a more secure fit. 

The two conductive electrodes were 

placed so as to touch on the inside part of 

second joint of two fingers (the index and 

ring finger). 

The signal electrode was placed on the 

forehead right above left eyebrow and the 

reference electrode attached right next to 

the signal one. The ground electrode was 

attached to the non-hairy part of skin right 

below the left ear. 

/ ,, ý 

FI Im 

a 

0 

3.3.2 Performance of Physiological Instruments 

The purpose of using physiological instruments is to measure and investigate 

the effect of image colour attributes on emotional responses in terms of 
physiological reactions. In physiological recordings, the magnitude of the responses 
for a specific sensor may have a certain range of signal; however, it also can vary 
greatly depending on individuals. For reliable results, stability and repeatability are 
more important than the accuracy of the measurement because what we measure 
is the changes in the physiological responses evoked by the effect of image colour 
attributes on emotional responses, not on the absolute values. Thus in this section, 
the reliability of the physiological instruments is examined to ensure the 

performance of instruments. 

3.3.2.1 Facial EMG Sensor 

The repeatability of the EMG sensor was examined by applying a comparable 
amount of electric voltage to the sensor which can be generated by muscle 
contraction of the human body. The range of the electricity which can be produced 
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by muscle contraction is from zero up to 0.4 mV (Thought Technology, 2007). Thus 

a static voltage of 0.4mV was applied between the positive (blue) and negative 
(yellow) electrodes of the EMG sensor and the signal coming into the ProComp5 

encoder was recorded for about 1 min. Figure 3.15 shows the recorded pattern of 
the signal for 1 min. The y-axis of the graph is microvolts and the x-axis is time. As 

seen in the graph, the response remained reliable and stable in between 6.5 and 
7.5 microvolts for most of the measurement time. However, it was also found that 
the sensor is very sensitive to the changes in surrounding electric field which can 

also be caused by the movement of sensor and other electric equipment. In this 

case, it is difficult to distinguish whether peaks shown in the pattern originated from 

the changes in the voltage which are generated from muscle contraction. Thus, this 

property of the sensor tends to weaken the reliability of using the facial EMG data. 

3.3.2.2 Skin Conductance Sensor 

The repeatability of the skin conductance sensor was examined by measuring 
the electricity through a resistance which is of a comparable amount to that of the 
human skin at a relaxed state. The range of the resistance of human skin at a 
relaxed state is up to 10MO (Thought Technology, 2007). Thus resistances having 
10 to 10M 0 were connected between the two electrodes of the sensor and the 
signal coming into the ProComp5 encoder was recorded for about 1 min. Figures 
3.16 (a)-(d) show the recorded patterns of the signal for the resistance of 10,25k, 
1M and I OMQ for about 1 min. The y-axis of the graph is microsiemens and the x- 
axis is time. As seen in the graph, the conductance remained reliable and stable 
over the measurement time for all four different resistors. Also, it was found that the 

sensor was not affected by the changes in surrounding fields. Thus, it can be 

expected that this sensor will give reliable results for the changes in skin 
conductance due to the visual stimulus. 
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Figure 3.15 Patterns of the signal through facial EMG sensor applied with a static 
voltage of 0.4mV for 1 min. 
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Figure 3.16 (a)-(d) Patterns of the signal through skin conductance sensor 
connected to resistors having resistance of (a) 10 Q, (b) 25k 0, (c) 1M0 and 
(d) 1OM Q. 

3.3.2.3 Blood Volume Pressure Sensor 

The repeatability of the BVP sensor was examined by measuring the intensity 

of light emitted from a flashing IR LED through the BVP sensor. The range of heart 

rate is roughly from 60 to 100 beats/min. Thus the frequency of the flashing light 

was adjusted within the range and the signal coming into the ProComp5 encoder 
was recorded for about 1 min. Figures 3.17 and 3.18 show the recorded pattern of 
blood volume pulse for the signals having a frequency for about 1 min. The y-axis of 
the graph is microsiemens and the x-axis is time. The mean heart rate for the high 
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and low frequency lights were 139.2 and 46.6 beats/min. From the graphs, it can be 
found that the sensor detected stable and reliable signals from the flashing LED 
light over the measurement time. Thus, it can be expected that this sensor will give 
reliable results for the changes in skin conductance due to the visual stimulus. 
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Figure 3.17 Patterns of the signal through BVP sensor for a flashing LED light with 
a high frequency for 1 min. 

3.4 Experimental Setup 

3.4.1 Experiment 1: Impact of Colour-Appearance Attributes on 
Emotion for Printed Images 

The aim of Experiment 1 was to reveal the relationship between the colour- 
appearance attributes of images and the emotional responses elicited by those 
images. It also aimed to find any differences in these relationships according to 
image content including not only positive and negative ones but also those having 

personal attachment. It also includes the development of quantitative models of 
image emotion as functions of colorimetric quantities with regards to the effect of 
image content. 
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To achieve these objectives, a set of psychophysical and physiological 

experiments was designed. In this experiment, 29 observers participated to assess 
178 original and rendered images manipulated in terms of lightness contrast, 
chroma and tone according to five emotion scales: pleasant-unpleasant, exciting- 
calming, like-dislike, natural-unnatural and appealing-unappealing. While observers 

were viewing an image, physiological signals of heart rate, facial muscle movement 

and skin conductance for physiological responses were taken. 

3.4.1.1 Test Images 

Ten test images for the common image group were selected based on 
following guidelines: 

(a) the images should cover a wide range of pleasure values according to the 

International Affective Picture System (TAPS) (see Section 2.5.4.1); 

(b) the images should cover a wide variety of scenes such as sky, grass and 
human skin; 

(c) the images should cover a reasonably wide range of colours in terms of 
hue, lightness and chroma. 

Regarding Guideline (a), image subjects were divided into three groups - 
positive, negative and neutral - according to visual ratings of image pleasure 
reported by ZAPS. Referring to the ZAPS classification, family and natural scenes 
were considered positive images, neutral faces and objects were considered 
neutral, and photos of a crying baby and rubbish were considered negative. The 
images are in Figure 3.15. These common images were shown to all observers for 
their visual assessment. The source of the eight original common images are as 
follows: "Family" and "Boy" purchased from corbis. com; "Rubbish" and "Baby" from 
the ZAPS system (see Section 2.5.4.1); "Horses" and "Indoor" from HP Labs; 
"Fruits" and "Harbour" from the SHIPP (Standard High Precision Picture) collection 
of sRGB sample images produced by the Institute of Image Electronics Engineers 

of Japan. 

To collect test images having personal emotional attachment, each observer 

was asked to provide two of their own photos in which their families, friends and/or 
they appeared. These personal images were only shown to the one who provided 
them for the visual assessment. 
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Figure 3.18 Eight test images for common images selected for Experiment 1 in the 
present study 

3.4.1.2 Image Rendering Methods 

Manipulations of image stimuli were conducted using the colour-appearance 

attributes lightness (J), chroma (C), a, and b, from the CIECAM02 system (see 
Section 2.3.4). 
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Figure 3.19(a)-(b) Illustrations of (a) inverse sigmoid function and (b) sigmoid 
functions used in the study. 
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The lightness of each image was manipulated by both sigmoid and inverse 

sigmoid functions pixel-by-pixel to investigate the effect of contrast. The 

transformations for these functions are given in Equations (3-1) and (3-2) and 
illustrated Figures 3.19 (a) and (b). In these equations, the values of p and q used 
in both functions for each image are listed in Table 3.20. In both equations, the p 

values vary from 1.23 to 0.5, and the q values range from 1.45 to 7.0 to make 
different slopes of the s-shaped curves. Several pairs of the (p, q) values were 
applied differently to all images as the visible effect of the manipulation appeared 
different for all the images as shown in Table 3.20. 

Sigmoid: 

Gvutput = 100/{[1/(1 + pQ)] x 11 + (p/Gtnput)]Q} (3-1) 

Inverse Sigmoid: 

Goutput = 100p{[1 - Glput/(1-f p4)]/[Gcnput/(l + pQ)]}-1/9 

in which 

Ginput = 1/100 

where J represents the CIECAM02 lightness of a pixel. 

Table 3.20 The p and q values used in both the sigmoid and inverse sigmoid 
functions for lightness manipulation 

(3-2) 

(3-3) 

image 1 2 3 4 5 6 7 8 

(p, q) (0.55,3.0) (0.51,3.9) (0.51,3.9) (0.51,4.5) (0.51,3.9) (0.5 1,3.9) (0.51,3.9) (0.5,7.0) 

Sigmoid (0.75,1.9) (0.75,1.9) (0-75 1.9) (0.75 1.9) 

(p, q) (0.55,3.0) (0.55,3.0) (0.55,3.0) (0.51,4.5) (0.51,3.9) (0.51,3.9) (0.55,3.0) (0.51,4.5) 

inverse (0.75,1.9) (0.75,1.9) (0.75,1.9) (0.75,1.9) 

Manipulation of chroma was performed in two different ways to investigate the 

effects of contrast and linear change in chroma. For linear manipulation of chrome, 
the chroma value for each pixel was multiplied by a constant (Cun) ranging from 0 to 
350 which was different for each image, as illustrated in Equation (34). 

Goutput =CX Cltn (3-4) 

where C represents the CIECAM02 chrome of a pixel; the values of the constant 

used for each image are listed in Table 3.21. 
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Table 3.21 The Clin values used for the linear chroma transforms of 8 test images. 

image 1 2 3 4 5 6 7 8 

Cu� 0,0.75, 
1.5,2.5 

0,0.75, 
1.5,2.0 

0,0.75, 
1.5,2.0 

0,0.5, 
1.75,2.5 

0,2.5 0,2.5 0,2.0 0,2.5 

For manipulations in chroma contrast, the sigmoid and the inverse sigmoid 
functions shown in Equations (3-1) and (3-2) were again used with the definition of 
Gout-put shown in Equation (3-5): 

r'input = C/Cmax (3-5) 

where C represents the CIECAM02 chroma of a pixel and Cmax represents the 

maximum chroma of the entire image. The pairs of p and q values that were applied 
to Equations (3-1) and (3-2) for the eight test images are listed in Table 3.22. 

Table 3.22 The p and q values used in both the sigmoid and inverse sigmoid 
functions for the non-linear chroma transform 

image 1 2 3 4 5 6 7 8 

(p, q) (0.5,7.0) (0.5,7.0) (0.5,7.0) (0.5,7.0) (0.5,7.0) (0.5,7.0) (0.51,4.5) (0.51,4.5) 

Sigmoid (0.55,3.0) (0.55,3.0) (0.55,3.0) (0.63,2.35) 

(p, q) (0.5,7.0) (0.51,3.9) (0.51,3.9) (0.5,7.0) (0.5,6.0) (0.5,7.0) (0.5,6.0) (0.5 1,4.5) 

Inverse (0.63,2.35) (0.63,2.35) (0.63,2.35) (0.55,3.0) 

Sigmoid 

Manipulation of tone was done by making an equal-distance, equal-direction 

shift of each pixel in the CIECAM02's ac-bc plane in one of the following (hue 

angle) directions: 30°, 90°, 150°, 210°, 270° or 330°. This is illustrated by Figure 

3.20. The output of ac and bc are defined by Equations (3-6) and (3-7). 

ac, output = ac, inpuc +d cos 8 

bc, q�u = bc, cnpuc +d sin 8 

(3-6) 

(3-7) 

where 9 represents one of the following hue angles 30', 90', 150', 210', 270' or 
330' in CIECAM02 system; and d is a constant (distance of shift) used for the 
image in question. The values of d applied for each image are listed in Table 3.23. 
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Table 3.23 The values of d applied for each image in the a, and b, transforms for 
tone manipulation. 

image 1 2 3 4 5 6 7 8 

d 20 

40 

10 

20 

10 

20 

10 
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Figure 3.20 Illustration of tone manipulation: (a) the relationship between the 
original and the tone-manipulated images; (b) examples of tone-manipulated 
images. 

Table 3.24 Summary of the number of original and manipulated images with 
number of rendering parameters used in Expenment 1. 

Neutral Positive Negative Personal 

No. of original 
4 2 2 2 10 

images 

Contrast (4) Contrast (2) Contrast (2) Contrast (2) 

Rendering 
Chroma (4) Chroma (2) Chroma (2) Chroma (2) 

parameters 
Chroma (4) Chroma (2) Chroms (2) Chroma (2) 

(No. of levels) 

Tone (12) Tone (6) Tone (6) Tone (6) 

No. of 

manipulated 24x4 = 96 12X224 12X2   24 12X2   24 168 

images 

ý Total F - - 178 
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In summary, 24 manipulation methods were applied to render each neutral 
image's colour characteristics in terms of lightness, chroma and tone. To compare 
the results from neutral images with those from images having emotional content, 
12 manipulation methods were applied to vary the colour characteristics of 
emotional stimuli including positive, negative and personal images. In total, 178 
rendered images were reproduced including eight original test images for eight test 
images. The summary of the number of original and manipulated images with 
number of rendering parameters used in Experiment 1 is given in Table 3.24. 

3.4.1.3 Reproduction of Experimental Images 

All original images were converted to have the same pixel resolution of 1024 x 
768. The RGB signals of each image were converted into XYZ using a 
characterisation model for the LCD display described in Section 3.2.1.7, and then 
transformed to CIECAM02 (see Section 2.3.4) for image manipulations. After ICC 

profiles for the printer and display developed in Section 3.2 were applied to images, 
they were reproduced on 6" x 4" prints using a HP Designjet Z3200 printer and HP 
Premium Satin Photo Paper (see Section 3.2.2). Each print was surrounded by a 
0.5 cm white frame and presented against an A5-size black card as the 
background. The final appearance of the image prepared is given in Figure 3.21. 

Figure 3.21 An example of a final version of image stimuli prepared for 
Experiment 1. 
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3.4.1.4 Evaluation of Colour Rendering of Printed Images 

Performance evaluation of the whole reproduction process was conducted 

using the image stimuli printed for experiments, including many other manipulated 
versions as will be described in this section. First, the RGB values of the images 

were transformed to XYZ using the characterisation model for the LCD display, and 
then transformed to CIECAM02. Then, several versions of the manipulated images 

were generated according to the transform functions for each attributes of 
CIECAM02 as described in Section 3.4.1.2, and then converted back to XYZ then 
RGB. Finally, ICC profiles for the LCD display and printer were applied for printing. 

As mentioned in the previous section, image stimuli were collected in 

electronic forms with RGB values for each pixel and finally presented in printed 
version in Experiment 2. It is important to ensure that accurate colours were 
maintained in the course of image reproduction while several transformations were 
applied. Therefore, the colour difference between predicted target colours in each 
manipulated version of images and output colours finally reproduced as prints 
through a series of transformations are examined in this section. 

To do this, two locations on each print of ten common images were selected 
as shown in Figure 3.22. The XYZ values at each point were measured for all 
original and manipulated versions using an X-Rite portable Spectrophotometer with 
a setting of Illuminant D65 and 20 observer. Then, the predicted target colours from 
image manipulation were calculated by converting the measured XYZ values to 
CIECAM02 attributes in terms of J, ac and b, then transformed using the Image 

manipulation functions for each attribute as described in Section 3.4.1.2. The 

measured XYZ values for output colours of manipulated images were then 

converted to CIECAM02 attributes in terms of J, a. and be for comparison with 
target colours. The XYZ of the reference white used for the conversion was also 
measured for the white paper on which images were printed and the values were 
(80.05,84.66,94.82). 

The colour difference between target colours and output colours was 
computed using a colour-difference formula in the CIECAM02 colour space using J, 

a, and b. as given in Equation (3-8). 

AEc1 
cAAfo2 = d12 +Da, +Libý (3-8) 

The mean colour difference values between target colours and output colours 
at each point in all manipulated versions of eight images are listed In Table 3.25. 
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The colour difference between target colour and output colours was found to be the 
largest for the images manipulated by non-linear transforms of chroma and smallest 
for images manipulated by non-linear transforms of lightness. Among 16 points in 

eight images, the colour difference value at Point 2 in Image 2 was found to be the 

smallest and Point 1 in Image 4 the largest. It should be noted that these colour 
differences include errors from ICC profiles of LCD display and printer and also the 

error from characterisation model for LCD display. 
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Figure 3.22 Location of the two points in the eight common images where colour 
was measured for comparison. 
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Table 3.25 Mean colour-differences between target colours and output colours at 

each of the two points in all manipulated images in terms of EC, ECAMQ2 for 

four manipulations. (TONE: tone manipulation; CNL: chroma non-linear 
manipulation, CL: chroma linear manipulation and JNL: lightness non-linear 
manipulation. ) 

Image Point TONE CNL CL JNL Mean 

1 12.14 9.09 4.11 0.75 6.52 
1 

2 11.78 8.87 5.60 0.37 6.65 

1 3.49 1.33 1.06 0.75 1.66 
2 

2 5.66 9.33 4.30 1.09 5.09 

1 7.49 25.42 3.68 1.45 9.51 
3 

2 5.26 11.78 7.26 2.03 6.58 

1 5.43 18.94 19.73 1.46 11.39 
4 

2 3.54 11.77 3.36 1.08 4.94 

1 6.17 3.11 0.73 1.03 2.76 
5 

2 6.96 5.21 2.00 1.41 3.90 

1 3.46 9.44 9.70 0.76 5.84 
6 

2 16.41 12.84 9.36 4.62 10.81 

1 7.72 6.76 9.61 0.56 6.16 
7 

2 3.47 5.45 6.61 1.23 4.19 

1 6.29 3.66 9.32 1.76 5.26 
8 

2 5.27 4.29 2.10 1.52 3.29 

Mean 6.91 9.20 6.16 1.37 5.91 

108 



40 60 

IN, 

Target C' 

: 1kß 

Target ac' 

o .. 

ýn 
7 
CL .. 

. 2 

80 

Target l' 

0 

1UV 

ý, ý, 

U 

I CIO 150 200 

Target C' 

Target bc' 

 1 1  1 2 

"2_1 022 

f3_1 f3 2 

"4_1 "4_2 

 5_1 Q5 2 

"ö_1 A62 

"71 ., 7 2 

81 82 

50 100 

Figure 3.23 The output values plotted against the target values of the manipulation 
parameters for the chroma non-linear transform (top left); chroma linear 
transform (top right); ac and be transforms for tone manipulation (centre); 
lightness transform (bottom). 

Table 3.26 Mean values of AJ, AC, AH (left) and the mean of the absolute values 
of AJ, AC, OH, AEc, ECAM02 (right) for each image manipulation transform. 

transform AJ AC AH Iofl IACI IoffI AECIECAM02 

HUE -0.21 -0.79 -1.22 1.16 4.51 4.29 7.12 

CNL 0.42 -4.22 -2.46 1.12 10.31 3.48 11.59 

CL 0.45 -6.15 -3.17 1.85 9.43 5.46 12.21 

JNL 0.13 0.24 -1.26 1.29 2.32 2.72 4.41 

mean 0.20 -2.73 -2.03 1.35 6.64 3.99 8.83 

100 
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To find the reason why some of the points showed quite larger colour 
difference between target colours and output colours at each point given in Table 

3.25, the output values were plotted against the target values of the manipulation of 

each transform for all the 16 points measured as shown in Figure 3.23. As can be 

seen in the figure, the non-linear transform for the lightness manipulation showed 
very little differences between the output and target colours for all points. The ac 

and be transforms for tone manipulation generated some differences for the colours 
having high ac and b,; values. In this transform, the output values for ac and be 

tended to be smaller than the expected target values. A similar trend appeared for 

the chroma linear transform showing that the output values for chroma tended to be 

smaller than the expected target values. This may be a systematic change from the 

smaller colour gamut of the printer than the one for the display. 

Table 3.26 summarises the mean colour difference values (A=output - target), 
the mean values and the mean of the absolute values of AJ, AC, AH, AE for each 
image manipulation transform. As seen in the graphs, the lightness difference 
between the output and target are very small. For chroma and hue angle 
differences, all the values are negative which suggests that the output values of 

chroma and hue tended to be smaller than the target values. This also supports that 

there was a systematic shift in conversion from display colours to prints. From the 

mean absolute values of AJ, AC, AH in Table 3.26, the discrepancy between the 

output and target colours came mainly from chroma difference and also from hue 

difference. 

3.4.1.5 Observers 

A total of twenty-nine observers, including twenty Chinese and nine British 

aged from 19 to 35 (all studying at the University of Leeds) participated in the 

experiment, as summarised in Table 3.27. All observers passed the Ishihara Color 

Test (Ishihara, 1985) for colour deficiency before starting the experiment. 

Table 3.27 Summary of the distribution of observers participating in the experiment. 
Male Female All 

British 189 

Chinese 8 12 20 

Total 9 20 29 
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3.4.1.6 Categorical Judgement Scales for Image Emotion 

For psychophysical measurement, the categorical judgement method (see 
Section 2.4.3.1) was used. Observers were asked to assess an image using five 9- 
point categorical scales as follows: pleasant-unpleasant, exciting-calming, like- 
dislike, appealing-unappealing, and natural-unnatural. The pleasantness and 
excitement scales represented the two principal dimensions of emotion, pleasure 
and arousal, as proposed by Russell (see Section 2.4.2). The like-dislike, 

appealing-unappealing, and natural-unnatural scales have been used in many other 
studies as subjective measures of affective quality (see Section 2.5.1 and 2.5.2). 
Each category of a 9-point scale was labelled using verbal descriptions. Taking the 

example of pleasant-unpleasant, '9' corresponded to 'extremely pleasant', '1' to 
'extremely unpleasant' and '5' to 'neither pleasant nor unpleasant'. The definitions 

of each of the 9 categories are given in the instructions shown in Appendix A. 

3.4.1.7 Experimental Settings and Procedures 

The experiment was carried out using a viewing cabinet with a D65 simulator 
as the light source, situated in a darkened room with viewing geometry of 0/45. The 
luminance level of illumination and the colour around the light source of the viewing 

cabinet were measured using the CS-1000 TSR and a white BaSO4 tile. The 

spectral power distribution is shown in Figure 3.24(a), which was determined from 
the white tile measurements divided by the spectral reflectance of the tile measured 
shown in Figure 3.24(b). The CCT of lighting was 6219K with chromaticity 
coordinates of (x, y) = (0.3172,0.3376) and the level of luminance was 279.9cd/m2. 
The luminance of the background grey was 90.7cd/m2 and the surround was 
average condition. 

Each observer was presented with 178 images including 26 repeats, one at a 
time. After a 5-second break during which the observer did not see any stimuli, 
each image was shown for a viewing period of 10 seconds, followed by a session of 
answering five questions on a questionnaire (question period). Then a 10-30 sec 
break was given before next cycle was started. The purpose of this rest period was 
to avoid carrying influence over from the previous stimuli. The prints were 

presented individually in the viewing cabinet. 

For physiological measurement, heart rate, skin conductance and facial EMG 

were recorded throughout the whole session. Three sensors were placed on each 
observer's body according to the placement guide mentioned in Section 3.3. After 

all sensors were put on the observer's body, they were connected to the 
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corresponding channel of the encoder which links sensors with the computer. The 

instructions given to observers prior to the experiment are shown in Appendix A. 
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Figure 3.24(a)-(b) (a) SPD of the illumination of the viewing cabinet; (b) reflectance 
of the white tile used to measure (a) 

3.4.2 Experiment 2: Impact of Colour-Appearance Attributes on 
Colour-emotion and Image Emotion for Displayed Images 

The aim of this experiment was to investigate the relationship between colour 
attributes of images on a display and colour-emotion scales of warm-cool, light 
heavy and active passive and also to develop quantitative models of colour-emotion 
as functions of colorimetric quantities for image stimuli. Moreover, the aim of this 

experiment includes the development models of image pleasantness and 
excitement in terms of colour-emotion scales of images and the comparison of the 

two models derived from Experiments 1 and 2. 

To achieve these aims, a series of psychophysical experiments was carried 

out. In the experiment, 17 observers were asked to assess 253 original and 

rendered images manipulated in terms of lightness, lightness contrast, chroma and 
tone on six emotion scales including pleasant-unpleasant, exciting-calming, like- 
dislike, active passive, heavy-light and warm-cool. 

3.4.2.1 Test Image 

Ten test images, including eight common and two personal images per 

observer, were selected based on the guidelines introduced in Section 3.4.1.1. An 

additional intent regarding guideline (a) included was that images should cover a 

wide range of arousal values according to the ZAPS results. According to ZAPS (see 

Section 2.5.4.1) results, very highly arousing stimuli contained contents such as 
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mutilation, death (highly arousing and unpleasant) and erotica (highly arousing and 
pleasant). However, very arousing stimuli were excluded for safety reasons. 
Instead, adventure, baby and couple were selected as positive images; a roach, 
dead animal and injured human added to negative. The nine original test images for 
the common category are given in Figure 3.25. 

The source of the nine original common images are as follows: "Family" and 
"Boy" were purchased from corbis. com; "Rubbish" and "Baby" are from the ZAPS 

system (see Section 2.5.4.1); "Harbour" and "Fruits" are from the SHIPP (Standard 

High Precision Picture) collection of sRGB sample images produced by the Institute 

of Image Electronics Engineers of Japan; and the other six images were 
downloaded from the Flickr website with permission under Creative Commons 2.0 
Attribution license copyright. 

To collect personal images, a portrait of each observer was taken with a fixed 

background indoor scene to limit the background which was not controllable for 

those used in Experiment 1. Personal images were only shown to the observer who 

provided them for the visual assessment. 

Neutral Images 

Skydivers Baby 

Negative Images 

Family Couple 

Figure 3.25 Ten test images for common category selected for Experiment 2. 

3.4.2.2 Image Rendering Methods 

Manipulation of image stimuli was conducted using three colour-appearance 

attributes lightness (J), chroma (C) and tone (ac and bc) in the CIECAM02 system 
as described in Section 3.4.1.2. For each original image, 18 rendered images were 
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produced having six different levels of lightness (J), chrome (C) and tone (ac and 
bc). 

Additional manipulation regarding image activity and weight were done using 

an Adobe Photoshop plug-in developed by HP Labs using Equations (3-9) and (3- 

10) which were based on Ou et al. 's original colour-emotion model (see Section 

2.4.5.2). 

Colour Activity: 

Ll =Lß(1+ks)+50 

al = aß(1 + ks) +3 

bý = bß(1 + ks/1.4) + 17 

where k controls the extent of "activity" or "inactivity"; s controls the direction of the 

shift and is equal to either +1 for enhancing or to -1 for reducing the activity. L'o, a'o 

and b'o are the pixel's CIELAB coordinates, shifted so that the origin coincides with 
the anchor colour, i. e. L'o = L' - 50; a; = a' - 3; b; = b' - 17. 

(3-9) 

Colour Weight: 

La=LOY 

ha = 

(h,, + ho ieoýºb Wk + 100, ho 5 180 
th,, 

+ (360 - ha ) (N 
(3-10) 

ho + (360 - ha )(ho wck + 100, ho > 180 

=_ 
C' 

WC - 
(1 

150 

where k controls the extent of "yellowness- or "bluishness"; y controls the degree of 
"lightness" with positive values for lighter colours and negative for darker. L"o and ho 

are the pixel's CIEIAB coordinates, shifted so that the origin coincides with the 

anchor colour, i. e. 

L*0=100-L'; ho =100-h (3-12) 

For each original image, a rendered images were reproduced having bur 

different levels of activity and weight. 

In summary, 26 manipulation methods were applied to render image colour 
characteristics in terms of lightness, chrome, tone, colour activity and colour weight. 
In total, 270 rendered images were reproduced (including original images) from ten 
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test images. The summary of the number of original and manipulated images with 
number of rendering parameters used in Experiment 2 is given in Table 3.28. 

Table 3.28 Summary of number of original and manipulated images with the 
number of rendering parameters used in Experiment 2. 

Neutral Positive Negative Personal 

No. of original 2 4 3 1 10 
images 

Contrast (6) Contrast (6) Contrast (6) Contrast (6) 

Rendering Chroma (6) Chroma (6) Chroma (6) Chroma (6) 

parameters Tone (6) Tone (6) Tone (6) Tone (6) 

(No. of levels) Activity (4) Activity (4) Activity (4) Activity (4) 

Weight (4) Weight (4) Weight (4) Weight (4) 

No. of 

manipulated 26X2 = 52 26X4 104 26X3 = 78 26X1 = 26 260 

images 

Total 270 

3.4.2.3 Categorical Judgement Scales for Image Emotion and Colour- 

emotion 

The categorical judgement method (section 2.4.3.1) was applied again. 
Observers were asked to rate an image using six 9-point categorical scales as 
follows: pleasant-unpleasant, exciting-calming, like-dislike, active-passive, heavy- 

light and warm-cool. The pleasantness and excitement scales represent the two 

principal dimensions of emotion, pleasure and arousal, as mentioned in the 

previous section. The other three scales correspond to the three factors of colour- 

emotion developed by Ou at al. (Section 2.4.5.2). Each category of a 9-point scale 

was also labelled using verbal descriptions. Taking the example of pleasant- 

unpleasant, '9' corresponded to 'extremely pleasant', '1' to 'extremely unpleasant' 

and '5' to 'neither pleasant nor unpleasant'. 

115 



3.4.2.4 Observers 

A total of 17 observers, including 1 European, 4 Chinese and 12 Korean aged 
from 19 to 51, participated in the experiment, as summarised in Table 3.29. All 

observers had passed the Ishihara test for colour deficiency before starting the 

experiment. 

Table 3.29 Summary of the numbers of observers participating in the experiment 
Male Female All 

European 011 

Korean 57 12 

Chinese 404 

Total 9g 17 

3.4.2.5 Experimental Settings and Procedures 

Each image, in total 300 including 30 repeats, was presented in random order 

on a 40" LCD display (see Section 3.2.1) having a grey background with RGB = 
(128,128,128) in a darkened room. Observers were asked to assess six emotional 

attributes based on 9-category scales by clicking one of the numbered buttons on 
the screen. The experiments consisted of four sessions. For each session 

observers rated the images presented. The viewing distance was 1.3m from the 

surface of the display, where the size of images presented on the display 

corresponded to a visual field of 22°(h) x 15°(v). The stimulus presented on the 

display is shown in Figure 3.27. The instructions provided to observers prior 
beginning the experiment are given in Appendix B. 
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Figure 3.27 The display layout used for Experiment 2. 

3.4.3 Experiment 3: Physiological Responses on Chroma and 
Contrast of Images 

3.4.3.1 Test images 

The aim of this experiment was to investigate the effect of colour reproduction 
in terms of chroma and contrast on emotional responses presented through 

physiological signals. The design of this experiment focused on limiting the number 

of presentations of the same stimuli to as few as possible to maximise the reactivity 
of emotional arousal to emotional stimuli. Therefore, the experiment was divided 
into two parts to examine the effect of chromatic characteristics and contrast of 
images on physiological responses, separately. Thus images for the two parts of 
the experiment were selected separately. 

The subjects of images were divided into four a-priori categories including 

positive, neutral, negative and personal; the former three categories were 
collectively called "common images". For the personal images, those included in 
Experiment 2 were again used. For the common images which included the three a- 
priori categories, six images for each category were selected separately for the two 

parts of experiment according to the guideline introduced in Sections 3.4.1.1 and 
3.4.2.1. The original test images are given in Figures 3.28 and 3.29. The sources of 
these images are mainly from the Flickr website with permission under Creative 
Commons 2.0 Attribution license copyright. The addresses for each image are 
given in Appendix D. 
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Figure 3.28 The 18 test images selected to investigate the chromatic effect of 
images in Experiment 3( top row: negative: middle: neutral; bottom: positive). 

Figure 3.29 The 18 test images selected to investigate the contrast effect of images 
in Experiment 3 (top row: negative; middle: neutral; bottom: positive). 

3.4.3.2 Image Rendering Methods 

Manipulations of image stimuli were conducted using two colour-appearance 
attributes lightness (J) and chroma (C) from the CIECAM02 system as described in 

Section 3.3.1.2. For chroma manipulation, only achromatic versions of each original 
image were generated. For contrast manipulation, an inverse sigmoid function was 

applied to each of original images to represent an effect of reduced contrast. 

In total, 76 rendered images including 38 original images (18 in Figure 3.28, 

18 in Figure 3.29 and two personal images) were reproduced including original 
images for 38 test images as given in Table 3.30. 
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Table 3.30 Summary of number of original and manipulated images with the 
number of rendering parameters used in Experiment 3. 

F 

Neutral Positive Negative Personal 

No. of 

original 6 6 6 6 6 6 1 1 38 
images 

Rendering 

parameters Chroma Contrast Chroma Contrast Chroma Contrast Chroma Contrast 

(No. of 
(1) (i) (i) (1) (1) (1) (1) (1) 

levels) 

No. of 

manipulated 6 6 6 6 6 6 1 1 38 

images 

Total 76 

3.4.3.3 Experimental Settings and Procedures 

A total of 18 observers including I European, 4 Chinese and 13 Korean aged 
from 19 to 51 participated in the experiment as summarised in Table 3.31. All 

observers passed the Ishihara test for colour deficiency before starting the 
experiment. 

Each image of the 76 images was presented on a 40" LCD display (see 
Section 3.2.1) in darken room in random order. Observers were asked to sit in front 

of the display at a viewing distance of 1.3m wearing sensors to measure heart rate, 
skin conductance and facial EMG. After the sensors were placed on an observer's 
body, their task was to focus their eyes on the images presented whilst staying still 
for whole experimental session. The instructions for this task were given as in 
Appendix C. Each image was presented for 10 sec followed by a 10-30 sec break 
before the next cycle. 

Table 3.31 Summary of the number of observers participating in the experiment. 

Male Female 

European 

Korean 

Chinese 

Total 9 

01 

58 

40 

9 

All 

1 

13 

4 

18 
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3.5 Statistical Methods 

The data collected from the psychophysical experiments were first 

transformed into scale values averaged over all observer responses for each 

stimulus and for each scale to represent the visual results. The visual results were 

analysed using correlation coefficients, root mean square and principal component 

analysis. This section describes the statistical measures that were used to analyse 
the experimental data. Cohen's "Statistical power analysis for the behavioral 

sciences" (Cohen, 1988) and Lewis' "Statistics Explained' (Lewis & Traill, 1999) 

were used as the general reference in this section. 

3.5.1 Root Mean Square 

Root mean square (RMS), as given in Equation (3-11), indicates the extent to 

which two data sets agree with each other. 

RMS = 
! (X, y)Z 

N 
(3-11) 

where x; and y, are values of two data sets for specific sample i and N is the number 
of test images. Note that RMS is equivalent to standard deviation when y, is equal 
to the mean value of x,. 

The minimum value of RMS is 0, indicating perfect agreement between the 

two data sets. Although the maximum value depends on the range of both data 

sets, larger RMS values indicate less agreement regardless of the maximum value. 

In the present study, RMS was used to reveal the level of repeatability and 
accuracy in the visual results for individual observer. 

3.5.2 Correlation Coefficient 

The Pearson product-moment correlation coefficient (also called Pearson 

correlation coefficient) indicates the strength and direction of a linear relationship 
between two sets of data. 

The correlation coefficient is defined in Equation (3-12): 

y' (x, -xxY, -y) r 
(x, -x)ZE(Y, -Y)2 

rz 
(3-12) 

where x, and y, are individual values of two data sets for stimulus i; x and y are 

the mean values of the two data sets. 
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The correlation coefficient is defined only if both of the standard deviations are 
finite and non-zero. The coefficients range from -1.0 to 1.0, where -1.0 represents a 
perfect negative correlation and 1.0 a perfect positive correlation. The value of zero 
indicates a non-linear relationship between the two data sets. 

Cohen suggested the interpretations for correlations in psychophysical 
research as shown in Table 3.32; however, the plot of the two data sets needs be 

examined together with the interpretation of correlation coefficients because a 
perfect positive correlation does not indicate a perfect agreement between two data 

sets. For a perfect agreement between two data sets, all the data points should be 

located on the 45° line. 

Table 3.32 The interpretation of a correlation coefficient. 

Extent of Correlation Negative Positive 

Small -0.29 to -0.10 0.10 to 0.29 

Medium -0.49 to -0.30 0.30 to 0.49 

Large -0.50 to -1.00 0.50 to 1.00 

In the present study, the correlation coefficient r was used as a measure of 
linear correlation between a pair of data sets and applied to all experiments to 

determine correlation between experimental data. 

The square value of the correlation coefficient r (called as the coefficient of 
determination) R2 is a measure of the fraction of the total variance of a data set that 

can be explained by the variance of another data set. In the present study, R2 was 

used to measure the performance of prediction of the models developed. The R2 

values range from 0 to 1: 0 indicates that none of the variance of the visual data is 

accounted for by the model and 1 indicates that the visual data can be determined 

perfectly by the model. 

The correlation coefficient can be also used to examine the significance of 

each predictor in models developed. This can be done by comparing two correlation 

coefficients for a data set of visual results: one for the complete model which 
includes all the predictors and the other for the incomplete model which includes 

one variable excluded from the complete model. If all predictors are significant in 

prediction, the correlation coefficients for any of the incomplete models and visual 
data will have significantly smaller values than for the original data. The procedure 
is given below. 
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a) Generate several incomplete models from the original one by taking away each 

of the predictors. 

b) Calculate the correlation coefficients values (r,... r,, ) for each of the incomplete 

models and for the complete model. 

c) To compare r, and r2, find Z, and Z2 corresponding to r, and r2 according to 

Equation (3-13). 

Z_1L 
1+r� 

"2 1-r� (3-13) 

d) The null hypothesis is that the population coefficients are equal, i. e. Ho: 131 -132=0. 

The alternative hypothesis H, is usually one of the two: 

(i) p, - 132 00 (two-tailed) or 

(ii) p, -132 >0 or p, -132 <0 (both one-tailed). 

e) Choose a level of significance and read the critical value from the normal table 
(Zc=1.96 for 95% with a two-tailed test and 1.64 for 95% with a one-tailed test). 

f) Calculate the test statistics using Equation (3-14): 

z- 
Z, -Zz where o= 

1+1 

Q ný -3 n2 -3 

g) If IZI > Z, reject the null hypothesis. 

(3-14) 

If the test result shows that the correlation coefficient for an incomplete model 
is significantly smaller than the one for the complete model, the predictor excluded 
from the complete model is significant for prediction. In the present study, this 

method was applied to examine the significance of each predictor in the emotion 

models developed in Chapter 6. 

3.5.3 Principal Component Analysis 

Principal component analysis (PCA) is a method to simplify multidimensional 
data sets to smaller numbers of dimensions for analysis by removing some highly- 
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correlated variables from the data sets and replacing them with a smaller number of 
independent variables. This is used to identify the underlying criteria that explain 
the correlations between the variables. 

The extraction of principal components begins by determining the 

eigenvectors and eigenvalues of a covariance matrix. Eigenvectors and 

eigenvalues are defined as the solution to Equation (3-15): 

Avk =4vr (k=l... n) (3-15) 

where A is a real and symmetric matrix of size nxn, vk are eigenvectors of the 

matrix A and 2k are the associated eigenvalues. Usually, a few components can 

account for most of the variation and these components can be used to replace the 

original variables. 

In the present study, A is the covariance matrix of experimental data 

(averaged scale values) for a set of semantic scales. The output from PCA is the 

classification results of semantic scales in terms of component loadings, that is the 

correlation coefficients between semantic scales and the principal components 

extracted. These methods were applied to reveal the inter-relationships between 

semantic scales used in all the psychophysical experiments. 

3.6 Summary 

In the present study, two psychophysical and two physiological experiments 

were conducted. The aims and specific setups for each experiment including test 

images, image rendering methods, semantic differential scales to measure the 

emotional responses, observers, viewing conditions and procedures were 
described. The general settings applied to the experiments were also illustrated. 

These included the specification and performance of the TSR and 

spectrophotometer used; the colorimetric characteristics and characterisation 

methods of display and printer used and the characteristics of the physiological 

instruments used to measure heart rate, skin conductance and facial EMG. Finally, 

the statistical methods applied to analyse the visual results were explained. These 

include root mean square (R MS) for evaluation of observer variation, Pearson 

correlation coefficient r for investigation of the linear relationship between two sets 

of data, the coefficient of determination R2, a measure of the performance of 

prediction of the models developed, the significance test of each predictor in 
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models using correlation coefficients and principal component analysis methods 
(PCA) used to identify the underlying interrelation between semantic scales. 

124 



Chapter 4 Experiment 1: Impact of Colour-Appearance 
Attributes on Emotion for Printed Images Based on 

Psychophysical Method 
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The aim of this experiment was to reveal the relationship between colour- 

appearance attributes of images and emotional responses evoked by images and 

also to find any differences in these relationships according to image content (not 

only including positive and negative ones but also those having personal 

attachment). It includes the development of quantitative models of image emotion 

as functions of colorimetric quantities with regards to the effect of image content. 

To achieve these objectives, a set of psychophysical and physiological 
experiments were designed and performed. In this chapter, only the results from the 

psychophysical experiments will be discussed. Analyses for the physiology results 

will be discussed in Chapter 7. In the psychophysical part of Experiment 1,29 

observers (9 British and 20 Chinese) were asked to assess 178 original and 

manipulated images in terms of five emotion scales: pleasant-unpleasant, exciting- 
calming, like-dislike, natural-unnatural and appealing-unappealing. Image 

manipulation methods were described in Section 3.4.1.2. 

The experimental data were transformed into average scores for four 

subgroups of observers: female, male, British and Chinese. This chapter describes 

the results for following topics: cultural difference and gender difference, 

comparison of emotion scales, influence of image subject and quantification of the 

relationship between colour characteristics and image emotion scales. 

4.1 Observer Variability 

Observer variability was investigated to test the performance of observers 
who took part in this experiment in two different ways: accuracy and repeatability. 
The statistical measure used to represent variation was RMS (Root Mean Square) 

as defined in Section 3.5.1. 

4.1.1 Observer Accuracy (Inter-observer Variability) 
Observer accuracy indicates how the visual result of individual observer varies 

against the mean of all observers' results. The RMS values can be seen as the 

distance between the individual visual results and the mean values of each emotion 

scale for the group. The smaller the RMS value, the smaller distance and higher the 

accuracy. 

Table 4.1 summarises observer accuracy for two gender groups and cultural 

groups in terms of mean RMS for the group. Exciting-calming shows the highest 

accuracy for British and Chinese groups as well as for male and female groups. 
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Natural-unnatural shows the poorest in terms of group mean. The accuracy for 
British and Chinese groups were found to be similar for all scales. The accuracy 
values in female and male groups were also found to be similar. The overall 
accuracy value of 1.35 indicates reasonable levels of observer accuracy for this 

experiment. 

Table 4.1 Inter-observer variability in terms of RMS 

pleasant- exciting- natural- like-dislike appealing- 
unpleasant calming unnatural unappealing mean 

British 1.28 1.17 1.52 1.39 1.43 1.36 

Chinese 1.20 1.11 1.48 1.39 1.50 1.34 

Female 1.22 1.11 1.48 1.37 1.45 1.33 

Male 1.24 1.17 1.52 1.42 1.53 1.38 

mean 1.23 1.14 1.50 1.39 1.48 1.35 

4.1.2 Observer Repeatability (Intra-observer Variability) 

Observer repeatability indicates how repeatable the result is for each 
individual observer. The RMS values can be seen as the variation between first and 

second response for the same image for an individual. The smaller the RMS value, 
the smaller the variation and more likely the responses is repeatable. Table 4.2 

summarises RMS values for the two gender groups and cultural groups in terms of 

mean RMS for the group. Pleasant unpleasant shows the highest repeatability and 
like-dislike the lowest. Differences between repeatability values for the British and 
Chinese groups are found for all scales, with a value of 0.25 RMS units on average. 
A difference between female and male groups is also found for all scales, with a 

mean value of 0.29 RMS units. 

Table 4.2 Intra-observer variability in terms of RMS 

pleasant- exciting- natural- like-dislike appealing- 
unpleasant calming unnatural unappealing mean 

British 1.41 1.50 1.69 1.64 1.40 1.53 

Chinese 1.66 1.72 1.82 1.89 1.82 1.78 

Female 1.67 1.76 1.86 1.87 1.78 1.79 

Male 1.35 1.41 1.60 1.68 1.49 1.50 

mean 1.52 1.60 1.74 1.77 1.62 1.65 
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4.2 Cultural and Gender Differences 

The responses for five emotion scales by British and Chinese observer groups 

were compared using Pearson's correlation coefficient (R) (see Section 3.5.2) to 
investigate cultural differences. To exclude any gender effects, the comparison was 
conducted using only the data from female observers. The numbers of observers in 

both groups used in the comparison were 8 for British and 12 for Chinese. As 

shown in Figure 4.1, the results show high correlation, with correlation coefficients 

ranging from 0.74 to 0.86 between two observer groups except for exciting-calming, 
which has a correlation coefficient of 0.53. However, there is a reasonable 
agreement between British and Chinese groups as the data points are aligned 

close to the 45° line. 

For further investigation of the cultural differences, the method of principal 
component analysis (PCA) (see Section 3.5.3) was applied to clarify the 
interrelationship of five emotion scales for each of two observer groups. The 

components extracted from British and Chinese groups are listed in Table 4.3 (a) to 
(b). In both observer groups, five emotion scales were classified into two subgroups 
accounting for 90.58% and 91.95% of the total variance for responses of British and 
Chinese groups, respectively. The two subgroups were labelled component 1 and 
component 2. For both subgroups, four scales like-dislike, pleasant-unpleasant, 
appealing-unappealing, and natural-unnatural were combined into component 1, 

while exciting-calming were regarded as component 2. This indicates that British 

and Chinese groups have a very similar underlying structure of their emotional 
responses to images for female observers. However, the number of observers for 
the data used in this comparison might be too small to have a concrete conclusion 
and further study will be needed to do so. 
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Figure 4.1 Comparisons of emotion responses between British and Chinese female 
observers. 

Table 4.3 Comparisons of emotion responses between British and Chinese female 
observers; (a) British observers, (b) Chinese observers. 

(a) 

% of variance 
component 1 

68.56 
component 2 

22.02 

like-dislike 0.975 0.077 

appealing-unappealing 0.974 0.102 

pleasant-unpleasant 0.971 0.068 

natural-unnatural 0.764 -0.374 
exciting-calming 0.051 0.970 

(b) 

% of variance 
component 1 

69.30 
component 2 

22.65 

like-dislike 0.982 0.109 

appealing-unappealing 0.935 0.294 

pleasant-unpleasant 0.902 0.214 

natural-unnatural 0.896 -0.140 
exciting-calming 0.097 0.984 
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The responses for five emotion scales by female and male observer groups 
were compared using Pearson's correlation coefficient (R) (see Section 3.5.2) to 
investigate gender differences. To exclude any cultural effects, the comparison was 
conducted using only the data from Chinese observers. The numbers of observers 
in both groups used in the comparison were 8 for male and 12 for female. The 

responses of female and male observer groups were compared as shown in Figure 
4.2. All the scales show high correlation, with their correlation coefficients ranging 
from 0.79 to 0.85 except for exciting-calming and appealing-unappealing. Exciting- 

calming had a correlation coefficient of 0.62, however, the agreement is still 

reasonable as the data points are aligned close to the 45 degree line. appealing- 
unappealing had a even lower correlation coefficient of 0.57 with a spread 
distribution from the 45 degree line. This indicates that there might be some gender 
difference in the responses to appealing-unappealing scale for Chinese observers. 

To further investigate gender difference, the method of PCA was applied. In 

both observer groups, five emotion scales were classified into two subgroups 
accounting for 91.95% and 86.88% of the total variance for responses of female 

and male groups, respectively. The two subgroups were labelled component 1 and 
component 2. In both groups, two principal components - component I comprising 
four scales of like-dislike, pleasant unpleasant, appealing-unappealing, and natural- 
unnatural and component 2 accounting for exciting-calming - were extracted as 
shown in Table 4.4(a)-(b). This suggests that the underlying structures for the five 

emotion scales are almost the same for female and male observers. However, note 
that the component scores were very dose with 0.683 for component I and 0.682 
for component 2 for two subgroups for appealing-unappealing scale in the result 
from male observers. This indicates that the scale was regarded to include the 

property of component 2 for Chinese male observers. Thus, further study will be 

needed to have a concrete conclusion with a sufficient number of observers. 
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Figure 4.2 Comparisons of emotion responses between Chinese female and male 
observers. 

Table 4.4 Comparisons of emotion responses between Chinese female and male 
observers; (a) Female Observers, (b) Male Observers. 

(a) 

(b) 

% of variance 
component 1 

69.30 
component 2 

22.65 

like-dislike 0.982 0.109 

appealing-unappealing 0.935 0.294 

pleasant-unpleasant 0.902 0.214 

natural-unnatural 0.896 -0.140 
exciting-calming 0.097 0.984 

% of variance 

component 1 

59.51 
component 2 

27.37 

like-dislike 0.963 0.163 

pleasant-unpleasant 0.893 -0.046 
natural-unnatural 0.885 0.089 

appealing-unappealing 0.683 0.628 

exciting-calming -0.029 0.968 
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Note that the results of PCA analysis for all observer groups (British, Chinese, 

female and male) confirm the existence of two principal components (component I 

comprising four scales of like-dislike, pleasant-unpleasant, appealing-unappealing, 
and natural-unnatural and component 2 accounting for exciting-calming). These two 

components seem to correspond to the two primary dimensions of emotion, 
pleasure and arousal, as proposed by Russell (see Section 2.4.2). As Russell 

claimed, these two components can also be analogous to Osgood's semantic 
differential dimensions of evaluative and activity (Osgood, 1957). 

In summary, the agreement of visual results between the two cultural groups 

and gender groups was found to be reasonably good. Thus the visual responses for 

all observers were combined as an average and used for further analysis. 

4.3 Comparison of Emotion Scales 

The average responses of five emotion scales for all observers were 

compared to that of each scale using scatter plots Figure 4.3 and Pearson's 

correlation coefficient to reveal the interrelationship. The relationship between 

pleasant-unpleasant and exciting-calming illustrates a 'boomerang shape' 
distribution between the two primary dimensions of emotion - pleasure (pleasant- 

unpleasant) and arousal (exciting-calming) -with two wings towards the highly 

exciting regions, which is consistent with previous studies using ZAPS pictures (see 
Section 2.5.4.1). This indicates that an image rated as highly pleasant or as highly 

unpleasant was also rated as highly exciting; images which judged to be neutral on 
the pleasantness scale were found to score low in arousal. However, comparing the 

shape of this distribution to those presented in Lang and Bradley's studies (see 
Section 2.5.4.1), the two wings extending towards highly exciting comers do not 

seem to be so distinct and there seem to be missing points In those regions. This 

might be because of extremely arousing image contents that are very pleasant or 

unpleasant pictures (such as a dead body, mutilation, or sexual erotica) are 

excluded as stimuli in this experiment. 

Overall, the exciting-calming scale shows low correlation with the other four 

scales, having correlation coefficients less than 0.25. Pleasant-unpleasant Is very 
highly correlated with like-dislike and appealing-unappealing, having correlation 
coefficients of 0.95 and 0.93, respectively. Like-dislike is also very highly correlated 
with appealing-unappealing, having a correlation coefficient of 0.95. Natural- 

unnatural also shows high correlation with pleasant-unpleasant, like-dislike and 
appealing-unappealing, having correlation coefficients of 0.71,0.83 and 0.79, 
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respectively. Therefore, it is clear that these four evaluative semantic scales 
classified into component 1 in previous section- pleasant-unpleasant, like-dislike, 

appealing-unappealing and natural-unnatural- show clear linear interrelationships. 

However, the slopes of those relationships were found to vary according to image 

content although the linear relationships between the four semantic scales were 

maintained. For neutral, positive and personal images (green, blue and dark blue 

dots in the plots), the linearity between the four evaluative scales seem to be close 
to the 45° line. This implies that observer responses on these four scales are very 

similar for positive, neutral and personal images. For negative images (red dots in 

the plots), especially in appealing-unappealing vs. pleasant-unpleasant, natural- 

unnatural vs. pleasant unpleasant and like-dislike vs. natural-unnatural, the slopes 

of the relationships were found to be different from the 45° line. In the appealing- 

unappealing vs. pleasant-unpleasant plot, the slope of the relationship is much 

steeper than the 45° line showing that the values of the pleasant-unpleasant scale 

remain almost the same within a very narrow region of pleasant-unpleasant axis 

whereas the values of appealing-unappealing range from 3 to 5. In the natural- 

unnatural vs. pleasant-unpleasant plot, the values of pleasant-unpleasant scale 

vary only within a very narrow region of the pleasant-unpleasant axis whereas the 

values of natural-unnatural range from 2.5 to 5.5. Similarly in the like-dislike vs. 

natural-unnatural plot, the values of the like-dislike scale vary within a relatively 

shorter range than for the natural-unnatural scale. This indicates that some extent 

of unpleasantness for negative image content would be regarded natural or 

appealing. In addition, some extent of disliking for negative images would also be 

regarded natural. 

Scatter plots of the relative scale values between original and manipulated 
images show the interrelationship between the five scales much clearer, as shown 
in Figure 4.4. In the plots, the exciting-calming scale shows low correlation with the 

other four scales. The four evaluative scales illustrate clear linear relationships 
between each scale for all categories of images; however, it can be noted that 

responses for negative images (in red dots), vary in relatively smaller range of 
scales than for the other categories of images. This indicates that emotional 

responses for negative images are less affected by changes in colour attributes. 
This will be described in further detail in the following section. 

133 



9 

C 
n 

Is 
to 
cY 

6i 

CL R 

cý :1 

R=0.93 

.'-; * 1, 

.-c, 

357f 

Unplessant- pleasant 

R"0.95 

'S Y 
ý 

vý yý' 

1t" 

m 
C 

R 
ý 

a 
w 
IS 
y 
C 

x' n w 
cý 
3 

i 

ý 
Y5 

Y 
M 

vý 

1357S11S1S 

unpleasant- pleasant a1mNK- eluting 

9 

5 

ý 

ý 

R-0.71 

13S79 

unpleasant - pleasant 

9 

r e"o. 1o 

5 

1 

., ý, 

/rl ýtý 

almfft - edtln6 

neutral 

is "'; º4Q 
positive 

personal 
negative 

1lS7f 

unpleasant - pleasant 

I 

F 
ý ýý 

4 

0"O. p 

.-ý; 
'l '. - 

,, "'ºý :: "; 
. ý: ý 

111/ý 

unnatural - natural 

N- II 4 '. 

ýý . 

dislike - Ilk* 

Figure 4.3 Comparisons of the observer responses between the five 
semantic scales across all image subjects and all observers based on 
absolute scale values. 
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Figure 4.4 Comparisons of the observer responses between the five semantic 
scales across all image subjects and all observers based on the relative scale 
values between original and manipulated images. 

PCA analysis was applied to check the underlying structures of all observers' 

responses and the result is shown in Table 4.5. Similar to the results for cultural 

and gender difference (see Section 4.2), two principal components of pleasure and 

arousal were maintained for the result of all observers accounting for 71.5% and 
21.2% of total variance for components 1 (pleasure) and 2 (arousal), respectively. 

This result supports the hypothesis that the four scales- pleasant-unpleasant, like- 

dislike, appealing-unappealing and natural-unnatural- are highly associated with 

each other and that exciting-calming is independent of all the other scales. As 

mentioned in the previous section, these two components seem to correspond to 

pleasure and arousal as proposed by Russell (see Section 2.4.2) and the semantic 
differential dimensions of evaluative and activity by Osgood (see Section 2.4.5.1). 

In the present study, further analysis was carried out on these two factors of 
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responses and the quantitative models of these two emotional factors for images 

were developed, as will be described in following sections of this chapter. 

Table 4.5 Result of principal component extraction from five semantic scales for all 
observers and all test images. 

% of variance 

component 1 

71.50 
component 2 

21.20 

like-dislike 0.987 0.038 

appealing-unappealing 0.959 0 220 

pleasant-unpleasant 0.947 0 080 

natural-unnatural 0.885 0 124 

exciting-calming 0.044 0.994 

4.4 Influence of Image Subject 

One of the aims of this work was to investigate the effect of image content on 
the relationship between colour attributes and emotional responses. Earlier studies 
found that the "context" of image content may have a significant effect on perceived 
image quality and preference due to factors such as spatial configuration of the 

elements and/or objects, a few critical colours of skin tones, grass and sky and also 
the emotional involvement of the observer in test image (see Section 2.5.4.1). 

In the present study, the influence of image subject was investigated under 
two assumptions. These were that (1) emotional responses were affected by the 
level of image pleasantness and (2) the responses were affected by the personal 
values of images to the observers. According to the first assumption, images were 
selected by three a-priori categories according to the level of pleasantness (based 

on the image content): positive, neutral and negative groups (see Section 3.4.1.1). 
Additionally, images provided by the observers (i. e. photos of the observer's family 

members or friends) were included in the experiment to investigate the effect of 
personal attachment to images. The result was then compared with common 
images, i. e. the "generic images" that had no personal values to those observers. 

The influence of image subject on the emotional responses were analysed to 
find any statistical similarity between image groups. To do this, PCA was applied to 

group images showing similar trends among the four a-priori categories (neutral, 

positive, negative and personal). As a result, the responses of emotional responses 
were found to be significantly affected by the level of pleasantness of image content 
rather than by the personal values of images to observers. Table 4.8 shows that ten 
images used in this experiment -including four a-priori categories of positive, 
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neutral, negative and personal- were classified into two principal components 
accounting for 78.69% of total variance. Component 1 includes neutral, positive and 
personal images and component 2 only comprises negative images. Thus these 

two groups were labelled as "positive" and "negative" groups for further analyses. 
This indicates that the emotional responses of pleasantness and excitement are 
significantly different for positive and negative images. Also, the emotional 
responses of the five emotion scales are very similar for images within each image 

group. Accordingly, as shown in Section 4.5, models for the emotional responses of 

pleasantness and excitement were developed separately for images which were 

extracted in component 1 (positive group) and 2 (negative group) using the PCA 

result. 

Table 4.6 Classification of content of images based on visual results for all 
observers. 

Image component 1 component 2 

category %ofvariance 50.02 28.67 

personal 1 0.889 0.315 
personal 

personal 2 0.874 0.338 

neutral fruits 0.855 0.229 

neutral indoor 0.795 0.320 

positive horses 0.784 0.474 

neutral boy 0.726 0.432 

neutral harbour 0.645 0.620 

positive family 0.600 0.517 

rubbish 0.257 0.861 
negative baby 0.319 0.833 

4.5 Quantification of Image Emotion 

One of the aims in this chapter is to develop models of emotion factors in 

terms of factors for complex images as a function of colour attributes of images 

such as colourfulness and lightness contrast. From results of the inter-relationship 

between scales studied in Section 4.3, two emotional components were extracted: 

pleasantness and excitement. These two factors of emotion were found to have 

different underlying structures for "positive" and "negative" images depending on 
the pleasantness levels of images as discussed in Section 4.4. As will be described 

in this section, quantitative models of two emotion factors for images, pleasantness 

and excitement, were developed for "positive" and "negative" image groups. Then 

within positive image group, the influence of personal values of images to observers 
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on the relationship between colour attributes of images and emotional responses 

were compared for personal and common images. 

Image colourfulness was determined by the median colourfulness in CAM02- 

UCS (see Section 2.3.4.4) for the image. Image contrast was determined using the 

standard deviation of image lightness in CAM02-UCS. It was found that these two 

colour attributes had a clearer relationship with the visual results expressed by the 

relative difference between the original and manipulated, than those of the absolute 

scale values. It seems that the relative difference serves as a normalisation process 
to minimise the image dependency problem. 

4.5.1 Pleasant-Unpleasant 

To investigate the relationship between pleasantness responses and colour 

attributes of images, the pleasantness responses obtained for 10 images were 

averaged at each manipulation level within each a-priori category. Then, according 
to the results concluded from Section 4.4, the average values for four categories 

were divided into two subgroups of "positive" (including positive, neutral and 

personal images) and "negative" (including negative images only). 

Figure 4.5 (a) shows changes in pleasantness responses plotted against the 

colour attributes of images colourfulness for "positive" group including positive 
(empty square symbols in the plot), neutral (crosses) and personal (empty triangles) 

among the four a-priori categories. Overall, Figure 4.5 (a) shows that as image 

colourfulness increases or decreases, the pleasantness for positive images 
decreases significantly. Neutral and positive images show very similar trends in the 

extent of changes to pleasantness responses according to colourfulness changes. 
Personal images show a slightly sharper trend than the others, however this does 

not seem to be a large difference. That is, when the colourfulness is rendered 
(either making it higher or lower), the positive image is regarded as less pleasant 
than the original. 

As shown in Figure 4.5 (b), the changes in lightness contrast also result in 

lower value for pleasantness, whether the lightness contrast increases or 
decreases for the positive group of images. Very similar trends were seen for all 

three categories of images: neutral (solid diamonds), positive (solid squares) and 

personal (solid triangles). 

Similar results can be found in previous studies studied by Fedorovskaya et 

a/. (1997) and Calabria et al. (2003a). Fedorovskays (1997) reported that original 

images were found to be ranked as the most, or the second most, preferred 

depending on images among many other manipulated versions In terms of chrome 
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in the scale of image quality and naturalness. Calabria (2003a) studied the image 

preference of various manipulated versions in terms of chroma by multiplying by a 

scalar from 0 to 1.2 with a 0.2 interval. The results showed that the original level of 

chroma multiplied by scalar 1 appeared to be the most preferred image among 

many versions for pictorial images. This study also showed that the original images 

contrast were found to be ranked as the most or the second most preferred images 

depending on images among many other manipulated versions in terms of 
lightness. From the results of previous studies and the present study, it might be 

believed that colour reproduction schemes such as chroma and lightness contrast 

renderings for "positive" images tend to reduce pleasant feelings. Note that 

"positive" includes three categories of images and these include most of images 

which can be found in our daily lives. 

Regarding the result which is the original images were always most preferred 

and any changes in colourfulness and contrast always lead to decrease of image 

pleasantness, there is an issue which needs to be pointed out. In the present study, 

8 original images were selected according to several criteria in order to cover a 

wide range of pleasantness level, a wide variety of scenes such as sky, grass and 
human skins, and a reasonably wide range of colours in terms of hue, lightness and 

chroma. In addition, there was one more criterion which is a reasonably high level 

of image quality. The purpose of this criterion was to help observers focus on the 

affective quality rather than the image quality itself so that observers' responses 

can be independent from the image quality. Thus, all the original images were well- 
balanced in colour and almost at the highest quality which can be achieved for them. 

Then, these images were modified in terms of one of image colour attributes 

through several manipulation functions. In the manipulation process, it is possible 

that the colour balance and image quality could get worse than for the original as 

only one attribute were rendered. Also for the rendering of colour attributes, the 

level of change in each attribute was large enough to be perceived easily and to 

stimulate the emotional reactions, however, it should not be so large to generate 

significant defects. However, the degradation in image quality can be also caused 
by the large changes in colour attributes. 

Another possibility for the most preferred results for original images could be 

due to the symmetric manipul ations of colour attributes from the original. This 

indicates that the original image is always in the middle in the magnitude of the 

manipulated attributes. It always tends to be an average as an optimised version in 

manipulation of an attributes. 

139 



The relationship shown in Figure 4.5(a), the change in image pleasantness 
(AP) for positive images, was modelled as a function of the change in image 

colourfulness using the Log Normal Distribution Function (Limpert, 2001) for best fit 

of experimental data that showed skewed bell-shaped curves. Although various 
other functions were tried, this fitted the trend of data well and was easily adjusted 
to fit the shape of the data. The model is given in Equation (4-1): 

kl -1tn(k&M-k 

, 6P(LM)= ko+aý(kZnýº+-k, 
)a 20 (4-1) 

where OM is the change in image colourfulness values from an original image to the 

manipulated version; p and a are shape parameters; kl is the amplitude of the 
distribution curve; k3 is a location parameter; and ko and k2 are constants. This 

equation was also used to model the relationship between pleasantness and 
contrast based on the data for images manipulated in terms of contrast. These 

coefficients were optimised for the best fit of experimental data separately for 

positive images manipulated in terms of colourfulness and contrast. Table 4.7(a) 

shows the coefficients optimised for models in Equation (4-1) to predict 
pleasantness. These models were found to determine the experimental data of 
image pleasantness to the extent of 80ß6 and 94% for colourfulness and contrast 
manipulated images, respectively. Note that these R2 values were computed for two 

separate data sets of chroma and lightness contrast manipulations. 
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Figure 4.5(a)-(b) Changes in image pleasantness plotted against changes in image 
colourfulness(a) and lightness contrast(b) together with the model prediction 
for each relationship in the positive group of images, including neutral ((a) 
crosses; (b) diamonds), positive ((a) empty squares; (b) solid squares) and 
personal((a) empty triangles; (b) solid triangles) images. 
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Figures 4.6(a) and (b) show changes in image pleasantness responses 
plotted against the colour attributes of image colourfulness and lightness contrast 
for the "negative" group of images. For images with negative content, decreasing 

image colourfulness results in higher pleasantness, whereas the effect of increasing 

colourfulness is similar for "positives images, as shown in Figure 4.6 (a). However, 

the extent of change in pleasantness is not as significant as for positive images. As 

shown in Figure 4.6 (b), the increase in lightness contrast also results in lower 

pleasantness for negative images; however, the magnitude of this is smaller than 
for positive images. This suggests that adjusting unpleasant feelings for negative 
images though changes in colourfulness and contrast seems to be relatively more 
difficult than for positive images. The result shows the possibility of enhancing the 

pleasantness of negative images by making them less colourful; however, to 

confirm these trends on negative images, further experiments need to be conducted 

as only three variations of each colour attributes in terms of colourfulness and 

contrast were studied in this experiment. 

aMedian Colourfulness ALightness Contrast 

(a) (b) 

Figure 4.6(a)-(b) Changes in image pleasantness plotted against changes in image 
colourfulness (a) and lightness contrast (b) together with the model prediction 
for each relationship in the negative group. 

Models of pleasantness for negative images as a function of each colour 

attribute were also developed. For the relationship between pleasantness and 
colourfulness, the Boltzmann Distribution Function showed the best fit to 

experimental data that followed inverted S-shaped curves. The model is given in 

Equation (4-2). 
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(&M-k 
AP(OM) = ko + (kl - ko) x 

(1+e 
aY (4-2) 

where AM is the change in image colourfulness from an original image to the 

manipulated version; and ko to k2 are constants. These coefficients were optimised 
to best fit the experimental data for negative images manipulated in terms of 

colourfulness. For the model as a function of contrast, Equation (4-1) was used and 

all coefficients were optimised for the best fit. Table 4.7(b) shows the coefficients 
optimised for these models in Equations (4-1) and (4-2) for predicting pleasantness 
for negative images. These models were found to determine 99% and 100% of the 

variance in the experimental data of pleasantness for colourfulness and contrast 
manipulated images, respectively. 

Table 4.7(a)-(b) Coefficients of the image pleasantness models shown in Equations 
(4-1) and (4-2) as functions of colourfulness and lightness contrast for (a) 
positive and (b) negative images. 

(a) 

ko kl k2 k, N o Rý p-value 

DP(, AM) -4.70 5.10 -0.03 -1389.75 7.23688 0.00032 0.80 0.00 

1P(OCO) -3.05 2.74 -0.06 -1390.48 7.23736 0.00026 0.94 0.00 

(b) 

ko k, k2 a R p-value 

AP(AM) 0.50 -1.63 7.58 7.39 0.99 0.08 

ko k, k2 k3 N o R 

AP (ACO) -12.88 121.41 -0.16 -54.21 4.003 0.069 1.00 0.04 

4.5.2 Exciting-Calming 

The relationship between excitement responses and the colour attributes of 
images was investigated in similar way to pleasantness responses. The excitement 

responses obtained for 10 images were averaged for each manipulation level within 

each a-priori category. Then the average values for the four categories were 

divided into two subgroups of "positive" (including positive, neutral and personal 

images) and "negative" (including negative images). 
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Figure 4.7 (a) shows changes in the image excitement responses plotted 
against image colourfulness for the positive group of images including positive 
(empty squares), neutral (crosses) and personal (empty triangles) among the four 

a -priori categories. Overall, the plot shows that the excitement for positive images 
increases significantly as image colourfulness increases and decreases as 
colourfulness decreases. This trend exhibits a slightly different slope in the trend for 

each a-priori group, however the differences do not seem to be significant. 

Figure 4.7 (b) shows changes in image excitement responses plotted against 
the colour attributes of lightness contrast for the positive group of images including 

positive (solid squares), neutral (solid diamonds) and personal (solid triangles) 

among the four a -priori categories. The plot shows that the excitement values for 

neutral and positive images among the three categories increase as image 

colourfulness increases and decrease as colourfulness decreases. The trend for 

the personal group appears to be quite different, although the extent of difference is 

not significantly large. The excitement value for personal images falls whether 
lightness contrast increases or decreases. In either direction, when contrast varies 
(either getting higher or lower), the personal image was regarded as more calming 

whereas the other images were regarded as more exciting. 

This might be because personal images tend to always be regarded as an 
"extremely positive" subject no matter how colour attributes are reproduced. Note 

that the relationship between pleasant-unpleasant and exciting-calming was 
described as a 'boomerang shape' distribution in Section 4.3. This indicates that 

highly-pleasant or highly-unpleasant stimuli also tended to be regarded as highly 

exciting and images which were scored as neutral on the pleasantness scale are 
found to be low on the exciting scale. In other words, highly-pleasant stimuli tend to 

show a positive correlation with excitement and negative stimuli tend to show 

negative correlation with excitement. This implies that the relationship between the 

two scales for highly-pleasant stimuli could follow similar trends with regards to 

changes in colour attributes. As seen in Figures 4.8(a) and (b), the positive 
correlation between pleasantness and excitement for personal images (dark blue 

dots in Figure 4.8(b)) tend to show much clearer positive correlation than for neutral 

and positive images shown in Figure 4.8(a). 
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Figure 4.7(a)-(b) Changes in image excitement plotted against changes in image 
colourfulness(a) and lightness contrast(b) together with the model prediction 
for each relationship for the positive group of images including neutral ((a) 
crosses; (b) diamonds), positive ((a) empty; (b) solid squares) and personal((a) 
empty; (b) solid triangles) images. 
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This result suggests that the exciting feelings of positive images excluding 
personal images can be enhanced by rendering images with increased 
colourfulness and contrast. However for personal images, it seems difficult to 
expect an enhancement in emotional response by rendering colour attributes. To be 
certain of this conclusion on personal images, further experiments are needed as 
only three levels of colourfulness and contrast were studied in this experiment. 
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A model of image excitement (LE) for positive images as a function of 
colourfulness was developed using the structure of Equation (4-2) but the 

coefficients were determined using data sets of "excitement" responses for images 

manipulated in colourfulness. The relationship between excitement and contrast 
was modelled using Equation (4-1) and coefficients were optimised for the best fit to 
data sets for contrast manipulations. Table 4.8(a) shows the coefficients found for 
the colourfulness and contrast models which determined 91 % and 62% of variance 
in experimental data image pleasantness for colourfulness and contrast 

manipulated images, respectively. 

Figures 4.9(a) to (b) show changes in image excitement plotted against the 

colour attributes of images colourfulness and lightness contrast for negative 
images. As shown in Figure 4.9(a), decreasing image colourfulness results in 

significantly lower excitement and increasing colourfulness makes images more 

exciting than the original. As shown in Figure 4.9(b), increasing image contrast 

results in higher excitement for negative images. This implies that the excitement of 

negative images can be enhanced by increasing both colourfulness and contrast. 
Also, for negative images models of image excitement as a function of 
colourfulness and contrast were developed using Equation (4-2). Table 4.8(b) 

shows the coefficients optimised for each model and these were found to determine 

the data to the extent of 100% for both sets manipulated in colourfulness and 

contrast. 
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Figure 4.9(a)-(b) Changes in image excitement plotted against changes in image 
colourfulness (a) and lightness contrast (b) together with the model prediction 
for each relationship in both the positive group of images and negative group 
of images. 
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Table 4.8(a)-(b) Coefficients of image excitement model used in Equation (4-1) and 
(4-2) as a function of colourfulness and image contrast for (a) positive images 
and (b) negative images. 

(a) 

ko kl kz a R: p-value 

AE(AM) -0.63 0.84 1.37 3.64 0.91 0.00 

ko kl k2 k3 N o R' 

AE(ACO) -0.44 2.204 -0.164 -1390.37 7.23673 0.00120 0.62 0.04 

(b) 

ko k1 k2 
ia 

R2 p-value 

AE (AM) -0.28 0.60 0.58 0.62 1.00 0.00 

ßE(ACD) -0.29 0.26 -0.05 0.14 1.00 0.00 

Finally, models of image pleasantness and excitement for positive and 

negative images were developed as a linear function of colourfulness (M) and 

contrast (CO) as shown in Table 4.9. The performance of each model was tested 
for the entire data set including all images manipulated in terms of colourfulness 
and contrast. Pleasantness models were found to determine 88% and 97% of 

variance in the data set for positive and negative images respectively. P(AM) and 
P(tCO) for positive images are defined by Equation (4-1) with coefficients given in 
Table 4.7(a). P(LM) and P(dCO) for negative images are also defined by Equations 
(4-2) and (4-1) respectively with coefficients shown in Table 4.7(b). The excitement 
models determined the 66% and 96% of variance in date set for positive and 

negative images respectively. E(LM) and E((CO) for positive images are defined by 

Equations (4-2) and (4-1) respectively with coefficients shown in Table 4.8(a). 
E(AM) and E(LCO) for negative images are also defined by Equation (4-2) with 

coefficients provided in Table 4.8(b). P-values shown in the table indicate that the 

agreement between model prediction and the data point are statistically significant 

at a significance level of 0.05. 

Note that the relationships between image emotions and two image colour 

attributes were investigated independently. Thus, cross terms of image 

colourfulness and contrast for inter-relationship between image emotions and two 

image colour attributes could be added to the equations shown in Table 4.9 for 

more robust performance of the models and this could one of the future works. 
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Table 4.9 Predictive models for image pleasantness and excitement developed as a 
linear equation based on the relationship with colour attributes of 
colourfulness (M) and contrast (CO). 

Image Emotion Models (colour attributes) RZ p-value 

Pl as ntnes 
positive dPleasantness(M, CO)= 0.78*P(dM) + 0.93*P((CO) 0.88 0.00 

e a s 
negative dPleasantness(M, CO)= 0.77*P(dM) + 1.16*P (dCO) 0.97 0.00 

it t E 
positive dExcitement(M, CO)= 0.64 *E (AM) + 1.32 *E (dCO) 0.66 0.00 

emen xc 
negative dExcitement(M, CO)= 0.73*E (AM) + 1.00*E (ACO) 0.96 0.00 

4.6 Summary 

The aim of this experiment was to investigate the relationship between the 
colour attributes of images and the emotional responses elicited by those images, 

and also to develop quantitative models of image emotion as functions of 
colorimetric quantities with regards to the effect of image content. 

First of all, the inter- and intra-observer variability values were compared 
between genders and between cultures. It was found that all observer groups had 

similar levels of observer accuracy and repeatability. As a result of comparisons in 

emotional responses between genders and cultures, it was found that all observer 
groups share the same underlying structures of emotional responses for images. 
Principal component analysis was used to investigate the underlying structure 
between emotion scales. Two components were extracted from all observer groups 
which are: like-dislike, pleasant-unpleasant, natural-unnatural and appealing- 
unappealing, which are related to the evaluative factor proposed by Osgood, and 
exciting-calming which is related to Osgood's activity factor. 

The influence of image subject on emotional response was investigated by 
applying the method of principal component analysis to emotion scales to find any 
similarity between images used in the experiment. As a result, the responses of 
image emotion were significantly different for the positive group which included 

positive, neutral and personal images and for the negative group. Personal values 
seemed to affect the emotional responses of pleasantness and excitement to 
images; however the effect on psychophysical responses did not seem to be 
significant. Thus, emotion models for pleasantness and excitement were developed 

separately for the data set corresponding to positive and negative images. 

The relationships between emotional responses for all images used in the 
experiment and colour attributes were explored and quantitative models were 
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developed as a function of the colour attributes of images. As a result, pleasantness 
can be enhanced for negative images by decreasing colourfulness, whereas 

pleasantness for positive images cannot be enhanced by changing the colour 

attributes studied. Image excitement can be enhanced by increasing colourfulness 
and contrast for both positive and negative images. Finally, models of image 

pleasantness and excitement for positive and negative images were developed as 
linear equations based on the models developed for each colour attribute. 
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Chapter 5 Experiment 2: Impact of Colour-Appearance 
Attributes on Colour-emotion and Image Emotion for 

Displayed Images 



In Chapter 4 covering the results of Experiment 1, the relationships between 

the responses of image emotions to four different contents of printed images and 
colour attributes were explored and quantitative models for image pleasantness and 
excitement were developed as a function of colourfulness and lightness contrast for 

positive and negative image groups. Using these models, image pleasantness can 
be enhanced only for negative images by decreasing colourfulness, whereas image 

pleasantness for positive images cannot be enhanced by changing the colour 
attributes studied. In addition, image excitement can be enhanced by increasing 

colourfulness and contrast for both positive and negative images. 

As mentioned in Section 1.1, two approaches to defining and utilising the 

affective responses in a systematic way were introduced: "image emotion" (see 
Section 2.4.2) and "colour-emotion" (see Section 2.4.5). The concept of "image 

emotion" was used to describe the overall emotional responses to images in 

association with their context regarding content and personal attachment. The 

concept of "colour-emotion" was used to define the relationship between colours 
and reactive-level emotional responses determined by the configurations of colour 
stimuli as its original definition with regards an easy and systematic way to utilise 
the image emotion models which developed in previous chapter in practice. 

In this chapter, the results from Experiment 2, which focused on investigating 

colour-emotion responses for complex images, are described. Quantitative models 
of colour-emotion for images will be developed as a function of colour-appearance 
attributes. The performance of the colour-emotion models reviewed in Section 
2.4.5.2 and the additivity principle (see Section 2.4.5.3) will be tested for image 

stimuli. Finally, the aim of this experiment was to investigate the relationship 
between the colour attributes of images and the colour-emotion scales of activity, 
weight and heat it was also aimed at developing quantitative models of colour- 
emotion as functions of colorimetric quantities for image stimuli. 

To achieve these objectives, a second psychophysical experiment was carried 

out. In this experiment, 17 observers (1 European, 4 Chinese and 12 Korean) were 

asked to assess 208 original and rendered images manipulated in terms of 
lightness contrast and colourfulness on six emotion scales including pleasant- 

unpleasant, exciting-calming, like-dislike, active passive, heavy-light and warm- 

cool. 

The experimental data were transformed into averaged scores for five groups 

of observers: female, male, European, Korean and Chinese. As will be shown in 

this chapter, these data were analysed for the following investigations: cultural 

difference and gender difference, comparison of emotion scales, influence of image 

subject, and quantification of image emotion as well as colour-emotion scales. 
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5.1 Observer Variability 

Observer variability in Experiment 2 was investigated to examine the 

performance of observers who have participated in this experiment in two different 

ways: accuracy and repeatability. RMS (see Section 3.5.1) was used again to 

represent variation in observer responses. 

5.1.1 Observer Accuracy (Inter-observer Variability) 

Table 5.1 summarises RMS values of observer accuracy for two cultural 

groups except for European as there was only one European observer and two 

gender groups in terms of mean RMS for the group. 

For the Korean group, pleasant-unpleasant among the six scales showed the 
highest accuracy with an RMS value of 1.20. For Chinese group, like-dislike 

showed the highest accuracy with RMS values of 1.28. Exciting-calming showed 
the poorest accuracy, with an RMS value of 1.67 for the Korean group. For the 

Chinese group, warm-cool showed the poorest accuracy with an RMS of 1.46. 

Comparing the two gender groups, pleasant-unpleasant showed the highest with 
RMS values of 1.22 and 1.19 respectively for female and male groups. The scales 

showing the poorest accuracy were active passive with an RMS value of 1.64 for 

female and exciting-calming with an RMS value of 1.56 for male. In terms of the 

mean value for each scale, pleasant-unpleasant showed the highest accuracy with 

an RMS value of 1.20 whereas exciting-calming showed the poorest accuracy with 

an RMS value of 1.59. 

Although there seemed to be some differences in accuracy between scales 

and between culture and gender groups, the results suggest that the accuracy of all 

observer groups was similar for each scale; the mean accuracy of 1.40 over all 

observer groups indicates a reasonable level of accuracy for observer responses 

regarding the magnitude of the 9-point scale. 
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Table 5.1 Inter-observer variability in terms of RMS 

active- light- warm- like- pleasant- exciting- 
passive heavy cool dislike unpleasant calming 

mean 

Korean 1.56 1.40 1.53 1.29 1.20 1.67 1.44 

Chinese 1.26 1.17 1.46 1.20 1.28 1.35 1.29 

Female 1.64 1.33 1.56 1.26 1.22 1.62 1.44 

Male 1.39 1.34 1.48 1.24 1.19 1.56 1.37 

mean 1.49 1.34 1.51 1.27 1.22 1.59 1.40 

5.1.2 Observer Repeatability (antra-observer Variability) 

Table 5.2 summarises the RMS values of observer repeatability for two 

gender groups and two cultural groups - Chinese and Korean - in terms of mean 
RMS for the group. 

For the two groups, pleasant-unpleasant showed the highest repeatability with 
RMS values of 1.21 and 1.10 respectively for Korean and Chinese. Warm-cool 

showed the poorest repeatability with an RMS value of 1.67 for the Korean group. 
For the Chinese group, active-passive showed the poorest repeatability with an 
RMS of 1.60. Comparing the two gender groups, pleasant-unpleasant showed the 
highest repeatability with RMS values of 1.10 and 1.23 respectively for female and 
male groups. The scales showing the poorest repeatability was warm-cool with an 
RMS value of 1.67 for female and active passive with an RMS value of 1.64 for 

male. In terms of mean value for each scale, pleasant-unpleasant was the highest 

with an RMS value of 1.17, whereas warm-cool showed the poorest repeatability 
with an RMS value of 1.60. 

Although there seemed to be some difference in repeatability between scales 

and between culture and gender groups, these results suggest that the repeatability 

of all observer groups was similar for each scale. The mean accuracy value of 1.40 

over all observer groups indicates a reasonable level of repeatability for observers' 

responses regarding the magnitude of the 9-point scale. 
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Table 5.2 Intra-observer variability in terms of RMS. 

active- light- warm- like- pleasant- exciting- 
passive heavy cool dislike unpleasant calming 

Korean 1.50 1.47 1.67 1.30 1.21 

mean 

1.45 1.43 

Chinese 1.60 1.19 1.47 1.24 1.10 1.44 1.34 

Female 1.33 1.39 1.67 1.18 1.10 1.48 1.36 

Male 1.64 1.45 1.53 1.32 1.23 1.43 1.43 

mean 1.52 1.40 1.62 1.28 1.18 1.45 1.41 

5.2 Cultural and Gender Differences 

The responses for the six emotion scales by Korean and Chinese male 
observer groups were compared to investigate the cultural differences between the 
two groups using Pearson's correlation coefficient (see Section 3.5.2). To exclude 
any gender effects, observer responses were compared using only the data from 

male observers. The numbers of observers in both groups used in the comparison 
were 5 for Korean and 4 for Chinese. As shown in Figure 5.1, the results indicated 

very good agreement for pleasant-unpleasant, like-dislike and active-passive with 
correlation coefficients ranging from 0.71 to 0.88. Responses for light-heavy and 
exciting-calming also show good agreement between the two observer groups, with 
correlation coefficients of 0.59 and 0.53. The largest variation w as found from 

responses for warm-cool, with a correlation coefficient of 0.22 indicating that there 

were cultural differences between the two groups. 
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Figure 5.1 Comparisons of emotion responses between Korean and Chinese male 
observers. 

Table 5.3(a)-(b) Component loadings for (a) Korean and (b) Chinese observers. 

(a) 

% of variance 
component 1 

55.30 
component 2 

21.99 
like-dislike 0.937 0.042 

pleasant-unpleasant 0.925 0.076 
active-passive 0.911 0.113 

light-heavy 0.727 0.528 
exciting-calming 0.474 0.383 

warm-cool -0.004 0.935 

(b) 

% of variance 
component 1 

59.04 
component 2 

28.65 
like-dislike 0.959 0.219 

pleasant-unpleasant 0.957 0.223 
light-heavy 0.950 -0.070 

active-passive 0.875 0 130 
warm-cool 0 126 0.883 

exciting-calming 0.150 0.851 

.. 
ýr, ý 

. _.. .. _ 
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To further investigate cultural difference, the method of principal component 
analysis (PCA) (see Section 3.5.3) was applied to clarify the interrelationship of six 
emotion scales for each of two observer groups. The components extracted from 

the Korean and Chinese groups are listed in Tables 5.3(a) and (b). For both groups, 
the six emotion scales were classified into two principal components accounting for 

77.29% and 87.69% of total variances for responses of Korean and Chinese groups 
respectively. As a result, both groups showed high component loadings on like- 
dislike, pleasant-unpleasant and light-heavy in component 1; warm-cool in 

component 2. Exciting-calming was grouped into component 1 for Korean and 

component 2 for Chinese. This suggests that Korean and Chinese observers share 
a similar underlying structure of colour-emotional responses for images, although 
exciting-calming was grouped into different components in the two groups. 

To explore the underlying structures of colour-emotion for images between 

Korean and Chinese groups, a component plot was drawn for each group based on 
the component loadings listed in Table 5.3. The results are shown in Figures 5.2(a) 

and (b) for Korean and Chinese respectively. In both diagrams, the six emotion 

words are located in two-dimensional space formed by the two principal 
components. In both plots, all emotion words are located in similar positions except 
for "exciting". 

In the Korean results, "exciting" is located close to "active", "like" and 
"pleasant". In the Chinese result, "active" is located close to "warm". This implies 

that Chinese observers are more likely to feel excited about warm images and that 
Korean are likely to prefer exciting images. However, the number of observers used 
for the comparison was small, further study will be needed to conclude a concrete 

culture effect with sufficient number of observers. 

155 



1.0 

0.5 

0.0 

-0.5 

-1.0 
-1.0 

warm* 

-0.5 

' actl4 

I eexcidng 
= NIý 

light 
__ý pleasaý 

...... ý 

0.0 o. s 

component 1 

(a) 

1.0 

1.0 

0.5 
N 

0.0 

-0. S 

. L=iý 
warm 

excfring 
" 

i : active 
" 

like "' 
pleasant 

" light , 

-1.0 
1.0 -0.5 0.0 0.5 1.0 

component i 

(b) 

Figure 5.2(a)-(b) Component plot of colour-emotion responses from the (a) Korean 
and (b) Chinese male observers. 

The responses of male and female observers are compared in Figure 5.3. To 

exclude any cultural effects, the comparison was conducted using only the data 

from Korean observers. The numbers of observers in both groups used in the 

comparison were 5 for male and 7 for female. The results show good agreement for 

active-passive, pleasant-unpleasant and like-dislike with correlation coefficients 
from 0.74 to 0.88. Responses for light-heavy and exciting-calming also show good 

agreement between the two groups, with correlation coefficients of 0.50 and 0.56. 

The largest difference was found from responses for warm-cool with a correlation 

coefficient of 0.37 suggesting that the two observer groups had a difference for 

warm-cool. 
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To fu rther investigate this difference, PCA was again used to clarify the 
interrelationship between the six emotion scales for each of the two observer 
groups. The components extracted from female and male observers are listed in 
Table 5.4(a)-(b). For both groups, six emotion scales were classified into two 
principal components, taking account of 78.16% and 77.29% of the total variances 
in responses by female and male observers respectively. In the results, both groups 
show high component loadings on like-dislike, pleasant-unpleasant and light-heavy 
in component 1; exciting-calming in component 2. This suggests that female and 
male observers share a similar underlying structure of colour-emotional response 
for images, although active-passive and warm-cool were classified into different 

components in the two groups' results. 

To compare the underlying structures of colour-emotion for images between 
female and male observers, a component plot was drawn again for each group 
based on the loadings listed in Tables 5.4(a)-(b). The results are shown in Figures 
5.4(a) and (b) for female and male observers respectively. In both plots, all emotion 
words are placed in similar positions except "active" and "warm". 
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In the female results, "active" is located close to "exciting"; and "warm" is in 

the opposite direction. In the male results, "active" and "exciting" are found to be 

located close to "like", "pleasant" and "light". This implies that female observers tend 

to feel excited with active images and prefer cool images. Also, males tend to prefer 
active and exciting images. However, the number of observers used for the 

comparison was small again, further study is required to conclude a concrete 

gender effect with sufficient number of observers. 

Table 5.4 Component loadings for (a) Korean female and (b) Korean male 
observers. 

(a) 

% of variance 
component 1 

46.46 

component 2 

31.70 

like-dislike 0.939 0.080 

pleasant-unpleasant 0.937 0.115 
light-heavy 0.818 -0.269 
warm-cool -0.508 0 291 

exciting-calming 0.162 0.944 

active-passive 0.273 0.915 

(b) 

% of variance 
component 1 

55.30 
component 2 

21.99 
like-dislike 0.937 0.042 

pleasant-unpleasant 0.925 0.076 

active-passive 0.911 0.113 
light-heavy 0.727 0.528 

exciting-calming 0.474 0.383 
warm-cool -0.004 0.935 
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Figure 5.4 (a)-(b) Component plots of colour-emotion responses by the Korean (a) 
female and (b) male observers. 

5.3 Relationship between Colour-Emotion and Image 
Emotion 

Colour-emotion (see Section 2.4.5) and image emotion (see Section 2.5.3) 

actually share the same basis in that they are founded on the three primary factors 

introduced by Osgood (Osgood, 1957); i. e. evaluative, potency and activity factors. 

According to the three-factor theory of emotion proposed by Russell, pleasantness 

and arousal correspond to two factors: evaluative and activity (Russell, 1977). The 

existing colour-emotion models (see Section 2.4.5.2) developed by Ou et al., Sato 

at al. and Xin et al. also share two of the three factors, colour activity and heat 

corresponding to activity factor and colour weight corresponding to potency factor. 

(Ou, 2004a) 

To investigate the inter-relationship between colour-emotion and image 

emotion scales for image stimuli based on underlying primary factors, PCA was 
applied to classify responses of all the observers on the six emotion scales. The 

results shown in Table 5.5, indicate that two principal components extracted from 

the six emotion scales accounted for 78.38% of total variance in the experimental 
data. These two components were: component 1, comprising like-dislike, pleasant- 

unpleasant and light-heavy, and component 2, comprising exciting-calming and 
warm-cool. This implies that colour-emotion and image emotion for image stimuli 
are actually based on two primary factors from the three primary factors evaluative, 

potency and activity. These could be evaluative and activity factors corresponding 
to components 1 and 2 respectively. This is different to Ou's classification where 
light-heavy and active-passive were classified into potency and activity factor (Ou, 

exciting 
....... 

active 
........ 

pleasant.. 
like " 

warm 
"1.,, light ý. ý' 
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2004a). The light-heavy scale showed very high correlation with component 1 with 

a loading value of 0.889 (Table 5.5) and it was consistently classified into 

component 1 in the results based on the responses of different observer groups 
including Korean, Chinese, male and female. Accordingly, the light-heavy scale 

tends to be closely related evaluative factor for image stimuli. On the other hand, 

the active-passive scale showed high correlation with component 1 with a loading 

value of 0.737; it also showed some degree of correlation with component 2, 

however, with a loading value of 0.584 as shown in Table 5.5. It was classified into 

component 1 in the results based on responses of Korean and female groups, and 

classified into component 2 in the results based on responses of Chinese and male 

groups. This indicates that the active-passive scale has both evaluative and 

arousing properties, and this can be presented differently in different observer 

groups. The relationship between colour-emotion and image emotion will be 

discussed with regard to the influence of colour attributes in more detail in Section 

5.5. 

Table 5.5 Principal component matrices (component loadings) for all observers. 

of variance 

like-dislike 

pleasant-unpleasant 

light-heavy 

active-passive 

exciting-calming 

warm-cool 

component 1 component 2 

54.39 23.99 

0.970 -0.035 

0.969 -0.021 

0.889 -0.162 

0.737 0.584 

0.127 0.926 

-0.189 0.462 
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Figure 5.5 Component plots of colour-emotion for images from all observers. 

5.4 Influence of Image Subject 

To investigate the influence of image subject on emotional response, PCA 
was applied to each emotion scale to group images showing statistically similar 
trends. As a result, the responses of image emotion were significantly affected by 
the image content whereas the responses of colour-emotion were not. 

For the two image emotion scales of pleasant-unpleasant and exciting- 
calming as shown in Tables 5.6(a)-(b), ten images (including four image subjects of 
positive, neutral, negative and personal) were classified into two principal 
components accounting for 75.46% and 77.13% of the total variances in responses 
of pleasantness and excitement respectively. Looking at those images comprising 
component 1, it was found that they included neutral, positive and personal images 
whereas component 2 only included negative images. Thus these two groups were 
labelled "positive" and "negative" in further analyses. This indicates that the 
emotional responses of pleasantness and excitement were significantly different for 
positive and negative images. It also indicates that the emotional responses of 
pleasantness and excitement were very similar for images within each image group. 
This agrees with the results of the influence of image content for printed images 
(shown in Table 4.6 in Section 4.4) which indicated that only two groups of image 
categories were significantly differentiated, as shown in Table 4.6. Thus, models for 
the image emotions of pleasantness and excitement were developed separately for 
images in component group I and 2. These two groups were labelled "positive" and 
"negative" groups in further analyses. 
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For the colour-emotion scales active-passive, light-heavy and warm-cool 
shown in Tables 5.7(a)-(c), one principal component was extracted for the ten 
images (which included positive, neutral, negative and personal images), 

accounting for 74.03%, 79.56% and 70.25% of the total variance for the responses 
active-passive, heavy-light and warm-cool respectively. This indicates that the 

emotional responses of three colour-emotion scales were very similar for all images 

used in this experiment. Thus, models for three factors of colour-emotion- active- 
passive, heavy-light and warm-cool- were developed for all images. 

Table 5.6(a)-(b) Dependency of image emotion scales on image content: results of 
Principal Component Analysis for responses of (a) pleasant-unpleasant and 
(b) calming-exciting. 

(a) 

positive 
neutral 
personal 
neutral 
positive 
positive 
positive 
negative 
neagtive 
neagtive 

Pleasant- 

U np leasan t 

% of 
variance 

component 1 

5586 

component2 

196 

Baby 0942 -0.108 
Harbour 0931 0008 
Personal 0904 -0013 

Boy 0882 0013 
coup le 0869 0.188 
Fam ly 0 B52 0.163 

Skydivers 0B25 -0,143 
Roach 0220 0874 
In jrry -0.159 0809 

Leopard 0001 0870 

positive 
personal 
neutral 
positive 
positive 
neutral 
positive 
negative 
negative 
negative 

(b) 

Cam i hg Cep 

% of 
variance 

coin ponen II 

45? 4 

mom ponen 12 

3189 

Fain ly 0 900 0.198 
Personal 0898 0.152 

Harbour 0835 0468 

coup 13 0784 0499 
Baby 0727 0508 

Boy 0828 06? 6 

Skydivers 0613 0411 

Roach o Ifi/ 0 834 
Inbry 0: 'a'ß OB19 

leopard 04"t, 0712 

Table 5.7(a)-(c) Dependency of colour-emotion scales of images on image content: 
results of Principal Component Analysis for responses of (a) active-passive 
(b) light-heavy and (c) warm-cool. 

(a) 

positive 
neutral 

positive 
personal 
positive 
positive 

neutral 
negative 
neagtive 
negative 

Active- 
Passive 

%of 
variance 

conponent1 

7403 

Fan iy 0947 
Harbour 0940 
Couple 0930 

Personal 0916 
Skydivers 0888 

Baby 0869 
Boy 0849 

Roach 0B34 

Leopard 0758 
hj0ry 0619 

personal 

neutral 
positive 
positive 
positive 

neutral 
negative 
negative 
positive 
negative 

(b) 
L ght- 
Heavy 
% of 

variance 

oor+ponent 1 

7956 

Personal 0980 
Boy 0987 

coup b 0936 
Fam iy 0923 
Baby 0915 

Harbour 0889 
thry 0880 

Roach 0849 

Skydivers 0787 
Leopard 0784 
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negative 
neutral 
personal 

positive 
positive 
neutral 
negative 

positive 
negative 
negative 

(c) 

W arm -Coo I 

% of 

va fNliii- 

ROE)()) 

Harbors 
Persons I 

Baby 

Farr iN 
Boy 

In0ry 
Coup h 

Leopard 
Skyd ºmrs 

com ponen tI 

70 25 

0 953 
0 936 

0 903 
0 835 

0 827 

0 B20 

0 793 

0771 
0 764 

0.749 



5.5 Testing the Colour-Emotion Models 

In this section, colour-emotion models for single colour developed by Sato et 
al., Xin et al. and Ou et al. (see Table 2.6 in Section 2.4.5.2) were tested against 
the visual results obtained from Experiment 2. 

The test results predicted by the current colour-emotion models were 
computed by assuming that the additivity principle of colour-emotion for colour 
combinations also applied to images. Thus, the test results for each scale of colour- 
emotion were computed by taking the average of individual pixel scale values over 
the entire image. Then, the test results computed for each image were plotted 
against the visual results obtained for that image for active passive, heavy-light and 
warm-cool. 

Figures 5.6 to 5.8 shows the test results predicted by the three sets of colour- 

emotion models developed by Ou et al., Sato et al. and Xin et al. plotted against the 

visual results obtained from Experiment 2. The agreement between the predicted 

and the visual results are represented by R2 for each scale. From the plots and the 
R2 values, the agreement between the test results and the visual results was the 

poorest for the active-passive scale with R2 values less than 0.1. For the heavy-light 

scale, the plots tend to show very similar trends in their predictive results. The 

agreement between the test results and the visual results has an overall linear 

relationship and seems to be reasonable for the "heavy" region; however, it tends to 

spread out over the "light" region. Each model's prediction for heavy-light responses 
by Ou et. al, Sato et al. and Xin et al. were not as poor as those for the active- 

passive scale, with R2 values of 0.31,0.30 and 031 respectively. For warm-cool 

scale, the prediction by Sato et. al's model seems reasonabley good as the plots 

show some linear trend with an R2 of 0.35. The prediction by Xin et al. 's model also 

shows some extent of linear relationships with R2 values of 0.26. The prediction by 

Ou et al. 's model did not present any linear trend between the test results and the 

visual results in the plot, although it had the similar R2 value with Xin's prediction. 

In summary, the test results of colour-emotion models for single colours with 

an assumption colour-emotion additivity for colour combinations also applied to an 
image showed some extent of agreement for colour-emotion responses for images, 

especially for the heavy-light and warm-cool scales. However, it still seem to be 

needed to develop a colour emotion model for complex images in different way. 
Thus, the relationship between the colour-appearance attributes of images and 

colour-emotion responses was discussed and a set of colour-emotion models for 

colour images will be developed in the next section. 
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Figure 5.6 (a)-(c) Visual results for (a) colour activity, (b) colour weight and (c) 

colour heat plotted against Ou et al. 's (see Section 2.4.5.2) colour-emotion 
model predictions. 
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Figure 5.7 (a)-(c) Visual results for (a) colour activity, (b) colour weight and (c) 
colour heat plotted against Sato et al. 's (see Section 2.4.5.2) colour-emotion 
model predictions. 
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Figure 5.8 (a)-(c) Visual results for (a) colour activity, (b) colour weight and (c) 
colour heat plotted against An et al. 's (see Section 2.4.5.2) colour-emotion 
model predictions. 
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5.6 Modelling Colour-Emotion Scales 

One of the aims in this chapter is to describe how colour-emotion models for 

complex images were developed as functions of colour attributes of images such as 
lightness, colourfulness and lightness contrast. These models are to be used to 

modify images to acquire a pre-defined emotional quality by which images affect 
people so as to induce them into the corresponding emotional state. Three scales 
of colour-emotion factors were modelled as functions of colourfulness, lightness 

contrast and light first and one combined model for each scale was developed. 

Image colourfulness and lightness were determined by the median 

colourfulness and lightness in CAM02-UCS (Section 2.3.4.4) for the image in 

question. Image contrast was determined from the standard deviation of image 
lightness in CAM02-UCS. 

5.6.1 Active - Passive 

To investigate the relationship between active passive responses and colour 

attributes of images, the scale values obtained for 10 images were averaged for 

each manipulation level over all image categories using the results concluded from 

the influence of the image subjects on colour-emotion responses described Section 

5.4. 

Figures 5.9 (a) to (c) show changes in responses on the active-passive scale 

plotted against the three image colour attributes colourfulness, lightness contrast 

and lightness. The 17 data points in the plots represent the original image and 16 

manipulated images with different symbols for each manipulation of chroma 
(crosses), contrast (solid squares) and lightness (empty 
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Figure 5.9 (a)-(c) Changes in active-passive responses plotted against changes in 
(a) image colourfulness, (b) lightness contrast and (c) lightness with the 
predictive models for each relationship (crosses for chroma manipulation; 
solid squares for contrast manipulation; empty circles for lightness 
manipulation). 
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Table 5.8 (a)-(b) Coefficients used in Equation (5-1) as a function of (a) 
colourfulness and coefficients in Equation (5-2) as a function of (b) image 
contrast and lightness for colour activity. 

(a) 

ko kl k2 a R2 p-value 

DActivity (AM) 0.35 -1.47 -2.63 1.83 0.99 0.00 

(b) 

ko ki k2 k3 Q R2 p-value 

AActivity (ACO) -0.932 1.024 -0.110 -1390.663 7.237411 0.000288 0.99 0.00 

AActivity (AJ) -8.401 3.293 -0.005 -1390.472 7.237408 0.000112 0.96 0.00 

The colour activity for images (AActivity) was modelled based on the data for 

images manipulated in terms of colourfulness as a function of the change in image 

colourfulness using the Boltzmann Distribution Function for best fit of the 

experimental data that followed S-shaped curves. The model is given in Equation 

(5-1): 

AActivity (AM) = ko + (k1 - ko) x 
(1 

+e 
(8M 

a 
k2) '1 (5-1) 

where AM is the change in image colourfulness values from an original image to the 

manipulated version; and ko to k2 are constants. The relationship between colour 

activity and image contrast was modelled based on the data for images 

manipulated in terms of image contrast using the Log Normal Distribution Function 

(Limpert, 2001) for best fit of the experimental data that showed skewed bell- 

shaped curves. The model is given in Equation (5-2): 

k -IIn(k2ACO-k3)-Ni2 
DActivity (ACO) = ko +0 

Zn(k2öCo-k3) e 20 (5-2) 

where LCO is the change in image contrast values from an original image to the 

manipulated version; µ and a are the shape parameters; k, is the amplitude of the 

distribution curve; k3 is the location parameter; and k0 and k2 are constants. This 

equation was also used to model the relationship between colour activity and image 

lightness based on the data for images manipulated in terms of lightness with a 

different set of coefficients. Table 5.8 shows coefficients optimised to fit the 

experimental data in Equations (5-1) to (5-2) and R2 with p-value for each model. R2 

indicates the extent of percentage to determine the each experimental data set. The 
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R2 value for each model was calculated only based on the data points which were 
affected by the particular manipulation. The R2 and p-values for each model indicate 

that the goodness of fit for each model was significantly good at a significance level 

of 0.05. 

As shown in Figure 5.9 (a), colour activity for images has a higher value when 
image colourfulness increases and a lower value as image colourfulness 
decreases. This indicates that more colourful image colours make them more active 
overall. This has been found in the colour-emotion responses for active-passive 

scale for single colours studied by Ou et al. (Ou, 2004). They found that less 

colourful colours located in the central area of CIELAB space tended to have lower 

scores for the active-passive scale than those in the outer part. According to the 

finding in his study, the active-passive scale value of a colour was modelled by 

colour difference from medium grey at L`=50. Another model was built in Ou's study 
in which the activity score is predicted by the colour difference between the colour 

and a muddy yellow with (L*, a*, b*) = (50,3,17). However, this second model was 
derived based on results of responses using four emotion scales - active-passive, 
fresh-stale, clean-dirty and modern-classical - labelled as colour activity factors for 

single colours. 

Figure 5.9 (b) shows that the relationship between the colour activity of 

images and lightness contrast increases slightly as image contrast increases. Any 

significant increase or decrease in image contrast results in a lower colour activity. 
This might be caused by the effect of contrast rendering which applied sigmoid and 
inverse sigmoid functions to the lightness values of original images. The effect of 

reducing contrast by applying an inverse sigmoid function tends to flatten out the 

mid-tone range of the tone reproduction curve so as to make dark regions of 
images lighter and lighter parts darker. This means that the overall tone of images 

tends towards medium grey as contrast decreases. Medium grey was found to be 

the least active colour in Ou's results for single colour-emotion. 

On the other hand, the effect of enhancing contrast by applying sigmoid 
functions is to make dark regions of images even darker and lighter parts lighter. 

Some extent of increase in contrast can emphasise the information of the image but 

further increases make the image become too dark to distinguish details in dark 

regions. Figure 5.10 show the changes in median image lightness plotted against 
the changes in lightness contrast. As seen in the plot, the median lightness 

decreases as image contrast increases. This indicates that the greater the increase 

in contrast, the darker the where image becomes and leading to a loss of 
information. When this loss becomes to be great because of too low lightness, the 
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viewer may feel that the image is unlikely to be a real scene. This may be the 

reason that a large increase in contrast makes the image less active. 

Figure 5.9 (c) also shows that any change in image lightness (either increases 

or decreases) result in lower colour activity. However, the variation of the changes 
in the y-axis seems to be rather small. The data points for lightness manipulation 
(empty circles) seem to be closely located to the prediction curve in both Figures 
5.9 (a) and (b). Thus, the changes in active-passive responses for the images may 
be well explained by only colourfulness and contrast attributes. 
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Figure 5.10 The relationship between image contrast and median lightness for 
images rendered in terms of lightness contrast. 

5.6.2 Heavy - Light 

Figures 5.11 (a) to (c) show changes in heavy-light responses plotted against 
the three attributes colourfulness, lightness contrast and lightness. The 17 data 

points in the plots represent the original and 16 manipulated images using different 

symbols for each manipulation of chroma (crosses), contrast (solid squares) and 
lightness (empty circles). 

A model of colour weight for images (LWeight) was constructed based on the data 

for images manipulated in terms of colourfulness as a function of the change in 

image colourfulness using the bi-linear function defined by Equation (5-3). The 

relationship between colour weight and image contrast was modelled based on the 

data for images manipulated in terms of image contrast also using Equation (5-3). 

This equation was also applied to model the relationship between colour weight and 
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image lightness based on the data for images manipulated in terms of lightness 

with a different set of coefficients. Tables 5.9 shows coefficients optimised to fit the 

experimental data and R2 with p-values for each model. The R2 and p-values for 

each model indicate that the goodness of fit for each model was significantly good 
at a significance level of 0.05. 

AWeight(AM) = ko + kl " OM (5-3) 

where AM is the change in image colourfulness values from an original image to the 

manipulated version; and ko to kl are constants. 
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Figure 5.11 (a)-(c) Changes in colour weight plotted against changes in image (a) 
colourfulness, (b) lightness contrast and (c) lightness with the predictive 
models for each relationship (crosses for chroma manipulation; solid squares 
for contrast manipulation; empty circles for lightness manipulation). 

Table 5.9 Coefficients used in Equation (5-3) as a function of colourfulness, 
contrast and lightness for colour weight. 

20 

ko kl RZ p-value 

0.043 (AM > 0) 0.058 (AM > 0) 

AWeight (AM) 0.96 0.00 
0.031 (GM < 0) -0.181 (AM < 0) 

0.043 (000 > 0) 0.058 (ACO > 0) 

AWeight (äCO) 1.00 0.00 
0.031 (ACO < 0) -0.181 (ACO < 0) 

0.043 (nJ > 0) 0.058 (oJ > 0) 
AWeight (AJ) 0.99 0.00 

0.031 (oJ < 0) -0.181 (oJ < 0) 
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Figure 5.11 (a) shows that any change in image colourfulness (either 
increases or decreases) results in lower colour weight. For further investigation, the 

effect of the area proportion (Wang et al.: see Section 2.4.5.3) on colour-emotion 
responses for colour combinations was examined to determine whether this could 
be applied to images. Thus, the population of "light" pixels in each images were 
computed for each image using Ou et al. 's heavy-light model (see Section 2.4.5.2) 
for single colour-emotion. A "light" pixel was defined as being when the scale value 
for that pixel is greater than 0. Figures 5.12 (a)-(c) show the changes in percentage 
of "light" pixels averaged over 10 test images (including positive, neutral and 

negative subjects) plotted against the changes in colour attributes manipulated in 
terms of median colourfulness, lightness contrast and median lightness. The trends 

of these curves seem quite similar to those shown in Figure 5.11 (a) to (c). This 

suggests that an "area proportion" effect found by Wang et al. (see Section 2.4.5.3) 
for three-colour combinations could also account for the colour-emotion of heavy- 
light for image stimuli. In Wang et al. 's study, the possibility of area proportion on 
colour-emotion in three colour combination was examined for three factors of 
colour-emotion. It was found that heavy-light was only significant for colour 
combinations with a high difference in single-colour emotion value between 

constituent colours. This effect was found to be particularly significant for colour 
weight. The area proportion in a three-colour combination could be regarded as 
analogous to the number of pixels which appear to have a specific range of colour 
grouped in a adjacent area in an image. 
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Figure 5.12 (a)-(c) Changes in % of "light" pixels regarding its single-colour-emotion 
averaged over images used in the experiment plotted against the changes in 
colour attributes in terms of (a) colourfulness, (b) contrast and (c) lightness. 
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5.6.3 Warm - Cool 

Figures 5.13 (a) to (b) show changes in colour heat plotted against the two 
image attributes of colourfulness and contrast. The 17 data points in the plots 
correspond to the original and 16 manipulated images. Different symbols represent 

each manipulation of chroma (crosses), contrast (solid squares) and lightness 

(empty circles). 
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Figure 5.13 (a)-(b) Changes in colour weight plotted against changes in image (a) 
colourfulness and (b) lightness contrast with the model predictions for each 
relationship. (crosses for chroma manipulation; solid squares for contrast 
manipulation; empty circles for lightness manipulation). 

Table 5.10 (a)-(b) (a) Coefficients used in Equation (5-1) as a function of 
colourfulness; (b) coefficients in Equation (5-2) as a function of image contrast 
for colour heat. 

(a) 

ko kl k2 k3 u a R2 p-value 

AHeat (AM) -0.363 0.817 -0.189 -1390.957 7.237488 0.000380 0.99 0.00 

(b) 

ko kl k2 a R2 p-value 

AHeat (ACO) 1.01 -0.96 0.05 3.02 0.94 0.00 

This relationship shown in Figure 5.13(a) between colour heat responses and 
colourfulness (and contrast) and were modelled using Equation (5-1) and the 

optimised coefficients are shown in Table 5.10 together with R2 values and p- 
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values. The R2 and p-values for each model indicate that the goodness of fit for 

each model was significantly good at a significance level of 0.05. 

As shown in Figure 5.13(a), colour heat becomes bigger in its value as image 

colourfulness increases and smaller when image colourfulness decreases. This 

indicates that more colourful colours make images warmer overall. This result 

disagrees with most of single colour-emotion theories by Ou, Sato and Xin, which 

claim that colour warmth is highly related to the hue angle of a colour, colours in the 

red-orange-yellow region are warm and colours in the green-blue-purple region are 

cool. 

To investigate this result further, the effect of area proportion (Wang et al.: 
See Section 2.4.5.3) was also examined. Based on Ou et als warm-cool model for 

single colours, the scale value for each pixel for each was computed. Then, the 

percentage of warm pixels which have scale values greater than 0 was plotted 

against the mean chroma changes for all images manipulated in terms of 

colourfulness and is shown in Figure 5.14. It can be seen that the portion of warm 

pixels increases as the mean chroma of images increases regardless of the image 

subject. This indicates that the warm-cool response to images may be affected by 

the area proportion. This can be represented by the population of pixels of an 
image which have warm or cool colours according to the warm-cool single-colour 

emotion model. 
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Figure 5.14 The percentage of warm pixels plotted against mean chroma changes 
for all colourfulness manipulated images. 
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On the other hand, according to many studies into the perception of image 

naturalness (see Section 2.5.4.5), colours of familiar objects such as human skin 
play a critical role in the assessment of image naturalness. For this reason, another 
approach for further investigation was attempted with a focus on skin colour. 

To see how the colour of the skin part actually changes with an increase in 

colourfulness, six out of the 10 test images used in this experiment were selected 

and another version of each had a mask applied to the rest of the region excluding 
the skin. Figure 5.15 shows the original versions of these six images on top and the 

masked versions below. Then, the colour changes of the whole image and the 

changes in only the human skin parts were compared by plotting the mean a, and 
b, values for both regions against the mean colourfulness of the whole image. 

Figures 5.16 (a)-(b) show the relationship between the changes in a, and be 
for the whole of six image in Figure 5.15(a) (i. e. the versions before masks for the 

rest of the region were applied) against the mean colourfulness. Figures 5.17 (a)-(b) 

show the relationship between the changes in a, _ and be only for the skin part as 
illustrated in Figure 5.15(b) (i. e. the versions after masks for the rest of the region 
were applied), against the mean colourfulness values. Looking at Figures 5.16(a)- 
(b), it can be found that there are no clear trends of changes in ac and be values as 
image colourfulness increases. In contrast in Figure 5.17(a)-(b), clear trends of 
changes in a,, and be values were found. As image colourfulness increases, ac and 
be also tended to increase, indicating that the skin regions have actually changed to 

more reddish and yellowish colours. Thus, it seems that the colour of the human 

skin part may be important for the warm-cool responses to images. 
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Figure 5.15 Images which include human skin taken from the test images used in 
Experiment 2 (upper row); masked images to cover the other regions of 
images except for skin (bottom row); original images from left: boy, couple, 
skydivers, injury, baby and family. 
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and mean colourfulness values only for skin part of images shown in Figure 
5.15. 

Figure 5.13(b) shows the relationship between colour heat responses for 

images and image contrast. It indicates that any change in image colourfulness - 
either increases or decreases - results in lower colour heat. This might be because 

colours are losing their colourfulness as image contrast increases when the number 

of black and white pixels increase or decreases as colour becomes greyish. 

Finally, each factor of colour-emotion (activity, weight and heat) was 

constructed as a linear equation based on colour-emotion equations modelled as a 
function of three colour attributes including colourfulness (M), contrast (CO) and 
lightness (J) as shown in Table 5.11. The performance of each model was tested 

for the entire data set including all images manipulated in terms of colourfulness, 
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contrast and lightness. These were found to determine 92%, 98% and 82% of the 
variance in visual results for the entire data set of colour activity, weight and heat. 
The goodness of fit for the three final models were statistically significant with p- 
values under 0.05. In the next section, the predicted colour-emotion factors for each 
image will be used to model the visual responses of image emotions (pleasantness 

and excitement) as a function of colour-emotion factors. 

Note that the relationships between image emotions and two image colour 
attributes were investigated independently. Thus, cross terms of image 

colourfulness and contrast for inter-relationship between image emotions and two 
image colour attributes could be added to the equations shown in Table 5.11 for 

more robust performance of the models. 

Table 5.11 Predictive models for three colour-emotion factors: activity, weight and 
heat developed as a linear equation based on the relationship with colour 
attributes colourfulness (M), contrast (CO) and lightness (J). 

Emotion 

Factor 
Colour-emotion Models R2 p-value 

Activity AActivity = 1.07* A (AM) + 1.00* A (ACO) 0.92 0.00 

Weight AWelght =1.02* W(AM) + 0.86* W (ACO) + 0.79* W (0! ) 0.98 0.00 

Heat A Heat =1.07* H(AM) + 0.71* H(ACO) 0.82 0.00 
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5.7 Modelling Image Emotion 

One of aims in this chapter was to develop image emotion models for 

pleasantness and excitement as a function of the colour attributes of images such 
as lightness, colourfulness and lightness contrast. These models will be compared 
to the image emotion models that were constructed using three factors in Section 

5.6. 

The response of image emotion in terms of pleasantness and excitement was 
found to have a dependency on image subjects showing significantly different 

responses for positive and negative image subjects, as investigated in Section 5.4. 
Accordingly, the model of image emotion will be developed for those two groups of 
images separately in two ways: as a function of image colour attributes and using 
three colour-emotion factors. 

Image colourfulness and lightness were determined from the median 
colourfulness and lightness in CAM02-UCS (Section 2.3.4.4) for the image in 

question. Image contrast was determined using the standard deviation of image 
lightness in CAM02-UCS. 

5.7.1 Image Emotion based on Colour-Appearance Attributes 

Figures 5.18 (a) to (f) show the changes in pleasantness responses plotted 
against image colourfulness, lightness contrast and lightness for two groups of 
image subjects: positive in (a) to (c) and negative in (d) to (f). 

Figure 5.18 (a) shows that as image colourfulness increases or decreases, 
the pleasantness for positive images drops significantly. As shown in Figure 5.18 
(b) and (c), increases in lightness contrast and lightness also result in lower 

pleasantness for positive images. This might imply that pleasant feelings tended to 
be affected more by image subjects than by colour reproduction scheme. 

The change in pleasantness (IPleasantness) for positive images was 
modelled as a function of the change in image colourfulness using the Log Normal 

Distribution Function in Equation (5-4) for best fit to the experimental data. 

-[ln(k2AM-k, )-j&12 
DPleasantness (AM) = ko +Q 

slr(k2aM-ka) e 207 (5-4) 

This equation was also used to model the relationships between pleasantness 

and contrast based on the data for images manipulated in terms of contrast and 
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between pleasantness and lightness using the data for lightness manipulated 
separately with a different set of coefficients. Table 5.12 (a) shows coefficients 
optimised for the three models in Equation (5-4) to predict pleasantness. These 
models determined the experimental data of image pleasantness to the extent of 
91%, 98% and 96% respectively for colourfulness, contrast and lightness 

manipulated images. P-values shown in the table indicate that the agreement 
between model prediction and the data point are statistically significant at a 
significance level of 0.05. 

For images with negative subjects, decreasing image colourfulness results in 
higher value in image pleasantness whereas the effect of increasing colourfulness 
is similar for positive images as shown in Figure 5.18 (d). In Figures 5.18 (e) and (f), 
the increase of lightness contrast and lightness also can be seen to result in lower 

pleasantness for negative images; however, the magnitude of changes according to 
the changes in contrast and lightness was smaller than for positive images. This 
implies that unpleasant feelings for negative images can hardly be affected by 

changing contrast and lightness, but can be significantly reduced by making images 
less colourful. 

Additionally, a model of pleasantness for negative images as a function of 
each colour attribute was developed. For the relationship between pleasantness 

and colourfulness, Equation (5-4) was used and coefficients were optimised to find 

the best fit. For the models which were functions of contrast and lightness, Equation 

(5-4) was used and coefficients were found for the best fit. 

(AM- 2) 
1 

APleasantness(AM) = ko + (k1- ko) x 
(1 +ea) (5-5) 

Table 5.12(b) shows the coefficients optimised for three models in Equation 
(5-4) to predict pleasantness for negative images. These models were found to 
determine the 88%, 79% and 75% of variance in experimental data of image 

pleasantness respectively for colourfulness, contrast and lightness manipulated 
images. P-values shown in the table indicate that the agreement between model 
prediction and the data point for two predictors: colourfulness and contrast are 
statistically significant at a significance level of 0.05. 
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Table 5.12(a)-(b) Coefficients of the image pleasantness model used in Equation 
(5-4) and (5-5) as a function of colourfulness, image contrast and lightness for (a) 
positive images and (b) negative images. 

(a) 

Positive 

Image 
ko kl k2 k3 u a R2 p-value 

OP(AM) -1.743 2.188 -0.144 -1390.598 7.237399 0.000348 0.91 0.00 

AP(ACO) -2.198 2.102 -0.109 -1390.553 7.237396 0.000267 0.98 0.00 

Ap(pf) -8.365 3.339 -0.007 -1390.485 7.237407 0.000115 0.96 0.00 

(b) 

Negative 

Image 
ko kl kZ a RZ p-value 

AP(AM) -1.83 0.54 7.58 7.39 0.88 0.00 

ko kl k2 k3 u a R2 

AP(ACO) -12.884 121.406 -0.103 -54.208 4.001 0.06902 0.79 0.00 

AP (pf) -12.791 121.417 -0.051 -54.137 3.994 0.06991 0.75 0.06 

For images containing positive subjects, decreasing image colourfulness 

results in significantly lower excitement whereas increasing colourfulness does not 
show any effect on emotional responses as shown in Figure 5.19 (a). As shown in 
Figures 5.19 (b) and (c), any changes in lightness contrast and lightness (either 
increase or decrease), result in lower excitement scores for positive images. This 
implies that the excitement of positive images can hardly be enhanced by changing 
any colour attribute because those images are already exciting enough. For positive 
images, the model of image excitement as separate functions of colourfulness, 
contrast and lightness was developed using Equation (5-4) and (5-5). Table 5.12 (a) 

shows the coefficients found for the three models. They were found to determine 
the data to the extent of 91%, 98% and 96% respectively for colourfulness, contrast 
and lightness manipulated images. 

Figure 5.19 (d) shows that the excitement for negative images increases 

significantly as image colourfulness increases and decreases as colourfulness 
decreases. As shown in Figure 5.19 (e), an increase in lightness contrast also 
results in higher pleasantness and decrease lower values in pleasantness for 

negative images; however the extent of changes was relatively smaller than when 
colourfulness varied. For lightness changes, Figure 5.19(f) shows that an increase 
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in lightness caused lower excitement and a decrease higher excitement. This 

implies that exciting feelings towards negative images can be easily enhanced by 

increasing colourfulness and contrast and decreasing lightness. 

A model of image excitement (DExcitement) for negative images as a function 

of each colour attribute of colourfulness, contrast and lightness was developed 

using Equation (5-5) and coefficients were optimised to find the best fit for the three 

data sets of manipulations. Table 5.12(b) shows the coefficients found for these 

models which determined the 88%, 79% and 75% of variance in experimental data 

for image pleasantness respectively for colourfulness, contrast and lightness 

manipulated images. 

Note that p-values indicate that the agreement between model prediction and 
the data point for all predictors are statistically significant at a significance level of 
0.05. 
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Table 5.13(a)-(b) Coefficients of the image excitement model used in Equations (5- 
4) and (5-5) as a function of colourfulness, image contrast and lightness for (a) 
positive and (b) negative images. 

(a) 
Positive 
Image 

ko k1 k2 a RZ p-value 

DE(AM) 0.04 -1.58 -2.56 1.33 0.99 0.00 

ko k, k2 k3 µ a R 

AE (ACO) -1.249 1.158 -0.098 -1390.669 7.237429 0.000265 0.92 0.00 

AE (AJ) -1.041 3.435 -0.213 -1390.596 7.237436 0.000955 0.86 0.02 

(b) 

Negative 
Image 

ko kl k2 a 2 R p -value 

DE(AM) 2.51 -1.22 4.18 5.57 0.95 0.00 

DE(ACO) 1.30 0.51 0.45 0.79 0.99 0.00 

eE(eJ) -1.00 -0.27 -0.17 0.32 0.96 0.00 

Finally, the models of image pleasantness and excitement for positive and 

negative images were developed as a linear equation based on functions of the 

three colour attributes colourfulness (M), contrast (CO) and lightness (J) as shown 
in Table 5.14. The performance of each model was tested for the entire data set 
including all images manipulated in terms of colourfulness, contrast and lightness. 

Pleasantness models were found to determine 80% and 84% of variance in the 

data set for positive (Group 1) and negative (Group 2) images respectively. The 

excitement models determined 86% and 85% of variance in the data set for positive 
(Group 1) and negative (Group 2) images respectively. P-values shown with R2 
indicate that the agreement between model prediction and the data point are 
statistically significant at a significance level of 0.05. 

Note that the relationships between image emotions and two image colour 
attributes were investigated independently as in Chapter 4. Thus, cross terms of 
image colourfulness and contrast for inter-relationship between image emotions 

and two image colour attributes could be added to the equations shown in Table 
5.14 for more robust performance of the models and this could one of the future 

works. 
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Table 5.14 Predictive models for image pleasantness and excitement developed as 
a linear equation based on relationship with colourfulness (M), contrast (CO) 
and lightness (J). 

Image Emotion Models (colour attributes) R2 p-value 

Positive dP= 0.94*P(dM) + 0.96*P(dCO) + 0.36*P(dJ) 0.80 0.00 
Pleasantness 

Negative AP = 0.96*P(dM) + 1.38*P (dCO) + 1.28*P(AJ) 0.84 0.00 

Positive AE =1.17*E (AM) + 0.90*E (LCO) 0.86 0.00 
Excitement 

Negative AE =1.07*E (AM) + 1.23*E (LCO) + 0.21 *E (tU) 0.85 0.00 
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5.7.2 Image Emotion based on Colour-Emotion Components 
As a second approach to image emotion modelling, the visual responses to 

image pleasantness and excitement were modelled as a function of the three 

colour-emotion factors developed in Section 5.6. 

First of all, the relationships between the visual results for pleasantness and 
excitement and the predicted values of colour activity, weight and heat by the 

colour-emotion models derived in the previous section were investigated for images 
in the two groups. Figures 5.20 (a) to (c) show the changes in the pleasantness 
responses for positive images plotted against predicted values for each colour- 
emotion factor. As shown in plots, any changes in colour-emotion do not result in 

enhancement of pleasantness. These relationships were modelled as a function of 
each colour-emotion factor (AActivity, AWeight and 1Heat) using the Log Normal 
Distribution Function in Equation (5-6). 

ý-k3)-klz 

aPleasantness (AActivity) = ko + 
kl 

e 
-[Ln(kz2OZ 

Q 2rz(k2AA-k3) (5-6) 

The optimised coefficients in equations are listed in Table 5.16(a). These 

models determined 51%, 43% and 54% of visual results for the entire data set of 
colour activity, weight and heat respectively. 

For negative images as shown in Figures 5.21 (d) to (f), it was found that a 
decrease in colour activity and heat can enhance their pleasantness whereas any 
changes in colour weight reduce pleasantness. According to the relationship 
between each colour attiribute and the colour-emotion factors investigated in 
Section 5.5, a decrease in colour activity and heat can be achieved by reducing 

colourfulness or by applying significant changes in image contrast and lightness 

(either increase or decrease). This might be because reducing colour activity and 
heat makes images looks unrealistic and this elicits less unpleasant feelings. These 

relationships were modelled as a function of each colour-emotion factor using 
Equations (5-6) and (5-7). 

(AA-k2) -1 

APleasantness(AActivity) = ko + (k1 - ko) x 
(1 

+ea) (5-7) 

The optimised coefficients in equations are listed in Table 5.15(b). These 

models were found to determine the 51%, 39% and 61 % of the visual results for the 

entire data set of colour activity, weight and heat respectively. 
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Figure 5.20 (a)-(f) Changes in image pleasantness plotted against changes in 

colour activity (a), weight (b) and heat (c) together with the model predictions 
for each relationship for positive and negative image in (d) to (f). (Crosses 
represent chroma manipulation, solid squares for contrast manipulation and 
empty circles for lightness manipulation. ) 

Table 5.15(a)-(b) Coefficients of the pleasantness model defined in Equation (5-6) 
and (5-7) as a function of colour activity, weight and heat for (a) positive and 
(b) negative images. 

(a) 
Positive Image ko kl k2 k3 p a 

k p-value 

AP1easantness(AA -11.10 61.93 -0.75 -1.04 1.31 1.11 0.51 0.03 

APleasantness(AW 

APleasantness(AH 

-11.70 

-11.20 

57.89 

61.92 

-0.50 

-0.78 

-1.37 

-1.48 

1.19 

1.29 

0.89 

1.03 

0.43 

0.54 

0.07 

0.01 

(b) 

Negative Image ko ki k2 a R p-value 

APleasantness(AA) 1.4984 -1.2819 -0.8404 2.1856 0.51 0.02 

APleasantness(AH) 1.8528 -1.2481 -0.6376 1.9206 0.61 0.08 

ko kl k2 k3 N a R 

APleasantness (AW -11.69 57.88 -0.24 -1.36 1.19 0.91 0.39 0.00 
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For positive images, it was found that an increase in colour activity and heat 

can enhance excitement significantly whereas an increase in colour weight reduces 
it. This indicates that more active and warmer feelings make images more exciting. 
According to the colour-emotion models derived in Section 5.5, an increase in 

colour activity and heat can be achieved by increasing image colourfulness. These 

were also modelled as a function of each colour-emotion factor (AActivity, 

AWeight and Heat) using Equations (5-6) and (5-7). The coefficients used in 

these equations are given in Table 5.16(a). The models were found to account for 

98%, 82% and 76% of variance in the entire data set of colour activity, weight and 
heat, respectively. 

Note that p-values for the APleasantness(E'W) for positive images and 
APleasantness(AH) for negative images are greater than 0.05 indicating that the 

significance of model predictions are statistically small at a significance level of 0.05 

For negative images, the results show that a decrease of colour weight with 

an increase of colour avtivity and heat can enhance the excitement significantly. 
This indicates that heavier feelings as well as more active and warmer feelings 

make images more exciting. According to the colour weight models derived in 

Section 5.6, heavier feelings can be mainly achieved by increasing contrast or 
decreasing lightness. The coefficients used in models as a function of each colour- 

emotion factor are given in Table 5.16(b). These models were found to account for 

81%, 76% and 53% of variance in the entire data set of colour activity, weight and 
heat respectively. 

Note that p-values for the LExcitement(L W) for both image groups are greater 
than 0.05 indicating that the significance of model predictions are statistically small 

at a significance level of 0.05 
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Figure 5.21 (a)-(f) Changes in image excitement plotted against changes in colour 

activity (a), weight (b) and heat (c) together with the model predictions for 
each relationship for positive and negative images in (d) to (f). (Crosses 
represent chroma manipulation, solid squares for contrast manipulation and 
empty circles for lightness manipulation. ) 

Table 5.16(a)-(b) Coefficients of the excitement model defined in Equation (5-6) and 
(5-7) as a function of colour activity, weight and heat for (a) positive and (b) 
negative images. 

(a) 
Positive Image ko kl k2 a R2 -p-value 

AExcitement(AA) -2.1099 0.6641 -0.7833 0.6749 0.98 0.00 

DExcitement(1W) 0.0250 1.6452 0.4657 0.2301 0.82 0.43 

DExcitement(OH) 2.8957 0.3905 -0.7901 0.4839 0.76 0.00 

(b) 

Negative Image k0 kl k2 a R p-value 

AExcitement(AA) -0.7896 1.5217 0.2281 0.3481 0.81 0.00 

AExcitement(AW) 0.4829 -0.4824 -0.0974 0.4382 0.76 0.06 

AExcitement(AH) -0.7896 1.1217 0.2281 0.3481 0.53 0.00 
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The final models of image pleasantness and excitement for positive and 
negative images were developed as a linear equations based on colour-emotion 
equations modelled as a function of colourfulness (M), contrast (CO) and lightness 
(J) as shown in Table 5.17. The performance of each model was tested for the 

entire data set including all images manipulated in terms of colourfulness, contrast 
and lightness. Pleasantness models were found to account for 47% and 70% of 

variance of the visual results for positive (Group 1) and negative (Group 2) images 

respectively. The excitement models accounted for 82% and 76% of variance in 

visual results for positive (Group 1) and negative (Group 2) images respectively. 
These models performed less well than those based on changes in the colour 

attributes of images. However, these models might be useful for planning some sort 

of overall strategy to enhance the overall emotional impact of images. The models 

based on changes in colour attributes provide an actual means to implement the 

strategy. Although these models performed less well than those based on changes 
in the colour attributes of images, p-values shown in the table indicate that the 

agreement between model prediction and the data point are statistically significant 

at a significance level of 0.05. 

Table 5.17 Predictive models for image pleasantness and excitement developed as 
a linear equations based on the relationship with colour-emotion models. 

Image Emotion Models (colour-emotion factors) R2 p-value 

Positive AP= - 0.33*Activity + 1.06*Weight + 1.32*Heat 0.47 0.00 

Pleasantness AP =-0.47*Activity + 1.43*Weight + 2.27*Heat 
Negative 0.70 0.00 

-0.02 

dE=1.54 *Activity + 0.06*Weight + 0.08*Heat - 
Positive 0.82 0.00 

0.02 
Excitement 

AE 0.58*Activity + 0.70*Weight + 1.41 *Heat 
Negative 0.76 0.00 

-0.10 

5.8 Summary 

The aim of this chapter was to develop quantitative models for three factors of 
colour-emotion (i. e. activity, weight and heat) for complex images and for the overall 
emotion of pleasantness and excitement as functions of colorimetric quantities for 

image stimuli. Moreover, the aim of this chapter also included to develop models of 
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image pleasantness and excitement in terms of colour-emotion scales of images 

and to compare these models. 

The inter- and intra-observer variabilities were compared between genders 
and between cultures. It was found that all observer groups had similar levels of 
observer accuracy and repeatability. As a result of comparing emotional responses 
between genders and cultures, it was found that all observer groups share a similar 
underlying emotional response for images, however some cultural differences were 
found for active-passive and warm-cool between Korean and Chinese and also 
between male and female groups. Principal component analysis was used to 
investigate the underlying structure between colour-emotion and image emotion. It 

was found that like-dislike, pleasant-unpleasant and light-heavy are highly related to 
the evaluative factor proposed by Osgood. In addition, exciting-calming and warm- 
cool are primarily related to the activity factor proposed by Osgood. However, it was 
also found that the active passive scale has both evaluative and activity properties 
and this may present different responses for observer groups. 

The influence of image subject on emotional responses was investigated by 

applying the method of principal component analysis to each emotion scale to find 

any similarity between images used in the experiment. As a result, the image 

emotion responses were significantly different for positive (including positive, 
neutral and personal) images and negative images, w hereas the responses of 
colour-emotion were subject independent. Thus, colour-emotion models were 
developed based on data averaged over all images used in the experiment, and 
image emotion models were developed separately based on data for positive and 
negative images. 

The relationships between colour-emotion factors for all images used in the 

experiment and colour-appearance attributes were explored and developed as 
quantitative models as a function of colour attributes of images such as lightness, 

colourfulness and lightness contrast. From the results, it was found that colour 
activity for images can be enhanced by increasing image colourfulness, colour 

weight by increasing contrast or decreasing lightness, and colour heat by increasing 

colourfulness. 

The relationships between image emotion and colour-appearance attributes 

were also investigated and developed as quantitative models in terms of colour 

attributes such as lightness, colourfulness and lightness contrast for positive and 

negative image groups. Image emotion models for the two groups of images were 

developed also as functions of the three factors of colour-emotion models 

developed in this chapter. Among the models developed those which were 

functions of colour-appearance attributes performed better than those which were 
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functions of colour-emotion factors. Using the second model, images which are 

already pleasant enough, can only be enhanced in terms of excitement by making 

colours more active and warmer. For negative images, image pleasantness can be 

enhanced by more passive and cooler colours. Image excitement can be enhanced 
by more active, heavier and warmer colours. 
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Chapter 6 Comparison of Image Emotion Model Developed 
for Different Media Based on Psychophysical Results 



As shown in Chapter 4, the emotional responses for pleasantness and 
excitement to printed images were investigated with regard to image subjects 
showing significant differences between[ positive and negative images. Models of 
image emotion were developed for two image groups as a function of colourfulness 
and contrast. In Chapter 5, the emotional responses for pleasantness and 
excitement were studied for displayed images with regards to subjects showing 
significant differences between positive and negative images. The responses for 

colour-emotion factors to displayed images were also investigated. The emotional 
responses for pleasantness, excitement and also colour-emotion factors for 
displayed images were modelled as functions of image colourfulness and contrast. 
And the emotional responses for pleasantness and excitement were also modelled 
as a function of three factors of colour-emotion and the performance was compared 
to one of the former models. 

In this chapter, the aim is focussed on a comparison of the image emotion 
model of pleasantness and excitement developed for printed and displayed images 
in Chapters 4 and 5. A combined universal model will be developed as a function of 
image colour attributes based on both data sets. Also, the colour-emotion models 
for images developed in Chapter 5 will be used again to model the image emotions 
of pleasantness and excitement. 

In Section 6.1, the visual results for two different media will be compared. The 
performances of two sets of image emotion models obtained from printed and 
displayed images will be tested for the other data set. 

In Section 6.2, a universal model of image emotion comprising displayed and 
printed versions will be proposed as a function of colour attributes. 

6.1 Testing Model Performance for Different Media 

In this section, the visual results for two different media will be compared and 
the performances of two emotion models obtained from printed images and 
displayed images will be tested for the other data set. 

6.1.1 Comparison between visual results for printed and 
displayed images 

Table 6.1 summarises the environmental conditions used in Experiments I 

and 2 including media, surround lightings, image size, distance and size of the 

viewing fields. Note that there was little size difference as the visual angles 
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corresponding to images size with regards to the distance between the observers 

and images were almost the same for both conditions. Thus the size effect could be 

ignored and the media difference and the lighting conditions could cause any 
difference between visual results. 

Table 6.1 Comparison of experimental condition used in Experiments 1 and 2. 

Media Prints Display 

Surround Condition Average Dark 

Surround luminance (cd/m2) 279.9 =0 

Size (cm) 15.2(H) x 10.2(V) 66.2(H) x 43.2(V) 

Distance (cm) 30 130 

Visual Angie (°) 28.5(H) x 19.2(V) 28.6(H) x 18.9(V) 

To compare the visual results from the two experiments, the visual results for 

image pleasantness and excitement for three images that were both printed and 
displayed in Experiments I and 2 (i. e. boy, harbour and family : See Section 3.4.1.1 

and 3.4.2.1) were examined. 

The mean of the visual pleasantness results for each of the three images are 

plotted against the corresponding changes in median colourfulness and image 

contrast together with the predictive models developed for positive images in 

printed (see Table 4.7(a) in Section 4.5.1) and displayed (Table 5.12(a) in Section 

5.7.1) versions in Figures 6.1(a)-(b). In Figure 6.1(a), the trend of data points for the 

display (crosses) tends to be sharper than one for the photo data (empty circle). 
This indicates that the display model (solid line) tends to predict a change in visual 

response over a narrower range than does the photo model (dashed line). Also in 

Figure 6.1(b), it is found that the trends of the two data sets and two models seem 
to be very similar, as are the changes in contrast. It also shows that the trend of 

visual results for the displayed images is a little sharper than for printed images. 

This indicates that observers were more sensitive to changes in colourfulness and 

contrast for displayed images. This may be because visual changes in colour 

attributes in displayed images tended to be perceptually larger than in printed 

images. Leckner et al. (2002) showed that soft copies displayed on an LCD tended 

to give higher sharpness, higher chroma and brightness than the hard copy images 

under the same viewing conditions because of the large luminance (maximum 

230cd/m2) and contrast ratio of LCD. Reducing the luminance of the LCD (to about 

100cd/m2) tended to make displayed images appear closer to the hard copies. 
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Reducing the luminance levels of ambient lighting tended to make the perceived 

contrast of images larger (Choi, 2008). Thus the difference in visual results may be 
due to visual changes in the colour attributes of displayed images tending to be 
larger than for printed images. 

The average results for excitement plotted against the corresponding changes 
in median colourfulness and image contrast together with the predictive models for 

positive images in their printed and displayed versions in Figures 6.1 (c)-(d) show a 
larger difference between the two media than in that for the pleasantness results. 
The responses of excitement for printed images increase significantly as image 

colourfulness increases and decrease with colourfulness, whereas the responses 
for displayed images increase just slightly as image colourfulness increases and 
decreases significantly as colourfulness decreases. For contrast changes, the 

excitement for printed images is just slightly enhanced as image contrast increases 

and slightly reduced as image contrast decreases. In contrast for displayed images, 

any changes in lightness contrast (either increase or decrease), result in reduced 
excitement. This may due to these images already being exciting enough; any 
changes other than increasing colourfulness just makes them less exciting as 
mentioned in Section 5.7.1. Also, as Leckner at al. (2002) pointed out, visually 
larger changes in colour attributes for displayed images rather than for printed 
images may contribute to the bigger changes in visual results for displayed images. 
Also, the lower level of surround lighting for displayed images may contribute to the 

visually larger changes in emotional responses. 
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Figure 6.1 (a)-(d) The average visual results for image pleasantness plotted against 
the corresponding changes in (a) median colourfulness and (b) image 
contrast. The average visual results for image excitement plotted against the 
corresponding changes in (c) median colourfulness and (d) image contrast for 
the three images used as both printed and displayed stimuli in Experiments 1 
and 2 (boy, harbour and family in Sections 3.4.1.1 and 3.4.2.1). 

6.1.2 Testing Model Performance for Different Media 

The predictive models of image pleasantness for positive images derived for 

printed images in Chapter 4 (see Table 4.7(a) in Section 4.5.1) and displayed 
images (display model) in Chapter 5 (Table 5.12(a) in Section 5.7.1) were tested 
agaiinst the visual results from both media. The results were compared in Figures 
6.2(a)-(d). It was found that the visual data obtained from printed images could be 
better predicted by the model derived for printed images than by the model derived 
for displayed images, since all the data points shown in Figure 6.2(a) are located 

more closely to the 450 line than the results predicted by the display model as 
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shown in Figure 6.2(b). The agreement between visual results and predictive values 

for Figure 6.2(a) had a higher correlation coefficient of 0.76 than 0.60 for Figure 

6.2(b). 

It was found that the visual data obtained from displayed images could be 

better predicted by the model derived for displayed images than by the model 

derived for printed images, since all the data points shown in Figure 6.2 (c) are 

located more closely to the 45° line than the results predicted by the photo model 

as shown in Figure 6.2 (d). The agreement between visual results and predictive 

values for Figure 6.2(c) had a higher correlation coefficient of 0.78 than 0.67 for 

Figure 6.2(d). 

The predictive models of pleasantness for negative images derived for printed 

stimuli in Chapter 4 (see Table 4.7(b) in Section 4.5.1) and displayed stimuli in 

Chapter 5 (Table 5.12(b) in Section 5.7.1) were tested with the visual results from 

both media. 

The visual data obtained from printed images can be better predicted by the 

model derived for printed images than by the model derived for displayed images, 

since all the data points shown in Figure 6.3 (a) are located more closely to the 450 

line than those results predicted by the display model as shown in Figure 6.3(b). 

The agreement between visual results and predictive values for Figure 6.3(a) had a 

higher correlation coefficient of 0.66 than 0.64 for Figure 6.3(b). 

The visual data obtained from printed images can be better predicted by the 

model derived for printed images than by the model derived for displayed images, 

since all the data points shown in Figure 6.3(c) are located more closely to the 45° 

line than those results predicted by display model shown in Figure 6.3(d). And the 

agreement between visual results and predictive values for Figure 6.3(c) showed 
higher correlation coefficient value of 0.60 than 0.56 for Figure 6.3(d). 
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Figure 6.2 (a)-(d) The visual results of image pleasantness obtained for printed 
images plotted against the results predicted by (a) the photo model and by (b) 
the display model. The visual results of image pleasantness obtained for 
displayed images plotted against the results predicted by (c) the display 
model and by (d) the photo model (for positive images). 
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Figure 6.3 (a)-(d) The visual results of image pleasantness obtained for printed 
images plotted against the results predicted by (a) the photo model and by (b) 
the display model. The visual results of image pleasantness obtained for 
displayed images plotted against the results predicted by (c) the display 
model and by (d) the photo model (for negative images). 

The predictive models of image excitement for positive images derived for 

printed images in Chapter 4 (see Table 4.8(a) in Section 4.5.1) and displayed 

images (display model) in Chapter 5 (Table 5.13(a) in Section 5.7.1) were tested 

using the visual results from both media. The results were compared in Figures 6.4 

(a)-(d). It was found that the visual data obtained from printed images could be 

better predicted by the model derived for printed images than by the model derived 

for displayed images, since all the data points shown in Figure 6.4 (a) are located 

more closely to the 450 line than the results predicted by display model as shown in 
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Figure 6.4(b). The agreement between visual results and predictive values for 
Figure 6.4(a) had a higher correlation coefficient of 0.68 than 0.52 for Figure 6.4(b). 

It was found that the visual data obtained from displayed images could be 
better predicted by the model derived for displayed images than by the model 
derived for printed images, since all the data points shown in Figures 6.4(c) are 
located more closely to the 450 line than the results predicted by the photo model 
as shown in Figure 6.4(d). The agreement between visual results and predictive 
values for Figure 6.4(c) had a higher correlation coefficient of 0.80 than 0.68 for 

Figure 6.4(d). 

The predictive models of image pleasantness for negative images derived for 

printed images in Chapter 4 (see Table 4.8(b) in Section 4.5.1) and displayed 

images (display model) in Chapter 5 (Table 5.13(b) in Section 5.7.1) were tested 

using the visual results from both media. The results are compared in Figures 6.5 

(a)-(d). 

The visual data obtained from printed images can be better predicted by the 

model derived for printed images than by the model derived for displayed images, 

since all the data points shown in Figure 6.5(a) are located more closely to the 45° 

line than the predicted results by the display model as shown in Figure 6.5(b). The 

agreement between visual results and predictive values for Figure 6.5(a) had a 
higher correlation coefficient of 0.88 than 0.84 for Figure 6.5(b). 

The visual data obtained from printed images can be better predicted by the 

model derived for printed images than by the model derived for displayed images, 

since all the data points shown in Figure 6.5(c) are located more closely to the 450 

line than the predicted results by the display model as shown in Figure 6.5(d). The 

agreement between visual results and predictive values for Figure 6.5(c) had a 
higher correlation coefficient of 0.78 than 0.69 for Figure 6.5(d). 
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Figure 6.4(a)-(d) The visual results of image excitement obtained for printed stimuli 
plotted against the results predicted by (a) the photo model and by (b) the 
display model. The visual results of image excitement obtained for displayed 
stimuli plotted against the results predicted by (c) the display model and by (d) 
the photo model (for positive images). 
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Figure 6.5(a)-(d) The visual results of image excitement obtained for printed stimuli 
plotted against the results predicted by (a) the photo model and by (b) the 
display model; The visual results of image excitement obtained for displayed 
stimuli plotted against the results predicted by (c) the display model and by 
(d) the photo model (for negative images). 

6.2 Universal Models of Image Emotion 

In this section, combined models of image pleasantness and excitement 
comprising the visual results both from printed images and displayed images will be 

proposed and their performance will be tested. 

Figures 6.6 (a)-(b) show the visual results of image pleasantness for positive 
image group plotted against the corresponding changes in median colourfulness 
(left) and image contrast (right) for all images used in both versions of printed and 
displayed images in Experiment 1. Figure 6.6(a) shows that as image colourfulness 
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increases or decreases, the pleasantness for positive images drops dramatically. 
As shown in Figure 6.6(b), the increase in lightness contrast also results in reduced 

value in pleasantness for positive images. 

The change in image pleasantness (LPleasantness) for positive images was 

modelled as a function of the change in image colourfulness and contrast again 
using the Log Normal Distribution Function (Limpert, 2001) in Equation (6-1) to best 
fit the experimental data. 

APleasantness (OM) = ko + kl 
0 2rz(k2AM-k 

[! n(k AM -k )-µ}2 

e- 20 (6-1) 

For negative images, decreasing image colourfulness results in greater 
pleasantness, whereas the effect of increasing colourfulness is similar for positive 
images as shown in Figure 6.7(a). Figure 6.6(b) shows that an increase in lightness 

contrast also results in reduced pleasantness for negative images. For the 

relationship between pleasantness and colourfulness, the Boltzmann Distribution 
Function shown in Equation (6-2) was again used and coefficients were optimised 
to find the best fit. For models as a function of contrast, Equation (6-1) was used 
again and the coefficients were found for the best fit. 

(4M-k2) Y, 
DPteasantness(AM) = ko + (k1 - ko) x (1 

+ea (6-2) 

The optimised coefficients for models as a function of each attribute are given 
in Table 6.2(a) for positive images and in Table 6.2(b) for negative images. The 

models for the positive image group were found to have correlation coefficients of 
0.70 and 0.77 between the visual results and the model predictions respectively for 

colourfulness and contrast manipulations of all positive images. The models for the 

negative image group were found to have correlation coefficients of 0.84 and 0.72 

between the visual results and the model predictions respectively for colourfulness 

and contrast manipulations of all negative images. 
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Figure 6.6(a)-(b) Visual results of image pleasantness for the positive image group 
plotted against the corresponding changes in (a) median colourfulness and (b) 
image contrast together with curves of the model derived using two attributes 
for all images used as both versions of printed and displayed stimuli in 
Experiments 1 and 2. 
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Figure 6.7(a)-(b) Visual results of image pleasantness for the negative image group 
plotted against the corresponding changes in (a) median colourfulness and (b) 
image contrast together with curves of the model derived using two attributes 
for all images used as both versions of printed and displayed stimuli in 
Experiments 1 and 2. 
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Table 6.2 Coefficients of the image pleasantness model used in Equations (6-3) 
and (6-4) as a function of colourfulness and image contrast for (a) positive and 
(b) negative stimuli. 

(a) 

Positive Image ko kl k2 k3 a R 

aP1easantness(AM) -1.68 6.96 -0.51 -1390.58 6.2372 0.0012 0.70 

APleasantness(ACO) -2.70 13.04 -0.41 -1390.15 6.2369 0.0013 0.77 

(b) 

Negative Image ko k2 k2 a R 

APleasantness(AM) 0.54 -1.83 6.58 6.39 0.84 

ko k2 k2 k3 µ a R 

APleasantness (ACO) -12.88 121.41 -0.14 -54.21 4.00 0.06878 0.72 

Figures 6.9(a)-(b) show the visual results of image excitement for positive and 
negative images plotted vs. the corresponding changes in median colourfulness 
and image contras for all the images used as both printed and displayed stimuli in 
Experiment 1 and 2. Figure 6.9(a) shows that as image colourfulness increases, the 
pleasantness for positive images is strongly enhanced. As shown in Figure 6.9(b), 
an increase or decrease in lightness contrast also results in reduced excitement for 
positive images. The change in excitement (tExcitement) for positive images was 
modelled as a function of the change in image colourfulness and contrast using the 
Boltzmann Distribution Function shown in Equation (6-2) for best fit of the 
experimental data. For negative images, increasing colourfulness results in higher 
excitement as shown in Figure 6.10(a). Figure 6.10(b) shows that the increase or 
decrease in lightness contrast also results in reduced excitement. For the 

relationship between excitement and colourfulness and between excitement and 
contrast, the Boltzmann Distribution Function in Equation (6-2) was used and 

coefficients were optimised to find the best fit. 

The optimised coefficients for models as a function of each attributes are 

shown in Table 6.3(a) for positive images and in Table 6.3(b) for negative images. 

The models for the positive image group were found to have correlation coefficients 

of 0.78 and 0.46 with the data points respectively for colourfulness and contrast 

manipulated positive images. The models for the negative image group were found 

to have correlation coefficients of 0.78 and 0.46 with the data points respectively for 

colourfulness and contrast manipulated negative images. It seems to find the 
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universal model of image emotion performs little less well than two individual 

models. 
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Figure 6.8(a)-(b) Visual results of image excitement for the positive image group 
plotted against the corresponding changes in (a) median colourfulness and (b) 
image contrast together with curves from the model derived using two 
attributes for all printed and displayed images in Experiments 1 and 2. 
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Figure 6.9(a)-(b) Visual results of image excitement for the negative image group 
plotted against the corresponding changes in (a) median colourfulness and (b) 
image contrast together with curves from the model derived using two 
attributes for all printed and displayed images in Experiments 1 and 2. 
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Table 6.3(a)-(b) Coefficients of the image excitement model used in Equation (6-3) 
and (6-4) as a function of colourfulness and image contrast for (a) positive and 
(b) negative images. 

(a) 
Positive Image ko kl k2 a R 

DExcitement(AM) -1.16 0.32 -1.39 1.62 0.78 

ka kl k2 k3 µ a R 

AExcitement (OCO) -1.37 6.98 -0.50 -1390.58 6.2368 0.00116 0.46 

(b) 
Negative Image ko kl k2 a R 

LExcitement(tM) -0.70 0.79 0.20 1.29 0.79 

AExcitement(OCO) -0.44 0.57 0.13 0.39 0.57 

Table 6.4 P-values for the significance test of two predictors, colourfulness and 
contrast, in predictions of emotion models for pleasantness and excitement for 
image groups using the comparison of correlation coefficients at a significance 
level of 0.05. 

Emotion (Image 
Coefficients 

groups) 

No. of terms Colourfulness Contrast R p-value 

Pleasantness 2 0.88 1.01 0.74 
( ositive) p 

10 0.29 0.00 
1 

01 0.52 0.00 

No. of terms Colourfulness Contrast R p-value 

Pleasantness 2 0.55 0.89 0.66 
(negative) 

10 0.35 0.04 
1 

01 0.47 0.15 

No. of terms Colourfulness Contrast R p-value 

Excitement 2 1.21 0.37 0.62 
) iti ve (pos 

10 0.60 0.00 
1 

0 0.20 0.21 

No. of terms Colourfulness Contrast R p-value 

Excitement 2 0.74 0.92 0.75 
(negative) 

10 0.54 0.03 
1 

--- ---- - --------- 

01 0.41 0.00 
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The models of image pleasantness and excitement for positive and negative 
images were developed as a linear equation based on models developed as a 
function of two colour attributes including colourfulness (M) and contrast (CO), as 
shown in Table 6.4. The two predictors: colourfulness and contrast in emotion 
models of pleasantness and excitement were tested for their significance in model 
prediction using the method of comparison of correlation coefficients (see Section 
3.5.2) at a significance level of 0.05. For the pleasantness model for positive 
images, the F-test showed that both predictors, colourfulness and contrast, were 
significant in model prediction with a p-value of 0.00 (for the incomplete model 
"colourfulness included only") and 0.00 (for the incomplete model "contrast included 

only"). For the pleasantness model for negative images, colourfulness was 
significant in model prediction with a p-value of 0.04 (for the incomplete model 
"colourfulness included only") whereas contrast was not significant with a p-value of 
0.15 (for the incomplete model "contrast included only"). Nevertheless, the contrast 
term was retained in the pleasantness model for negative images because it 

enables the contrast manipulated data set to be covered. 

For the excitement model for positive images, colourfulness was significant in 

model prediction with a p-value of 0.00 (for the incomplete model "colourfulness 
included only") whereas contrast was not with a p-value of 0.21 (for the incomplete 

model "contrast included only"). However, the contrast term was retained to cover 
the contrast-manipulated data set again. For negative images, the F-test showed 
that both predictors were significant in model prediction with a p-value of 0.03 (for 
the incomplete model "colourfulness included only") and 0.00 (for the incomplete 

model "contrast included only"). 

Figures 6.11(a) and (b) show the visual results of image pleasantness plotted 
against the values predicted by the model shown in Table 6.4 for positive and 
negative images respectively. Based on the R values of the prediction by these two- 

attributes model, the model for the positive image group was found to have 

correlation coefficients of 0.74 with the data including all the points for colourfulness 
and all contrast-manipulated positive images. The model for the negative image 

group was found to have correlation coefficients of 0.66 with the data including all 
the points for colourfulness and all contrast-manipulated negative images. 

Figure 6.12(a) and (b) show that visual results of image excitement plotted 
against the values predicted by the model shown in Table 6.4 for positive and 
negative images respectively. Based on the R values of the prediction by these two- 

attribute models, the model for the positive image group was found to have 

correlation coefficients of 0.62 with the data including all the points for colourfulness 
and all contrast-manipulated positive images. The model for the negative image 
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group was found to have correlation coefficients of 0.75 with the data including all 
the points for colour fulness and all contrast-manipulated negative images. T he 

performances of the universal models of image pleasantness for positive and 
negative images seem to be a little worse than those of the photo or display models 
tested for corresponding media: R=0.78 for the photo model tested for photo data; 
R=0.76 for the display model tested for display data (see Figures 6.2(a) and (c)). 

The performances of the universal models of image pleasantness for positive 
and negative images seem to be a little worse than those of photo or display 

models tested for corresponding media (R = 0.78 for the photo model tested for 

photo data; R=0.76 for the display model tested for display data for positive 
images (see Figures 6.2(a) and (c); R=0.66 for the photo model tested for photo 
data; R=0.66 for the display model tested for display data for negative images 
(see Figures 6.3(a) and (c)). Also for the performances of the universal models of 
image excitement for positive and negative images, seem again to be little worse 
than those of photo or display models tested for corresponding media. (R = 0.68 for 
the photo model tested for photo data; R=0.80 for the display model tested for 
display data for positive images (see Figures 6.4(a) and (c); R=0.88 for the photo 
model tested for photo data; R=0.78 for the display model tested for display data 
for negative images (see Figures 6.5(a) and (c)). 
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Figure 6.10(a)-(b) Visual results of image pleasantness for (a) the positive group 
and (b) the negative group plotted against the values predicted by the 
universal model derived using two attributes for all images used as both 
printed and displayed stimuli in Experiments 1 and 2. 
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Figure 6.11 (a)-(b) Visual results of image excitement for (a) the positive group and 
(b) the negative group plotted against the values predicted by the universal 
model derived using two attributes for all images used as both printed and 
displayed stimuli in Experiments 1 and 2. 

6.3 Summary 

The aim of this chapter was to compare the image emotion model for 

pleasantness and excitement developed for printed and displayed images as 
described in Chapter 4 and 5 and finally to develop a combined universal model as 
a function of the colour attributes of images comprising both data sets. 

The visual results of image pleasantness and excitement for two different 

media were compared for three common images used as both printed and 
displayed stimuli in Experiments 1 and 2. As a result, it was found that image 

pleasantness for the displayed and printed images along with the changes in both 

colour attributes were a little different, showing that the changes in pleasantness in 
displayed images tended be larger than in printed images. The difference in the 

results may be due to the perceptually larger changes in colour attributes in 

displayed images rather than in printed images, which may emphasise the 

emotional impact of colour attributes on pleasantness for displayed images than for 

the printed images. The responses of excitement for printed images can be 

enhanced as image colourfulness and contrast increases, whereas the responses 
for displayed images can be enhanced just slightly when image colourfulness 
increases, otherwise it was just decreasing. This implies that displayed images are 
already exciting enough, so there was less chance to enhance their excitement; 
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however, the excitement of printed images can be enhanced by increasing 

colourfulness and contrast. 

The universal models of image pleasantness and excitement for positive and 
negative images based on the visual results from printed images and displayed 
images were proposed as functions of colourfulness and contrast, and the 

significance of each colour attribute in the models was tested. 
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Chapter 7 Impact of Colour-Appearance Attributes on 
Emotion Based on a Physiological Method 
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The aim of this experiment was to reveal the effect of image colour attributes 
on emotional responses in terms of physiological readings, and also to find 

differences in the effect of colour on the responses according to image content. To 

achieve these objectives, two sets of physiological experiments were designed and 
carried out as described in Chapter 3 (see Section 3.4.1 and 3.4.3). 

In the physiological part of Experiment 1,29 observers (9 British and 20 
Chinese) viewed 178 original and manipulated images, which were divided into four 

a-priori categories: positive, neutral, negative and personal. In Experiment 3,18 

observers (1 European, 4 Chinese and 13 Korean) viewed 76 original and 
manipulated images comprised of four a-priori contents: positive, neutral, negative 
and personal. In this chapter, the results obtained from the two physiological 
experiments will be discussed and compared to the psychophysical results. 

All data obtained from the physiological instruments (see Section 3.3) in the 
two experiments were collected at 0.5 sec intervals from which the baseline value 
(defined as the activity for each measure at the image onset) was subtracted. Each 

score for three measurements was computed per observer and each image and 
averaged for all observers. For facial EMG activity, the average change over 10- 

second image presentation period was used to estimate its reactivity. For skin 
conductance and heart rate, the maximum change occurring during the 10 seconds 
after image onset was recorded. The readings of each measure were normalised 
into z-scores for each observer. This was followed by the removal of outliers and 
then the average of scores for the remaining data was taken. 

This chapter describes results of the two experiments for the following topics: 

comparison of physiological responses with the psychophysical responses (in terms 

of semantic scale value, i. e. the psychophysical scaling results according to two 

scales: pleasant-unpleasant and exciting-calming) in Sections 7.1.1 and 7.2.1; the 

effect of image content on physiological responses in Sections 7.1.2 and 7.2.2; the 

effect of colour attributes on physiological responses in Sections 7.1.3 and 7.2.3. 

7.1 Experiment 1: Impacts of Colour-Appearance Attributes 
on Emotional Responses to Printed Images 

In this section, the experimental results from the physiological part of 
Experiment 1 are described. Physiological responses and the psychophysical 

scaling results obtained are compared. In addition, the effect of a-priori im age 

content and the effect of colour attributes are analysed. 
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7.1.1 Effect of A-priori Categories of Images 
To see whether there is any difference in psychophysical responses between 

different image contents, the mean z-score for physiological data from three 
measures were computed for each group of four a -priori contents: positive, neutral, 
negative and personal. 

Figure 7.1 shows the comparisons of physiological results between the four 
types of images: positive, neutral, negative and personal as defined in the a -priori 
categories described in Section 3.4.2.1. All the physiological values shown in the 

graphs are z-scores, as defined in the previous section. Error bars indicate the 95% 

confidence interval. 

In the graphs, °common" image represents the mean z-score values for 

physiological responses averaged for three types of common images: positive, 
neutral and negative. The graphs show that the skin conductance and heart rate 
responses were significantly different for personal images and common images. As 

shown in the graphs, the activities in skin conductance and heart rate are 
significantly higher for personal images than for the other common images, at a 
significance level of 0.05. For EMG activity, significant differences were found 
between personal and negative images and between personal and neutral images. 
However, no significant difference between personal and positive images was 
found. 

Table 7.1 shows t-test results at a significance level 0.05 for the four types of 
images (neutral, negative, positive and personal). It is clear that for both skin 
conductance (SC) and heart rate (HR), there are significant differences between 

personal images and all of the other three types of images, with p-values lower than 
0.01. For facial EMG, however, the test result does not seem to suggest a 
significant difference between personal images and positive images with a p-value 
of 0.92. There are, however, significant differences between personal images and 
the other two types, with p-values under 0.05. Regarding the correlation between 

physiological measures and subjective feelings as reviewed in Section 2.4.3.2, the 
test results seem to suggest that images involving personal experiences are much 
more pleasant and more arousing than common images. 

This result seems to show good agreement with Miler et al. 's study (Miler 
2002), as described in Section 2.4.3.2. In their study, imagery was used as 
emotional stimuli instead of presenting pictures. As personal stimuli, imagery of 
personal experiences was used as stimuli in comparison to standard ones. Their 

results showed that skin conductance and heart rate responses were found to 
evoke greater activities for personal than standard stimuli. However, no difference 
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was found in corrugator EMG between personal and standard stimuli. They also 
found some differences in the responses of subjective feelings which showed that 

imagery of personal experiences were more arousing, vivid and interesting than 

standard imagery. 

common personal neutral positive negative 

Figure 7.1 Mean z-scores of physiological responses for skin conductance (top), 
heart rate (centre) and EMG (bottom) for four types of images: positive, 
neutral, negative and personal, Common image corresponds to the average 
of positive, neutral and negative images. Error bars show 95% confidence 
intervals. 
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Table 7.1(a)-(c) The p values from the t-test comparing mean z-scores of 
physiological responses for (a) skin conductance (SC), (b) heart rate (HR) and 
(c) facial EMG (EMG) between the four different types of images. 

(a) SC 

T-test Neutral Negative Positive 

Neutral 

Negative 0.30 

Positive 0.22 0.89 

Personal 0.00 0.00 0.00 

(b) HR 

T-test Neutral Negative Positive 

Neutral 

Negative 0.53 

Positive 0.19 0.61 

Personal 0.00 0.00 0.00 

(c) EMG 

T-test Neutral Negative Positive 

Neutral 

Negative 0.80 

Positive 0.01 0.12 

Personal 0.00 0.03 0.92 

Although significant differences were found in the responses in skin 
conductance and heart rate between responses to personal images and common 
images, however, there was no significant difference found between three types of 
common images: neutral, positive and negative in Figure 7.1 and Table 7.1. 

One of the possible reasons that no significant differences in physiological 
responses were found for three common image subjects in Experiment 1 could be 
the selection of images, especially for positive and negative images. For the 

pleasant and unpleasant stimuli, both arousing subjects were excluded such as 

erotica as the most pleasant subject and human/animal attack as the most 

unpleasant subject. 

It could also be the number of presentation of the same image was repeated 
more than 15 times with different colour rendering but the same images. To 

examine whether the number of presentation affects the result, only the responses 
for the first presentation of each image subject with different colour rendering were 
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averaged over the four image subjects and analysed. Note that the colour rendering 
applied to the first image in each subject are all different. 

Figure 7.2 shows the comparisons of physiological results between the four 

types of images: positive, neutral, negative and personal. All the physiological 
values shown in the graphs are z-scores and Error bars indicate the 95% 

confidence interval. As shown in the graphs, most of them are overlapping and no 
significant difference was observed. Thus, t-test was again applied and summaries 
in Table 7.2. Table 7.2 shows t-test results at a significance level 0.05 for the four 

types of images (neutral, negative, positive and personal). It is clear that significant 
differences were found in EMG responses between neutral and negative and 
between personal and negative. However, it is difficult to conclude the reason that 

no differentiation did not appear from this analysis because there exist the effect of 
different colour rendering and also the effect of image subject and content. It is also 
possible that all of them might influence the result. 
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Table 7.2(a)-(c) The p values from the t-test comparing mean z-scores of 
physiological responses the first presentation of four types of images for (a) 
skin conductance (SC), (b) heart rate (HR) and (c) facial EMG (EMG) between 
the four different types of images. 

(a) SC 

T-test Neutral Negative Positive 
Neutral 

Negative 0.12 

Positive 0.76 0.25 
Personal 0.10 0.44 0.32 

(b) HR 

T-test Neutral Negative Positive 
Neutral 

Negative 0.41 

Positive 0.97 0.16 
Personal 0.21 0.52 0.24 

(c) EMG 
T-test Neutral Negative Positive 

Neutral 

Negative 0.01 

Positive 0.13 0.25 
Personal 0.22 0.04 0.56 

Figures 7.3 and 7.4 also show greater responses in heart rate and skin 
conductance for personal images than for common images. Figure 7.3 shows skin 
conductance responses recorded during 10 sec of picture presentation for personal 
(blue line) and common (red line) images with a 95% confidence interval (dashed 
lines). Figure 7.3 shows such differences in skin conductance using raw 
physiological data for graph (a) and normalised data for graph (b). Figure 7.4 also 
shows significant differences in heart rate using raw physiological data for the graph 
(a) and normalised data for graph (b). These graphs indicate that both skin 
conductance and heart rate tend to show higher activities for personal images than 
for common images. Based on the relationship between these two measures and 
the emotional structure of pleasure and excitation (Section 2.4.3.2), this also seems 
to support the assertion that personal images are more pleasant and exciting than 

common images. 
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Figure 7.3(a)-(b) Comparisons between mean skin conductance for personal 
images (blue lines) and for common images (red lines) using (a) raw skin 
conductance and (b) normalised skin conductance (z-score; see Section 7.1). The 
dashed lines indicate 95% confidence intervals. 
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Figure 7.4(a)-(b) Comparisons between mean heart rate for personal images (blue 
lines) and for common images (red lines) using (a) raw heart rate and (b) 
normalised heart rate (z-score; see Section 7.1). The dashed lines indicate 
95% confidence intervals. 

However, there exists another point of view concerning heart rate responses 
that heart rate activity is more reliable for predicting emotional arousal than for 

pleasantness in specific stimuli such as human-computer interaction (Mahlke, 2008). 
There was a difficulty to correlate the heart rate responses obtained in the present 
study and the pleasantness of image. This is because the heart rate responses 
shown in Figure 7.4 are not like the typical patterns which have been reported by 

many studies (Lang 1993; Cuthbert 1998; Bradley 2001) as shown in Figure 7.5. 
According to these studies, heart rate tends to decelerate when an affective picture 
is first presented. Then it tends to accelerate, followed by a secondary deceleration. 
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The pleasantness (valence) of stimuli tends to appear in a standard pattern 
described as follows. Unpleasant stimuli tend to produce the greatest degree of 
initial deceleration and acceleration, whereas pleasant stimuli produce greater peak 
acceleration. Regarding the reason that these typical patterns for pleasant and 
unpleasant images were not apparently obtained in the current results in Figures 
7.4(a)-(b), it should be noted that the images used in other studies involved erotica 

as the most pleasant subject and human/animal attack as the most unpleasant 
subject, neither of which were used in the present experiment. Thus this suggests 
that standard patterns of heart rate responses were not obtained in the present 
study because of the choice of stimuli. Also, as reviewed in Section 2.4.3.2, there 

are a number of difficulties in using heart rate as a measure of emotional state. 
Several physical factors such as posture, height, weight and an individual's fitness 

level are known to have a significant influence on heart rate as well as its intrinsic 

variability. It is also known that heart rate tends to accelerate when attempting to 

recall a memory, and decelerate when external stimuli are given. 
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Figure 7.5 Pattern of heart rate responses as a function of the prior valence of ZAPS 
pictures (Lang of al., 2001). 

7.1.2 Physiological Responses vs. Psychophysical Results 
To see whether the physiological data agree with psychophysical responses 

in terms of scaling results such as pleasant-unpleasant, the physiological data for 

three measures were averaged for three subgroups of images as divided by the 

third quartile (Q3) and the first quartile (Q1) of the semantic scale values. Taking 

the pleasant-unpleasant scale as an example, all images scale values greater than 
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the Q3 were divided into "pleasant images", "neutral images" for scale values 
between Q3 and QI and "unpleasant images" for scale values lower than the Q1. 

Figures 7.6(a)-(b) show comparisons between the physiological responses for 

images (i. e. skin conductance, heart rate and facial EMG) divided into three 

subgroups based on the Q3 and Q1 values, as described earlier. Figures 7.5(a) and 
(b) show the three image subgroups: "pleasant", "neutral" and "unpleasant" as 
defined by the Q3 and Q1 values on the pleasantness scale; "exciting", "neutral" 

and "calming" on the excitement scale. All the physiological values shown in the 

graphs are z-scores, as defined in previous section. Error bars indicate the 95% 

confidence interval. 

The graphs show that there is no significant difference in physiological 

responses between the three subgroups of images at a significance level of 0.05. 

The only exception is that the mean heart rates have significantly different values 
for the three subgroups: "exiting", "neutral" and "calming". As shown in Figure 7.5 

(b), the more exciting the image is, the higher the heart rate. 

Then, the mean physiological data for each subgroup were compared using t- 

test at a significance level 0.05. Table 7.3 shows the t-test results with regard to the 

two category scales: pleasant-unpleasant and exciting-calming. 

It is clear that a siginificant difference between exciting and calming images 

appears in the comparisons of skin conductance responses with a p-value of 0.03. 

For heart rate, a siginificant differences between exciting and calming images and 
between exciting and neutral images are found, with p-values of 0.01 and under 
0.01 respectively. For facial EMG activity, the p-value for the comparison between 

pleasant and unpleasant images is 0.09. This indicates that facial EMG activity of 

corrugator muscles shows some extent of difference between pleasant and 

unpleasant images. However, no significant difference is found between exciting 

and calming images for EMG activity. 

Although it has been mentioned in Section 2.4.3.2 that heart rate could 

measure image pleasantness, several issues relating to the reliability of the 

correlation between heart rate responses and the level of pleasure were pointed out 
in the previous section. Regarding these points, the results from the present study 
(that reveal no significant differences between pleasant and unpleasant images for 

these two measures), may suggest both that skin conductance responses seem to 

be a good measure of image excitement whereas heart rate responses don't seem 
to be so reliable for both of image pleasantness and excitement. 
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Figure 7.6 Mean z-scores of physiological responses for skin conductance (top), 
heart rate (centre) and EMG(bottom) for (a) images rated as pleasant, neutral 
and unpleasant and for (b) images rated as exciting, neutral and calming. 
Error bars show 95% confidence intervals. 
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Table 7.3 The p values from the t-test comparing mean z-scores of physiological 
responses between common images of different subgroups according to 
psychophysical scale values: (a) pleasantness and (b) excitement. The 
physiological responses are in terms of skin conductance (SC), heart rate 
(HR) and facial muscle movement (EMG) at corrugator. 

(a) 

T-test Neutral Unpleasant 

Neutral 

Unpleasant 0.48 

Pleasant 0.63 0.18 

T-test Neutral Unpleasant 

Neutral 

Unpleasant 0.47 

Pleasant 0.74 0.72 

T-test Neutral Unpleasant 

Neutral 

Unpleasant 0.32 

Pleasant 0.56 0.09 

(b) 

T-test Neutral Calming 

Neutral 

Calming 0.66 

Exciting 0.16 0.03 

T test Neutral Calming 

Neutral 

Calming 0.01 

Exciting 0.66 0.00 

T-test Neutral Calming 

Neutral 

Calming 0.76 

--- Exciting 0.77 -T 0.97 
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7.1.3 Physiological Responses vs. Colour Attributes 

To see whether there is any colour effect on physiological responses of 

emotion elicited by images, the z scores of responses for three measures were 
averaged separately for three groups of images: original images, rendered images 

with decreased chroma and contrast, and rendered images with increased chroma 
and contrast. 

Figure 7.7(a) shows comparisons of the mean values of physiological results 

with images rendered in terms of chroma. The error bars in each diagram represent 
95% confidence intervals. It illustrates that the responses in skin conductance show 

no significant differences between images having any levels of chroma. Similarly, 

facial EMG showed no difference between different chroma levels. Only heart rate 

response was found to show significant difference between chroma levels. From 

the graph, higher activity is found for more chromatic images and no significant 
difference is found between original images and images with increased chroma. 
Considering that heart rate activity tends to be a good measure of pleasantness of 
stimuli (see Section 2.4.3.2), this result might imply that more chromatic images 
tend to be more pleasant than less chromatic images. However, another good 
measure of pleasantness of stimuli, activity of corrugator muscles, does not show 
any differences between different groups of chroma levels. Thus, it cannot be 

concluded that more chromatic images colours resulted in more pleasant feelings 
than less chromatic ones. 

Figure 7.7(b), summarises the t-test results at a significance level 0.05 

comparing the mean values of each group shown in the graphs on the left, also 
supports this trend. It is clear that for heart rate, the differences between the "low 

chroma" and "original" groups and between the "low chroma" and "high chroma" 
groups are significant with p-values of 0.01 for both. 

Figure 7.8(a) compares the mean physiological results between images 

rendered in terms of contrast with error bars indicating the 95% confidence 
intervals. It shows that the responses in skin conductance present no significant 
differences between images having any levels of contrast values. Facial EMG also 

showed no difference between different contrast levels. Only heart rate response 

was found to show significant differences between different levels of contrast. The 

graph shows that the higher activity is found for original images than for images 

with rendered values of contrast and there is no significant difference between 

images with either decreased or increased contrast. Similarly for chroma rendering, 

activity of corrugator muscles did not show any differences between different 

groups of contrast levels. Thus, it cannot be concluded that higher contrast caused 

more pleasant feelings. 
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Figure 7.8(b), summarising the t-test results at a significance level 0.05 

comparing the mean values of each group shown in the graphs on the left, also 
supports this trend. It is clear that for heart rate, the differences between the 
"original" and "low contrast" groups and between the "original" and "high contrast" 
groups are found to be significant with p-values of 0.02 for both pairs. 
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Figure 7.7 (a) Mean z-scores of physiological responses for skin conductance (top), 
heart rate (centre) and EMG (bottom) for images having different chroma 
levels; (b) The p-values from the t-test compare mean z-scores of 
physiological responses for skin conductance (top), heart rate (centre) and 
EMG (bottom) for images having different chroma levels. 
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Figure 7.8 (a) Mean z-scores of physiological responses for skin conductance (top), 
heart rate (centre) and EMG (bottom) for images having different contrast 
levels; (b) The p-values from the t-test compare mean z-scores of 
physiological responses for skin conductance (top), heart rate (centre) and 
EMG (bottom) for images having different contrast levels. 
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Figure 7.9 (a) Mean z-scores of physiological heart rate responses for images 
having different chroma levels for four image contents: (b) mean z-scores of 
physiological heart rate responses for images having different contrast levels 
for four image contents. 
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To see whether this disagreement is caused by any specific content of images, 

the mean z-scores of heart rate responses for image groups having different 

chroma and contrast levels were plotted separately for four image contents in 
Figures 7.9(a) and (b). The differences between image groups with different level of 
colour attributes seen in Figures 7.7(a) and 7.8(a) can be found only in neutral 
images for both manipulations. For personal images, no differences were found 

between groups of different manipulation. For negative and positive images, no 

apparent patterns can be found for both manipulations as the error bars are too 

wide to overlap each other. This disagreement of results between different image 

contents may be due to the selection of images in the experiment for which certain 
types of images having extremely high or extremely low pleasantness values as 

reported in ZAPS system (see Section 2.5.4.1) were excluded from the present 

study. It is possible that the high correlation between physiological responses and 

psychophysical results are reliable and consistent only when such types of images 

are included. Moreover, there is a possibility that the effects of colour attributes in 

the image may be significant only for certain types of image contents. Another 

possibility is that perhaps the repetition rate of the same image reproduced with 
different colour attributes was too high, as many levels of manipulation for several 

attributes were applied to each original image. 

To address the issues described above, Experiment 3 was designed to 

include more arousing images such as romantic scenes, adventures, human injury 

and contamination. The number of presentations of the same images was limited to 

as few as possible by reducing the number of colour attributes studied and the 

number of levels for each attribute. 

7.2 Experiment 3: Impact of Colour-Appearance Attributes 
on Colour-emotion and Image Emotion for Displayed 
Images 

In this section, the experimental results from Experiment 3 are described. 

Measured physiological responses and the psychophysical scaling results are 

compared. The effect of a priori image content and the effect of colour attributes on 
the emotional responses are also discussed. 

7.2.1 Effect of A priori Categories of Images 

Figure 7.10(a) shows the comparisons of physiological responses between 

four types of images - "positive", "neutral", "negative" and "personal" - as defined in 
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a-priori categories in Section 3.4.3.1. All the values shown in the graphs are z- 
scores, as defined in Section 7.1. The error bars indicate the 95% confidence 
interval. 

The graphs show that differences in skin conductance and facial EMG are not 
found to be significant between all groups of images. Only heart rate responses are 
found to have some extent of difference between positive and neutral images. The 

activity in heart rate tends to be higher for positive images than for neutral images. 
Personal images are found not to have such a big difference in physiological 

responses as was obtained in Experiment 1. 

The t-test result shown in Figure 7.10(b) clarifies these trends. It shows t-test 

results for the four types of images: neutral, negative, positive and personal. For 

skin conductance, all image groups seem to have very little differences between 
them. For heart rate, there is a significant difference between positive and negative 
images, with a p-value of 0.03. For facial EMG, however, no significant difference is 

found between any groups of images. 

Comparing the result obtained from the one from Experiment 1, one of the 
diagreements in the result is no significant difference was found between common 
and personal images in Experiment 3. This may be due to the difference in contents 
for personal images used in both experiments. In Experiment 1, personal images 

were provided by the observers themselves. They depicted scenes involved with 
observers' experiences and memories and contained special meanings to them. In 

contrast in Experiment 3, the personal images were observers' self portraits taken 
by the author of this thesis using the same background to control the range of 
colour attributes. This means that observers may not have special meanings or 
personal attachments to those images. From Figure 7.10(a), the activities in the 

three measures for personal images were at very similar levels as for common 
images. 

Instead, a significant difference was found in heart rate between negative and 

positive images. Regarding the correlation between heart rate responses and the 

level of pleasantness as reviewed in Chapter 2, this may reflect the difference in 

pleasantness levels for positive and negative images used in Experiment 3. 

However, conclusions should be drawn also considering the relationship between 

physiological responses and psychophysical results as will be described in the next 

section. 
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Figure 7.10 (a) Mean z-scores of physiological responses for skin conductance 
(top), heart rate (centre) and EMG (bottom) for four types of images: positive, 
neutral, negative and personal. Common image corresponds to the average 
of positive, neutral and negative images. Error bars show 95% confidence 
intervals. (b) The p-values from the t-test comparing the mean z-scores of 
physiological responses between common images of different subgroups 
(according to semantic scale values). 
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7.2.2 Physiological Responses vs. Psychophysical Results 

To see whether these physiological data agree with the psychophysical 
responses in terms of the psychophysical scaling results, such as pleasant- 
unpleasant, the z-scores of physiological data for three measures were averaged 
for three subgroups of images as divided by the third quartile (Q3) and the first 

quartile (Q1) of the semantic scale values for each common image. 

Figures 7.11(a)-(b) show comparisons of the physiological responses for 
images (i. e. skin conductance, heart rate and facial EMG) divided into three 

subgroups based on the Q3 and Q1 pleasantness and excitement scales. Figures 
7.11(a) and (b) show the three subgroups of images - "pleasant", "neutral" and 
"unpleasant"- as defined by the Q3 and Q1 values on the pleasantness scale; 
"exciting", "neutral" and "calming" on the excitement scale. All the physiological 
values shown in the graphs are the z-scores, as defined in the previous section. 
Error bars indicate the 95% confidence interval. 

The graphs show that there seem to be no significant differences in all three 

physiological responses between the three subgroups of images on both scales. 
Thus, the mean physiological data for each subgroup were then compared using t- 
test at a significance level of 0.05. Table 7.1 shows the t-test results with regard to 
the two category scales pleasant-unpleasant and exciting-calming. The results 
verify that there was no difference between any of the different groups according to 
the levels of pleasantness and excitement of stimuli. 

The results show that the three measures of physiological responses do not 
reveal any significant differences between image contents with regards to the 
degree of pleasantness and excitement. This finding is different to that of 
Experiment 1 where significant differences were found in skin conductance and 
heart rate responses between different levels of excitement of images. This may be 
due to the difference of personal images for the two experiments, as mentioned in 
previous section. It may also reflect that the selection of images still did not include 
sufficient varieties in the levels of pleasantness and arousal so as to generate 
reliable responses in the physiological measures. Highly-arousing contents such as 
strongly erotic scenes, serious injury and mutilation were avoided for the selection 
of stimuli although the author tried to include relatively more arousing contents than 
for Experiment 1. 
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Table 7.4 The p values from the t-test comparing mean z-scores of physiological 
responses between common images of different subgroups according to 
psychophysical scale values: (a) pleasantness and (b) excitement. The 
physiological responses are in terms of skin conductance (SC), heart rate 
(HR) and facial EMG (EMG) at corrugator. 

(a) 

T-test Unpleasant Neutral Pleasant 

Unpleasant 
Neutral 0.51 
Pleasant 0.17 0.22 

T-test Unpleasant Neutral Pleasant 

Unpleasant 

Neutral 0.92 
Pleasant 0.71 0.80 

T-test Unpleasant Neutral Pleasant 
Unpleasant 

Neutral 0.34 

Pleasant 0.86 0.46 

(b) 

T-test Calming Neutral Exciting 
Calming 
Neutral 0.72 
Exciting 0.78 0.95 

T-test Calming Neutral Exciting 
Calming 
Neutral 0.92 
Exciting 0.71 0.80 

T-test Calming Neutral Exciting 
Calming 
Neutral 0.94 

Exciting 0.30 0.19 

7.2.3 Physiological Responses vs. Colour Attributes 

To see whether there is a colour effect on the physiological responses of 

emotion elicited by images, the z scores of physiological responses for three 

measures were averaged separately for original images and for images rendered in 
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terms of chroma and lightness contrast. For images rendered in chroma, the 

colours were taken out to leave an achromatic representation. Thus, images 

rendered in terms of chroma tended to have lower chroma. For images rendered in 

terms of lightness contrast, the contrast was decreased by applying inverse sigmoid 
functions as described in Section 3.4.3.2. Thus, images rendered in terms of 
contrast tended to have lower contrast. 

Figure 7.12(a) shows the comparisons of mean values of the three 

physiological measures between original and rendered images in terms of chroma. 
The error bars in each diagram indicate the 95% confidence intervals. The graphs 
illustrate that the responses in skin conductance have higher activities for chromatic 
images than for achromatic images. However, no differences are found between 

chromatic and achromatic images in heart rate and facial EMG activities. 

Figure 7.12(b) shows the comparisons of mean values of the three 

physiological measures between original and rendered images in terms of lightness 

contrast. The graphs seem to show higher activities for images having low contrast 
than for ones with high contrast in the responses of facial EMG. However, no 
differences are found in the responses of skin conductance and heart rate. 

To see whether the differences between each mean values in the graphs are 

significant, the t-test was applied to each pair of results. Table 7.5 summarises the 

t-test results at a siginificance level of 0.05. The result shows that the responses of 

skin conductance were significantly higher for chromatic images than for achromatic 

ones, with a p-value of 0.02. For heart rate and facial EMG, no significant 
differences between chromatic and achromatic images were found. For contrast 

rendering, no significant differences between high contrast and low contrast images 

were found. Some difference was found in facial EMG indicating higher activity for 

low contrast images than for original images with a p-value of 0.08. 
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Figure 7.12(a)-(b) Mean z-scores of physiological responses for skin conductance 
(top), heart rate (centre) and EMG (bottom) for (a) chromatic and achromatic 
images and for (b) low contrast and original images. 
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Table 7.5 The T-test result for mean z-scores of physiological responses for skin 
conductance (top), heart rate (centre) and corrugators EMG (bottom) for 
chromatic and achromatic images and for low contrast and original images. 

T-test Chromatic (Original) High Contrast (Original) 

Achromatic (Rendered) 0.02 

Low Contrast (Rendered) 0.39 

T-test Chromatic (Original) High Contrast (Original) 

Achromatic (Rendered) 

Low Contrast (Rendered) 

rTnurc1 
T-test 

Achromatic (Rendered) 

Low Contrast (Rendered) 

0.17 

0.16 

Chromatic (Original) High Contrast (Original) 

0.82 
0.08 

Comparing the results with those obtained from Experiment 1, one is that a 

significant difference was found in the skin conductance result between achromatic 

and chromatic images. In this experiment, each original image was rendered as 

only one achromatic version, whereas each original image was rendered at four 

different levels of chroma in Experiment 1. Thus the complete washed out effect in 

chroma level could lead to significantly smaller responses in skin conductance 

activity. 

Another difference between the two results is that a significant difference was 

found in the corrugators EMG response between low contrast and original images. 

Also for contrast rendering, each original image was rendered in only one other 

version with lower contrast whereas each original image was rendered at four 

different levels of contrast in Experiment 1. This apparent reduction of contrast level 

may affect to some extent the greater response revealed in EMG activity. 

One other dissimilarity is that no difference was found in heart rate responses 
between any groups of different colour attributes as observed in Experiment 1. For 

heart rate responses, it seems to be quite difficult to conclude that a meaningful 
difference was found between groups of images having any different features such 

as colour attributes and image content. This is because results obtained in the 

present study did not seem as reliable and consistent as to do so. 

This is not only because of the difficulties in using heart rate activity as a 

measure of emotional state but also because the proper interpretation of heart rate 
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activity in terms of its correlation with psychophysical results is still debatable. This 

also seems to be related to the selection of stimuli regarding a wide range of the 

contents in terms of pleasantness and arousal levels, for which reliable and 
consistent physiological responses could be generated. it is possible that this 

selection of image content also affects the possibility to observe reliable effects of 
colour attributes in the image as physiological responses may be significant only for 

certain types of images. It is also possible that the effect of image colour is not 
strong enough to evoke reliable, consistent physiological responses, as many other 

studies concluded as reviewed in Section 2.5.4.4. Thus, further study is needed 
regarding the effect of image colour on the physiological responses of emotion. 

7.3 Summary 

The aim of this chapter was to investigate the effect of image colour attributes 
on emotional responses in terms of physiological responses, and also to find any 
differences in the effect of colour according to image content. To achieve these 
objectives, two sets of physiological experiments (Experiments 1 and 3) were 
conducted. 

First of all, the effect of a-priori categories of images was investigated based 

on the results from Experiments I and 3. From the result of Experiment 1, 

significantly greater responses in heart rate and skin conductance activities were 
found for personal images than for common images. However, the personal images 

used in Experiment 3 did not result in any greater activities in the physiological 
measures. This may be because the image contents depicted in Experiment 1 were 
highly related to observer experiences and memories, which seemed to be the main 
cause of the greater activation in physiological measures. Due to the debatable 

correlation between heart rate and the level of pleasantness, it can only be 

concluded for certain that personal images are more exciting than common images. 
Regarding other image contents, no consistent differences were found between 

positive, negative and neutral in both experimental results. Even for the results only 
from the first presentation of each image subject, no consistent differences were 
found between positive, negative and neutral. This could be because of the 

selection of the stimuli used for both experiments, which excluded highly arousing 

contents including both highly pleasant and unpleasant images. 

The relationship between physiological responses and psychophysical data 

were compared for both experimental results. Although significantly greater 

activities were found in heart rate and skin conductance responses according to 
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different excitement levels in the result of Experiment 1, the results from Experiment 
3 did not show any agreement. This may be because the less personally related 
contents of the personal images used in Experiment 3 limited the activation of 

physiological responses. Also, the entire set of stimuli was not sufficiently varied in 

terms of levels of pleasantness and arousal to generate reliable and consistent 

activities in the physiological measures. 

Finally, the effect of image colour attributes was investigated based on both 

experimental results. No significant difference was found according to different 

levels of chroma and contrast in Experiment 1. A significant difference was found in 

skin conductance data between achromatic and chromatic images from the result of 
Experiment 3. This may be due to chroma being limited to only two levels with 

smaller repeats of the same image. The apparent difference between the two levels 

of chroma may result in the significantly smaller response in skin conductance 

activity. For the contrast effect, some levels of difference were found in the 

corrugators EMG response between low contrast and original images. This may 

also be due to the smaller number of levels of contrast and number of presentations. 
Comparing the results from the two experiments, the number of presentations of the 

same image may be one of the critical factors to finding any differences in 

physiological activity. 

237 



Blank Page 



Chapter 8 Conclusions 

239 



The goals of the present study have been to investigate the impact of colour- 

appearance attributes on the affective quality of images and to develop an affective 

quality model of images as a function of colorimetric parameters. The specific aims 

are summarised below: 

(1) To investigate the relationship between colour-appearance attributes and 
the overall affective responses to images. 

(2) To investigate the affective responses to images for different types of 
image contents including images having personal values. 

(3) To investigate the relationships between colour-appearance attributes and 

colour-emotion responses for images, and between overall emotional responses 
and colour-emotion responses for complex images. 

(4) To develop models predicting overall affective responses to different types 

of images based on colour-appearance attributes and also based on colour-emotion 
factors. 

(5) To measure psycho-physiological responses to images, and compare 
them with the psychophysical responses to the same images. 

To achieve these aims, three psychophysical physiological experiments were 
conducted. 

Experiment 1 aimed to investigate the relationship between the colour- 
appearance attributes of images and image emotion, and the difference in these 

relationships for different image contents. In this experiment, the classification of 
image content was considered according to two criteria: the level of pleasantness 
and the level of personal attachment. Observers were asked to report their 

emotional responses to 178 printed images that had been manipulated by lightness 

contrast and colourfulness. Six scales were used: pleasant-unpleasant, exciting- 

calming, like-dislike, natural-unnatural and appealing-unappealing. The 

physiological responses to images were also taken by measuring skin conductance, 
heart rate and facial muscle movement. 

Experiment 2 aimed to explore the relationship between the colour attributes 

and colour-emotion for complex images, and the relationship between colour- 

emotion and image emotion. Observers were asked to report their emotional 

responses to 208 displayed images manipulated by lightness contrast and 

colourfulness. Six scales were used, including pleasant-unpleasant, exciting- 

calming, like-dislike, active-passive, heavy-light and warm-cool. 
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Experiment 3 focused on measuring the effect of colour attributes of images 

on emotional responses, using physiological methods. Changes in skin 
conductance, heart rate and facial muscle movement were measured while 
observers viewed 76 images manipulated in terms of lightness contrast and 

colourfulness presented on a screen. 

This chapter summarises the major findings obtained from these experiments. 

8.1 Summary of Major Findings and Contributions 

The principal findings from the present study are summarised below: 

(1) The overall affective reactions to images in terms of psychophysical 

responses are found to be represented by two groups of emotion, pleasantness and 

excitement, in line with a two-dimensional model of emotion (see Section 2.5.4). 

(2) Colourfulness and contrast are found to have a consistent and significant 
impact on affective responses to images in terms of pleasantness and excitement. 

(3) The affective responses of pleasantness and excitement to images are 
found to depend on the type of image content. In terms of psychophysical reactions, 

the level of image pleasantness affects the relationship between colour attributes, in 

terms of colourfulness and contrast, and the affective responses pleasantness and 

excitement. However, the affective responses of image colour-emotion factors are 

not found to depend on the type of image content. 

(4) The affective responses of pleasantness and excitement were found to be 

affected by changing the three factors of colour-emotion to those images differently 
for positive and negative images. 

(5) In terms of physiological responses, much greater responses in skin 

conductance and heart rate were found to appear for images having personal 
attachment to observers. 

(6) In terms of physiological responses, more chromatic image colours were 
found to generate greater activity in skin conductance responses. In addition, lower 

contrast image colours were found to increase activity in the corrugators EMG 

response. 

The contributions of the present work to colour and imaging science are as 
follows: 
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(1) The study established an effective approach to assessing the affective 

quality of images considering the influence of context and personal aspects. 

(2) The study revealed the relationship between colour attributes and the 

affective responses to images. 

(3) The concept of colour-emotion was extended to complex images as 

means of defining and utilising their affective quality. 

(4) By introducing physiological measurement methods, a different approach 

was used in this study to investigate the affective quality of images and to quantify 
the impact of colour attributes. 

8.1.1 The Effect of Colour Attributes on Image Emotion 

The models of image emotion for pleasantness and excitement developed in 

Chapters 4 and 5 were compared and tested across two media: print and display. 
Regarding image pleasantness, it was found that for the displayed images, this was 

slightly more sensitive changes than for printed images along with the changes in 

both colour attributes. This indicates that observers were more sensitive to changes 
in colourfulness and contrast in displayed images than to those in printed images. 
This may be because visual changes in the colour attributes of displayed images 
tended to be perceptually larger than for printed images. 

Regarding image excitement, it was found that the responses for printed 
images can be enhanced dramatically by increasing image colourfulness, whereas 
the responses for displayed images can be enhanced only slightly by increasing 
image colourfulness. This may be because the emotional responses to displayed 
images are bigger than to the printed images and this may already be exciting 
enough, meaning that the excitement for displayed image cannot be further 

enhanced. However, further study is need to understand why there is no further 

enhancement in excitement for displays while there was an enhancement in 

excitement for print, despite the same amount of colourfulness increase. 

8.1.2 The Effect of Image Content on the Affective Responses 

The influence of image content on emotional responses was investigated 

using PCA (see Section 3.5.3) to find any similarity between images used in 

Experiments 1 and 2. As a result of psychophysical measurement in Experiments I 

and 2, the responses of image pleasantness and excitement for all test images 

were found to be slightly different in the positive group (including positive, neutral 

and personal images) and the negative group. The effect of the personal values of 
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images on image pleasantness and excitement seemed to produce more sensitive 
changes along with the changes in colour attributes; however the effect of image 

content on psychophysical responses did not seem to be significant. Thus, 

quantitative models of image emotion for pleasantness and excitement were 
developed separately for the data sets corresponding to positive and negative 
images. 

The influence of image content on the responses for the colour-emotion 

scales active-passive, heavy-light and warm-cool was also investigated in 

Experiment 2. As a result, it was found that the responses of colour-emotion were 

not significantly different for positive and negative images. Thus, colour-emotion 

models were developed based on data averaged for all images used in Experiment 

2. 

As a result of physiological measurement in Experiment 1, it was found that 

the responses in skin conductance and heart rate showed significantly greater 

activities for personal images than for common images. However in Experiment 3, 

no significant differences between personal and common images were found for 

any physiological measures. The reason for these different results may be the 

images used in the two experiments. In Experiment 1, the personal images were 

provided by observers and thus had personal meaning and value to the observers. 

In Experiment 3, the personal images were photos of the observers themselves 

taken by the author of this thesis, and thus these personal images had no personal 

attachment. Regarding other image contents, no consistent differences in 

physiological responses were found between positive, negative and neutral groups 

in both experimental results. This may be because the selection of stimuli used for 

both experiments excluded highly arousing contents and highly pleasant or 

unpleasant images. 

8.1.3 Colour-emotion for Images 

The relationships between colour-appearance attributes and responses on 

colour-emotion scales (active-passive, heavy-light and warm-cool) were also 

studied for four different types of image contents. Quantitative models of the three 

colour-emotion scales were developed as a function of the colour attributes of 
images (i. e. lightness, colourfulness and lightness contrast). According to the model 
developed, active passive responses for images can be enhanced by increasing 

image colourfulness, heavy-light responses by increasing contrast or decreasing 

lightness, and warm-cool by increasing colourfulness. 
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As an application of using the colour-emotion model developed for images, 

the relationships between colour-emotion scales and image emotion were also 

explored. The relationship was built as quantitative models for two separate groups 

of images: positive and negative. As the results using the model developed 

showed, we can enhance excitement for pleasant images by making the images 

feel more active and warmer. For negative images, image pleasantness can be 

enhanced by making the images feel more passive and cooler. Image excitement 
can be enhanced by making the image feel more active, heavier and warmer. 

8.1.4 Physiological Responses to Colour Attributes of Images 

The effect of image colour attributes was investigated based on the 

physiological results obtained in Experiments 1 and 3. From Experiment 1, no 
significant difference was found between different levels of chroma and between 
different levels of contrast. From Experiment 3, a significant difference was found in 

skin conductance result between achromatic and chromatic images. For the 

contrast effect, some levels of difference were found in the corrugators EMG 

response between low contrast and original images. The disagreement in the 

results obtained from the two experiments may be due to the repetition rate of the 

same image for the whole experimental sessions. Images were shown only four 
times at two levels for two attributes in Experiment 3, whereas they were shown 
more than 15 times in Experiment I. Comparing the results from the two 

experiments, the number of presentations of the same image may be an important 
factor in studying physiological activity. 

8.2 Future Work 

Although a number of findings have been revealed in the present study about 
the impact of colour attributes on image emotion and colour-emotion for images, 

this study can be extended or further improved, as described below. 

8.2.1 The Effect of Image Content 

One limitation of this study is that the model for enhancing affective quality is 

defined by changes from the original images. Because the colour quality and overall 

image quality of the "original images' were very high or the colour attributes for 

original images were always symmetric, a very strong bias towards the original 

images was found from the results obtained in Chapters 4 and 5 for the relationship 

244 



between image emotion and colour attributes. To remove this bias, a new approach 
to selecting the experimental stimuli will be needed. 

One of the findings from this study is that changes in emotional responses to 
images due to changes in colour attributes are influenced by the level of 

pleasantness of the stimulus. In this study, image content was determined using 
Russell's two-dimensional emotion model (see Section 2.4.2) which was also used 
for image classification in the ZAPS system (section 2.5.4.1). However in practice, 
there can be many other ways to classify the content of images, for example, based 

on the application or usage. In other applications, factors affecting image emotion 

need to be identified, and the relationship between colour attributes and emotion 
factors can be studied. 

8.2.2 Media Effect 

One of the findings in this study is that the impact of colour attributes was 
different for printed and displayed images. It was found that observer responses for 

image pleasantness for the displayed images tended to show larger changes than 

for printed images due to the changes in colour attributes. On the other hand, 

image excitement for printed images can be dramatically enhanced by increasing 

colourfulness, whereas no significant enhancement was found with displayed 

images for the same amount of change. In order to understand the media effect of 

colour attributes on emotional responses to images, further experimental studies 

need to be conducted. 

8.2.3 Other Factors Influencing the Emotional Responses 

As reviewed in Section 2.5.4, there are many factors which can influence the 

emotional responses to images such as image content, image size and previous 

experience. In this study, the gender and cultural differences in emotional 

responses to images could not be reliably concluded from the data obtained and 

only the influences of image content and colour attributes were investigated; 

however, there may be other factors which influence the emotional responses to 

images, such as cultural background, gender and personality. These social factors 

may have different effects on the emotional responses to various image contexts 

and extension of this study to investigate influences from these factors will be 

important for the usage of the results for the advertisement, marketing, etc. 
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Appendices 



Appendix A Observer Instructions in Experiment 1 

Instructions to observer 
Thank you for participating in this visual assessment. While you are 

participating this experiment, you will be presented with a set of images on two 
different types of media: a printed version and one displayed on a TV screen. For both 
sessions of experiments, you will have three tasks to complete. 

The first and second tasks verbally involve providing your impressions of the 
images. For first task, you need to provide a few words of description for each image 
based on your impression. For the second task, you will judge word pairs given to you. 

Task 1. Provide a few words. It could be any word including nouns or adjectives 
containing your impressions from any features of the images. 

Task 2. Judge five given word pairs based on a1 to 9 scale. The five word pairs to be 
judged are shown below. Please score what you think based on this scale. 
For example, in the case of Unpleasant-Pleasant pair: - 

Extremely 
Un leasant 

Very Unpleasant Slightly Neutral Slightly Pleasant Very 
Extremely 
Pleasant 

1 2 3 4 5 6 7 8 9 

1. Unpleasant - Pleasant 
2. Calming - Exciting 
3. Unnatural - Natural 
4. Dislike - Like 
5. Unappealing - Appealing 

Task 3. The third task involves wearing physiological instruments on your body (face 

and one hand) and letting the experimenter to record your biofeedback including 
facial muscle activities, skin conductance and heart rate. To do this, you will wear 
three different sensors, one on your face and two on your one hand. A sensor will be 

attached on your face at the medial end of eyebrow for facial muscle activity 
recordings. If you have make-up on your forehead, you may need to clean your face 

with soap provided prior to taking part in the experiment. To re cord your skin 
conductance and heart rate, two different sensors will be put on your fingers. Please 

speak to the experimenter whenever you have questions or if you need something 
during the experiment. 
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Appendix B Observer Instructions in Experiment 2 

Part 1: Semantic Scaling 
You will be presented with a series of images. Your task is to judge which of the following words you 
would use to describe the image. 

As an example, for the "unpleasant-pleasant" pair, your answer will be either "pleasant" or "unpleasant". 
Then judge how pleasant or unpleasant the image appears to you. Please base your judgement on the scale 
given below. Make your choice for other 5 scales as you did for unpleasant-pleasant scale. 

1 2 3 4 S 6 7 8 

Unpleasant Pleasant 

9 "extremely" pleasant 
8 "very much" pleasant 
7 "moderately" pleasant 
6 "slightly" pleasant 
5 not pleasant nor unpleasant (neutral) 
4 "slightly" unpleasant 
3 "moderately" unpleasant 
2 "very much" unpleasant 
1 "extremely" unpleasant 

The definitions of six word pairs in general are given below. 

9 

Pleasant-Unpleasant 
Pleasant: enjoyable, attractive, friendly, or easy to like. 
Unpleasant: not enjoyable or pleasant. 

Arousing (Excitng)-Calming 
Arousing: to cause someone to have a Particular feeling (Excite: to cause a particular reaction). 
Calming: to stop someone feeling excited. 

Warm-cool 
Wann: having or producing a comfortably high temperature, although not hot. 
Cool: slightly cold; of a low temperature. 

Ught-heavy 
Heavy: weighing a lot; needing effort to move or lift. 
Light: weighing only a all amount; not heavy. 

Active-passive 
Active: busy in or ready to perform a particular activity. 
Passive: not acting to influence or change a situation; allowing other people to be in control. 

Like-dislike 
Like: to enjoy or approve of something or someone. 
Dislike: to not like someone or something. 
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Appendix C: Observer Instructions in Experiment 3 

Task 1: Biofeedback Recordings 
The task for this session is to wear physiological instruments to record your biofeedback including 

facial muscle activities, skin conductance and heart rate while a series of images are presented on a screen. 
To do this, you will wear three different sensors, one on your face and two on one hand. A sensor will be 
attached on your face above the left eyebrow for facial muscle activity recordings. If you have make-up on 
your forehead, it may need to be cleansed with alcohol prior to placement of the sensor. To record your skin 
conductance and heart rate, two different sensors will be placed on your fingers. You need to stay still while 
recordings being taken because your movement will affect your biofeedback responses. 

Once the experiment starts, you will need to sit in front of the screen and view the images. Then you will be 

presented with a series of images with a grey blank screen in between. 

NOTE!! Please keep in mind that you have to try to stay still without moving any part of your body 
during this experiment. Eating or drinking is not allowed during the experiment. If you need any 
assistants during the experiment, please ask the experimenter for help. 

Task 2: Semantic Scaling 
After your biofeedback recordings, the final task is to judge which of the following words you would 

use to describe the image. For images you have seen while your biofeedback responses were recorded. Only 

two scales will be used for this task: "unpleasant-pleasant" and "calming-exciting (arousing)". Please make 
your judgement on the scale given below. 

1 2 

Unpleasant 
Calming 

3 

4 

4 5 6 7 8 9 
Pleasant 

Arousing (Exciting) 

9 "extremely" pleasant 
8 "very much" pleasant 
7 "moderately" pleasant 
6 "slightly" pleasant 
5 not pleasant nor unpleasant (neutral) 
4 "slightly" unpleasant 
3 "moderately" unpleasant 
2 "very much" unpleasant 
1 "extremely" unpleasant 
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Appendix D: The source of images used in Experiment 3 

Images shown in Figure 3.28 (from top-left to bottom-right): 

http: //www. flickr. com/photos/Curtis Morton-Lowerlighter 

http: //www. flickr. com/photos/robferblue 

http: //www. flickr. com/photos/louisa_catlover 

http: //www. flickr. com/photos/kevindean 

http: //www. flickr. com/photos/phOto (loves you too) 

http: //www. flickr. com/photos/Rusty Stewart 

One selected from the privat e collection of collegues' 

One selected from the privat e collection of collegues' 

http: //www. flickr. com/photos/Andrew' 

http: //www. flickr. com/photos/hotelgrandebretagne 

http: //www. flickr. com/photos/ohdearbarb 

http: //www. flickr. com/photos/Vegaseddle 

http: //www. flickr. com/photos/Tom Carmony 

http-//Www-flickr. com/photos/angiepics 

http: //www. flickr. com/photos/stardumb 21 

http: //www. flickr. com/photos/Steve Polyak 

http: //www. flickr. com/photos/johnchas 

http: //www. flickr. com/photos/yakjake 

Images shown in Figure 3.29 (from top4eft to bottom-Nght): 

http: //www. flickr. com/photos/Curtis Morton-Lowerlighter 

http: //www. flickr. com/photos/dracorubio 

http: //www. flickr. com/photos/louisa_catiover 

ZAPS 

http: //www. flickr. com/photos/python 

http: //www. flickr. com/photos/interplast 

SHIPP (Standard High Precision Picture) collection 

One selected from the private collection of collegues' 

HP Labs 

SHIPP (Standard High Precision Picture) collection 

SHIPP (Standard High Precision Picture) collection 

http: //www. flickr. com/photos/vegaseddle 

http: //www. flickr. com/photos/tom Carmony 
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http: //www. flickr. com/photos/angiepics 

http: //www. flickr. com/photos/Rev. Xanatos Satanicos Bombasticos (ClintJCL) 

http: //www. flickr. com/photos/rockabillyboy72 

http: //www. flickr. com/photos/johnchas 

http: //www. flickr. com/photos/yakjake 
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Appendix E: Experimental Data from Experiment I (psychophysical 
data) 

Chroma manipulated 
Image pleasant calming natural like appealing Contrast median M 

1 (indoor) 1 5.90 4.79 5.69 6.00 6.14 20.21 15.83 

1 22 5.52 4.76 5.03 5.48 5.48 20.20 0.31 

1 23 4.55 4.90 3.97 4.59 4.55 20.21 12.41 

1 24 5.97 4.90 5.38 6.10 5.86 20.22 21.57 

1 25 5.41 4.41 5.07 5.38 5.03 20.40 28.34 

2 (boy) 1 4.69 4.55 4.55 4.62 4.45 23.79 19.43 

2 22 4.21 4.59 3.52 3.86 3.90 23.78 0.42 

2 23 4.28 4.66 4.45 4.14 3.93 23.78 15.32 

2 24 3.76 4.34 3.10 3.28 3.66 23.67 26.50 

2 25 4.55 4.76 4.24 4.28 4.55 22.76 30.37 

3 (fruits) 1 5.83 4.55 4.79 5.62 5.45 25.65 19.18 

3 22 4.10 4.79 2.38 3.97 4.10 25.65 0.36 

3 23 4.59 4.48 4.17 4.62 4.69 25.66 15.11 

3 24 4.83 4.17 4.59 5.17 4.66 25.67 22.88 

3 25 5.55 4.66 4.45 5.34 5.55 25.53 29.21 

4 (harbor) 1 4.10 4.69 3.90 4.03 4.07 20.74 11.98 

4 22 4.97 4.45 5.07 5.34 5.24 20.74 0.41 

4 23 5.79 4.90 5.86 5.62 5.90 20.74 6.42 

4 24 6.07 5.83 4.48 5.83 6.28 20.73 18.87 
4 25 5.59 5.72 3.90 5.59 6.00 20.85 23.81 

5 (baby) 1 5.79 4.41 5.52 5.90 5.66 18.01 29.25 

5 12 5.24 4.24 4.62 4.97 5.10 18.01 0.37 

5 13 5.14 4.28 5.00 5.00 5.03 18.34 40.27 

6 (rubbish) 1 4.97 4.10 4.17 4.72 4.79 23.38 14.84 

6 12 5.86 4.45 5.69 5.86 5.97 23.37 0.42 

6 13 5.41 4.69 5.28 5.52 5.69 23.24 27.10 

7 (horses) 1 5.34 5.31 3.90 5.10 5.59 20.12 29.35 

7 12 6.21 5.38 5.17 5.83 6.21 20.12 0.43 

7 13 4.69 5.17 3.55 4.38 4.72 19.40 39.00 

8 (family) 1 5.10 4.31 5.00 4.86 5.03 20.00 21.07 
8 12 6.24 5.24 5.24 5.90 6.41 20.01 0.37 
8 13 5.55 5.86 3.72 5.17 5.69 19.43 37.70 

11 (personall) 1 5.28 4.79 3.90 4.97 5.48 25.47 13.51 

11 12 5.83 4.72 5.69 5.86 6.00 25.47 0.36 

11 13 5.59 4.62 5.90 5.69 5.52 25.42 18.58 

12 (personal2) 1 4.90 3.97 4.41 4.90 4.69 25.05 12.65 

12 12 3.86 4.31 2.93 3.59 3.34 25.04 0.37 

12 13 4.83 5.31 3.76 4.31 4.69 25.01 16.80 
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Contrast manipulated 

image pleasant calming natural like appealing Contrast median M 

1 1 5.90 4.79 5.69 6.00 6.14 20.21 15.83 

1 26 4.93 4.97 4.00 4.86 5.14 13.30 15.84 

1 27 3.31 5.66 2.24 3.21 3.72 16.36 15.86 

1 28 5.90 4.21 5.31 5.93 5.66 22.06 3.80 

1 29 5.14 4.38 4.10 4.90 4.83 21.96 11.59 

2 1 4.69 4.55 4.55 4.62 4.45 23.79 19.43 

2 26 3.69 4.55 3.24 3.62 3.83 14.21 19.40 

2 27 4.48 4.90 3.55 4.31 4.66 19.61 19.45 

2 28 4.14 5.31 2.69 3.45 3.97 33.10 15.87 

2 29 4.38 4.97 3.10 4.07 4.07 28.88 18.96 

3 1 5.83 4.55 4.79 5.62 5.45 25.65 19.18 

3 26 6.03 4.97 4.90 5.83 6.00 9.97 19.21 

3 27 4.14 5.86 2.48 3.66 4.21 20.37 19.18 

3 28 3.83 4.45 3.28 3.66 3.52 33.33 16.74 

3 29 4.86 4.69 4.17 4.59 4.76 30.76 18.44 

4 1 4.10 4.69 3.90 4.03 4.07 20.74 11.98 

4 26 4.83 4.17 4.45 4.69 4.83 9.06 11.98 

4 27 4.21 4.31 3.72 4.48 4.28 15.98 11.99 

4 28 5.52 4.93 5.34 5.21 5.45 27.61 8.35 

4 29 5.38 4.90 4.48 4.93 5.45 24.24 11.37 

5 1 5.79 4.41 5.52 5.90 5.66 18.01 29.25 

5 14 4.72 4.38 4.00 4.48 4.72 8.61 29.24 

5 15 6.00 4.62 5.41 5.83 5.86 22.18 5.80 
6 1 4.97 4.10 4.17 4.72 4.79 23.38 14.84 

6 14 5.14 4.86 4.97 5.00 5.31 11.80 14.84 

6 15 5.31 4.31 4.79 5.17 5.28 30.69 11.64 

7 1 5.34 5.31 3.90 5.10 5.59 20.12 29.35 

7 14 6.24 5.10 5.52 6.03 6.38 10.15 29.34 

7 15 4.76 4.66 4.66 4.72 4.72 26.40 28.44 

8 1 5.10 4.31 5.00 4.86 5.03 20.00 21.07 

8 14 4.28 4.31 3.17 3.86 3.90 7.81 21.07 

8 15 5.31 4.52 4.76 5.07 5.03 27.69 19.90 

11 1 5.28 4.79 3.90 4.97 5.48 25.47 13.51 

11 14 6.17 5.62 5.62 6.10 6.21 17.78 13.52 

11 15 5.76 5.76 4.69 5.52 5.79 31.36 11.05 

12 1 4.90 3.97 4.41 4.90 4.69 25.05 12.65 

12 14 4.86 5.24 3.66 4.28 4.59 17.62 12.65 

12 15 5.93 5.14 5.90 5.76 5.76 30.66 10.56 
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Appendix F: Experimental Data from Experiment I (physiological data) 

Chroma manipulation 

Image Sc HR EMG 

1 (indoor) 1 -0114 0190 -0342 

1 22 0289 0617 0266 

1 23 0211 0.189 0610 

1 24 0.138 0.346 10.010 

1 25 0.045 0.298 -0.080 

2 (boy) 1 -0.274 0.282 0.377 

2 22 -0.158 0.239 -0.087 

2 23 -0.217 -0.214 -0.129 

2 24 0.083 0.260 -0.090 

2 25 -0.410 0.227 0.002 

3 (fruits) 1 0.440 0.137 -0523 

3 22 -0.031 0.054 0.137 

3 23 -0.338 -0.119 -0.544 

3 24 0.677 0.104 0.117 

3 25 -0.381 0.012 0.191 

4 (harbor) 1 -0.401 0.109 0.070 

4 22 0.125 -0.070 -0.019 
4 23 0.181 -0.627 -0.023 
4 24 -0.056 0.148 -0,210 
4 25 -0.205 0.103 -0.041 

5 (baby) 1 0.170 0.081 -0.226 
5 12 -0.017 0.107 0.028 

5 13 -0.182 0.029 -0.247 
6 (rubbish) 1 0.288 0.263 4.245 

6 12 0.476 0.132 01111 

6 13 -0.307 0.171 0.021 

7 (horses) 1 -0.252 0264 -0.131 

7 12 0.018 -0287 0.106 

7 13 -0.138 0.195 0.066 

8 (family) 1 0.045 0.136 -0.033 
8 12 -0.079 0.199 -0384 

g 13 -0.278 0.069 -0131 

11 1 0.441 0.309 -0.012 (personsil) 

11 12 0.309 0323 -0.059 
11 13 0.740 0.278 -0.123 
12 1 0.105 4269 -0.042 

(ptrsonil2) 

12 12 0 191 0.280 -0242 

12 13 0089 0349 4074 
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Contrast manipulated 
image SC HR EMG 

1 1 -0.214 0.290 -0.342 

1 26 -0.289 0.159 0.254 

1 27 -0.150 -0.605 -0.017 

1 28 -0.518 0.324 -0.338 

1 29 0.398 0.266 -0.327 

2 1 -0.274 0.282 0.377 

2 26 -0.125 -0.044 0.077 

2 27 -0.155 -0.508 -0.132 

2 28 -0.101 -1.097 0.416 

2 29 -0.345 -0.126 0.200 

3 1 0.440 0.137 -0.523 

3 26 0.048 -0.132 -0.440 

3 27 0.150 0.007 0.201 

3 28 -0.218 -0.096 0.256 

3 29 -0.527 -0.005 0.229 

4 1 -0.401 0.109 0.070 

4 26 -0.149 -0.092 0.139 

4 27 0.125 -0.624 0.010 

4 28 -0.458 -0.253 0.022 

4 29 -0.197 0.142 0.342 

5 1 0.170 0.081 -0.228 

5 14 -0.167 0.147 0.202 

5 15 -0.011 0.137 -0.044 

6 1 0.288 0.263 -0.245 

6 14 -0.018 -1.147 -0.133 

6 15 -0.034 -0.173 0.192 

7 1 -0.252 0.264 -0.131 

7 14 -0.139 0.164 -0.207 

7 15 0.143 0.025 -0.055 

8 1 0.045 0.136 -0.033 

8 14 0.104 0.015 -0.135 

8 15 -0.010 0.091 -0.602 

11 1 0.441 0.309 -0.012 

11 14 0.110 0.254 -0.051 

11 15 0.690 0.179 0.101 

12 1 0.105 -0.269 . 0.042 

12 14 0.436 0.030 -0.057 

12 15 1.069 0.320 -0.026 
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Appendix G: Experimental Data from Experiment 2 

Chroma manipulated 
image active heavy warm like pleasant exciting Median J' contrast (std J') Median M' 

1 (boy) 101 4.59 5.88 5.59 6.06 6.24 5.06 57.29 23.79 17.36 
1 112 3.25 5.19 4.25 5.00 4.81 3.38 57.29 23.78 0.47 
1 113 3.53 5.12 4.41 4.29 4.29 3.59 57.28 23.79 8.83 
1 114 3.50 5.88 4.63 5.13 4.81 3.94 57.30 23.78 13.69 
1 115 5.47 5.71 5.88 6.12 6.29 5.12 57.29 23.78 20.02 
1 116 5.59 5.29 6.06 6.06 6.18 5.65 57.44 23.67 23.32 
1 117 6.00 4.47 5.94 4.88 5.41 5.88 58.32 22.96 26.09 

2 (harbor) 201 6.31 5.44 5.13 6.50 6.88 5.88 46.24 20.74 13.99 
2 212 3.59 4.18 4.00 4.71 5.00 3.76 46.24 20.74 0.44 
2 213 3.69 3.94 3.81 4.56 4.38 3.75 46.25 20.74 7.10 
2 214 4.82 4.29 4.47 5.47 5.00 4.47 46.24 20.74 11.04 
2 215 6.88 5.12 6.29 6.71 6.47 6.00 46.25 20.74 16.16 
2 216 6.71 5.00 6.35 6.12 6.41 6.41 46.30 20.73 19.01 
2 217 6.94 5.06 6.53 5.06 5.76 6.06 46.63 20.76 21.99 

3 (skydivers) 301 7.47 6.53 4.65 7.35 7.41 7.41 74.43 19.25 10.85 
3 312 5.63 5.44 4.00 6.25 6.31 6.13 74.43 19.24 0.47 
3 313 5.76 5.76 3.71 5.29 5.18 5.71 74.43 19.24 5.43 
3 314 6.67 6.27 4.20 6.73 6.60 6.40 74.43 19.25 8.51 
3 315 7.35 6.24 4.53 6.82 7.06 7.41 74.44 19.22 13.00 
3 316 7.24 5.53 5.24 6.59 6.76 7.18 74.46 19.19 15.36 
3 317 6.88 5.47 5.59 5.71 6.24 6.82 74.47 19.13 17.85 

5 (couple) 501 6.69 6.25 4.75 7.00 7.38 6.69 60.18 17.57 19.65 
5 512 5.06 5.47 4.47 5.71 6.12 4.88 60.18 17.57 0.46 
5 513 5.00 5.65 4.35 5.53 5.71 4.94 60.18 17.57 10.27 
5 514 5.76 6.35 5.06 6.41 6.47 5.12 60.18 17.57 15.69 
5 515 6.59 5.53 5.71 6.29 6.65 6.24 60.20 17.55 21.76 
5 516 6.53 4.87 6.00 5.53 6.07 6.60 60.35 17.50 24.18 
5 517 6.31 4.06 6.38 5.06 4.94 6.88 60.70 17.43 26.43 

6 (roach) 601 4.38 4.19 6.06 3.13 2.69 5.88 71.60 29.20 12.96 
6 612 2.94 4.47 4.35 3.12 3.12 4.71 71.57 29.17 0.61 
6 613 3.31 4.50 4.56 2.63 2.56 5.25 71.57 29.18 6.79 
6 614 3.69 5.25 4.81 2.44 2.56 5.69 71.59 29.20 10.34 
6 615 4.63 4.25 6.13 2.63 2.63 5.88 71.60 29.14 14.76 
6 616 4.63 3.56 6.88 2.56 2.38 6.19 71.71 28.92 16.87 
6 617 4.69 3.50 7.06 2.44 2.19 6.38 71.91 28.55 19.10 

7 (leopard) 701 6.06 3.69 4.44 3.19 3.06 6.19 43.78 26.91 8.70 
7 712 5.06 4.53 3.71 4.00 4.00 4.82 43.77 26.90 0.42 
7 713 5.19 4.69 4.63 3.31 3.06 5.50 43.78 26.90 4.29 
7 714 5.59 4.29 4.82 3.65 3.41 5.94 43.78 26.91 6.79 
7 715 6.35 3.94 5.06 3.29 3.35 6.82 43.78 26.91 10.51 
7 716 6.47 3.71 5.88 3.41 3.00 7.06 43.79 26.91 12.47 
7 717 6.50 3.38 6.00 2.88 2.56 7.19 43.81 26.90 14.47 

8 (injury) 801 3.65 3.88 5.65 2.65 2.59 5.47 50.85 25.37 20.20 
8 812 2.94 3.59 4.41 2.94 3.00 4.53 50.85 25.37 0.42 
8 813 3.18 4.06 4.29 2.82 2.88 5.76 50.85 25.37 10.68 
8 814 3.53 3.06 4.53 2.65 2.59 5.12 50.85 25.38 16.20 
8 815 3.44 3.13 5.88 2.13 2.06 5.94 50.85 25.38 21.65 
8 816 4.31 2.81 6.31 2.19 2.19 6.56 50.86 25.37 23.02 
8 817 3.94 2.31 6.50 1.88 2.06 6.63 50.90 25.36 24.84 

9 (baby) 901 5.65 5.94 5.47 7.12 7.18 5.88 53.31 25.70 12.43 
9 912 4.47 5.00 4.88 6.24 5.76 4.59 53.31 25.69 0.42 
9 913 4.41 4.88 4.24 5.65 5.94 4.65 53.31 25.70 6.27 

9 914 5.71 5.59 4.82 6.41 6.47 5.29 53.31 25.70 9.78 
9 915 6.41 6.12 5.47 7.35 7.29 5.76 53.33 25.69 14.80 
9 916 6.12 5.59 5.94 6.94 6.88 6.12 53.37 25.64 17.24 

9 917 5.71 4.35 5.71 5.18 5.71 5.76 53.48 25.50 19.70 
10 (family) 1001 5.93 6.73 5.93 7.40 7.60 6.27 72.54 20.00 18.65 

10 1012 4.29 6.35 5.29 6.71 6.71 4.29 72.54 20.01 0.39 

10 1013 4.71 6.29 4.88 6.00 6.12 4.59 72.54 20.00 9.65 
10 1014 5.00 6.59 5.41 7.06 6.88 5.00 72.54 20.00 14.84 
10 1015 6.18 6.41 6.06 7.65 7.65 5.65 72.59 19.96 21.32 
10 1016 5.94 5.41 6.35 6.06 6.35 5.65 72.78 19.85 24.70 
10 1017 6.13 4.06 6.69 4.81 5.06 6.31 73.14 19.68 27.95 
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image active heavy warm like pleasant exciting Median J' contrast (std J') Median M' 
11 (personal) A01 5.41 5.94 5.59 6.29 6.47 5.06 69.52 23.91 16.82 

11 A12 3.88 4.81 4.44 5.50 5.00 4.19 69.52 23.90 0.40 
11 A13 4.18 5.35 4.29 5.24 5.00 4.24 69.52 23.91 8.71 
11 A14 5.00 5.81 5.25 6.13 6.38 4.81 69.52 23.91 13.38 
11 A15 5.82 5.41 6.29 6.29 6.65 5.76 69.51 23.89 18.86 
11 A16 5.76 4.88 6.41 5.00 5.71 5.71 69.53 23.84 20.85 

Contrast manipulated 
Image active heavy warm like pleasant exciting Median J' contrast (std J') Median M' 

1 101 4.59 5.88 5.59 6.06 6.24 5.06 57.29 23.79 17.36 
1 118 4.24 6.24 5.00 4.53 4.35 4.18 61.95 16.26 17.36 
1 119 4.75 6.06 5.19 5.38 5.31 4.69 60.25 19.61 17.35 
1 120 5.06 6.50 4.88 5.50 5.56 4.50 58.91 21.48 17.36 
1 121 3.59 3.00 4.24 4.29 4.18 4.47 49.30 35.20 13.50 
1 122 4.38 4.69 4.50 5.13 4.81 4.56 51.29 30.92 16.30 
1 123 5.12 5.59 5.35 5.94 5.71 4.35 55.35 26.38 17.37 

2 201 6.31 5.44 5.13 6.50 6.88 5.88 46.24 20.74 13.99 
2 218 3.94 5.12 4.65 3.53 4.12 4.24 53.89 12.23 13.99 
2 219 4.18 4.65 4.47 4.12 4.00 4.53 50.73 15.98 14.01 
2 220 5.06 5.06 4.88 5.31 5.13 4.81 48.67 18.11 13.99 
2 221 5.06 2.65 4.41 4.24 4.06 4.88 39.30 25.93 13.02 
2 222 5.31 3.38 4.88 5.25 5.13 5.31 42.07 24.24 13.84 
2 223 6.06 4.53 5.35 6.18 6.35 5.53 43.87 23.04 14.06 
3 301 7.47 6.53 4.65 7.35 7.41 7.41 74.43 19.25 10.85 
3 318 6.24 6.06 4.41 5.76 5.71 6.24 72.41 14.03 10.86 
3 319 6.65 6.29 4.12 6.35 6.18 6.71 73.65 16.47 10.85 
3 320 7.31 6.94 4.88 7.13 7.19 7.38 73.99 17.77 10.85 
3 321 7.31 5.63 5.06 7.00 6.94 7.44 77.12 21.99 10.70 
3 322 6.81 6.00 4.69 6.56 6.81 7.19 75.57 20.75 10.80 
3 323 7.25 6.38 5.00 7.31 7.19 7.25 75.05 20.12 10.82 
5 501 6.69 6.25 4.75 7.00 7.38 6.69 60.18 17.57 19.65 
5 518 5.59 5.53 4.82 4.71 5.12 5.06 62.15 10.65 19.65 
5 519 5.82 6.12 5.29 5.71 6.12 5.41 61.51 13.72 19.65 
5 520 6.38 5.81 5.00 6.25 6.38 6.25 60.86 15.45 19.65 
5 521 5.94 4.18 4.82 5.82 5.88 6.00 57.10 28.12 18.28 
5 522 6.47 5.29 5.59 6.35 6.71 6.41 57.21 23.48 19.20 
5 523 6.59 5.82 5.47 6.94 7.18 6.35 59.38 19.81 19.62 
6 601 4.38 4.19 6.06 3.13 2.69 5.88 71.60 29.20 12.96 
6 618 4.47 4.53 5.13 2.87 2.40 4.80 73.93 22.17 12.96 
6 619 4.33 4.73 5.47 2.40 2.73 5.47 73.19 25.19 12.96 
6 620 4.33 4.40 5.80 2.73 2.73 5.20 72.48 26.99 12.96 

6 621 3.60 2.47 5.13 2.27 2.27 5.87 70.02 35.53 10.07 
6 622 4.33 2.87 6.07 2.47 2.60 6.00 69.74 33.48 11.49 
6 623 4.29 3.14 6.50 2.57 2.57 6.14 70.76 31.24 12.65 
7 701 6.06 3.69 4.44 3.19 3.06 6.19 43.78 26.91 8.70 
7 718 5.35 4.47 4.71 2.94 3.06 6.29 53.41 17.08 11.72 
7 719 5.59 4.12 4.59 3.18 2.82 5.71 49.38 21.05 11.72 
7 720 5.88 4.41 5.06 3.41 3.24 5.47 46.78 23.33 11.71 
7 721 6.13 2.81 5.00 3.31 3.31 6.69 36.04 32.16 10.09 
7 722 6.60 3.67 5.47 3.13 2.73 6.80 38.20 30.48 11.44 

7 723 6.29 3.71 5.82 3.76 3.35 6.65 40.29 28.97 11.56 
8 801 3.65 3.88 5.65 2.65 2.59 5.47 50.85 25.37 20.20 
8 818 3.44 4.06 5.63 2.25 2.13 5.63 57.14 15.45 20.20 
8 819 3.18 3.76 5.47 2.29 2.47 5.35 54.68 19.87 20.20 
8 820 3.44 3.88 5.13 2.44 2.31 5.81 52.95 22.34 20.20 

8 821 3.59 2.00 6.06 1.82 1.76 6.47 45.91 32.81 18.73 
8 822 3.65 2.47 5.94 2.29 2.00 6.24 47.10 30.42 19.81 
8 823 3.33 2.80 5.47 2.20 1.80 6.07 48.71 28.35 20.09 

9 901 5.65 5.94 5.47 7.12 7.18 5.88 53.31 25.70 12.43 
9 918 4.63 5.94 4.81 5.31 5.63 4.56 58.45 15.56 12.44 
9 919 4.82 5.76 4.76 5.88 5.65 4.47 56.46 20.07 12.43 

9 920 5.41 5.82 4.82 6.29 6.24 4.94 55.02 22.59 12.44 
9 921 5.06 3.81 4.56 5.63 5.56 5.38 50.37 32.75 11.55 
9 922 5.24 4.59 5.35 6.18 6.35 5.59 50.71 30.39 12.25 
9 923 6.12 5.24 5.24 7.00 7.12 5.71 51.66 28.64 12.40 
10 1001 5.93 6.73 5.93 7.40 7.60 6.27 72.54 20.00 18.65 
10 1018 4.94 6.12 5.29 6.00 5.88 4.88 71.04 13.71 18.65 
10 1019 5.18 6.88 5.65 6.59 6.88 5.24 72.10 16.58 18.65 
10 1020 5.41 6.71 5.71 7.06 7.18 5.59 72.30 18.14 18.66 
10 1021 5.31 5.13 5.13 5.56 5.88 5.06 75.71 26.85 17.78 
10 1022 5.94 5.88 6.00 7.06 7.12 5.88 72.99 24.38 18.30 

Image active heavy warm like pleasant exciting Median J' contrast (std J') Median M' 
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10 
11 
ii 
ii 
ii 
ii 
ii 
ii 

1023 
A01 
A17 
A18 
A19 
A20 
A21 
A22 

Lightness manipulated 

6.12 6.53 6.12 7.24 7.53 
5.41 5.94 5.59 6.29 6.47 
4.38 5.38 5.19 4.88 4.81 
4.59 5.71 5.12 5.12 5.24 
4.63 5.19 5.31 5.31 5.13 
4.59 3.41 5.59 4.71 4.59 
5.12 4.24 5.35 5.88 5.82 
5.71 5.06 5.53 6.29 6.35 

6.00 
5.06 
4.81 
4.71 
4.88 
5.00 
5.53 
5.94 

72.75 
69.52 
70.36 
70.05 
69.81 
68.97 
69.12 
69.20 

21.89 
23.91 
18.13 
19.89 
21.71 
28.45 
27.42 
26.07 

18.63 
16.82 
16.82 
16.82 
16.82 
16.39 
16.64 
16.78 

image active heavy warm like pleasant exciting Median J' contrast (std J') Median M' 
1 101 4.59 5.88 5.59 6.06 6.24 5.06 57.29 23.79 17.36 
1 124 4.80 6.47 5.27 5.40 5.47 4.27 63.69 20.68 13.86 
1 125 4.41 6.59 5.06 5.82 5.47 4.71 69.90 17.31 12.71 
1 126 4.88 5.44 5.94 5.38 5.69 4.69 51.41 26.18 14.28 
1 127 4.12 3.82 5.65 4.76 4.76 4.41 43.21 27.96 13.41 
2 201 6.31 5.44 5.13 6.50 6.88 5.88 46.24 20.74 13.99 
2 224 5.47 5.47 5.12 6.12 6.00 4.76 52.42 21.21 11.64 
2 225 5.35 5.94 5.47 6.00 5.76 4.94 58.68 21.13 11.39 
2 226 5.41 4.29 5.18 5.88 5.88 5.29 40.55 19.98 11.89 
2 227 5.06 3.31 5.19 5.13 4.69 4.94 31.40 17.91 11.26 
3 301 7.47 6.53 4.65 7.35 7.41 7.41 74.43 19.25 10.85 
3 324 7.00 7.06 4.44 7.06 7.31 7.31 78.04 18.36 8.16 
3 325 6.81 6.50 4.75 6.75 6.88 7.00 81.27 17.58 7.76 
3 326 7.13 6.06 4.44 6.94 7.06 6.81 70.71 20.23 9.04 
3 327 6.50 4.63 5.00 5.75 6.25 6.69 63.39 22.32 9.92 
5 501 6.69 6.25 4.75 7.00 7.38 6.69 60.18 17.57 19.65 
5 524 6.44 6.56 4.88 6.69 6.69 6.25 66.19 16.12 17.05 
5 525 5.59 6.59 5.00 5.59 6.06 5.47 71.79 14.36 15.98 
5 526 6.71 5.71 4.94 6.53 6.82 6.18 54.47 18.81 18.81 
5 527 5.59 3.94 4.47 5.00 5.24 5.18 44.60 19.61 18.70 
6 601 4.38 4.19 6.06 3.13 2.69 5.88 71.60 29.20 12.96 
6 624 4.12 4.18 5.65 2.29 2.47 5.65 74.65 27.20 13.05 
6 625 3.94 5.50 5.50 3.13 2.44 6.00 77.88 24.80 13.02 
6 626 4.63 4.13 6.00 2.63 2.94 5.63 68.52 30.98 12.68 
6 627 4.00 2.87 5.53 2.33 2.33 5.80 63.48 33.44 11.75 
7 701 6.06 3.69 4.44 3.19 3.06 6.19 43.78 26.91 8.70 
7 724 4.94 5.24 5.06 3.18 3.06 5.65 49.14 26.12 8.99 
7 725 5.18 4.65 4.76 3.35 3.24 5.88 55.50 24.36 9.31 
7 726 6.47 3.88 5.00 3.53 3.12 6.65 39.31 27.14 7.87 
7 727 6.12 3.65 4.53 3.18 3.00 6.53 34.14 26.99 7.06 
8 801 3.65 3.88 5.65 2.65 2.59 5.47 50.85 25.37 20.20 
8 824 3.19 4.25 5.31 2.56 2.44 5.63 56.48 24.38 19.35 
8 825 3.06 4.06 5.50 2.38 2.31 5.38 62.71 22.23 18.84 
8 826 3.47 2.88 5.88 2.47 2.24 6.06 46.39 25.50 19.12 
8 827 3.76 2.29 6.41 2.06 2.06 5.94 40.63 24.96 18.43 
9 901 5.65 5.94 5.47 7.12 7.18 5.88 53.31 25.70 12.43 
9 924 5.71 6.12 5.59 6.71 6.94 5.12 58.35 25.29 11.32 
9 925 5.88 6.47 5.47 6.76 6.65 4.76 63.79 23.93 11.06 
9 926 5.81 5.38 5.88 6.50 6.63 5.44 48.69 25.59 11.09 
9 927 5.50 4.44 5.06 6.00 5.94 5.38 41.06 24.31 10.78 
10 1001 5.93 6.73 5.93 7.40 7.60 6.27 72.54 20.00 18.65 
10 1024 5.63 6.94 5.63 7.19 7.19 5.69 76.46 18.37 17.23 
10 1025 5.31 7.00 5.81 7.44 7.31 5.06 80.18 16.40 16.40 
10 1026 6.12 6.41 6.35 7.71 7.82 5.6S 68.65 21.26 18.54 
10 1027 5.88 5.19 6.69 7.13 7.06 5.69 63.03 22.57 19.13 
11 A01 5.41 5.94 5.59 6.29 6.47 5.06 69.52 23.91 16.82 
11 A23 5.65 6.18 6.12 6.71 6.59 5.47 72.90 22.52 15.02 
11 A24 4.94 6.06 5.47 5.71 5.88 4.88 76.01 21.00 14.85 
11 A25 5.24 4.88 5.94 6.24 6.24 5.24 65.38 25.12 15.26 
11 A26 4.88 3.56 5.44 5.38 5.19 4.81 61.33 26.13 15.22 
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Appendix H: Experimental Data of Experiment 3 

Image number from 1 to 18: from top left to bottom right in Figure 3.28 

Image number from 19 to 36: from top left to bottom right in Figure 3.29 
image level SC HR EMG image level Sc HR EMG 

1 achromatic -0.378 -0.312 -0.465 19 low contrast -0.234 0.060 0.147 

2 achromatic -0.571 0.186 -0.161 20 low contrast -0.492 0.327 -0.079 
3 achromatic -0.099 0.336 -0.028 21 low contrast 0.475 0.096 0.142 
4 achromatic -0.398 -0.129 -0.156 22 low contrast -0.161 -0.133 0.058 

5 achromatic 0.425 0.187 0.085 23 low contrast -0.298 0.026 0.052 
6 achromatic -0.085 -0.687 0.072 24 low contrast -0.441 0.271 -0.074 
7 achromatic -0.014 0.357 0.095 25 low contrast 1.045 -1.502 -0.177 
8 achromatic 0.463 0.223 0.571 26 low contrast 0.118 -0.691 0.023 
9 achromatic -0.106 0.243 0.728 27 low contrast -0.105 -1.379 -0.021 
10 achromatic -0.225 0.280 -0.001 28 low contrast -0.509 0.212 -0.089 
11 achromatic -0.125 0.198 0.198 29 low contrast -0.170 0.205 0.257 
12 achromatic -0.219 0.199 0.071 30 low contrast -0.018 -1.536 0.129 
13 achromatic -0.215 0.122 -0.114 31 low contrast -0.013 -0.264 -0.059 
14 achromatic -0.246 0.300 -0.617 32 low contrast 0.069 0.177 -0.213 
15 achromatic -0.151 0.171 0.201 33 low contrast -0.278 0.250 0.216 
16 achromatic -0.348 0.437 0.011 34 low contrast -0.052 0.286 0.077 
17 achromatic 0.237 0.104 -0.675 35 low contrast 0.115 0.255 0.803 
18 achromatic -0.577 0.130 -0.117 36 low contrast -0.215 0.287 0.484 

personal achromatic -0.007 0.202 0.464 personal low contrast 0.214 0.077 0.011 

1 chromatic 0.280 0.353 -0.015 19 high contrast 0.144 -0.053 0.186 
2 chromatic -0.239 -0.019 -0.257 20 high contrast 0.442 -0.333 -0.291 
3 chromatic 0.597 0.154 -0.049 21 high contrast -0.112 0.287 -0.162 
4 chromatic -0.489 0.284 0.220 22 high contrast -0.085 -0.625 0.239 

5 chromatic -0.438 0.250 0.082 23 high contrast -0.211 0.195 -0.126 
6 chromatic 0.297 0.037 0.240 24 high contrast 0.264 -0.090 -0.174 
7 chromatic -0.277 0.181 -0.504 25 high contrast 0.544 0.108 -0.022 
8 chromatic 0.169 -0.722 0.083 26 high contrast -0.346 0.270 -0.106 
9 chromatic -0.270 0.200 0.016 27 high contrast -0.340 0.230 -0.061 
10 chromatic -0.359 -0.189 -0.265 28 high contrast 0.117 0.239 0.222 

11 chromatic 0.158 0.297 0.295 29 high contrast 0.077 0.144 -0.368 
12 chromatic 0.228 -1.865 0.327 30 high contrast 0.014 -0.061 0.109 

13 chromatic 1.754 0.063 -0.195 31 high contrast -0.344 0.141 -0.264 
14 chromatic 0.978 0.002 0.091 32 high contrast 0.258 0.195 -0.609 
15 chromatic 0.152 0.352 -0.306 33 high contrast 0.120 0.193 0.135 

16 chromatic 0.207 -0.497 -0.029 34 high contrast -0.218 0.115 0.190 

17 chromatic 0.512 0.273 0.313 35 high contrast 0.656 0.330 -0.009 
18 chromatic -0.251 0.072 0.073 36 high contrast 0.059 0.061 0.202 

personal chromatic 0.347 -0.029 0.006 personal high contrast 0.008 0.273 -0.009 
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