
Assuring Agent Interaction

through Run-time Monitoring

and Control

Nora Ahmed Aldahash

Doctor of Philosophy

University of York

Computer Science

July 2023

Abstract

A multiagent system (MAS) is composed of autonomous agents that in-

teract and exist in a shared environment. A fundamental aspect of multia-

gent systems is the communication that drives collaboration and cooperation

among agents. Verification of agent communication is key to predictable and

efficient interaction. Verification techniques of agent interaction have mostly

been applied during design time. However, a multiagent system environment

is inherently complex and presents challenges such as the heterogeneity of

agents and the dynamic nature of the environment. To address such chal-

lenges, run-time approaches are needed to complement design time verifica-

tion. This thesis presents a run-time monitoring and control approach for

improving agent communication, where the environment takes a supervisory

role through a Governing Agent (GA). The role of the governing agent is

to minimise the negative effects of issues in interaction through monitoring

and control. Run-time monitoring of interaction of agents is modeled with

an Interaction Petri net (IPN). The proposed Petri net model allows the de-

tection of common undesired scenarios such as protocol delay, lost messages,

busy-wait, transmission delay, and agent termination. When scenarios are

detected, control actions are taken by the governing agent. The proposed

approach is evaluated with an experimental analysis and has been shown

to minimise the negative effect of undesired interaction scenarios. The GA

successfully detects issues in communication and apply control actions of

interaction in two different classes of case studies. The first case study is

a multiagent treasure hunt with collaborative interaction, while the second

presents a competitive interaction demonstrated by an auction. Furthermore,

a comparative analysis with a prior Petri net model of interaction is carried

out to highlight the strengths and limitations of the new IPN model.

Contents

1 Introduction 12

1.1 Assuring Agent Interaction . 13

1.2 Contributions . 14

1.3 Thesis Structure . 17

2 Literature Review 19

2.1 Introduction . 19

2.2 Background and Related Work 20

2.2.1 Agent Communication 20

2.2.2 Verifying Agent Interaction 29

2.2.3 Discussion . 32

2.3 Petri Net Models of MAS . 35

2.3.1 Design Time Models 38

2.3.2 Run-time Models . 41

2.3.3 Discussion . 42

2.4 Summary . 43

3 Agent Interaction Monitoring and Control 45

3.1 Interaction Petri Net (IPN) 46

3.2 Governing Agent . 60

3.2.1 Detection and Control 60

3.3 Case Studies . 62

2

3.3.1 Treasure Hunt Case Study 63

3.3.2 Auction Case study . 70

3.4 Summary . 73

4 Evaluation 75

4.1 Detection Evaluation . 77

4.1.1 Treasure Hunt . 77

4.1.2 Auction . 79

4.1.3 IPN Comparison Analysis 82

4.2 Control Evaluation . 87

4.2.1 Treasure Hunt . 88

4.2.2 Auction . 91

4.3 Summary . 94

5 Distributed IPN 96

5.1 Introduction . 97

5.2 Distributed Approach . 98

5.3 Evaluation . 100

5.3.1 Treasure Hunt . 100

5.3.2 Auction . 103

5.4 Summary . 107

6 Conclusion 109

6.1 Contributions . 110

6.2 Limitations . 112

6.3 Future Work . 113

6.4 Concluding Thoughts . 116

3

List of Tables

2.1 Sample of performatives provided by KQML 21

2.2 Sample of performatives provided by FIPA CL 22

2.3 Message structure of KQML and FIPA CL 22

2.4 Summary of Petri net models of Multi-Agent Systems: 1.

MAS aspect refers to target of verification. 2. Phase of the

life cycle: Analysis and Design (A&D), testing, run-time. 3.

Petri net type. 4. Petri net-based technique for verification.

NA refers to not applied . 39

3.1 A conversation example of the CNP protocol between agent

A as an initiator and agent B as a participant 55

3.2 CNP protocol message flow between agents and IPN marking

updates . 55

3.3 A conversation example of the CNP protocol between agent C

as an initiator and agent B as a participant. 59

3.4 A conversation example of the Request protocol between agent

B as an initiator and agent D as a participant. 59

3.5 A conversation example of Request Collector protocol between

Explorer and Collector. 68

3.6 A conversation example of Request Tanker protocol between

Collector and Tanker. 68

4.1 Treasure Hunt detection results 78

4

4.2 Detection results summary of 100 runs 79

4.3 Summary of results of ten runs showing the number of CFPs

sent from the auctioneer to each participant, number of CFP

delays detected, number of bids received by the auctioneer and

acceptance rate of each participant. The winner of each run

is highlighted in gray . 81

4.4 Treasure Hunt control results 89

4.5 Control results summary of 100 runs 89

4.6 Summary of results of ten runs with GA control showing the

number of CFPs sent from the auctioneer, number of CFP

delays detected, number of processed delays, number of bids

received by the auctioneer and acceptance rate of each partic-

ipant. The winner of each run is highlighted in gray 92

5.1 Treasure Hunt detection results 101

5.2 Detection results summary of 100 runs 101

5.3 Treasure Hunt control results 102

5.4 Control results summary of 100 runs 102

5.5 Summary of results of ten runs showing the number of CFPs

sent from the auctioneer, number of CFP delays detected,

number of bids received by the auctioneer and acceptance rate

of each participant. The winner of each run is highlighted in

gray . 105

5.6 Summary of results of ten runs with GA control showing the

number of CFPs sent from the auctioneer, number of CFP

delays detected, number of processed delays, number of bids

received by the auctioneer and acceptance rate of each partic-

ipant. The winner of each run is highlighted in gray 106

5

6

List of Figures

1.1 Monitoring and control cycle: 1. Detection takes the IPN

marking as input. 2. Control action is based on detection

output. 15

2.1 FIPA Contract Net Interaction protocol 23

2.2 An illustration of a transition: (a) The marking before tran-

sition t (b) The marking after firing t. The number over an

arc presents the weight of the arc. An empty arc indicates a

weight of 1. 36

2.3 Petri net: (a) Initial marking (b) Reachability graph 37

3.1 The first step is creating places A1 and A2. 49

3.2 The second step is to add transitions t1, t2 and the connecting

arcs. 50

3.3 The MSG colour set. 50

3.4 Complete IPN with places,transitions, arcs, guards, and an

assigned colour set. 52

3.5 IPN of agent A and B . 54

3.6 IPN of agents A,B and C. 56

3.7 FIPA Request protocol. 57

3.8 IPN of agents A,B,C and D. 58

7

3.9 Treasure hunt environment, showing the placement of trea-

sure depicted as treasure chests, well nodes depicted as black

circles, and three kinds of agent depicted with different colours. 65

3.10 Request Collector Interaction Protocol 66

3.11 Request Tanker Interaction Protocol 67

3.12 Warning Interaction Protocol 67

3.13 An example of an IPN in the Treasure hunt case study with

three agents: Explorer, Collector and Tanker. 70

3.14 FIPA English Auction . 72

4.1 FIPA Contract Net Interaction protocol in an SPN(a), and in

an IPN(b). 83

4.2 The SPN model of Request Collector Protocol 84

4.3 Processing time of SPN and IPN in detection of Lost message,

Busy-wait, and IP delay in the Treasure hunt case study . . . 86

4.4 Processing time of SPN and IPN in detection of message delay

in the Auction case study . 88

4.5 Rates of completed IPs with and without GA control. 90

4.6 Rates of terminated agents with and without GA control. . . . 90

4.7 Delay rates in Accepted CFPs with no GA control 93

4.8 Delay rates in Rejected CFPs with no GA control 94

5.1 Peer-to-peer architecture with GA 98

5.2 Marking update . 100

8

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Professor Steve

King, for his invaluable support, guidance, and encouragement throughout

the course of this doctoral research. His constructive feedback and assistance

have been instrumental in the completion of this thesis.

I am also thankful to my examiners, Dr. Rob Alexander and Professor

Brian Logan, whose insights and suggestions have contributed to strength-

ening this work.

I would like to thank Dr. Abir Najjar for her thoughtful observations and

continuous encouragement throughout this journey. I also thank Dr. Daniel

Kudenko for his guidance and support during the first year of my research.

I am endlessly grateful to my family. To my mother, Alanoud, your

strength has always inspired me. To my sisters, Fahdah and Munira, I am

truly grateful for your presence and for being there in all the ways that

truly mattered. To my brothers Thamir, Fahad and Salman, thank you for

your constant support. Salman, your advice has meant more than words can

express.

To my partners in this journey, my husband Marwan, whose unwavering

support and understanding have carried me through, my daughters Yara and

Rund, and my sons Abdulrahman and Salman, thank you all for being your

wonderful selves. This thesis would not have been possible without you.

10

Declaration

I declare that this thesis is a presentation of original work and I am the sole

author. This work has not previously been presented for an award at this,

or any other, University. All sources are acknowledged as References.

11

Chapter 1

Introduction

Multiagent systems (MAS) are composed of multiple interacting intelligent

agents that interact and make decisions to achieve their goals. Communi-

cation among agents is a fundamental aspect that drives coordination and

cooperation. Currently, MAS have become more prevalent and there is a

notable increase in systems that involve multiple agents interacting and co-

ordinating to accomplish tasks, such as disaster area rescue, robotics and

e-commerce.

The risks of an intelligent system are exposed by multiple challenges im-

posed by the autonomy of agents and their ability to make decisions indepen-

dently. Therefore, there is uncertainty in agent behaviour that poses robust-

ness and predictability issues. These challenges are further pronounced and

more complex in the instances of multiagent coordination and cooperation.

Verification of agent communication has always been an important topic

in the field of multiagent systems. More specifically, there has been interest

in issues relating to faults in interaction that can effect the reliability of

MAS [13]. Although numerous studies have been undertaken to investigate

faults in agent communication, there is a need to further analyse runtime

verification of the interactions of multi-agent systems [8]

A goal of verifying agent interaction is to ensure complete and correct

12

protocol enactment. A protocol is a sequence of interaction between different

roles that agents can play with expected end points. A Successful protocol

is when the messages exchanged follow the defined flow and reach an end

point. However, complete interaction faces challenges such as dynamic open

environments, asynchronous communication, and network delays.

A possible approach to resolving problems arising from agent interaction

is through supervisory control for ensuring correct interaction. A supervi-

sor role usually involves verification of requirements during run-time. This

project aims to build upon this approach through a governing agent over a

multi-agent system that is able to intervene in problematic situations. An-

other focus of this work is generating a model of multi-agent interaction using

Petri nets for the governing agent.

This work proposes a model of multi-agent interaction using Petri nets

to enable supervision of agent communication. Generating a model that

captures multiple instances of a protocol but also models different protocols

is a key objective for supervision. This objective helps in obtaining a holistic

view on agent interactions in a multiagent system as agents are expected in

multiagent environments to engage in different protocols and conversations

simultaneously.

1.1 Assuring Agent Interaction

Run-time verification deals with techniques that allow checking whether an

execution of a system satisfies or violates a given correctness property, as de-

fined by [43]. An advantage here is that agents can be continuously verified

while executing in their applied environment, which is key to fault contain-

ment and recovery. Existing run-time approaches to interaction verification

vary in the properties they verify, and there has been work targeting commu-

nication languages [47], message structure [30], message sequence [34], and

collaborative properties [44].

13

Faults in agent communication can have implications on the overall be-

haviour of agents and their goals. There are certain common scenarios in

agent communication which effect multiple protocols simultaneously and con-

sequently impact agents in completing their tasks. One approach to improve

protocol enactment during runtime is to anticipate undesired scenarios that

would cause faults of interaction.

A goal of this thesis is to detect undesired scenarios of interaction that

happen in a MAS environment. To achieve this, the complete status of

concurrent interaction should be monitored. This work builds on previous

research on Petri net models of communication, and proposes the Interaction

Petri net (IPN) for online monitoring to further explore Petri nets’ efficiency

during run-time [54] [57].

Previous Petri net models of interaction have focused on protocol-specific

models which provide partial monitoring of communication [20] [35] [54].

In contrast, the proposed IPN defines a protocol as a Petri net marking

to handle the monitoring of simultaneous conversations and protocols. In

addition, marking analysis facilitates the detecting of undesired scenarios in

interaction and gives access to message content being exchanged.

Monitoring and control hold potential if corrective actions can be taken.

For this reason, we consider a governing agent equipped with a Petri net

model of interaction to facilitate the process of detection of undesired sce-

narios. An advantage to online detection is that it presents a window to act

if needed. A description of the proposed framework is presented in the next

section.

1.2 Contributions

This thesis introduces an agent interaction monitoring and control framework

for assured agent interactions. It comprises two components: the IPN model

for capturing the state of interactions and the governing agent responsible

14

for detection and control. Figure 1.1 depicts the framework at a high-level.

Figure 1.1: Monitoring and control cycle: 1. Detection takes the IPN marking as
input. 2. Control action is based on detection output.

The proposed IPN model addresses the need to capture multiple interac-

tion protocols at the same time. Previous models of interaction have modeled

a single interaction protocol, while with the IPN, different interaction proto-

cols can be modeled. The IPN can be considered agent-based, where places

represents agents and tokens within a place represent messages. This ap-

proach enables the analysis of multiple conversations of different protocols

an agent is engaged with in a single Petri net.

An agent-based approach to modelling protocols focuses on the status

of interaction of agents rather than the protocol. An advantage is captur-

ing an agent’s observed and emitted messages. A Petri net marking would

then represent an agent’s message history and the protocols it is engaged

in. The marking is the input to the governing agent analysis of interaction

which not only provides protocol-specific status but any protocol within the

15

environment.

Additionally, common issues of communication are defined within the IPN

for detection. Defining general issues enhances usability in which the issues

are not dependent on context-specific protocols. The specifications of five

undesired scenarios are introduced: Protocol Delay, Lost messages, Busy-

wait, Transmission Delay, and Agent termination. Protocol delay refers to

when an interaction protocol (IP) takes more than expected to be complete,

lost messages are detected when an agent sends a message but it is not

received by the recipient, busy-wait occurs when an agent receives a request

while handling an ongoing request, transmission delay is when the delivery

of a message is delayed, and termination of agents participating in ongoing

protocols.

The second component of the framework described in this thesis, is the

Governing Agent (GA), which handles detection and control. First, the agent

performs a detection process in which it analyses the marking of the IPN

and placement of tokens guided by the specification of interaction scenarios.

When an undesired scenario is detected, the agent takes a control action. A

control action is defined to correct and contain the negative effect of a scenario

on communication. The control action determines how the environment and

agents react when an issue of interaction is detected. Moreover, the governing

entity is expected to be a part of the system design but can be imposed on

an existing MAS. In that case, the design of the governing agent should be

provided by the system designer as it requires knowledge of the environment.

The proposed approach is a supervisor entity that has the advantage to

oversee the complete status of communication in MAS. The GA observes the

local status of communication with IPN and reacts with governing action in

the case of an unexpected or an undesired issue happening during runtime.

The framework can be applied in a distributed MAS with replicated pairs of

governing agents and IPNs. This allows the task of distributed monitoring

to be carried by each GA placed within nodes of the MAS, but governing

16

actions of a GA are constrained to agents that operate within the same GA

node. Complete status of interaction is available to GAs through a shared

marking of IPN.

The contributions are summarised below:

1. The IPN model of interaction that enables monitoring of agent conver-

sations during run-time. The model captures simultaneous conversa-

tions that can belong to different interaction protocols. Furthermore,

the IPN model supports open environments where new agents can be

added in run-time.

2. The formal definition of common undesired scenarios of communication.

A specification of five types of interaction issues is given based on the

definition of IPN.

3. A governing agent responsible for detection and control. It imple-

ments a process for detection within the IPN model and carries out

appropriate control actions. It is applied in two MAS case studies to

demonstrate how the governing agent successfully detects undesired

interaction scenarios and minimises their effect on agents.

4. A comparative analysis of the IPN model with a similar Petri net model

for validation.

5. An extension to the governing agent to be applied in a distributed

environment. This includes a marking update process that entails the

sharing of markings between governing agents.

1.3 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 presents a background on multiagent systems, agent com-

munication, and Petri net models. The chapter includes a review on the

17

interaction verification techniques applied over the software life cycle. It

also presents a review on previous Petri net models of interaction and their

properties and limitations.

Chapter 3 introduces the monitoring and control framework. First,

a detailed specification of the monitoring and detection process is given,

showing how the IPN captures the state of conversations and how undesired

scenarios in communication are defined within the model. Next, the control

process is described, showing the behaviour of the governing agent.

Chapter 4 evaluates the framework in an experimental analysis. The

experiment involves two case studies. The first is a multi-agent case study

with heterogeneous agents collaborating in a dynamic environment. The

second case study is an auction with multiple participants. A comparison of

IPN performance and capabilities against a related model of interaction is

also applied to the case studies.

Chapter 5 details how an IPN can be applied in a distributed case study

with multiple governing agents. The approach is used for maintaining the

IPN across multiple instances of GA’s. The approach is evaluated through

two case studies, and its capabilities and limitations are discussed.

Chapter 6 summarises the contributions of this thesis, the limitation of

the introduced run-time approach, and potential areas for future work.

18

Chapter 2

Literature Review

2.1 Introduction

Today with the rise of the robotics fields, the Internet of Things, and au-

tonomous driving, MAS systems are more pervasive than ever and involve

multiple agents that need to cooperate or coordinate to achieve a certain

objective.

There are risks that arise from coordination mistakes. Safety concerns

for autonomous agents operating in a multi-agent environment not only arise

from the design of individual agents but also reflect the dynamics of interac-

tion between agents.

A MAS of autonomous agents may exhibit different modes of coordination

that need to be evaluated [13]. In certain scenarios, autonomous agents learn

to coordinate, while in other cases, they are designed to communicate and

coordinate efforts. In either case, unpredictable behaviour can emerge from

multi-agent coordination that affects overall system execution. Moreover, a

multi-agent environment is dynamic, as each agent takes an action towards

its goal, thus altering its environment and presenting a challenge to safe

coordination [48].

Run-time verification is considered an important approach for agent in-

19

teraction assurance, particularly in MAS, where an environment is typically

open, dynamic, with asynchronous communication. However, run-time ap-

proaches are not as widely explored as design time approaches [8]. In this

chapter, we present an investigation of previous work in the area of verifying

agent interaction in collaborative settings.

The remainder of this chapter is organised as follows: Section 2.2 presents

the background on agent communication and the characteristics of previous

approaches to verifying agent interaction. Section 2.3 presents a review on

MAS interaction verification techniques using Petri nets. Section 2.4 is the

chapter summary.

2.2 Background and Related Work

This section introduces and defines the main concepts considered in this

thesis. Section 2.2.1 gives an overview on agent communication and differ-

ent specification approaches of interaction protocols. Section 2.2.2 presents

related work on interaction verification, and section 2.2.3 is the discussion.

2.2.1 Agent Communication

An intelligent agent is the building block of multiagent systems. According

to [74], an agent is:

A computer system that is situated in some environment, and

that is capable of autonomous action in this environment in order

to achieve its delegated objectives.

Autonomy of agents refers to their ability to make decisions on their own,

meaning they rely on their internal state and behaviour to act. Moreover, in

a multiagent system, agents are expected to have social ability, that is, they

are also capable of interacting with other agents.

20

Table 2.1: Sample of performatives provided by KQML

Performative Meaning

tell S claims to R that C is in S ′s VKB
forward S wants R to forward a message to another agent

Interaction among agents is a core aspect of multiagent systems and facil-

itates coordination and negotiation among agents required in different types

of systems. An agent interacts with other agents for different reasons de-

pending on the environment, the roles of those agents, and the goals they

were built to achieve. Voting, negotiating, and cooperation are among the

shapes of communication that exist.

Communication between agents has been directly influenced by the speech

acts theory. The theory of speech acts originates from the work of Austin

[6] and was later extended by Searle [10]. In this theory, communication is

treated as an action. The utterance of words alters the state of the world as

an action does. In their work, a number of performative verbs were identified,

such as request and inform, that correspond to different types of speech acts.

Significant efforts were made to support standard forms of communica-

tion for heterogeneous agents’ message exchange through the development

of agent communication language (ACL). The knowledge query and manip-

ulation language (KQML) [27] was introduced first, and defines a group of

performatives, a sample is shown in Table 2.1. A performative is described

using the notion of a Virtual Knowledge Base (VKB), which represents the

agent’s beliefs. A message in KQML is an envelope structure with a set of

parameters as depicted in Table 2.3.

Later, the Foundation for Intelligent Physical Agents introduced the FIPA

ACL, known as FIPA [28]. FIPA shares a similar message structure with

KQML, shown in Table 2.3, and also defines a set of performatives that

represent the intention of a message, shown in Table 2.2. Moreover, FIPA

produced a set of standard interaction protocols that define a structure for

21

Table 2.2: Sample of performatives provided by FIPA CL

Performative Meaning

inform The sender wants the recipient to believe
this content

accept-proposal An agent wants to state that it accepts
a proposal made by another agent

Table 2.3: Message structure of KQML and FIPA CL

KQML FIPA
Message Structure Message Structure

(performative (performative
:content :sender
:receiver :receiver
:language :content
:ontology :language

) :ontology
)

message flow for a number of common interactions, such as the Contract Net

protocol.

FIPA tackles the lack of syntax in KQML and provides more detailed

specifications that improve interoperability between agents. The semantics

of both languages are based on cognitive concepts of beliefs and intentions

of an agent. FIPA provides a formal specification of performative semantics

using a formalisation of beliefs and intentions.

FIPA and KQML are considered operational ACLs with mentalist seman-

tics. In contrast, many researchers have called for the adoption of interac-

tions that are based on social semantics, not the internal state of agents [14].

Social-based interactions hold a business meaning, and interaction between

agents is carried out by creating commitments to one other.

In commitment-based protocols, a commitment can be represented by the

22

Figure 2.1: FIPA Contract Net Interaction protocol

expression C(debtor, creditor, antecedent, consequent), where the debtor is

committed to the creditor to accomplish the consequent if the antecedent

holds. Commitments are created and manipulated with operations like: cre-

ate, cancel, and release. Abstraction at the business level enhances flexibility

of operation for agents.

The type of interaction is shaped by the context and environment of

agents. Interaction protocols are what facilitates communication among

agents. There have been domain-specific protocols, for example, negotiating

[59] and e-commerce [64]. There are also environments where the communi-

cation needed is simple message passing among agents.

An interaction protocol is a pattern of a conversation between agents [68].

Protocols define a set of message instances and a flow scenario between par-

ticipants. Figure 2.1 shows the well known Contract-net protocol in AUML

[50], which is one of the early notations to specify interaction protocols. The

protocol defines two agent roles, initiator and participant, and the scenario

of message exchange between participating agents.

23

Many approaches exist to specify protocols, and they vary in the abstrac-

tions they adopt. There are graphical notation such as state machines, Petri

nets, and logic based approaches such as propositional dynamic logic, ses-

sion types and trace-expressions. Generally, a protocol is specified through

message structures and a control flow.

Petri nets and Finite State Machines (FSMs) provide a simple graphical

notation to model interactions. Both are used to describe and analyze the

behaviour of systems through states and state transitions. FSMs are consid-

ered single threaded where it can capture a single state, but Petri nets can

model concurrency, as they are able to represent multiple states at the same

time with tokens. Multiple interactions are allowed to happen at the same

time and for FSMs to handle concurrency, additional techniques are needed.

HAPN [72] is a hierarchical FSM notation that implements hierarchy

to model multiple protocols. A state represents the points in the flow of a

protocol whereas a transition defines the sender, the receiver, guards that can

test a condition and the effects on values of variables. A state can contain

a number of sub-protocols, and can not transition unless all sub-protocols

have reached their final state.

Among logic based approaches, session types is a formalism used to de-

scribe a structure of interactions between two parties. Scribble [76] is a

protocol language based on Multiparty Session Types (MPST) that repre-

sents a conversation between two or more agents as a session. A conversation

follows a protocol which is defined as a global type that involves agent roles

and message signatures. Then a global type is projected into local protocols

for each role.

Trace expressions are a formalism devised for the dynamic verification of

agent interaction. First introduced in [3] as an evolution of global types, trace

expressions define a set of operators to denote a trace of events. In [26], a pro-

tocol specification language is implemented based on trace expressions with

protocol enactment checking. Enactability checking or protocol realization

24

is done with consideration of two aspects of interaction: the communication

model and message ordering.

A communication model refers to the communication structure supported

by the MAS, which can be synchronous, asynchronous, FIFO and others.

In synchronous communication a receiver is required to be ready to receive

before a sender can send out a message, asynchronous communication is when

there is no order imposed on message delivery. In FIFO n-n communication,

order on message delivery is applied where messages are delivered according

to their emission order.

The second aspect is message ordering within a protocol and deals with

the interpretation of the order of messages from the projected local protocol.

The identified interpretations based on the work in [23] are SS, SR, RS and

RR. Take the protocol: a
M1−−→ b, c

M2−−→ d. In the send before send (SS) a must

send M1 before c sends M2. In the send before receive (SR), a must send

M1 before d receives M2. In the receive before send (RS), b must receive M1

before c sends M2. In the receive before receive (RR), b must receive M1

before d receives M2.

Another approach that is based on global types and trace-based semantics

is presented in [31]. An algorithm is introduced for projecting the global type

into a set of sessions of its participants. For each session a trace is defined

as the set of sequences of interactions that can occur.

There is also the Blindingly Simple Protocol Language BSPL [65], a

declarative language that specifies a protocol in terms of the flow of infor-

mation rather than the order of messages. BSPL emphasizes the history of

messages, that is the information observed by an agent which enables it to

proceed in a protocol.

The aforementioned languages represent different approaches for the de-

sign and specification of communication. In a comparative study found in

[15], criteria for evaluation are presented to help distinguish the protocol lan-

guages. The criteria include concurrency, extensibility, protocol instances,

25

integrity and social meaning.

Concurrency refers to when messages may be sent or received concur-

rently, which reflects flexibility in protocol specification. Extensibility of a

language is when agents can participate in different protocols. Instances of

a protocol is a criterion for how a language can model and manage multiple

instances of a protocol. Integrity and social meaning relate to the informa-

tion within a message, information belonging to a specific protocol instance

must hold for every message. Social meaning specifies the life-cycle of a com-

mitment protocol and requires language support for protocol instances and

data integrity.

Based on their evaluation criteria, the BSPL outperformed other lan-

guages. A main factor is that BSPL does not require message ordering guar-

antees while Scribble and trace expressions assumes FIFO communication in

which message delivery is ordered. The HAPN language falls short in the

representation of concurrency and extensibility because of state machines

synchronization.

In another evaluation study that includes BSPL, HAPN and trace expres-

sions [4], a different set of criteria is examined. The selected criteria relate

to the support of fault tolerance and prevention such as static and dynamic

verification. The criteria includes: modeling approach, IDE support, code

generation, testing/simulation, a-priori verification and run time verification.

BSPL falls behind HAPN and Trace expression in not having IDE support.

A communication modelling approach is important for specifying correct

and complete interaction models. It facilitates the creation and design of

how agents interact and ensures agent compliance of protocols. A complete

enactment of a protocol is considered the criterion for success, and any devi-

ation from it is seen as a failed interaction. Factors such as communication

latency effect the successful completion of a protocol and reaching the end

point for each role.

26

Environments and Agent Interaction

A multi agent system is defined in [24] as the set of autonomous agents that

perceive its surrounding and capable of interacting. The space in which these

agents sense and act on is the environment. It is agreed that an environment

is a primary entity in the design and engineering of a MAS [71] [61]. The

structure of an environment can be different from simply a facilitator of

communication to a more complex and broader role.

When selecting a MAS environment for evaluation, a first consideration

is that it would hold properties of MAS such as scalability and openness [70].

For agent interaction design and verification, the interaction model would

then vary based on the applied environment from having complex protocols

to simple message passing. In certain environments, indirect communication

exists where agents interact through modifications to their shared environ-

ment.

Among the MAS environments is Packet-World, a test-bed for investigat-

ing situated agents that contains indirect and direct agent communication

[69]. A situated MAS is when agents are explicitly placed in that environ-

ment. The grid-environment involves a number of coloured packets that

agents need to move to their corresponding coloured tiles. Agents can com-

municate with each other to collaborate through a collaboration protocol.

Indirect communication is applied by means of environmental markers such

as flags, where agents can pass information indirectly. The Packet-world en-

vironment can be seen as related to unmanned vehicle transportation and

automated warehouse transportation system.

Another test-bed is the Dedale environment which aims to study decen-

tralised multi-agents coordination and decision-making [37]. The environ-

ment portrays a treasure hunt for teams of agents in an open and dynamic

environment. The creators of Dedale present a comparison between several

case studies found in the literature based on a number of MAS properties in-

cluding asynchronous agent action, heterogeneity, partially observable, team

27

size and asynchronous communication. Notably only two out of the eight

reviewed platforms have asynchronous communication.

An important aspect to consider in the evaluation of agent interaction is

the protocols specified. A range of interaction protocols have been applied

in different case studies for the study of agent communication design such

as the Net-Bill protocol [66], a Play date protocol, Auction, collaboration

protocol in Holonic manufacturing [72], Seller buyer protocol [11]. Typically

a communication protocol contain a number of elements of interaction like

choice, loop and exception.

Additional protocol properties are examined in [72] [15]. For the evalu-

ation of protocol notation in [72], protocols that were selected hold one of

four interaction types: First is parallelism where parts of an interaction take

part at the same time, and synchronization where parts of interaction should

not interleave. Second is exceptions in a protocol in which a protocol can

be aborted at certain points. Third is information driven interactions which

specifies what information needs to be collected within a protocol. Lastly, in-

teractions that involve multiple role instances such as multiple bidder roles in

an auction. Some of the criteria used for the evaluation of protocol languages

in [15], are somewhat similar. The Concurrency criteria addresses parallelism

in interaction. The Integrity criteria entails the information driven criteria

but holds a stronger definition on the consistency of values and parameter

bindings.

When evaluating agent interaction, the environment should not only ex-

hibit characteristics of MAS but should entail interaction scenarios of inter-

action that cover the main criteria presented. A first scenario is extensibil-

ity, agents within the environment should be able to participate in different

protocols. Second is a scenario where multiple instances of a protocol exist,

which is when more one conversation of a protocol take place simultaneously.

Third is protocol integrity. Fourth is including a protocol that involves mul-

tiple roles such as the Contract Net protocol. Lastly, a protocol that has

28

exception points.

2.2.2 Verifying Agent Interaction

Verifying agent interaction is a complex task and there is no unified ap-

proach to ensuring correct interaction. Different verification approaches ex-

ist throughout a software life-cycle, from design to development to run-time.

A key distinction in verification is whether to verify the correctness of a

specified property or to detect a violation of it.

A specification of how agents interact is the initial step for verification and

varies depending on the formal specification language or model. The next

step is to check the correctness of the property through formal approaches,

such as model checking and theorem proving.

In model checking, a model of the system is checked to determine whether

it meets a specification, and in theorem proving, a mathematical approach is

followed to prove the correctness of a programme specification. Such methods

are mostly applied at design time.

Design-time verification One of the early works on automatic design

time verification is the language proposed by [73] called Mable. The language

is used for the design and verification of a MAS, where agent communication

is specified using two primitives aligned with FIPA: request and inform. The

language makes use of the SPIN model checker to verify claims about the

system. Another SPIN-based approach is found in [40]. The authors presents

a tool that transforms protocols modeled with state-charts to the formal

language Promela. Through message sequences, they verify the absence of

deadlock and non-progress loops.

There are also approaches that target a specific aspect of communica-

tion. Epistemic properties are verified in [7], while in [1], they focus on social

semantics of interaction. Work in [7] present an extension to the Action

Computation Tree Logic for epistemic reasoning. They specify an interac-

29

tion protocol based on information exchange and verify the epistemic prop-

erties of participating agents. The work in [1] relies on the Social Integrity

Constraints, a logic-based formalism, to specify social properties of an inter-

action protocol. They verify desired properties of interacting agents through

proof-procedure.

In [52], authors address the issue of the incompleteness and ambiguity

of FIPA IP specification. They propose to extend the semantics of an IP

through a combination of state charts and propositional dynamic logic to

formally verify its termination. A more general approach is found in [47],

where the verification process is done at the ACL level. They introduce an

approach to translate KQML into the input language of the MCMAS [46]

model checker.

Run-time verification The second group of approaches is applied dur-

ing run-time. Such approaches aim to verify interactions during execution

where unexpected agent behaviour may arise. Agents typically interact in a

dynamic, open environment with asynchronous communication.

Run-time approaches usually target violations of a specific property or

find faults through testing and debugging approaches. A monitoring mecha-

nism is used for the debugging and testing of agent behaviour [43]. It provides

run-time visibility, which helps developers and designers in understanding

how faults occur. It essentially consists of collecting data from agents and

making it available visually or through logs.

Debugging agent interaction is usually done through checking message

sequences. A tracing tool is introduced in [41] that logs agent behaviour and

goes through an interpretation process using agent concepts of beliefs. The

process outputs the agent interactions modeled with state-charts, which are

verified through comparison with expected message sequences. Similarly in

[32], interactions are captured with state machines for testing and debugging

within the INGENIAS development platform.

30

There have also been efforts to develop tools for test automation for agent

interaction. JAT [19] is a test automation framework that defines a mock

agent that interacts with agents and carries out different test scenarios. In-

teraction protocols are monitored where faults of incomplete and unexpected

messages are detected.

The authors of [51] apply model checking during run-time, and they fo-

cus on social constraints and aim to ensure an interaction satisfies those

constraints. A combination of the system interaction model with an agent

internal deontic model is fed into a model checker during run-time to verify

the correctness of interactions.

Another form of verification is carried through protocol design and spec-

ification languages. An objective of protocol languages, discussed in Section

2.2.1, is to facilitate the process of compliance or enactment checking.

Scribble, BSPL and Trace expressions follow a distributed approach in

which interaction is verified locally from the agent perspective. Verification

techniques vary between protocol languages based on the constructs they

adopt. For verification with Scribble, an FSM is generated for each role in

the protocol [22]. This is through projections of the global type protocol

into multiparty session types for each participant role. Projections enable

distributed monitoring where a local FSM captures the progress of a partic-

ipant communication. They showed low overhead of monitoring verification

with FSM generation.

The KIKO approach extends BSPL and aims to bridge the agent deci-

sion logic with interactions that are protocol-compliant [18]. Interaction is

verified through the agent decision making process. The approach involves

Decision makers and a protocol adapter. The agent programmer provides

the agent Decision maker, plugged into the protocol adapter, which holds

the business logic of an agent and decides what messages to send. As BSPL

specifies protocols with information constraints, the protocol adapter deter-

31

mines which messages are viable based on the message history thus ensuring

correct protocol enactment.

As an alternative to verifying specified properties, the work of [34] intro-

duces a formalism to specify both desired and undesired patterns of commu-

nication. The formal language, called the Robust Communication Language,

has simple notation to specify undesired sequences, such as deadlock and

initiation, and desired sequences, which depend on the particular protocol

specified. Detection of patterns is undertaken after execution through queries

on logs of recorded messages. An advantage here is the specification of un-

desired patterns is not tied to specific protocols.

The authors of [16] have presented valuable work with the aim of achiev-

ing fault tolerance communication in decentralised MAS with asynchronous

message exchange. Their approach adopts handling faults such as message

loss at the application level. Capturing faults is based on the information flow

of a protocol and what messages are expected, and handling a fault is car-

ried by the agent through following policies. The policies guide the agent in

how and when to transmit information in order to recover and continue with

the protocol. Two types of policies are defined, one that is protocol-specific

which is defined as an extension to a protocol, and the other can apply to any

protocol such a resend policy. The authors later introduce Mandrake [17],

which is an agent programming model designed to address application-level

fault tolerance built on concepts of their earlier work in [16].

2.2.3 Discussion

The application of formal methods relies on mathematical design and proof

for verification, which makes it a viable option for agent interaction assur-

ance. However, applying formal methods involves many challenges [62], such

as the complex task of modeling the large open environments in which MAS

systems are typically applied.

There is also the problem of formally specifying properties of intelligent

32

agents given their autonomous nature and the fact that they are modelled to

make decisions. Despite these challenges, formal specification and verification

is an important step towards correct interaction within MAS.

Design time verification of communication provides assurance, which is

desirable before system execution, but complex, stochastic, and dynamic

MAS environments require a combination of design and run-time approaches.

Run-time methods offer designers visibility and enhance explainability of

failures in dynamic environemnts. The authors of [8] have found, in their

review of verification approaches to interaction, that only 25% of verification

is done during run-time.

Formal runtime verification is concerned with verifying interaction based

on a specification of a protocol. A trace of interaction is checked against

expected message order at run-time. For the most part, protocol verification

approaches have not dealt with the correction of a detected violation. For

MAS environments, run-time approaches equipped with corrective or fault

containment behaviour is desirable.

It is important to consider approaches such as fault detection and man-

agement that address emergent risk from mistakes of interacting [16]. One

form of fault management is to specify faults or incorrect interaction instead

of the expected and correct one. This approach anticipates incorrect scenar-

ios of execution that consequently produce interaction faults. This is similar

to the approach found in [34] in which undesired interactions are identified

for detection. Moreover, an advantage here is that it enables the developer

to implement a corrective action in response to the detected scenario at run-

time.

Work that targets fault tolerance of communication has been shown to

handle faults at the agent level where an agent is equipped with corrective

policies [16]. However, another direction is to handle faults or unexpected

issues in communication at the environment level. Detecting protocol faults

from an agent perspective is subjective and concerned with the protocol con-

33

versation an agent is engaged with, but an environment perspective presents

an objective view of all ongoing protocols. An objective view enables analysis

of any protocol incompleteness or issues and allows a corrective action to be

taken on the system level.

An environment entity with an objective view of communication would

respond to issues of interaction at the environment level. A common issue of

communication is message loss, for example a reaction would not only forward

the message but also ensure the recipient is still available. Another possible

issue is the termination of agents which results in incomplete protocols; if

detected at the environment level, a replicated agent can be set to continue

the protocol, and it may also be possible for the cause of termination to be

examined by a supervisor.

Creating an expressive model of agents’ communications is key to their

analysis. Such a model would allow the detection of interaction issues within

multiple protocols of the environment. The run-time approaches above vary

in their mechanisms for formally capturing interactions, such as state charts,

Petri nets, trace expressions and propositional dynamic logic.

The protocol specification languages present different formalisms for mon-

itoring protocols at run-time. However, there are concerns when the objective

is to monitor multiple protocols. The verification process with specification

languages is applied for the specified protocol. Languages that specify pro-

tocols based on the order of messages, such as trace expressions, suffer from

limited flexibility as they require message order in their verification technique.

BSPL is a declarative language concerned with specification of protocols and

offers an agent-centric perspective to interaction verification. Petri nets are

similar to state charts, however Petri nets have the capability of modeling

concurrent conversations which is a limitation for state charts.

Overall, a verification approach that reacts to issues in communication

would benefit from a holistic point of view. Monitoring the global state

34

of interaction provides insight into the concurrent interactions taking place.

We consider Petri nets as a monitoring formalism that enables detection of

communication faults not just based on the structure of a specific protocol

but rather any protocol.

In the next section we will review the different Petri net models of MAS

in more detail. As Petri nets are considered a popular method for modelling

multi-agent interaction [20, 21, 54, 35, 57], we explore the different Petri net

models proposed for MAS.

2.3 Petri Net Models of MAS

Petri nets were invented by Carl Petri in 1962 and have been successfully used

to model concurrent, distributed systems. A multiagent system is considered

a discrete-event dynamic system, also suitable to be modeled using Petri nets

as shown in [12]. In addition to modelling concurrent processes, Petri nets

have a strong mathematical foundation underlying the graphical notation,

which provides for both simulation and verification analysis techniques.

A Petri net is a graphical model consisting of places represented by cir-

cles, and transitions represented by bars and arcs, which can be directed from

places to transitions or from transitions to places. A place within a net can

be marked with one or more tokens, and the distribution of tokens among

places is called a marking of a net. The movement of tokens between places

is caused by firing a transition.

Definition 2: A Petri net is a five-tuple ⟨P, T,A,W,M0⟩ where P is

finite set of places. T is a finite set of transitions. A ⊆ (P × T)∪ (T ×P) is

a set of arcs. W : A 7→ {1, 2, 3, ..} is a weight function. M0 : P 7→ Z is the

initial marking.

An example of a simple Petri net is shown in Figure 2.2, illustrating the

chemical reaction [49]: here, places H2 and O2 are input places to transition

35

Figure 2.2: An illustration of a transition: (a) The marking before transition t (b)
The marking after firing t. The number over an arc presents the weight of the arc.
An empty arc indicates a weight of 1.

t, while place H2O is an output place of t. The initial marking in Figure 2.2

(a) shows two tokens in each input place. Transition t can fire only when it

is enabled, that is, when all the input places of t contain at least the number

of tokens equal to the weight of the arc connecting H2 and O2 to t. Figure

2.2 (b) shows the marking after transition t is fired, two tokens moves from

the input place into the output place based on the arc weight from transition

2 to its output place H2O.

A marking of the Petri net defines the number and assignment of tokens

in places; in other words, it represents a Petri net state. For example, Figure

2.3 (a) shows the initial marking of petri net N where M0 = [2,0,0]. An

important concept is the reachability graph of markings where each marking

is a node as shown in Figure 2.3 (b). Marking M0 = [2,0,0] is joined with M1

= [1,1,0] with an arc that represents the transition when firing t1 takes the

Petri net from state M0 to M1. The behavioural properties of Petri nets can

be applied to evaluate multi-agent systems, such as liveness and boundedness.

The liveness of a Petri net refers to its ability to avoid deadlock. It indicates

that a transition within the net is enabled and can be fired. In other words

the net can progress and will not reach a state where no transition can be

fired. A net is live when it is possible to ultimately fire any transition in the

36

Figure 2.3: Petri net: (a) Initial marking (b) Reachability graph

net by progressing through some fire sequence for any marking reached from

M0; thus, it guarantees a deadlock-free execution.

Looking back at Petri net N in Figure 2.3, we can see that is not live

and after reaching marking M3, it is no longer possible to fire transition t1.

Boundedness reflects the number of tokens a place can have; places often

represent buffers for storing data, and verifying boundedness helps ensure

there will be no overflows. A Petri net is said to be K-bounded if the number

of tokens in each place does not exceed a finite number K for any marking

reachable from M0. Moreover, a number of extended versions have been

introduced that are referred to as high-level Petri nets, in contrast to original

low-level Petri net. Examples of high-level nets include Timed Petri nets for

defining time specification and Coloured Petri net (CPN), where to a data

type can be attached to each token. Overall, the application of Petri nets

to model the interaction of multi-agents could be useful in the analysis of

safety properties of interaction. In particular, key properties of behaviour in

multiagent systems, such as concurrency and conflict, can be modelled with

Petri nets [67].

37

There has been numerous work on Petri net-based modelling of multi-

agent systems for the purposes of design, verification, and validation. This

indicates the ability of Petri nets to model multiagent systems and repre-

sent their characteristics as dynamic, concurrent systems. Previous Petri

net models have been created for verification during two different phases of

a system life-cycle: design time and run-time. In the analysis and design

of MAS, Petri nets have been shown to naturally model agent architecture

and produce feasible models of both agent architecture [12] and agent com-

munication and interaction [20]. Petri net-based analysis techniques and

simulations facilitate early detection of faults and assessment of liveness and

dead-lock properties. Table 2.4 summarizes a collection of relevant Petri net

work, highlighting the aspects of MAS verified and the analysis techniques

used. In some work, a model is presented with no specification on how the

model can analyzed.

2.3.1 Design Time Models

In the design phase, a developer’s goal is to verify the design and identify

problems early as possible. The reviewed work may be classified according

to which aspects of a MAS are being verified. These main components are:

an agent architecture, agent plans, and agent interactions.

The Petri net model of agent architecture in [12] presents places as the

action a particular agent is performing. Having a token in a place that

represents a specific action means that the agent is currently performing

such action. Firing a transition indicates that the agent finished performing

the action indicated by the input place. Through reachability graph analysis,

the authors were able to prove that the system is deadlock free. In terms of

agent interaction, the model only considers indirect interactions, where one

agent changes the environment in a way that communicates new information

to other agents. If communication were to be explicitly modeled, it would

38

Table 2.4: Summary of Petri net models of Multi-Agent Systems: 1. MAS aspect
refers to target of verification. 2. Phase of the life cycle: Analysis and Design
(A&D), testing, run-time. 3. Petri net type. 4. Petri net-based technique for
verification. NA refers to not applied

ref MAS aspect Phase Petri net Analysis
Technique

[12] Agent A&D Low-level Reachability
Architecture analysis

[45] Agent behaviour A&D Low-level NA

[75] Agent plans A&D Predicate/Transition Reachability
nets analysis

[2] Agent plans A&D Hierarchical Coloured State space
Petri Net

[20] Interaction protocols A&D CPN NA

[63] Coordination protocol A&D Stochastic PN Simulation

[77] Agent decision A&D Condition/event PN NA

[9] Temporal properties Run-time Time Basic Petri Reachability
net analysis

[55] Agent movement Run-time Low-level Transition firing
rule

[39] Agent behaviour Run-time Distributed PN Transition firing
Agent-oriented rule

[60] Test case coverage Testing CPN Reachability
analysis

allow for more thorough analysis of agent interaction and behavior in design

time. A similar, older model in [45] also focuses on robotic tasks. A Petri net

place represents robot action while a transition model required conditions of

those actions. A challenge in modelling an agent architecture is evident when

considering more complex agents or environments. It would be a difficult task

to capture all the possible states and actions an agent can assume.

A second area of work aims at verifying agent plans. An agent plan

is the sequence of actions that would lead an agent to reach its goal. A

methodology for multi-agent plan verification based on Predicate/Transition

nets is proposed in [75]. The approach depends on the reachability analysis of

39

planning graphs through verifying the dependency between actions to reach

a plan goal. A different method relies on generating the state space of a Petri

net to capture all possible behaviours of an agent [2]. This is then used for

model checking a temporal logic specification of a correct agent plan.

A third body of work examines interaction of agents, such as cooperation

and interaction protocols. Agent communication languages such as KQML

and FIPA define message exchange between agents that hold speech acts.

Interaction protocols are used to structure the sequence of messages and

define distinct conversations. The Petri net models of interaction protocols

typically map the event of sending a message to a transition and the state of a

conversation to a place. Furthermore, there are roles an agent assumes when

engaged in an IP, where it would assume different states as the conversation

progresses. A participating agent is modeled by its role within an interaction

protocol and the states it can assume within a conversation.

An early model [20] explored CPN in modelling agent communicative in-

teractions as conversations, defined as a pattern of message exchange that

agents agree to follow in communicating. A place is the state of an agent, a

transition models the message sending, and transition guards represent con-

straints on communications. Guards are boolean expressions implemented

to ensure that the sender, receiver, and ID fields in a message correctly cor-

respond to those in the initiating message of the conversation. This ensures

the correct sequence within the conversation. The authors created a useful

CPN model for protocol specification, but the report makes no attempt to

analyse PN properties of interaction protocols.

Additional models were introduced in the past [21] [56] showing minor

variations and objectives. One effort by [35] aims to compare models and

analyse their scalabiltiy. The authors differentiate Petri net models in terms

of what a place represents, and whether it is state-based or message-based. In

state-based models, a place is mapped to the state of the conversation, while

in message-based places, the message meaning is captured. Based on the

40

number of roles, messages, and conversations of an IP, a scalability analysis

is presented.

An alternative approach to modelling communication is coordination of

an agent’s behaviour. The work in [63] and [77] both rely on a Petri net

coordinator agent. In [63], the goal is to analyse and verify coordination

protocols based on a peer-to-peer bidding algorithm of robots for the purpose

of exploring an unknown environment. A Stochastic Petri net is adopted to

design the coordination algorithm, where each robot is modeled as a Petri

sub-net representing the process of exploring the next target cell. A different

scenario is found in [77], where the decision process of an agent is modelled. A

Condition/event net is used, in which a transition denotes the event of making

a decision, and places connected to it represent the conditions enabling that

decision. Agent decision nets are incorporated into a cooperation Petri net as

sub-nets, which handles the allocation of roles and communicating commands

to agents.

2.3.2 Run-time Models

A different line of research focuses on Petri-net techniques to verify and con-

trol agent behaviour during run-time. The authors of [9] focus on temporal

properties of a real-time system and present a run-time verification method

by comparing observed behaviour with a Time Basic Petri net model of

expected behaviour and specified time constraints. Moreover, the idea of su-

pervisory control during run-time is explored in [55] and [39]. A model of a

supervisor for collision avoidance is created in [55], which enforces constraints

on the mobility of agents in a shared space. A Petri net place represents an

actual room or place within the environment, and a transition reflects robot

movement from one space to other. The authors propose to restrict entry

to a room by introducing a control place, defining the allowed quantity of

robots. The work of [39] has implemented run-time control through a coordi-

nation agent and transition firing rules. A Distributed Agent-oriented Petri

41

net model controls the behaviour of a robot soccer team of eleven agents.

Three agent models were designed to reflect the behaviour of each type of

robot, where the current state of an agent is based on Petri net markings.

Petri net Models of communication during run-time are implemented for

monitoring and debugging interaction protocols. Previous work, whether

state-based or message-based, constructed a single Petri net to describe the

flow of an interaction protocol. In this case, it is possible to model one

or more than one conversation between two agents at the same time using

token colour types. To handle different protocols, [5] indicates the possibility

of linking Petri nets using connector places.

As an alternative to the design and run-time phases, the work in [60]

focuses on model-based design and testing. The authors present a CPNmodel

that captures the behaviour of cooperative robots to generate test cases.

They report on the applicability of test case generation algorithms supporting

the coverage of the underlying CPN models with respect to different testing

criteria.

2.3.3 Discussion

Numerous Petri net models have been proposed for MAS that contribute to

efforts to analysis and verify agent behaviour and interactions. In modelling

agent behaviour and plans, reachability analysis has been shown to be useful

in predicting possible agent actions. This has been implemented to verify

accepted and correct behaviour [2]. This approach would be suitable for

cases of simple behaviour, but in the case of a large number of agents with a

large set of actions, reachability analysis would suffer from high state space

complexity.

Petri net models of interaction have been successful in representing the

flow and message exchange between agents. Past work has shown similarities

in how they capture agent communication. For the most part models adopted

a state-based approach in which places represent the state of interaction. This

42

approach then would follow the order of message flow. This can present a

limitation in monitoring interaction with flexible arrival of messages.

For run-time monitoring only few [54] [57] authors have presented tech-

niques for verifying interaction. A drawback in previous models is the in-

ability to capture multiple interaction protocols in a single model. This is

important because an agent is expected to engage not in a single IP, but in

several.

A Petri net model that can capture multiple protocols provides a complete

state of ongoing conversation within a MAS. This is useful in environments

that include different protocols of interaction where an agent may participat

in more than one distinct protocol. Monitoring different protocols can allow

the analysis the overall state of conversations.

2.4 Summary

In conclusion, we have presented a review of the current verification ap-

proaches to ensure correct and predictable agent communication. We have

considered the life-cycle phase where the verification is applied: at design

time, in development and at run-time, the last of which is the focus of this

project.

Verification of interaction during the design phase ensures the correct-

ness of the interaction model. Applied approaches have mostly focused on

formally verifying the satisfaction of a specific property. A drawback of for-

mal verification is that knowledge of the specification language is required

which makes it more suitable for design time.

Verifying during run-time is applied during development for testing and

debugging. Run-time approaches for agent interaction are not as widely

explored as formal and logic-based methods. They can help designers and

developers understand errors and unexpected behaviour.

A key component of run-time verification is the monitoring mechanisms

43

of agent communication. What information will be collected and how they

are presented determine the scope and efficiency of verification. Petri net-

based methods were found to be one of the most commonly used approaches

for capturing the trace of interaction.

Over the years, a number of Petri net models have been proposed for

verifying correct interaction. Mostly, models of interaction have had Petri

net places represent a state of interaction within a protocol. The flow of

messages would transition the conversation from one state to the next. There

are also models in which a place represents a message within the modeled

protocol. Whether it is message-based or state-based, the Petri net models

a single interaction protocol. For monitoring tasks, this would present a

partial view of agent conversations in which agents are expected to engage

in different protocols simultaneously.

This research considers run-time monitoring of agent interaction proto-

cols. The proposed IPN defines a protocol as a Petri net marking to handle

monitoring simultaneous protocols. In addition, an agent-based analysis fa-

cilitates the detection of errors in an interaction and gives access to message

content being exchanged.

44

Chapter 3

Agent Interaction Monitoring

and Control

The proposed framework is based on run-time monitoring and detection. It

comprises two components: a Petri net model for monitoring and a govern-

ing agent for interaction management. The architecture of the monitor and

control framework entails capturing a trace of execution through the Inter-

action Petri net, which then is analysed by a governing agent to determine

whether undesired scenarios in communication are detected. The result of

analysis determines what action is required to ensure correct interactions

among agents.

The first process is to monitor and analyse the interaction to identify any

undesired scenarios. A key property of an interaction protocol to examine is

message sequence. This can be achieved through a simple Petri net analysis

technique of marking analysis. A marking describes the state of the Petri

net in terms of the number and location of tokens. In the proposed IPN, the

components involved in an interaction protocol are: participants as places,

messages as tokens, and message sequence as a Petri net marking. Defined

as a colour set, a message token holds a number of values: sender, receiver,

IP, sequence ID, body, and time of emission and arrival. This structure

45

of variables enables the identification of messages along the timeline of a

particular IP sequence.

The second process is to take a control action depending on the analysis

output. It is important to note, this step depends on the nature of the

environment, as it entails altering elements within the space where agents

reside and execute. One must examine what a designer can manipulate

during execution. Our monitoring and control technique aims to minimise

the outcomes of interaction errors. This makes the control method dependent

on the nature of the interaction.

After presenting the proposed framework, a description of the selected

case studies is given. A case study should reflect MAS properties to test and

evaluate the framework. Such an environment should display challenges of

communication among agents in an open, asynchronous system. This will

provide an opportunity to examine Petri nets in run-time monitoring and

the applicability of a governing entity executing at the environment level.

The remainder of this chapter is organised as follows: Section 3.1 presents

the definition of the Interaction Petri net. Section 3.2 presents the governing

agent design and components. The selected case studies are presented in

Section 3.3, and lastly Section 3.4 is the chapter summary.

3.1 Interaction Petri Net (IPN)

The goal of the proposed Interaction Petri net is to trace message exchanges

between agents for the objective of monitoring and control. IPN is focused

on monitoring multiple concurrent interaction protocols.

Previous work [20][35] has built a net to model a specific interaction

protocol; in contrast, the aim of IPN is to model a collection of interactions.

The objective is to provide an all-inclusive view to enable the analysis of the

state of communication, such as the status of send messages, exchange of

environment information, and open requests.

46

The IPN is based on Coloured Petri nets, a high-level Petri net that differs

from low-level Petri nets in terms of tokens. Here, tokens hold a data value

and belong to types. A place in the IPN represents an agent, and a transition

represents the action of sending and responding to a message. Tokens are

defined to feature messages available to agents with a structure that supports

metadata, as given in Table 2.2.

The IPN captures communication between agents in two events; sending

and receiving a message. A token is a message instance that the agent in-

tends to send to another agent. The event of firing a transition results in

consuming a token from an input place and producing it in an output place.

Hence, the movement of tokens replicates the dynamic interaction taking

place between agents. Based on [38], we define the IPN as a seven-tuple =

(P ,T ,A,Σ,C,G,E):

1. P is finite set of places. A place p is added for each agent.

2. T is a finite set of transitions t such that P ∩ T = ϕ. A transition t is

created for each pair of places to model the event of receive message.

3. A ⊆ P × T ∪ T × P is a set of directed arcs. The set of directed arcs

represents a link between an agent place and the event of send message

transition.

4. Σ is a finite set of non-empty colour sets. In the IPN, a message colour

set is defined as a record colour set 1 of other colour sets and holds

values such as sender, receiver, message sequence ID, message body,

time of sending and time of receiving.

5. C : P → Σ is a colour set function that assigns a colour set to each

place.

1A record colour set is a term based on the CPN tools [58] described as ”A fixed-
length colour set whose set of values is identical to the Cartesian product of the values in
previously declared color sets. Each of the component colour sets may be a different type
and each is identified by a unique label so that each field is position-independent”.

47

6. G : T → EXPR is a guard function that assigns a guard, a Boolean

expression to each transition t. The guard defines a constraint on firing

a transition based on the recipient of the message.

7. E : A → EXPR is an arc expression function that assigns an arc

expression to each arc a. The expression binds the value of a token

message to a variable with the colour set of the place connected to the

arc.

The definition of IPN provides a new class of Petri nets for modelling

interaction protocols. An interaction protocol can be represented by the

Petri net marking. We can consider a protocol definition in terms of roles

and messages. Suppose that protocol P contains the set of roles R = {r1, r2},
the set of messages M = {m1,m2,m3}, and agents A1 and A2 that would

participate as roles r1 and r2 respectively. Then the structure of IPN will

consist of the set of places P = {p1, p2}, where place p1 represents A1 and

place p2 represents A2 as shown in Figure 3.1.

A place in IPN is mapped to the agent rather than a role in a protocol.

This allows IPN to model an agent in different protocols and for the agent

to play more than one role. An agent place encompasses the set of messages

received from other agents. It also contains messages created by the agent

that are intended to be sent to other agents but have not yet been fired

through the input transition. In other words, token messages are mapped

to the actual messages that an agent creates and receives. For each message

created by an agent, IPN generates a corresponding token message within

the agent’s place. When a message is received by an agent, IPN fires the

appropriate transition to produce the corresponding token message in the

recipient agent’s place.

Next is the set of transitions T = {t1, t2}, which capture the event of

firing a message from place A1 to place A2 and from place A2 to place A1. A

transition in IPN represents the event of an agent receiving a message. When

48

Figure 3.1: The first step is creating places A1 and A2.

a transition is fired, the received message token moves from the sender’s place

to the recipient’s place, indicating that the message has been received.

Transitions are connected to places within the Petri net through arcs. An

arc directed from a transition to a place indicates the direction of a token

when fired. The set of arcs in IPN define a pair of arcs for each transition

and its input and output places. The IPN structure with transitions and

connecting arcs is shown in Figure 3.2.

Next is the representation of the message structure, which corresponds

to the colour set defined in IPN. Typically, messages contain metadata as

found in Table 2.3. The colour set defined here for IPN is MSG, shown in

figure 3.3, and contains message information including: sender, receiver, IP,

sequence ID, message body, time sent and time received. An important data

value is the sequence ID which is an identification of the protocol conver-

sation to support multiple protocol instances. The message structure can

be supplemented with additional values by updating the MSG colour set.

Given that tokens in Coloured Petri nets enable structured data definition,

metadata can be added.

The next element of IPN is the guard function. A transition guard func-

tion is a Boolean expression applied to check some condition for the transition

to be enabled. This provides a way to apply constraints on the firing of tran-

sitions and validate the value of tokens. In IPN, the guard function enforces

49

Figure 3.2: The second step is to add transitions t1, t2 and the connecting arcs.

Figure 3.3: The MSG colour set.

50

a check on the receiver name field of message tokens. The guard function is

defined as G(t) = m.receiver == Po.name, where m.receiver is the receiver

field of a message token m and Po is the output place connected to transition

t.

The guard expression is applied to ensure that a transition is enabled

only when the input agent place contains message tokens that are expected

to be produced at the output place. A transition is fired when the recipient

agent receives the actual message.

The last element is the arc expression. An arc expression of a Coloured

Petri net determines how tokens are consumed from an input place and how

they are produced in an output place. The expression defines the binding

of a token value and how it is processed when a transition is fired. In IPN,

input and output arc expressions are simply defined to bind the value of a

single token message. An arc expression a is defined as E(a) = x where x is

a variable of type MSG.

An example of the complete IPN structure is shown in Figure 3.4. The

example IPN contains:

• Places that represent agents.

• Transitions connected to places with input and output arcs.

• A colour set with a message data structure determined by the required

metadata of protocols used in the environment.

• A guard function in each transition for testing token messages to be

fired.

• An input and output arc expression that binds the value of a token

message to a variable when fired.

After the IPN structure is complete, the protocol can now be represented

through the placement of message tokens within the places of IPN. The

51

Figure 3.4: Complete IPN with places,transitions, arcs, guards, and an assigned
colour set.

marking A1 = [m2] indicates that place A1 contains the token m2, and the

marking A2 = [m1,m3] means that place A2 contains the tokens m1 and

m3. According to the message token information; agent A1 has received m2

from agent A2, messages m2 and m3 are emitted by agent A2 and received

by agent A1.

To demonstrate the IPN representation of multiple instances of an inter-

action protocol and multiple protocols, we present two examples. First, we

consider the Contract Net protocol (CNP) shown in the previous chapter,

Figure 2.1. The simple interaction includes two roles, an initiator and a par-

ticipant, and the expected message exchange. Second, we consider a scenario

52

where the FIPA request protocol is used alongside the CNP protocol. This

example shows how IPN models more than the protocol and enables agents

to play more than one role.

Algorithm 1 Add an Agent to IPN

1: Input: new agent
2: Procedure:
3: cpn← ColouredPetrinet
4: p← cpn.add place(new agent.name)
5: all places = cpn.place()
6: If LENGTH(all places) > 1 then:
7: For Each p ∈ all places:
8: If p.name ̸= new agent.name then:
9: Create Transition from p to new agent:
10: transition name = p.name+ ”to” + new agent.name
11: expression = message[′receiver′] == new agent.name
12: t← Transition(transition name, guard = expression)
13: cpn.add transition(t)
14: cpn.add input(p.name, t)
15: cpn.add output(new agent.name, t)
16: Create Transition from new agent to p:
17: transition name = new agent.name+ ”to” + p.name
18: expression = message[′receiver′] == p.name
19: t← Transition(transition name, guard = expression)
20: cpn.add transition(t)
21: cpn.add input(new agent.name, t)
22: cpn.add output(p.name, t)

To create an IPN, a process is provided in Algorithm 1, we follow the

steps to create the IPN. Initially, we start with an empty Coloured Petri net,

and the procedure describes how an agent is added to the IPN. The input is

an agent for which we need to monitor its communication in the environment,

which here is the agent that plays the initiator role. First step is to add the

place agent A . Next step is to retrieve all places of the Petri net and check

to see whether there is more than one agent place. Since we started with an

empty net, agent A is the only place added, the procedure stops.

53

To add the second agent that plays the participant role, we restart the

procedure with input agent B. This time, the condition at line 6 is true and

we move to the loop in the next line. For every agent place different than

the newly added agent within the IPN we create two transitions: a transition

that connects from the new agent place to the place p and vice versa. Here

the place agent A is the only place that evaluates to true at line 8. The first

transition is named A to B which indicates that agent A is the input place

and agent B is the output place. The second transition is B to A where

agent B is the input place and agent A is the output place. The guard on

each transition is defined to ensure firing tokens that are received by the

output place agent. The resulting IPN is illustrated in Figure 3.5.

Figure 3.5: IPN of agent A and B

We suppose a conversation would flow as the set messages shown in ta-

ble 3.1. The protocol is initiated when agent A creates and sends a CFP

message, the corresponding token is added to place agent A. When agent

B receives the CFP message transition A to B is fired and the CFP token

message is produced at place agent B. The markings of agents A and B

after firing the first message are: A = [], B = [m1]. When message m2 is

created and emitted by agent B, the updated marking would be A = [m2],

B = [m1]. The marking is updated based on the two main events: first is

when an agent creates an actual message and sends it, and the second is

when an agent receives an actual message. Table 3.2 shows the flow of the

54

interaction that unfolds between agents A and B within the environment and

the corresponding updates within the IPN marking.

Table 3.1: A conversation example of the CNP protocol between agent A as an
initiator and agent B as a participant

A conversation example of CNP protocol between agents A and B

m1= {sender = Agent A, receiver = Agent B , ip = CNP, seq id = 1, body =
CFP }
m2= {sender = Agent B, receiver = Agent A, ip = CNP, seq id = 1, body =
Propose }
m3= {sender = Agent A, receiver = Agent B, ip = CNP, seq id = 1, body =
Accept }
m4= {sender = Agent B, receiver = Agent A, ip = CNP, seq id = 1, body =
Inform-done }

Table 3.2: CNP protocol message flow between agents and IPN marking updates

Agent Interaction IPN marking

A sends m1 A = [m1], B = []
B receives m1 A = [], B = [m1]
B sends m2 A = [], B = [m1,m2]
A receives m2 A = [m2], B = [m1]
A sends m3 A = [m2,m3], B = [m1]
B receives m3 A = [m2], B = [m1,m3]
B sends m4 A = [m2,m3], B = [m1,m3,m4]
A receives m4 A = [m2,m4], B = [m1,m3]

To model another instance of the protocol, a third agent is added to the

model by repeating the procedure with input agent C. This time agent C

plays the role of another initiator. The updated IPN is shown in Figure 3.6,

with another example conversation between agent b and c as shown in table

3.3. The following markings show the tokens in places A, B, and C, which

represents the status of conversation at the end of the message flow in Tables

3.1 and 3.3: A = [m2,m4], B = [m1,m3,m5,m7], C = [m6].

55

Figure 3.6: IPN of agents A,B and C.

The previous scenario illustrated two conversations of the CPN protocol

where agent A accepts the proposal of agent B for some task. We now

suppose that Agent B requires assistance from an additional agent, Agent D,

to complete the task. This leads Agent B to initiate a FIPA Request protocol.

The Request protocol, shown in Figure 3.7, is a simple protocol that includes

two roles and an expected flow of three messages. In this interaction, Agent

B assumes the role of the initiator and Agent D takes on the role of the

participant. With a new agent, the IPN model is updated to include Agent

D as shown in Figure 3.8.

An example conversation is shown in table 3.4. The message flow indicates

that agent B sends a request to agent D to perform some action. Agent D

accepts the request, and once the action is complete, it sends an inform-done

56

Figure 3.7: FIPA Request protocol.

57

Figure 3.8: IPN of agents A,B,C and D.

58

Table 3.3: A conversation example of the CNP protocol between agent C as an
initiator and agent B as a participant.

A conversation example of CNP protocol between agents C and B

m5= {sender = Agent C, receiver = Agent B , ip = CNP, seq id = 1, body =
CFP }
m6= {sender = Agent B, receiver = Agent C, ip = CNP, seq id = 1, body =
Propose }
m7= {sender = Agent C, receiver = Agent B, ip = CNP, seq id = 1, body =
Reject }

message. The updated markings after this protocol is complete are as follows:

A = [m2,m4], B = [m1,m3,m5,m7,m9, 10], C = [m6], D = [m8].

Table 3.4: A conversation example of the Request protocol between agent B as an
initiator and agent D as a participant.

A conversation example of Request protocol between agents B and D

m8= {sender = Agent B, receiver = Agent D , ip = Request, seq id = 1, body
= Request }
m9= {sender = Agent D, receiver = Agent B, ip = Request, seq id = 1, body
= Agree }
m10= {sender = Agent D, receiver = Agent B, ip = Request, seq id = 1, body
= Inform-done }

The final marking represents a total of three conversations: two are based

on the CNP protocol, and one is based on the Request protocol. The distri-

bution of tokens indicates both the history of exchanged messages and the

current state of each protocol.

The proposed IPN focuses on the current interaction status of each agent

and provides an overall view of the different conversations and protocols that

take place. With places representing agents, IPN is able to model the agents

that would communicate and the different protocols they are engaged in, not

just a single specific protocol.

59

3.2 Governing Agent

A governing agent behaviour entails two processes: the first is to analyze

the IPN marking for issues in interaction, and the second is to take action

based on the issue detected. Those two processes are repeated within a cyclic

behaviour.

The marking of IPN corresponds to the status of conversations and the

messages that are sent and received. This is a direct approach to monitoring

protocols that allows for immediate detection when applied during run-time.

The following subsection presents a description of the detection and con-

trol processes.

3.2.1 Detection and Control

The detection process objective is to detect unwanted scenarios that may

happen in interaction. The success of a protocol is complete enactment, how-

ever there are certain scenarios that could hinder protocol enactment and

consequently hinder the achievement of agent goals. The detection process

is applied to detect five interaction issues that could arise in any protocol,

identified as: IP delay, lost messages, busy-wait, message delay, and ter-

mination. Monitoring and detection are designed to analyze the status of

conversations to determine if any of these five scenarios is present. There is

a process proposed for each specific one.

The IPN acts as a monitoring mechanism to track the sending and receiv-

ing of messages. The GA takes as input the marking of an IPN to analyze the

status of conversations. The detection defined for IPN enables the detection

of IP delay, lost messages, busy-wait, and message delay as follows:

1. IP delay occurs when an IP is not complete within an expected time

period. The delay is checked for by including a time threshold of when

the end message is expected at a specific place, and when this threshold

is reached, a delay is recorded.

60

Definition 2: D is the set of first messages of delayed protocols, D

= {d | l /∈ Tp ∧ t − d.recorded.time >= e } where l is the expected

last token based on d, p is the expected place of token l, Tp is a set of

tokens at place p, t is the current time, e is the maximum time token l

is expected to arrive.

2. Lost messages in the IPN are detected by checking message tokens that

are not fired by a transition yet. Transitions are fired in the IPN when

a message token is received by its recipient.

Definition 3: L is the set of lost messages, L = {l | l ∈ Tp ∧
l.sender == p.name}, where Tp is the set of tokens at place p.

3. Busy-wait scenarios are checked whenever an agent receives a new re-

quest. An agent status is indicated by a place label. When an agent

receives the first message token of a specific protocol, the place label

value is updated to Busy.

Definition 4: B is the set of busy-wait messages, B = {b | b ∈
Tp ∧ b.body == f(b.ip) ∧ p.status == Busy}, where f(x) returns the

first message in all defined protocols and Tp is a set of tokens at place

p.

4. A message transmission delay occurs when a message transmission time

has exceeded an expected time range. It is applied by including a time

threshold for when a message token must be present at the specified

received place; when it is over that time frame, a message delay is

recorded.

Definition 5: M is the set of delayed messages, M = {m | m ∈
Tp ∧m.received.time −m.sent.time >= e}. where e is the maximum

time token d is expected to arrive by, and Tp is a set of tokens at place

p.

61

5. The termination of an agent happens in IPN when a monitored agent

that is part of the IPN terminates. An agent active status is indicated

by a place label.

Definition 6: P is the set of places in IPN, P = {p | p.status ==

Terminated ∨ p.status == Active}.

Monitoring agent interaction with the IPN is achieved through mirror-

ing the events of creating, sending, and receiving a message in real time.

The definition of lost, delay, and busy scenarios in the IPN facilitates their

detection as they occur.

The second component of the governing agent is the control entity. The

governing agent aims to react to unexpected events in a way that does not

influence agent interaction choices but rather help agents in following pro-

tocols correctly [61]. In contrast to the supervisory roles in [55] [39] which

enforce constraints on the behaviour of agents.

The control component comprises a set of actions designed to deal with

interaction issues. The governing agent is designed as a reactive agent whose

decision process is specified by mapping actions to interaction issues. Based

on the scenario, it picks an action from the set of actions available.

The control process design is directly influenced by the agents’ goals and

environmental characteristics. The objective is to control the negative effect

of interaction issues on agent behaviour and performance. Software design-

ers should specify the control action design to create an effective governing

agent. The designer determines the appropriate reactions to the IPN detec-

tion output.

3.3 Case Studies

An evaluation environment for agent communication should reflect the char-

acteristics of MAS where agents are heterogeneous and have asynchronous

62

communication. Furthermore, a reasonable agent interaction case-study would

include interaction protocols that satisfy the criteria presented in [72] [15].

The following scenarios consist of interactions that cover the discussed cri-

teria. First is a scenario that involves an agent engaged in more than one

different protocol at the same time. A second scenario involves an agent

participating in multiple instances of a specific protocol. Third is a scenario

with at least one protocol that involves multiple role instances. Lastly, a pro-

tocol with one or more exception points. The selected case studies include

those scenarios of interaction for the evaluation of the proposed IPN model

for monitoring communication and detection.

The following sections present the selected case studies, first is a col-

laborative treasure hunt among three types of agents, and the second is an

auction of an item with multiple participants.

3.3.1 Treasure Hunt Case Study

This research adapts the Dedale platform [37] designed to create a testbed

that is open, dynamic, and asynchronous for MAS research. Dedale presents

a treasure-hunting problem in which heterogeneous agents move through a

connected graph to collect treasure. The graph also contains Well nodes

that cause an agent to terminate when visited. There are different kinds

of agents: collectors to pick up treasure, explorers to explore the graph for

treasure, and tankers who are responsible for accumulating it. However,

limited perception and communication range impose difficulties for agents to

interact and achieve their goals.

We created a similar environment to evaluate the proposed Petri net

model for run-time monitoring and control. The environment properties

adapted from Dedale are partial observation, heterogeneous agents with dis-

tinct behaviour, and a common goal that drives collaboration. There are a

number of elements eliminated from Dedale such as types of treasure, exper-

tise required to pick treasure, Golem type agents that move treasure around,

63

and adversarial teams. This adjustment was made to focus on the collabo-

rative interaction between the three types of agents.

This case study is selected to evaluate communication in an environ-

ment that contains four of the defined undesired scenarios: IP delay, lost

messages, busy-wait and agent termination. Such scenarios may occur in a

multiagent system characterized by restricted transmission range, network

latency, different protocols, and partial observability. Agent interaction and

collaboration is assessed in the face of such scenarios.

Figure 3.9 displays a grid world of the adapted environment. Movement

of agents is horizontal and their observation is limited to the node they are

in, for example an agent would not observe if there is a well in the next node.

As agents move within the environment they can gain knowledge of another

agents if they are in adjacent nodes, they would exchange contact informa-

tion. Communication is asynchronous and limited. The range of interaction

is set to three steps away, that is if the recipient can be reached with three

steps it is considered within range. The behaviour of agents are as follows:

Explorer behaviour. An explorer agent will search the environment

based on the Depth First Algorithm to look for treasure. The explorer is not

able to pick up a treasure but it will request collectors to do so.

Collector behaviour. The collector’s goal is to pick up treasure when it

comes across it or when informed by an explorer agent. A collector agent will

move around the grid randomly unless reacting to an explorers request. Also,

a collector maintains a bag for collected treasure with a specific maximum

load. Once the maximum load is reached, a collector will not be able to move

and require a tanker agent’s help with the treasure load.

Tanker behaviour. The goal of a tanker is to accumulate picked up

treasure from collector agents. A tanker agent moves around the grid ran-

domly unless requested by a collector.

64

Figure 3.9: Treasure hunt environment, showing the placement of treasure depicted
as treasure chests, well nodes depicted as black circles, and three kinds of agent
depicted with different colours.

The case study builds a grid environment that exhibits a dynamic MAS.

The Dedale platform provides agent communication through passing infor-

mation but does not specify an interaction model for agents. To create a

suitable case study for evaluating agent interaction, we introduce three in-

teraction protocols. Based on each of the agents behaviour, an interaction

protocol is defined to complement the agent objective.

The first protocol is a Request-Collector (RC) protocol between an ex-

plorer and a collector. The protocol is initiated whenever an explorer agent

comes across a treasure, then the agent creates a request to send to all known

collector agents. The explorer will stay put until it receives an accept message

from a collector. A collector agent that receives a request and is free, will

accept and start moving towards the treasure location for collection. This

interaction is shown in Figure 3.10.

The Request-Collector protocol involves an agent participating in multi-

ple instances of a protocol, as a collector agent may receive more than one

65

Figure 3.10: Request Collector Interaction Protocol

request. Also, it involves multiple role instances, as such a request is made to

multiple collectors, and it is a a protocol with one or more exception points,

as a refuse message stops the protocol instance. The RC protocol includes

three scenarios that cover the criteria desired for interaction evaluation.

The second protocol is a Request-Tankern (RT) protocol between a col-

lector and a tanker. This protocol is initiated whenever a collector agent

reaches the maximum load of its bag. The collector sends a request to all

known tanker agents. A tanker agent that receives a request and is free, will

accept and start moving towards the collector location for handover. This

interaction is shown in Figure 3.11.

The Request-Tanker protocol involves a scenario where an agent is en-

gaged in more than one different protocol at the same time. This occurs for

collector agents when they initiate a Request-Tanker protocol and receive a

request to pick up treasure through a Request-Collector protocol.

Third protocol is Warning, which is a simple broadcast message. Shown

in Figure 3.12, the protocol is followed by every agent type to communicate

the location of a well node.

Based on the described behaviour of the three types of agents, the interac-

tion model is defined for the expected communication between them. Figure

66

Figure 3.11: Request Tanker Interaction Protocol

Figure 3.12: Warning Interaction Protocol

67

3.13 shows an IPN model with three agents of the case study. The following

markings show the tokens in places Explorer, Collector and Tanker which rep-

resents the status of two complete protocols as illustrated in Tables 3.5 and

3.6: Explorer = [m2,m3], Collector = [m1,m5,m6,], Tanker = [m4,m7].

Table 3.5: A conversation example of Request Collector protocol between Explorer
and Collector.

A conversation example of Request Collector protocol between Explorer and
Collector

m1= {sender = Explorer, receiver = Collector , ip = RC, seq id = 1, body =
request }
m2= {sender = Collector, receiver = Explorer, ip = RC, seq id = 1, body =
agree }
m3= {sender = Collector, receiver = Explorer, ip = RC, seq id = 1, body =
inform-done }

Table 3.6: A conversation example of Request Tanker protocol between Collector
and Tanker.

A conversation example of Request Tanker protocol between Collector and
Tanker

m4= {sender = Collector, receiver = Tanker , ip = RT, seq id = 1, body =
request }
m5= {sender = Tanker, receiver = Collector, ip = RT, seq id = 1, body = agree
}
m6= {sender = Tanker, receiver = Collector, ip = RT, seq id = 1, body =
inform }
m7= {sender = Collector, receiver = Tanker, ip = RT, seq id = 1, body =
transfer }

The detected four scenarios are followed with a control action. In the

case of lost messages, the governing agent would forward the message to its

recipient. And in the case termination, the GA will replace a terminated

agent with an agent of the same type. The design of control in response

68

to the delay and busy-wait scenarios entails informing the agents with the

protocol status they are engaged in. Based on each protocol the initiator

agent will react differently to the updates.

An explorer initiates an RC protocol to known collectors and may receive

more that one reply. The explorer will react to an IP delay update based

on the number of other current IP instances which include received collector

replies. If a collector is delayed but there are other collectors that sill may

come and complete the task, the explorer will cancel the delayed collector. If

the delayed collector is the only agent that agreed to come pick the treasure,

then the explorer will not wait any more as to further continue with exploring

the environment.

An explorer may also receive a busy-wait status on a collector that it

is engaged with in an RC protocol. The explorer will check the number of

received collector replies as well as with delay updates. The explorer will

initiate new requests to known collectors if the busy collector is the only

agent that replied to its request. If there are other collectors that may still

complete the pick up, then the explorer will cancel the busy collector.

A collector agent initiates the RT protocol to known tankers. The col-

lector may receive an IP delay or busy-wait update on one of the tankers it

requested. The collector will respond based on the number of current RT

conversations. The collector will wait for a delayed tanker to complete the

request if its the only reply it has received. But if the tanker is busy then

the collector will not wait and will drop one treasure from its bag to be able

to move again. However, If there are other tankers that replied and still can

complete the request, the collector will cancel the delayed or busy tanker.

69

Figure 3.13: An example of an IPN in the Treasure hunt case study with three
agents: Explorer, Collector and Tanker.

3.3.2 Auction Case study

The selected case study presents an environment with agents that participate

in an English Auction. This type of auction is very common and involves

a low starting price and ends with the highest buying price. Typically, an

auctioneer initiates the auction of an item with a proposed price below the

expected market value. Interested buyers show interest by proposing a price

they are willing to pay. Once an auctioneer receives an incoming bid that

is over the current price, it accepts and issues a new call for bids with the

accepted price.

The objective of evaluation is to assess the effect of message delay on par-

ticipating agents. In comparison to the treasure hunt case study, where agent

interaction experienced scenarios of protocol delay, lost messages, busy-wait,

and termination, the communication issue of concern here is transmission

70

delay. In an auction, a delay in receiving a CFP message could affect an

agent’s chance of winning.

The FIPA English Auction interaction protocol defined for an English

auction is shown in Figure 3.14. The auction starts with a Call For Proposal

(CFP) message, which contains the starting price of the item. Participants

reply with a propose message including a proposed price. After the auctioneer

receives a bid, it checks if the proposal is valid, that is, the bid holds an

increase to the current price. If valid the bid is accepted and an Accept

message is sent to the participant and a new Call For Proposal (CFP-2)

message is sent to the other participants. Otherwise, the bid is rejected and

the auctioneer sends a Reject message. The auction continues until there are

no more interested bidders. If a specified time threshold has passed without

receiving any bids, the auction terminates and the last bidder is announced a

winner. An Inform message is sent to all participants announcing the winner
2.

The implemented case study includes six participant agents and an auc-

tioneer agent. All participants share the same parameters: the wallet amount,

which is the maximum amount they are allowed to reach when proposing a

bid, and bidding strategy, which refers to the percentage increase they pro-

pose to bid. These parameters are fixed to ensure consistent behaviour and

limit variability in auction results. This allows us to concentrate on protocol

issues rather than variability caused by bidding strategies.

The goal of the control action associated with delay issues is to eliminate

effects caused by delay on collected proposals of each CFP round. In the case

of a CFP delay, the GA informs the auctioneer, which initiates a response

behaviour. The behaviour is embedded with the auctioneer agent and it

2An alternative approach is described in the FIPA specification document:http://www.
fipa.org/specs/fipa00031/XC00031F.html. An auctioneer announces a price and waits
for a bidder that is willing to accept the proposed price. The auctioneer announces a new
call for bids with an increased price as soon as one buyer indicates that it will accept the
price. However, the implemented case study here follows the approach described above.

71

http://www.fipa.org/specs/fipa00031/XC00031F.html
http://www.fipa.org/specs/fipa00031/XC00031F.html

Figure 3.14: FIPA English Auction

involves a rollback to a previous price point and the start of a new CFP

round. The reason behind this control action is to present bidders with an

equal chance to propose and have their bids received by the auctioneer.

When a delay is detected, the price is saved. If more than one CFP

is delayed, the GA takes the lowest saved price within the set of delayed

CFPs. Then, an Inform message is sent to the auctioneer, which in turn

starts a CFP-wait round. The difference here is that the auctioneer waits

for a response from every agent before processing incoming bids. After all

expected bids are received, the auctioneer processes them, which provides

72

agents the same chance for their bids to be accepted. However, there is

the possibility that two agents may offer the same bid amount, in which

case the auctioneer randomly picks a bid for acceptance. In contrast to the

non-delayed case where the first valid bid received is accepted.

The Auction protocol involves multiple role instances of participants.

This is one of the criteria based scenarios to be included in a case study

for agent interaction.

3.4 Summary

This chapter has presented a detailed approach for run-time detection and

control. A new class of Petri nets is proposed for the purpose of monitoring

and analysing the state of communication. The IPN model design can be

described as an agent-based model in which a Petri net place represents

an agent, in contrast to previous models in which places represent a status

of interaction. What distinguish the IPN is its ability to monitor multiple

interaction protocols with the same Petri net.

The detection approach is based on detecting common interaction issues,

where IPN model is used to define. The approach defines a communication

scenario based on the message token placement within a marking. The de-

tection process involves checking the placement of a token and the values a

message token holds.

The second component consists of the GA control behaviour, designed

with the aim of correcting undesired scenarios found in interaction. The

control component defines a set of actions for the GA to act upon. Based

on the detected issue, the GA reacts with the corresponding action. It is

important to note that a control action is context dependant and its design

depends on the environmental characteristics.

Also, this chapter have introduced two case-studies which will be used

for evaluation of the proposed approach. These two case studies allows us to

73

consider the following scenarios for IPN evaluation: first is a scenario with an

agent participating in different protocols simultaneously, a second scenario

is with a protocol that involves multiple instances, third is a scenario that

includes a protocol involving multiple role instances, and lastly a protocol

with one exception point.

74

Chapter 4

Evaluation

The IPN model and GA are evaluated through experimental analysis using

two case studies described in the previous chapter. We conducted two ex-

periments on each case study; the difference between the first and second

experiment is the application of GA control.

The objective of the first experiment is to examine IPN ability to detect

the undesired scenarios and determine the efficiency of the detection process.

The detection process involves token analysis within the Petri net. A concern

for run-time detection is the processing time, the analysis of different proto-

cols, and the handle of different instances of a single protocol. A different

Petri net model of agent interaction is included in the experiment. This is

to evaluate the proposed model in comparison to the alternative state-based

approach found in the literature.

In the second experiment the GA control is activated to evaluate the

complete approach of detection and control. It examines the effect of the

GA in handling the defined undesired scenarios that may happen in agent

interaction. The evaluation considers protocol completion with and without

GA control, as well as environment status parameters that can give an indi-

cation to the overall performance of agents. This allows us to measure the

effectiveness of the control process on successful protocol enactment.

75

The implementation environment for both case studies; Treasure Hunt

and Auction, is based on Smart Python Agent Development Environment

(Spade) library [33] for building a multiagent system, and the Snakes library

[53] for implementing high level Petri nets.

The Treasure Hunt case study is based on the Dedale platform as men-

tioned previously. Its platform is based on the Jade framework and the

Inter-platform Mobility Service which provides for distributed MAS. How-

ever, we chose to build the case study in Python; a reason for this is to

maintain simplicity, and a number of elements were removed from the orig-

inal environment, such as treasure types and the expertise required to pick

treasure. Moreover, the creation of a scaled-down similar environment allows

avoidance of complexity in integrating a Python-based based framework and

focus on testing the Interaction Petri net model for capturing interactions

between agents.

The Snakes library is a general Petri net library for creating and manipu-

lating a variant of Python-Coloured Petri nets, where elements of a Petri net

can be defined using arbitrary Python objects, expressions, and variables.

It allows for the execution of Petri nets to explore all reachable markings,

which makes it useful for exploring traces. In addition, a number of plug-ins

are available that can handle extensions of Petri nets, such as Timed Petri

nets and Hierarchical Petri nets.

The Spade library is a platform for building MAS, where the interaction

of agents is based on Extensible Messaging and Presence Protocol (XMPP)

and is FIPA compliant. It is chosen because it is built in Python and pro-

vides versatile agent behaviour. Agents can assume a Belief Desire Intention

architecture as well as a simple reactive architecture with cyclic or periodic

behaviour.

We use the ejabberd server for communication between Spade agents

residing in a single computer. Ejabberd is an open, decentralized messaging

service based on XMPP. It enables the switch to a decentralised interaction

76

through connecting with other Ejabberd servers or any XMPP compatible

services.

4.1 Detection Evaluation

The IPN was implemented to register and verify initiated protocols and was

tested on both case studies, the Treasure hunt and Auction.

4.1.1 Treasure Hunt

The environment is initiated with a map that indicates the placement of trea-

sure and wells, which is fixed throughout the experiment. The start of each

run includes three agents of each type: explorer, collector and tanker(total

of nine) placed randomly within the grid. The grid environment limits ob-

servation for agents. Initially, each agent has no knowledge of other active

agents, but as they explore they learn of other agents if they are close by.

Interaction is also constrained with a transmission range of three grid node,

that is any message to a receiver agent located more than three steps away

from its sender will not reach.

The behaviour of GA is cyclic where each cycle involves executing the

detection process. A single run is set to have a fixed number of GA cycles,

and after the 150 cycle a run is terminated. The reason for this setting is

that other agents vary in movement behaviour and may encounter possible

termination within the environment.

At the end of each run, records of the detection process are collected.

Every GA cycle executes the detection process once. Tokens within IPN are

analyzed for determining any lost messages, IP delays and busy-wait scenar-

ios. Lost messages are checked within every place within IPN, incomplete

protocols are checked for delay and newly initiated protocols are checked

whether the recipient agent is already engaged with an ongoing protocol.

The results of each of those sub-processes are logged.

77

The experiment was run 100 times and each run completed 150 GA cycles.

Table 4.1 illustrates a ten run sample of the detection results. The table

includes the number of lost messages and delay detected in both Request

Collector (RC) and Request Tanker (RT) protocols. Also, the number of

busy-wait scenarios, and the total number of IPs initiated and completed

from each protocol, the number of treasures picked by collector agents and

terminated agents in each run.

Table 4.1: Treasure Hunt detection results

Lost Messages IP RC 3 3 4 0 2 0 2 1 2 3
IP RT 5 0 0 3 0 3 0 1 2 5

Delay IP RC 2 1 0 0 1 0 0 0 0 1
IP RT 2 0 0 0 0 1 0 0 0 0

Busy-Wait 1 0 0 0 0 0 0 0 0 0

IP Completion IP RC 2/2 2/1 4/0 0/0 1/0 0/0 2/0 1/0 2/0 3/1
(total/completed) IP RT 4/0 0/0 0/0 3/0 0/0 1/0 0/0 1/0 2/0 5/0
Treasure Picked 7 1 6 4 6 6 5 7 5 6

Terminated Agents 4 7 5 8 5 6 7 6 6 5

The arrival of a message depends on the transmission range and the po-

sition of the recipient. If the receiver agent is more than three steps away

from the sender then transmission is out of range and the message does not

reach its recipient. Another reason for failed delivery is the termination of

an agent when reaching a well node. The number of lost messages varies

depending on the number of IP’s initiated and the movement of agents. The

average of lost messages is 89.32% and the average of agent termination is

70%.

Delay is detected whenever an IP exceeds the expected time to complete.

A delay in a RC protocol happens when a a collector agent is yet to reach

the location to pick up the found treasure while the explorer agent stays idle

waiting for a confirmation message. A delay in an RT protocol would cause

a collector agent to stay put waiting for a tanker to reach its location and

help with picked up treasure. Lost messages or termination contribute to the

78

delay in protocol completion.

A Busy-wait scenario happens when an IP is initiated with a participant

that is already engaged in an ongoing protocol. This could arise in two cases:

first a collector receives a request but is engaged in another instance of an RC

protocol. Second is when a collector receives a request but is engaged with

an RT protocol. Such scenarios could appear within instances of a single

protocol as well as across different protocols.

The IPN model of agent interaction has captured the status of conversa-

tions between agents. The model has enabled the analysis of message tokens,

which can belong to the RC and RT protocols, or they can be part of differ-

ent instances of a protocol. On average, there have been a total of 2.35 IP

instances initiated, with only 13% successfully completed.

A summary of the collected results is shown in 4.2. Overall, the detection

experiment shows how lost messages, delay, busy-wait and termination have

a negative effect on successful IP completion. High rates of terminated agents

and lost messages are consistent with a low rate of completed IP’s.

Table 4.2: Detection results summary of 100 runs

Average Lost Messages Average Termination Average Total IPs Average IP Completion Average Treasure Picked

89.32% 70.15% 2.35 13.11% 53.42%

4.1.2 Auction

The Auction environment is based on conducting an auction of a single item

and includes one auctioneer agent and six participant agents. The detection

process is applied for message transmission delay, which is an important fac-

tor within an auction protocol. The purpose of the experiment is to evaluate

IPN in detecting message delay and investigate the effect of delay on agents

participating in an auction.

All participants share the same parameters: the wallet amount, which is

the maximum amount they are allowed to reach when proposing a bid, and

79

bidding strategy, which refers to the percentage increase they propose to bid.

These parameters are fixed to ensure consistent behaviour and to allow us to

consentrate on the influence of delay in a CFP message on participant bids.

The auctioneer starts the auction with a CFP call with a starting price of

the item to be auctioned. When a bid proposed by a participant is received

and accepted, the auctioneer initiates the next CFP round to the remaining

participants with the new accepted price. CFP messages are sent out to

participants in a random order.

A single run involves the completion of the auction. As with the Treasure

Hunt, each GA cycle executes the detection process once. The goal is to

detect CFP messages that are delayed. When a CFP message is received, a

transition is fired which then consumes the message token in the sender place

and produces the received message token in the receiver place supplemented

with the time of arrival.

A preliminary task in the evaluation is identifying when delay occurs. A

message delay can be determined using transmission time, which is the time

a message takes to reach its destination. Within the experimental setting,

transmission time is collected in order to obtain a meaningful delay threshold

for detection. Transmission time is recorded over ten runs. The transmis-

sion time at the 80% percentile is set for delay detection, which means that

messages with transmission times that fall within the highest 20% would be

considered delayed.

A run is completed when the auction ends, that is when 10 seconds pass

after the last received bid. Records of every CFP message are saved. A

CFP delay log is kept and updated whenever a delay in a CFP message

gets detected by the GA. Delay detection happens when a transition fires

a CFP message token and the message arrival time exceeds the allocated

transmission time. If a CFP message is detected for delay, the GA saves it

for the control process.

Table 4.3 illustrates a sample of runs of the auction and details the number

80

of delays detected in sent out CFPs for each agent, the bids received by the

auctioneer, and the acceptance percentage of those bids. The experiment is

repeated for 50 auctions, at the end of each run, CFP and proposal message

data are collected.

Table 4.3: Summary of results of ten runs showing the number of CFPs sent from
the auctioneer to each participant, number of CFP delays detected, number of bids
received by the auctioneer and acceptance rate of each participant. The winner of
each run is highlighted in gray

Agent CFP’s Delay Bids Bid

sent from Detected Received by Acceptance

auctioneer auctioneer

Participant 1 21 0 21 100.00

Participant 2 42 8 42 0.00

Participant 3 42 5 42 0.00

Participant 4 22 1 22 90.91

Participant 5 42 2 42 0.00

Participant 6 42 1 42 0.00

Participant 1 42 6 42 0.00

Participant 2 22 2 22 90.91

Participant 3 42 10 42 0.00

Participant 4 42 2 42 0.00

Participant 5 21 1 21 100.00

Participant 6 42 4 42 0.00

Participant 1 22 1 22 90.91

Participant 2 42 4 42 0.00

Participant 3 21 1 21 100.00

Participant 4 42 2 42 0.00

Participant 5 42 11 42 0.00

Participant 6 42 2 42 0.00

Participant 1 42 10 42 0.00

Participant 2 42 2 42 0.00

Participant 3 21 1 21 100.00

Participant 4 42 4 42 0.00

Participant 5 42 7 42 0.00

Participant 1 22 0 22 90.91

Participant 1 42 2 42 0.00

Participant 2 42 4 42 0.00

Participant 3 21 0 21 100.00

Participant 4 42 10 42 0.00

Participant 5 22 0 22 90.91

Participant 6 42 0 42 0.00

Agent CFP’s Delay Bids Bid

sent from Detected Received by Acceptance

auctioneer auctioneer

Participant 1 21 0 21 100.00

Participant 2 42 4 42 0.00

Participant 3 22 2 22 90.91

Participant 4 42 4 42 0.00

Participant 5 42 6 42 0.00

Participant 6 42 13 42 0.00

Participant 1 42 1 42 0.00

Participant 2 22 0 22 90.91

Participant 3 21 1 21 100.00

Participant 4 42 9 42 0.00

Participant 5 42 0 42 0.00

Participant 6 42 6 42 0.00

Participant 1 42 2 42 0.00

Participant 2 22 1 22 90.91

Participant 3 42 6 42 0.00

Participant 4 42 10 42 0.00

Participant 5 42 1 42 0.00

Participant 6 21 0 21 100.00

Participant 1 42 23 42 0.00

Participant 2 22 2 22 90.91

Participant 3 42 11 42 0.00

Participant 4 42 7 42 0.00

Participant 5 42 18 42 0.00

Participant 6 21 1 21 100.00

Participant 1 42 11 42 0.00

Participant 2 22 1 22 90.91

Participant 3 42 3 42 0.00

Participant 4 42 6 42 0.00

Participant 5 42 2 42 0.00

Participant 6 21 0 21 100.00

To assess the effect of delay, a record of the acceptance percentage of an

agent’s bid proposals is collected. Results show that the acceptance rate of an

agent is related to the number of delayed CFP messages it has received. At

each auction, the agent with the highest acceptance rate has mostly recorded

81

a lower number of delayed CFP messages.

4.1.3 IPN Comparison Analysis

To further validate IPN, a comparison is made with a previous model by

Gutnik and Kaminka [36], who proposed a scalable Petri net for conversation

monitoring.

Their model was chosen based on a review of several PN models of in-

teraction because it had a combination of features suitable for monitoring

purposes. It allows identification of the status through PN places, content

of messages, and coloured tokens, which enable the definition of multiple

conversations.

The two models were assessed with respect to their design and perfor-

mance. Considering a design perspective, we present how state-based model

is different from agent-based in monitoring protocols. Performance of the

two models is compared based on their processing time in detecting unde-

sired scenarios within the implemented case studies.

Design

A key difference between the two is that an IPN is agent-based, where the

place of a message token specifies the sender or receiver, whereas an SPN can

be considered place-based, which means that the place of the message token

specifies the current status of an IP. For SPN, tokens are checked in every

place, where each token represents a conversation and its place represents the

state of that conversation. To demonstrate, a FIPA Contract Net Interaction

Protocol with one initiator and four participants is modeled using an IPN

and an SPN, as illustrated in Figure 4.1.

SPN follows a structured flow of messages which means a sequential flow.

This limits the monitoring process for flexible message arrival. For example,

in the RC protocol shown in Figure 4.2, the arrival of an InformDone

82

Figure 4.1: FIPA Contract Net Interaction protocol in an SPN(a), and in an
IPN(b).

83

Figure 4.2: The SPN model of Request Collector Protocol

message cannot be modeled before the arrival of an Agree message. When a

collector agent sends an InformDone message, a token is added to the place

MsgInformDone, and transition T3 is set to be fired when it is received by

the explorer. There is the case of the transition not being enabled because the

previous message token is not present at place ExpCol3. The reason could

be a lost or delayed Agree message, which in turn makes SPN incapable of

capturing the arrival of the final message of the protocol.

The second aspect to consider is a model’s capacity to represent a large

number of agents and complicated protocols. Since the SPN model is based

on the IP structure and number of messages, the size of the Petri net is

correlated with the size of the IP being modeled. However, the size of an

84

IPN is related to the number of agents present in the environment.

Moreover, an SPN models each IP with a single Petri net, so considering

an environment with ten IPs for example, an IPN would be a single Petri net,

but with an SPN it would be ten Petri nets. The task of adding a protocol

with SPN is not as straightforward with IPN. An addition of a protocol with

SPN requires the creation of Petri net to represent the roles and message

flow of that protocol. IPN in contrast, does not require any update when

new protocols are added.

Overall, the choice between an agent-based analysis and a place-based

analysis can relate to the perspective needed most within a particular case

study. The IPN presents an agent view of every conversation an agent is

involved with, which provides a more holistic view of conversation instances

of every protocol.

Performance

By performance of an IP monitoring model we mean the model’s ability

to detect errors in the least amount of time possible. For comparison and

experimental evaluation, a process for error detection is proposed here to be

applied to this Scalable Petri net (SPN). The detection experiment was run

with both models IPN and SPN. For every run, detection functions of SPN

and IPN were executed the same number of times. The comparison takes into

account detection of lost messages, IP delay, busy-wait and message delay.

In terms of the type of errors that can be detected, SPN and IPN-property

models enabled the detection of all four types of errors considered here within

an IP. However, the detection of agent termination is not applicable in the

SPN net since the detection process is based on the status of messages while

in IPN a place represents an agent and provides a direct way of updating

the status of the aliveness of an agent through place labels. To include agent

status in SPN, the message structure should be extended with metadata on

agent status.

85

Figure 4.3: Processing time of SPN and IPN in detection of Lost message, Busy-
wait, and IP delay in the Treasure hunt case study

Processing time of each process was collected from the same trace and was

repeated 100 times. The time a process takes to find errors can be measured

with a code profiling tool that measures processing time. Results showed

that SPN and IPN are similar in the time consumed in analysing the status

of conversations. Figure 4.3 and 4.4 illustrate the processing time of both

models in the first and second environments, respectively.

In the first case study, IPN was slightly faster with an average of 12.83

ms while SPN average was 14.73 ms. Figure 4.3 presents the processing time

in relation to the number of messages.

The process of detecting lost messages in IPN and SPN is quite similar.

The process involves verifying tokens at each place of the Petri net. For the

first case study, SPN contains a total of 8 places while IPN contains a total

of 9 places which is the number of agents. The number of tokens that are

within the places of SPN and IPN represents the number of messages created

and sent. To consider the difference in time complexity of each process, we

suppose that the process deals with n places and m tokens within those places

which evaluates to a time complexity of O(nm) for both IPN and SPN. The

number of places and tokens effects the processing time of detection; a higher

86

number of places or messages within a place would increase processing time.

IP delay detection is also similar in both models, because the time is

recorded when a new token is added. However, a noted difference is in the

Busy-wait detection in the first case study. SPN requires two nets to detect

cross protocol engagement of participants, while in IPN the recipient place

is analyzed for ongoing protocols that could be instances of the same or a

different protocol. Consequently, time complexity for this type of scenario is

different, SPN would be O(m1 +m2) where m1 and m2 refers to the initial

places of IPs 1 and 2. IPN would have better time complexity with O(m)

where m is the requested agent place.

In the second case study, a single protocol is implemented and the detec-

tion process is concerned with transmission delay. The process of detecting

transmission delay in both models shows similar times with an average of 1.9

ms for SPN and 1.4 ms for IPN, shown in Figure 4.4. The reason is that the

detection process is applied in the same approach for both SPN and IPN. A

message is checked for transmission delay when it arrives which is when a

transition is fired.

Our objective of adopting a Petri net model of interaction is to facilitate

capturing the status of multiple conversations and to enable error detection

in real-time. Although both IPN and SPN recorded similar processing time in

detecting lost messages, the IPN process of detection has better performance

in handling multiple protocols simultaneously.

4.2 Control Evaluation

The evaluation of the control component of the governing agent involves a

comparison of execution in two scenarios: first in normal execution, second

with the application of GA control. This allows us to compare the execution

of the case study system and to test whether agent interaction is improved

with intervention from the governing agent.

87

Figure 4.4: Processing time of SPN and IPN in detection of message delay in the
Auction case study

4.2.1 Treasure Hunt

The main objective is to improve system performance by minimising inter-

action mistakes. For the Treasure Hunt case study, optimal performance

means collecting all available treasure. For this reason, the amount of col-

lected treasure is a primary performance indicator. Moreover, completed

interaction protocols are essential for collaboration and achieving the agent’s

goal of collecting treasure. We also consider the number of terminated agents

because it effects successful protocol enactment.

The control experiment was run with same environment parameters as

the detection experiment. The environment is initiated with the same grid

map and each run is set to have 150 GA cycles.

Application of the framework improved the performance of agents with

an increased number of collected treasures. Table 4.4 show the performance

indicators of the GA scenarios.

A summary of collected results is shown in Table 4.5, where an improve-

ment in the numbers of collected treasures is observed with GA control. The

88

Table 4.4: Treasure Hunt control results

Lost Messages IP RC 7 6 5 4 5 12 1 4 6 9
IP RT 0 6 3 0 10 11 0 6 3 7

Delay IP RC 3 3 2 1 3 9 1 2 2 3
IP RT 0 2 1 0 4 3 1 2 1 2

Busy-Wait 0 0 1 0 1 0 0 0 0 1

IP Completion IP RC 3/1 3/2 3/2 2/1 4/1 9/4 1/1 3/2 3/2 5/2
(total/completed) IP RT 0/0 4/1 1/1 0/0 5/5 3/3 1/1 2/2 1/2 4/3
Treasure Picked 9 8 8 7 7 9 9 9 9 9

Terminated Agents 5/11 6/11 6/12 7/12 4/11 3 /10 6/11 5/11 5/11 6/12

average percentage of treasure collected in the non-GA control scenario is

53.42% shown in 4.2, compared to the average of 87.11% with GA control.

This increase is due to two factors: First, the number of completed IPs means

a higher number of complete conversations of Request Collector and Request

Tanker, which enabled agents to collaborate successfully in treasure collec-

tion. Second, the average number of active agents is higher with GA control,

which contributes to collecting more treasure.

Table 4.5: Control results summary of 100 runs

Average Lost Messages Average Termination Average Total IPs Average IP Completion Average Treasure Picked

77.35% 55.22% 6.69 51.66% 87.11%

Termination of agents affects the overall behaviour of agents. When an

agent terminates a warning message is sent from the terminated agent to its

set of known agents indicating its location for other agents to avoid. More-

over, the GA control action defined for termination first includes a warning

message to all active agents, and second includes the addition of a new agent

of the same type as the terminated one. The addition of new agents is limited

to one per type so as not to crowd the environment.

With GA control, lost messages are forwarded by the GA, which con-

tributes to the higher rate of completed IPs with control, in contrast to the

rate of completed IPs without control, as shown in Figure 4.5

89

Figure 4.5: Rates of completed IPs with and without GA control.

Each scenario starts with nine agents; however, the total number of agents

in the control scenario is dynamic and can increase up to 12 agents depending

on the number of times a termination control action is taken. The results

show an improvement in the number of terminated agents, where fewer agents

are terminated, as shown in Figure 4.6. Termination control, in addition to

lost messages control action, has helped agents avoid termination.

Figure 4.6: Rates of terminated agents with and without GA control.

90

4.2.2 Auction

In the Auction case study, the experiment is run using the proposed control

process defined in Chapter 3. The same records are collected as well as a

count of the governing agent control action of processed delays, as shown in

Table 4.6.

The average number of CFPs has increased due to the delay control pro-

cess. The delay control rolls back to a previous price point, which in turn

increases the number of CFP rounds; for example, in the first run, CFPs

are around 200 CFPs per participant with the control action compared to 42

CFPs without the control action. A CFP-wait round is introduced when a

delay occurs where there is time window to collect incoming bids before one

is accepted.

91

Table 4.6: Summary of results of ten runs with GA control showing the number
of CFPs sent from the auctioneer, number of CFP delays detected, number of
processed delays, number of bids received by the auctioneer and acceptance rate
of each participant. The winner of each run is highlighted in gray

Agent CFP’s Delay Delay Bids Bid

sent from Detected Processed Received by Acceptance

auctioneer auctioneer

Participant 1 254 168 7 216 5.09

Participant 2 258 153 8 220 3.18

Participant 3 169 63 5 147 65.31

Participant 4 183 84 3 167 49.10

Participant 5 251 168 8 213 6.57

Participant 6 251 171 9 213 6.57

Participant 1 163 73 3 147 48.98

Participant 2 221 135 10 190 7.37

Participant 3 226 149 3 195 4.62

Participant 4 224 138 9 193 5.70

Participant 5 225 151 6 194 5.15

Participant 6 151 46 3 136 61.76

Participant 1 236 150 8 206 3.40

Participant 2 163 70 2 150 53.33

Participant 3 236 141 6 206 3.40

Participant 4 154 57 2 137 64.96

Participant 5 230 158 11 200 6.50

Participant 6 230 153 4 200 6.50

Participant 1 234 159 12 200 3.50

Participant 2 228 140 6 194 6.70

Participant 3 225 139 7 191 8.38

Participant 4 170 87 0 155 45.81

Participant 5 160 55 3 141 57.45

Participant 6 226 143 9 192 7.81

Participant 1 175 61 3 155 58.71

Participant 2 181 84 2 165 51.52

Participant 3 248 148 10 212 8.49

Participant 4 255 151 10 219 5.02

Participant 5 255 176 6 219 5.02

Participant 6 256 173 8 220 4.55

Agent CFP’s Delay Delay Bids Bid

sent from Detected Processed Received by Acceptance

auctioneer auctioneer

Participant 1 221 139 6 192 4.69

Participant 2 217 142 6 188 6.91

Participant 3 145 58 4 129 65.89

Participant 4 223 143 7 194 3.61

Participant 5 157 68 3 144 50.69

Participant 6 220 148 6 191 5.24

Participant 1 226 153 4 194 7.73

Participant 2 231 155 5 199 5.03

Participant 3 157 52 3 138 60.87

Participant 4 231 143 9 199 5.03

Participant 5 228 145 8 196 6.63

Participant 6 168 78 6 155 47.10

Participant 1 168 76 3 150 51.33

Participant 2 230 159 7 198 7.58

Participant 3 236 143 10 204 4.41

Participant 4 235 160 5 203 4.93

Participant 5 235 145 6 203 4.93

Participant 6 156 60 3 142 62.68

Participant 1 148 53 2 135 67.41

Participant 2 235 142 6 205 1.95

Participant 3 229 148 6 199 5.03

Participant 4 166 74 3 149 48.99

Participant 5 230 149 6 200 4.50

Participant 6 221 154 10 191 9.42

Participant 1 227 154 9 197 3.55

Participant 2 230 155 5 199 2.01

Participant 3 158 76 4 142 53.52

Participant 4 151 54 3 134 61.94

Participant 5 217 123 6 187 9.09

Participant 6 220 132 5 189 7.41

The negative correlation between bid acceptance and the number of delays

is still observed with GA control. However, an increase in a participant’s

chance of winning is found despite a high number of CFP delays. This is

because the CFP-wait round has allowed bids from every participant to be

considered.

Furthermore, an agent’s chance of winning an auction has no visible cor-

relation with its acceptance rate, in contrast to without GA control. In the

detection experiment, the fastest bid to reach the auctioneer is likely to be

accepted due to the fixed parameters of the internal bidding behaviour of

participant agents. For the control experiment, bids from all participants are

92

considered in the CFP-wait round. Because the fixed bidding strategy means

that all bidders will bid the same amount, the winner is randomly chosen.

Of course if there are different bidding strategies in use, which would be the

case in real-life, the highest bidder would win the round.

To examine the relationship between a CFP delay and bid acceptance,

an analysis is made of each bid round. After applying the control action of

CFP-wait rounds, total bids are collected along with information on CFP

delay and outcome.

Figure 4.7: Delay rates in Accepted CFPs with no GA control

For accepted CFPs, a CFP delay has a negative affect on the outcome of

a bid. For each run with no GA control, accepted CFP rounds show a lower

delay percentage, as shown in Figure 4.7, compared with the rejected CFPs

shown in Figure 4.8. With GA control there is a clear increase in accepted

bids with delayed CFPs.

93

Figure 4.8: Delay rates in Rejected CFPs with no GA control

4.3 Summary

This chapter has examined the effectiveness of the framework design in de-

tecting and correcting communication issues through two MAS case studies

involving heterogeneous agents interacting in an open and asynchronous en-

vironment. The first case study is adopted from the Dedale test-bed with

the addition of three interaction protocols for agents to collaborate on the

objective of treasure collection. The second case study is an auction with

multiple participants, which is a commonly applied MAS protocol.

The IPN approach was found to be successful in detecting defined un-

desired scenarios using the proposed detection processes. Message tokens

are analysed within each agent place of the Petri net to detect scenarios.

The detection experiment results show how the defined scenarios of lost mes-

sage, IP delay, busy-wait, and agent termination have impact on successful

completion of IP conversations in the first case study. In the second case

study, message delays have reduced participants chance in having their bids

accepted.

To further evaluate the IPN, a comparison was made with the state-based

94

SPN model. Both models successfully detect scenarios of IP delay, busy-wait,

lost messages, and transmission delay. The IPN also detects termination of

agents through place labels. The time efficiency of IPN and SPN were found

to be similar. However, when it is the case of an agent role participating

in two protocols, IPN was found to have better time complexity. Another

limitation of SPN is modeling flexible message arrival. A scenario where

messages of a protocol arrive in a different order cannot be modeled.

The control evaluation applied the GA behaviour presented in Chapter

3 for each of the case studies. For every scenario a control action has been

selected based on the case study environment. The GA control could be a

simple information update to the agents or a modification in the environment

such as introducing an additional agent. Results of GA control in the Trea-

sure hunt environment have shown improved performance and an increase in

successful protocol enactment. In the Auction environment, GA control has

minimized the negative effect of transmission delay on participating agents.

Limitations of the proposed approach are twofold: First, for the GA

control to be effective it needs to be designed by the MAS designer. While

common undesired scenarios are defined for detection within the IPN model,

controlling the effect of those scenarios is context dependant. For example,

in the Auction case study, the control mechanism was designed to handle

the fixed agent bidding strategy. In a realistic setting, bidding strategies are

different therefore an appropriate control action is needed to better handle

this parameter. Different control mechanisms for varied bidding strategies

would be interesting to explore in future work.

The second limitation is that the approach assumes successful delivery

of GA messages. Any GA information updates are guaranteed to reach the

recipient agents. The GA is considered as an environment entity, one way to

avoid this limitation would be through only controlling environment param-

eters.

95

Chapter 5

Distributed IPN

The proposed interaction assurance approach was presented and evaluated

in Chapters 3 and 4, respectively. The approach, which constitutes two

parts (the Petri net model and a governing agent) has been shown to detect

undesired scenarios of communication and minimise their negative effects.

There are two key features to the approach: first, it defines general issues of

communication to be detected within every interaction of agents, and second,

it defines a structure for governing interaction where control actions can be

tailored to the specification of the target environment.

Despite this, the experimental evaluation of the approach has been limited

to a local context where agents involved were operating within the same

machine. As a multi-agent system is inherently distributed, it is important

to employ and evaluate the approach using distributed agents.

The application of distributed monitoring and control involves the chal-

lenge of tracking communication across different locations. It is essential for

a governing agent to obtain full oversight of the status of communication

across distributed nodes. To address this, the task of monitoring would be

distributed over a number of governing agents. Each GA would monitor local

interaction and receive monitoring updates from other governing agents of

their local information.

96

The IPN model is key to monitoring and detection. With distributed

governing agents, the IPN would be replicated within each node/place of

the environment. Each GA will then maintain an IPN model and would

capture the status of communication locally. This will distribute the task of

monitoring interaction between governing agents.

This chapter presents a distributed design of the proposed approach to

be applied.

5.1 Introduction

The goal of this chapter is to examine distributed detection and control

with an IPN and governing agents. The approach would extend to sup-

port distributed monitoring, which requires the tracking of sent and received

messages across nodes.

A multiagent system is composed of a group of agents that communicate

to achieve a specific goal. Typically, MAS is decentralised, and there is

no single entity for making decisions about the system, and management

decisions are distributed among agents. To create a distributed MAS, a

peer-to-peer infrastructure is adopted for its environment. Each node or

agent can directly communicate with other agents.

A governing agent would be located based on the distribution of agents.

The purpose of placing a GA is to set a monitoring entity in such a way that

message events can be recorded directly, so that messages received and sent

by close agents are tracked by the GA and updated within the IPN model.

As the model consists of places that represent agents, a distinction would be

made between local and non-local agent places.

On the other hand, tracking of message events of non-local agents is

handled indirectly. To capture message status of non-local places, marking

transfer is carried between agents. A marking is the placement of tokens in

Petri net places, which reflect the status of messages for each agent. Dis-

97

tributed GAs can share the local status of conversation by sending over a

marking of the local places in the IPN.

5.2 Distributed Approach

The distributed design approach involves multiple instances of a governing

agent. The placement of a GA is taken from the concept of a super-peer in a

super-peer network. A super-peer is a special node created to act as a server

to a group of client nodes. In a similar manner, a single GA is linked with

agents that are located within the same node or a close location, as depicted

in Figure 5.1. The GA can be seen as a supervisor over that group of agents

with the task of detection and control within that node.

Figure 5.1: Peer-to-peer architecture with GA

It is required that a governing agent’s identity be known by other gov-

98

erning agents, since the task of monitoring is distributed over GAs. When a

governing agent is created, it is initialised to connect with other agents.

Each GA will hold an IPN for monitoring and communication analysis.

The monitoring process tracks two message events: sending a message and

receiving a message. Within a distributed environment, a GA tracking of

message events would be limited to those happening within its node; thus,

GA observation is partial. An IPN would represent incomplete status of

interaction and hold a marking that represents local interaction only. As a

result, IPN instances in different nodes would have different markings.

To ensure consistency between IPN markings, a marking update process

is introduced. Figure 5.2 provides an overview of the process, where a GA

sends its current marking of local places to other GA agents. Once a GA

receives a marking, it updates its non-local places accordingly. The update

includes two steps: first, it simply replaces the current marking of non-local

places with the received marking, and second, it eliminates redundant tokens.

The first step involves updating the marking of non-local places. Based

on the received marking, the GA selects the places given and removes all

tokens, then simply adds the received marking. Adding a marking to a Petri

net will add each set of tokens to its corresponding place.

The second step involves checking for redundant tokens. The local places

hold message tokens that are sent to non-local places; however, the event of

receiving those message and firing the transition is not reflected locally. As a

result, a message token could be present in both a sender and receiver place.

To resolve this issue, the GA checks the local marking for message tokens

that have been received and removes them from the IPN marking.

99

Figure 5.2: Marking update

Once the marking update is completed, the GA detection and control

process is initiated. The remit of each GA’s control actions extends only to

agents that are local to it.

To demonstrate and evaluate the distributed approach, the Treasure Hunt

and Auction case studies are used. In the section that follows, a description

of the implemented case studies and experimental results are presented.

5.3 Evaluation

The objective is to evaluate the detection and control approach in a dis-

tributed environment. The experiments presented in Chapter 4 are now

implemented to operate in two different machines.

5.3.1 Treasure Hunt

The treasure hunt environment is distributed between two different locations.

The grid is divided in two parts, where one part is on one machine and the

other is on a different machine. Agents can move around the grid in a similar

manner and can transfer from one part of the environment to the other.

The case study properties of message transmission, agent placement, trea-

sure and well locations remain the same. Agent transmission range, be-

haviour and interaction protocols are also not changed. The only addition is

a migration entity, implemented to handle agent movement between the two

100

parts of environment. The migration agent handles the process of transfer of

an agent where the agent address is updated to reflect its location.

Communication between agents is constrained by the transmission range,

which means that reachable agents are in the same part of the environment.

The first part of experiment is run without GA control. Detection is

concerned with the four undesired scenarios: IP delay, lost messages, busy-

wait, and agent termination. The experiment is conducted with 100 runs,

and Table 5.1 show the results of IP detection from a sample of the runs.

The detection process takes as input the IPN marking. In the distributed

setting an IPN marking represents the status of conversations of agents in

both nodes of the environment.

Table 5.1: Treasure Hunt detection results

Lost Messages IP RC 2 0 1 2 1 3 1 2 1 2
IP RT 0 2 0 0 3 0 0 2 0 3

Delay IP RC 1 0 0 0 0 1 1 2 0 1
IP RT 0 0 0 0 0 0 0 0 0 0

Busy-Wait 0 0 0 0 0 0 0 0 0 0

IP Completetion IP RC 1/1 0/0 1/1 2/0 1/0 2/1 2/1 4/2 2/1 1/1
(total/completed) IP RT 0/0 2/0 0/0 0/0 3/0 0/0 0/0 2/0 0/0 2/0
Treasure Picked 7 6 5 4 6 3 2 6 5 6

Terminated Agents 7/9 7/9 7/9 6/9 8/9 5 /9 7/9 6/9 6/9 6/9

A summary of the collected results is shown in 5.2. Similar to results

found in the local experiment, the average termination and lost messages are

high with low rates of IP completion. On average, there have been a total of

1.5 IP instances initiated, with only 24% successfully completed.

Table 5.2: Detection results summary of 100 runs

Average Lost Messages Average Termination Average Total IPs Average IP Completion Average Treasure Picked

84% 69% 1.5 24% 53%

The second experiment involves applying the complete approach of de-

tection and control. The GA control action, described in Section 3.3.1, is the

101

same as the control applied in the local experiment presented in the previous

chapter. A ten run sample is presented in Table 5.3, with records of the

number of lost messages, IP delay and busy-wait scenarios detected.

Table 5.3: Treasure Hunt control results

Lost Messages IP RC 2 5 9 2 6 10 4 2 9 5
IP RT 0 0 3 0 0 0 0 6 0 3

Delay IP RC 1 2 3 1 2 4 2 1 3 1
IP RT 0 0 1 0 0 0 0 1 0 1

Busy-Wait 0 0 0 0 0 5 0 0 2 1

IP Completetion IP RC 1/1 5/3 8/3 2/1 4/3 14/6 5/4 1/1 6/2 6/1
(total/completed) IP RT 0/0 0/0 1/1 0/0 1/0 0/0 0/0 3/1 0/0 1/1
Treasure Picked 9 7 8 8 6 8 6 8 7 8

Terminated Agents 5/11 5/12 6/11 7/11 6/12 4/12 5/11 7 /10 4/11 3/11

A summary of the total runs is found in Table 5.4. The average number

of initiated protocols has increased from one IP per run to four protocols.

One reason for this increase is the updates received by agents from the GA

on busy agents. An explorer will initiate new RC protocols if it receives the

information that the only agent that replied to its first request is busy.

The rate of completed protocols recorded is 32%, a slight increase from

24% completion rate without GA control. This increase can be because of

the control on termination and lost messages. Termination control involves

creating a new agent in replacement of a terminated one and informing other

agents of terminated ones. And detected lost messages are forwarded to their

recipient.

Table 5.4: Control results summary of 100 runs

Average Lost Messages Average Termination Average Total IPs Average IP Completion Average Treasure Picked

53% 44% 4.3 32% 78%

102

5.3.2 Auction

The Auction case study is evaluated here in a distributed setting where agents

operate from different locations. As in the auction experiment in Chapter 3,

the auction involves a single item, one auctioneer agent, and six participant

agents. The participant agents are placed within the same location while the

auctioneer is run from a different one. This placement is made to examine

the effect of message transmission delay on participant bidding outcomes in

the protocol.

With each CFP call, agents determine their bids and send out proposals

to the auctioneer. Each proposal is checked against the current price and

has two possible outcomes. A higher bid is accepted, the current price is

updated, and the bidding agent is informed of acceptance while a new CFP

is sent out to the remaining agents. A lower bid is rejected, and the bidding

agent is informed of rejection.

The running of a single auction constitutes a run in the experiment, and

there were a total of 50 runs. Before the start of the experiment, the trans-

mission time is calculated within the distributed settings because establishing

the average time it takes to send and receive a message is a preliminary step

before setting the delay threshold.

An objective of the auction case study is to evaluate IPN in monitoring a

protocol with multiple role instances by the participants. Another goal is to

assess the scenario of message transmission delay and its effect on interacting

agents.

The detection of message delay involves checking the time it takes a mes-

sage to arrive and relies on temporal information recorded in tokens. Message

tokens contain times of message emission and arrival. Message arrival time is

recorded in the IPN when an agent receives a message; IPN fires a transition

based on the received message information and records the time.

Table 5.5 illustrates the numbers collected from ten runs. At the end

of each auction, we collect the number of CFPs sent out by the auctioneer,

103

number of delays detected within those CFP’s, the number of bids received

by the auctioneer, and lastly the acceptance percentage of those bids.

The acceptance rate of an agent is affected by the number of delayed

CFP messages it has received. At each auction, the agent with the lowest

number of delays received mostly a higher acceptance rate. Similar to the

local experiment, there is an observed high variance in acceptance rates of

44. The is caused by the delay in receiving a CFP as well as the shared

bidding strategy.

There does not seem to be a relationship between an agent’s chance of

winning an auction and the number of delays detected, but it is often the

case, though not always, that the winning agent has a lower number of delays.

104

Table 5.5: Summary of results of ten runs showing the number of CFPs sent from
the auctioneer, number of CFP delays detected, number of bids received by the
auctioneer and acceptance rate of each participant. The winner of each run is
highlighted in gray

Agent CFP’s Delay Bids Bid

sent from Detected Received by Acceptance

auctioneer auctioneer

Participant 1 37 5 37 13.5

Participant 2 35 6 35 20.0

Participant 3 37 6 37 13.5

Participant 4 30 2 30 40.0

Participant 5 37 7 37 13.5

Participant 6 35 7 35 20.0

Participant 1 32 1 32 31.3

Participant 2 35 0 35 20.0

Participant 3 34 0 34 23.5

Participant 4 35 1 35 20.0

Participant 5 39 2 39 7.7

Participant 6 36 2 36 16.7

Participant 1 34 6 34 23.5

Participant 2 33 5 33 27.3

Participant 3 36 10 36 16.7

Participant 4 34 6 34 23.5

Participant 5 34 8 34 23.5

Participant 6 40 8 40 5

Participant 1 35 8 35 20.0

Participant 2 38 6 38 10.5

Participant 3 34 3 34 23.5

Participant 4 37 5 37 13.5

Participant 5 32 2 32 31.3

Participant 1 35 2 35 20.0

Participant 1 31 31 0 35.5

Participant 2 37 37 3 13.5

Participant 3 36 36 2 16.7

Participant 4 33 33 3 27.3

Participant 5 37 37 2 13.5

Participant 6 37 37 2 13.5

Agent CFP’s Delay Bids Bid

sent from Detected Received by Acceptance

auctioneer auctioneer

Participant 1 33 0 33 27.3

Participant 2 33 3 33 27.3

Participant 3 35 1 35 20.0

Participant 4 37 1 37 13.5

Participant 5 37 4 37 13.5

Participant 6 36 4 36 16.7

Participant 1 33 13 33 27.27

Participant 2 38 19 38 10.53

Participant 3 36 13 36 16.67

Participant 4 33 8 33 27.27

Participant 5 37 12 37 13.51

Participant 6 34 12 34 23.53

Participant 1 34 1 34 23.53

Participant 2 39 8 39 7.69

Participant 3 36 6 36 16.67

Participant 4 33 3 33 27.27

Participant 5 35 4 35 20.00

Participant 6 34 4 34 23.53

Participant 1 32 3 32 31.25

Participant 2 35 3 35 20.00

Participant 3 35 6 35 20.00

Participant 4 34 7 34 23.53

Participant 5 38 4 38 10.53

Participant 6 37 4 37 13.51

Participant 1 37 17 37 13.51

Participant 2 33 6 33 27.27

Participant 3 38 10 38 10.53

Participant 4 34 9 34 23.53

Participant 5 34 9 34 23.53

Participant 6 35 11 35 20.00

The experiment is run after implementing the proposed control process

defined in Chapter 3. Results were collected from 50 runs, Table 5.6 illus-

trates results from a sample of those runs. The same data is collected as

the detection experiment with addition to the number of delays processed.

These refer to the number of times an auctioneer received a notification of

delay and initiated a CFP-wait round.

As was the case in the local setting, the average number of CFPs has

increased due to the delay control process. The number of CFPs sent out

105

to each participant has reached over 100 CFPs in comparison to around 30.

The variance in the number of CFPs to each participant is a result of the

protocol flow, when a participant bid is accepted it receives an accept and is

excluded from the next CFP round.

Table 5.6: Summary of results of ten runs with GA control showing the number
of CFPs sent from the auctioneer, number of CFP delays detected, number of
processed delays, number of bids received by the auctioneer and acceptance rate
of each participant. The winner of each run is highlighted in gray

Agent CFP’s Delay Delay Bids Bid

sent from Detected Processed Received by Acceptance

auctioneer auctioneer

Participant 1 162 16 7 149 17.45

Participant 2 161 10 3 145 18.62

Participant 3 153 8 2 138 25.36

Participant 4 163 13 2 149 16.78

Participant 5 158 6 1 145 20.69

Participant 6 159 6 0 145 20.00

Participant 1 144 32 3 132 24.24

Participant 2 140 39 3 123 29.27

Participant 3 151 36 1 137 18.25

Participant 4 150 46 3 137 18.98

Participant 5 155 40 3 141 14.89

Participant 6 157 36 3 143 13.29

Participant 1 123 9 2 113 19.47

Participant 2 116 16 1 106 27.36

Participant 3 124 10 3 115 18.26

Participant 4 127 10 1 113 15.93

Participant 5 130 9 3 118 12.71

Participant 6 118 8 2 109 24.77

Participant 1 109 4 2 100 26.00

Participant 2 116 7 2 107 17.76

Participant 3 113 6 1 104 21.15

Participant 4 114 5 2 102 20.59

Participant 5 119 6 2 108 14.81

Participant 6 116 5 2 106 17.92

Participant 1 102 6 4 93 16.13

Participant 2 100 5 1 89 19.10

Participant 3 103 3 0 94 14.89

Participant 4 98 6 1 88 21.59

Participant 5 94 6 2 87 26.44

Participant 6 100 9 3 88 19.32

Agent CFP’s Delay Delay Bids Bid

sent from Detected Processed Received by Acceptance

auctioneer auctioneer

Participant 1 84 1 0 74 16.22

Participant 2 84 4 1 75 16.00

Participant 3 79 2 0 72 23.61

Participant 4 80 6 3 70 22.86

Participant 5 78 7 4 70 25.71

Participant 6 86 5 2 77 12.99

Participant 1 125 10 2 114 15.79

Participant 2 126 20 3 109 15.60

Participant 3 123 6 0 112 17.86

Participant 4 115 13 4 101 27.72

Participant 5 116 14 2 103 26.21

Participant 6 125 13 3 110 16.36

Participant 1 141 25 3 122 18.03

Participant 2 135 21 1 120 23.33

Participant 3 138 21 3 125 20.00

Participant 4 143 30 3 128 15.63

Participant 5 133 21 2 118 25.42

Participant 6 141 22 3 126 17.46

Participant 1 114 8 3 102 13.73

Participant 2 109 6 2 96 19.79

Participant 3 115 5 3 104 12.50

Participant 4 110 7 4 98 18.37

Participant 5 100 2 0 90 31.11

Participant 6 106 4 1 97 22.68

Participant 1 143 24 1 123 15.45

Participant 2 135 23 1 121 22.31

Participant 3 138 21 2 123 19.51

Participant 4 135 19 6 120 22.50

Participant 5 136 24 3 116 22.41

Participant 6 140 33 3 123 17.89

The relationship between bid acceptance and the number of delays has

changed. The participant with a lower bid acceptance is not necessarily the

one with the highest delay count. Furthermore, an agent’s chance of winning

an auction has no visible correlation with its acceptance rate, as was the case

with no GA control. A possible reason for this is the fixed parameters of the

internal bidding behaviour of participant agents.

106

A main outcome of the control action is the reduction in variance between

acceptance rates among bidders. Since bidders share the same strategy, the

effect of delay without GA control is to give high variance in acceptance rates,

which indicates that delayed CFPs have caused lower acceptance rates. The

variance with GA control is reduced to 18. This improvement is because

the control action allowed participants to have a better chance of acceptance

even with a CFP delay.

An important aspect of the application of a distributed IPN is maintaining

consistency of markings among the different instances of IPN. The marking

update process enables up to date tracking of message events across nodes.

At the end of each run a comparison between IPN markings of both nodes is

done. Comparison results have shown that markings are equal at every run.

5.4 Summary

This chapter has presented a distributed design and evaluation of the pro-

posed framework of detection and control. To enable distributed monitoring

of agents, a GA is placed at each node in a peer-to-peer architecture where

a local IPN is maintained. To handle differences of IPN markings, the de-

tection process is extended with a preliminary process of marking update.

Such a process provides a GA with a complete up-to-date status of agent

interaction.

Two case studies are evaluated for the detection and control of the five

undesired scenarios. Results from the Treasure hunt case study showed an

improvement in completed IPs with GA control. Furthermore, experimen-

tal results from the Auction show that delays in transmission time have a

negative effect on an agent’s bid outcome. Participant agents that record a

higher number of delays show a lower acceptance rate. GA control has min-

imised the variance in acceptance rates among agents, thereby improving

participants’ chances of having their bids accepted.

107

The effect of delays on agents with more varied bidding strategies has not

been explored in the present evaluation. The bidding strategy of agents has

been controlled, so that all agents have the same percentage increase for bid

proposal. A more realistic scenario would be where agents adopt different

strategies and display complex behaviour in announcing their bids. However,

an initial step is to examine the effect of delay on bidding agents.

108

Chapter 6

Conclusion

This thesis has addressed the verification of agent interaction through run-

time monitoring and control. Through the review of verification approaches

to agent interactions, it is found that there is a need for run-time approaches

[8]. The aim of this project was to minimise faults in communicating agents,

thus ensuring correct agent interaction.

The idea of a governing entity may contribute to the control of emergent

risk from undesired scenarios in communication. Many challenges to apply-

ing this verification approach exist, such as the lack of uniform design and

development methodologies for MAS communication as well as the diverse

landscape of MAS environments [25].

In this work, the application of Petri nets as a model for monitoring and

error detection at run-time was investigated. An IPN model was proposed

to represent multiple interactions simultaneously. The experimental evalua-

tion demonstrated the ability of the IPN to detect errors through marking

analysis.

The second component of this work was exploring the feasibility of apply-

ing a governing agent. The agent’s objective is to detect undesired scenarios

in interaction and react with predefined actions. A governing agent takes the

role of a supervisor over agent communication and ensures correct interac-

109

tion.

The following sections outline the contributions of this research, the lim-

itations of the proposed framework, and areas of future work that might be

considered.

6.1 Contributions

The main contribution of this thesis is a new class of Petri nets called In-

teraction Petri nets. The proposed model addresses the issue of monitoring

multiple interaction protocols simultaneously. Many Petri net models of in-

teraction have been proposed [12, 36, 20], but these have mainly focused on

representing a single interaction protocol within a Petri net. Agents are ex-

pected to engage in multiple conversations which may also be instances of

different interaction protocols.

The IPN was proposed for the objective of monitoring the state of inter-

action. To capture multiple conversations between agents, the IPN defines

Petri net places as agents and tokens as messages. In contrast to previous

models in which a Petri net place represents a state, the IPN model can

be considered an agent-based model. This approach enables the tracking of

messages that are part of different interaction protocols.

Furthermore, common undesired scenarios of communication such as IP

delay, lost messages, busy-wait, transmission delay, and agent termination

are defined for detection through an IPN marking. A key advantage to the

specification of general issues is the loose coupling with interaction protocols.

The protocols that regulate interactions vary between different application

areas. As a result, the definition of common scenarios provides a usable

approach for detection and does not rely on the specifics of a particular

interaction protocol.

The IPN facilitates the identification of five scenarios that can affect pro-

tocol enactment. The IPN marking, which defines the placement of tokens,

110

enables analysis of the current state of conversations. With message meta-

data defined using a colour set, issues of interaction can be detected such as

delay in arrival, IP completion delay and lost messages. Complete protocol

enactment may be affected by other issues such as incorrect message formats

or unexpected messages; however such scenarios are not covered for detection

by this approach but may be explored in future work.

A governing agent is introduced for detection and control. GA behaviour

deals with controlling the effect of detected undesired scenarios. First, a

detection process for each of the five scenarios of communications is imple-

mented. Second, a number of actions are designed in response to the these

scenarios for assuring correct interaction. The internal structure of the GA

is purely reactive, where an action is selected based on the detected issue. A

corrective action is specified for each scenario, which includes status updates

passed to the participating agents.

The GA and IPN combined comprise our framework for runtime detection

and control. We demonstrated the effectiveness of the framework through

experimental evaluation. Two MAS case studies that involves heterogeneous

collaborative and competitive agents in an open and asynchronous environ-

ment was implemented. The first case study was based on the Dedale test-bed

[37], but was supplemented with three interaction protocols to examine the

effect of undesired scenarios of interaction. The second case study is an auc-

tion among multiple participants. The English Auction protocol is a common

protocol that is widely used for commerce. The experimental results show

the successful detection of scenarios of interaction. Moreover, the control

actions are evaluated based on agent performance indicators. The applica-

tion of GA control has corrected interaction protocols, which consequently

improved agent performance.

Furthermore, a comparison analysis was conducted of IPN and a previous

Petri net model of interaction called Scalable Petri nets [36], referred to here

as SPN. We extended the SPN model with a detection process for the defined

111

undesired scenarios in Chapter 3 to carry out the experiment. Two SPN nets

were implemented to model the protocols of the treasure hunt case study.

IPN has the advantage when it comes to monitoring different protocols within

the same environment, as it shows better time complexity when it comes to

monitoring mora than one protocol. When considering scalability, it may

depend on the target MAS environment. IPN space is correlated with the

number of agents while SPN is on the size of the protocols and the states a

protocols holds.

Finally, an extension of IPN to be applied in a distributed environment is

presented. The idea is to distribute the task of monitoring among a number

of governing agents. Each GA maintains an IPN to capture the status of

messages within its local node. A marking update process is introduced

to maintain consistency of the replicated markings managed by governing

agents. The distributed monitoring and control is evaluated in both case

studies. The results in Chapter 5 are consistent with the local experiments

of Chapter 3.

6.2 Limitations

The contributions of this thesis needs to be considered in light of the following

limitations:

The application of the proposed framework requires knowledge of the tar-

get environment and the behaviour of agents, specifically the control compo-

nent. Control is achieved through GA behaviour. The aim of a control action

is to minimise the effect of a detected scenario, and successfully achieving

this goal relies on how well it is designed.

The governing agent presented in Chapter 3 is designed as purely reactive

agent. Such a GA selects its action based on the detected scenarios. The

evaluation is carried out within an environment that also consists of simple

reactive agents. The design of control actions would be more challenging

112

in cases where agents exhibit complex behaviour and have a high level of

autonomy.

Moreover, the design of the governing agent is made on the assumption

that agents are willing to share interaction information with a governing

agent. This is suitable for collaborative environments where agents share an

objective, but it might not be the case for adversarial agents.

Additionally, an issue that relates to the distributed application of IPN

in Chapter 5 is the consistency of replicated markings across nodes. In the

applied model, consistency of marking relies on GA communication. Each

GA would forward its local marking to other agents for updates through

message exchange. The reliability of this approach is affected by risks of

communication. Any network issues such as delays would in turn impact

detection.

6.3 Future Work

The following areas are suggested for future work:

Commitment protocols. The presented IPN model is concerned with in-

teractions that follow operational interaction protocols. An important area

for future work is to extend the IPN to model commitment-based proto-

cols. A commitment protocol is different from an operational protocol in

that messages are defined in terms of social commitments. Agents inter-

act through the declaration and manipulation of social commitments to one

another, which provides for more flexible message exchange.

In order to consider this area, we consider the framework presented in

[29]. Fornara and Colombetti transformed the semantics of an ACL into a

commitment-based definition. They present an approach to produce oper-

ational specification of a commitment-based ACL. Key components of the

approach include commitment objects, temporal proposition objects, and

113

communicative acts. A commitment object is represented as:

Cid(state,debtor,creditor,content conditions,timeout)

Each object consists of an identifier, a state of the commitment, a refer-

ence for the debtor, a reference for the creditor, content, conditions for the

commitment, and an optional timeout parameter. Temporal proposition is

used to specify the content, to which a debtor is committed, and the con-

ditions state that needs to be satisfied for the commitment to be active. A

commitment has a life-cycle indicated by the state. A change in a commit-

ment state is affected by events that change the values of its content and

conditions.

Furthermore, a group of communicative acts is redefined with social mean-

ing. For example, the performative inform, used by agent a to inform agent

b of content P, can be defined as the commitment object: Cid(active,a,b,P

T).

Following work of [29], tokens in the IPN model will represent commit-

ments instead of message structures. A token can be defined as a commit-

ment object that binds interacting agents. A commitment declaration is

represented through the Petri net transition, which produces a commitment

token at the creditor place.

The IPN marking will hold the current status of commitments between

agents. Monitoring agent commitments is carried out through the distribu-

tion of tokens within a marking combined with the state of each commitment.

Detection and control can be achieved through a specification of unde-

sired patterns within a commitment protocol. Unlike operational protocols,

where an expected sequence is defined, interaction with commitment-based

protocols is more flexible. A wider set of patterns can be defined based on

commitment states with respect to a specific sequence of a commitment pro-

tocol. Patterns of interaction that hold either expected or unwanted states

can be specified for detection.

114

Consistency of replicated markings. Another direction for future work

is related to Chapter 5 and distributed IPNs. To enable consistency in repli-

cated IPN markings for governing agents, a marking update process has been

implemented. However, the update process can be considered unreliable, as

discussed in the limitations section. An approach based on data-centric con-

sistency models enables access to a shared IPN marking.

We consider the IPN marking as a shared data store where read and write

processes are performed by governing agents. An IPN marking reflects the

creation of messages through adding tokens into a sender place, and sending

messages by firing a transition that produces a token at the receiver place.

The addition of tokens and transition firing can be viewed as write processes

that modify a marking. On the other hand, a GA will perform a read process

of the IPN marking at every detection cycle.

The Sequential consistency model can be applied to regulate write and

read processes [42]. Sequential consistency ensures the order in which con-

current operations are executed appears to be sequential. Concurrent read

and write processes are interleaved, but every GA will see the same order of

operations. This gives every GA access to the same marking version.

Large scale evaluation. An evaluation of the monitoring and control

framework in environments with a large number of agents would be ben-

eficial for assessing scalability of the IPN model. The IPN model can modify

its structure and adapt to open environments where the number of agents

changes dynamically. The addition of a new agent is done by simply adding

a place and connecting it to other places with transitions. It is worthwhile to

examine further how well IPN adapts to an increased number of new added

agents. It would also be valuable to assess the effectiveness of the detection

process within a large IPN.

Detection of alternative flows. Defining general undesired scenarios in

communication for detection increases the usability of the proposed frame-

115

work. However, in certain contexts, it may also be beneficial to detect specific

patterns of interaction. An interaction protocol defines a main flow of mes-

sage exchange, and in some protocols alternative flows are also defined to

handle exceptional scenarios.

The detection process can be extended to detect an alternative flow within

a protocol. Based on Petri net markings, a specific token message that indi-

cates an exception within the flow of a protocol can be flagged for detection.

6.4 Concluding Thoughts

This research aimed to investigate run-time verification of agent interaction.

Run-time approaches are not as widely implemented as design time verifica-

tion. However, run-time verification is not a straightforward task given the

large landscape of multiagent system classes. Also, there is a varied range of

autonomy among agents.

This research takes on the perspective of common undesired communi-

cation scenarios in order to assure interaction. We have shown that the

detection of common issues can be applied in different classes of multiagent

systems.

Moreover, a verification approach applied in run-time has a window to

manage mistakes in communication. The application of a corrective action

can be beneficial to dynamic, asynchronous environments, which are typi-

cally the characteristics of a multiagent system. We have improved agent

performance by assuring agent interaction in both case studies.

116

Bibliography

[1] Marco Alberti, Marco Gavanelli, E Lamm, Federico Chesani, Paola

Mello, and Paolo Torroni, ‘A logic based approach to interaction design

in open multi-agent systems’, in 13th IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises, pp.

387–392. IEEE, (2004).

[2] Hyggo Almeida, Leandro Silva, Angelo Perkusich, and Evandro Costa,

‘A formal approach for the modelling and verification of multiagent plans

based on model checking and petri nets’, volume 3390, pp. 162–179, (05

2004).

[3] Davide Ancona, Sophia Drossopoulou, and Viviana Mascardi, ‘Auto-

matic generation of self-monitoring mass from multiparty global session

types in jason’, in Declarative Agent Languages and Technologies X: 10th

International Workshop, DALT 2012, Valencia, Spain, June 4, 2012,

Revised Selected Papers 10, pp. 76–95. Springer, (2013).

[4] Davide Ancona, Angelo Ferrando, and Viviana Mascardi, ‘Improving

flexibility and dependability of remote patient monitoring with agent-

oriented approaches’, International Journal of Agent-Oriented Software

Engineering, 6(3-4), 402–442, (2018).

[5] Frantǐsek Apkovi, ‘Cooperation and negotiation of agents by means of

petri net-based models’, in 2012 17th International Conference on Meth-

117

ods & Models in Automation & Robotics (MMAR), pp. 256–261. IEEE,

(2012).

[6] John Langshaw Austin, How to do things with words, volume 88, Oxford

university press, 1975.

[7] Marina Bagić, Aleksandar Babac, and Marijan Kunštić, ‘Verification

of communication protocols in a multi-agent system’, in Proceedings of

the 5th international conference on Soft computing as transdisciplinary

science and technology, pp. 286–291, (2008).

[8] Najwa Abu Bakar and Ali Selamat, ‘Agent systems verification: system-

atic literature review and mapping’, Applied Intelligence, 48(5), 1251–

1274, (2018).

[9] Matteo Camilli, Angelo Gargantini, Patrizia Scandurra, and Carlo Bel-

lettini, ‘Event-based runtime verification of temporal properties using

time basic petri nets’, in NASA Formal Methods Symposium, pp. 115–

130. Springer, (2017).

[10] BG Campbell, ‘Searle: Speech acts: An essay in the philosophy of lan-

guage (book review)’, General Linguistics, 14(4), 220, (1974).

[11] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca

Padovani, ‘On global types and multi-party session’, Logical Methods

in Computer Science, 8, (2012).

[12] Jose R Celaya, Alan A Desrochers, and Robert J Graves, ‘Modeling

and analysis of multi-agent systems using petri nets’, in 2007 IEEE

International Conference on Systems, Man and Cybernetics, pp. 1439–

1444. IEEE, (2007).

[13] Nader Chmait, David L Dowe, David G Green, and Yuan-Fang Li,

‘Agent coordination and potential risks: Meaningful environments for

118

evaluating multiagent systems’, in Evaluating General-Purpose AI, IJ-

CAI Workshop, (2017).

[14] Amit K Chopra, Alexander Artikis, Jamal Bentahar, Marco Colombetti,

Frank Dignum, Nicoletta Fornara, Andrew JI Jones, Munindar P Singh,

and Pinar Yolum, ‘Research directions in agent communication’, ACM

Transactions on Intelligent Systems and Technology (TIST), 4(2), 1–23,

(2013).

[15] Amit K Chopra, Munindar P Singh, et al., ‘An evaluation of communi-

cation protocol languages for engineering multiagent systems’, Journal

of Artificial Intelligence Research, 69, 1351–1393, (2020).

[16] Amit Khushwant Chopra, Munindar P Singh, et al., ‘Bungie: Improv-

ing fault tolerance via extensible application-level protocols’, Computer,

54(5), 44–53, (2021).

[17] Samuel H Christie, Amit K Chopra, and Munindar P Singh, ‘Mandrake:

multiagent systems as a basis for programming fault-tolerant decentral-

ized applications’, Autonomous Agents and Multi-Agent Systems, 36(1),

16, (2022).

[18] Samuel H Christie, Munindar P Singh, and Amit K Chopra, ‘Kiko:

programming agents to enact interaction protocols’, in Proceedings of

the International Conference on Autonomous Agents and MultiAgent

Systems (AAMAS, volume 22, (2023).

[19] Roberta Coelho, Elder Cirilo, Uira Kulesza, Arndt von Staa, Awais

Rashid, and Carlos Lucena, ‘Jat: A test automation framework for

multi-agent systems’, in 2007 IEEE International Conference on Soft-

ware Maintenance, pp. 425–434. IEEE, (2007).

[20] R Scott Cost, Ye Chen, Tim Finin, Yannis K Labrou, Yun Peng, et al.,

‘Modeling agent conversations with colored petri nets’, inWorking notes

119

of the Autonomous Agents’ 99 Workshop on Specifying and Implement-

ing Conversation Policies, (1999).

[21] Stephen Cranefield, Martin Purvis, Mariusz Nowostawski, and Peter

Hwang, ‘Ontologies for interaction protocols”, Ontologies for Agents:

Theory and Experiences, 1–18, (2002).

[22] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova,

and Nobuko Yoshida, ‘Practical interruptible conversations: distributed

dynamic verification with multiparty session types and python’, Formal

Methods in System Design, 46, 197–225, (2015).

[23] Nirmit Desai and Munindar P Singh, ‘On the enactability of business

protocols.’, in AAAI, pp. 1126–1131, (2008).

[24] Virginia Dignum and Julian Padget, ‘Multiagent organizations’, Multi-

agent systems, 2, 51–98, (2013).

[25] Mariana Falco and Gabriela Robiolo, ‘A systematic literature review in

multi-agent systems: Patterns and trends’, in 2019 XLV Latin American

Computing Conference (CLEI), pp. 1–10, (2019).

[26] Angelo Ferrando, Michael Winikoff, Stephen Cranefield, Frank Dignum,

and Viviana Mascardi. On the enactability of agent interaction proto-

cols: Toward a unified approach, 2019.

[27] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire, ‘Kqml

as an agent communication language’, in Proceedings of the Third In-

ternational Conference on Information and Knowledge Management,

CIKM ’94, p. 456–463, New York, NY, USA, (1994). Association for

Computing Machinery.

[28] ACL Fipa, ‘Fipa acl message structure specification’, Foun-

dation for Intelligent Physical Agents, http://www. fipa.

org/specs/fipa00061/SC00061G. html (30.6. 2004), (2002).

120

[29] Nicoletta Fornara and Marco Colombetti, ‘Defining interaction protocols

using a commitment-based agent communication language’, in Proceed-

ings of the second international joint conference on Autonomous agents

and multiagent systems, pp. 520–527, (2003).

[30] Ernesto German and Leonid Sheremetov, ‘An agent framework for

processing fipa-acl messages based on interaction models’, in Interna-

tional Workshop on Agent-Oriented Software Engineering, pp. 88–102.

Springer, (2007).

[31] Castagna Giuseppe, Mariangiola Dezani, Luca Padovani, et al., ‘On

global types and multi-party sessions’, Logical Methods in Computer

Science, 8, 1–45, (2012).

[32] Jorge J Gomez-Sanz, Juan Bot́ıa, Emilio Serrano, and Juan Pavón,

‘Testing and debugging of mas interactions with ingenias’, in Agent-

Oriented Software Engineering IX: 9th International Workshop, AOSE

2008 Estoril, Portugal, May 12-13, 2008 Revised Selected Papers 9, pp.

199–212. Springer, (2009).

[33] Miguel Escrivá Gregori, Javier Palanca Cámara, and Gustavo Aranda

Bada, ‘A jabber-based multi-agent system platform’, in Proceedings of

the Fifth International Joint Conference on Autonomous Agents and

Multiagent Systems, AAMAS ’06, p. 1282–1284, New York, NY, USA,

(2006). Association for Computing Machinery.

[34] Celia Gutiérrez, Iván Garćıa-Magariño, Emilio Serrano, and Juan A

Bot́ıa, ‘Robust design of multi-agent system interactions: A testing ap-

proach based on pattern matching’, Engineering Applications of Artifi-

cial Intelligence, 26(9), 2093–2104, (2013).

[35] Gery Gutnik and Gal Kaminka, ‘A scalable petri net representation

of interaction protocols for overhearing’, in International Workshop on

Agent Communication, pp. 50–64. Springer, (2004).

121

[36] Gery Gutnik and Gal A Kaminka, ‘Representing conversations for scal-

able overhearing’, Journal of Artificial Intelligence Research, 25, 349–

387, (2006).

[37] Cédric Herpson, ‘Dedale: A dedicated testbed for multi-agents prob-

lems’, (2019).

[38] Kurt Jensen and Lars M Kristensen, Coloured Petri nets: modelling and

validation of concurrent systems, Springer Science & Business Media,

2009.

[39] Chung-Hsien Kuo and Ting-Shuo Chen, ‘Modeling and control of au-

tonomous soccer robots using high-level petri nets’, in Proceedings of

SICE Annual Conference 2010, pp. 2226–2231. IEEE, (2010).

[40] Timothy Lacey and Scott A DeLoach, ‘Automatic verification of multia-

gent conversations’, in Proceedings of the Eleventh Annual Midwest Ar-

tificial Intelligence and Cognitive Science Conference, pp. 93–100. AAAI

Press Fayetteville, Arkansas, (2000).

[41] Dung N Lam and K Suzanne Barber, ‘Debugging agent behavior in an

implemented agent system’, in International Workshop on Programming

Multi-Agent Systems, pp. 104–125. Springer, (2004).

[42] Lamport, ‘How to make a multiprocessor computer that correctly exe-

cutes multiprocess programs’, IEEE transactions on computers, 100(9),

690–691, (1979).

[43] Martin Leucker and Christian Schallhart, ‘A brief account of runtime

verification’, The Journal of Logic and Algebraic Programming, 78(5),

293–303, (2009).

[44] Yoo Jin Lim, Gwangui Hong, Donghwan Shin, Eunkyoung Jee, and Doo-

Hwan Bae, ‘A runtime verification framework for dynamically adaptive

122

multi-agent systems’, in 2016 International Conference on Big Data and

Smart Computing (BigComp), pp. 509–512. IEEE, (2016).

[45] Pedro Lima, Hugo Gracio, Vasco Veiga, and Anders Karlsson, ‘Petri

nets for modeling and coordination of robotic tasks’, in SMC’98 Con-

ference Proceedings. 1998 IEEE International Conference on Systems,

Man, and Cybernetics (Cat. No. 98CH36218), volume 1, pp. 190–195.

IEEE, (1998).

[46] Alessio Lomuscio and Franco Raimondi, ‘Mcmas: A model checker

for multi-agent systems’, in International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems, pp. 450–454.

Springer, (2006).

[47] Xiangyu Luo, Mengmeng Zou, and Lingjie Luo, ‘A modeling and verifi-

cation method to multi-agent systems based on kqml’, in 2012 IEEE

Symposium on Electrical & Electronics Engineering (EEESYM), pp.

690–693. IEEE, (2012).

[48] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat, ‘In-

dependent reinforcement learners in cooperative markov games: a survey

regarding coordination problems.’, (2012).

[49] Tadao Murata, ‘Petri nets: Properties, analysis and applications’, Pro-

ceedings of the IEEE, 77(4), 541–580, (1989).

[50] James J Odell, Harry Van Dyke Parunak, and Bernhard Bauer, ‘Repre-

senting agent interaction protocols in uml’, in International Workshop

on Agent-Oriented Software Engineering, pp. 121–140. Springer, (2000).

[51] Nardine Osman, David Robertson, and Christopher Walton, ‘Run-time

model checking of interaction and deontic models for multi-agent sys-

tems’, in Proceedings of the fifth international joint conference on Au-

tonomous agents and multiagent systems, pp. 238–240, (2006).

123

[52] Shamimabi Paurobally, Jim Cunningham, and Nicholas R Jennings,

‘Verifying the contract net protocol: a case study in interaction pro-

tocol and agent communication semantics’, (2004).

[53] Franck Pommereau, ‘SNAKES: a flexible high-level Petri nets library’,

in Proceedings of PETRI NETS’15, volume 9115 of LNCS, pp. 254–265.

Springer, (06 2015).

[54] David Poutakidis, Lin Padgham, and Michael Winikoff, ‘Debugging

multi-agent systems using design artifacts: The case of interaction pro-

tocols’, in Proceedings of the first international joint conference on Au-

tonomous agents and multiagent systems: part 2, pp. 960–967, (2002).

[55] Ali Akbar Pouyan and Fateme Jafarinejad, ‘Collision avoidance in dy-

namic multi-agent systems using petri net-based supervisor’, in Interna-

tional Conference on Artificial Intelligence, Energy and Manufacturing

Engineering, pp. 38–42, (2015).

[56] MK Purvis, Peter Hwang, MA Purvis, SJ Cranefield, and Martin

Schievink, ‘Interaction protocols for a network of environmental problem

solvers’, (2002).

[57] Awais Qasim, Sidra Kanwal, Adnan Khalid, Syed Asad Raza Kazmi,

and Jawad Hassan, ‘Timed-arc petri-nets based agent communication

for real-time multi-agent systems’, International Journal of Advanced

Computer Science and Applications, 10(9), (2019).

[58] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen,

Jacob Frank Qvortrup, Martin Stig Stissing, Michael Westergaard,

Søren Christensen, and Kurt Jensen, ‘Cpn tools for editing, simulating,

and analysing coloured petri nets’, in Applications and Theory of Petri

Nets 2003, eds., Wil M. P. van der Aalst and Eike Best, pp. 450–462,

Berlin, Heidelberg, (2003). Springer Berlin Heidelberg.

124

[59] Jeffrey S Rosenschein and Gilad Zlotkin, Rules of encounter: designing

conventions for automated negotiation among computers, MIT press,

1994.

[60] Francesca Saglietti, David Föhrweiser, Stefan Winzinger, and Raimar

Lill, ‘Model-based design and testing of decisional autonomy and coop-

eration in cyber-physical systems’, in 2015 41st Euromicro Conference

on Software Engineering and Advanced Applications, pp. 479–483. IEEE,

(2015).

[61] Michael Schumacher and Sascha Ossowski, ‘The governing environment’,

in International Workshop on Environments for Multi-Agent Systems,

pp. 88–104. Springer, (2005).

[62] Sanjit A Seshia, Dorsa Sadigh, and S Shankar Sastry, ‘Towards verified

artificial intelligence’, arXiv preprint arXiv:1606.08514, (2016).

[63] Weihua Sheng and Qingyan Yang, ‘Peer-to-peer multi-robot coordina-

tion algorithms: petri net based analysis and design’, in Proceedings,

2005 IEEE/ASME International Conference on Advanced Intelligent

Mechatronics., pp. 1407–1412. IEEE, (2005).

[64] Carles Sierra, ‘Agent-mediated electronic commerce’, Autonomous

agents and multi-agent systems, 9, 285–301, (2004).

[65] Munindar P Singh, ‘Information-driven interaction-oriented program-

ming: Bspl, the blindingly simple protocol language’, in The 10th In-

ternational Conference on Autonomous Agents and Multiagent Systems-

Volume 2, pp. 491–498, (2011).

[66] Munindar P Singh, ‘Bliss: Specifying declarative service protocols’, in

2014 IEEE International Conference on Services Computing, pp. 235–

242. IEEE, (2014).

125

[67] Jiacun Wang, ‘Petri nets for dynamic event-driven system modeling.’,

Handbook of Dynamic System Modeling, 1, (2007).

[68] Gerhard Weiss, Multiagent Systems, The MIT Press, 2013.

[69] Danny Weyns, Alexander Helleboogh, and Tom Holvoet, ‘The packet-

world: A test bed for investigating situated multi-agent systems’, in

Software Agent-Based Applications, Platforms and Development Kits,

pp. 383–408. Springer, (2005).

[70] Danny Weyns and Fabien Michel, ‘Agent environments for multi-agent

systems–a research roadmap’, in Agent Environments for Multi-Agent

Systems IV: 4th International Workshop, E4MAS 2014-10 Years Later,

Paris, France, May 6, 2014, Revised Selected and Invited Papers, pp.

3–21. Springer, (2015).

[71] Danny Weyns, H Van Dyke Parunak, Fabien Michel, Tom Holvoet,

and Jacques Ferber, ‘Environments for multiagent systems state-of-the-

art and research challenges’, in Environments for Multi-Agent Systems:

First International Workshop, E4MAS 2004, New York, NY, July 19,

2004, Revised Selected Papers 1, pp. 1–47. Springer, (2005).

[72] Michael Winikoff, Nitin Yadav, and Lin Padgham, ‘A new hierarchical

agent protocol notation’, Autonomous Agents and Multi-Agent Systems,

32, 59–133, (2018).

[73] Michael Wooldridge, Michael Fisher, Marc-Philippe Huget, and Simon

Parsons, ‘Model checking multi-agent systems with mable’, in Proceed-

ings of the first international joint conference on Autonomous agents

and multiagent systems: part 2, pp. 952–959, (2002).

[74] Michael Wooldridge and Nicholas R Jennings, ‘Intelligent agents: The-

ory and practice’, The knowledge engineering review, 10(2), 115–152,

(1995).

126

[75] Dianxiang Xu, Richard Volz, Thomas Ioerger, and John Yen, ‘Modeling

and verifying multi-agent behaviors using predicate/transition nets’, in

Proceedings of the 14th international conference on Software engineering

and knowledge engineering, pp. 193–200, (2002).

[76] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng,

‘The scribble protocol language’, in Trustworthy Global Computing: 8th

International Symposium, TGC 2013, Buenos Aires, Argentina, August

30-31, 2013, Revised Selected Papers 8, pp. 22–41. Springer, (2014).

[77] Lin Zishen, Li Wei, and Li Maoqing, ‘Modeling decision and cooperation

of multi-agent system using petri net’, in 2009 4th International Con-

ference on Computer Science & Education, pp. 643–646. IEEE, (2009).

127

	Introduction
	Assuring Agent Interaction
	Contributions
	Thesis Structure

	Literature Review
	Introduction
	Background and Related Work
	Agent Communication
	Verifying Agent Interaction
	Discussion

	Petri Net Models of MAS
	Design Time Models
	Run-time Models
	Discussion

	Summary

	Agent Interaction Monitoring and Control
	Interaction Petri Net (IPN)
	Governing Agent
	Detection and Control

	Case Studies
	Treasure Hunt Case Study
	Auction Case study

	Summary

	Evaluation
	Detection Evaluation
	Treasure Hunt
	Auction
	IPN Comparison Analysis

	Control Evaluation
	Treasure Hunt
	Auction

	Summary

	Distributed IPN
	Introduction
	Distributed Approach
	Evaluation
	Treasure Hunt
	Auction

	Summary

	Conclusion
	Contributions
	Limitations
	Future Work
	Concluding Thoughts

